
> π

Timothy Arthur Strutz

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Geology
a

ABSTRACT
A PRE-PENNSYLVANIAN PALEOGEOLOGIC STUDY OF MICHIGAN
By
Timothy Arthur Struts

A study of gamma-ray/neutron logs of four units: the Mississippian Bayport Limestone, the Pennsylvanian System, the Jurassic "Red Beds", and the Pleistocene glacial drift provided the framework for determining the regional distributional patterns and interrelationships of these sediments in the Michigan Basin. Isopach maps were constructed for each of these along with structure contour maps of the Bayport and the Mississippian-Pennsylvanian unconformity, and a presPennsylvanian paleogeologic map.

Stable tectonic conditions have existed in the Michigan Basin since the Late Mississippian. In many areas the Bayport is completely eroded away and is reflective of river drainage systems. Bayport structural "highs" often are indicative of closures in the underlying Michigan Stray sandstone which are known to be productive of gas. Depocenters of all these units are located near the center of the Lower Peninsula of Michigan. The Jurassic implies an asymmetrical aspect to the Michigan Basin configuration.

The author wishes to thank Dr. James H. Fisher, my thesis committee chairman, for his advice, assistance, and friendship during the preparation of this study. Appreciation is also extended to Dr. A.T. Cross and Dr. F.W. Cambray for their advice and review of the thesis.

I am also grateful to Garland Ells of the Michigan Geological Survey for his cooperation in obtaining data, and the late Harold Mcclure of McClure Oil Company for allowing me the use of their files. Gratitude is also extended to the Tenneco Oil Company for their financial assistance which enabled the completion of this paper, and to Tom Campbell of Merritt Enterprises for the many hours of help with the computer programing and mapping. Thanks are also extended to Mike Puzio for the final drafting of many of the maps and to Deb Kirchen for the typing of this manuscript.

Finally, I would like to thank my parents, Mr. and Mrs. Arthur C. Strutz, for all their encouragement both prior to and during this study.

TABLE OF CONTENTS

Page
LIST OF FIGURES iv
LIST OF PLATES v
I. INTRODUCTION 1
Purpose of the Study 1
Methodology 1
Previous Investigations 6
II. GENERAL STRUCTURE 9
III. GENERAL STRATIGRAPHY 13
Mississippian 13
Pennsylvanian 22
Jurassic 26
Pleistocene 30
Generalized Cross-Sections 31
IV. CONCLUSIONS. 34
APPENDIX 38
BIBLIOGRAPHY 66

LIST OF FIGURES

Figure

1. Control point distribution. Page
2. Stratigraphic section with 3
curve with typical gamma-ray
3. Michigan Basin and surrounding structura
4. Stratigraphic sucession 10
through Recent.
5. Combined depocenters
6. Distribution of Mississiplan 17
Jurassic strata in the Mian, Pennsylvanian, and
7. The Pennsylvanian System in Michigan. 23
8. Generalized lithologic cross-section $A-A$ 25
9. Generalized lithologic cross-section 32
$B-B^{\prime}$ 33

LIST OF PLATES

Plate

All plates in pocket
l. Isopach map of Bayport Limestone
2. Structure contour map on the base of the Bayport
3. Major Michigan Stray sandstone gas fields in relation to Bayport structural "highs" map
4. Pre-Pennsylvanian paleogeologic map
5. Structure contour map on the Pennsylvanian unconformity
6. Isopach map of Pennsylvanian
7. Isopach map of Jurassic "Red Beds"
8. Isopach map of Pleistocene glacial drift

Purpose of the Study

The intent of this study is to determine the regional distributional patterns and interrelationships of sediments that range from Late Mississippian through the Pleistocene in the Michigan Basin. It should also be helpful in determining whether the time of deformation of the Michigan Basin is restricted to the Mississippian or if it is evident in the Pennsylvanian. Interpretations of the paleodrainage patterns, origin of the sediments, and the possibility of traps for oil and gas in this area of the Michigan Basin will also be determined.

Methodology

This study is concerned with four different units which range in age from the Late Mississippian to the Pleistocene. They include: the Mississippian Bayport Limestone, the Pennsylvanian Saginaw and Grand River Formations, the Jurassic "Red Beds", and the Pleistocene glacial drift. The mapping of these units is based upon well data obtained from Michigan State University, the Geology Division of the Michigan Department of Natural Resources, and local oil companies.

Extensive well coverage (Figure l) is available in almost all of the study area and the data used in mapping these units came almost exclusively from gamma-ray (Figure 2), neutron and gamma-ray, and sonic well logs. Additional information was available through core hole records and well samples. The gamma-ray log is the most consistent and accurate means for delineating lithologies in the Michigan Basin while the neutron and sonic logs are useful when looking for variations in porosity. Mechanical logs are made on nearly all the oil and gas wells drilled in Michigan and are valuable data sources for studying the lithology of the subsurface. They have the added advantage of being continuous which alleviates the problems of sample lag, lost samples, sample mixing, and lost circulation.

Sample coverage is fairly extensive and can be valuable. However, sampling error is common and because of this, the accuracy of sample tops may be questionable. Thus, samples were examined only on certain wells to determine the top of the Jurassic "Red Beds" on the mechanical logs, and in an attempt to differentiate between the Pennsylvanian Grand River and Saginaw Formations. Sample descriptions were also of value. These were from published survey logs and served as an aid in checking lithologies in areas where facies merged or units fluctuated markedly. Over 670 well logs were used in this study. First correlations were made along the Albion-Scipio fault trend due to the dense well coverage of that area. From this initial point, extensions were made to include the remainder of the study area.

FIGURE-1 CONTROL POINT DISTRIBUTION.

FIGURE-2 STRATIGRAPHIC SECTION WITH TYPICAL GAMMA RAY CURVE

Eight maps were constructed based on the data obtained from the well logs. A Pre-Pennsylvanian paleogeologic map was constructed along with structure contour maps for the Mississippian-Pennsylvanian unconformity and the Mississippian Bayport Limestone. Isopach maps were made for the Pleistocene glacial drift, the Jurassic "Red Beds", strata of the Pennsylvanian System, and the Mississippian Bayport Limestone. A map showing the major Michigan Stray sandstone gas fields in relation to Bayport structural "highs" was also constructed.

The General Purpose Computer Program (GPCP) was used in the initial phase of the construction of many of these maps. This FORTRAN computer program displays functions of two variables graphically as contour maps. It is suited for a number of contouring applications such as, gravitational and magnetic fields, strata depths in geophysics, temperature and barometric pressure in meterology, and in electrical and magnetic field intensity. It is very flexible and is able to present the contours in a form suitable for display on a Calcomp plotter. The surface can be specified either by giving its values at the mesh points of a rectangular array, or by giving its values at random points in a region of interest. This program will grid data. That is, the values of the function at the mesh points of a rectangular array are estimated as are the contours produced from this gridded data. These data are generated from random data by a procedure which analytically constructs a smooth surface passing through every data point.

The resulting contour may be influenced by the 35 nearest data points or less. This feature is of much value in certain problems, such as in geologic mapping where the user needs a certain amount of control over the shape of the contours. These computer maps were then subject to alteration wherever it was deemed necessary.

Previous Investigations

Studies of the Late Mississippian and younger strata in the Michigan Basin have been limited and for the most part, have not been concerned with showing relations between systems. However, there have been some investigations of individual formations or systems from this geologic time sequence.

Work on the Bayport Limestone has been limited. Cohee (1951) and McGregor (1953) both did work on the Mississippian but neither placed much emphasis on the Bayport. Bacon (1971), concluded from his study on the Bayport of the Wallace Stone Company Quarry at Bayport, Michigan, that the formation was deposited in a sabkha environment. Lasemi (1975) did an analysis of the stratigraphy and subsurface geology of the Bayport in the Michigan Basin. He subdivided the formation into three units and drew isopach and lithofacies maps of each unit. From these, he concluded that the upper and lower units were deposited in intertidal or lower supratidal environments, while the middle one was deposited after a major transgression.

The most comprehensive studies of the Pennsylvanian System in the Michigan Basin have been conducted by Kelly (1936) and Shideler (1965). Kelly, provided valuable information regarding Michigan faunas and floras of Pennsylvanian age and also provided needed lithologic and stratigraphic descriptions. Shideler, divided the Pennsylvanian into three intervals and constructed isopach maps for each. The sediments of the oldest interval are Morrowan in age and formed in either a neritic or deltaic environment. The middle unit resulted from alluvial flood plain and shallow neritic conditions and is Atokan in age. The youngest unit is Desmoinesian in age and is mostly fluvial sediments with some minor shallow neritic deposits. According to the Michigan Geological Survey, the youngest Pennsylvanian sediments are Conemaugh. However, no sediments of this series have ever been found in the Michigan Basin (Cross, 1978). Shideler, also provided important information regarding the variability and thickness of the lithology of the Pennsylvanian System in Michigan, and constructed a Pre-Pennsylvanian paleogeologic map of the basin. He found Bayport Limestone to be the prevalent formation below the unconformity while Michigan Formation strata were found along the edges of the basin and in scattered locations in the center.

Additional work on the Pennsylvanian was conducted by Cohee, et al. (1950), and Kalliokoski and Welch (1976). They compiled a great deal of subsurface data and through it, prepared estimates of Michigan's coal reserves.

Prior to 1931, the term "Red Beds" had been referred to only occasionally in the geologic literature of Michigan. Newcombe (1931), referred to them as a series of shales, sandstones, and gypsum which were widespread in the center of the Michigan Basin. From this, Martin (1936) listed them as Permo-Carboniferous. A more recent study was done by Sander (1959). He applied mineralogical, sedimentological, and thickness distribution analyses to paleogeographic considerations and concluded that they formed under marine conditions. Cross (1966) was the first to assign the "Red Beds" of the Michigan Basin to the Jurassic. Shaffer (1969) palynologically determined that they are Jurassic in age.

There have been many studies of the Pleistocene drift of the Michigan Basin. Hough (1958) was concerned with the evolution of the Great Lakes basins. Kelly and Farrand (1967) constructed various maps which show the boundaries of the Wisconsin drift, preglacial drainage patterns, and the principle morainic systems. A more recent investigation was done by Welsh (1971) on the patterns of compositional variation in some glaciofluvial sediments in the Lower Peninsula of Michigan.

The Michigan Basin is a roughly circular intracratonic basin with an areal extent of approximately 122,000 square miles. It consists of the entire Lower Peninsula of Michigan, the eastern half of the Upper Peninsula, the area underlain by Lake Michigan and Lake Huron, and small portions of Ontario, Ohio, Indiana, Illinois, and Wisconsin.

The basin is surrounded by major positive tectonic structures (Figure 3) that have greatly influenced and partially controlled the configuration of the basin (Ells, 1969). It is bounded to the north and northeast by the Canadian Shield, on the northwest and west by the Wisconsin Arch and Highlands, and to the east by the Algonquin Arch. The Findlay Arch separates it on the southeast from the Appalachian Basin, while the Kankakee Arch marks the boundary between the Michigan Basin and the Illinois Basin. All of these structures have been active in the geologic past and are believed to have originated in either the Precambrian (Pirtle, 1932; Newcombe, 1933) or in the Cambrian (Cohee, 1951).

The Michigan Basin has within it many intrabasinal structural features that include a number of joint systems, and fault patterns. There are two recognizable major trends. The dominant one has a northwest-southeast direction and is

FIGURE-3 MICHIGAN BASIN AND SURROUNDING STRUCTURAL ELEMENTS (modified after ells, 1969)
concentrated in the eastern, southeastern, and central parts of the Lower Peninsula of Michigan. It includes such features as the Albion-Scipio fault trend and the Howell Anticline. A northeast trend is also distinguishable butoccures mostly in the western and southwestern portions of the Lower Peninsula. It is generally accepted that the Precambrian basement complex is primarily responsible for these structural patterns (Pirtle, 1932). Folding occurred throughout the Paleozoic while the major deformation is Late Mississippian (Landes, 1948).

The Michigan Basin in approximately its present day outline first formed in Middle Ordovician time (Fisher, 1969) and is fairly shallow with the depth to the Precambrian being only 14,000 to 15,000 feet. The largest structural feature in the basin is the Howell Anticline. It trends in a northwest direction and is located in Livingston and Shiawassee Counties. It is believed to have formed at the beginning of Coldwater time (Paris, 1977) and is due to recurrent movements along old lines of weakness in the Precambrian basement (Kilbourn, 1947). Thus, the anticline formed as a result of faulting which caused the northeast side of the fault to be uplifted.

There are three dominant theories which have been presented on the orgin of the Michigan Basin. Many (Newcombe, 1933; Fisher, 1978) believe that the structural features of the basin are due to faulting and zones of weakness in the Precambrian basement complex. Hinze (1963) claimed that the formation was due to the addition of basic rocks to the

Precambrian basement which was followed by an increase in isostatic subsidence as a result of the added weight. In 1976, Haxby, et al., suggested that diapirs of mantle material moved upward and penetrated the lower crust. The intense heat resulting from this upward progression caused the metastable gabbro to change to ecologite. After cooling, this newly formed denser material caused the basin to subside in an effort to achieve isostatic equilibrium.

Some of the names used in this study are based on the State of Michigan stratigraphic chart (Figure 4). Lithologic contacts, with the exception of the Jurassic, were based on work done by the Michigan Basin Geological Society (Fisher, et al., l969). The Jurassic was picked from mechanical logs after the top was determined through sample analysis and could be consistently correlated with most of the written descriptions.

Mississippian

The Bayport Limestone Formation is Late Mississippian in age and forms a part of the Grand Rapids Group in the Michigan Basin area. It is a buff colored, dense limestone and dolomite that has minor amounts of chert, sand, and shale (Kropschot, 1953). It lies with minor disconformity upon the Michigan Formation which consists mostly of shale, with some dolomite, sand, and gypsum. The Michigan Formation is made up of informal subunits which include: the Triple Gyp, Brown Lime, Stray-stray sandstone, Stray dolomite, and Stray sandstone. Of these, only the Stray-stray and Stray sandstones are known to be producers of hydrocarbons in economic quantities. The Saginaw Formation of Pennsylvanian age unconformably

PLESTOCENE NOMENCLATURE			
ERA	SYSTEM	SERIES	STAGE
	QUATERNARY	meistocene	
			Serpenon meodecoump
			Annoen Cliccimon

OUTCROP NOMENCLATURE

			KIMERIDGIAN			
		$\begin{array}{\|c\|l} \hline & \frac{2}{4} \\ \frac{4}{2} \\ \frac{1}{8} \end{array}$	conemauch		Grued five tim	
$\left\|\frac{0}{0}\right\|$	$\left\|\begin{array}{l} \frac{1}{n} \\ n \\ 2 \\ 2 \\ 0 \end{array}\right\|$		portsvius		Semow in	N000
	2				Corpont 4	
山			MERAMECIN	cand ranos	Midigen fin	
$<$	\sim		OSAGIAN		merchell St	4
	$\left[\frac{n}{2}\right.$	$\left\lvert\, \frac{\bar{\alpha}}{\mathbf{N}}\right.$	KINDERHOOKIAN		Coldrues Sh	

FIGURE-4 STRATIGRAPHIC SUCCESSION IN MICHIGAN
overlies the Bayport Formation and fills the irregular surface which is the result of the post-Bayport erosion. Brachiopod studies (Oden, 1952) have been used to correlate the Bayport with the lower part of the Maxville limestone of Ohio, and the St. Genevieve and St. Louis limestones of the Mississippi Valley. Lithologic observations indicate that the Bayport was deposited in a fairly stable tectonic environment. It may be subdivided into three units on the basis of lithology and fossil rich zones (Lasemi, 1975).

The initial Bayport sediments were deposited after the cessation of the predominantly late evaporite depositional phase of the Michigan Formation. A slight rise in sea level caused the evaporite lagoons to give way to carbonate flat deposition. Both the lower and upper units are similar in lithology and consist mostly of dolomite with some chert and interbedded sandstone. They were deposited in an intertidal or lower supratidal environment (Lasemi, 1975).

The middle unit is comprised of a relatively pure fossiliferous limestone that was deposited after a major transgression. This provided an excellent environment for the development of organisms. It may also indicate that the Michigan Basin was connected to adjacent basins where the open circulation of sea water produced fairly similar environments (Lasemi, 1975). A gradual regression preceded this which provided a similar environment of deposition to that of the lower unit. Fluctuations in sea level did occur and are indicated by sandstone lenses.

After the deposition of the upper unit, the entire area was uplifted and extensive erosion resulted in the removal of much of the upper unit. The major area of subsidence was in the northeastern part of the basin while the major positive features were located to the south, east, and northwest.

An isopach map (Plate l) illustrates the thickness variations of the Bayport strata. This displays a generally progressive thickening from the peripheral areas towards the interior. However, irregularities in this trend do exist and are due to post-Mississippian erosion. In fact, in many areas of the basin, the Bayport has been completely eroded away as river systems cut downward through the strata as they moved towards the interior of the basin.

The major depocenter (Figure 5) is in southwestern Clare and northwestern Isabella Counties. Smaller centers are found in eastern Mecosta, northeastern and west central Montcalm Counties. The structural center and depocenter of this formation conform quite well with the present basin depocenter which is located in northwestern Arenac and northeastern Gladwin Counties (Fisher, 1978). This suggests that relatively stable tectonic conditions have existed since the Meramecian. The maximum thickness of the Bayport is 252 feet and occurs in Montcalm County. There are areas of abnormal thickness that are found in the east and northeast portions of the basin. These are primarily due to greater post depositionsl erosion of the upper Bayport in the west and southwest areas of the basin.

FIGURE-5 COMBINED DEPOCENTERS.

BAYPORT
PENNSYIVANIAN

JURASSIC
PRESENT

A structure contour map (Plate 2) constructed on the base of the Bayport Formation reflects the irregular thickness of the Michigan Formation. It indicates that a number of local basins and domes were present at the time of deposition, or were produced by subsidence at the time of deposition. There is a good relationship between structure and thickness. Thicker Bayport accumulations can be found associated with structurally lower areas while thinner accumulations lie on structurally higher topography.

Many of the Bayport structural highs reflect known closures in the Michigan Stray sandstone (Plate 3). These Stray closures are quite small with most not exceeding 125 feet of relief (Elowski, 1978). These are of economic significance as many are associated with natural gas production. Stray production can be found in Newaygo, Osceola, Clare, Missaukee, Montcalm, Roscommon, and Isabella Counties. These areas besides producting natural gas, are also becoming valuable for natural gas storage.

Not all Bayport structural "highs" correspond to known closures in the Michigan Stray sandstone. Four large closures are located south of all known Stray production. The closest significant structural "high" is in southeastern Montcalm County while the others are found in south central Gratiot, northeastern Clinton, and northeastern Eaton Counties. The one in southeastern Montcalm County is the most probable apparent structure for Stray production. This is based on the fact that the Stray undergoes a facies change to the southeast and thus,
is primarily restricted to the seven county area where there is known Stray production. Thus, it may not be found underlying any of the Bayport "highs".

There are five structural highs that are surrounded by Stray production but are themselves non-productive. These areas are located in southwestern Missaukee, eastern Osceola, northeastern Newaygo, eastern Mecosta, and eastern Isabella Counties. The total thickness of the Michigan Formation does fluctuate and it is possible that these highs reflect a thicker sequence of Michigan strata between the top of the Stray sandstone and the Bayport. Thus, the structural closure exhibited in the Bayport may not be present in the Stray. The structures could also lack a necessary source and thus, not be productive. However, there is the possiblity that natural gas may be found associated with these highs and may be located as further drilling defines the apparent structure.

It is possible that the Bayport highs may become more pronounced in the lower strata. Thus, drilling of these areas may prove profitable for the accumulation of hydrocarbons from not just the Michigan Stray sandstone, but from other lower formations as well. Existing Stray structural gas fields may also be indicative of structural closure in deeper formations that may subsequently also be of economic value.

The Mississipian System is separated in the Michigan Basin from the overlying Pennsylvanian strata by a major unconformity. The Mississippian strata have been subjected to
much post-depositional erosion and the resulting pattern is illustrated by a Pre-Pennsylvanian paleogoelogic map (Plate 4). The strata below the unconformity are entirely of Mississippian age and range from Kinderhookian Coldwater Shale to the Bayport Limestone of Meramecian age. The Bayport is the most extensive paleosurface directly underlying the Pennsylvanian strata. It is of quite variable thickness and is found underlying most of the central portion of the Lower Peninsula of Michigan.

The Michigan Formation underlies the Pennsylvanian throughout much of the structurally higher peripheral areas and occurs in the interior as inliers most likely due to erosional activity. Shideler (1965), did paleoslope studies and indicated that Michigan was essentially a topographic basin at the beginning of Pennsylvanian time with stream deposits being dominant over other types of sedimentation. He also speculated that a centripetal drainage system may have existed immediately prior to Bayport time. He based this on the crenulate pattern of the contact between the two formations as an indication of extensive stream dissection. The Michigan Formation exhibits evidence of stream dissection in at least four areas. The most prominent one can be seen extending towards the center of the basin, northwest and west off the Howell Anticline and the surrounding high peripheral areas. Bayport sediments have also been eroded away by a similar process in Eaton County. This river ran to the northeast and Michigan sediments are exposed as far as

Clinton County. Michigan strata can also be found along the periphery of Arenac County. This channel ran to the southeast towards the interior of the basin. A fourth channel can be seen in Missaukee County. This channel flowed in a southerly direction towards the basin interior.

Marshall Sandstone subcrops below the Michigan Strata are limited in extent and are generally found scattered along the periphery of the basin. Most of them are located along the northwest flank of the Howell Anticline in Shiawassee County and are attributed to the greater uplift and subsequent erosional activity of this area. Smaller subcrops are found in Bay, Eaton, Genessee, Livingston, and Tuscola Counties, and are also due to erosional activity.

The most pronounced erosional effects are exhibited along the axis of the Howell Anticline which trends northwest through Livingston and Shiawassee Counties. In this area, pre-Pennsylvanian deformation and subsequent erosion have resulted in Coldwater Shale being exposed along the crest of the structure. The Coldwater is restricted to Livingston and Sniawassee Counties and represents the oldest formational unit directly underlying the Pennsylvanian strata.

There is no apparent relationship in the Michigan Basin between the structures at the base of the Bayport and the unconformity between the Mississippian and Pennsylvanian Systems (Plate 5). This is due to the nature of the two surfaces as the base of the Bayport reflects the topography of the underlying Michigan Formation.

Pennsylvanian

Pennsylvanian strata underlie an area of approximately ll,200 square miles in the Michigan Basin and are confined to the central portion of the Lower Peninsula (Figure 6). The roughly elliptical distribution pattern extends from central Missaukee and Roscommon Counties in the north to Jackson County in the south. The eastern limit is in Tuscola County while the western boundary is found in Newaygo and Lake Counties. The Pennsylvanian System of Michigan is divided into two major formations, the Saginaw below and the Grand River (Kelly, 1936). These have been divided into a number of informal subunits. The basal sandstones of the Saginaw Formation have been referred to as the Parma sandstone while the Grand River Formation includes the Woodville, Eaton, and Ionia sandstone members. The Parma is a clean, white, quartzose sandstone that has some localized conglomeratic, dark shale lenses. It varies in thickness and has its maximum thickness in Shiawassee County where it is 220 feet locally (Shideler, 1965).

The Saginaw Formation was originally called the "Coal Measures" (Winchell, 1861). This was in reference to the coal bearing strata located between the Parma and Woodville sandstones. It later was expanded (Lane, 1909) to include the other lithologic units of the formation. Presently, the Saginaw is described as a heterogeneous association of terrestrial and marine strata that consists of interbedded sandstones,

FIGURE-6 DISTRIBUTION OF MISSISSIPPIAN, PENNSYLANIAN, AND JURASSIC STRATA IN THE MICHIGAN BASIN.
shale, coal, and carbonate units. The sandstone is usually argillaceous and fine-grained. The shale is abundantly fossiliferous and ranges from a dark fissile marine shale to a light colored underclay (Schideler, 1965). The coals are quite thin, limited in areal extent, and of little economic value. The main workable seams are usually two to four feet thick and consist of blocky bituminous grade coal (Kalliokoski and Welch, 1976). The carbonate units are thin, very argillaceous, and commonly fossiliferous (Shideler, l965).

Located above the Saginaw Formation and resting unconformably on it is the Grand River Group. This includes all the post-Saginaw formations of Pennsylvanian age and represents the youngest Pennsylvanian strata within the Michigan Basin. It has been divided into three members (Kelly, 1936), the Woodville, Ionia, and Eaton. It has a distinctive brown-ish-red color and the basal portions may be conglomeratic.

Shideler (1965) separated the Pennsylvanian of the Michigan Basin into three time-stratigraphic units (Figure 7). The oldest is Morrowan in age and includes all the strata from the Mississippian-Pennsylvanian unconformity up through the shale that usually overlies the Saginaw coal. The next unit is Atokan in age and includes all the strata found between the shale overlying the Saginaw coal and the Verne Limestone member. The youngest Pennsylvanian sediments are Desmoinesian in age and are made up of all the strata from the base of the Verne member up to the base of the Jurassic "Red Beds" or, where the Jurassic is absent, to the Pleistocene

FIGURE-7 THE PENNSYLVANIAN SYSTEM IN MICHIGAN.

drift. The actual age of the youngest interval is difficult to determine due to the sparse fossil content and the unconformable relationship of the assemblage.

The Pennsylvanian strata of the Michigan Basin have been subjected to extensive post-Pennsylvanian erosion and are isolated from the Pennsylvaian strata of adjoining basins. Kelly (1936) postulated that there was a seaway connection between the Michigan and Illinois Basins. This was based on similarities between the marine faunal assemblages of the two areas.

The thickness variations of Pennsylvanian strata are illustrated in an isopach map (Plate 6). The map indicates a progressive thickening from the peripheral areas of the basin towards the interior. Its steepest gradients are located along the western flank of the Howell Anticline and in the northeast in Arenac County. The apparent depocenter (Figure 5) is located in southeastern Clare, southwestern Gladwin, northwestern Midland, and northeastern Isabella Counties.

The maximum reported thickness is 721 feet which is found in Gladwin County. There are several areas of thick sediment accumulation which can be attributed to post-depositional erosion, differential compaction, and to the pre-Pennsylvanian topography.

Jurassic

The Pennsylvanian System of the Michigan Basin is normally overlain by thick deposits of Pleistocene drift.

However, in some localities the material directly overlying the Pennsylvanian is a series of red impure sandstones and shales with interbedded sypsum, which have been identified as the Jurassic "Red Beds".

The Jurassic "Red Beds" are restricted to the subsurface of the central Michigan Basin (Figure 6) and volumetrically represent less than one percent of the sedimentary accumulation in Michigan. The evidence of their distribution, lithology, stratigraphic position and thickness was unavailable until the advent of deeper exploratory drilling towards the center of the basin. The "Red Beds" were seldom mentioned prior to 1931. Some of the early accounts were by Lane (1909) and Smith (1917). They tended to include the "Red Beds" in a sequence of sandstones in the Grand River Group of Pennsylvanian age. Newcombe (1931) introduced the term into the Michigan stratigraphic nomenclature and Martin (1936) claimed that they were Permo-Carboniferous in age. Cross (1966) is credited with correctly placing them in the Jurassic. He based this on the distinctive mid-mesozoic, pre-Angiosperm pollen and spore flora.

The Jurassic of the Michigan Basin has an irregular oval distributional pattern and has an areal extent of approximately 5,500 square miles (Shaffer, 1969). The "Red Beds" are confined to the central portion of the Lower Peninsula and are present over most or all of Clare, Osceola, Mecosta, Isabella, Gratiot, and Montcalm Counties. Peripheral deposits and scattered erosional remants can be found
in sections of Ogemaw, Roscommon, Missaukee, Wexford, Lake, Newaygo, Kent, Ionia, Clinton, Saginaw, Midland, Gladwin, and Oceana Counties. The "Red Beds" lie unconformably below the Pleistocene glacial drift and unconformably above the underlying strata. These underlying strata are mostly Pennsylvanian in age, however, some periperal Jurassic beds to the west, directly overlie Mississippian rocks.

The bulk of the "Red Beds" lies somewhat west of the center of the present Michigan Basin configuration and the apparent depocenter (Figure 5) is located in southeastern Mecosta and north central Montcalm Counties. The Jurassic sediments are dominantly a reddish-brown shale with some sandstone and siltstone lenses. Fairly pure gypsum may also occur as a bedded evaporite and be up to eighty feet thick (Sander, 1959).

Color has been the chief criterion used in differentiating the Jurassic strata from the underlying beds. Most of the Pennsylvanian and Mississippian strata that are directly below the Jurassic are gray to black siltstones and sandstones. Besides this, the sandstones of the Grand River Group are usually micaceous and slightly feldspathic while those of the Jurassic are not (Shaffer, 1969).

The maximum thickness of the Jurassic, slightly over 350 feet, is found in Mecosta County. The thickness does vary considerably (Plate 7) within the area of distribution. This is due to the modification by irregularities of the pre-Jurassic topography and by post-"Red Bed" erosion modified by

Pleistocene glacial scouring. The thickest Jurassic areas are situated slightly west of the present depositional center, and because of this, an asymmetrical aspect is imparted to the Jurassic basin. This may be reflective of greater abrasion on the eastern side of the basin, especially by the Saginaw glacial lobe, an originally asymmetrical basin which received Jurassic sediments, or a greater amount of sediment deposition in this area (Shaffer, 1969). The present distribution and thickness of the Jurassic conforms to, and was most likely strongly influenced by the configuration of the Michigan Basin and the pre-exisitng topography. However, in a general sense, the Jurassic slopes basinward at a somewhat more gentle angle on the eastern flanks of the basin than on the west. This may be attributed to the underlying topography. It is possible that the Jurassic "Red Beds" of the Michigan Basin are not basin related. Recent drillings in Ontario have uncovered "Red Beds" with a Jurassic flora. This has enabled Cross (1978) to postulate that the "Red Beds" of the Michigan Basin were derived from the Canadian Shield and transported into the Michigan Basin area. The Jurassic sediments taper to the southwest and were deposited in the Michigan Basin as a thin cover on the Pennsylvanian topography (Cross, 1978). The sediment cover was apparently always fairly thin as the pollen and spores of this flora have undergone very little catagenic metamorphism (Cross, 1978).

Following the Jurassic and preceding the Pleistocene epoch there was a long time interval represented only by
erosion in the Michigan Basin. There is no evidence for deposition of strata during this interval which indicates either erosion and/or non-deposition is occurring. Evidence for a dissected erosional surface can be found in the surface profile of the underlying bedrock. That surface is marked by drainage systems whose main channels appear to have followed the axial trends of Lakes Erie, Huron, and Michigan (Travis, 1966).

Pleistocene

The Michigan Basin was subjected to repeated glaciation during the Pleistocene. The Nebraskan, Kansan, and Illinoian Elacial intervals preceeded the Wisconsin and may have affected much of the area. The Wisconsin had four major glacial advances and retreats which apparently removed all recognizable remnants of previously deposited unconsolidated material, as well as some of the underlying bedrock. Three principle ice lobes, the Lake Michigan, Lake Erie, and Saginaw affected the Lower Peninsula of Michigan. The Pleistocene drift unconformably overlies Jurassic and Pennsylvanian strata in the study area. The thickness varies and is illustrated by an isopach map (Plate 8). It shows the thin cover of the Saginaw lobe which extends southwest from the Saginaw Bay area. A progressive thickening occurs to the northwest and the thickest accumulation of drift, nearly l,l00 feet, is found in northeastern Osceola County.

Generalized Cross-Sections

The litholgic cross-sections are constructed with sea level as a datum plane. They are intended to illustrate the gross lithologic variability and the structural attitudes of all the strata found above the Mississippian Michigan Formation in the Michigan Basin.

Cross section A-A' (Figure 8) is based on seven points and it extends across the center of the basin in a southeast direction from southwest Wexford County to eastern Livingston County. It illustrates the general variabilities of the lithologies of the study and their relation to the basin. In particular, it shows that strata have a steeper dip in the southeastern section of the basin than in the northwest. It also indicates that the beds have been restricted in extend due to erosional effects caused by the uplift of the Howell Anticline and that the Jurassic sediments have imparted an asymmetrical appearance to the basin.

Cross section B-B' (Figure 9) is based on six wells and trends across the Michigan Basin in a southwest direction from northwestern Arenac County to southeastern Kent County. It illustrates the general stratigraphic relationships and also indicates that the basin has undergone greater subsidence to the northeast since the Late Mississippian.

CONCLUSIONS

The study of over 670 gamma-ray, gamma-ray and neutron, and sonic well logs of the central portion of the Lower Peninsula of Michigan provided a framework for the study, determination, and re-evaluation of environments and events since the Late Mississippian. The lowest formational unit studied was the Bayport Limestone. It is Late Mississippian in age and directly overlies the Michigan Formation. It was deposited in a relatively stable environment, was later uplifted, and as a result subjected to a substantial amount of erosion. The Bayport tends to thicken towards the interior of the basin. However, in many areas it is completely eroded away, a reflection of river drainage systems. The major depocenter is located in southwestern Clare and northwestern Isabella Counties. The Bayport depocenter and structural center conform with that of the present basin. This indicates that relatively stable tectonic conditions have existed since the Late Mississippian. Some abnormally thick areas dc exist and are the result of the pre-existing Michigan Formation topographic lows.

A major unconformity separated the Mississippian and Pennsylvanian strata of the Michigan Basin. The Mississippian was subjected to post-depositional erosion which resulted in
some variation in the types of rock exposed at the Mississippian surface. All of the strata found directly below this unconformity are Mississippian in age. The oldest in Kinderhookian and is represented by Coldwater Shale while the youngest is the Bayport Limestone of Meramecian age. The Bayport is the most extensive in areal distribution of the formations directly overlain by Pennsylvanian strata. The Michigan, Marshall, and Coldwater formations are also present directly below the Pennsylvanian Formation but are areally more limited. The Michigan Formation occupies much of the higher peripheral area and reflects at least four directions of drainage systems. One series runs off of the Howell Anticline and surrounding high areas and extends in a northwestward direction toward the basin interior. Another trends in a northeastward direction towards the center of the basin and is identified in Eaton and Clinton Counties. The third is located in Arenac County and flowed in a southeastward direction. The fourth is located in Missaukee County and trends southward towards the center of the basin. If these are part of the same drainage system then their junctions are not clear. The Marshall Sandstone is very limited in distribution below the unconformity and is found scattered around the periphery as inliers. The Coldwater Shale, the oldest formation exposed beneath the Mississippian-Pennsylvanian unconformity is found only along the crest of the Howell Anticline where the erosional effects are the greatest.

There is no apparent relation between the structure of the base of the Bayport and the trend of the MississippianPennsylvanian unconformity.

The Pennsylvanian unconformably overlies the Mississippain and has been subject to extensive post-Pennsylvanian erosion. The strata tend to thicken toward the interior of the basin with the steepest gradients occurring along the western glank of the Howell Anticline and in the northeast in Arenac and Ogemaw Counties. The depocenter is associated with the southeastern Clare County region. The thickness varies from 0 to 721 feet. Areas of abnormal thickness are present and are attributed to a combination of post-depositional erosion, differential compaction, and to a lesser extent, the pre-Pennsylvanian topography. It is unconformably overlain by Jurassic "Red Beds" or Pleistocene glacial drift.

The Jurassic is restricted to the subsurface of the central Michigan Basin and lies west of the axis of the present Michigan Basin configuration. The apparent depocenter is located in southeastern Mecosta and north central Montcalm Counties. The thickness is variable and ranges from 0 to 250 feet. Variations are due to irregularities in the preJurassic topography, Pleistocene glacial activity, and prePleistocene erosion. There is an apparent asymmetrical aspect to the Jurassic basin. This is indicative of greater abrasion on the eastern side of the basin, of an original asymmetrical basin that received Jurassic sediments, or of greater sediment deposition in the area.

Pleistocene glacial drift unconformably overlies the Jurassic and Pennsylvanian strata in the Michigan Basin. There is also a long erosional interval between the Jurassic and the Pleistocene. Pleistocene glaciation removed all of the unconsolidated surface material as well as part of the bedrock. The drift thickness varies from more than l,l00 feet in northeastern Osceola County to less than 50 feet in the area of the Saginaw lobe.

The Bayport "highs" reflect known structural closures in the underlying Michigan Stray sandstone. Economically, the Stray is known to produce natural gas and be of value for gas storage. Stray sandstone production is restricted to Clare, Mecosta, and Osceola Counties. It can also be found in parts of Montcalm, Newaygo, Isabella, Missaukee, and Roscommon Counties. Isolated Bayport structual closures in these counties which are not already associated with Stray production may some day be productive of natural gas or be utilized in the storage of gas. It is also possible that these Bayport highs may become more pronounced with depth and thus, be indicative of oil or gas traps in lower formations.

APPENDIX

```
                                    AEBREVIATIONS USED
```


MICHIGAN LOG DATA

Location			PN	ELEV	GD	Jt	Pt	MBt	MMt	Mt
					AREN					
Tl9N-R3E	sec.		24424	850	240	-	240	-	295	452
	sec.		24438	768	109	-	109	-	204	443
	sec.		26705	795	101	-	101	-	150	412
	sec.		25207	765	144	-	144	-	199	357
T19N-R6E	sec.	1	28577	589	56	-	-	56	78	149
T20N-R4E	sec.		28907	815	94	-	-	-	-	94
Tl9N-R4E	sec.	8	1756	776	134	-	-	-	134	358
					BARRY					
T3N-R7W	sec.		28802	936	188	-	188	250	265	397
T3N-R8W	sec.		30137	913	315	-	-	-	315	364
T2N-R7W	sec.		29092	946	125	-	125	201	220	307
					BAY					
T15N-R3E	sec.		31191	628	229	-	229	-	737	1136
	sec.		28566	619	165	-	165	-	336	589
Tl6N-R3E	sec.	2	29122	644	156	-	156	-	507	677
T18N-R3E	sec.		28603	738	145	-	145	-	390	532
Tl3N-R6E	sec.		27086	591	96	-	96	571	582	838
Tl4N-R4E	sec.	1	20607	590	NA	-	NA	-	-	398
T17N-R3E	sec.		29172	709	135	-	135	-	511	740
	sec.		29135	670	126	-	126	-	598	781
Tl7N-R4E	sec.	31	29137	618	123	-	123	323	347	485

PN	ELEV	$G D$	$J t$	Pt	MBt	MMt	Mt
		CALHOUN					
22151	968	105	-	-	-	-	105
22873	970	157	-	-	-	-	157
24451	948	87	-	-	87	112	136
24236	944	72	-	-	-	-	72
22214	1014	93	-	-	-	-	93
22260	1012	104	-	-	-	-	104
29737	943	109	-	-	109	136	217
23770	973	97	--	97	141	159	238
28488	960	66	-	66	112	124	208
24536	853	87	-	-	-	87	94
30347	856	246	-	-	-	-	246
30346	854	138	-	-	-	-	-
30802	931	309	-	-	-	-	309
30416	844	210	-	-	-	-	210
30819	941	168	-	-	-	-	168
30511	898	148	-	-	-	-	148
30968	934	96	-	-	-	-	96
30250	915	115	-	-	-	-	-
24508	892	96	-	-	-	-	-
23031	947	59	-	-	-	59	183
27816	961	114	-	114	150	178	278
29667	943	102	-	102	140	184	271
22489	909	134	-	-	134	149	221
25226	931	46	-	46	88	133	195
29082	944	83	-	83	138	148	241
28701	928	78	-	78	93	121	214
24463	965	60	-	69	118	147	240
29350	950	128	-	-	-	128	217
26143	922	60	-	60	100	116	199

	PN	ELEV	GD	Jt	Pt	MBt	MMt	Mt
sec. 22	24278	925	NA	-	NA	60	88	140
sec. 23	23851	928	99	-	-	-	99	146
sec. 24	29401	942	134	-	-	-	134	197
sec. 25	27748	949	133	-	133	152	196	298
sec. 26	25086	928	62	-	62	72	81	131
sec. 28	30385	946	114	-	-	-	114	132
sec. 32	30435	938	195	-	-	-	-	195
sec. 36	27930	964	96	-	-	-	96	161
sec. 1	25054	987	57	-	57	60	81	195
sec. 12	23680	912	56	-	56	60	97	143
sec. 13	27471	920	196	-	-	-	-	196
sec. 27	22096	964	199	-	-	-	-	199
sec. 30	23730	925	91	-	-	-	-	91
sec. 17	26689	939	229	-	-	-	-	229
sec. 13	30990	842	240	-	-	-	-	240
sec. 21	30080	841	115	-	-	-	-	115
sec. 23	30658	872	169	-	-	-	-	169
sec. 25	30399	954	257	-	-	-	-	257
sec. 27	30233	950	217	-	-	-	-	217
sec. 29	29923	914	182	-	-	-	-	182
sec. 35	30181	933	170	-	-	-	-	170
sec. 5	28328	921	93	-	93	108	198	247
sec. 7	s7381	949	192	-	192	205	225	265
sec. 17	27071	931	173	-	173	195	208	262
sec. 18	24446	925	82	-	-	-	82	157
sec. 19	23757	974	42	-	42	48	84	223
sec. 20	23982	995	113	-	-	-	-	113
sec. 28	23032	956	100	-	-	-	-	100
sec. 29	23033	945	64	-	-	-	-	64
sec. 32	22754	949	65	-	-	-	-	65
sec. 33	22548	932	188	-	-	-	-	188
sec. 34	23369	935	70	-	-	-	-	70

	PN	ELEV	GD	Jt	Pt	MBt	MMt	Mt
			CLARE					
sec. 36	19385	977	405	-	405	803	841	1297
sec. 3	28469	1082	542	542	609	1082	1147	NA
sec. 4	28428	1053	515	515	596	1029	1115	NA
sec. 9	29326	1059	534	534	589	1052	1122	NA
sec. 10	28423	1077	631	-	631	1062	1155	NA
sec. 11	28983	1078	614	-	614	1070	1124	NA
sec. 13	28971	1090	555	555	702	1022	1141	NA
sec. 14	28415	1087	573	573	636	1055	1131	NA
sec. 15	29315	1071	560	560	638	1056	1103	NA
sec. 23	29039	1080	623	-	523	1052	1122	NA
sec. 24	29312	1094	631	-	631	1098	1161	NA
sec. 23	25182	1207	558	558	587	852	905	NA
sec. 35	27394	1205	564	564	773	1094	1150	1573
sec. 36	17850	1196	570	570	649	1066	1124	NA
sec. 18	12337	1050	682	682	727	1039	1174	1637
sec. 19	12229	1059	717	717	740	1155	1196	NA
sec. 31	22532	1088	581	581	679	1227	1281	1652
sec. 36	31106	813	305	305	397	935	990	1358
sec. 3	27390	1141	580	580	590	1085	1186	1599
sec. 6	26046	1113	538	538	594	1008	1081	1446
sec. 10	27611	1153	552	552	789	1153	1217	1598
sec. 6	17715	1141	513	513	542	997	1066	NA
sec. 7	17854	1097	494	494	503	978	1032	NA
sec. 8	18029	1027	427	427	470	942	998	NA
sec. 16	27265	1003	398	398	465	976	1031	1431
sec. 25	30563	932	335		335	719	797	1350
sec. 1	17734	1176	550	550	587	1040	1093	NA

 T20N-R3W
 T18N-R6W
T20N-R4W
T17N-R6W
T17N-R4W
T19N-R5W
T19N-R3W
T19N-R4W

\pm	
$\sum_{\Sigma}^{\text {N }}$	
$\stackrel{\stackrel{\rightharpoonup}{0}}{\stackrel{0}{\Sigma}}$	
$\stackrel{\square}{0}$	
$\stackrel{\rightharpoonup}{\square}$	
\bigcirc	
$\begin{aligned} & \text { 分 } \\ & \text { 者 } \end{aligned}$	
z	
E 0 -1 \vdots 0 0 0	

PN	ELEV	GD	Jt	Pt	MBt	MMt	Mt
CLINTON							
26540	754	103	-	103	392	550	756
24475	716	106	-	106	368	450	758
23030	739	446	-	446	562	591	902
27811	760	148	-	148	207	503	824
24315	773	80	-	80	471	549	713
22348	825	41	-	41	268	432	779

11111111111111111

T5N-R3W

T1N-R6W

T2N-R3W

MMt Mt

$$
\begin{aligned}
& \text { Nöb } \\
& \text { Nomp }
\end{aligned}
$$

さへへへ~~

$$
\left.\right|_{\sim} ^{\sim} \mid
$$

$$
\stackrel{\rightharpoonup}{\wedge}_{\underset{\sim}{\star}}
$$

$$
111
$$

∞ の
 ～～～

$\underset{\sim}{\sim}$

$\dot{0}$	0	0
$\dot{0}$	0	
0	0	0
	0	0

T6N－R8E
T9N－R8E

Location		PN	ELEV	GD	Jt	Pt	MBt	MMt	Mt
$\begin{aligned} & \text { T6N-R7E } \\ & \text { T9N-R7E } \end{aligned}$	sec. 12	28164	861	256	-	-	-	256	300
	sec. 13	28628	898	274	-	-	-	274	343
	sec. 29	23948	850	87	-	-	-	87	167
	sec. 3	28340	745	148	-	148	172	195	323
	GLADWIN								
Tl7N-R2W	sec. 11	24333	729	223	-	223	944	1000	1362
	sec. 19	23880	749	341	-	341	881	998	1328
T18N-R1W	sec. 6	22081	784	402	-	402	708	806	1205
	sec. 10	4463	759	439	-	439	667	773	996
	sec. 36	25617	733	191	-	191	697	769	979
T20N-R1E	sec. 16	26376	817	242	-	242	508	550	960
T19N-R1W	sec. 22	29065	792	486	-	486	823	848	1191
T18N-R2W	sec. 10	20346	833	380	-	380	847	911	1267
	sec. 11	20558	830	357	-	357	921	941	1244
	sec. 14	20785	794	263	-	263	912	929	1223
	sec. 15	20308	820	290	-	290	898	918	1244
Tl8N-R1E	sec. 15	21809	713	235	-	235	728	772	992
T19N-R2W	$\text { sec. } \quad 1$	28835	844	208	-	208	567	704	1340
	sec. 13	29098	852	192	-	192	824	926	1322
	GRATIOT								
Tl1N-R3W	sec. 6	30465	761	306	-	306	390	651	780
	sec. 13	23694	769	380	380	401	740	764	969
	sec. 14	30354	769	348	348	401	682	778	983
	sec. 15	29834	771	178	-	178	647	782	1010
	sec. 17	24270	737	313	313	366	691	772	1009
	sec. 23	23760	750	414	-	414	620	737	946

	PN	ELEV	GD	Jt	Pt	MBt	MMt	Mt
			INGHAM					
sec. 6	29174	850	120	-	120	251	331	529
sec. 11	28842	905	266	-	266	346	410	572
sec. 16	24518	902	240	-	240	338	394	551
sec. 25	29043	930	192	-	192	276	392	553
sec. 26	28746	984	240	-	240	313	420	527
sec. 31	28999	921	179	-	179	281	343	507
sec. 33	28929	925	215	-	215	267	351	464
sec. 35	28745	965	216	-	216	329	397	495
sec. 36	28816	959	217	-	217	311	388	486
sec. 4	30002	965	153	-	153	285	414	573
sec. 8	29502	967	173	-	173	319	403	559
sec. 16	28955	947	84	-	84	236	363	521
sec. 34	29665	960	104	-	104	175	298	430
sec. 12	29557	893	101	-	101	296	408	579
sec. 13	29055	912	121	-	121	354	401	578
sec. 25	29580	968	212	-	212	310	453	619
sec. 27	30182	954	120	-	120	293	431	606
sec. 15	28739	893	194	-	194	506	542	692
sec. 21	27910	914	61	-	61	392	511	717
sec. 29	28145	921	103	-	103	350	482	654
sec. 4	29292	958	88	-	88	348	400	493
sec. 5	29398	963	173	-	173	294	382	481
sec. 9	28455	1014	153	-	153	326	414	530
sec. 11	28794	978	152	-	152	280	440	600
sec. 35	29416	969	101	-	101	242	319	400
sec. 1	29498	989	230	-	230	336	413	511
sec. 3	28970	927	172	-	172	304	337	430
sec. 7	29545	912	189	-	189	246	327	405

T2N-R2W
T1N-RIE
T2N-R1E
T3N-R2E
$T 1 N-R I W$
$T 1 N-R 2 W$

Location		PN	ELEV	GD	Jt	Pt	MBt	MMt	Mt
$\begin{aligned} & \text { T4S-R1W } \\ & \text { T2S-R3W } \end{aligned}$	sec. 33	22568	1065	128	-	-	-	-	128
	sec. 9	22808	1004	103	-	103	133	154	218
	sec. 13	28394	1004	100	-	-	,	100	162
	sec. 15	21963	1011	90	-	-	-	90	179
	sec. 24	28617	990	97	-	-	-	97	132
	sec. 27	27882	999	82	-	-	-	82	119
TlS-R1W	sec. 2	28733	958	91	-	91	163	278	350
	sec. 5	29501	974	86	-	86	123	311	372
	sec. 10	28778	916	70	-	70	147	227	290
T2S-R2W	sec. 10	26549	961	131	-	131	158	178	212
	sec. 15	26541	972	110	-	-	110	140	213
	sec. 16	26548	927	70	-	-	-	70	132
T3S-R2W	sec. 1	21723	1021	78	-	-	-	78	119
	sec. 31	22950	1030	75	-	-	-	-	75
T1S-R2W	sec. 32	29558	924	118	-	118	158	166	235
TlS-R3W	sec. 2	31337	938	146	-	-	146	201	270
	sec. 4	26481	933	NA	-	NA	128	175	252
	sec. 11	23269	933	109	-	109	150	197	258
	sec. 14	26416	931	101	-	101	162	175	248
	sec. 15	22558	931	99	-	99	136	174	241
	sec. 36	22175	1020	158	-	158	227	246	300
				KENT					
T9N-R11W	sec. 5	16212	838	260	-	260	412	460	665
	sec. 24	11066	749	159	159	195	258	345	595
	sec. 25	11927	769	192	192	250	320	357	634
	sec. 28	8534	728	315	315	357	409	430	537
	sec. 35	21003	904	332	332	347	469	481	714

Location		PN	ELEV	GD	Jt	Pt	MBt	MMt	Mt
	sec. 27	28255	921	120	-	-	-	-	120
	sec. 35	24324	892	64	-	-	-	-	-
	sec. 36	29021	932	88	-	-	-	-	-
T3N-R3E	sec. 1	28117	914	72	-	-	-	72	112
	sec. 2	28524	917	94	-	-	-	-	-
	sec. 12	28308	920	99	-	-	-	99	146
	sec. 34	29675	908	265	-	-	-	-	265
T3N-R4E	sec. 6	28949	912	66	-	-	-	-	-
	sec. 7	28440	909	132	-	-	-	132	164
	sec. 18	28482	916	106	-	-	-	-	106
	sec. 27	26815	881	25	-	-	-	-	-
	sec. 34	26775	884	79	-	-	-	-	-
T2N-R3E	sec. 17	28752	948	119	-	-	-	-	119
T2N-R4E	sec. 1	26101	901	87	-	-	-	-	-
	sec. 2	26817	903	97	-	-	-	-	-
	sec. 12	26102	916	136	-	-	-	-	-
	sec. 14	25868	927	149	-	149	156	165	198
T3N-R5E	sec. 11	27986	986	194	-	-	-	-	-
	sec. 13	30033	943	187	-	-	-	-	-
	sec. 25	27034	993	211	-	-	-	-	-
	sec. 28	22853	963	158	-	-	-	-	-
				MECOSTA					
T13N-R10W	sec. 2	25204		442	442	646	789	806	1198
	sec. 5	26734	957	566	566	637	793	826	1182
	sec. 6	26503	931	453	453	611	764	795	1156
	sec. 7	26829	932	558	558	609	-	792	1151

Nコココココ

T14N－R9W
T15N－R10W
T16N－R8W

T15N－R9W T13N－R9W

Tl $6 N-R 10 W$
Tl
N $-R 8 W$
T15N－R8W
T14N－R10W

Tl4N－R10W

Location		PN	ELEV	GD	Jt	Pt	MBt	MMt	Mt
Tl3N-R7W	sec. 28	18337	990	468	468	619	913	994	NA
	sec. 29	18371	988	462	462	604	831	881	NA
	sec. 30	18425	986	466	466	627	836	983	NA
	sec. 31	22367	1017	398	398	620	943	971	NA
	sec. 32	3459	997	397	397	596	830	967	NA
	sec. 34	2908	1011	471	471	627	900	1011	NA
	sec. 35	18320	958	454	454	578	792	951	NA
Tl $4 \mathrm{~N}-\mathrm{R} 8 \mathrm{~W}$	sec. 12	25432	1048	593	593	735	823	1032	NA
	sec. 22	30472	995	406	406	616	934	1011	1470
	sec. 23	31419	998	418	418	630	845	1028	1491
T15N-R7W	sec. 3	23187	1015	498	498	617	1055	1170	1609
	sec. 15	28361	1052	520	520	687	1063	1146	1556
			MIDLAND						
T15N-R2W	sec. 4	30126	691	315	-	315	811	933	1268
	sec. 15	31134	682	407	-	407	828	952	1278
T14N-R2W	sec. 12	3720	658	179	179	300	794	856	1169
Tl3N-R2W	sec. 12	4818	678	261	261	539	753	785	1110
Tl5N-R1W	sec. 12	22678	638	485	485	657	857	911	1215
	sec. 13	22042	637	551	551	633	818	901	1193
T13N-R1W	sec. 10	22782	670	248	-	248	802	850	1078
	sec. 15	23431	688	242	-	242	778	791	1180

Location		PN	ELEV	GD	Jt	Pt	MBt	MMt	Mt
T15N-R2E	sec. 12	30378	660	386	-	386	832	900	1100
Tl4N-R2E	sec. 36	11718	621	158	-	158	828	843	1114
T16N-R2E	sec. 1	21846	672	206	-	206	-	581	814
	sec. 31	31146	665	323	-	323	925	941	1251
Tl3N-R1E	sec. 27	27202	669	321	-	321	794	809	1110
	MISSAUKEE								
T22N-R6W	sec. 17	24430	1218	713	-	713	808	832	1381
	sec. 31	23663	1194	648	-	648	828	849	NA
	sec. 35	27105	1159	721	-	721	895	914	1381
	sec. 36	26961	1160	706	-	706	851	880	1367
T22N-R5W	sec. 31	27958	1169	494	-	494	-	1027	1392
T21N-R6W	$\text { sec. } \quad 1$	27104	1152	553	-	553	820	917	1363
	sec. 2	27101	1155	557	-	557	833	912	1369
	sec. 14	25491	1163	602	-	602	906	917	NA
	sec. 26	24623	1139	574	-	574	-	1005	NA
	sec. 27	24583	1138	631	-	631	936	1004	NA
	sec. 31	23147	1160	612	-	612	-	855	NA
	sec. 32	22206	1172	625	-	625	965	1010	1495
	sec. 33	24704	1135	591	-	591	-	877	NA
	sec. 35	9312	1112	542	-	542	862	952	NA
T23N-R5W	sec. 11	30522	1143	373	-	-	-	373	703
	sec. 12	30176	1140	385	-	-	-	385	657
T21N-R5W	sec. 17	27612	1213	623	-	623	1099	1128	1604
T24N-R5W	sec. 15	30543	1168	490	-	-	-	490	628
	sec. 16	29803	1174	514	-	-	-	514	664
T22N-R7W	sec. 25	23665	1201	721	-	721	-	862	NA
	sec. 32	25553	1186	740	-	740	-	1025	NA

Location		PN	ELEV	GD	Jt	Pt	MBt	MMt	Mt
T21N－R8W	sec． 14	31202	1200	746	－	746	1055	1144	1558
	sec． 24	21922	1233	686	－	686	1016	1043	1528
	sec． 31	25416	1465	921	－	921	1196	1219	NA
T21N－R7W	sec． 3	25993	1210	643	－	643	978	1061	1505
	sec． 4	26418	1186	638	－	638	954	979	NA
	sec． 5	25621	1196	618	－	618	949	972	NA
	sec． 8	25994	1181	623	－	623	969	992	1513
	sec． 10	26314	1201	715	－	715	1007	1053	1522
	sec． 12	24582	1211	630	－	630	－	1068	NA
	sec． 14	24933	1172	665	－	665	915	1003	1471
	sec． 15	9801	1208	722	－	722	1038	1062	1530
	sec． 16	23301	1215	705	－	705	980	1001	1492
	sec． 19	21768	1301	806	806	828	－	1169	NA
	sec． 20	22139	1243	677	－	677	917	960	1432
	sec． 21	9180	1189	624	－	624	969	992	NA
	sec． 24	25014	1183	659	－	659	942	964	1397
	sec． 30	21979	1234	741	－	741	1025	1041	1530

 $\infty \infty$ の のை のの のை の
 $\wedge \infty \infty \infty \infty \infty \infty \sim \infty$
～かののコのロールのレ へicora on on mo
 MONTCALM
 コレ゚コレ゚コココレ゚レ゚コ

Tl2N－R7W

$\stackrel{+}{\Sigma}$	
\sum_{Σ}^{\perp}	
$\stackrel{\rightharpoonup}{\infty}$	
$\stackrel{\downarrow}{\sim}$	
$\stackrel{\downarrow}{\square}$	
O	
$\xrightarrow{7}$	
召	

T9N-R6W
Tl2N-R8W
Tl0N-R5W
TllN-R6W
TllN-R7W
T9N-R7W
TllN-R5W
Tl2N-R6W
TllN-R9W

TIIN-R8W

Tl2N-R10W

 Tl2N-R5WTl0N-R7W Tl2N-R9W

Location		PN	ELEV	GD	Jt	Pt	MBt	MMt	Mt
	sec. 18	28193	907	484	484	516	601	743	NA
	sec. 28	25922	896	345	345	376	642	779	1174
	sec. 29	25452	891	479	-	479	624	768	1138
	sec. 35	22767	904	393	393	529	639	757	1143
				NEWAY					
Tl1N-R13W	sec. 11	28137	879	364	-	364	-	544	870
	sec. 15	22918	803	363	-	-	363	436	739
Tl6N-R11W	sec. 30	27347	1072	526	526	643	816	860	1190
T15N-R14W	sec. 20	26662	821	530	-	-	-	530	620
Tl3N-R11W	sec. 3	26703	994	541	541	594	-	797	1139
	sec. 32	27001	758	250	250	317	460	483	900
Tl2N-R11W	sec. 20	17331	941	289	289	379	548	631	940
	sec. 29	28644	914	472	472	521	649	681	NA
	sec. 30	28643	881	356	-	356	552	601	NA
	sec. 32	28653	863	230	230	370	-	555	NA
T13N-R14W	sec. 26	22866	890	482	-	-	-	482	793
T14N-Ro4W	sec. 4	19835	813	517	-	-	-	517	579
	sec. 5	26893	872	533	-	-	-	533	661
TI4N-R11W	sec. 5	30829	1111	347	347	577	811	869	1197
	sec. 6	30437	1075	346	346	694	769	843	NA
	sec. 7	30260	1016	428	428	570	706	776	NA
	sec. 8	30440	1087	357	357	697	829	872	NA
	sec. 17	30267	1049	571	571	643	787	820	NA
	sec. 23	26626	1009	571	571	616	830	845	1170
	sec. 26	26630	1039	480	480	648	850	869	1221
T11N-R12W	sec. 10	23149	801	519	-	-	-	519	835
	sec. 18	23734	819	483	-	-	-	483	822
	sec. 24	23329	791	375	-	375	415	450	813

Location		PN	ELEV	GD	Jt	Pt	MBt	MMt	Mt
T15N-R12W	sec. 12	27795	978	570	-	570	785	797	1215
Tl5N-R11W	sec. 16	28031	1087	627	627	730	892	941	NA
	sec. 20	28027	1056	593	593	686	804	881	NA
	sec. 21	28032	1075	608	608	709	881	899	NA
	sec. 29	28033	1054	676	-	676	833	851	NA
	sec. 30	20698	1048	603	603	611	862	882	1197
Tl2N-R14W	sec. 26	22849	738	326	-	-	-	326	622
				OGEMAW					
T22N-R2E	sec. 22			223	-	-	-	-	-
	sec. 34	30924	899	239	-	-	-	-	-
	sec. 35	29775	861	250	-	-	-	-	-
				OSCEOLA					
T20N-R10W	sec. 11	30467	1239	728	-	728		977	1407
	sec. 19	22078	1186	701	-	701	875	940	1302
	sec. 20	23088	1190	685	-	685		942	1319
T18N-R9W	sec. 28	29758	1196	704	-	704	1040	1121	1609
T17N-R8W	sec. 5	24103	990	462	462	632	958	1051	1494
	sec. 7	27012	1031	471	471	661	1044	1098	1528
	sec. 10	27082	1123	538	538	670	1158	1220	NA
	sec. 18	26661	1132	608	608	652	1181	1204	1631
	sec. 30	27159	1146	541	541	640	1178	1228	1653
	sec. 32	27307	1039	564	564	672	1121	1159	1632
T19N-R8W	sec. 35	26293	1214	767	767	781	1246	1317	1736
Tl7N-R9W	sec. 4	27999	1136	642	642	835	1108	1179	1587
	sec. 9	27216	1077	571	571	776	1029	1121	1529

	PN	ELEV	GD	$J t$	Pt	MBt	MMt	Mt
sec. 10	27666	1044	515	515	726	1019	1125	1498
sec. 31	27687	1117	531	531	705	1004	1074	1515
sec. 36	26888	1186	596	596	742	1230	1294	NA
sec. 17	26163	1305	843	-	843	1197	1254	1701
sec. 22	23311	1222	791	-	791	100	1051	1466
sec. 26	26079	1197	726	-	726	937	993	1449
sec. 32	31416	1135	803	-	803	958	976	1383
sec. 3	27706	1151	812	-	812	966	1012	1369
sec. 8	31029	1123	783	-	783	936	972	1335
sec. 17	29042	1114	676	-	676	846	933	1313
sec. 18	29659	1163	480	480	681	953	1004	1395
sec. 19	27939	1136	598	598	692	836	944	NA
sec. 20	26427	1180	690	-	690	936	983	1308
sec. 29	30154	1137	696	-	696	903	980	1330
sec. 30	28346	1163	734	-	734	935	1004	1351
sec. 31	29259	1127	723	-	723	894	949	1326
sec. 32	30795	1132	716	-	716	920	957	1331
sec. 1	25996	1165	618	618	709	930	981	1524
sec. 5	26254	1213	631	631	720	1032	1095	1586
sec. 9	25984	1169	630	-	630	1033	1062	1542
sec. 15	26619	1158	621	-	621	938	1043	1519
sec. 25	13423	1131	593	-	593	978	1060	NA
sec. 2	26001	1096	579	-	579	986	1063	1563
sec. 12	26002	1085	564	564	627	1017	1080	1487
sec. 2	28065	1042	617	617	715	1112	1174	NA
sec. 3	13739	1066	536	536	705	1051	1214	NA
sec. 10	13685	1071	532	532	701	115	1200	NA
sec. 11	13611	1043	488	488	660	110	1203	NA
sec. 12	28058	1040	586	586	756	1116	1193	NA
sec. 13	28066	1037	715	715	790	1107	1166	NA
sec. 24	31568	1049	670	670	832	1141	1210	1732

Location		PN	ELEV	GD	Jt	Pt	MBE	MMt	Mt
SHIAWASSEE									
$\begin{aligned} & \text { T5N-R3E } \\ & \text { T5N-R2E } \end{aligned}$	sec. 15	23375	871	118	-	-	-	-	
	sec. 5	22379	842	80	-	-	-	80	297
	TUSCOLA								
T14N-R8E	sec. 33	29237	612	45	-	45	-	76	223
Tl3N-R9E	sec. 8	23890	668	106	-	106	165	223	310
Tl4N-R9E	sec. 12	23485	654	93	-	-	-	93	171
T14N-R10E	sec. 28	26650	758	122	-	-	122	155	270
Tl0N-R8E	sec. 31	20557	771	140	-	140	-	161	301
	sec. 32	20480	785	172	-	172	215	286	688
Tl3N-R11E	sec. 9	28686	733	50	-	-	-	-	50
	sec. 16	25609	727	45	-	-	-	45	116
TlON-R9E	sec. 13	28551	852	203	-	-	-	203	317
	sec. 14	28104	844	195	-	-	-	195	243
Tl4N-R7E	sec. 25	17860	591	155	-	155	-	226	333
	WEXFORD								
T21N-R10W	sec. 14	25803	1298	786	-	786	-	963	NA
	sec. 33	23636	1228	678	-	678	-	903	NA
T21N-R9W	sec. 7	21872	1308	862	-	862	944	987	1367
	sec. 22	27594	1348	749	-	749	974	1047	1512
	sec. 27	28020	1398	881	-	881	1105	1143	NA
	sec. 28	23837	1323	796	-	796	979	1054	1447

Location			PN	ELEV	GD	Jt	Pt	MBt
T22N-R9W	sec. 32	22890	1303	738	-	738	921	956
T21N-RllW	sec. 23	29996	1336	852	-	-	-	852
T22N-RlOW	sec.	9	25414	1411	862	-	-	-

BIBLIOGRAPHY

Bacon, D.J., 1971, Chert Genesis in a Mississippian Sabkha Environment, Unpubl. Masters Thesis, Michigan State Univ., 47 p .

Cohee, G.V., et al., 1950, Coal Resources of Michigan, U.S. G.S. Circ. 77, 56 p. , 1951, Thickness and Lithology of the Upfer Devonian and Carboniferous Rocks in Michigan, U.S.G.S. Oil and Gas Investigations, Chart OC 41, sheets 4 and 5.

Cross, A.T., 1966, Palynological Evidence of Mid-Mesozoic Age of Fort Dodre (Iowa) Gypsum, Geol. Soc. Amer. Program, Annual Meetings, San Francisco, p. 46.
\qquad , 1978, personal oral communication.
Ells, G.D., 1969, Architecture of the Michigan Basin, Mich. Basin Geol. Soc. Annual Field Excursion Guidebook, pp. 60-88.

Elowski, R., 1978, personal oral communication, Mich. Dept. of Natural Resources.

Fisher, J.H., 1978, personal oral communication.
\qquad , 1969, Early Paleozoic History of the Michigan Basin, Mich. Basin Geol. Soc. Annual Field Excursion Guidebook, pp. 89-93.
_, et al., 1969, Stratigraphic Cross-Sections of the Michigan Basin, Mich. Basin Geol. Soc., Special Publ., 22 p.

Haxby, W.F., et al., 1976, Thermal and Mechanical Evolution of the Michigan Basin, Tectonophysics, v. 36, No. 1-3, pp. 57-75.

Hinze, W.J., 1963, Regional Gravity and Magnetic Anomaly Maps of the Southern Peninsula of Michigan, Mich. Geol. Survey Rept. Investigations $1,26 \mathrm{p}$.

Hough, J.L., 1958, Geology of the Great Lakes, Univ. of Illinois Press, Urbana, IL, 313 p.

Kalliokoski, J., and E.J. Welch, 1977, Magnitude and Quality of Michigan's Coal Reserves, Dept. of Geology and Geological Engineering, Michigan Technological Univ., Houghton, MI, 33 p.

Kelly, W.A., 1936, Pennsylvanian System in Michigan, Annual Rept. Mich. Geol. Survey Div., Pub. 40, Geol. Ser. 34, pp. 155-226.

Kelly, R.W., and W.R. Farrand, l967, The Glacial Lakes Around Michigan, Mich. Geol. Survey Div., Bull. 4, 24 p.

Kilbourn, D.C., 1947, The Origin and Development of the Howell Anticline in Michigan, Unpubl. Masters Thesis, Michigan State Univ., 120 p.

Kropschot, R.E., 1953, A Quantitative Sedimentary Analysis of the Mississippian Deposits in the Michigan Basin, Unpubl. Masters Thesis, Michigan State Univ., 57 p.

Landes, K.K., 1948, Structure of Typical American Oil Fields, AAPG Bull., v. 3, pp. 299-304.

Lane, A.C., 1909, Notes on the Geological Section of Michigan, Pt. 2, Mich. Geol. Survey, Annual Rept. for l908, 402 p.

Lasemi, Y., 1975, Subsurface Geology and Stratigraphic Analysis of the Bayport Formation in the Michigan Basin, Unpubl. Masters Thesis, Michigan State Univ., 54 p .

Martin, H.M., 1936, The Centennial Geologic Map of the Southern Peninsula of Michigan, Dept. of Conservation, Mich. Geol. Survey Div., Publ. 39, Geol. Ser. 33.

McGregor, D.J., 1954, Stratigraphic Analysis of Upper Devonian and Mississippian Rocks in the Michigan Basin, AAPG Gull., v. 38, pp. 2324-2356.

Newcombe, R.B., 1928, Oil and Gas Development in Michigan, Mich. Geol. and Biol. Survey, Publ. 37, Geol. Ser. 3l, Pt. 3.
\qquad , 1931, Map of Areal Geology of Michigan, Southern Peninsula, Dept. of Conservation, Mich. Geol. Survey Div.
, 1933, Oil and Gas Fields of Michigan, Mich. Geol. Survey, Publ. 38, Geol. Ser. 32, 293 p.

Oden, A.L., 1952, The Occurrence of Mississippian Brachiopods in Michigan, Unpubl. Masters Thesis, Michigan State Univ., 52 p.

Paris, R.M., 1977, Developmental History of the Howell Anticline, Unpubl. Masters Thesis, Michigan State Univ., 76 p.

Pirtle, G.W., 1932, Michigan Structural Basin and It's Relationship to Surrounding Areas, AAPG Bull., v. 16, pp. 145152.

Sander, J.E., 1959, An Analysis of the Permo-Carboniferous "Red Beds" of Michigan, Unpubl. Masters Thesis, Michigan State Univ., 50 p.

Shaffer, B.L., 1969, Palynology of the Michigan "Red Beds", Unpubl. PhD. Thesis, Michigan State Univ., 250 p.

Shideler, G.L. 1965, Pennsylvanian Sedimentational Patterns of the Michigan Basin, Unpubl. Masters Thesis, Univ. of Illinois, 74 p .

Smith, R.A., 1917, Deep Well Borings, Mineral Resources of Michigan, Mich. Geol. and Biol. Survey, Publ. 24, Geol. Ser. 20. pp. 209-256.

Travis, P.A.A., 1966, An Analysis of Pleisotcene Sediments in an Aquifer Recharge Area, Kalamazoo, Michigan, Unpubl. PhD. Thesis, Michigan State Univ., 143 p.

Welsh, J.P., l971, Patterns of Composiitonal Variation in some Glaciofluvial Sediments in the Lower Peninsula of Michigan, Unpubl. Masters Thesis, Michigan State Univ., 98 p.

Winchell, A., 1861, First Biennial Report of the Progress of the Michigan Geol. Survey, pp. ll2-127.

