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ABSTRACT 

 

CLIMATOLOGY OF SPRINGTIME FREEZE EVENTS IN THE GREAT LAKES REGION 

AND THEIR IMPACT ON SOUR CHERRY YIELDS IN HISTORICAL AND PROJECTED 

FUTURE TIME FRAMES 

 

By 

 

Lydia Rill 

Production of sour cherries has a significant impact on the economy of the Great Lakes 

Region, valued at more than $74 million. In contrast to cereal crops where water is the most 

limiting factor, perennials in temperate regions are limited by freeze injury, especially in the 

spring following initial phenological development, which was highlighted in 2002 and 2012 

when yields decreased considerably. This study analyzed the spatial and temporal variability of 

springtime freeze events in the Great Lakes Region and their impact on sour cherry production, 

as well as explored the use of gridded climatic datasets. Additionally, this study examined the 

historical trends in sour cherry yield and potential future changes by the mid-century. The Great 

Lakes played a major role in the spatial variability of springtime freezes, as locations inland 

experienced colder temperatures than near the coast. Simulated damaging freeze events over the 

past 50 years were most common during the later phenological stages of the crop, while the most 

severe damage occurred in the earlier stages. Gridded datasets were less suitable for this 

application than individual station observations. Over time, phenological development has 

tended to begin earlier, and this trend was projected to continue into the mid-century at three 

stations located in northwest, west central, and southwest Lower Michigan. An ensemble of 

climate projections indicated a large uncertainty envelope surrounding changes in simulated sour 

cherry yield. The projected changes varied by emissions scenario, downscaling method, and 

climate model.  



iii 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my advisors, Jeff Andresen and Julie Winkler, and committee 

member, Roy Black, for their help and guidance in this research. They have been very supportive 

throughout graduate school, and I am very thankful for all that they have taught me. 

I would like to acknowledge the Department of Geography for its financial support. I 

enjoyed being part of the department; it expanded my interests and taught me a great deal. 

I would like to thank my family for all their support, specifically my parents, Brenda and 

Peter Rill, and my brother, Elliott. They are always understanding and supportive in everything I 

do.  

I would also like to thank to my roommate, Deanna Apps, for all her help and support 

these last two years. She has been my go-to for my questions throughout graduate school and has 

kept me going through the late nights.  

  



iv 

 

TABLE OF CONTENTS 

 

LIST OF TABLES ......................................................................................................................... vi 

LIST OF FIGURES ..................................................................................................................... viii 

KEY TO ABBREVIATIONS ........................................................................................................ xi 

CHAPTER 1: INTRODUCTION ................................................................................................... 1 

 

CHAPTER 2: IMPACT OF SPRINGTIME FREEZE EVENTS ................................................... 7 
2.1 Background ......................................................................................................................... 7 

2.1.1 Vulnerability of Perennial Crops to Freezing Temperatures ..................................... 7 
2.1.2 Springtime Freeze Types and their Impact on Perennial Crops ................................ 8 
2.1.3 Influence of Phenology on Freeze Damage ............................................................. 10 

2.1.4 Frost Risk of Perennial Crops .................................................................................. 11 
2.1.5 Study Objectives ...................................................................................................... 14 

2.2 Data and Methods ............................................................................................................. 15 

2.2.1 Springtime Freeze Types ......................................................................................... 15 
2.2.2 Sour Cherry Simulation Model ................................................................................ 17 

2.2.3 Sour Cherry Simulations over Space ....................................................................... 18 
2.3 Results and Discussion ..................................................................................................... 22 

2.3.1 Temporal and Spatial Variability of Springtime Freezes ........................................ 22 

2.3.2 Characteristics of Damaging Freezes....................................................................... 36 

2.3.3 Influence of Various Climatic Input Data on Sour Cherry Simulations .................. 41 
 

CHAPTER 3: HISTORICAL AND FUTURE YIELDS .............................................................. 49 

3.1 Background ....................................................................................................................... 49 
3.1.1 Susceptibility of Perennial Crops to Climate Change .............................................. 49 

3.1.2 Historical Trends in Phenology and Frost Risk ....................................................... 50 
3.1.3 Projected Future Changes in Phenology and Frost Risk .......................................... 52 
3.1.4 Climate Projections .................................................................................................. 56 
3.1.5 Climate Change Impacts on Perennial Crops in Michigan ...................................... 58 

3.1.6 Study Objectives ...................................................................................................... 60 
3.2 Data and Methods ............................................................................................................. 61 

3.2.1 Sour Cherry Yield Model......................................................................................... 61 

3.2.2 Historical Climate Data............................................................................................ 62 
3.2.3 Sources of Future Climate Projections .................................................................... 62 
3.2.4 Downscaling and Debiasing Methods ..................................................................... 66 
3.2.5 Application of the Climate Projections .................................................................... 69 

3.3 Results ............................................................................................................................... 70 
3.3.1 Historical Temporal Trends ..................................................................................... 70 
3.3.2 Projected Future Changes in Climatic Variables ..................................................... 77 
3.3.3 Projected Future Changes in Sour Cherry Production ............................................. 88 

3.3.3.1 Changes in Sour Cherry Yield ....................................................................... 88 



v 

 

3.3.3.2 Changes in Buds Remaining .......................................................................... 95 

3.3.3.3 Changes in Poor Pollination Days .................................................................. 95 
3.3.3.4 Changes in Phenology .................................................................................. 104 
3.3.3.5 Changes in Frequency and Severity of Damaging Freeze Events ............... 113 

3.4 Summary and Discussion ................................................................................................ 123 
 

CHAPTER 4: CONCLUSION ................................................................................................... 128 

APPENDIX ................................................................................................................................. 132 

BIBLIOGRAPHY ....................................................................................................................... 134 

 

  



vi 

 

LIST OF TABLES 

 

Table 2.1: Base 4ºC GDD Accumulations for Phenological Stages ............................................. 18 
 

Table 2.2: Various Climatic Input Data for the Sour Cherry Simulation Model ......................... 20 
 

Table 2.3: Frequency of Freezes at Traverse City, Muskegon, and South Bend, 1960-2015 ....... 23 

 

Table 2.4: Frequency of Freezes with 2.5+ cm of Snow Cover at Traverse City, Muskegon, and 

South Bend, 1960-2015 ................................................................................................................. 24 
 

Table 2.5: Frequency of Simulated Damaging Freezes at Traverse City, Muskegon, and South 

Bend, 1960-2015 ........................................................................................................................... 25 

 

Table 2.6: Average Minimum Temperature during Radiation and Non-Radiation Freeze Events, 

1960-2015 ..................................................................................................................................... 26 
 

Table 2.7: Average Minimum Temperatures during Radiation Freeze Events with 2.5+ cm of 

Snow Cover, 1960-2015 ................................................................................................................ 31 
 

Table 2.8: Average Minimum Temperatures during Simulated Damaging Freeze Events, 1960-

2015............................................................................................................................................... 34 
 

Table 2.9: Linear Regression for Observed Yields and Model Output ......................................... 42 

 

Table 3.1: Global Climate Models used in the CMIP5 Projections ............................................. 64 
 

Table 3.2: Climate Models used in the NARCCAP Projections ................................................... 65 
 

Table 3.3: Available NARCCAP Simulations ............................................................................... 65 
 

Table 3.4: Downscaling and Debiasing Methods ......................................................................... 67 
 

Table 3.5: Linear Trends in Model Output at Eau Claire, Hart, and Maple City, 1960-2015..... 71 
 

Table 3.6: Historical Averages of Yield Model Output, 1980-2000 ............................................. 76 
 

Table 3.7: Multi-Model Mean Changes by the Mid-Century in Temperature and Precipitation . 78 

 

Table 3.8: Simulated Changes (percent) by 2040-2060 in Sour Cherry Yield by Climate 

Projection Type ............................................................................................................................. 90 
 

Table 3.9: Simulated Changes (percent) by 2040-2060 in Buds Remaining by Climate Projection 

Type ............................................................................................................................................... 96 



vii 

 

 

Table 3.10: Simulated Changes by 2040-2060 in Poor Pollination Days by Climate Projection 

Type ............................................................................................................................................. 103 
 

Table 3.11: Simulated Changes by 2040-2060 in Date of Phenological Stage 2 (Side Green) by 

Climate Projection Type ............................................................................................................. 105 
 

Table 3.12: Simulated Changes by 2040-2060 in Date of Phenological Stage 8 (Full Bloom) by 

Climate Projection Type ............................................................................................................. 109 

 

Table 3.13: Simulated Changes by 2040-2060 in Frequency of Damaging Freezes by Climate 

Projection Type ........................................................................................................................... 115 
 

Table 3.14: Simulated Changes (percent) by 2040-2060 in Average Severity of Damaging 

Freezes by Climate Projection Type ........................................................................................... 122 

  



viii 

 

LIST OF FIGURES 

 

Figure 2.1: Study Weather Station Sites ........................................................................................ 16 
 

Figure 2.2: Interpolated Average Minimum Temperature of March Freeze Events, 1960-2015 . 30 
 

Figure 2.3: Interpolated Average Minimum Temperature of March Radiation Type Freeze 

Events, 1960-2015......................................................................................................................... 33 
 

Figure 2.4: Hourly Characteristics of Simulated Damaging Radiation Type Freeze Events ....... 37 
 

Figure 2.5: Hourly Characteristics of Simulated Damaging Non-radiation Type Freeze Events 38 
 

Figure 2.6: Average Frequency and Severity of Simulated Damaging Freezes by Phenological 

Stage, 1960-2015 .......................................................................................................................... 40 

 

Figure 2.7: Model Simulated Buds Remaining and Observed Yields for the Northwest Region .. 44 
 

Figure 2.8: Model Simulated Buds Remaining and Observed Yields for the West Central Region

....................................................................................................................................................... 46 

 

Figure 3.1: Time Series of Simulated Yield, Buds Remaining, and Poor Pollination Days at Eau 

Claire, Hart, and Maple City, 1960-2015..................................................................................... 72 

 

Figure 3.2: Time Series of Simulated Dates of Stage 2 and Stage 9 at Eau Claire, Hart, and 

Maple City, 1960-2015 ................................................................................................................. 74 
 

Figure 3.3: Time Series of Simulated Damaging Freeze Events and Average Severity of Damage 

at Eau Claire, Hart, and Maple City, 1960-2015 ......................................................................... 75 

 

Figure 3.4: Projected Change by 2040-2060 in Average Annual Maximum Temperature (°C) at 

Eau Claire by Climate Projection................................................................................................. 79 
 

Figure 3.5: Projected Change by 2040-2060 in Average Annual Minimum Temperature (°C) at 

Eau Claire by Climate Projection................................................................................................. 80 

 

Figure 3.6: Projected Change by 2040-2060 in Average Annual Precipitation per Wet Day (mm 

per day) at Eau Claire by Climate Projection .............................................................................. 82 

 

Figure 3.7: Projected Change by 2040-2060 in Average Annual Frequency of Wet Days at Eau 

Claire by Climate Projection ........................................................................................................ 84 
 

Figure 3.8: Monthly Deltas (°C) for Maximum Temperature from the CMIP5 Models ............... 85 
 

file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235637
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235641
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235644
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235644
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235645
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235645
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235646
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235646
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235647
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235647
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235648
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235648
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235649
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235649
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235650
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235650
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235651
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235651
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235652


ix 

 

Figure 3.9: Monthly Deltas (°C) for Minimum Temperature from the CMIP5 Models ................ 86 

 

Figure 3.10: Temperature Deltas for the NARCCAP Simulations ................................................ 87 
 

Figure 3.11: Simulated Change (percent) by 2040-2060 in Average Sour Cherry Yield at Eau 

Claire by Climate Projection ........................................................................................................ 89 
 

Figure 3.12: Simulated Change (percent) by 2040-2060 in Average Sour Cherry Yield at Hart by 

Climate Projection ........................................................................................................................ 92 

 

Figure 3.13: Simulated Change (percent) by 2040-2060 in Average Sour Cherry Yield at Maple 

City by Climate Projection............................................................................................................ 94 
 

Figure 3.14: Simulated Change (percent) by 2040-2060 in Average Buds Remaining at Eau 

Claire by Climate Projection ........................................................................................................ 97 

 

Figure 3.15: Simulated Change (percent) by 2040-2060 in Average Buds Remaining at Hart by 

Climate Projection ........................................................................................................................ 98 
 

Figure 3.16: Simulated Change (percent) by 2040-2060 in Average Buds Remaining at Maple 

City by Climate Projection............................................................................................................ 99 
 

Figure 3.17: Simulated Changes by 2040-2060 in the Average Number of Poor Pollination Days 

per Year at Eau Claire by Climate Projection............................................................................ 100 
 

Figure 3.18: Simulated Changes by 2040-2060 in the Average Number of Poor Pollination Days 

per Year at Hart by Climate Projection ...................................................................................... 101 
 

Figure 3.19: Simulated Changes by 2040-2060 in the Average Number of Poor Pollination Days 

per Year at Maple City by Climate Projection ........................................................................... 102 
 

Figure 3.20: Simulated Change by 2040-2060 in Average Date of Stage 2 at Eau Claire by 

Climate Projection ...................................................................................................................... 106 

 

Figure 3.21: Simulated Change by 2040-2060 in Average Date of Stage 2 at Hart by Climate 

Projection .................................................................................................................................... 107 
 

Figure 3.22: Simulated Change by 2040-2060 in Average Date of Stage 2 at Maple City by 

Climate Projection ...................................................................................................................... 108 
 

Figure 3.23: Simulated Change by 2040-2060 in Average Date of Stage 8 at Eau Claire by 

Climate Projection ...................................................................................................................... 110 
 

Figure 3.24: Simulated Change by 2040-2060 in Average Date of Stage 8 at Hart by Climate 

Projection .................................................................................................................................... 111 
 

file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235653
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235654
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235655
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235655
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235656
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235656
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235657
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235657
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235658
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235658
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235659
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235659
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235660
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235660
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235661
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235661
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235662
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235662
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235663
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235663
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235664
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235664
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235665
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235665
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235666
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235666
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235667
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235667
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235668
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235668


x 

 

Figure 3.25: Simulated Change by 2040-2060 in Average Date of Stage 8 at Maple City by 

Climate Projection ...................................................................................................................... 112 
 

Figure 3.26: Simulated Change by 2040-2060 in Frequency (Number of Days per Year) of 

Damaging Freezes at Eau Claire by Climate Projection ........................................................... 114 
 

Figure 3.27: Simulated Change by 2040-2060 in Frequency (Number of Days per Year) of 

Damaging Freezes at Hart by Climate Projection ..................................................................... 117 
 

Figure 3.28: Simulated Change by 2040-2060 in Frequency (Number of Days per Year) of 

Damaging Freezes at Maple City by Climate Projection ........................................................... 118 
 

Figure 3.29: Simulated Change (percent) by 2040-2060 in Average Severity of Damaging 

Freezes at Eau Claire by Climate Projection ............................................................................. 119 
 

Figure 3.30: Simulated Change (percent) by 2040-2060 in Average Severity of Damaging 

Freezes at Hart by Climate Projection ....................................................................................... 120 

 

Figure 3.31: Simulated Change (percent) by 2040-2060 in Average Severity of Damaging 

Freezes at Maple City by Climate Projection ............................................................................. 121 

 

  

file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235669
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235669
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235670
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235670
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235671
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235671
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235672
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235672
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235673
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235673
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235674
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235674
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235675
file:///C:/Users/Lydia/Documents/MSU/CLIMARK/Papers/ThesisFinal/Rill_Thesis_081716.docx%23_Toc459235675


xi 

 

KEY TO ABBREVIATIONS 

 

CMIP5 – Coupled Model Intercomparison Project 5th phase 

COOP – Cooperative Observer Program 

GCM – Global Climate Model 

GDD – Growing Degree Day 

MLCR – Multiple Linear Contour Regression 

MLR – Multiple Linear Regression 

NARCCAP – North American Regional Climate Change Assessment Program 

NARR – North American Regional Reanalysis 

NASS – National Agricultural Statistics Service 

NLDAS-2 – North American Land Data Assimilation System Phase 2 

NCEI – National Centers for Environmental Information 

NCEP – National Center for Environmental Prediction 

NWS – National Weather Service 

PRISM – Parameter-elevation Regressions on Independent Slopes Model 

QM – Quantile Mapping 

RCM – Regional Climate Model 

RCP – Representative Concentration Pathway 

SRES – Special Report on Emissions Scenarios 

US – United States 

USDA – United States Department of Agriculture  



1 

 

CHAPTER 1: INTRODUCTION 

Perennial tree fruit production is an important segment of local and regional agricultural 

economies around the world. In the Great Lakes Region of the U.S.A., sour cherry is a major 

crop, with the majority of total national production in the State of Michigan (NASS, 2015). 

However, cherry yields vary greatly from year to year. For example, in 2002 and 2012 sour 

cherry production in Michigan was reduced by at least 95% from the previous years’ yields due 

to springtime freeze events following unusually warm spells (NASS, 2002 and 2012). These 

dramatic losses inspired this research on sour cherry production in the Great Lakes Region, and 

the relationship between production and climate.  

Perennial tree fruit yields are strongly influenced by the climate through springtime 

freezes, winter chill fulfillment, pollination, and plant disease (Winkler et al., 2013). In winter, 

cool temperatures are necessary for perennial trees to vernalize and blossom the following 

spring. However, in mild climates such as in California, the associated chilling requirement may 

not be sufficiently fulfilled, severely reducing yields (Luedeling et al., 2009). In colder, 

temperate climates, while the winter chill requirement is easily met, extreme cold temperatures 

during winter may limit over winter survival and the extent of the fruit growing regions. For 

example, in Canada winter injury due to extreme cold temperatures is a major constraint to apple 

production (Rochette et al., 2004). Cold temperatures can also cause damage in the fall before 

winter dormancy and in the spring after the trees break dormancy (Rodrigo, 2000).  

Springtime freezes are in general the most limiting factor for fruit production in 

temperate climates (Rodrigo, 2000; Winkler et al., 2013). During the spring, freeze injury can 

occur in plants due to ice formation, specifically extra-cellular freezing (Rodrigo 2000; Snyder 

and De Melo-Abreu, 2005). As ice forms outside the cells, water within the cells evaporates and 
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deposits on the ice crystals, causing the ice to grow and the cells to desiccate, sometimes to the 

extent where the cells collapse and die (Snyder and De Melo-Abreu, 2005). Flowers and fruit can 

often recover and continue development after spring freezes, depending on the amount of 

damage to the vital tissues, but effects from the damage may be seen in subsequent fruit 

malformations (Rodrigo, 2000). 

To evaluate the risk of springtime freeze damage on perennials, phenology must be 

included, as fruit trees become increasingly vulnerable to freeze damage as they progress through 

various developmental stages (Chmielewski, 2013; Longstroth, 2005). Because environmental 

temperature is the main driver of phenology, warm spells in late winter or early spring can 

accelerate the rate of growth and development and cause the trees to be more susceptible to 

freeze damage (Vitasse et al., 2014). However, phenology is also dependent on the chilling 

requirement and photoperiod, so attempts to estimate or simulate phenology may become 

complex (Vitasse et al., 2014). Furthermore, the cultivar type of the perennial tree also affects 

the timing of growth (Chmielewski, 2013; Moghadam et al., 2009; San Martino et al., 2005). 

Although complex, accounting for phenology is crucial for quantifying the impact of springtime 

freeze events on fruit trees.  

There are two main types of freezes, advection and radiation, that can damage perennial 

crops. Advection freezes occur when colder, sub-freezing air moves via wind into a region or 

area of interest, while radiation freezes occur under calm, clear conditions at night where the 

ground or plant canopy surface cools radiatively more quickly than the air above it. Microclimate 

directly influences the severity of the freezes; for example, topography and proximity to large 

water bodies can affect the temperatures (Winkler et al., 2013). In the Great Lakes Region, fruit 

tends to be grown within close proximity to the lakes, as they moderate the temperatures in areas 
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downwind of the lakes. Furthermore, orchards are typically placed in relatively high elevations 

because during radiation freeze events the cold air near the surface flows downslope and away 

from the trees (Perry, 1998). The type of freeze is critical, however, as the relatively high 

locations may cause the trees to be more exposed to wind during advection freezes and relatively 

more vulnerable to cold injury (Winkler et al., 2012b).  

 Scientific literature on perennial springtime freeze risk is limited and spread out 

geographically. Some studies use the date of the last frost with respect to the date of a 

phenological stage, usually bloom, as a proxy indicator of risk (Kurlus et al., 2013), while others 

include the frequency and severity of freezes in their research (Fitchett et al., 2014; Ladányi et 

al., 2010). Phenology observations are often used when available, but phenology may also be 

simulated, typically through the use of agro-climatic indices such as growing degree days 

(Winkler et al., 2013). In some studies, bud break is simulated using a chilling model (Molitor et 

al., 2014), and in others bud break is assumed to occur by a certain calendar date (Cittadini et al., 

2006). Studies that quantify springtime freeze damage amounts are rare, as only one study in 

South America (Cittadini et al., 2006) and one in Turkey (Öztekin, 2008) estimated damage 

using critical temperature thresholds. 

There is a general lack of perennial crop simulation models as the slow growth of 

perennials tends to limit the amount of data for model development (Lobell and Field, 2011). 

Modelling cold injury risk for perennials is complex as the timing of bud break, phenology, and 

freezes are important. Additionally, studies on perennials should ideally account for the 

microclimate influences of the region of interest as environmental conditions may vary 

significantly over short distances. Chapter 2 of this study aims to better understand the spatial 

and physical characteristics of springtime freezes, and to quantify the effects of springtime 
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freezes on fruit production in the Great Lakes Region. Furthermore, Chapter 3 of this study 

examines the effects of a variable and changing climate on sour cherry yields in Michigan.  

As the climate changes in the future, there is general uncertainty in how perennial crops 

will be impacted. Historically, there have been temporal trends in increasing temperatures and 

consequently earlier dates of phenology in many production areas (Chmielewski et al., 2004; 

Guédon and Legave, 2008; Kurlus et al., 2013; Legave et al., 2013). In the Midwest, the winters 

have been warming, allowing shifts in the spatial extents of plant hardiness regions (Daly et al., 

2010). Additionally, the date of the last spring freeze has been advancing, but the interannual 

variability of cold outbreaks has been large in the past few decades (Kunkel et al., 2013). 

Although temperatures have been warming globally, historical trends in springtime freeze risk 

vary by location. For example, freeze risk increased in Illinois and Iran (Augspurger, 2013; 

Fitchett et al., 2014), and freeze risk decreased for perennial trees in eastern China and central 

Europe (Dai et al., 2013; Scheifinger et al., 2002). 

With temperatures projected to continue increasing in the future, phenology may advance 

earlier, resulting in an increased risk of frost damage. However, the timing and frequency of 

freezes may also shift, with little change or decreased risk (Fitchett et al., 2014; Winkler et al., 

2013). Changes in climate variability may also significantly impact agriculture (Thornton et al., 

2014), as temperature fluctuations can cause plants to be more susceptible to springtime freeze 

damage (Gu et al., 2008). Additionally, changes in temperature and precipitation in the future 

may influence pollination conditions for perennial crops. 

The rate of phenological advancement over time will play a large role in determining if 

springtime freeze risk will increase or decrease in the future. Many studies projected that 

phenology will advance to earlier dates in the future (Hur and Ahn, 2014). However, the results 
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for changes in future freeze risk vary. Some studies projected decreasing frost risk for fruit crops 

in Europe (Eccel et al., 2009; Hoffmann and Rath, 2013; Ladányi et al., 2010; Molitor et al., 

2014), while other studies projected increasing frost risk (Chmielewski et al., 2010; Mosedale et 

al., 2015). Additionally, a couple of studies projected increasing frost risk in some regions and 

decreasing frost risk in others (Kaukoranta et al., 2010; Rochette et al., 2004). Furthermore, the 

future projections for freeze risk in Michigan exhibited high uncertainty (Winkler et al., 2012b). 

The inconsistent results may be due to differing climate projections as well as the methods of 

estimating freeze risk. Overall, the uncertainty surrounding frost risk for perennials in the future 

is large. 

Because the results of previous studies are inconsistent with each other, the use of 

multiple climate projections, creating an ensemble, helps to understand and quantify some of the 

uncertainty. Ensembles are important because various climate models, emissions scenarios, and 

downscaling methods can lead to different future projections (Hanssen-Bauer et al., 2005). 

Downscaling methods are commonly used as global climate models (GCMs) have coarse spatial 

resolutions and typically need to be downscaled to a region or location, especially for studies 

where regional or local influences have large impacts (Winkler et al., 2011a). Therefore for this 

study, a large ensemble of climate projections using varying emissions scenarios, climate 

models, and downscaling methods is used to evaluate possible future trends in sour cherry yields.  

Overall a better understanding of the relationship between springtime freezes and fruit 

production in temperate climates is desired, especially for North America. Additionally, more 

information is needed on how fruit production may be impacted by global warming. In this 

study, Chapter 2 examines the historical relationship between springtime freezes and sour cherry 

phenology and damage in the Great Lakes Region for 1960-2015. The frequency and spatial 
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variability of damaging springtime freezes as well as the timing with respect to phenology are 

analyzed using a sour cherry model that simulates phenology and cold damage. Furthermore, the 

use of gridded datasets in place of climate observations in the sour cherry model is explored. In 

Chapter 3, the sour cherry model, with an additional yield algorithm accounting for springtime 

damaging freezes and pollination conditions, is used to determine historical and future trends in 

yield in the Great Lakes Region. A climate ensemble with 88 individual scenarios from various 

climate models, emissions scenarios, and downscaling methods is used to evaluate uncertainty in 

future changes in yield from a historical period, 1980-2000, to the mid-century, 2040-2060. 
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CHAPTER 2: IMPACT OF SPRINGTIME FREEZE EVENTS 

2.1 Background 

2.1.1 Vulnerability of Perennial Crops to Freezing Temperatures 

Sour cherries are a major component of the agricultural industry in Michigan and the 

Great Lakes Region (Winkler et al., 2013), with production in 2013 valued at more than $74 

million in Michigan alone (MDARD, 2014). Michigan is the top producing state in the U.S. 

providing approximately 60-75% of the total sour cherry production during the past few years 

(NASS, 2015). The majority of production occurs in western Lower Michigan where regional 

climate is modified by the nearby Great Lakes and by topography. Production of temperate, 

perennial tree fruit crops in the region is significantly limited by freeze injury, in contrast to 

common cereal crops where water is the most limiting factor (Andresen et al., 2001; Charrier et 

al., 2015). Freezes during the spring season have a profound impact on sour cherry production in 

the region. For example, severe crop damage associated with spring freezes occurred in both 

2002 and 2012. In 2012 production decreased 97% relative to the previous year, from 71 to 2 

million kilograms due to record high temperatures during March of that year followed by a series 

of freezes in April and May (NASS, 2012). Similarly, sour cherry production in Michigan in 

2002 dropped 95% from the previous year, from 135 to 7 million kilograms, due to unusually 

warm weather in April followed by a series of freeze events (NASS, 2002). 

Knowledge of the frequency and severity of freeze events is essential in quantifying the 

climatic-related vulnerability of the region’s fruit industry. Freeze events can harm perennial 

crops in the fall before dormancy, during winter dormancy, and in the spring after the crop 

breaks dormancy and begins to grow (Rodrigo, 2000). During the winter, the tree is in 

endodormancy, hardened to withstand cold temperatures, but once chilling and photoperiod 
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requirements are fulfilled, the tree enters the ecodormancy stage, where warmer temperatures 

cause deacclimation, allowing the trees to become more susceptible to cold damage (Vitasse et 

al., 2014). While cold temperatures in winter can harm perennial trees, springtime freezes have a 

much larger effect on interannual variability of yield (Winkler et al., 2013). The timing of 

springtime freeze events based on the rate and stage of phenological development is a critical 

factor in freeze damage. Springtime freezes cause injury to the plant through extracellular ice 

formation, where the water inside the cells evaporates and deposits on the ice crystals, causing 

the ice to grow and the cells to desiccate, potentially leading to the collapse and death of cells 

(Snyder and De Melo-Abreu, 2005).  

2.1.2 Springtime Freeze Types and their Impact on Perennial Crops 

The severity of springtime freeze damage to sour cherries and other perennial tree fruit 

crops depends on the magnitude of the temperature during the freeze, the duration of the freezing 

temperatures, and the timing of the freeze with respect to the phenological stage of the crop. The 

air temperatures during freezes in the Great Lakes Region are greatly influenced by 

microclimate; consequently, the locations of orchards tend to be in areas of modified climates, 

influenced by topography and proximity to large water bodies (Winkler et al., 2013). The two 

main categories of springtime freezes are radiation and advection freezes. Radiation freezes tend 

to occur under calm, clear weather conditions which allow temperatures to decrease radiatively 

during the overnight hours, typically resulting in the coldest temperatures at or near the ground 

surface and the formation of a temperature inversion in the atmospheric boundary layer above 

the ground. Meteorologically, these freezes are commonly associated with high pressure systems 

(Winkler et al., 2012b). Terrain influences the near-surface temperatures during radiation freeze 

events because cold, dense air near the surface flows downhill due to gravity and pools at 
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relatively low elevations (Perry, 1998). In contrast, advection freezes tend to occur with a well-

mixed boundary layer and strong winds, and clouds may be present. Advection freezes are 

commonly associated with cold fronts or the leading edges of polar-origin high pressure systems 

(Winkler et al., 2012b). Both radiation and advection freezes can significantly decrease fruit 

production. 

The type of freeze is critical in preventing cold injury or damage. Radiation type freezes 

in temperate climates during the spring season tend to be more common than advection freezes 

(Charrier et al., 2015; Lindkvist et al., 2000; Logan et al., 2000). Since the microclimate 

influences the temperature during radiation freezes, site selection is a prominent way of 

preventing freeze damage (Gombos et al. 2011; Perry, 1998), with ideal sites generally on 

hilltops or slopes (Barden and Neilsen, 2003). Winkler et al. (2012b) examined a radiation freeze 

event that occurred in 2002 and determined that sour cherry trees located in depressions had 

relatively higher rates of freeze damage than the trees on hilltops. In contrast, advection freezes 

may enhance the heat loss and cooling of plant tissue resulting in relatively greater damage, and 

are more difficult to protect against than radiation type freezes (Perry, 1998). The Winkler et al. 

(2012b) study concluded that an advection freeze in 2002 caused more damage to sour cherry 

trees located in relatively “good orchard sites” (with favorable topography for cold air drainage) 

than those located in relatively poor orchard sites in depressions or other low-lying areas due to 

greater wind exposure and accompanying sub-freezing temperatures.  

A number of studies have compared the frequency and magnitude of freezing 

temperatures during radiation and advection type events. However, relatively less is known about 

the relationship between the different freeze types and variations in bud tissue damage. Logan et 

al. (2000) compared radiation and advection freezes at a peach orchard in Tennessee over two 
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growing seasons. They determined that while radiation freezes occurred more frequently, 

advection freezes were colder and lasted for longer periods. Similarly, Lindkvist et al. (2000) 

found that radiation freezes accounted for over 90% of the freezes during the growing season in a 

Scandinavian mountain range. They concluded that local topography was very important due to 

the effects of cold air drainage during radiation type freezes. Additionally, a study in the 

Carpathian Basin in Hungary revealed that during calm, clear nights (i.e. radiation type events) 

the temperature in a valley setting averaged 3-5°C colder than on nearby slopes (Gombos et al., 

2011). Furthermore, Madelin and Beltrando (2005) used topographic features to map frost risk 

under calm, clear conditions in a vineyard in the Champagne region of France, and the resulting 

map represented frost damage well except in areas where phenology was delayed due to differing 

cultivars or varieties. These studies underscore the importance of microclimate and site selection 

in reducing the risk of freeze damage in commercial fruit production systems. 

2.1.3 Influence of Phenology on Freeze Damage 

Another important factor in determining the risk of springtime freeze damage is the rate 

of development and phenological stage of the crop. Because fruit trees become increasingly 

vulnerable to freeze damage as they develop, the stage of bud development is critical in 

determining the susceptibility a tree (Charrier et al., 2015; Longstroth, 2005). In early 

developmental stages, temperatures near -6°C begin to cause damage to fruit crops, but as the 

tree approaches bloom, temperatures as warm as -2°C can cause considerable damage 

(Longstroth, 2005). However, the role of phenology can be difficult to quantify as the rate of 

growth and development may vary by cultivar (Chmielewski, 2013; Moghadam et al., 2009; San 

Martino et al., 2005). Also, because phenology is strongly dependent on temperature, 
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microclimate can affect growth as cooler temperatures may delay development (Jackson, 1966; 

Logan et al., 2000).  

Crop models are frequently used to investigate the complexities of phenology. There are 

two main associated numerical approaches to simulating phenology: empirical (i.e. statistical) 

and deterministic (i.e. mechanistic). Empirical-based phenology models correlate timing of plant 

phenology to climatic factors (Chuine, et al., 2013). The model parameters are estimated from 

empirical data using various statistical fitting methods, commonly using heat units based on 

known plant base temperature thresholds (Zhao et al., 2013). Empirical-based phenology models 

may have limited application and predictive abilities, especially under the context of climate 

change (Zhao et al., 2013). Deterministic phenology models describe the cause-effect 

relationships between biological processes and driving environmental factors (Chuine, et al., 

2013; Zhao et al., 2013). Parameters of deterministic models in principle can be directly 

measured; however, this is rarely possible and thus many parameters are estimated using 

experimental approaches and statistical model-fitting techniques (Chuine, et al., 2013). The 

deterministic models have more realistic assumptions and can be used in broader applications 

than empirical models; however, the understanding of the phenological mechanisms may be 

limited (Zhao et al., 2013). 

2.1.4 Frost Risk of Perennial Crops 

Because springtime freezes can significantly limit temperate perennial fruit production, a 

number of studies evaluate springtime freeze risk for perennial trees around the world. Most of 

these studies estimate freeze damage risk by comparing the date of a certain phenological stage 

to the last date of frost in the spring season (e.g. Fitchett et al., 2014; Kurlus et al., 2013; Ladányi 

et al., 2010; Molitor et al., 2014). Kurlus et al. (2013) examined the spring frost risk of sour 
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cherry trees in Poland by comparing the date of the last frost to the date of the beginning of 

flowering. Frost risk was present in most years as the last frost of the spring occurred before the 

beginning of bloom in only 4 out of the 26 years examined. Furthermore, for the majority of the 

years, frost occurred within 10 days of the beginning of bloom.  

A similar but more complex study by Fitchett et al. (2014) examined frost risk for citrus 

fruits in two locations in Iran. In addition to last seasonal frost dates and dates of peak flowering, 

they examined the number and magnitude of frost events occurring after the date of peak 

flowering. The results at the two locations varied, with large increases in frequency of frost 

events over time at one location, and decreases over time at the other location. They concluded 

that the date of peak flowering was advancing more quickly than the last frost date, resulting in 

an overall increase of frost damage risk. This study also examined the magnitude of temperature 

during frosts and determined that minimum temperatures had increased over time, reducing the 

severity of frost damage. Likewise, Ladányi et al. (2010) examined the frequency of frost days 

and the magnitude of minimum temperatures during a 10 day period before and after bloom to 

examine the potential damage to sour cherries in Hungary. An average of 1.4 frost days occurred 

per year, and the number of frost days decreased during the period 1984-2005.  

All of the previously mentioned studies considered the impacts of freezes utilizing 

observations of phenological growth and development. As described above, phenological stages 

can also be estimated with representative environmental data. For example, Molitor et al. (2014) 

estimated the date of budburst in the Luxembourgish winegrowing region and compared it to the 

date of the last frost. They simulated the break of dormancy using a thermal forcing model which 

accounted for photoperiod and chilling hours, and used a set period of 60 days after the date of 
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budburst to estimate the risk of frost damage across multiple stations. Eleven out of 30 seasons 

had at least 1 frost event during 1961-1990, and up to 8 frost events occurred during a season. 

Other studies used more complex methodologies to examine freeze damage by simulating 

damage for each phenological stage via critical stage-dependent temperature thresholds 

(Cittadini et al., 2006; Öztekin, 2008). However, the number of studies employing this method is 

limited due to the relatively small number of field trials or growth chamber studies conducted for 

specific varieties or cultivars (Winkler et al., 2013). For example, Cittadini et al. (2006) 

developed a method for examining frost damage risk in sweet cherry trees in South Patagonia in 

South America. Phenology for multiple cultivars of sweet cherry trees was simulated using 

cumulative growing degree days (GDDs) beginning on July 15. To estimate frost damage, lethal 

temperature thresholds for five various phenological stages were used, but these thresholds were 

not validated for the cultivars or locations in South Patagonia. The risk of frost damage was 

calculated as the number of seasons during which at least one lethal frost occurred, divided by 

the 50 years studied, for each location. The results varied from 0.16 to 0.48 depending on 

location, but there was little difference in frost risk between cultivars. However, the resulting 

frost damage was not validated.  

Similarly, Öztekin (2008) analyzed frost damage in peach trees in Tokat, Turkey, and the 

results were validated with observations. A phenology model was used in combination with 

observations of the bloom date or fruit set date each year. Temperature thresholds from a 

chamber study were used to estimate crop damage amounts of 10%, 50%, and 90%. Crop 

damage less than 10% was assumed negligible. Greater bud damage was estimated by linear 

interpolation between the 50% and 90% damage threshold temperatures. They calculated the 

frequency of damage events by phenological stage, and used the resulting damage amounts to 
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estimate cumulative yield losses for each year. Frost damage occurred in approximately one third 

of the years, and most of the years with damage had total damage amounts greater or equal to 

57%. Almost all of the damage events occurred in the early morning hours, with radiation type 

freezes. Good agreement was found between estimated and observed yields. 

Other than the studies mentioned above, quantification of springtime freeze damage on 

fruit crops is rare in the literature. Additionally, little is known about the physical characteristics 

of the freeze events themselves. Furthermore, the literature is geographically diffuse, with little 

information about damaging springtime freezes in the U.S.  

2.1.5 Study Objectives 

The overall goal of this study is to investigate the historical relationship between 

springtime freezes and sour cherry production in Michigan during the period 1960-2015. The 

study examines the frequency and spatial variability of springtime freeze events, and assesses the 

timing of damaging springtime freeze events with respect to sour cherry phenology using a sour 

cherry simulation model. Finally, the influence of the type and spatial density of various climate-

related input data on simulated sour cherry yields is explored using several point-based and 

gridded climatic datasets.  
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2.2 Data and Methods 

Weather data used in this analysis of the impact of springtime freeze events on sour 

cherries were taken from a variety of sources for the period 1960-2015. Observing sites from 

these sources are shown in Figure 2.1. Observing sites were chosen to be geographically 

representative of major cherry production areas but also included inland sites further away from 

Lake Michigan to examine the influence of lake proximity. Hourly temperature, relative 

humidity, cloud cover, and wind speed data and daily snow cover data were obtained from the 

NOAA Local Climatological Data (LDD) series for three sites: Traverse City in northwest 

Lower MI, Muskegon in west central Lower MI, and South Bend in northwest IN. Daily 

maximum and minimum temperature for the 3 previously mentioned sites and 20 additional 

surrounding sites from NWS Cooperative Observer Program (COOP) (NOAA Summary of the 

Day data series) were used to examine the spatial distribution of temperatures during freezes, 

with 7 sites in the northwest, 8 in the west central, and 8 in the southwest regions. Daily data 

from 17 NWS COOP sites for 1960-2015 were used in the sour cherry model, with 3 sites, 

Maple City, Hart, and Eau Claire, used to represent cherry production regions. Additional 

weather observations were obtained for 2005-2015 from 12 automated stations, which are part of 

the Michigan Enviroweather Mesonet (www.enviroweather.msu.edu) through Michigan State 

University Extension, to use in the sour cherry simulation model.  

2.2.1 Springtime Freeze Types 

Spring (March, April, and May) freeze events during the study period were classified at 

each hourly site as either radiative or non-radiative in nature. Radiative freeze events were 

identified as freeze events which occurred during the hours 6:00-12:00 UTC (1-7 AM local time) 

when the observed air temperature reached 0ºC or less, average wind speed was less than or   
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Figure 2.1: Study Weather Station Sites  

Weather data observation sites used in the study. 20 NWS COOP stations (1960-2015) with daily 

data used to examine spatial and temporal variability in springtime freeze events are shown in 

purple circles, with the purple triangles and associated labels showing the stations with hourly 

data. Additional stations used in the sour cherry model, with 17 from NWS COOP (1960-2015) 

and 12 from the Michigan Enviroweather Mesonet (2005-2015), are shown in pink circles. The 

NWS COOP stations that were used in both analyses are shown in dark purple circles. The 3 

reference COOP stations (1960-2015) used in the sour cherry model are labelled and shown in 

black stars. The red areas represent cherry production acreage from NASS CropScape.  
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equal to 1.54 m/s (3 knots), and sky cover was clear or with few or scattered clouds, with the 

allowance of one hour with greater cloud cover. This classification scheme is similar to the 

definition used in Perry (1998). Due to the limited number of hourly data, it was assumed that 

when a radiative freeze or non-radiative freeze occurred at an hourly station, the same freeze 

type occurred at the surrounding nearby COOP sites. The average minimum temperatures during 

freeze events were interpolated using an inverse distance weighting scheme and mapped to 

identify any spatial trends over time. Days with missing data during the 6:00-12:00 UTC time 

interval were omitted. 

2.2.2 Sour Cherry Simulation Model 

 A sour cherry simulation model developed by Black et al. (in preparation) was utilized 

to examine the relationship between sour cherry crop damage and springtime freeze events. The 

model is a hybrid empirical/process-based model that requires input of daily maximum and 

minimum temperatures. The model is based on the work of Zavalloni et al. (2006) to simulate 

sour cherry phenology using seasonally summed base 4ºC GDDs. Seasonal GDD accumulations 

began on March 1 of each year, and eight different phenological stages were simulated (Table 

2.1). Critical temperature thresholds for each phenological stage based on a chamber study by 

Dennis and Howell (1974) were used to estimate damage due to freezes. In the model, the freeze 

damage during each phenological stage was accumulated throughout the growing season, 

resulting in a summed viable buds remaining index. Buds remaining represents the proportion of 

the buds that survived springtime freeze damage, with a value of 0 indicating that no buds 

survived, and a value of 1 indicating all buds survived. The simulated phenology used in the sour 

cherry model was validated in Michigan by Zavalloni et al. (2006). The sour cherry model output 

of buds remaining at Maple City was validated with annual observed sour cherry yield data  
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aggregated over five counties for the northwest and west central production regions in Lower 

Michigan for 1982-2015 from United States Department of Agriculture (USDA) National 

Agricultural Statistics Service (NASS). The results were satisfactory with the model accounting 

for 30% of the variation in the northwest observed yield, and a linear regression between the 

observed yields and buds remaining was statistically significant at an alpha level of 0.001. In 

order to better understand the impact of springtime freezes on sour cherry production on bud 

cold damage, a simulation model was used with historical climatic data to examine temporal 

patterns and trends. Maple City, Hart, and Eau Claire, MI, representing Northwest, West Central, 

and Southwestern production areas, respectively were selected as representative regional sites in 

this portion of the study. Daily climatic data required by the sour cherry model were obtained 

from the NOAA Summary of the Day series for the period 1960-2015.  

2.2.3 Sour Cherry Simulations over Space 

 Sour cherry yields are known to vary widely over both time and space, largely the 

result of microclimatic differences over relatively short distances (Winkler et al., 2013). In an 

attempt to examine spatial yield variability over time, freeze impacts were examined in the 

 

Table 2.1: Base 4ºC GDD Accumulations for Phenological Stages 

GDD accumulation totals used in the sour cherry simulation model to define the phenological 

stages of the crop, with the GDD thresholds adapted from Zavalloni et al. (2006). 

Phenological 

Stage 

GDD4 

Accumulation 

from March 1 

0 0-120 

2 Side Green 120-153 

3 Green Tip 154-173 

4 Tight Cluster 174-189 

5 Open Cluster 190-207 

6 First White 208-227 

7 First Bloom 228-252 

8 Full Bloom 253-310 

9 Petal Fall 311+ 
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northwest and west central Lower Michigan production areas using various types of input 

climatic data, described below, in the sour cherry simulation model (Table 2.2). The output of 

buds remaining was interpolated over the regions using kriging. Cherry acreage data obtained 

from the NASS CropScape 30 m resolution cropland data layer (USDA NASS, 2013) was used 

to spatially weight the interpolated output. (See Appendix for additional information on NASS 

CropScape.) Production area data from the 2013 growing season was used for all model runs, as 

the areas of cherry production have not changed significantly in the past few decades. The 

spatially weighted buds remaining output was then summed for the northwest and west central 

regions, and the resulting time series were compared to the observed regional yields for 

northwest and west central Lower Michigan to determine if the use of such a weighted input data 

set in the sour cherry model could provide more accurate estimations of yield over a region, 

versus from a single representative point. 

The NWS COOP stations Maple City and Hart were used in the sour cherry model to 

examine simulated model output of buds remaining for 1960-2015 at individual locations. These 

input data will be referred to as “Maple City Data” and “Hart Data”. Additional point data were 

obtained from weather observations for 2005-2015 from 29 stations across Michigan, using data 

from 12 automated stations which are part of the Michigan Enviroweather Mesonet 

(www.enviroweather.msu.edu) through Michigan State University Extension and 17 station sites 

from the NWS COOP network. This data type will be referred to as “Additional Station Data” as 

it theoretically provides additional information into the regional estimation process. 

 To account for spatial variation over a longer time period, a hybrid gridded dataset was 

developed using daily observations from a single site, Maple City and from the additional site 

data from the Michigan Enviroweather Mesonet and NWS COOP for 1960-2015. The data series 



20 

 

Table 2.2: Various Climatic Input Data for the Sour Cherry Simulation Model 

Various climatic input data types used in the sour cherry simulation model and their date 

ranges. 

Name 
Input Data 

Type 
Description Range 

Maple City 

Data 
Single Point 

Single point data from the NWS COOP station 

Maple City 
1960-2015 

Hart Data Single Point 
Single point data from the NWS COOP station 

Hart 
1960-2015 

Additional 

Station Data 

Multiple 

Point 

Multiple point data from 17 NWS COOP and 12 

Enviroweather Mesonet sites 
2005-2015 

Side Green 

Data 

Hybrid 

Gridded 

Single point data from Maple City converted 

into a gridded surface using multiple point data, 

corrected by phenological stage side green 

1960-2015 

Bloom Data 
Hybrid 

Gridded 

Single point data from Maple City converted 

into a gridded surface using multiple point data, 

corrected by phenological stage bloom 

1960-2015 

PRISM 

Data 
Gridded Gridded data with a 4 km spatial resolution 1981-2014 

NLDAS 

Data 
Gridded 

Gridded data with a 1/8° (12.5 km) spatial 

resolution 
1979-2015 

 

 

at Maple City was temporally adjusted to represent the weather at other locations in an attempt to 

reflect known sub-regional differences in phenology. The average differences in simulated 

phenology dates were calculated between Maple City and the other locations for the key 

phenological stages, side green (stage 2) and full bloom (stage 8). The dates of observations at 

Maple City were then shifted corresponding to the average differences in phenological dates for 

2005-2015 between Maple City and the other locations. This process resulted in two new 

datasets for each of the 28 station sites for 1960-2015, with one dataset based on differences in 

dates of side green, referred to as “Side Green Data”, and the other based on differences in dates 

of full bloom, referred to as “Full Bloom Data”.  

 Existing gridded climatic data were also used to attempt to better capture spatial 

variability in sour cherry yields. Daily maximum and minimum temperature data for the 29 
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weather station locations were extracted from two gridded datasets, the Parameter-elevation 

Regressions on Independent Slopes Model (PRISM) data set provided by the PRISM Climate 

Group at Oregon State University (Daly et al., 2008; PRISM Climate Group) and the North 

American Land Data Assimilation System Phase 2 data set (NLDAS-2) (Mitchell et al., 2004). 

The PRISM dataset was developed through the use of a weighted linear regression to interpolate 

point climate data as a function of elevation across the U.S. (Daly et al., 2008). The PRISM 

dataset accounts for the major physiographic factors influencing climate patterns through a 

digital elevation model, including location, elevation, topographic orientation, and cold air 

drainage (Daly et al., 2008). The data are available at a daily temporal resolution for 1981-2014 

and have a 4 km spatial resolution.  

 Unlike the PRISM dataset, the NLDAS-2 dataset does not rely on physiographic 

factors, and instead integrates observation based data with model reanalysis data (Mitchell et al., 

2004). NLDAS-2 relies on the North American Regional Reanalysis (NARR) dataset, mainly for 

non-precipitation fields, and temperatures are adjusted with satellite-derived data (Xia et al., 

2012). The precipitation amounts are dominated by observed data, and when possible, the 

observations are interpolated using the PRISM technique and temporally disaggregated using 

radar data (Xia et al., 2012). NLDAS-2 data have an hourly temporal resolution, 1/8° (~12.5 km) 

spatial resolution, and are available for 1979-2015. 

 In this study, the nearest grid cell values for station locations were extracted from the 

gridded climate datasets, and the grid cells containing a majority of water were omitted from the 

analysis. The use of the gridded data in the sour cherry model will be referred to as the “PRISM 

Data” and the “NLDAS Data”. 
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2.3 Results and Discussion 

The frequency and spatial variation of springtime freezes, their physical characteristics, 

and timing with respect to crop phenology are important for understanding and predicting sour 

cherry production. Additionally, information on radiative versus non-radiative freezes can help 

growers manage their crops efficiency as freeze protection methods depends on the type of 

freeze (Perry, 1998). 

2.3.1 Temporal and Spatial Variability of Springtime Freezes 

The frequencies of freeze types were classified using hourly data at Traverse City, 

Muskegon, and South Bend; however, due to the lack of hourly data in the region, it was 

assumed that when a freeze occurred at one of the hourly stations, the same freeze type occurred 

at the COOP stations with daily data in the associated region. However, this is a potential source 

of error in the analysis as the regions are not completely homogeneous over space. To better 

quantify this potential error, the number of days when a freeze was classified at an hourly station 

and the minimum temperature at a COOP station did not reach freezing were summed. The 

results varied across the region, indicating some lack of spatial consistency. The majority of 

stations had less than 5% of days with above freezing minimum temperatures during radiation or 

non-radiation classified springtime freeze events. However, a few stations had larger totals, with 

up to 29% of regional radiation freezes (168 out of 573 days) not observed at Frankfort, which is 

located in the northwestern Lower Peninsula on the shore of Lake Michigan. These results 

highlight the limitation of choosing individual stations to represent regions, and the uncertainty 

in the calculating average minimum temperatures during freeze events. 

The frequency of all springtime freeze events and radiation events were examined for the 

three hourly stations Traverse City, Muskegon, and South Bend for 1960-2015 (Table 2.3). Only 
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the months of March, April, and May were analyzed, as no freeze events occurred in June or 

later summer months. As expected, the frequency of springtime freeze events was greatest at 

Traverse City, the northernmost location, with a total of 2,015 events over the period of record, 

followed by Muskegon with 1,596, and then South Bend with 1,111 events. The majority of 

springtime freeze events occurred in March, followed by April and then May at all locations. 

These results are consistent with existing climatic normals, latitudinal gradients, and the annual 

temperature cycle.  

Only a small proportion of the springtime freezes, ranging from 9 to 35% by location, 

were classified as radiation type events in March and April, according to our classification 

criteria of calm, clear atmospheric conditions. In May, the proportion of radiation freezes was 

slightly larger, with 55% at Traverse City and approximately 40% at Muskegon and South Bend. 

This result differs somewhat from previous studies conducted in Tennessee, U.S. and Sweden 

which indicated that radiation freezes were the most common freeze type (Lindkvist et al., 2000; 

Logan et al., 2000). The difference in results may be accounted for by the differing classification 

scheme and much longer period of record used in this study. The data also shows that the 

frequency of radiation freezes (and the proportion of all freezes that are the radiation type) 

Table 2.3: Frequency of Freezes at Traverse City, Muskegon, and South Bend, 1960-2015 

Frequency of freeze events for spring season and by month at Traverse City, Muskegon, and 

South Bend, 1960-2015. 

  All Freezes (n) Radiation Freezes (n) 

  
Traverse 

City 
Muskegon South Bend 

Traverse 

City 
Muskegon South Bend 

March 1152 1088 809 237 100 111 

April 655 448 287 227 88 79 

May 208 60 15 114 25 6 

Total 2015 1596 1111 578 213 196 
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increased monthly from March to May at all locations. Finally, springtime radiation freeze 

events occurred simultaneously at the three sites on only 41 days between 1960 and 2015, 

highlighting the considerable spatial variability over time across the region. 

The radiation freeze events for each region are classified further as those with or without 

more than 2.5 cm of snow cover (Table 2.4). Snow cover is known as an effective insulator of 

the ground surface and is typically associated with relatively colder minimum surface 

temperatures. At all locations the majority of radiation freeze events with snow cover occurred in 

March with none occurring in May. Traverse City had the highest percentages of radiation 

freezes with snow cover during spring at 30%, followed by Muskegon at 19%, and then South 

Bend at 8%. The percentage of spring radiation freezes with snow cover decreased over time 

during the season at all stations. At Traverse City and Muskegon, 64% and 35% of the radiation 

freezes were associated with snow cover, respectively, but in April only 10% and 6% were, 

respectively. In South Bend, 14% of the radiation freeze events in March had snow cover, with 

no radiation freeze events with snow cover in April. 

Table 2.4: Frequency of Freezes with 2.5+ cm of Snow Cover at Traverse City, Muskegon, 

and South Bend, 1960-2015  

Frequency of freezes with at least 2.5cm of snow cover for each month and spring season 

total at Traverse City, Muskegon, and South Bend, 1960-2015. 

 Freezes with Snow Cover (n) 
Radiation Freezes with Snow 

Cover (n) 

 
Traverse 

City 
Muskegon 

South 

Bend 

Traverse 

City 
Muskegon 

South 

Bend 

March 237 100 111 151 35 15 

April 227 88 79 22 5 0 

May 114 25 6 0 0 0 

Total 578 213 196 173 40 15 
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The potential impacts of the freeze events on cherry cold injury at each reference site 

were examined with the sour cherry simulation model (Table 2.5). A damaging freeze event was 

defined as a day when the model simulated a loss of buds due to cold temperature. As expected, 

Traverse City had the most damaging freezes, with 100 events during spring over the 56 years, 

followed by South Bend with 38 events, and then Muskegon with 23. By month, the majority of 

damaging freezes at Traverse City and Muskegon occurred in May, but at South Bend the most 

frequent month was April. In March no damaging freezes occurred at Traverse City or 

Muskegon, and only 1 occurred at South Bend. This pattern is a result of crop phenology, as the 

risk of freeze damage increases as the crop advances through bloom. The majority of the 

damaging freezes were radiation freeze types at Traverse City (67%) and at Muskegon (61%), 

but only 34% of the damaging events at South Bend were radiation freezes. 

Because microclimate plays a significant role on temperature during freeze events, the 

average minimum temperatures during the springtime freeze events for 1960-2015 were 

examined across western Michigan and northwest Indiana. The average minimum temperatures 

for radiation and non-radiation freezes are shown by month for each station in Table 2.6. The  

Table 2.5: Frequency of Simulated Damaging Freezes at Traverse City, Muskegon, and South 

Bend, 1960-2015 

Frequency of simulated damaging freezes and freeze types at Traverse City, Muskegon, and 

South Bend by month and for the spring season, 1960-2015. 

  
Simulated Damaging Freezes (n) 

Simulated Damaging Radiation 

Freezes (n) 

  

Traverse 

City 
Muskegon 

South 

Bend 

Traverse 

City 
Muskegon 

South 

Bend 

March 0 0 1 0 0 1 

April 36 8 35 25 5 11 

May 64 15 2 42 9 1 

Total 100 23 38 67 14 13 
 



26 

 

Table 2.6: Average Minimum Temperature during Radiation and Non-Radiation Freeze Events, 1960-2015 

Average minimum temperatures (°C) using daily data from the NWS COOP stations for the spring months, during radiation and 

non-radiation freeze events classified from hourly data for 1960-2015. 

    March April May Seasonal 

    Rad Non-Rad Rad Non-Rad Rad Non-Rad Rad Non-Rad 

Region Station 
Tmin 

(°C) 
(N) 

Tmin 

(°C) 
(N) 

Tmin 

(°C) 
(N) 

Tmin 

(°C) 
(N) 

Tmin 

(°C) 
(N) 

Tmin 

(°C) 
(N) 

Tmin 

(°C) 
(N) 

Tmin 

(°C) 
(N) 

Northwest 

Cadillac -12.5 231 -9.8 884 -4.8 221 -4.6 420 -2.2 112 -2.3 94 -7.4 564 -7.8 1398 

East 

Jordan 
-11.8 236 -9.0 909 -4.2 225 -4.3 425 -2.1 114 -2.0 94 -6.9 575 -7.1 1428 

Frankfort -6.5 235 -6.1 904 -0.6 226 -2.2 418 1.3 112 0.3 92 -2.6 573 -4.6 1414 

Ludington -7.6 203 -6.1 834 -2.3 209 -2.4 402 0.0 106 -0.5 93 -3.9 518 -4.6 1329 

Manistee -8.0 234 -6.0 888 -1.7 218 -1.8 392 0.5 111 0.6 92 -3.9 563 -4.3 1372 

Maple 

City 
-10.3 237 -7.6 915 -4.2 227 -3.7 428 -2.5 114 -2.2 94 -6.4 578 -6.1 1437 

Traverse 

City 
-11.0 237 -7.9 915 -4.3 227 -3.6 428 -2.3 114 -1.9 94 -6.7 578 -6.2 1437 

Regional 

Average 
-9.7 230.4 -7.5 892.7 -3.2 221.9 -3.3 416.1 -1.1 111.9 -1.1 93.3 -5.4 564.1 -5.8 1402.1 

West 

Central 

Big 

Rapids 
-10.1 97 -9.2 966 -4.9 87 -4.9 352 -2.0 25 -2.5 34 -7.0 209 -7.9 1352 

Grand 

Rapids 
-7.8 100 -6.4 988 -3.2 88 -3.0 360 -0.6 25 -1.5 35 -5.0 213 -5.4 1383 

Greenville -9.7 100 -7.9 987 -4.3 88 -4.4 360 -2.0 25 -2.7 35 -6.6 213 -6.9 1382 

Hart -9.0 100 -7.2 988 -4.0 88 -3.3 360 -2.2 25 -1.9 35 -6.1 213 -6.0 1383 

Hastings -9.1 99 -7.2 976 -4.2 84 -3.7 345 -1.7 24 -1.9 35 -6.3 207 -6.1 1356 

Holland -7.9 89 -5.7 925 -3.4 76 -2.7 346 -1.2 25 -1.7 33 -5.2 190 -4.8 1304 

Montague -10.1 97 -6.9 926 -6.3 85 -4.4 339 -3.5 23 -3.2 33 -7.8 205 -6.1 1298 

Muskegon -8.5 100 -6.0 988 -4.0 88 -2.7 360 -2.0 25 -1.3 35 -5.9 213 -5.0 1383 

Regional 

Average 
-9.0 97.8 -7.1 968.0 -4.3 85.5 -3.6 352.8 -1.9 24.6 -2.1 34.4 -6.2 207.9 -6.0 1355.1 
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Table 2.6 (cont’d) 

Southwest 

Benton 

Harbor 
-8.1 109 -5.8 678 -4.3 75 -3.2 196 -2.3 6 -1.5 9 -6.4 190 -5.2 883 

Dowagiac -8.1 107 -6.9 685 -4.2 78 -4.1 207 -0.7 6 -3.0 9 -6.3 191 -6.2 901 

Goshen -6.1 111 -5.4 689 -2.2 76 -2.7 197 -0.3 6 -1.3 9 -4.4 193 -4.7 895 

Lagrange -7.3 96 -6.7 607 -3.4 67 -3.5 168 -0.2 6 -2.5 9 -5.5 169 -5.9 784 

La Porte -4.7 107 -4.9 653 -0.5 76 -1.7 197 1.9 6 0.3 9 -2.8 189 -4.1 859 

South 

Bend 
-6.7 111 -5.4 698 -2.8 79 -2.9 208 -1.3 6 -1.4 9 -4.9 196 -4.8 915 

Three 

Rivers 
-7.5 111 -6.7 688 -3.2 77 -3.6 207 -1.4 6 -2.5 9 -5.6 194 -5.9 904 

Wantanah -7.2 106 -6.2 672 -4.1 72 -3.1 195 -1.5 6 -1.9 9 -5.8 184 -5.4 876 

Regional 

Average 
-7.0 107.3 -6.0 671.3 -3.1 75.0 -3.1 196.9 -0.7 6.0 -1.7 9.0 -5.2 188.3 -5.3 877.1 

 

springtime average minimum temperatures during radiation freezes range from -7.8 to -2.6°C across stations while the non-radiation 

freezes were slightly cooler, ranging from -7.9 to -4.1°C. 

Lack of spatial consistency across regions is shown, and some stations are consistently colder or warmer than others. For 

example, Frankfort, in the close vicinity of Lake Michigan, is warmer on average than the surrounding stations during radiation 

freezes. The radiation freezes are generally colder than the non-radiation freezes in March, with temperatures more similar between 

freeze types in April and May. The average minimum temperatures for all freeze events, radiation freezes, and non-radiation freezes in 

March are shown in Figure 2.2. The mean temperatures are relatively warmer in the southwest and colder in the northeast, with a  
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change from -9.3°C to -4.4°C. This temperature gradient is likely due to the combined influences 

of latitude (a regional difference of 3.7°), the lake influence, topography, and the various 

microclimates of the individual sites. This result highlights the importance of choosing a suitable 

orchard site in order to reduce the overall risk of springtime freezes. On average, the 

temperatures are 1-2°C colder during radiation freezes than non-radiation freezes in March 

across all regions. This result differs from the Logan et al. (2000) study which determined that 

advection freezes were colder than radiation freezes. Again this may be due to the different 

location or classification criteria, as this study categorized non-radiation freezes instead of 

advection freezes (some of which could have been radiation-like in nature).  

The average minimum temperatures during radiation freeze events with and without 

snow cover are shown by station in Table 2.7. The average minimum temperatures of springtime 

radiation freezes range from -14.3 to -7.8°C for those with snow cover and -6.4 to -0.5 °C 

without snow cover. In general, the springtime minimum temperatures during radiation freezes 

are 7-8°C colder with snow cover than without across the three regions. Again, the temperatures 

vary by station, even within region, up to a difference in 6.5°C during radiation freezes with 

snow cover in the northwest, highlighting microclimatic effects. The effects of microclimate 

were further highlighted in the interpolated map of the temperatures (Figure 2.3). Microclimate 

influences were especially apparent in the northwest region, as the average minimum 

temperatures during radiation freezes in March were warmer near Lake Michigan than the 

locations further inland. The radiation freeze events with snow cover were 5-6°C colder on 

average in March than the events without snow cover across all regions.  

The average minimum temperatures during simulated damaging radiation and non-

radiation freeze events are shown in Table 2.8. These averages are based on smaller numbers of 
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freezes, and again the temperatures vary by station. The average minimum temperatures range 

from -5.5 to 0.3°C during radiation freeze types and from -6.4 to -0.4°C during non-radiation 

freeze types. The differences in average minimum temperatures between damaging radiation and 

non-radiation freeze events are small, and are not consistent across month or region. 
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Figure 2.2: Interpolated Average Minimum Temperature of March Freeze Events, 1960-2015  

Average minimum temperature (°C) for of all March freeze events (left panel) and for 

radiation (center) and non-radiation (right) type freezes, 1960-2015.  All freezes included all 

days with freezing temperatures at each station with daily data, and the days included in the 

radiation and non-radiation freezes were classified based on hourly data at the three reference 

stations. 
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Table 2.7: Average Minimum Temperatures during Radiation Freeze Events with 2.5+ cm of Snow Cover, 1960-2015 

Average minimum temperatures (°C) using daily data from the NWS COOP stations for the spring months, during radiation freeze 

events with and without 2.5+ cm of snow cover classified from hourly data for 1960-2015. 

    March April May* Seasonal 

    With Snow 
Without 

Snow 
With Snow Without Snow Without Snow With Snow Without Snow 

Region Station 
Tmin 

(°C) 
(N) 

Tmin 

(°C) 
(N) 

Tmin 

(°C) 
(N) 

Tmin 

(°C) 
(N) 

Tmin 

(°C) 
(N) 

Tmin 

(°C) 
(N) 

Tmin 

(°C) 
(N) 

Northwest 

Cadillac -14.9 151 -8.1 80 -10.2 22 -4.2 199 -2.2 112 -14.3 173 -4.4 391 

East Jordan -14.8 150 -6.5 86 -9.7 22 -3.6 203 -2.1 114 -14.1 172 -3.8 403 

Frankfort -8.2 149 -3.4 86 -4.7 22 -0.2 204 1.3 112 -7.8 171 -0.5 402 

Ludington -9.9 120 -4.4 83 -7.3 16 -1.9 193 0.0 106 -9.6 136 -1.9 382 

Manistee -9.8 149 -4.9 85 -5.4 19 -1.3 199 0.5 111 -9.3 168 -1.6 395 

Maple City -12.4 151 -6.7 86 -9.0 22 -3.7 205 -2.5 114 -11.9 173 -4.0 405 

Traverse City -13.4 151 -6.9 86 -9.2 22 -3.8 205 -2.3 114 -12.8 173 -4.0 405 

Regional Average -12.0 145.9 -5.8 84.6 -8.0 20.7 -2.7 201.1 -1.1 111.9 -11.5 166.6 -2.9 397.6 

West 

Central 

Big Rapids -13.6 34 -8.2 63 -10.9 5 -4.6 82 -2.0 25 -13.3 39 -5.5 170 

Grand Rapids -10.9 35 -6.1 65 -10.2 5 -2.7 83 -0.6 25 -10.8 40 -3.7 173 

Greenville -13.6 35 -7.7 65 -10.2 5 -4.0 83 -2.0 25 -13.2 40 -5.1 173 

Hart -13.3 35 -6.7 65 -11.8 5 -3.5 83 -2.2 25 -13.1 40 -4.5 173 

Hastings -12.3 35 -7.3 64 -11.0 5 -3.8 79 -1.7 24 -12.1 40 -4.8 167 

Holland -11.1 28 -6.4 61 -10.1 5 -3.0 71 -1.2 25 -10.9 33 -4.0 157 

Montague -13.3 34 -8.4 63 -14.8 5 -5.7 80 -3.5 23 -13.5 39 -6.4 166 

Muskegon -11.8 35 -6.7 65 -12.3 5 -3.5 83 -2.0 25 -11.9 40 -4.5 173 

Regional Average -12.5 33.9 -7.2 63.9 -11.4 5.0 -3.9 80.5 -1.9 24.6 -12.4 38.9 -4.8 169.0 
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Table 2.7 (cont’d) 

Southwest 

Benton Harbor -12.3 14 -7.5 95 - 0 -4.3 75 -2.3 6 -12.3 14 -6.0 176 

Dowagiac -13.2 14 -7.3 93 - 0 -4.2 78 -0.7 6 -13.2 14 -5.7 177 

Goshen -11.0 15 -5.3 96 - 0 -2.2 76 -0.3 6 -11.0 15 -3.8 178 

Lagrange -13.2 12 -6.5 84 - 0 -3.4 67 -0.2 6 -13.2 12 -4.9 157 

La Porte -9.3 14 -4.0 93 - 0 -0.5 76 1.9 6 -9.3 14 -2.3 175 

South Bend -11.8 15 -5.9 96 - 0 -2.8 79 -1.3 6 -11.8 15 -4.4 181 

Three Rivers -12.5 15 -6.7 96 - 0 -3.2 77 -1.4 6 -12.5 15 -5.0 179 

Wantanah -12.9 15 -6.3 91 - 0 -4.1 72 -1.5 6 -12.9 15 -5.2 169 

Regional 

Average 
-12.0 14.3 -6.2 93.0 - 0.0 -3.1 75.0 -0.7 6.0 -12.0 14.3 -4.6 174.0 

*No radiation freeze events with snow cover in May 
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Figure 2.3: Interpolated Average Minimum Temperature of March Radiation Type Freeze 

Events, 1960-2015  

Average minimum temperature (ºC) of March radiation type freeze events (left panel), radiation 

type freezes with snow cover (center), radiation type freezes without snow cover (right), 1960-

2015. The days included were classified based on hourly data at the three reference stations. 
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Table 2.8: Average Minimum Temperatures during Simulated Damaging Freeze Events, 1960-2015 

Average minimum temperatures (°C) using daily data from the NWS COOP stations for the spring months, during radiation and 

non-radiation simulated damaging freeze events through the sour cherry model for 1960-2015. 

    March* April May Seasonal 

    Radiation Radiation 
Non-

Radiation 
Radiation 

Non-

Radiation 
Radiation 

Non-

Radiation 

Region Station 
Tmin 

(°C) 
(N) 

Tmin 

(°C) 
(N) 

Tmin 

(°C) 
(N) 

Tmin 

(°C) 
(N) 

Tmin 

(°C) 
(N) 

Tmin 

(°C) 
(N) 

Tmin 

(°C) 
(N) 

Northwest 

Cadillac - 0 -4.4 25 -4.6 11 -3.3 40 -2.8 25 -3.7 65 -3.3 36 

East Jordan - 0 -3.7 25 -3.9 10 -3.3 42 -3.0 25 -3.5 67 -3.2 35 

Frankfort - 0 0.1 25 -2.0 11 0.4 42 0.1 25 0.3 67 -0.6 36 

Ludington - 0 -2.9 25 -1.8 11 -1.0 40 -1.3 25 -1.7 65 -1.5 36 

Manistee - 0 -1.9 25 -1.5 11 -0.1 41 0.2 25 -0.8 66 -0.4 36 

Maple City - 0 -4.1 25 -4.0 11 -3.6 42 -2.8 25 -3.8 67 -3.2 36 

Traverse City - 0 -3.5 25 -4.3 11 -3.4 42 -3.2 25 -3.5 67 -3.6 36 

Regional Average - 0.0 -2.9 25.0 -3.2 10.9 -2.0 41.3 -1.8 25.0 -2.4 66.3 -2.2 35.9 

West 

Central 

Big Rapids - 0 -5.6 5 -4.8 3 -3.1 9 -4.7 5 -4.0 14 -4.7 8 

Grand Rapids - 0 -3.3 5 -3.2 3 -0.6 9 -2.8 6 -1.6 14 -2.9 9 

Greenville - 0 -4.8 5 -5.4 3 -1.7 9 -4.4 6 -2.8 14 -4.7 9 

Hart - 0 -3.4 5 -4.3 3 -2.7 9 -4.4 6 -3.0 14 -4.3 9 

Hastings - 0 -3.4 5 -4.4 3 -1.5 9 -2.8 6 -2.2 14 -3.3 9 

Holland - 0 -1.7 4 -4.4 2 -1.7 9 -3.3 6 -1.7 13 -3.6 8 

Montague - 0 -5.2 5 -7.8 3 -3.4 9 -5.6 5 -4.1 14 -6.4 8 

Muskegon - 0 -3.8 5 -3.7 3 -2.8 9 -3.0 6 -3.1 14 -3.2 9 

Regional Average - 0.0 -4.0 4.9 -4.8 2.9 -2.2 9.0 -3.8 5.8 -2.8 13.9 -4.1 8.6 
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Table 2.8 (cont’d) 

Southwest 

Benton Harbor -6.7 1 -5.5 11 -4.2 24 -3.9 1 -0.6 1 -5.5 13 -4.1 25 

Dowagiac -5.6 1 -5.2 11 -5.3 24 -2.2 1 -3.9 1 -5.0 13 -5.2 25 

Goshen -2.2 1 -2.7 10 -3.8 24 -1.1 1 -2.2 1 -2.6 12 -3.8 25 

Lagrange -3.3 1 -3.3 7 -4.6 16 -3.3 1 -2.2 1 -3.3 9 -4.4 17 

La Porte -1.7 1 -0.6 11 -2.3 21 -1.1 1 0.0 1 -0.7 13 -2.2 22 

South Bend -5.6 1 -3.4 11 -4.1 24 -3.3 1 -2.2 1 -3.6 13 -4.0 25 

Three Rivers -3.9 1 -3.6 10 -4.3 24 -3.3 1 -3.9 1 -3.6 12 -4.3 25 

Wantanah -6.1 1 -4.3 11 -3.7 24 -3.3 1 -2.2 1 -4.4 13 -3.6 25 

Regional Average -4.4 1.0 -3.6 10.3 -4.0 22.6 -2.7 1.0 -2.2 1.0 -3.6 12.3 -3.9 23.6 

*One radiation freeze and no non-radiation freezes were damaging in March 
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2.3.2 Characteristics of Damaging Freezes 

To examine the physical characteristics of the simulated damaging freeze events on a 

diurnal basis, statistics of temperature, wind speed, sky cover, and dewpoint for all the radiation 

type freezes were calculated for each hour at the three reference stations with hourly data. The 

hourly characteristics for damaging freezes in April and May at each station were similar, thus 

only the characteristics of May at Traverse City, which had the highest number of events, are 

shown. These statistics are presented in Figure 2.4 by hour in the form of box and whisker plots 

for all simulated damaging radiation freeze events during May at Traverse City from 1960 to 

2015 (42 total). During these freeze events, average temperatures tended to decrease rapidly 

from 22:00 to 06:00 UTC, associated with decreases in wind speed and sky cover. These 

characteristics were expected as clear, calm nighttime conditions were used in the criteria to 

classify radiation freezes. There were also relatively small concurrent decreases in dewpoint 

likely associated with condensation or sublimation and decreases in atmospheric humidity. 

During the overnight hours, the sharpest hourly decline in temperature on average occurred 

between 1:00-2:00 UTC with an average decrease of 2°C.  

For comparison, the statistical averages of hourly conditions for simulated damaging non-

radiation type freezes in May at Traverse City (22 events) are given in Figure 2.5. The non-

radiation damaging freezes had higher variability in temperature, wind, and sky cover, and more 

outliers for dewpoint, where outliers were defined as data points above and below a distance of 

1.5 times the interquartile range from the 1st and 3rd quartiles. Additionally, the diurnal cycle for 

all variables was less distinct for the non-radiation damaging freezes. There was a similar 

decrease in clouds and wind at night during the non-radiation damaging freezes because 

relatively clear, calm conditions may still have played a role in the freeze events, although the 
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Figure 2.4: Hourly Characteristics of Simulated Damaging Radiation Type Freeze Events 

Statistical box and whisker plots of air temperature (ºC), wind speed (m/s), sky cover category, 

and dewpoint (ºC) for simulated damaging radiation type freeze events in May for 1960-2015 

at Traverse City for hours 13:00 to 12:00 UTC. A sky cover value of '1' indicates clear skies, 

'2' for few clouds, '3' for scattered clouds, '4' for broken sky cover, and '5' is overcast. Box 

plots include median value (thick black line), 25th and 75th percentiles (bottom and top of 

boxes), distance of 1.5 times the interquartile range from the 1st and 3rd quartiles (bottom and 

top whiskers), and series extremes (open circles) for each hour. 
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Figure  Figure 2.5: Hourly Characteristics of Simulated Damaging Non-radiation Type Freeze Events 

Statistical box and whisker plots of air temperature (ºC), wind speed (m/s), sky cover category, 

and dewpoint (ºC) for simulated non-radiation type damaging radiation freeze events in May for 

1960-2015 at Traverse City for hours 13:00 to 12:00 UTC. A sky cover value of '1' indicates 

clear skies, '2' for few clouds, '3' for scattered clouds, '4' for broken sky cover, and '5' is overcast. 

Box plots include median value (thick black line), 25th and 75th percentiles (bottom and top of 

boxes), distance of 1.5 times the interquartile range from the 1st and 3rd quartiles (bottom and top 

whiskers), and series extremes (open circles) for each hour. 
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actual events did not meet the criteria for a radiation type freeze event. On average, during hours 

1:00-12:00 UTC of non-radiation damaging freezes, the greatest drop in temperature occurred 

from 0:00 to 1:00 UTC with an average decrease of 1.4°C. 

The timing of model simulated damaging freezes with respect to phenological stage was 

investigated at Maple City, Hart, and Eau Claire for 1960-2015. The average frequencies of 

damage events per year are shown in the top row of Figure 2.6. The averages were based on 162 

damaging freeze events that occurred at Maple City, 68 events at Hart, and 41 at Eau Claire. On 

average, stage 8 had the highest average frequency of damage events per year at Maple City 

(0.63), followed by stage 6 (0.48) and then stage 2 (0.39). Similarly, at Hart stage 8 had the 

highest average frequency of damage events per year (0.29), followed by stages 5 and 6 (0.20) 

and then stage 3 (0.16). The pattern at Eau Claire was somewhat different, with the highest 

average frequency in stage 2 (0.20), followed by stage 5 (0.16), and then stages 3 and 8 (0.11). 

At Eau Claire, there were no damaging freeze events that occurred during phenological stage 4 

from 1960 to 2015 due to the relatively short stage length. 

To account for the varying lengths of each phenological stage, the frequency totals were 

normalized by the length of the stage (days) to get average frequency per day in each 

phenological stage (Figure 2.6; middle row). Across all stations, the later phenological stages 5-8 

had the highest average frequency of damaging freeze events per day. This result was expected 

since the later phenological stages are at a higher risk to freeze damage than the earlier stages 

given relatively higher damage threshold temperatures. At Maple City, stage 6 had the highest 

normalized average frequency at 0.178. At Hart, stage 5 had the highest average normalized 

frequency at 0.080, followed closely by stage 6 at 0.075. Similarly, stage 5 had the highest 

average normalized frequency at Eau Claire at 0.074. 
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Figure 2.6: Average Frequency and Severity of Simulated Damaging Freezes by Phenological 

Stage, 1960-2015 

Average frequency and severity of simulated damaging freezes with respect to phenological 

stages 2-9 for 1960-2015 for Maple City, Hart, and Eau Claire. Average frequency of 

damaging events per year are given in the top row, average frequency of damaging events per 

day normalized by stage length in the middle row, and average severity of damage per 

damaging event in the bottom row.  
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While frequency of damaging freezes is important, it is also critical to understand the 

severity of the freezes. Therefore, the average simulated damage amount per damaging freeze 

event was examined for each phenological stage (Figure 2.6; bottom row). On average, freeze 

damage was most severe in the earlier phenological stages, 2-3, for all three stations. At Maple 

City, the most severe average damage per event occurred in stages 2 and 3 with an average 

damage severity of 0.27. For Hart the highest average damage amount occurred in stage 2 at 

0.25, closely followed by stage 3 at 0.24. At Eau Claire stage 2 had an average damage severity 

of 0.28 and 0.25 for stage 3. The other phenological stages, 4-9, experienced less severe damage, 

ranging from 0.11 to 0.18 across the stations. This result of most severe damage in the earlier 

phenological stages, but more frequent damage in the later stages may be an important 

consideration for growers to understand the risk of freeze damage as the fruit tree develops and 

to better protect their crops from springtime freeze damage. 

2.3.3 Influence of Various Climatic Input Data on Sour Cherry Simulations 

Because of the lack of representative, lengthy climatic data series in the study area (and 

especially directly within the production areas themselves), a number of spatially weighted 

versions of input data were developed and used in the sour cherry model for the northwest and 

west central production regions. The representativeness of the various input datasets was 

assessed by comparing the simulated buds remaining to the observed yields for northwest and 

west central Michigan. Observed yields were not available for southwest Michigan. The ratio of 

buds remaining represents the proportion of the buds that survived after accounting for damage 

from springtime freezes, and therefore should be correlated with observed yields. The model 

simulated buds remaining is referred to as the output for the various input datasets as a 

shorthand. The spatially weighted input data variants were the Side Green, Bloom, Additional 
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Station, NLDAS, and PRISM data. The model outputs were compared among the different series 

and with the output from a single point series at the reference stations for the northwest (Maple 

City) and west central regions (Hart).  

The relationships between model simulated buds remaining using various input datasets 

and the observed yields for the northwest and west central regions are shown in Table 2.9, using 

linear regressions. For the northwest region, the linear regression indicates all the outputs from 

various input data are statistically significant at the 0.05 alpha level, except for the output from 

NLDAS data. Similarly, all the linear regressions except the NLDAS and the Hart series outputs 

for the west central region were statistically significant.  

Table 2.9: Linear Regression for Observed Yields and Model Output 

Linear regression with model simulated buds remaining from various input data as the 

dependent variable and observed yields in the northwest (top) and west central (bottom) 

regions as the independent variable. 

Northwest Region 

Data Input for Model R2 P-value Range 

Maple 0.3 0.001*** 1982-2015 

Side Green 0.31 0.001*** 1982-2015 

Bloom 0.33 0.000*** 1982-2015 

Additional Station 0.46 0.022* 2005-2015 

PRISM 0.21 0.007** 1982-2014 

NLDAS 0 0.967 1982-2015 

West Central Region 

Hart 0.07 0.117 1982-2015 

Side Green 0.22 0.005** 1982-2015 

Bloom 0.22 0.005** 1982-2015 

Additional Station 0.49 0.017* 2005-2015 

PRISM 0.38 0.000*** 1982-2014 

NLDAS 0 0.981 1982-2015 

Significance: * for 0.05, ** for 0.01, *** for 0.001 
 

 

 The single point data, Maple City data, accounts for 30% of the variation in the observed 

yields in the northwest; however, the Hart data only accounts for 7% of the observed yields in 

the west central region. The outputs from the Side Green and Bloom data improve the regression 
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results slightly for the northwest region, and largely for the west central region. For both the 

northwest and west central regions, the output from the Additional Station data accounts for the 

highest percentage of variation in observed yields, 46% and 49%, respectively. The output from 

the PRISM data lowers the R squared value compared to the single point data output in the 

northwest, but improves the R squared value in the west central region, accounting for 38% of 

the observed yields.  

When plotted in time series form, the model obtained output from Maple City data 

represents the observed northwest yields fairly well (Figure 2.7). The observed yields show 

major decreases in yield in 2002 and 2012, which are years with known springtime freeze events. 

The Maple City output represents the observed yields well in 2012, but the buds remaining 

output only decreases to approximately 0.5 in 2002, while the observed yield is extremely low. 

The Maple City output overestimates damage, which can be seen in 1989 and 2010 when 

simulated buds remaining are near 0 but the observed yields are relatively moderate, 

approximately 4000 kg/ha. The Maple City output captures many of the years with very high 

yields, such as 2001 and 2009.  

For the northwest region, the Side Green and Bloom outputs are very similar to the output 

from Maple City, as expected since the Side Green and Bloom input datasets heavily rely on the 

Maple City climate data. In general, as the Maple City data series was shifted forward in time, 

more damage occurred as colder temperatures occurred at later dates when the phenology is 

advanced and therefore more sensitive to cold temperatures. Correspondingly, as the 

temperatures were shifted backward in time, less damage occurred. The outputs using the Side 

Green and Bloom data series are very similar to each other, but overall the output using the Side 

Green data has slightly fewer buds remaining than the output from the Bloom data.  
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Figure 2.7: Model Simulated Buds Remaining and Observed Yields for the Northwest Region 

Time series of observed yields for the northwest region versus simulated buds remaining. The top left 

figure is the output from the Maple City climate series, top right shows the output from Side Green and 

Bloom, bottom left shows the output from Additional Station, and bottom right shows the output from 

PRISM and NLDAS data. 
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The Additional Station model output has a much shorter series (2005-2015) due to data 

availability. The output obtained using this series is fairly similar to that obtained using the 

Maple City series, although the deviations from the observed yields are smaller in the northwest 

region for some years. For example, in 2010 the Additional Station output represents the 

observed yield more accurately, while the Maple City output underestimates the remaining buds. 

The Additional Station output also performs better in 2005 and 2011. However, in 2014 the 

Additional Station output overestimates the buds remaining. Overall, the output from the 

Additional Station series is more representative of the observed yields than the output from the 

Maple City series for the overlapping period of the series.  

For the northwest region, the output obtained from the NLDAS input series shows buds 

remaining of 1.0 for all years except 1986 where buds remaining decreased to 0.98. This model 

did not accurately represent the variability of the observed yields. The output from the PRISM 

input has more variability than NLDAS, but buds remaining only ranges from 0.8 to 1.0 in all but 

three years. In 1986 buds remaining decreases to 0.57, in 1987 to 0.75, and in 2012 buds 

remaining decreases to approximately 0.3. Overall, the PRISM output does not display as much 

variability as the observed yields.  

The spatially weighted model output performs similarly in the west central region as it 

did in the northwest (Figure 2.8). The output from the Hart series accurately represents the low 

yields that occurred in 1986 and 2012, but misses the low yields in 1983 and 2012. In general, 

the Hart output overestimates the buds remaining, showing high buds remaining when the 

observed west central yields are low. The Side Green and Bloom output again are similar to each 

other, but differ from the output obtained from the Hart series because they are based on the 

adjusted Maple City series. For example in 1983 and 2002, the low observed yields are better  
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Figure 2.8: Model Simulated Buds Remaining and Observed Yields for the West Central Region 

Time series of observed yields for the west central region versus simulated buds remaining. The top left figure 

is the output from the Hart climate series, top right shows the output from Side Green and Bloom, bottom left 

shows the output from Additional Station, and bottom right shows the output from PRISM and NLDAS data 
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represented by the Side Green and Bloom output than the output from the Hart series. 

Additionally, the Side Green and Bloom outputs have greater variability than the Hart output. As 

seen in the northwest region, the Side Green output has slightly lower buds remaining values 

than the Bloom output in general. The Additional Station output is more representative of the 

observed yields than the Hart output for the west central region. In contrast to the 

representativeness of the Additional Station output, values for the NLDAS output equal 1.0 for 

all years. The PRISM output has larger variability than the NLDAS output, and represents the 

observed yields well in some years such as 2010, but has less variability than the observed yields 

in the 1990s. 

 In this analysis, the observed yields are regional while the sour cherry model was 

developed for a single point location. The representativeness of a single station for the region 

may be poor due to microclimate influences, and the results may have differed if other locations 

were used. This may account for the poor performance of the simulated buds remaining using the 

Hart time series for the west central region.  

Overall, the output from additional point data is more representative of the observed 

yields than that from the single point and gridded climate data variants, indicating the importance 

of additional data in estimating yields over large areas. Although gridded climate data provide a 

spatially continuous data surface, NLDAS less suitable in the sour cherry model application, 

possibly due to the low resolution and the close proximity to Lake Michigan which may have 

affected the values of the grid cells. The PRISM output performs better in the west central region 

than the northwest region, but is not as accurate as the Additional Station output in both regions. 

This is likely a result of the limited number of original input data sites available for the PRISM 

data series. In addition, while topography is included in the PRISM data development, the 4 km 
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spatial resolution of the data set is generally too coarse to represent the smaller microclimatic 

variations across the study region. The Additional Station variant performs the best because it 

contains more basic input information and better captures the spatial variation across the 

production regions. Therefore, investigators should always carefully consider the input data 

series used in the development of gridded datasets, especially in applications where microclimate 

is known to play a role. Finally, it is important to note that these sour cherry simulation results do 

not account for any other yield-limiting factors such as insects, weeds, or diseases, or weather 

conditions during pollination. The results should thus be interpreted as patterns or trends under 

idealized conditions.  
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CHAPTER 3: HISTORICAL AND FUTURE YIELDS 

3.1 Background 

3.1.1 Susceptibility of Perennial Crops to Climate Change 

As temperatures warm due to climate change, there is uncertainty how perennial fruit 

crops will be impacted. In temperate areas, a warming climate may lead to advanced 

phenological development causing plant tissue to be vulnerable earlier, increasing possibility of 

frost injury (Pagtera and Arorab, 2013). Other factors such as pollination, disease, and insects 

also influence fruit production, but in temperate climates springtime freezes are the most limiting 

factor (Winkler et al., 2013). Additionally, under a warming climate the climatological spatial 

limits of perennial production may shift as most tree fruit species have a minimum temperature 

threshold beyond which tree injury occurs (Daly et al., 2012). For example, sour cherry trees can 

be damaged by temperatures colder than -34°C (Dennis and Howell, 1974). Increasing 

temperatures may pose a problem for perennial crops in already warm climates like California, 

as the chilling requirement may not be met in the future (Luedeling et al., 2009). Perennial fruits 

are especially susceptible to climate change as the capacity for adaptation is limited. It takes 15 

to 30 years to develop new perennial crops with selective breeding or genetic engineering, and 

additional years for the crop to reach production potential (Hatfield et al., 2014).  

Assessing the impact of climate change on perennial fruit production is complex and 

involves consideration of the uncertainty associated with modeling of the climate and its 

relationship with plant growth and the resulting fruit production. The timing, frequency, and 

severity of springtime freezes are critical, but changes in springtime freezes are difficult to 

project. With warmer temperatures phenology may advance earlier, causing increased risk for 

frost damage, but the timing and frequency of the freezes may also change, causing little change 
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or decreased risk (Fitchett et al., 2014; Winkler et al., 2013). Therefore, it is uncertain whether 

springtime frost risk for fruit crops will increase or decrease in temperate regions in the future.  

3.1.2 Historical Trends in Phenology and Frost Risk 

Warming temperatures have impacted phenology and frost risk of plants globally. Many 

studies have reported an advancement in phenology over the past few decades due to the 

warming temperatures. For example, Menzel et al. (2006) established that phenology has 

advanced for hundreds of plant varieties, based on an extensive phenology observation network 

in Europe. Historical trends in the timing of bloom have also been examined, especially for fruit 

trees. Chmielewski et al. (2004) determined that the start of development and timing of blossom 

for sweet cherries in Germany advanced by one week in the past 40 years, mainly due to 

warming in February and April. Similarly, sour cherry bloom in central Europe advanced three 

days per decade due to increasing April temperatures (Kurlus et al., 2013). A study of apple 

bloom using four different phenology models concluded that bloom has been advancing in 

Europe, but more rapidly in the continental areas in Western Europe than the Mediterranean 

climate regions (Legave et al., 2013). Additionally, phenological observations indicated that 

flowering across multiple cultivars for apple and pear trees in France and Switzerland advanced 

due to warming in February and March; however, the changes did not impact fruit production 

(Guédon and Legave, 2008).  

While warming temperatures have caused advances in phenology, the spring frost risk 

also depends on the timing, frequency, and severity of sub-freezing temperatures. The timing of 

the last frost compared with a phenological stage is an indicator for the frost risk, as a frost 

occurrence can be detrimental to tree buds in late phenological stages. Fewer studies have 

focused on the historical trends in frost risk, and these studies show varying results. Dai et al. 
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(2013) determined that frost risk for woody plants in eastern China decreased over the past 50 

years. They concluded that frost risk decreased because phenology advanced by 1.9 days per 

decade while the date of the last frost advanced at approximately the same rate or at a slightly 

faster rate of  2 days per decade. Additionally, the number of frost days decreased during the 

study period.  

Similarly, Scheifinger et al. (2002) investigated frost risk at 50 climate stations in central 

Europe and determined frost damage risk decreased from 1951 to 1997, based on phenological 

data for 13 plant stages. Some of the plant species included in their analysis were not necessarily 

late frost sensitive plants, but were used to illustrate the relationship between frost and 

phenology nevertheless. A frost was defined as a temperature less than -1°C. General warming 

caused an advancement of phenology and last frost dates. The last frost occurrence advanced by 

0.2 days per year and phenology advanced by a range of 0 to 0.2 days per year, with the last 

phenological stage advancing at a faster rate of -0.28 days per year. Because the last date of frost 

advanced faster than most phenological stages, they concluded that the risk of late frost damage 

for earlier phenological stages had decreased.  

In contrast, frost damage to woody species in Illinois (U.S.) increased in recent years due 

to advancements in phenology with warmer March temperatures but little change, or a slight 

increase, in frequency of April temperatures ˂-1.7°C (Augspurger, 2013). Additionally, Fitchett 

et al. (2014) found that the frost risk of citrus fruits in Iran had increased historically. Although 

both the peak flowering dates and the dates of last frost advanced over time, the date of last frost 

advanced slower than the phenology, increasing the risk of frost damage. They argued that the 

differences in rates are due to the influence of both maximum and minimum temperatures on the 

time of flowering, while the occurrence frost events is only a function of minimum temperatures. 
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Warmer minimum temperatures during the study period did not reduce the frost risk, but did 

lessen the severity of the frost.  

In sum, although there is overall agreement on the advancement of phenology due to 

warming temperatures, trends in frost risk appear to vary by location.  

3.1.3 Projected Future Changes in Phenology and Frost Risk 

As the climate continues to warm, the vulnerability of fruit crops to springtime freeze 

damage may change. Several studies have projected advancements in phenology under climate 

change. For example, several statistically downscaled Global Climate Models (GCMs) under 

differing emissions scenarios projected earlier peach and pear flowering dates in South Korea by 

the end of the century (Hur and Ahn, 2014). With advanced phenology, freeze risk may change 

depending if the timing of spring freezes also becomes earlier or if the frequency of freezes 

decreases. Several studies have addressed this concern.  

Ladányi et al. (2010) investigated frost risk for sour cherries in Hungary and concluded 

risk may decrease by the mid-century. They used the historical mean bloom length as a reference 

to examine frost risk for 2021-2050 based on the dynamically-downscaled RegCM3.1 Regional 

Climate Model (RCM) scenario. For the future period, no frost days were projected to occur 

during bloom or 10 days prior to the beginning of bloom, due to significant increases in the mean 

minimum temperature. Additionally, an increased number of days with precipitation during 

bloom was projected, which indicates a worsening of conditions for pollination.  

Decreasing frost damage risk is also projected for viticulture in Luxembourg. Molitor et 

al. (2014) used six dynamically-downscaled RCM simulations that were further empirically 

downscaled and bias corrected using quantile mapping. To determine future frost risk, the date of 

budburst was estimated using a chilling model and a phenological forcing model with a 
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photoperiod variable. A frost occurrence within 60 days after budburst was considered to be 

damaging. The median date of budburst for the end of the century advanced by 11 days, and the 

date of last frost advanced by 28 days relative to the historical period. Therefore, the length 

between the date of last frost and day of budburst increased, indicating less frost damage in the 

future.  

Similarly, Eccel et al. (2009) examined the risk of spring frost to apples in Italy for 

historical and future periods by modeling break of dormancy and phenology using growing 

degree days (GDDs). For the historical period, the flowering date at one station advanced, on 

average, by 0.88 days per year and at the other station by 0.67 days per year. In spite of the 

earlier phenology, a decrease in frost risk for apples was seen in recent decades. Extending the 

analysis to a future period, they used linear regression to statistically downscale simulations from 

the HadCM3 GCM simulation under multiple emissions scenarios to the location of the two 

stations. Flowering from 1991 to 2056 was projected to advance, ranging from 0.04 to 0.13 days 

per year. The range of uncertainty was larger for future frost risk, with 11 scenarios suggesting 

decreased risk, 6 scenarios showing increased risk, and 7 scenarios showing no change. In 

general, the frequency of frost episodes was larger for the higher emissions scenario, Special 

Report on Emissions Scenarios (SRES) A2, and smaller for the lower emissions scenario, SRES 

B2. Overall, the authors concluded that frost risk is likely to stay the same, or slightly decrease, 

in the future. 

Hoffmann and Rath (2013) used 7 phenology models and simulations from 13 RCMs 

under emissions scenario SRES A1B that were bias corrected using quantile mapping to 

investigate future frost risk for apples in Lower Saxony, Germany. On average the last spring 

freeze advanced 10 days by 2035 and 27 days by 2084. Generally, phenology advanced slower, 
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increasing the time between bloom and the last spring freeze, indicating decreased frost risk in 

the future. However, one scenario, which projected the largest advancement in bloom, did 

project an increase in frost risk.  

Chmielewski et al. (2010) also looked at frost risk for apple trees in 11 fruit growing 

regions in Germany, but, in contrast to Hoffmann and Rath (2013), found increasing frost risk in 

the future. The ECHAM5/OM GCM under SRES A1B was statistically downscaled using 

WETTREG (weather situation-based regionalization method) for the future period of 2011 to 

2100. Five phenology models were used to simulate apple blossom, and the frequency of late 

frost events up to 10 days after the beginning of apple blossom were examined. A temperature 

threshold of -2°C was used to represent light frosts which would harm the flower buds by 10%, 

and -4°C for a damage of 90%. Blossom advanced about 15 days by 2100, and the mean 

probability for late frost after the beginning of blossom increased by 8%. Generally, the 

frequency of light frosts increased, and the authors concluded that the increase in damage risk 

will most likely be moderate in the future. 

Mosedale et al. (2015) examined frost risk for grapevines in southwest England and also 

supported an increase in future frost risk. An ensemble of climate projections from RCMs driven 

by the HAdCM3 GCM for low, medium, and high emissions scenarios were stochastically 

downscaled with a weather generator, producing 1000 weather sequences. Phenology was 

modelled using GDDs with various fixed starting dates and also with a simulated break of 

dormancy using winter chilling requirement. They evaluated frost risk as the probability of frosts 

after budbreak, although results were similar using measures capturing the severity or frequency 

of frost events. By 2080 the scenarios projected an advancement in the modelled date of 

budbreak by 45 days, an advancement in the date of last frost by 19 days, and therefore an 
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increased frost risk. However, projected frost risk was highly sensitive to the choice of 

phenology model and to the simulated start of budbreak. Additionally, adverse weather such as 

precipitation or low temperatures during flowering declined during the future period, indicating 

improved flowering conditions.  

Future change in frost risk may also depend on the location as shown by Kaukoranta et 

al. (2010) for 9 apple cultivars at 14 locations in Finland. A simulation from the RCA3 RCM 

driven by the ECHAM4/OPYC3 GCM under SRES A2 was downscaled using the delta method 

for the near future, 2011-2040. They simulated the timing of flowering using accumulated GDDs 

from January 1, and examined the frequency of temperatures less than -2°C after flowering. 

While frost risk was generally expected to not change, slight decreases in the west and increases 

in the south were projected with the early cultivars being particularly vulnerable to future frost 

damage.  

Rochette et al. (2004) also concluded that frost risk varied by location. They used 

simulations under three emissions scenarios from a single GCM (CGCMI) for two future 

periods, 2010-2039 and 2040-2069. The projections were downscaled using the delta method for 

69 locations in Canada. Apple tree phenology was modelled using accumulated GDDs starting 

on January 1. Earlier dates of last frost and phenology were projected for all regions but the rates 

of advancement differed. In eastern Canada, the frost risk was unchanged, but the projections 

suggest small increases in frosts risk in southern Quebec, large increases in southern Ontario, and 

large decreases in frost risk in the continental north. The large increases in frost risk in southern 

Ontario were due to larger increases in temperature during winter than at other locations as well 

as the already mild winter climates in southern Ontario compared to other regions, causing a 

faster rate of phenology advancement.  
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Winkler et al. (2012b) used a large ensemble of climate projections to examine freeze 

risk for sour cherry trees in Michigan. The projections were developed using multiple 

downscaling approaches from four GCMs driven by two emissions scenarios (SRES A2 and B2). 

Daily GDD accumulation beginning on January 1 was used to estimate bud development, and the 

last occurrence of freezing temperature was used to estimate freeze risk. Phenology was 

projected to advance in the future, and the date of the last spring freeze was projected to advance 

as well, but with a larger uncertainty range. A large number of scenarios projected little or no 

change in freeze risk in the future, whereas a similar number of scenarios suggested either an 

increase or decrease. Therefore, they concluded that the uncertainty surrounding spring freeze 

risk is large.  

The studies summarized above demonstrate the considerable uncertainty about future 

frost risk and the need for more research to understand climate change impacts on perennial crop 

production. The differing results of the previous studies also highlight the importance of using an 

ensemble, or multiple climate projections, as the projected changes can vary depending on 

choice of climate projection. While some studies estimated future changes in frost risk, none 

were able to transform the projections of future frost risk into fruit production loss. Additionally, 

spatial coverage of previous analyses is uneven. In particular, few studies were conducted for the 

temperate climate regions in the U.S. 

3.1.4 Climate Projections 

Many climate change impact studies use an ensemble of climate projections. The choice 

of climate model, emissions scenario, and downscaling method can lead to varying future 

projections (Hanssen-Bauer et al., 2005). Ensembles are generally used because there is no one 

“best” model, and the ensemble will provide an uncertainty range in the climate projections 



57 

 

(CCSP, 2008; Winkler et al., 2011b; Winkler et al., 2012a). However, different GCMs or 

downscaling methods may be similarly biased, so the ensemble may not capture the entirety of 

the uncertainty (Hanssen-Bauer et al., 2005).  

Climate projections generally need to be downscaled for applications as GCMs typically 

have coarse spatial resolutions, ranging from 100 to 300 km (Winkler et al., 2011a). 

Downscaling methods can be described as empirical or dynamical. Empirical downscaling 

derives regional climate information from a statistical model that relates large scale climate 

variables, or predictors, to more local variables, or predictands (Wilby et al., 2004). Climate 

model output is fed into the statistical model to estimate the local climate characteristics, with the 

major assumption that the statistical relationships hold true under the future climate (Wilby et al., 

2004). The most basic and commonly used form of statistical downscaling is the change factor, 

or delta, method. In delta downscaling, the difference between the GCM projected values for a 

future and a control period is applied to a historical time series. However, when using this 

method the range and variability of the future climate do not change relative to the historical 

climate (Wilby et al., 2004; Winkler et al., 2012a). Dynamical downscaling is when numerical 

models are used to simulate a finer resolution climate projection, like nesting a RCM within a 

GCM. RCMs have finer spatial resolutions, approximately 25-50 km, and are typically used 

when regional or local influences, such as topography, play important roles in the regional 

climate (Winkler et al., 2011a).  

Climate projections often need to be adjusted for biases, and it can be difficult to separate 

bias correction from downscaling (Winkler, 2016). The choice of correction is important as 

climate projections are sensitive to bias correction methods (Watanabe et al., 2012). Quantile 

mapping (QM) is a frequently used downscaling and bias correction method. QM corrects for 
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distribution bias of the climate projections via comparisons of the observed and modeled 

cumulative probability distributions. Multiple linear regression (MLR) is another widely used 

downscaling and debiasing approach. A linear function between predictors and a predictand is 

developed and solved so that error is minimized. Multiple linear contour regression (MLCR) 

developed by Abraham et al. (2014) is a variant of MLR that minimizes the prediction error in 

the climate projections and removes biases in the predicted distribution through an iterative 

process based on the solution of MLR. This method showed improvement over standard 

regression methods for maximum and minimum temperatures and precipitation for climate 

stations in Michigan (Abraham et al., 2014). All empirical downscaling and debiasing methods 

have strengths and weaknesses. For example, whereas QM can reduce biases of daily 

temperatures and precipitation (Themeßl et al., 2012), the prediction error is higher compared to 

linear regression method (Abraham et al., 2014). On the other hand, MLR does not correct the 

distribution bias, and is therefore not recommended for precipitation error correction (Themeßl et 

al., 2011). 

3.1.5 Climate Change Impacts on Perennial Crops in Michigan 

Over 70 percent of U.S. sour cherry production occurs in Michigan. The Great Lakes are 

critical for sour cherry production in Michigan, modifying the local climate and reducing the risk 

of winter kill and spring frost. Assessing historical and future frost risk for this region is 

challenging, however. In the Midwest, between 1900 and 2010 the average temperature 

increased more than 0.83°C (1.5°F), with the highest rate of increase since 1980 (Kunkel et al., 

2013). Generally, the greater proportion of warming for 1895-2010 occurred during the winter 

and spring seasons, with much of the warming associated with increased minimum temperatures 

(Andresen et al., 2012). While winters have warmed and the last spring freeze is earlier, the 
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interannual variability of extreme cold outbreaks remains large (Kunkel et al., 2013). 

Additionally, precipitation has increased during the past century in the Midwest, mostly due to 

more intense rainfall events (Pryor et al., 2014), which may have influenced pollination 

conditions. Furthermore, the spatial extent of plant hardiness zones, which are based on annual 

extreme minimum temperatures, has shifted northward one half zone in Michigan (Daly et al., 

201).  

Temperatures are projected to increase in the Michigan sour cherry production region. In 

the Midwest, temperatures are projected to increase by 2.1-2.7°C by the mid-century and by 3.1-

4.7°C by the end of the century depending on emissions scenario (Pryor et al., 2013). Both 

GCMs and RCMs project that the annual number of days below freezing as well as extreme 

freezes will decrease in Midwest (Kunkel et al., 2013). Correspondingly, cold air outbreaks are 

expected to decrease in the future across most of the U.S. (Vavrus et al., 2006). Moreover, the 

date of last spring frost is projected to occur 2-5 weeks earlier by the end of the century in the 

Midwest (Wuebbles and Hayhoe, 2003). Precipitation is projected to increase during winter and 

spring on average in the Great Lakes Region (Hayhoe et al., 2010). However, models generally 

have larger uncertainty with precipitation than temperature (Pryor et al., 2014). Additionally, 

changes in climate variability may significantly impact agriculture, but uncertainty surrounds the 

future changes in the variability of rainfall and temperature (Thornton et al., 2014). Climate 

projections for Michigan are complicated, however, by the poor representation of the Great 

Lakes in climate models. The coarse resolution of GCMs does not account for the Great Lakes, 

and many RCMs do not include lake models, instead estimating the lake temperatures as an 

average of the Atlantic and Pacific Ocean temperatures near the coast (Winkler et al., 2012a). 

Neither the RCMs nor GCMs consistently control the temperature variability in the Great Lakes 
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Region, reflecting the inconsistent treatment of the Great Lakes in climate projections (Mearns et 

al., 2013). 

3.1.6 Study Objectives 

 The objectives of this study are to examine how sour cherry yield has changed 

historically in Michigan, how climate change may impact yield in the future, and to evaluate how 

the choice of climate projection can influence the interpretation of future changes. This study 

uses an ensemble of 88 individual scenarios obtained from various climate models, emissions 

scenarios, and downscaling methods available for three locations in the fruit growing regions of 

the western Lower Peninsula of Michigan. The climate projections serve as input to a sour cherry 

yield model which utilizes relationships between climate, phenology, freeze damage, and 

pollination conditions to estimate yield.  
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3.2 Data and Methods 

3.2.1 Sour Cherry Yield Model 

A sour cherry yield model developed by Black et al. (in preparation) was used in this 

study to examine both historical and future trends in yield. This hybrid empirical/process-based 

model simulates eight stages of phenology based on the work of Zavalloni et al. (2006) using 

summed base 4ºC GDD thresholds. The GDDs accumulate beginning on January 1, under the 

assumption that the chilling requirement will be met by that date under projected future 

conditions. The GDD thresholds used in Chapter 2 were adjusted accordingly by 10 GDDs for 

the earlier break of dormancy date. Freeze damage was estimated using critical temperature 

thresholds for each phenological stage based on a chamber study by Dennis and Howell (1974). 

The cumulative seasonal damage was subtracted from the buds remaining variable which is a 

ratio from 0 to 1, indicating survival of the sour cherry buds. The model also accounted for the 

effects of poor pollination on yield. Poor pollination conditions, when bee activity is not 

favorable, was represented as a summed number of days when precipitation occurred or the 

average temperature was less than 10°C during phenological stage 8 (full bloom). 

A yield algorithm used both the cumulative freeze damage and frequency of poor 

pollination days to estimate sour cherry yield per year. The theoretical potential yield was 14308 

kg/ha which would occur during a year without any damaging freezes or poor pollination days. 

This model was validated against observed yields aggregated for the northwest region of 

Michigan from the United States Department of Agriculture (USDA) National Agricultural 

Statistics Service (NASS). Simulated yield at Maple City accounted for 31% of the variation of 

the observed yield and was statistically significant at the 0.001 alpha level. The sour cherry yield 

model was used to assess historical and future temporal trends in yield, buds remaining, poor 
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pollination days, phenology, and damaging freeze events. The model output from a historical 

reference period 1980-2000 was used as a baseline to evaluate future changes in sour cherry 

yield. 

3.2.2 Historical Climate Data 

Historical climatic data series of daily maximum and minimum temperature and 

precipitation were obtained from the National Weather Service (NWS) Cooperative Observer 

Program (COOP) for one reference site in each of the three major sour cherry production 

regions, namely, Maple City (northwest), Eau Claire (southwest), and Hart (west-central), 

Michigan. These observations were used in the sour cherry model to examine historical temporal 

trends for 1960-2015. The data series at Hart extended to 1894, and these additional years were 

also analyzed. Additionally, average annual temperatures for northwest Michigan, the third 

climate division, for 1960-2015 from National Centers for Environmental Information (NCEI) 

Climate at a Glance were used to examine historical temporal trends in temperature. 

Because it is common to move climate stations and/or update equipment, the climate 

observations for the historical reference period (1980-2000) were tested for homogeneity using 

the methodology by Wijngaard et al. (2003). The seasonal and annual average maximum and 

minimum temperatures and precipitation were evaluated with the standard normal homogeneity 

test for a single break (Alexandersson, 1986), the Buishand range test (Buishand, 1982), the 

Pettitt test (Pettitt, 1979), and the Von Neumann ratio test (Von Neumann, 1941). All three 

climate series passed the majority of the tests. 

3.2.3 Sources of Future Climate Projections 

To examine future trends in sour cherry yields, multiple climate projections developed by 

CLIMARK, a National Science Foundation (NSF) funded project focused on an integrated 
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framework for climate change impact assessments for international market systems with long-

term investments (http://cherry.geo.msu.edu), were used in the sour cherry yield model. These 

projections included output from 16 GCMs from the 5th phase of the Coupled Model 

Intercomparison Project (CMIP5) (Table 3.1). These models were chosen as simulations for 

three representative concentration pathways (RCPs). The resolution of the CMIP5 models ranges 

from 0.5° to 4° for the atmosphere component and from 0.2° to 2° for the oceanic components, 

depending on climate model (Taylor et al., 2012). This study used the long-term (century time 

scale) CMIP5 experiments which were driven by RCPs 4.5, 6.0, and 8.5 which show a range of 

radiative forcing and concentration outcomes based on socioeconomics and mitigation strategies 

(Moss et al., 2010). The historical CMIP5 simulations were used as a control period.  

Additionally, dynamically-downscaled simulations available from the North American 

Regional Climate Change Assessment Program (NARCCAP) were used (Table 3.2). A total of.8 

simulations obtained from a combination of 4 RCMs and 4 GCMs were available (Table 3.3). 

The NARCCAP simulations have a 50 km spatial resolution (Mearns et al., 2007, 2009). The 

simulations were forced with the SRES A2 emissions scenario for the 21st century. The A2 

emissions scenario represents a very heterogeneous world based on socioeconomic factors such 

as increasing population, relatively slow technological change, and regional economic growth 

(Nakicenvoic et al., 2000). NARCCAP simulations were available for a control period (1978-

1998) and for a mid-century period (2040-2060).  

The Great Lakes were crudely represented, if at all, in the CMIP5 models. All of the 

RCM included realistic outlines of the Great Lakes, but the methods used to estimate lake 

temperatures differed. The Canadian Regional Climate Model (CRCM) contained a 

thermodynamic mixed layer lake model for the Great Lakes Region (Govette et al., 2000). In   
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Table 3.1: Global Climate Models used in the CMIP5 Projections 

The CMIP5 GCMs used in the construction of climate projection ensemble. 

Modeling 

Center 
Model Name Institution 

FIO FIO-ESM The First Institute of Oceanography, SOA, China 

IPSL 
IPSL-CM5A-LR  

IPSL-CM5A-MR 
Institut Pierre-Simon Laplace, France 

MIROC 

MIROC5  

(Model for 

Interdisciplinary 

Research on Climate) 

Atmosphere and Ocean Research Institute (The 

University of Tokyo), National Institute for 

Environmental Studies, and Japan Agency for 

Marine-Earth Science and Technology 

MIROC 
MIROC-ESM  

MIROC-ESM-CHEM 

Japan Agency for Marine-Earth Science and 

Technology, Atmosphere and Ocean Research 

Institute (The University of Tokyo), and National 

Institute for Environmental Studies 

MOHC  

(additional 

realizations by 

INPE) 

HadGEM2-ES 

Met Office Hadley Centre (additional HadGEM2-

ES realizations contributed by Instituto Nacional de 

Pesquisas Espaciais) 

MRI MRI-CGCM3 Meteorological Research Institute, Japan 

NASA GISS 
GISS-E2-H  

GISS-E2-R 
NASA Goddard Institute for Space Studies, USA 

NCAR CCSM4 National Center for Atmospheric Research, USA 

NIMR/KMA HadGEM2-AO 
National Institute of Meteorological 

Research/Korea Meteorological Administration 

NOAA GFDL 

GFDL-CM3  

GFDL-ESM2G  

GFDL-ESM2M 

NOAA, Geophysical Fluid Dynamics Laboratory, 

USA 

NSF-

DOENCAR 
CESM1 (CAM5) 

National Science Foundation, Department of 

Energy, National Center for Atmospheric 

Research, USA 
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Table 3.3: Available NARCCAP Simulations 

Available RCM and GCM combinations for NARCCAP simulations. 
 

RCM GCM-driven 
NCEP-

driven 

  GFDL CGCM3 CCSM HADCM3   

RCM3 X X     X 

CRCM   X X   X 

WRFG   X X   X 

HRM3 X     X X 

  

Table 3.2: Climate Models used in the NARCCAP Projections  

The regional and global climate models used to produce the NARCCAP dynamically-

downscaled climate projections. 

Modeling Type Model Name Institution 

Regional 

Climate Model 

CRCM  

Canadian Regional Climate Model 

Canadian Centre for Climate 

Modelling and Analysis 

Regional 

Climate Model 

HRM3 

 Hadley Regional Model 3 
Met Office Hadley Centre, UK 

Regional 

Climate Model 

RCM3  

Regional Climate Model Version 

3 

 (also referred to as RegCM3) 

International Center for 

Theoretical Physics, Italy 

Regional 

Climate Model 

WRFG  

Weather Analysis and Forecast  

Model: Grell Convection Scheme 

National Center for 

Atmospheric Research, USA 

Global Climate 

Model 

CCSM  

Community Climate System 

Model 

National Center for 

Atmospheric Research, USA 

Global Climate 

Model 

CGCM3 

Coupled Global Climate Model 3 

Canadian Centre for Climate 

Modelling and Analysis 

Global Climate 

Model 

GFDL 

Coupled Model CM2.1 

NOAA, Geophysical Fluid 

Dynamics Laboratory, USA 

Global Climate 

Model 

HADCM3 

Hadley Center Coupled Model 

Version 3 

Met Office Hadley Centre, UK 
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contrast, the Weather Analysis and Forecast Model (WRFG) simulation driven by the 

Community Climate System Model (CCSM) assigned the lakes temperatures based on the GCM 

surface temperatures; however, the CCSM model did contain a thermodynamic lake model that 

simulated surface temperatures for larger lakes (UCAR, 2007). The Regional Climate Model 

Version 3 (RCM3) driven by the Coupled Model CM2.1 (GFDL) calculated the lake 

temperatures by interpolating the ocean sea surface temperatures from the GCM to the same 

latitudes over the Great Lakes (UCAR, 2007). For the RCM3 model driven by the Coupled 

Global Climate Model 3 (CGCM3), the lake temperatures were assigned by extrapolating the 

GCM temperatures downward, which was generally only 2 data points for the Great Lakes 

(UCAR, 2007). For the Hadley Regional Climate Model (HRM3) driven by GFDL, sea surface 

temperature ancillary data from the HadCM3Q0 GCM were applied to the GFDL data to 

simulate temperatures over the Great Lakes, which caused issues with the resulting projection 

having cooler future lake temperatures in the summer than the current conditions (UCAR, 2007). 

Time series of maximum and minimum temperature and precipitation at a daily time step 

were extracted from the CMIP5 archive. Daily maximum and minimum temperature files were 

also available for the NARCCAP simulations. The NARCCAP precipitation outputs had a three-

hourly temporal resolution, which were aggregated to obtain a daily precipitation total. 

3.2.4 Downscaling and Debiasing Methods 

Twenty-one year control and future periods were employed. The definitions of the 

control and future periods were contingent up on the length of the time series available for the 

CMIP5 and NARCCAP simulations. For CMIP5, the control period was defined as 1980-2000, 

whereas for NARCCAP the control period was 1978-1998. The future period was defined as 

2040-2060 for both simulation sources.  
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The climate projections were downscaled to the three Michigan locations, Eau Claire, 

Hart, and Maple City, using various methods (Table 3.4). For the CMIP5 scenarios, the delta, or 

change factor, method was employed. For the NARCCAP scenarios, the downscaling methods of 

delta, quantile mapping, multiple linear regression, and multiple linear contour regression were 

used. Additionally, time series were taken directly from the nearest grid point to a station, and 

these data will be referred to as the “raw” NARCCAP projections.  

Table 3.4: Downscaling and Debiasing Methods 

Downscaling and debiasing methods and the baseline data used to calculate future changes. 

Downscaling 

Method 
Abbreviation Description Baseline 

Delta 

approach 
Delta 

Monthly change factors are computed 

between future and control climate 

simulations and are applied directly to 

observations 

Observations  

(1980-2000 for 

CMIP5,  

1978-1998 for 

NARCCAP) 

Raw, or pure, 

downscaling 
Raw 

Extracts data from the nearest grid point 

to a station location 

Simulated 

control  

(1978-1998) 

Quantile 

mapping 
QM 

Adjusts the distribution of the climate 

simulations to match the distribution of 

the observations 

Simulated 

control  

(1978-1998) 

Multiple 

linear 

regression 

MLR 

Minimizes the error of the climate 

simulations by solving a linear 

regression between observations and 

control simulations, and applying the 

corrections to the future simulations 

Simulated 

control  

(1978-1998) 

Multiple 

linear contour 

regression 

MLCR 

Simultaneously minimizes the 

prediction error and adjusts the 

distribution of the climate simulations, 

and the corrections are applied to the 

future simulations 

Simulated 

control  

(1978-1998) 

 

 

The delta downscaling method is simple statistical downscaling where monthly change 

factors between the future and control climate simulations were calculated and applied to 

temperature and precipitation observations for a historical period (1980-2000). The change 
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factors were a simple difference for maximum and minimum temperatures which were added to 

the temperature time series for the historical period to obtain daily time series for the future 

period. The change factors were defined as a ratio for precipitation, and the historical 

precipitation time series were multiplied by the change factor to obtain future precipitation 

series. 

Quantile mapping (QM) was also used for the NARCCAP RCM/GCM scenarios 

(Liszewska et al., 2012). QM is a quantile-based empirical error correction method (Themeßl et 

al., 2012). This method corrected the shape of the control run distribution of the simulated daily 

time series of the climate variables, maximum and minimum temperature and precipitation, 

based on the distribution of the observations, and the corrections were then applied to the future 

simulations. The downscaling method of multiple linear regression (MLR) was also used. MLR 

is a commonly used downscaling method that uses a linear regression to model the relationship 

between explanatory variables and response variables, and minimize the error of the downscaled 

values (Themeßl et al., 2011). In this study, the functions were developed seasonally using daily 

maximum and minimum temperature and precipitation observations as the response variables, 

and a set of surface and upper-air climate variables as the explanatory variables. The functions 

were developed using time series of the explanatory variables from the RCM simulations driven 

by a global reanalysis and observations of the responsible variables. The regression functions 

were then applied to the future climate simulations to generate projections for 2040-2060. 

Moreover, multiple linear contour regression (MLCR) developed by Abraham et al. (2014) was 

used as it minimizes the prediction error and removed biases in the predicted distribution. This 

method used a linear regression and a squared error loss function to model the relationship 

between the observations of the response variables and reanalysis-driven simulations of the 
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explanatory variables, while simultaneously correcting the distribution of the control simulations 

with the observed distribution. The corrections were then applied to the future projections.  

3.2.5 Application of the Climate Projections 

 The future and control climate projections of daily maximum and minimum temperature 

and precipitation served as input to the sour cherry yield model. The average model output for 

2040-2060 was compared to: 1) for the delta projections, the model output when the input 

climate series were the observed maximum and minimum temperature and precipitation series 

for the historical period, 2) for the “raw” projections, the model output when the input climate 

series were the RCM-simulated maximum and minimum temperature and precipitation time 

series for the control period, and 3) for all other climate projection times, the model output when 

the input climate series were the downscaled and debiased maximum and minimum temperature 

and precipitation time series for the control period. This analysis was performed for the variables 

yield, buds remaining, poor pollination days, date of stage 2, and date of stage 8. Additionally, 

the frequency of damaging freeze events over the 21-year period and the average severity of 

damage per damaging freeze were examined. Percent changes for yield, buds remaining, and 

average severity were calculated by subtracting the average baseline values from the average 

future value, then dividing by the average baseline value, and multiplying by 100. Further 

analyses were completed to examine why yield increased or decreased, using seasonal changes in 

climatic variables.  
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3.3 Results 

3.3.1 Historical Temporal Trends 

Linear trends in simulated yield for the period 1960-2015 are statistically insignificant for 

the three stations, Eau Claire, Hart, and Maple City (Table 3.5), but inspection of the time series 

of simulated yield (Figure 3.1) suggests non-linearity in the magnitude and direction of the trend 

at Hart, although not necessarily at the other two stations. Simulated yields increase at Hart from 

1960 until the 1990s, but decrease in the last 2 decades. Similar complex trends are seen for the 

extended period (1894-1959) at Hart, with a decrease in simulated yield until the 1940s followed 

by an increase until 1959. In general, the simulated historical yields are smaller for Maple City 

than Eau Claire and Hart. 

In general, the simulated values of buds remaining are higher at Eau Claire and Hart than 

at Maple City (Figure 3.1). Although the simulated temporal trends in buds remaining for the 

historical period and the differences among the three stations visually correspond with those for 

simulated yield, the linear trends, like those for yield, are statistically insignificant at all three 

stations (Table 3.5). Temporal trends in the estimated number of poor pollination days are also 

insignificant, although some nonlinearity is evident. For example, the time series for Hart shows 

a general decrease in the number of poor pollination days from 1960 to the 1980s, followed by 

an increase in number of poor pollination days to the present, whereas the simulations for the 

additional years of record at Hart suggest little change or an increase in poor pollination days. At 

Maple City, the estimated number of poor pollination days decreases from 1960 to 2000, 

followed by an increase until the present. In contrast, a general, but insignificant, increase in the 

estimated number of poor pollination days is evident at Eau Claire. 
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Table 3.5: Linear Trends in Model Output at Eau Claire, Hart, and Maple City, 

1960-2015 

Historical linear trends by variable for each station, Eau Claire, Hart, and Maple 

City for the period 1960-2015. The linear trends are characterized by slope, p-

value, and R-squared. 

 

  Station Slope P-value R2 

Yield 

Eau Claire -26.63 0.326 0.02 

Hart -5.53 0.836 0.00 

Maple City 34.96 0.256 0.02 

Buds 

Remaining 

Eau Claire 0.00 0.739 0.00 

Hart 0.00 0.981 0.00 

Maple City 0.00 0.100 0.05 

Poor 

Pollination 

Days 

Eau Claire 0.02 0.246 0.02 

Hart 0.01 0.804 0.00 

Maple City 0.00 0.865 0.00 

Stage 2 

Eau Claire -0.22 0.012** 0.11 

Hart -0.06 0.447 0.01 

Maple City -0.11 0.188 0.03 

Stage 8 

Eau Claire -0.19 0.009*** 0.12 

Hart -0.01 0.839 0.00 

Maple City -0.09 0.205 0.03 

Frequency 

of Damage 

Events 

Eau Claire 0.03 0.060* 0.06 

Hart 0.01 0.666 0.00 

Maple City -0.02 0.477 0.01 

Average 

Severity of 

Damage 

Eau Claire 0.00 0.854 0.00 

Hart 0.00 0.876 0.00 

Maple City 0.00 0.353 0.02 

Significance: * for 0.10, ** for 0.05, *** for 0.01 
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Figure 3.1: Time Series of Simulated Yield, Buds Remaining, and Poor Pollination Days at Eau Claire, Hart, and Maple City, 

1960-2015 

Yield is given in the top row, buds remaining in the middle row, and poor pollination days in the bottom row. The left column 

is for Eau Claire, middle column for Hart, and the right column for Maple City. The black line is a 9-year moving average.  
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The estimated dates of stage 2 occurrence are similar for Hart and Maple City, but are 

much earlier at Eau Claire due to its southern location and consequently warmer temperatures 

(Figure 3.2). The estimated date of stage 2 (side green) advances at Eau Claire and Maple City 

throughout the period of record at the rates of 2 days per decade and 1 day per decade, 

respectively, although the linear trend is significant only at Eau Claire (at the 0.05 alpha level, 

Table 3.5). At Hart, the linear trend is only 0.6 days per decade and insignificant. Similarly, the 

linear trend in the estimated advancement of stage 8 (full bloom) is only significant at Eau 

Claire, with a trend of 1.9 days per decade for 1960-2015.  

 The simulated damaging freeze events are a function in the model of the timing of 

phenology and the occurrence of freezing temperatures. In general, Maple City experiences a 

greater number of damaging freeze events than Eau Claire and Hart (Figure 3.3). The linear trend 

in the frequency of damaging freeze events is weakly significant (p=0.10) at Eau Claire, and 

insignificant at the other two stations. Visual inspection of the time series points to limitations in 

the interpretation of a linear trend, however, especially for Hart and Maple City. At Hart, the 

number of events decreases until 1990, followed by an increase until the present. Similarly, the 

number of damaging freeze events initially decreases at Maple City (until the early 2000s), but 

increases in the past decade. An exceptionally large number of simulated damaging freezes are 

seen in 2010 and 2012 at both Hart and Maple City.  

The severity of damaging freezes is measured in terms of loss of buds, with an index 

ranging from zero (no damage) to one (all buds destroyed). Many years at Eau Claire and Hart 

did not have any simulated damage events, which complicates the calculation of the linear trend. 

Although the linear trends are insignificant at all three stations, the time series shown in Figure 

3.3 suggest some non-linear variations. At Eau Claire, the simulated severity of damaging
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Figure 3.2: Time Series of Simulated Dates of Stage 2 and Stage 9 at Eau Claire, Hart, and Maple City, 1960-2015 

The date of stage 2 is given in the top row and date of stage 8 in the bottom row. The left column is for Eau Claire, middle column for 

Hart, and the right column for Maple City. The black line is a 9-year moving average. 
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Figure 3.3: Time Series of Simulated Damaging Freeze Events and Average Severity of Damage at Eau Claire, Hart, and Maple City, 

1960-2015 

The frequency of damaging freeze events is given in the top row and average severity of damage per damaging freeze event in the 

bottom row. The left column is for Eau Claire, middle column for Hart, and the right column for Maple City. The black line is a 9-year 

moving average. 
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freezes generally increases until the 1980s and then decreases, whereas at Hart the simulated 

severity decreases until 1990 after which it increases. At Maple City there is a general, but 

insignificant, trend of decreasing severity of damaging freeze events over time.  

Lastly, the model outputs are examined for the 1980-2000 period, which is the historical 

period for comparison of the delta (change factor) scenarios described above. For this period, 

Hart has the largest simulated yield, followed by Eau Claire, and then Maple City (Table 3.6). 

The spatial variability for buds remaining corresponds with that for simulated yield. For the 

estimated number of poor pollination days, Eau Claire has the largest value while Hart and 

Maple City share a slightly lower value. Hart and Maple City have similar average dates of 

phenological stages 2 and 8, whereas Eau Claire has an earlier average by 2-2.5 weeks. Maple 

City has the largest number of damaging freeze events during the 21-year period. Eau Claire has 

approximately half as many events as Maple City, and at Hart the frequency of damaging freezes 

is small. Contrastingly, the average severity of damage is fairly similar between stations.  

 

Table 3.6: Historical Averages of Yield Model Output, 1980-2000 

Historical averages of the yield model output for the 21-year period, 1980-2000, per station. 

The frequency of damaging freezes is a summed total over the 21-year period. 

Station 
Yield 

(kg/ha) 

Buds 

Remaining 

Poor 

Pollination 

Days 

Date of 

Stage 2 

Date of 

Stage 8 

Frequency 

of 

Damaging 

Freezes 

Average 

Damage 

Severity 

Eau 

Claire 
8640.3 0.77 3.7 97.3 118.2 29 0.23 

Hart 9718.6 0.87 3.1 113.3 133.5 13 0.20 

Maple 

City 
7709.7 0.62 3.1 114.3 133.8 50 0.19 
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3.3.2 Projected Future Changes in Climatic Variables 

 Projected future changes in maximum temperature, minimum temperature, and 

precipitation by 2040-2060 were examined by simulation source and downscaling method and, if 

applicable, by RCP. For temperature, the focus was on annual and seasonal means of maximum 

and minimum temperature. For precipitation, the annual and seasonal frequencies of wet days 

and average amount of precipitation per wet day were analyzed.   

Ensemble (i.e., multi-model) means of projected future changes in the annual values of 

the climate variables at Eau Claire, Hart, and Maple City are shown in Table 3.7. The ensemble 

means of the projected changes in the seasonal means and frequencies are generally similar to 

the annual values, with the exception of slightly larger projected increases in average amount of 

precipitation per wet day during spring (not shown). Because of these small differences, the 

discussion below focuses on the differences in the annual means and frequencies.  

At all stations, annual mean maximum and minimum temperatures are projected to 

increase (Figures 3.4-3.5). However, the magnitude of the ensemble means differs by source of 

climate projection (Table 3.7). (Because of the similarities in the projected changes between 

stations, figures are only shown for Eau Claire.) As expected given the larger number of 

simulations, the uncertainty envelope is larger for the downscaled CMIP5 models, with projected 

changes ranging from 1 to 4.6°C at Eau Claire. The HadGEM2-ES model and the models 

developed from the MIROC modeling center project larger increases in maximum temperature 

compared to the other CMIP5 models. The ensemble means are 2.5°C, 2.0°C, and 3.1°C for 

RCPs 4.5, 6.0, and 8.5 respectively at Eau Claire. The reason for the higher projected change for 

the RCP 4.5 simulations compared to the RCP 6.0 simulations is that the radiative forcing is 

larger for RCP 4.5 until approximately the middle of the 21st century, after which the radiative 
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Table 3.7: Multi-Model Mean Changes by the Mid-Century in Temperature and 

Precipitation 

Multi-model mean changes by the mid-century in annual mean maximum and minimum 

temperature, precipitation per wet day and the frequency of wet days for each downscaling 

method. 

Station  Downscaling Method 

Maximum 

Temperature 

(°C) 

Minimum 

Temperature 

(°C) 

Precipitation 

Amount per 

Wet Day (mm) 

Frequency of 

Wet Days 

Eau 

Claire 

CMIP5 Delta RCP 4.5 2.5 2.5 0.3 0.0 

CMIP5 Delta RCP 6.0 2.0 2.0 0.3 0.0 

CMIP5 Delta RCP 8.5 3.1 3.1 0.4 0.0 

NARCCAP Raw 2.4 2.4 0.3 -8.8 

NARCCAP Delta 2.4 2.4 0.2 0.0 

NARCCAP QM 2.3 2.3 0.5 -2.1 

NARCCAP MLR 1.8 1.7 0.1 2.6 

NARCCAP MLCR 2.1 2.0 0.0 -5.9 

Hart 

CMIP5 Delta RCP 4.5 2.5 2.6 0.4 0.0 

CMIP5 Delta RCP 6.0 2.0 2.1 0.3 0.0 

CMIP5 Delta RCP 8.5 3.1 3.1 0.7 0.0 

NARCCAP Raw 2.4 2.4 0.3 -7.4 

NARCCAP Delta 2.4 2.4 0.5 0.0 

NARCCAP QM 2.4 2.5 0.7 -0.2 

NARCCAP MLR 1.7 1.6 0.1 1.3 

NARCCAP MLCR 2.0 2.0 0.1 7.6 

Maple 

City 

CMIP5 Delta RCP 4.5 2.6 2.7 0.5 0.0 

CMIP5 Delta RCP 6.0 2.1 2.3 0.5 0.0 

CMIP5 Delta RCP 8.5 3.3 3.4 0.7 0.0 

NARCCAP Raw 2.3 2.4 0.3 -7.4 

NARCCAP Delta 2.3 2.4 0.4 0.0 

NARCCAP QM 2.2 2.5 0.5 0.6 

NARCCAP MLR 1.7 1.6 0.0 1.4 

NARCCAP MLCR 2.0 2.0 0.1 4.0 
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Figure 3.4: Projected Change by 2040-2060 in Average Annual Maximum Temperature (°C) at 

Eau Claire by Climate Projection 
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Figure 3.5: Projected Change by 2040-2060 in Average Annual Minimum Temperature (°C) 

at Eau Claire by Climate Projection 
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forcing is higher for RCP 6.0 (Moss et al., 2010).  

Direct comparison of the climate projections from CMIP5 and NARCCAP is difficult 

because of the different driving greenhouse gas emissions. Very generally, the radiative forcing 

of the SRES A2 emission scenarios falls between that of RCP 6.0 and 8.5 (Walsh et al., 2014). 

The ensemble means of annual maximum and minimum temperature for the NARCCAP-derived 

projections are smaller than those for the CMIP5 RCP 8.0 simulations and more similar to those 

for the CMIP5 RCP 4.5 and 6.0 simulations (Table 3.7). Differences by downscaling method are 

evident among the NARCCAP-derived projections, with increases in the ensemble means for 

mean maximum (minimum) temperature ranging from 1.7°C (1.6°) to 2.4°C (2.5°C) across 

various downscaling methods. Additionally, the uncertainty envelope for the NARCCAP 

models, when summed across all the downscaling methods, is smaller than the downscaled 

CMIP5 models, ranging from 1.2 to 3.2°C with, in general, the WRFG_CGCM3 simulation 

projecting the smallest increase in maximum temperature and the HRM3_GFDL simulation 

projecting the largest increase.  

Considerable variations in the projected changes in the annual average precipitation 

amount per wet day are evident (Figure 3.6). The majority of the downscaled CMIP5 simulations 

project an increase in precipitation amount per wet day. The projections range from -0.3 to 1.8 

mm per day across the three RCPs, with the climate model GFDL-CM3 projecting the largest 

increases. Similarly, the majority of the NARCCAP models project increases in precipitation, 

with the exception of the projections developed with the MLR and MLCR downscaling methods. 

For these two methods, an equal number of the projections suggest small decreases in  
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Figure 3.6: Projected Change by 2040-2060 in Average Annual Precipitation per Wet Day (mm 

per day) at Eau Claire by Climate Projection 
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precipitation as increases. The NARCCAP projections of the annual amount of precipitation per 

wet day range from -0.5 to 1 mm across the different downscaling methods.  

The projected change in annual frequency of wet days is largely dependent on 

downscaling method (Figure 3.7). Delta downscaling does not allow for changes in the 

frequency of wet days, as historical precipitation series are multiplied by a change factor 

(expressed as a ratio) to obtain future precipitation series. The NARCCAP simulations 

downscaled with the Raw approach project decreases in the frequency of wet days. The 

projections developed using the QM, MLR, and MLCR downscaling methods are approximately 

equally divided between increases and decreases in the frequency of wet days, with values 

ranging from -30 to 29 days per year. 

As described earlier, the delta climate projections were developed by applying change 

factors calculated by month to historical time series of temperature and precipitation. Thus, an 

understanding of the differences among the simulations in the magnitude of the monthly deltas is 

needed to interpret future changes in annual and seasonal means of the climate variables and the 

outputs of the yield model. This is particularly important for the temperature variables, given 

their contribution to freeze risk. The timing and magnitude of the monthly deltas of maximum 

and minimum temperature are shown for the CMIP5 models in Figures 3.8 and 3.9 respectively, 

and for the NARCCAP model combinations in Figure 3.10. There is large variability in the 

magnitude of the monthly temperature deltas and the timing for the largest deltas among the 

CMIP5 models. For example, compared to the other models, the MIROC-ESM and MIROC-

ESM-CHEM models consistently project the largest increases in maximum and minimum 

temperature during late winter and early spring (i.e., February and March). Inter-model 

variability in the monthly magnitudes and fluctuations of the delta values is also seen for the 
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finer resolution NARCCAP model combinations, particularly for minimum temperatures, as seen 

by the large monthly deltas in January and February for the CRCM_CGCM3 and CRCM_CCSM 

simulations. 

 

 

Figure 3.7: Projected Change by 2040-2060 in Average Annual Frequency of Wet Days at Eau 

Claire by Climate Projection 



85 

 

 

 

Figure 3.8: Monthly Deltas (°C) for Maximum Temperature from the CMIP5 Models 

The deltas were calculated for the model land gridpoint nearest the station location. The deltas 

were applied to observed series of maximum temperature to obtain future series of maximum 

temperature. The stations are shown by row, and the RCP by column. 
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Figure 3.9: Monthly Deltas (°C) for Minimum Temperature from the CMIP5 Models 

The deltas were calculated for the model land gridpoint nearest the station location. The deltas 

were applied to observed series of maximum temperature to obtain future series of maximum 

temperature. The stations are shown by row, and the RCP by column. 
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Figure 3.10: Temperature Deltas for the NARCCAP Simulations  

Maximum and minimum temperature deltas (°C) per month used in downscaling the NARCCAP 

simulations using the delta approach. The stations are shown by row, with maximum temperature in the 

left column, and minimum temperature in the right column. 
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3.3.3 Projected Future Changes in Sour Cherry Production 

The projected future changes in sour cherry yield, buds remaining, poor pollination days, 

timing of critical phenological stages, and the frequency and severity of damaging freeze events, 

as simulated by the sour cherry model, are examined below for Eau Claire, Hart, and Maple City. 

Two measures of central tendency (the ensemble average and median) and two measures of 

dispersion (the full range of the projections and the range between the 25th and 75th percentiles) 

are used to summarize the projected changes and their uncertainty. 

3.3.3.1 Changes in Sour Cherry Yield 

 Almost all of the projections developed from the CMIP5 models using the delta method, 

regardless of RCP, suggest a decrease in sour cherry yield at Eau Claire for 2040-2060 (Figure 

3.11). Furthermore, all but one of the NARCCAP projections downscaled using the delta 

approach indicate a yield decrease. The uncertainty envelope is large, ranging for the CMIP5 

projections from -41.9 to 7.1%, with an ensemble average (median) of -11.7 (-9.8)%, -9.0 (-

6.3)%, and -13.4 (-12.9)% under RCPs 4.5, 6.0, and 8.5, respectively (Table 3.8). The yield 

decreases are much larger for the MIROC-ESM-CHEM and MIROC-ESM projections. As noted 

earlier, both of these models project large increases in maximum and minimum temperature in 

late winter and early spring. Removing the CMIP5 models with projected yield changes outside 

the 25th and 75th percentiles reduces the range greatly. The uncertainty range for the yield 

changes obtained from NARCCAP delta projections is less than half of that estimated from the 

CMIP5 projections, although the ensemble size is also smaller. However, the reduced 25-75th 

percentile range for the NARCCAP delta projections is within a few percent of that for the 

CMIP5 RCP 4.5 and 6.0 projections. WRFG_CCM3 is the only NARCCAP delta projection 

indicating a future increase in yield. This simulation had somewhat higher projections of  
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Figure 3.11: Simulated Change (percent) by 2040-2060 in Average Sour Cherry Yield at Eau 

Claire by Climate Projection 
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Table 3.8: Simulated Changes (percent) by 2040-2060 in Sour Cherry Yield by Climate 

Projection Type 

Ensemble average, median, and range by source of climate simulation and downscaling method 

are provided. The ensemble average and range of the estimated yield between the 25th and 75th 

percentiles are also shown. 

Station Downscaling Method 
Ensemble 

Average 

Ensemble 

Median 

Ensemble 

Range 

Ensemble 

Average for 

25-75th 

Percentiles 

Ensemble 

Range for 

25-75th 

Percentiles 

  

Eau Claire 

CMIP5 Delta RCP 4.5 -11.7 -9.8 37.7 -10.8 17.0 

CMIP5 Delta RCP 6.0 -9.0 -6.3 32.0 -7.1 9.4 

CMIP5 Delta RCP 8.5 -13.4 -12.9 48.9 -12.2 18.4 

NARCCAP Raw 2.3 1.3 35.8 0.6 11.0 

NARCCAP Delta -7.2 -9.0 18.2 -8.1 11.0 

NARCCAP QM 2.1 0.3 25.8 1.4 14.0 

NARCCAP MLR 2.4 2.3 20.1 1.9 9.2 

NARCCAP MLCR 3.6 0.0 31.1 1.4 17.5 

Hart 

CMIP5 Delta RCP 4.5 -7.0 -5.8 37.0 -5.7 23.3 

CMIP5 Delta RCP 6.0 -3.7 0.8 33.9 -1.4 15.9 

CMIP5 Delta RCP 8.5 -10.5 -5.4 52.3 -7.6 26.8 

NARCCAP Raw 2.5 -0.3 29.6 0.6 16.7 

NARCCAP Delta 1.5 2.3 14.1 1.6 13.3 

NARCCAP QM -1.9 -2.0 30.2 -1.6 26.5 

NARCCAP MLR -0.6 -1.0 12.4 -1.0 4.9 

NARCCAP MLCR 0.6 -3.1 33.6 -0.7 9.1 

Maple 

City 

CMIP5 Delta RCP 4.5 -0.5 1.7 61.3 0.0 25.1 

CMIP5 Delta RCP 6.0 -0.7 1.8 41.5 0.5 22.5 

CMIP5 Delta RCP 8.5 -4.6 -2.1 58.8 -2.6 37.7 

NARCCAP Raw 6.2 3.7 35.4 5.9 23.0 

NARCCAP Delta 10.5 10.4 22.9 10.8 10.6 

NARCCAP QM 14.7 14.5 36.3 14.4 34.1 

NARCCAP MLR 0.9 0.1 15.4 0.0 4.2 

NARCCAP MLCR 2.8 0.2 28.5 2.1 21.0 
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minimum temperature during spring and early summer for the land grid point nearest Eau Claire 

compared to the other NARCCAP simulations. Uncertainty in the sign of the projected change in 

yield at Eau Claire is much larger for the downscaling methods that, unlike the delta method, 

allow the variability of temperature to change in the future. The simulated future changes in yield 

when the NARCCAP simulations are downscaled by the Raw, QM, MLR, and MLCR methods 

are input into the cherry model are almost equally divided between increases and decreases in 

yield. Yield projections obtained from the more complex downscaling methods range from -13.5 

to 25.8%, and the ensemble means are small although positive. Future yield projections obtained 

using the WRFG_CCSM simulation are consistently relatively large compared to the other 

NARCCAP simulations regardless of downscaling approach, but the type of downscaling applied 

appears to influence the relative magnitude of the estimated yield change for the other 

NARCCAP simulations.  

The sign of the estimated yield changes at Hart obtained from the NARCCAP 

simulations downscaled using the raw, QM, MLR and MLCR methods is highly uncertain, 

similar to the findings for Eau Claire (Figure 3.12). Simulated yields range from -18.2 to 23.0%, 

and the ensemble means are close to zero (Table 3.8). However, unlike Eau Claire, the CMIP5 

and NARCCAP projections downscaled using the delta method also suggest high uncertainty in 

the direction of the projected change. The future yields estimated from the CMIP5 models range 

from -42.7 to 9.6%, with an ensemble average (median) of -7.0 (-5.8)%, -3.7 (0.8)%, and -10.5 (-

5.4)% for RCP 4.5, 6.0, and 8.5 respectively. The ensemble mean (median) of the yield changes 

obtained from the NARCCAP delta projections is 1.5 (2.3)%, although the uncertainty range is 

smaller compared to range obtained from the CMIP5 projections. As for Eau Claire, the 

projections obtained from the CMIP5 MIROC-ESM-CHEM and MIROC-ESM simulations are  
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Figure 3.12: Simulated Change (percent) by 2040-2060 in Average Sour Cherry Yield at Hart by 

Climate Projection 
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associated with large yield decreases, and those downscaled from the NARCCAP 

WRFG_CCSM simulation are associated with relatively large yield increases. The yield 

estimates obtained from the NARCCAP simulations downscaled using the MLR and MLCR are 

particularly sensitive to outliers, as seen by the much smaller 25th - 75th percentile range 

compared to the full range.  

As for Hart, approximately an equal number of the CMIP5 projections for Maple City 

lead to simulated yield decreases as increases (Figure 3.13), although the uncertainty range is 

larger (Table 3.8). The simulated yield changes obtained from CMIP5 projections range from -

37.7 to 28.1%, and the ensemble mean (median) is -0.5 (1.7)%, -0.7 (1.8)%, and -4.6 (-2.1)% for 

RCP 4.5, 6.0, and 8.5, respectively. Even after removing the yield changes that fall outside the 

25th and 75th percentiles, the uncertainty range for the CMIP5 projections is larger for Maple City 

compared to the other two locations. Unlike for Hart and Eau Claire, the pattern of the simulated 

yields obtained from the NARCCAP simulations downscaled using the delta methods differs 

from that of the yields obtained from the CMIP5 projections, with all but one of the NARCCAP 

delta projections associated with a yield increase. The majority of the simulated yield changes 

are also positive for the NARCCAP QM simulations, whereas the sign of the projected yield 

changes is inconsistent for the NARCCAP Raw, MLR and MLCR projections. Thus, the largest 

ensemble means are obtained from the NARCCAP Delta and NARCCAP QM projections. 
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Figure 3.13: Simulated Change (percent) by 2040-2060 in Average Sour Cherry Yield at Maple 

City by Climate Projection 
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3.3.3.2 Changes in Buds Remaining 

In the sour cherry model, yield is estimated from the buds remaining and the number of 

poor pollination days. Consequently, a strong association is expected between the estimated yield 

and estimated buds remaining, as seen for all 3 locations (Table 3.9). Interpretation of the sign of 

the future change in buds remaining is almost identical to that of estimated yield. At Eau Claire, 

almost all the climate projections downscaled using the delta method suggest a decrease in the 

average number of buds remaining by mid-century, whereas the sign of the change is mixed for 

the remaining climate projections (Figure 3.14). At Hart, the sign of the future change in buds 

remaining is highly uncertain, regardless of the type of climate projection used to estimate the 

change (Figure 3.15). The NARCCAP Delta and QM projections suggest an increase in buds 

remaining at Maple City by mid-century, whereas the number of positive and negative simulated 

changes is similar for the other downscaling methods (Figure 3.16). 

3.3.3.3 Changes in Poor Pollination Days 

Differences between stations are once again highlighted by the simulated changes in poor 

pollination days. When the CMIP5 projections are input to the yield model, the majority of the 

projections, regardless of RCP, suggest an increase in the number of poor pollination days at Eau 

Claire (Figure 3.17). At Hart, an increase in the number in poor pollination days is simulated 

under RCPs 4.5 and 8.5, but not RCP 6.0 (Figure 3.18). This is in contrast to the mixed findings 

for simulated yield and buds remaining under all three RCPs, and also contrasts with increased 

number poor pollination days at Maple City for the RCP 6.0 climate projections and the 

uncertain sign of the projected changes for other two RCPs (Figure 3.19). The estimates of the 

number of poor pollination days from all the CMIP5 projections range from -0.3 to 2.5 days per 

year at Eau Claire, -0.5 to 3.3 days per year at Hart, and -0.8 to 2.2 days per year at Maple City 
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(Table 3.10). The sign of the projected change in the number of poor pollination days obtained 

from the NARCCAP simulations also varies by location. In particular, the majority of the 

estimated changes are positive for the NARCCAP delta projections at Eau Claire and Maple City 

but not Hart, whereas the NARCCAP QM simulations suggest a decrease in the number of poor 

pollination days at Eau Claire and Hart but an increase at Maple City. 

 

Table 3.9: Simulated Changes (percent) by 2040-2060 in Buds Remaining by Climate 

Projection Type 

Ensemble average, median, and range by source of climate simulation and downscaling 

method are provided. The ensemble average and range of the estimated buds remaining 

between the 25th and 75th percentiles are also shown. 

Station Downscaling Method 
Ensemble 

Average 

Ensemble 

Median 

Ensemble 

Range 

Ensemble 

Average 

for 25-75th 

Percentiles 

Ensemble 

Range for 

25-75th 

Percentiles 

Eau Claire 

CMIP5 Delta RCP 4.5 -12.8 -11.1 41.8 -12.4 18.5 

CMIP5 Delta RCP 6.0 -10.7 -8.0 33.9 -9.3 9.3 

CMIP5 Delta RCP 8.5 -14.9 -12.8 57.1 -13.2 20.2 

NARCCAP Raw 1.9 0.2 35.1 -0.4 12.3 

NARCCAP Delta -10.0 -10.6 21.8 -11.0 9.9 

NARCCAP QM 2.1 -0.3 24.6 0.7 14.7 

NARCCAP MLR 0.8 0.0 16.9 -0.3 3.2 

NARCCAP MLCR 4.2 1.2 33.2 1.5 7.8 

Hart 

CMIP5 Delta RCP 4.5 -7.5 -3.0 42.5 -4.9 22.7 

CMIP5 Delta RCP 6.0 -3.7 -0.2 32.2 -1.2 12.8 

CMIP5 Delta RCP 8.5 -12.0 -6.9 53.2 -8.8 29.3 

NARCCAP Raw 2.5 0.1 29.7 1.7 24.9 

NARCCAP Delta 1.4 2.1 15.5 1.6 11.1 

NARCCAP QM -4.1 -1.8 25.5 -3.4 21.5 

NARCCAP MLR 1.1 0.0 9.6 0.0 0.0 

NARCCAP MLCR 1.6 0.6 29.1 0.1 10.6 

Maple 

City 

CMIP5 Delta RCP 4.5 1.3 -0.3 70.4 2.9 32.6 

CMIP5 Delta RCP 6.0 4.0 8.4 46.2 5.9 23.3 

CMIP5 Delta RCP 8.5 -2.9 -4.4 72.6 -0.8 42.5 

NARCCAP Raw 5.1 4.5 30.8 5.8 18.3 

NARCCAP Delta 16.1 16.8 22.9 16.1 18.5 

NARCCAP QM 18.0 21.4 54.4 18.7 27.5 

NARCCAP MLR 2.3 0.4 18.9 0.3 2.0 

NARCCAP MLCR 1.5 -2.8 26.1 0.1 22.4 
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Figure 3.14: Simulated Change (percent) by 2040-2060 in Average Buds Remaining at Eau 

Claire by Climate Projection  



98 

 

  

Figure 3.15: Simulated Change (percent) by 2040-2060 in Average Buds Remaining at Hart by 

Climate Projection 
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Figure 3.16: Simulated Change (percent) by 2040-2060 in Average Buds Remaining at 

Maple City by Climate Projection 
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Figure 3.17: Simulated Changes by 2040-2060 in the Average Number of Poor Pollination 

Days per Year at Eau Claire by Climate Projection 
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Figure 3.18: Simulated Changes by 2040-2060 in the Average Number of Poor Pollination 

Days per Year at Hart by Climate Projection  
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Figure 3.19: Simulated Changes by 2040-2060 in the Average Number of Poor Pollination 

Days per Year at Maple City by Climate Projection 
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Table 3.10: Simulated Changes by 2040-2060 in Poor Pollination Days by Climate Projection 

Type 

Ensemble average, median, and range by source of climate simulation and downscaling 

method are provided. The ensemble average and range of the estimated number of poor 

pollination days between the 25th and 75th percentiles are also shown. 

Station Downscaling Method 
Ensemble 

Average 

Ensemble 

Median 

Ensemble 

Range 

Ensemble 

Average for 

25-75th 

Percentiles 

Ensemble 

Range for 

25-75th 

Percentiles 

Eau Claire 

CMIP5 Delta RCP 4.5 1.1 1.1 2.5 1.0 1.0 

CMIP5 Delta RCP 6.0 0.8 0.5 2.6 0.6 0.7 

CMIP5 Delta RCP 8.5 1.2 1.3 2.2 1.2 0.9 

NARCCAP Raw -0.2 -0.1 1.9 -0.2 1.5 

NARCCAP Delta 0.5 0.5 1.2 0.5 1.0 

NARCCAP QM -0.3 -0.5 2.0 -0.3 1.5 

NARCCAP MLR -0.4 -0.5 2.6 -0.5 1.4 

NARCCAP MLCR -0.1 0.1 2.9 0.0 2.1 

Hart 

CMIP5 Delta RCP 4.5 0.8 0.8 2.9 0.8 1.2 

CMIP5 Delta RCP 6.0 0.5 0.2 2.6 0.2 0.8 

CMIP5 Delta RCP 8.5 1.0 1.1 3.6 0.9 1.8 

NARCCAP Raw 0.0 0.2 2.3 0.1 1.1 

NARCCAP Delta 0.3 0.2 1.6 0.3 1.0 

NARCCAP QM -0.4 -0.5 2.1 -0.5 1.8 

NARCCAP MLR 0.3 0.2 2.2 0.2 1.2 

NARCCAP MLCR 0.1 0.1 1.5 0.1 1.4 

Maple 

City 

CMIP5 Delta RCP 4.5 0.3 0.3 1.7 0.3 0.8 

CMIP5 Delta RCP 6.0 0.5 0.6 1.8 0.6 0.5 

CMIP5 Delta RCP 8.5 0.5 0.3 2.7 0.5 0.9 

NARCCAP Raw -0.2 0.1 2.3 -0.2 2.0 

NARCCAP Delta 0.2 0.2 0.5 0.2 0.3 

NARCCAP QM -0.5 -0.5 2.0 -0.6 1.5 

NARCCAP MLR 0.1 0.1 2.6 0.0 1.8 

NARCCAP MLCR -0.4 -0.7 2.6 -0.4 2.0 
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3.3.3.4 Changes in Phenology 

The timing of phenology plays an important role in freeze risk and thus influences the 

simulated yields. All the climate projections point to an earlier occurrence of phenological stage 

2 (side green) (Table 3.11) at Eau Claire (Figure 3.20), Hart (Figure 3.21), and Maple City 

(Figure 3.22), regardless of the simulation source, downscaling method, or greenhouse gas 

emissions. For a particular projection type, the ensemble means of the simulated shift in the 

timing of stage 2 are nearly identical for the three locations, although differences in the ensemble 

means are seen between projection types. The simulated changes are somewhat larger for the 

CMIP5 RCP 4.5 and 8.5 projections, with the ensemble means varying across the stations from -

16.8 to -15.2 days for RCP 4.5 and from -20.9 to -18.6 days for RCP 6.0. The ensemble means 

for the other projection types are smaller, ranging from -12.9 to -9.0 days. At all stations, the 

simulated advancement of stage 2 is much larger for the climate projections developed from the 

CMIP5 MIROC-ESM-CHEM and MIROC-ESM models, highlighting the influence of the 

choice of GCM models to include in an ensemble on the ensemble range. For the NARCCAP-

derived climate projections, those derived from the WRFG-CCSM, HRM3_GFDL, and 

CRCM_CGCM3 are more likely to be associated with a larger simulated advancement in stage 

2.  

At all stations, the simulated future changes in the time of occurrence of phenological 

stage 8 (full bloom) are similar to those for stage 2, suggesting a uniform advancement of 

phenological stages by the mid-century across the study region (Table 3.12 and Figures 3.23-

3.25). Again, the range of the projected changes at an individual station is large, but the 

differences between stations are small. Removing the projections that fall outside the 25th-75th 

percentiles substantially reduces the range, especially for the CMIP5 projections, but has only a 
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small influence on the ensemble means. The ensemble means for the advancement of stage 8 

vary across the three stations from -15.2 to -14.0 days for CMIP5 RCP 4.5, from -18.6 days to -

17.3 days for CMIP5 8.5, and from – 13.2 to -9.1 days for the remaining climate projections. The 

smallest estimated changes (-10.1 to -9.7 days) are obtained from the NARCCAP MLR and 

MLCR projections. 

Table 3.11: Simulated Changes by 2040-2060 in Date of Phenological Stage 2 (Side Green) by 

Climate Projection Type 

Ensemble average, median, and range by source of climate simulation and downscaling 

method are provided. The ensemble average and range of the estimated dates between the 25th 

and 75th percentiles are also shown. 

Station Downscaling Method 
Ensemble 

Average 

Ensemble 

Median 

Ensemble 

Range 

Ensemble 

Average for 

25-75th 

Percentiles 

Ensemble 

Range for 

25-75th 

Percentiles 

Eau Claire 

CMIP5 Delta RCP 4.5 -15.4 -14.8 25.2 -14.4 11.5 

CMIP5 Delta RCP 6.0 -11.8 -10.3 23.0 -9.8 6.8 

CMIP5 Delta RCP 8.5 -18.6 -16.0 35.0 -16.6 13.1 

NARCCAP Raw -9.4 -10.1 9.5 -9.9 6.1 

NARCCAP Delta -11.5 -12.2 9.9 -11.8 6.2 

NARCCAP QM -10.8 -11.0 8.2 -11.1 5.2 

NARCCAP MLR -8.2 -8.0 7.6 -8.2 6.9 

NARCCAP MLCR -8.9 -9.4 9.4 -9.1 2.7 

Hart 

CMIP5 Delta RCP 4.5 -15.2 -14.2 23.5 -14.2 10.8 

CMIP5 Delta RCP 6.0 -11.7 -8.7 22.9 -9.3 6.9 

CMIP5 Delta RCP 8.5 -19.2 -17.7 37.5 -17.3 14.7 

NARCCAP Raw -10.1 -11.1 9.4 -10.8 3.3 

NARCCAP Delta -10.3 -10.5 11.3 -10.6 6.9 

NARCCAP QM -11.6 -12.5 7.6 -11.9 5.0 

NARCCAP MLR -9.4 -9.0 7.3 -9.6 4.2 

NARCCAP MLCR -9.8 -9.7 7.0 -9.9 5.3 

Maple 

City 

CMIP5 Delta RCP 4.5 -16.8 -15.6 35.3 -15.0 10.2 

CMIP5 Delta RCP 6.0 -12.9 -9.0 29.9 -10.2 9.7 

CMIP5 Delta RCP 8.5 -20.9 -18.5 45.5 -18.3 15.5 

NARCCAP Raw -9.3 -10.3 10.1 -9.8 4.8 

NARCCAP Delta -10.4 -11.4 10.9 -10.9 6.0 

NARCCAP QM -10.4 -9.9 8.7 -10.4 4.7 

NARCCAP MLR -8.9 -8.7 6.9 -9.0 6.1 

NARCCAP MLCR -9.7 -9.5 7.2 -9.7 5.9 
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Figure 3.20: Simulated Change by 2040-2060 in Average Date of Stage 2 at Eau Claire by 

Climate Projection 
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Figure 3.21: Simulated Change by 2040-2060 in Average Date of Stage 2 at Hart by Climate 

Projection 
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Figure 3.22: Simulated Change by 2040-2060 in Average Date of Stage 2 at Maple City by 

Climate Projection 
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Table 3.12: Simulated Changes by 2040-2060 in Date of Phenological Stage 8 (Full Bloom) by 

Climate Projection Type 

Ensemble average, median, and range by source of climate simulation and downscaling 

method are provided. The ensemble average and range of the estimated dates between the 25th 

and 75th percentiles are also shown. 

Station Downscaling Method 
Ensemble 

Average 

Ensemble 

Median 

Ensemble 

Range 

Ensemble 

Average for 

25-75th 

Percentiles 

Ensemble 

Range for 

25-75th 

Percentiles 

Eau 

Claire 

CMIP5 Delta RCP 4.5 -14.6 -12.7 22.5 -13.5 10.3 

CMIP5 Delta RCP 6.0 -11.3 -9.3 22.0 -9.1 6.7 

CMIP5 Delta RCP 8.5 -17.7 -16.5 34.1 -15.9 9.6 

NARCCAP Raw -9.8 -10.0 8.7 -10.1 4.8 

NARCCAP Delta -10.2 -11.0 10.3 -10.7 5.2 

NARCCAP QM -11.5 -11.9 9.5 -11.8 6.4 

NARCCAP MLR -9.1 -9.2 9.3 -9.3 3.3 

NARCCAP MLCR -9.6 -9.7 6.3 -9.7 4.5 

Hart 

CMIP5 Delta RCP 4.5 -14.0 -12.8 19.0 -12.9 7.0 

CMIP5 Delta RCP 6.0 -10.9 -8.9 18.5 -8.9 5.0 

CMIP5 Delta RCP 8.5 -17.3 -15.5 31.6 -15.3 9.7 

NARCCAP Raw -10.7 -11.1 9.4 -10.8 6.3 

NARCCAP Delta -11.0 -11.6 10.4 -11.5 5.7 

NARCCAP QM -13.2 -15.3 13.7 -13.8 9.5 

NARCCAP MLR -9.9 -9.9 8.3 -10.0 5.0 

NARCCAP MLCR -10.1 -10.2 9.4 -10.6 3.7 

Maple 

City 

CMIP5 Delta RCP 4.5 -15.2 -14.0 31.7 -13.1 6.4 

CMIP5 Delta RCP 6.0 -11.8 -7.8 27.8 -8.9 6.8 

CMIP5 Delta RCP 8.5 -18.6 -15.9 41.6 -15.5 11.9 

NARCCAP Raw -10.2 -11.0 9.4 -10.5 7.0 

NARCCAP Delta -10.5 -11.5 8.1 -11.1 4.5 

NARCCAP QM -11.5 -13.0 11.3 -12.0 6.4 

NARCCAP MLR -9.7 -9.7 6.7 -9.9 4.0 

NARCCAP MLCR -9.9 -10.5 8.9 -10.4 3.9 

 

 

   



110 

 

 

 

 

 

  

Figure 3.23: Simulated Change by 2040-2060 in Average Date of Stage 8 at Eau Claire by 

Climate Projection 
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Figure 3.24: Simulated Change by 2040-2060 in Average Date of Stage 8 at Hart by Climate 

Projection 
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Figure 3.25: Simulated Change by 2040-2060 in Average Date of Stage 8 at Maple City by 

Climate Projection 
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3.3.3.5 Changes in Frequency and Severity of Damaging Freeze Events 

The frequency and severity of damaging freeze events, as simulated by the sour cherry 

model, are also examined. A damaging freeze is defined as any freeze event that results in bud 

loss. The severity of a damaging freeze is the average damage amount per damaging freeze 

event, with a value of 0 indicating no loss of buds and a value of 1 indicating complete bud loss. 

The uniformity of the sign of the projected changes in phenology and the small differences 

between stations highlight that the uncertainty and inter-station differences discussed earlier for 

simulated buds remaining, and subsequently sour cherry yield, are primarily a function of 

differences between climate projections and locations in the simulated frequency and severity of 

damaging freezes. The ensemble plots of the frequency of damaging freezes for Eau Claire, Hart, 

and Maple City support this interpretation. At Eau Claire, the simulated changes in the frequency 

of damaging freezes are positive for all but a few (2 or 3 depending on RCP) delta-downscaled 

CMIP5 projections, with the increases as large as 80 days per year for some of the RCP 8.5 

projections (Figure 3.26). The simulated increases in the frequency of damaging freezes tend to 

be larger for those CMIP5 projections with the largest advancement in phenological stage (e.g., 

MIRO-ESM, MIROC-ESM-CHEM). Also, all but one of the delta-downscaled NARCCAP 

simulations project an increase in the frequency of damaging freezes. On the other hand, the 

simulated frequencies of damaging freeze events obtained from climate projections derived from 

the NARCCAP simulations using downscaling methods that allow the variability of temperature 

to change in the future suggest either little change in the frequency of damaging freezes or that a 

decrease in frequency is as likely as an increase. These differences are clearly seen in the 

ensemble means which are positive for the delta-downscaled projections, but are close to zero for 

the other projections (Table 3.13). 
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Figure 3.26: Simulated Change by 2040-2060 in Frequency (Number of Days per Year) of 

Damaging Freezes at Eau Claire by Climate Projection 
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Table 3.13: Simulated Changes by 2040-2060 in Frequency of Damaging Freezes by Climate 

Projection Type 

Ensemble average, median, and range by source of climate simulation and downscaling 

method are provided. The ensemble average and range of the estimated frequency between the 

25th and 75th percentiles are also shown. 

Station Downscaling Method 
Ensemble 

Average 

Ensemble 

Median 

Ensemble 

Range 

Ensemble 

Average for 

25-75th 

Percentiles 

Ensemble 

Range for 

25-75th 

Percentiles 

Eau Claire 

CMIP5 Delta RCP 4.5 15.7 9.5 42.0 15.0 30.0 

CMIP5 Delta RCP 6.0 10.1 9.0 41 8.9 16 

CMIP5 Delta RCP 8.5 21.9 12.0 104 16.3 31 

NARCCAP Raw 1.0 -1.0 23 0.5 16 

NARCCAP Delta 11.8 12.0 29 12.2 13 

NARCCAP QM 0.8 2.5 28 1.3 21 

NARCCAP MLR -4.5 0.0 47 0.2 3 

NARCCAP MLCR -7.5 0.5 72 -0.7 6 

Hart 

CMIP5 Delta RCP 4.5 10.9 5.5 52 7.9 26 

CMIP5 Delta RCP 6.0 4.8 1.5 32 2.3 13 

CMIP5 Delta RCP 8.5 17.3 6.5 71 11.4 32 

NARCCAP Raw 2.4 0.5 9 2.0 9 

NARCCAP Delta -1.5 -3.0 17 -1.8 14 

NARCCAP QM 4.8 3.0 32 3.3 22 

NARCCAP MLR -3.0 0.0 26 0.0 0 

NARCCAP MLCR -1.4 0.0 22 -0.5 9 

Maple City 

CMIP5 Delta RCP 4.5 2.1 1.0 87 -0.8 32 

CMIP5 Delta RCP 6.0 -4.1 -8.5 65 -6.4 21 

CMIP5 Delta RCP 8.5 5.3 6.5 86 1.2 47 

NARCCAP Raw 1.4 0.5 20 0.8 2 

NARCCAP Delta -18.4 -20.5 19 -18.7 16 

NARCCAP QM -16.9 -16.5 37 -17.0 25 

NARCCAP MLR -2.8 0.0 22 -0.3 3 

NARCCAP MLCR -1.3 2.0 29 -0.5 21 
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In contrast, all the different types of climate projections suggest that the direction of the 

change in the frequency of damaging freezes is uncertain at Hart (Figure 3.27). The ensemble 

means for the CMIP5 projections are positive, even though an approximately equal number of 

models project an increase as a decrease in damaging freeze frequency, as the magnitudes of the 

projected changes are larger for those models with an increase in frequency (Table 3.13). The 

ensemble means for the projections derived from the NARCCAP simulations are close to zero. 

Maple City is the only location for which some of the climate projections suggest a substantial 

future decrease in the frequency of damaging freezes (Figure 3.28). For example, almost all of 

the projections derived from the NARCCAP simulations using the Delta and QM downscaling 

methods suggest that damaging freezes will decrease in the future. For the other NARCCAP-

derived projections, the sign of the projected change is uncertain. In terms of the CMIP5 delta 

projections, a majority of the projections derived from the CMIP5 RCP 6.0 simulations suggest a 

decrease in the frequency of damaging freezes, whereas the direction of the change is unclear for 

the CMIP5 RCP 4.5 and 8.5 projections. However, in contrast to Hart, projected increases and 

decreases are more similar in magnitude, resulting in smaller ensemble means for the CMIP5 

projections for Maple City (Table 3.13).  

The ensemble plots of changes in the average severity of individual damaging freezes for 

the CMIP5 projections suggest little change in severity at Eau Claire (Figure 3.29), somewhat 

larger changes at Hart although the direction of the change is unclear (Figure 3.30), and the 

potential for substantially greater severity at Maple City (Figure 3.31). With the exception of the 

NARCCAP delta projections, the interpretation of future changes in the severity damaging freeze 

events is not as straightforward for the NARCCAP-derived projections, with considerable 

variability across the projections in the magnitude and direction of the simulated change for all 
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three stations (Table 3.14). Some NARCCAP simulations downscaled using the Raw and MLR 

methods do not project any damaging freezes in the mid-century future time slice. 

 

 

  

Figure 3.27: Simulated Change by 2040-2060 in Frequency (Number of Days per Year) of 

Damaging Freezes at Hart by Climate Projection 



118 

 

 

 

  

Figure 3.28: Simulated Change by 2040-2060 in Frequency (Number of Days per Year) of 

Damaging Freezes at Maple City by Climate Projection 
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Figure 3.29: Simulated Change (percent) by 2040-2060 in Average Severity of Damaging 

Freezes at Eau Claire by Climate Projection 

The climate models with no projected change shown in the figure did not project any 

damaging freeze events during the 21-year period, 2040-2060. 
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Figure 3.30: Simulated Change (percent) by 2040-2060 in Average Severity of Damaging 

Freezes at Hart by Climate Projection 

The climate models with no projected change shown in the figure did not project any damaging 

freeze events during the 21-year period, 2040-2060. 
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Figure 3.31: Simulated Change (percent) by 2040-2060 in Average Severity of Damaging 

Freezes at Maple City by Climate Projection 

The climate models with no projected change shown in the figure did not project any damaging 

freeze events during the 21-year period, 2040-2060. 
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Table 3.14: Simulated Changes (percent) by 2040-2060 in Average Severity of Damaging 

Freezes by Climate Projection Type 

Ensemble average, median, and range by source of climate simulation and downscaling 

method are provided. The ensemble average and range of the estimated severity between the 

25th and 75th percentiles are also shown. Some climate models projected few or no damaging 

freeze events during the 21-year period, affecting the calculations of average severity of 

damaging freezes. 

Station Downscaling Method 
Ensemble 

Average 

Ensemble 

Median 

Ensemble 

Range 

Ensemble 

Average 

for 25-75th 

Percentiles 

Ensemble 

Range for 

25-75th 

Percentiles 

Eau Claire 

CMIP5 Delta RCP 4.5 5.7 6.8 25.7 5.8 7.8 

CMIP5 Delta RCP 6.0 6.3 7.1 21.2 6.8 6.7 

CMIP5 Delta RCP 8.5 2.8 4.4 39.1 3.1 12.5 

NARCCAP Raw 26.9 22.9 118.3 26.9 43.4 

NARCCAP Delta 6.9 6.7 19.4 6.9 12.2 

NARCCAP QM -0.9 -4.8 83.4 -6.1 34.2 

NARCCAP MLR -62.2 -100.0 151.2 -62.2 0.0 

NARCCAP MLCR -3.9 -5.5 48.5 -4.8 32.7 

Hart 

CMIP5 Delta RCP 4.5 5.1 4.4 44.5 5.4 23.0 

CMIP5 Delta RCP 6.0 -0.5 0.6 37.7 -1.2 20.0 

CMIP5 Delta RCP 8.5 10.7 9.1 60.3 10.8 25.0 

NARCCAP Raw -47.1 -55.1 121.8 -47.1 89.7 

NARCCAP Delta 15.1 16.8 25.5 15.5 14.5 

NARCCAP QM 4.5 2.4 43.3 2.3 16.2 

NARCCAP MLR -100.0 -100.0 - - - 

NARCCAP MLCR 4.2 3.3 69.8 3.3 38.0 

Maple City 

CMIP5 Delta RCP 4.5 13.4 17.7 49.4 14.8 27.7 

CMIP5 Delta RCP 6.0 6.1 8.0 32.3 5.6 17.9 

CMIP5 Delta RCP 8.5 18.1 17.1 60.4 19.1 17.3 

NARCCAP Raw -2.2 3.6 68.3 -2.2 7.2 

NARCCAP Delta 7.4 8.6 14.1 8.2 7.3 

NARCCAP QM -2.0 -5.7 32.8 -1.8 21.4 

NARCCAP MLR -8.1 -30.5 215.6 -8.1 52.8 

NARCCAP MLCR 13.4 9.6 98.9 8.7 31.7 
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3.4 Summary and Discussion 

This study examined the historical trends and projected future changes in sour cherry 

yield and several related variables (i.e., timing of sensitive phenology stages, frequency and 

severity of damaging freezes, the number of poor pollination days, and the number of buds 

remaining), as simulated by a physically-based empirical yield model for three locations in 

western Michigan (Eau Claire, Hart, and Maple City). The study employed a large ensemble of 

GCM simulations from the CMIP5 archive and RCM simulations from the NARCCAP archive. 

Both sets of simulations were downscaled to the location of the three stations. The major 

findings of the study are as follows. 

1)  Linear trends in simulated sour cherry yield and related variables are mostly 

insignificant for the historical period of 1960-2015. Exceptions occur at Eau Claire in 

southwestern Michigan, where a significant positive trend in the frequency of damaging freeze 

events and a significant advancement in the timing of phenological stage 2 (side green) and stage 

8 (full bloom) were found. Schultze et al. (2014) earlier found little change or even a slight 

decrease in the frequency of late frosts during the grape growing season in southwestern 

Michigan. Therefore, the increases in simulated frequency of damaging freezes at Eau Clare are 

likely the result of the significant advancement in the timing of sensitive phenological stages and 

the occurrence of freezes during these sensitive stages. This is in agreement with the finding by 

Augspurger (2013) that frost damage to various woody species in neighboring Illinois increased 

since 1980 due to advancing phenology. There is some evidence of nonlinear trends and/or 

breakpoints in the simulated time series. At all three stations, the simulated number of poor 

pollination days and damaging freezes increased during the last decade. Also, inspection of the 

time series of simulated yield for a longer period of record, extending back to 1894, at Hart 
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suggests periods of the record were dominated by increases in yield whereas other periods were 

dominated by negative yield trends.  

2) The large of ensemble of climate projections suggests that annual maximum and 

minimum temperature in western Michigan will increase by the mid-21st century, with projected 

changes ranging from 1 to 4.6°C for the projections derived from the CMIP5 simulations and 

from 1.2 to 3.2°C for the projections derived from the NARCCAP simulations. The majority of 

the downscaled CMIP5 and NARCCAP simulations project an increase in the amount of 

precipitation per wet day. The sign of the projected change in the frequency of wet days is 

inconsistent among the downscaled NARCCAP simulations.  

3) The timing of critical phenological stages is expected to advance to earlier dates by the 

mid-21st century. Although the amount of change at any particular location varies with the type 

of climate projection, the ensemble means are similar for the three locations and two 

phenological stages, suggesting a uniform advancement of phenology across the study area. This 

result is consistent with other studies which projected earlier dates of phenology in Europe 

(Chmielewski et al., 2010; Eccel et al., 2009; Hoffmann and Rath, 2013; Molitor et al., 2014).  

4) The sign of the projected changes in the frequency and severity of damaging freezes is 

inconsistent, varying by climate projection type and location. In general, the climate projections 

downscaled from the NARCCAP simulations using methods that allow temperature variability to 

change in the future suggest little change in the frequency of damaging freezes or that a decrease 

in frequency is as likely as an increase, regardless of location. The CMIP5 and NARCCAP 

simulations downscaled using the simple delta method that assumes constant variance vary by 

location. The frequency of damaging freezes is expected to increase at Eau Claire, whereas the 

direction of the projected change is uncertain at Hart and Maple City. However, the average 
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severity of individual damaging freezes is more likely to increase at Maple City compared to the 

other two locations. These findings contrast with those of Rochette et al. (2004) who found that 

advancement in the phenology of fruit trees in southern Ontario led to projected increases in frost 

damage risk. Rather, the results of this study indicate that the relationship between the timing of 

sensitive phenological stages and the frequency of cold temperatures is complex and varies 

spatially. This interpretation supports that of Winkler et al. (2012b) who concluded, based on a 

large ensemble of downscaled CMIP3 simulations, that future changes in frost risk for sour 

cherry production in Michigan are uncertain.  

5) A unique contribution of the study is consideration of future changes in the number of 

poor pollination days. As for the frequency of damaging freezes, the ensemble of climate 

projections indicates considerable uncertainty in future changes, although, in general, the 

frequency of poor pollination days appears more likely to increase in the future at Eau Claire and 

Maple City compared to Hart.  

6) The ensemble of climate projections used in this study highlights the uncertainty 

surrounding projections in future sour cherry yield. This finding is in concordance with the large 

uncertainty in the projected frequency of damaging freeze events. The focus on the frequency 

and severity of damaging freeze events on yield is unique to this study. Previous analyses, such 

as that of Rochette et al. (2004), for the most part estimated freeze risk solely on the timing of 

the last freeze relative to phenological development. This approach is overly simplistic as the 

buds remaining on sour cherry trees at the time of last spring frost, and the consequent impact on 

yield, represents the cumulative impact of multiple freeze events during the phenological 

development of the buds.   



126 

 

7) The use of a large and varied ensemble of climate projections is essential to better 

understand the uncertainty associated with projected future changes. Also, ensemble means can 

be misleading and need to be accompanied by depictions of the range of the projected changes 

by the ensemble members. Furthermore, the ensemble needs to include projections developed 

from different GCM or RCM simulations, greenhouse gas concentrations, and downscaling 

methods. Considerable differences were observed between the projections downscaled using the 

simple delta approach that do not allow for changes in variability of precipitation frequency and 

the dynamically-downscaled projections that were further downscaled using more complex 

downscaling approaches. Also, the uncertainty envelope was generally larger for the projections 

downscaled from the CMIP5 GCM simulations than for those downscaled from the NARCCAP 

RCM simulations. This finding agrees with that of Kunkel et al. (2013) and Pryor et al. (2013), 

both of whom found a larger range in projected future temperature change from CMIP3 GCM 

simulations than from the NARCCAP RCM simulations. The development and use of a large 

ensemble of climate projections contrasts with a number of earlier studies. Some studies of 

future changes in perennial crop production used a single climate projection (e.g., Chmielewski 

et al. 2010; Kaukoranta et al., 2010; Ladányi et al., 2010), and those that did include multiple 

projections often only accounted for one source of uncertainty in the climate projections such as 

different greenhouse gas emissions (e.g., Eccel et al., 2009; Rochette et al., 2004). Few studies 

considered uncertainty introduced by the choice of downscaling method. This study highlights 

that climate projections can vary substantially depending on emissions scenario, downscaling 

method, and climate model, indicating that more inclusive climate projection ensembles should 

be used more often in climate impact studies.  



127 

 

As with any study, there are a number of limitations, but one aspect that particularly 

requires further attention is the parameter and structural uncertainty of the yield model. The 

model uses temperature thresholds derived from a chamber study to estimate phenological stage 

and sensitivity to freeze damage, but chamber conditions are not necessarily representative of 

conditions in orchards. Furthermore, the relationships estimated between temperature and 

phenology, as well as between pollination, freezes, and yield, from historical conditions are 

assumed to hold true in the future. In other words, the model relationships are assumed to be 

stationary, which may not be the case. Spatial variations in model performance were also 

observed. The simulated yield at Maple City explained 31% of the variation of observed regional 

yields in northwest Michigan. However, the yield model performed less well at Hart as compared 

to observed regional yields for west central Michigan. The poor performance at this station may 

be due to microclimate influences at Hart, causing the station to be unrepresentative of the 

region. Additionally, observed yields are unavailable for southwestern Michigan to validate the 

model at Eau Claire. Another complication is that, because of microclimate influences, the three 

stations selected to represent the fruit production areas in western Michigan based on the length 

and quality of their climate records, may not be representative of the majority of orchard 

locations.  

While there are many sources of uncertainty in this study, the implications of the 

projected future changes are important for fruit growers in Michigan. Growers need to be aware 

of the uncertainty surrounding future projections so that the decisions they make are robust and 

flexible.   
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CHAPTER 4: CONCLUSION 

This research focused on the influence of climate on sour cherry trees in the Great Lakes 

Region, specifically the negative impacts of springtime freezes on production. The historical 

relationship was examined in Chapter 2 and the historical and future temporal trends were 

analyzed in Chapter 3.  

In Chapter 2 the timing and physical characteristics of springtime freezes were examined 

for 1960-2015 with respect to sour cherry production in the Great Lakes Region. A sour cherry 

model was used to simulate phenological growth, and temperature thresholds were used to 

estimate freeze damage to tree buds. It was found that in general springtime freezes were most 

common in early spring and in the north. Classic radiation freezes were more common in later 

spring, and overall only a slight majority of the freezes that were estimated to cause damage at 

the stations in the northwest and west central regions were found to be classic radiation events 

with calm, clear conditions at night. At the southwest station the majority of the simulated 

damaging freezes were found to be non-radiation freezes, possibly due microclimate effects. 

Most of the damaging freeze events were found to occur towards the end of the spring season 

because fruit trees are more vulnerable to freeze damage at later stages of phenology. Data from 

reference stations showed the northwest region experienced the highest frequency of damaging 

freezes compared to the west central and southwest regions. Moreover, data from additional 

stations highlighted a spatial trend of more severe springtime freezes in the north and inland 

from Lake Michigan. These results highlight the importance of microclimate effects and 

consequently the significance of orchard location. Furthermore, the characteristics of simulated 

damaging freezes were examined, which is unique to this study. The results showed that 
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damaging freezes were more common in the later phenological stages, but the freezes during the 

earlier stages caused more damage on average.  

 The sour cherry model was evaluated by comparing the results of station climatic data 

series with regional yields for northwest and west central Michigan. The sour cherry model at the 

station Maple City accounted for 30 percent of the variation of the observed yields in the 

northwest region. The results at the station Hart did not perform well against the west central 

observed yields. Because there is a lack of long series of historical climatic data, gridded datasets 

were used in the sour cherry model to determine if they would be suitable for this type of 

application. It was found that NLDAS gridded data did not account for any of the interannual 

variability in yields and was determined to be unsuitable for this application. The gridded dataset 

PRISM accounted for some of the variability in yields, but additional point data would be the 

most helpful in this type of application. 

In Chapter 3, a yield algorithm based on springtime freeze damage and pollination 

conditions was used to examine temporal trends in sour cherry yield. Historical trends in 

simulated yield and the underlying factors, springtime freeze damage, pollination environment, 

and phenology, were analyzed. Furthermore, an ensemble of climate projections was used to 

determine how yield may change in the future, by the mid-century time slice 2040-2060. This 

chapter focused on the historical trends and projected changes in yield at three stations, Maple 

City, Hart, and Eau Claire, which span from north to south respectively, along the west coast in 

Michigan.  

  The linear historical temporal trends were generally insignificant for the simulated 

variables, except for phenology at Eau Claire which indicated a statistically significant 
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advancement of dates in phenological stage 2 (side green) and stage 8 (full bloom). The temporal 

trends in simulated yield and related variables showed some non-linearity in the series.  

 To examine changes under the projected future climate, a large ensemble was used with 

88 individual members to account for uncertainty in the projections. The climate scenarios 

projected an increase in maximum and minimum temperature for all stations. Due to the 

projected increases in temperature, phenology was also projected to advance. However, there 

was a wide range of future outcomes in changes in simulated sour cherry yield, due to varying 

changes in frequency of damaging freezes and poor pollination days by climate projection.  

 The large ensemble of climate scenarios highlighted the sources of uncertainty in climate 

projections, through RCP or emissions scenario, downscaling method, and climate model. All 

these factors played a large role in the resulting projections of changes in sour cherry yield at 

each of the stations. The scenarios under RCP 8.5, which represents the highest radiative forcing 

by the end of the century, projected the most extreme changes in the variables, compared to RCP 

4.5 and 6.0. The different downscaling methods allowed for varying amounts changes in climate 

variability in the future. The projected changes varied by scenarios downscaled with Delta, Raw, 

QM, MLR, and MLCR methods. Generally, the CMIP5 GCMs projected a larger of changes than 

the NARCCAP RCMs, and removing the more extreme scenarios did influence the ensemble 

averages and ranges.  

 There are some limitations to this research, which are discussed in more detail in the 

individual chapters. Due to lack of long climatic series, only three stations were used to represent 

the Great Lakes production areas. Furthermore, these stations may not accurately represent the 

weather at orchards, as microclimate has a strong influence in the region. This limitation was 

highlighted in the validation of the sour cherry model, as it did not perform well at Hart.  
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 The results from both Chapter 2 and 3 have implications for fruit growers in the Great 

Lakes Region, as well as valuable information regarding climate impact assessments. Results 

from Chapter 2 showed that there are not as many “classic” radiation freezes are previously 

thought. It is important for growers to be aware that damaging freezes are most common during 

the later phenological stages, due to the increasing vulnerability of the fruit crops. However, 

when freezes occur in the early phenological stages, the damage is generally more severe due to 

colder temperatures. Overall, it was found that microclimate played a strong role in the 

temperatures during freezes, so orchard location is very important in preventing freeze damage. 

Furthermore, growers should consider robust adaptation measures to climate change as this study 

showed that there is a large amount of uncertainty surrounding how yield will change in the 

future. This results of this study indicated that the use of gridded data in climate assessments 

should be carefully considered as it may not be suitable in regions where microclimate is 

important. Moreover, this study highlighted that there is a large range in uncertainty in future 

climate projections, indicating the importance of using a large, inclusive ensemble of climate 

projections when studying the impacts of the future climate.  
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APPENDIX 
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Cropscape 

 The CropScape data layers for Michigan in 2013 were developed from satellite imagery 

from the Landsat 8 OLI/TIRS sensor, Landsat 7 ETM+ sensor, and the Disaster Monitoring 

Constellation (DMC) DEIMOS-1 and UK2 sensors. Additional information from the United 

States Geological Survey (USGS) National Elevation Dataset (NED) and the imperviousness and 

canopy data layers from the USGS National Land Cover Database (NLCD) in 2006 were used in 

the CropScape data layers. The data layers were validated by the USDA Farm Service Agency 

(FSA) Common Land Unit (CLU) Program data. The metadata states that the 2013 Michigan 

cherries layer was determined to have a 79% user’s accuracy, a 27% omissions error, and a 21% 

commission error. The user’s accuracy indicates the probability that a pixel from the 

classification matches the ground truth data, the omissions error is when a pixel is excluded from 

the category to which it belongs, and the commission error is when a pixel is included in an 

incorrect category.  
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