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ABSTRACT
A NEW DYNAMIC STOCHASTIC APPROXIMATION PROCEDURE
By
David Ruppert

This paper considers Robbins-Monro stochastic approximation
when the regression function changes with time. At time n, one
can select Xn and observe an unbiased estimator of the regression
function evaluated at Xn. Let 6, be the root of the regression
function at time n. Our goal is to select the sequence Xn so
that X, - o, converges to 0. It is assumed that o, = f(sn)
for s, known at time n and f an unknown element of a class of
functions. Under certain conditions on this class and on the sequence
of regression functions, we obtain a random sequence Xn such that
IXn - enl converges to 0 in Cesaro mean with probability 1. Under

more stringent conditions, Xy - 6, converges to 0 with probability 1.
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CHAPTER 1
INTRODUCTION

This study has been motivated by practical situations in
which a process is controlled by a variable X and it is desirable
to choose X in such a manner that the response, Rn(X), at time n
is close to 0. If e~ satisfies Rn(en) = 0, it would be enough
to choose Xn’ the value of X at time n, equal or close to 6
The basic information is provided by the process itself; for any
choice of X, Wwe can obtain an unbiased estimate of Rn(xn)'

If Rn’ or at least B,» is independent of n and some
regularity conditions are satisfied, then the stochastic approxima-
tion procedure of Robbins and Monro (1951) provides a method of
selecting a sequence {Xn} such that Xn > 8, almost surely.

We are concerned here with situations where 6, does change
with n. DupaZ (1965, 1966) and Uosaki (1974) studied such situa-
tions, but their model is substantially different from ours; both
models shall be compared later.

In our model we assume that o, = f(sn) foran f in a
family S of functions on a set S and for a sequence {sn} in
S. Initially, only S is known, not f and not {sn}. At time n,
the value s = becomes known, and, after X, 1is selected, an unbiased

estimate of Rn(xn) is observed.



The interpretation is that Sh summarizes the knowledge about
the process at time n. For example, in the case of a process in-

volving a chemical reactor, s can describe the age of the filter,

n
the quality of the catalyzer, and the impurities of the input. In
another example we may have Sy = N and then the assumption concern-
ing 6, means simply that the function n~86, is in S,

We propose an approximation method, for which Xn - 6,
approaches 0 in a certain sense, for some families S. For example,
S can be the family of all functions f on [0,1] such that, for

some K and o > %, depending on f,
[F(x) - f(y)| < K|x - y|®

for all x,y in (0,11 (cf. Theorem 3.9).

Another example, admittedly simpler, yet of considerable
practical importance, is the case when S 1is the family of all
linear combinations of k functions f],fz,...,fk.

Both these examples are special cases of the more general con-
dition (see assumption 2.3) that there exists an inner product space
H and a function U on the set S into H such that
Sc {fB; g € H} where fB denotes the function defined on S and
assigning to each s in S the value <g, U(s)>.

Under certain additional regularity conditions we shall show
that the proposed approximation procedure yields {Xn} for which
X - 6, > 0 in Cesaro mean with probability one; under more stringent

n
conditions Xn -6, > 0 with probability one.



Dupa® (1965, 1966) considered Robbins-Monro type stochastic
approximation methods when the root changes during the approximation
process and Uosaki (1974) generalized his work. In these papers,
the basic assumption is that o ., s equal to gn(en), with g,
known, plus an unknown but small Ve The procedure then is similar
to the original Robbins-Monro procedure except that where the latter
obtains the estimate Xn+1 by adjusting Xn’ the former adjusts
gn+](xn) (and neglects _Vn)'

In our model, the procedure estimates the function fB by
estimating B8. If H 1is infinite dimensional the procedure allows
us to keep the estimates finite-dimensional in order that the pro-
cedure can be practically realizable.

In addition to the above problems we also consider, in
theorem 4.5, the case where U(sn) is a random variable with values
in Rk.

In summary we will show that under conditions similar to
those used to prove the convergence of the Robbins-Monro method,

Xn -0, 0 1in Cesaro mean with probability one, where o, is the
unique root of Rn(X) =0 and X is our estimate of O of
practical importance are similar generalizations of the Kiefer-
Wolfowitz (1952) method of maximization (or minimization) of func-
tions on R and Blum's (1954) multi-dimensional version of the
Kiefer-Wolfowitz method. One can expect that the methods obtained

by such generalizations would have a property analogous to the

almost sure Cesaro mean convergence of Xn -0, to 0.



CHAPTER 2
NOTATION AND ASSUMPTIONS

2.1 Notation. The conventions introduced here hold throughout. Let

Rk be k-dimensional Euclidean space. The space R] will be denoted

simply as R. Denote the transpose of the matrix A by AT. Then

k

the inner product on R™ is defined by

<X,y> = xTy for x,y € Rk.

If A and B are sets, then AB is the set of all functions
from B to A.

Let (o,F,P) be a probability space. If F € F, then I
is the indicator of F.

If V is a normed vector space, then let V be the smallest

o-algebra contéining all open balls, that is all sets of the form
{X€V: |X+a]j<e} for ¢>0 and a€ V.

Amap T in V¥ is called a measurable transformation into V if

T'](!)cz F. If T,,...,T are measurable transformations into V,

n
then o{T,,...,T_} is the smallest o-algebra on Q containing
1 n

-1
W

nC s

i



A1l relations between measurable transformations are meant

to hold with probability one.

If h_ is a sequence of numbers, then O(hn)

n
sequence g of numbers such that for some K

hlg | <k forall n.

2.2 Assumption. (i) Let S be a set and suppose Sc R”.

fes.

(ii) Let R, € RR, 6, € R, and A > 0. Suppose

(1) (X - 6 )R (X) 2 0
and
(2) Ry < ACIX =0 | + 1)

for all X € R. Let s, € S and suppose
(3) 6. = f(s.).

2.3 Assumption. (i) Assumption 2.2(i) holds.

S

denotes a

Suppose

Let H be a reeal

vector space and suppose <e,> is an inner product on H, i.e.

<+,+> s amap from H x H to R such that if x,y,z € H and

a € R then
<ax + y,Z> = a<x,z> + <Yy,z>,
<X Y> = <Y,X>,
<X,x> > 0,

and



<X,x> =0 1implies x =0 .

' 3 . .
For x € # define |x| = <x,x>*. Suppose there is a function U in

HS such that for each f in S there exists a B in H satisfying
f(s) = <B, U(s)> for all s € S.

(i1) Assumption 2.2(ii) holds. Let U, = U(sn).

2.4 Remark. We shall now consider the problem of estimating the
sequence {en}. The experimenter knows H, <+,->, and U and he
knows that assumption 2.3 holds. At time n he estimates B8 by an
estimate 8 . Also at this time he learns the value of Sn and

therefore of Un; he uses U. to estimate 6 by Xn = <Bp» Un>.

n
He can also observe a random variable Yn, an unbiased (conditionally,

given the past) estimator of Rn(Xn). He then forms his next estimate

*
=g =-aVYU

B n nnn

n+l

with a, a suitably chosen non-negative number and U: either equal
to Un or a suitable approximation to Un‘ For example, if H = 295
then the experimenter may wish to use a finite dimensional approximation,
U:, to a Un in 2y-

We shall reformulate the construction of the B, in the follow-
ing assumption, where Fn is the o-algebra associated with the "past"

at time n.

2.5 Assumption. (i) Assumption 2.3 holds.

(i) Let F, be an increasing sequence of c-algebras contained in F.

Suppose {Bn}, {¥Y,}, and {U:} are sequences of measurable



transformations into H, random variables, and elements of f#,

respectively, such that with Xn = <Bn,Un>

*
(1) Bos1 = By - 3,Y,U, for some a >0,

o(B],...,Bn) c Fn’ and
Fr Fa 2 2 2
(2) E Yn = Rn(Xn) and E (Yn - Rn(Xn)) < o° for some o°.

(iii) Assume that
*
(3) <8, U - Up>=0.

2.6 Remark. Suppose we wish to choose U: not equal to Un' Then
(2.5.3) will still hold if for an increasing sequence of subspaces,

*
{Hn}, By € H] and Un is the projection of Un onto H for

n+1?
then by (2.5.1) 8, € f, for all n.



CHAPTER 3
GENERAL RESULTS

We will be interested in the convergence to 0 of the sequences
{|l8, - 8]l and {X - 0.} defined in assumptions 2.2, 2.3, and 2.5.
These two sequences are closely connected for under these assumptions
Xn -6, = <B, - B Un>. Forpractical purposes {Xn - en} is of
primary importance since Xn would be the value of the control
variable at time n while 6, Wwould be a value of the control vari-
able which for our intentions would be optimal at time n.

3.1 Lemma. Suppose assumption 2.5 holds and

(1) £ a (1 + U [D]<8, Uy - U] <=
and

(2) z a2 U IEC + ul) < -

Then,

(3) lig,, - an has a finite limit
and

(4) 2 aR (X)X, -6) <.

Proof: By (2.5.1) and (2.5.2)



F

(5) EMig.\ - 8|2 < |8 - B - 2aR (X )<B - B,U >
I g n ' nn"n’ "n >“n

n+l
¢ Q2R RA(x ) + oP)

Now by (2.2.2),

(6) IR (X )< ACl<e, = 8,U > + 1) < A([I8, = 8l [Upll + 7).

Also by (2.5.3)

*
-8.) - <B,U - U>.

*
By - B.Up> = (Xq n n

Therefore

(1) Ry(X)<8, = 8 5Up> 2 RU(X) (X, = o)

* 2
- <80 - U 1ACCley = 812 + DUl + D).

Substituting (6) and (7) into (5), one obtains

F

(8) E"lg ,q - BIF < lIg, - 8lP(1 + £,) - 2a R (X )(X, -6 )+ g

where £ = 0(aX[U IZU7 | + a [<8,U_ - U'>[[U,|) and
g, = o(ag“u:“ + an|<3, U, - U:>|(1 + “Un“)) and f 29, > 0.

By (1) and (2), = f, t 9, < Thus (3) and (4) hold by
Theorem 1 of Robbins and Siegmund (1971).
3.2 Remark. Condition (3.1.1) involves B which, of course, is
unknown. However g depends on f and f 1is known to be in the
class S. Thus it may be possible to verify condition (3.1.1) by

using properties of S.
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3.3 Theorem. Let assumption 2.5 hold. Let o, y, and e be numbers

satisfying
y > 0,
b+ 2y <ax<,
and
a+te>1.
Suppose for a > 0,
_ -a
a, =an -,

WUl + Ul = oY),
and

* -
(1 + U018, U, = Upo| = 0(n™).
If for all n >0
(9) inf inf IRn(X)| >0

n n<lX-e |

or if y =0 and forall n>0

(10) inf inf 3 IR (X)] >0
n n<fX-6 |<n
then
"
n t |X, -6, 0.
k=1 K K

Proof: First, (3.1.1) holds since
* -(at
a, (1 + “Un“)|<8, U, - Un>] = 0(n (a e))

and o + ¢ > 1. Next (3.1.2) holds for



1
a2u 121 + fu,I?) = on™(2e=4Y))

and 2a - 4y > 1. Thus by lemma 3.1, & aan(Xn)(Xn - en) < » and
lim |8, - 8] exists and is finite. From now until the end of the
proof we Took at an w for which the two properties hold and write
g instead of &(w) for any random variable ¢. For every n > 0

there is a §(n) > 0 such that
(1) X, - 6, >n implies [R (X )| > &(n).

This follows directly from (9); if (10) holds and y = 0 then
X, - 6,1 < [U,ll I8, - 8]l is a bounded sequence and (11) holds again.

Let n>0, set I =1 if [X - onl > n and 0 otherwise. Then the

finiteness of = aan(Xn)(X - en) and (11) imply

n

nlXn = ol <=

By Kronecker's lemma (see Loéve (1963), p. 238)

-a

n z |X, -e,I, > 0.
o kT Ok

Since o <1,

: -1 . 1 "
1im sup n £ X -6 <n+ 1imsupn X -6 |I =n
N k=1 " " N k=1 " !t

for all n > 0.

n
3.4 Remarks. The conclusion n~! g | Xy - ek| + 0 1is of practical
n 1
1 | X, - 6, | 1is small then the process would
1

importance since if n_

have run at near optimal conditions for most of the first n runs.
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Without additional assumptions, the conclusion of theorem 3.3
cannot be strengthened to (Xn - en) ~+ 0, as can be seen in example
4.7 below. Moreover, example 4.8 below shows that under the hypo-
theses of theorem 3.3 (Bn - B) » 0 may fail even if (Xn - en) + 0.

Since U: is intended to be an approximation to Un we can

*
expect that U |l = O(|lU ) and in that case the condition
* Y
(1) (ULl + 1V, = 0(nT)

would be known to hold with y = 0 if U 1is bounded. If U is
unbounded then it might be difficult to verify that (1) holds; how-
ever, the theorem has been formulated to allow vy > O.

3.5 Assumption. Let D be a countable set. Define the real vector

space 2% and the inner product <*5°>p oOn zg by

zg = {g € RD: T 92(

deD

d) < =}

and

2

<g,h>D = £ g(d)h(d) for g,h € 2y -

deD
For f € zg define [f||, = <f,f>§.
Let {Dn} be a sequence of finite subsets of D with
Dn c Dn_”.
Suppose assumption 2.2(i) holds. Let U be a map from S

2 ] _ . *
to g, let U = U(sn), and define Uy by

* -
Un(d) Un(d) if de Dn+1

0 if dgD,
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Suppose assumption 2.5(i1) holds with a = an"* for some a > 0

and o« > %. Suppose
B](d) =0 if d¢ D].

3.6 Remark. If assumption 3.5 holds, then it can be easily shown
by induction (see Remark 2.6) that assumption 2.5(iii) holds.

3.7 Assumption. Assumption 3.5 holds with the following choices

of S, S, D, Dn’ and U.

S

[0,1].
- 0,11,
S={feR : for some K> 0 and y > %,

| f(x) - f(y)| < K|x - y|Y whenever x,y € [C,11}.

D=1{(km): m=k=0 or m and k are integers satisfying
m>0 and 1< k< 2™,
D, = {(k,m): (k,m) € D and 2" < n}.

U(x)(k,m) =1 if (k,m) = (0,0).

For (k,m) # (0,0),

U(x) (kom) = (m1)71iF x e (K1, K
m
M 2
a1, k% k
= -(mt1)" " if x € (==, =)
2" 2"
=0 if xe (2l L) with ¢4k and 1<2 <2

2 2
As a function of x, U(x)(k,m) 1is continuous at O and 1 and at points
of discontinuity it equals the arithmetic mean of its left and right

limits.
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3.8 Remark. Note that U(:)(k,m) 1is a multiple of the Haar func-
tion with indices k and m as defined by Alexits (1961), page 46.
3.9 Theorem. Let assumption 3.7 hold. Then,

Ty I |
n r X, -6, >0.
k=1 k k
Proof: We need only show that the hypotheses of theorem 3.3 hold.

First we will show that assumption 2.3 holds with H = zg. Let

D

B € R® be defined by

8(k,m) = 2"(m+1)% 7§ £(x)U(x) (k,m)dx

for (k,m) € D. By the definition of S we can and shall choose
a & >1% such that |[f(x) - f(y)| < K|x - ylE for some K and all
x,y € [0,1]. Then,

(m+1)

[8(k,m)| = (m + ])ZmIIg- f(27M(k - %) - x)

- £(27™k - %) + x)dx|

2'(m+])

< k(m+1)2™Erg X%dx = 0((m+1)275M) |

Therefore B8 € ng since

© 2m o
poz (s(k,m)? = 1 o((me1)?)2"(1-28))
m=0 k=1 m=0
and ] - 2& < o.
Now f(x) = <B,U(x)>D for x € [0,1]1 by Alexits(1961),

theorem 1.6.2. Thus assumption 2.3 holds; therefore assumption

2.5 holds.
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For x € [0,11, © (U(x)(k,m))? < (m1)72. Thus
1

2

sup uU(x)"g <1+ m© <« and therefore [U [, + “U:“D = 0(1).
x

[ o

m=1
Finally <8, U - u;>D = 0(n"%) by Alexits (1961), 4.6.1

Therefore the hypotheses of theorem 3.3 are satisfied with y =0
and € = &.

3.10 Assumption. Assumption 3.5 holds with the following choices

of S, S, D, Dn’ and U.

S = [0, 2n],
K=1(ge€RY2™. g s Lebesgue measurable,
reTg(u)dn = 0 and 15"(9(u))2du < =),
and
S=1h ¢ RL0»271, h(x) = fgh'(u)du + ¢ where ¢ € R and
h' € K.
D=((1,00} U ((i,k): i=1,2 and k> 1},
D, = {(i,k) € D: k <n} for n>0,
and
U(x)(i,k) =1 k=0
=k Vcoskx i=1 and k> 1
=k Vsinkx i=2 and k> 1.

3.11 Theorem. Let assumption 3.10 hold. Then

-] n
n T |X, -6, ~>0.
k=1 Kk
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Proof: Define B8 € R’ by
8(1,0) = %; fg“ F(x)dx
and
_k .2n
B(1,k) = - fo cos (kx)f(x)dx
8(2,K) = %-fg" sin (kx)f(x)dx .

By the definition of S, f 1is the indefinite integral of

f' and f' € K. Since IS“ f'(x)dx = 0, f(0) = f(2n). Thus

integration by parts shows that for k > 1,

sin (kx)f'(x)dx if i

L}
—

B(1,k) = - T/

QA |—

fO cos (kx)f'(x)dx if i=2.

Since fg"(f'(x))zdx < o, BE€ ES by the Bessel inequality.

Since f 1is an indefinite integral, it is continuous and

of bounded variation. Therefore

F(x) = <8, U(x)>y

by, e.g., Akhieser (1956), section III, 53. Then assumption 2.3
holds and therefore assumption 2.5 holds.

Note that sup  [U(x)[jy < .
x€[0,27]

Finally

* 2 2
Uy = Uplip = = (U (1,K))" + (U, (2,K))

2

<2 r KZ=0(x %) = on),
k=n+1
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so by the Cauchy-Schwarz inequality |<8, Un - U:> | = 0(n ).
Therefore the hypotheses of theorem 3.3 are satisfied with y =0

and € = .



CHAPTER 4
RESTRICTION TO # A FINITE DIMENSIONAL VECTOR SPACE

4.1. Foreword. If assumption 2.2 holds with S equal to the vector

space spanned by k functions f],...,fk, then assumption 2.3 holds

k

with H=R" and U the map

f1(s)
s+|
f (s)
In this case,since inner products in Rk are easily computed, it is
reasonable to suppose that in assumption 2.4 U: and Un have been

*
chosen so U = U (see Remark 2.4).

n
Suppose assumption 2.5 or assumption 4.4, the analogue of

assumption 2.5 when Un is random, hold. As will be seen,

“Bn+1 - Bn“ converges to zero. Therefore it is possible to find con-

ditions on Un so that, roughly speaking, By = B cannot be almost

perpendicular to Un too often and under these conditions,

lie, - &ll = 0.

k _ux
and Un = Un‘

Fix p > k and let Nn be the k x p matrix whose ith column is

4.2. Theorem. Let assumption 2.5 hold with H =R

] for i=1,...,p. Let §n and 8 be the minimum

nti-1 ,max
T

and maximum eigenvalues, respectively, of wnwn.

,min
Suppose the sequehce {a,} satisfies

n

18



19

2 2 2
(1) L a U, (0 + Ul ) <= and
(2) r min aj) = ™

for a sequence of integers {nk} such that
(3) N 2N +p forall k and
for some &, A > 0,

(4) s <A for all k.

Gnk,min-i Gnk,max —

| A

Suppose that for all ¢ > 0,

(5) inf( -1 inf |Rn(x)|) >0 .
n e >[x-e |>¢

Then [jg, - 8|l > 0. If in addition sup |U, || <~ then X -6 - 0.
' n
Proof: Al1 the assumptions of lemma 3.1 hold so (3.1.3) and (3.1.4)

hold.
By (1)
E(z (a U Y, - Ry(X )2 < o £ a2l | < = .
Thus
(6) a U lI(Y, - R (X))~ 0.
Also by (1)

(7) an“Un“('I + “Un“) ~ 0.
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*
Then since (2.5.1) holds with U, = Un

(8) lIBneq = Bpll < @ lIULIICACY + i, = BJIULN) + 1Y, - R(X)]).
By (3.1.3), (6), (7), and (8)

B 47 = B4l > O

n+1
For any k > 1 define

1

A = (k" < lim|g - 8] <k} n {8, - Bl > O}

n+l

Since except for a set of probability 0

A
1

C 8

{1im |8, - 8] > 0} = Y A

to prove |8, - 8|l ~ 0 we need only show that for any k, P(A.) = 0.
We now fix k and fix w € Ak' Until the end of the proof
we write ¢ instead of ¢(w) for any random variable £. Now

choose L] such that
I8, - 8| > k™1 whenever g > L..
n, -1

Then for all % Z.L]~

p-1 2 T 2
r (<U_ ... B -8)° = |W (8 -8l
i=0 ng+1 ng, n!, nl
T, T
= (g -8)W W (8B - B)
n2 nz n2 nz
2 > 8 k-z.

> 6 s, - 8ll
nl,min "z

Here we used (4) and the result that if A is a positive definite

T

k x k matrix with minimum eigenvalue, A, then x Ax > 2 ||x||2 for
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all x € RX (see Rao (1973) (1f.2.1)).
Thus there exists a sequence {ml} such that m is in the
set {nl, n2+1,...,n2+p-1} and
-2
, B - 82 z_dk

9 <U
©) (Y, .8 5

whenever 2 > Ly

By (3), m,, >2m, forall 2. Also by (4),
2 T 12 2 K .
(<Um2’ X>) :'“w"zx“ < AX|[® for x € R". Since |g -8

2 L

- | l

T lBs = B qlls
L i i-1
1—n2-1

n2+p-1
2 2
(10) (<u_, 8 -8 >)"<al z |B8; -840 .
Mo My Mg i=n +1 i-1

Since [8,,q - B,ll > 0 we have by (10) that for a number L,

(1) (<U B -8B >)2 < ﬁk:ﬁ whenever 2 > L
ml’ m, ne — dp - -2
By (9) and (11), if we let L = max{L],Lz} then
|- -6 | =|<U ,8 - 8]
m, m, m’ m,
>|<U_ , B =8> - |<U ,B -8 >
m,’ °n, m >’ “m, n,
> k-1 $ whenever ¢ > L
— 2 p -— *
Mso X -8 | =|<B -8 U >| <asup{, - Bli} <.
L) L) n "
Thus by (5) there exists T > 0 such that
R (X, )X, -6 )>r whenever 2 > L.

L L L L
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Then since
L a Ry (X)X - 8) >
n=1
r a_ R_(X_ )(X -0 )
g=L Mg Mg Mg~ Mg My
> £ (min aj)r = o

=L nlfggpl+p-1

it follows from (3.1.4) that P(Ak)

0.

Finally since X -6 =<8 -8, U>, X -6 ~ 0 if

1
supllUp It < .

4.3. Remark. Until now we have assumed that sn is a fixed

element of S. Assumption 4.4 is an analogue of assumption 2.5 when
s, € s? and o is a random variable.

At time n, the expected output of the process, given the
past, depends on both Xn and Ci When 6, was non-random we
wrote the expected output as Rn(xn); the dependence of the output
on e, is implicit in this expression. When 0, is random it is
more convenient to denote the expected output as Rn(Xn,en) where
Rn is a mapping of R2 into R.

4.4. Assumption. Assumption 2.2(i) holds. Let R, be a Borel map
2

from R™ to R such that

(x - y)Rn(x,y) >0 for all x,y € R.

IR (6y) | < AL+ [x - y[) for A>o0.

Let Sh € SQ and define
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o, = f(sn)
Suppose assumption (2.3)(i) holds with H = rK and with U = U(sn),
Un is a measurable transformation into Rk.

k

Let {Bn} and {Yn} be random sequences in R™ and R,

respectively, such that with

F =0{B-I,...,an U]""’U}

n n
we have
B+l = B - anYnUn for some a > 0,
Fn
E Yn = Rn(xn’en)’
and
F
n 2
E (Yn - Rn(Xn,en)) < 0% < =,

4.5. Theorem. Let assumption 4.4 hold. Define

*
Fn = o{B],...,Bn, U],...,U -I}.

n-

Suppose T, K > 0. Assume
*

inf, PO < 1<V x| < VK[ 5 ¢
xeRk - n - N

and
*

F
E (150 + U IP) < k.

If
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N

(1) ra =« and za <

and for all e >0

(2) inf _; inf IR, (x,y)] > 0,
n e >|x-y|>e
then
8, - 8l ~ 0.
If

a = an™® with a>0 and %<a<1,

2
E“B]“ <%
and for some ¢ > 0
(3) |Rn(x,y)| > c|x - y| for all x,y €R,

then

2

sup n*[l8, - 8|I° <= and sup n® E[X -0 | <.
n

Proof: First,
* * *

F F F
2 \ 2 n 2.-n 2
= |8, - BII° - 2a  E Y (X, -6 ) +a  E (Y[ D

(4) E "8, - &l

n+1

If we.define n(x) for x > 0 by

n(x) = inf inf IR, (y,2)]
n Xr<ly-z|<Xr

then,
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* *

F F F
E n(vn(xn -98.)) =E™(x- 8,)E "vn)

n
*

Fn
’E (xn - en)Rn(xn,en)

*

F
n, - .
> rlig, - 8lin([l8, - 8[)P "(r ]Hen-eu:!<un,en-8>Izrhsn-eh)

Thus,
*
Fn 2
(5) E (Y, (X, - 6)) > 178, - glin(]i8, - 8-
Next,
Fr Fr F
n 2 _.n 2 - N 2,
E Y v, D% = E M ° E YY)
F*
< E U IP(RE (% h8,) + oP)
and since
2 2 2 2
Ra(tpo8y) < 2A°Cllgy = B “JU 1" + 1)
*
Fn 2 2
(6) E (Y QU 10T = o(li, - 8]° + 1) .

By using (4) - (6) we obtain

*

F

(7) E"8 2

2
ne1 - 8IS < I8y - B+ £ )

- 2a,Tji8,, - 8lin(lls, - 8[)) +g,
with fn,gn >0 and fn,gn = O(aﬁ). Then by theorem 1 of Robbins and

Siegmund (1971), 1im |8, - 8[| exists and is finite and

zaglis, - 8linlie, - 8f) <= .
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Since by (1) and (2), & anxnn(xn) = if {x,} is any sequence of

numbers satisfying x - x with x # 0, we have |B, - gl - O.

Moreover, (3) implies

n(x) > c T |x|

and this with (7), E“B1“2 <=, and a = an™® implies

Ellg, vy - 817 < Ellg, - 8IF(1+ ) - ME ||, - 8] n™®+ g

n+1l °n

. _ -2a
for some M > 0 and with f ,g > 0 and f .9, = 0(n 7).

Then by a lemma of Chung (see Fabian (1971), lemma 3.1)

8

sup {n“Enen - 6“2} <
n

: oy L (e 2 o 12y
Since E[X - | < E(|8, - 8lilU,I) < (Elig, - 8]" E[U |I")* and
EIIUnll2 <K

8

sup (n® E|X -8 |} <
o n

4.7. Example. With this example we show that the assumptions of

theorem 3.3 imply neither X -6 -0 nor |8, - 8]~ 0.

Let H = R2. Suppose e and e, are the standard unit

vectors in Rz, i.e., e{ = (1,0) and e; = (0,1). Suppose B is

the zero vector, Rn(x) = x for all n, By = € and a, = an']
for 0 <a<1.

Let G be a subsequence of the integers such that = a < .
Assume that U, is e, or e accordingas n€ G or n zeg.

Assume the process is deterministic, i.e. Yn = Rn(Xn).
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2 let g(i) be the ith coordinate of ¢,

For ¢ € R
i=1,2.

If n¢G, then ué‘) = 0 and therefore

(1) o{1) = 61 4 n g
-y = = (1) (1) .
If n € G, then Yn = Xn = <Bn,Un> = B, and Un 1, so
(1) _ (1) .
(2) Busl = By (1 -a)) if neG.

Since s%‘) 1, we have by (1) and (2) that

(1)
R = 1n1(1-a) for n>1.
n k<n k
keG

Since a<1, (1 - an) # 0 for all n. Then since

X an < =, there exists d > 0 such that
neG

lim(n (1 - ak)) =d .
n- k€EG
k<n
Therefore Bél) A0 = B(]). Moreover Xn = Bﬁl) whenever n € G

and therefore Xn - en £ 0.

4.8. Example. Here we have another example satisfying the con-

ditions of theorem 3.3 but for which Bn / B. However, in this case
Xn - en + 0.

Let H = Rz. Elements of H will be represented as complex

numbers. Suppose B8 = 0 and

1 for x>0

R,(x)

-1 for x < 0.
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Suppose ¢ = 1 and

n-1
iz J-]
c_=e 3= for n > 2.
n —
in
Let a = |e - 1| and
U= (" - Dale
n n-n

Also assume By = 1 and Yy = Rn(xn)' Then for all n

(1) B, = Cp and

- -1 L
(2) X -9 = xn = _(]___£%¥ill__)2 ,

whence X -6 -0 but |g, -6 =1 forall n.

To prove the last statement, first note that

. =1 . . =1
2 Mmooy e™™ - 1) =201 - cos n']).

Next, with Re ¢ denoting the real part of the complex number ¢,

<cn,Un> Re(cnUn)

- Re((ein-

-1
- (1 -cosn %
- ( 2 ) .

Thus if (1) holds for n = k, so does (2). Moreover (1) and (2)

with n = k imply (1) for n = k+1 by the following calculation:



-1
Bt = S = (R -y

[}
(g}
=~
+
L)
(1]
]
—t
N
(g}
=~

]

()
>~

(1]

\

()
=

+

—

By observing that (1) holds for n =1 the proof is completed.
Note that by Taylor's theorem

aﬁ = 2(1 - cos n']) =n

24 o(n™%)

with 0 < dn < n']. It is then easy to see that the assumptions of

theorem 3.3 hold if the theorem is trivially generalized by replacing

i by an=cl'1-Ql with 0<micniM<°°

the assumption a = an n

for some m,M.
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