va FIuE§: 25¢ par day per it. RETUMIKS LIBRARY MTERIAL§: Placc in book return to move charge from circulation ncords DYNAMIC PROPERTIES OF FROZEN GRANULAR SOILS By John Chien-Chung Li A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Civil Engineering 1979 ABSTRACT DYNAMIC PROPERTIES OF FROZEN GRANULAR SOILS By John Chien-Chung Li The dynamic properties of frozen granular soils under earthquake loading conditions was the subject of this investigation. The materials studied included commer— cially available Ottawa sand and small-sized pea gravel which is categorized as very coarse sand in the Unified Soil Classification System. These materials, with adequate amounts of distilled water, were artificially frozen into cylindrical samples. Strain controlled cyclic triaxial tests were performed on most of the samples to evaluate their dynamic properties. The test parameters included the following: axial strain ranging from 2)c10'3% to 43(10-2%, confining pressures from zero to 1.378 MPa, frequency of 0.05 to 5.0 cps, and temperatures from -l°C to -10°C. In addition to these variables, samples of different ice saturation and salt content were tested to estimate the influence of these factors. Some stress controlled tests ‘were also performed to investigate the creep behavior of frozen Ottawa sand samples under dynamic loading conditions. John Chien-Chung Li Test equipment included (1) an MTS electrohydraulic closed-loop testing system which applies the load to the sample, (2) a triaxial cell completely immersed in a low temperature coolant for temperature control, (3) a refrig- eration unit for control of the coolant temperature and constant coolant circulation, and (4) measuring devices including an LVDT and a load cell together with recording devices such as a digital multimeter, an oscilloscope, a strip-chart recorder, and a mini-computer. Test results indicated that the dynamic Young's modulus increases with increasing frequency, confining pressure, and sand content but decreases with increasing strain and temperature. The damping ratio decreases with increasing frequency, sand content, and lower tempera- tures. The influence of confining pressures and axial strain on the damping ratio are less explicit for the ranges of test parameters considered. The reduced ice saturation and increased salt content made the sample softer and Young's modulus lower. Dynamic creep test results indicate that an increase in the stress level and/or a reduction in the degree of ice saturation both increased the susceptibility to creep failure. A com- parison between this study and test results from other investigators shows a greater probability of creep failure under dynamic loading conditions. DEDICATION to my beloved parents ii ACKNOWLEDGMENTS The writer wishes to express his appreciation to his major professor, Dr. 0. B. Andersland, Professor of Civil Engineering, for his guidance, assistance and numer- ous helpful suggestions during the preparation of this dissertation. Thanks also to the members of the writer's doctoral committee: Dr. Gilbert Y. Baladi, Assistant Professor of Civil Engineering; Dr. William C. Taylor, Chairman and Professor of Civil Engineering; Dr. William A. Bradley, Professor of Civil Engineering; and to Dr. Gary L. Cloud, Associate Professor of Metallurgy, Mechanics, and Material Science. The writer also owes his apprecia- tion to his former major professor, Dr. Ted S. Vinson, Associate Professor of Civil Engineering, Oregon State University, for his guidance during the initial stage of this research. The writer also wishes to express his gratitude to his wife, Ling, for her patience, encourage- ment and assistance during the past several years. Thanks are also due to the National Science Founda- tion, the Division of Engineering Research, and the Depart- ment of Civil and Sanitary Engineering for their financial assistance which made this research possible. iii TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS Chapters 1. INTRODUCTION 2. LITERATURE REVIEW 2.1 .Mechanical Preperties of Frozen 2.2 2.3 2.4 Granular Soils . 2.1.1 Unfrozen Water Content 2.1.2 Creep Behavior 2.1.3 Shear Strength 2.1.4 Cohesion 2.1.5 Saline Content Fundamentals of Cyclic Stress and Strain 2.2.1 Cyclic Loading 2.2.2 Hysteresis Loop 2.2.3 Energy Consideration 2.2.4 Cyclic Triaxial Test Dynamic Properties of Unfrozen Soils 2. 3.1 Hardin and Drnevich' 8 Study 2.3.2 Seed and Idriss' Study Dynamic Properties of Frozen Soils . 2.4.1 Dynamic Elastic Properties of Frozen Soils 2.4.2 Damping Property of Frozen Soils AND DATA REDUCTION MATERIALS, SAMPLE PREPARATION, TEST PARAMETERS, 3.1 Materials Studied. 3. 2 Sample Preparation . 3.2.1 Low Mineral Content Samples 3. 2. 2 High Mineral Content Samples 3.2.3 Under-Saturated Samples 3.2.4 Saline Samples iv Page vii viii XV 14 18 21 37 37 38 Page Sample Installation in Triaxial Cell . . 41 Test Parameters . , , 42 3.4.1 Magnitude of Test Parameters 3. 4. 2 Application Sequence of Test Parameters 3.5 Dynamic Creep Test . . . . . . 45 3y6 Data Reduction and Processing . . . . 45 um J-‘UJ SAMPLE DATA AND EXPERIMENTAL RESULTS . . . 55 4.1 Sample Data . . . . . 56 4.2 Stress- Strain Behavior and Test Parameter Effects . . . . . . 56 Axial Strain Effect Confining Strain Effect Temperature Effect Frequency Effect Mineral Content Effect Ice Saturation Effect Saline Content Effect y Absorbing Behavior and Test eter Effects . . . . . . 61 Axial Strain Effect Confining Pressure Effect Temperature Effect Frequency Effect Mineral Content Effect Ice Saturation Effect Saline Content Effect 4.4 Creep Behavior of Frozen Sand Samples Under Cyclic Loading Conditions . . . 65 4.3 00 NO‘U-L‘WNH 935‘ mâ€....... B b-bbkb-P-F’Ut’ibbbF-bF-P wwwwwwwfl (D NNNNNNN \lO‘U‘I-L‘WNH DISCUSSION . . . . . . . . . . . . 130 .1 Mineral Volume Fraction and Dynamic Behavior of Granular Soils . . . 130 Ice Saturation and Dynamic Behavior of Frozen Sand . . . 132 Saline Content and Dynamic Behavior of Frozen Sand . . . . . . 133 Tension Failure and. Effects on Experimental Results . . . 135 Application Sequence of Test Parameters and EffEct on Experimental Results . . 136 Comparison of Experimental Results with Previous Data . . . 137 Dynamic Creep Behavior of Frozen Sand . 141 MUIU'IU'IUIU'lU! “0“!!wa 6. SUMMARY AND CONCLUSIONS REFERENCES APPENDICES A. Test Equipment and Recording Devices B. Dynamic Young's Modulus for Frozen Sand Samples C. Damping Ratio for Frozen Sand Samples D. Dynamic Young's Modulus for Frozen Gravel Samples E. Damping Ratio for Frozen Gravel Samples F. Data for Under-Saturated Frozen Sand Samples G. Data for Saline Frozen Sand Samples vi Page 164 170 177 178 193 221 249 277 305 312 Table 3. NHO‘U’l-L‘UDNH 1 LIST OF TABLES Mineral Content for Frozen Sand and Frozen Gravel Samples Application Sequence of Test Parameters for Frozen Granular Soils Frozen Sand Samples Under-Saturated Frozen Sand Samples Saline Frozen Sand Samples Frozen Sand Samples Used in the Creep Tests Frozen Gravel Samples Experimental Data of Creep Tests Testing Sequence for 81-102 Through SI-106 Values of Pseudo-Instantaneous Strains and Creep Strain Rates Comparison of Creep Strength Under Static and Dynamic Testing Conditions vii Page 53 54 66 67 68 69 70 123 158 159 162 Figure 2.1 LIST OF FIGURES Constant-stress creep test (after Andersland, et a1., 1978) Frozen frictional soils (after Ladanyi, 1972) . (a) Straight- -line approximation of the failure envelopes (b) Dependence of creep strength on confining pressure Volume concentration of Ottawa sand and peak strength (after Goughnour, and Andersland, 1968) . . . . Volume of water freezing out as a function of temperature (after Yong, et. a1., 1978) Cyclic stress-strain plot of elastic be- havior (after Sandor, 1972) Development of the hysteresis loop (after Sandor, 1972) . . . . . Hysteresis loops obtained in cyclic triaxial tests on frozen soils . . . . . Stress condition during a cyclic triaxial test . . Shear moduli of sands at relative density of about 75% (after Seed and Idriss, 1970) . Damping ratio for sands (after Seed and Idriss, 1970) Effect of void ratio on complex shear modulus (after Stevens, 1973) . Effect of ice saturation on complex shear modulus (after Stevens, 1973) Effect of temperature on complex moduli, E* or G*; frequengy = 1 KHz, dynamic stress = 0.7 KN/m . . . . . viii Page 25 26 27 28 29 29 29 30 31 32 33 33 34 Figure Page 2.12 Effect of frequency on complex shear modulus (after Stevens, 1973) . . . . . 35 2.13 Effect of dynamic stress on complex shear modulus (after Stevens, 1973) . . . 35 2.14 Effect of temperature of damping property (after Stevens, 1973) . . . . . . . 36 2.15 Effect of frequency on damping property (after Stevens, 1973) . . . 36 3.1 Teflon molds and a set of base and cap units . . . . . . . . . . . . . 49 3.2 Samples being frozen in a freezer box . . . 50 3.3 A fresh sample just extruded from mold . . 50 3.4 A typical strip chart record . . . . . . 51 3.5 Computation of damping ratio . . . . . . 52 4.1 Dynamic Young's modulus vs. confining pres- sure for frozen sand samples of 20% sand content . . . . . . . . . . . . 7]. 4.2 Dynamic Young's modulus vs. confining pres- sure for frozen sand samples of 45% sand content . . . . . . . . . . . . 72 4.3 Dynamic Young's modulus vs. confining pres- sure for frozen sand samples of 65% sand content . . . . . . . . . . . . 73 4.4 Dynamic Yount's modulus vs. confining pres- sure for frozen gravel samples of 24% gravel content . . . . . . . . . . 74 4.5 Dynamic young's modulus vs. confining pres— sure for frozen gravel samples of 42% gravel content . . . . . . . . . 75 4.6 Dynamic Young's modulus vs. confining pres- sure for frozen gravel samples of 59% gravel content . . . . . . . . . 76 ix Figure 4.7 4119 4.20 Dynamic Young's modulus vs. temperature for frozen sand samples of 20% sand content . . Dynamic Young's modulus vs. temperature for frozen sand samples of 45% sand content . . . . . Dynamic Young's modulus vs. temperature for frozen sand samples of 65% sand content . . . . . Dynamic Young's modulus vs. temperature for frozen gravel samples of 24% gravel content . . . . . . . . . Dynamic Young's modulus vs. temperature for frozen gravel samples of 42% gravel con- tent . . . . . . . . . . Dynamic Young's modulus vs. temperature for frozen gravel samples of 59% gravel con- tent . . . . . . . . . . Dynamic Young's modulus vs. frequency for frozen sand samples of 20% sand content . Dynamic Young's modulus vs. frequency for frozen sand samples of 45% sand content - Dynamic Young's modulus vs. frequency for frozen sand samples of 65% sand content . Dynamic Young's modulus vs. frequency for frozen gravel samples of 24% gravel content . . . . Dynamic Young's modulus vs. frequency for frozen gravel samples of 42% gravel content . . . . Dynamic Young's modulus vs. frequency for frozen gravel samples of 59% gravel content . . . . . Dynamic Young's modulus vs. sand content of frozen sand samples at 0.345 MPa confining pressure Dynamic young's modulus vs. sand content for frozen sand samples at 0.3 cps frequency X Page 77 78 79 80 81 82 83 84 85 86 87 88 89 90 Figure Page 4.21 Dynamic Young's modulus vs. gravel content for frozen gravel samples at 0. 345 MPa confining pressure . . . . 91 4.22 Dynamic Young's modulus vs. gravel content for frozen gravel samples at 0. 3 cps frequency . . . . . . . . . . . 92 4.23 Influence of degree of ice saturation on dynamic Young s modulus for frozen Ottawa sand at 0.345 MPa confining pressure . . 93 4.24 Influence of degree of ice saturation on dynamic Young s modulus for frozen Ottawa sand at 0.3 cps frequency . . . . . . 94 4.25 Influence of salt content on dynamic Young's modulus for frozen Ottawa sand at 0. 345 MPa confining pressure . . . - 95 4.26 Influence of salt content on dynamic Young's modulus for frozen Ottawa sand at 0. 3 cps frequency . . . . . . . . . . . 96 4.27 Damping ratio vs. confining pressure for frozen sand samples of 20% sand content . 97 4.28 Damping ratio vs. confining pressure for frozen sand samples of 45% sand content . 98 4.29 Damping ratio vs. confining pressure for frozen sand samples of 65% sand content , 99 4.30 Damping ratio vs. confining pressure for frozen gravel samples of 24% gravel content 100 4.31 Damping ratio vs. confining pressure for frozen gravel samples of 42% gravel content 101 4.32 Damping ratio vs. confining pressure for frozen gravel samples of 59% gravel content 102 4.33 Damping ratio vs. temperature for frozen sand samples of 20% sand content . . . 103 4.34 Damping ratio vs. temperature for frozen sand samples of 45% sand content . . . 104 4.35 Damping ratio vs. temperature for frozen sand samples of 65% sand content . . . 105 xi Figure Page 4.36 Damping ratio vs. temperature for frozen gravel samples of 24% gravel content . . . 106 4.37 Damping ratio vs. temperature for frozen gravel samples of 42% gravel cOntent . . . 107 4.38 Damping ratio vs. temperature for frozen gravel samples of 59% gravel content . . . 108 4.39 Damping ratio vs. frequency for frozen sand samples of 20% sand content . . . . . . 109 4.40 Damping ratio vs. frequency for frozen sand samples of 45% sand content . . . . . . 110 4.41 Damping ratio vs. frequency for frozen sand samples of 65% sand content . . . . . . 111 4.42 Damping ratio vs. frequency for frozen gravel samples of 24% gravel content . . . . . 112 4.43 Damping ratio vs. frequency for frozen gravel samples of 42% gravel content . . . . . 113 4.44 Damping ratio vs. frequency for frozen gravel samples of 59% gravel content . . . . . 114 4.45 Damping ratio vs. sand content for frozen sand samples at 0.345 MPa confining pressure . . 115 4.46 Damping ratio vs. sand content for frozen sand samples at 0.3 cps frequency . . . . . 116 4.47 Damping ratio vs. gravel content for frozen gravel samples at 0.345 MPa confining pres- sure . . . . . . . . . . . . . 117 4.48 Damping ratio vs. gravel content for frozen gravel samples at 0.3 cps frequency . . . 118 4.49 Influence of degree of ice saturation on damping ratio for frozen Ottawa sand at 0.3 cps frequency . . . . . . . . . 119 4.50 Influence of degree of ice saturation on damping ratio for frozen Ottawa sand at 0.345 MPa confining pressure . . . . . . . . 120 4.51 Influence of salt content on damping ratio for frozen Ottawa sand at 0-3 cps frequency . 121 xii Figure Page 4.52 Influence of salt content of damping ratio of frozen Ottawa sand at 0.345 MPa . confining pressure . . . . . . . . . 122 4.53 Dynamic creep curve of samples CSI-9 and CST-4 126 4.54 Dynamic creep curve of samples CSI-2, CSI-5, and CSI—7 . . . . . . . . . . . . 127 4.55 Dynamic creep curve of samples CSI-6 and CSI-3 128 4.56 Number of cycles needed for frozen sand samples to deform from 0.15% strain to 0. 50% strain in a dynamic creep test - - . - 129 5.1 Comparison of test results saturated and par~ tially saturated frozen sand samples . . . 147 5.2 Influence of degree of ice saturation on dyna- mic Young's modulus at -4°C expressed in terms of corresponding temperatures . . . 148 5.3 Comparison of salt content effect and % volume of water frozen at -10°C on the dynamic Young's modulus . . . . . . . . . . 149 5.4 Comparison of test results for fresh water and saline frozen sand samples . . . . . . 150 5.5 Influence of saline content to dynamic Young's ‘modulus at -10°C expressed in terms of cor- responding temperature . . . . . . . 151 5.6 ‘Bent hysteresis loops . . . . . . . 152 (a) An oscilloscope picture (b) Definition of terms 5.7 Influence of test frequency on D and Ed for frozen sand samples tested at -4°C 153 5.8 Influence of test sequence on D and Ed for frozen sand samples tested at -1°C 154 5.9 Dynamic properties of several frozen soils (a) Longitudinal velocity vs. temperature (b) Damping ratio vs. temperature . , , , 155 5.10 Dynamic properties of several frozen soils at °C 156 (a) Longitudinal wave velocity vs. loading. frequency xiii Figure Page (b) Damping ratio vs. loading frequency 5.11 Dynamic Young's modulus and damping ratio of frozen soil vs. confining pressure , , , 157 5.12 Log-log plot of 5(1) and é(c) vs. applied stress (ice saturation = 92%) 160 5.13 Log-log plot of 8(1) and é(c) vs. applied stress (ice saturation = 40%) . . 161 5.14 Comparison of creep strength under static and dynamic testing conditions . , , , , 163 A.1 Cyclic triaxial test system . . . . . . 186 A.2 Triaxial cell inside the cold bath . . . . 187 A.3 Schematic of anti-tilt device . . . . . . 188 A.4 Sample with anti-tilt device installed . . . 188 A.5 Hydraulic pump . . . . . . . . . . . 189 A.6 Actuator and cold bath . . . . . . . . 189 A.7 Storage oscilloscope and MTS controller , . 190 A.8 Electrohydraulic closed-loop test system , , 190 A.9 Schematic of cold bath . . . . . . . . 191 A.10 Refrigeration and circulation unit . . . . 191 A.1l Strip-chart recorder . . . . . . . . . 192 A.12 Mini-computer system . . . . . . . . . 192 xiv LIST OF SYMBOLS area of a hysteresis loop area of the work capacity triangle cohesion intercept effective cohesion damping ratio maximum damping ratio average diameter of soil particles dynamic Young's modulus void ratio frequency shear modulus maximum shear modulus acceleration of gravity the total ion content of ion 1 in the soils c cot ¢ damping parameter coefficient of lateral stress at rest dynamic strength parameter creep parameter molar latent heat of fusion equivalent of the ion "1" XV PIC/30350 ('1'0 molecular weight of solvent number of loading cycles _ 1 + sin¢ flow value - m creep parameter number of moles of discrete particles per equivalent gas constant specific surface area, m2/g degree of saturation temperature, °C freezing point of pure solution time loading duration to failure longitudinal wave velocity unfrozen water content unit weight of a material, kN/m3 shear strain phase lag angle engineering strain proof strain for creep equation 'maximum strain peak strain strain rate creep strain rate xvi ('7). strain rate parameter for creep equation negative temperature, °C freezing point depression shift, °C density of a material, kg/m3 density of soil particles, kg/m3 uniaxial normal stress proof stress for creep equation deviator stress creep failure stress peak stress principal normal stresses effective mean principal stresses effective principal normal stress effective principal normal stresses shear strength maximum.shear strength angle of internal friction effective angle of internal friction angular frequency xvii CHAPTER 1. INTRODUCTION In recent years, the discovery and exploitation of natural resources in the cold regions north of the 60th parallel has called attention to places like Alaska, northern Canada, Siberia, etc. Many large engineering projects have been completed and more are planned in these areas. Thus, knowledge of the mechanical properties of frozen ground has become essential for engineering purposes. In addition, some of these cold regions are located in the world's most active seismic zones. This makes an understanding of the ground surface motions, caused by earthquakes, important for design of massive and expensive structures in these areas. It is now generally accepted that ground surface motions, which occur during an earthquake, are influenced to a large extent by the dynamic properties of the under- lying soil deposit (Idriss and Seed, 1968; Seed and Idriss, 1969). The soil properties used in analytical techniques presently available for prediction of ground surface motions (Streeter, wylie and Richart, 1974; Schnabel, Lysmer and Seed, 1972) include the dynamic shear modulus and damping ratio. The dynamic shear modulus represents an elastic property and the damping ratio reflects the energy absorbing property of the soil. These dynamic properties of frozen soils have been evaluated with various vibratory test devices at very low strains, up to 10-3%, and relatively high frequencies by several inves- tigators (Kaplar, 1969; Nakano et a1., 1972; Nakano and Arnold, 1973; Stevens, 1973 and 1975). A review of their research will be provided in Chapter 2. However, at greater strains and lower frequencies, those associated ‘with moderate to strong earthquake motions, experimental data has not been available because vibratory testing techniques were not feasible. Several previous investigations of dynamic properties of unfrozen soils (SW-AJA, 1972) have suggested the use of three kinds of cyclic load tests to simulate the greater strain amplitude and lower frequency ranges chacteristics of seismic loading conditions. These testing techniques included (1) the cyclic triaxial test (Seed and Lee, 1969; Schroeder and Schuster, 1968); (2) the cyclic simple shear test (Peacock and Seed, 1968; Converse, 1961; Thiers and Seed, 1968; Sowers, 1963); and (3) the cyclic torsional shear test (Hardin and Drnevich, 1972a). Each of the above tests were discussed briefly by SW-AJA (1972) and in detail by several other references. The cyclic triaxial test was chosen for this research project for the following reasons: (1) equipment availability from an earlier project; (2) easy sample preparation; (3) convenient and more accurate tempera- ture control; and (4) more information available about the testing devices and techniques. The cyclic triaxial test is a repeated loading test which can be used to determine the dynamic Young's modulus and damping ratio of the soil specimen tested. A review of this test will be presented in Chapter 2 and the project equipment will be described in Appendix A. Once the dynamic Young's modulus and damping ratio are determined, they can be converted into other dynamic elastic properties and energy absorbing properties with the help of conversion equations compiled by Vinson (1978). These conversions require representative values of Poisson's ratio which for the one-size ice saturated Ottawa sand, falls in the range of 0.24 to 0.38 with an average value close to 0.30 (Stevens, 1975). As part of a larger study of the dynamic proper- ties of frozen soils under simulated earthquake loading conditions, work on artificially frozen clays, silts and ice has been completed by Chaichanavong (1976) and Czaj- kowski (1977)- The current effort covers the evaluation of the dynamic properties of frozen granular materials under cyclic triaxial loading conditions. The granular materials tested in this study included a one-sized Ottawa sand and a uniform pea-gravel. A detailed description of these materials is presented in Chapter 3. Parameters which may influence the dynamic proper- ties of frozen granular soils included axial strain, loading frequency, temperature, confining pressure, saline content, degree of ice saturation, and mineral volume fraction. The experimental data are presented in Chapter 4 and the discussion of the influence these parameters have on the dynamic properties is given in Chapter 5. Also, the problem of creep behavior under cyclic loads was considered in the later part of this research. A preliminary study was launched and the test results and a discussion have been included in Chapter 4 and Chapter 5, respectively. CHAPTER 2. LITERATURE REVIEW This chapter reviews mechanical properties of frozen granular soils, fundamentals of the cyclic triaxial test, earlier studies on the dynamic properties of unfrozen soils, and previous investigations on the dynamic properties of frozen soils based on vibratory testing techniques. This background information provides a frame- work for presenting the current study on the dynamic prop- erties of frozen granular soils under cyclic triaxial loading conditions. 2.1. Mechanical Properties of Frozen Granular Soils 2.1.1. Unfrozen Water Content Frozen soils can be considered as a multi-phased system composed of soil particles, polycrystalline ice, unfrozen water, and entrapped vapor and/or air. Unfrozen water content (wt), the major factor affecting the mechan- ical properties of frozen fine-grained soils is believed to be a function of the specific surface area of the soil. Anderson et a1. (1973) introduced an expression corre- lating unfrozen water content to specific surface area: 1nwï¬ = 0.2618 + 0.55191nS - 1.4493'0-2541ne (2.1) 5 where wt = unfrozen water content (gH20/g soil) S = specific surface area (m2/g soil) _ 6 a") s s 6 = negative temperature (°C) = 273 - T(°K) and d8 = average soil particle diameter (m) 08 = density of soil particles (gm/m3) Thus, for frozen granular soils, unfrozen water content would be negligible due to its relatively larger particle size and smaller specific surface area. Scott (1969) made this conclusion in an earlier study. 2.1.2. Creep Behavior Creep is the time-dependent deformation of materials which occurs under constant stress and temper- ature. It is believed that the pressure developed between soil particles and between soil particles and ice in the vicinity of contact points causes melting of the ice. Differences in water surface tensions move the unfrozen water to regions of lower stress,where it refreezes. The process of ice melting and water migration is accompanied by a breakdown of structural bonds, by displacement of particles, and by deformation of pore ice. At the same tflme, there is a regrouping of particles, a recrystalli- zation of the pore ice, and re-establishment of bonds. As the process continues, it leads to a time dependent deformation (creep) of frozen soils. A typical creep curve for frozen soil and the strain rates corresponding to each point on the curve are shown in Figures 2.1a and 2.1b. Three stages of creep are usually observed in the creep process. The creep rate decreases in the first stage, remains constant in the second stage and increases in the third stage. These three stages are commonly designated as primary, secondary, and tertiary creep. For relatively low loads, the second and the third stages may not develop. Once creep enters the second stage, a creep failure will occur for sure. Creep failure is usually defined as the point where creep rates increase or at the beginning of tertiary creep. The stress at the point of creep failure is usually defined as the creep strength or long-term strength of the frozen soil. For secondary creep, the strength after a long time interval at a constant temperature can be expressed as of = o (. ) (2.2) where of = creep failure stress, 0c = proof stress, cf = creep failure strain, E = arbitrarily selected creep rate, tf = time to failure, n = exponent in the creep equation. The stress-strain-time relationship of creep behavior can be expressed as e = %+ ekooflgk + $531)“ (2.3) c where s = total strain, 0 = uniaxial normal stress, E = Young's modulus, 8k = arbitrary small strain, 0k = proof stress in the stress-strain equation and other notations are as previously defined. For a detailed discussion of these power relationships, refer to Ladanyi (1972) and Andersland, et a1. (1978). 2.1.3. Shear Strength Shear strength of soil has been traditionally defined by the Mohr-Coulomb failure theory as the sum of a cohesion component and a frictional component. The Mohr- Coulomb theory has also been applied to define the shear strength of frozen soils (Vyalov, 1959). A straight line approximation of the Coulomb-Mohr envelopes has been intro- duced by Ladanyi (1972) for the expected range of normal pressures. Such an approximation is shown in Figure 2.2a, within which the shear strength is defined by: T = c(t,6) + otan¢ (2.4) or T = [H(t,e)+o]tan¢ (2.5) where H(t,0) = c(t,6)cot¢ (2.6) t = load duration to failure, 9 = negative temperature (°C) = 273 — T(°k), c = cohesion intercept, o = normal stress, ¢ = angle of internal friction, and C(t,9) = W (2.7) The flow value, N¢, is defined by _ 1 + sin N¢ - 1———:—-"'1_ 31nd) (2.8) and Ofu is the creep failure stress for uniaxial compression conditions. Alternatively, in terms of principal stresses, the stress difference at failure 10 (c1 - o3)f = ofu(t,0) + 03(N¢ — l) (2.9) For practical interest, the angle of internal friction depends little on time and temperature and the effects appear to be primarily concentrated in the value of ofu' A set of Mohr-Coulomb envelopes corresponding to Equation 2.2 for a constant temperature and different times to failure are shown in Figure 2.2a. Alternatively, a set of creep strength curves based on Equation 2.9 for constant temperature and different confining pressures are shown in Figure 2.2b. It is interesting to note that for an infinitely slow creep rate, a finite value for a purely frictional threshold strength agrees well with experimental values of unfrozen granular soils. The deviator stress at failure increases with an increase in confining pressure. This behavior is related to the higher fric- tional and dilatancy effects at higher confining pressures for the granular soils. Goughnour and Andersland (1968) showed that a bilinear relationship exists between sand volume concen- tration and peak strength as shown in Figure 2.3. Pure ice samples have no long-term strength; i.e. they flow under very small loads. The addition of dispersed sand particles in the sand-ice structure increases the strength of the sample. The strength increase is proportional to 11 the volume concentration of sand in the sample. When a critical concentration of sand, about 42%, is reached a rapid increase in shear strength was observed. It is believed that at this point, sand particles begin to contact each other, and friction and dilatancy starts to contri- bute to the strength of the frozen sample. Thus, the strength of frozen granular soils can be concluded as a function of temperature, strain rate, mineral concentration, confining pressure, and the shape or angularity of soil particles. 2.1.4. Cohesion Dry sand has no unconfined shear strength. When wet sand is subjected to subfreezing temperature and frozen, a substantial increase in unconfined strength will be observed. The increase in strength due to the cementing action of the ice matrix is called cohesion. In general, cohesion in frozen soils may result from three causes (Vyalov, 1962): (1) Intermolecular cohesion due to attrac- tion between particles, i.e., electro- static and electromagnetic attractions. (2) Structural cohesion resulting from geo- logical origin of soil or that devel- oped during the weathering process of soil, e.g., geological texture, chemical bonding, chemical cementation, etc. 12 (3) Cohesion due to cementing action of the ice matrix (ice cementation). For frozen granular soils, it is reasonable to assume that the first two are negligible due to the rela- tively large particle sizes. Therefore only the cohesion due to ice cementation is important for frozen granular soils. 2.1.5. Saline Content The salinity found in some natural polar soils CTedrow, 1966; Brown, 1969) introduces the need for an understanding of the effect of salt content on frozen soil behavior. Yong, et a1. (1973) proposed use of the theory of pure solutions to describe the properties of pore water containing salts. The presence of sodium chloride in a freezing solution reduces the temperature at which freezing is initiated, but not all of the water will freeze at that temperature. Exclusion of the dissolved solute by the growing ice crystal increases the concentration in the surrounding water, thus freezing will not continue unless the temperature is further reduced. Banin and Anderson (1974), using the same theory, developed expressions for a freezing point depression shift 6' applicable to many dissolved species. Their expressions for 9' include: l3 (1) for a wide range of ion concentrations RT 2 u _ O b 9 ‘ ' 1.f lnl(1000 emu +1.3] (2'8) and (2) for dilute solutions only 6 = 1000 a e/wu - ae/wu (2.9) — freezing point depression shift (°K), unfrozen water content (gm per gm), 2 RTo /Lf-b, gas constant (cal. per deg. mole), freezing point of pure solvent (°K), molar latent heat of fusion (cal. per mole), 6 10 lene’ molecular weight of the solvent, number of moles of descrete particles per equivalent, n igfgi/Mi) . the total ion content of â€1" ion in the solids (mg per gram) . the equivalent weight of the ion "i" (mg per milliequivalent), and 1000a'. 14 The relationship between volume of water freezing out as a percentage of the total volume of solution and temperature for various concentrations of salinity is summarized in Figure 2.4. Since the theory of pure solutions was employed to develop the expressions, the effect of the diffuse double layer on the soil particle surface has been neglected. This is more acceptable for frozen granular soils, due to their relatively large particle sizes and low specific surface area. 2.2. Fundamentals of Cyclic StreSs and Strain 2.2.1. Cyclic Loading Cyclic loading means periodic and uniformly repeated loading conditions. Sinusoidal, triangular or square functions are normally used to control the appli- cation of either force, stress, displacement or strain. The control of one of the above variables is repeated in such a way that the peaks are constant from cycle to cycle. Variables other than the controlled one are allowed to vary according to the character of the material being tested. Stress control and strain control are com- monly referred to in publications, but force control or displacement control is easier to apply in practical tests . 15 2.2.2. Hysteresis Loop The cyclically changing stress and strain (or force and displacement) at every instant of time may be plotted on stress versus strain coordinates. Figure 2.5a shows such a plot of an idealized linearly elastic material. However, a â€hysteresis" loop, shown in Figure 2.5b, is more likely to be observed due to the phase lag between stress and strain caused by the inherent plastic behavior of commonly tested materials. For frozen and unfrozen soils tested under cyclic triaxial loading conditions, which means greater strain and lower frequency, sharp tips may disappear and blunted loops may appear (Figure 2.5c). These loops are usually obtained when the cycling is slow, the temperature is close to the melting point of the material, or the stress amplitude is high enough to cause creep. In this case, the material has time to relax the peak stress toward zero stress before the load reversal occurs. Immediately after the reversal, the stress is still high enough to cause a little further relaxation, which distorts the unloading path. The total plastic strain per cycle has to include creep strains, since relaxation in the high-stress region increases the loop width (Sandor, 1972). 16 2.2.3. Energy Consideration Assume that the hysteresis loops shown in Figure 2.5c are obtained in a test with a loading frequency f = w/2n where w is the angular frequency and 6 is the phase lag angle between stress and strain. The work done, or reciprocally, the energy dissipated is given by the integral of o(t)de over the stress cycle, that is AB = [Zn/m 0 cos wt-e w sin(mt - 6)dt o o 0 Integration gives AE = we 0 sin6 o o where so is the peak strain and Go is the peak stress. Usually, the phase lag angle 6 is small, hence - sin 6 2 tan 6 2 6, so that the energy dissipation is proportional to 6 (Kennedy, 1962). 2.2.4. Cyclic Triaxial Test Strain controlled cyclic triaxial testing is the most popular and widely used testing technique to evaluate dynamic stress-strain characteristics of soils (Silver and Park, 1975). In this test, longitudinal compression and extension stresses are applied to a solid cylindrical- shaped sample (Figure 2.6a), in addition to the all-around 17 confining pressure. The resulting stress-strain character- istics are measured directly. The major principle stress direction rotates 90° in each stress cycle. Mohr's stress circle representation, shown in Figure 2.6b, may not exactly represent the field case. In the field, the major principal stress is normally perpendicular to ground surface but rotates through a small angle as cyclic shear stresses (under earthquake loads) are applied to the soil. Before the deviator stress is applied, the isotropic confining pressure differs from the actual anisotropical situation in the field. Still another condition which prevents correct field simulation, is the fact that the laboratory triaxial specimen undergoes some deformation in each of the three principal stress directions. Presumably, the soils in the field under earthquake motions are deformed primarily in simple shear, or unidirectionally. Although this test has a number of shortcomings, it does have the advantage of being adaptable to the prepar— ation and testing with ease of all types of disturbed and undisturbed soils. Also, precise control over strains and stresses and the ready availability and familiarity of numerous laboratories with the equipment are strong advantages for this test. 18 2.3. Dynamic Properties of Unfrozen Soils 2.3.1. Hardin and Drnevich's Study A comprehensive study of the factors affecting the shear moduli and damping ratios of unfrozen soils was undertaken by Hardin and Drnevich (1972, a and b). They concluded that the primary factors affecting moduli and damping ratios included: strain amplitude, 7; effective mean principal stress, o'm = l/3(o'1 + 0'2 + 0'3); void ratio, e; number of loading cycles, N; and . degree of saturation (for cohesive soils), S. Less important factors included: octahedral shear stress; overconsolidation ratio, OCR; effective stress strength parameters, c and ¢'; and time effects. They presented relationships for computing the maximum shear modulus (at essentially zero strain) and the variation of modulus values with strain for all soils. The expres- sion for evaluating the maximum shear modulus for angular sand particles is, 2 cm1x = 14750 (2%? g e) (o'm)1/2 (2.10) 19 r whe e Gmax e is the void ratio, and o'm is the mean principal effective stress in psf is the maximum shear modulus in psf, The modulus value, G, at a strain level, y, is then evaluated as: Gmax her w e max max 11+ K6 2 1 - K6 2 1/2 Tmax = {(——2-——)o'vsin¢' + c'coso') - (_—2_—_)O'v) } , Ko = the coefficient of lateral stress at rest, o'v = vertical effective stress, and c', ¢' = static strength parameters in terms of effec- tive stress. Similar relationships were also presented for evaluating the damping ratio, D, at a strain level, y, thus D ax'Y/Y = m r D 1 + Yer (2.12) where Dmax is the maximum damping ratio corresponding to very large strains. For clean sand, D ‘max (1n percent) 20 is evaluated by: Dmax = K - 1.510g10N (2.13) where K equals 33 for clean dry sand and 28 for saturated clean sand, and N equals the number of stress cycles. 2.3.2. Seed and Idriss' Study Seed and Idriss (1970) compiled results of previous studies from which they concluded that the shear moduli for sand is strongly influenced by confining pressure (expressed in terms of o'm), strain amplitude, y, void ratio e, and not so significantly influenced by variation in grain size characteristics. In general, the shear modulus for unfrozen sand can be expressed by the equation: 1/2 G = 1000-K2(o'm) (2.13) where K2 is a parameter introduced to reflect the influ- ence of the various factors other than o'm. A typical curve of K2 versus shear strain for sand is shown in Figure 2.7, and a relationship for damping ratio of sand to shear strain is shown in Figure 2.8. From design curves similar to these and Equation 2.13 one can estimate the dynamic properties of a given unfrozen sand with known strain and stress conditions. 21 2.4. Dynamic Propgrties of Frozen Soils The dynamic properties of frozen soils have been studied by Kaplar (1969) and Stevens (1973) with the resonent frequency method and Nakano and Froula (1973) with the ultrasonic method. Stevens (1973) provided a detailed discussion on the dynamic properties of frozen soils, which will be summaried in the following paragraphs with emphasis on frozen granular soils, the topic of the current research. 2.4.1. Dynamic Elastic Properties of Frozen Soils The parameters which may influence the dynamic elastic properties include stress and/or strain amplitudes, frequency of loading, temperature, void ratio or water content, and degree of ice saturation. Each parameter will be reviewed. Void Ratio Effect. The relationship between com- plex shear modulus and void ratio at a temperature of -9.4°C is summarized in Figure 2.9 for several frozen soils with ice saturation greater than 90%. The stiffness increases with decreasing void ratio and the modulus of all frozen soils is greater than or equal to that of ice (about 3.1 GN/mz). Granular soils generally have a higher modulus. Each soil has a tendency to reach a peak modulus 22 as the void ratio approaches the minimum for that soil. For finer soils the void ratio may increase beyond 1.0. When the volume of pore ice becomes larger than the volume of the soil solids, the modulus tends to approach that of ice. Ice Saturation Effect. The degree of saturation strongly affects the shear modulus as shown in Figure 2.10. However, there is a considerable difference in the rela- tionship depending on soil type. For frozen granular soils and ice saturation greater than 50% there is little effect of ice saturation on modulus. At lower values of ice saturation the modulus decreases significantly, approaching that for dry unfrozen soil with no ice satur- ation. Temperature Effect. The temperature effect on both Young's moduli and the shear moduli are summarized in Figure 2.11 for both frozen and unfrozen soils. The frozen soil moduli fall in the range of 100 to 2500 MN/mz, and that of unfrozen soils in the range of 2.2 to 22 MN/mz. Considering only the frozen soil, it is shown that the modulus increases with decreasing temperature but tends to level off at temperatures below -10°C. Temperature has a greater effect on fine-grained soils as compared to the 23 coarse-grained soils. The modulus for frozen Ottawa sand decreased only slightly in the range of -18°Ctx>-4°C. Frequency Effect. The effect of frequency, from 1 to 1000 kHz, on the shear modulus is shown in Figure 2.12. While the overall effect of frequency on stiffness is less significant in the range considered, it is still apparent that the shear modulus increases with increasing frequency. The rate of increase is greatest in the range of 1 to 5 kHz. This suggests that a significant decrease in shear modulus may result if a vibratory load were imposed at a much lower frequency. Dynamic Stress Effect. The decrease in complex modulus with increasing dynamic stress is small, at least up to a peak stress of 34.5 KN/mz, as shown in Figure 2.13. The effect of stress is greatest at warmer temperatures and lower frequencies. The shear modulus is almost indepen- dent of stress level to 34.5 KN/m2 at a temperature of -18°C. At about -4°C, a significant non-linearity with increasing stress starts at about 7.0 KN/m2 with the greatest rate of decrease at lower frequency loads. 2.4.2. Damping Property of Frozen Soils Stevens (1973) expressed the damping property as a tangent function of the stress-strain phase lag angle 6. 24 Effects of temperature and frequency on the values of tan 6 are summarized in the following paragraphs. Temperature Effect. The influence of temperature on tan 5 is shown in Figure 2.14. A definite trend is difficult to define due to the random data points. In general, the values of tan 6 do not change significantly for a given soil from the unfrozen state to frozen state as temperature decreases. Stevens suggested that the mechanism causing damping of a stress wave may be different for the two states and by chance, the tan 6 values are close. It is interesting to observe that tan 6 values of frozen Ottawa sand were slightly higher than that for the unfrozen state. Frequency Effect. The large effect of frequency on tan 6 is shown in Figure 2.15. The values of tan 6 decrease as frequency increases, and this effect is more significant for Ottawa sand than for the fine-grained silt. This obvious trend indicates that damping in frozen soil ‘may resemble a viscous or dashpot type behavior suggesting that the pore ice governs the damping of frozen soils. 25 ‘I ————————————————————— c I I I .‘c‘ ' .5. a I m l I a» --_4 ............. 4 I : I l : In to A l I 'r Timer I I I I «a I ‘ : : . g ' I : ’ g V \' ' l a l I l f I/ 0 I I II I III I, Tim: Figure 2.1 Constant-stress creep test (after Andersland, et a1., 1978) (a) typical creep curve (b) true strain rate vs. time 26 Nomalma ‘0' - 03," (b) Figure 2.2 Frozen frictional soils (after Ladanyi, 1972) (a) straight-line approximation of the failure envelopes (b) dependence of creep strength on confining pressure Peck axial stress. MN/m’ 27 *- 3, - 2.66 x 10" min" 7" '12.03°C l, - 1.33 x 10" min" 7" '12.03°C a/ ___ -—-D I'D-——-—"u n \ l, - 2.66 x 10" min" b T- '3.85°C 1 1 l 1 L L I I 0 10 20 30 40 50 60 70 Parent and by volume Figure 2.3 Volume concentration of Ottawa sand and peak strength (after Goughnour and Andersland, 1968) of the Total Volume of Solution Volume of water Freezing Out as a 8 § 90- 80.. 70- 60- 50- 40- 30 20 IO 28 Saline Content (by weight) 2% 3% 5% 7% Data points based on Eq. (2-8) -lo L ~13: ' -iF—'_='2'2 Temperature, T(°C) Figure 2.4 Volume of water freezing out as a function of temperature (after Yong, et al. 1978) 29 stress vs. lime Figure 2.5a Cyclic stress-strain plot of elastic behavior (after Sandor, 1972) A Figure 2.5b Development of the 6 hysteresis loop (after Sandor, 1972) //// Figure 2.5c Hysteresis loops obtained in cyclic triaxial tests on frozen soils 30 Extension “0 Compression 0'1 01 + at ‘ 1rnumnuu ' l m x “ —-c- \ .— 8 - G ‘ oz 03 I 03 ‘flfcb t 1'uusnmu u'I""'o 03 (b) c1 0 - deviator stress I shear stress (after Cho, gt g_l_ 1976) Figure 2.6 Stress condition during a cyclic triaxial test 31 '00 ' 1 G t’lOOO KID-"9'69“ 90_ El Weissmon and Hort ((960 .4 A Richart, Hall and Lysmer (I962) 0 Drnevich, Hall and Richorl 0966) 80 0 Seed 09680) A Silver and Seed (I969) — V Hardin ond Drnevich (I970) 70— 60 T“ K2 50", 40 30- 20 IO— 0 I0“ I0'3 0‘2 I0" I Shear SIroin-percenl Figure 2.7 Shear moduli of sands at relative density of about 75% (after Seed and Idriss, 1970) 32 Aommp .mmwcua use ummm cmummv mucmm toe owner newaEmo w.~ mcamwm .coucoeasocï¬. coogm 19.2.23...» uco 3.5.x AOhm: £03050 98 50.0... 8mm: 56:8 80m: 26m 6:0 .326 2.09.0? use 0255. 6:53.05. Lammmc tacoE pen :0: £2350 80m: :65... com: to: pen eoEmflo; _ QIQEIOCDD wanted - ouou bugdwoa ON VN mu 33 Growl Memo Honchoâ€. Honour 8m New sm sm ï¬â€”r I 1 I I I I I | I I I â€˜ï¬ m: "..‘% 4 7% Is nous - C 0 fl cl '2 '4 ° ° as ‘ ! :741i:\£naut . 3 cl 3 s -° “33—— 30: . (n s l s l sl 1 l l A l s ' 0.5 to so ‘ o s. Void Iotlo Figure 2.9 Effect of void ratio on complex shear modulus (after Stevens, 1973) Point Soils 4 Palm ‘ ( Fm. Sons a I Manchester sm l -3.! A 20°me Sons SI" 0 IOOO-IO I2] I ~64 'U'I'I 1 ' I'U‘I" T ' I'V'Vv] moms fl-“ . ID to {mucus-sun. sun-f Figure 2.10 Effect of ice saturation on complex shear modulus (after Stevens, 1973) 34 Design. on _ oeo e'zo-ao Ono-o Send 97.2 - 0.73 - 9|.4 0.73 96.9 - 0.63 - 99.4 0.95 E'mmm sm E'sooench Clay - 93.3 0.60 o'zo-so Oiionn Send G'flonchsslsr sm 6' Goodrich Clny nnnmqquqoqnans (D 0 I O U U '2 \ '1 Z I'- d 3 _ + 3 I. \ d :,dn ‘\* f E g . I ‘o I . T a .___e_ “ L . Id; 5%; t '-------C' J ——_E‘—.o‘ I- “—0" F r 4‘1 -"‘1ir‘=nr*=t-‘=t-“1s 4 6’ ï¬â€˜LIs . Wehmflc Figure 2.1] Effect of temperature on complex modulu, E* or 6*; frequency = 2 lkHz, dynamic stress = 0.7 kN/m (after Stevens, 1973) 35 1 ' I'I'I'] T ' I'I'I"_-T 'I'T‘I" 20-30 Ofloeo Send I «417 _ ' -.9«: I2 - r -I Honorer-Momhesier Sill 8 - 47.733 4' .. = W 4" e'cmmpnusnurauuuwe.ound' dynamic peak stress = 0.7kN/ 1 . 1.1.1.1 1 . 1-1-r-l 1 11-1-1-1 4 l «r K? Frequency. III-ls Figure 2.12 Effect of frequency on complex shear modulus (after Stevens, 1973) mam: --IOIII-Iz I T I F I ‘1‘1 ' I i â€0.53 J L lelelnj A I ‘ «f Dynornle Stress kN/m' o. -so one" Send. sorurored 6" Complex Sheer Modulus. cum! 5 'I‘I'l I ' I 'I'I" I..o‘.73I % A n -l7.7{.i_ __ ' , “ '9‘““""'~t:jb 9 Q“ Maegan—o. -e.4{ —.. ‘ a d b d {'0 ___aemmurmm* ,p-ae‘_g : ï¬â€˜_4 . I...‘;! l "1A.A.$ 1 er] 0:, Dynomlc Stress su/m' e. Iononeerer sm. mirrored Figure 2.13 Effect of dynamic stress on complex shear modulus - (after Stevens,1973) Figure 2.14 Ton I (Torsional) Ton IlLordludnel) Ton I (Torsionol) .0 IT 36 Desire, 3' A. 20-30 Olioeo Sond Dry 6 Honchesler SIII 95.8 c Goodrich Clay 98.4 0 20-30 Oilorro Sand 9L4 Frequency = 1 kHz Dynamic StEess ' = 0.7 kN/m O § ,0 O b 0.02 -5 Temperature °c do *‘§* Effect of temperature on damping property (after Stevens, l973) ’ —Ilonchesrer 3m -- 20-30 Otter-o Sons ï¬r. r dull Fromm, has '0' I n lLL‘ll Io' Figure 2.l5 Effect of frequency on damping property (after Stevens, 1973) CHAPTER 3. MATERIALS, SAMPLE PREPARATION, TEST PARAMETERS, AND DATA REDUCTION Materials studied, sample preparation, sample installation, testing procedures, and data reduction pro- cedure are described in this chapter. 3.1. 'Materials Studied Two materials, standard Ottawa sand and pea-gravel, were used on this project. Standard Ottawa sand, which is commercially available, was used in all frozen sand samples. The sand was composed of uniform sub-angular quartz particles with a specific gravity of 2.65. To insure a uniform gradation, only particles between the No. 20 (0.84 mm) and the No. 40 (0.42 mm) U.S. Standard Sieve sizes were used. This uniformity helped eliminate variables caused by particle composition and gradation. A series of tests was also run on frozen gravel samples. The material used was a commercially available pea-gravel, which passed the No. 4 (4.76 mm) and was retained on the No. 6 (3.36 mm) U.S. Standard Sieves. According to the Unified Soil Classification System (ASTM designation D-2487), this material falls in the category 37 38 of a very coarse gravelly sand with no fines and is poorly graded. The particles ranged from round to angular and consisted of mixed mineral composition with an average specific gravity of 2.74. For convenience, this material was labeled as â€gravel" instead of "very coarse gravelly sand" throughout this dissertation. 3.2. Sample Preparation Samples with three different mineral-ice composi- tions were tested for both the sand and the gravel materials. The mineral-ice combinations were expressed as sand or gravel content by volume. For the sand-ice materials, samples of 20%, 45%, and 65% sand (by volume) were tested. For gravel-ice materials, samples with 24%, 42% and 59% gravel (by volume) were tested. The calculated water contents for different mineral-ice composition are listed in Table 3.1. All test.samples were prepared by placing an alu- minum base unit, sand or gravel, water, and an aluminmm cap unit into a cylindrical Teflon mold and placement into a freezer box for at least 24 hours at a temperature of about -20°C. The samples, after extrusion from the mold, were ready for tests. Detailed sample preparation proce- dures are given in the following paragraphs. 39 3.2.1. Low Mineral Content Samples The preparation procedure for low mineral content samples (20% and 45% for sand, 24% and 42% for gravel) were as follows: (1) A hollow cylindrical Teflon mold (7.11 cm inner diameter), with the sample base inserted in one end, and a sample cap were placed in a large freezer box main— tained at -20°C for at least one hour. The Teflon molds, with a set of the cap and base units, are shown in Figure 3.1. Both the cap and base units have "coupling" devices, consisting of an a1uminum.p1ate and four Allen head screws, which permit tensile stresses to be applied to the sample. (2) Air dried Ottawa sand or pea-gravel, precooled to a temperature below 0°C, was mixed with loose, dry, clean snow, which had been screened through a No. 4 sieve. The amount of solids and dry snow to be mixed were con- trolled by weight to give the desired mineral-ice compo- sition. (3) The Teflon mold was filled to within 50 mm from the top with the mixture prepared in step (2) and then left in the freezer for another hour. (4) Precooled distilled water, close to 0°C, was poured into the mold from the top up to the surface of the mixture and the sample cap unit was inserted and hammered into contact with the solid-snow-water mixture. (5) The mold was placed in the freezer maintained at a temperature of -20°C for at least 24 hours (Figure 3.2). Next, the samples were extruded from the mold using a hydraulic jack. The prepared samples were classified as SP, Vs (Linnell and Kaplar, 1966). The samples contained inter- mittent layers of mineral particles and ice, yet, none of 40 the layers with a lower sand or gravel content had a thickness over 25 mm. An extruded sample is shown in Figure 3.3. 3.2.2. High Mineral Content Samples The 65% sand and 59% gravel content (by volume) samples were prepared in a somewhat different way from above. The procedure is as follows: (1) A hollow cylindrical Teflon mold, with sample base inserted and the sample cap were placed in a large freezer box maintained at -20°C for at least one hour. (2) Air dried Ottawa sand or pea-gravel was immersed into and saturated with distilled water. (3) The Teflon mold was filled with the solid- water mixture (from step (2)) to within 50 mm from the top. (4) The saturated solids in the mold were then compacted by vibration to obtain the desired maximum density, and the cap was inserted and hammered into contact ‘with the sand or gravel. Excessive water would drain through a small hole close to the top of the mold. (5) The mold was placed in the freezer, at a temperature of -20°C, for at least 24 hours. Samples prepared in this way were classified as SP, Nb. There were no visible ice lences in any direction. 41 3.2.3. Under-saturated Samples The preparation of partially saturated samples was basically the same as for high mineral content samples introduced in Section 3.2.2 except for step (2). The Ottawa sand was mixed thoroughly with a calculated amount of distilled water and then poured into the mold. Control of the exact water content was difficult due to some gravity flow of pore water to the bottom of the sample. After extrusion and inspection, samples with a poor distri— bution of water were discarded. 3.2.4. Saline Samples The preparation of saline samples was the same as high mineral content samples except that pure distilled ‘water was replaced by distilled water with a specific saline content. The saline water was prepared in the lab by mixing preweighed.amounts of sodium chloride into distilled water. Two different concentrations of sodium chloride solution were prepared, 1.5% and 3.0% by weight. The frozen saline samples showed a whiter and cloudier appearance in comparison with samples with no salt. 3.3 Sample Installation in Triaxial Cell The sample installation procedure is outlined below: 42 (1) The sample was extruded from the Teflon mold and then measured for length and weight. The quality of the sample was determined by the length and density. (2) The rubber membranes were applied to the surface of the sample and then rubber bands were used to secure the membranes to both the cap and base units of the sample. (3) The sample, with attached anti-tilt device (Figures A.3 and A.4), was mounted in the triaxial cell (Figure A. 2) . (4) The LVDT (Linear Voltage Differential Trans- former) was attached and then both LVDT and load cell were adjusted to their null point. (5) The thermistor bracket with two thermistors attached, was then clamped to the sample. (6) The top plate of the cell was closed and tightened. A steel ram, which transmits load action from the actuator to the sample, was then brought into position and connected to the sample. (7) The cell temperature usually rose about 1°C during sample installation. One additional hour was usually sufficient for the sample and the cold bath to return to the desired test temperature based on thermistor data. (8) The actuator was then moved into position and connected to the top of the steel ram using a split brass connector ring. The sample and equipment was now ready for testing. 3.4. Test Parameters The test parameters considered in this investiga- tion included temperature, strain amplitude, frequency 43 and confining pressure. The magnitude and application sequence of each parameter may influence not only the reliability of the data but also the amount of data which can be gathered from each sample before its failure. Ideally, more sample tests give a better statistical average, but the cost would be higher and the time needed would be much greater. In comparison, if only a small quantity of samples are tested, the cost may decrease and the time needed would be shorter but the overall accuracy of the data would be reduced. Thus, reasonable decisions on the magnitude and the application sequence of test parameters were necessary so as to provide as much accurate data as possible for the time available and a limited number of test samples. 3.4.1. Magnitude of Test Parameters The range and magnitude of test parameters chosen included most field conditions and loadings anticipated for frozen soil deposits subjected to strong motion earth- quakes (Vinson, 1975). They included the following: Temperature. A given sample was tested at only one temperature. Tests at three temperatures, -l°, -4°, and -10°C were accomplished on duplicate samples of similar mineral-ice composition while other conditions were held constant. Tests on a given mineral-ice combination and 44 temperature were repeated at least once; in most cases, twice or more. Strain Amplitude. Axial strain amplitudes ranged 3 from.2.0 x 10- % to 4.0 x 10-2%. The maximum strain ampli- tude was usually limited by tensile failure of the sample. ConfiningPressure. Three confining pressures, 0, 0.345, and 1.378 MPa (0, 50, and 200 psi), were applied to the sample during each test. Frequency. In general, four loading frequencies were applied. They included 0.05, 0.3, 1.0, and 5.0 Hz (cycles per second). At 5.0 Hz, the axial strain was reduced due to the non-linear frequency response of the loading system. This would not influence thetesting result except that the data were obtained at a lower strain. Number of Cycles. For each frequency samples were subjected to only 20 cycles or less. Damping ratio and dynamic Young's modulus were usually calculated on the basis of data recorded for the fifth or tenth cycle. 3.4.2. Application Sequence of Test Parameters The stage testing technique (Silver and Park, 1975) has become the most popular method currently used 45 by practicing engineers to obtain dynamic properties of soils for earthquake problems. A similar testing sequence, used throughout this study, is summarized in Table 3.2. The establishment and acceptance of this testing sequence was justified in a previous study by Chaichanavong (1976). A more detailed discussion on the effect of testing sequence on test results will be presented in Chapter 5. 3.5. Dynamic Creep Test A preliminary study of the creep behavior of frozen sand samples under dynamic loading conditions has been part of this research. Frozen sand samples, with several degrees of saturation, were subjected to static loads at the beginning of each test until an axial strain of, 0.07% was reached. Next, a 22168.36kN/m2 dynamic load at 0.05 Hz was cycled about the original static load, until a final axial strain of 0.5% was achieved. The initial static load was a variable and the time (or number of cycles) needed to achieve the final strain was recorded. A zero confining pressure and a temperature of -4°C was used for all samples so as to simplify test conditions. 3.6. Data Reduction and Processing The dynamic Young's modulus and damping ratio were evaluated from strip chart records of load and deformation 46 and oscilloscope photographs of hysteresis damping loops. A typical strip chart record is shown in Figure 3.4 and a typical oscilloscope picture of hysteresis loops was shown in Figure 2.5c. The dynamic Young's modulus was computed as follows: using the sample's cross-sectional area and length, the dynamic Young's modulus, E = max. deviator stress d max. axial strain or (0 -0) Ed = 18 3 max (3.1) max The damping ratio, D, which represents the energy absorbing behavior of the sample, is D=m (3-2) where AL is the area of the hysteresis loop and AT is the area of the shaded triangle illustrated in Figure 3.5. The computed Ed and D values all relate to a temperature, mineral-ice composition, confining pressure and loading frequency for different axial strains. A linear regression analysis provided a correlation between Young's modulus or damping ratio and peak axial strain. 47 A linear function may not be the true relationship between dynamic properties and axial strain, but for the limited axial strain range considered in this investigation, it appeared to be acceptable. 7 A general expression for this correlation is y=a+blnx (3,3) where y = dynamic Young's modulus or damping ratio, x = peak axial strain, a = intercept for the least square fit line, and b = slope of the least square fit line. From Equation 3.3, values of dynamic Young's modulus and damping ratio corresponding to a peak axial strain of 1.0 x 10-2% were evaluated. The effect of each variable on the dynamic properties of frozensoils pre- sented in the next chapter was estimated at a peak axial strain of 0.01%. This strain level was selected arbi- trarily for convenience in comparison. For frozen sand samples and frozen gravel samples, the linear regression analysis was handled with the MSU CDC6500 computer. Data points and least square fit lines were plotted for all test conditions. These computer output plots are presented in Appendices B, C, D and E. For under-saturated and saline sand-ice samples, the regression analyses were handled with a programmable hand 48 calculator and the original data are tabulated in Appen- dices F and C, respectively. 49 Figure 3.1 Teflon molds and a set of base and cap units 50 Figure 3.2 Samples being frozen in a freezer box DANU‘ « 1: :: SAMPLE 51 ~27 5/w/7c Figure 3.3 A fresh sample just extruded from mold. 51 I ‘l l I Figure 3.4 A typical strip chart record 52 Axial stress, cr-‘ I 3...... . \\\\\\§ deviator 1, \ \ Ar , /g\\\\\\§z Axial strain, E, - Initial stress state “Ix AT Figure 3.5 Computation of damping ratio 53 cw czozm m.¢ mpnmh new H.e open» use wpaEmm zoom mo sammcmc new ucmucou pmcmcpe szpo<ss Amsa_ .acsxpav Nmm u cowumcaumm mo mmcmmu mmmgm>< An en.m u —m>msm mo auw>mcm uwwmuoam mo.~ n ucmm mo apm>mcm owcwumam Au Eu ¢o~.oï¬ u .:w o.m n eumcwp spasmm mmmcm>< An 56 ~HH.N u .:w w.~ u cmumEmPu wpasmm he "co women one: meowumpsupmur m.mm mom.onoï¬ mm a.os Nam.ssk Na wawua m.NoH umm.~m¢ em m.w~ ¢~H.~¢H~ me . . ucmm a we mmH can we campus ¢.oeH ~mm.~mm om any pm>mcwemw ocmm Anamwwweuw xv ucmucou cope: we weave: Futons: rs mppom smmFaEmm Pw>ocm cmNocc new team :mNocc co pcmucou parses: ~.m open» 54 ~: 0.?» (IIII. N: can... All u: o.mu.+ All! n: o.mumlfll..|. w: odum All) 5.. o.m«.._. 4| N: can» 4) N: 9mm? Al.) N: odi All n: 0..."; u: oxpuw ~: 0.7» N: oéuw N: 0.7m... ~: 0.7"» 15.. AIIIIN: 15.. N: o.—u.+ Al N: N: 0.7m... Al ~: ~: oéuw N: emit .flllsi 0.7., N: 93 lllL: one N: oft ï¬ller 97., mcmumEmcma alllul~z .A.|l.~: ANIII 21 AHIIINI mdum m.oum mdu» 4|~= All. 2. AIINI mo.on.+.4lr we: odnnu moéumdll we: memdunu 85..., 4| 3: 2313 a lop Won» All: N: m.oum .AIII ~: m.ou.+ mtonm mdnm mduw mdum mdnm m.ou.+ AIINI module All we: mum .ounu .4. x o.¢ u cesium —mrxo menswxonmmr > modum All an: o .ounu AI modum All we: m2... Tau A1 a :2. All ~: 1N: 1% x o.~ u crmcum Fmvxa mumewxocnm< meant All we. ecuau 86"., All as: means 8.01 4| 3: $.78 flop Ml .AWII~: AHII.~: .nIIINI x o6 u 523 Pets mumewxocqmï¬ \/ 85".. All a: o 5.34: 851 All a: 3m ans/l 85".. 4| 3: m8. 784. a -o_. x o.~ u 595m $.53 muaewxocdmr mcsumcmq20u acaumcou mpwom capacmgw :mNocm so» amok to mucmaowm coeooowpga< ~.m mpnme CHAPTER 4. SAMPLE DATA AND EXPERIMENTAL RESULTS Sample data, experimental results, and some imme- diate interpretations of the results are presented in this chapter. Experimental results presented can be categorized into two parts. The first part consists of (1) original computer plots of data points with least square fit lines on a dynamic properties versus axial strain coordinates for both frozen sand and frozen gravel samples, and (2) tables of data obtained in tests on saline samples and under-saturated samples. The second part includes cross- plots, which demonstrate various parametric effects on dynamic properties of frozen granular soils, and test results obtained in dynamic creep tests. To compare the first part with the second part, data and curves,in their relatively primitive form.ar€tgiven in the Appendices as supplemental information. The second part is presented within this chapter with some immediate interpretations on the meaning of the curves. 55 56 4.1."Sample Data The sample data includes sand or gravel contents (percent volume concentration) and sample densities calcu- lated from the sample dimensions, the weight before the test and the weight of soil solids after oven drying. Other information has been included for samples tested for different purposes. All the descriptive sample data are tabulated in Tables 4.1 through 4.5. Each sample was assigned a specific number with a heading descriptive of the group to which it belongs. The headings are explained as follows: (1) SI-series--frozen sand samples. (2) G-series--frozen gravel samples, (3) SALT-series--sa1ine frozen sand samples, (4) US-series--under-saturated frozen sand samples, and (5) CSI—series--frozen sand samples for dynamic creep tests Samples in the SI-series and G—series were tested for three temperatures, -1°, -4° and -10°C. The US-series and CSI-series samples were tested only for -4°C and the SALT-series samples were tested only for -10°C. 4.2. Stress-Strain Behavior and Test *Parameter Effects The stress-strain behavior of frozen granular soils is represented in this study by the dynamic Young's modulus (Ed). The effects of axial strain, confining 57 pressure, temperature, frequency, and mineral content on the dynamic Young's modulus has been investigated for both frozen Ottawa sand and frozen pea-gravel samples. The degree of ice saturation and saline content effect were investigated only for frozen sand samples. 4.2.1. Axial Strain Effect The dynamic Young's moduli for various test condi- tions were plotted against axial strain using the MSU CDC 6500 computer. These plots are shown in Appendices BandD for frozen sand and gravel samples, respectively. The dynamic Young's modulus generally decreases while the strain increases from approximately 2 x 10-3% to approxi- ‘mately 4 x 10-2%. Axial strain has more influence for samples tested at lower temperatures, higher frequency, and higher sand content. ' The relationship between dynamic Young's modulus and confining pressure, frequency and temperature can be established by interpolation of the results presented in Appendices B and D at a specific strain amplitude. A strain amplitude of 1.0 x 10-2% was selected for conven- ience. Another strain amplitude could have been selected without a significant change in the conclusions reached in the following paragraphs. 58 4.2.2. Confining PresSure Effect The correlation of dynamic Young's modulus with confining pressure for frozen sand samples is shown in Figures 4.1 to 4.3. The same correlation for frozen gravel samples is shown in Figures 4.4 to 4.6. The dynamic Young's modulus decreases with decreasing confining pressure. At higher confining pressures it appears that the ice microfissures cannot open as easily resulting in a stiffer structure. Also, at higher confining pressures, ‘more frictional resistance may develop between mineral particles, which contributes to the strength of the frozen soil system. .Some curves shown in the figures of this section and in other sections of this chapter have dashed portions, which indicates either an unexpected drop of dynamic Young's modulus or an unexpected rise of damping ratio. The original data points were replaced by a dashed line, which conforms with the trend of other curves shown in the same figure. These unexpected changes of dynamic proper- ties were most often caused by tension failure of the sample and this will be discussed in detail in Chapter 5. 4.2.3. Temperature Effect The correlation of dynamic Young's modulus with temperature is summarized in Figures 4.7 to 4.9 for frozen 59 sand samples and in Figures 4.10 to 4.12 for frozen gravel samples. The dynamic Young's modulus increases generally with decreasing temperatures. For low mineral content (ice rich) samples, the strength increase at lower temperatures is believed to be due to the stiffer dynamic elastic properties of ice (Chaichanavong, 1976). It is well established that the dynamic elastic properties of unfrozen cohesionless soils increases with increasing confining pressure (Seed and Idriss, 1970) owing to the increased stress at the contact points between particles. The ice matrix of a high mineral content sample would be strengthened at lower temperatures. The larger confining force on the soil particles would increase the friction at particle contact points and thereby contribute to an increased dynamic Young's modulus for high mineral content samples at the lower temperatures. 4.2.4. Frequency Effect The dynamic Young's modulus increases, in general, ‘with increasing frequency of loading as shown in Figures 4.13 to 4.15 for frozen sand samples and in Figures 4.16 to 4.18 for frozen gravel samples. The rate of increase of the dynamic Young's modulus appears to be independent of temperature. 60 4.2.5. Mineral Content Effect The effect of mineral content on the dynamic Young's modulus is summarized in Figures 4.19 and 4.20 for frozen sand samples, and in Figures 4.21 and 4.22 for frozen gravel samples. Figures 4.19 and 4.21 show the results obtained at a single confining pressure, 0.345 MPa, for various frequencies and temperatures. Figures 4.20 and 4.22 show the results obtained at a single frequency, 0.3 cps, for various confining pressures and temperatures. It is shown that the dynamic Young's modulus increases with increasing mineral content for -4°C and -10°C. For samples tested at -l°C, the modulus changes very little with change in mineral content for frozen gravel samples and decreases with increasing mineral content for frozen sand samples. 4.2.6. Ice Saturation Effect The effect of ice saturation on the dynamic Young's modulus at a single confining pressure, 0.345 MPa, and various frequencies is shown in Figure 4.23. The effect of ice saturation on the dynamic Young's modulus at a single frequency, 0.3 cps, and various confining pressures is shown in Figure 4.24. It is apparent that the dynamic Young's modulus increases with increase in degree of ice saturation. The data points for 93% ice saturation were 61 obtained from Figure 4.15 and the data points for lower degrees of saturation were evaluated at an axial strain of 1.0 x 10-2% from the data shown in Appendix F. It is reasonable to believe that the increase in ice saturation strengthens the ice bonding effect on the sand particles and thus increases the total strength of the sample. The effect of degree of ice saturation was evaluated only for frozen sand samples. 4.2.7. Saline Content Effect The effect of saline content on the dynamic Young's modulus was evaluated only for frozen sand samples. The correlation of modulus with saline content for tests run at a confining pressure of 0.345 MPa is shown in Figure 4.25. The same correlation for a constant frequency, 0.3 cps, is shown in Figure 4.26. I The data show that the dynamic Young's modulus decreases with increase in saline content. This is due to the increase in unfrozen water content (Yong, et al., 1973; Banin and Anderson, 1974), which reduces the strength of the sample. 4.3. yEnergyAbsorbing Behavior and Test Parameter Effects The damping ratio represents the energy absorbing behavior of frozen soils and has been expressed as the 62 percentage energy absorbed per stress cycle. The effect of axial strain, confining pressure, temperature, frequency, and mineral content on the damping ratio have been inves- tigated for both frozen sand and frozen gravel samples. The effect of degree of ice saturation and saline content were investigated only for frozen sand samples. 4.3.1. Axial Strain Effect The computer output plots presented in Appendices C and E for frozen sand and frozen gravel samples, respectively, indicate a random relationship between damping ratio and axial strain. The damping ratio may increase, decrease or remain constant with respect to increasing axial strain. Values of damping ratio evaluated at an axial strain of 1.0 x 10-2% was selected to serve for the purpose of comparison. The following paragraphs are based on the comparison at this strain level. 4.3.2. Confining Pressure Effect The relationship of damping ratio with confining pressure is not explicit from the curves shown in Figures 4.27 through 4.29 for frozen sand samples and Figures 4.30 through 4.32 for frozen samples. However, it appears that the variation of damping ratio with respect to confining pressure over the range of consider- ation is not significant. 63 4.3.3. Temperature Effect The correlation of damping ratio with temperature for frozen sand samples is shown in Figures 4.33 to 4.35, and in Figures 4.36 to 4.38 for the frozen gravel samples. Generally, the damping ratio decreases with a decrease in temperature. To compare the effect of temperature on both modulus and damping ratio, it is obvious that damping ratio drops when the modulus increases. It is reasonable to conclude that samples tested at lower temperatures are stiffer and act more elastic with less energy absorbed. 4.3.4. Frequency Effect The effect of frequency on damping ratio is summarized in Figures 4.39 to 4.41 for frozen sand samples and in Figures 4.42 to 4.44 for frozen gravel samples. The damping ratio decreases as the frequency increases. A higher frequency means higher strain rates, which in turn make the samples tested act more elastically and absorb less energy. 4.3.5. Mineral Content Effect The mineral content effect on damping ratio is summarized in Figures 4.45 and 4.46 for frozen sand samples and in Figures 4.47 and 4.48 for frozen gravel samples. 64 Figures 4.45 and 4.47 show the results obtained at a single confining pressure, 0.345 MPa, for various frequen— cies and temperatures. Figures 4.46 and 4.48 show the results obtained at a single frequency, 0.3 cps, for various confining pressures and temperatures. The data show that the relationship between damping ratio and mineral content is not constant. For samples testedan:higher temperatures, the damping ratio generally increases with increase in mineral content; but for lower temperature tests, the damping ratio increases to a peak and then decreases along the mineral content scale. 4.3.6. Ice Saturation Effect The effect of degree of ice saturation was inves- tigated only for frozen sand samples. From Figures 4.49 and 4.50, note that the damping ratio decreases with increase in ice saturation. The scatter in data points fall within a relatively narrow band with the damping ratio decreasing with increasing degree of ice saturation. 4.3.7. Saline Content Effect The effect of saline content on damping ratio is shown in Figures 4.51 and 4.52. Damping ratio increases with respect to saline content to a peak around 1.5% and 65 then decreases. The effect of saline content on the damping behavior was evaluated only for frozen sand samples. 4.4. Creeprehavior of Frozen Sand Samples under Cyclic Loading Conditions Seven high sand content samples with several degrees of ice saturation were tested for their creep behavior under cyclic loading conditions. Experimental results are tabulated in Table 4.6. Creep curves are presented in Figures 4.53 to 4.55. The descriptive sample data with the initial static loading for each sample is shown in Table 4.4. The creep curves show that the secondary creep appears to have developed in all samples. In the strain range of 0.15% to 0.5% each creep curve shows a relatively constant slope (or creep rate). The number of cycles needed for each sample to deform from 0.15% strain to 0.5% is plotted in Figure 4.56 versus the initial static stress level, which is also the mean stress level during the cyclic loading period. It is shown that for a given degree of ice satur- ation, the higher the stress level, the less cycles are needed to develop a certain strain level. For samples with a lower degree of ice saturation, the number of cycles to achieve a given strain level is less than that for the higher degree of ice saturation sample. o.m.nu so anyway N .62 museums (36 eo.~ <.co on ~o.~ m.eo ow mo.H w.¢< em o~.H o.HN mm oo.~ c.<o mm -.H o.n¢ mm om.H H.HN «N can oh.a n.oe ma w~.H m.mH o co.N o.no Hm oo.~ H.w¢ ma w~.H n.HN m ma.~ . «.mo on. H~.H m.ne o wN.H “.0" «N on mN.H c.o~ NH mm.H m.mq 0H oN.H H.H~ OH oo.~ m.me 5H e~.H h.we ma w~.H o.H~ m co.~ ~.¢o ma no.H w.e< Ha w~.H n.H~ w an oo\w huwmcoa vcmm N uHeemm ou\w .huï¬mcoa pawn N vansmm uuxw .huuncon vane N magnum Hoauu< Husuu< Hanuu< Au wave no me 3 3330.58. Aoeaao> no ucuuuunv ucuunou vnom wouuunxm AmmanmmIHmv mmHnEmm ncmm cououm ~.q maamH 67 nouns aw on On «unseen o cannon mo unounou nounn_onk : cool on voumou «cannon HH<¢ on.H n~.n o.mH “.mo o Ho.H mu.HH oo.on n.oo n no.N nn.mH on.nm o.oo «so ms.~ mc.oa m~.nq o.~o n on.a on.~ o~.an o.co N ow.H mo.~ om.Ha c.oo a uuxm muwmnun Anvunounoo noun: Auvnoaumusumm Aoaaao> haw «magnum scam N Hasuu< Amowuomlmav mmHnEmm pcmm couonm pmumuaummlnmoaa ~.¢ manna uanHo> an N no on so ownuo>n announce vnnm coca: uu.voumou madness HH<¢ 68 wo.~ o.m o no.~ o.n m cm.H o.m c SJ «A n co.~ m.H N moo.~ n.H H Auu\wv anemone ANvunouaoo onwanm soaeanm AmoHnomIHA<mv moHeEmm comm cmuoum oceamm m.q manna 69 .nosommu mm3 :Hmuum Hmwxm Nm.o Hana: vmoa oeumum wnu uaonm nmaomo mma n: mo.o um NE\zx o.wo~w ou Anson pmoa qumahp < .N .posomon mos Nno.o mo cannon noouo Hoaxm cm aqua: wcwumoï¬ owumum en penance was memo one no wcwumom Hmï¬uï¬au .ï¬ "nuoz cool um poumou moï¬namm HH<R mud mm HN.H m.c o.mo a man mu om.H n.Ho m.cc 5 mom on cm.a a.mm m.vo c omo . 00H mm.H o.Hq o.mc m Ouou oom mo.~ N.na h.mo o omo OOH oo.~ o.o¢ c.mo m owma cow .<.z o.Nmu o.eou N 2.: .31...“ A. ....... AmmwuomIHmov mumoH compo ozu aw pom: moHnEmm pcmm cmnoum q.c manna 7C) No.N oa.an m mmN.N cm.n< oN om.N 0N.¢N Nm no.N 0N.Nc N ome.~ «N.He mN Nn.H oo.<N Hm no.N ow.mm H noc.N No.oo oN nm.H mN.wN cm ONI om.N «N.om mm coo.N NN.N< mN mm.N nn.NN mN .<.z o~.wm 0H No.N HN.H¢ mN om.N mw.MN NN .<.z mq.mm a No.a No.H< «N cm.H on.nN NN NI No.N oN.mn mm ome.a NN.N¢ NH oo.N Nm.mm on oN.N mo.mo on cm.a oN.NN CN mm.N oN.mm MN ON.H mc.No ma om.N 0N.mN ma .<.z om.mm NH oN.H mm.Ne «N on.H hm.mN ma HI muamnon NMMMHW<N oHeamm unencua HMMHWW<N oaeanm huwmcon NMWMHW<N magnum 8 use am No SN eununuonaoa AoESHo> he ucoonoov ucoucoo Ho>muo vouooexm Amoï¬nmmlov moHnEmm Ho>muw couonm m.q manna 71 “E 25- Axial Strain=l.0xlO-2% ‘<; 25- Axial Strain=l.0xlO-2% E? =_1 deg c E; T=—4 deg C 8 8 ,0 (a) ,0 (b) m 20I- “J 20" a? a '2 g 15. 15. 2: (D g Frequency 8 10' Frequency lOI' (cps) 5 O ’5‘ (6138) . ' o 5.0 1.0 -.-I 1.0 //_ 0.3 E . g 5.- 0.3 5:- 4 0.05 E' —g 0.05 O. l L l l O '- I I l I O 0.5 1.0 1.5 0 0.5 1.0 1.5 Confining Pressure (MPa) Confining Pressure (MPa) . . -2 of‘ 25, Ax1al Strain=1.0x10 7 .E T=—1O deg C 2: 53 L5on- (C) a? D H a B 15' Frequency r" (CPS) U) m 5.0 g 10- 1.0 :3 0.3 0 0.05 "E 2 5' >. c: 0 1 L l l 0 0.5 1.0 1.5 Confining Pressure (MPa) Figure 4.1 Dynamic Young's modulus vs. confining pressure for frozen sand samples of 20% sand content. 72 25' Axial Strain=.Ul% 25" Axial Strain=.01% ,\ T=-1°C of“ T=—4°C N E ii ( ) E; ( ) a 0 b 55/ 20- v 20. _ 'o 'u m m g 15_ 15b Frequency H (CPS) -€ _ 5.0 : Frequency g (C S) 1.0 U) lor- P 10- E? 5.0 0.3 g 1.0 0.05 w 5. 0,3 .5“ .,/vâ€"â€â€˜ï¬‚'———____-_. â€:1" '//4:0.05 s /†i 0 Q J l l I O- I a l l 0 0.5 1.0 1.5 O 0.5 1.0 1.5 Confining Pressure (MPa) Confining Pressure (MPa) 25 F Axial Strain=.01% A =-10°C N E E3 20 F (C) "D LIJ J , Frequency 3 13 P ‘ .3 (CPS) 'P 5. 1.8 0.3 U) I p 10 10 ,. 0.05 G I a 0 >4 .3 5 r 6 c >. a O b 1 l L l 0 0.5 1.0 1.5 Confining Pressure (MPa) Figure 4.2 Dynamic Young's modulus vs. confining pressure for frozen sand samples of 45% sand content. 73 25 ’ Axial Strain=.01% 25' Axial Strain=.01% A ="'1°C N’: T='4°C N a E \ 2 (a) 6 (b) £3 20 ' " 20' , :6 Frequency IND ‘3 (cps) " 5.0 3 15 r 15’ '3' 1.0 'o o 2 Frequency 0.3 g) ———o 0.05 5 5.0 W >9 1.0 g, 5 " 0.3 5* S: 0.5 e >. Q o . o. . J 0 0.5 1.0 1.5 0 0.5 1.0 1.5 Confining Pressure (MPa) Confining Pressure (MPa) 25} Axial Strain=.01% N: T=-10°C é; Frequency 0 (C) c V 20» ( pg)— '6 5.0 m 1.0 a? H315)- 0.3 'U 0.05 o 2 J†«a 10’ c s o >. o r °r-i J... E E E .2 0r l l l I 0 0.5 1.0 1.5 Confining Pressure (MPa) Figure 4.3 Dynamic Young's modulus vs. confining pressure for frozen sand samples of 65% sand content. 74- ,‘ Axial Strain=.01% ,\ Axial Strain=,01% N =-1°C 9‘ T=—4°c E 23- E 25- 2: z 53 (a) 53 (b) m†zu- .3†20- c5 .3 . a 15- 15. -u .8 m Frequency E? 10" Frequency 10' (CPS) 9 (CPS) 3 5.0 / a 1.8 U 5'- 1.0 5'- :‘ O 3 «4 —0 0.3. f —e o 05 E 00.03 E, - '3 U1: 1 L l 1 0'- I l l I 0 0.5 1.0 1.5 O 0.5 1.0 1.5 Confining Pressure (MPa) .Confining Pressure (MPa) 25 r Axial Strain=.01% =-10°C N C l Dynamic Young's Modulus, Ed (GN/mz) 15 - Frequency (CPS) 1" h 5.0 . .I-g 5 - t===:-——--II-I"'"""-> 0:05 0 a 1 l 0 0.5 1.0 1.5 Confining Pressure (MPa) Figure 4.4 Dynamic Young's modulus vs. confining pressure for frozen gravel samples of 24% gravel content. 75 NA NA 5 25 - Axial Strain=.Ol°/. g a T=—l c a 'U (a) '0 id 20 r m 6‘ 3 H _ .3 15 - .2 {g 10 _ Frequency é (cps >‘ i_;; 5.0 :3 5 " .4vâ€."———— 1.0 _ - ().3 g {EEEEEEEE—————————_:;i(0.05 >. G O '- 1 I l I H U) 0 0.5 1.0 Confining Pressure (MPa) 20 15 10 Axial Strain=.01% ,=-4°c (b) Frequency (CPS) 5.0 / 1.0 / 0.3 /" 0.05 .,.—Ar—-—"“"_—_—. L L 0 0.5 1.0 1.5 Confining Pressure (MPa) Axial Strain=.01% Frequency (CPS) 5.0 0 OCH 3 .05 NA E g 25 - c, T=-lO°C :30 Q 20 L (C) CD :) H 53 9‘ 15 " .5†CD 5 10 0 >4 :5 s - G n c 5‘ O I. l l 0 0.5 1.0 1.5 Confining Pressure (MPa) Figure 4.5 Dynamic Young's modulus vs. confining pressure for frozen gravel samples of 42% gravel content. 76 NA N“ S 25 â€Axial Strain=.01% E 25 " Axial Strain=.01% 8 T=’1°C c2: T=-4°c “SD 20 - (a) Law 20 - (a) 0; Frequency :5 "‘ (CPS) «3‘: 1: P 15 - >1 5.0 0) Frequency 1.0 ’3; 10 - (cps) 10 - 0.3 8 5.0 ./——. 0.05 g 5 ' 0.3 5 - E —e 0.05 m x c: 5‘ 0 o I J l 1 J l I l 0 0.5 1.0 1.5 0 0.5 1.0 1.5 Confining Pressure (MPa) Confining Pressure (MPa) NA E E 25' Axial Strain=.017o 8 T=—lO°C Frequency m“ 20 . (cps) U; ........ _. 500 D " 1.0 H g 15 . f: 0.3 2: 0.05 _m 00 10 - c: :1 0 >4 0 5 - "3‘: E5 :3 >. £3 0 L. 1 l l J O 0.5 1.0 1.5 Confining Pressure (MPa) Figure 4.6 Dynamic Young's modulus vs. confining pressure for frozen gravel samples of 59% gravel content. 25 A N E E? 20 O V '0 LL} .5 15 :1 H :3 “U 0 E m 10 .00 C :3 o . >‘ 5 U â€-1 E to C‘. 5; 0 77 - Axial Strain=.01% 25-Axial Strain=.01% Confining Pressure=0 MPa Confining Pressure=0.345 MPa (a) “E (b) . E; - E3 20 'o m h 15 1- Frequency (cps) Frequency ' 10 - 5 (CPS) 1.8 0.3 0.05 . 5 . 0 b L L -l -4 —7 —10 -l -4 -7 -10 Temperature (°C) Temperature (°C) 25' Axial Strain=-Ol% Confining Pressure=1.5)8 MPa ~; 22 (C) 53 20' vs :1 a. 15_ Frequency .3 (Cps) : E z 1.0 .9 10. 5.0 0.3 on -- g 0.05 o w - D I u 'H 5 g, a O '- A + -l -4 -7 —10 Temperature (°C) Figure 4.7 Dynamic Young's modulus vs. temperature for frozen sand samples of 20% sand content. 78 25' Axial Strain=.01% 25 ‘Axial Strain=.01% ,\ Confining Pressure=0 MPa Confining Pressure=0.345 MPa 2 (a) ; (b) 8 20‘ a 20' 'U V m w x ‘3 15- 15- H 5 Frequency 3 Frequency CPS T (CpS) J†10' 10' 5.0 ‘0: ' o 1 o 3133 5 . . . ,--- 0.3 . >9 0.05 5 o 5- 5- -H E m a > a O I 1 I l A 1 1 I n 1 0’- I l l l l L J L I L -l —4 -7 -10 —l -4 —7 —10 Temperature (°C) 25 A N E E U 20 v 'U 71-} u? 15 :J r—4 :1 "U a R-a m 10 09 I: :J O >‘ 5 U -H E m S. =2 0 Temperature (°C) ’ Axial Strain=.01% Confining Pressure=l.378 MPa (C) Frequency - (CPS) 5.0 1.0 . 0.3 0.05 -l —4 -7 -10 Temperature (°C) Figure 4.8 Dynamic Young's modulus vs. temperature for frozen sand samples of 45% sand content. 25 r Axial Strain=.01% 25- Axial Strain=.01% ,\ Confining Pressure=0 MPa ,\ Confining Pressure=0.345 MPa NE < > NE ( > a a g 20. (E 20- Freauenc ï¬n Frequency ï¬n (cps) y g 15. (CPS) 15- g ’5.0 1,0 3 †5,0 ’ 0.3 E ’ 1.0 0 05 _"’ 10' 10' w .3 '5 0.5 o > U 5 - 5- d t: m c 3 0 A I I I I J I I J L 0 1 I k I l I I A A + -l -4 -7 -10 —l -4 -7 -10 Temperature (°C) Temperature (°C) ' F Axial Strain=.OlZ Confining Pressure=l.378 MPa (c) Frequency (CPS) N U N C l . , 2 Dynamic Young's Modulus, hd (UN/m ) H H O U: I I c> c; 1a 0 :5 o L" U1 I O I I A -l —4 -7 -10 Temperature (°C) Figure 4.9 Dynamic Young's modulus vs. temperature for frozen sand samples of 65% sand content. 80 NA NA 8 E E; 25- Axial Strain=.01% E§25’ Axial Strain=-Ol% xx Confining Pressure=0 MPa \/ Confining Pressure=0-345 MP3 ï¬t 13° 20. (a) 20- (b) 6 a H £3 15, 15. o 2 Frequency Frequency .01 (cps) (CPS) g 10- 10' 0 5.0 V 5 O 1.0 .3 5» (1, 9 5- 8'8- c >. O t) 0 -l -4 -7 -10 —1 -4 -7 ~10 Temperature (°C) Temperature (°C) “2 E 25 - Axial Strain=.Ol°/. g Confining Pressure =l.378 MPa :5“ 20 , (C) J 5 F4 - _§ 13 _ Frequency g (CPS) .9 39 10 ' 5.0 g / 5'0 .3 w r 'd K: m E. 2 0 -1 -4 ‘ -7 -10 Temperature (°C) Figure 4.10 Dynamic Young's modulus vs. temperature for frozen gravel samples of 24% gravel content. 81 NA NA {-3 i: 25 * Axial Strain=.01% E? 25’ 8 Confining Pressure=o MPa 8 r5020 . (a) 1211,20- m“ .3 _ '3 15 _ Frequency 13_ o (CPS) El .0) w 10 - 10' c a o >~ o 5 - 5, -H E a 2. a O O Axial Strain=.01% Confining Pressure=0.345 MPa (b) Frequency (Cps) -1 -4 —7 -10 Temperature (°C) N U‘ I Confining Pressu 1- (C) N O p.» UW U -1 -4 Temperature (°C) -7 Axial Strain=.Ul% - re=1.378 MP Frequency (CPS) Dynamic Young's Modulus, Ed (GN/mz) O T Temperature ( Figure 4.11 Dynamic Young's modulus vs. ‘0 09:00 Oc) temperature for frozen gravel samples of 42% gravel content. 82 â€5 NE 5 25 'Axial Strain=.01z g 25' Axial Strain=.01% ~I Confining Pressure=0 MPa ‘1 Confining Pressure=0.345 MPa Q“ av Frequency . 20 -(a) Frequency 20' (b) (CpS) ‘3 (CPS) 1.0 '3 E 15 . 15- 0.3 .01 0.05 an 10 _ 10. a a o > 3 5 - 5. E m a 5‘ U A I A A A I A 141— o A A A A A A A L —1 —4 -7 ~10 —1 -4 —7 —1o Temperature (°C) NA i: ZJ- Axial Strain=.01% 53 Confining Pressure=l.378 MPa U Frequency "J 20- (CPS) J 5.0 3 1.0 g 15_ 0.3 § 0.05 (I) 1m 10- a a 0 >4 . u 5. 'H E': m a > 3 0 —l —4 -7 -10 Temperature (°C) Figure 4.12 Dynamic Young's modulus vs. temperature for frozen gravel samples of 59% gravel content. 83 25 )Axial Strain=.01% 25 - Axial Strain=.01% Confining Pressure=0 MPa C<>nfining Pressure=0.345 MPa °f‘ a °{: b 8 53 'U -u :2 m A 15 - 15 * Temperature 8 Temperaure (°C) '3‘ (°C) '6 ;§ 10 - 10 ' m -10 - o g --- -10 //° -1 ~14 E 2 J 3 O F l A A A o I A J L 0.05 0.3 1.0 5.0 0.05 0.3 1.0 5.0 Frequency (cps) N U1 7 (C) N O I H U1 l l-J O I Dynamic Young's Modulus, Ed (GN/mz) u: 7 Frequency (cps) Axial Strain=.Ol% Confining Pressure=l.378 MPa Temperature (°C) -10 -4 oIrrz’,,r4*â€"'°——————-° —1 0.05 0.3 1.0 5.0 Frequency (cps) Figure 4.13 Dynamic Young's modulus vs. frequency for frozen sand samples of 20% sand content. 84 L Axial Strain=.Ol% 25 ’ Axial Strain=.01% 25 Confining Pressure=0 MPa Confining Pressure=0.345 MPa “2 “2 2 20 _ (a) 2 201- (b) 8 8 '0 'U a: m . _ . Temperature 3 15 Temperature 15 (°C) '3 (°C) 'o -2 m 10 ' 10* co g .—-————_'.---- 10 ’4 o 5 h -1 5 W4 E /-—_. m E. Q U h A A A A 0" A A J A 0.05 0.3 1.0 5.0 0.05 0.3 1.0 5.0 Frequency (cps) Frequency (cps) 25 ~Axia1 Strain=.01% Confining Pressure=l.378 MPa “2 E? (C) 8 20 ' Temperature A5" (°C) a? 15 - 3 _-1o {3’ I" -4 o 21 .m 10 ' -l on a a :53 o 5 L H E m a >. 2‘ o ’ . . . . 0.05 0.3 1.0 5.0 Frequency (cps) Figure 4.14 Dynamic Young's modulus vs. frozen sand samples of 45% frequency for sand content. 85 25-Axial Strain;.01% 25"Axial Strain=.Ol% Confining Pressure=0 MPa Confining Pressure=0.345 MPa (a) NE (b) 20. z 20 ' 8 Temperature an Temperature (°C) ‘ (°C) 15' 1.4 O I 2 Dynamic Young's Modulus, Ed (GN/m ) O O 1 0.05 0.3 1.0 5.0 0.05 0.3 1.0 5.0 Frequency (cps) Frequency (cps) 25- Axial Strain=.01% Confining Pressure=l.378 MPa 0:\ Temperature g (c) (°C) 8 20 -10 “U 0 {d d .15P -4 s H a -u .9 fl 0 m 10" on g —l >9 5 P u .a E m a 5‘ 0 . 1 . . 0.05 0.3 1.0 5.0 Frequency (cps) Figure 4.15 Dynamic Young's modulus vs. frequency for frozen sand samples of 65% sand content. 86 NA ~E 25 “Axial Strain=.01% 5 Confining Pressure=0 MPa ï¬n 20 -(8) i a 3' 15 - 'v .2 H Temperature :0 10 _ (°C) cJ : a 0 >4 0 -H E m c >. :3 O 1 0.05 0.3 1.0 5.0 Frequency (cps) 20 1- (C) 10 ' Dynamic Young's Modulus, Ed (GN/mz) u C 0.05 0. I 3 Ed (GN/mz) 25 20 15 10 ’Axial Strain=.01% Confining Pressure=0.345 MPa -(b) Temperature _ (°C) -10 0.05 0.3 1.0 5.0 Frequency (cps) 25 P Axial Strain=.01% Confining Pressure=l.378 MPa Temperature I (°C) -10 / -4 —l J 1.0 5.0 Frequency (cps) Figure 4.16 Dynamic Young's modulus vs. frequency for frozen gravel samples of 24% gravel content. 25 20 15 10 Dynamic Young's Modulus, Ed (GN/mz) U1 0 I 0.05 NA E prial Strain=.01% 2 25 Confining Pressure=0 MPa EB an ,(a) 20 p 15 Temperature (°C) p 10 —10 87 -Axial Strain=.01%‘ Confining Pressure=0.345 MPa .(b) Temperature (°C) -10 .fl: L I L A 1 A I 0.3 1.0 5.0 Frequency (cps) 0.05 0.3 1.0 5.0 Frequency (cps) NA g 25~ Axial Strain=.01% , £3 Confining Pressure=l.378 MPa La" 20. (c) £‘ '3 Temperature 0 3 15- (C) .2 .24 :0 -10 ca 10' -4 ‘5‘ >9 0 51- / -l '2 ES 3 0L . 1 . 0.05 0.3 1.0 5.0 Frequency ( cps) Figure 4.17 Dynamic Young's modulus vs. frequency for frozen gravel samples of 42 Z gravel content. 88 NA NA ~E 25-Axial Strain=.01% .E 25 5 Confining Pressure=0 MPa 5 :JU 20_(a) Temperaure bf, 20 . (°C) w ,3 I, —10 .8 15* ,«' 15 .23 . ° w an 10 P / ‘4 10 a 0 >4 .3 5 b /a -1 5 E m c E? 0 o 0.05 0.3 1.0 5.0 Frequency (cps) -Axia1 Strain=.01% Confining Pressure=0.345 MPa .(b) Temperature (°C) 0.05 0.3 1.0 5.0 Frequency (cps) Confining Pressure=0.378 MPa Temperature (°C) -10 NA E E; 25"Axia1 Strain=.01% L9 kit, 20 - (c) 6‘ a '3 “U 15 "' o 2: U) so 10- c s 0 >4 0 5 c H E m E. o 0 0.05 0.3 1.0 5.0 Frequency (cps) Figure 4.18 Dynamic Young's modulus vs. frequency for frozen gravel samples of 59% gravel samples. 89 25 ~Axial Strain=.01 25-Axial Strain=.01 Temperature=—1°C Temperature=-4°C °i§ ( ) °£§ (b) a 220. E 201- 8 8 :4“ {Au Frequency Q (Cps) u) 15" 15" D 2 5.0 :3 1.0 A m 10 _ Frequency 10A 0.3 in (CPS) c n 0.05 D - o >" 5_ “5'0 5- “: \100 30+ '0 10 20 3O 4O 50 6O 10 20 3O 4O 50 60 Sand Content (Percent by Volume) Sand Content (Percent by Volume) 25'Axia1 Strain=.01 F‘ Temperature=~lO°C NE E; (C) <9 20‘ c, Frequency :5“ (Cps) a? 15- ,3 1.0 '8 0.3 2 0.05 I†10- CO 5 ,8 U 5. ~g a a >. E 0 10 2‘0 ‘36 ‘4'0 '50 60 Sand Content (Percent by Volume) Figure 4.19 Dynamic Young's modulus vs. sand content of frozen sand samples at 0.345 MPa confining pressure. 9O 25-Axia1 Strain=.01% 25- Axial Strain=.01% ,\ Confining Pressure=0 MPa ,\ Confining Pressure=0.345 MPa Na NE E (a) E (b) 53 20* £3 20’ . ,4“ Temperature :5“ Temperature . (°C) (°C) 9 15- 15b '3‘ “U ‘10 ï¬g J†10- ‘10 10- —4 co ‘4 a 3 0 >4 U 5 " 5 " -H E CU ‘— 4N \\ i —1 -1 =3 o o. 10 20 3O 4O 50 6O 10 20 30 4O 50 60 Sand Content (Percent by Volume) Sand Content (Percent by Volume) N U1 -Axial Strain=.01% Confining Pressure=l.378 MPa (c) Temperature (°C) N O I H U. I F \ Dynamic Young's Modulus, Ed (GN/mz) uz « u 0+- 10 "26 A 35 40 50 60 ‘ Sand Content (Percent by Volume) Figure 4.20 Dynamic Young's modulus vs. sand content for frozen sand samples at 0.3 cps frequency. 91 “2 4 “E E; .25 â€Axial Strain=.01% g; 25*Axial Strain=.01% £3 Temperature=-1°C £3 Temperature=—4°C m“ 20 .(a) .3†20%) c5 ,3 Frequency Frequency 53’ 15 ’ (CPS) 15' (CPS) m 5.0 to 10 ~ 10' 1.9 g 0.3 0 . W 5.0 / 0 05 o 5 r 1.0 5' "a g; 0.3 E, v, - v 0.05 Q 0 r L A A A L A I L A A O L A AA; A A A A A 10 20 1M) 40 50 6O 10 20 30 40 50 60 Gravel Content(% by Volume) Gravel Content (% by Volume) NA 5 E 25'Axial Strain=.01% " Temperature=—10°C :3“ Frequency . 20'(C) (cps) S 1.0 H a '8 15- 0.3 :1 m 0.05 g) 10. , D I 0 >4 :5 5- t: m a >. a 0 10 20 30 40 50 60 Gravel Content (2 by Volume) Figure 4.21 Dynamic Young's modulus vs. gravel content for frozen gravel samples at 0.345 MPa confining pressure. 92 Na 25pria1 Strain=.01% Ne E Confining Pressure=0 Mpa 2 8 8 (a) In." 20' Temperature sic * (°C) (D 3 15 S —10 o 2: go 10. ?=° —4 s 0 >2 5" / :4) - 3 —: -l E f' 2 g‘O#ALL4LALIIIIII_ 10 20 30 4O 50 6O Gravel Content (2 by Volume) NC 3 25 z 53 15° 20 .(c) m0 3 a 15 _ 'o .9 A U) a s 0 >1 0 5 . H E CO 5. a O 25 20 15 10 0 ~Axial Strain=.01% Ccuifining Pressure=0.345 MPa _(b) Temperature (°C) . —10 9 n I I I I I I I I I I L 10 20 30 4O 50 60 Gravel Content (Z by Volume) LAxial Strain=.01% Confining Pressure=l.378 MPa Temperature (°C) -10 I I I 10 20 30 40 50 60 Gravel Content (Z by Volume) Figure 4.22 Dynamic Young's modulus vs. gravel content for frozen gravel samples at 0.3 cps frequency. Dynamic Young's modulus, Ed (GN/mz) 16 14 12 10 93 Frequency Temperature =—4 5.0 cps Sand content = 65Z by volu<:// Confining pressure = O. 345 a Axial strain = 1.0x10 Z .3 cps V1 Eq 6-19, Richart, Hall and Woods (1970) VZEq 5.6, SW—AJA (1972) 05 cps °/ 0! 0 {h j A A I A A A I I 10 20 30 40 50 60 70 80 90 100 Degree of ice saturation (Z) Figure 4.23 Influence of degree of ice saturation on dynamic Young's modulus for frozen Ottawa sand at 0. 345 MPa confining pressure Dynamic Young's modulus, Ed (GN/mz) 16 H I.‘ H N H O (D V20.345 MPa, Hall and 94 Temperature = -4°C Confinin Sand content = 65Z by volume g Frequency = 0.3 cps pressure P Axial strain = 1.0 x 10'2Z 1.378 MPa v1 1.378 MPa, Eq 6-19, Richart Hall and Wood (1970) Eq 6-19, Richart 0.345 MPa Wood (1970) 0 MPa L *- V71 V72 0 10 20 3O 40 50 60 7O 80 90 100 Degree of ice saturation (Z) Figure 4.24 Influence of degree of ice saturation on dynamic Young's modulus for frozen Ottawa sand at 0.3 cps frequency 16 H b H N 10 Dynamic Young's modulus, Ed(GN/m% Temperature - -4°C Sand content = 65% \\ Confining pressure = 0.345 MPa ‘ Axial strain - .OlZ Frequency 5 cps I A I I I I L I I 0 1.0 2.0 3.0 4.0 Salt content (Z by weight) Figure 4.25 Influence of salt content on dynamic Young's modulus for frozen Ottawa sand at 0.345 MPa Confining pressure Dynamic Young's modulus, Ed (GN/mz) 96 16 - 14 Temperature = -10°C Sand content = 65Z by volume Frequency = 0.3 cps Axial strain 1.0 x 10-2Z Confining pressure 1.378 MPa 0.345 MPa 0 MPa 0 A A I I A A I A I A 0 1.0 2.0 3.0 4.0 Salt content (Z by weight) Figure 4.26 Influcence of salt content on dynamic Young's modulus for frozen Ottawa sand at 0.3 cps frequency 97 Axial Strain=.01Z :2 Axial Strain=.01Z .25 ~Temperature =-1°C .25-Temperature=-4°C Frequency _ c . Fre uenc (a) ( p8) 5,0 (b) ‘1 Y (CPS) .20 _ .201 b D 1.0 5.0 . // .15. p- u- 0.3 .. :1-0 RAW/’9 .101' I ' " W 440.3 .05 D .\\.0.05 .05. H U1 H O V Damping Ratio, D \ F P 40.05 .00 . A ‘ 1 A '00. A A J L O 0.5 1.0 1.5 O 0.5 1.0 1.5 Confining Pressure (MPa) Confining Pressure (MPa) Axial Strain=.OlZ .25 *Temperature=-10°C '(C) .20 ' Frequency 9 r (cps) 5?: . g .15 m P ï¬:5.0 â€a ' " ——-—.l.0 E E’F—i m . E 0.3 .05 . #— flo.05 .00 > I I A I 0 0.5 1.0 1.5 Confining Pressure (MPa) Figure 4.27 Damping ratio vs. confining pressure for frozen sand samples of 20Z sand content. 98 Frequency :3 Axial Strain=.01% =_ 0 .25 _ N .25_Temperature 4 C Frequency 5.0 _ (b) (cps) .20- /â€'\.1 0 .20- °-——°f 45.0 Q 0 0H H CO of. 00 P c: -H D. I E .10 - In G . \0.05 .05 P AXial Strain=.01% .00 , (a) l 0 0.5 Temperature==l°C J 1.0 1.5 Confining Pressure (MPa) .25 .20 Q .2 . 15 ‘4 TU 05 g> .10 "-4 Q. E (U Q .05 .00 . (c) .05’ .00v 1 l 0 0.5 1.0 '1.5 Confining Pressure (MPa) Axial Strain=.01% Temperaure=-10°C Frequency (Cps) / A500 b ---4p_, s—+ol.0 ./——-—-————.0o3 --—¢——— 4——90.05 L 0 0.5 1.0 1.5 Figure 4.28 Damping ratio vs. confining pressure for frozen sand samples of 45% sand content. Dumping Ratio, D 99 Frequency Q -£CPS) .25 r ~“‘-05.0 . n /—\1.0 .20. '- /—\0.3 .10 ' Axial Strain=.01Z 0'05- Temperature=~l°C .05 . (a) .00 L J L 0 0.5 1.0 1.5 Confining Pressure (MPa) Axial Strain=. .25 b (e) .20 - .15 ~ Dumping Rat io , D .00 I 0 0.5 Axial Strain=.01% Temperature=~4°C 25» (b) Frequency , (CPS) .20. 9\\\~‘¥________fl_’fl',,.5.0 .15- .~“‘ï¬r——~ ’_____°1.0 10» ' ~a;0.3 Oï¬- ‘\\\“o~__________——’—'*’0'05 0 0.5 1.0 1.5 Confining Pressure (MPa) 01% Temperature=-10°C Frequency (Cps) 5.0 1.0 .10 h / _ 0.3 '05 F ::::::::::::::::::::::: 0.05 1.0 1.5 Confining Pressure (MPa) Figure 4.29 Damping ratio vs. confining pressure for frozen sand samples of 65% sand content. Damping Ratio, D .25 .20 .15 .10 .00 h 100 Axial Strain=.01Z Q Axial Strain=.01Z Temperature=-1°C =_o .25 Temperature 4 C (a) 5'0 _(b) Frequency Frequency (cps) (CPS) .20- 1.0 I. /——\o 5.0 // .15†0.3 _ _ _ 1.0 A I 0 0.5 1.0 Confining Pressure (MPa) 4.; 0.05 .05' * A 0.05 . .00* . . . ‘ 1.5 0 0.5 1.0 1.5 Confining Pressure (MPa) Axial Strain=.OlZ 25, Temperature=—10°C 20 (C) Frequency ° (CPS) a . .9.“ .15- 39 ~ 5.0 gJ 10 - '3‘ : 4—#o 1.0 E o g .05 .. .___—.—7 4 .3 00 P .__.._7‘ n l 4‘0.05 0 0.5 1.0 1.5 Confining Pressure (MPa) Figure 4.30 Damping ratio vs. confining pressure for frozen gravel samples of 24% gravel content. 101. Frequency (a) (cps) ~3d' ,/°"* ‘0 5.0 D .25- } 'Iâ€J*,.——— ~—_o 1.0 ‘3 .20- o. D '3 .._¢ a 0 3 m .15. m 00 L .3 0 a. .1 ' SE; _ "—’ ——o 0.05 9 Axial Strain-.017. .05' Temperature-=1°C .OOF . . 0 0.5 1.0 1.5 Confining Pressure (MPa) Axial Strain=.OlZ Temperature-=4°C Fre enc (b) (2:5) y .25’ . oz/zâ€"—’f ‘_*' 5.0 .20L ~—o 1 0 .15_ .’,.4r—__i ’ o 0.3 o—"""’ .10' .05“ r—Af ‘0 0.05 .00b 0 0.5 1.0 1.5 Confining Pressure (MPa) Axial Strain=.01Z . _= o .25_Temperature 10 C ’(C) D .20- o“ . H L) 32.15“ g? ' \ ________.——-. 5.0 3.10. Q In ’ O .05- -3 00: o—-—¢f a 0.05 0 0.5 1.0 1.5 Confining Pressure (MPa) Figure 4.31 Damping ratio vs. confining pressure for frozen gravel samples of 42% gravel content. 102 Frequency (a) (CPS) i_; 5.0 .30r W , Axial Strain=.OlA ' C: Temperature=—4°C .25b 1 0 .25’(b) Frequency . W ‘3 ° (CPS) g .20" .20" 5.0 . r k: ‘0 0.3 . / o '3 .15. .15- 1.0 g b L //——'o w 0.3 5‘. .10- °""+ ‘0 0.05 .10' .//—° 2' _ Axial Strain=.01°/. , ‘g ‘ Temperature=-1°C 05+ .05~ â€/0..— 40.05 - r .00- . . . . .00- . . L A 0 0.5 1.0 1.5 0 0.5 1.0 1.5 Confining Pressure (MPa) Confining Pressure (MPa) Axial Strain=.01% .25 ~ Temperature=ulO°C ' (c) Q .20 - a _ Frequency ".1 u (CPS) i9 .15 r 00 P : â€Ã©. .10 . / ——o 5.0 m ‘3 h ‘//â€.’__f ‘_—“‘ 1.0 .05 ’ W i. 0.3 ’ N/ 0.05 .00 . . . 0 0.5 1.0 1.5 Confining Pressure (MPa) Figure 4.32 Damping ratio vs. confining pressure for frozen gravel samples of 59% gravel content. 103 Axial Strain=.OlZ Q Axial Strain=.01Z .25-Confining Pressure—O MPa .25-Confining Pressure—0.345 MPa '(8) ’(b) .20†20- ' Frequency D V * (cps) ,3 '15" Frequency '15) E .. (CPS) . 5.0 on . .5 .10- 1.0 .10. 1.0 g‘ ———o .05. \ .05. ° _ ----- -o.05 _ 0-05 .00 .00 1 44 l l l l l J J_ 1 l 1 1 L 1 1 1 I n -l -4 -7 -10 -l -4 -7 -10 Temperature (°C) Temperature (°C) Axial Strain=.01Z .25†Confining Pressure=l.378 MPa _ (C) .20. 9 Frequency . - (Cps) .2 u .15- ‘E . 5.0 co .5 E‘.10~ 1.0 m U ' o 3 ~05 . 0.05 .00 f]- l l —ZI l l -i L L_llO Temperature (°C) Figure 4.33 Damping ratio vs. temperature for frozen sand samples of 20% sand content. 104 ial Strain=.01% Temperature (°C) Q Axial Strain=.01Z Confining Pressure=0 MPa Confining Pressure=0.345 MPa .25 - .25' (a) .20 _ Frequency .20, Frequency (CPS) (CPS) Q I- . . 5.0 .2 .15 ,. 5.0 .15- J.) :2 ,_ \\‘ P. \ 2° .10 . x ‘x. .10 1'0 ‘H x 1'0 F o 3 g I. \ “O 3 . \F . Q 4____,_.—o .05 _ s‘ .05- 0 05 “0.0S ° - r .00 L .OOt -1 —4 -7 -.O -l -4 -7 ~10 Temperature (°C) Axial Strain=.01% .25 r Confining Pressure=l.378 MPa . (C) Frequency (CPS) .20 - ‘3 5.0 .9. .15 - U 9 ‘1‘ 1.0 21° «4 .10 ' 9. E3 r- 0.3 D \ M .05 ' 0.05 000 h 1 1 l L 1 l L A J A -1 —4 —7 -10 Temperature (°C) Figure 4.34 Damping ratio vs. temperature for frozen sand samples of 45% sand content. 1105 Axial Strain=.01% 9 Axial Strain=.01Z Confining Pressure=0 MPa Confining Pressure=0.345 MPa .25 - .25L \ (a) (b) .. \ . \\‘ Frequency \ 20 - ‘ (cps) ‘20- \\ Frequency o _ _ (CPS) 6‘ '3 15 ’ .15' w m _ . on .5 .10 . .10- Q. E m . . a .05 ~ .05. 0.05 0.05 .00 f .00 . . 44g -1 -4 -7 -1O -1 -4 -7 -10 Temperature (°C) Temperaure (°C) Axial Strain=.01Z Confining Pressure=l.378 MPa .25 ' (C) .20 †O _ Frequency 55 (CPS) u .15 . 5.9 a? ’ '3 .10 . 5.0 S Q r 1.0 .05 . 0.3 . 0.05 '00 14 n n . n n J_I ; -l —4 -7 -10 Temperature (°C) Figure 4.35 Damping ratio vs. temperature for frozen sand samples of 65% sand content. 106 Axial Strain=.01% Cl Axial Strain=.01% 25 Confining Pressure=0 MPa 25 Confining Pressure=0.345 MPa (a) b h (b) CI'ZO ' Frequency '20’ Frequency 3 (cps) + (cps) :0 .15 r .19 E†' ' 5.0 .H :- §-.10 ' .10 g _ 5.0 . 1.0 1.0 O 3 .05 0.3 '05. \\ . .00.L44l4__‘1‘0.05.00£‘ 0.05 -1 -4 -7 -1o -1 -4 -7 -10 Temperature (°C) Temperature (°C) Axial Strain=.Ol% , h_Confining Pressure=l.378 MPa (C) .25 Q .20 ' Frequency .3 . (CPS) u 32 .15 ' g3 - 5.0 I; 10 ’ 5‘3 ' 1.0 a D .05 t 0.3 .00 . 0.05 -l -4 -7 -10 Temperature (°C) Figure 4.36 Damping ratio vs. temperature for frozen gravel samples of 24% gravel content. l-‘ UI .10 Damping Ratio, D .00 107 Axial Strain=.01Z Confining Pressure=0 MPa (3) Frequency (Cps) -10 Temperature (°C) .15 ' .10 ' Damping Ratio, D .05 .00 > .30 .25 .20 .15 .10 .05 .00 -7 Temperature (°C) Axial Strain=.01Z Confining Pressure=0.345 MPa (b) Frequency (Cps) Temperature (°C) Axial Strain=.OlZ Confining Pressure=l.378 MPa (C) Frequency (Cps) 5.0 1.0 0.3 0.05 -10 Figure 4.37 Damping ratio vs. temperature for frozen gravel samples of 42% gravel content. .30 .25 N O o H U1 Damping Ratio, D L O c: O U1 C O Axial Strain=.01% (a) (CPS) .30 F N U1 N O l'-‘ U1 .10 » Damping Ratio, D .05 r .00 Confining Pressure= 108 0 MPa Frequency (C) Q .30 .25 .20 .15 .10 .05 .00 Axial Strain=.01Z Confining Pressure-0.345 MPa (b) Frequency (CPS) b 5.0 L- 1.0 ' 0.3 L. L 0.05 -1 —4 —7 -10 Temperature (°C) Axial Strain=.01% Confining Pressure=l.378 MPa Frequency (CPS) Temperature (°C) Figure 4.38 Damping ratio vs. temperature for frozen gravel samples of 59% gravel content. 109 . Axial Strain=.01Z Q Axial Strain=.01% Confining Pressure=0 Mpa Confining Pressure=0.345.MPa 25 ’ .25' (a) _ (b) .20 ’ .20’ a - ' 5.15 _ .15. -H u m m ' ' 21° .10 _ .10,_ H O. E . p m c: .05 . .05- .00 .00- 0.05 0.3 1.0 5.0 0.05 0.3 1.0 5.0 Frequency (cps) Frequency (cps) Axial Strain=.01% .25» Confining Pressure=l.378 MPa (C) .20- c: .0“ S .15r g D es c 21.10* E m c: .05. p .00 0.05 0:3 150 5.0 Frequency (cps) Figure 4.39 Damping ratio vs. frequency for frozen sand samples of 20% sand content. 110 Axial Strain=.01Z c: Axial Strain=.01% Confining Pressure=0 MPa Confining Pressure=0.345 MPa .25. (a) .25+ (b) r b .20- .20» o - ~ .3 .15» .15’ U m m - * °° L .S .10†.10 Q. E". . m P c: .05“ .05' .00 .00 1.0 Frequency (cps) 1:0 5.0 0.05 0.3 Frequency (cps) 0.05 0.3 Axial Strain=.01Z Confining Pressure=l.378 MPa .25b (c) .20' Q P o“ .15- H .5.) g F 2° .10- H 9.. a . m :: .05P .00 1.0 0.3 Frequency (cps) 0.05 5.0 Figure 4.40 Damping ratio vs. frequency for frozen sand samples of 45% sand content. lll, Axial Strain=.01Z :: Axial Strain=.01Z 25 ’Confining Pressure=0 MPa 25_Confining Pressure=0.345 MPa (3) (b) Temp .20 _ Temp .20_ (°C) (°C) a 6.15 .. -l .15_ H 4H g . 5:" 'H .10 ' .10. O. E m D c: .05 ’ .05’ ‘ ’ -10 .00 .OOL 0.05 0.3 1.0 5.0 0.05 0.3 1.0 5.0 Frequency (cps) Frequency (cps) Axial Strain=.OlZ Confining Pressure=l.378 MPa .25“ (c) y. .20. c: .3 .15- 4.) £2 . co :3. .10- a (U )- c: .05- .OOr 4L 0.05 0.3 1.0 5.0 Frequency (cps) Figure 4.41 Damping ratio vs. frequency for frozen sand samples of 65% sand content. .25 .20 Damping Ratio, D 112 Axial Strain=.01% Confining Pressure=0 MPa (a) .00 _ Temp. (°C) ' —l -4 L .‘10 0.05 0.3 1.0 5.0 Frequency (cps) .25 .20 .15 .10 .05 Axial Strain=.01% Confining Pressure=0.345 MPa (b) , P ’ Temp. . (°C) b h -l - -4 . I l l l -10 0.05 0.3 1.0 5.0 Frequency (cps) Confining Pressure=l.378 MPa —1 -4 -10 l Axial Strain=.01Z (C) .25, a .20. 6 . ‘3 o .15- a: on E. 3.10P o O I .05' .00 P 0.05 0.3 1. O 5.0 Frequency (cpS) Figure 4.42 Damping ratio vs. frequency for frozen gravel samples of 24% gravel content. H N C UI Damping Ratio, D L- a. c> U! 0 U: C) C 113 Axial Strain=.01% Confining Pressure=0 MPa (a) L. Temp. ' (°C) ' -1 —4 -10 0.05 0.3 1.0 5.0 Frequency (cps) .15) .10 Damping Ratio, D .00" :1 Axial Strain=.01% Confining Pressure=0.345 MPa .30- (b) .25" . Temp. .10 (°C) .05 .10- _1 p. .05 -4 .00. ~10 0.05 0.3 1.0 5.0 Frequency (cps) Axial Strain=.01% Confining Pressure=l.378 MPa 0105 033 110 Temp. (°C) -1 —4 -10 5:0 Frequency (cps) Figure 4.43 Damping ratio vs. frequency for frozen gravel samples of 42% gravel content. 114 Axial Strain=.01% :1 Axial Strain=.01Z Confining Pressure=0 MPa Confining Pressure=0.345 MPa .30 - .30- (a) 25 ' .25' o . . .9. .20 t .20' u . Temp. # £3 (°C) 00 15 - .15†a H b a . E -1 g .10- -1 .10b ' F ' - a ' _ .05 _4 .05 4 .00 - -10 .00- . . . -10 0.05 0.3 1.0 5.0 0.05 0.3 1.0 5.0 Frequency (cps) Frequency (cps) Axial Strain=.01% 30* Confining Pressure=l.378 MPa .25' 5‘ .20' .2 i 4..) £2 .15 :0 I .5 a. .10’ E m b a: .05†-4 ' -10 .00‘ . 0.05 0.3 1.0 5.0 Frequency (cps) Figure 4.44 Damping ratio vs. frequency for frozen gravel samples of 59% gravel content. 115 (a Frequency ", (CPS) . N U? \ V O C F4 F1 n: O U1 Q \ U1 0 ° C O 0.05 O (.0 Damping Ratio, D c. Ln Axial Strain=.01Z Temperature=—1°C .00 10 20 30 40 50 60 70 Sand Content (% by Volume) A :3 Axial Strain=.01‘Z Temperature=-4°C .25 r(b) Frequency . (CPS) .20. I /\ 0.05 .15 /\ 003 .10 . ¢//////â€,,o——————“0 1.0 .05 r- /‘—_\O 5.0 P .00 l l A A l l 10 20 30 40 50 60 70 Sand Content (% by Volume) 25 Axial Strain=.01% ' Temperature—=10°C 20 _ (C) Frequency (CPS) :: o“ .15 SH 3.) a ./â€,,——4L___—..i\\\u 0.05 2’ 10 _ .H oâ€â€â€™â€”——‘_-——““\\. 2‘ 0.3 ‘3 05 . 1.0 5.0 .00 10 20 30 40 50 60 70 Sand Content (Z by Volume) Figure 4.45 Damping ratio vs. sand content for frozen sand samples at 0.345 MPa confining pressure. .25 .20 .10 Damping Ratio, D .00 .15 . p b- b Axial Strain=.01% _Confining Pressure=0 MPa Temp (°C) (a) A L A l J. 10 20 30 40 Sand Content (% by Volume) Damping Ratio, D 1116 70 .25 .20 .15- .10 .05’ .00 Axial Strain=.01Z .Confining Pressure=0.345 MPa Temp *(b) (°c) -1 p A -10 I J 10 20 30 40 50 6O 70 Sand Content (% by Volume) Axial Strain=.OlZ Confining Pressure=l.378 MPa .25†Temp (°C) (C) _1’ .20‘ .15. _4 .10. M/‘Hlo .05- .00 I 1 A j A A A I A A 10 20 30 50 60 70 Sand Content (% by Volume) Figure 4.46 Damping ratio vs. sand content for frozen sand samples at 0.3 cps frequency. .30 Damping Ratio, D La k: R: U1 c> u. 0 U! C O H O 117 Frequency (a) (CPS) ‘3 Axial Strain=.OlZ 0-05 '._ Temperature=-4°C ’ .30 L (b) Frequency ' .25' (cps) 0.3 , . p .20. ‘/////—o~\\\\\~ 1-0 r 0.05 ' .15' 0.3 L 5.0 .10» /_\° 1'0 Axial Strain=.01Z 05L Temperature=-1°C ° N 5.0 .,..l . - . a. . . L,. .00’ . . .. . . . . . l . 10 20 30 40 50 60 70 10 20 30 40 50 60 70 Gravel Content (Z by Volume) .30 Damping Ratio, D L: L: k; UI 0 Ln H O O U1 10 Gravel Content (Z by Volume) Axial Strain=.01Z Temperature=-10°C (C) Frequency (CPS) “ 0.05 V—‘N 0.3 A 1.0 A 5.0 A A A j A A A A A A A 20 30 40 50 60 70 Gravel Content (Z by Volume) Figure 4.47 Damping ratio vs. gravel content for frozen gravel samples at 0.345 MPa confining pressure. .30 .25 Q 20 6‘ «4 g .15 Ct. 00 .E 9. .10 I: ('0 c: .05 .00 F b b P 10 2118 Axial Strain=.OlZ Confining Pressure=0 MPa (8) Temperature (°C) —1 )) -10 A A 4 A A 1 20 30 40 50 60 70 Gravel Content (Z by Volume) I l A .30 L ~ (C) N L}: .30F .25 .20 .15- .10‘ .05' .00 L L L b Axial Strain=.OlZ Confining Pressure=0.345 MPa (b) Temperature (°C) -1 '/,/â€"_-““u i-a ""—"\o -10 l A l J A A A l l J 10 20 30 40 50 60 70 Gravel Content (Z by Volume) Axial Strain=.OlZ Confining Pressure=l.378 MPa Temperature_ (°C) -1 a 0.20 ' 0 .,.q _ ‘3 cm .15 ’ d//,/â€â€˜P_-“‘ -4 00 a b -H 2‘ 10 ~ m . a _ oâ€'—_‘L“~\\° -10 05 P .00 . A A A A A A l A A l L 10 20 30 40 50 60 7O Gravel Content (Z by Volume) Figure 4.48 Damping ratio vs. gravel content for frozen gravel samples at 0.3 CpS frequency. Damping ratio, D .28 .26 .24 .22 .20 .18 .16 .14 .12 .10 .08 .06 .04 119 Temperature = ~4°C Sand content = 65Z by volume Frequency = 0.3 cps Axial strain = 1.0 x lO'ZZ <> 1.378 MPa 0 0.345 MPa [3 0 MPa (>1Damping ratio of dry sand (sw—AJA, 1972) < 03=1.378 MPa F 0 10 20 30 40 50 60 70 80 90 100 Degree of ice saturation (Z) Figure 4.49 Influence of degree of ice saturation on damping ratio for frozen Ottawa sand at 0.3 cps frequency Damping ratio, D 120 Temperature = -10°C ’28 ’ Sand content 8 65% by vol. £5 Confining pressure = 0.345 MPa .26 P Axial strain = .OlZ Frequency: .24 . <> 5.0 Cps SAX (D 0.3 cps 22 , A\ A 0.05 cps ' \\ 9 ()1 SW-AJA, P143, Fig. 574 \ \ \ (1972) .20 - A \ \ .18 - \\ ‘~ .g “_ \\ .05 cps . ‘\ 16 \é; \\ \x ‘\ .14-1, ‘\ é> \ 0\ o \ \ .12 ~ \ o \ \\ “~‘\ 10 ’ \ 0\ . \ .3 CPS 08 \\\\ <> \\ \ .06» ‘\ ‘\~ (>\ .04 L 4 4 1 1 k ‘ J L 5 CPS 0 10 20 30 40 50 60 70 80 90 100 Degree of ice saturation (Z) Figure 4.50 Influence of degree of ice saturation on damping ratio for frozen Ottawa sand at 0.345 MPa confining pressure Damping ratio, D 121 .22L .20- .18. Temperature = -10°C Sand content = 65Z by volume .16- - Frequency - 0.3 cps 14 Axial Strain = 1.0 x 10’2Z Confining Pressure 0 MPa 0.345 MPa 1.378 MPa .04- .02’ 0 1.0 2.0 3.0 4.0 Salt content (Z by weight) Figure 4.51 Influence of salt content on damping ratio for frozen Ottawa sand at 0.3 cps frequency Damping ratio, D .24 .22 .20 .18 .16 .14 .12 .10 .08 .06 " .04 .02 122 Temperature = ~10°C Sand content = 65Z by volume Confining pressure = 0.345 MPa Axial Strain 1.0 x 10’2Z Frequency A 0.05 CPS P 0.3 cps 1.0 cps L A 1 l 1.0 2.0 3.0 4.0 Salt content (Z by weight) Figure 4.52 Influence of salt content on damping ratio of frozen Ottawa sand at 0.345 MPa confining pressure Table 4.6 Experimental data of creep tests 123 040010 «0. 051-2 001:3 051-4 2 5400 04.0 03.0 03.7 ICE 0410041100 92.0 90.0 95.2 121 0000111 1007001 «.4. 2. 2.03 1011141 514110 1040 1300 090 2070 (KN/Hath) 1100 510410 1100 510410 1100 010410 0147500 0140500 0142550 (0001 1x0.0121 (0501 (10.0121 (5001 (40.0111 0 0.0 0 0.0 o 0.0 10 1.40 00 0.045 10 2.712 42 4.03 130 1.009 34 5.750 0 100 0.03 170 2.130 52 7.305 x 170 7.75 250 2.545 100 11.159 0 310 10.07 310 2.004 194 15.000 E 450 11.09 452 3.500 300 19.240 0 004 14.31 504 3.909 434 23.444 1 724 15.170 732 4.410 554 27.132 0 709 15.752 952 5.109 000 30.929 0 1100 19.910 1172 5.709 020 34.740 0 1730 24.747 1454 0.409 900 30.300 1 2100 20.450 1732 7.055 1120 42.332 A 2090 32.245 1950 7.010 1274 45.930 L 3290 30.304 3512 11.419 1410 49.347 4050 41.212 5372 14.940 1550 52.574 0 5030 40.730 7472 10.400 1720 50.304 4 5710 50.509 9332 21.191 1000 50.110 1 0390 54.100 11032 24.004 A 13724 27.002 15020 29.002 10420 32.019 21500 30.500 25114 40.237 20314 43.500 32200 47.340 35214 50.200 124 Table 4.6 (Continued) SAHPLE N0. 881-5 881-6 851-7 2 SAND 63.6 64.3 64.5 ICE SATURAlION 41.0 38.9 41.7 (2) BENSITY (EH/CC) 1.83 1.84 1.86 INITIAL STA1IC 1040 690 345 518 (KN/n10; TIHE SFRAIN 116E SIRAIN TlflE STRAIN ELAPSEU ELAPSED ELAPSED (SEC) (X0.012) (SEC) (X0.011) (SEC) (X0.0121 0 0.0 0 0.0 0 0.0 16 4.182 12 4.57 2 1.433 30 10.364 46 5.65 22 3.851 E 66 13.841 86 6.26 6? 5.960 X 170 18.114 126 6.77 fl’2 7.807 P 330 22.124 186 7.37 282 11.754 E 510 25.446 266 8.00 462 14.783 R 778 29.182 546 10.717 682 17.649 I 1150 32.909 966 13.570 934 20.330 0 1534 36.237 1386 15.835 1342 23.710 E 2054 39.959 1886 18.142 1702 26.198 N 2690 43.782 2406 20.212 2282 29.631 1 3214 46.691 3066 22.531 2830 32.348 A 3950 50.241 3878' 25.062 3542 35.455 L 4750 53.632 5006 28.161 4282 38.247 5010 54.900 6166 30.925 4994 41.104 0 7306 33.439 5974 44.084 A 8826 36.546 6994 46.941 1 10266 39.217 8222 50.053 A 11766 41.829 8562 50.893 13234 44.254 14986 46.954 16566 49.270 18566 52.055 19126 $2.863 125 Table 4.6 (Continued) D-ibu SAMPLE N0. CSI-9 2 SAND 63.6 ICE SATURATION 6.5 (1) DENSITY (EH/CC) 1.71 INITIAL STATIC LflAn 173 (KN/nxn) TIHE STRAIN ELAPSED (SEC) (X0.011) 0 0.0 12 3.66 44 12.722 E 96 18.900 X 148 23.752 P 216 28.649 E 296 33.408 R 392 38.397 I 476 42.424 H 556 45.903 E 636 48.923 N T A L 126 qumu vcm mIHmo mwaasmm How mm>uso ammuo uaEmcha mn.q muawï¬m coma coca oo¢~ ooNH Aommv maï¬a oooa com com 00¢ CON . I d I NE\zx «.mca H nae: Nqo u mesao> %n vamm N NNomm " ï¬OHumHDUmm @UH ~e\zx cmom u umoa UHumum anmo N u vmoa qumcxn n manumuwaEmH Nm.o n :owumuauMm moH E\zx mud n amoH Uï¬umum mIHmU 0H ON on o« om (zz 01x) u19133 deals Ieva 127 nnHmo van .nIHmu .NIHmo mmaaï¬mm How mm>u=u ammuo uwamaha cm.q muawam Auwmv maï¬a coco ooow soon 0000 ooom oooc coon ooom coca d 1 u q d NE\zx ¢.on H u vmoa UHEmnha 00¢! u muzumumaEmH New u wEDHo> ma vamm N NN.H¢ n coaumuaumm 60H ~E\zx man u vmoa oï¬uMum nIHmo NNm fl ï¬OHumhï¬umm wUH ~e\zx ommH u vmoa aï¬umum NuHmo d u . Nae u cowumuaumm 00H ~a\zx omo u cued aï¬umum m1Hmu 0H ON on ow on (12 01x) uxezas dBBJD {eyxv 128 N oIHmo cam MIHmo mmHQEmm 90m mm>uno ammuo oHEmaho mm.q muawï¬m A 66m moH x v 6559 d q q . . u 4 E\zx q.wcH H u vmoa UHEmcza 06¢: n muaumumaEmH New u meaao> ha vcmm N N N00 fl COHumuï¬umm 00H E\zvm O00 III VWOH UHUWUW Mleo 1:» Nm.wm u coaumuaumm moH ~e\zx men a emoa u “gnaw cuHmu ON ON on 40¢ om (22 DIX) 019138 daazo TVIXV 129 coca ummu nmwuu odawchv m :« :ï¬muum Non. ou :Hmuum Nma. Scum Euomwv ou mmaaamm vcmm amuoum mom vmwwmc mmaozo mo uwnsaz om.q muawwh coca mmaumu mo umnEbz ooNH coca d d e\zx om.moH N mac mo.o mEDHo> %n Nmo cowl com coo ooe d d I Nm.o Nm.oq COM uï¬HSumm â€UH mmmuum aï¬auzu mocmncmum mummu:0u vcmm mpsumumaEma CON m.o o.H m.H o.N m.N o.m (am/Kn) IaAaI ssazns ueam CHAPTER 5. DISCUSSION The dynamic behavior of frozen granular soils is discussed in terms of mineral volume fraction, ice satur- ation, and saline content in sections 5.1 through 5.3. The effect of tensile failure and parameter application sequence on the test results are explained in sections 5.4 and 5.5. Typical test results from studies of dynamic properties of several types of frozen soils are compared in section 5.6. The similarities and differences are identified and discussed. This chapter ends with a discussion on the dynamic creep behavior and a trial pre- diction of dynamic creep strength using a power equation. 5.1. Mineral Volume Fraction and Dynamic Behavior of Frozen Granular Soils For temperatures at -l.2°C and above, there is a rapid decrease in hardness of ice. ‘It appears that this behavior is due primarily to the onset of pressure melting (Barnes and Tabor, 1966). For samples with a low mineral volume fraction, it appears that strength of the ice matrix is the major factor controlling the strength of frozen granular soils. As the mineral content increases, the sand particles have more and more opportunity to contact 130 131 each other. An external load produces stress concentration at contact points which result in pressure melting and plastic flow of the ice in the vicinity of the contact points (Goughnour, 1967) and reduce the shear strength for samples tested at -l°C. The pressure melting process appears to explain why the dynamic Young's modulus decreases with increasing sand content for samples tested at -1°C. For samples tested at -4°C and -10°C, the pressure developed due to stress concentration has less influence on pressure melting (Barnes and Tabor, 1966). The ice matrix is stiffer at temperatures below the —1.2°C and provides a stronger confinement to soil particles. As the mineral volume fraction increases, the solids gain more opportunity to contact each other with an increase in friction between particles. This friction contributes to the strength of the sample tested and contributes to an increase in the modulus with increasing mineral content. The mineral content at which soil particles first have contact is approximately 42% by volume (Goughnour and Andersland, 1968). The test results obtained in this study show that the effects of pressure melting and friction both become most obvious at mineral volume frac- tions above 42%, which agrees with the earlier study. 132 5.2. Ice Saturation and Dynamic BehaVior of Frozen sand The dynamic Young's modulus increases with degree of ice saturation as shown in Figure 4.23. The unsatur- ated part of the voids was filled with air or vapor. For granular soils essentially all water in the sample was frozen at the test temperature of -4°C. It is reasonable to assume that the available ice bonding between sand particles would reduce as the ice saturation decreases and thus the apparent strength of the frozen sand mass would be reduced. As the ice saturation goes to zero, the strength of the sample should approach the strength of dry sand under a similar test condition. The test results presented in Figure 5.1 show a decreasing dynamic modulus with decreasing ice saturation. The dynamic modulus appears to approach a constant value at lower degrees of ice saturation. This fact agrees well with the dynamic modulus values published by other investi- gators (Richart, Hall and Woods, 1970; SW—AJA, 1972). A comparison between Figures 4.23 and 4.9b is presented in Figure 5.1. The line with arrows representing a 707. ice saturated frozen sand sample with 657. sand content and test temperature of -4°C, has the same modulus as a saturated sample with the same sand content tested at -2.2°C. This parallel relationship is presented 133 in Figure 5.2. From Figure 5.2, the modulus of an under- saturated sample may be predicted by correlating to a saturated sample with known properties. The influence of testing frequency on the corresponding relationship appears to be minor. 5.3. Saline Content and Dynamic Behavior of Frozen Sand The dynamic Young's modulus decreases with an increase of saline content as shown in Figure 4.25. A comparison of the saline content effect on both dynamic strength of frozen sand and volume fraction of frozen water is shown in Figure 5.3. The dashed line indicates the volume fraction of frozen water as a function of saline content. Data points on the dashed line were obtained from curves shown in Figure 2.4 for a temperature of -10°C. The relationship between percent volume of frozen water and saline content appears to be linear whereas the dynamic strength decreases non-linearly with increasing saline content. The difference may have been caused by the non- linear relationship between modulus and ice—saturation shown in Figure 4.23. In Figure 4.25, dynamic Young's moduli tend to approach a constant value in a range of salt content from 2% to 4%‘WhiCh corresponds to an ice saturation from 70% to 90%. In Figure 4.23, the dynamic Young's moduli approach a constant value in a much lower range of 134 ice saturation. This observation leads to the fact that the non-linear relationship between dynamic Young's modulus and ice saturation cannot be the only reason which causes a nonlinear relationship between modulus and salt content. Weeks and Assur (1967), in their study of the mechanical properties of sea ice, suggested that during the formation of sea ice, salts are rejected and the salt concentration increases in the water immediately in front of the ice-water interface. When the salt concentration is sufficiently high, the interface becomes unstable and the salt is incorporated into the ice as brine pockets. These brine pockets, if formed in the soil samples, would influence the mechanical properties of the ice matrix in the frozen saline samples. The curves shown in Figure 2.4 were based on the theory of pure solution. No consideration was given to possible surface effects at the interface between soil particles and saline pore water. The factor warrants additional consideration in future projects. A comparison between Figure 4.9b and Figure 4.25 is presented in Figure 5.4. The arrows in the figure show that a 1.5% saline frozen sand sample tested at -10°C will give approximately the same modulus as a fresh water frozen sand sample tested at -2°C. Similar comparisons between Figure 4.9b and 4.25 result in the curves shown in 135 Figure 5.5. From Figure 5.5, the modulus of a 65% mineral volume fraction saline sample can be evaluated by corre- lating its property to a fresh water frozen sample tested at higher temperature. To fully establish these kinds of correlations, more tests are required. 5.4. Tension Failure and Effects on Experimental Results All samples tested to failure failed with a tension crack at the level of the aluminum coupling plates where the sample's cross section was the smallest. For those samples tested closetx>failure, a deformed or bent hyster- esis loop (Figure 5.6) was observed on the oscilloscope. This bent loop shows a reduced tensile load compared with the compressive load, and leads to a reduced stress for the same strain. Thus, the resulting dynamic Young's modulus was reduced and the damping ratio increased. A bent loop is a clear signal of the emergence of such a failure plane. Failure of the ice matrix along the direction of tensile stress may have started earlier in the test. Failure of the ice matrix would influence test results before the appearance of a bent loop. This tension failure is believed to be the reason for some unexpected drops in modulus data and rises of damping ratios for tests run at colder temperatures, higher strains, lower confining pressures and higher mineral volume fractions. A 136 combination of some of these conditions would be sufficient to reduce the modulus and to increase the damping ratio. All questionable data points were corrected and shown by dashed lines in the figures presented in Chapter 4. Tension failure prevented certain samples from being tested at higher strains. 5.5. Application Sequence of Test Parameters and Effects on Experimental Results The stage testing technique (Silver and Park, 1975) used in this study involved an application sequence of test parameters as shown in Table 3.2. The application sequence effect on the accuracy of the experimental results is still under discussion by some researchers. Several high mineral fraction frozen sand samples were tested to verify the influence of the testing sequence. The testing sequence for these samples, numbered from SI-102 to 81-106, are tabulated in Table 5.1, and typical experimental results are shown in Figures 5.7 and 5.8. Each of these samples was first tested at the lowest strain, highest confining pressure, and lowest frequency to verify the initial character of the sample. Due to difficulty in preparing duplicate samples having the same void ratio and density, some samples may have been somewhat stiffer or softer. 137 From.Figure 5.7, note that sample No. 102 shows the modulus and damping ratio in the same range as those obtained previously. Sample No. 106 (Figure 5.8) shows the same modulus as those obtained before. Samples No. 103, 104 and 105 are relatively stiff by character because of their higher modulus at the lowest strain. Data points for higher strain levels are also generally higher, but they follow the same trend (slope of best fit line) as the one shown in the figure. The damping ratios for samples No. 103 and 106 are generally higher. These results show that the influence of test parameter application sequence on the dynamic properties of frozen sand samples was minor. 5.6. Comparison of Expegimental Results with’Previous Data The dynamic properties of frozen granular soils obtained in the present study are compared with data from other investigators (Kaplar, 1969; Nakano and Froula, 1973; Stevens, 1975; Chaichanavong, 1976; Czajkowski, 1977) for several soil types in Figures 5.9 through 5.11. A legend identifying the soil type and source has been included. For the purpose of a direct comparison, the dynamic properties obtained in all of the studies were converted to common units. Thus, dynamic stress-strain properties are presented in terms of longitudinal wave velocities and damping properties are presented in terms of damping ratios. 138 Values of dynamic Young's modulus obtained in the present study were converted to longitudinal wave velocities using: /2 vL = (Ed/o)1 (5.1) < 11 where L longitudinal wave velocity, Ed = dynamic Young's modulus, p = mass density of the material = Y/g. y = unit weight of the material, and g = acceleration of gravity. Values of damping ratio were calculated from phase lag angles determined in previous studies using: D = sin-g ‘ (5.2) where D damping ratio 6 phase lag angle Figure 5.9a shows that the longitudinal wave velocity (VL) of frozen soils increases as temperature decreases. The lower longitudinal wave velocities given by the cyclic triaxial test data are related to the lower loading frequencies and higher axial strains. The damping ratio decreases with descending temperatures (Figure 5.9b) and 139 is higher for the frozen cohesionless soils as compared to cohesive soils. Resonant column tests (Stevens, 1975) give the lower damping ratios for the frozen Ottawa sand and frozen silt, which is believed to relate to the relatively higher frequency and lower axial strain amplitude. Because of the larger particle size and the smaller specific surface area, a frozen Ottawa sand system contains much less unfrozen water compared to frozen silts or clay at the same negative temperature (Dillon and Andersland, 1966). In other words, almost all the moisture in a frozen sand system freezes at a negative temperature close to the freezing temperature of the water. Therefore, a more abrupt change in longitudinal wave velocities for frozen sand is seen in Figure 5.9a and the velocities tend to approach a constant value after the relatively abrupt deflection as the temperature decreases. The relationship between wave velocity and temperature for frozen gravel is somewhat different from above. An abrupt change is not shown throughout the temperature range studied. It is believed that the size of pore ice in a frozen gravel system is larger than that in a frozen sand system. Thus, the stiffness of pore ice in a frozen gravel system contributes to the strength of the total system more directly than the pore ice in frozen sand. As 140 the temperature decreases, the pore ice in frozen gravel becomes stiffer, and so is the total system. The effect of loading frequency on the longitudinal wave velocity and damping ratio of several frozen soils at -4°C is shown in Figure 5.10. Available data cover only the lower and higher portions of the frequency spectrum. The longitudinal wave velocity (Figure 5.10a) increases gradually with increasing frequency and appears to be relatively independent of soil types. The damping ratio (Figure 5.10b) decreases with increasing loading frequency. Damping ratios obtained with the cyclic triaxial test are in general higher, which is believed to relate to the higher strain and lower frequency. The influence of confining pressure on dynamic properties of frozen soils was investigated in the current research only with cyclic triaxial techniques. A comparison of confining pressure effects on various frozen soil systems is shown in Figure 5.11. Generally, confining pressure does not have a significant influence on either the dynamic Young's modulus or damping property of frozen soils. An increase of modulus with increasing confining pressure for frozen granular materials is the only excep- tion. For a frozen sand or a frozen graVel system.with a high.mineral volume fraction, confining pressure greatly increases the contact pressure between particles or between 141 particles and ice, thus the dynamic elastic strength of the sample is increased. For the frozen silt or frozen clay system tested in the previous studies, confining pressure may only increase the pressure in the unfrozen pore water and ice matrix with little or no increase in effective contact pressure. Therefore, the effect of confining pressure on frozen fine-grained soils would be minor. The dynamic prOperties of a frozen sand system and a frozen gravel system.are very much comparable for most of the cases. However, a direct comparison between 'these two systems is not appropriate due to the different mineral composition and the different shape of particles, which was not considered as a part of this research project. 5.7. Dynamic Creep Behavior of Frozen Sand Creep behavior of frozen soils is commonly domin- ated by secondary creep. The strain developed in the secondary-creep period is generally large compared with the strain developed during primary-creep. The creep curve for this case can be well approximated by adding a steady state creep strain, €(c), to a pseudo-instantaneous strain, 5(i), which occurs at time equal to zero (Figure 2.1a). The pseudo-instantaneous strain is the combination of an elastic portion and a plastic portion, hence 142 8(1) = E(ie) + €(ip) (5.3) The elastic portion, €(ie), can be expressed as e‘ie) = €1ng (5.4) where E(T) is a fictitious elastic modulus. It is smaller than the instantaneous elastic modulus because €(ie) also contains the delayed elasticity effect. For the plastic portion, Ladanyi (1972) has written (ip) e as a power expression, . k(T) (1") = [ ° 1 (5.5) E 6k okZTS where Gk plays the role of a temperature dependent defor- 'mation‘modulus. The slope of the straight line represents the constant strain rate of the secondary creep, éCc), hence ( ) a“) = 94c};— (5.6) This strain rate can also be written as a power expression, Eu.) n(T) - o - eclgzzfy] (5.7) 143 where oc(T) and n(T) are creep parameters, both dependent on temperature. The proof stress oc (Hult, 1966) is the uniaxial stress which would generate an arbitrarily selected creep rate ac when applied to the frozen soil. Therefore, the total strain can be summarized as (2.3) For frozen Ottawa sand samples subjected to cyclic triaxial loads, creep curves were obtained as shown in Figures 4.53 to 4.55. These creep curves conformed well to those obtained in static creep tests. By extending the straight line portion of each curve back to an intercept time equal to zero, a pseudo-instantaneous strain €(i) and a constant strain rate é(c) corresponding to the secondary- creep period can be found. Assume €(ie) to be small and let 8(1) = €(ip)’ then the total strain would be: )n _ c: k - o e — €k(3;) + t€c(3_ (5.8) C when k, n, 0k, 0c can be determined experimentally. Using the experimental results obtained from samples CSI-Z, 3, and 4 for approximately 92% ice saturation, and samples CST-5, 6, and 7 for approximately 40% ice saturation, two creep strain constitutive equations can be established: 144 e = 1.0 x 10'3(§2)°-325 + t-1.0 x 10‘3(§7)1°66“ (5.9) for 40% ice saturation, and + t-1.0 x 10’8(§gï¬)2-639 (5.10) for 92% ice saturation. The procedure for establishing these equations included the following steps: (1) Determine 5(i) and é<c> for each creep curve. This can be accomplished by either a graphical method or by statistical analysis of data poi t in thecstraight line portion of the creep curve. 8 1 and e values for CST-2 to CSI-7 are shown in Table 5.2. (2) Plot 8(1)'s and é(c)'s versus axial stress and then determine n and k graphically. Values of 9k and 0 ‘were based on the graphs at a very small proof strai e and a small proof strain rate é selected for conveniehce (Figures 5.12 and 5.13). c ' (3) Substitute the values for n, k, oc, 0k, sk, and so into Equation 5.8 to establish Equations 5.9 and 5.10. For estimating the long term strength of frozen soils, Vialov (1959) provided experimental data showing that for time intervals greater than about 24 hours the pseudo-instantaneous strain becomes less significant compared with the creep strain, thus the first two terms in Equation 2.3 can be neglected and the creep strain can 145 be expressed as (5.11) The creep strength, or the creep stress at failures can then be written as 8f 1/ o = o (-,——) n (2.2) f C e t c f This equation can be used to evaluate the long term strength of frozen soil under cyclic loads. Using the creep parameters determined experimentally, for an assumed failure strain of 15%, a ten-year service life of a structure, and a 92% ice saturated sand as subsoil, the creep strength is 290 x ( -8 0.15 )1/2.639 1.0 x 10 x 10 x 365 x 86400 91.5 kN/mz This creep strength represents the initial static stress or the mean stress level during the cyclic loading period. In each of the dynamic creep tests con- ducted in this study, the samples were initially loaded with a static stress to a certain level of strain and then a cyclic load was added about the initial static load. An 146 immediate change or discontinuity of the creep curve was not observed after the application of the cyclic stress. Therefore, the cyclic stress may not have an immediate effect on the creep behavior of the sample. The influence of cyclic stress on long term creep behavior cannot be easily identified because of lack of directly comparable data. Information provided by Parameswaran (1979) and Bragg (1979) can be used for a rough comparison. Such a comparison is presented in Figure 5.14 and Table 5.3. The "n" value, which represents the cotangent function of the slope of a creep stress versus strain rate curve appears to be a good indicator of creep strength. A steeper slope or a lower "n" value signifies a higher susceptibility to creep failure. From the comparison shown in Table 5.3, it did suggest a much lower creep strength for cyclicly loaded samples and led to a conclusion of higher possibility of creep failure under dynamic loading conditions. The effect of the frequency and magnitude of the cyclic load was not studied. To compare Figure 4.56 with Figure 2.2b, it is obvious that the degree of ice saturation shown in Figure 4.56 plays the same role as the confining pressure in Figure 2.2b. This serves as a basis for accepting the confining effect of the ice matrix on the dynamic behavior of the frozen granular soils. mmHaEMm vcmm museum umumusuMm NHHMHuumn cam wouMMSuMm you wuHSmmu ummu mo :omaumneoo H.m ouswam ANV coaumusuMw mo“ mo mouwon Avov wusumumaï¬my OOH ow on oq ON 0 OH: ml on «I NI 1 11 u i ‘ I o 1 1 1 d 1_I _ _ _ i .. a . _ . a . u s _ II|"|IIIIIII|'||"I"II"I'I"" .o mm mu N I†W 7.. 7. mac mo. /\ M o .2 mac no.0 moo m.o . l~ .NH a . NH0 0 1 w m o m 0 mm: mend u mo . uH mau o m mï¬aï¬o> >9 Nmo n ucwusoo tcmm mac o.H NHo.o mu zucmszum . . «H mm: mwm o n b Dec: u h mocmscmum wE=Ho> kn Nmo u ucwucou ccmm HmN.q wuawï¬mi Ham.q wuswï¬mH 0H o: o H H (Zn/us) p3 ‘snInpon s‘SunoL armeuï¬q Q H \0 v-( Corresponding Temperature (°C) 148 -8 _ Sand content = 65% by volume 03 3 0.345 MPa 81 = 0.0179 -6~ Frequency 4 0.3 Cps - I 0.05 cps -2- 0 , . . l, J O 20 40 60 80 100 Degree of ice saturation (2) Figure 5.2 Influence of degree of ice saturation on dynamic Young's modulus at -4°C expressed in terms of corresponding temperatures 2 Dynamic Young's Modulus, Ed (CN/m ) 14 H N 5.: O on 149 Volume of frozen water as a function of salt 733‘. content at -lO°C \\A\\ (Yong, et a1., 1978) \ Frequency (CpS) 5 OOH Ob) U‘I [Figure 4.25] Temperature = -10°C, Sand content = 65% 100 90 80 7O 60 03 - 0.345 MPa, 81 = 0.01% 1.0 2.0 3.0 4.0 5.0 Salt content (Z) Figure 5.3 Comparison of salt content effect and Z volume of water frozen at -10°C on the dynamic Young's modulus % Volume of water frozen 150 mmHaEmm pawn cmuoum maï¬amw cam nouns smoum now muaammu ummu mo conqummaoo e.m ouswï¬m ANV ucmucou maï¬amm Aoov muaumuoaame o.m o.N o.H 0 OH1 m1 on <1 N1 I: q 1 .ï¬ 11 o q 1 q 1 un— . . n . N + moo no.0 " L e mao m.o . III IIIII IIVIIII uuuuu unalllnlluunun mac . . o H I.I|.|.|I.I.Ilm'l.l.ln.Inl.l.ul..lnil.ul..l mac o.m InllulllulVIIIIulllllllllII: w Nocmsomum 1’ ea 386 mod p . \I a . “Scour. Nï¬mmomo me: some u S W use a E mESHo> an ch u ucmucoo vcmm «H â€w mco o.H mm: mcm.o a mo cooHI u H zocmzvmpm menao> kn Nmo u ucmucoo vcmm HmN.< musmwm_ Hn¢.q ousmï¬ma 0H NH «H 0H (zm/NQ) ‘pg ‘sntnpon s.8uno; ormeuï¬q -10 A 3 —8 v (1) h D I.) (U 21 a -6 a Q) F OS C '1-1 2—4 0 D. U) 0.) LI H 0 O-2 0 Figure 151 Sand content = 65% by volume 03 = 0.345 MPa 61 = 0.01% _ 0.05 cps 0.3 cps 1.0 cps 0 1.0 2.0 3.0 4.0 Saline Content (Z) 5.5 Influence of sailine content to dynamic Young's modulus at -lO°C, expressed in terms of the corresponding temperature. 152 //// (a) Axial stress, 01 _ Tension Cc _ 8t (b) 0c > 0t 1? / $01: Axial ///l T% strain, 61 Compression [<— 6c -—><——ct —>1 Figure 5.6 Bent hysteresis loops (a) an oscilloscope picture (b) Definition of terms Dynamic Young's Modulus, Ed (GN/mz) Damping ratio, D 153 16 (a) T = -4°C 14 f = .05 cps 102 03 = 1.378 MPa 9A A Sand content = 65% by volume 12 8 6 4 2 O -3.0 -2.5 -2.0 -1.5 -1.0 -O.5 0.0 Log percent axial strain .275h (b) T = -4°C .25 - f = .05 cps G3 = 1.378 MPa Sand content = 65% by volume .225†A 102 #_ .20 . 0102 A A A //—-i a £5 £1 .175b .15 ‘ .125 n s j n L n l -3.0 -2.5 -2.0 -1.5 -l.0 -0.5 0.0 Log percent axial strain Figure 5.7 Influence of test sequence on D and E for frozen sand samples tested at -4°C d Dynamic Young's modulus, Ed (GN/mz) Damping ratio, D 154- 14 . 12 - (a) T = -1°C 10- .f = .05 cps °3= 1.378 MPa 8 Sand content - 65% by volume 6. 2182 O6 0105 104 106 2 r- l 1 l l l I L -3 O -2 5 -2 0 -l.5 -1 0 -0 5 0 Log percent axial strain ¢, 104 104 .30 " 105 .275- .250- T = -1°C _225. f = .05 cps 03 = 1.378 MPa sand content = 65% by volume .20 .175 l l 1 j A I L -300 -205 -300 -105 -100 -005 000 Log percent axial strain Figure 5.8 Influence of test sequence on D and Ed for frozen sand samples tested at -1°C 155 .ouaumumcEmu msmum> OHumu wcHaamO Any .mHHom cououm Hmum>mm mo wmwuumaoua oHsm:%O >uHoon> m>m3 HmCHuauncoa Amy Ho>nuw won huumcov gm“: AnsoH .aHaoum can ocoxuzv vans canuuo OnnoN AmOOH .uchquO vans hHHo>num avoaaom AnNaH .aï¬soum vac ocuxuzv use. uo>ocu= AnsmH .uHaoum can ocuxmzv hnHu soHuvooo Amsaï¬ .nco>uumv vans usuuuo onuon Amnmn .oco>~umv uHHo noucosucwx AmNaH .nco>oumv Nada zuuuvooo Nessa .wco>uco;uaa;uc snag consecuco auumcov 30H .vcwn aauuuo canON sumacue an“; .vcau «amuse as.c~ Nessa .«xnsoxï¬uuuv uHaa uu>oco= Asnmu .HxnaoxHuNOO yawn anxouH< vcowua HNMQWQhwG OHI Any Acov unauquunaos “I II I n O 0 H ./. // .7. 0 ‘OIIEJ Sutdmeq N. .ouaumumaEmu mamum> any m.m muswam A06v ousuuuonsua nHI OHI ml O LV\\ O H nuumnnmm: \\ \ °.N M.“ NH 0 \. O.n \\ T \1 NH OH ‘q‘ I . 0‘ ‘ HH O.n (s/ux)1A "313013A assa Isutpnajfluoq 156 .hocoscmum wchmoH mamum> oHumu wCHaEmO Anv .Nocmsvoum wchmoH mamum> huHooHo> m>m3 Hmchaun:0H Amy .Oo«| um mHHom cowouw Hmum>mm mo mmHuumoouc oHEmchn OH.m oustm Annoy hosoarouu msHvuoa o8 .H o8 . S a do ._.q_-—M ----1 44—.—-— O Hogs» «on .3356 :3: HH N N H 33H .wco>wcm:onnov hmHu consecuso OH / .u HNNOH .mesoxï¬uuov uHHo saxmuH< o ,H.O .m AstH .onsoxaunoO uHHn uo>ocum O c m. a. GAS 58356628 a“: 33.8.. :3: A m .. vans 5.3qu .3355 :3 O a HH N.O m. vane «333 5.232. :3: m / o amass .n=o>usmc sumo eostvooo s 6.6- n s 93H 65533 uHHn acumen—232 n ELEFL »L E.— . . n6 1 DP A23 .2338 35 .3356 5:. N .3... q a... . . a3: . . E: . _ o m 52 .8938 2.8 2.38 8.8 a . o; m e w P 2.0on 1.1111111 \|“WII.IIOH A W as Wm M m m 6 mm ï¬uuuuuunnnu ..O.n s A (\a N A \‘W‘II‘ Ooc no o bep pp. — Ruhr-p h shuns p O.“ m u. 157 whammmua wchHmcoo msmum> HHom amnouw mo oHumu waHOamp paw maHapoz m.wcsow oHamahn Assmfl .Hsmsoxflmuov uHHm um>ocmm AONmHv muHcoHHHuoaucoE + mmHo CowmaoucO HONOH .wco>mcm£on£Ov moH zuHmcmc 304 AnnOH .meaoxnmuov uHHm :mxmmH¢ AcNaH .wco>mcm:UHmnov smHo cowmcouao HONOH .w:o>m:m:on:Ov ooH huHmcoO st: Hm>muw mom pcmm mamuuo huHmamp 304 pcmm m3mqu zuHmcmn anm Ocmme Hme-rmsovxooox HH.m spawns aNE\ZMv ousmmmum wchHmcoO OomH OOOH Dom my w IM“IIIIIIII.IIIIII.II-I‘n H‘IIII ] O OH. ON. ON. OH mH a ‘ornea Surdmeq (gm/N3) Sfltnpow s.8unox ormsuï¬q 158 Table 5.1 Testing Sequence for samples SI-102 through 51-106 Sample No. & Confining (Temperature) Span* Pressure (MPa) Frequency (Hz) 2 1.378 I .05 (21196) 10 1.378 .05 -> 0.3 +1.0 + 5.0 10 0.345 .05 + 0.3 + 1.0 2 1.378 .05 #103 10 1.378 .05 +0.3 + 1.0 + 5.0 _ o (‘0 m was ps+m3+L0+ao 10 0 .05 + 0.3 + 1.0 + 5.0 #104 2 1.378 .05 ('1 C) 24 1.378 .054+ 0.3-+ 1.0 2 1.378 .05 + 0.3 #105 10 1.378 .05 + 0.3 + 1.0 + 5.0 _ o (1†m mus 65+d3+L0+so 24 1.378 .05 + 0.3 +~l.0 #106 . (-1°C) same as the regular sequence 1n Table 3.2 *"Span" is a nob setting on the MTS controller used to indicate the relative amount of desired deformation When sp SP SP 2 s 10 e 24 s 11 12 12 2.0 x 10'3% 2.0 x 10'2% 4.0 x 10‘2% 1.59? 6000 - 4000 > Degree of Ice Saturation = 922 1 Sand by Vol. - 64% Testing Temperature - -4SB ~2 35 1000 _ z - cot 79.75° - 0.181 .. , k - 76.5 mm.2 ‘1 600 . e ‘k - 10 x 10’2: m .- 3 400 . " 1.0 x 10 3 h V) a. 3 200. L: U 100 r ‘\\\:9.75° 60 . ‘0 l L l l 4_ 4L 4 J 4 6 8 10 20 40 60 so 100 Pseudo-instantaneous Strain, 6(1) (xIO-ZZ) p 6000 . 6000 » (b) NA E E; 2000 - O ,; 1000 - 8 r I ° I 5 600 ’ 3 cot 20.752 2.639 a. c - 290 kN/m § ‘00 I 20.75° @ cc - .0001 x 10'22 sec‘1 ° —— - 1.0 x 1o"8 «6’1 200 > 100 J A I J I k A I A A A A A 44 .0001 .0004 .001 .004 .01 .04 .1 Figure 5.12 Log-Log Plot of e 2 Z sec-1) Creep Strain Rate, é(c) (x10- (1) and é(c) (ice saturation - 92%) vs. Applied Stress ‘160 Table 5.2 Values of Pseudo-instantaneous strains and creep strain rates Sample No. 0 2 5(i)_2 €13; _1 Ice Saturation CSI-Series (kN/m ) (x10 %) (x10 % sec ) (%) 2 1380 17.761 .005727 92 3 690 14.932 .001005 90 4 2070 16.823 .022903 95 5 690 31.341 .004718 41 6 345 24.495 .001438 38.9 7 518 26.422 .002890 41.7 9 173 21.665 .043198 6.5 161 1°00 * Degree of Ice Saturation - 402 600 b 0 (a) 1 Sand by Vol. - 642 Testing Temperature - -4°C 1. 400. N e \ 5 k-cot 72°=0325 V 200 , ' c: °k - 22 k11/m2 m -2 § 100. @Ek-10x10§ a . -110x;uf Q 60 b 0 3 o 40 F 72° 20 . 10 I A L A L A 4 A 4 6 10 20 4O 60 100 Pseudo-instantaneous Strain, E(1) (x10-22) 2000 > (b) 1000 , NA 1 E SE 600 . O. o 400. J 3 n - cot 31° - 1.664 3 200 2 a, CC I- 67 1614/11: 0 e - .0001 x 10 2 sec 6: 100 C -8 _1 o - 1.0 x 10 sec 60 » 40 . 30 a 4 _. A a - _.‘ 44.. s a a 4 A s .0001 .0004 .001 .004 .01 .04 ..l Creep Strain Rate, é(c) (x10-22 sec-1) Figure 5.13 Log-Log Plot of 8(1) and 6(a) vs. Applied Stress (ice saturation - 402) 162 .ousuosuum a «o owHH ooH>uom use» OH van nnH we cwmuua ounHHnu vuanmua an no woman coauaHauHeo aN.N cowuuavmv ax NU u u l 1..ch oats. U A a. A .2 8H... 3 364 .8 no.» 0...- 5 663 x. m. w m HameHa: m.m aaauuo wavaoH uuHumu .A w n.Ho nHm.O OoN mno.N onN.ON «No noes OccON voHHouucoo ummnum gnaw use... ) 8 . . 95¢qu cannons—sou H u eNnm Nmo O 8: mHH N ooé Rama 06o: . £8 OOHIOM H3683: 33 “8 chuum ucwumcoo .a 82 NS . o 82 «.3 . .6 L . S «N... a no? m cm umou Um . . . v m cannons—Boo 55 no.3 owe o 83 .3H m 60 N «No8 0601 namuuo HonuHca 3a.... “m OOHaOm sHmuum unconsou u 2% 89° 82: 26.2 a... «28 6.2- u A a\sz u u A s\zxv N u w N AoQOHmV uou I coaueuaunm vogue: dune no mo c\HH u on :c: oaOHm 00H ouauauonaoh HaHuUuq: unquaoa oouaom mcoHqucoo wchmoH oHEmahp can oHumum pups: nuwamuum guano mo comHumOEoO m.m mHan 163 Curve No. Slope Proof Stress Temperature Creep Parameter 0c (kN/mz) (°C) "n" l 4.2 10600 ~15 13.617 2 7.0 6400 - 6 8.144 4 8.0 5100 - 6 7.115 5 20.75 290 - 4 2.639 6 31.0 67 - 4 1.664 2. -—-'_.—.—o_——-o._——o.——-“.——:—’o—:;:;—.â€- 10‘ ————— 1 ..’..____.o-::::_.â€__——-:“ “v†:- -——-;.-,_--_.—.-.-..——;-;.——,r./ ’1... . 3"," ‘4"â€â€ ’0 t â€aâ€â€™ NA I 3 E z 2 . 35 Dynamic b 103.. a 8 ’ g 6 ' ’4’" a a, ‘ P a"’ c. .:.’_'__.. 5 ’ —-— Parameswaran (1979) E 2» ,z†"â€" Bragg (1979) I o 2 ,I’ —" Current Study I 108: ’z" """ Extension of lines to .sï¬â€” 6 _8 '1. 6 . 4 Proof stress é‘c) ' 10 83° 4 - ~ -..A - . - - L L. - - -4— 10" 2 4 6 s 10"7 2 4 6 s 10"6 2 I. 6 s 10"5 Strain Rate, é(c)(sec-1) Figure 5.14 Comparison of creep strength under static and dynamic loading conditions CHAPTER 6. SUMMARY AND CONCLUSIONS The dynamic properties of frozen granular soils have been studied experimentally using strain-controlled cyclic triaxial tests. Parameters investigated, which may influence the dynamic properties of soils, included mineral volume fraction, saline content and degree of ice saturation of the frozen soils, temperature and confining pressure of the ambient environment, and the strain amplitude and loading frequency applied to the sample. The materials studied included commercially available Ottawa sand and small-sized pea gravel which is categorized as very coarse sand in the Unified Soil Classification system. These materials were combined with adequate amounts of water and artificially frozen into cyclindrical samples. The dynamic properties studied included elastic behavior, energy absorbing properties, and creep behavior of frozen granular soils. Elastic Behavior The strength of the ice matrix is a major compon- ent of the strength of frozen granular soil systems. 'When the mineral volume fraction is high enough to allow particle to particle contact, the inter-particle friction 164 165 and the interaction between particles come into effect and contribute to the total sample strength. The crystalline structure of the ice matrix is very sensitive to temperature and impurities, hence, the strength of the ice matrix can vary significantly. The inter-particle stress is a function of mineral volume fraction, temperature, and confining pressure. The ice matrix provides the basic confinement to the solid grain and confining pressure strengthens the confinement. Saline content changes the water freezing temperature and thus influences the stiffness of the ice matrix. The degree of ice saturation alters the ice matrix volume and in turn influences the dynamic strength of the frozen soil system. Loading frequency and axial strain are believed to influence the elastic and the dash-pot behavior of the sample and thus affect the values of dynamic Young's ‘modulus. Based on the experimental results, the following conclusions can be made: the dynamic Young's modulus, which represents the stiffness of the frozen samples: (a) increases with increasing loading fre uency, mineral volume fraction, and con ining pressure; (b) decreases with increasing axial strain, higher temperatures, and increasing saline content; 166 (c) increases with increasing ice content for partially saturated samples but decreases with increasing ice content for over- saturated (ice-rich) samples. Energy Absorbing Properties Energy absorbing properties were represented by a damping ratio, which is the fraction of energy absorbed or dissipated per stress cycle. For frozen clay and silt (Chaichanavong, 1976; Czajkowski, 1977), the damping ratio decreased with an increase in the dynamic Young's modulus. This was not always the case for frozen granular soils. The damping ratio would increase, decrease, or remain unchanged with respect to the increase of dynamic Young's modulus which depends on changes in the test parameters. This behavior appears to be a function of the larger- sized particles in a granular soil system. The samples acted more like a composite system of discrete materials. Both loss of adhesive bonds between ice and soil grains and relative movement between soil particles with respect to the surrounding soil and ice lead to irrecoverable loss of energy. The individual and irregular nature of this type of energy loss made the change in damping ratio with respect to certain parameters less predictable. The following conclusions can be made from.the available test results: 167 (l) The damping ratio, which represents the energy absorbing properties of the sample, (a) decreases with increasing loading fre- quency and decreasing temperature, and (b) decreases with increasing ice content for samples of all degrees of saturation. (2) The effect of axial strain, con- fining pressure, solid content and saline content on damping ratio are not explicit from the data obtained in this study. Creep Behavior Dynamic creep tests involved frozen sand samples with several degrees of ice saturation, a static load until the axial strain reached 0.07%, and a stress- controlled dynamic load (1168.4 kN/mz) thereafter at 0.05 Hz. The initial static load and the number of cycles required to reach a final strain of 0.5% served as test variables. The test temperature of -4°C and zero confining pressure were constant for all samples. This preliminary study of frozen sand creep behavior under dynamic loading conditions permit several conclusions to be made. The creep rate is dependent on the initial stress state and degree of ice saturation. The creep strength is a function of creep rate and in turn is dependent on the degree of ice saturation. Based on the test results, the creep rates increase with decreasing ice saturation and increasing initial stress level. The creep strength decreases with decreasing ice saturation 168 and increasing creep rate. A comparison with test results from other investigators permits a conclusion of higher susceptibility to creep failure under dynamic loading conditions than under static loading conditions. The creep behavior of frozen soil under dynamic loads may also be influenced by temperature, the magnitude and frequency of dynamic load, and confining pressure, but their effects were not explored in this study. REFERENCES 169 REFERENCES Andersland, O.B., Sayles, F.H. and Ladanyi, B. (1978) "Mechanical Pr0perties of Frozen Ground," Chap. 5 in Geotechnical. Engineering for Cold Regions, O.B. Andersland and Duwayne M. Anderson, editors, McGraw-Hill Book Co., New York. Anderson, D.M., Tice, A.R. and Mckin, H.L. (1973) "The Unfrozen water and the Apparent Specific Head Capacity of Frozen Soils," North Am. Contrib. 2nd Int. Conf. on Permafrost, Yakutsk, U.S.S.R., National Academy of Science, Washington, pp. 289- 295. Banin, A. and Anderson, D.M. (1974) "Effect of Salt Concentration Changes during Freezing on the Unfrozen Water Content of Porous Materials," J. Water Resources Research, 1974. V01. 10:1. Barnes, P. and Tabor, D. (1966) "Plastic Flow and Pressure Melting in the Defor- mation of Ice 1," Nature, Vol. 210, May, 1966, pp. 878-882. Bragg, R.A. (1979) Personal correspondence. Brown, J. (1969) "Ionic Concentration Gradients in Permafrost, Barrow, Alaska," Res. Rep. 272, 24 pp., U.S.A. CRREL, Hanover, New Hampshire, 1969. Chaichanavong, T. (1976) "Dynamic Properties of Ice and Frozen Clay Under Cyclic Triaxial Loading Conditions," unpublished Ph.D. thesis, Michigan State University, East Lansing, Michigan. 170 171 Cho, Y., Rizzo, P.C. and Humphries, W.K. (1976) "Saturated Sand and Cyclic Dynamic Tests," selected paper in "Liquifaction Problems in Geotechnical Engineering,‘ ASCE National Convention, September 72 - October 1. Converse, F.J. (1961) "Stress-Deformation Relations for Soft Saturated Silt Under Low-Frequency Oscillating Direct-Shear Forces," Special Technical Publ. No. 305, Symposium on Soil Dynamics, ASTM, pp. 15-19. Czajkowski, R.L. (1977) "The Dynamic Properties of Frozen Soils Under Cyclic Triaxial Loading Conditions," unpublished M.S. thesis, Michigan State University, East Lansing, Michigan. Dillon, H.B. and Andersland, O.B. (1966) "Predicting Unfrozen Water Contents in Frozen Soils," Can Geotech. Journal, 3(2):53-60. Drnevich, V.P., Hall, J.R., and Richart, F.E., Jr. (1966) "Large Amplitude Vibration Effects on the Shear Modulus of Sand," Contract Report No. 3-161, U.S. Army Eng. Waterways Experiment Station, Vicksburg, Miss., Oct. Goughner, R.R. (1967) , "The Soil-Ice System and the Shear Strength of Frozen Soils," unpublished Ph.D. thesis, Michigan State University, East Lansing, Michigan. Goughnour, R.R. and Andersland, O.B. (1968) "Mechanical Properties of Sand-Ice System," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM4, July. Hardin, B.O. and Drnevich, V.P. (1970a) "Shear Modulus and Damping in Soils; (1) Measure- ‘ment and Parameter Effects," Tech. Report UKY 26-70-CE-2, Soil Mech. Series No. 1, Univ. of Ky., College of Eng., July. Hardin, B.O. and Drnevich, V.P. (1970b) "Shear Modulus and Damping in Soils; (2) Design Equations and Curves," Tech. Report 27-70-CE-3, Soil Mech. Series No. 2, Univ. of Ky., College of Eng., July. 172 Hardin, B.O., and Drnevich, V.P. (1972a) "Shear Modulus and Damping in Soils, Measurement and Parameter Effects,‘ Journal of the Soil Mech. and Found, Div., ASCE, Vol. 98, No. 8M6, June. Hardin, B.O., and Drnevich, V.P. (1972b) "Shear Modulus and Damping in Soils: Design Equations and Curves," Journal of the Soil Mech. and Found, Div., ASCE, Vol. 98, No. 8M7, July. Hult, Jan A.H. (1966) "Creep in Engineering Structures," Blaisdell, Waltham, Mass. Idriss, I.M. and Seed, H.B. (1968) "Seismic Response of Horizontal Soil Layers," Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 94, No. SM4, July. Kaplar, C.W. (1969) "Laboratory Determination of Dynamic Moduli of Frozen Soils and of Ice," Research Report 163, USACRREL, Hanover, New Hampshire, January. Kennedy, A.J. (1962) "Processes of Creep and Fatigue in Metals," Edinburgh, Scotland: Oliver and Boyd. Ladanyi, Branko (1972) "An Engineering Theory of Creep of Frozen Soils," Can. Geotech. Journal 9(1):63-80. Linell, K.A. and Kaplar, C.W. (1966) "Description and Classification of Frozen Soils," Technical Report 150, USACRREL, Hanover, N. H. Nakano, Y. and Arnold R. (1973) "Acoustic Properties of Frozen Ottawa Sand," Journal of water Resources Research, Vol. 9, No. 1, February. Nakano, Y., and Froula, N.H. (1979) "Sound and Shock Transmission in Frozen Soils," North American Contribution to the 2nd Interna- tional Conference on Permafrost, National Academy of Science. 173 Nakano, Y., Martin, R.J., and Smith, M. (1972) "Ultrasonic Velocities of the Dilatational and Shear Waves in Frozen Soils," Journal of Water Resources Research, Vol. 8, No. 4, August, pp. 1024-1030. Parameswaran, V.R. (1979) Personal correspondence. Peacock, W.H., and Seed, H.B. (1968) "Sand Liquefaction Under Cyclic Loading Simple Shear Conditions," Journal of the Soil Mech. and Eggnd.8Div., ASCE, Vol. 94, No. 8M3, May, pp. - 0 . Richart, F.E., Jr., Hall, J.R., Jr., and Lysmer, J. (1962) "A Study of the Propagation and Dissipation of 'Elastic' wave Energy in Granular Soils," Research Report, Civil Eng. Dept., Univ. of Fla., Sept. Richart, F.E., Hall, J.R., and Woods, R.D. (1970) "Vibrations of Soils and Foundations," Prentice- Hall, Inc., Englewood, N.J. Sandor, B.1. (1972) "Fundamentals of Cyclic Stress and Strain," The University of Wisconsin Press, Madison, Wisconsin. Schnabel, P.B., Lysmer, J., and Seed, H.B. (1972) "SHAKE--A Computer Program for Earthquake Response Analysis of Horizontally Layered Sites," Research Report EERC 72-12, Earthquake Engineering Research genter, University of California, Berkeley, Cali- ornia. Schroeder, W.L., and Schuster, R.L. (1968) "Laboratory Simulation of Seismic Activity in Saturated Sands," Special Technical Pub. No. 450, Symposium on Vibration Effects of Earthquakes on Soils and Foundations, ASTM, pp. 57-70. Scott, F.S. (1969) "The Freezing Process and Mechanics of Frozen Ground," Cold Regions Science and Engineering Mbnograph ll-Dl, October 1969, USACRREL, Hanover, New Hampshire. Seed, H.B. (1968a) Unpublished test results. 174 Seed, H.B. and Idriss, I.M. (1969) "Influence of Soil Conditions on Ground Motions During Earthquakes," Journal of the Soil Mech. and Found. Div., ASCE, Vol. 95, No. SMl, January. Seed, H.B. and Idriss, I.M. (1970) "Shear Moduli and Damping Factors for Dynamic Resonance Analysis,†Report No. EERC 70-10, Univ. of California, Earthquake Eng. Research Center, Berkeley, December, 1970. Seed, H.B. and Lee, K.L. (1969) "Pore-Water Pressure in Earth Slopes Under Seismic Loading Conditions," Proc., 4th World Conference on Earthquake Eng., Chile, Vol. 3, No. A5, pp. 1-11. Silver, N. L. and Park, T.K. (1975) "Testing Procedure Effects on Dynamic Soil Behavior," ASCE, Journal Geotechnical Engineering Division, Vol. 101, No. GTlO, October, 1975. Silver, M.L. and Seed, H.B. (1969) "The Behavior of Sand Under Seismic Loading Condi- tions," Report No.-EERC 69-16, Univ. of Calif., Earthquake Eng. Research Center, Berkeley, Calif. Dec. Sowers, G.F. (1963) . "Strength Testing of Soils," Special Technical Pub. No. 361, Laboratory Shear Testing of Soils, ASTM, pp. 3-31. Stevens, H.W. (1973) "Viscoelastic Properties of Frozen Soil Under Vibratory Loads," The North American Contribution to the 2nd International Permafrost Conference, National Academy of Science, July. Stevens, H.W. (1975) "The Response of Frozen Soils to Vibratory Loads,‘ Technical Report No. 265, USACRREL, June. Streeter, V.L., wylie, E.B., and Richart, F.E. (1974) "Soil Motion Computations by Characteristic Methods," Journal of the Geotechnical Engineering Division, ASCE, Vol. 100, No. GT3, March. 175 SW-AJA (1972) Tedrow, Thiers, Vinson, Vinson, Vyalov, Vyalov, Weeks, "Soil Behavior Under Earthquake Loading Conditions" State-of—the-Art Evaluation of Soil Characteristics for Seismic Response Analysis," A joint adventure of Shannon and Wilson, Inc., and Agbabian-Jacobsen Associates, December. ~ J.F.C. (1966) "Polar Desert Soils," Soil Science Soc. Amer. Proc., 30, 381-387, 1966. G.R., and Seed, H.B. (1968) "Strength and Stress-Strain Characteristics of Clays Subjected to Seismic Loading Conditions," Special Technical Pub. No. 450, Symposium on Vibration Effects of Earthquakes on Soils and Foundations, ASTM, pp. 3-56. T.S. (1975) "Cyclic Triaxial Test Equipment to Evaluate Dynamic Properties of Frozen Soils," Report No. MSU-CE- 75-1, Division of Engineering Research, Michigan State University, March, 1975. T.S. (1978) "Response of Frozen Ground to Dynamic Loading," Chapter 8 in Geotechnical Engineering for Cold Regions, 0. B. Andersland and D. M. Anderson, editors, McGraw-Hill Book Co. , New York. S.S. (1959) "Rheological Properties and Bearing Capacity of Frozen Soils," USACRREL, Trans 74, (1965), Hanover, N.H. S.S. (1962) "The Strength and Creep of Frozen Soils and Calcu- lations for Ice—Soil Retaining Structures," USACRREL, Translation 76 (1965) Hanover, New Hampshire, 1965. W.F., and Assur, A. (1967) "The Mechanical Properties of Sea Ice," U.S. Army Cold Region Res. Eng. Lab. Monogr. II 63, Hanover, N.H. 176 Weissman, G.F. and Hart, R.R. (1961) Yong, R. Yong, R. "The Damping Capacity of Some Granular Soils," Special Technical Pub. 305, Symposium on Soil Dynamics, ASTM, pp. 45-54. N., Sheeran, D.E., and Janiga, P.V. (1973) "Salt Migration and Frost Heaving of Salt- Treated Soils in View of Freezing and Thawing," Sym. Frost Action on Roads, 1973 OECD II. N., Cheung, C.H. and Sheeran, D.E. (1978) "Prediction of Salt Influence on Unfrozen Water Content in Frozen Soils," Proc. of International Symposium on Ground Freezing, Ruhr-University Bochum-Germany, 1978. APPENDICES 177 APPENDIX A TEST EQUIPMENT AND RECORDING DEVICES 178 TEST EQUIPMENT AND RECORDING DEVICES The test equipment and recording devices included (1) a triaxial cell completely immersed in a low temper- ature coolant, (2) an MTS electrohydraulic closed-loop testing system which applies the load to the sample, (3) a cooling and circulation system for control of the temperature and constant circulation of the coolant, and (4) recording devices such as a digital multimeter, an oscilloscope, a strip chart recorder, and a mini-computer (Figure A. l) . A.l. Triaxial Cell Assembly A schematic diagram of the triaxial cell inside the cold bath is shown in Figure A.2. The triaxial cell was made of an 18 cm diameter and 35 cm.high aluminum cylinder with steel top and bottom plates. The aluminum cylinder was chosen for the following reasons: (1) the cylinder permitted sample confinement at high cell pressures, (2) light weight permitted easier handling, (3) high thermal conductivity permitted temperature changes in reasonable time period, and (4) the non- circulating coolant inside the cell helped dampen the 179 180 temperature changes due to cycling of the external refrig- erated coolant source (low temperature bath). A load cell, attached to the steel bottom support, permitted load measurements inside the cell. Confining pressures acting on both top and bottom of the load cell served to cancel its effect. The 7.1 cm diameter sample, average length of 16.8 cm with its coupling cap and base was connected to the load cell by a steel rod threaded on both ends. The loading ram, passing through the steel top of the triaxial cell, permits application of the cyclic load from the MTS acturator. A gage head type LVDT (.125 in displacement range, 1.9 mV/.OOl in. sensitivity, and 0.21% linearity) was installed on the anti-tilt device (Figure A.3) to monitor sample axial deformation. The anti-tilt device consists of three basic components: (1) a base clamp attached to the sample base with connecting rods for the LVDT and the cap assembly, and (2) an anti- tilt ring mounted on one end to the spring steel clamped on the cap assembly connecting rod. On the other end a screw with bearing plate contacts the LVDT probe shaft. The anti-tilt ring was 6.3 mm larger in diameter than the sample cap to allow free movement about the cap, (3) a cap clamp attached to the anti-tilt ring with two spring steel leaves which acted like pivot points for movement of the anti-tilt ring. Thus the axial deformation was 181 doubled at the LVDT but the tilt of the sample cap, if any, would not be transmitted through the spring steel leaves. A picture of one sample with the anti—tilt devices attached is shown in Figure A.4. Two thermistors, attached to a steel bracket, were clamped loosely, but very closely, to the sample to monitor the sample temperature during the test. These two thermistors were calibrated with a precision laboratory thermometer having a scale devision of 0.1°C. The thermistors were capable of reading to the nearest 0.1°C. The temperature of a sample during testing was obtained by averaging the readings from the two thermistors. The confining pressure was applied by compressed nitrogen through a pressure regulator. A.2. MTS (Material Testing System) The cyclic load was applied by an MTS electro- hydraulic closed-loop test system which consisted of a hydraulic pump (Figure A.5), an acturator (Figure A.6), and a set of controllers (Figure A.7). Figure A.8 shows a schematic diagram of the electro-hydraulic close-loop test system. An LVDT in the triaxial cell provided a signal proportional to the deformation of the sample. The signal from the LVDT, called feedback, was fed into the servo-valve controller which compares it with the signal 182 from the function generator, called "command." If command and feedback are not equal, then the acturator is not positioned as desired. The servo-valve controller reacts to the relative difference between these signals (both polarity and magnitude) and applies a control signal to the servo-valve which changes the flow rate of the fluid run into and out of the acturator to correct the difference. Thus the acturator piston will apply a continuous sinusoidal wave load under command of the function generator. A.3. Cooling and Circulation System The components in the cooling and circulation system are a cold bath, a refrigeration unit, a thermo- switch, and a circulation pump. The cold bath (Figure A.6) was 0.35 m.by 0.35 m.by 0.46 m and contained 0.048 m3 of a 50/50 mixture of ethylene glycol and water as the coolant, excluding the volume of the triaxial cell. The insulation around the cold bat was 2.5 cm thick styrofoam placed next to the tank. The temperature inside the cell was damped relative to cyclic variations in the circulating coolant around the triaxial cell. The bath permitted the coolant to enter at the bottom.and to return to the refrigeration unit from an overflow at the top. In addition, the coolant also passed across the top of 183 the triaxial cell through an auxiliary pipe to prevent heat intrusion from above. The refrigeration unit (Figure A.10) contained approximately 0.096 mg coolant. The temperature of the coolant in the refrigeration unit was usually somewhat lower than that of the cold bath and was controlled by a thermoswitch, which turned the compressor on and off, with a sensitivity close to 0.l°C. A.4. Recording and Monitoring Devices The dynamic Young's moduli were calculated from the results recorded by a Sanborn strip chart recorder (Figure A.11). The strip chart recorder, sometimes called an oscillograph, is a multi-channel direct-writing instru- ment which uses a bank of galvanometers to record a number of variables simultaneously. Each galvanometer drives a writing arm, which wipes with a hot wire ribbon stylus across heat-sensitive paper while the paper is moving over a knife-edge writing plateau. The frequency response of the strip chart recorder was checked and it was determined that there was no variation in the amplitude when the frequency was varied from 0.05 Hz to 50 Hz. A typical strip-chart record is shown in Figure 3.4. The damping ratio was computed from a photographic record of the screen display of a Tektronics Storage 184 Oscilloscope (Figure A.7.). The oscilloscope has the advantage of giving an immediate response to any electronic deviation signal at very high frequencies so that the possibility of introducing mechanical hysteresis while evaluating the damping property of the sample was minimized. A typical hysteresis loop picture was given in Figure 2.5c. The area of the hysteresis loop was measured with a planimeter from an enlarged trace of the photographic record on the negative. The optical distortion involved in the photographic process was negligible. The signals coming from the LVDT and load cell were extremely "noisy" at low strain. To eliminate this high frequency noise, several stages of multi-channel filter electronics were used. The filtering electronics were designed with extreme care to avoid the creation of any "phase offset" for the signal going to the oscilloscope and to avoid any "attenuation" for the signal going to the strip chart recorder. A digital multi-meter was used to monitor the voltage output from the load cell and LVDT and thermistor resistance during the tests. During the latter stage of testing, a mini- computer on-line data reducing system.became available. 185 The system (Figure A.12) was composed of a Computer Automation "Naked Mini LSI-Z" mini-computer, a Datel System 256 A/D - D/A converter and a teletype. The system.was successful in evaluating damping ratios and saved some labor and time for reducing the damping data. 186 Servoval Actua Hydraulic power suvply ler Servo Hydraulic control Triaxial cell cell Load frame lsnt and tion unit Output recorders Figure A.l Cyclic triaxial test system 187 To recorder Loading ram .1 ï¬â€”HL\ J â€:32 -=- ) 7 Insulated cold bath I 5 \ t ,s-anti-tilt h ’2 device t Thermistor 2%: \ .° '. t Aluminum ' 5:3;- { "m \ “u ' Frozen soil \ " " sample‘ A \ Coolant \ ',pLoad cell in ‘ Figure A.2 Triaxial cell inside the cold bath 188 anti-tilt ring 5 rin steel leaves . p g screw adjustable spring steel‘ \ 1 -/bearing plate .5i—D probe shaft cap clamp spring actuated cop gage head with assembly N LVDT connecting rod gage head connecting rod base clamp Figure A.3 Schematic of anti—tilt device Figure A.4 Samp1e with anti-tilt device installed 189 Figure A.5 Hydraulic pump Figure A.6 Actuator and cold bath. 190 Figure A.7 Storage oscilloscope and MTS controllers hydraulic d9Ub'e sided PM 1:: '"'°“ supply actuator amwï¬md gflference loading rod elween shnms hydrauhc . t B'VUVUIVE controller Konlroller LVDT frozen ifunction command H3 sample . enerotor . . m . 9 Signal 1.1.5.2.? I I l L ______ loadceH Figure A.8 Electrohydraulic closed- 1oop test system 191 coolant outflow triaxial cell with non-circulating coolant ——-circulating coolant frozen sample cold bath coolant 'an I OW Figure A.9 Schematic of cold bath Figure A.10 Refrigeration and circulation unit 192 Eoumzm umuDQEOUIwaï¬z NH.< wuswï¬m umuuouwu uum30laï¬uum HH.< muawï¬m APPENDIX B DYNAMIC YOUNG'S MODULUS FOR SAND-ICE SAMPLES 193 E+05 PSI E+05 P51 2 E NODULUS 3. 2: FIGURE 3.1 ‘_ saanss SI-O,Sl-9,SI-IO,SI-12 ;_ SAND CONTENT = 20 2 L 9 POINTS 2L. 2. er a: r- EL ‘3 %‘A l. A A ‘3 ‘3"-a a†N iu.h 5 L00 PERCNT 1 Rx STRRIN l 0.00 0.120 “o. "00 I... IMO "J 31.0 â€.0 turn UST—lï¬OSCPO 2 E HODULUS 0.1 : FIGURE 3.3 _ SANPLES SI-O,SI-9,SI-tO,SI-12 . SAND CONTENT = 20 1 t 10 POINTS ::;;;g;;ém._£. ‘ “‘ - :---- A A , Jan ~21.“ 41.00 41.59 a...- "la- 0% LOG PERCNT 1 ax STRRIN DST—IFICPO 194+ E+05 PSI E+05 P31 2 E flODULUS ï¬d‘ gr 9: FIGURE 3.2 *t SANPLES SI-O,SI-9,ST-l0,Sl-12 g. SAND CONTENT s 20 z 9~ 10 POINTS : p . t 3. 3 : i . †A 3. l- ‘Am— A. . T- : A — AL . 4%.“ :30 4..†41.09 if“ â€1300 0.: LOG PERCNT 1 ex STRHIN DST-IEBCPO 2 E MODULUS , at FIGURE 3.4 *t SAMPLES SI-8,SI-9,SI-10,SI-12 §+- SAND CONTENT = 20 z .r 10 POINTS 6: a? ~. g r- :b 3: :C ‘ . » A .5E-——_ff_—2r_—""“““--—————.__ .l'll'J I L l J l 4 - .0- a.“ on... on... a... -.ou 0.7 LOB PERCNT 1 RX STRRIN DST-IFSCPO E+05 PSI E+OS PSI O-N I.†lie. “.0 I... 20.0 20-0 32-0 â€.0 195 2 E HODULUS 3C 3: FIGURE 3.5 . SANPLES SI-8.SI-9,SI-lO,SI-12 §~ SAND CONTENT = 20 z 9~ 13 POINTS Eb L. y or 8~ . " A s- .r“~1F‘ï¬r~§i‘1‘~‘\\“§“‘ 5L 9 ~31'o00 it!) 44-00 41.†fill! - .100 0% LOG PERCNT I RX STRRIN DST—IFOSCPSO 2 E MODULUS a. : FIGURE I.7 E SANPLES SI-8,SI-9,SI-IO,SI-12 _ SAND CONTENT = 20 1 ~ 12 POINTS :_ . N- A A A I A ‘, ‘ .5... J... .:... .3... .3. .3... .3 LOG PERCNT 1 RX STRRIN OST-lFlCPSO E+05 PSI E+05 PSI 2 E HODULUS }. 9, FIGURE I.S ‘. SANPLES SI-O,SI-9,SI-tO,SI-12 3F SAND CONTENT = 20 I ,P 12 POINTS é" j 3 : :r *C 8 A a: A 5F “ l o -3%.00 oil.†. :00 41.“ 0:.†c.4600 I} LOG PERCNT l RX STRRIN 08T—1E3CP50 2 E HODULUS 9; FIGURE 9.8 ;. SANPLES SI-G,SI-9,SI-IO,SI-12 ~ SAND CONTENT s 20 z z- 12 POINTS g. .F e: I l. =1 ; +- A ‘ l- A 3» an . e O b A é q- .8"- l l L J J J .1 also a.“ a.» mu -I .u «no o.‘ LOG PERCNT 1 OX STRRIN DST-IFSCPSO E+OS PSI E+05 PSI 196 2 E HOOULUS [ FIGURE D.9 E SANPLES SI-G,SI-9,SI-10,SI-12 SAND CONTENT = 20 I - Q“ 9 8 9_ 8 __ 16 POINTS i 1- '. g l' l- ‘2 g P 1.. :r a L m m §~ . I O L..I_ L_ I I I I I once -2.SG -z.oo -1.50 -1.00 -.ooo II.I LOG PERCNT I RX STRRIN SST—IPOSCPZOO 2 E MODULUS FIGURE 3.11 SAMPLES SI-8,SI-9.SI-l0,SI-12 SAND CONTENT = 20 Z 15 POINTS It-O It!) 20.! 24.0 20.6 32.0 30.! 40:0 Tï¬TTTTTTrTTrTTTTTTTTT l l J l l l 1 «lo- 4 .Go a.†-| .u -T .oo - .m o.‘ LOG PERCNT I RX STRRIN OST-lFlCPZOO 0.1 E+05 PSI E+OS PSI 2 E HOOULUS PL ,: FIGURE I.10 '_ SANPLES SI-O,SI-9,SI-10,SI-12 3E SAND CONTENT = 20 I g» 16 POINTS 0 F . 8 l- :F P: :F ‘L g - o ;~ I '3 ditto 41.“ 41.00 4..“ 41.“ â€[500 Go: LOG PERCNT 1 OX STRRIN OST-lEBCPZOO 2 E HODULUS eh FIGURE 3.12 ‘C SANPLES SI-G,SI-9,SI-10,SI—12 g» SAND CONTENT = 20 I â€F 14 POINTS : l- 5: g; e: A l A 2 1. AA A 8. r- P A4 S: " l- 0:“- l I 1 l 4 l 4 QED a.» 4.00 mu am noon o.‘ LOG PERCNT 1 OX STRRIN DST-IFSCPZOO E+OS PSI E+05 PSI 197 5 E HOOULUS 3F '2: FIGURE I.13 '.. SANPLES SI-2,SI-3,SI-4 gl. SAND CONTENT = 20 I .- 7 POINTS :0 _ q F’ :F S. L ;L 8 . 6 l’ \‘AA A a- A A J: o 4:00 -2L.so -21.00 41.50 41.00 â€1:00 0.}— LOG PERCNT 4 RX STRHIN 3 DST—4.05CPU 5 E ï¬ODULUS 3L. er FIGURE I.15 ‘I SANPLES SI-2,SI-3,SI-4 3F SAND CONTENT = 20 I ,: G POINTS g. .F 8 l. 3 i 8 . ' r- 5 4'... 4.50 4.00 T.S. -T.oo also. a} LOG PERCNT 4 RX STRRIN OST-4F1CPO E+05 PSI E+05 PSI 5 E HODULUS ‘1‘ ;. FIGURE I.14 P SAHPtES 51-2'31-3,SI-4 :1 SAND CONTENT . 20 I 9* 7 POINTS 8 l. ' EU I- =1 ES . . a: . ,l 0 ~91.†41.50 41.00 :50 ~31.†also: 0.: L00 PERCNT 4 OX STRRIN a OST-4E3CPO 5 E MODULUS ;: FIGURE 3.16 - SANPLES SI-2,SI-3,SI-4 z» SAND CONTENT = 20 I ,* 6 POINTS é : d g 5' . . 4'.“ .1 .so -I .oo - | .u -I .oo . .300 0.1 L00 PERCNT 4 Rx STRAIN 3 UST44FSCPO E+05 PSI E+OS PSI I.†.... I... I... I... I... I... 00.0 '0. “g. IIIIIIIIIiII—IWITIrI 5 E MODULUS I I FIGURE 3.17 SANPLES SI-2,SI-3,SI-4 SAND CONTENT = 20 l 8 POINTS D b I... .... I... I... I... 8... 2... 3... 3... Oï¬ :01 L l J A J - -†“:0‘0 01.00 '10“ 'N .00 LUG PERCNT 4 OST"4RUSCPSU 5 E flODULUS FIGURE 3.19 SANPLES SI-2,SI-3,SI-4 SAND CONTENT = 20 X 7 POINTS I I r I I I I I I I I I I'I I I I I I I I l I I l _L ~$00 RX STRRIN 198 I o I 1 I .9... o: .50 o: .00 .140 -I .00 L00 PERCNT 4 OST—4F1CPSO RX STRHIN E+OS PSI E+OS PSI 5 E HODULUS Ir ;. FIGURE I.18 _ SANPLES SI-2,SI-3,SI-4 ;. SAND CONTENT = 20 I ,P 7 POINTS P: E" 9% fl 5 6 6 - Ml 4.00 4.00 I... 4.00 .100 0% L06 PERCNT 4 9x STRAIN ' OST—4E3CPSU 5 E MODULUS FIGURE 3.20 SANPLES SI-2,SI-3,SI-4 SAND CONTENT = 20 Z 7 POINTS A... ...O I... I... 2... 2... I... 3... 3... 0:0 IIIIIIIIIIIITIIIIIII " . '... 4‘... .i... 3... .3... -3... ï¬â€” LOG PERCNT 4 RN STRAIN OST—4F5CPSO E+OS PSI E+OS PSI 199 5 E HODULUS 3E a? FIGURE 1.21 ‘r SANPLES SI-2,SI-3,SI-4 ;- SAND CONTENT = 20 z .’ 10 POINTS £1- ’1' :r :P } ;:~\\‘jf ;b \ I #1 ._ _J_._.__L__..—1—————+_ aloe -: .c: -: .oo -1.So -1.oo - .500 0. L05 PER NT 4 Ax STRAIN USI—4EUSCP200 S L NODULUS .[ FIGURE 3.23 3L SANPLES SI-2,SI-3,SI-4 :E SANI CONTENT = 20 z "I 9 POINTS :1- ;E at 6 EC ‘A. A..a N. A..E A LOG PERCNT 4 AN STRAIN OST—4F1CP200 E+05 PSI E+05 PSI S E HOOULUS I; - ._ FIGURE 3.22 'E SANPLES SI-2,SI-3,SI-4 ;- SAND CONTENT . 20 I F 10 POINTS I F. I- : E z. 8. .— l. 2» . '- .. A g» . 8: . l. 6 4%.†41.50 41.00 41.80 41.00 “1560 0.: L06 PERCNT 4 RX STRRIN OST—AEBCPZOO S E HOUULUS g. 9: FIGURE 3.24 ‘E SANPLES SI-2,SI-3,SI-1 ;. SAND CONTENT = 20 z a» 9 POINTS 8- _ L 3E fl 8. A 'L 8. ‘0’.- I 1 l l _l L 4 4500 4.00 4.00 -1.00 4.00 ..000 0.‘ L00 PERCNT 4 9x STRAIN DST-4F5CP200 EROS PSI E+OS PSI 200 8 E HOOULUS A 0... FIGURE 3.25 SANPLES SI-22,SI-23 SAND CONTENT = 20 Z 4 POINTS \ ’\ IITjIrIIIIIrIjIITlv‘I A.3. .-00 I... I... .0.. I... â€I. â€0. â€I. 1 h ' _._l_.....__'__.__- _L EI I - .OO .2.» -:.oo -I.So -1.OO -.SOO of LOG PERENT 7 _Ax STRAIN UST~IOPCSCPC 8 E flCCULES FIGURE 8.2? SAMPLES SI-22,SI-23 SAND CONTENT = 20 Z 4 POINTS I... 9.90 12.: ".0 212.: Ian 29.0 32.: 31.0 311.0 IfIrjijrrIï¬rrTj'T'Tijj—T O '0! I I J l I .1 l o -. ~s’.00 4.50 4.00 . I .so -I .00 - .500 07 LOG PERCNT 7 RX'STRRIN OST~10F1CPO E+OS PSI . E+OS PSI I... L" IIIITTIjITIIIWIIIIIII I... .J. I... I... I... I... â€J 3... â€J 0.1. IIITIIIrIrrrrIT'WIIITI 8 E flOOULUS FIGURE B.26 SANPLES SI-22,SI-23 SAND CONTENT = 20 I 4 POINTS " 'L I... I... ..-. .Co. 2... .2.. 3... 0.1.. l J 1 I I J I oa’.oo -I.so 4.00 -I.Ga -I.ao -.5'EI‘ 0.‘ LOB PERCNT 7 9X STRHIN DST-IOEBCPO O E MODULUS FIGURE l.28 SAMPLES SI-22,SI-23 SAND CONTENT = 20 I 4 POINTS '1 l I I J _l J J— -s'.00 -: .u -I .00 .400 0.‘ L09 PERCNT 7 RX STRRIN DST-IOFSCPO E+OS PSI E+05 PSI 201 8 E MODULUS 3' l. ;. FIGURE I.29 . SANPLES SI-22,SI-23 ;.. SAND CONTENT . 20 I ,~ 6 POINTS :r 3;: 9 L00 PERCNT“ - 7 Tax STRAIN. DST—ICPUECPSO 8 E MODULUS 3: FIGURE S.ST ". SAMPLES Sl-22,SI-23 §~ SAND CONTENT = 20 2 0L 6 _POINTS "E 3E :1: A S: SE 6 -a’.00 ~31.» 31.06 41.50 ï¬n i000 II.I LOG PERCNT 7 RX STRRIN OST-lOFlCPSO E+OS PSI E+05 PSI 8 E MODULUS 0*. FIGURE 3.30 SANPLES SI-22,SI*23 SAND CONTENT = 20 Z 6 POINTS I.†U.†I!-. I... "0. 1‘0. â€0' at. â€a. I I I I I ï¬r I I I I T I I I j I T I . ‘— 0.1 i I 1 EL 1 I l 4.00 4.50 -z.oo -1.G0 -1.00 -.IOO 0} LOG PERCNT 7 AN STRAIN DST-IUEBCPSU B E MODULUS 9: FIGURE 3.32 ‘. SANPLES SI-22,SI-23 ;. SAND CONTENT = 20 I e» 6 POINTS 3 l. 3: 3: . 2 P EF 6: 0â€] I l l J l I «la «.30 4.00 4.00 4.00 -.000 0.‘ LOB PERCNT 7 FIX STRAIN DST—IOFSCPSO E+CS PSI E+05 PSI 4.00 0.30 12.0 Io.o 20.0 24.0 t... 91.0 :sQo our. '8 E MODULUS mp LOO 0.00 ".0 iOoO 20.9 IMO 28.3 32.9 30.0 ‘3,-'.‘ L I FIGURE 3.33 L SANRLES SI-22,SI-23 - SAND CONTENT = 20 z - 8 POINTS L. L—\ b Â¥\\\b E 3*}: -3... .47; "1‘... -1... LOG PERCNT 7 RX STRHIN DST—IOFUSCPZOO 8 E MODULUS e.l Z FIGURE n.35 . GANPLES SI-22,SI-23 L SAND cONTENT = 20 x L 6 POINTS '- A E A r r ~31l.“ -:'.:.o oi†031.82 0|?†"1500 LOG PFRCNT 7 RX STRRIN 5 DST-IOFICPZOO E+05 PSI E+05 PSI O E HOOULUS FIGURE 3.34 SAMPLES SI-22,SI-23 SAND CONTENT = 20 Z 6 POINTS Cu†.000 S200 S... "0. :‘0. â€0' 82-0 â€0. q. lTTiTVlTTUTfTTII‘WTTI A A M LOO PERCNT- ' 7 AX STRRIN s OST—lOP3CP200 8 E MODULUS 9: FIGURE 8.36 “r SANPLES SI-22,SI-23 ;. SANO CONTENT . 20 z E 6 POINTS 3+ =C ;. . p A g2 "I a of.†41.50 .31.†~31.“ a]... «In. 03' L00 PERCNT 7 ax 51391" UST-lOFSCPZOO E+05 PSI E+OS PSI 203 2 E HOOULUS 3' 3: FIGURE 3.37 . SANPLES SI-I1,SI-13,SI-16 g- SANO CONTENT = 45 z .E II POINTS =' : é : fl T T- ; T- K \m 6+- J J_ 1\1\L I ~S’.OO -: .so 2 .Oo T.SO - I .oo - .soo IT.I LOG PERCNT 1 RX STRAIN UST~1FUSCPO 2 E HODULUS 9: FIGURE 3.39 ’E SANPLES SI-11,SI-13,SI-16 ;. SAND CONTENT = 45 z .‘. 10 POINTS 3 L- 2 T- . T- Q 3 a. t o b A Q a- . S 6 «Inc 41.30 44.00 -II.EOL 41.00 ".500 071 L00 PERCNT I RX STRHIN DST—IFICPO E+05 PSI E+05 PSI 2 E HOOULUS FISURE 3.38 SANPLES SI-H,SI-13,SI-16 SAND CONTENT 8 45 X 9 POINTS 0.00 '.°° Etc. I... â€a. t... â€a. I... .0. q. I r V r l U I F I r l r U I I I I I h a A JO 0 l 1 I l I 1 ms: «.39 -:.oo 4.» moo .500 O.‘ LOG PERCNT I RX STRRIN ' 1 DST-IEBCPO 2 E HODULUS FIGURE LAO SANPLES SI-TI,SI-13,SI-16 SAND CONTENT = 45 I TO POINTS .0†I.†".0 I... 10.9 I... 20.9 32.0 3... 0%. l l l l l J_ or.“ 4.0 a.» a... 0.3“ O.‘ LOG PERCNT I RX STRRIN OST-lFSCPO ..l OTIITIUIrlrITIrljlji—Tl :R... 8 E+OS PSI E+OS PSI 204 2 E HODULUS FIGURE 8.41 SAMPLES SI-lT,SI-13,SI-16 SAND CONTENT = 45 I 14 POINTS LOO 6.00 we «.0 20.0 20.0 21.0 32.! am 00,. IIITTIITTTiTTITYITWY NM 0 I"_,4.E)° ‘iSI' -:1.O(‘ - [:50 - El-OO ' .1300 of LOG PERCNT I RX SIRRIN “ST-IFUSCPSO 2 E flODULUS 3L at FIGURE 8.43 '. SANPLES SI-11,SI-13,SI-16 g— SAND CONTENT = 45 2 .' 12 POINTS ‘ F SF 3 r a: .. .' A A. P A 8. 4 A I. :P I J, I I I I also or.“ a... o: .u own um 03 L00 PERLNT I Ax STRAIN USTwlFlCPSO E+05 PSI E+OS PSI 2 E HODULUS 4*. FIGURE 9.42 SANFLES SI-11,SI-13,SI-16 SAND CONTENT = 45 z 13 POINTS 0.00 .0†“.0 S... â€a. 1‘0. â€0. "0. â€0. TTTIWTTTTTIUIYIrr'TII oI _ I— L p— 41.00 4.50 4.00 mm 03 L00 PERCNT 1 OX STRRIN OST—lEBCPSO 2 E HODULUS 2: FIGURE p.44 ‘» SANPLES SI-T1,SI-13,SI-16 3» SANO CONTENT . 45 z .E 9 POINTS 'P 8 .t 3: E» . “_ A E. . g: D'- l 1 l L l 1 .S'JO mu 4..- 4.30 .I... -4. .3 L00 PERCNT 1 OX STRRIN DST-IFSCPSO E+OS PSI E+05 PSI 205 2 E MODULUS 3* _ ..t FIGURE 8.45 ‘.. SANPLES SI—IT,SI-I3,SI-IG ;- SANO CONTENT = 45 z .* 15 POINTS 6: g. A". S. .b\ 3 8.- MH\ 'b A J- LOG PERCNT . 1 .9X STRRIN. DST—IEOSCPZOO 2 E NUDULUS .: FIGURE I.47 *_ SAMPLES SI-11,SI-13,SI-16 g- SAND CONTENT = 45 Z P 15 POINTS é.- 31 fl 9. A a A A e~ A OF ‘ A 8.?- A \ 0:0" I I I I I I 3'.“ 4.50 4.00 a.†4.00 "no 0.7 LOG PERCNT I RX STRRIN OST-lFlCPZOO E+05 PSI E+OS PSI 2 E HOOULUS ;. 3. FIGURE I.46 _- SANPIES SI-TI,SI-13,SI-16 g1 SAND CONTENT = 45 I 9: 15 POINTS ‘ L- F I. .; gL { g .. W ’_ A a- . 6 dict! 41.50 41.00 41.50 41.00 ulna .71 L00 PERCNT l RX STRRIN OST~1E3CPZOO 2 E NODULUS 9: FIGURE I.48 a. SAMPLES 51-11,SI-13,SI-16 ;. SAND CONTENT = 45 2 “F, 11 POINTS 5: g. it a z» “ .. I: .L 8,. " i t. i... 3... :1... .1. .3... .S LOG PERCNT 1 RX STRHIN 08T-1F5CP200 E+OS PSI E+OS PST '1_, 4.03 0.03 I:.O IO.O No.3 24.3 10.0 33.0 206 - s E MODULUS L FIGURE 3.49 SANPLES 51-6,SI-18,SI-19 SAND CONTENT = 45 z 7 POINTS 12.0 I... a... «.0 a... :14 a... u,- A 0.00 O... lrIIIITVIr'TVU'I—TT J J J l i I .iO“ 02-†.!IN 0|.†.'l“ .0â€. 0.. L00 PERCNT 4 OX STRRIN 3 08T<4RUSCPU s E MODULUS. FIGURE 3.51 SANPLES SI—G,SI-1G,SI-19 SAND CONTENT . 45 z 7_ POINTS 3. o. .019; rTIrITIIITIY'TrITTIjI l 0. o“ LOO PERCNT 4 08T—4F1CPO I I I I .1.“ oh. â€no 0? OX STRHIN I 4'... 4.. E+OS PSI E+OS PSI S E NOOULUS h FIGURE 8.50 SAMPLES SI-6,SI-IG,SI-19 SAND CONTENT 8 45 Z 7 POINTS .0†‘4'. ‘it. E... "o. t... â€a. ' "I. '0. *. T T IITrT—IITINITUIITU 0I L. L. I I I ~14» -.m o.‘ RX STRRIN LOG PERCNT 4 OST—4EBCPO 5 E MODULUS FIGURE 3.52 GANPLES SI-G,GI-1G,SI-19 SANG CONTENT = 45 z 7 POINTS 4.00 0.00 11.0 ".0 20.0 20.0 20.0 31.0 39.0 0010 b LITIFIjITITTIITII—jITTI I I I on.“ OJ. OJ RX STRRIN 9'1 I I I 4*... .3.“ .1..- a.“ LOG PERCNT 4 OST-4F5CPO E+OS PSI E+OS PSI 207 '5 E MODULUS FIGURE 3.53 SANPLES SI-6,SI-18,SI'19 SAND CONTENT = 45 Z 10 POINTS c.oo O.oo 12.3 10.3 No.0 00.0 10.0 IO.0 II.I 0g,0 Iï¬TrrYTITjTTIIFTITEFY 6‘ _L .I I I I I I also -: .5: 4.00 -I .sc 4 .00 um 07 L03 PERCNT 4 9X STRRIN OST—4EOSCPSO S E NOSULUS 2: FIGURE 3.55 ‘. SANPLES 51-6,SI-18,SI-19 ;. SAND CONTENT = 45 z or 8 POINTS F: ;R ET 5: E. .L S. . F- I D .g.‘ ~81.“ oil.†“I... “I.†. .1.“ .j LOG PERCNT 4 ï¬x SIRHIN OST—4F1CPSO E+05 PSI E+OS PST 5 E MODULUS FIGURE I.54 SANPLES SI-6,SI-lG,SI-I9 SAND CONTENT = 45 Z 8 POINTS 0.00 0.00 IIJ I... 10.0 “.0 I... 33.. Id Cr. ITIIITTWTTITIUI‘TI‘ï¬I—TT J I I I I I I 41.00 a.“ 4.110 -1.so 4.†~93 0.‘ LOG PERCNT 4 RX STRRIN 3 UST-4F3CPSO 5 E HODULUS 0.l SI FIGURE 3.56 ‘_. SAMPLES SI-G,SI-18,SI-19 ;-. SAND CONTENT = 45 I ,~ 3 POINTS 5: a» E r T- A g- A S: g: .:L I I I I I I I -S'.00 4.50 4.00 a.» 440 -.000 0! L00 PERCNT 4 OX STRHIN OST-4FSCPSO E+OS PSI .000 '03, Ste. E... â€to .‘I. â€O. n‘. â€O. .‘r. E+05 PSI 0‘1 :2.: 3-.3 43,3 I403 .40? 12.3 [0.0 23-0 N30 â€.9 208 '5 E NOOULUS I FIGURE 3.57 . SAMPLES 51-6,SI-18,SI-19 . SAND CONTENT = 45 z t 12 POINTS L I I- A .. \N A T— A A " A 1::J 410-- 721.53 “:00 41.53 "-7133— “74:37—04— LOC PERCNT 4 RX STRAIN - .. f‘ , - 3 OST—APOSEPEUU 5 E MODULUS '1 L . FIGURE 3.5T . SANPLES SI-6,SI-1G,SI-19 ~ SAND CONTENT = 45 z 5 11 POINTS I. L b A . :\\\>\f A I. A A A C . -500— 41.03 41.00 ii... “I,†,3... 0% COO PERCNT 4 AR STRAIN DST—4F1CP200 E+05 PSI E+05 PSI S E HOOULUS 3.. .: FIGURE 3.51 '_ SANPLES SI-6,GI-13,SI-19 3L SANO CONTENT - 45 x q- 12 POINTS :L g. 3: 9'. i :h A A :3“ A I. A 3. 0 A T- 3. 6 din 41.53 41.33 311.33 -1J.33 "1033 13.I LOG PERCNT 4 RX STRRIN OST—4E3CP200 5 E HODULUS 3F .: FIGURE 3.60 33 SANPLES SI-6,GI-13,SI-19 2. SAND CONTENT = 45 z 2» 10 POINTS. é_ 1 gr :- ,. A . '. ,_ A 2 A .*' . .8 ‘ 3 L- g '- A g: g: . 0:... 41.“ 41.00 41.80 “Jo. â€lid 0.: L00 PERCNT 4 RX STRAIN OST-4FSCP200 E+OS PSI E+05 PSI 8 E MODULUS 209 3L 9: FIGURE 3.61 ‘. SANPLES SI-24,SI-25,ST-26 ;. SAND CONTENT = 45 1 .~ 7 POINTS :- .- 3: g: g: 'r a: m ‘21:; 4103 -J'o -Joo - 1sun I LOG PFRCKT 7 RX STRRIN USI—IOPOSCPO 8 E MODULUS 3L " L 3+ FIGURE 1.63 ._ SANPLES SI-24,SI-25,SI-26 ;. SAND CONTENT = 45 z or 6 POINTS fF g. . T- :F EC 'L S, . ’L 9. 08%.!†41-50 81.00 II.“ 4‘... ’0i‘“ .3 L00 PERCNT 7 RX STRRIN OST~10F1CPO E+OS PSI E+05 PSI O E flOOULUS OIL! fir FIGURE 3.62 SANPLEG SI—24,SI-25,SI-26 SAND CONTENT = 45 Z 6 POINTS 4.33 0.33 13.3 10.3 23.3 34.0 30.0 33.0 30.0 IIIWIEIWUfTTUU'UUï¬I "'I r 47.33 -0.53 4.33 -1.so o.soO 3. L00 PERCNT 7 OST-IUFBCPO 8 E MODULUS -E .00 RX STRRIN .t FIGURE 3.64 =_ SAMPLES SI-24,SI-25,SI-26 g. SAND CONTENT = 45 I A 6 POINTS g. or 3P 3: ' I 8. A JE I I I I . -3'.00 41.33 41.33 -1.00 o1.00 -.030 0.‘ L00 PERCNT 7 RX STRRIN DST—IOFSCPO E+05 PSI E+OS P51 8 E MODULUS FIGURE 3.65 SAMPLES SI-24,SI-25,SI-26 SAND CONTENT = 45 I 9 POINTS 13.3 13.3 33.3 24.3 30.0 33.0 30.0 0330 oTT—Yr'TT‘rTVIIï¬r' 210 :r 9L _I 6 -3’.oa 4.53 4.30†-1.53 .1.CC €333 (LI—- LOG PERCNT 7 RX STRRIN r DST—IOPOSCPSO 8 E HODULUS g. 9: FIGURE 3.67 3. SANPLES SI-24,SI—25,SI-26 g. SANO CONTENT = 45 z 4» 3 POINTS 2 I. 3L 3L 3. d I": I I O ~3'l.00 41.80 ~21... I.“ 0|.†â€no O.I LOG PERCNT 7 fix STRRIN OST—lOFlCPSO E+05 PSI E+05 PSI 0.1*__73.03 0.30 13.0 10.0 30.0 34.0 00.0 02.3 20.3 43,0 u' I I I I I FT! ij rj I I T T I I r B E HOOULUS FIGURE 3.66 SAMPLES SI-24,SI-25,Sl-26 SAND CONTENT I IS I 9 POINTS 7TYITEITrTT'TEETI I I 0.00 0.90 [2.0 I... I... I... 2.... '0' â€a. Q. I 6“ I I L J I I L $.33 .0 .33 -3 .33 -1.03 -1 .33 - .333 0.' L00 PERCNT 7 RX STRRIN 5 DST—10F3CPSO 8 E HOOULUS FIGURE 3.68 SANPLES SI-24,SI-25,SI-26 SAND CONTENT = 45 X 9 POINTS :30 :E‘RCNT... ““7 “Ax STERN“ OST—IOFSCPSO E+05 PSI E+OS PSI 00' A.†I.†".0 “.0 ".0 24.0 29.0 32.0 30.0 421.0 211 8 E MODULUS FIGURE D.69 SANPLES SI-24,SI-25,SI-26 SAND CONTENT = 45 Z 10 POINTS 0.00 0.00 I24! ".0 20.0 20.0 20.0 82.0 30‘.“ 001.. TFTTTrfTTTTTTTTrTT T T I o. 1 -3133 -3 .30 -3 .33 -: .53 -| .33 - .533 0.' LOG PERCNT 7 RX STRHIN DST—IOFOSCPZOO 8 E MODULUS FIGURE D.71 SAHPLES SI-24,SI-25,SI-26 SAND CONTENT = 45 I 9._POINTS IVTTTETITTTTTTT'ITTTTI I .1 L _1 1 l 1 o0'.03 -3.53 4.03 4.00 4.00 -.000 0.' LOG PERCNT 7 RX STRRIN 0 UST-lOFICPZOO E+OS PSI E+05 PSI 8 E HOOULUS FIGURE l.70 SANPLES SI-24,SI-25,SI-26 SAND CONTENT = 45 I 10 POINTS 4.33 0.30 13.3 10.0 30.0 30.0 00.0. 03.0 00.0 00.0 TNTiTrNTï¬rTTNIIWjUrUN a" J 1 _1 1 1 I J 4.30 .3.» -3.03 4.03 4.33 -.030 07 L00 PERCNT 7 RX STRRIN DST-IOEBCPZOO 8 E HOOULUS :u . 9: FIGURE 3.72 3, SAMPLES SI-24,SI-25,SI-26 ;. SAND coNTENT = 45 z .* 9 POINTS i: 3 : §L g: 3: 1r L. . -0'.03 41.00 41.00 «1.00 «1.00 5000 0.: L00 PERCNT 7 RX STRAIN 08T-10F5CP200 E+05 PSI E+05 PSI 212 2 E MODULUS FISUNE 3.73 SAMPLES SI-15,SI-l7 SAND CONTENT = 65 I 6 POINTS .000 0.00 [2.0 ".0 "I. .‘0' â€0. "A. â€0: ‘cd [T T T ï¬T T T T__T T T T Ti T T T T T TT A A I.- w l | I J l l l 4.33 3.7— ).00 -2.30 -2-00 -|.SO --800 L00 PERCNT 1 ex STRREN _ _ _ _ 1 USIWILOSCPU 2 E MODULUS 1 —— JT i FIGURE 3.75 SAMPLES SI-15,SI-17 SAND CONTENT = 65 Z 6 POINTS TTTTT .0 30.0 30.3 30.3 33.0 30.3 33,3 TTTTTTT 0.92 0.00 12.0 1! FT T7 T T T R *‘“$ ' L. \ l l l l Q J - .03 -3.03 -3.03 4.00» 4.03 -.003 03 L00 PEKCNT I RX STRRIN OST~1F1CPO ’1 E+05 PSI E+OS PSI 2 E MODULUS “f. iTTTTTTTTTTiTTTï¬TTTiT FIGURE 3.74 SAMPLES SI-T5,SI-17 SAND CONTENT = 65 I 6 POINTS 0.00 0.†12-0 I... No. I... "0.. 32.. â€o. ° 0 3100 021. SO 0;: - 11.80 j.†0 .1.“ Dill LOG PERCNT 1 ax STRAIN UST—lEBCPO 2 E MODULUS FIGURE 3.76 SAMPLES SI-15,SI-17 SAND CONTENT = 65 Z 6 POINTS 4.03 Doc. ".0 IO-O 20-0 86.0 23.0 32-0 33-0 COIO TjTTTrTTTrTfTTjjjTriT ° 'Slrofl -:M in 41.“ . ti.†. .13. 0.: LOG PERCNT 1 ax STRAIN 08T-1F5CPO E+OS PSI E+OS PSI Q! 213 2 E MODULUS 3:: T Tï¬ï¬ .0" '0†O: a. N. 0. â€I. t. 0. P. 0’ â€.0 â€0° C I ' FISURE 3.77 : SAHPLES SI-IS,SI-I7 _ SAND CONTENT = 65 z . 8 POINTS I. I. I- I. I. I. .- M N -SI.OO ~81. so 4100 :1.80 . 31.00 -fl00 3 .I LOG PERCNT 1 RX STRAIN OST-IPOSCPSO 2 E MODULUS P [ FISURE 3.79 I SAMPLES SI-Ts,SI-T7 » SAND cONTENT = 65 I 7 POINTS T I T T T ' TTTWTT 3" J J l ‘ . 4103 -3.03 -3.03 41.00 4.00 -.000 0.1 L00 PERCNT 1 RX STRRIN OST—IFICPSO' E+05 PSI E+OS PSI 2 E MODULUS q» FIGURE 3.73 SAMPLES SI-IS,SI-l7 SAND CONTENT = 65 I 8 POINTS 0.33 0.03 13.0 I0.0 33.0 30.0 30.0 03.0 00.0 TTï¬ufTTTj—TTTTTTTTTTTIT J l 41 4133 -3.33 -: .33 - I .53 LOG PERCNT I DST—1F3CP50 2 E MODULUS _l J -+_ “I.†'0bco o. RX STRRIN I ;[ FIGURE 1.33 ~ SAMPLES SI-TS,SI-T7 §- SNNT cONTENT . as I .f 6 POINTS EL 0+ :r a: . .- N‘g\\ 8. I- 6 -JIEN 41-“ o...†41-“ 41.†-.JIU 0.: LOB PERCNT I RX STRRIN 1 OST-IFSCPSO E+OS PSI +05 PSI A.†3.33 12.0 ".0 20.0 20.0 ".0 32.0 33-0 .01-0 ' I T T T ,T T7 T 4T T T T T47 T T7 T T T T7 T 1’ T “J I. F 2 E MODULUS 2F!- E+OS PSI 9, FIGURE 1.01 '. SANFLES SI-TS,SI-17 ;. SAND CONTENT - Is I .~ I POINTS *2: §r St‘7“‘+%~ o +- \ 6"} I I 1-. I ~3.00 -2.$O -£.CO -I.Su -l.00 . LOG PERCNZ I RX STRRIN I UST—IEOSCPQUO 2 E NUDULUS FIGURE 3.83 SAMPLES SI-15,SI-17 SAND CONTENT = 65 1 8 POINTS ‘0'. '0'. T20. E... '00. t... 1.0. ’2-0 ,.o° OOro T T T T T T T 4T T T’ T7 T T T T TTT T TAT T ‘ri T DDS PSI 0: I __J 4 i ,1 I .00 -3.33 -3.00 -1.00 -1.03 -.003 31' L00 PERCNT l RX STRRIN OST~1F1CP200 2 E HODULUS FICURE 3.82 SANPIES SI-TS,SI-17 SAND CONTENT . 65 z 9 POINTS T77 T I I T T T T T T 7T T' T T T T 7 b um mm um um ma «a «a a4 â€a qg 1* 4T T 4“T 41, l l l l 11 I oaloo -3.33 -3.33 o1.03 ~1.00 -.033 03 LOG PERCNT I Rx STRRIN UoT-IE3CP200 2 E HODULUS "a FIGURE 3.84 SAMPLES SI-15,SI-17 SAND CONTENT = 65 I 8 POINTS . —-— . '31. .21... -!‘-“ - ll.†3.. - .1“ O 5 L33 PERCNT 1 RN STRRIN DST-IFSCPZOU E+OS PSI E+OS PSI t J I J _l_. #1 l L -313: ~2.So -3.3u -1.so -1.33 .033 3.r_ LUG PERCNI 4 RX STRRIN USI~4PCSCPU 5 E MODULUS 31 FIGURE 0.37 "I SAMPLES SI-20,SI-3I ;.. SANI CONTENT . IS 3 .“ 4 POINTS .3 F "I 3 :3 L L 8» d . b édbL J I I J I _J -i§i0 -3.03 o3.00 ~1.00 -1.00 -.003 0:7 L00 PERCNT 4 RX STRRIN 0.20 E-SO I2-O I.-° 20.0 2.0. "0. a0. 8.. “I. T T T T T T T 1 T T T 1 T T 1' T T T T T T .-l 5 E MODULUS FIGURE 3.85 SAMPLES SI-20,SI-31 SAND CONTENT = 65 1 4 POINTS 215 08T—4F1CPO E+OS PSI E+05 PSI «g_ T.†.000 T200 T's. â€a. 2.0. "a. â€I. â€0. T T T I T T T j T j T T T T T F T j T T r s E MODULUS FIGURE 3.86 SAMPLES SI-20,SI-31 SAND CONTENT 8 65 Z 4 POINTS 9'1 J I_IJI I I 41 I +__ .0133 .3.53 -3.33 o1.so -1.33 -.033 3. L00 PERCNT 4 3x STRAIN CST-4E3CPU 5 E MODULUS SI .: FIOURE 3.33 ‘. SANPLES SI-23,SI-TT ;» SAND CONTENT = 65 z .[ 0 POINTS :3 g. L :I 2T 3: g: 6 oil-r00 -3..03 ~21.†- ll.“ 4‘.“ - .1.†0% LOB PERCNT 4 RX STRRIN OST-4FSCPO E+OS PSI E+OS PSI 5 E MODULUS 216 S E MODULUS §+ :- 2: PIGURE 8-89 0: FIGURE 3.90 ‘. SANPIES SI-2o.SI-31 '. SAMPLES Sl-20,SI-31 ;_ SAND CONTENT = 65 I g. snug CONTENT = 65 z .» 6 POINTS _- 6 POINTS i†i†'2 P 9r St S: . e _ -. __ A g b 2 A y- .- A '2 A 0—0 .. __ 2: A A A U3 :3, _ A 8- A Q's†-' U) 03 I O ’ g + 8... - I- LIJ . r- 6 . .33 41.1.3 41.33 .11.33'— 41.33 ".333 117J 6 4%†41.50 in 41.33 41.00 c.1000 ï¬â€” LOG PERCNT 4 RX STRRIN 3 LOB PERCNT 4 RX STRRIN 3 OST~IEOSCPSO UST-4P3CPSO S E MODULUS S E MODULUS E; $3 ._ FIGURE 3.91 9: FIGURE 3.92 g. SAHPLES SI~20.SI-31 *. SANPLES SI-2o,SI-31 ;. SAND CONTENT = 65 I g. SAND CONTENT = 65 z .* 6 POINTS .' 6 POINTS 3: 3: E: 3: =2; 5...; 3_ “'E~ . I- [g g b 8 .. + 8. . ‘ b m .. .- ALI -. o . .00 .31.“ 41.03 41.33 41.33 "1303 ark a - .03 41.00 -3‘.00 .1100 41.00 «.300 0.IL LOG I’IZRCNT 4 RX STRRIN 3 L00 PERCNT 4 RX STRRIN 3 OST—4F1CPSO DST-4FSCP50 0—4 (0 I). I!) L) LL! 0--0 (f) If) C) DJ 5 E MODULUS 217. 5 E MODULUS I: F ;. FIGURE [.93 0. FIGURE 3.94 . SANPIES SI-20,SI-3| '1. SANPLES SI-2O,SI—ST §- SAND CONTENI . ‘5 z ;_- SAND CONTENT = 65 z ,- 3 POINTS .. 7 POINTS :- I— :- p. e? .I II fr é " 8' " D '- ° +- é’ A ‘6 5I ’ P z _ A A 0—0 :L "I A A g.) -— P 8: _ A 8 .. a U) 0' F O E gp \\\\\\\\\\\\\\ + E» O b “J . .- élgt-OO—fzty - -3133 .13."-..‘153 “1533 3.1T— 5:01†~31.“ ~3J.oo ~11." 41.33 “1003 0}— OG PEKCNT 4 RX STRRIN LOG PERCNT 4 RX STRRIN 3 OST~4POSCPQUU ‘5 E MODULUS OST—4E3CP200 S E MODULUS I- 3; FIGURE 3.9: .[ FIGURE 3.94 ‘1 SANPLES SI-23,SI-IT "F SANPLES SI-2o,SI-31 2» SAND CONTENT = 65 I ;. SAND CONTENT = 65 I Q†7 POINTS .I 6 POINTS SE fl 2 r g _ _+ L 5†:3 g: .I .. ._ 03 w . I- D - $~ + a. v .— “J b rib fr: I l I l l l 1 " 3+3! 41.50 41.03 ~11.» $.00 .3000 0? O «£00 «.03 -3.03 .1.“ -I.00 -.000 0.‘ L00 PERCNT 4 RX STRHIN 3 L00 PERCNT 4 RX STRRIN 3 OST—4F1CP200 OST-4FSCP200 E+05 PSI E+05 PSI. LOO 1.00 ".0 ".0 20.0 24.. I... â€0. â€3 CO... I AT Tg—Ti I IV I Vii T I I Y7 I 1 Y Y I 4T 1 T I D . 218 8 E HODULUS FIGURE D.97 SANPLES SI-27,SI-28,SI-29,SI-30 SAND CONTENT = 65 2 6 POINTS b .° '1 ".O ".0 10.0 20.0 19.0 32.0 30.0 00,0 _J_--_.L___.--J_.._ 1 I JI 2.02 -’.OO -l.$u °I.$O -|.13 0.503 0. L08 PERCNT 7 DST—10FOSCPU 8 E MODULUS RX STRRIN 5 FIGURE 3.99 SAMPLES SI-27,S SAND CONTENT = 6 7 POINTS I-28,SI-29,SI-30 5 z â€r T471 I T V TEETV T T I 7’ I ’T I I I T I T V 8 E 3" C' l I 4J l l l l - .00 4.50 a 00 4.80. 4.00 «000 0.‘ L06 PEKCNT 7 RX STRRIN DST-IOFICPO E+05 PSI 0.L44470.00 0.00 11.0 II.0 20.0 24.0 10.0 32.0 00.0 oqtg E+05 PSI B E flOOULUS FIGURE 3.98 SANPLES SI-27,SI-28,SI-29,SI-30 SAND CONTENT = 65 I 7 POINTS T ET YAET I 4T7 I I IAETT I T I I I 4T I 1 I I Y l l 1 I -:T.00 4.00 4.00 4.30 4.00 -.soo o.’ LOG PERCNT 7 RX STRRIN S OST—10E3CP0 8 E ï¬ODULUS 9: FIGURE T.Too *. SANPLES SI-27,SI-28,SI-29,SI-30 g. SANO CONTENT = 65 I “L 7 POINTS g. L. 2. gr =: g: g: .; ~0.00 -:{00 T:;{00 -|tIO -1100 -::ii iii LOG PERCNT 7 RX STRRIN 08T—10F5CPO E+OS PSI 219 a E MODULUS 3L ;: FIGURE 3.101 - SAMPLES SI-27,SI-28,SI-29,SI-30 §~ SANO CONTENT = 65 z .- 10 POINTS :1: “d;im.——-—1 _.___.L__. _.l_. . l J 1 ' Q -3.0( -2.:~: -.5(‘u 0. L00 PERCLT 7 DST-103850 8 E HUUULUS -2.01‘ -l.5' -14†9X STRHIN T‘CSCJ ;: PICONE 3.103 S_ SANPLES SI-27,SI-28,SI-29,SI-30 A_ SANO CONTENT = 65 z â€E O POINTS 2* . o†A 3* . 9: 5: :P a L “+- g: g: “ .5... .1... ..'... .5... .3... .3... ..+ LOG PEHCNT 7 RX STRGIN OST-lOFlCPSO E+OS F’SI E+05 PSI 8 E HODULUS 3L 9: PIOOPE 1.102 ‘. SANPLES SI-27,SI-28,SI-29,SI-30 ;- SANO CONTENT = as I ,- 10 POINTS 5: 3: a: a: LOG PERCNT. . 7 ..nx STanN. ‘ _ 5 OST-lOEBCPbU 8 E MODULUS 1L 9L FIGURE 3.104 3. SANPLES SI-27,SI-28,SI-29,SI-30 " - SAND CONTENT = 65 Z §~ 8 POINTS _ A . 9t AA :4». A .E a: g: a. ~8T.“ ~83 -!I.N - f.“ . t†, .1.“ :3— L08 PERCNT 7 ax STRRIN UST—lUFSCPSU E+OS PSI E+05 PSI 8 E HODULUS FISURE 8.105 SANPLES SI-27,SI-28,SI-29,SI-30 SAND CONTENT = 65 1 12 POINTS 0.00 0.00 10.0 10.0 00.0 00.0 00.0 00.0 00.0 00,0 Tï¬'ITTTrTIrr'rjtTIT'TV 220 . ’,]0r:0 -!1.50 ~21.“ -~ [1:50—- -| .3: - .532 O . — LOG PERCNT 7 RX STRRIN s UST~IOPUSCPZOO 8 E HODULUS S b A p =\ â€â€œâ€œ::.:;'::;;: n .- (A A use (mum-0'1. q.. i; 5‘ . a : A :-' FIGURE 1.107 2* SANPLES SI-27,SI-2O,SI—2P,SI-30 8; SANO CONTENT = 65 z 4_ 11 POINTS \\\ 6 3.x al.:fo .tl.00 41.1.; ~1L.00 J000 0.I LOG PERCNT 7 OX STRRIN OST-lOFlCPZOU E+OS PSI E+05 PSI a E flODULUS. FIGURE 8.106 SANPLES SI-Z?,S SAND CONTENT = 6 POINTS “11 l-28,SI-29,SI-30 5 Z 11 A.†0.00 11.0 “00 20-0 Ch. ".0 â€.0 3... TIroITTITIUEVIVIYIj' I l l l l L 1 -0‘.00 4.00 4.00 -1.00 4.00 -.000 0.‘ LOG PERCNT 7 ex STRAIN 5 OST"1033CP200 8 E HODULUS i: A 9 1. A anus $1.27. 51.20 g 81—â€. SF†"' A “ (CHM-0.". 2 _ 11 001010 9:: . 3 : z“ FIEURE 8.108 2‘." SAMPLES SI-27,SI-28,SI-29,SI—30 g: SAND CONTENT = 65 Z ‘_ 11 POINTS g. 6 _’I.†~31.“ ll.“ -IIJO -|l.' of.“ 0.: L00 PERCNT 7 AN STRAIN OST~1OF5CP200 APPENDIX C DAMPING RATIO FOR SAND-ICE SAMPLES 221 DAMP RRTIO DEMP RATIO an an an an an an an J†I l 3 Dflf‘lPING FISUNE C.T SAHPLES SI'B,SI‘9,SI-10,SI-12 †SAND CONTENT = 20 I 9 POINTS ‘5 §. §_ 6 Tie: 4130 41.0: 41.00 ï¬n 3000 0% L00 PERCNT I RX STRRIN 2 CST-IFUSCPU 3 DHT‘IPING L FIGURE C.3 SANPLES SI-S,SI-9,SI-10,SI-12 SAND CONTENT = 20 I 10 POINTS 0!“ ol". .290 ~22. .2" .m JPO T E ‘3 S I § 05 I I I I I I I 4'.00 4.00 4.00 4.00 4.00 "000 T‘ LOG PERCNT I FIX STRRIN OST-lFlCPO 222 ORHP RATIO 0.; 2 acct-0: 1.500900 . OPNP RATIO 3 DHHPING I FIGURE C.2 SANPLES SI-O,SI-9,SI-10,SI-12 P SAND CONTENT = 20 1 10 POINTS T I ‘ 1 an an an an g†PI" OI†I" T b D b L. I A J_ I L I J ~0E00 4.00 4 .00 -I .00 -1.00 ..000 II.r LOG PENCNT I 9x STRPIN 2 OST~1F3CPO 3 DRHPING FIOURE C.4 SANPLES SI-O,SI—9,SI-10,ST-12 SANO CONTENT = 20 z I 9 POINTS .I00 .m .000 .020 .200 .270 .000 I I. ! Jon-02 7 .UM'“ j 9 l j l 4.00 -.000 0.’ AX STRAIN O LI L 0 .fl .8.“ 4.00 0|.“ LOG PERCNT I OST~1F5CPO ORHP RRTIO DAMP RRTIO 2223 3 DAHPTNG NL 51. g. a h A . ‘ . m . g. A AA g. 5- ' FIGURE C.5 6' SANPLES SI—O,SI-9,SI-TO,SI—12 E- SANO CONTENT = 20 z ; 13 POINTS 5. AL, 9 'O'JIO '21.“) SL-OO Tl-LSI" 41.00 ï¬ne 0} LOB PERCNT ‘. RX STRRIN OSTMIFDSCPSU 3 DRI‘TP I NC é_ FIGURE c.7 ; SAMPLES SI-B,SI-9,SI-10,SI-12 s- SAND CONTENT . 20 z 5. 12 POINTS S. .8- >- g >— ' A _ A E . . if A :5 .s E. 6 - n†~21.“ 08].“ #1.“ 41-“ O-ISN 0.1' LOG PERCNT I RX STRRIN OST-IFICPSO ORHP RRTIO DHHP RRTIO a OANPING 0. 5» FIGURE C.A £_ SANPLES SI-O,SI-9,SI-TO,SI-12 - SANO CONTENT = 20 z 5- 12 POINTS g; 5. 0L 3 A 7 A 9L ‘ E. :3... E. 6 -§1-90 4'.†41.00 41.80 41.00 ~48†0.3 LOG PERCNT 1 AX STRAIN DST—IFBCPSO 3 DHHPING g_ TISONE C.O - SANPLES SI-S,SI-9,SI-10,ST-12 §~ SANO CONTENT = 20 2 5. 10 POINTS 5. g- g- .1 g» an ‘C l- A A A ?* . . . § '2? FL- I I I I I L . - 1.00 4.00 4.00 4.00 4.00 ~00- 07 LOG PERCNT 1 FIX STRAIN 2 OST-lFSCPSO 224 3 DRHPING I: 5 5. ’ 3 5. E §L 0. FIGURE C.9 g. SANPLES SI-8,SI'9,SI-IO,SI-12 oi: SAND CONTENT = 20 I ;-_- 5.- 15 POINTS a N n: 9" a? )7 &' (I I: r_ . 0-1.W 4.LI.0 E00- -1 .0 1.00 41000 0}— L03 PLRCNT I RX STRRIN 1 DST—IFDSCPZUO 3 DRHPINC gr 5. FIGURE C.11 ; SANPLES SI-8,SI-9,SI*IO,SI*12 5’ SAND CONTENT = 20 X g. ,JA_.POINTS E.— g1— 5.’ A 5A 3. A A c>§ "â€1E’AA Z .-' g $- 3: 4" 0'. D :4. E#____L-_..I I I I I . .00 4.00 4.00 -I .00 4.00 -.000 0.‘ L00 PERCNT I RX STRAIN OST—lFlCPZOO DAMP RATIO DAMP RATIO 3 DAHPING T‘ FIGURE C.10 5* SANPLES SI—O,SI-9,SI-TO,SI-12 g. SANO CONTENT = 20 z 15 POINTS g. g. E E E 8; r- E. g .. § ~‘ T" :I- II I _I I I I - .00 4.50 4.00 4.00 4.00 -.m 0.1 L00 PERCNT 1 AX STRAIN DST—IFBCP2OO 3 DAHPING g. 5’ FIGURE C.12 a- SANPLES SI-O,SI-9,SI-TO,SI-12 ; SANO CONTENT = 20 I .~ 14 POINTS g. Er EL 5 1. g .- E. .. A 8 _ M g A A \ I -0'.00 4.00 4.00 -I .00 4.00 «000 0.r LOG PERCNT I RX STRAIN 2 OST-IFSCPZOD DAMP RATIO DAMP RATIO .n0.u0.u0.n0.q0 I 22£i 5 OAHPING †FIGURE 0.13 SAMPLES SI'2,SI-3,SI-4 SAND CONTENT = 20 1 ‘ 7 POINTS EP 0 A g. \\\\ï¬h\2? A g r- J. 9 _.J' .’_.______L A I I I 4.0.1 4.50 4.00 4.50 4.00 4000 7:7 LULE T’I'RCNT 4 FIX STRFTIN U3T-4FDSCPU O UANPING ér 5L FIGURE C.Ts ; SAMPLES SI‘2,SI-3,SI-4 ET SAND CONTENT = 20 I g. 5 POINTS 5. 5. g. §_ . :3 A A‘ A g. 5 o. 03%.†is. -II.W 0f.“ 'IJo. ~01.“ .0: LOG PERCNT 4 AX STRAIN OST-4F1CPO OAMP RATIO 001 a-GM.OZ 10500:-†I DAHP RATIO 0.l 0.000040 0.000040 I p P - b an an an an an a. Ju.qn T N— T J†al.! J" 0200 aâ€. £30 .1†.000 T T T T— 6 OAHPING FIGURE C.14 SANPLES SI-2,SI-3,SI-4 SANI CONTENT 8 20 7 POINTS I I I b TOTO? -?.GO -2.00 4.53 LOG PERCNT 4 OST-4F3CPO 6 DAHPING FIGURE C.16 2 J I I 4.00 -.000 0.1 AX STRAIN SANPLES SI-2,SI-3,SI-4 SAND CONTENT = 20 2 6 POINTS A A ‘A 450 417; 41.00 41.00 44.00 41000 0%“ LOO PERCNT 4 OX STRAIN OST-4FSCPO 'QXP POTIO 0‘ L1 OANP RATIO 01!. a". o". 0'†0m 0.. .8†0* 226 6 DAHPING P TIOUNE 0.17 . SANPLES 31-2,SI-3,SI-4 SAND OONTENI = 20 z †8 POINTS " ’#+’_; —— g T- g. 6 73%;)? 41.59 41.00 41.53 41.00 nil†(LI LOG PERCNT 4 AX STRAIN 4 UST—4FD5CPSU 6 DANPING é FIGURE 0.19 . SAHPLES SI‘2,SI'3,SI—4 3- SANO CONTENT = 20 z 5_ 7 POINTS g. g _ g .. 5 A '2 - A P A A A 1.: .. E JI-J I I I I I I - .00 4.00 4.00 4.00 4.00 -.000 0.‘ L00 PERCNT 4 AX STRAIN ‘ OST—4F1CPSO DAMP RATIO OAHP RATIO 6 OAHPING g. ï¬- PISONE 0.18 g. SANPLES SI-2,SI-3,SI-4 é SANO CONTENT = 20 z .’ 7 POINTS g. EP 5 P- g. . A A I . . g h- 5 5L. 0 1 L- I L 4 I I 4100 -2 .So . z .oo - I .So .1 .00 - .000 0.‘ LOG PERCNT 4 AX STRAIN 4 OST—4F3CP50 6 DAHPING 5.- 5- FIGURE 0.20 §_ SAHPLES SI-2,SI-3,SI-I ; SAND CONTENT = 20 2 S‘ 7 POINTS g. g. g . 5 _ I? P E. g >- E A b A 2 - A AA A a .5.†-81.I0 4..“ TIt“! at.†â€I.†0.: LOB PERCNT 4 AX STRAIN 4 OST—4FSCP50 227 5 DAHPING SI _, PIOUNE 0.21 ‘2' SANPLES SI'2,51'3,SI‘4 g- SAND CONTENT = 20 2 5b 10 POINTS 5 E E- g»- 25 E3: 0: 9" mg I: ’3’. (I D q... 5 LI __..._1 ._..._L- --_.._J._. I J I -: on 4.50 4.03 -I.So 4.00 "000 o}— LOG PCRCNT 4 AX STRAIN ‘5‘!" 7'"-""\"r~r\‘ 4 ULI—4rbbLTKHU 5 UAT’II’INO ; TISUNE 0.23 T SNNPLES SI’2,SI'3,SI'4 Sr SAND CONTENT = 20 Z =_ 9 POINTS £0 5.. E. o I?†I. EEZ—A~#*f*‘A c:$~ OS I: ‘— (I C):_ a 3.00 '3'.“ 21.50 -l..$0° al.» «.000 II.Tl LOG PERCNT 4 AX STRAIN OST—4F1CP200 OAHP RATIO OAHP RATIO 6 OAHPING FIGURE 6.22 SAMPLES SI-2,$I-3,SI-4 SAND CONTENT = 20 1 10 POINTS T I .un.un.un.u0.§0 T T— .I" .1" cl†T '3' a $.- S 6 hrs-I53-- 711.50 41.00 41.50 31.00 “1500 0% L00 PERCNT 4 AX STRAIN OST~4F3CPZUO 6 OAHPING I" FIGURE 0.24 5— SNNPLES SI-2,SI-3,SI-4 s SAND CONTENT = 20 I j 0 POINTS 5. 5 3;; g $.- I. p , g£""*"ib-—-&r__________________- 6 4'.» 4..“ 41.00 41.00 41.00 fl w07‘— LOG PERCNT 4 AX STRAIN OST-4FSCPZOO 228 9 UAHPING 5. 5. FIGURE 0.25 §_ SAMPLES SI-22,SI-23 ’ SAND CONTENT = 20 I . g- 4 POINTS g_ E» 3. £0 ' A A Sr- A A as: Z P" a ‘1 m :3“ . S )7. ‘JT (I D d T E+-TO_—-_7150 4100 Tina-1100 - I 'o 0 I LOG PERCNT 7 AX STIL’AIN OST~10FOSCPO 9 DAHPING 50 FIGURE C.2? é SNNPLES SI-22,SI-23 â€I SAND CONTENT = 20 X gr 4 POINTS gr 5’? Z «t’ E §~ . I? g (I: D .4- . $.00 41.50 3.00 41.50 41.00 "1000 0.: L00 PERCNT 7 Ax STRAIN OST—lOFlCPO OAHP RATIO UAHP RATIO O.1 ï¬rm-02 1.0m.†an an an an an an aanp 9 OAHPING b . FIGURE C.26 SAMPLES SI-22,SI-23 I SNNO CONTENT = 20 z 5 4 POINTS 01 '0â€.'†73‘0".“ I ON†ON" câ€. 020. .m .m 02". a," I b l I l I L I l J.» 4.00 4.00 -I .50 -| .00 - .000 0.1 LOG PERCNT 7 AX STRAIN OST-IOFBCPO 9 DAHPING FIGURE C.28 SAMPLES SI-22,SI-23 SAND CONTENT = 20 Z 4 POINTS 77 T . .00 4.00 4.00 4.00 "no 0.‘ L00 PERCNT 7 AX STRAIN 6 OST-lOFSCPO .u0.n0.u0.u0.qn DAMP RATIO 9‘1 l-SOOE-SI T-SOOE-O! DAMP RATIO 229 9 DAMPING . TIOOPE 0.29 SANPLES Sl-22,SI-23 ‘ SAND CONTENT = 20 z . 6 POINTS 0‘" O... 0". T +-_ I I I I I I 4.00 4.00 4.00 -I.S0 4.00 "000 07 L00 PERCNT 7 AX STRAIN UST-IDFUSCPSU 3 DAMPING L T FIGURE E.BT SANPLES SI-22,SI-23 SAND CONTENT = 20 Z 6 POINTS T .133 nITS .000 .213 .230 .278 .333 g r- ‘F b g_ S " X/ 3 id.†«1.00 41.00 al.“ 41.00 â€1000 0.1. LOG PERCNT 7 AX STRAIN DST-IDFICPSD DAMP RATIO DAMP RATIO 9 DAMPING b FIGURE C.3O SANPLES SI-22,SI-23 _ SAND CONTENT 8 20 I 6 POINTS I 0'†0'†0m...†0m 0.†0’ .12. T 2.800E-02 7.500E-02 001 -0‘.00 4.50 4.00 4.00 -I.00 -.000 0f LOG PERCNT 7 AX STRAIN UST-IUFBCPS 9 DAMPINU FIGURE C.32 SANPLES SI-22,SI-23 ’ SAND CONTENT = 20 I . 6 POINTS p- 0.†0". 0". 020° 02" 0’80 c’,. capo kaOOE-OI 7-IOOE-OR l I I I I l I -0'.00 4.00 4.00 -T .00 on .00 -.000 0.' LOG PERCNT 7 AX STRAIN DST—lDFSCPSD DAMP RATIO DAMP RATIO 23C) 9 DAHPING I’ FIGURE 0.33 g. SAMPLES SI-22,SI-23 5 SAND CONTENT = 20 I ' 8 POINTS IT EP 5" A 5†I A g. 5 U: I— NFO-P I 4_ 4 l -J l .0100 -2 .50 4.00 -I .50 -| .00 . .I—no 07 LOG I'ERCNT '7 AX STRAIN 0": 0‘" O '7‘ .200 It's 0"" 0’7, -3Po OST—IOVUSCPZOO 9 DAMPING FIGURE C.35 SAMPLES 81-22, SAND CONTENT = 6 POINTS SI-23 20 Z g _ S. P A g F- M/ S :‘P" D I I L I I I I -0'.00 4.00 4.00 4.0:? 4.00 -.000 0.‘ L00 PERCNT 7 AX STRAIN DST-IDFICPZDD DAMP RATIO DAMP RATIO 9 DAMPING g. 5. FIGURE 0.34 E SAMPLES SI-22,SI-23 ° SAND CONTENT = 20 I E- 6 POINTS £- 5. g . 5. g. A §_ . g N- S- 6 qt“ ~2J.I.O 41.00 - II.†4L.†"1500 O.I LOG PERCNT 7 AX STRAIN 6 OST—IUFBCPZOO 9 DAMP I NC FIGURE 6.36 SANPLES SI-22,SI-23 ’ SAND CONTENT = 20 I 0 6 POINTS .III .l“ J?! .230 .225 .252 .275 .3?!) g .- E. ,z A g r- A §_ . :_1 I I I l l I 3.00 -0 .00 .0 .00 -T .00 4 .00 - .000 0.‘ L06 PERCNT 7 AX STRAIN 6 DST-IDFSCPZDD DAMP RATI DAMP RATIO 231 3 DAMPING Sr E E 8 S E g. E T- ? .. § FIGURE 8.37 3' SANPLES SI-11,SI-I3,Sl-16 §~ SAND CONTENT . 45 2 §_ 11 POINTS «5‘. I I' L I. I I I LOG PEACH] I AX STRAIN OST~1FDSCPU 3 DAMPING SI ;. FIGURE 0.39 ; SAMPLES SI-II,SI-13,SI-16 3’ SAND CONTENT = 45 I a. 10 POINTS 80 '5 .6 ET A g: TTTTT‘T‘IS~.‘\f5 ‘I '3 A A a . '5 L A E. E†S. 0:4. J l I l l I .0100 4.00 -0.00 an 4.00 -.000 0r LOG PERCNT I AX STRAIN OST—lFlCPD DAMP RATIO 0.l 2.0000-02 7.000t-00 DAMP RATIO '01 LCM-OI ,OM'R 4n au'au an an '1' .1†JG. 3 DAMPING FIGURE C.38 P SAMPLES SI-11,SI-13,SI-16 ~ SAND CONTENT = 45 I 9 POINTS 0’†0’2. 0230 Iâ€. 03?. .12. OR†A†p I J I I -§L00 -:.30 -x.00 -|-50 LOG PERCNT I UST-IF3CPU 3 DAMPING L _ I I 4.00 --300 G AX STRAIN 2 j FIGURE C.40 SAMPLES SI-11,SI-13,SI-16 SAND CONTENT = 45 I 10 POINTS T T T . r l I I I I I I .0'.00 4.00 4.00 an 4.00 -.000 07 LOG PERCNT I AX STRAIN DST-IFSCPD OAHP RATIO CARP RATIO 232 3 DAHPING '1' . I. . d’ . .m .m D .too .1“ I on. 4" CI†1 L FIGURE c.41 SAMPLES SI-11,SI-13,SI-16 * SAND CONTENT = 45 z E 13 POINTS _ 2 JOSE.†‘7 JOSE-CI P 0.] L ...__ I 4 I I I aloe 4.59 -:.oa -I.so 4.00 “Sun o.‘ LOG PCRCL’T I AX STRAIN OST—lFDECPSO 3 DAHPING * FIGURE 8.43 SAMPLES SI-II,SI-13,SI-16 SAND CONTENT = 45 I " 11 POINTS .130 .I18 .teo .228 .I30 .113 .390 T , O'Nt‘" I I" r 2 0:33." o.’ I I I l - I I I 4‘..- -2.so moo on .u -T .u «sou u.‘ LOG PERCNT I AX STRAIN DST-IFICPSO OAHP RATIO DAMP RATIO a DAHPING g. 5, SP 3' 2 is E - ~ A ‘ +‘ O A t 5 . g __ A i A Â¥~ TIOONE c.42 EL SAMPLES SI-11,SI-13,SI-16 ’ SANO CONTENT = 45 2 §* 12 POINTS 64. I I I I J L aloe 4.» -:.oo -| .u 4.00 nun .5 L00 PERCNT I AX STRAIN DST—IFBCPSO 3 OAMPING é- EISUNE c.44 £_ SANPLES 81-11,SI-13,SI-16 - SAND CONTENT = 45 z §~ 9 POINTS S g. g» A A S“ . E g .— i ‘.i. .é. .i. .tu .i. .5. .%~ LOO PERCNT 1 ax STRAIN OST—lFSCPSO DAMP RATIO DAMP RATIO .m .180 .m .m .m .m .m .1. 233 3 DAMPING FIGURE 0.45 g _ g SAMPLES SI-11,SI-I3,SI-16 5’ SAND CONTENT = 45 I g. 15 POINTS E. .4- a in visa —2L.O-- 3.3.59— â€.1130 —-.too a; LAG I‘LRCNT 1 AX STRAIN DST—IFDSCPEOU 3 DAMPING $E gL FIGURE C.47 S SAMPLES SI-11,SI-13,SI-16 E» SAND CONTENT = 45 z 3_ 15 POINTS E» g . 5 - ‘P A . 11â€Â»,- E b MA.- 3 ~ ‘ “ l A E. $.- 5. :1†I J 4 _I L _I_ 4'.» or .so 4.00 4 .so 4 .oo . .500 u.‘ LOG PERCNT I AX STRAIN DST-IFICPZDD DAMP RATIO DAMP_RATIO 3 DAMPING â€I. g» g» 5 - ‘ £3 a g A A 8. A '.' A 3’ A Er g FIGURE c.46 3. SANPLES SI-11,SI-13,SI-16 g_ SAND CONTENI = 45 2 g 15 POINTS 6 3.00 .91.» 4).“ also 41.00 "1500 a} LCD PERCNT I AX STRAIN 2 DST—1F3CPZOO 3 DAMPING '83-"- E» FIGURE c.48 ' SAMPLES SI-11.SI—13,SI-16 E- SAND CONTENT = 45 z 5. 10 POINTS 3% E . g L g. I . ‘ 9 .. E. .L O L I I J I J I of... oz.“ 4.0 4.80 on. â€If. n.‘ ‘ LOG PERCNT I AX STRAIN DST-IFSCPZDD DAMP RATIO DAMP RATIO 234» s DAMPING g. g. g. A A !- . g. A E I- A 5L ‘ A 5. SP §_ FIGURE c.49 ° SAMPLES SI-b,SI-18,SI-19 EC SAND CONTENT = 45 2 Ir 7 POINTS ,L . - .III 41.50 ’41.†44.50 41.00 â€1:09 0% -. LOG PERCNT 4 FIX STRAIN UST—4FDSCPO 6 DAMPING g. 5r FISUNE c.51 ' SAMPLES SI-I,SI-TO,SI-19 ï¬- SAND CONTENT . 45 z 5. 7 POINTS Sr 5. g. 5-- ‘ . ' A g“ A ‘ A ;. Orb] L I l I I I of.†4.9 4.. out 4.. um 07— LOO PERCNT 4 AX STRAIN DST-4F1CPD DAMP RATIO DAMP RATIO 6 DAMPIND g. 5* TISURE C.So £_ SAMPLES SI-6,SI-IG,SI'19 ' SAND CONTENT = 45 1 ï¬- 7 POINTS §+ E P- A g ’- A A g __ A §_ Sr E. J. o at†41.50 :Loo 41.:0 41.00 "1800 0.: L00 PCRCNT 4 AX STRAIN 4 UST-4F3CPU 6 DAMPING 5. ' FIGURE S.SZ §~ SANPLES SI-6,SI-18,SI-l9 §_ SAND CONTENT 8 45 Z ; 7 POINTS 8 I- 2... g. g- 5- g A g&- A II ‘ ‘ I- a - .u 4'.“ 41.00 4i.“ 5.00 «Jun 40% L00 PERCNT 4 AX STRAIN 'DST—4FSCPD DAMP RATIO DAMP RATIO 1235 6 DAMPING E. g. g» A 5’ 3 A ‘ g I- // 5F 4 A A 3p 1 FIGURE 9.53 §- SAMPLES SI-6,SI-TG,SI-I9 g SANO CONTENT = 45 z é‘ 10 POINTS é. ' L I I I I I o «(no 41.50 4.00 -I.so -I.oo -.soa :7“ LOB PERCNT 4 AX STRAIN DST—4FDSCPSO G DAMPIND A» gL FIGURE T.SS §_ SAMPLES SI'6.SI-18,SI-I9 ' SAND CONTENT = 45 I g- 8 POINTS g. 5L 3» A '3 \A A s- A ‘ O A A A ~ g I- E- O «I...— 41.“ 41.†~11.“ 41.00 "Inc 74' LOG PERCNT 4 AX STRAIN OST-4F1CPSD DAMP RATIO DAMP RATIO s DAMPING *- 5; FIGURE C.54 g~ SAMPLES SI-é,SI-18,SI-I9 SANO CONTENT = 45 I g» 8 POINTS g. g. £ . ‘ ° gL . A . gl- EL g- EL ‘ .,... .1... -3... 3... .I LOO PERCNT 4 AX STRAIN OST—4F3CPSU 6 DAMPING §_ 5- FIGURE C.56 g. SAMPLES SI-6,SI-18,SI-19 ' SANO CONTENT = 45 z E- 8 POINTS g- g. g. E b g .- g" {I 3 I†w 9 vi†oIl.“ ~81.“ -:.IO -|lo- -.:fl 0.: L00 PERCNT 4 AX STRAIN UST-4F5CPSD RATIO DAMP DAM? RATIO TI.l IJMbfl_1mefl I 236 6 DAMPING g. g. g. g. h g. Er A PF FIGURE c.57 g» SAMPLES SI“6,SI*18,SI‘T9 ~L SAND CONTENT = 45 I g 12 POINTS 9. g_ ,L o 34.5 :2].er -21“ -Il.so 41.00 «lion 04f LCD FCRCNT 4 AX STRAIN 4 DST—4FUBCP200 6 DAMPING . FIGURE c.59 SAMPLES 81-6,SI-18,SI-19 SANO CONTENT = 45 2 ~ 10 POINTS .22: .230 .:?S .ap: .IN a!" d"! .m p __+ I 4 I I I J a.†a.“ a.†ou- -I.u -.m o.‘ LOG PERCNT 4 AX STRAIN DST—4FICPZDD DAMP RATIO ORMP RATIO 6 DAHPING g. §~ FIGURE c.5e SAMPLES SI-6,SI-lB,SI-19 g. SANO CONTENT . 45 1 SI 12 POINTS g. A 5. 5L 4" . . E. TA A A gu- E. $.- EL I , “ES; .3» ‘iï¬A -tu .¢. .5» .ï¬ LOG PERCNI 4 AX STRAIN 4 OST~4F3CPZOO 6 DAMPING 5. 5. FIGURE c.60 ; SAMPLES SI-6,SI-18,SI-19 S†SANO CONTENT . 45 z a. 10 POINTS g. 5,. g. 8 FT g.- g- ‘ A t- __A A g- TA A' ‘5 ~*— 2. :LI 1 I l I J J__ of: a.†4.00 on“ 4.00 o.“- 07 LOG PERCNT 4 AX STRAIN DST-4F5CP200 OAHP RATIO OAHP RATIO 237 9 DAHPING g. 5F FIGURE C.GT §_ SAMPLES SI-24,SI-25,SI-26 - SANO CONTENT = 45 z 5* 7 POINTS §_ - . E F R :L I I I 4 _1 I 4?» -2.SO ~2J.Ou -I.sc -I.oo -.soo o.‘ LOG PCRCKT 7 Ax STRAIN 2 UST~10FDSCPO 9 DAHPING 5. 5 FIGURE [.63 ' SAMPLES SI-24,SI-2S,SI-2G ï¬- SANO CONTENT = 45 I g. 6 POINTS 5. g _ g L g _ g I. ? .. E. ,6- . 03.00 41.30 ~11.†oil.†a?†â€I.“ Gig LOG PERCNT 7 AX STRAIN OST—lOFlCPO OAHP RATIO 0.]— : .GOOE-o: 1 .GOOI-SI OAHP RATIO .01 . OM'n , am.“ an an JflTmn.uI.flfl.flI.!I y- p b an ap 0|†0‘“ 0ԠCM .228 of†h 9 OAHPING FIGURE 0.62 SAHPLES SI-24,SI-25,SI-26 SAND CONTENT = 45 Z 6 POINTS 1 I I L J I I -s.oo 4.59 -: .no -I .so 4 .co - .500 GT LOG PERCNT 7 AX STRAIN UST-lOFBCPO 9 DAHPING FIGURE 6.64 SANPLES SI-24,SI-25,SI-26 SANO CONTENT = 45 z 6 POINTS 1 L l l J J I .930 a.“ a .NO -I .u -I .09 “In o.‘ LOG PERCNT 7 AX STRAIN 6 DST—IOFSCPO DAMP RATIO OAMP RATIO 238 9 DAMPING 5‘ FIGURE 6.65 g- SANPLES 51-24,SI-25,SI-26 !_ SANO CONTENT = 45 2 ° 9 POINTS 53 g b g . g . §_ AA ‘A A g .- i. T r 3.. 9. - .00 -i$0 450 41.80 dJ-N "1‘00 LIL LOG PERCNT 7 AX STRAIN OST—lUFDSCPSO 9 OAHPINO 5. 5. FIGURE C.67 5* SAMPLES SI-24,SI-25,SI-26 - SAND CONTENT = 45 I E- 8 POINTS g. E N- g. E S E. N 5. . :3 J l l l l J . .00 a.“ 4.†out! omo «no o.‘ LOO PERCNT 7 AX STRAIN OST-lOFlCPSO OAMP RATIO DAMP RATIO 9 OAMPING T“ FIGURE C.GI §~ SAMPLES SI-24,SI-25,SI-26 §_ SANO CONTENT = 45 I 9 POINTS g. g. El- g. E!- gh- E- U... J.†.3.†.A LOG PERCNT 7 AX STRAIN 5 DST-IOFBCPSO 9 OAMPING g... §~ FIGURE C.GG §_ SAMPLES SI-24,SI-25,SI-26 ; SANO CONTENT = 45 z g†9 POINTS g. g. 5». 5T gy- E. a . ’ “*—zï¬r———-;3—— S- a “‘ E. 9. -O:.00 ~31.“ 41.†- NJ.“ 4].†- .1.†0.: L00 PERCNT 7 AX STRAIN OST—IOFSCPSO DAMP RATIO DAMP RATIO 1239 9 DAMPING Q. 5_ FIGURE C.69 ' SAMPLES 81-24.SI~25,SI-26 3’ SANO CONTENT = 45 2 g- 10 POINTS 3 E i E ï¬r E- g .. 5. :PI I 4 J I _L I â€.00 -!.59 -!-OO -|-SC -|.OO -.500 0. L00 PERCNT 7 AX STRAIN I DST~IOFDSLVZUO 9 DAMPING g. A FIGURE C.71 E SAMPLES ST—24,SI-25,51-26 5* SANO CONTENT = 45 Z a. 9 POINTS 5. E I- § .. ' A g T. ° A S " A ‘— g __ T u: ‘- A ‘A ' . A g L. :I'l L g 1 l J J - .oo 4.50 4.00 a.“ a.†«‘50 o.‘ LOG PERCNT 7 AX STRAIN DST-IDFlCPZDD DAMP RATIO DAMP RATIO 0.1 scoot-o: 1.83924! b b 9 OAMT’ING g. 5* FIGURE C.7o g. SAMPLES SI-24,SI-25,SI-26 ' SANO CONTENT = 45 z 5' 9 POINTS QT E .. 5_ NE '2 A a. ,,jL,——*""â€"’—fl'flflfl g -——'z"“ “ 'z A $.- A ,L 0 ion 31.“ 41.0; 41.50 -I].OO .ioo 9.47: LOG PERCNT 7 AX STRAIN 6 DST—IDFBCPZDO 9 DAMPING I FIGURE C.72 SANPLES SI-Z4,SI-25,SI-26 †SANO CONTENT = 45 I 9 POINTS .323 JSO .m .3" T T T T J" 0Ԡa!" a!†I I I I I I L . .oo .1.“ 4.00 -I .so a... â€In o.‘ LOG PERCNT 7 AX STRAIN DST-10FSCP200 DAMP RATIO DAMP RATIO 3 DAMPING FIGURE c.73 ’ SAMPLES SI-TS,SI-T7 L SANO CONTENT = 65 2 dz. O'.° A". .209 .m a!“ I" .m I 240 § 5 G POINTS 614'.†32.50 jinn—7135" - 11.00 . .Soo OI— LOG PERCNT I AX STRAIN 2 UST-IFODCPU 3 DAMPING EN» ‘ FIGURE C.75 iF SAMPLES SI“IS,SI-I7 §_ SANO CONTENT = 65 z 4 6 POINTS g h I- I L U- †Tab-o :30 .2130 -IJ.SO in "Jun LT: LOG PERCNT I AX STRAIN DST-IFICPO DAMP RATIO DAMP RATIO 3 DAMPING 0". 0". 0Ԡ.M' 0’†0.“ cm 0* I p FIOURE 6.74 _ SANPLEG SI-IS,SI-l7 8 EL SANO CONTENT = 65 z s ' 6 POINTS If :JL. ° ~ï¬00 -tl.GO -81.00 41.50 of.†“0.80. 0.: L00 PERCNT I AX STRAIN . DST-IFBCPD 3 DAMP I NO %- FIGURE C.7G g. SAMPLES SI-IS,SI~17 § SANO CONTENT = 65 z .“ 6 POINTS 5P ‘ §- ‘ A g . g .. E. g h— gr 9 ~II~N -lloIO '8'“ 41.“ oil.†â€â€˜3“ LT— LOG PERCNT I AX STRAIN 2 DST-IFSCPD DAMP RATIO DAMP RATIO 241 3 DAMPING g†g. SP I . i_ G t E b !_ FIGURE C.77 ° SAMPLES SI-TS,SI—17 E- SANO CONTENT = 65 z 3. G POINTS IL g .- E. :‘L I I J I l J I a .,[,o a.» 4.00 4.50 am -.soo o}— LOG PERCNT I AX STRAIN 2 UST—IFDSCPSO 3 DAMPING 5’ FIGURE c.79 5L SAMPLES SI-TS,SI-T7 é SANO CONTENT s 65 z -’ 7 POINTS 5.’ \ E ‘ ‘ 5P 5_ A g_ Q I- S. g .- E. .l“' L l l 1 l l J 4'..- -N.Go an 4.39 a... -.m o.‘ LOO PERCNT 1 AX STRAIN OST-lFlCPSD DAMP RATIO DAMP RATIO 3 DAMPING 5T. gL g- 5, - A SP A g . TL FIGURE C.7S 5» SAMPLES SI-TS,SI-17 g_ SANO CONTENT = 65 I g 8 POINTS g. .- E, 0;. L l I l I J l_ 4'.†4.50 -: .oo - I .so -I .oo - .uo o.T LOG PERCNT I AX STRAIN ? DST-IFBCPSD 3 DAMPINO 5' FIGURE C.Go §~ SAMPLES SI-TS,SI-17 g. SANI CONTENT . 65 z ' G POINTS g. 55 g . g . g _ g: S- g .- 3. r“- l l l 1 L . 4150 4‘.“ 1.x 4.» «.00 "an o.‘ LOO PERCNT I AX STRAIN 2 DST-IFSCPSD DAMP RATIO DAMP RATIO 242 3 DAMPING FIGURE C.GT ~ SAMPLES SI-TS.SI"7 SANO CONTENT . 65 2 an an an an an an an.qp T I 8 POINTS :3 .. g I? F 6+- J J I I I I I 47.59 -2 .TO -2.oc 'I .So oI .ao -.soo II.I LUG PLRLNT I AX STRAIN 2 DST~1F§UCPZUU 3 CAMPING fl" FIGURE C.83 Q’ ' SAMPLES SI-15,SI-I7 §_ SAND CONTENT = 65 I 5 8 POINTS §_ ' A §â€â€œ*‘nr— A 8 ZTTTYT“‘_--—————___. J g . E. g I. é- ‘ «In ~21.» 4‘40 41.5; an.» â€In 03— L00 PERCNT I AX STRAIN OST~1F1CPZDD DAMP RATIO DAMP RATIO 3 OAMPING g. g. g; g" A- 5 ' ‘ A .£_ 1 A ‘_7_3 E» _ 8 FIGURE c.82 TI SAMPLES SI-IS,SI-17 5P SANO CONTENT = 65 I §_ 8 POINTS E. - g .— §_ a -:00 ~11. 80 -!l-OO - Il-SO - ll.†- $00 0 .IL LOG PERCNT I AX STRAIN 2 OST—lFBCPZDD 3 DAMPING g_ E- FIGURE c.84 - SAMPLES SI-TS,SI-T7 ï¬- SANO CONTENT = 65 2 g, 7. POINTS 5. E D- S E 2‘ 3. S E. .- .gI.†41.30 ~11.†“J.“ 4: 0 .1.“ # LOG PERCNT I AX STRAIN DST—1FSCPZDD 6 DAMPING ’ FIGURE c.85 . SAMPLES SI-20,SI-SI SANO CONTENT = 65 Z 4 POINTS an an an an au,au aann I I 2 JOCK-02 7 .SOOE-O! I I. I I I I I -310: 4.5: -z.oa -I.sc 4m LOG PERCNT 4 DAMP RATIO + (.221 FIGURE C.G7 " SAMPLES SI-20,SI-31 ~27. ï¬n SANG CONTENT 8 65 z 4 POINTS 5. g» E- g. E" A h C DAMP RATIO Oi nan-u HOSE-OE I I I I I oaloo oI.Go -:.oo -I.GO -|-lfl LOG PERCNT 4 OST-4F1CPD 1 ° 0:00 AX STRAIN DST-4FDSCPD 6 DAMPINO I AX STRAIN 2453 I o.‘ _I m' DAMP RATIO DAMP RATIO 6 DAMPING I’ FIGURE c.86 Er SAMPLES SI-20,SI-3| ,_ SANO CONTENT = 65 z ' 4 POINTS 5, 5x g_ E~__'_j;_ï¬L———————"â€â€"—T——T Q" A A qr- L g»— A .Jb— °.iw .;S .:A .tu -tA .IA 33 LOG PERCNT 4 AX STRAIN A OST~4F3CPO 6 DAHPING S. gr FIGURE C.OG : SAMPLES SI-20,SI-ST G- SANO CONTENT = 65 z 5, 4 POINTS §- 5. 5. El- ? . A ;- ~ A orb-I I I I I I I osioo -:.Go -I.oo -I.Go -I.No -.NNN o.‘ LOG PERCNT 4 AX STRAIN OST—4FSCPO DAMP RATIO DAMP RATIO 244 6 DAMPING I" FIGURE C.SP 5* SAMPLES SI-20,SI-31 g- SANO CONTENT = 65 I 6 POINTS g. A A g. E» A 6 A g_ E F- g I- E. T- ? .- E- ,L ° Di†ORLJO 081.30 «to 41.00 “1590 0.1]; LOG PERCNT 4 AX STRAIN DST—4FDSCPSD 6 DAMPING g- 5_ FIGURE c.91 ; SAMPLES SI-20,SI-31 G- SANO CONTENT = 65 z 5. 6 POINTS 5. E. g _ z; _ A g _ . 5. - G F 3. . FL- I I I L . . l..- 41.“ «i.» 4.0 -I.oo -.m o.‘ LOG PERCNT 4 AX STRAIN OST-4F1CPSD DAMP RATIO DAMP RATIO 6 DAMPING g. 5- FIGURE C.9O §_ SAMPLES SI-2O,SI-IT ° SANO CONTENT = 65 I 5- 6 POINTS g. E- A g _ . A A E». P g .. E» E :P ‘.;A .5“ .am .5†.5“ .IA .3 LOB PERCNT 4 AX STRAIN I DST-4F3CPSD 6 DAMPING g. 5» FIGURE c.92 §_ SAMPLES SI-20,SI-31 ; SANO CONTENT = 65 z S~ 6 POINTS EL 5 . g . g _ g P- E. . P A g†I O. . I.†021-“ ~81.†“I.“ 4..†"I.“ 0.: LOG PERCNT 4 AX STRAIN 4 DST-4FSCPSD DAMP RATIO DAMP RATIO LSOOE-CZ 7 .SOOE-M .m .1» an no .m an .m .390 ,j, 1 S I. F .- 0.1 .IIO .130 .178 .200 .228 .250 .27S .ZPO T I - 37.00 [I 6 h P. - DAMPING FIGURE C.93 SAMPLES SI-20,SI-31 SANO CONTENT = 65 2 8 POINTS I I I I -:‘-53 -2-00 °I-$O -I.09 DAMPINI; FIGURE c.95 SAMPLES SI-20,SI-31 SANO CONTENT = 65 I 7 POINTS I -SOO LOG PERCNT 4 AX STRAIN I 8'~4FDSCPZDD 245 I O.| DST-4F1CPZDD E E E A- D I I J I I ‘1 I 4170 an -N.oo 4.9 4.00 -.m o.‘ LOG PERCNT 4 AX STRAIN 2 DAMP RATIO ORMP RATIO 6 OANPING N' FIGURE c.94 ï¬- SAMPLES SI-20,SI-31 gr SANI CONTENT = 65 z ' 7 POINTS 5 . ‘g» 5 . g _ A g '_——T2"3‘-—1»—_________________ a. L. E .z I- 3. .. §_ J‘QOO 44.50 41.00 i.» - II.†it†o I LOG PERCNT 4 AX STRAIN 1 OST-4F3CP200 6 DAHPING g“ - FIGURE c.96 5- SANPLES SI-20,SI-TT §_ SANO CONTENT = 65 I 4 6 POINTS g ,. g L g .— S- I c2 A A g p g A A; . 6 4'..- 4‘.“ «in ~11.“ 4L..- -.lun 01L LOG PERCNT 4 AX STRAIN DST—4F5CPZDD DAMP RATIO DAMP RATIO 246 9 OAMPING " FIGURE C.97 . SAMPLES SI-27,SI-28,SI-29,SI-30 SAND CONTENT = 65 I _ 6 POINTS an an an an an an .123 .IOO T 5" 293m.†7036"." I b- I— II.l I I _L I I I I _ 4'.» 4.39 4.0: 4.50 4.03 -.soa II.1 LOG PERCNT 7 AX STRAIN 6 DST—IDFDSLPO 9 DAMPINO -N†_ FIGURE C.99 P SAMPLES SI-27,SI-28,SI-29,SI*30 SAND CONTENT = 65 Z 7 POINTS .100 0", o'SO .273 1 JD. J†fl -III I O .tzot-a 7 .Icot-u 7— N DI p- 4 J I I 1 ___1 l___ -a.oo -:.so -¢.oo oI.so on... -.uoo 04' L00 PEKCNT 7 AX STRAIN 6 DST-IOFICPD DAMP RATIO DAMP RATIO w†auIau an anAgp 9 DAMPINO I L FIGURE c.98 SANPLES SI-27,SI-28,SI-29,SI-30 _ SAND CONTENT = 65 z 7 POINTS , g. g. $- A E A e— ; r- 6 A A Sr §_ 5+- 1 l l I l l 1 os'.oo 4 .so 4 .00 -I .so -I .u -.m 0.‘ L00 PERCNI 7 AX STRAIN A DST—IDFBCPD 9 OAMPING gr FIGURE C.IOo §~ SANPLES SI-27,SI-28,SI-29,SI-30 EL SAND CONTENT = 65 z ' 7 POINTS §_ . g. 5. g. g_ I? p 5. E" . ,. :3 - 45 9. . .00 '21.“ -!‘.fl 4‘.“ Th. out. O.I LOG PERCNT 7 AX STRAIN DST-IOFSCPO DAMP RATIO DAMP RATIO 247' 9 DAMPING FIGURE C.101 SAMPLES SI-Z?,SI-28,SI-29,SI-30 'T†g SAND CONTENT = 65 I §~ 10 POINTS §_ 5. g- Â¥r ‘ A S» .a E 5 :- l J 1..-..- L I g I am» 4.50 4.03 4.30 4.03 -.soo 0. L00 PERCNT 7 AX STRAIN DST-IDPUSCPSU 9 09:1? I NU %» :_ EISUNE c.103 †SAMPLES SI-27,SI-28,SI-29,SI-30 5- SAND CONTENT = 65 I g 8 POINTS g. g L- g I i: b H g. A g. A Er :4 L I J I_ _L I who «.80 4.00 44.50 on... also 0.1 LOG PERCNT 7 AX STRAIN OST-lOFlCPSD DAMP RATIO DAMP RATIO 9 DAMPING II FIGURE C.Ioz §~ SANPLES 51-27 51-20 51-29 51-30 E SAND CONTENT a'Is z ' ' - 10 POINTS g. ig» ES §_ 5. g- A 9 ————Ar—it—"2"â€â€œ_—_——————_—_—. %r A P A g I- a LOG PERCNT. . 7 .nx STRAIN- DST-IOEBCPSO 9 DAMPING 5_ FIGURE 6.104 : SAMPLES SI-27,SI-28,SI-29,SI-3o g- SAND CONTENT = 65 2 §_ 7 POINTS 5. 5. gr 5. g .- E. g _ A A .g‘ h \ OIL-L l l J l l J 3.00 4.30 4... a.“ a... -.uo o.‘ LOG PERCNT 7 OX STRAIN DST—IOFSCPSO CAMP RATIO DAMP RATIO 24¢! 9 DAMPING 9 DAMPING . T:- I» ;_. FIGURE 6.105 é FIGURE 6.106 . SAHPLES SI-27.SI-28.SI-29.SI-30 -' SNNPLES SI-27,SI-28,SI-29,SI-30 g. SAND CONTENT = 65 2 g. SAND comm = 45 1 gr '2 POINTS §_ 11 POINTS 2: I» §- Sp 5r 5» E- S- ‘ I a; ‘ .: Z I†2 S- 3? E~ 3*. E g S gg;†DIE} I..- I J... I I _I_ D 5b1 I _L I 4 I _.L -:.oa -:.::I -I-.on -I.s:- -I.oo -.300 07— 4'.†or.†4.00 4.30 -I.oo â€son TNT LOG PEACH? 7 AX STRAIN 6 LOG PERCNT '7 AX STRAIN USI-lOF—IOSCPZOO DST—10F. CPZOO 9 UHHPING 9 UAMPING EL FIGURE c.107 £_ FIGURE c.109 ; SANPLES SI-27,SI-28,SI-29,SI-30 ; SAMPLES SI-27,SI-28,SI-29,SI-30 N~ SAND CONTENT = 65 1 Sr SAND CONTENT = 65 1 g. 11 POINTS 5E 11 POINTS 5L §_ $~ 5* 2~ £- 9 F- 5 cag A 1'3 Z AI- ‘ #_ a a: In a: A '.’ m TI- A ‘6 § A.5 . :r z :- .L 8 9 -i? 4..“ «in -IJ.SO 4..“ - .15“ 0% . 08%.†'81.“ ~81.“ all... oil.“ of.“ 0.: LOG PLRCNT 7 AX STRAIN LOG PERCNT 7 AX STRAIN OST-lOFlCPZOO 6 UST—lOFSCPZOO APPENDIX D DYNAMIC YOUNG'S MODULUS FOR GRAVEL-ICE SAMPLES 249 PSI E+OS 0.00 “TWV' PSI E+OS 40.0 .0 36.0 _r I _ 32 .0 78.0 ’I' ‘T'“l‘ï¬â€˜"T"T' I 24 I" 70.0 l6.0 F—T T'-T [7.0 I’_T ‘ 4.00 ‘Pï¬ 0. P0 I I I I I I ( SAMPLES 6°18: G’I9o GEAVEL CONTENT I 243 8 POINTS FIGURE 0.1 G-ZO L. if I I J I -3.:. -2 s: -: aO -I.so -I.co - $33 o_r__ LCD FEECNT I AX STRAIN _ 1 z __ 1 [EPA Y I i F: E] LJLJ F) E] 2 E K3:S_JS qI 9"?- SMPLES G’IBO 5'19: 6‘20 I— GFAVEL CONTENT - 24: 9;_ 7 POINTS ‘0 L FIGURE 0.3 e; T- 9% g 9% NT— 9 g b 2: N— o. P'- N I" D 9.. D N— D 9— A él-l L I I I I I -3too -2.Sa -z.oo -I.so -I.oo -.soo OJT LOG PERCNT I AX STRAIN GT—l F1 CP 0 250 E+OS PSI PSI E+OS No.0 24 20.0 32.0 36.0 ?0.0 0.00 12.0 16.0 “T“T‘T'jï¬â€˜I “T—T 4.00 2 E MCDOLUS SAMPLES Gone. I GRAVE. CONTENT - 24: 8 POINTS †FIGURE D.2 T I_T E -3300 ~2.$0 -2.33 LOG PERCNT GT—l F3 2 E MODULUS G'l9o 6'20 CPD GT-I F5 CPD 0 §“‘ SAMPLES s-Is. O-I9. O-2a ~ BAAVEL CONTENT ' 248 9__ 7 POINTS 8 OP ETSORE O.4 O'N— NP 9.. NP- O 5? L 9.. 0.!— NP- 5 6 ‘\\w£ i ° .f“. I I I .4L I -3:OO -2.SO -2.oo ~I.SO ~I.Oo -.saO a} LOG PERCNT 1 AX STRAIN PSI E+OS PSI E+OS 251 2 E MODULUS 53ҠsANPLEs c-Ie. 6-19. 640 r nmvu. CONTENT - 2N: :__ ll POINTS .ï¬ FIGURE I.5 "L :P ' T- : L â€L '- P}: A .. J: T I I I I I I -3.CJ v2.50 -:.OO -I.sa -I.OO -.soo O:F'T LDC: FEAST-ST I AX STRAIN 2 E MODULUS 2}» sAI-IPLES c-Ie. O-IO. c-2O ,_ GRAVE]. CONTENT O 241 9__ 5 POINTS .: EICURE 9.7 "r- :r " L- “ r 8- A o - A g _ A 6- I I I I I I I 45: 4.30 -: .00 -I .so -I .oo - .300 O.1 LOO PERCNT l AX STRAIN GT-l F1 CPSD PSI E+DS PSI E+05 2 E MODULUS 3"? smut-.3 c-Ia. (MS. 6-20 F BAAVEL CONTENT I 2‘3 9 p 8 POINTS OF PISURE I.S s; L- Er o I- \ a A 3 - A 6"- I . I I I I I_ one: -2.so -2.OO -I.sa -I.OO -.530 o.‘ LOG PERCNT 1 AX STRAIN 2 E MODULUS 3“ SANPLEs G-Ia. 6-l9a c-za b GPAVEL CONTENT I 24! 9 __ 0 POINTS .’ FIGURE 0.8 g. of 9 T' 2 L- : L— 8. a O h- A 6“ I I I L I I I -:'.OO -2 .so -2 .00 -I .so -I .oo -.soo O.‘ LOG PERCNT I AX STRAIN 1 GT-l F5 CF50 PSI E+05 252 2 E MCWLUS Z}- SANPLES e-Is. G-I9. G-aa GPAVEL CONTENT - an IL ll PGINTS 9’ FIGURE 0.9 "F “L $__ v I . I I I I -3.33 -2.50 -Z.00 -I.SO -1-00 -.520 DJ LOG PETCNT 1 AX STRAIN (w uT—I FOSCPZOO 2 E MODULUS O 53"" SAMPLES 03-18. 049: G-2G I— GRAVE. couTaIT - 24: :_ II PaINTS 9L FIGURE 0.11 at :F — P :H- I I l 1 l I ~Jloo -z.so -z.oo -I.So -I.oo -.soo 0.? L00 PERCNT 1 AX STRAIN GT-l F1 CPZOO EIOS PSI PSI E+05 2 E MODULUS 3ԠSANPLES G-IG. G-Io. G-aa ~ GPAVEL CONTENT - 24: 9_ II PoINTs 9:4 FISURE n.10 "F N P 2* . A A. o"\\ r— é—_ I I I I I I . -3200 -2.sc ~2.20 -I.SO -I.OO --SCO 0- L00 PERCNT 1 RX STRAIN 2 E MODULUS 2““ SAMPLES G-Ia. (#19: 0-20 GPAVEL. GGNTENT - 24: 9 ll PoINTs :~ FIGURE n.12 gr 3: A F éflb I I I I I I 144 -3Ioo -2.So -z.oo -I.So -I.oo -.soo 03 L00 PERCNT 1 AX STRAIN l GT-l F5 CPZOO PSI E+OS PSI E+05 253 S E NOCULUS gm. SAHPLES G-zI. 6-22. 6-23 _ vaEI. OONTnIT - 24: 9_. 0 POINTS "L 9 FIGURE 9.13 2 L ‘3 L A- O I I l -3233 -2.SO ~2.00 -I.so -I.oo -.soo air—— LOG PERCNT 4 AX STRAIN GT 4 FOSCPO 3 S E MODULUS 3* SAHPLES G-zI. G-zz. 6-23 I GRAVEI. cONTENT - 24: 9__ 3 POINTS 9†FIGURE 9.15 : F 53 .J O l l -:lOO -z.IO -z.oo -I.SO -I.OO -.SOO O.I LOG PERCNT 4 AX STRAIN GT-4 F1 CPO PSI E+05 PSI E+05 0.00 12-0 16-0 20-0 24-0 20.0 32.0 38.0 001.0 .00 00' 401-0 T— S E MODULUS ' SAHPLIS 6'21: 0'22: 3'23 P RIAVIL CONTENT O 208 8 POINTS ". FIGURE D.14 ' I ' I l I L -3ï¬oa -2.SO -z.oo -I.so -I.Oa -.SOO O. LCG PERCNT 4 AX STRAIN GT—4 F3 CPD 5 E MODULUS SAHPLES 8'21: 0°22: 6-23 h GRAVEL CONTENT C 243 =2 _ 7 POINTS OF FIGURE 0.16 2 A v A 8 A é_' A 3 «ET. I I I I I I -3T3O -I.SO -z.oo -I.so -I.OO -.SOO O.I LOG PERCNT 4 AX STRAIN 3 GT-4 F5 CPO E+05 G-OO 'T'TT—"T'—7_'W PSI 70.0 24.0 20.0 32.0 35.0 15.0 12.0 4.00 38.0 QOrO 32.0 10.0 20.0 21.0 0.00 12.0 ¢.00 ‘OrO 5 E MODULUS †SANPLES 6-21. 3 POINTS I S E MODULUS ’ SAHPLIS 0‘21; L. GRAVE. CONTDJ 8 POINTS l TET -J'.OO -2 .SO -2 .00 L00 PERCNT GT-4 F1 254 8'22: 8'23 I- BRAVE. CONTDJT I 243 †FIGURE 0.17 8.22: 6-23 1' 0 248 I FIGURE 0.19 l 1 l "‘ ~50 ‘E .00 -0300 O. .L__ 4 AX STRAIN CP5O E+05 PSI PSI E+OS S E NCCULUS 0 €*‘ SANPLES a-en. O-ea. Goa: . vaEI. cONTnIT - an 9_ 3 POINTS 05 FIGURE 0.18 'a L °. 9: O. I 1 I I L . '3.33 ‘ '2.53 -2.33 -I.53 -1.00 --533 O. 1 L03 FERCRT 4 AX STRAIN GT—4 F3 CPSO 3 5 E NODULUS O 3‘“ SANPLES O-zI. G-22. G-23 .- GMVEL CONTENT I 24! 9 ,_ 8 POINTS 0 — FIGURE 9.20 O 3ԠF— a - ‘é h- e: «'3 D 2: I— “r 2- . . ~ I- A E?“ 1:15 ‘3 " A g __ A c',-E I I I I I I I ~3’.OO -2 .53 -2 .00 -I .SO -I .00 -.SOO o.‘ LOG PERCNT 4 AX STRAIN GT-4 F5 CF50 PSI E+05 PSI E+05 255 S E MODULUS 5 E MODULUS 2'" SMPLES O-Eh 6-22o 6’23 2“"- mgs 3-2;, 3.22, 3.33 GaavEL CONTENT - 2‘! _ GRAVEL CONTENT - ea: 9 9 POINTS 9__ 9 POINTS "~ FIGURE n.21 "- FIGURE p.22 ' m D 4. LL] 3 CL. I I :3 . I A I I I L 3'-OO -2-50 -2-00 4.50 -1.30 -.SCO 0.1 -3‘.00 -2-SD ~2.00 -I.SJ -1.33 -.500 O.' L33 PERCM 4 AX STRAIN LOG PERCNT 4 AX STRAIN — r-\ — I I—4 FO5EP200 Gl—4 F3 CPZOO S E MODULUS S E MODULUS 31- smPLES G-zI. O-aa. 6-23 2}— SAIIPLES G-2I. G-22. 6-23 - GRAVEL CONTENT - 24: - GRAVEL CONTENT - 24: 9 9 POINTS 9__ 9 POINTS " FIGURE '-23 "- FIGURE 3.24 IL" . . . . é A 2 ID - 9 r- A A 8 uIE' " .... ,- A 8. a: 3— c 0.. ' _ 6‘ I' I L I I I :LI I L I I I + -§30 -2.SO -2 .00 -I .SO -I .00 -.SOO o.‘ -SI.OO -1 .so -2 .00 -I .50 -l .00 -.S00 O. LOG PERCNT 4 AX STRAIN 3 L00 PERCNT 4 AX STRAIN 3 GT-4 Fl CPZOO GT-4 F5 CPZOO PSI E+05 PSI E+US 256 8 E MODULUS g3" SAHPLES O-ao. O-TI. 6-32 ~ BBAVEL CONTENT . 2g; :__ 9 POINTS 9* FIGURE n.2s " I— N r- J 8:†M <5 9. ' I I I I l -a.:a .2.53 -:.C: -I.SO -I.oo .sao : L3G FERCNT 7 AX STRA T F‘ . I—IOFOSpPO 8 E KCUULUS :4 SAMPLES G-SO. G-OI. 6°32 '_ GEAVEL CONTENT - ea: 9 8 POINTS 0. FIGURE 0.2? o. b v I- :F -. A A 8- S- :b I I I I I J 43100 ~2.So -z.OO ~1.SO -I.OO -.SOO LOG PERCNT 7 AX STRAIN GT—IOFI CPO E+OS PSI PSI E+05 8 E MODULUS 3.- SMPLES C-ao. can 642 ' _ GRAVE. CONTENT - 2a: 9 9 POINTS "F FIGURE 11.26 " I- r 0'?- N L 9. 9 .A -00 G T’_T'"TT D ob 6 J_ I I L I I I -3130 -2.50 -2.C3 -1.50 -I.CO -.S33 0. LOG PERCNT 7 AX STRAIN 5 8 E MODULUS 3* SAMPLES O-ao. G-SI. 642 F CRAVE. CONTDIT - 2‘! 9L . HINTS °~ FIGURE 3.28 â€F 2, I' or N r- 3 — A - A 3 '- A :-l I I I I I I -JIOO -z.so -z.oo -I.EO -I.OO -.SOO OJ LOG PERCNT 7 AX STRAIN GT-10F5 CPO PSI E+05 PSI E+US 8 E MODULUS 3“" SAMPLES 3-300 3-310 8'32 GRAVE. CONTDJT O 203 :_ 9 POINTS :~ FIGURE I.2I 2T “ L g. r- 8: A A 6 .0 I A 3r 0. I I ' I I 1 -3'.OO -2.SO -2.OO -I.SO -1.JO -.sca 07— L00 FERCNT 7 AX STRAIN 8 E MODULUS g" SMPLES G-SO: 6'31: 6-32 I- OPAVEL CONTBJT - 24! c3_ 9 POINTS "L FIGURE I.31 fl T I- 9- S: (I ‘5 - A g. - \ â€I I I I I L I -s'.OO -:.SO -2 .00 -1.50 -I .00 - .500 o.' LOG FERCNT 7 AX STRAIN 5 257 0T-10F1 CF50 E+05 PSI PSI E+05 8 E MODULUS 3.. SANPLES G-SO. GoaI. 6-32 ' .. Guava. CONTENT - 24: o___ 9 POINTS 3F FIGURE 0.30 2L "F 3L N F 3P PT A I— A A 3~ ‘3 A A I:— I I I I I I I -3-00 -2.50 -2.00 -I.SO -I.OO --SCJ O- LOG FERCNT 7 AX STRAIN 8 E MODULUS 3"" SMPLES G-OO. 8-310 6'32 BRAVE... CONTENT O 2‘! 9 9 POINTS "- FIGURE |.32 a I- A e- A A or I L I I l I l -T‘.Oo -2 .SO -2 .00 --I .SO -I .oo - .300 O.‘ LOG FERCNT 7 AX STRAIN 5 GT—10F5 CF50 E+OS PSI PSI E+05 258 8 E MODULUS 31L smzs e-ao. 0-31. 8-32 I' Guava. comm? - an .3_ 9 mun: "I- FIBURE 0.33 "I- :r NI- } cf".I I I I I I I -3.:a -2.so -z.33 -I.sa 4.30 -.saa o.‘ LOG PERCNT 7 AX STRAIN GT—IUIOSCPZOO 8 E KGDULUS 3“ smpus 6-30. 6-31. 6-32 " _ Guava. comm? - 24: 9b 9 Pom-rs :» FIGURE 3.35 8 «II-PI I l I 4 I I I -:loo -z.so -2.oo -I.so -I.oo -.sao o.‘ LOG PERCNT 7 AX STRAIN GT-IOFI CPZOO E+05 PSI PSI E+05 8 E MODULUS I}- smnzs 6-30. 6-31. 6-32 03mm. coumn - an 9 9 rows of FIGURE 11.34 of } EI A A A I- 8.“ A A F v:- I I I I I I -3I.'}3 —2-50 -2-00 4.50 -I.OO --553 Oj LOG PERCNT 7 AX STRAIN GI—IOFB CPZOO 8 E MODULUS 2‘" swans 8-30. 6-31. 8-32 » cmva. comm? - 2n :_ 9 POINTS 9* FIGURE 0.36 gr- cr- 2’ ob A P\&\‘ 2: A A A 8- rb! l l l L L 1 33100 -z.so -z.oo -I.so -I.oo -.soo n.‘ LOG PERCNT '7 RX STRRIN GT-IOFS CPZUO E+OS PSI PSI E+05 259 2 E MODULUS ol— 9†SAMPLES 6-14. 6-15. 6-16. a-I1 I— emvn. comm? - 42: ‘ :__ 10 POINTS D- FIBURE n.37 "L a: a 'I A A c' g I I I I I I -3-.:a -2.sc -z.ao -I .53 -I .oo -.Eco 0.7— LOG PERCNT 1 AX STRAIN Gi—I FOSLPO 2 E KCCULUS é“ SAMPLES c-Ia. G-Is. aoIG. G-I1 - GRAVEL CONTENT - 42: ' :_ II POINTS "— FIGURE I.39 i 9 Er a s h A '. __ A .JL. 1 J l l l J -J'.oo -2 .50 -2 .00 -I .so -I .00 «.800 o .' LOG PERCNT 1 AX STRAIN GT—I F1 CPO PSI E+05 PSI E+OS 2 E MODULUS §‘ sanPLEs c-II. c-Is. G-IG. G-I1 CRAVE. CONT“? O ‘2‘ ° 3_ II onurs :~ FIGURE n.3G n +- 6 I. A AA 3— 8 . A I. A :- I I I I I I -3‘.ca -2.so -2.co -I.so -I.oo -.soo 0d LOG PERCNT 1 AX STRAIN 2 E MODULUS 3“. snanEs c-Ia. e-Is. G-IG. a-I1 'I. GRAVEL CONTENT - a2: ' =3 _ II POINTS "_ FIGURE 0.40 " I- 9T 3 L J I A 8[ A A 6.“ I I I I I I -3‘.oo -2 .so -2 .00 -I .so -I .oo -.soo o.I LOG PERCNT 1 AX STRAIN GT-l F5 CPO PSI E+OS PSI E+OS 260 2 E MODULUS 9““ SMPLES s-Ia. c-Is. G-IG. G-IT BAAVEL CONTENT - 421 ' 2 11 POINTS 3_ FIGURE p.41 2? :F J —P- TI. g__ A J M C A: I: I I I I I I I -3'.oo -z.so -2.oo I.so -I.oo -.sao U.I LOG PERCNT I AX STRAIN 2 E MODULUS 3ҠSAMPLES G-Mo G-IS: 8-16. 6-I7 _ GRAVE]. CONTENT - ‘28 ' 9_ II POINTS â€_ FIGURE I.43 NI- :F -r- A 8 _ AA 5 A ‘ Ob A & °. '- A "_ A -_ I I I I I L7 -Jloo -z.so -z.oo -I.so -I.oo -.500 0} L00 PERCNT 1 AX STRAIN 1 GT—I F1 CPSO 'PSI E+OS_—_ PSIIE+05 0.00 12.0 IG.O 20.0 24.0 28.0 32.0 36.0 40rd Coo II'Tï¬fI 2 E MODULUS SAMPLES O-l‘: 6°15: GRAVE. CONTDIT - .2; I2 POINTS 6'16: G-I'I FIGURE v.42 I L l I -3‘.oo -2.so -2.00 4.50 -I.ao -.soo o.I LOG PERCNT 1 AX STRAIN 2 E MODULUS Ew- SAMPLES G-Ia. G-Is. G-IG. 6-17 ,_ BRAVE!- CONTDIT I ‘2‘ ' 9__ In POINTS :~ FIGURE v.44 OF :r .F - I- 2'_ 4 â€˜ï¬ 8.. 0 IA D ’- A 6“ I I I I I l L_ -:.oo -2.50 -z.oo -I.sa -I.oo -.sou as' LOG PERCNT l AX STRAIN l GT—l F5 CPSO PSI E+OS PSI E+05 261 2 E MODULUS 2 E MODULUS é“ saunas a-Ia a-IS e-IS. (MI 3* “up; - - . - " “WW“- °°"T’3"T ' 4;; ' ' P cmvéscgu'IgI'ra-‘i'uc “9 a. n 3.. IA POINTS 9__ 14 roxurs 0- FIGURE 0.45 "F FIGURE L“ _F 2C 5_ uaé’ _ O b 8 I. + a LIJ o L A H 2- A " ‘0 I A A “- ï¬ll-OJ -21.50 -21.00 41.50 41.00 NISOO 0} o -JI.00 -21.50 -21.00 41.50 41.00 «1500 O-I LCG PERCNT l AX STRAIN LOG PERCNT 1 AX STRAIN 1 _ GT—l FOSCPZOO GT—l F3 CPZOO l 2 E MODULUS 2 E MODULUS §-.- SAMPLES c-Ia. e-IS. a-Ie. G-I'r 3Ҡsaunas 6"“ “"5' 3"" 6'†L. Suva, con-ran- . 42; - _ GMVEL comm? I 42! ' q__ Ia poxurs 9__ 14 POINTS "_ FIGURE |.47 :_ FIGURE D.48 S '- 2 L. 2* 2* EF O I. .- §- In c: + E- uJ 8. 5 . m 5"- I I I I I I 6 I I I I 1 l I 4.00 -2.So -2.00 -| .50 -I .oo -.soo II.I -S‘.oa -z.so -2 .00 -I .so -I .oo -.Soo o.‘ LOG PERCNT 1 AX STRAIN LOG PERCNT 1 AX STRAIN GT-l F1 CPZOO 1 GT—l F5 CPZOO E+05 I S PSI E+05 262 5 E NCDULUS gL- SAHPLES S-ea. 6-25. 0-26 _ BRAVEL CONTENT - 42: q .— 7 POINTS 6 FIGURE v.49 9: l2 _ “\\\\\\\\:E\\\\ 5’. AA A DI. \b\\<AD\\\\\\\\\\\ :3 h I I I I I I ~2tco ~:.sa -z.oa -I.Sa -I.oo -.sco OJ L33 FERCNT 4 AX STRAIN C) IT— FOSCIO 5 E NCDULUS §~~ saunas a-za. a-zs. 6-26 _ GRAVEL CONTENT I 42: 9 7 POINTS 6‘ FIGURE v.51 "L N I— o'— A 2_ m. S_ A JEN 44 I I I I 4_ -31ca -z.so -z.aa -I.SO -I.oo -.500 03 LOG PERCNT 4 AX STRAIN GT—4 F1 CPO PSI E+05 PSI E+05 S E MODULUS 3* SANPLES 6-24. 6-25. 6-26 _ BRAVEL CONTENT ' ‘21 9__ 1 POINTS "— FIGURE 1.50 «P é“ A OT A Jw' I I I I I I -3-OO ~2-50 -2-03 -I.SO -l.03 0.500 DJ LOG PERCNT 4 AX STRAIN S E MODULUS 3“ SAHPLES 6-24. 6-25. 6-26 , canvzn CONTENT - 42: 9 7 POINTS‘ :— FIGURE n.52 -L gwI I I I I I I ~3Loo -z.so -z.oo -I.so -l.00 -.soo oJ LOG PERCNT 4 AX STRAIN 3 GT-4 F5 CPO EIOS PSI PSI E+05 2% 5 E MOCULUS é“ SAHPLES 6-24. 6-25. 8-26 I- GMVE. CONTDJT O ‘23 :__ O POINTS 9†FIGURE 9.53 . n I- o' _ OF T .. I- A 3— A 'F c:— I I I I I -3 c: -2 so -z.co -I.so ...:3 - G-: :L' C3 SERCNT 4 AX S-RF’N 3 __ ,_ A - _. ‘ (I CI 4 FODLPEQ 5 E HCSULLS 0| é“ SANPLES 6-24. 6-25. 6-26 '— GRAVH. CONTWT D 42% 9__ 8 POINTS OF FIGURE 1.55 "L y L g. o _ 5 r— L 9- "L 8- 6 g. b r- u 4 I I J I L. -r.co -2 .So -2 .00 -I .So -I M - .530 T LOG PERCNT 4 AX STRAIN GT—4 F1 CP5O SI E+05 P PSI E+OS 5 E NCDULUS 3“" SAMPLES 6-24. 0-25. . I- CMVEL CONTDJT - ‘2'0 26 :L_ 8 POINTS OF FIGURE |.54 "L ~ I- -3'.:J -2 so -z.c3 -I.so -I.co - 5:: O.‘ L23 FERCNT 4 AX STRAIN 3 T" (— GI—4 F3 CPOO S E MODULUS oI §* SAHPLES O-aa. O-2S. 6-26 I" GRAVE. CONTENT - 423 9__ 8 POINTS OF FIGURE 0.56 e: 3 c.5- I I I I . I I g -3223 -z.so -:.Oo -I.so -I.oo -.SOO OJ LCG PERCNT 4 AX STRAIN GT-4 F5 CP5O F+05 SI P E+05 PSI 5 E MODULUS 9L g“ SAHPLES 6-24. 6-25. 6-26 - GRAVEL CONTENT - 42: 9__ 9 POINTS 9- FIBURE 0.57 HI— -0 ‘TTIT‘T_'I 20.0 24 l6.0 1'T"F""T~‘T"'F_"T'_T"'1_'"F_“T 264 9 w C3 3 + 6 DJ 3. w 6] I I I I I I I -3‘.?o -z.s: -z.:: -I.so -I.c3 - 530 0.7— L33 PERCEIT 4 AX STRAIN 3 (A .F. 4 ‘FW C: (“ 7‘ â€W 1“ L7 "H- F-LJLJer/23LJLJ 5 E KCCCL'S ql §_ SAMPLES 6'24: 8'25: 6'26 L ORAUIEI. cONTEIIIT - 42: O, _ 9 POINTS †FIGURE I.59 C RI L— O S c: _ 3'. 9L 2 L D 6 L u-I L- A o % b; l_ A A A LO ’— A O 8 _ + a; “J a If: v 0. 6 I I I I I I I -3'.'JO -2 .So -2 .00 -I .so -I .00 -.SOO O.I LOG PERCNT 4 AX STRAIN GT—4 F1 CPZOO 5 E MODULUS °-.J 9" SMPLES 0°24: 0-2So 0-26 - GRAVE. CONTEJT - 428 9__ 9 POINTS 2 9* FIGURE 3.58 g_ 9 _ N L— R _ K. 40r0 36.0 32.0 20.0 16.0 20.0 24 12.0 0.00 .00 S E HOSULUS P SAMPLES O-2a. O-zs. 6-26 L GRAVEL OONTaIT - 42: _ 9 POINTS L FIGURE 0.60 L IA 7 IA '- A L— P d-L l 1 l I I ' -s'.oa ~z.so -z.oa -I.so -I.oo -.Sco O.‘ LOG PERCNT 4 AX STRAIN GT-4 F5 CPZOO E+0 PSI PSI EIOS 265 8 E NCCULQS °. S—‘P SAMPLES 6‘27: 6’28: 5'29 I— GRAVEL CONTENT U 421 ‘E’_ 6 POINTS ID 9 FIGURE 0.61 L. D 2:»— 9E . 37 d 97' I :f\ a 2;— 8K I! of D's— ‘L. J. :31 ' 1 I I I 1 -3‘.sa -2.sa -2.:c -I.ss 4.33 -.s:': O.‘ LOG PERCKT 7 RX STRSIN "7‘ C m "" r“ C’ l — 1 0| U D L P O 8 E MCCJ ;S O gL SAHPLES 6-27. 6-28. 6-29 _- GRAVE]. CONTDIT I 428 q 6 POINTS 3 0— FIGURE 3.63 2".»— O .: I— N I— 9 I: at 6 N O in— .. A 9 3 A L- 8_ 6 I" O C? .— 6“ I 1 L l I I J'— -3£OO -2.sa ~2.ca -I.so -I.OJ -.5:O O. LOG PERCNT 7 ï¬x ST RIN GT—lOFl CPO E+OS PSI E+05 PSI 8 E MODULUS é“ SANPLSS 6-21. 6-28. 6-29 ~ ORAVEL CONTENT - 42: 9__ 6 POINTS 3 9: FIGURE 0.62 9E ‘? NI— O 8;.- ï¬T [6.0 0 T 4/ N I- A r \\%A 8 L. o I— 0 SI- 6T I I . I 1 I . -3.:o -2.so -2.:: -I .so -I.cO -.5:c c.' LOG FEFCNT 7 RX STRQIN P C) ~T—10r3 CPD 8 E HUCULUS ‘1L 3 SAMPLES 6'27: 6'28: 6'29 .. GPAVEL CON‘I‘EII‘!‘ I 423 q 6 POINTS "- FIGURE 0.64 O o i— =3 .- i o P 2" u— ‘3 : A '- I- O. _ ‘z 4 c3- 1 1 I 1 l 1 1_ -:‘.aa -2 .so -2 .00 -I .30 -I .00 - .530 O.’ LOG PERCNT 7 RX STRRIN GT—IOFS CPO E+OS PSI PSI E+OS 20.0 266 8 E MODULUS O 2....- SMPLZS 0'27: G-20: 0-29 _ GRAVEL cONTSNT - 42: 9+ 0 POINTS 2, 9I FIGURE 0.65 â€L O'D— CI’ I. ‘0 C: A ~ _ .A P 135 o IA 9 ._ O .. A O ‘3 ‘ :5 I I ! I I I -2'.OJ -z.SO -z.OO -I.SO -I.OO -.5OO O.' LOG PERCNT 7 RX STRRIN GT—IOFOSCPSO 8 E MODULUS EL' SAHPLES 6-27. 6-28. O-29 I- GRAVE. CONTENT I 423 :__ 8 POINTS 9†FIGURE 0.67 g I. 3 2'. I- ; L - I- . I- 6- I I I I I I I_ -3‘.OO -z.so 4.00 -I .SO -I .00 - .500 O.‘ LOG PERCNT 7 RX STRRIN GT-IOFI CPSO PSI E+OS PSI E+05 32.0 30.0 20.0 24 20.0 8 E MSDELUS " SAMPLES 0'27: 6'20: 0'29 .. GRAVE. CONTDJT ' ‘2: __ 0 POINTS P FIGURE 0.66 r -:I'.Oa -z.so -z.OO -l.50 -;.aa -.saa O.' LOG PERCNT 7 RX STRRIN GT—IOFB CPSU 8 E MODULUS g" SAMPLES @4270 0-20: 6.29 _. BRAVEL CONTDIT I ‘2! =2_ 6 POINTS â€- FIGURE 0.68 o. F'- z’ .— O Si .. A 35* 4A A a, ' a i r- . I- :r- l I I I I I I -s‘.oo -I.so -z.oa -I .so -I .o: -.530 O.‘ LOG PERCNT 7 RX STRRIN GT-IOFS CPSO E+OS PSI PSI E+05 8 E MODULUS 267 §‘ SAMPLES 0.21: 0-20: 0'29 CRAVEL CONTENT - ‘2: c: 9 POIN‘I'S Z- FIGURE 0.69 c;7_ I I I I I I -3133 .2.50 -z.oa -I so -I.Oo -.sca 0! L83 PERCNT 7 RX STRRIN Gl-IOFUSCPZUO 8 E MODULUS éT‘ SAMPLES 0-27: 0-28: 0-29 .- GMVEL CONTDIT I 423 9__ 9 POINTS 9L FIGURE I.7I “L s: :._ I I I I I If -IEOO -I.SO -z.OO -I.so -I.OO -.soo O.‘ LOG PERCNT 7 RX STRRIN GT-lOFl CPZOO PSI E+US PSI E+05 32.0 38.0 COIO 20.0 -3Laa LOG PERCNT 7 8 J E MODULUS SANPLES 0-27, ¢.g., 5-2, Oansz CONTENT . .23 9 POINTS FIGURE p.56 I I I I I I :.SO -z.OO -I.sa -I.OO -.SOO OJ RX STRRII GT—IOFS CPZOO 8 E MODULUS 3w SANPLES G-zT. G-ea. O-29 _ GRAVEL cONTzNT - 42: 9__ 9 POINTS â€L FIGURE 0.72 :I ‘u r :I e[ "L 2"}- "L ,L O L I l 1 L J l -3290 -2.SO -z.OO -I.SO -I.OO -.SOO O.“ LOG PERCNT 7 RX STRRIN GT-IOFS CPZOO E+OS PSI PSI E+US 268 2 E MODULUS §“' SAMPLES G-II. G-Ia. O-Sa. 6-35 I GRAVEL CONTENT I 598 9__ I0 POINTS "I- ._ FIGURE n.73 2L 3L NL OF CE .I- 9 (3A 9- A v A 37 I I I I 444 I I -3IJO -z.so -2.OO I so -I on -.500 OJ LCD PERCNT 1 RX STRRIN 20-0 32.0 30.0 40r0 24 -3IOO GT—I FUSCP 2 E MODULUS SANPLES 0'11: 0°13: BEAVEL CONTENT I 59! I0 POINTS FIGURE 0.75 L I l l '0o50 -2-00 -l.50 LOG PERCNT l C}T'-1 F'l E] 5'340 l 0.35 l ' I300 I l of RX STRRIN EiF’EJ PSI E+OS PSI E+05 0.00 1210 I0.0 20.0 2‘ 20.0 32.0 30.0 C.00 2 E MODULUS ' SAMPLES O-II. G-IS. G-aa. G-Ss - ORAUEL cONTENT - 59: IO POINTS ' FIGURE 0.74 I DD 6 I I I I I I 4L— -3£cO -2.so -2.OO -I.so -I.OO -.soo OF LOG PERCNT I RX STRRIN GT—I F3 CPU 2 E MODULUS §“' SAHPLES G-II. O-Ia. G-aa. G-Ss _ GRAVEL CONTENT I 598 :__ O POINTS 9* FIGURE 0.76 "I 2L 2— A .-I— g A 6; A ,L a I I IE I I I I -3.OO -z.so -z.OO -I.SO -I.Oo -.800 O.' LOG PERCNT l RX STRRIN 1 GT—l F5 CPO F+OS PSI PSI EIOS .0 20.0 2¢.0 20.0 32.0 I6 02.0 24.0 20.0 T7 I 20.0 269 2 E MODULUS SAMPLES G'III G'ISO GRAVEI. CONTWT I 593 I. POINTS 6'34: 6-35 FIGURE 0.77 I I I I I I - -$O -I.00 -.SOI‘.‘ 0.| L33 PERCNT I RX STRRIN FOSCPSO 2 E HSSULUS 1L 9 SAMPLES G-II: 0°13. 6-34: 0-35 __ OPAVEL CONTENT I 598 9 IO POINTS 0- FIGURE 0.79 I I I I L I _L I I -F.co -I.SO -z.oo -I .so 4 .OO -.SOO O.' LOG PERCNT 1 RX STRRIN GT-I F1 CPSU PSI E+05 PSI E+OS 2 E MODULUS 3“. SANPLES O-II. O-IO. 9-34. 3-35 SWIVEL CONTDIT I 593 9[ IO POINTS "~ FIGURE n.78 2L NP .. I- †F- I- o 42.3: -z.sa -2z.ca I.Sa -I.:: -.s:c 0.7 L33 PERCNT I RX STRRIN 2 E MODULUS 3“. SAHPLES O-II. G-Ia. 6-34. 6-35 L ORAVEL OONTENT - so: 9__ IO POINTS .F FIGURE 0.80 cF «It - I- ‘h _ -3I.OO 41.50 -2l.ao -ll.50 41.30 - .1500 Off LOG PERCNI I RX STRRIN GT-I F5 CPSO PSI E+05 4.00 I I I r I I 7T" I 7T PSI E+05 6.00 l2.0 I6.0 20.0 24.0 20.0 32.0 30.0 0.00 C%O I _o. I—II— l2o0 10-0 20-0 24.0 20-0 32-0 30-0 ‘0 2 E HODULUS SAMPLES G-Ilo 0'13: BRAVEL CONTDIT I 593 I2 POINTS FIGURE 0.81 -LW PERCNT 1 2 E MODULUS SANPLES 0-11: 0-13: GRAVEL CONTENT I 59! 12 POINTS FIGURE 0.83 5-34: I l I I I -:ï¬:: '2-00 -2-00 -I-50 LOG PERCNT I 0'300 6'33 I -.500 RX STRRIN FOSCPZOO 0-35 I . .500 GT—l F1 CPZDO 270 4&47 0 I 1 Of RX STRRIN E+OS PSI PSI E+OS 2 E MODULUS c: gL SANPLES O-II. O-Ia. G-Sa. G-Ss _ GRAVEL CONTENT I SO! 9 I! POINTS :3 7 q“ FIGURE I.82 .I 2r— { c: g _ oh é— F O'H- i I: .E 6II I I I I I I -3.CO -Z.$0 -2.00 -I.53 -I.33 -.533 0: CG PERCNT 1 RX STRRIN 20.0 32.0 36.0 40IO 2‘ Do GT-l F3 CPZOO 2 E MODULUS ~ SAHPLES O-II. G-Ia. G-aa. 6-35 _ GRAVEL CONTENT - 59: I2 POINTS ~ FIGURE 0.84 I I I l I I -:2oa -z.SO -2.00 -I.sO -I.OO -.SOO O.I LOG PERCNT 1 RX STRRIN 1 GT—l FS CPZOO PSI E+OS PSI E+OS 2F7]. 5 E HOCULUS gi’ SAMPLES 0‘90 O'IOO 0'33 OHAVEL CONTENT I SOS 9 O POINTS n— FIGURE 0.85 3» A OF- A ? . ° I. c:‘ . I I IIIL I I I -3;OO -2.so -2.OO -I.sa -I.Oo -.soc o.r__ L03 PERCNI 4 RX STRRIN T GI—4 FOSCPO 5 E MODULUS éU' SAHPLES 6'90 OIIOO 5-33 GRAVEL CONTENT I 59‘ 9 8 POINTS "L FIGURE 0.87 O u-I o O I I I I I -SIOO -2.SO -z.OO -I-SO -I.OO LOG PERCNT 4 GT-4 F1 CPO _L OJ RX STRRIN PSI E+OS PSI E+05 S E MODULUS é“ SANPLES G-O. a-IO. O-Oa ~ GRAVIL CONTENT - SOS :__ 0 POINTS "_ FIGURE 0.86 "r OF S: g A S‘- I I I I I I I -3zca -z.so -z.OO -I.so -I.OO -.SOO ofl LOG PERCNT 4 RX STRRIN S E HODULUS g“. SANPLES G-O. O-IO. 6-33 _ GRAVEL CONTENT I 59! q__ 0 POINTS â€_ FIGURE 0.88 9% A 8__ A 8L. A g. I. nr 0 I L I I I I I -SIOO -:.So -z.OO -|.SO -I.OO -.800 O.‘ LOG PERCNT 4 RX STRRIN GT-4 F5 CPO PSI E+OS PSI E+OS 272 5 E MODULUS 3*- was 5-9. a-Io. cos: CMVEL CONTBJT 0 59! C: I POINTS 6* FIGURE 3.89 g L- g r I. N I— gr L. o A 4A ; — A I o ' I l ' I 1 I 3.00 2 50 -2.30 -l.SC -l.OO -.530 O.‘ LOG PERCNT 4 RX STRRIN 5 E MO ULUS ol é" SAMPLES 6-9. 6-10. 6-33 I. cmva. com-arr - so: 9__ O POINTS OF FIGURE v.91 "r :E “I I; r- 6L r :hI I I I I I _L -I'.oo -: .so -2.ao -I .so -I .oo - .soo II.r LOG PERCNT 4 RX STRRIN GT-4 F1 CPSO PSI E+05 PSI E+US 5 E MODULUS 3* anus 6-9. c-Io. 6-33 I- OMVEL CONTDIT I 893 9_ 8 POINTS 9* . FIGURE I.9o N I" or o"— I I I I I I -3'.oc -:.so -2.:a -I.so -I.co -.soo o.- LCG PERCNT 4 RX STRRIN GT—4 F3 CPSO S E MODULUS :9— SAHPLES 0'90 @100 8-33 I- BPAVEL CONTB‘T O 59! 9_ 8 POINTS 9* FIGURE v.92 3L c5.+ L I I l I I -3‘.ao -2 .so -2 .03 -I .so -I .oo -.soa o.’ LOG PERCNT 4 RX STRRIN 1 GT—4 F5 CPSO 273 E+OS PSI PSI E+05 5 E HCDULUS 5 E HODULUS 3"" SAMPLES S-Oo O-IIo O-OO 2“ SAMPLES 0'90 Boll: O-OO I- mm GONTDIT I 59‘ CRAVE. comm I 593 9__ II POINTS q__ 9 POINTS "L FIGURE I.93 ". VIBURE 3.94 2L :‘L J 6}- é†m *- O o + z†w a 5 " Q. r. Jb I I I P 6 I I I I I I - -3'~JO -2-50 -2.00 -I-SO -I.OO -.533 O? -3'.OO -2-50 -2-00 -l-SO -I.30 --$00 0—' L33 PERCNT 4 RX STRRIN LOG PERCNT 4 RX STRRIN 5 E MODULUS 5 E MODULUS §*- SAHPLES O-9. O-IO. 0-33 3â€. SAHPLES 6-9. O-llo O-Oa I. GRAVE. CONTDIT I 593 _. BPAVEL CONT“? I 59! 9.- 9 POINTS c:__ 9 POINTS "I FIGURE 0.95 "- FIGURE I.96 ‘2 I. “ I- m I." (3 .- m §~ ._. I‘ m 8, 0.. " _ 6 I g I I I I I 6- I L I I I l #L - .oo 4.30 am 4450 4.00 -.sao NF -a'.oo 4.30 -2.oo -I.sO -I.Oo -.soo O-‘ L00 PERCNT 4 PX STRRIN 1 L00 PERCNT 4 RX STRRIN 3 GT-4 F1 CPZOO GT-4 F5 CPZOO E+OS PSI PSI E+OS 38.0 40{0 32.0 8 E MODULUS MES G'Io ‘ POINTS 3°20 CRIVZL CONTENT I 593 FIGURE 3.97 7 6'3 1 -I.OO RX STRRIN T—IOFOSCPO I ' 050° 274- I OJ a E MODULUS 2.3—— was (M. 6-2. O-a - BRAVE. CONTDIT I‘ 598 9__ 5 POINTS :- FIGURE p.99 3 “L ;F ; h cf—I I I I I I I -:Iaa -z.so -2.oo -I.so -I.oo -.soo O.' LOG PERCNT 7 9x STRRIN GT—IOFI CIF’E] PSI E+US PSI E+05 8 E NODULUS 3" smnzs O-I. 5-2. 6-3 I emva. CONTENT -' :9: q 5 POINTS :2: a- . FIIUIE n.98 n I- IS-O 20.0 2‘ I2-O 0-00 .00 o -3330 -2'.SO “21.03 -I.-SO -Il.05 -.'533 O.: LOG PERCH 7 RX STRRIN 8 E MODULUS 3w» SANPLSS O-I. One. so: CBAVEL CONTENT I 59: q _ 3 POINTS o- FIGURE H.100 or A 3L A A N- A s: 8_ r-l I I I I I I -IIOO -z.so -2.Oo -I.su -I.oo -.soo OJ LOG PERCNT 7 RX STRRIN S GT—IOFS CPO E+OS PSI PSI E+05 8 E MODULUS 1275 8 E MODULUS 3L SANPLES (III: 602: 0'3 3'“ WLES C-Io O-Zo O-S I" BRAVE. CONTBIT I‘ 598 .- BMVEL CONTENT I' 59! Z __ 6 POINTS 9 __ 6 POINTS "L FIGURE 3.101 "_ FIGURE l.I02 c, _ 2F 2†2†A I. I. A A y f A I- .. 3 2- A N h N r— 3 m E" ID i†I— O I— o + o I- .._. P- 8 .. (f) 8 _ Q (L . I' o'— I I I I I I I 6". I I I I I I -I'.:: -z.so -z.oo -:.sa -I.oa -.s:o o.I 4.30 -2.so -2.ao -I.sc -I.oo -.soo II.T LOG FERCNT 7 FIX STRRIN LOG FERCNT 7 RX STRRIN S S Gl—IOFOSCPSO GT-IOFB CPSO 8 E HODULUS 8 E MODULUS 3ҠSMPLES O-Io 8'2: 6'3 3"“ SANPLES B-Io 0'2: G-O .. CRAVE]. CONTDIT I 598 _ CRAVE]. CONTDIT I 59! ‘2 6 POINTS 0, __ 6 POINTS "- FIGURE H.103 " FIGURE D-104 I3 " A Z _ ? AA g I A F a A 3 N *- N ’- O I— O '- é†In 5 I— O r- o + o 2- IA :- 8, _ "a? 3 _. v Q. ‘ r 5 I 4 I I I 1__ 0'". I I I I I I I -:‘.OO 4.30 -2 .OO -I .so -I .OO -.soo II.I -I‘.oo 4.50 -2 .OO 4 .so -I .00 -.soo O.‘ LOG PERCNT 7 RX STRRIN 5 LOG PERCNT 7 RX STRRIN 5 GT—IOFI CPSO GT-IOFS CPSO PSI E+05 PSI E+05 276 8 E MODULUS §“' SANPLES C-Io O-Zo 6-3 I. CMVEL CONTENT I SO: :__ O POINTS :» FIIURF p.105 2L I- 6â€. I I I I I I I 4.30 -2 .so -2 .00 -I .so -I .oo - .500 07— L00 PERCNT 7 RX STRRIN 8 E MODULUS Em' SAHPLES O-I. O-z. O-a _ CRAVE CONTMT I 59! 9_ 8 POINTS â€Zr FIGURE I.Io7 †I “P ,I- O I I I I I I oIEOO -:.so -z.oo -I.so -I.Oo -.sOO o;‘ LOG PERCNT 7 RX STRRIN GT—IOFl CPZUO PSI E+05 PSI E+05 8 E MODULUS OrO I .. ML†O'Io 3'2: 5'3 ~ ONAVEL CONTENT I 598 z __ C POINTS 9“ FIGURE l.106 { 3 OF u I— . I- r— 6 I. I I I I I I I -3.ao -z.so -2.00 -I .so -I.OO -.sco o.‘ LOG PERCNT 7 RX STRRIN GT—IOFB CPZOO 8 E MODULUS SN‘IPLES 6.]: 6°20 8'3 CRAVE). CONTDUT I 59! O POINTS FIGURE H.108 [2.0 18.0 20.0 2C.O 20.0 324) 38.0 401.0 llIï¬llIIIIITIrITIiTIII o -3'.oo 41.50 41.00 - 11.50 -Il.Oo - .lsoo [LI LOG PERCNT 7 RX STRRIN GT-IOFS CPZOO APPENDIX E DAMPING RATIO FOR GRAVEL-ICE SAMPLES 277 DRMP RRTIO DRHP RRTIO JGO .220 -260 .300 .340 .140 ITIII .300 II 3 DRHPING SAHPLES GI I Co 6‘ I 90 OIPO _ GRAVEL CONTENT I 241 O POINTS - FIGURE EJ L j I I b I A A \K:\\ 8 CI) 7 ’- .— 8: CI: é _, 0: a I v P E C]: r- C) o . I I I I I L ~3'.oo -z.so -2 .00 -I .so -I .oo - .500 of LOG FERCNT I RX STRRIN 3 DRMPING ;‘ SAMPLES 6‘18. 6'19: 6.20 g-- CRAVZL CONTENT I 248 ' P 7 POINTS :2 †FIGURE E .3 F ' L i O '- o N (I 3_ a: '33- a. v Z " CI: __ D ' I I I I I 4 L -Ilc:, -z.so -2.oo -I.so -I.oo -.soo o.I LOG PERCNT 1 RX STRRIN GT-l F1 CPU 278 3 DRMPING JI' SANPLES O-IO. O-I9. O-2O g - GRAVE. coumt - an “I- O POINTS 3- FIGURE £.2 , F t— A 3- A A rL O l I I | I I I -3:cc -z.so -z.cc -I.so -I.co -.sco o.I LOG PERCNT I RX STRRIN 2? 3 DRHPING I smzs s-Is. eon. O-aa g- CPAVE. CONTENT I 2‘3 IL 1 POINTS 3- FIGURE E.4 g _ A 3 '- A ‘5._ I I I I IIIIII I IIII -IEOO -:.so -2.oo AI.so -I.oo -.soo o.‘ LOG PERCNT l RX STRRIN 2 GT—I F5 CPO DRMP RRT IO DRMP RRTIO 279 3 DRYIPING 3 DRMF’ING ;“' SAMPLES G-IOo G-IO; 8-20 J†SANPLZS G-IB: G-IO: 6.2. a — GRAVE. comm: - 2a: §~ vau. comm: - an .L IO POINTS -+ 3 pgxu15 S__ o â€I FIGURE E.5 a- FIGURE [.6 8 th 7_' 3.. J J “I’— 2&— I— A .— 2 A o . L .A L 8 o ." g.— "’ .h— A A 8_ o ___——1r~jr'—Fâ€â€˜â€”——————————_fl——— g- 9.. 8- .h .— '7 8. CE «'- 5. a: ï¬_ 8: 8 c."- 0. c; v Z I. (I i D .- o ' I I I I . I o I I I I I I I -3. -2.50 -2.3: -I.sa -I.oo -.533 J.‘ -atoo -2.so -2.oa -I.so -I.oa —.soo on LEG PERCNT l RX STRRIK LOG PERCNT l . RX STRRIN GT—l FOSCPSO 2 GT—l F3 CPSO 3 URXPING 3 URHPING J -I9 0°20 h SAMPLES G'IBo G-I9o 6.2! F SAHPLES G-IB: G o E- vau. comm? - 24: Ei vaa. CONTENT - 24S '_ a nuns 'r 5 nuts 2— FIGURE 5.7 3- FIGURE [.8 . P P E * § L T L T _ on A , W O 8- 2 - -—--—-— 4i if " C: 1 _ 3* CI: 3†“I“. m I...â€- ï¬ 3 § aa. :9 3- % .- A I- a II- .JL 0 - O ‘ I l 1 l l l I J l I l l I -:.co -2.so -z.ao -I.so -I.oo -.soo o.‘ -s.oo -z.so -2.ao -I.so -I.oo -.soo o. LOG PERCNT I RX STRRIN LOG PERCNT l RX STRRIN 2 GT—l F1 CPSO 1 GT—l FS CPSO DRMP RRTIO DRHP RRTIU .300 j I .260 .300 .340 I47 I I I 4T7 I .220 I 0'80 .140 3 DRMPING SAMPLES G-Is. G-IG. G-ao BRAVEL CONTENT - 24: II POINTS FIGURE E.9 280 a? gr I JTI I; . . I I I -:.:o -2 so -2.co -I.so -I.ca -.soc o.’ LOG FERCNI 1 RX STRRIN 7‘ (K "\ GI-l FOSpUZOO 3 DRMFING ԠSAMPLES 6°18. G-I9a 6-20 §.. GRAVEL CONTENT - 24: ' _ II POINTS 3- FIGURE E.II ' I- 3: Orâ€- : I I I I I 4_ 3.00 -:.sa -2.oo -I .50 -I .oo - .soo o.I LOG PERCNT 1 RX STRRIN GT-l F1 CPZOO DRMP RRTIO DRMP RRTIU .300 .3‘0 T’ I .260 I I I TgiI .380 : DRHPING SAMPLES G-IO: G'Iï¬o 8.20 BMVEL CONTDJT I 2!! II POINTS I FIGURE E.IO 8F .2 I gr 9_ O I 1 1 ‘ l 1 J; 4.3:: -2.sa ~ :3 - .sa -I.oa -.sao o.‘ LOG ERIN? 1 RX STRRIN T r“ A. GI—l F3 CPauO 3 DRMPING '{" SAMPLES G-IB: 0-I9o 6'20 §.. GRAVEL CONTENT - 24: .r- 9 POINTS 2 FIGURE E.12 Q" A g: —‘ :‘A :33 7‘; A aid-I I I I I I I -s‘.oo -z.so -z .00 -I .so -I .oo -.soo o.‘ LOG PERCNT 1 RX STRRIN 2 GT-l F5 CPZOO DRMP RRTIO ORMP RRTIO 281 6 ORHPING ;“' SAMPLES 6-21: 0-22: 0-23 g-— BRAVEL CONTENT I 248 '_ O POINTS 3." FIGURE [.13 'IL §- A A .~ A A 2— A A AL 0 ' l 1 I L l I ~3200 -2.50 -2.00 -I.SO vl.03 -.503 DJ LOG PERCNT 4 RX STRRIN 6 DRNPING ‘E SAMPLES G-2lo 6-22o 0-23 8 .. GRAVE CONTBIT I 248 â€L 8 POINTS §~ FIGURE E.15 'L J“. I I I I I I -3loo -2.so -2.oo .I.so -I.OO -.soa O.I LOG PERCNT 4 RX STRRIN GT-4 F1 CPO DRMP RRTIO ORMP RRTIO 6 DRHPING ‘L SAMPLES 6'21: 6'22: 6°23 2.. Guam OONTaIT - a: .I 8 POINTS 3- FIGURE [.14 OF °L 'L I’M g- A I:_Y I I I I I I -3\00 -2.50 02.00 -1.50 -I.OO -.503 O.‘ LOG PERCNT 4 RX STRRIN 6 DRMPING IL SAMPLES G-2lo 6-22o 6-23 §— vaa. CONTDIT . 24: '_ 1 POINTS $~ FIGURE (.16 .I- gh- é- o _' ‘5 1‘ is H 73 --.l l I l IIL AJ, 1 -a.oo -2.so -2.oo -I.so -I.oo -.Goo o.' LOG PERCNT 4 RX STRRIN GT—4 F5 CPD 4 DRMP RRTIO ORMP RRTIO 282 6 DRRPING 6 DRMPING O'T SAMPLES O-2Io G-22: 0°23 1" SAMPLES O-Olo 6-2& 0-23 3,. OMVEL couran . 24g 8 GRAVE. CONTDJT - 243 _ 8 POINTS â€F a poms 9. FIGURE [.17 OF F:_ :3" FIGURE E.18 . L 9:: . I- “I . L. "I E on J ~‘ ?i Q 3 g 0‘ ‘5 3 o. 8 .. t v E b D .1— 1. I 1 1 1 1 1 6 l l l ' l ' l -:..a -2.50 -2.03 -I.so -I.oo -.scO o.‘ -3‘.ao -z.so -2.00 4.59 -I.oo -.s:3 Oj— E...) PLAONI 4 RX STRRIN LOG PERCNT 4 RX STRRIN _. F‘ GT 4 FOSOPSO GT—4 F3 CPSO 6 DRNPING 5 DRMPING j" SAMPLES O-alo 6'22: 6-23 3'- SAMPLES O-Elo 6.22; 0-23 3 _ GRAVE]. CONTmT - a“ g - OBAVEL CONTEJT I 24! ° __ 8 POINTS ' P 8 POINTS 3,. FIGURE E.†° FIGURE mo 0 '- ° F k e ;* éL A A Egg I- °‘ :2 8 ~ 0- 3. 0 Z ' " CI: -h- D II— 6 . L 1 1 1 1 1 :5 L L 1 1 1 1 1 ans: -: .so -2 .OO -I .so -I .oo - .500 o.' -3'-00 '1 $0 '1'00 'I '50 " ~°° ' -‘°° ‘3 LOG PERCNT 4 RX STRRIN LOG PERCNT 4 RX STRRIN GT—4 F1 CPSO GT-4 F5 CPSU DRMP RRTIO ORMP RRTIO .140 .100 .220 .260 .100 4.000E-0? ——F' T“ V"_F"'T—_I I .100 .220 .200 .300 .3‘0 .300 l I .IIO 283 6 CCF‘IPI-‘IG OT saunas G-zn. G-zz. 6-23 3L OPAVEL CONTDJT - an r 9 POINTS I." FIGURE [.21 I FT IFFTF I I I I 6 DQMPENG 1' saunas G-zn. G-22. G-aa — GRAVE. CONTENT - 24: 1 8 POINTS - FIGURE E.23 F. IFFT—FI .m- “A Z _ A?‘ :5“. I I I I, I I I -aaoo -z.so -z.ao -I.so -I.OO -.soo o.I LOG PERCNT 4 RX STRRIN GT-4 F1 CPZOO DRMP RRTIO DRNP RRTIO 6 DRHPING JG saanzs G-RI. 0-22. 643 g _ GRAVE. couTsNT - an F 9 POINTS 2— FIGURE E.22 L . 'L ’ r 7 F .A ‘ §r A g P g'L 'L r?- °l__L I I I l I 1 -3-33 ~2.SD -C.CS -:.SO -l.CO -.SCO O- LJG PERCNT 4 RX STRRIN 6 DRHPING :F saunas O-2lo G-ea. was :3 F GPAVEL CONTENT - 24x '1. 0 POINTS 3. FIGURE E.24 r. . r 'L a .100 40 I l I If I I I 4.000E-02 -:Loo -z.so -:.OO -I.so -I.oo -.soo OJ LOG PERCNT 4 RX STRRIN 3 GT—4 F5 CPZOO DRMP RRIIO ORHP RRTIO 284 9 DRHPING ;+' SAMPLES 6'30: 0-3Io 0'32 : ,.. GRAVEL CONTBIT I 2“ '_ 9 POINTS E: FIGURE E.25 . h (3 (3 8L A A L— A A A 33 I I I I I I I -3£:3 -2.so -2.aa -I.so -I.oo -.soc O.T LOG PERCHI 7 RX STRRIN [—- r" GT-IOFOOCPO 9 URMPING “L SAMPLES 0-300 G‘JI; 5'32 g- GRAVE. CONTDJT I 2‘: ' 0 POINTS 3_ FIGURE E.27 g. 'L a: 5 §"__I AA 3 ‘5‘&~—4L—— r- I I I I I I oaioo -2.so -z.oo ~1.SO -I.oo -.soo OII LOG PERCNT 7 RX STRRIN GT-lOFl CPO DRMP RRIIO DRMP RRTIO 9 DRMPING 4+" SAMPLES G-ao. G-OI. 6-32 8 T GRAVEL CONTENT I 24! '1 0 POINTS 2— FIGURE E.26 g h 'L .» E- 2‘: % .-0- ' I 1 ~ - I - -J:OO -z.sa -z.OO -I so -I.aa -.523 O.' LOG PERCNT 7 RX STRRIN F- GT—lOrB CPD 9 DRMPING " SAMPLES G-an. O-Olo 8-32 E cansz CONTENT - ca: .300 .340 .200 5 POINTS FIGURE E.28 GT—10F5 CPO 1L §_ ;L E: :1 ï¬i-Aï¬I: I A I J -:£OO -z.so -z.OO -|.SO -I.OO -.SOO O.I LOG PERCNT 7 RX STRRIN 6 DRMP RRTIO DRMP RRTIU 285 9 DQMPING 0+ smut: 6-30. 6-31. 03-32 :2 - SWIVEL CONTDJT ' 24$ 'L 9 POINTS §— FIGURE [.29 'I- . r '7 2 % EA A S . A F_ 8 CE % m a m "t 2 C]: D 6L' I I I I I -3 ca -2.50 -2.oa -I.so -I.oo - so: on LOG PERCNT 7 FIX S’T’QIN 1 f— GT—IOrOSCPSO 9 CRMPING JT' SAMPLES G-JO: G-SIo 6-32 gI. GEM/EL comm? - 24: 'P 9 POINTS 2- FIGURE [.31 J 'L 0‘ c: v:— I— s- g 2'," An 3 A 3m- A ‘1 0— . , z: * CE -1— (:3 6 I I I I I I I -:too -2.so -:.oo -I.sa -I.ao -.soo o.‘ LOG PERCNT 7 RX STRRIN GT—lOFl CPSO 9 ' DRHPING J’- SMPLES 5'30: 3'31: 0'32 :3; — GRAVE. CONTDJT O 243 ° L 9 POINTS 3 O :3 ~ FIGURE E .30 L . § _ 'L O a I. i I. 9.. ' L- 8- .L A ‘— 2 f3 a § .' F :h I I I I I I I -3'.co -z.so -2.ao -I.so -I.oo -.sao o.‘ LOG PERCNT 7 RX STRRIN GT—IOFB CPSO S DRHPING T SAMPLES O-SO. G-Olo 6-32 §_ 6mm com-m1- - 24: 'b 9 POINTS 3— FIGURE [.32 § g I— r-l_ :I 4 l : 1 1 l l oshoa -:.so -z.oo -I.so -I.oo -.soa o.‘ LOG PERCNT 7 RX STRRIN GT-lOFS CPSO DRMP RRTIO DRMP RRTIO .100 .220 .260 .300 .300 ‘0 9 DQNPING ;"' saanzs a-ao. a-3I. 6-32 .9, _ 3mm comm: - 24: ° 9 POINTS — FIGURE 5.33 286 $.. §._ $7_ I .1 I I I I -3x:3 -2.sa -2.oa -I.sa -I.ao -.soa oiT L3G PERQNT 7 RX STRRIN "* 1 UI_IOFOSCPZOO 9 DRMPING “L SAMPLES 6'30: 0°31: 0.32 g- GRAVE. CONTBJT - 24! 'r 9 POINTS g_ FIGURE 5.35 J 3i— gh- :: L. 9_ s: 8 A O..— .3". I I I I I I -:ï¬oo -x.so -z.oo -I.so -I.oo -.soo o.’ LOG PERCNT 7 RX STRRIN GT-IOFI CPZOO DRMP RRTIO DRNP RRTIO 9 DRHPING ;+' SAHPLES G-OO: O-JIo 0°32 3" ORAVZL CONTENT 0 2A! '_ 9 POINTS 5 FIGURE E.34 §-/ NP- A ? A Iai- A 'I é¢.l I I ' I I I -3200 -z.so -2.oo -I.sc -I.oo -.soo o.’ LOG PERCNT 7 RX STRRIN 9 DRMPINO +p SAHPLES G-OO: 0°31: 6-32 §_ GRAVE. comm-r - 2‘4: '_ 9 POINTS 5 FIGURE [.36 J gI. $.. P A A -—‘—_—m—ï¬r——ag- ' I III I I I I I -3.oo -z.so -:.oo -I.so -I.oo -.soo U.‘ LOG PERCNT 7 RX STRRIN GT—lOFS CPZOO DRMP RRTIO URHP RRTIO 287 3 DFIrtF’ZNG éT‘ SAMPLES G-IA: O-ISo G-Iéo G-I? g—- BRAVEL CONTENT I 42! ' ' 0 POINTS §_ FIGURE 5.37 . b ‘3 o A gr- L A A EC A o r .I— $I‘ §L 8__ -r- :_I I 1 I L . l -3.30 -2.50 -2.DC -I.SO -I.CO -.500 ON LCG PERCNT 1 RX S.SSIN 1 'r' r- GI—l FOOCPO 3 DFMPING “F SAMPLES c-Ia. G-IS: G-IOo O-I7 §_ Guava. comm? - 42: ' ‘L 8 POINTS SF FIGURE E.39 O r "L 3 'L O 2, IA _. 13 O :,—- .A g $. g— ‘3.— r I I I I I I l -3£oo -z.so -2.oo -I.so -I.oa -.soo oJ LOG PERCNT 1 RX STRRIN GT—l F1 CPO DRMP RRTIU DRHP RRTIO .300 3 DRMPING SAMPLES 6' I 40 0' I So ORAVEL CONTENT C 423 O POINTS FIGURE E.38 U-IG. O-IT If! I OF QL A E- . . L gi: JII. I I I I | I -3.33 ~2.$0 -2.SJ -|.SO -|.OO -.500 0. L00 PERCNT 1 FIX STRRIN ‘“' "' ’1 C} |- 1 F :3 [:F’[] 3 DRHPING " SAMPLES G-IA: G-IS: G-l6: 0'11 §— 6mm comm? - 42x ' 'F 3 POINTS C) 5‘ FIGURE [.40 . P ' L i 3. P g _ .A §:.. 5 _ 6-_I I L I I I I -32co -2.so -z.oo -I.so -I.OO -.sco 0) L00 PERCNT 1 RX STRRIN GT—l F5 CPO RRTIU DRMP DRMP RRTIO .2£38 3 DPï¬PING JL SAMPLES G'Iflo G'ISo G'IOo G'I'I §_ GPAVEL CONTENT - 42: '_ 9 POINTS 9_ FIGURE E.41 P 43 o .A 2 ~ A A u ’- A H 8 A .I .I Ii r- c. I?“ a: I I I I I -3.:o -z.sa -. :3 -I.sa -I.OJ -.sco O.‘ LCG FERCNT 1 RX STRRIN . “,- 1 f I— GI—I IOSCPDO 3 CRRPING I "' ISI\F‘F"LILS ‘3"I‘lo (5"I25; ‘3"II6 (3..1 1 gL Oanan CONTENT - 42: I -L 0 POINTS 5? FIGURE [.43 J R g. . I- 2 _ 8b th‘T“*ï¬iA~A I a 9’- \ 5 8L. gh- a. 5-4 I I 4 I I I -y.oa -z.so ~2.OO -I.so -I.:a -.s:o O.r“ LOG PERCNT 1 RX STRRIN GT-l F1 CPSO DRMP RRTIO DRNP RRTIO 3 DRMPING I.— SAMPLES O-Ia. 6-15. 6-16. O-I1 §.. OFAVEL CONTENT - 42: ' +- 9 POINTS 3. FIGURE E.42 gt ' E §_ 2:: A A A a: A F 3 % EI— 'L g '- gi— §_ éT- ' L, ' 1 I I I -3'.:: -Z.SO 4.30 4.53 -l .00 - 500 O.’ ECG PERCNT l RX STRRIN 3 DRMPING J— SAMPLES O-Ia. O-Is. O-Ie. O-I1 §.. GRAVEL CONTENT - 42: ' _ 8 POINTS 3— FIGURE E.A4 8 _ Q g ' I- O 2. .— 8 >- 2.. ._ A 8 _ IA 3‘ u - §" C? — «IT-I I I I I I I -3l:: -2.sa -2.ca -I.so -I.oo -.soo OJ LOG PERCNT l RX STRRIN GT—l F5 CPSO DRMP RRTIO DRMP RRTIO 2139 SAMPLES (3'le 6-15: G-IO: 6-17 FIGURE E.45 A. (3 3 DRMPIHG 5.. GRAVEL CONTBIIT - 42! . II POINTS L 3 u L 8 g A 7" A A OF" A A A .I80 .220 I ’FrF'l FFI‘ I .l40 L ;L c3—_I I I I I I I -J C“ 2 53 -2.35 -;.so -I.OO -.533 of LC3 PERC\T 1 RX STRRIN l 7‘ E— r‘ I—l FODCFéOO 3 DRMPING ‘* SAMPLES G'IO: O'ISo 6.16: 8-17 §.. GRAVEL CONTENT - 428 ° -_ II POINTS 3. FIGURE E.I7 s: at .L 2F 1" A A b Ix; {3 £3 2 _. A ‘19 g. $b g F- a. r I I I I I I ~3lOO -z.so .z.oo -I.so -I.OO -.sOO OQFF LOG PERCNT I RX STRRIN C}1'-1 F'l CFZOO URMP RRTIO DRHP RRTIO 3 DRNPIN +P SAHPLES O'I‘a O'ISO G‘IO, O'IT g. Omwm. comm: - 42: '_ II POINTS 5. FIGURE 5.46 F' 8.. a: ._ A A O a " u ._ t: A 8 s: g: 3C 8 SF: DTT- 1 I I I I I -2.:: -2.so -2.co -I.sc -I.aa -.s:: a: L33 PEECNT 1 RX SEFRIN 1 l-l F3 C9200 3 DRKPING "l" SAMPLES G-le G'ISo 6-16: G-IT §._ GRAVE. CONTDJT U 423 ' -_ II POINTS 0 9‘ FIGURE [.48 3.. s: g F- a: 9.. . b §- .5 A 8' A '$ g3 A g ._ 8. I— rbi I I I I I L_ -3Fao -z.so -z.oo -I.so -I.OO -.500 03 LOG PERCNT l RX STRRIN GT-l F5 CPZOO RRTIU DRMP DRMP RRTIO 290 8 ORESING 47‘ SAMPLES 6-24. 6-25. 5-26 :I- GEAVEL CONTENT ' 42$ '_ 1 POINTS 3. FIGURE E.49 'L 8 8 . L 2 ï¬_'____ A~ A I- A" A at 8 gh- $.. 3.. 8.. 'L J“. I I I I I L -3203 -z.sa -2.oc -I.so -I.co -.sao O.T'_ LOG FERCN_ 4 RX STRRIN r— GT—4 FOOCPO 5 D3UTPIPUG ;“ SAMPLES 6-240 8'25: 6-26 5.. GRAVEL CONTENT - 42! -_ 1 POINTS 3. FIGURE [.51 OP 8— L O 3;»- 8 .r 8.. r en— 8-““‘4¥—1r—*é4 éL §.. D..— Jm I I I I I Ii -3tOO -z.so ~2.00 -I.so -I.OO -.SOO O.' LOG PERCNT 4 RX STRRIN GT—4 F1 CPO ORMP RRTIO ORMP RRTIO 5 URNPING :— WPI-ES 8-24. 6-25. O-26 g- CRAVEL CONTENT I ‘2! 'L 1 POINTS 3» FIGURE E.$0 F. g . 4F 8 h- . I- o A. I A Z'- “ J“ 5 F- 5. Or"- I l I I I I -3 c: -z.so -2.00 -I.so -I.oc - 5:: on LOO PERCNT 4 RX STRRIN 4 6 ORMPINO 4“ SAMPLES 6-240 5-250 3'26 8.. CRAVEL CONTENT - 42% 9 7 POINTS 3- FIGURE E.52 g: g .. OF‘ at §:'_‘—;;——tr—— A gï¬-l I I I III I I -3LOS ~2.so -2.OO -I.so -I.OO ..500 O.‘ LCG FERCNT 4 RX STRRIN GT—4 F5 CFO DRMP RRT IO DRMP RRTIO 291 6 DRI‘YPING 6 DRMPIIIG cf- smnzs 6-24, 3-25, 5.2, 0+ smus o-ea. 5-25. c-zo 3 _ BMW-:1. comm: . .2, g _ amva. comer: - 42: . r- . â€1‘75 ' _ 8 â€RNTS :32“ FIGURE 6.53 2- FIGURE £3.54 r- I— D r- o *- 2F 2 P 0 gr . I- . '- M .33» 2— a “ I I- . .. a o o E L— 0—1 2 I— . ,_ . 3L c: 3L .* _ 0: .3 _. 8~ CL 8.- v E v a: _ —II- Q --0-- c; I I I 1 I l l ' ' 1 J i l l 4‘33 -2 .SO -2 .00 -l .53 -| .00 -.500 07 -J‘-83 -2 .53 -2.C3 -I .53 -1 .JJ - .503 0-' LOG PERCNT 4 Rx STRRIN LOG PERCNT 4 ex STRRIN 4 D E [ET—4 FOSC. SO [ET—4 F3 CPUO 6- DQMPING 6 DQI‘IPING ~~ saunas e-za. c-zs. 6-26 j— smnss e-za. 6-25. 6-26 §_ 6mm. comm? - .2: g — GRAVE. con-mn- - 42: '_ a powrs '_ 5 POINTS 2- “Gm [-55 2— mun: 2.55 5,: §[ o '- A 2:“ A D 8 F ii ,_ ': g CE 3 '- JI- ‘35 .1. - §- 0. ‘33.. M v. 2 . “"' I— a I- -L D __ ' I I I I I I I I I I I I I 1_ 4.00 -2.50 -2.00 -I .so -I .00 «.500 c.‘ -a‘.oa -2 .so -2 .00 -I .so -I .00 - .soo o.I LOG PERCNT 4 RX STRRIN LOG PERCNT 4 RX STRRIN 4 GT—4 F1 CPSO 4 GT—4 F5 CPSO URNP RRTIU DRMP RRTIO 292 I300 '3‘0 I I I 41* I .260 .220 I441*’ I 47 Igï¬I I 6 DRMPING SHIN—£5 0'24: 6.250 3.26 BRAVE. CONTWT ' 43% 9 POINTS FIGURE F.SB 5 DRNPING :— SAHPLES 6'24: 6'25: 3'26 3 _ cmva. con-ran - 42: ' b 9 POINTS 3. FIGURE E.S7 ' I. g_ o “I .. A a A L 8 O '7 _ F— 3 CI: 3 - o: 3~ a. ‘ Z V CE r—- C3 0 I I . I I I I -:I‘.:a -z.s~ -z.oa -l.S.‘J -I.oa -.sca o.‘ LCG PERCNT 4 RX STRRIN 4 '7' . "’ f“ E2) "‘ I — 4 F C L, I Z O O 5 RRPING ""' SAMPLES 6'24: 3'25: 6’26 E- GRAVE. CONTDJT ' 423 - 9 POINTS 9_ FIGURE E.59 ,gï¬ % D g r— L 53 _ 'L 8 _ e: a. I A ° 0 2 _. t—l - A h- g †CE JI- (I: E; c? _ C1. ' Z '- CE .0. O ' I I I I I I I -saco -z.zo -2.oa -I.so -I.cc -.sno 0) L08 PERCNT 4 RX STRRIN GT-4 F1 CPZOU 53 9 h A g_ gh- §_ â€3333 -Z.S° '2100 -Io$C -I.33 -.$OC O.T LOG FERCNT 4 RX STRRIN I GT-4 F3 CPZUU 5 URMPING 0+ SAMPLES 3-24. 6-25. 6-26 3 I- “MVEL CONTWT C 42! ° _ 8 POINTS 3— FIGURE E .60 g: g F— 8% o h z p L g — «IL ? § ___.__——Jv—4S3""‘—1gk——————fl——.——————————-——"‘—————. O p— A ' h- A O.- I l I l l l I -aioo -a.so -z.oo -I.so -I.co -.soo O.‘ LOG PERCNT 4 RX STRRIN 4 GT-4 F5 CPZOO RRTIO URMP DRMP RRTIU 9 DRHPING SMPLES 6°27: 6’28: 6 POINTS FIGURE 5.6! O .3UO 4~r—+— ~34 I I .300 I .260 I00 F‘I’T I "T" luI—‘W ‘T’I T URMP RRTIO .220 .I4U .IOO O-OOOF-OI I- I“? 1 I I 6'29 BRAVE. CONTDJT - A23 293 l 3.2: ~2.sa -z.:I.I -I.s:. L33 PERCNI 7 GI—IUFOSCP 9 URHPING SAMPLES 6'2 70 6'28: g GRAVEL couraur - 42: - 6 POINTS 5_ FIGURE 5.63 .220 ~2OO I I I I I .IOO I 40 'loOJ O 6'29 -.500 RX STRRIN .1. I- §_ A 6.“- I I 4 I I I -:‘.oc -z.so -z.oo -I .so -I .oo - .500 o.‘ L00 PERCNT 7 RX STRRIN GT—lOFl CPO DRMP RRTIO 9 DRK°ING WES 8'27: 6'28: 0.29 GRAVE]. CONTDJT O 42! 6 POINTS FIGURE 5.62 -JOO I I I I -IOO ~220 -280 .300 -340 I I I I I ‘0 ol _8_ _ a..- I I I I I I I_ -3'.ca 4.53 -z.:: -I .53 -I .53 -.sco o.‘ LOG PERCNT 7 RX STRRIN F‘ ... Ul-10F3 CPU 9 DRKPING ‘I' SAMPLES 6-27. 8'28: 6.29 §.. GRAVEL CONTENT - a2: '_ 6 POINTS 3_ FIGURE 5.64 :I -:'.oo -2.50 -z.oo -I .so -I .oo -.soo o.' LOG PERCNT 7 RX STRRIN GT—IOFS CPO DRMP RRIIO DRMP RRTIO -340 .380 .300 B4 9 SRï¬PING -- SAMPLES 6-21. 6-28. 6-29 _ enasz CONTENT - 42: P a poxNTs — FIGURE [.65 .IRO .?20 .260 .l‘O “I“TflI—TgW" '_1_, Ingl' " "I'M! E A 6 L. I ' I -J'-CC -: 33 -z.:3 -l s: -I ~. - ':: :. LCG FERCK‘T 7 3% S'ri'N UI—IOFOSCFCJ 9 DSHPINS '1'" SAMPLES G-2'h G-28: 6-29 I: _ OPAVEI. CONTB‘JT I 428 -_ 9 POINTS 3— FIGURE E.67 L. O 8 .— ‘2 g; r- 8 . . I— 8 _ ‘3 CI 2 >— g h . A 8" b A ~ 8 _ u A 6 P I I I I 4 I -3'.:3 -2.so -z.oo -I .so -I .30 - .533 O.' L03 PERCNT 7 RX STRRIN T' F‘CD GI—10F1 p.50 DRMP RRTIO DRMP RRTIO 9 DRHPING :_ SAMPLES G-Z‘Io 6-28: 8.29 3 " OMVfl. CONTENT I 428 ' _ O POINTS 2_ FIGURE E.66 ; - I— 8 _ g h ' L— 8 .. F- ‘3 _ i $' 9; 5; g I'- s_ Jh ' ' ' I I I -3'.:: -z.sa -: cc -I.so -I.:Io - so: O.' LOG PERCNI 7 RX STRSIN .. : q _ GI—lOIo CPDO 9 DRMPING "J" SAMPLES 6'27: 6'28. 6- 29 §_ GRAVE. CONTENT - 4'2! ' __ 6 POINTS 3- FIGURE E.68 I. g .. o .. g I— . F S g .. e I— .. r- i g h g b s- .0. L- '2 o I I I 4 I L I -J'.co -z .50 -z.ca -I .50 -I .00 - .500 of LOG PERCNT 7 RX STRRIN GT—lOFS CPSO DRHP RRIIU DRHP RRTIO .2595 9 CRMPENC I "' SMPLES 6'27: 8'28: 8°29 EL GRAVE]. CONTENT O 421 -_ 9 POINTS 5_ FIGURE E.69 SF A § .. A 6L I I I I I -:-.ca -z.so -z.::I -I .53 -I .03 -.sco O.' L FER:LIT 7 RX STRRIN 9 URKPING :L SAMPLES 6-270 5-280 3°29 3 " GRAVE. CONTENT . A23 ’ __ 9 POINTS 3- FIGURE 5.71 i e: g .. g _ O U ~ A §_. 4 A ' I. I I I I a ostco 41.50 -zl.oo -I.so -I.oo -.500 07‘ LCD FERCNT 7 RX STRRIN GT-lOFl CPZOO DRMP RRTIU DRHP RRTIU I .100 .220 .260 .300 .340 .300 I I I I I I .I40 9 DRHPING SAMPLES 6-270 0-289 0-29 GRAVE. CONTENT ' 421 9 POINTS FIGURE [.70 a -s:.za 41.5: -z'.c: -I.so -I'.::o -.s:::: II.j LOG PERCNT 7 RX STRRIN .. D ' _- f“ (R u\ CI—lUFB CPéup 9 DRMPXNG _ SAMPLES O-E'Io B-20. 8-29 E‘- GRAVEL CONTBIT I 428 ' 9 POINTS 2. FIGURE E.72 °: L. __ ...Gr—§~"â€fâ€"â€ï¬ï¬‚flfl.fflfl'—flï¬ï¬‚flv ' I I I I I I -3‘.OO -z.so -z.oo . -I.so -I.oo -.SOO O.' LOG PERCNT 7 RX STRRIN GT-lOFS CPZOO DRMP RRIIO DRMP RRIIO 29+ .300 .340 .3 I260 I——I'_Wâ€â€™I-T__T‘_Tâ€I‘_T'— Y:f‘\ 3 DRVR-Nu 296 .260 .300 I 3 DRï¬PING ~L SAMPLES G-II. G-Ia. G-aa. G-as §.. GRAVEL CONTENT . :9: °_ Io POINTS 3_ FIGURE E.74 2. A . 8 6L 3 .— .L- 'j o O Eh. I—-‘ 8; . SAMPLES G-II. G-Ia. 6-34. 6-35 P- 7 a" GPAVEL CONTENT - 59: a; .- .L'... In POINTS a: 3.7 O 3 SI- FIGURE E.73 CL 3_ 'i 2: Th I a -— o I I ' : I I up} I 1 1 ' ' 1 ~32J3 -2-$3 -2.£J -I.SC -I.:3 -.533 O.' -3 30 -2.53 -2 CO ~1-SO - 20 . - -OO 0 L33 FER: T . 2x SIRFIV L33 PERCUT 1 9x E'==IN 2 -T. __, FRI C:' [:> I {-3 -—- ‘ [:7 ’_‘ . I 1 F LJL2£:I C] L: I" I I .3 [:F>:] 3 DRR‘IPING 3 DFflPINC} I I} sauPLzs 5-1;, 5-13, 5-34 6-35 SAMPLES G-II. G-Ia. G-aa. 6-35 E- 6mm CONTENT - so: ' RI “PM“ “â€79" ' 5" ' 9 POINTS -_ 8 POINTS 3_ FIGURE 5.75 2- FIGURE E.76 a a T Q 8 3 I‘: I?†BE 2— E .A V L A 8- 4A 8.. 1 A A 1 L I s- A e_ A 7 _ ‘00 L L o c: A 2- -— 2- 4 . h_. 8' C13 3' 8- m g— 8- n.8— 0 z 0 _ E l- I— D —II— 6 I I I I I I ' I I I L I 4 § ~3203 ~2.SO -2.00 -I.SO -I.Oa -.SOO O.' -JEDO -2.SO -Z.DO -|.SO -|.OO -.533 0- L00 PERCNT GT—l F1 1 RX STRRIN CPO LOG PERCNI GT—l 1 RX STRRIN F5 CPO DRMP RRTIU DHHP RRTIO 297 3 DRMPING J SANPLES O-II. B-l3o O-aa. 6-35 3 OPAVSI. cONTSNT - 59: 'P ll POINTS 3_ FIGURE E.77 8L 0 A : =3! a: '5 .- 0‘ 8 L J 0. }_ Z . CE 3' c: D L; l l l l J l -3.:a -2.so -2.OO -I.SO -I.cO -.500 O.Y LCS PERCNT 1 RX STRQIN T 4—1 FUSCPSO 3 UFMPING O'T' SAHPLES 6'] la 0'13: 6'34: 6'35 3 .. BRAVE!- CONTBJT II 59$ ‘ __ II POXNTS 3. FIGURE E.79 ' L w: A 8 q; A 1’ A iL 0% c3 2* “‘ . l— g " CE 9" O: 2.- g- L c: Ar- D o' I I I I I I I -3‘.OO -I .SO -2 .OO -I .SO -I .OO - .300 O.' LOG PERCNT 1 RX STRRIN GT-l F1 CPSO 3 DRMPING j" â€Pl-ES 6'11: 0’13: 6'1“: 6°33 g _ Ottawa. CONTENT - $98 ‘+ 8| POINTS 2- FIGURE [.78 §_ A F §~ .A A ‘& .F A 7 L- 6.“ I I I I v I '3'.00 -2.50 -2.00 -1 .50 -l .00 - 530 O.‘ LOG PERCNT l RX STRRIN GT 1 F3 CPSO 2 3 DRMPING j" SMPLES 8°“: 6"30 G-Jd: 6'35 g— 3mm. cONTzNT - so: -_ IO POINTS 3- FIGURE E.ao 'L . I- E- A 'L §— ° a> A 3' U r 6-—I I I I I I I -SEOO -z.SO -2.OO ~l.80 -I.OO -.SOO O.r LOG PERCNT l RX STRRIN 2 GT—l F5 CPSO DRMP RRTIO DRHP RRTIO .300 l .340 I .220 .260 I 0'00 .298 DRMPING â€PL†60". Gola. 6-3‘ a- ORRVEL CONTENT . 59; ' as I! POINTS 4 FIGURE E.Bl ‘5 A) 300 I D D i? .300 I IL c:_- I I I I I I -:tOO -2.50 -2.00 -I.sa -I.OO -.soo O.T__ LOG PERCNI I RX STRRIN 3 URflPING 4% SAMPLES 6.110 6.13: 6°34: 0'35 §__ OBAVEL CONTENT I 393 ~_ 12 POINTS 3_ FIGURE E.33 .7 E L D h 13 o _. 15 7 r """"‘1i3r"1%E--2jg——--—a......____________________. 3E EE :5 _> I ' I I I I I -SKOO -I.SO -2.OO -I.SO -I.OO -.SOO O.' LOG PERCNT 1 RX STRRIN GT-l F1 CPZOO DRMP RRTIO DRMP RRIIO .100 40 -I 4.000(-02 .260 I .100 I 3 DRHPIN *— SAMPLES O-II. O-Ia. O-aa. 0-35 §-— ORAVEL cONTENT - SOS '_ II POINTS 2— FIGURE $.82 D'DI b 220 I I Di cup—- - .300 .340 I .260 I 0.1 -OEOO .100 .220 I I .I40 I ' L i 1 1 I -3[00 -2.50 —:.33 -I.so -;,ca ..530 O: LOG PERCNT 1 RX STRRIN . GT—l F3 CPZOO 3 DRNPING SAHPLIS G-Ilo G-l3o 6-34: GRAVEL CONTENT - 591 I! POINTS FIGURE E.84 6'35 0 000E-02 .100 I I I I’ 3 DI D -z.SO -2.00 -I.SO -I.OO -.EOO OJ LOG PERCNT 1 RX STRRIN GT-l F5 CPZOO RRIIO DRMP DRMP RRTIO .300 .300 .300 E ERflPIKG -- SANPLES O-O. O-III. O-aa - OMVEI. CONTENT - 59; P 8 POINTS _ FIGURE E.85 .100 .220 .200 I"o ’"1'_I'_IF"I.FI"'F—.I"'T_'I_-r"â€I‘—T_’I g 3' 8. 6* I I 1 I I -2 .o -2 so -2.:: -I.sa -I.:3 - 5:: O: LC: EERCâ€. 4 RX S’RR'X 4 " T I. A - F‘ "‘ â€I ’I —'H- F LJCIL,F/' 5 DRRPING I 7' SAHPLES G-9o G-lflo 6-33 §_ GPAVEI. CONTENT I 59$ ‘F 8 POINTS 3. rIsURE E.a7 ‘ L— O a I— or .140 220 1471 .100 I 299 T 6..â€- I I I I I I L '3233 '2.50 .2-00 -|.50 -;-33 -.$00 03 L00 PERCNT 4 RX SIR? I GT—4 F1 CPO DRMP RRTIO DRMP RRTIO 6 DRï¬PING 0+- SMPL‘S 5'90 G'IOO 0'33 .9; - OMVE. CONTmT ' 593 .F 0 POINTS 2— FIGURE 5.06 g P- g _ . L S _ §F 9 r- 6— I I I 1 I -3 :. -2 so -2.:a -I.SO -I :O -.s::. O.‘ ECG FERCNT 4 RA S'SRIN 4‘, I" ~\ GT-4 F3 CFU 5 URNFI‘G +- WIN-ES 6'90 O'IOO 6.33 g- ORAVEI. OONTmT - :9: ‘_ 8 POINTS 2— FIGURE [.88 i i E _ fl 3. A 6 IL I I I I I ’I‘“ -5100 -z.so -2.00 -I.so -I.OO -.SOO O. LOG PERCNT 4 RX STRRIN GT-4 F5 CPO DRMP RRTIU DRMP RRTIU 300 6 DREPING a" SAHPLSS G-Oo G-IO: 6'33 ,9, — GRAVE. CONTENT II 59! F 0 POINTS 3_ FIGURE E.B9 ‘ L— 2 J- A ‘I § .— 6.“ . I I I I I I 4.3.: -2.53 -2.OO -I.50 -I.:O -.scc of -33 F392}? 4 RX C’:RI\ _. C. F' El 4 IOSCPOO 6 DRKPING +- SANPLES 0'90 5"" 5’33 §~ GRAVE. CONTENT - 59: .r- 0 POINTS 3. FIGURE E.91 s: a: .2 _ r- 3— g ’— §_ A A A 'L I?» A é P :3 .. ' b- 6- I I I _I I I A; -J‘.O:I -2.50 -2.OO -I.SO -I.OO -.$00 O.‘ LOG PERCNT 4 RX STRRIN GT-4 F1 CPSO DRMP RRTIO DRMP RRTIO 6 DRMPING OJ“ SMPLES G-O. G-IO. 0-33 .9, ~ OMVEI. CONTENT - so: ' 3 POINTS g- FIGURE E.90 o - A 7: " A 8 __ A g I. I: I I I I I I I -3'.OO -2.SO -2.23 -'..50 —1 .CJ - 533 O.' LCG PERCNT 4 RX STRRIN 4 T' I“ f'f} GI—4 F3 CF00 6 DRNPIHG J‘ SAMPLES O-O. G-IO. 0-33 §- OPAVEL CONTENT - 59: '_ 8 POINTS R†FIGURE E.92 g: . r- 2: OF F e L g: g F. ;" A A 6-0- I *I I I I I #1— -3.00 -2.SO -2.00 -| .50 -l .00 --500 O.' LOG PERCNT 4 RX STRRIN GT—4 F5 CPSO DRMP RRIIU DRHP RRTIU 301 6 DRHPING “F SIHPL‘S “‘90 3.1.0 “’33 §_ vaEI. CONTENT - 59: '_ II POINTS 3. FIGURE E.93 g; g- A 6* A s://///gY/y 'L 6'. I . I I I I -3toa -2.SO -z.sa -I.50 -I.ao -.sos O:F_' LOG PERCNI 4 RX STRRIN _. F‘P‘ GT 4 FUSEFZOO 6 DRMPING '— SAHPLES 6-9: O-llo 0'33 :3. OMVZL CONTmT I 593 'L 9 POINTS 3. FIGURE E.95 'L g— A o F 4 JWI I I I I I I ~3£00 -z.SO -z.OO -I.SO -I.OO -.GOO If?!“ LOG PERCNT 4 RX STRRIN GT-4 F1 CPZOO URMP RRTIO DRMP RRTIO 6 DRMPING “" SAMPLES 6'9: 0'10: 3°33 §_ BRAVE]. CONTENT - 59: '_ 9 POINTS 3» FIGURE [.94 'L Eh A A o A 7L- g A JMI I I . . I I -3 O; -2.50 -2.03 -I.sa -I.:a -.sc: OJ CS PERCIJT 4 RX STRRIN 4 h GT—4 F3 CFZOO 6 DRflPING ‘L SAHPLES 6'90 G‘Ilo 3°33 8.. ORAVEL CONTENT 3 S98 q 9 POINTS 9_ FIGURE E.96 'I §. g_ A :3th I I I I I I -IEOO -z.SO -2.OO -I.SO -I.OO -.SOO O.I LOG PERCNT 4 RX STRRIN 4 GT-4 FS CPZOO DRMP RRTIO DRHP RRTIO 302 9 DRMPING gt sanrnzs G-I. G-eg 6-8 8'- ORAVEL CONTENT I 593 'L s razors 3» FIGURE E.97 'L y A '_____fl__Ai_.——————~——"‘—"—'———— g_ A § _ .A A- 0 ' l l ' I I I -3£:3 -2.sa -2.cc -I.so -I.oo -.sco OJ LOG PERCNT 7 RX STRRIN 9 DRMPING 1†SAMPLES 6']: 6’2: 6'3 §_. BRAVEL courts? - 59: '+ 5 POINTS 3- FIGURE E.99 F “2&- ‘ r éL é- A 8- A A S A: "’ A ‘5‘- I I I l L I AAAJ__ -aloo -z.so -z.oo -I.so -l.OO -.soo oJ LOG PERCNT 7 RX STRRIN GT—lOFl CPO DRMP RRTIO DRMP RRTIO 9 DRHFING 4L o SIHPLES 3'10 3'20 5'3 8*' ORAVEL CONTENT I 591 'L 5 POINTS 3» FIGURE [.98 'U o f 'F 'L 8 _ g A 3— A A ‘5—hl I . . ‘ I 4 ‘3i53 -2-50 -2.aa -I.so -:.oc -.sco o. LOG PERCNT 7 9x 579g;N GT-IOFB CPU 9 DRflPING +" SAMPLES G-I. 6-2. 6-3 §~ GRAVE. comm: - 59: '_ 5 POINTS 3- FIGURE E.100 i i J g _ ; _ 15 _ .ï¬r‘Jï¬â€”~___~ ' I I I I I I I -3100 -2.so -2.oo -I.so -|.OO -.sca oJ LOG PERCNT 7 RX STRRIN GT—lOFS CPO DRMP RRTIU DRMP RRTIO .220 .100 .300 .260 303 S DRMPING 0+- WPLES 3'1: 8'2: 0-3 3 .— CMVEL comm? - 593 '+ O POINTS 3. FIGURE E.101 3- Er 9»- o' L I 1 I L-.. 2 SO 2 OJ -1 50 [.OO -.E.3 O.' L33 ?ERCNT 7 RX STREIN Gé—IOFOSCPSO S DRMPING + SAMPLES G-Io 0'2: I-3 § OPAVEL OONTB'T I 59! .3.0 G POINTS FIGURE E. 103 I I I I . r- éh AIAA ; _. 15 ll é“.! 'I I I I I I .3303 -:.so -z.oo -I.so -I.oo -.Goo o.I LOG PERCNT 7 RX STRRIN GT-lOFl CPSO DRMP RRTIO DRMP RRTIO GT—lOFS CPSO 9 DBVPING 4†SAMPLES O-Io O-Eo O-3 ‘E— SHAVE. com-nu- - so: '_ 6 POINTS 2- FIGURE E.102 I r- 2 h 2A 3: 3' A .5 - a O 8- A -_4 I AI, I I : LI -3£ca -z.so -z.oa -I.so -I.aG -.sca an LCD PERCNT 7 RX STRRIN : I — A U GI—lOFB CPSU 9 URXPING 4“ SAMPLES 6‘1: 6'2: 8'3 §- GRAVE!- commr - 59: 'b 5 POINTS 2L FIGURE E.104 a: a: a: 2: . r- 8._ $._ é- '.. A ‘7>~4L“‘_ --— 13 6 I I I I I I I -stoo -z.so -:.oo -I.so -I.ca -.503 a! LCD PERCNT 7 RX STRRIN 2 DRMP RRTIU DRMP RRTIO .300 .310 I .260 .220 IAAAT ’4T4'7 I 7’T .300 J TfiI I I 1304 DRRPING SANPLES 6']; 6'2: 6'3 GRAVE. CONTENT I 598 I POINTS FIGURE 5.105 9 ET E? N I— ? T‘ C: a? a: gl .. m I z r a: .-.- C: O ' ' I I I I J -J'-.‘.‘ -2.50 -2.33 -I .50 -I.CO -.s:a 0.7— LJS PETCNT 7 RX STRRIN .. '— ._ ' ul—IOFODCPZOO 9 DRflPIN + SAMPLES 6' I o 3‘20 6‘3 §.. GRAVEL courznr -'59x ' _ 8 POINTS 3_ FIGURE E.Io7 P g_ I 2% O I- O 2 I— P ‘3 s: 53 7 F- cu “' CE :_ A a O §' be ’9 A % I— A A CI: __ D 6 I - I I I I _L_ «3200 ~z.so -z.oo .I.so -I.oo -.soo a} LCD PERCNT 7 RX STRRIN GT-lOFl CPZOO .IQO -|OO .220 .260 .300 .SCO .300 -I00 i-OOOC-OZ SAHPLES G-Io 0’2: 0'3 GRAVE. CONTENT I 593 O POINTS FIGURE E.106 ' 1 I I I I -.530 -2.sa -z.c3 -l.53 -I.ca on CC PE CHI 7 RX STRRIN _~ (-\ I Gi—10F3 CPzOO 9 DRï¬FENG '+ SMPLES G-Io 8°20 3'3 §.. GRAVEL courts: - 59: '_ 6 POINTS 3 FIGURE E.108 :L :‘L- " er I 1 I I I I I -:‘.oo 4.50 -z.oo -I .so -I .oo -.soo o.‘ LOG PERCNT 7 RX STRRIN GT-lOFS CPZOO APPENDIX F DATA FOR UNDER-SATURATED SAMPLES TEST TEMPERATURE = -4°C 305 Table F.1 Experimental Results for Under-Saturated Samp1e US-l 3:232:28 a. . ““2333: ‘ †(P81) (cps) (1) (psi) Strain - 10’22 200 0.05 .00388 288793 .165 253576 .00685 263153 .171 .171 .01801 234427 .173 0.3 .00393 372092 .177 332078 .00709 340163 .172 .176 .01801 311067 .178 1.0 .00378 450593 .174 409487 '.00695 420846 .167 .168 .01734 388653 .167 5.0 .00321 640085 .166 546086 .00604 579827 .153 .147 .01485 517275 .141 50 0.05 .00388 207177 .193 185787 .00719 192110 .199 .199 .01811 173096 .201 0.3 .00402 288568 .198 261343 .00719 270084 .202 .200 .01792 245652 .200 1.0 .00398 367609 .189 273157 .00719 340148 .184 .184 .01740 195587 .183 5.0 .00340 537176 .178 451257 .00608 479162 .165 .158 .01485 425412 .151 0 0.05 .00393 124031 .303 105681 .00695 113395 .337 .299 .01801 93771 .274 0.3 .00398 194016 .275 145194 .00709 162637 .255 .239 .01801 114509 .219 1.0 .00398 238946 .253 161537 .00709 193561 .215 .193 .01782 131233 .155 5.0 .00335 348704 .205 218262 .00575 274039 .173 .144 .01552 170555 .121 306 307 Table F.2 Experimental Results for Under-Saturated Samp1e US-2 Confining Interpolated E 6 D Pressure Fr:2u:;cy Stigin (2:1) D Values std (psi) 9 p Strain - 10722 200 0.05 .00404 303131 .163 280714 .00652 301539 .166 .175 .01636 263069 .183 0. 3 .00404 395475 .177 373831 .00665 390646 .167 .174 .01627 358353 .176 1.0 .00391 479721 .172 449159 .00656 465297 .153 .161 .01636 431831 .163 5.0 .00328 692996 .151 586617 .00508 647548 .142 .137 .01438 553314 .134 50 0.05 .00391 240899 .220 215381 .00665 231946 .197 .211 .01699 197881 .215 0.3 .00404 341273 .209 304017 .00661 322018 .192 .200 .01681 282122 . 202 1.0 .00396 439366 .184 . 375269 .00643 408096 . 174 .178 .01645 339628 .179 5.0 .00360 589449 .168 493154 .00548 562755 .157 .151 .01420 455115 .147 0 0.05 .00409 158834 .342 124299 .00674 155380 .275 .281 .01762 93102 .262 0.3 .00404 212794 .256 183445 .00674 204764 .225 .210 .01267 171704 .200 1.0 .00400 259846 .230 192056 .00665 235609 .187 .169 .01699 145304 .138 5.0 .00324 363857 .185 233228 .00584 305756 .142 .117 .01510 180654 .096 Tab1e F.3 Experimental Results 308 for Under-Saturated Samp1e US-3 Confining Interpolated E 8 D Frequency Strain Ed P D V 1 t “2321'? “I†m (981) s...2.“§s.3-2z 200 0.05 .00287 708243 .198 541543 .00667 574294 .202 .213 .01600 491271 .223 0.3 .00299 824314 .188 730417 .00667 778704 .179 .183 .01600 684125 .185 1.0 .00282 989308 .170 887293 .00650 949046 .150 .149 .01514 838592 .145 5.0 .00214 1355238 .145 1112341 .00548 1189273 .114 .101 .01292 1081032 .096 50 0.05 .00368 399482 .241 356174 .00693 386648 .240 .267 .01609 327118 .289 0.3 .00321 609920 .219 544886 .00689 577680 .202 .212 .01609 510869 .217 1.0 .00312 738436 .193 665042 .00684 711784 .163 .163 .01574 623069 .157 5.0 .00261 1051730 .169 844764 .00556 963647 .131 .116 .01369 782963 .107 0 0.05 .00334 438021 .282 336543 .00719 363801 .288 .285 .01643 292622 .284 ’0.3 .00317 633552 .241 439550 .00706 517661 .217 .208 .01626 345652 .195 1.0 .00304 916965 .223 540494 .00659 648309 .174 .164 .01609 493849 .147 5.0 .00278 972404 .183 679578 .00573 844226 .129 .105 .01301 601895 .094 309 Table F.4 Experimental Results for Under-Saturated Sample US-4 Confining Interpolated B 6 D Frequency Strain Ed Pressure D Values at (P81) (cps) (1) (psi) Strains - 10' I 200 0.05 .00372 645960 .224 502132 .00740 516065 .222 .223 .01674 446159 .223 0.3 .00381 804789 .200 694927 .00712 730285 .198 .195 .01637 640802 .191 1.0 .00372 964576 .184 853506 .00702 887950 .170 .164 .01581 805140 .155 5.0 .00270 1255198 .161 1100132 .00549 1198415 .156 .120 .01321 1054880 .103 50 0.05 .00409 396781 .252 348886 .00753 359944 .246 .254 .01674 323950 .259 0.3 .00405 537798 .235 479812 .00749 520498 .208 .207 .01674 432580 .197 1.0 .00367 727064 .222 593755 .00712 666385 .171 .169 .01656 510020 .152 5.0 .00326 955223 .183 663376 .00516 691304 .135 .120 .01414 627124 .109 0 0.05 .00405 371242 .296 277650 .00753 321148 .255 .267 .01740 210994 .262 0.3 .00395 517590 .242 371908 .00735 453034 .228 .211 .01693 268591 .190 1.0 .00372 641596 .211 443581 .00712 549996 .190 .170 .01693 314635 .145 5.0 .00293 928343 .160 527719 .00581 675989 .144 .125 .01498 409892 .111 .310 Table F.5 Experimental Results for Under-Saturated Samp1e US-S Confining Interpolated E 6 D Pressure Fr:gu:;cy Stt;;n (2:1) D Values at (psi) p p Strains - 10'21 200 0.05 .00338 806531 .207 722561 .00667 798113 .164 .181 .01664 657813 .185 0.3 .00343 1004195 .157 941558 .00686 1018406 .135 .145 .01646 880250 .147 1.0 .00302 1297229 .131 1108369 .00686 1155772 .117 .125 .016 1041413 .120 5.0 .00265 1491470 .111 1284739 .00521 1346240 .087 .080 .01381 1251637 .076 50 0.05 .00343 691569 .194 578563 .00731 617260 .182 .189 .01719 517769 .191 0.3 .00366 861500 .157 762387 .00709 848035 .138 .138 .01682 679624 .132 1.0 .00357 1006564 .144 877825 .00704 971192 .112 .112 .01655 785100 .103 5.0 .00206 1381558 .106 988203 .00571 1153877 .087 .0782 .01463 879263 .072 0 0.05 .00366 566192 .203 453507 .00741 524115 .162 .171 .01755 366360 .165 0.3 .00366 719397 .164 570356 .00727 670298 .123 .01755 453324 R.A. 1.0 .00338 907348 .132 .00731 737160 .101 5.0 .00261 1047076 .119 .00562 941578 .075 311 Table F.6 Experimental Results for Under-Saturated Samp1e US-6 Exist? a. . “Max:218 ‘ †(psi) (cps) (z) (9") Strain - 10’21 200 0.05 .00360 426842 .179 355144 .00719 352314 .200 .191 .0169 334439 .189 0.3 .00373 563790 .154 493038 .00697 495396 .162 .162 .01672 470141 .165 1.0 .00360 693336 .138 606459 .00674 626336 .145 .145 .01654 571480 .146 5.0 .00328 846445 .125 760431 .00616 799186 .130 .119 .01438 731730 .113 50 0.05 .00382 344343 .206 295695 .00674 313168 .228 .225 .01708 270060 .229 0.3 .00337 529977 .184 429529 .00683 456440 .178 .190 .01681 386468 .198 1.0 .00369 583885 .153 514114 .00683 553908 .149 .155 .01654 471323 .159 5.0 .00324 790449 .135 642661 .00562 740041 .120 .118 .01465 583034 .115 0 0.05 .00382 221060 .263 .00719 248427 .260 0.3 .00369 321688 .213 .00719 338764 .221 1.0 .00369 376771 .165 .00706 388967 .164 5.0 .00315 462009 .122 .00598 494476 .110 APPENDIX G DATA FOR SALINE SAMPLES TEST TEMPERATURE = -10°C 312 ll" 1-1.3.-.. I]- -1 1111:! 1'11- . u I c a: a: o~.. nodes ooo_c. hn~. nacho oco~o. and. naeaoa cease uwmcu_eouanoatmu=~ N4". “swam o~o_c. «4‘. «case sense. a-. n~omm~ -o_c. c4.. sqNNO assoc. o-. scams asses. and. ~nn¢- Nnocc. n . ps<m .3 and. «came assoc. ~4_. ossmou annoa. .ma. nausea canoe. .u 23:91.. -.i . . a u and. assoc omaso. «4.. oQNea enaao. ~n_. occgna o-ao u a—_. sooua auaoc. Na“. owns: ï¬asco. c.~. aaamss -~oc. N - a4<m u a~—. oNHna anaco. as“. massed canoe. onE. oaoooa canoe. n .I.1|l;|01.li|' I a~_. oo-~ o_o~c. ~na. «mace aflodc. na.. so~4- s~o~o. o~_. anaNc coacc. o~_. c.4oo acaco. o~_. cancud «mace. ~ . aa<m o~.. osams assoc. cad. ammoou ¢~nc¢. end. ~4~_o~ «mace. 2.0 «6 hoses—.0».— . I‘IIII o a c o . o NN-lo.H . adahum U. as†«swan ooo.o ~m. «name coeds ~41 scamNM cacao o=_~> uuuq~oatoucp 86.. ~nonq enoflc. so“. «6848 man‘s. _n~. .aoaea eeogo. and. on.o« assoc. «ca. momma assoc. ens. asanaa emcee. n - aq<m emu. camps hsmco. an". enema owmoo. cad. n-_- «Nnoo. 1: .. - 3 u cm_. «moan nao_o. ~o_. «moan “saga. .nï¬. «some. “case. a. u on“. m~4~w n.1oo. a4~. «case cases. a__. ~_nm~. oases. N . aa<m u .s «4.. cameo assoc. mes. .om_m cNMoc. anq. caoeca sense. 6 m . Iaoluvl'lll."|l 5...; Ilic'l III 14 ' neg. _mc~n on8_o. o¢~. smnNo NNoac. and. cause -o~e. 7. as“. a~_co «coco. an_. Nan—h assoc. an". omNoo oaaoo. q - ea<m ~41. amuno aNNco. as". ammoo canoe. oqd. coco~_ ï¬asco. 1... on- 010314.|1' -uu.'iv.10‘-.. .ult.1IIV’vvvo'iili'o'llo-4.rsl0'lll-! T'lllli I :2: A5 fl 4. 1...: A . - ._ - E. Lemma: - -m 11-11.4111- 25mg: 5 6.: .11:_...3-I_F.wm...m.1h...m.._..mm 11!! in o 1 «an an use can 9.359.:— «553.00 - . . . 1 mar—000.6; , hU—uOQ—vflhn— Na; 33:03 0:23.. moaasmm mcaamm .ll't'- I 1 pow muasmmm Hmuamaï¬uwaxm H.o adame . 1 . tl't I- I.l||’t-’o I- 313 133144 [O-' '.‘\I'-l |-'Itl'|.ltI‘Ll"l-"-. Apmscaucoov iii-ll. -I-..-.b - . . . . a a c a: an 4N.. .oNoc. occ.c. 44. a.nNn. eoo.o an. NaNNmN coo.e am.mw.cuuafloatmuc. 4N.. aoNaa Nn4.o. .4.. 444.4. «an.o. 4N.. oNNoNn NNN.o. an.. NoNnc. mocoo. NN.. onNm. canoe. .N.. .NooNN Nance. n - s4<m .3 aN.. 4.4... NcNoo. 4N.. 4N4... oNNoo. a... NNNn44 4NNoo. .u . l -.| G n N... No4.o. N.m.o o... 4.4mN. oa4.c. an.. .44N.N oo4.o. u :. 4N.. a.N4c. o4ecc. oN.. mn4aN. Nnooc. 4... . «.44NN Nance. N - as<m u m n4.. NNAON. .nnco. 44.. assoc. Nance. a... 4.444N NNnoc. n I NN.. cacao. 4N4.o. on.. oncoN. 4a..c. o4.. NNNca. 44N.c. m4.. NanN. Nance. N4.. 4N4n4. ..6co. n4.. .noso. Nessa. . - ~.<m 44.. NnaNn. 4NNoo. a... Nc4N4. NmNoo. Na.. NocNNN canoe. -114- 9.0 o6. 50:03.3.— -O:QIIIIIJ I o . o o I I c QHU HQ oN.. noNno eco.o .9. NNo4o. coo.o. «N.. Nco.o. eoc.c onwam.couufloatw.e. . on.oN omn.¢. . oas.o. NN.. «c4NmN can.c. an. .4NnN . «4.. NomNc. as oo. «N.. NNmNcN NNooe. n - na<m nn.. .N4oo 4.. 4moo.. 4 .4.. o.N.oN N.4oc. 4qu N4N.o oNnoo. N... 4.44.. snmco. .3 ' . Ill X 4... o4mnm onn.o. N... c.noo ~44.o. NN.. Nessa. .o..e. .m 8.. .28 8.8. NN.. 8...; .58. 4... N32. 438. N - 5% m .- NN.. 4°44. cameo. 44.. o.NaN. canoe. 44.. oNoo.N canoe. u m -f-vl-l'|. II [I'll 01' 3 N3. 1 825 30.0. o3. 330 808. 2.... «NE: 805. n. .N.. 4..mo Naooo. «N.. No.48. Noose. 4N.. 4cm... Nmocc. . - s4<m mn.. .a.4o. o4noc. 44.. omoNN. oncc. no.. aocom. mmnoo. : --:.2;mm:li-Sv I. 4.: ..el. .5 . ._ . s. 5.5.. 3. ...__.....V--..-.._.m..w...m. .---_-..._.!. I.M...EiJwQ-NM- saw-4.8.... Ft! «2. c «as an «an 8N 9.5.30...— use—ace; .- . - - .-- - I - - . .l-I-II- n.- - ...-. . nave-Hmlia-..l- . ..i.-r- - - hoses—5....— -.- I I. l u-al |--, -I-. .WWMdo-Ix- -. I - u=9ucouv â€Cw—Mm H.U manna 131.5 .I-----...-in..1- 1111- I c an 4... 5.3-g 8a.... 8.. .48. :88. 48. No.2. 82... 63...â€.BULEWUH l1l|ll-|I-'. VI'OII'II Nun. nNNNc cacao. ~o~. MNNnn Gav—o. mucc. unmwau o¢o.c. ~_—. n~cm< m~soc. Nooc. c~o~c annoo. acme. uncocn ounce. o I HA<m mug. newcn cemcc. «Goo. ounce nnncc. ochc. onenuu «mace. owu. «mean unsuc. mad. «mean hnn~c. sod. o_w¢a ansuo. owa. nswqc moocc. Gun. uqouo Cocoa. «ac. «cumun cacao. n I Ha<m and. camcn uueoo. ~n—. awmnu «deco. o—~.. m—n0n— havoc. ecoo. owmmn anode. «use. Nnvoc —om—c. 040°. owownn "mama. ncac. cumco ï¬asco. acna. Cacao ewnco. mace. a-~o~ oNnco. c I Hd<m -_—.. sanno ounce. cmso. NnNco— enncc. a¢o¢. ~o0n0~ Ouncc. out n.o hocosvouh Boll-W-Il- . . . . . "N13 1 538 u- S. 8°44 8e... 8. .44... So... :5 £42. :88 2...; 436.633... I! ..--|- .Iltluli ill-II.- a~—. canon «mono. dun. «mane cow—c. nwoo. «ammo enouc. eï¬ï¬. --¢ acsoo. oo—. m¢~cm desoc. coo. manna manoe- o I hd<m «Nu. uoosn annoo. omen. uccan onnoc. acoc. cconcu enncc. cad. seama unmao. mm—. annue nus—c. ewd. emcna Gas—o. and. acesn cocoa. Cwq. ansun cocoa. con. nwnma emcee. n I hd<m nn~. ~nO—c uucoc. o~u. oemno -eoc. emu. «canwu hoeoo. aucu. uNONm ccmuo. unao. n4oo~ «came. oooc. «waded ecsuo. Ndcu. onnmn nwhco. vcwo. Gamma nusoo. osco. nwsacu camco- e I ha<m coca. n¢nno ï¬-oonoo. vwso. omnqo noncc. m—nc. uncenu unnec. . i... :63 - .NV .2. AN. 39: .5 . - . . .._.--...- .-.--..........L--._.::m.. .:.m-.---.r. ..:.......-- 5.5... a 4... 5.5L 2. 38.... .2. O .2. on .2. :3 9523.5 9:52.00 mew no.c ausosvouu Ncé 33:0... 2.3...." l .uIl-l-I1|.I1.'| . - . .Il.--l 'l'.I‘-I-O-'.'Illlill' 'Il.a.aII--'I .emsa.ucoov ..u 8.68H 316 ..- I--. ....a. ..i .-.I-|.II.-II.I-.n-|.ln-..l-IIIIIIIII I a Qhu U. 4... 8.2 888. 2.. g 882 888. 28. N88. 888. cummw.vouu“o&w.c. N... 8N8 248. NN.. 28.. 848. N88. 42.4. 8.48. 2.. 2.2 28... NN.. 428 28c. 88. 884. 888. o .. .58 a NN.. 842 428. 2.. .8... 8.8. 4.8. 224. .28. u .- - - -9 -1. t-I-ill. a 2.. N88 N88. «4.. 88. N88. 8.. 824. 4.48. m. u- o... oono .4888. .N.. N...» NNooc. 488. .84.4. .8888. n -..a<m n m 8.. .22 N28. 44.. .84... 4.4.8. 4... 2488 N488. n in...- I' III. III 1. N_o.. NN.8N 884.8. NNoo. mon.N. Nam.o. No.8. n.4ma. oNo.o. .28.. 88448 N.4oc. .888. nmch. NNoco. .mmo. oNco.N NNooo. 4 ...:<m 8... 88... .88. 8. . 8.8. N48... 88 . NSNNN .88. --------- was a.» mucus-49... I.-.-----III NNIOH I eunuum u. 8... N28 888. 8.. 222 88.... N8. 28.. 888. 8.3. 436.633... .I-IIIII. l'colull.Vil1|lll|4|leIIAT|IIIIII N.. . 884 N88. 8. . 84$ «8.... 2 8. SN... .88. N... 2.8 .28. 8.... .484 .28. 28. .88.. .28. o .. 5.6 NN. . 8844 488 . n8. . «N42 4488 . 888. SEN. 2.8. -i I. lift- it. n. a... 848 .28. 4N.. 8.8 8...... =8. 88.. .28. 0 .m .N.. 8484 888. N... 8... 848. 88. No.8. .88. n I .58 n 5 8.. 28.. ..48. .2. 2...... 848. 8.. 88m. 848. .. m III-'- - I I I III:.4i-l-lr--III .II a 88. 8.8 2:... :8. 848 N88. 88. 4848. 8.8. n. N88. 222 2.8. :8. 4448. .28. 88. 4842. 428. 4 .- .58 8:. . N82 888 . 88. N842 .88 . 88 . $48. 28¢. -. . i 1. - .943--- INN-8:14:34- -73- me :9: .5 . .3 Fr lam.- - .25-WM.- -11....1-1-1 - :th :me-Wm- a an 59:5 6: 0.95m .6... c «c.— om .2. oo~ 0.5660...— 05:39.00 1 -- .1 - x- 3!! - -- -- - . {:31 --liil-F-ilit-i 5.0 c.. aocosvoum 56 2.3.50 05.3 .1 la Il.‘ OI'-I-I-II‘I'I.II.I 1 I'.‘ II.I:I Ill!- Aomscï¬uaoov H.U mHAMH HICH «11111141111111 31