
A FRAMEWORK FOR VERIFICATION OF TRANSACTION LEVEL MODELS IN

SYSTEMC

By

Reza Hajisheykhi

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

Computer Science - Doctor of Philosophy

2016

ABSTRACT

A FRAMEWORK FOR VERIFICATION OF TRANSACTION LEVEL MODELS IN

SYSTEMC

By

Reza Hajisheykhi

Due to their increasing complexity, today’s SoC (System on Chip) systems are subject to a

variety of faults (e.g., single-event upset, component crash, etc.), thereby their verification a highly

important task of such systems. However, verification is a complex task in part due to the large

scale of integration of SoC systems and different levels of abstraction provided by modern system

design languages such as SystemC.

To facilitate the verification of SoC systems, this dissertation proposes an approach for veri-

fying inter-component communication protocols in SystemC Transaction Level Modeling (TLM)

programs. SystemC is a widely accepted language and an IEEE standard. It includes a C++ library

of abstractions and a run-time kernel that simulates the specified system, thereby enabling the early

development of embedded software for the system that is being designed. To enable and facilitate

the communication of different components in SystemC, the Open SystemC Initiative (OSCI) has

proposed an interoperability layer (on top of SystemC) that enables transaction-based interactions

between the components of a system, called Transaction Level Modeling (TLM).

In order to verify SystemC TLM programs, we propose a method that includes five main steps,

namely defining formal semantics, model extraction, fault modeling, model slicing, and model

checking. In order to extract a formal model from the given SystemC TLM program, first we need

to specify the requirements of developing a formal semantics that can capture the SystemC TLM

programs while still benefiting from automation techniques for verification and/or synthesis. Based

on this intuition, we utilize two model extraction approaches that consider the architecture of the

given program too. In the first approach, we propose a set of transformation rules that helps us

to extract a Promela model from the SystemC TLM program. In the second approach, we discuss

how to extract a timed automata model from the given program.

When we have the formal model, we model and inject several types of faults into the formal

models extracted from the SystemC TLM programs. For injecting faults, we have developed a

tool, called UFIT, that takes a formal model and a desirable fault type, and injects the faults into

the model accordingly.

The models extracted from the SystemC TLM program are usually very complex. Addition-

ally, when we inject faults into these models they become even more complex. Hence, we utilize

a model slicing technique to slice the models in the presence or absence of faults. We have devel-

oped a tool, called USlicer that takes a formal model along with a set of properties that needs to be

verified, and generate a sliced model based on the given properties. The results show that verifica-

tion time and the memory usage of the sliced version of the model is significantly smaller than that

of the original model. Subsequently, in some cases where the verification of the original formal

models is not even possible, using our model slicing technique makes the verification possible in a

reasonable time and space.

We demonstrate the proposed approach using several SystemC transaction level case studies.

In each case study, we explain each step of our approach in detail and discuss the results and

improvements in each of them.

Copyright by

REZA HAJISHEYKHI

2016

To my parents, Mastaneh and Dariush.

v

ACKNOWLEDGMENTS

First and foremost, I feel indebted to my advisor, Professor Sandeep Kulkarni, for his guid-

ance, encouragement, and inspiring supervision throughout the course of this research work. His

patience, extensive knowledge, and creative thinking have been the source of inspiration for me.

He was available for advice or academic help whenever I needed and gently guided me for deeper

understanding, no matter how late or inconvenient the time is. It is hard to express how thankful I

am for his unwavering support over the last years.

I would like to take on this opportunity to thank my dissertation committee members Dr. Abdol-

Hossein Esfahanian, Dr. Guoliang Xing, and Dr. Subir Biswas who have accommodated my timing

constraints despite their full schedules, and provided me with precious feedback on my dissertation

presentation. Also, during my Ph.D. studies, I had the pleasure of collaborating with Dr. Ali

Ebnenasir. His valuable comments helped me a lot to find the right roadmap in my research. I also

would like to thank Dr.

Living in East Lansing without my good friends would not have been easy. I want to thank all

my friends in the department and outside the department. I wish I could name you all.

Last but definitely not least, I want to express my deepest gratitude to my beloved parents

and my dearest sister. Their love and unwavering support have been crucial to my success, and a

constant source of comfort and counsel. Special thanks to my parents for abiding by my absence

in last five years.

vi

TABLE OF CONTENTS

LIST OF TABLES . xi

LIST OF FIGURES . xii

LIST OF ALGORITHMS . xiv

Chapter 1 Introduction . 1

1.1 Motivation . 1

1.2 Objectives and Proposed Framework . 3

1.3 Thesis Overview . 5

1.4 Bibliographic Notes . 6

Chapter 2 Preliminaries . 7

2.1 SystemC . 7

2.1.1 Structural Modeling . 9

2.1.2 Behavioral Modeling . 10

2.1.2.1 Processes . 10

2.1.2.2 Events . 11

2.1.3 Simulation Kernel and Scheduler . 12

2.2 Transaction Level Modeling . 14

2.3 UPPAAL Timed Automata . 19

2.3.1 Timed Automata . 20

2.3.2 Networks of Timed Automata . 21

2.3.3 Symbolic Semantics of Timed Automata 22

2.3.4 UPPAAL . 22

2.3.4.1 Modeling Language . 23

2.3.4.2 Query Language . 24

2.3.4.3 An Illustrative UPPAAL Example 25

2.4 SPIN and Promela . 26

2.4.1 Modeling Language . 26

2.4.1.1 Processes . 27

2.4.1.2 Variables . 29

2.4.1.3 Message channels . 30

2.4.2 Control Flow . 30

2.4.2.1 Case selection . 31

2.4.2.2 Repetition . 31

2.4.3 Verification with SPIN . 32

2.5 Summary . 32

vii

Chapter 3 Related Work . 33

3.1 Formalizing the Semantics . 33

3.2 Checkers for SystemC Designs . 35

3.3 Static Analysis and Stateless Model Checking . 36

3.4 Model Extraction and Model Checking . 37

3.5 Summary . 38

Chapter 4 Formal Semantics and Model Extraction 39

4.1 Developing a Formal Semantics . 39

4.2 Extracting the Formal Semantics from the SystemC TLM Program 41

4.3 Transformation Rules for Generating Promela Models 43

4.4 Case Study 1: Extracting Promela Model . 45

4.4.1 Capturing the execution semantics of the simulation kernel 46

4.4.2 Property Specification and Functional Correctness 48

4.5 Case Study 2: Extracting Promela Model using Transformation Rules 49

4.5.1 Property Specification and Functional Correctness. 52

4.6 Transformation Rules for Generating UPPAAL Timed Automata 53

4.7 Case Study 3: Extracting UPPAAL Model using Transformation Rules 56

4.7.1 Property Specification and Functional Correctness 59

4.8 Case Study 4: Extracting UPPAAL Model of a NoC Switch 60

4.8.1 Property Specification and Functional Correctness 62

4.9 Using STATE for Extracting Timed Automata Models 63

4.9.1 Assumptions . 64

4.9.2 Representation of SystemC TLM Designs in UPPAAL 65

4.9.2.1 The Scheduler . 66

4.9.2.2 Events . 68

4.9.2.3 Processes . 70

4.9.2.4 Payload Event Queue (PEQ) . 71

4.10 Case Study 5: Extracting UPPAAL Model in AT Coding Style 73

4.11 Summary . 77

Chapter 5 Modeling of Faults . 78

5.1 Fault Categories . 79

5.2 Fault Modeling for Promela Models . 80

5.2.1 Case Study 1: Fault Modeling and Impact Analysis for Two Communicat-

ing Modules . 80

5.2.2 Case Study 2: Fault Modeling and Impact Analysis for Memory-Mapped

Buses . 82

5.2.2.1 Perturbing Memory Contents 82

5.2.2.2 Control Signal Faults . 83

5.3 Fault Modeling for UPPAAL Timed Automata Models 83

5.3.1 Generic Description of Faults . 84

5.3.1.1 Message loss . 84

5.3.1.2 Permanent faults . 84

5.3.1.3 Transient faults . 85

viii

5.3.1.4 Timing Faults . 85

5.3.2 Automatic Fault Injection . 87

5.3.2.1 Algorithm Description . 88

5.4 Summary . 91

Chapter 6 The Tool UFIT: The Fault Injector To UPPAAL Timed Automata 92

6.1 Input of UFIT . 92

6.1.1 The running example . 92

6.2 Internal Functionality . 93

6.2.1 Brief discussion about modeling of faults in UFIT 95

6.2.2 Analysis of Results . 97

6.3 Case Studies on Modeling Faults for UPPAAL Timed Automata Models 98

6.3.1 Case Study 1: Fault Modeling and Impact Analysis 99

6.3.1.1 Analysis of the fault . 99

6.3.2 Case Study 2: Fault Modeling and Impact Analysis 100

6.3.2.1 Message Faults . 101

6.3.2.2 Modeling and analyzing fail-stop faults in the case study 102

6.3.2.3 Modeling and analyzing Byzantine faults in the case study 102

6.3.2.4 Modeling and analyzing stuck-at faults in the case study 103

6.3.3 Case Study 3: Fault Modeling and Impact Analysis 103

6.3.3.1 Message Faults . 103

6.3.3.2 Permanent Faults . 104

6.3.3.3 Transient Faults . 105

6.3.3.4 Timing Faults . 106

6.4 Summary . 106

Chapter 7 Model Slicing Timed Automata Models 108

7.1 Model Slicing . 108

7.2 The Running Example: The Alternating Bit Protocol 109

7.3 UPPAAL Timed Automata Model Slicing . 112

7.3.1 Identifying the set of relevant locations and actions (L and A) 112

7.3.2 Building the sliced model . 114

7.4 Applying the Model Slicing on the Alternating Bit Protocol 115

7.5 Summary . 116

Chapter 8 USlicer: A Tool for Model Slicing UPPAAL Timed Automata Models . . 119

8.1 Internals of USlicer . 119

8.1.1 XML format . 120

8.2 Case Study 1: Producer-Consumer Program . 121

8.2.1 Slicing in the absence of faults . 122

8.2.2 Slicing in the presence of faults . 123

8.3 Case Study 2: Memory-Mapped Buses . 124

8.3.1 Slicing in the absence of faults . 125

8.3.2 Slicing in the presence of faults . 125

8.4 Summary . 126

ix

Chapter 9 Conclusion and Future Work . 129

9.1 A roadmap for future research. 131

BIBLIOGRAPHY . 133

x

xi

LIST OF TABLES

Table 2.1: Variants of the wait statement. .. 12

Table 2.2: Data types in Promela. ... 29

Table 6.1: Modeling and analyzing the impact of faults. ... 99

Table 6.2: Modeling and analyzing timing faults in the memory bus system while using LT

coding style. .. 100

Table 6.3: Modeling and analyzing faults in the NoC switch while using LT coding style. 101

Table 6.4: Modeling and analyzing faults in the memory bus system while using AT coding

style. .. 104

Table 6.5: Modeling and analyzing timing faults in the memory bus system while using AT

coding style. .. 106

Table 8.1: Comparison of the original and sliced models in the absence of faults while using LT

coding style. .. 122

Table 8.2: Comparison of the original and sliced models in the presence of faults while using LT

coding style. .. 122

Table 8.3: Comparison of the original and sliced models in the absence of faults while using AT

coding style. .. 126

Table 8.4: Comparison of the original and sliced models in the presence of faults while using AT

coding style. .. 127

xii

LIST OF FIGURES

Figure 1.1: Overview of the proposed framework. ... 3

Figure 2.1: SystemC language structure [2]. .. 8

Figure 2.2: Structure of a SystemC design. .. 9

Figure 2.3: SystemC scheduler [2]. ... 13

Figure 2.4: A simple running example for two communication modules. 15

Figure 2.5: The Initiator module. .. 17

Figure 2.6: The Memory, the Top, and the Main module... 18

Figure 2.7: A simple timed automaton. .. 21

Figure 2.8: The viking automaton [9]. .. 25

Figure 2.9: The torch automaton [9]. .. 25

Figure 4.1: The extracted functional model. ... 47

Figure 4.2: The Initiator module of the extracted functional model. .. 51

Figure 4.3: The Memory module of the extracted functional model. ... 52

Figure 4.4: Transforming b transport interface into UPPAAL, the Initiator. 55

Figure 4.5: Transforming b transport interface into UPPAAL, the Target.. 55

Figure 4.6: The architecture of the memory-mapped busses model. .. 57

Figure 4.7: Fault-intolerant UPPAAL timed automata model of the Initiator module. 58

Figure 4.8: Fault-intolerant UPPAAL timed automata model of the Router module. 58

Figure 4.9: Fault-intolerant UPPAAL timed automata model of the Memory module. 59

Figure 4.10: Requirements of Memory Bus System using LT coding style. 59

Figure 4.11: Using LT coding style to model NoC switch. .. 61

Figure 4.12: The Router module. .. 61

Figure 4.13: The address decoding mechanism. ... 62

xiii

Figure 4.14: Properties of the extracted UPPAAL timed automata .. 62

Figure 4.15: Representation of SystemC TLM Designs in UPPAAL. ... 66

Figure 4.16: Timed automata modeling SystemC scheduler [47]. ... 66

Figure 4.17: Timed automata template for an event object [47]. .. 69

Figure 4.18: Method process template [47]. ... 70

Figure 4.19: Thread process template [47]. .. 71

Figure 4.20: Timed automata template of the timed ordered list [47]. ... 72

Figure 4.21: Timed automata template of PEQ interface method notify [47]. 72

Figure 4.22: Timed automata template of the automaton that processes PEQ elements [47]. 72

Figure 4.23: Timed automata model of the PEQ events [47]. .. 73

Figure 4.24: Non-blocking transport interface architecture. ... 74

Figure 4.25: Requirements of memory bus system using AT coding style. 75

Figure 4.26: Timing requirements of memory bus system using AT coding style....................... 76

Figure 6.1: The GUI of UFIT. .. 94

Figure 6.2: Fault- 96

Figure 6.3: Modeling fail- 96

Figure 6.4: Modeling Stuck- 96

Figure 6.5: 97

Figure 7.1: The Sender automaton for the alternating bit protocol. .. 110

Figure 7.2: The Faulty Buffer automaton for the alternating bit protocol. 110

Figure 7.3: The Receiver automaton for the alternating bit protocol. .. 111

Figure 7.4: Building the sliced model. .. 115

Figure 7.5: The sliced Sender automaton for the alternating bit protocol. 117

Figure 7.6: The sliced Faulty Buffer automaton for the alternating bit protocol. 117

xiv

LIST OF ALGORITHMS

Algorithm 1 Automatic Fault Injection.. 89

Algorithm 2 Timed Automata Model Slicing .. 112

Algorithm 3 Slice Builder .. 114

Chapter 1

Introduction

1.1 Motivation

Verification of today’s complex SoC (System on Chip) systems is difficult in part due to the huge

scale of integration and the fact that capturing crosscutting concerns (e.g., system verification)

in the Register Transfer Language (RTL) [76] is non-trivial [20]. Additionally, SoC systems, in

practice, are in the presence of faults that makes it even more difficult to verify such systems.

More importantly, modern design languages (e.g., SystemC [2]) enable the co-design of hardware

and software components, which makes it even more challenging to Verify SoC systems. Thus,

enabling the systematic (and possibly automatic) verification of SystemC programs in the presence

of faults can have a significant impact.

SystemC is a widely accepted language and an IEEE standard [2]. It includes a C++ library

of abstractions and a run-time kernel that simulates the specified system, thereby enabling the

early development of embedded software for the system that is being designed. To enable and

facilitate the communication of different components in SystemC, the Open SystemC Initiative

(OSCI) [2] has proposed an interoperability layer (on top of SystemC) that enables transaction-

based interactions between the components of a system, called Transaction Level Modeling (TLM)

[4]. The interoperability layer enables two main abstraction levels (a.k.a. coding styles), namely

Loosely-Timed (LT) and Approximately-Timed (AT). The LT style of coding is mainly used when

designers need fast simulation of a program with little concern about timing issues, whereas the

1

AT style provides a notion of global time during simulation. Since SoC systems are subject to

different types of faults (e.g., single-event upset, hardware aging, etc.), it is desirable to study

their behavior in the presence of such faults. However, verification of SystemC TLM programs

in the presence of faults is non-trivial as designers have to deal with appropriate manifestations of

faults and verification at different levels of abstraction. In this thesis, we will develop a systematic

and fully automated method for augmenting existing SystemC TLM programs with verification

capability.

There are numerous approaches for fault injection and impact analysis, testing and verification

of SystemC programs. These approaches lack a systematic method for verification of SystemC

programs in the presence of faults. Testing methods can be classified into two categories: test

patterns and verification-based methods. Test patterns [28] enable designers to generate test cases

and fault models [44] for SystemC programs at a specific level of abstraction and use the results

to test lower levels of abstraction. Verification approaches [14, 47, 55, 62, 74] use techniques for

software model checking where finite models of SystemC programs are created (mainly as finite

state machines) and then properties of interest (e.g., data race or deadlock-freedom) are checked

by an exhaustive search in the finite model. Fault injection methods [20,27,64,70,75] mainly rely

on three techniques of (i) inserting a faulty component between two components; (ii) replacing a

healthy component with a faulty version thereof, and (iii) injecting signals with wrong values at

the wrong time. Then, they analyze the impact of injected faults in system outputs at different

levels of abstraction (e.g., RTL and TLM) [29]. Most of the aforementioned approaches enable

the modeling of faults and their impacts with little support for systematic verification that can be

captured at different levels of abstraction.

2

Figure 1.1: Overview of the proposed framework.

1.2 Objectives and Proposed Framework

Our objective is to facilitate the verification of SystemC TLM programs by building tools to pro-

vide automation to the extent feasible. Our proposed approach exploits model extraction, model

checking, and verification techniques to enable a framework for the verification of SystemC TLM

programs. Specifically, our approach consists of five steps, namely, defining formal semantics,

model extraction, fault modeling, model slicing, and model checking. These steps are represented

by Problem 1, Problem 2, Problem 3, Problem 4, and Problem 5 in Figure 1.1, respectively.

In this framework, we start with a SystemC TLM program that meets its functional require-

ments, but does not exhibit tolerance in the presence of a specific type of faults (e.g., transient

faults, stuck-at faults, component failure, etc.), called the fault-intolerant program. Existing test-

ing and verification methods [14, 55, 62, 74] can be used to ensure that a SystemC program meets

its functional requirements in the absence of faults. In the first step, we define a formal semantics

that can capture the transaction-based semantics of SystemC programs at different levels of ab-

3

straction while being amenable to automation (Problem 1 in Figure 1.1). Subsequently, we extract

a formal model of the SystemC TLM program automatically (Problem 2 in Figure 1.1). Thereafter,

our framework facilitates the modeling of different types of faults and their impacts on the formal

model. These faults will consider typical faults considered in SystemC programs such as transient

faults, stuck-at, component failure, etc (Problem 3 in Figure 1.1). Next, the framework provides

model slicing to generate a simplified model based on properties/requirements/specifications of

interest (Problem 4 in Figure 1.1). Finally, the sliced model is given to a model checker and the

model checker gives us either ”yes”, which means the set of properties is satisfied, or ”no”, which

means the properties is violated (Problem 5 in Figure 1.1). In case where the property is violated,

the model checker gives us a counterexample too that can be used for revising the model. All of

these five steps in our framework are automatic.

In the rest of this chapter, we explain each of the aforementioned problems in some detail and

give an outline for the thesis.

Problem 1: Developing a formal semantics that can capture the communication protocols

of TLM programs while being amenable to automation. In this step, we develop a

formal semantics that preserves the structure/architecture of SystemC TLM programs. This

formal semantics should also articulate different communication characteristics along with

different coding styles of SystemC TLM programs.

Problem 2: A method for extracting an abstract model from SystemC TLM programs. In

order to extract a formal model automatically, in addition to having a C++ compiler, we need

to extract architecture of the SystemC TLM program. Having the architecture and behavior

information can also assist us to translate back the abstract model to the SystemC program.

Different approaches have been proposed to extract a formal model from a SystemC program

4

automatically [61, 62, 65, 66, 77]. However, to the best of our knowledge, all of them only

consider pure SystemC programs while only one of them considers SystemC Transaction

level Modeling programs.

Problem 3: An approach for modeling and analyzing the impact of faults on the formal

specifications and the behaviors of SystemC TLM programs in the presence of

faults. To analyze the impact of faults, we identify how different types of relevant faults

(e.g., transient faults, message faults, stuck at faults, etc.) can be represented and injected

into the abstract model.

Problem 4: A technique for slicing the formal model. The models extracted are usually very

complex. They get even more complex after injecting fault into them in Problem 3. Hence,

we utilize program slicing techniques to slice the model and generate a simplified version

based on the given set of properties.

Problem 5: Model checking the formal model. In this step, we give the sliced model to a model

checker to be model checked. If the specification is violated, the model checker gives us a

counterexample that can be utilized to revise the formal model.

1.3 Thesis Overview

In Chapter 2, we give a background on SystemC, Transaction Level Modeling (TLM), UPPAAL

timed automata, and Promela. We describe some of the previous work related to this thesis in

Chapter 3. In Chapter 4, first we discuss about the requirements of a target formal semantics, and

then we introduce a set of transformation rules for transforming a SystemC TLM program into

Promela and UPPAAL time automata. We also introduce a tool for extracting timed automata

5

models from SystemC TLM programs. Afterwards, we use the extracted models for modeling

faults in Chapter 5. A tool, called UFIT, for modeling faults is explained in Chapter 6. This tool

injects different types of faults into UPPAAL timed automata models. In Chapter 7, we discuss

how to slice timed automata models and propose our tool, called USlicer for slicing UPPAAL

timed automata models in Chapter 8. Finally, in Chapter 9, we conclude this dissertation and

describe the possible directions for future work.

1.4 Bibliographic Notes

Some of the results in this dissertation have appeared in prior publications. The materials in Chap-

ter 4 are based on the papers published in Conferences ICDCN 2012 (International Conference on

Distributed Computing and Networking) [25], SSS 2013 (International Symposium on Stabiliza-

tion, Safety, and Security) [36], NoCArc 2013 (Network on Chip Architectures) [37], and SEFM

2014 (International Conference on Software Engineering and Formal Methods) [39], and Journal

TCS 2013 (Theoretical Computer Science) [26]. The materials in Chapter 5 are based on the pa-

pers published in Conferences SSS 2013 (International Symposium on Stabilization, Safety, and

Security) [36], NoCArc 2013 (Network on Chip Architectures) [37], ICDCS 2013 (International

Conference on Distributed Computing Systems) [38], SEFM 2014 (International Conference on

Software Engineering and Formal Methods) [39], and NFM 2015 (NASA Formal Methods) [40].

The material in Chapter 6 is based on the work published in NFM 2015 (NASA Formal Meth-

ods) [40]. Finally, the material in Chapters 7 and 8 are based on the work published in DAC 2016

(Design Automation Conference) [41].

6

Chapter 2

Preliminaries

This chapter provides a brief background on SystemC (Section 2.1), Transaction Level Modeling

(Section 2.2), UPPAAL timed automata (Section 2.3), and Promela (Section 2.4). The concepts

represented in this chapter are mainly adapted from [2–5, 9].

2.1 SystemC

SystemC [2] was introduced by the Open SystemC Initiative (OSCI) in 1996. The aim of the Open

SystemC Initiative was to develop an open industry standard for system-level modeling, design

and verification. SystemC can be seen as both a system level design language and a framework for

HW/SW co-simulation. It allows the modeling and execution of system level designs on various

levels of abstraction, including classical register transfer level hardware modeling and transaction-

based design. This allows system-level design from abstract concept down to implementation in

a unified framework. SystemC without extensions can only be used for digital HW/SW systems.

There also exists an extension for analog and mixed-signal components, namely SystemC-AMS,

but this is not in the scope of this thesis.

SystemC is implemented as a C++ class library, which provides the language elements and

an event-driven simulation kernel. The language comprises constructs for modularization and

structuring, for hardware, software and communication modeling, and for synchronization and

coordination of concurrent processes. From a structural point of view, a SystemC design is a

7

Figure 2.1: SystemC language structure [2].

set of modules, connected by channels. The structure strictly separates between computation and

communication units (i. e., modules and channels) and is highly flexible due to a communication

concept that allows transaction level modeling and communication refinement. The event-driven

simulation kernel regards the SystemC design as a set of concurrent processes that are synchronized

and coordinated by events and communicate through channels.

The SystemC language architecture is shown in Figure 2.1 [2]. The SystemC language pro-

vides constructs for the modeling of concurrency, time, reactivity, hardware data types, hierarchy

and communication. As SystemC is implemented as a C++ class library, the C++ language stan-

dard constitutes the base of the language architecture. Above that, the core language of SystemC

provides means to describe the structure and the behavior of a system. The structure is described

by using modules, channels, ports, and interfaces, the behavior by using processes and events.

8

Figure 2.2: Structure of a SystemC design.

Together with the event-driven simulation kernel, the core language defines the semantics of Sys-

temC. Alongside to that, the SystemC language provides a set of hardware data-types. On top of

the core language and the dedicated hardware data-types, a set of elementary channels is defined,

which can be used for more specific models of computation, e.g., FIFOs for functional or sig-

nals for hardware modeling. The topmost layer of the SystemC language architecture consists of

design libraries and models needed for more specific design methodologies or models of compu-

tation. Note that those are not part of the SystemC standard. The SystemC standard [2] comprises

the core language together with the event-driven simulation kernel, the dedicated data-types, and

the elementary channels. In the following, we describe both the structure and the behavior of a

SystemC design and briefly review the simulation semantics.

2.1.1 Structural Modeling

From a structural point of view, each SystemC program has a sc main function, which is the entry

point of the application and is similar to the main function of a C++ program. In this function,

the designer creates structural elements of the system, called modules, and connects them using

channels (see Figure 2.2). The separation of modules and channels allows the separation of com-

9

putation and communication. Together with a flexible communication model based on channels,

ports, and interfaces, this allows Transaction Level Modeling (TLM) with SystemC. Modules are

the basic building blocks that allow a modular and hierarchical design.Each module contains pro-

cesses, ports, internal data, channels, and interfaces. A process is the main computing element of

a module that is executable every time an event is triggered. An event is a basic synchronization

object that is used to synchronize between processes and modules. The processes in a SystemC

program are conceptually concurrent and can be used to model the functionalities of the module.

A port is an object through which a module communicates with other modules. A channel is a

communication element of SystemC that can be either a simple wire or a complex communication

mechanism like FIFO. A port uses an interface to communicate with the channel [2].

2.1.2 Behavioral Modeling

SystemC designs are executed in a discrete-event simulation. The basic execution unit are pro-

cesses, which are triggered by events. Thus, from a behavioral point of view, a SystemC design

can be regarded as a network of concurrent processes, which communicate through channels and

synchronize on events. In the following, we describe the main concepts of processes and events

and how they are used in the discrete-event simulation.

2.1.2.1 Processes

Processes are contained in modules and use the ports of the containing module to access external

channels. SystemC provides two kinds of processes: method processes and thread processes. A

method process, when triggered, always executes its body from the beginning to the end and does

not keep an internal execution state. It is not possible to suspend and resume a method process. In

contrast to that, a thread process can be suspended at any time by calling a wait function. It keeps

10

its internal execution state and thus can be resumed at the point where it was suspended. Note that

a thread process is only started once at the beginning of simulation, whereas a method process may

be invoked arbitrary often.

The functionality of processes is described in methods, which contain the executable code of

a SystemC design. For execution, the methods are encapsulated into processes, which care for

the interactions with the scheduler and the events. As a consequence, methods are either invoked

by the encapsulating process, or called by other methods. This includes communication methods,

which are called as external methods through the port their channel is bound to.

2.1.2.2 Events

Both thread and method processes are triggered by events. An event is an object that determines

whether and when a process would be triggered. The triggering of an event is called event notifica-

tion. Whenever an event is notified, this triggers the execution of all processes that are sensitive to

the event. A process may be sensitive to an event either statically or dynamically. Static sensitivity

is allowed for both method and thread processes, dynamic sensitivity is only allowed for thread

processes. A static sensitivity list is attached to a process statically within the module constructor,

where their static sensitivity lists consist in each case only of the clock event. A static sensitivity

list may also contain multiple events. A method process is triggered, whenever an event from its

static sensitivity list is notified. While method processes are executed from the beginning to the

end whenever an event from their static sensitivity list occurs, thread processes may suspend ex-

ecution by calling a wait function. This overwrites their static sensitivity list temporarily and is

called dynamic sensitivity. For example, if a process calls wait(e), it becomes sensitive to the event

e and is resumed at the next occurrence (i.e., notification) of the event e. A process can also be

dynamically sensitive to multiple events or for the elapsing of a certain amount of time. Table 2.1

11

shows the variants of wait calls available in SystemC. As a thread process either runs or is sus-

pended, the only possibility to wait for an event from the static sensitivity list in a thread process is

to suspend it with an empty wait() statement. If an event object e is notified by its owner, processes

that are sensitive to the event start respectively resume execution.

wait(e) wait for event e to be notified
wait(t) wait for t time units to elapse
wait(t, e) wait for event e for maximally t time units
wait() wait for any event from the static sensitivity list

wait(e1 & e2 & e3) wait for all three events to be notified

wait(e1 | e2 | e3) wait for any of the three events to be notified

Table 2.1: Variants of the wait statement.

SystemC supports three types of event notifications. An immediate notification, invoked by

e.notify(), causes processes to be triggered immediately in the current delta cycle. A delta-delay

notification, invoked by e.notify(0), causes processes to be triggered at the same time instant,

but after updating primitive channels, i.e., in the next delta-cycle. A timed notification, invoked

by e.notify(t) with t > 0, causes processes to be triggered after the given delay t. If an event is

notified that already has a pending notification, only the notification with the earliest expiration

time takes effect. That means that immediate notifications override all pending notifications, delta-

delay notifications override timed notifications, and timed notifications override pending timed

notifications if their delay expires earlier.

2.1.3 Simulation Kernel and Scheduler

SystemC has a simulation kernel that enables the simulation of SystemC programs. The SystemC

scheduler is a part of the SystemC kernel that selects one of the processes that has an activated

event in its sensitivity list. The sensitivity list is a set of events or time-outs that causes a process to

12

Figure 2.3: SystemC scheduler [2].

be either resumed or triggered. Figure 2.3 illustrates the behavior of the SystemC scheduler. The

SystemC scheduler includes the following phases to simulate a system [2]:

1. Initialization phase: This phase initiates the primary runnable processes. A process is in a

runnable state when one or more events of its sensitivity list have been notified.

2. Evaluation phase: In this phase, the scheduler selects one process to either execute or resume

its execution from the set of runnable processes. Once a process is scheduled for execution,

it will not be preempted until it terminates; i.e., a run-to-completion scheduling policy. The

scheduler stays in the evaluation phase until no other runnable processes exist.

3. Update phase: This phase updates signals and channels.

4. delta (δ) notification phase: A delta notification is an event resulting from an invocation

of the notify() function with the argument SC ZERO TIME. Upon a delta notification, the

scheduler determines the processes that are sensitive to events and timeouts, and adds them

to the list of runnable processes.

5. Timed notification phase: If pending timed notifications or timeouts exist, the scheduler iden-

13

tifies the corresponding sensitive processes and adds them to the set of runnable processes.

2.2 Transaction Level Modeling

In Transaction Level Modeling (TLM), a transaction is an abstraction of the communication

(caused by an event) between two SystemC components for either data transfer or synchroniza-

tion. One of the components initiates the transaction, called the initiator, in order to exchange data

or synchronize with the other component, called the target. The philosophy behind TLM is based

on the separation of communication from computation [4]. For example, consider the SystemC

TLM program of Figure 2.4. In this example, we have two modules: initiator and target (Lines

6-15, and 17-32). The initiator module includes a process called initiate, and the target module

has the incModEight process. The process incModEight waits for a notification on the internal

event e (Line 29) before it updates its local variable d. The sc start statement (Line 39) notifies the

simulation kernel to start the simulation. The event e will be notified when the trigger method of

the target is called from the initiate process (Line 14).

While the program in Figure 2.4 illustrates how an initiator and a target module can commu-

nicate using SystemC ports and method invocations, the OSCI initiative further facilitates TLM

programming by introducing an interoperability layer. The interoperability layer includes a set of

core components as follows:

• Core Interfaces. The core interfaces comprise a set of methods that mainly support two ab-

straction levels supported by two coding styles, namely Loosely-Timed (LT) and Approximately-

Timed (AT) coding styles. The LT style is mainly used when designers need fast simulation

of a program with little care about timing concerns. Such a style of coding heavily relies on

a blocking transport interface b transport() that should be implemented in target modules

14

1 class target_if : virtual public sc_interface {
2 public:

3 virtual void trigger() = 0;

4 };
5

6 class initiator : public sc_module {
7 public:

8 sc_port<target_if> port;

9 SC_HAS_PROCESS(initiator);

10 initiator(sc_module_name name) : sc_module(name) {
11 SC_THREAD(initiate);

12 }
13 void initiate()

14 { port->trigger(); }
15 };
16

17 class target : public target_if, public sc_module {
18 public:

19 short d;

20 sc_event e;

21 SC_HAS_PROCESS(target);

22 target(sc_module_name name) : sc_module(name) {
23 d = 0;

24 SC_THREAD(incModEight);

25 }
26 void trigger()

27 { e.notify(SC_ZERO_TIME); }
28 void incModEight() {
29 wait(e);

30 d = (d+1)%8;

31 }
32 };
33

34 int sc_main (int argc , char *argv[]) {
35 initiator initiator_inst(Initiator);

36 target target_inst(Target);

37

38 initiator_inst.port(target_inst);

39 sc_start();

40 return 0;

41 }

Figure 2.4: A simple running example for two communication modules.

15

and invoked by initiators. The AT style of coding is used when timing issues are important

to consider in simulation. In this style of coding, designers benefit from a non-blocking

transport interface nb transport(). The b transport() and nb transport() are part of the

core interfaces in the interoperability layer. The core interfaces include four other methods,

nonetheless, we focus only on the b transport() interface as the rest of them are beyond the

scope of this paper.

• Generic Payload. In TLM, transactions are objects captured by a structure, called the generic

payload, that includes a set of attributes of the transaction object.

• Sockets. In the interoperability layer, modules communicate by sending and receiving trans-

actions. Observe that the communication between the initiator and the target in Figure 2.4 is

achieved through fine-grained declaration of SystemC ports and method invocations, which

requires the initiator to have some knowledge of the internals of the target. The interop-

erability layer provides sockets, which are programming constructs that achieve two goals:

connect modules by binding initiator and target sockets together, and facilitate the transmis-

sion of transactions between modules by hiding details.

• Base Protocol. The base protocol maximizes interoperability by providing a set of rules that

can be used by the initiator and target modules when sending/receiving generic payloads

through sockets.

To illustrate the SystemC TLM programs using TLM Base protocol and interoperability, con-

sider the following example adapted from [1]. This example models how on-chip memory-mapped

busses are captured using the TLM base protocol. In this example (see Figures 2.5 and 2.6), the

Initiator module (Lines 1-32 in Figure 2.5) generates a transaction, while the Target module (Lines

33-63 in Figure 2.6) represents a simple memory. The initiator module has a thread process (Lines

16

1 struct Initiator: sc_module

2 { tlm_utils::simple_initiator_socket<Initiator> socket;

3 SC_CTOR(Initiator) : socket("socket")

4 { SC_THREAD(thread_process); }
5

6 void thread_process()

7 {
8 tlm::tlm_generic_payload* trans = new tlm::tlm_generic_payload;

9 sc_time delay = sc_time(10, SC_NS);

10

11 tlm::tlm_command cmd = static_cast<tlm::tlm_command>(rand()%2);

12

13 if (cmd == tlm::TLM_WRITE_COMMAND) data = 0xFF000000 | 0;

14

15 trans->set_command(cmd);

16 trans->set_address(0);

17 trans->set_data_ptr(reinterpret_cast<unsigned char*>(&data));

18 trans->set_data_length(4);

19 trans->set_streaming_width(4);

20 trans->set_byte_enable_ptr(0);

21 trans->set_dmi_allowed(false);

22 trans->set_response_status(tlm::TLM_INCOMPLETE_RESPONSE);

23

24 socket->b_transport(*trans, delay);

25

26 if (trans->is_response_error())

27 SC_REPORT_ERROR("TLM-2","Response error");

28 wait(delay);

29 }
30

31 int data;

32 };

Figure 2.5: The Initiator module.

17

33 struct Memory: sc_module

34 {
35 tlm_utils::simple_target_socket<Memory> socket;

36 enum { SIZE = 256 };
37 SC_CTOR(Memory) : socket("socket")

38 {
39 socket.register_b_transport(this, &Memory::b_transport);

40 for (int i = 0; i < SIZE; i++)

41 mem[i] = 0xAA000000 | (rand() % 256);

42 }
43

44 virtual void b_transport(tlm::tlm_generic_payload& trans, sc_time& delay)

45 {
46 tlm::tlm_command cmd = trans.get_command();

47 sc_dt::uint64 adr = trans.get_address() / 4;

48 unsigned char* ptr = trans.get_data_ptr();

49 unsigned int len = trans.get_data_length();

50 unsigned char* byt = trans.get_byte_enable_ptr();

51 unsigned int wid = trans.get_streaming_width();

52

53 if (adr >= sc_dt::uint64(SIZE) || byt != 0 || len > 4 || wid < len)

54 SC_REPORT_ERROR("TLM-2","Target does not support the transaction");

55 if (cmd == tlm::TLM_READ_COMMAND)

56 memcpy(ptr, &mem[adr], len);

57 else if (cmd == tlm::TLM_WRITE_COMMAND)

58 memcpy(&mem[adr], ptr, len);

59

60 trans.set_response_status(tlm::TLM_OK_RESPONSE);

61 }
62 int mem[SIZE];

63 };
64

65 SC_MODULE(Top)

66 { Initiator *initiator;

67 Memory *memory;

68 SC_CTOR(Top)

69 {
70 initiator = new Initiator("initiator");

71 memory = new Memory ("memory");

72 Initiator->socket.bind(memory->socket);

73 } };
74 int sc_main(int argc, char* argv[])

75 { Top top("top");

76 sc_start();

77 return 0; }

Figure 2.6: The Memory, the Top, and the Main module.

18

6-29 in Figure 2.5) that sends a generic payload to the Target module; i.e., the Memory module.

In Lines 15-22 in Figure 2.5, we initialize the attributes command, address, data, byte enables,

streaming width, response status, and DMI hint. To send/receive a transaction to/from the

memory module, we need a two-way communication between the modules. Thus, we define an

initiator socket in Lines 2-3 in Figure 2.5 and a target socket in Line 35 of Figure 2.6. The initia-

tor sends the transaction out through the initiator socket (Line 24 in Figure 2.5), and the memory

communicates with the initiator by first registering a callback method with the socket (Line 39 in

Figure 2.6), and then implementing that method (Lines 44-61 in Figure 2.6). The memory module

then, in this method, implements the read and write commands by copying data to or from the

data area in the initiator (Lines 53-58 in Figure 2.6). The final act of the memory module is to

set the response status attribute of the generic payload to indicate the successful completion of

the transaction (Line 60 in Figure 2.6). If not set, the default response status would indicate to

the initiator that the transaction is incomplete (Lines 26-27 in Figure 2.5). In each TLM SystemC

program we need a sc main function (Lines 74-77 in Figure 2.6). Moreover, to connect up the

module hierarchy, we use the Topmodule (Lines 65-73 in Figure 2.6). The top-level module of the

hierarchy instantiates one initiator and one memory, and binds the initiator socket in the initiator

to the target socket in the target memory (Line 72 in Figure 2.6).

2.3 UPPAAL Timed Automata

Timed Automata (TA) are state machines that enable the modeling of real-time systems [5]. The

notion of time is captured by real-valued clock variables. The clock values are used to express the

timing constraints and can be assigned to locations (vertices) and transitions (edges) of the TA. The

semantics of TA is given by an infinite-state transition system where transitions correspond either

19

to a change of location (discrete transition) or to passage of time (time transition). UPPAAL [9,10]

is an integrated tool environment for modeling, simulation, and verification of real-time systems

modeled as networks of timed automata, extended with data types. A system in UPPAAL consists

of concurrent processes, each of them modeled as a TA. Each process TA has a set of locations

and transitions. To control transitions between locations, UPPAAL uses guards that limit when

process actions can be executed and synchronization channels that require multiple processes to

coordinate. In the following, we first introduce the semantics of Timed Automata and Networks

of Timed Automata. Then, we describe some specialties and extensions of the Uppaal modeling

language.

2.3.1 Timed Automata

As typical state automata, timed automata consist of a set of nodes, which are called locations

and which are connected by edges. A notion of time is introduced by a set of real-valued clock

variables C : R≥0. They are used in clock constraints to model time-dependent behavior. The

clocks are initialized with zero and then run synchronously with the same speed. As an effect of

a transition, a clock may be reset, i.e., set to zero. A clock constraint is a conjunctive formula of

atomic constraints of the form x ∼ n or x− y ∼ n for x, y ∈ C,∼ ∈ {≤, <,=, >,≥}, n ∈ N .

B(C) denotes the set of clock constraints. In Timed Büchi Automata, clock constraints are assigned

to edges and are interpreted as enabling conditions for the corresponding transitions. They cannot

force the transition to be taken. As a consequence, a Timed Büchi Automaton may stay an infinite

amount of time in the same location. Alur et al. [5] solved this problem by Büchi acceptance

conditions. A subset of locations is marked as accepting, and only executions passing through

an accepting location infinitely often are considered as valid behaviors. A more intuitive solution

to the problem of infinite idling is given by Henzinger et al. [46] by introducing Timed Safety

20

Figure 2.7: A simple timed automaton.

Automata. In Timed Safety Automata, one can distinguish two kinds of clock constraints: Guards

are assigned to edges and yield conditions, under which the corresponding transition may be taken.

In other words, they enable progress. Invariants are assigned to locations and yield conditions,

under which one may stay in the corresponding state. The invariants must not be violated, i.e., the

location must be left before its invariant is invalidated. In other words, invariants ensure progress.

In the remainder of this thesis, we refer to Timed Safety Automata whenever we use the term timed

automata.

A simple example for a timed automaton is shown in Figure 2.7. It consists of two locations

l0 and l1 that are connected by two edges from l0 to l1. To l0 and l1, the same invariant x ≤ 1

is assigned. That means that in both locations, the automaton may stay at most for one time unit.

The upper edge from l0 to l1 has a guard x == 1 , and the clock y is reset whenever this edge

is taken. The lower edge from l0 to l1 has a guard x ≤ 1 and no effect. As a consequence, there

are two possibilities to come from location l0 to location l1: during time x ∈ [0, 1], the lower edge

may fire without effect, and at x = 1, the upper edge may fire and y is reset.

2.3.2 Networks of Timed Automata

Networks of timed automata are used to model systems with concurrent processes. The state of a

network of timed automata is defined as a vector of the current locations of all timed automata in the

network and all clock valuations. For synchronization, the automata may interchange events. An

21

event is sent over a channel c, and c! and c? denote sending and receiving an event respectively [11].

2.3.3 Symbolic Semantics of Timed Automata

The semantic state space of timed automata is infinite due to the real-valued clock variables. This

makes it impossible to apply automatic verification techniques such as model checking, which

explore the whole semantic state space. To solve this problem, the symbolic semantics presented

by Bengtsson et al. [10] abstracts from certain points of time and uses clock zones instead. As

a consequence, a state is then a tuple (l̄,D) where D is a difference bound matrix representing a

clock zone. The resulting abstract model has a finite state space and can be model checked.

The foundation for a symbolic semantics of timed automata was laid by Alur et al. [6]. There,

the notion of region equivalence was introduced. The idea is that two clock assignments can be

considered equivalent, if they have no influence on the possible transitions the timed automaton can

take. If only integer variables are used in clock constraints that means that two clock assignments

can be considered equivalent, when for each clock

• both are greater than a given maximal constant, also called clock ceiling;

• their integer part is equal and both have a fractional part of zero, or

• their integer part is equal and both have a fractional part greater than zero.

In any case, the two clock assignments have to be in the same relation to all other clocks.

2.3.4 UPPAAL

UPPAAL [9, 10] is a tool set for the modeling, simulation, animation and verification of networks

of timed automata. The UPPAAL model checker enables the verification of temporal properties,

22

including safety and liveness properties. The simulator can be used to visualize counter-examples

produced by the model checker.

2.3.4.1 Modeling Language

The Uppaal modeling language extends timed automata by introducing parameterized timed au-

tomata templates, bounded integer variables, binary and broadcast channels, and urgent and com-

mitted location. Timed automata templates provide the possibility to model similar timed automata

only once and to instantiate them arbitrary often with different parameters. Timed automata are

modeled as a set of locations, connected by edges. The initial location is denoted by . Invari-

ants can be assigned to locations and enforce that the location is left before they would be violated.

Edges may be labeled with selections, guards, updates, and synchronizations. Selections are used

to non-deterministically bind a given identifier to a value in a given range. Updates are used to reset

clocks and to manipulate the data space, i.e., they provide the actions the automaton may perform.

Processes synchronize by sending and receiving events through channels. Sending and receiving

via a channel c is denoted by c! and c?, respectively. Binary channels are used to synchronize

one sender with a single receiver. A synchronization pair is chosen non-deterministically if more

than one is enabled. If no communication partner is available, both the sender and the receiver

are blocked if they synchronize on a binary channel. Broadcast channels are used to synchronize

one sender with an arbitrary number of receivers. Any receiver that can synchronize must do so.

In contrast to binary communication, a process sending on a broadcast channel is never blocked.

Urgent and committed locations are used to model locations where no time may pass. Urgent loca-

tions are graphically depicted by the symbol , committed locations by the symbol . Leaving

a committed location has priority over leaving non-committed locations.

An Uppaal model comprises three parts: global declarations, parameterized timed automata

23

(TA templates) and a system declaration. In the global declarations section, global variables, con-

stants, channels and clocks are declared. The timed automata templates describe timed automata

that can be instantiated with different parameters to model similar process. In the system decla-

ration, the templates are instantiated and the system to be composed is given as a list of timed

automata.

2.3.4.2 Query Language

The query language, which is used in UPPAAL to express requirements specifications, is a re-

stricted version of CTL [9]. Like in CTL, the query language consists of path formulas and state

formulas. State formulas describe individual states, whereas path formula quantify over paths of

the model. Path formula can be classified into reachability, safety, and liveness.

State formulas are expressions that can be evaluated for a given state without looking at the

rest of the model. This includes boolean expressions on variables (e.g., x ≤ 4) and tests whether

a particular process is in a given location (e.g., P1.init). A deadlock is expressed using the special

state formula deadlock.

Path formulas express either reachability, safety, or liveness properties. The reachability prop-

erty that some state satisfying a given state formula φ is expressed by E <> φ. The safety

properties that a state formula φ is always true is expressed by A[] φ, whereas A[] φ says that there

exists a path where φ is always true. The classical liveness property that something good will even-

tually happen is expressed by A <> φ. Additionally, there exists a leads to or response property

φ−− > ψ, which expresses that whenever φ is satisfied, ψ will eventually be satisfied.

24

Figure 2.8: The viking automaton [9].

Figure 2.9: The torch automaton [9].

2.3.4.3 An Illustrative UPPAAL Example

An example for an UPPAAL model taken from the demo models included in the free UPPAAL

distribution is the riddle of the four vikings. The riddle is as follows: four vikings want to cross a

bridge at night, but they have got only one torch and the bridge can only carry two of them. Thus,

they can only cross the bridge in pairs and one has to bring the torch back to the other side before

the next pair can cross. The vikings have different speeds, the fastest needs 5 minutes, the slowest

25 minutes, and the other two 10 and 20 minutes. The question is whether it is possible that all the

vikings cross the bridge within 60 minutes.

To model this problem in UPPAAL, we need two timed automata templates, one for the vikings

which is instantiated with the different delays, and one for the torch, see Figures 2.8 and 2.9. The

representation of timed automata is a usual automata representation with locations connected by

edges. In addition, we have two channels take and release, which model the interaction between

the vikings and the torch. Furthermore, we have a data variable L which serves as a semaphore to

25

ensure that the torch can only be on one side of the bridge at a time, and we have a clock variable

y and a clock constraint y ≥ delay which models the time it takes the vikings to cross the bridge.

A viking is on the other side of the bridge if it is in its safe location.

The question if they all can cross the bridge in 60 minutes can be formalized as an existential

quantification over a state where all vikings are in their safe location and time is less or equal than

60 minutes:

E<> Viking1.safe and Viking2.safe and Viking3.safe and Viking4.safe and time <= 60

Note that the example of the four vikings is comparable to the question if a packet can reach its

receiver in a given time limit in a communication network or a Network on Chip (NoC) systems.

2.4 SPIN and Promela

SPIN [48] is an efficient verification system for analyzing the logical consistency of distributed

systems, specifically of data communication protocols. It has been used to detect design errors in

applications ranging from high-level descriptions of distributed algorithms to detailed code for con-

trolling telephone exchanges. The system is described in a modeling language called PROMELA

(Process or Protocol Meta Language). The language allows for the dynamic creation of concur-

rent processes. In this section, we provide a brief description of SPIN and explain the basics of

Promela.

2.4.1 Modeling Language

Promela is a verification modeling language. Using Promela we can make abstractions of protocols

(or distributed systems in general) that suppress details that are unrelated to process interaction.

26

The intended use of Spin is to verify fractions of a process behavior that are considered suspect.

The relevant behavior is modeled in Promela and verified using Spin. A complete verification is

therefore typically performed in a series of steps, with the construction of increasingly detailed

Promela models. Each model can be verified with Spin under different types of assumptions about

the environment (e.g., message loss, message duplications etc). Once the correctness of a model

has been established with Spin, that fact can be used in the construction and verification of all

subsequent models.

The syntax of Promela is based on the C programming language. A Promela model comprises

(1) a set of (concurrent) processes (2) a set of variables, and (3) a set of message channels. The pro-

cesses specify the behavior of the model and all processes are global objects. Also, each Promela

model has to contain at least one process to be meaningful. The variables are utilized to store

the information about the system being modeled and can be declared globally or locally within a

process. The global variables define the environment in which the process run. Message channels

are used to model the transfer of data from one process to another. Next, we explain processes,

variables, and message channels in some detail.

2.4.1.1 Processes

The state of a variable or of a message channel can only be changed or inspected by processes.

The behavior of a process is defined in a predefined type, called proctype. This type contains

the process identifier, formal parameter list, and local variable declaration and statements. The

contents falls into the following form of the proftype declaration:

proctype process_identifier (formal parameter) {

local variable declarations

27

and statement

}

The semantics of Promela is based on an operational model that defines how the actions of

proctypes are interleaved. An action (also known as a guarded command) is of the form grd →

stmt, where the guard grd is an expression in terms of the Promela model’s variables and the

statement stmtmay update some model variables. Actions can be atomic or non-atomic, where an

atomic action (denoted by the atomic {} blocks in Promela) ensures that the guard evaluation and

the execution of the statement are not interrupted. As an illustration for atomic actions, consider

the following example.

atomic{ /* swap the values of a and b */

tmp = b;

b = a;

a = tmp

}

In the example, the values of two variables a and b are swapped in a sequence of statement

executions that is defined to be uninterruptable. That is, in the interleaving of process executions,

no other process can execute statements from the moment that the first statement of this sequence

begins to execute until the last one has completed. It is often useful to use atomic sequences to

start a series of processes in such a way that none of them can start executing statements until all

of them have been initialized:

init {

atomic {

28

Type Range

bit 0..1
bool 0..1
byte 0..255

short −215..215 − 1

int −231..231 − 1

Table 2.2: Data types in Promela.

run A(1,2);

run B(2,3);

run C(3,1)

}

}

Atomic sequences may be non-deterministic. If any statement inside an atomic sequence is

found to be unexecutable, however, the atomic chain is broken, and another process can take over

control. When the blocking statement becomes executable later, control can non-deterministically

return to the process, and the atomic execution of the sequence resumes as if it had not been

interrupted.

2.4.1.2 Variables

Table 2.2 summarizes the five basic data types used in Promela. Bit and bool are synonyms for a

single bit of information. The first three types can store only unsigned quantities. The last two can

hold either positive or negative values. The precise value ranges of variables of types short and int

is implementation dependent, and corresponds to those of the same types in C programs that are

compiled for the same hardware.

29

2.4.1.3 Message channels

Message channels are declared either locally or globally, for instance as follows:

chan qname = [16] of { byte }

This declares a channel that can store up to 16 messages of type byte. Channel names can be

passed from one process to another via channels or as parameters in process instantiations.

To send the value expression expr to the channel qname, we use the following command that

appends the value to the tail of the channel.

qname!expr

Additionally, to receive the value expression expr from the channel qname, we use the following

command that retrieves the expression from the head of the channel.

qname?expr

Moreover, if we want to send and receive the messages without storing them, we can use ren-

dezvous channels. These types of channels are defined as follows.

chan qname = [0] of { byte }

Consider that rendezvous communication is binary: only two processes, a sender and a receiver,

can be synchronized in a rendezvous handshake.

2.4.2 Control Flow

In this section, we identify two important control flow constructs in Promela: case selection AND

repetition.

30

2.4.2.1 Case selection

The selection structure can contain more that one execution sequence, each preceded by a double

colon. Only one sequence from the list will be executed. A sequence can be selected only if

its first statement is executable. The first statement is therefore called a guard. For instance,

in the following selection structure, we have two execution sequences that can be selected non-

deterministically.

if

:: (a != b) -> option1

:: (a == b) -> option2

fi

2.4.2.2 Repetition

A logical extension of the selection structure is the repetition structure. Only one option can be

selected for execution at a time. After the option completes, the execution of the structure is

repeated. The normal way to terminate the repetition structure is with a break statement. As an

example, the following structure randomly changes the value of the variable count up or downs

proctype counter()

{

do

:: count = count + 1

:: count = count - 1

:: (count == 0) -> break

31

od

}

2.4.3 Verification with SPIN

Given a model system specified in Promela, Spin can either perform random simulations of the

system’s execution or it can generate a C program that performs a fast exhaustive verification of

the system state space. The verifier can check, for instance, if user specified system invariants

may be violated during a protocol’s execution. For this purpose, a set of properties needs to be

given to Spin in Linear Temporal Logic (LTL) structure. In LTL, one can encode formula about

the future of paths, e.g., a condition will eventually be true, a condition will be true until another

fact becomes true, etc. An LTL formula can contain the unary temporal operators � (pronounced

always), ♦ (pronounced eventually), and binary temporal operators U (pronounced until).

2.5 Summary

In this section, we presented the relevant background for our framework. To this end, we gave an

introduction to SystemC programs and Transaction Level Modeling. We also explained the formal

language of UPPAAL timed automata, which comes with a tool suite for modeling, simulation and

animation of timed automata and a model checker. Finally, we described Promela language which

is the input of SPIN model checker.

32

Chapter 3

Related Work

This section discusses existing approaches for formal analysis of SystemC TLM programs. Extant

work can broadly be classified into four categories: methods for formalizing the semantics of Sys-

temC TLM programs, checkers for SystemC designs, static analysis and stateless model checking

of SystemC programs, and model extraction and model checking of SystemC TLM programs. In

the next sections, we explain the researches in each category in some detail.

3.1 Formalizing the Semantics

Several researchers focus on assigning formal semantics to SystemC TLM programs. For exam-

ple, a definition of the simulation semantics based on abstract state machines is given by Müller

et al. [67] and Ruf et al. [72]. The purpose of their work is to provide a precise description of the

SystemC scheduler. However, the system design itself, as built from modules, processes and chan-

nels, is not covered and therefore cannot be verified with this approach. Niemann and Haubelt [68]

provide an approach for specifying the semantics of SystemC TLM programs using deterministic

Communicating State Machines. In their approach, only the automaton that explicitly captures

the scheduler has non-deterministic behaviors. Patel and Shukla [69] present a formalization of

SystemC in abstract state machines and revise Microsoft SpecExplorer for the validation and de-

bugging of SystemC programs. Kroening and Sharygina [53] create abstract models of SystemC

programs using Labeled Kripke Structures (LKS), where each SystemC thread is captured by an

33

LKS. A Labeled Kripke Structures is a directed graph whose nodes represent states annotated by

atomic propositions that hold in that state. The arcs of the directed graph denote transitions be-

tween states that are labeled by actions. The abstract state of the SystemC program is defined

in terms of the local states of its threads, their program counters and the status of each thread in

SystemC scheduler. Salem [73] presented a denotational semantics for the SystemC scheduler

and for SystemC processes, but only for a synchronous subset. Habibi et al. [34, 35] proposed

program transformations from SystemC into equivalent state machines. In these approaches, time

is ignored, and the transformation is performed manually. Besides, the state machine models do

not reflect the structure of the underlying SystemC designs. Traulsen et al. [77] proposed a map-

ping from SystemC to PROMELA, but they only handle SystemC designs at transaction level,

do not model the non-deterministic scheduler and cannot cope with primitive channels. Harrath

and Monsuez [43] introduced the formalism of SystemC waiting-state automata. Those SystemC

waiting-state automata are supposed to allow a formal representation of SystemC designs at the

delta-cycle level. However, the approach is limited to the modeling of delta-cycles, the scheduler

and complex interactions between processes are not considered and the formal model has to be

specified manually. Man [59] presented the formal language SystemCFL, which is based on pro-

cess algebras and defines the semantics of SystemC processes by means of structural operational

semantics style deduction rules. SystemCFL does not take dynamic sensitivity into account, and

considers only simple communications. The concept of channels is neglected. A tool to automat-

ically transform SystemC to SystemCFL is presented by Man et al. [60]. However, it does not

handle any kind of interaction between processes. Karlsson et al. [52] verify SystemC designs us-

ing a petri-net based representation. This introduces a huge overhead because interactions between

subnets can only be modeled by introducing additional subnets.

Herber et al. [47] propose an approach to define a formal semantics for SystemC that can handle

34

relevant SystemC language elements, including process execution, interactions between processes,

dynamic sensitivity and timing behavior. The informally defined behavior and the structure of

SystemC designs are completely preserved. The mapping from SystemC designs into Uppaal timed

automata is fully automated, introduces a negligible overhead, produces compact and comparably

small models and enables the use of the Uppaal model checker and tool suite.

3.2 Checkers for SystemC Designs

There has been some work on checkers for SystemC designs. For example, an approach to check

temporal assertions for SystemC has been presented by Ruf et al. [72]. More related to our work

is the work of Drechsler, Große and Kühne [23, 30–33]. In [23], they describe how to convert a

gate-level model given in SystemC into BDDs. The BDD is used for forward reachability analy-

sis. In [30], they present a method which allows checking of temporal properties for circuits and

systems described in SystemC, not only during simulation. A property is translated into a synthe-

sizable SystemC checker and embedded into the circuit description. This enables the evaluation

of the properties during the simulation as well as after the fabrication of the system. In [31, 32],

they present an approach to prove that a SystemC model satisfies a given property using bounded

model checking and show the applicability of the approach with the co-verification of a RISC CPU

implemented in SystemC. In [33], they use a 3-step approach. First, they verify the functional cor-

rectness of the underlying hardware using bounded model checking. Then, they verify the HW/SW

interface. This means that they verify, that each instruction through which the software can access

the hardware has the specified effects on all hardware blocks involved. Finally, assembler pro-

grams are verified by constraining the instructions of the program as assumptions in the proof. In

other words, the instructions of a given assembler program are translated into assumptions and the

35

known effects on the hardware are used for the proof.

The main limitation of the work of Drechsler, Große and Kühne is that their approaches are all

restricted to synchronous and cycle-accurate models on register-transfer level. As a consequence,

they can, in particular, not verify models using SystemC channels, necessary for transaction level

modeling (TLM), nor can they handle dynamic or timing sensitivity. With our approach, we can

handle SystemC design on low abstraction-levels as well as designs on high abstraction-levels and

thus we can support the whole design-process.

3.3 Static Analysis and Stateless Model Checking

Many techniques combine static analysis with controlled scheduling in order to enable stateless

model checking, where no explicit-state model is generated and properties are checked as the

program executes. For instance, Blanc and Kroening [14] present a compiler that uses model

checking to predict race conditions in SystemC programs. They use the results of predictions

during simulation in order to reduce the number of interleavings. Kundu et al. [55] statically

compute the total number of atomic blocks in SystemC code and then analyze the dependency of

atomic blocks on each other. An atomic block in SystemC is the code between two consecutive

wait() statements. Two blocks are dependent if one of them enables/disables another or one of them

writes a shared variable that the other one reads. The main advantage of stateless model checking

is that there is no need for model extraction; however, they generally have a bounded nature in that

the approach is incomplete (i.e., it may miss some errors). This inherent feature of stateless model

checking makes it difficult to model the impact of faults on the entire set of behaviors of a model

due to its on-the-fly analysis nature.

36

3.4 Model Extraction and Model Checking

Model extraction and model checking methods use a set of rules for semantics-preserving trans-

formation of SystemC programs to the modeling language of some model checkers. For example,

Moy et al. [66] model a SystemC program as the automata-theoretic product of a set of syn-

chronous automata representing SystemC threads along with an automaton representing the simu-

lation scheduler of SystemC. They provide an intermediate formal language, called Heterogeneous

Parallel Input/Output Machines, that can capture both synchronous and asynchronous automata.

Traulsen et al. [77] present a method for transforming a subset of SystemC to the Promela [3]

modeling language in order to enable the model checking of asynchronous software threads in the

SPIN model checker [48]. Marquet and Moy [62] present a front-end that transforms SystemC

programs to an intermediate language in LLVM [57], which is a framework that provides reusable

components for compiler construction. Marquet et al. [61] present a model extraction scheme from

SystemC to Promela where they provide a set of transformation rules for the synchronization prim-

itives of SystemC (i.e., wait and notify statements). Moreover, they avoid explicit modeling of the

SystemC scheduler, and present a set of invariant conditions for validating that the transformation

rules are semantics-preserving. Cimatti et al. [21] present a model checking approach support-

ing two techniques; one method that generates sequential C programs from SystemC code where

SystemC threads and its scheduler are captured as functions and safety properties are checked as

assertions, and the other is a hybrid technique where explicit-state modeling is used to capture the

behaviors of the SystemC scheduler and SystemC threads are modeled symbolically.

Herber et al. [47] propose a toolset based on an automatic transformation of a SytemC TLM

program into a semantically equivalent timed automata model. They use this transformation to

test a set of safety and liveness properties. However, this work does not consider faults and their

37

impacts on the model. Their toolset, called STATE (SystemC to Timed Automata Transformation

Engine), takes a SystemC TLM program as an input and transforms it into formally equivalent

UPPAAL timed automata as the output. Hence, it is possible to verify safety, liveness, and tim-

ing properties of the given SystemC TLM program using UPPAAL model checker. This toolset

handles all SystemC elements such as processes, interaction between them, dynamic sensitivity,

and timing behavior. In the transformation, each method is mapped to a single automaton and

interactions between processes are modeled by channels. As a front-end, STATE uses KaSCPar

(Karlsruhe SystemC Parser) [52] that gets a SystemC TLM program and generates an Abstract

Syntax Tree (AST) in XML. The back-end of STATE utilizes the AST and generates UPPAAL

timed automata in XML. The transformation preserves the behavioral semantics and the structure

of a given SystemC design. In particular, it captures the semantics of the TLM core interfaces,

including the payload event queue (PEQ).

3.5 Summary

There has been a considerable amount of work in the area of formal verification of SystemC de-

signs. However, all of the presented approaches have their limitations. They are either restricted

to subsets of SystemC that preclude them from the application during the whole design process, or

they lack formal foundation, or they require a lot of manual effort. To the best of our knowledge,

a comprehensive co-verification framework that supports fully automatic verification techniques

and yields a high degree of reliability due to the use of formal methods does not exist. With our

approach, we provide such a framework.

38

Chapter 4

Formal Semantics and Model Extraction

In this chapter, first, we introduce the requirements of developing a formal semantics in Section

4.1. These requirements need to capture the essentials of the SystemC TLM models while still

benefiting from automation techniques for verification and/or synthesis. Then, in Section 4.2, we

discuss the essentials of transformation rules. Considering these requirements, we propose a set of

transformation rules in Sections 4.3 to transform a SystemC TLM program into a Promela model.

Thereafter, in Section 4.6, we propose a set of rules to transform a Loosely-Timed (LT) SystemC

TLM program into a timed automata model. These rules help us extract a timed automata model

which is simplified. We also introduce a tool-set, called STATE (SystemC to Timed Automata

Transformation Engine), in Section 4.9 that we use to extract timed automata models from Ap-

proximately Timed (AT) SystemC TLM programs. To illustrate our model extraction ideas, we

apply them on five case studies and explain each of them in detail in Sections 4.4, 4.5, 4.7, 4.8, and

4.10.

4.1 Developing a Formal Semantics

Since verification and synthesis of SystemC programs is in general undecidable, we need their

abstract representations that enable automated analysis and revision. To utilize such an abstract

representation, we need to develop a formal semantics of SystemC TLM programs. The objectives

of this formal semantics are (1) enabling derivation of formal models of SystemC TLM programs

39

at different levels of abstraction and in the presence of different types of faults, and (2) analysis and

revision in the presence of faults. It is desirable that this formal semantics satisfies the following

requirements:

• Preserve the structure/architecture of the SystemC TLM program.

• Articulate different communication characteristics in the SystemC TLM program.

• Express different coding styles in the SystemC TLM program.

• Permit efficient analysis with available tool-chains.

Of these, the first requirement is motivated by the fact that transaction based modeling assists in

simplifying the design of SystemC programs. We intend to preserve this property while developing

the formal semantics. This will also simplify the task of synthesis where we intend to obtain the

corresponding fault-tolerant SystemC TLM program.

The second requirement is motivated by the fact that the semantics should be expressive enough

to articulate different communication characteristics. Since transactions are central to the model

based design methodology, communication characteristics among modules are separated from the

details of the implementation of functional units. This separation encapsulates low-level details,

e.g., bus models, of the information exchange.

Regarding the third requirement, our focus is on AT (Approximately-Timed) and LT (Loosely-

Timed) models. The AT model is suitable for performance modeling and architecture exploration

while the LT model is mainly used when designers need fast simulation of a program with little

care about timing concerns. The AT model allows us to keep the processes in the given model

synchronized to a common clock. In this model, each process runs at a specific time and this

time corresponds to the actual time when the corresponding activity is scheduled to occur in the

40

real system. This creates future events that are created in response to the event that is currently

processed. Also, generally, this model utilizes nonblocking transport interface nb transport() for

maximal concurrency. By contrast, the LT coding style allows processes to run as fast as possible

with some fairness for all initiators so that they can perform their transactions. This allows for

temporal decoupling. Even though Loosely-Timed, this model allows time as an interrupt. More-

over, generally, this coding style utilizes blocking transport interface b transport() for simplifying

system execution.

Another important issue for developing the formal semantics is that it restricts the set of veri-

fication back-ends that can be applied. These back-ends can be either in the category of symbolic

model checkers like Lustre [42], SMV [18] or Esterel [13] tool-chains, or one of the timed-model

checkers like IF [16] or UPPAAL [56], or an explicit-state model checker like SPIN [48].

4.2 Extracting the Formal Semantics from the SystemC TLM

Program

In order to extract an abstract formal model from the SystemC TLM program, we need a set of

transformation rules. This formal model facilitates verification of the semantic properties devel-

oped in Section 4.1. For this purpose, we build on the ideas from [68], where each SystemC TLM

program has three basic processes, Behavior, Initiator and Target. The behavior process captures

the main functionality of the TLM module. An initiator and a target process participate in trans-

actions. The execution of the TLM program switches between these processes. The extracted

model would preserve this structure of the TLM program either with rules that model the sched-

uler explicitly or implicitly. With explicit scheduler, the scheduler is modeled as a special process

whereas with implicit scheduler, the scheduling decisions would be hardcoded in the extracted

41

model. While the former is more general and would be useful in the context of faults that affect

the scheduler, the latter would be useful in improving performance of verification and/or repair of

the SystemC TLM program.

Our model extraction focuses on both the LT coding style and the AT coding style. Since the

SystemC simulation kernel has a run-to-completion scheduling policy, a thread/process cannot be

interrupted until it is either terminated or waits for an event. We use this policy to build up our

model extraction while having LT coding style by modeling the scheduler implicitly. An implicit

scheduler is sufficient for the case where the given SystemC TLM program contains a small num-

ber of processes, does not utilize features such as timed notifications, and the scheduling decisions

are simple. For complex algorithms, the scheduler is modeled explicitly. Note that this explicit

scheduler captures the scheduling policy and does not directly depend upon the input program.

Hence, our models would provide typical schedulers, e.g., first-come-first-serve scheduler, priority

based scheduler, used in practice. On the other hand, for AT style it is more desirable to model

the scheduler explicitly, since timing issues are important to consider in program execution. Typ-

ically, encoding the scheduler explicitly induces additional communications between processes,

compared to the original SystemC semantics. This can lead us to additional communications that

may prevent verification tools to perform powerful optimizations.

Next, we present two sets of transformation rules. The first set of rules is used for generating

Promela models from SystemC TLM programs written based on the TLM base protocol for inter-

operability. The second set of rules is used to generate UPPAAL timed automata from the SystemC

programs.

42

4.3 Transformation Rules for Generating Promela Models

Our objective in this section is to define a set of rules to transform the processes explained in

Section 4.2, i.e., Behavior, Initiator, and Target, to Promela. We specify a transformation rule as

X | - - Y , whereX is a SystemC construct, and Y is a Promela code snippet. The initiator and the

target sockets have to be declared and constructed explicitly. The following rule, Rule 1, enables

the transformation of sockets:

Rule 1:

tlm_utils::simple_initiator_socket<Initiator> socket

|--

chan simple_initiator_socket = [0] of {mtype, trans}

Notice that we model the sockets as synchronous channels in Promela, since the transmission

of a transaction from an initiator to a target can be conceived as an access to a memory-mapped bus

system. This is done synchronously and need not to be buffered. Rule 2 transforms the declaration

of a SystemC thread to a proctype in Promela as follows:

Rule 2:

SC_THREAD(thread_process) |-- proctype thread_process()

Moreover, the generic payload has a standard set of bus attributes: command, address, data,

byte enables, streaming width, and response status. After setting the attributes, the generic payload

is passed through the sockets between the initiator and the target. Rule 3 transforms the declaration

of the generic payload in a SystemC TLM program to Promela. Note that in the SystemC part of

this rule, trans is a pointer of type tlm generic payload.

Rule 3:

tlm::tlm_generic_payload* trans = new tlm::tlm_generic_payload;

43

|--

typedef trans { tlm_command cmd;

int address;

int data_ptr;

int data_length;

int streaming_width;

byte byte_enable_ptr;

bool dmi_allowed;

tlm_response response_status

};

On the right-hand side, trans is defined as a structure in Promela, where the address attribute

is the lowest address value from/to which data is to be read or written, the data ptr attribute points

to a data buffer within the initiator, the data length attribute gives the length of the data array in

bytes, the streaming width attribute specifies the width of a streaming burst where the address

repeats itself, and the set dmi allowed method is used to indicate to the initiator that it can use

the direct memory interface for data transfer. A TLM command is either a TLM read command or

TLM write command or a TLM ignore command. Thus, we model it with the Rule 4, where each

TLM command is defined as a structure in Promela:

Rule 4:

tlm::tlm_command cmd = static_cast<tlm::tlm_command>

|--

typedef tlm_command { bit cmd[2]; };

Furthermore, a TLM response could have seven different values. To cover all these seven values

in the transformed program, we present Rule 5 that defines a structure for the TLM response. We

44

encode these values in the three bits of the response array.

Rule 5:

TLM_OK_response = 1,

TLM_incomplete_response = 0,

TLM_generic_erro_response = -1,

TLM_arrdess_error_response = -2,

TLM_command_error_Response = -3,

TLM_burst_error_response = -4,

TLM_byre_enable_error_response = -5

|--

typedef tlm_response { bit response[3]; };

Rule 6 transforms a forward submission of a transaction to a message transmission in a socket

channel in Promela.

Rule 6:

socket->b_transport(*trans, delay) |-- simple_initiator_socket!t;

t is a transaction of type trans that is sent to the channel simle initiator socket.

4.4 Case Study 1: Extracting Promela Model

In this section, we extract the Promela model of the SystemC TLM program explained in Fig-

ure 2.4. The extracted Promela model M includes two proctypes named Initiator and Target

(see Figure 4.1). Moreover, we consider a separate proctype to model incModEight. To enable

communication between the Initiator and the Target modules in the modelM , we declare a syn-

chronous channel tgtIfPort (see Figure 4.1). To start a transaction, the Initiator sends the message

45

startTrans to the Target via tgtIfPort channel and waits until the Target signals the end of the

transaction with a message endTrans. The Promela code in Figure 4.1 captures the specification

of channels and the Initiator, Target and incModEight proctypes. The incModEight proctype

models the Behavior process of the Target.

The mtype in Figure 4.1 defines an enumeration on the types of messages that can be ex-

changed in the synchronous communication channels if2TgtBeh and tgtIfPort. The Initiator and

the Target are connected by the channel tgtIfPort and the Target is connected to its Behavior

proctype (i.e., incModEight) via the channel if2TgtBeh. Initially, the Initiator sends a startTrans

message to the Target. Upon receiving startTrans, the Target sends the message inc to incMod-

Eight to increment the value of d modulo 8. The incModEight proctype sends incComplt to

Target after incrementing d. Correspondingly, the Target proctype sends a endTrans back to the

Initiator indicating the end of the transaction.

4.4.1 Capturing the execution semantics of the simulation kernel

Note that, we have not explicitly modeled the scheduler and the way it would run this program has

been implicitly captured by the way we model the wait() statement. Since the simulation kernel

has a run-to-completion scheduling policy, a thread/process cannot be interrupted until it is either

terminated or waits for an event. There are two threads in the program of Figure 2.4: one that is

associated with the method initiate() of the initiator class (see Line 11 in Figure 2.4) and the other

implements the body of the incModEight() method of the target class (see Line 24 in Figure 2.4).

The first statement of the incModEight() method is a wait() statement on a delta notification event

because in Line 27 of Figure 2.4 the notify() method is invoked on the SC ZERO TIME event.

Thus, initially only the initiator thread can execute, which includes an invocation of the trigger()

method of the target class via a port in the initiator (see Line 14 in Figure 2.4). Afterwards,

46

1 mtype = {inc, incComplt, startTrans, endTrans} // Message types
2 chan if2TgtBeh = [0] of {mtype} // Declare a synchronous channel
3 chan tgtIfPort = [0] of {mtype}
4 byte d =0;

5 int cnt = 0; // used to model the occurrence of faults

6

7 active proctype Initiator(){
8 byte recv;

9 waiting: tgtIfPort!startTrans;

10 tgtIfPort?recv;

11 initRecv = recv; // initRecv is used to specify

12 // desired requirements

13 ending: (recv == endTrans) -> fin: skip;

14 }
15

16 active proctype Target(){
17 byte recv;

18 waiting: tgtIfPort?recv;

19 tgtRecv = recv; // tgtRecv is used to specify

20 // desired requirements

21 starting: (recv == startTrans) -> if2TgtBeh!inc;

22 if2TgtBeh?recv;

23 (recv == incComplt) -> tgtIfPort!endTrans; }
24

25 active proctype IncModEight(){ // Models the Behavior process

26 // of the Target

27 byte recv;

28 waiting: if2TgtBeh?recv;

29 (recv == inc) -> d = (d + 1) % 8;

30 if2TgtBeh!incComplt; }

Figure 4.1: The extracted functional model.

the initiator thread terminates. The simulation kernel context switches the Target at the end of the

current simulation cycle upon the occurrence of delta notification. We have captured this semantics

using the synchronous channels in the Promela model. That is why we do not explicitly have a

proctype for modeling the behaviors of the simulation kernel. Of course, this does not mean that

such an approach would work for all SystemC programs. For example, in models where processes

are triggered by time-outs, we need to explicitly model the behaviors of the scheduler in the Timed

Notification phase when sensitive processes are added to the set of runnable processes.

47

4.4.2 Property Specification and Functional Correctness

In order to ensure that the extracted model correctly captures the requirements of the SystemC

program, we define a set of macros that we use to specify desired requirements/properties. We

only consider the requirements related to the communication between the Initiator and the Target.

The SystemC program of Figure 2.4 has two types of requirements. First, once the Initiator starts

a transaction, then that transaction should eventually be completed. Second, it is always the case

that if the Initiator receives a message from the Target after instantiating a transaction, then that

message is an endTrans message. Moreover, if the Target receives a message, then that is a

startTrans message. Since the second requirement should always be true in the absence of faults,

it defines an invariant condition on the transaction between the Initiator and the Target (denoted

by the inv macro below). To formally specify and verify these properties in SPIN [48], we first

define the following macros in the extracted Promela model.

#define strtTr initiator@waiting

#define endTr initiator@fin

#define finish (initRecv == endTrans)

#define start (tgtRecv == startTrans)

#define initEnd initiator@ending

#define tgtStart targetTrigger@starting

#define inv ((!initEnd || finish)&&(!tgtStart || start))

The macro strtTr is true if and only if the control of execution of the Initiator is at the label

waiting (see Figure 4.1). Likewise, the macro endTr captures states where the Initiator is at the

label fin. Using these two macros, we specify the first requirement as the temporal logic expression

�(strtTr ⇒ ♦ endTr), which means it is always the case (denoted by �) that if the Initiator is

waiting (i.e., has started a transaction), then it will eventually (denoted by ♦) reach the label fin

48

(see Line 13 in Figure 4.1); i.e., finish the transaction. We specify the invariant property as the

expression � inv. This property requires that inv is always true (in the absence of faults). Using

SPIN, we have verified the above properties for the extracted model of Figure 4.1.

4.5 Case Study 2: Extracting Promela Model using Transfor-

mation Rules

In order to extract a Promela model from the SystemC TLM program of Section 2.2 (Figures 2.5

and 2.6), we use the same ideas explained in Section 4.4. Moreover, we use the set of transforma-

tion rules of Section 4.3, which helps us to model interoperability. The extracted Promela model

M has two proctypes named Initiator (Lines 16-44 in Figure 4.2) and Memory (Lines 46-73 in

Figure 4.3). To enable communication between the Initiator and theMemory in the modelM , we

use Rule 1 of the transformation rules to declare a synchronous channel simple initiator socket

(see Figure 4.2). The binding of the initiator and the target sockets in Line 72 of Figure 2.6 is

captured as a channel in the Promela model (Line 12 in Figure 4.2). As a result, in the Promela

model, we do not explicitly generate anything corresponding to the target socket in the Memory

module.

We model the actual memory by an array of bytes in Line 14 of Figure 4.2. Using Rule 3,

the initiator creates a transaction by setting the attributes of the generic payload (Lines 21-27 in

Figure 4.2). Note that, data ptr is a pointer in the SystemC program, whereas in the Promela

model we treat it as the actual data that should be read/written. Since we cannot use pointers in

Promela (unless we use c code blocks which complicates the model), we use data ptr as the actual

data. From the point of view of modeling, if we could model pointers in Promela, all we would do

was to access the memory contents. That is why we treat data ptr as the actual data value. After

49

setting the attributes of the generic payload, the Initiator sends the message initT to the Memory

via simple initiator socket channel (Line 28 in Figure 4.2) and waits until the Memory signals

the end of the transaction with a message that contains a generic payload with response status

attribute being equal to 1. Consider that, to send the message initT via the simple initiator socket

channel, we use Rule 6 to transform the b transport method of the TLM program to modelM .

The Initiator module in Figure 4.2 defines a random value, either 0 or 1, for cmd attribute

to send the message initT (Lines 22-23 in Figure 4.2). In order to declare the cmd attribute in

the Promela model M , we use Rule 4 of the set of transformation rules. When the cmd is 0,

the Initiator is requesting a read command. Thus, the Memory module, after checking address

range and unsupported features, returns the contents of that address in memory (Line 64 in Figure

4.3). When the cmd attribute of the message memT equals 1, the Initiator is requesting a write

command. Thus, the Memory writes the value of data ptr attribute into the memory cell whose

address equals the address attribute of the received messagememT (Line 65 in Figure 4.3). After

reading from/writing to the memory successfully, theMemorymodule sets the response statuse

attribute of memT message to 1 (Line 68 in Figure 4.3). This means, according to the transfor-

mation Rule 5, the response status attribute equals OK. Finally, the Initiator, after receiving OK

response, completes the current transaction (Lines 41-44 in Figure 4.2).

50

1 typedef tlm_response { bit response[3]; };
2 typedef tlm_command { bit cmd[2]; };
3 typedef trans { tlm_command cmd;
4 int address;

5 int data_ptr;

6 int data_length;

7 int streaming_width;

8 byte byte_enable_ptr;

9 bool dmi_allowed;

10 tlm_response response_status

11 };
12 chan simple_initiator_socket = [0] of trans;

13 int cnt =0; // used to model the occurrence of faults

14 trans initT; trans memT; byte mem[255];

15

16 active proctype Initiator(){
17 tlm_response res;

18 trans recv;

19 int sentData; int recvData;

20 waiting:

21 if

22 :: initT.cmd = 0; initT.data_ptr = 0; // read

23 :: initT.cmd = 1; initT.data_ptr= 0; sentData=initT.data_ptr; // write

24 fi;

25 initT.address = 0; initT.data_length = 4;

26 initT.streaming_width = 4; initT.byte_enable_ptr = 0;

27 initT.dmi_allowed = false; initT.response_status = 0;

28 simple_initiator_socket!initT; simple_initiator_socket?recv;

29 ending:

30 if

31 :: (recv.response_status == -2) ->

32 atomic{ printf("response_status is:", recv.response_status);
33 goto waiting;}
34 :: else -> skip;

35 fi;

36 if

37 :: (initT.cmd == 0) -> recvData = recv.data_ptr;

38 :: else -> skip;

39 fi;

40 transComplete:

41 if

42 :: (recv.response_status == 1) -> fin: skip;

43 :: else -> skip;

44 fi; }

Figure 4.2: The Initiator module of the extracted functional model.

51

46 active proctype Memory(){
47 int data;

48 bool faultsOccur = false;

49

50 waiting:

51 simple_initiator_socket?memT;

52

53 starting:

54 if

55 :: ((memT.address >= 256) || (memT.byte_enable_ptr != 0)

56 || (memT.data_length > 4)|| (memT.streaming_width < 4))

57 -> atomic { memT.response_status = -2;
58 simple_initiator_socket!memT;

59 goto waiting; }
60 :: else -> skip;

61 fi;

62

63 if

64 :: (memT.cmd == 0) -> memT.data_ptr = mem[memT.address] ;

65 :: (memT.cmd == 1) -> mem[memT.address] = memT.data_ptr;

66 fi;

67

68 memT.response_status = 1;

69 data = mem[memT.address];

70

71 simple_initiator_socket!memT;

72

73 }

Figure 4.3: The Memory module of the extracted functional model.

4.5.1 Property Specification and Functional Correctness.

To ensure that the extracted modelM captures the requirements/properties of the TLM program,

we specify the requirements that should hold in the absence of faults. For this purpose, we define a

macro that captures the requirements related to the read and write actions in theMemory module.

In Figures 2.5 and 2.6, if the Initiator receives a message from the Memory after requesting a

write command, the sent data of the Initiator must be the same as the written data in theMemory

when the transaction is complete. In addition, after sending a read command, the data ptr in

that message should be equal to the read value in the Memory. We consider this property as an

52

invariant, since it should be always true in the absence of faults. We define the following macro

and verify it in SPIN [48].

#define inv1 ((!(Initiator@transComplete && (initT.cmd == 1))

|| (Initiator:sentData == Memory:data))

&&

(!(Initiator@transComplete && (initT.cmd == 0))

|| (Initiator:recvData == Memory:data)))

This invariant represents that when the execution is at the complete label of the Initiator and

we have a write action, the sentData of the Initiator and written data in the Memory are equal.

Likewise, when we have a read action, the recvData in the Initiator and the read data from

Memory are the same at the complete label in the Initiator. We specify the invariant property as

the expression � inv1. This property requires that inv1 is always true (in the absence of faults).

Using SPIN, we have model checked the above properties for the extracted model of Figures 4.2

and 4.3.

4.6 Transformation Rules for Generating UPPAAL Timed Au-

tomata

In order to extract the UPPAAL timed automata in Loosely-Timed coding style programs using

b transport interface, we utilize the rules from Section 4.3, where a set of transformation rules is

proposed. However, these rules generate untimed Promela models from untimed SystemC TLM

programs, while we need to extract UPPAAL timed automata from timed TLM programs. Hence,

we utilize the following rules similar to those in Section 4.3, where timed and untimed models are

53

the same:

Rule 1: tlm_utils::simple_initiator_socket<Initiator> socket;

|--

chan simple_initiator_socket[0];

Rule 2: tlm::tlm_generic_payload* trans = new tlm::tlm_generic_payload;

|--

typedef struct { tlm_cmd cmd;

int address; int data_ptr;

int data_length; int streaming_width;

int byte_enable_ptr; bool dmi_allowed;

tlm_response response_status;

}trans;

Rule 3: tlm::tlm_command cmd = static_cast<tlm::tlm_command>

|--

typedef { bit cmd[2]; }tlm_command;

where in a transformation ruleX|−−Y ,X is a SystemC TLM construct, and Y is a UPPAAL code

snippet. Rule 1 enables the transformation of sockets. Rule 2 transforms the declaration of the

generic payload in a SystemC TLM program to UPPAAL, and Rule 3 transforms the declaration

of a TLM command.

In order to study timing behaviors of SystemC TLM programs, we also need to consider timing

constraints of the programs. Hence, we introduce new rules that consider these timing constraints.

Rule 4 and Rule 5 are introduced for extracting the UPPAAL model in LT coding style, i.e., with

54

sim ple_initiator_socket! A2A1

x >= delay

Figure 4.4: Transforming b transport interface into UPPAAL, the Initiator.

sim ple_initiator_socket? B2B1

x >=delay

Figure 4.5: Transforming b transport interface into UPPAAL, the Target.

b transport interface. In a transaction using b transport interface, we need to consider the timing

since one of the sending arguments is delay. If the transaction is from the Initiator to the Target,

this argument describes the point of time in the future where the communication actually starts,

and illustrates the ending time of the communication in the response. To transform a b transport

interface into UPPAAL, we defineRule 4, where a synchronization channel simple initiator socket

is used (in Figures 4.4 and 4.5) to synchronize the Initiator and Target of a transaction. Figures

4.4 and 4.5 illustrate the Initiator and Target of the transaction respectively. The communication

starts at delay timing point. Hence, the Initiator does not synchronize with the Target before that

time. We take this constraint into account by defining the guard x >= delay at the Initiator,

where x shows the current simulation time sc time stamp(). In addition, the Target accepts the

synchronization after the delay timing point. We consider this constraint by defining the guard

x >= delay at the Target. It means the communication starts after delay timing point.

Rule 4: socket->b_transport(*trans, delay)

|--

Figures 4.4 and 4.5

Moreover, in order to guarantee deterministic execution and increase the timing accuracy, a

SystemC TLM program that uses Loosely-Timed coding style benefits from explicit synchroniza-

tion points by utilizing calls to wait() function. This function is a synchronization-on-demand

55

method that yields the control to the SystemC scheduler. To transform this function into the UP-

PAAL model, we define a variable global-clock that plays the role of the global time in a SystemC

TLM program. To transform the wait function into the UPPAAL model, we define Rule 5 as

follows:

Rule 5: wait(x)

|--

global-clock = global-clock + x; x = 0;

Hence, when the wait function is called, we add the delay arguments obtained from Rule 4 to

the global-clock variable and reset the local clock x.

4.7 Case Study 3: Extracting UPPAAL Model using Transfor-

mation Rules

In this example, we extend the example explained in Section 2.2 to have three modules: Initiator,

Router, and Memory. The Initiator module generates a transaction while the Memory (target)

module represents a random access memory. The Router is a TLM 2.0 interconnect component that

is placed between the Initiator and the Memory. An interconnect component is a component that

forwards transactions from an incoming target socket to an outgoing initiator socket (see Figure

4.6 for the architecture). In this example, the initiator socket of the Initiator module is bound to

the target socket of the Router and the initiator socket of the Router is bound to the target socket

of the Memory module. The Initiator has a thread process (similar to that in Figure 2.5) that

starts the communication by sending a generic payload along with a delay parameter to the Router.

The Router utilizes its target socket and the b transport interface to receive the transaction from

56

Figure 4.6: The architecture of the memory-mapped busses model.

the Initiator. After decoding the address, if it is needed, the Router forwards the transaction to

the Memory. Finally, the Memory uses the b transport interface to receive the transaction from

the Router. Based on the Initiator’s request, the Memory either reads from or writes to the data

attribute of the generic payload and sends back the corresponding response.

We use the rules and approaches explained in Section 4.6 to extract the UPPAAL timed au-

tomata model. Next, in Figures 4.7, 4.8, and 4.9 we identify the fault-free version of the program

that forms the basis of models generated for timing faults. In extracted UPPAAL models, the green

texts show either the guards or synchronization, the blue texts show the updates, and the pink texts

represent the names and invariants. Figure 4.7 represents the Initiator model with the starting state

L1. We utilize Rules 2 and 3 to transfer the generic payload and TLM command (read/write) into

the UPPAAL timed automata. Hence, States L2 and L3 represent places where the cmd attribute

shows write and read commands respectively. After generating the transaction, we use Rule 1 to

define a synchronization channel sendSocket between the Initiator and Router, and use Rule 4

to transfer b transport interface into the UPPAAL model. As a result, in Figure 4.7, the Initiator

synchronizes itself with the Router module and changes its state from either L2 or L3 to L4. The

Initiator cannot send the transaction later than delay1 timing point, since the communication actu-

ally starts at that point. In state L6, the Router receives the transaction and changes its state to L7.

Then, the Router synchronizes with the Memory via targetSocket channel and changes its state to

L8. Note that the transaction is not actually sent from the channel, since the channels in UPPAAL

are only for synchronization purposes. Then, we use Rules 1 and 4 to transfer the b transport

57

interface and timing constraints in the Memory. If the guard x >= delay is true, the Memory

receives the transaction and changes its state to L11. The Memory cannot send its response later

than delay1 + delay2, where delay2 shows the delay argument of the response message to the

Initiator. After executing the write or read action, if there is no error, the Memory changes its

state to either L12 or L13, and synchronizes itself with the Router via targetSocket channel. The

Router, receives the response from the Memory, and, using the sendSocket channel, sends the

response. Finally, the Initiator receives the response and can initiate another transaction.

sendSocket?

sendSocket!

sendSocket!

x = 0

x = 0

current = shared,
RcvdData = shared. data

shared = current

shared = current,
SentData = current. data

data =-1,
setTrans(current,readCm d,0,
data,4,4,0,false, inCom plete)

data =5,
setTrans(current,writeCm d, 0,
data,4,4,0,false,inCom plete)

x <=delay1

x <= delay1

x <1

error

L5

L4

L3

L2

L1

current. response_status == responseError

current. response_status == responseOK

x <=delay1+delay2

x >=delay1

x >=delay1

Figure 4.7: Fault-intolerant UPPAAL timed automata model of the Initiator module.

sendSocket!

targetSocket?

targetSocket!

sendSocket?

L9 L8

L7L6

Figure 4.8: Fault-intolerant UPPAAL timed automata model of the Router module.

58

targetSocket!

targetSocket!

targetSocket!

targetSocket?

m em [shared. address] = shared. data,
shared. response_status=responseOK,
RcvdData=shared. data

shared. data = m em [shared. address],
shared. response_status =responseOK,
SentData=m em [shared. address]

GetInfo()

x <=delay1+delay2

x <=delay1+delay2

x >=delay1

L13

L12

error

L11

L10

x <=delay1+delay2

x <=delay1+delay2

cm d == writeCm d

cm d==readCm d

address >=outOfBound||
data_length >4 ||
stream ing_width <4||
byte_enable_ptr !=0||
cm d>1

x >=delay1

Figure 4.9: Fault-intolerant UPPAAL timed automata model of the Memory module.

4.7.1 Property Specification and Functional Correctness

To ensure that the extracted timed automata model captures the requirements/properties of the

SystemC TLM program, we specify the requirements that should hold in the absence of faults. For

this purpose, we define the following specifications in a subset of CTL (Computational Tree Logic)

in Figure 4.10 that captures the requirements related to the timing constraints. These requirements

should be always true in the absence of faults.

SPEC 1: A[] not deadlock

SPEC 2: Init.L1 --> (Init.L4 and x >= delay1)

SPEC 3: Init.L1 --> (Memory.L11 and x >= delay1)

SPEC 4: (Memory.L12 or Memory.L13) --> (Init.L5 and x <= delay1 + delay2)

SPEC 5: Init.L1 --> (Init.L5 and x <= delay1 + delay2)

Figure 4.10: Requirements of Memory Bus System using LT coding style.

The first requirement SPEC 1 represents that the extracted model is free of deadlock. The

second requirement SPEC 2 illustrates that the Initiator module will not send the transaction

towards the Memory module before the timing point delay1. The SPEC 3 shows that if the

Initiator sends a transaction, the Memory will not receive it before the timing point delay1. Also

59

if the Memory sends the response to the Initiator, it should not be received after the timing point

delay1 + delay2. This requirement is represented in SPEC 4. Finally, the SPEC 5 shows that if

the Initiator starts a transaction, it should not be finished after the timing point delay1 + delay2.

Using UPPAAL, we have model checked the above properties for the extracted model of Figures

4.7, 4.8, and 4.9.

4.8 Case Study 4: Extracting UPPAALModel of a NoC Switch

In this example, we extend the example explained in Section 2.2 to model a Network on Chip

switch. We assume that the switch has eight processing cores that communicate using a router.

To model this switch, we assume we have memory mapped busses with four Initiators and four

Targets and a Router as an interconnect component between the Initiators and Targets (See Figure

4.11). Each Initiator module generates a transaction and sends it to one of the Target modules

through the Router using b transport interface. The Router receives a transaction, decodes the

address attribute in the transaction, and forwards it to the appropriate Target using the decoded

address. The Router also needs to manage the return path from the Targets to the Initiators. In

other words, the Router is a component that forwards transactions from an incoming target socket

to an outgoing initiator socket. In this example, there are four incoming target sockets connected to

four instances of the Initiator, and four outgoing initiator sockets connected to four instances of the

Target. Sockets belonging to the Initiators are bound to the target sockets of the Router, and each

of the four initiator sockets belonging to the Router is bound to a socket belonging to a different

Target. Each initiator-to-target socket connection is point-to-point.

We use the set of rules in 4.6 to extract the UPPAAL timed automata model from the SystemC

TLM model. Next, in Figures 4.12 and 4.13, we identify the fault-free version of this model

60

Figure 4.11: Using LT coding style to model NoC switch.

that form the basis of models generated for different types of faults. The extracted models of the

Initiators and Targets are the same as those in Section 4.5.

AdrDecode?

AdrDecode!

Init2Router[InitID]!

Router2Target[TargetID]?

Router2Target[TargetID]!

Init2Router[InitID]?

L9

L8

L11 L10

L7L6

x <=delay1+delay2

x >=delay1

Figure 4.12: The Router module.

Figure 4.12 represents the Router automaton and Figure 4.13 shows the address decoding

mechanism used in the Router module. The Router receives a transaction through one of the

channels Init2Router and changes its state to L7. This transaction should not be received before

delay1 timing point. Note that in the Router automaton, we cannot use the same channel to com-

municate with Initiators since their socket connections are point-to-point in the SystemC TLM

61

AdrDecode!

AdrDecode?

shared. address =
shared. address - TargetSiz e,
TargetID = TargetID + 1

L13

L12

shared. address > TargetSiz e

shared. address < TargetSiz e

Figure 4.13: The address decoding mechanism.

model. After receiving the transaction, the Router decodes the address (Locations L12 and L13

in Figure 4.13), obtains the TargetID, and forwards the transaction to the appropriate Target. The

Router then waits to receive the response of the Target from the same channel (L10) and sends it

back to the appropriate Initiator (L11).

4.8.1 Property Specification and Functional Correctness

To ensure that the extracted model captures the requirements/properties of the SystemC TLM

program, we specify the properties that should hold in the absence of faults. For this purpose,

we define the following CTL (Computational Tree Logic) specifications in Figure 4.14.

SPEC 1: A[] not deadlock

SPEC 2: Init[id_i].CurrTrans.cmd == readCmd -->

(Target[id_t].SentData == Router.RcvdData)

and

(Router.SentData == Init[id_i].RcvdData)

SPEC 3: Init[id_i].CurrTrans.cmd == writeCmd -->

(Init[id_i].SentData == Router.RcvdData)

and

(Router.SentData == Target[id_t].RcvdData)

SPEC 4: Init[id_i].L1 --> (Init[id_i].L2) or (Init[id_i].L3)

SPEC 5: (Init[id_i].L2) or (Init[id_i].L3) --> Init[id_i].L1

Figure 4.14: Properties of the extracted UPPAAL timed automata.

The correctness of requirement SPEC 1 in Figure 4.14 implies that in all paths of the extracted

automata model, we do not have any deadlock. The requirements SPEC 2 and SPEC 3 repre-

62

sent that the communicated data between the Initiator and Router, and the Router and Target are

the same in the absence of faults. The SPEC 4 and SPEC 5 show that the Initiator will even-

tually generate a transaction either with a write request (Location L2) or a read request (Location

L3), and will eventually come back to the initial state to generate another transaction. These two

requirements together imply that the Initiator module is not blocked. We can extend the set of

requirements and define the same requirements as SPEC 4 and SPEC 5 for all modules in the ex-

tracted model. Using UPPAAL model checker, we have model checked the requirements of Figure

4.14.

4.9 Using STATE for Extracting Timed Automata Models

In order to consider concurrency in SystemC TLM programs, we need to utilize Approximately-

Timed coding style. An Approximately-Timed model breaks down transactions into a number of

phases corresponding much more closely to the phasing of particular hardware protocols (e.g., the

address and data phases of an AHB (AMBA Advanced High-performance Bus) read or write). On

the contrary, a Loosely-Timed model, for which we proposed our transformation rules in Section

4.6, utilizes transactions corresponding to a complete read or write across a bus or network in

physical hardware. It provides timing at the level of the individual transaction. Also, in the model

extraction proposed in Section 4.6, the SystemC scheduler has been modeled implicitly. In other

words, the way the extracted model would run the SystemC program is implicitly captured by the

way wemodel thewait() statement. Since the simulation kernel has a run-to-completion scheduling

policy, a thread/process cannot be interrupted until it is either terminated or waits for an event.

On the other hand, for Approximately-Timed models, we need to model the SystemC scheduler

explicitly to be able to manage concurrent transactions. In addition, it is necessary to consider

63

other SystemC elements as well as TLM components, e.g. events, wait-notify mechanism, and

Payload Event Queue (PEQ), in the model extraction. For this purpose, we use STATE (SystemC

to Timed Automata Transformation Engine) tool-set [47] to transform a SystemC TLM program to

its equivalent UPPAAL timed automata model. In the following, we, first, state a few assumptions

that defines the subset of SystemC TLM programs supported by STATE. Then, we represent the

timed automata templates that STATE extracts for different SystemC TLM elements. The materials

in the following sections are mostly adapted from [47].

4.9.1 Assumptions

SystemC supports a very diverse set of models of computation. At the same time, as an extension of

C++ , it inherits the full semantic scale of the C++ language. Together, this illustrates that SystemC

is an outstandingly expressive languages. To make it nonetheless possible to transform SystemC

designs into the more restricted UPPAAL modeling language. Therefore, to utilize STATE, we

need to assume that a given SystemC design fulfills the following restrictions.

• UPPAAL supports no dynamic variable or process creation. Thus, dynamic object or process

creation are also forbidden in the SystemC design, i.e., a static structure is required. This

is a minor restriction because dynamic process creation is not a part of SystemC language

definition and can only be used through the corresponding C++ functions. As a consequence,

only instantiations and initializations are allowed in constructors and in the sc mainmethod.

• While SystemC allows hierarchical scopes, the possibility to define scopes is limited to

global and local variables in UPPAAL. To avoid name conflicts, we assume that no vari-

able is shadowed (i.e., each variable has a unique identifier in its scope). It is needed to

assume that no overloading of methods is used. This assumption as well as the previous

64

assumption do not restrict the set of possible input designs but require some renaming and

code duplication at the most.

• The UPPAAL modeling language only provides the data types int and bool. Most complex

data types can be mapped into integers, but the use of pointers is generally impossible in

UPPAAL. Thus, we need to assume that the SystemC design does not use any pointers. As

a consequence, dynamic memory management is also excluded.

4.9.2 Representation of SystemC TLM Designs in UPPAAL

The general idea of representing a SystemC TLM program in UPPAAL timed automata is that each

method is mapped to a single timed automata template. Process automata are used to encapsulate

these methods and care for the interactions with events and the scheduler (see Figure 4.15). The

scheduler is explicitly modeled and a predefined template is used for events and other SystemC

constructs such as primitive channels. The interactions between the processes and the scheduler

are modeled by two synchronization channels, activate and deactivate. The interactions between

processes and event objects are modeled by wait and notify. The interactions between the event

objects and the scheduler are used to synchronize their timing. The scheduler informs the event

objects when a delta-cycle is completed to release delta-delay notifications, and conversely, the

event objects inform the scheduler when time is advanced due to a timed notification.

In the following, we explain the timed automata templates that STATE generate for each of the

SystemC structures in Figure 4.15. These automata are needed in an Approximately-Timed model

to provide concurrency.

65

Figure 4.15: Representation of SystemC TLM Designs in UPPAAL.

Figure 4.16: Timed automata modeling SystemC scheduler [47].

4.9.2.1 The Scheduler

The scheduler controls the execution of SystemC designs. The basic execution units are processes.

The scheduler works in delta-cycles, i.e., in evaluate and update phases. In the evaluate phase, pro-

cesses that are ready to run are executed in non-deterministic order. In the update phase, primitive

channels are updated by taking over new values. If there are no more processes ready to run when

a delta-cycle is finished, time is advanced to the next pending event

The timed automaton that STATE generates for the scheduler is shown in Figure 4.16. Ini-

66

tialization is implicit in UPPAAL, i.e., processes and methods are executed once before the main

simulation loop. As a consequence, the scheduler starts in the evaluation phase depicted by the

location evaluate. If there are any processes that are ready to run, the scheduler sends an activa-

tion event activate!. Processes that are ready to run receive this event and resume their execution.

STATE uses a binary channel for the activation to ensure that only one process is executed at a time

and that processes are executed in a non-deterministic order. To ensure that the scheduler sends

the activation event once for each process that is ready to run, each process increments a counter

ready procs when triggered, and decrements the counter when suspending itself. When there are

no more processes that are ready to run, i.e., ready procs == 0, the scheduler starts the update

phase by going to location update.

In the update phase, update requests are executed in non-deterministic order using the activa-

tion event update start. Immediate notification is not allowed during the update phase. If there

are no more update requests, the scheduler starts the next delta-cycle (see location next delta in

Figure 4.16). When leaving the update phase, the scheduler informs event objects with pending

delta-delay notifications that a delta-cycle is finished by sending delta delay!. If there are delta-

delay notifications, the corresponding processes are immediately triggered and become ready to

run. They will be executed in the next delta-cycle, which is started by the scheduler without time

progress. If there are no processes triggered by delta-delay notifications, i.e., ready procs == 0,

simulation time must be advanced to the earliest pending timed notification.

There are two types of timed notifications in SystemC: events may be notified with a delay by

calling e.notify(t), and processes may be delayed for a given time interval by calling wait(t). In

SystemC, the timing behavior is completely managed by the scheduler. In the timed automaton,

we have the possibility to wait locally for a given time. Therefore, it is more suitable to model

time within processes and event objects. To wait for the earliest pending timed notification in the

67

scheduler, STATE lets the processes and events with timed behavior send a broadcast synchroniza-

tion advance time! when their delay expires. The scheduler receives advance time? and starts

a new delta-cycle, i.e., executes processes that became ready to run through the timed notification.

The timed automaton modeling the scheduler behaves exactly like the SystemC scheduler. The

binary channels used to control process execution and channel updates guarantee that UPPAAL

model checker considers every possible serialization. The locations used for the execution of delta-

cycles are urgent and thus take no simulation time. It is ensured that no scheduling phase is started

before the preceding phase is completed using the counters ready procs and update procs and

committed locations in event notifications. The counters guarantee that pending executions are

completed before the next phase is started. The use of committed locations in event notification

(which is represented in Figure 4.17) ensures that event triggering is prioritized over state changes

in the scheduler.

4.9.2.2 Events

If an event object e is notified by its owner, processes that are sensitive to the event resume execu-

tion. SystemC supports three types of event notifications. An immediate notification, invoked by

e.notify(), causes processes to be triggered immediately in the current delta cycle. A delta-delay

notification, invoked by e.notify(0), causes processes to be triggered at the same time instant, but

after updating primitive channels, i.e., in the next delta-cycle. A timed notification, invoked by

e.notify(t) with t > 0, causes processes to be triggered after a certain delay t. If an event is notified

that already has a pending notification, only the notification with the earliest expiration time takes

effect. That means that immediate notifications override all pending notifications, delta-delay noti-

fications override timed notifications, and timed notifications override pending timed notifications

if their delay expires earlier.

68

Figure 4.17: Timed automata template for an event object [47].

The modeling of event objects are represented in Figure 4.17 [47]. The timed automata tem-

plate is instantiated for each event object declared in a given SystemC design. Its template pa-

rameters are the synchronization channels notify imm, notify and wait, and the integer variable t.

Initially, the event just waits to be notified. If it is immediately notified, it receives notify imm?,

and immediately sendswait! on a broadcast channel. If the event object is notified by a delta-delay

or a timed notification, it receives notify? and copies the parameter t to a local variable ndelay,

which yields the notification delay. At the same time, a local clock x is reset. The committed

location that is now reached is used to reinitialize ndelay and to reset x if a subsequent delta-delay

or timed notification overrides the notification delay. We then have to wait until:

• an immediate notification overrides the current pending notification,

• we receive delta delay? from the scheduler if ndelay == 0, or

• the current delay expires, i.e., x == ndelay && ndelay! = 0.

Subsequently, we send wait! and go back to the initial location. When a timed notification ex-

pires, we have to inform the scheduler to start the next evaluation phase by sending advance time!.

69

Due to the use of a broadcast channel advance time!, only the first advance time is received by

the scheduler if the delays of multiple events expire at the same time.

4.9.2.3 Processes

Processes are the basic execution unit in SystemC. Each process is associated with a method to be

executed. There are two types of processes: method processes and thread processes. A method

process, when triggered, always executes its method body from the beginning to the end. It is

triggered by a set of events given in a static sensitivity list. The timed automata template STATE

uses to wrap a method process is in Figure 4.18. It waits for any of the events from the sensitivity

list by synchronizing on sensitive?. If one of the events from the sensitivity list occurs, it marks

itself as ready to run by incrementing ready procs and by waiting for the activate event. Then,

it transfers control to its associated method. When the method returns, it deactivates itself by

sending deactivate! to the scheduler and by decrementing ready procs. Then, it returns to the

initial position and waits until it is triggered by one of the events from the sensitivity list again.

Figure 4.18: Method process template [47].

A thread process may suspend its execution and dynamically wait for events or a given time

delay. It is triggered only once at the beginning of the simulation and runs autonomously from that

time on. The timed automata template STATE uses to start a thread process is given in Figure 4.19.

70

It just waits to be activated, transfers control flow to its associated method and deactivates itself if

the method returns. Note that the control transfer channel is a parameter of the process templates,

and thus the same template can be instantiated for arbitrary many process declarations.

Figure 4.19: Thread process template [47].

4.9.2.4 Payload Event Queue (PEQ)

A PEQ is a time-ordered list of event notifications, where each notification is associated with

a transaction object (i.e., a payload and a phase) and a delay. The actual delay of each event

notification is calculated from the current simulation time and the annotated delay. The PEQ is

connected to a callback method peq cb, which is executed whenever a notification in the PEQ

expires. A PEQ can be used by calling its notify method with a transaction object t and a delay d.

This will cause the callback method associated with the PEQ to be executed with t in d time units.

STATE models the PEQ with four different timed automata, namely timed-ordered list (Figure

4.20), interface (Figure 4.21), event fetch and callback invocation (Figure 4.22), and PEQ event

automata (Figure 4.23). The first automaton is an ordered-list where tuples of a payload, a delay

and a phase can be stored and sorted by their delay expiration time. The interface automaton is

called by initiators and targets to insert a new PEQ notification. The third automaton removes

71

Figure 4.20: Timed automata template of the timed ordered list [47].

Figure 4.21: Timed automata template of PEQ interface method notify [47].

elements from the PEQ if their delay expires and invokes the callback method associated with the

PEQ (peq cb). The last automaton models the event object notification.

Figure 4.22: Timed automata template of the automaton that processes PEQ elements [47].

72

Figure 4.23: Timed automata model of the PEQ events [47].

4.10 Case Study 5: Extracting UPPAAL Model in AT Coding

Style

In this section, we present a case study that focuses on an on-chip memory-mapped communication

buses between an Initiator and a Memory module. This case study utilizes Approximately-Timed

(AT) coding style and TLM base protocol. We utilize STATE tool-set to extract a timed automata

model from the given SystemC TLM program.

In this case study, adapted from [1], the Initiator and the Memory use non-blocking trans-

port (nb trasport) interface for interaction. The nb transport interface is intended to support

the AT coding style and is particularly suited for modeling pipelined transactions. It breaks

down each transaction into four phases, namely BEGIN REQ, END REQ, BEGIN RESP, and

END RESP, where each phase transition is associated with a timing point (see Figure 4.24).

The Initiator generates a transaction and starts the communication by sending a BEGIN REQ

using the forward path nb transport fw to the Memory and waits to receive END REQ or BE-

GIN RESP from the backward path nb transport bw. After that, the Initiator can finish the

73

Figure 4.24: Non-blocking transport interface architecture.

transaction by sending END RESP. The Initiator can also start another transaction by sending a

new BEGIN REQ. Note that during the first two phases we cannot have pipelined transactions. In

other words, there is at most one BEGIN REQ pending in the system, while we can have multiple

transactions with BEGIN RESP phases pending in the system. In this example, during analysis,

we restrict the number of pipelined transactions by two.

Each transaction in an nb trasport interface has three arguments: generic payload, delay,

and phase. The generic payload is the transaction object being sent. The delay represents the

timing annotation of the communication. The phase, which is a new argument in nb transport,

indicates the state of the transaction, e.g., BEGIN REQ for starting a transaction, and returns

an enumeration value to indicate whether the return from the function also represents a phase

transition.

We utilize STATE tool-set, explained in Section 4.9 to extract the UPPAAL timed automata

model. Nonetheless, the UPPAAL model generated by considering all possible components is

too large to perform exhaustive analysis. Hence, for evaluating the model, we need to utilize

model slicing techniques to only consider components that are important for verifying the prop-

74

erty/requirement of interest. To ensure that the extracted model captures the requirements of the

SystemC TLM model, we specify a set of requirements that should hold in the absence of faults.

We divide these requirements into two categories: 1) when timing constraints are not important

and we want to ensure that message, permanent, and transient faults do not perturb the model, and

2) when training constrains are being verified to ensure that timing faults do not perturb the model.

These requirements should be always true in the absence of faults (See Figures 4.25 and 4.26).

SPEC 1: A[] not deadlock

SPEC 2: Init.SentBeginReq --> (Memory.RcvdBeginReq)

SPEC 3: (Memory.SentEndReq or Memory.SentBeginResp) --> (Init.EndResp)

SPEC 4: Init.SentBeginReq --> (Init.Initial)

SPEC 5: Init.CurrTrans.cmd == readCmd --> (Target.SentData == Init.RcvdData)

SPEC 6: Init.CurrTrans.cmd == writeCmd --> (Init.SentData == Target.RcvdData)

SPEC 7: (Init.SentBeginReq or Init.EndReq)

and

(Memory.RcvBeginReq or Memory.SentBeginResp)

-->

Init.CurrTrans.phase == Memroy.CurrTrans.phase

Figure 4.25: Requirements of memory bus system using AT coding style.

In Figure 4.25, the first requirement represents that there is no deadlock in the extracted model

in the absence of faults. The second Requirement shows that if the Initiator starts a transaction,

the Memory module will eventually receive the transaction. Also if the Memory sends a response

with either END REQ or BEGIN RESP phases, the Initiator will eventually be able to finish the

transaction by sending END RESP. This is shown in the third requirement. The forth requirement

checks if a started transaction will eventually finish and the Initiator can start another transaction.

This requirement along with the second requirement imply that the Initiator is not blocked. The

fifth and sixth requirements represent that the communicated data between the Initiator and Mem-

ory are the same in the absence of faults. The last requirement helps to check the execution ordering

of transactions while they are executed in pipeline. Using UPPAAL, we have model checked the

75

above properties for the extracted model.

SPEC’ 1: A[] not deadlock

SPEC’ 2: Init.Initial --> (Init.SentBeginReq and x >= delay1)

SPEC’ 3: Init.Initial --> (Memory.RcvdBeginReq and x >= delay1)

SPEC’ 4: (Memory.SentEndReq or Memory.SentBeginResp) -->

(Init.EndResp and x <= delay1 + delay2)

SPEC’ 5: Init.Initial --> (Init.RcvdBeginResp and x <= delay1 + delay2)

SPEC’ 6: Payload.ID == peq_fetch$trans.ID -->

sc_time_stamp == Payload.delay + Payload.Initialsc_time

Figure 4.26: Timing requirements of memory bus system using AT coding style.

In Figure 4.26, the first requirement SPEC’ 1 represents that there is no deadlock in the ex-

tracted model in the absence of faults. The SPEC’ 2 and SPEC’ 3 show that the Initiator should

not send the transaction with BEGIN REQ phase before delay1 timing point, and the Memory

should not receive the BEGIN REQ request before delay1 timing point respectively. The SPEC’

4 checks that if the Memory sends either END REQ or BEGIN RESP, the Initiator will eventu-

ally finish the communication by END RESP not later than delay1 + delay2 timing point. We

ensure if the Initiator receives the response not later than delay1 + delay2 timing point by check-

ing SPEC’ 5. The SPEC’ 6 represents that each transaction is executed at the right timing point.

This requirement helps to check the execution ordering of transactions while they are executed

in pipeline. For instance, if transaction T1 should be executed at x and transaction T2 should be

executed at y, while x + sc time stamp() > y + sc time stamp′(), T2 is executed first, where

sc time stamp() illustrates the simulation time when a transaction is being sent. Using UPPAAL,

we have model checked the above properties for the extracted.

76

4.11 Summary

In this chapter, we explained the requirements that we need to satisfy while extracting a formal

model from the give SystemC TLM program. We proposes two sets of transformation rules for

extracting formal models from SystemC TLM programs. The first set of rules transforms the

SystemC program into a Promela model. The second set of rules generate a loosely-timed timed

automata model that also consider the notion of time in the model extraction process. Additionally,

we introduce a tool-set, STATE, for transforming concurrent SystemC TLM programs into timed

automata models. However, some of the models generated by STATE are complex and need further

simplification to be verifiable. Finally, we illustrated our model extraction ideas with five case

studies.

77

Chapter 5

Modeling of Faults

The previous chapter permits model extraction of the given SystemC TLM program. This will

allow us to analyze the given SystemC TLM program to verify its desired properties as well as to

identify any bugs in it. In this section, we give a brief description of four types of faults considered

in this dissertation. These types of faults are based on the discussion in [58] that identifies faults

that are typically relevant to a SystemC TLM program. In our work, we distinguish between faults

and bugs with the following intuition. A fault is something that we expect to happen in a program

and we expect the program to provide desired behavior even if it occurs. Examples of such faults

include faults such as message loss (caused due to noise), malicious components, transients, etc.

By contrast, a bug is something that we expect to avoid. Examples include uninitialized variables,

buffer overflow, incorrect use of blocking or nonblocking interfaces, incorrect use of timed/untimed

constructs. With this distinction, intuitively, we want to ensure that the program works correctly

even if faults occur. Our work focuses on the former, i.e., it assumes that the designer has decided

that it is difficult/impossible to prevent the faults from occurring and, hence, it must be tolerated.

In the following, first, we explain the faults that we consider in this dissertation in Section 5.1.

Then, in Section 5.2, we describe modeling of faults in Promela models. For modeling faults in

UPPAAL timed automata models, we propose an algorithm in Section 5.3 and use this algorithm

to inject different types of faults into the timed automata models extracted. The analysis of the

models in the presence of faults are described in Sections 6.3.1, 6.3.2, and 6.3.3.

78

5.1 Fault Categories

In this dissertation, we consider four different types of faults. These faults are as follows.

1. Message faults. Since in SystemC TLM programs transactions are performed via message

passing, one of the common faults is a message fault. These faults include message cor-

ruption, loss and duplication. In our case studies, we consider message loss. Modeling of

message duplication is similar. And, modeling of message corruption is possible using the

approach for transient faults.

2. Permanent faults. By permanent faults, we mean that the impact of the fault is long-lasting

(possibly forever). In this paper, we consider stuck-at faults caused in hardware, component

failure, and Byzantine faults. The stuck-at faults cause a signal to gets stuck at a fix value

(logical 0, 1, or X) and cannot switch its value. In a component failure fault, the component

fails functionally and the other components cannot communicate with it. The Byzantine

fault is one where the faulty component continues to run but produces incorrect results.

Byzantine faults encompass both omission failures such as failing to receive a request and

failing to send a response, and commission failures such as processing a request incorrectly

and sending an incorrect/inconsistent response to a request.

3. Transient faults. Transient faults are the most common types of faults that are prevalent

in SoC systems [19, 49]. They perturb the state of system components without causing any

permanent damage. It is anticipated that most of these faults occur only once (or a small

number of times). In this paper we consider Single Event Upsets (SEUs). Such events may

induce soft errors in storage elements (e.g., SRAM, sequential logic) due to alpha particles

generated by the radioactive decay of packaging and interconnect materials.

79

4. Timing faults. A timing fault occurs when an event happens (or does not happen) in a spe-

cific time interval. Such timing faults could perturb the state of a system to an illegitimate

configuration. For instance, consider a read transaction between an initiator and a memory,

where the initiator sends an address and a read signal to fetch a datum from a specific mem-

ory cell. If the read signal on the memory side is activated later than required (or deactivated

earlier than required), the read operation cannot be performed properly. We will investigate

how we will model such timing faults and their impacts on system functionalities.

5.2 Fault Modeling for Promela Models

In this section, we model transient faults and inject them into the Promela models extracted in

Sections 4.4 and 4.5. Transient faults can happen at different places of the extracted model. They

can change the address, data, phase, etc. To model transient faults, the designer needs to identify

variables of concern as far as transient faults are concerned. By default, we consider that all

variables could be corrupted.

5.2.1 Case Study 1: Fault Modeling and Impact Analysis for Two Commu-

nicating Modules

In this section, we use the extracted model explained in Section 4.4 and analyze this model in the

presence of transient faults. To model the transient fault that affects a given variable, we model it

as a limited-time corruption of that variable at any reachable state in the program. To this end, we

start with a fault-intolerant model in Promela, sayM , and a set of actions that describe the effect

of faults on M , denoted F . Our objective is to create a model MF that captures the behaviors

of M in the presence of faults F . The SystemC program of Figure 2.4 is subject to the type of

80

faults that corrupt the messages communicated between the Initiator and the Target. To model this

fault-type, we include the following proctype in the extracted Promela model:

active proctype F() {

do

:: (cnt < MAX) -> atomic{ tgtIfPort!startTrans; cnt++;}

:: (cnt < MAX) -> atomic{ tgtIfPort!endTrans; cnt++;}

:: (cnt >= MAX) -> break;

od;

}

The constant MAX denotes the maximum number of times that faults can occur, where each

time an erroneous message is inserted into the channel tgtIfPort. The cnt variable is a global

integer that we add to the extracted model in order to model the occurrence of faults. For modeling

purposes, we need to ensure that faults eventually stop, thereby allowing the program to execute

and recover from them. (A similar modeling where one does not assume finite occurrences of

faults but rather relies on a fairness assumption that guarantees that the program will eventually

execute is also possible. However, it is outside the scope of this report.) Since faults can send

messages to the tgtIfPort channel, it is possible to reach a state outside the invariant where the

model deadlocks. For instance, consider a scenario where fault F injects endTrans in the channel.

Then, the Target receives endTrans instead of startTrans. As such, the Target never completes

the transaction and never sends an endTrans message to the Initiator, which is waiting for such a

message; hence a deadlock.

81

5.2.2 Case Study 2: FaultModeling and Impact Analysis forMemory-Mapped

Buses

In this section, we model transient faults similar to that explained in Section 5.2.1, and apply it on

the case study explained in Section 4.5. To illustrate the transient faults, we consider two instances

(1) perturbing memory contents without causing any permanent damage, and (2) perturbing the

read/write command of the generic payload.

5.2.2.1 Perturbing Memory Contents

To model transient faults that perturb memory contents, we define the following proctype that

models the impact of this fault-type in the extracted model in Figure 4.3:

active proctype memFaults(){

do

:: (cnt1 < MAX1) -> atomic{ mem[memT.address] = 0; cnt1++;}

:: (cnt1 < MAX1) -> atomic{ mem[memT.address] = 1; cnt1++;}

:: (cnt1 < MAX1) -> atomic{ mem[memT.address] = 2; cnt1++;}

:: (cnt1 < MAX1) -> atomic{ mem[memT.address] = 3; cnt1++;}

:: else -> break;

od;

}

Notice that while the mem array is declared inside the Memory module in Line 62 of Figure

2.6, in the model of Figure 4.2, we define it as a global array so we can access its contents from

inside the memFaults proctype. To have finite occurrence of faults, we define a constant MAX1

that denotes the maximum number of times faults can occur. Moreover, we use the cnt1 variable

to model the occurrence of faults similar to what we did in Section 5.2.1.

82

5.2.2.2 Control Signal Faults

In order to model the effect of the transient faults that perturb the cmd of the generic payload, we

augment the model of Figures 4.2 and 4.3 with the the following proctype:

active proctype cmdFaults(){

do

:: (cnt2 < MAX2) -> atomic{ memT.cmd = 0; cnt2++;}

:: (cnt2 < MAX2) -> atomic{ memT.cmd = 1; cnt2++;}

:: else -> break;

od;

}

The constant MAX2 is the maximum number of times faults can occur, and the cnt2 shows

the occurrence of faults. The condition (cnt2 < MAX2) ensures that the faults eventually stop

occurring.

5.3 Fault Modeling for UPPAAL Timed Automata Models

In this section, we, first, discuss the generic descriptions of the fault categories introduced in

Section 5.1. Then, we identify how these faults can be injected automatically into UPPAAL timed

automata models and propose an algorithm for that. This algorithm is used to inject different types

of faults into the timed automata models extracted in the last chapter and the fault-affected models

will be explained later in this chapter. The reason that we propose our fault modeling approach

for timed automata models is that such models consider the notion of times. Since in some of the

SystemC TLM programs timing is important for us, we need to focus on a formal model that also

supports timed systems. Therefore, in the rest of this dissertation, we study the UPPAAL timed

83

automata models.

5.3.1 Generic Description of Faults

The generic descriptions of the four aforementioned types of faults are discussed below.

5.3.1.1 Message loss

We present two methods for modeling message loss faults in the UPPAAL timed automata model:

• The first approach injects a new transition T into the UPPAAL timed automata model in par-

allel with a transition (Li, Lj), where Li and Lj are two locations in the extracted model and

(Li, Lj) represents the transition from Li to Lj . Also the transition (Li, Lj) corresponds to

sending/receiving of a message. The transition T utilizes a channel lossm for synchroniza-

tion. However, only the faulty component utilizes this channel and the other components are

unaware of it.

• The second approach injects a transition T from location Li to Lj . This transition does not

have any synchronization channel, while the original transition (Li, Lj) has a channel for

synchronization. As a result, the faulty component assumes that the message is sent to other

components and waits to receive a response. Nonetheless, the expected receiver does not

receive any messages from the faulty component.

5.3.1.2 Permanent faults

As discussed in Section 5.1, we consider three types of permanent faults: fail-stop, Byzantine

faults, and stuck-at faults. These faults are modeled as follows:

84

• To model a fail-stop, for each component c, we introduce a variable downc that denotes

whether the component is working (downc = 0) or failed (downc = 1). This can be tailored

to consider failure of all components or only to a subset of components or to a specific

number of components. Furthermore, all component actions of component c are restricted

to execute only if (downc = 0).

• In Byzantine faults, one or more components behave maliciously. By default, a malicious

component can arbitrarily change the variables it can write. The designer can restrict it to

a subset of variables if desired. To model the malicious component, a new transition T ′

is injected into the component. This transition updates the value of the variable subject to

Byzantine faults.

• To model the stuck-at faults, we disable all transitions that change the value of the variable

(identified by the designer using the same mechanism discussed earlier). This is achieved by

revising all actions that change the value of affected variable(s).

5.3.1.3 Transient faults

To model the transient fault that affects a given variable, we model it as a one-time corruption of

that variable at any reachable state in the program. (The modeling of transient faults are similar

to Byzantine faults except that the transient faults occur only once. By contrast, a Byzantine

component can send incorrect data continuously.)

5.3.1.4 Timing Faults

A timing fault occurs when an event happens (or does not happen) in a specific time interval.

Such timing faults could perturb the state of a system to an illegitimate configuration. In other

85

words, the timing faults cause an action/operation to be executed either too early or too late, and,

as a result, the operation cannot be performed properly. In a timing fault, we consider the case

where an operation takes longer than expected or the case where it takes shorter than expected.

In particular, we consider this effect during communication with other components (rather than in

internal operations in components). Hence, we first identify the operations that could be subject to

timing faults. By default, these are all operations that result in invocation and return of transactions.

The UPPAAL model corresponding to these operations have guards that identify conditions under

which these operations can be performed. Since UPPAAL model is based on timed automata, the

basic constraint used in these guards is of the form “x OP c”, where x denotes the local clock, c

represents a timing point in the model, and OP is <, ≤, >, etc.

To model the timing faults, we introduce a new variable delayt and a new transition Tt to the

fault-free UPPAAL model that can model both early and late timing problems. The maximum

value of delayt (default value is 1) is identified by the designer. The UPPAAL model is further

modified to non-deterministically increase the delay argument in a transaction by delayt in all

processes. To automate the fault injection, we target the transitions with a guard(s). We inject the

new transition into the model to be in parallel with the original transition between two locations,

say Li and Lj . Choosing the original transition, the model continues its execution without faults,

while choosing the new transition injects the timing faults into the model. Hence, we introduce

rules of the following form that utilize the variable delayt to define the guard(s) of the transition

Tt:

1) if (x > c) → x > c+ delayt

2) if (x < c) → x < c− delayt

86

5.3.2 Automatic Fault Injection

In this section, we describe the automatic fault injection mechanism. Faults are injected based on

the following parameters which are specified by designer.

• The fault type. Currently, there are three types of faults as explained in Section 5.1.

• Effect of faults on the program. The designer needs to specify the variables affected by faults

as follows:

– Message loss. For this type, we assume that any of the messages in the model may be

lost. The designer can limit it to a subset if desired.

– Permanent. i) Fail-stop: For this type of fault, the designer needs to specify the com-

ponent that is likely to fail. By default, we consider the case where any component can

fail; ii) Stuck-at: For this type of fault, the designer needs to specify which variable(s)

may be corrupted by the stuck-at component and the possible value(s); iii) Byzantine:

Similar to the stuck-at fault, the designer needs to specify which variable(s) may be

corrupted by the Byzantine component and the possible value(s). For instance, in the

example of Section 4.7, the variable representing the action (read/write) is affected by

faults. This fault can change the requested action and leads to an undesirable state.

Hence, the default for this fault is that the variable can be corrupted to any value in its

domain.

– Transient. For this type of fault, the designer needs to specify which variables are

likely to be affected by a transient fault. The default for this fault is that any variable

can be corrupted to any value in its domain.

87

– Timing. For timing faults, the designer needs to identify which clock variables are

subject to faults. The designer also needs to define a value for the variable delayt. If

a value for this variable is not specified, the default value, which is 1, for the clock

variable will be applied.

• Number of occurrences of faults. The designer also needs to specify the occurrences of the

transient faults. This number denotes the occurrences of transient faults that may take place

during the computation. The default setting value is 1.

5.3.2.1 Algorithm Description

The input of Algorithm 1 is a fault-intolerant timed automata model M in XML format and the

parameters described above. The output is a fault-affected timed automata model M ′ in XML

format.

Like the TA model, the XML file has a set of locations and transitions, which are respectively

defined by the following tags: “< location > statements < /location >” and “< transition >

statements < /transition >”. The statements can be a name, an invariant, or a type (e.g., urgent,

committed) for locations, and a source, a target, or labels for transitions. The source and target

tags represent the position of the transition. The label tag shows whether the transition has a

synchronization channel, an assignment operation, or a guard condition.

The Algorithm 1 utilizes three functions Find, Remove, and Change. The function Find

takes a model M and a label L and returns a transition T that has label L in model M . The

function Remove takes a transition T and a synchronization channel ch and removes the channel

ch from T . The function Change takes a transition T and a variable v and returns a transition with

a changed value of v.

88

Algorithm 1 Automatic Fault Injection
Input: A fault-intolerant Timed Automata modelM in XML format, variable v subject to faults, type of fault, and counter c.

Output: A fault-affected Timed Automata modelM ′ in XML format.

1: AddMoreFaults← true , cnt← 0;

2: while (AddMoreFaults = true) do

3: Message Loss:

4: T ← Find(M , kind = TransitionKind);

5: T ′ ← T ;

6: T ′← Remove(T ′ , channel); {or T ′← Change(T ′ , channel)}
7: AddMoreFaults← false;

8: Fail-stop:

9: T ← Find(M, true);

10: if T has an assignment statement then

11: add (downc ← 1) to T ’s set of assignments;

12: else

13: add an assignment statement to T , and add (downc ← 1) to its set of assignments;

14: end if

15: if T has a guard statement then

16: add (downc = 0) to T ’s set of guards;

17: else

18: add a guard statement to T , and add (downc = 0) to its set of guards;

19: end if

20: AddMoreFaults← false ;

21: Byzantine Fault:

22: T ← Find(M , kind = TransitionKind);

23: T ′ ← T ;

24: T ′← Change(T ′ , v); {No need to change AddMoreFaults}

25: Stuck-at Fault:

26: T ← Find(M , kind = TransitionKind);

27: T ← Change(T , v);

28: AddMoreFaults← false ;

29: Transient Fault:

30: T ← Find(M , kind = TransitionKind);

31: if (cnt ≤ c) then

32: T ← Change(T , v);

33: else

34: AddMoreFaults← false;

35: end if

36: Timing Fault:

37: T ← Find(M , kind = TransitionKind); T ′ ← T ;

38: T ′← Change(T ′ , v); AddMoreFaults← false;

39: end while

Based on the type of the fault, the algorithm scans the XML file, finds the corresponding part,

and changes it as necessary for the fault. For message loss (Lines 3-7), we identify where the

message loss occurs by finding a transition T that has a label kind = synchronization. This label

represents that T is synchronizing with other modules. Utilizing T , we create T ′ by removing

its synchronization channel, and inject it in parallel with T into the model. In the case studies,

we apply this approach to generate several fault-affected models, each model considers the case

89

where one specific message may be lost. This can be trivially generalized to generate a model

that simultaneously loses multiple messages. To model the other approach of modeling message

loss described in Section 5.3.1, the synchronization channel of T ′ should be changed to a faulty

channel (by calling function Change). After injecting the fault, we use a variable AddMoreFaults

to terminate the algorithm.

To model a fail-stop fault (Lines 8-20), we use an arbitrary transition T . If T has a label

kind=assigment, which means T has an assignment statement, we add down ← 1 to its set of

assignments. If it does not, we define a new label kind=assigment and add down ← 1 to its set

of assignment. This step is repeated by every transition in the component subject to fail-stop fault.

Also we add the guard down=0 to the set of T ’s guards. For modeling the effects of failing a

specific component, the locations of transition T (source label for the starting location and target

label for the ending location) needs to be given to the algorithm.

If the fault is a Byzantine fault (Lines 21-24), we inject a new transition T ′ in parallel to the

original transition T , which has an assignment label. The value of the variable v, which is subject

to faults, is corrupted in T ′. Choosing T ′, the fault is injected to the model, while by choosing

T , the model continues its normal execution. The occurrence of this fault does not terminate the

algorithm, while injecting a stuck-at fault (Lines 25-38) terminates the algorithm.

For transient faults (Lines 29-35), we define a counter that controls the number of occurrence

of the fault. When the counter is greater than the input c, the algorithm terminates.

To model timing faults (Lines 36-38), we inject a new transition T ′ in parallel to the original

transition T , which has a guard label. Then, we find the guard that has a clock variable in it and

change the guard using the variable delayt defined by the designer.

90

5.4 Summary

In this paper, we focused on analyzing the effect of different types of faults that are of concern in

the SystemC TLM program. We differentiated faults (that need to be tolerated) and bugs (that need

to be prevented) and focused on the former.

We began with the extracted model from the given SystemC TLM model. We considered four

types of faults, message faults, permanent faults, transient faults, and timing faults. For model-

ing faults in Promela models, we considered transient faults and injected them into the Promela

models extracted from the SystemC TLM programs. For UPPAAL timed automata models, we

considered four types of faults introduced in Section 5.1. For each type of faults, we utilized a

generic approach to transform the UPPAAL model to obtain a fault-affected model. Subsequently,

this model was used in Promela and UPPAAL to obtain a counterexample. We were either able

to verify that the original specification is satisfied or find a counterexample demonstrating the vi-

olation of the original specification. Moreover, the time for evaluating the effect of faults was

comparable (0-57%) to the verification in the absence of faults.

In order to demonstrate our approach for Promela models, we conducted two case studies and

studied the Promela models in the presence of different transient faults. The analysis of UPPAAL

timed automata models in the presence of faults is discussed in the next chapter.

91

Chapter 6

The Tool UFIT: The Fault Injector To

UPPAAL Timed Automata

In this chapter, we explain our tool, UFIT. This tool is developed based on Algorithm 1 explained

in Chapter 5. In the following sections, first, we explain the input of UFIT. Thereafter, using

a runtime example, we introduce how UFIT works and inject different types of faults into the

example. Finally, we demonstrated our approach with several case studies.

6.1 Input of UFIT

The input of UFIT is a fault-intolerant timed automata model in XML format and a set of param-

eters. We describe these parameters and our fault modeling approach used in UFIT utilizing a

running example from the literature of UPPAAL timed automata, the Fischer’s mutual exclusion

protocol [?, 9] (Figure 6.2).

6.1.1 The running example

Fischer’s protocol is designed to ensure mutual exclusion among several processes (5 processes

here) competing for a critical section using timing constraints and a shared variable id. In each

process P , the process goes to a request location req if it is the turn for no process to enter the

critical section (id==0). After x time units in req (0 ≤ x ≤ k), P goes to the wait location and

92

sets id to its process ID. Finally, after at least k time units, P enters the critical section cs if it is its

turn. The Fischer’s protocol satisfies the following set of requirements/properties in the absence of

faults:

SPEC 1: A[] not deadlock

SPEC 2: P(i).req --> P(i).wait

SPEC 3: A[] P1.cs + P2.cs + P3.cs + P4.cs + P5.cs <=1

where SPEC 1 checks wether the system is deadlock-free. The liveness property SPEC 2 checks

that whenever a process tries to enter the critical section, it will always eventually enter the waiting

location. The safety property SPEC 3 checks for mutual exclusion of the location sc.

6.2 Internal Functionality

To generate the fault-affected model, in addition to the fault-free model, we need to specify the

type of the faults and a set of parameters (see Figure 6.1). The fault types that UFIT considers are

as follows.

• Message faults, where a message may be lost while forwarding from one module to another;

• Fail-stop faults, where a module fails functionally and the other modules cannot communi-

cate with it;

• Byzantine faults, where the faulty component continues to run but produces incorrect results;

• Stuck-at faults, where a signal gets stuck-at a fixed value (logical 0, 1, or X) and cannot

switch its value, and

93

Figure 6.1: The GUI of UFIT.

94

• Transient faults, where the state of system components is perturbed without causing any

permanent damage.

In addition to the fault type, the following three discrete variables can be specified:

• Variable subject to faults. We are not allowed to increase or decrease the value of the clock

variable;

• Module subject to faults. We assume any module can be subject to faults, and

• Number of faults. The number of occurrences of the transient faults that may take place

during the computation needs to be defined. The default setting value is 1.

Remark 6.1 If any of the above variables is not specified, UFIT will set a value for them arbitrar-

ily. For instance, if the module subject to fail-stop faults is not specified, UFIT will fail one of the

modules randomly.

6.2.1 Brief discussion about modeling of faults in UFIT

Given the parameters and the fault type, intuitively we model the faults as follows. To model a

message fault, we inject a new transition into the module subject to faults in parallel to a transition

that has a synchronization channel. The set of assignments/guards of the new transition is similar

to that of the original transition except that the synchronization channel is changed. To model a

fail-stop fault, we define a variable down that shows if a module is failed (down=1). For example,

Figure 6.3 illustrates that automaton P1 is failed since P1 cannot go to location wait and has

to stay at location req forever. To model stuck-at faults, UFIT finds the location of the variable

subject to faults and changes it to a random value. For example, in Figure 6.4, the value of id is

stuck at 5, thereby P1 cannot enter the critical section. For modeling byzantine faults, UFIT adds a

95

x =0

x =0,
id=1

x =0
id=0

x <=k

wait

reqA

cs

id==0

x <=k
id==0

x >k && id==1

Figure 6.2: Fault-free model of Fischer’s mutual exclusion protocol.

x <=k

wait

req

x = 0,
id = 1

x = 0

A x = 0, down=1

cs

id = 0 id==0 &&
down==0

x >k && id==1 &&
down==0

down==0
x <=k &&
down==0

id==0 && down==0

Figure 6.3: Modeling fail-stop fault for Fischer’s mutual exclusion protocol.

transition in parallel to that of the original automaton that updates the variable subject to faults and

changes its value arbitrarily. Figure 6.5 shows injecting a byzantine faults that changes the value

of id, if the faults occur. Modeling of transient faults is similar to that of byzantine faults except

that the occurrence of transient faults is limited. UFIT utilizes the number of faults defined in the

GUI to limit the number of occurrence of this type of faults.

x =0

x =0,
id=5

x =0
id=0

x <=k

wait

reqA

cs

id==0

x <=k
id==0

x >k && id==1

Figure 6.4: Modeling Stuck-at 5 fault for Fischer’s mutual exclusion protocol.

96

x =0,
id=5

x =0

x =0,
id=1

x =0
id=0

x <=k

wait

reqA

cs

x <=k

id==0

x <=k
id==0

x >k && id==1

Figure 6.5: Modeling Byzantine fault for Fischer’s mutual exclusion protocol.

6.2.2 Analysis of Results

In this section, we analyze the fault-affected models. Also, in addition to Fischer’s protocol, we

include the results of two other examples adapted from [9]: the train gate and vikings problems.

The train gate problem is a railway control system which controls access to a bridge for several

trains. The bridge is a critical shared resource that may be accessed only by one train at a time.

The system is defined as a number of trains and a controller. The model satisfies the following

properties in the absence of faults:

SPEC 1: A[] not deadlock

SPEC 2: E<> Train(0).Cross and (forall (i : id_t) i != 0 imply Train(i).Stop)

SPEC 3: A[] forall (i : id_t) forall (j : id_t)

Train(i).Cross && Train(j).Cross imply i == j

SPEC 4: Train(0).Appr --> Train(0).Cross

where SPEC 2 shows that train 0 can cross bridge while the other trains are waiting to cross.

SPEC 3 illustrates that there is never more than one train crossing the bridge (at any time in-

stance), and SPEC 4 provides that train 0 (similarly any other train) approaches the bridge, it will

eventually cross.

In the Vikings problem, four Vikings want to cross a bridge at night, but they have only one

97

torch and the bridge can only carry two of them. Thus, they can only cross the bridge in pairs and

one has to bring the torch back to the other side before the next pair can cross. Each viking has

different speed. The question is whether it is possible that all the vikings cross the bridge within

a certain time. This example is comparable to the question if a packet can reach its receiver in

a given time limit in a communication network/Network on Chip (NoC) system. The TA model

satisfies the following properties in the absence of faults:

SPEC 1: A[] not deadlock

SPEC 2: E<> Viking1.safe

SPEC 3: E<> Viking1.safe and Viking2.safe and Viking3.safe and Viking4.safe

where SPEC 2 illustrates that the first viking eventually gets to the other side of the river and

SPEC 3 shows that all the vikings are in their safe location.

The results of analyzing the examples in the presence of faults are as shown in Table 6.1. In

this table, if requirement x is satisfied, we include s in the table, otherwise v.

6.3 Case Studies on Modeling Faults for UPPAAL Timed Au-

tomata Models

In this section, we use UFIT to inject different types of faults into three case studies in Sections

6.3.1, 6.3.2, and 6.3.3. The first two case studies are modeled in Loosely-Timed (LT) coding style

and the last case study is using Approximately-Timed (AT) coding style.

98

Protocol Cause Affected Locations
SPEC Total Time

1 2 3 4 (ms)

Fischer’s protocol

Fault-free model – s s s – 1250

Fail-stop Process P1 v v s – 143

Transient Process P1 v s s – 79

Stuck-at Process P1 v s s – 81

Byzantine Process P1 v s s – 149

Train-Gate protocol

Fault-free model – s s s s 218

Fail-stop
Controller v v s v 35

Train 0 v v s v 362

Message loss
Train to Controller v s s v 210

Controller to Train v s s v 241

Viking protocol

Fault-free model – s s s – 25

Fail-stop
Viking 0 v v v – 23

Torch v v v – 15

Message loss Viking to Torch v v v – 17

Byzantine (L=1) Torch v s v – 29

Stuck-at 0 Torch v s s – 15

Stuck-at 1 Torch v s v – 15

Transient (L=1) Torch v s v – 14

Table 6.1: Modeling and analyzing the impact of faults.

6.3.1 Case Study 1: Fault Modeling and Impact Analysis

In this section, we model timing faults and analyze their impacts on the model extracted in Section

4.7. As described in Section 5.3, we use delayt to inject a delay to the extracted model. For

instance, in the extracted timed automaton in Figure 4.7, by injecting the dealyt, we change the

guard of the transition (L4, L5) to x + delayt ≤ delay1+delay2. As a result, the guard does not

become true and the program gets stuck at location L4. This fault violates SPEC 1, SPEC 4, and

SPEC 5 of Figure 4.10.

6.3.1.1 Analysis of the fault

If the Initiator executed too late, it is unable to receive the response sent by the Memory on time

(at the delay timing point set by the Memory in the response). Also if the Memory sets the delay

99

timing point but sends it too late to the Initiator, the Initiator does not receive it on time. We model

it by injecting the timing faults into one of the locations (L4, L5), (L12, L10), (L13, L10). Injecting

the faults into these locations violates requirements 1, 4, and 5 of Figure 4.10. Table 6.2 represents

more experiments based on the causes of some timing faults in the SystemC TLM program and

their possible injecting locations in the UPPAAL model. If a requirement is violated, we show it

by xv , and if it is satisfied we show it by xs, where x is the requirement number defined in the

Figure 4.10. For example, when the Memory executed too late and the affected location is (L4,

L5), the requirements SPEC 1, SPEC 4, and SPEC 5 are violated, while SPEC 2 and SPEC 3

are satisfied. The average time for checking all these requirements is 8 ms.

Cause Affected Locations Requirement Status Total Time (ms)

Initiator executed too late

(L4, L5) 1v, 2s, 3s, 4v, 5v 8

(L12, L10) 1v, 2s, 3s, 4v, 5v 7

(L13, L10) 1v, 2s, 3s, 4v, 5v 7

Initiator executed too early
(L2, L4) 1v, 2v, 3v, 4s, 5v 4

(L3, L4) 1v, 2v, 3v, 4s, 5v 4

Memory executed too late

(L4, L5) 1v, 2s, 3s, 4v, 5v 8

(L12, L10) 1v, 2s, 3s, 4v, 5v 7

(L13, L10) 1v, 2s, 3s, 4v, 5v 7

Memory executed too early (L10, L11) 1v, 2s, 3v, 4s, 5v 5

Table 6.2: Modeling and analyzing timing faults in the memory bus system while using LT coding

style.

6.3.2 Case Study 2: Fault Modeling and Impact Analysis

In this section, we present the rules to transform the fault-free model explained in Figures 4.12 and

4.13 into the fault-affected model. For each type of faults, first, we identify a generic approach for

modifying the UPPAAL model. Then, we identify the revised model and evaluate its correctness.

100

6.3.2.1 Message Faults

In our extracted model, we consider an arbitrary number of message loss faults that can lose any of

the messages in the system. Hence, we introduce a transition without any synchronization channel

to model a message loss. We inject this transition at different components. For example, we inject

a new transition into the Router in Figure 4.12 between Locations L9 and L10. As a result, the

Router uses this transition and changes its state to L10 and waits to receive the response from one

of the Targets. The desired Target, however, does not receive any messages from the Router and

waits at its initial state.

Cause Affected Locations Requirement Status Total Time (ms)

Fault-free model – 1s, 2s, 3s, 4s, 5s 13

Message loss

Initiator to Router 1v, 2v, 3v, 4s, 5v 12

Router to Target 1v, 2v, 3v, 4s, 5v 12

Target to Router 1v, 2v, 3v, 4s, 5v 13

Router to Initiator 1v, 2v, 3v, 4s, 5v 13

Component failure

Initiator 1v, 2v, 3v, 4z, 5v 13

Router 1v, 2v, 3v, 4s, 5v 13

Target 1v, 2v, 3v, 4s, 5v 14

Byzantine

Initiator 1s, 2z, 3z, 4s, 5s 14

Router 1s, 2z, 3z, 4s, 5s 14

Target 1s, 2z, 3z, 4s, 5s 14

Stuck-at

Initiator 1s, 2z, 3z, 4s, 5s 14

Router 1s, 2z, 3s, 4s, 5s 14

Target 1s, 2z, 3s, 4s, 5s 14

Table 6.3: Modeling and analyzing faults in the NoC switch while using LT coding style.

We model the message faults while the message is sent between Initiator-Router, Router-Target,

Target-Router, and Router-Initiator. The results are as shown in Table 6.3. In this, and subsequent

tables, if requirement x is satisfied, we include xs in the table. If it is violated, we include xv . If

the answer is more complicated, we include xz and explain the result in the text. Also, SPEC 5

is for all possible Initiators. Hence 5s means that the requirement for all the Initiators is satisfied,

101

and 5v means that the requirement in at least one of the Initiators is violated. The results in Table

6.3 illustrate that the average total time in the fault-affected model (14 ms) is comparable to that in

the fault-free model (13 ms). Note that requirement SPEC 5 is defined for the Initiator modules

and can be defined for the Router and Targets in the same way.

As discussed in Section 5.1, we consider three types of permanent faults, fail-stop, Byzantine

faults and stuck-at faults. Next, we explain modeling of permanent faults on the extracted UPPAAL

model.

6.3.2.2 Modeling and analyzing fail-stop faults in the case study

In this example, we consider three types of fail-stop faults: Initiator, Router, and Target failures.

The results for failure of different components is as shown in Table 6.3. As expected, a router

failure causes all properties to be violated. However, failure of initiator or target does not lead

to the whole system failure. Specifically, regarding the Initiator failure, the location of the fault

injection affects satisfaction ofSPEC 4. If the fault occurs after setting the attributes in the sending

transaction, the fault does not violate SPEC 4. If the fault occurs while setting the attributes, the

requirement SPEC 4 is violated. Hence, we show it as 4z.

6.3.2.3 Modeling and analyzing Byzantine faults in the case study

In this case study, we consider the case where the variable of concern is cmd. For this purpose,

we inject the faults in the Initiator such that the cmd attribute is non-deterministically changed. In

other words, fault causes the initiator to behave maliciously by corrupting the cmd variable from 0

to 1 and vice versa. The effects of these faults on the program are as shown in Table 6.3. As shown

in Table 6.3, the resulting program satisfies SPEC 1, SPEC 4 and SPEC 5 and the satisfaction

of SPEC 2 and SPEC 3 depends upon the effect of Byzantine fault. Specifically when cmd is

102

changed from 0 to 1 (respectively 1 to 0), SPEC 2 (respectively SPEC 3) is violated and SPEC

3 (respectively, SPEC 2) is satisfied. We have also considered Byzantine failure at the Router and

Target. The results are as shown in Table 6.3.

6.3.2.4 Modeling and analyzing stuck-at faults in the case study

Modeling of the stuck-at faults is similar to that in Byzantine faults except that once the fault

occurs, the affected variables cannot change. We consider the stuck-at fault for the variable cmd

to 1 in Table 6.3, which means the Initiator is always requesting a write action. As a result, when

a write action is requested, the effects of stuck-at faults cannot be found and SPEC 3 is satisfied.

6.3.3 Case Study 3: Fault Modeling and Impact Analysis

In this section, we model and analyze the impact of all four types of faults explained in Section 5.1

on the model extracted in Section 4.10.

6.3.3.1 Message Faults

The modeling of message loss in this case study is similar to that in Section 6.3.2 with the ex-

ception that the program is using nb transport fw and nb transport bw for forwarding and re-

ceiving transactions. There are four types of messages in this system, BEGIN REQ,END REQ,

BEGIN RESP and END RESP. Hence, we consider the case where any one of these messages

is lost. These faults are modeled by identifying the locations where the message is sent and adding

new transitions as described in Section 6.3.2.1. The experimental results are represented in Table

6.4.

As an illustration, consider the case when the END RESP is lost. In this case, the Initiator

would not get blocked and is able to initiate a new transaction, since we have pipelined transactions

103

in the system. This requirement corresponds to satisfaction of SPEC 1 and SPEC 4 in Figure

4.25. These properties are validated in Table 6.4 in the presence of a message loss of END RESP.

Cause Affected Locations Requirement Status Total Time (s)

Fault-free model – 1s, 2s, 3s, 4s, 5s, 6s, 7s 5

Message loss

Initiator-sending BEGIN REQ 1v, 2v, 3s, 4v, 5v, 6v, 7s 4

Initiator-sending END RESP 1s, 2s, 3s, 4s, 5s, 6s, 7s 4.5

Memory-sending END REQ 1v, 2s, 3v, 4v, 5v, 6v, 7s 4.2

Memory-sending BEGIN RESP 1s, 2s, 3v, 4s, 5v, 6v, 7s 4.2

Component failure
Initiator 1v, 2v, 3v, 4v, 5v, 6v, 7s 4

Memory 1v, 2v, 3v, 4v, 5v, 6v, 7s 4

Byzantine
Initiator 1s, 2s, 3s, 4s, 5z, 6z, 7s 5.5

Memory 1s, 2s, 3s, 4s, 5z, 6z, 7s 5.5

Stuck-at

Initiator-stuck-at 1 1s, 2s, 3s, 4s, 5z, 6s, 7s 5.5

Memory-stuck-at 1 1s, 2s, 3s, 4s, 5z, 6s, 7s 5.5

Initiator-stuck-at 0 1s, 2s, 3s, 4s, 5s, 6z, 7s 5.5

Memory-stuck-at 0 1s, 2s, 3s, 4s, 5s, 6z, 7s 5.5

Transient

Initiator-cmd attribute 1s, 2s, 3s, 4s, 5z, 6s, 7s 5.5

Memory-cmd attribute 1s, 2s, 3s, 4s, 5z, 6s, 7s 5.5

Initiator-phase attribute 1z, 2z, 3z, 4z, 5v, 6v, 7v 5.7

Memory-phase attribute 1s, 2s, 3s, 4s, 5z, 6z, 7v 5.7

Table 6.4: Modeling and analyzing faults in the memory bus system while using AT coding style.

6.3.3.2 Permanent Faults

We model failure of components, Byzantine faults, and stuck-at faults in this case study. The

structural changes performed for these faults to obtain the fault-affected UPPAAL model is similar

to that in Section 6.3.2. In particular, the Byzantine and stuck-at faults are modeled like that in

Section 6.3.2.

In modeling component failure, either the Initiator or the Memory can fail. The location of

injecting the variable downc can be different and does not change the results of Table 6.4. Failure

of one of the components blocks the whole system and only the last requirement explained in

Figure 4.25 is satisfied, since the message ordering is not changed.

104

In Byzantine faults, we consider the case where the variable of interest is the cmd variable.

And, the Byzantine component can change it from 0 to 1 and vice versa. The effects of these faults

on the model are as shown in Table 6.4.

In this example, we consider the stuck-at fault for the variable cmd to either 0 or 1. When cmd

is stuck-at 1 (respectively 0) SPEC 6 (respectively, SPEC 5) in Figure 4.25 is trivially satisfied.

6.3.3.3 Transient Faults

To model transient faults, the designer needs to identify variables of concern as far as transient

faults are concerned. By default, we consider that all variables could be corrupted. In this case

study, we consider the case where transient faults can change the command or phase.

To model the transient fault that affects a given variable, we model it as a one-time corruption

of that variable at any reachable state in the program. (The modeling of transient faults are similar

to Byzantine faults except that the transient faults occur only once. By contrast, a Byzantine

component can send incorrect data continuously.) To illustrate the transient faults, we consider

two instances: (1) where cmd attribute is corrupted, and (2) where phase argument is corrupted.

Regarding a transient fault that affects cmd, satisfaction of SPEC 5 and SPEC 6 in Fig-

ure 4.25 depends upon whether cmd is corrupted from 0 to 1 or from 1 to 0. Hence, Table 6.4

represents it as 5z and 6z.

Regarding a transient fault that affects phase attribute, satisfaction of SPEC 1, SPEC 2,

SPEC 3 and SPEC 4 in Figure 4.25 depends upon the actual effect of the transient fault. For

example, if BEGIN REQ is perturbed to END RESP then SPEC 3 is violated. However, if

END RESP is perturbed to BEGIN REQ then SPEC 3 is satisfied. Hence, Table 6.4 represents

this as 1z, 2z, 3z and 4z .

105

6.3.3.4 Timing Faults

To model the timing faults, we utilize the same approach as that explained in Section 6.3.1. Table

6.5 represents several experiment results based on the causes and locations of the timing faults. For

example, if the Initiator executed too early, the affected locations in the UPPAAL model would be

in the Initiator automaton and either before sending a transaction with phase BEGIN REQ or

before receiving the transaction with phase END REQ. Also the average time for verifying the

requirements are very similar to that for verifying the requirements of Figure 4.26 in the absence

of faults.

Cause Affected Locations
Requirement Total

Status Time (s)

Initiator executed Before sending begin req 1v, 2v, 3v, 4s, 5v, 6s 11.8

too early Before receiving end req 1v, 2s, 3s, 4v, 5v, 6s 12

Initiator executed

After dispatching from peq 1v, 2s, 3s, 4v, 5v, 6v 16.9

While inserting into peq 1v, 2s, 3s, 4v, 5s, 6v 16.9

too late Before sending end resp 1v, 2s, 3s, 4v, 5s, 6s 17

Memory executed While inserting into peq 1v, 2s, 3s, 4s, 5v, 6v 14.2

too early During the 2nd insertion into peq 1v, 2s, 3s, 4v, 5v, 6v 16.1

Memory executed After the 2nd dispatch from peq 1v, 2s, 3s, 4v, 5v, 6v 16.9

too late While inserting into peq 1v, 2s, 3s, 4v, 5s, 6v 16.9

Table 6.5: Modeling and analyzing timing faults in the memory bus system while using AT coding

style.

6.4 Summary

In this chapter, we presented the tool UFIT and explained how it models different types of faults

in timed automata models. For each type of faults, we utilized a generic approach to transform the

UPPAAL model to obtain a fault-affected model. Subsequently, this model was used in UPPAAL

to conclude tolerance to faults or to obtain a counterexample. We were either able to verify that

106

the original specification is satisfied or find a counterexample demonstrating the violation of the

original specification. Moreover, the time for evaluating the effect of faults was comparable (<

165%) to the verification in the absence of faults.

UFIT models one type of faults at a time. We can also inject multiple fault types into the model

by giving the fault-affected model obtained from UFIT to UFIT and inject a new type of faults.

107

Chapter 7

Model Slicing Timed Automata Models

In this chapter, we present a model slicing technique for reducing the verification time and space

of fault-free and fault-impacted timed automata models extracted from SystemC TLM programs.

Specifically, we focus on the use of model slicing considered in [51] to slice timed automata

models. For this purpose, first, we explain a brief history of model slicing. Then, we introduce

a running example that we utilize to explain our model slicing technique. Finally, we discuss our

slicing algorithm and illustrate it with the running example.

7.1 Model Slicing

Program slicing is a source code analysis and manipulation technique, in which a subprogram is

identified based on a user-specified slicing criterion. The criterion captures the point of interest

within the program, while the process of slicing consists of following dependencies to locate those

parts of the program that may affect the slicing criterion [78]. Program slicing has been success-

fully applied in the context of model checking of untimed systems. Millett and Teitelbaum [63]

study slicing of Promela models and propose the so called imprecise slice. However, they do not

formalize their slicing methods. Hatcliff et al. [45] present a formal study of slicing sequential

programs preserving LTL and extend their techniques to concurrent Java programs [71]. Slicing

is also present in the IF project [16] concerning timed systems. Nonetheless, it is defined for its

untimed subset only [15].

108

The closest related work on using static analysis in timed system verification concerns the

concept of influence information [17]. The technique can be understood as slicing I/O Timed

Components, timed safely automata extended with interfaces. The approach does not use the

notion of slicing criterion, and, instead, it preserves the branching structure of a transition system

up to the propositional assignment given over the external observer. Another related methods

are the active-clock reduction technique [22] and more general relevant guard abstraction [8] for

timed safety automata. Since they focus on clocks reduction they are orthogonal to ours and can

be combined with it. Finally, Janowska and Janowski in [50] target the slicing in the context of

timed systems considering reduction of intermediate language of Verics [50]. The formalism is

a specification language with no explicit clock variables, but restricting the time of transitions

executions by means of delays.

7.2 The Running Example: The Alternating Bit Protocol

In this section, we present a version of the well-known alternating bit protocol [7] as a running

example to explain our slicing technique better. This protocol provides reliable communication

over a network service that sometimes looses messages. It uses a one-bit sequence number (which

alternates between 0 and 1) in each message and an acknowledgment to determine whether the

message must be retransmitted. The system consists of three automata running in parallel, Sender,

Receiver and Faulty-Buffer, as shown in Figures 7.1, 7.2, and 7.3.

The Sender transmits portions of data, which represents some computations performed in real

systems. In our example they are succeeding numbers modulo N . Sender sends each portion

accompanied with the bit to Faulty-Buffer. Then it waits for an acknowledgment. If the value of the

acknowledgment is the same as the value of the bit, then the message is treated as delivered and the

109

Figure 7.1: The Sender automaton for the alternating bit protocol.

Figure 7.2: The Faulty Buffer automaton for the alternating bit protocol.

110

Figure 7.3: The Receiver automaton for the alternating bit protocol.

value of the bit flips. Otherwise the message is retransmitted. The message is also retransmitted, if

no acknowledgment comes within T time units (the timeout is modeled by the clock x). Receiver

waits until it gets the message from Faulty-Buffer, then it acknowledges receipt of the message and

compares its sequence number with the bit value. If they are equal, it changes the value of the bit

and accepts the message. Otherwise it waits for another message. Faulty-Buffer accepts a message

from Sender or an acknowledgment from Receiver and forwards it respectively or looses it. The

clock y is used to model transmission delays, which are between d and D time units.

For the alternating bit protocol, we define a property φ as follows:

φ = A[] (Sender.snd init→ s bit == r bit)

This property verifies that if Sender is in the location s init, the value of Sender’s bit is equal to the

value of Receiver’s bit. The important point to note here is that this property does not depend on

the value of variables s data, b data, and r data.

111

7.3 UPPAAL Timed Automata Model Slicing

In this chapter, we explain our model slicing algorithm. Our slicer gets an UPPAAL timed automata

model along with a set of properties as inputs and generate a sliced version of the timed automata

model as as output. Our slicer, similar to [51], uses a two step approach . In the first step (Algorithm

2), the slicer identifies the locations, say L, and actions, say A (including guards, updates, and

assignments), that need to be preserved in the sliced automata. This is a recursive procedure where

the initial set of states that need to be preserved are determined by the property under consideration,

say φ (Lines 1-2 in Algorithm 2). For example, if the property under consideration is p leadsto q

then a location that accesses p and q must be preserved in the sliced automata. Next, we explain

these two steps in detail.

Algorithm 2 Timed Automata Model Slicing

Input: UPPAAL modelM = (Q, q0,X, T), property φ;

Output: Sliced UPPAAL modelM ′;

1: Linit = locations in φ and their immediate predecessors;

2: Ainit = enabling actions defining variables in φ;

3: L := Linit; A := Ainit;

4: while (L or A gets updated) do

5: Utilize the dependencies to update L and A; end while

6: return M ′ = slicer-builder(L,A,M);

7.3.1 Identifying the set of relevant locations and actions (L and A)

In order to identify L and A, first, our algorithm needs to check if the model contains any arrays

and functions. Intuitively, the UPPAAL model may have two types are arrays: (a) an array of

automata and (b) an array of variables. When we have an array of automata with n entries then

essentially, we replace it by n different automata. In each automaton, we need to replicate local

variables but the global variables remain the same in all n automata. Similarly, for handling an

112

array of variables with n entries, we replace it by n different variables. Subsequently, we need to

replace every entry in every automaton that uses the array so that the array reference is replaced by

the appropriate variable. It also requires replicating the local variables in each automaton. This is

acceptable since UPPAAL already does this in the verification process.

Regarding functions, we consider the syntactic code involved in each function to identify vari-

ables that are accessed during that function. Since our goal is to slice the model, we do not need to

evaluate the function (this would be done by UPPAAL as part of verification). Instead, we need to

identify if the function is accessing/changing any variables of interest. This can potentially intro-

duce some false dependencies, i.e., dependencies that do not exist in reality but are suspected by

the slicer. However, this is acceptable as well since any errors caused in this fashion would result

in a larger (but still correct) model.

After considering arrays and functions, our algorithm utilizes the property under consideration

and generates the set of initial relevant locations and initial relevant actions, say Linit and Ainit,

respectively. The Linit consists of the locations in Φ and their immediate predecessors. The Ainit

consists of all the actions that update any of the variables included in Φ. As an instance, for the

alternating bit protocol in Figures 7.1, 7.2, and 7.3, Ainit = {s bit = 1− s bit, r bit = 1− r bit}

and Linit = {s init, s check}.

Subsequently, the slicer identifies additional locations, variables, guards, and statements that

need to be preserved. The reasons for preserving additional details in the sliced model include (1)

control dependency, (2) data dependency, and (3) time dependency (Line 5 in Algorithm 2). As

an illustration of control dependency, assume that location q1 is preserved in previous iteration.

Now, if the UPPAAL model includes a state such as q2 such that (1) there is a computation from

q2 that reaches q1 and (2) there is a computation from q2 that never reaches q1. Then, q2 must

also be preserved since we need to know whether the path followed from q2 will reach q1 or not.

113

And, deciding whether q1 is reached or not can affect satisfaction (or violation) of the property

of interest. As an illustration of time dependency, consider the case where q1 is preserved in the

previous iteration. Suppose there is a path from q2 to q1 and the time spent in state q2 can be

nonzero then q2 must also be preserved. (By definition, time spent in states that are marked urgent

in UPPAAL is 0.)

Algorithm 3 Slice Builder

Input: The sets of locations L and actions A, and ModelM ;

Output: Sliced timed automata modelM ′ = (Q′, q0
′

,X ′, T ′);
1: Q′ = R;

2: if (q0 ∈ L) then q0
′

= q0;

3: else q0
′

= the first reachable location in L from q0; end if

4: T ′ =
⋃

out(L) s.t. action of each out(L) ∈ A;

5: if (target(out(L)) 6∈ L) then
6: target(out(L)) = the first reachable location in L; end if

7: return M ′;

7.3.2 Building the sliced model

When the set of relevant locations and actions (L,A) is ready, in the second step, the slicer builds a

revised model that only includes the relevant locations and actions (Algorithm 3). While building

the sliced model, if the initial location of an automaton is not included in L, the first reachable

location in L becomes the new initial state (Lines 2-3 in Algorithm 3). Also, if the target of an

outgoing transition of a location in L is not included, the first reachable location in L becomes the

target of that outgoing transition (Lines 5-4 in Algorithm 3). As an illustration, consider Figure 7.4

where q1 and q4 are relevant locations that need to be preserved and q2 and q3 are locations that are

not relevant. In that case, the outgoing transition of q1 goes into q4. Moreover, the actions of each

transition are those which are included in A (Line 4 in Algorithm 3). The proof of correctness of

the model slicing approach is discussed in [51].

114

Figure 7.4: Building the sliced model.

The set of locations of each automaton of the sliced system consists of relevant locations of the

original automaton. If an automaton has no relevant locations, it means that the whole automaton

is not relevant in context of considered properties. The set of variables of the slice consists of

variables of the original system which appear in relevant operations. In fact, the only clocks that

are reduced are used exclusively to ensure that time cannot progress in some locations. For each

automaton the set of transitions is composed of transitions of the original automaton going out

of relevant locations. If an original transition goes to a non relevant location, then the target of its

counterpart in the slice is the relevant location to which an invisible path exits. It can be shown that

for a relevant location and each of its outgoing transitions there exists exactly one such location.

7.4 Applying the Model Slicing on the Alternating Bit Protocol

Let us present how our algorithm works for our example. The construction of the sets L and A

starts with the initial sets Linit and Rinit. Hence, at the beginningA = {s bit = 1− s bit, r bit =

1− r bit} and L = {s init, s check}. According to Lines 4 and 5 of the algorithm, the following

operations are added to set A: s ack == s bit, (s ack! = s bit), r tbit == r bit, and r tbit! =

r bit. The operations s ack == s bit and s ack! = s bit are added since the location s init is in

L and control depends on the location s check. The operations r tbit == r bit and r tbit! = r bit

are added since the operation (r bit = 1− r bit) is in A.

115

Then, setA is successively augmented by the operations that depend on the operations currently

included inA. These newly augmented operations are s ack = b ack, r tbit = b bit, b bit = s bit,

and b ack = r bit. The operation s ack = b ack is added since s ack == s bit is included in

A. Likewise, the operation r tbit = b bit is added as r tbit == r bit is included in A. Also, the

operation b bit = s bit is added as the operation r tbit == b bit is included in A. Finally, the

operation b ack = r bit is added since the operation s ack == b ack is included in A.

Next, the following locations are added to setL: snd send, rcv ack, buffer data and buffer ack.

These locations are added to L since their outgoing transitions contain operations that are included

in A. Additionally, the algorithm adds the locations snd wait, rcv init, and buffer init to set

L since there are locations currently include in L that are time dependent on them. Finally, the

second iteration does not change any of the sets A and L and, as a result, the loop ends.

When the sets of relevant locations and actions, L and A, are ready, we utilize Algorithm

3 to build the sliced timed automata model. The automata built for Sender and Faulty Buffer

automata are shown in Figures 7.5 and 7.6 respectively. In Sender automaton (Figure 7.5), the

location snd produce disappears in the sliced version since it appears to be non-relevant as no

location depends on it. Also, there are no variables s data, r data and b data in either Sender

automaton or Faulty Buffer automaton (Figure 7.6) as they do not occur in any of relevant actions.

Additionally, the Receiver automaton remains the same since none of the aforementioned non-

relevant variables is used in this automaton.

7.5 Summary

In this chapter, we specified our modeling slicing technique and explained it with a running exam-

ple. Additionally, We identified how to conduct functions and arrays in a timed automata model.

116

Figure 7.5: The sliced Sender automaton for the alternating bit protocol.

Figure 7.6: The sliced Faulty Buffer automaton for the alternating bit protocol.

117

We have also developed a tool for our model slicing technique which will be introduced in the next

chapter.

118

Chapter 8

USlicer: A Tool for Model Slicing UPPAAL

Timed Automata Models

In this chapter, we present the tool USlicer (Uppaal Slicer for timed automata) and explain its

effectiveness on verifying timed automata models. Given the fault-free or fault-affected timed

automata model along with a set of properties, USlicer generates a sliced version of the model

based on the property under consideration. Our results show that, in some cases that the verification

of the model is not possible due to complexity, utilizing USlicer helps us to make the verification

possible in a reasonable time and space.

8.1 Internals of USlicer

USlicer targets UPPAAL timed automata models and slices them based on a set of properties of

interest. It is written in Python and its source code is publicly available. The input of USlicer is

a timed automata model in XML format. For parsing the XML file, we utilize XML ElementTree

library of python. The Element type is a flexible container object, designed to store hierarchical

data structures, such as simplified XML infosets, in memory. The ElementTree wrapper type adds

code to load XML files as trees of Element objects, and save them back again. Next, we explain

the XML file that USlicer and UPPAAL tool-set accept as an input in some detail.

119

8.1.1 XML format

XML is a markup language that is used to describe data. The basic building block of an XML file

is an element, defined by tags. An XML file that represents an UPPAAL timed automata model

contains the following main tags:

• “< location > statements < /location >” and

• “< transition > statements < /transition >”.

The former shows the locations and the latter represents the transitions of the timed automata

model. Also, the statements can be a name, an invariant, or a type (e.g., urgent, committed) for

locations, and a source, a target, or labels for transitions. The source and target tags represent the

position of the transition. The label tag shows whether the transition has a synchronization channel,

an assignment operation, and/or a guard condition. USlicer utilizes XML ElementTree library to

parse the XML file of the given program.

As explained in Algorithms 2 and 3 in Chapter 7, USlicer utilizes a 2-step approach for slicing

the timed automata model. To evaluate the effectiveness of USlicer, we consider two case studies

in the following sections. The first case study is based on the producer-consumer program and is

conducted in Loosely-Timed (LT) coding style. Such a style of coding heavily relies on a blocking

transport interface b transport(). The second case study is based on the memory-mapped buses and

is conducted in Approximately-Timed (AT) coding style. In this style of coding, designers benefit

from a non-blocking transport interface nb transport(). In general, the blocking transport interface

is only able to model the start and end of a transaction, whereas the non-blocking interface allows

a transaction to be broken down into multiple timing points.

120

8.2 Case Study 1: Producer-Consumer Program

In this example, a producer and a consumer communicate through a blocking transport. The pro-

ducer generates a piece of data, puts it into a shared fixed-size (3 here) buffer and waits for the

consumer to consume the data. When the data is consumed, the producer generates the next piece

of data. Given the SystemC TLM program of this example, first, we extract the timed-automata

model (as explained in Chapter 4). To ensure that the timed-automata model captures the require-

ments of the TLM program, we specify the following properties/requirements that should hold in

the absence of faults:

LT1: E<> producer.writenBuff

LT2: producer.start --> producer.end

LT3: A[] (producer.writenBuff && consumer.readBuffer)

imply WriteIndex == ReadIndex

LT4: A<> (WriteIndex == ReadIndex))

LT5: E<> consumer.readBuffer

LT6: A[] (WriteIndex==ReadIndex || WriteIndex == (ReadIndex+1)%n)

The first property shows that the producer eventually generates some data. The second property

represents that when the producer starts generating some data, the data will be eventually consumed

by the consumer and the producer can start generating the next piece of data. The third property

ensures that consumer consumes the data which is currently generated by the producer and the

consumer won’t try to remove data from an empty buffer. The fourth property shows that always

consumer consumes the data generated by the producer. The fifth property represents that the

consumer eventually consumes the data. Finally, the last property illustrates that the consumer’s

and producer’s indices are never more than one apart. We have model checked these properties

121

using UPPAAL and the results are available in Table 8.1. For the model checking, we use a

personal computer with quad core CPU (2.8 GHZ each) and 6 GB memory. Next, we compare

the verification time and memory usage for verifying the above properties of the timed automata

model and its sliced model in the absence and presence of faults.

Property

Original Model Sliced Model

Verification Memory No. of No. of Verification Memory No. of No. of

Time (ms) Usage (KB) states variables Time (ms) Usage (KB) states variables

LT1 55 29,288 117 90 40 20,532 85 29

LT2 812 32,892 117 90 187 22,212 106 31

LT3 312 33,985 117 90 5 21,888 12 7

LT4 313 33,966 117 90 4 21,876 10 7

LT5 57 30,015 117 90 41 20,532 85 29

LT6 311 33,985 117 90 5 21,521 12 7

Table 8.1: Comparison of the original and sliced models in the absence of faults while using LT

coding style.

Fault Location Property

Original Model Sliced Model

status Verification Memory No. of status Verification Memory No. of

v/s Time (ms) Usage (KB) variables s/v Time (ms) Usage (KB) variables

Fail-stop Consumer LT1 s 55 30,112 91 s 39 20,535 30

Fail-stop Consumer LT2 v 45 33,023 91 v 40 21,221 32

Fail-stop Consumer LT3 s 335 35,654 91 s 5 21,810 8

Fail-stop Consumer LT4 v 26 35,361 91 v 1 21,093 8

Fail-stop Consumer LT5 v 35 30,112 91 v 32 20,435 30

Fail-stop Consumer LT6 v 54 34,120 91 v 1 21,354 8

Msg-loss Producer LT1 v 48 30,855 92 v 40 20,615 31

Msg-loss Producer LT2 v 51 32,102 92 v 45 22,333 33

Msg-loss Producer LT3 s 344 36,342 92 s 5 24,109 9

Msg-loss Producer LT4 v 15 36,345 92 v 1 23,021 9

Msg-loss Producer LT5 v 48 30,855 92 v 40 20,615 31

Msg-loss Producer LT6 s 381 34,350 92 s 5 24,109 9

Table 8.2: Comparison of the original and sliced models in the presence of faults while using LT

coding style.

8.2.1 Slicing in the absence of faults

Once we have the fault-free timed automata model, we use the model and properties provided

above to slice the model. Consider that we do not use UFIT since we want to study the model in

122

the absence of faults. For each property, we generate a sliced model and compare the verification

time, memory usage, number of states, and number of variables of the original/fault-free model

and the sliced model generated by our model slicer. We observe that our slicing technique helps to

simplify the model and reduce the time and memory needed for verifying the properties (see Table

8.1). For example, for verifying property LT3, the verification time, memory usage, number of

states, and number of variables are reduced by 98%, 35%, 89%, and 92% respectively.

8.2.2 Slicing in the presence of faults

To study the model in the presence of faults, we consider two types of faults in this example:

(1) fail-stop faults, where a module fails functionally and the other modules cannot communicate

with it, and (2) message faults, where a message may be lost while forwarding from one module

to another. We utilize UFIT to inject these faults into the fault-free model generated by STATE.

For fail-stop, we consider the scenarios where the consumer fails and is not able to consume any

data from the buffer. For the message faults, we assume that the messages may get lost while the

producer is writing them into the buffer. Table 8.2 represents the results for verifying the original

model and its sliced model in the presence of faults. We do not include the number of states in

this table since UFIT does not introduce new states into the model. We notice that the verification

time for finding the violation, memory usage, and the number of variables in the sliced models

are reduced by 11%–99%, 29%–32%, and 66%–92% respectively compare to those in the original

model. Consider that, when the property under verification is violated in the presence of faults, the

verification time may be smaller than that in the original model since the verification is terminated

upon finding the violation.

123

8.3 Case Study 2: Memory-Mapped Buses

In this section, we present an example that utilizes AT coding style for modeling an on-chip

memory-mapped communication buses between an initiator module and a target/memory module.

In this example, adapted from [1], the initiator and the memory modules communicate through a

non-blocking transport. The non-blocking transport is implemented according to the TLM base

protocol, i.e., it breaks down each transition into four phases, namely Begin Req, End Req, Be-

gin Resp, and End Resp, where each phase in a transition is associated with a timing point. More-

over, in an AT coding style, each module has a queue called Payload Event Queue (PEQ). The

PEQ is a time-ordered list of event notification in the TLM model. Utilizing STATE, we generate

the timed automata model from the given SystemC TLM program (as explained in Chapter 4). We

also define a set of properties to ensure that the generated model is correct in the absence of faults.

These properties are as follows:

AT1: E<> Init.SentBeginReq and Memory.RcvdBeginReq

AT2: Initiator.SentBeginReq --> Memory.RcvdBeginReq

AT3: A[] (Initiator.sentBeginReq && request_in_progress ==0)

imply (Memory.SentEndReq or Memory.SentBeginResp)

AT4: (Memory.SentEndReq or Memory.SentBeginResp) --> (Init.EndResp)

AT5: E<> Init.EndResp

AT6: scheduler.inititate --> scheduler.execute

The first property represents that the initiator eventually initiates a transaction and the memory

eventually receive it. The second property shows that whenever the initiator starts a transaction, the

memory module will eventually receive it. The third property ensures that if the initiator has sent

a transaction and the PEQ is empty, the memory is in a state where either the End Req message

124

or the Begin Resp message has been sent. In addition, if the memory sends a response with either

End Req or Begin Resp phases, the initiator will eventually be able to finish the transaction by

sending End Resp. This is shown in the fourth property. The fifth property shows that at least one

of the transactions will be executed completely and the initiator will eventually send a message

with an End Resp phase. Finally, the last property represents that the scheduler eventually executes

some process. Next, we compare the time and memory needed for verifying these properties in the

absence and presence of faults.

8.3.1 Slicing in the absence of faults

We use UPPAAL tool-set to verify the above properties on the same personal computer as that in

Section 8.2. However, we are not able to verify properties AT2, AT3, AT4, and AT6 since the

model generated by STATE is too complex and the computer runs out of memory while verifying

those properties (see Table 8.3). Also, the memory needed to verify AT1 and AT5, which are

only reachability properties, is 0.99 GB. Therefore, we utilize our slicing technique to simplify the

model based on the properties given. Using UPPAAL, we are able to verify all the properties in

the sliced models and check if they are satisfied (s) or violated (v). For example, the verification

of property AT3 in the corresponding sliced model takes 1 s and 476 ms, and the memory usage

is 51.5 MB. Also the number of variables needed for verifying this property in the sliced model in

50, which is reduced by 81%.

8.3.2 Slicing in the presence of faults

We utilize UFIT to inject message and fail-stop faults into the timed automata model generated

by STATE. Regarding the fail-stop faults, we consider the scenarios where the memory module is

125

failed and the initiator module is not able to communicate with it. Since injecting the faults into the

model makes the model more complex, verification of some properties (i.e., AT1 and AT4) is not

feasible. Therefore, we give the fault affected model and the desirable property to the slicer, and

the slicer generates a simplified model based on the property. Surprisingly, we are able to verify all

the properties mentioned above in the sliced models (see Table 8.4). As an illustration, verification

of property AT4, which was not feasible in the original model, takes 1 s and 250 ms and needs

49.9 MB memory. Also, the number of the variables in the sliced model is reduced by 79%.

In order to model the message faults, we assume that the messages with Begin reg phase may

get lost when the initiator is forwarding them to the memory module. Having this fault injected to

the model, we are able to verify all the above properties in the sliced models (see Table 8.4). For

instance, verifying property AT2 takes 201 ms and need 43.9 MB memory in the sliced model.

This verification has reduced the time and memory usage by 14% and 96% respectively.

Property

Original Model Sliced Model

Verification Memory No. of No. of Verification Memory No. of No. of

Time (ms) Usage (KB) states variables Time (ms) Usage (KB) states variables

AT1 2,212 991,765 188 276 350 38,980 122 43

AT2 N/A N/A 188 276 821 43,950 130 51

AT3 N/A N/A 188 276 1,476 51,509 137 50

AT4 N/A N/A 188 276 1,250 49,898 136 57

AT5 2,643 994,592 188 276 354 38,875 121 43

AT6 N/A N/A 188 276 815 43,657 129 47

Table 8.3: Comparison of the original and sliced models in the absence of faults while using AT

coding style.

8.4 Summary

In this chapter, we introduced our model slicer, called USlicer, which is developed using the algo-

rithms explained in the last chapter. We studied the effectiveness of USlicer on two case studies.

126

Fault Location Property

Original Model Sliced Model

status Verification Memory No. of status Verification Memory No. of

v/s Time (ms) Usage (KB) variables s/v Time (ms) Usage (KB) variables

Fail-stop Memory AT1 v 180 655,950 277 v 150 38,910 44

Fail-stop Memory AT2 v 255 898,750 277 v 200 43,990 52

Fail-stop Memory AT3 v 282 1,350,746 277 v 256 51,656 51

Fail-stop Memory AT4 N/A N/A N/A 277 s 1,266 49,910 58

Fail-stop Memory AT5 v 187 656,870 277 v 152 38,990 44

Fail-stop Memory AT6 N/A N/A N/A 277 s 817 43,670 48

Msg-loss Initiator AT1 v 160 655,950 278 v 155 38,910 45

Msg-loss Initiator AT2 v 235 1,165,655 278 v 201 43,990 53

Msg-loss Initiator AT3 N/A N/A N/A 278 s 1,480 51,721 52

Msg-loss Initiator AT4 N/A N/A N/A 278 s 1,252 49,923 59

Msg-loss Initiator AT5 v 165 657,750 278 v 155 38,992 45

Msg-loss Initiator AT6 v 217 899,677 278 v 195 43,673 49

Table 8.4: Comparison of the original and sliced models in the presence of faults while using AT

coding style.

In each case study, we studied three types of properties: reachability (LT1, LT5, AT1, and AT5),

liveness (LT2, LT4, AT2, AT4, and AT6), and safety (LT3, LT6, and AT3) properties. In the

LT coding style, in general, verification times are small since the LT models are efficient in na-

ture. In spite of this, the verification time was reduced by 11%–99%. Nevertheless, slicing the AT

case study was essential since we were not able to verify any of the liveness or safety properties

in the original model. The only type of property we could verify was reachability property since

the verification terminates upon finding the first solution in verifying such properties. By contrast,

with the help of slicing, it was possible to verify all properties of interest in a reasonable time.

The speedup associated with verification of safety and liveness properties was substantial. For

example, the property (speedup) combination in our case studies was LT1 (1.375), LT2 (4.34),

LT3 (62.4), LT4 (78.25), LT5 (1.39), and LT6 (62.2). The slicing was especially effective with

AT models since verification of certain properties (AT2, AT3, AT4, and AT6) was impossible

without slicing. Hence, we anticipate that slicing would be essential for AT models where verifi-

cation without slicing is impossible even for simple examples. In case of LT models, verification

without slicing was possible. However, the reason for considering this example was to quantify the

benefit of slicing. (AT models do not provide an opportunity to quantify this benefit since verifi-

127

cation time without slicing is essentially∞.) In LT models, slicing improved the verification time

substantially. We anticipate that slicing would be especially beneficial for larger LT models where

verification without slicing is impossible.

Consider that, the programs considered in our case studies are the most optimal in terms of the

(SystemC) source code and, hence, slicing algorithms will not change them. What we discussed

in this chapter is that it is possible to reduce the cost of verification further in these contexts via

slicing the timed automata models extracted from the SystemC programs. It follows that one can

utilize existing methods to slice the SystemC program to obtain the smallest SystemC code and

then utilize our approach to reduce the verification time and space of that smallest program.

128

Chapter 9

Conclusion and Future Work

The rise in complexity, size and heterogeneity of modern embedded system designs has pushed

modeling to new abstraction levels above RTL. Transaction Level Modeling using SystemC has

emerged as a new paradigm for system modeling. On the other hand, SoC design is being adapted

to combine the best features of top down and bottom up system design. Although the models

in SystemC TLM are designed carefully, their verification is an important task. Moreover, many

industrial and academic institutions support and use SystemC and Transaction Level Modeling

for software/hardware co-design. Thus, a systematic (and possibly automatic) approach for ver-

ification of SystemC TLM programs has a significant impact. To have a systematic method for

verification of such programs, in this dissertation, we presented a framework that crosscuts sev-

eral fields such as compilers, verification, fault tolerance, and model checking. In particular our

framework involved five main steps, namely defining formal semantics, model extraction, fault

modeling, model slicing, and model checking. The first two steps obtain an abstract model of the

SystemC program. We chose Promela and UPPAAL timed automata as the target modeling lan-

guages since they allowed us to evaluate the effect of faults with the model checkers SPIN [48] and

UPPAAL [9]. We considered two types are coding style, Loosely-Timed (LT) and Approximately-

Timed (AT), in our framework. Targeting Promela models, we proposed a set of transformation

rules that help us extract a Promela model from a Loosely-Timed SystemC TLM programs. How-

ever, the Promela models extracted are untimed. Regarding UPPAAL timed automata models,

we consider the notion of time and target both Loosely-Timed and Approximately-Timed coding

129

styles. In particular, we propose a set of transformation rules for extracting timed automata mod-

els from Loosely-Timed programs. We also utilized a tool, called STATE, for extracting timed

automata models from Approximately-Timed SystemC TLM program.

Subsequently, in the third step, we augmented the extracted model with faults. This step re-

quires us to model the impact of faults on SystemC TLM programs and capture them in the context

of Promela [3] or timed automata [5]. We studied four different types of faults in this dissertation

namely, message faults, permanent faults, transient faults, and timing faults. We proposed a tool,

called UFIT, that models the aforementioned faults in UPPAAL timed automata models and gen-

erates a fault-affected model.

The models extracted from the SystemC TLM programs are mostly complex and get even more

complex after injecting faults into them. Hence, in the fourth step, we proposed a model slicing

technique for slicing the timed automata models. We developed a tool, called USlicer, that gets a

timed automata model along with a property of interest and generates a simplified version of the

model. This step improves the verification time and space. Finally, in the last step, we model check

the model and study the behavior of the models in the presence of faults.

We illustrated our framework with several case studies. These case studies covered programs

that utilized LT and AT coding styles. In each case study, we extracted either the Promela model or

the timed automata model from the given SystemC TLM program. Thereafter, we modeled differ-

ent types of faults and injected the faults into the models. In particular, We analyzed the untimed

extracted Promela models in the presence of communication faults. Since transaction level mod-

eling is based on the principle of separating inter-component communications from computations

using the notion of transactions, designing fault-tolerant communication protocols is fundamental

to transaction level modeling. This example illustrates the role of our framework in dealing with

faults that occur in such inter-component communications. A similar approach can also be easily

130

applied to other communication errors in such applications. We also analyzed the timed UPPAAL

models in presence of all four types of faults. We were either able to verify that the original specifi-

cation is satisfied or find a counterexample demonstrating the violation of the original specification.

Moreover, the time for evaluating the effect of faults was comparable (0-57%) to the verification

in the absence of faults. We also used USlicer to slice the timed automata models and improve the

verification time and space. In the LT coding style, in general, verification times are small since

the LT models are efficient in nature. Hence, although utilizing model slicing improves the time

and space efficiency, it is not essential. Nevertheless, slicing the AT case study was essential since

we were not able to verify any of the liveness or safety properties in the original model. The only

type of property we could verify was reachability property since the verification terminates upon

finding the first solution in verifying such properties. Also, the sliced model could be verified in

a reasonable time both in the fault-free and fault-affected models. This case study illustrates one

of the main advantages of using our model slicing technique where the slicing enabled verification

whereas the original model was too large to verify.

9.1 A roadmap for future research.

We propose several directions for future research on this dissertation.

• We plan to extend our previous work on automated addition of fault tolerance [24, 54] in

order to automate the design of fault tolerance in the extracted Promela and UPPAAL mod-

els. In addition to facilitating the design of fault tolerance, we would like to enable fault-

containment mechanisms, where designers can guarantee that faults do not get propagated

to several components at once. This information can be used to add restrictions on the com-

munication amongst components to ensure compliance with this requirement.

131

• We will extend our work with a set of reverse transformation rules to ensure that the code

added to models in order to capture fault tolerance can indeed be realized in SystemC pro-

gram. For example, we need rules that specify how atomic recovery actions will be captured

in SystemC while preserving atomicity and recovery. One way to achieve this is to refine the

atomic actions to a code block between two wait statements in SystemC. This rule relies on

the fact that the scheduler of SystemC simulator has a run-to-completion policy for context

switching.

• We will investigate different scenarios under which fault tolerance functionalities added to

models can be partitioned and assigned to software and hardware. One possibility is to use

the rule that any fault tolerance functionality that can be executed asynchronously with the

rest of the model can be captured as a software component, whereas synchronous function-

alities can be included in hardware. Nonetheless, the decision of including a piece of new

functionalities in hardware/software may depend upon other factors such as timing issues,

energy consumption, overall system modularity, etc. We plan to investigate the impact of

such factors on co-design of fault tolerance.

132

BIBLIOGRAPHY

133

BIBLIOGRAPHY

[1] Getting started with tlm-2.0. http://www.doulos.com/knowhow/systemc/tlm2/.

[2] Open SystemC Initiative (OSCI): Defining and advancing SystemC standard IEEE 1666-

2005. http://www.systemc.org/.

[3] Spin language reference. http://spinroot.com/spin/Man/promela.html/.

[4] Transaction-Level Modeling (TLM) 2.0 Reference Manual. http://www.systemc.org/

downloads/standards/.

[5] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–

235, 1994.

[6] Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho. Automatic symbolic verification of

embedded systems. In Proceedings of the Real-Time Systems Symposium. Raleigh-Durham,

NC, December 1993, pages 2–11, 1993.

[7] Keith A. Bartlett, Roger A. Scantlebury, and Peter T. Wilkinson. A note on reliable full-

duplex transmission over half-duplex links. Commun. ACM, 12(5):260–261, 1969.

[8] Gerd Behrmann, Patricia Bouyer, Emmanuel Fleury, and Kim Guldstrand Larsen. Static

guard analysis in timed automata verification. In Tools and Algorithms for the Construction

and Analysis of Systems, 9th International Conference, TACAS 2003, Held as Part of the Joint

European Conferences on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland,

April 7-11, 2003, Proceedings, pages 254–277, 2003.

[9] Gerd Behrmann, Alexandre David, and Kim Guldstrand Larsen. A tutorial on uppaal. In

Bernardo and Corradini [12], pages 200–236.

[10] Johan Bengtsson, Kim Guldstrand Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.

UPPAAL - a tool suite for automatic verification of real-time systems. In Hybrid Systems III:

Verification and Control, Proceedings of the DIMACS/SYCON Workshop, October 22-25,

1995, Ruttgers University, New Brunswick, NJ, USA, pages 232–243, 1995.

[11] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools. In Lec-

tures on Concurrency and Petri Nets, Advances in Petri Nets [This tutorial volume originates

from the 4th Advanced Course on Petri Nets, ACPN 2003, held in Eichstätt, Germany in

134

September 2003. In addition to lectures given at ACPN 2003, additional chapters have been

commissioned], pages 87–124, 2003.

[12] Marco Bernardo and Flavio Corradini, editors. Formal Methods for the Design of Real-Time

Systems, International School on Formal Methods for the Design of Computer, Communica-

tion and Software Systems, SFM-RT 2004, Bertinoro, Italy, September 13-18, 2004, Revised

Lectures, volume 3185 of Lecture Notes in Computer Science. Springer, 2004.

[13] Gérard Berry. The foundations of esterel. In Gordon D. Plotkin, Colin Stirling, and Mads

Tofte, editors, Proof, Language, and Interaction, pages 425–454. The MIT Press, 2000.

[14] Nicolas Blanc and Daniel Kroening. Race analysis for SystemC using model checking. ACM

Transactions on Design Automation of Electronic Systems, 15(3):21:1–21:32, 2010.

[15] Marius Bozga, Jean-Claude Fernandez, and Lucian Ghirvu. Using static analysis to improve

automatic test generation. In Tools and Algorithms for Construction and Analysis of Systems,

6th International Conference, TACAS 2000, Held as Part of the European Joint Conferences

on the Theory and Practice of Software, ETAPS 2000, Berlin, Germany, March 25 - April 2,

2000, Proceedings, pages 235–250, 2000.

[16] Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and Joseph Sifakis. The if toolset. In

Bernardo and Corradini [12], pages 237–267.

[17] Vı́ctor A. Braberman, Diego Garbervetsky, and Alfredo Olivero. Improving the verification

of timed systems using influence information. In Tools and Algorithms for the Construction

and Analysis of Systems, 8th International Conference, TACAS 2002, Held as Part of the Joint

European Conference on Theory and Practice of Software, ETAPS 2002, Grenoble, France,

April 8-12, 2002, Proceedings, pages 21–36, 2002.

[18] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J. Hwang.

Symbolic model checking: 1020 states and beyond. Inf. Comput., 98(2):142–170, 1992.

[19] Giorgio C. Buttazzo. Hard Real-Time Computing Systems. Springer, New York, USA, 2011.

[20] Yung-Yuan Chen, Chung-Hsien Hsu, and Kuen-Long Leu. SoC-level risk assessment using

FMEA approach in system design with SystemC. In International Symposium on Industrial

Embedded Systems, pages 82–89, 2009.

[21] Alessandro Cimatti, Alberto Griggio, Andrea Micheli, Iman Narasamdya, and Marco Roveri.

KRATOS: A software model checker for SystemC. In Proceedings of the 23rd International

Conference on Computer Aided Verification (CAV), pages 310–316, 2011.

135

[22] Conrado Daws and Sergio Yovine. Reducing the number of clock variables of timed au-

tomata. In Proceedings of the 17th IEEE Real-Time Systems Symposium (RTSS ’96), Decem-

ber 4-6, 1996, Washington, DC, USA, pages 73–81, 1996.

[23] Rolf Drechsler and Daniel Große. Reachability analysis for formal verification of systemc. In

2002 Euromicro Symposium on Digital Systems Design (DSD 2002), Systems-on-Chip, 4-6

September 2002, Dortmund, Germany, pages 337–340, 2002.

[24] Ali Ebnenasir. Automatic Synthesis of Fault Tolerance. PhD thesis, Michigan State Univer-

sity, 2005.

[25] Ali Ebnenasir, Reza Hajisheykhi, and Sandeep S. Kulkarni. Facilitating the design of fault

tolerance in transaction level systemc programs. In Distributed Computing and Network-

ing - 13th International Conference, ICDCN 2012, Hong Kong, China, January 3-6, 2012.

Proceedings, pages 91–105, 2012.

[26] Ali Ebnenasir, Reza Hajisheykhi, and Sandeep S. Kulkarni. Facilitating the design of fault

tolerance in transaction level systemc programs. Theor. Comput. Sci., 496:50–68, 2013.

[27] Antonio da Silva Farina and Sebastián Sánchez Prieto. On the use of dynamic binary instru-

mentation to perform faults injection in transaction level models. In Proceedings of the 2009

Fourth International Conference on Dependability of Computer Systems, pages 237–244,

2009.

[28] Alessandro Fin, Franco Fummi, Maurizio Martignano, and Mirko Signoretto. SystemC: A

homogenous environment to test embedded systems. In Proceedings of the ninth interna-

tional symposium on Hardware/software codesign, CODES ’01, pages 17–22, 2001.

[29] Beltra Giovanni, Cristiana Bolchini, and Antonio Miele. Multi-level fault modeling for

transaction-level specifications. In Proceedings of the 19th ACM Great Lakes symposium

on VLSI, pages 87–92, 2009.

[30] Daniel Große and Rolf Drechsler. Checkers for systemc designs. In 2nd ACM & IEEE Inter-

national Conference on Formal Methods and Models for Co-Design (MEMOCODE 2004),

23-25 June 2004, San Diego, California, USA, Proceedings, pages 171–178, 2004.

[31] Daniel Große and Rolf Drechsler. Checksyc: an efficient property checker for RTL systemc

designs. In International Symposium on Circuits and Systems (ISCAS 2005), 23-26 May

2005, Kobe, Japan, pages 4167–4170, 2005.

[32] Daniel Große, Ulrich Kühne, and Rolf Drechsler. HW/SW co-verification of a RISC CPU

using bounded model checking. In Sixth International Workshop on Microprocessor Test and

136

Verification (MTV 2005), Common Challenges and Solutions, 3-4 November 2005, Austin,

Texas, USA, pages 133–137, 2005.

[33] Daniel Große, Ulrich Kühne, and Rolf Drechsler. HW/SW co-verification of embedded sys-

tems using bounded model checking. In Proceedings of the 16th ACM Great Lakes Sympo-

sium on VLSI 2006, Philadelphia, PA, USA, April 30 - May 1, 2006, pages 43–48, 2006.

[34] Ali Habibi, Haja Moinudeen, and Sofiène Tahar. Generating finite state machines from sys-

temc. In Georges G. E. Gielen, editor, DATE Designers’ Forum, pages 76–81. European

Design and Automation Association, Leuven, Belgium, 2006.

[35] Ali Habibi and Sofiène Tahar. An approach for the verification of systemc designs using

asml. In Doron Peled and Yih-Kuen Tsay, editors, ATVA, volume 3707 of Lecture Notes in

Computer Science, pages 69–83. Springer, 2005.

[36] Reza Hajisheykhi, Ali Ebnenasir, and Sandeep S. Kulkarni. Modeling and analyzing timing

faults in transaction level systemc programs. In Stabilization, Safety, and Security of Dis-

tributed Systems - 15th International Symposium, SSS 2013, Osaka, Japan, November 13-16,

2013. Proceedings, pages 344–347, 2013.

[37] Reza Hajisheykhi, Ali Ebnenasir, and Sandeep S. Kulkarni. Modeling and analyzing timing

faults in transaction level systemc programs. In Network on Chip Architectures, NoCArc ’13,

in conjunction with the 46th Annual IEEE/ACM International Symposium on Microarchitec-

ture, MICRO-46, Davis, CA, USA, December 7, 2013, pages 65–68, 2013.

[38] Reza Hajisheykhi, Ali Ebnenasir, and Sandeep S. Kulkarni. Analysis of permanent faults in

transaction level systemc models. In 34th International Conference on Distributed Comput-

ing Systems Workshops (ICDCS 2014 Workshops), Madrid, Spain, June 30 - July 3, 2014,

pages 154–160, 2014.

[39] Reza Hajisheykhi, Ali Ebnenasir, and Sandeep S. Kulkarni. Evaluating the effect of faults in

systemc TLM models using UPPAAL. In Software Engineering and Formal Methods - 12th

International Conference, SEFM 2014, Grenoble, France, September 1-5, 2014. Proceedings,

pages 175–189, 2014.

[40] Reza Hajisheykhi, Ali Ebnenasir, and Sandeep S. Kulkarni. UFIT: A tool for modeling faults

in UPPAAL timed automata. In NASA Formal Methods - 7th International Symposium, NFM

2015, Pasadena, CA, USA, April 27-29, 2015, Proceedings, pages 429–435, 2015.

[41] Reza Hajisheykhi, Mohammad Roohitavaf, Ali Ebnenasir, and Sandeep S. Kulkarni. A

framework for verification of SystemC TLM programs with model slicing: A case study. In

137

To be appeared Design Automation Conference - 53rd ACM/EDAC/IEEE, DAC 2016, Austin,

TX, USA, June 5-9, 2016, Proceedings, 2016.

[42] Nicolas Halbwachs, Fabienne Lagnier, and Christophe Ratel. Programming and verifying

real-time systems by means of the synchronous data-flow language lustre. IEEE Trans. Soft-

ware Eng., 18(9):785–793, 1992.

[43] Nesrine Harrath and Bruno Monsuez. Systemc waiting state automata. IJCCBS, 3(1/2):60–

95, 2012.

[44] Ian G. Harris. Fault models and test generation for hardware-software covalidation. IEEE

Design and Test of Computers, 20(4):40–47, 2003.

[45] John Hatcliff, Matthew B. Dwyer, and Hongjun Zheng. Slicing software for model construc-

tion. Higher-Order and Symbolic Computation, 13(4):315–353, 2000.

[46] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic model

checking for real-time systems. Inf. Comput., 111(2):193–244, 1994.

[47] Paula Herber, Marcel Pockrandt, and Sabine Glesner. Transforming systemc transaction

level models into uppaal timed automata. In Satnam Singh, Barbara Jobstmann, Michael

Kishinevsky, and Jens Brandt, editors, MEMOCODE, pages 161–170. IEEE, 2011.

[48] G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,

23(5):279–295, May 1997.

[49] Ravishankar K. Iyer, David J. Rossetti, and Mei-Chen Hsueh. Measurement and modeling of

computer reliability as affected by system activity. ACM Trans. Comput. Syst., 4(3):214–237,

1986.

[50] Agata Janowska and Pawel Janowski. Slicing timed systems. Fundam. Inform., 60(1-4):187–

210, 2004.

[51] Agata Janowska and Pawel Janowski. Slicing of timed automata with discrete data. Fundam.

Inform., 72(1-3):181–195, 2006.

[52] Daniel Karlsson, Petru Eles, and Zebo Peng. Formal verification of systemc designs using a

petri-net based representation. In DATE, pages 1228–1233, 2006.

138

[53] Daniel Kroening and Natasha Sharygina. Formal verification of systemc by automatic hard-

ware/software partitioning. In ACM & IEEE International Conference on Formal Methods

and Models for Co-Design (MEMOCODE), pages 101–110, 2005.

[54] S. S. Kulkarni and A. Arora. Automating the addition of fault-tolerance. In Formal Tech-

niques in Real-Time and Fault-Tolerant Systems, pages 82–93, London, UK, 2000. Springer-

Verlag.

[55] Sudipta Kundu, Malay Ganai, and Rajesh Gupta. Partial order reduction for scalable testing

of SystemC TLM designs. In Proceedings of the 45th annual Design Automation Conference,

Design Automation Conference, pages 936–941, 2008.

[56] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. International Journal on

Software Tools for Technology Transfer (STTT), 1(1-2):134–152, 1997.

[57] Chris Lattner and Vikram S. Adve. LLVM: A Compilation Framework for Lifelong Program

Analysis & Transformation. In IEEE/ACM International Symposium on Code Generation

and Optimization (CGO), pages 75–88, 2004.

[58] Hoang M. Le, Daniel Große, and Rolf Drechsler. Automatic tlm fault localization for sys-

temc. IEEE Trans. on CAD of Integrated Circuits and Systems, 31(8):1249–1262, 2012.

[59] Ka L. Man. Formal communication semantics of systemcfl. In Eighth Euromicro Symposium

on Digital Systems Design (DSD 2005), 30 August - 3 September 2005, Porto, Portugal,

pages 338–345, 2005.

[60] Ka Lok Man, Andrea Fedeli, Michele Mercaldi, Menouer Boubekeur, and Michel P.

Schellekens. SC2SCFL: automated systemc to systemcfl translation. In Embedded Computer

Systems: Architectures, Modeling, and Simulation, 7th International Workshop, SAMOS

2007, Samos, Greece, July 16-19, 2007, Proceedings, pages 34–45, 2007.

[61] K. Marquet, B. Jeannet, and M. Moy. Efficient Encoding of SystemC/TLM in Promela.

Technical Report TR-2010-7, Verimag, France, 2010.

[62] Kevin Marquet and Matthieu Moy. PinaVM: A SystemC front-end based on an executable

intermediate representation. In International conference on Embedded software (EMSOFT),

pages 79–88, 2010.

[63] Lynette I. Millett and Tim Teitelbaum. Issues in slicing PROMELA and its applications to

model checking, protocol understanding, and simulation. STTT, 2(4):343–349, 2000.

139

[64] Silvio Misera, Heinrich Theodor Vierhaus, and Andre Sieber. Fault injection techniques and

their accelerated simulation in SystemC. In Proceedings of the 10th Euromicro Conference

on Digital System Design Architectures, Methods and Tools, pages 587–595, 2007.

[65] M. Moy. Techniques and Tools for the Verification of Systems-on-a-Chip at the Transaction

Level. PhD thesis, INPG, Grenoble, France, 2005.

[66] Matthieu Moy, Florence Maraninchi, and Laurent Maillet-Contoz. Lussy: A toolbox for

the analysis of systems-on-a-chip at the transactional level. In International Conference on

Application of Concurrency to System Design (ACSD), pages 26–35, 2005.

[67] Wolfgang Müller, Jürgen Ruf, and Wolfgang Rosenstiel. SystemC: Methodologies and Ap-

plications, chapter An ASM based SystemC Simulation Semantics. Kluwer Academic Pub-

lishers, 2003.

[68] B. Niemann and Ch. Haubelt. Formalizing TLM with Communicating Stat Machines. In

Proceedings of Forum on Specification and Design Languages 2006 (FDL 2006), pages 285–

292, 2006.

[69] Hiren D. Patel and Sandeep K. Shukla. Model-driven validation of SystemC designs.

EURASIP Journal on Embedded Systems - C-Based Design of Heterogeneous Embedded

Systems, 2008:4:1–4:14, January 2008.

[70] Jon Perez, Mikel Azkarate-askasua, and Antonio Perez. Codesign and simulated fault injec-

tion of safety-critical embedded systems using SystemC. In Proceedings of the 2010 Euro-

pean Dependable Computing Conference, pages 221–229, 2010.

[71] Venkatesh Prasad Ranganath and John Hatcliff. Slicing concurrent java programs using indus

and kaveri. STTT, 9(5-6):489–504, 2007.

[72] Jürgen Ruf, Dirk W. Hoffmann, Joachim Gerlach, Thomas Kropf, Wolfgang Rosenstiel, and

Wolfgang Müller. The simulation semantics of systemc. In DATE, pages 64–70, 2001.

[73] Ashraf Salem. Formal semantics of synchronous systemc. In 2003 Design, Automation and

Test in Europe Conference and Exposition (DATE 2003), 3-7 March 2003, Munich, Germany,

pages 10376–10381, 2003.

[74] Alper Sen. Mutation operators for concurrent SystemC designs. In International Workshop

on Microprocessor Test and Verification, 2000.

140

[75] Rishad Ahmed Shafik, Paul Rosinger, and Bashir M. Al-Hashimi. SystemC-based minimum

intrusive fault injection technique with improved fault representation. In Proceedings of the

2008 14th IEEE International On-Line Testing Symposium, pages 99–104, 2008.

[76] Donald E. Thomas, Elizabeth D. Lagnese, John A. Nestor, Jayanth V. Rajan, Robert L. Black-

burn, and Robert A. Walker. Algorithmic and Register-Transfer Level Synthesis: The System

Architect’s Workbench. Kluwer Academic Publishers, Norwell, MA, USA, 1989.

[77] Claus Traulsen, Jerome Cornet, Matthieu Moy, and Florence Maraninchi. A SystemC/TLM

semantics in Promela and its possible applications. In SPIN Workshop, pages 204–222, 2007.

[78] Mark Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):352–357, 1984.

141

