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ABSTRACT 

IDENTIFICATION, ESTIMATION, AND SENSITIVITY ANALYSIS OF 
CONTAGION EFFECTS USING LONGITUDINAL SOCIAL NETWORK DATA 

By 

Ran Xu 

Contagion effects, also known as peer effects or social influence process, refer to the 

phenomenon whereby people tend to assimilate the behavior of those with whom 

they have interaction in a social network. With the availability of longitudinal social 

network data, studies of contagion effects have become more and more central to 

social science, with many applications in the field of education, such as the diffusion 

of innovation, change of health behaviors, academic outcomes among adolescents, 

and the implementation of practices among teachers (Valente, 1995, 1996; Christakis 

et al., 2007, 2008; Sacerdote, 2000; Frank et al, 2004). However, contagion effects 

are usually difficult to identify as they are often entangled with other factors such as 

homophily in the selection process, an individual’s preference for the same social 

settings, etc. Methods currently available either do not solve these problems or 

require strong assumptions. Furthermore, there is still a significant degree of 

misconception about why identifying contagion effects is a problem, and when these 

methods should be applied.  

For this dissertation, in the first chapter I will clarify why and when we will 

encounter problems identifying contagion effects. Specifically I will frame this in 

terms of an omitted variable bias problem; and then I will explore the magnitude of 

bias in the estimation of contagion effects in various situations, and possible 

remedies under an OLS framework. In the second chapter I will propose some 

alternative estimation methods that have the potential to correctly identify contagion 

effects under weaker assumptions when there are unobserved variables present. In 

the third chapter I will propose a set of simulation-based sensitivity analysis 

methods that can test the robustness of inferences made in social network analysis, 

especially inferences about contagion effects.  
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CHAPTER 1: Identification 

I. Introduction and Literature Review 

Endogenous social effects, which have long been central to the field of social science 

(Asch, 1952; Merton, 1957; Erbring and Young, 1979; Bandura, 1986), are defined 

as the propensity for the behavior of an individual to vary along with the prevalence 

of that behavior in some reference group containing the individual (Manski, 1993). 

Within the framework of social network analysis, the endogenous social effects are 

also known as “contagion” or “social influence”, and the reference group can be 

one’s network neighborhood. Contagion effects have also received much attention 

and have been widely studied (Kandel, 1978; Marsden and Friedkin, 1993; Doreian, 

2001; An, 2011) as they have various implications for issues such as health behavior 

(e.g. obesity and smoking), information diffusion, or change in teacher practices, 

among others (Christakis et al, 2007, 2008; Valente, 1995, 1996; Frank et al, 2004). 

However, these types of contagion effects are usually difficult to identify, as it is 

difficult to separate such influences from other processes when there is network 

autocorrelation in the data, i.e. when we observe that people who are closely related 

to each other tend to be similar in some salient individual behavior and attitude 

dimensions, it is difficult to tell which is the underlying mechanism that generates 

these patterns. It could be influence and contagion (Friedkin, 1999, 2001; Oetting 

and Donnermeyer, 1998) whereby actors assimilate the behavior of their network 

members;  or selection mechanisms, more specifically homophily (Lazarsfeld and 

Merton, 1954; Byrne, 1971; McPherson and Smith-Lovin, 1987; McPherson et al, 

2001), where actors seek to interact with similar others; or it could be due to 

different social contexts where people with prior similarities can select themselves 

into the same social setting, and actual friendship formation just reflects the 

opportunities of meeting in this social setting (Feld, 1981, 1982; Kalmijn & Flap, 
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2001).1 Several notable attempts that try to identify contagion effects include 

modeling the co-evolution of selection and influence (Snijder et al., 2007; Steglich et 

al., 2010), using indirect ties from third parties as instrumental variables (Bramoullé 

et al., 2009; An, 2011), or Propensity Score Matching (Aral et al., 2009).  But there 

is still considerable misconception about when it is problematic to identify contagion 

effects, and why these methods would need to be applied. Furthermore, all the 

methods mentioned above require some form of strong assumptions such as the 

exponential-family parametric assumption, the standard IV assumption, the 

assumption that all of the dependence is captured by observable covariates, and so 

on, each of which imposes substantial limits on the forms of data where these 

methods can actually be applied. 

The difficulty of identification caused by entanglement between contagion effects 

and other confounding variables (environmental factors, or the attributes of egos and 

alters, for example) can be easily framed as an omitted variable bias problem. What 

is less obvious is that the dilemma caused by co-evolution of the influence and 

selection processes can essentially be framed as an omitted variable bias problem as 

well.  As pointed out by Steglich (2010), one of the important concerns is the 

“possibility that there may be non-observed variables co-determining the 

probabilities of change in network and/or behavior”. Shalizi and Thomas (2011) 

have shown that when there is a latent trait that co-determines both influence and 

selection in network data, contagion effects are generally unidentifiable, mainly due 

to the fact that contagion and homophily (selection) are generically confounded 

through this latent trait.  

                                                             
1 There are also structural constraints such as transitivity, preferential attachment etc. which could 
cause people to become friends. However these mechanisms in themselves do not entangle with 
influence (e.g. one befriends with another having high popularity but different behavior). Another 
mechanism must be present to induce similarity between these friends (e.g. selection of common 
friends based on similarity in attributes). In these cases consideration goes back to the original three 
mechanisms, namely influence, selection based on homophily, and environmental factors. 
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In this chapter, first I will clarify why contagion effects are difficult to identify; 

specifically, I will frame identification as an omitted variable bias problem. Then I 

will give examples where contagion effects can be identified using conventional 

approaches (e.g. OLS), and explore the magnitude of bias occurring when estimating 

contagion effects under various scenarios. Finally, I will propose a possible solution 

under the OLS framework that has the potential to correctly identify contagion 

effects, and then carry out simulation studies to examine the performance of this 

solution. 

 

II. Theoretical Framework 

i. Identifying contagion effects: where does bias come from? 

To understand where the bias comes from when identifying contagion effects, first 

we need to specify our “causal” models in terms of influence and selection. After 

specifying our model we then show how the estimation of contagion effects can 

suffer from bias. 

A network behavioral (influence) model can be represented as  

( , , , )it ij j i iY f Z Y X c=                                                                (1)                                                                                     

where the behavior of node i at time t is a function of the behavior of network 

members Yj, other variables X specific to node i, network relations Z and 

unobserved effects ci. For example, adolescents’ alcohol use (Yit) can be a function 

of their previous alcohol use (Yit-1), their close friends’ alcohol use (Yjt-1), their own 

cigarette use (Xit-1) and some latent disposition for substance abuse (ci).  Specifically, 

we choose a dynamic linear form (Friedkin 1990) : 

1 1
0 1 1 2 3 1

1

ijt jt
it it it i it

ijt

Z Y
Y Y X c e

Z
β β β β− −

− −
−

= + + + + +∑
∑

 ,                 (2)                                                   

where Yit-1 is the prior behavior of i, Zijt-1 is a dummy variable indicating if there is a 
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link from i to j at time t-1, i.e. 1 if yes and 0 otherwise, and 1 1

1

ijt jt

ijt

Z Y
Z
− −

−

∑
∑

 represents the 

weighted average behavior among the network neighbors of i, which is the exposure 

term (contagion) of interest2, and Xit-1 represents other variables that might affect the 

behavioral outcome Y. We choose this form of behavioral model for several reasons: 

(1) we choose linear models as they have greater flexibility when compared with 

models like SIENA (Steglich et al., 2010), and because of the availability of methods 

that they may produce, under suitable assumptions, for unobserved time-constant 

actor differences (Steglich et al., 2010; Mouw, 2006); (2) we only use lagged 

endogenous variables (if X is exogenous, i.e. if X is not “caused” by Y then X can be 

contemporaneous), which to us is a more realistic assumption that there is some lag 

in the transmission of social effects. In addition, such formulations require less strict 

conditions for identification of social effects (Manski, 1993). One might argue that 

there are also contemporaneous social effects that should be included, which 

constitute the true “structural model” (Sims, 1980; Bramoullé et al., 2009). Even if 

this is true, however, the identification of contemporaneous effects often requires 

strong structural restrictions or valid instrumental variables (Sims, 1980; Manski, 

1993; Wooldridge, 2010), and including both contemporaneous and lagged effects 

when identifying contagion effects can cause problems both in estimation and 

interpretation (Lyons, 2011; VanderWeele and An, 2011; VanderWeele et al., 2012). 

As Sims (1980) has argued for vector-autoregressive models, the type of “reduced 

form” models in equation 2 do not require “too many incredible restrictions” for 

identification, and are still very useful in forecasting and analysis. 

For the selection process, let Zijt = 1 if there is a connection from node i to node j at 

time t, and let Z*
ijt be a latent variable defined as  

*
0 1 1 2 3 1 1 4 1 1| | | | | |ijt ijt i j it jt it jt ijtZ Z c c Y Y X Xα α α α α ε− − − − −= + + − + − + − +  ,         (3) 

                                                             
2 From now on I will use the term “contagion effects” to represent 

2β ,  “network exposure term” to 

represent 1 1

1

ijt jt

ijt

Z Y
Z
− −

−

∑
∑

. 
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where c represents a time invariant unobserved trait for i and j, Y represents the 

behavior of interest, X represents the exogenous variables and ~ (0,1)ijt Nε . By 

defining Zijt  as 

*1 0

0
ijt

ijt

if Z
Z

otherwise

 >= 


                                                                                               (4)                                                                  

we know that Zijt follows a standard probit model (Wooldridge, 2010) where 

0 1 1 2 3 1 1 4 1 1( 1) ( | | | | | |)ijt ijt i j it jt it jtP Z Z c c Y Y X Xα α α α α− − − − −= = Φ + + − + − + −        (5) 

The models described in equations (2) and (5) are now called simply models 2 and 5. 

Model 5 represents the selection model. Through models 2 and 5 we now have 

described the co-evolution of the influence and selection processes, which operate 

through the same sets of observed and unobserved variables. And the magnitude of 

contagion effects is represented by the parameter β2 in model 2. 

To understand where any bias comes from, we need to know that in order to get 

consistent estimates in model 2 using OLS, one key assumption is that unobserved 

errors have to be uncorrelated with observed variables. In this case, if either the 

idiosyncratic error eit or a latent trait ci is correlated with observed variables, we will 

have biased estimates. For now we only focus on the latent trait ci and assume that eit 

does not correlate with observed variables in model 2.  (Different exogeneity 

assumptions must hold for different estimation methods, for more details see 

Wooldridge (2010)). We already know that ci correlates with Yit-1 , and if α2 < 0 in 

model 5, such that there is a homophily based selection which operates through a 

latent trait, we know (i) person i will select person j with a similar latent trait, and 

(ii) person j’s behavior is a function of person j’s latent trait cj, which is similar to ci 

through selection; and (iii) together ci will be correlated with person j’s behavior, 

which is analogous to the exposure term in model 2. As c is unobserved, this violates 

the key assumption of OLS, so that estimates in model 2 will be inconsistent, and the 

contagion (exposure) effect is unidentifiable.  
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To give an example, assuming that delinquency is a function of an unobserved risk-

taking tendency (arrow Bi in the figure below), and when there is homophily based 

selection which operates through this unobserved variable, (i) person i will select 

person j who is similar on the unobserved risk-taking tendency (arrow A in the 

figure) ; (ii) person j’s delinquency behavior is a function of person j’s risk-taking 

tendency (arrow Bj), which is similar to person i’s risk-taking tendency through 

selection; and (iii) because of (i) and (ii) the risk-taking tendency for person i will be 

correlated with person j’s delinquency behavior (arrow C in the figure). As the risk-

taking tendency is unobserved, this violates the key assumption of OLS, so that 

estimates may be inconsistent, and the contagion (exposure) effect is unidentifiable. 

For an analogous algebraic argument see appendix 3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Omitted variable bias 

Hence through a regression framework we have explained what it really means by 

stating that selection (homophily) is confounded with influence, and as we can see, 

this can directly translate into an “omitted variable bias” problem, under which there 

are some omitted variables that we do not control for, but which affect both selection 
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and behavioral outcomes3. So instead of stating that contagion effects are 

unidentifiable because selection operates at the same time, a more meaningful 

question to ask might be “what factors in the selection process might also affect 

behavioral outcomes?” And as long as we have that variable controlled in model 2, 

we should not be worried about selection (homophily) being confounded with 

influence any more. Note that the intention of this framework is to shift the 

discussion of contagion effects towards being more theory-based instead of methods-

based, and by grounding the discussion in theory this framework allows us to devise 

clear and testable alternative hypotheses, which is the key to making strong inference 

in any field of science (Platt, 1964).   

One might attempt to use models that can model influence and selection at the same 

time (SIENA for example) to separate influence from selection, however as Steglich 

(2010) pointed out, such models still will not work when “non-observed variables 

co-determine the probabilities of change in network and/or behavior”. One might 

borrow from the causal inference literature (Rosenbaum and Rubin, 1983) and use 

methods such as propensity matching (Aral et al., 2009), but that still does not deal 

with unobserved variable problems as strong ignorability assumes observed 

variables carry all the dependency between outcomes and treatment assignments 

(contagion or network exposure). Till now, unobserved variables seem to create 

problems which are impossible to overcome, which will cause bias in the estimation 

of contagion effects in most cases. However, the magnitude of bias in various 

situations has not been fully explored. So one of our research aims is to ascertain the 

severity of bias in the estimation of contagion effects in various situations. 

Furthermore, there are still situations where contagion effects can be identified using 

simple OLS. Next, we will illustrate situations where contagion effects can be 

identified, and give some specific examples. 

                                                             
3 Note that unobserved variables, that only affect behavioral outcomes but not selection, may cause 
estimation problems as well, but that is not the focus here. 
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ii. Situations where the contagion effect is identifiable using OLS  

Our previous illustration seems to suggest that the un-identifiability of contagion 

effects due to the presence of an unobserved latent trait is a problem which is 

impossible to overcome, however there are still some situations, described as 

follows, where we can get consistent (or adequate) estimates of contagion effects just 

using OLS.  

(i) A latent trait only exists in the selection process, not in the influence 

process. That means that variables affecting the behavioral outcome of 

interest are all observed. For example if all factors (family structure, 

parental control, skills deficit etc.) that affect an adolescent’s delinquency 

behavior are observed, and the unobserved risk-taking tendency only 

affects how the adolescent chooses friends but does not directly affect 

behavioral outcomes, then in this case the unobserved factors are no longer 

correlated with observed variables in the influence model, so that a 

contagion effect can be identified. Note that in this case there still could be 

strong homophily in the selection process, and homophily can still depend 

on the unobserved risk-taking tendency; but in this case selection is no 

longer confounded with influence, since unobserved factors that affect 

selection do not affect influence.  

(ii) There is still a common trait that codetermines selection and influence, but 

the common trait is observed. For example, if we have a psychologically 

sound measure for the risk-taking tendency that affects both delinquency 

behavior as well as the adolescent’s choice of friends, then there are not 

any unobserved factors that are correlated with observed variables, so that 

the contagion effect is identified. In this case, there still could be strong 

homophily in the selection process, and homophily depends on the same 

trait (risk-taking tendency) that appears in the influence model. But that 

will not affect our estimation as we have controlled these dependencies by 
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controlling for what is common in selection and influence.  

(iii) The latent trait is still unobserved in the behavioral model, but we can find 

good proxies for the latent trait. For example if we find behavioral 

problems at youth is a good proxy for a risk-taking tendency, in this case 

we can replace risk-taking tendency by behavioral problems at youth, and 

we can still get good estimates of the contagion effect, regardless of what 

types of homophily exist in the selection process.  

(iv) In one very special case, the latent risk-taking tendency is still 

unobserved in a behavior model, but networks do not endure, for example 

adolescents constantly rewire networks and randomly choose new friends. 

In this case, it is possible that the exposure term in the influence model 2 is 

not correlated with the prior term or latent trait, and can be consistently 

estimated, even though estimates for the prior term may be inconsistent, as 

they have to correlate with the unobserved risk-taking tendency by design. 

But this case is barely interesting or realistic (perhaps possible in an 

experimental setting or in a scenario where adolescents meet each other for 

the first time and constantly change interaction partners during the first 

couple weeks) so it will not be discussed further here. Note that even if 

there is no homophilous selection in networks, the exposure term pertinent 

to influence model 2 will still correlate with the prior term through the 

influence process, as long as the network is stable (even in the weakest 

sense), and this will cause an identification problem. This is different from 

Shalizi and Thomas (2011), which states that contagion effects are 

identifiable when any latent trait “that influences the social tie formation is 

kept from being latent”.  
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Figure 2: Cases when contagion effects are identified  

 

III. Monte-Carlo Simulation 

i. Simulation example 

Next we give simulated examples illustrating situations where contagion effects are 

identified when we observe every variable affecting behavior outcome of interest, 

even with strong homophily in the selection process.  

First we simulate a data set where there is a common trait codetermining selection 

and influence, but the common trait is observed. In this case there is strong 

homophily in network selection, but all variables affecting behavioral outcomes are 

observed. Specifically let the influence and selection model be: 

 1 1
1 1 2

1

ijt jt
it it i it

ijt

Z Y
Y Y X e

Z
β β − −

−
−

= + + +∑
∑

                             (6) 

1( 1) ( 0.6 0.5 | |)ijt ijt i jP Z Z X X−= = Φ − + − −                             (7) 

All variables are defined as in models 2 and 5, except that X here is an observed time 
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invariant trait for nodes, and follows a N(0,1) distribution. We start from a random 

network and at each time point we let nodes update their behavior and networks 

according to models 6 and 7. Then we take data from 4 time points and estimate 

model 6 using OLS. Other configurations include: node size = 40, density = 0.2, α0 = 

-0.6, α1 = 1, α2 = -0.5 (from this configuration we will have stable networks with 

strong homophily effects based on X), 2~ (0,0.2 )ite N ; and we vary both β1 and β2 

from 0.1 to 0.9, while keeping β1 + β2 =0.9.  By setting up this way we only change 

the dynamics of the relationship, and at the same time do not affect the equilibrium 

of the system (Kiviet, 1995). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Simulation example where contagion effects are identified 
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In our simulated example, homophily dominates and correlations between prior, 

exposure term and X (time-invariant trait) are as follows: Corrprior,Expo = 0.81, 

Corprior,X  = 0.97, CorExpo,X = 0.8. Figure 3 above shows the mean bias for estimating 

the prior term and the exposure term in model 6. As we can see there is practically 

no bias in estimation using OLS after we control for the time invariant trait, despite 

the fact that there is strong homophily in our data, and the correlation between prior 

and exposure is as high as 0.8. 

Furthermore, note that OLS recovered the true parameters, given that the selection 

process was accounted for but not necessarily directly modeled (e.g. SIENA).  This 

is because bias is induced by unobserved confounded variables, not by information 

that is accounted for in the model (such as that captured in X and Yit-1).    

ii. Magnitude of bias in different situations 

In this section we investigate the bias of OLS estimates of model 2 when we ignore 

the latent trait. Specifically we are interested in the magnitude of bias under different 

situations. For simplicity we do not include other observed variable Xs, and we let 

the “true” influence model be: 

1 1
1 1 2 3

1

ijt jt
it it i it

ijt

Z Y
Y Y c e

Z
β β β− −

−
−

= + + +∑
∑

                           (8) 

And correspondingly, the “true” selection model can be represented as  

0 1( 1) ( | |)ijt i jP Z c cα α= = Φ + −                                      (9) 

 

Simulation configuration. While there are many factors that could affect the 

magnitude of the bias, such as density, the magnitude of the latent trait (β3), variance 

of idiosyncratic error, etc, we focus on the following:  

(1) sample size. As N and T are important in panel data, which usually have large N 

and small T, we will focus on the number of nodes and the number of time points.  
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(2) level of homophily. As homophily operates through the latent trait in our 

simulated data, higher homophily means higher correlation between network 

exposure and the latent trait (also higher correlation between network exposure and 

prior). We are interested in how homophily affects the magnitude of bias.  

(3) magnitude of true coefficients for prior and network exposure, as different levels 

of influence might affect the magnitude of bias in estimation. 

Specifically, let a simulation configuration be as follows: (1) we vary the number of 

time points to be 2 or 5; (2) we vary the numbers of nodes to be 40 or 80; (3) we 

vary the homophily level to be (i) no homophily, where the random network that 

does not change over time, (ii) low homophily, where correlation between Prior and 

Exposure is around 0.1 ( α0 = - 0.65, α1 = - 0.15 for N = 40; α0 = - 0.75, α1 = - 0.1 for 

N = 80. Note that we use α1 to control the level of homophily and α0 to control the 

overall density); (iii) high homophily: correlation between Prior and Exposure to be 

around 0.4, like some examples we found in empirical data (Penual et al., 2012; 

Venkatesh et al., 2000) ( α0 = - 0.4, α1 = - 0.45 for N = 40, α0 = -0.55, α1 = -0.3 for N 

= 80); and (iv) we vary both β1 and β2 from 0.1 to 0.9, while keeping β1 + β2 =0.9. 

This is the same as before, only changing the dynamics of the relationship, not at the 

same time the equilibrium of the system (Kiviet, 1995). 

In each configuration we start from a random network and simulate based on models 

in (8) and (9), and estimate the model  

1 1
1 1 2

1

ijt jt
it it it

ijt

Z Y
Y Y e

Z
β β − −

−
−

= + +∑
∑

 ,                                                                     (10) 

finding estimates for β1 and β2. Other model configurations include β3=0.1 (to keep a 

consensus within the intial range for ci (Friedkin, 1999)), and 2~ (0,0.2 )ite N . In 

each network we kept the average out-degree for nodes to be the same (~8).4 

                                                             
4 We kept nodes’ average out-degree to be the same instead of the density of the network, since bias 
for contagion effects will be larger for networks having more nodes, given that the density is the 
same. One possible reason is that the exposure term will have smaller variance when the network has 
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Figure 4: Magnitude of bias for prior 

 

 
                                                                                                                                                                               
more nodes. Keeping the density the same when network size is large means the average degree is 
actually much higher, resulting in smaller variance in exposure. That will cause more bias in 
estimation, given that all other correlations are the same. 
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Figure 4 (cont’d) 
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Figure 5: Magnitude of bias for exposure 
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Figure 5 (cont’d) 
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 Corprior,unobs Corprior,Expo CorExpo,unobs 

High 

homophily(N=40,T

=5) 

.71 .38 .53 

High 

homophily(N=80,T

=5) 

.71 .38 .53 

High 

homophily(N=40,T

=2) 

.71 .37 .54 

High 

homophily(N=80,T

=2) 

.71 .38 .54 

Low 

homophily(N=40,T

=5) 

.65 .1 .17 

Low 

homophily(N=80,T

=5) 

.65 .1 .15 

Low 

homophily(N=40,T

=2) 

.65 .08 .17 

Low 

homophily(N=80,T

=2) 

.65 .09 .15 

Table 1: Experimental condition 
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Table 1 (cont’d) 

No 

homophily 

(N=40,T=5) 

.61 .06 -.04 

No 

homophily 

(N=80,T=5) 

.61 .1 -.02 

No  

homophily 

(N=40,T=2) 

.62 .05 -.04 

No 

homophily 

(N=80,T=2) 

.62 .09 -.02 

 

The Mean Biases for the prior term and the network exposure term under various 

conditions are shown in Figures 4 and 5 respectively. Mean correlations between the 

prior, unobserved trait and network exposure are shown in Table 1. There are several 

things to note concerning the prior term: (1) the bias for prior is generally smaller 

when the true coefficient is larger; and (2) the OLS estimates for the prior term are 

consistently upwardly biased, and the magnitude of bias does not change much with 

time, the number of nodes and the various selection processes, although bias seems 

to be a little smaller for high homophily selection processes. 

The bias for network exposure presents a more interesting pattern: (1) contrary to 

estimates of the prior term, the bias for network exposure is generally smaller when 

the true coefficient is smaller; (2) when homophily is present in the selection 

process, the network exposure is upwardly biased, and the magnitude of bias is much 

smaller for lower levels of homophily; (3) when the network is static, estimates for 
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network exposure are downwardly biased; and (4) the magnitude of bias is smaller 

when T is larger, but does not vary greatly with different N.   

From the results above we can see that an uncontrolled latent trait that codetermines 

selection and influence will indeed create biased estimates for both prior and 

contagion effects, possibly leading to invalid inference. However, in the low 

homophily case where network exposure is moderately correlated with the latent trait 

and the prior term, the magnitude of the bias is relatively small, especially compared 

with bias in estimates of the prior. It is when there is high homophily through a latent 

trait that the bias in estimates of contagion effects is large.   

One possible reason for the prior term to be consistently upwardly biased is that it 

has a consistently high correlation with the unobserved trait (> 0.6). There is a larger 

variation in the magnitude of bias for the exposure term, possibly due to its smaller 

variance and the larger standard error of the regression coefficient. The direction of 

bias shows an interesting pattern: it is upward when there is latent homophily in the 

selection process, but downward when the network is static. We now provide some 

intuition for why this might be the case. 

Write the “true” influence model in matrix form as 

1 1 2Y Y Yβ β ε−= + +  ,                                                                               (11) 

where Y is the behavioral outcome, Y-1 represents the prior, Y represents network 

exposure and ε represents the composite error of the latent trait c and the 

idiosyncratic error e. Then, the bias of β2 can be represented as (see appendix A for a 

derivation)  

' 1 ' ' 1 '
2 2 1 1 1

ˆ ˆ( ) ( ) ( )Y Y Y Y Y Y Yβ β β β ε− −
−− = − − +       .                                          (12) 

As 1̂β  is upwardly biased and there is a positive correlation between prior and 

exposure, the first part of equation (12) is always negative. Thus a) when there is 

homophilous selection based on a latent trait, the exposure term will be positively 
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correlated with the latent trait and ' 1 '( )Y Y Y ε−
  

will be positive, and as a result 2β̂ will 

be upwardly biased; and b) when the network is static,  

since there is a zero or a slightly negative correlation between exposure and the 

latent trait, the second term ' 1 '( )Y Y Y ε−
   is almost 0 and negligible. Together, the right-

hand side of equation (12) will be negative and thus 2β̂ will be downwardly biased. 

For more details see the technical Appendix 1. 

Overall, our results have several implications:  

(1) the magnitude of bias for network exposure is smaller when the true coefficient is 

smaller, but the magnitude of bias increases as the true coefficient of network 

exposure increases. One possible reason is that when contagion dominates the 

system, nodes become homogenous and there is smaller variance in the nodes’ 

outcomes and hence more instability.  

(2) If there are unobserved variables codetermining selection and influence, we will 

observe a unneglectable bias in estimating network exposure when CorExpo,unobs is 

bigger than 0.2. But note that bias is only due to the unobserved variables, not the 

observed ones, as shown in the example above (Figure 1) where we still have 

unbiased estimates even when there is strong homophily present, i.e. high correlation 

between prior and exposure. Assuming there is a strong level of homophily in our 

data (Corprior,Expo = 0.3~0.4 in Penual et al., 2012; Venkatesh et al., 2000; Nash et al., 

2005), the strongest correlation between exposure and covariate variables can vary 

from .2 to .4 in some empirical examples we have seen,  suggesting that we have to 

control at least several of the most significant predictors in order to be somewhat 

confident that it is less likely there are still some variables we have not controlled for 

that have a correlation larger than .2 with exposure term.  

(3) As contagion effects are upwardly biased when there is homophilous selection 

we have not controlled for, we should be alert for contagion effects even if our 
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model has found significant results, since we are more prone to type I error; however 

if there is no network selection and the network is static, contagion effects are more 

likely to be downwardly biased, and we can be more confident of our inference if 

model estimates for contagion effects are positively significant. 

 

IV. Possible Solutions: Multidimensional Priors 

Previous sections show that estimates of contagion effects will be biased as long as 

there is a latent trait codetermining influence and selection. In this section, we 

propose a theory-based solution that can be easily implemented under an OLS 

framework, which is to include multidimensional pre-tests. It is known that in quasi-

experiments, multiple pre-tests should be included (Shadish et al., 2008; Steiner et al., 

2010; Concato et al., 2000) to control for prior differences that can affect treatment 

assignment and potential outcomes. For example, in order to recover the treatment 

effect in a non-randomized experiment aimed at improving mathematics performance, 

both pretests for mathematics and vocabulary need to be controlled (Shadish et al., 

2008).  If we think of network exposure as one form of treatment, and since networks 

are usually not randomly assigned, we will face similar situations as the ones we face 

in quasi-experiments. And including multiple pre-tests has the potential to control for 

prior differences and thus reduce bias in the estimates.  

To illustrate more we construct our “true” influence model as  

 1 1
0 1 1 2 3

1

ijt jt
it it i it

ijt

Z Y
Y Y c e

Z
β β β β− −

−
−

= + + + +∑
∑

                              (13) 

But here we also have a variable X that correlates with ci , that is, there are some 

variables that do not directly affect the outcome of interest but can affect the 

behavioral outcome and network selection through ci (e.g. Y is smoking, X can be 

alcohol use for the same person, and ci can represent the  inclination for substance 

abuse for that person, so that X is correlated with c ). Given a homophilous selection 
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process based on a latent trait, we are particularly interested in whether including X 

can improve our estimation of the real network exposure effect, and how the 

correlation between X and ci can affect our estimation.  

Specifically, we take a high homophily example (N = 40, T = 2, density = 0.2), and 

let the “true” influence and selection model be 

1 1 2
1 1 2

1

0.1* , ~ (0,1), ~ (0,0.2 )ijt jt
it it i it i it

ijt

Z Y
Y Y c e c N e N

Z
β β − −

−
−

= + + +∑
∑

, and 

1( 1) ( 0.8 0.3 | |)ijt ijt i jP Z Z c c−= = Φ − + − − , 

and let X be 

2* , ~ (0,1 )it i it itX r c N rε ε= + −                                          (14) 

where r represents the correlation between X and the latent trait ci..  Then we vary 

correlation as 0.2,0.4,0.6,0.8, in each configuration, and we vary both β1 and β2 from 

0.1 to 0.9, while keeping β1 + β2 = 0.9; and we estimate the influence model as 

1 1
1 1 2 3 1

1

ijt jt
it it it it

ijt

Z Y
Y Y X e

Z
β β β− −

− −
−

= + + +∑
∑

 .                           (15) 

 

 

 

 

 

 

 

 

Figure 6: Results with multi-dimensional prior 
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Figure 6 (cont’d) 

 

 

 

 

 

 

 

 

 

 

 Corprior,X CorExpo,X Corunobs,X 

r=0.2 .13 .09 .19 

r=0.4 .28 .19 .39 

r=0.6 .41 .28 .59 

r=0.8 .55 .38 .79 

Table 2: Experimental condition 2 

 

As the results show in Figure 6, with an increase in correlation between observed X 

and latent trait ci , including the prior of X as a control significantly reduces the bias, 

both in the actual prior term and in the network exposure term. So we conclude that 
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it is important to include multiple pre-tests to adjust for prior or unobserved 

differences that can affect both behavioral outcomes and network selection.  

 

V. Discussion and Conclusion 

In this chapter we have dealt with the identification problem of contagion effects. 

Specifically, we frame the difficulty of identifying contagion effects (e.g. influence 

confounded with selection, social context etc.) as an omitted variable bias problem. 

And we show that in general cases when there is a latent trait that co-determines 

influence and selection, methods such as SIENA and propensity score matching 

cannot identify contagion effects either. After that, we give situations and examples 

where contagion effects can be identified using traditional methods (e.g. OLS), as 

well as describing the magnitude of bias in different situations. And finally, we have 

proposed some possible remedies under an OLS framework.  

While omitted variable bias has been widely studied in many theoretical and 

empirical studies, it has not been related to entanglement between different processes 

in social networks until very recently (Shalizi & Thomas, 2011). And although 

entanglement between influence and social context can be easily framed as omitted 

variable bias, the fact that entanglement between influence and selection can also be 

framed as omitted variable bias is less obvious. And the analysis presented in this 

chapter is different from the general omitted variable bias problem in other fields, 

given that the selection process is known to be a main alternative mechanism in 

social network analysis. The present chapter contributes to this stream of literature 

by further clarifying the problem, as well as exploring the consequences of omitted 

variable bias in different situations. 

There are also many limitations for the material in this chapter. The derivation and 

simulation here are not intended to describe the magnitude of bias across all different 
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scenarios, but merely to show the existence of the bias, and the magnitude of the bias 

in the most basic setups. In future work we should also consider other alternative 

models or alternative forms of influence. For example, we can consider unobserved 

variables across multiple levels, which are commonly seen in empirical studies, and 

which can create estimation challenges as well. Possible remedies might include 

using dummies representing different settings or controlling group level means, but 

we leave these possibilities to future work. We can also consider how different forms 

of models will produce different results. For example, the network exposure term 

here represents the norm of network neighbors, but there could be other forms of 

influence such as imitation and learning. And we can explore how to represent 

processes such as preferential attachment and transitivity in the influence model, and 

how estimates in these models will be affected by the omitted variable problem.  

In an ideal world we would correctly measure all variables that can affect influence, 

selection, and social context, so that there will be no remaining omitted variable 

problem, and OLS can be applied (although a reflection problem still exists). But 

given the limited richness of the data, an omitted variable problem is almost 

inevitable in any empirical study, in which we know OLS estimates for contagion 

effects will be biased. So in the next chapter, we turn to some alternative estimation 

methods that have the potential to correctly identify contagion effects, given that 

there are omitted variables which either only affect influence or co-determine 

influence and selection. 
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CHAPTER 2: Estimation Methods 

I. Introduction 

In the previous chapter, we framed the problem of estimating contagion effects as an 

omitted variable bias problem. So in this chapter, we propose several methods 

which are inherently designed to deal with the problems of unobserved variables, 

and we will perform simulation experiments to investigate how well these estimators 

perform.  

 

II. Theoretical Framework 

Historically there are many approaches that deal with omitted/unobserved variable 

bias. Here we follow three well-known schools of thoughts: random vs fixed effects, 

the instrumental variables approach, and latent variable methods. We will introduce 

each, and explain how they can be applied in a social network context to identify 

contagion effects where a latent trait co-determines influence and selection. Then we 

will propose alternative estimation methods from each school of thought and discuss 

their advantages and disadvantages. 

i. Random vs Fixed effects 

The random-effects model, also known as the multilevel model or HLM, is widely 

used in the field of social science, especially education (Bryk & Raudenbush, 2002). 

The model assumes there is an unobserved constant for each unit in which 

observations are nested (students nested in classrooms for example).  And if the 

network data is panel data with time nested within individuals, a random-effects 

model seems to be a reasonable way to estimate the influence model 2, as it deals 

with unobserved effects (Schonfeld & Rindskopf, 2007). But one of the key 

assumptions for a random-effects model is that unobserved effects are uncorrelated 

with observed variables (Wooldridge, 2010), which is clearly violated here, as ci 



 

28 
 

correlates with the prior term in model 2 by design, and ci correlates with the 

exposure term when there is homophily in the selection process. As a result, random-

effects estimates will be inconsistent here.  

Fixed-effects models are also one of the commonly used methods in the field of 

social science such as in economics. The starting point is the same assumption that 

there is unobserved between-unit heterogeneity (ci in this case), while there is no 

assumption that ci and observed variables are uncorrelated. Then the unobserved ci 

are removed from the model, and the transformed model re-estimated to get “fixed-

effects” estimates. Two common approaches to removing unobserved heterogeneity 

are (i) using N-1 dummy variables to represent N units,  or (ii) remove a within-unit 

mean for each variable. For simplicity, we exclude variable X and represent model 2 

as  

 0 1 1 2 1it it it i itY Y Y c eβ β β− −= + + + + ,                                             (16) 

where 1itY −
  represents the network exposure term. Let .

1

1 T

i it
t

Y Y
T =

= ∑ ,
1

. 1
0

1 T

i it
t

Y Y
T

−

−
=

= ∑ , 

1

. 1
0

1 T

i it
t

Y Y
T

−

−
=

= ∑  , .
1

1 T

i it
t

e e
T =

= ∑ .  

Then, subtracting these within-unit time averages from original model in (16), we 

have 

1 1 2 1it it it itY Y Y eβ β− −= + +

  

 ,                                                     (17) 

where . 1 1 . 1, ,it it i it it iY Y Y Y Y Y− − −= − = −  etc. By using this transformation we remove the 

latent trait ci , and pooled OLS estimates of the model in (17) are “fixed-effects” 

estimates, which will be consistent if regular OLS assumptions are met, such as the 

unobserved errors are uncorrelated with observed variables, etc. However, as model 

in (17) is a dynamic model, which includes a lagged dependent variable as a 

predictor, the transformed error term will be correlated with the transformed prior 

term by design. Nickell (1981) shows that fixed effects estimates of the prior will be 

downwardly biased, and the magnitude of bias will be proportional to 1/T. 
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Furthermore, the transformed network exposure term will also be inconsistent, and 

the magnitude of bias depends on the relationship between the transformed prior 

term and the transformed network exposure term. And as long as network exposure 

is correlated with the prior term (either through influence or homophilous selection), 

fixed effects estimates of contagion effects will be inconsistent.   

ii. Instrumental variable methods 

Instrumental variable (IV) methods are often used in situations where explanatory 

variables are correlated with the error terms, which can be caused by simultaneity, 

omitted variables, measurement error, etc. These type of methods work through 

identifying a set of new variables that only correlate with endogenous explanatory 

variables, but not with the unobserved error terms, and thus achieve consistent 

estimation by “blocking out” the correlation between the endogenous variable and 

unobserved errors (An, 2011; Wooldridge, 2010). There have been a few studies that 

used IV methods to identify contagion effects. For example Duncan et al (1968) used 

a friend’s intelligence as an IV for the friend’s occupational and educational 

aspirations. Angrist and Lang (2004) used the predicted number of transferred-in 

disadvantaged students to study their effects on the academic performance of 

students in the receiving schools. O’Malley et al (2014) used genetic alleles as IVs to 

estimate peer effects on weight status.  An (2015) used friends’ family smoking 

status to estimate peer effects on smoking. However, all these IV methods require a 

strong theoretical argument of validity for the instrumental variables, which thus are 

essentially untestable. And we will also encounter inconsistency problems and large 

standard error of estimates when we have weak instruments or data with small 

sample sizes (Bound et al., 1995; Wooldridge, 2010).  

There are also studies exploiting structural properties of networks to identify 

instrumental variables. For example, Bramoullé et al. (2009) argued that if there are 

intransitive triads, for example i->j->k but i and k are not connected, then i’s 

https://en.wikipedia.org/wiki/Dependent_and_independent_variables
https://en.wikipedia.org/wiki/Dependent_and_independent_variables
https://en.wikipedia.org/wiki/Correlation
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outcome can be used as instruments for j to estimate contagion effects for k’s 

outcome, since k is not directly influenced by i. However, the identification of the 

model would require the validity of the instrument such that i does not influence k 

through any alternative path, and simulations by Bramoullé et al. (2009) have shown 

that the quality of IV estimates depend on specific network structural properties as 

well (precision decreases with denser networks and complex functions of 

intransitivity). 

 Given the strong assumptions required by various instrumental variables above, 

alternatively we propose to exploit the dynamic nature of our data and our model. 

Specifically, as pointed out by Anderson & Hsiao (1982), under specific 

assumptions, past values of one’s own outcomes can be used as instruments for 

endogenous variables in a dynamic model. To see this, we first-difference our 

influence model 2 to remove the unobserved effects ci (we exclude X in model for 

simplicity): 

 1 1 2 1it it it itY Y Y eβ β− −∆ = ∆ + ∆ + ∆ ,                                             (18) 

where 1 1 1 2 1 1 2, ,it it it it it it it it itY Y Y Y Y Y Y Y Y− − − − − − −∆ = − ∆ = − ∆ = −   , etc. As in the fixed effects 

approach, this transformation will induce a correlation between itY∆ and ite∆ , thus 

biasing the estimates. However, under a sequential exogeneity assumption, which 

states that errors (shocks) in the future are independent of past values of y (which 

seems to be a very reasonable assumption if errors do not contain omitted variables 

and are structural/idiosyncratic), plus an assumption that errors are serial-independent, 

a natural instrument would be the past values of Y for each time period, which will 

correlate with 1itY −∆  but not with ite∆ , and hence satisfy the IV assumption. For 

example, in a panel data with 3 time points, for 2 1i iY Y−  the instrumental variable can 

be 1iY  as it does not correlate with 3 2i ie e− , and this will generate consistent estimates 

of β1. To be more concrete, using the delinquency example, to model the change score 

of delinquency from time 2 to time 3, we can use adolescents’ delinquency score at 
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time 1 as an instrumental variable for the change score of delinquency from time 1 to 

time 2. Note that in our setup the transformed network exposure (contagion) term 

does not correlate with the transformed error term, as the effect of network exposure 

on outcomes in model 2 is not simultaneous, but lagged. To see this more clearly write 

1 1 2it it itY Y Y− − −∆ = −   and 1it it ite e e −∆ = −  , showing that these two terms are independent, 

since any change in 1ite −  will be reflected in itY  but not in 1itY −
  or 2itY −

 . In this sense, 

the exposure term is “exogenous”, so that it can be identified without extra 

instrumental variables5. 

However, since all past values of Y can potentially be instruments, Arellano and Bond 

(1991) proposed using the entire set of instruments in a generalized method of 

moments (GMM) procedure to improve efficiency. Specifically, let the matrix of 

instrumental variables for individual i to be Zi , as follows: 

 

 

 

 

 

                                                                                                                                (19)6 

 

Each column in Z represents an instrumental variable z. As we can see, each variable 

z is uncorrelated with the error term in the model in (18), such that E[z’e] = 0. Writing 

the model in (18) as Y=XB+E, we can use 2-stage least squares (2SLS) estimation to 

achieve consistent estimates: in the first stage regress X on Z; in the second stage 

regress Y on the predicted value of X from the first stage regression. Together 2SLS 

can be written as 

                                                             
5 Note that if influence is contemporaneous instead of lagged, it is also possible to use past values of 

exposure terms as instrumental variables and thus achieve identification.  
6 The instrumental variable matrix was constructed this way to create as many moment condition as 

possible, zeroes were added instead of missing values, and thus still keeping orthogonality.   
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 1 1 1
2

ˆ (( )( ) ( )) (( )( ) ( ))
N N N N N N

SLS i i i i i i i i i i i i
i i i i i i

B X Z Z Z Z X X Z Z Z Z Y− − −′ ′ ′ ′ ′ ′= ∑ ∑ ∑ ∑ ∑ ∑  

Alternatively, we can use a GMM-IV estimator, which can be represented as  

1ˆ ˆ ˆ(( ) ( )) (( ) ( ))
N N N N

GMM i i i i i i i i
i i i i

B X Z W Z X X Z W Z Y−′ ′ ′ ′= ∑ ∑ ∑ ∑ , where W is a weighting 

matrix which is the inverse of the variance-covariance matrix of i iZ E′ . And as we can 

see, the only difference between the 2SLS and GMM-IV estimators is that they use a 

different weighting matrix. 

This GMM IV approach is shown to be generally consistent and efficient as 

, but in empirical work the optimal number of moment conditions that 

should be used for estimation is not that clear (Judson and Owen, 1999; Kiviet, 

1995; and Wansbeek and Bekker, 1996). And simulation by Ziliak (1997) also has 

shown that there could be a downward bias in GMM estimates as the number of 

moment conditions expands. Furthermore, it is shown that this method will also 

suffer from the weak-instrument problem when β1 approaches 1 (Wooldridge 2010)7. 

As none of these similar methods have been applied to social network data, the 

performance of such estimators remains largely unknown. In this chapter, we 

incorporate this estimator of contagion effects and examine how well it performs in 

the context of social network panel data. 

iii. Latent variable approach 

Structural equation modeling (SEM) is also known as an alternative approach to deal 

with latent variables (Kaplan, 2007; Kline, 2011). SEM is widely used in the social 

sciences mainly due to its ability to isolate observational error from measurement 

using latent constructs (Hancock, 2003). But it can also be used to model unobserved 

variables in the estimation procedure. For example Barnes et al. (2000) use latent 

growth modeling to study the alcohol use of adolescents, with latent variables 

representing adolescents’ initial drinking behavior and rates of increase in alcohol 

                                                             
7 Note empirically that an important diagnostic test uses auto-correlation of the error terms in model 
in (18). By construction, errors should exhibit AR(1) behavior but not AR(2) 

https://en.wikipedia.org/wiki/Observational_error
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use. In a social network context, as described above, if we treat an unobserved trait 

that codetermines influence and selection as a latent variable, borrowing from the 

SEM framework we can estimate a latent variable in model 2, and then hopefully 

correctly identify the contagion effects. 

 

 

 

 

 

 

Figure 7: Dynamic model with unobserved term 

In a paper by Bollen & Brand (2010), a structural equation modeling based approach 

is discussed to estimate parameters in dynamic models with unobserved 

heterogeneity. Figure 7 provides a graphic depiction of their model, where Y 

represents the outcome of interest and X is the contemporaneous exogenous variable 

(subscripts indicate different time points). As can be seen in Figure 7, error variances 

and the coefficients for the time-varying variables across different time points are set 

to be equal. The latent time-invariant variables, ηi, representing unobserved 

heterogeneity, are allowed to correlate with both the exogenous variables and the 

lagged values of the outcome variable, Y. In principle, the Bollen and Brand (2010) 

model should provide accurate estimates of the ARDL (auto-regressive distributed 

lag) model with unobserved heterogeneity, since it models the unobserved 

heterogeneity without running into any incidental parameter problem (Lancaster, 

2000). It allows correlations between unobserved effects and exogenous variables 

and a lagged dependent variable. Further, it models a dependent variable conditioned 
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on an initial observation, y1, thereby avoiding the initial condition problem 

(Anderson & Hsiao, 1981; Wooldridge, 2005). Unfortunately, simulation studies 

have not been performed to evaluate the performance of this SEM approach. 

Therefore, we will incorporate this method with our influence model, and use 

simulation to examine the performance of this method. Specifically, we represent the 

model in (16) as in Fig 8. 

 

 

 

 

 

 

 

Figure 8: Influence model in structural equation model 

Here, Y represents a behavioral outcome,Y represents network exposure, and c 

represents the latent trait that codetermines influence and selection. For example, Y

can represent the delinquency behavior of a focal adolescent, and Y can represent 

the delinquency behavior of his/her friends, while c represents the unobserved risk-

taking tendency. By setting up as in Fig 8, we follow Bollen & Brand’s (2010) 

framework and allow c to be estimated as a latent variable, which at the same time 

correlates with a lagged dependent variable as well as the network exposure term. 

We will obtain model estimates by maximum likelihood estimation. 

In principle, all previously proposed methods that have been well established in 

other fields are supposed to deal with various forms of unobserved heterogeneity 
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when estimating influence models, such as unobserved vertex attributes, unobserved 

social environmental factors, latent homophily etc. As a special case, if the 

unobserved variable in the influence process also co-determines the selection process 

(homophily based on a latent trait), then any information about this latent trait, based 

on the selection process, can be borrowed and used in the estimation of the influence 

model, and in theory this will reduce the bias in estimating contagion effects. So next 

we will propose an estimation procedure that borrows information from the selection 

process in order to estimate contagion effects in the influence model. 

Our approach builds on the theoretical logic of latent space models as applied to 

social-network data (Hoff et al., 2002). Latent space models assume that each 

individual has a “latent position” that lies in an unobserved n-dimensional social 

space, and the probability of interaction between any two actors depends on the 

latent positions of these two actors. Specifically, they take a logistic form and specify 

the selection model as  

  'log ( 1| , , , , ) | |ij i j ij ij i jodds Z c c x x c cα β α β= = + − −                          (20) 

Here, ijZ  indicates whether there is an interaction from i to j, ijx is a vector of 

observed covariates (at dyadic level or node level), c indicates the latent position of i 

and j, and | |i jc c−  represents the Euclidean distance between i and j’s latent 

position. The parameters α and β are estimated using either Maximum-Likelihood 

Estimation (MLE) or Markov Chain Monte Carlo (MCMC) methods, and the latent 

position c is estimated by Minimum Kullback-Leibler (MKL) estimates (Shortreed 

& Handcock, 2004). Note that if there are no covariates in model in (20), this model 

is similar in principle to multidimensional scaling (Kruskal, 1964), which put nodes 

at positions in n-dimensional space based on their network relations. As described in 

Hoff et al. (2002), crude estimates of individual positions from multidimensional 

scaling are actually used as starting values in their estimation procedure. 

As shown in chapter 1, if there is a latent trait c co-determining the selection and 
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influence processes, by accounting for this latent trait as a covariate in the influence 

model, we can achieve a consistent estimation of contagion effects. Although the 

latent trait c is generally unobserved, here from the latent space model we can 

produce estimated latent social positions, which operate in the same way in the 

selection process as the actual latent trait. Thus these estimates of latent positions 

can be used as proxies for the latent trait ci, and can be included when estimating an 

influence model such as in model 2, and this will in-principle reduce the bias in 

estimation of contagion effects that are due to the omitted variable problem (see 

example in Chapter 1; Wooldridge, 2010).8 For example, to model adolescents’ 

delinquency behavior, we can first use a latent space model to model the friendship 

network of adolescents and acquire an estimated “latent social position” for each 

individual, and then use these estimates as proxies for the unobserved risk-taking 

tendency in the influence model. Note that this method works because it accounts for 

the unobserved trait that determines the homophilous selection in the influence 

model. The scale of the estimated latent social positions might be very different from 

the actual latent trait, but as long as latent social positions are highly correlated with 

the actual latent trait (actors who are close to each other on latent social positions are 

also close to each other in terms of a latent trait), contagion effects can still be 

consistently estimated.   

However, if the social network data is longitudinal, the latent space model as 

described in model in (20) cannot produce consistent latent position estimates across 

different time points, as it is static in nature. Extensions of latent space models that 

apply to dynamic social network data have been proposed (Sarkar & Moore, 2005), 

but they do not assume constant latent positions across time, which violates one of 

our key assumptions, that individuals possess time-invariant latent-traits. In addition, 

there is the difficulty of implementation in software. So instead we propose a two-
                                                             
8 Note that under the same principle we would benefit from estimating influence and selection at the 
same time, using models like SIENA (Snijder et al 2010), but SIENA does not deal with the omitted 
variable issue.  
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step estimator for contagion effects: 1. we estimate a latent space model and acquire 

the latent position estimates for each time point, and 2. we include estimated values 

of latent positions for all available time points as proxies for the latent trait c, and 

estimate our usual influence model using OLS. Specifically, letting qt be the latent 

position estimates for time t, assume that 

   0
1

T

t tc q rγ γ= + +∑  .                                                                                             (21) 

Under the assumption that ( | , , ) ( | , )E y x c q E y x c=  and ( , ) 0Cov x r =  (X represents 

all independent variables in the influence model), q can be valid proxies for the 

latent trait c and thus the contagion effect is identified. Essentially we assume that 

each q is an imperfect measure of c, and by including all q’s we will have a better 

approximation to c, and thus better estimation of contagion effects.9  

After the description of all the proposed methods, our main research question is 

whether estimation methods proposed above can correctly identify contagion effects 

when there are unobserved variables. Specifically we form several hypotheses based 

on literature we reviewed above: (1) the performance of estimators will be affected 

by the number of nodes (N), and the number of time points (T) available in the data; 

(2) random and fixed effects estimates for contagion effects will be more biased than 

other estimates; (3) GMM-IV estimates will perform well when we have more time 

points and the true coefficient of the prior term is small; and (4) SEM and latent 

space estimates will be more robust and generally produce less bias.  

 

III. Monte-Carlo Simulation 

In this section, we use Monte-Carlo simulation to examine the performance of each 

                                                             
9 As all q’s are probably highly correlated, this will possibly create a multicollinearity issue when 
estimating the influence model. But this will not affect estimation of prior and contagion effects, as all 
these q’s are explaining unique variances represented by c under the assumption 

( | , , ) ( | , )E y x c q E y x c=  
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estimator for contagion effects proposed above: a fixed effects estimator, a random-

effects estimator, a GMM-IV estimator, a SEM estimator, and a latent-space adjusted 

estimator. For simplicity, we do not include exogenous observed variable Xs, and we 

let the “true” influence model be: 

1 1
1 1 2 3

1

ijt jt
it it i it

ijt

Z Y
Y Y c e

Z
β β β− −

−
−

= + + +∑
∑

 .                               (22) 

Correspondingly let the “true” selection model be represented as  

0 1( 1) ( | |)ijt i jP Z c cα α= = Φ + −                                             (23) 

Simulation configuration. While there are many factors which could affect the 

performance of estimators, such as density, the magnitude of the latent trait (β3), the 

variance of idiosyncratic error, etc., we focus on the performance of estimators under 

the following cases. (1) High homophilous selection determined by the latent trait; 

(2) sample size: As N and T are important in panel data, which usually have large N 

and small T, we will focus on the number of nodes and the number of time points; 

(3) the magnitude of the true coefficient for prior and network exposure, as different 

levels of influence might affect the performance of estimators. 

Specifically, let a simulation configuration be as follow: (i) in each simulation we fix 

each agent’s latent trait to be a constant drawn from a normal distribution N(0,1); (ii) 

we vary number of time points to be 3 or 6; (iii) we vary number of nodes to be 40 or 

80; (iv) we keep the homophily level to be high, and correlation between Prior and 

Exposure to be around 0.4 (Penual et al., 2012; Venkatesh et al., 2000) ( α0 = -0.4, α1 

= -0.45 for N=40, α0 = -0.55, α1 = -0.3 for N=80); (v) we vary both β1 and β2 from 

0.1 to 0.9, while keeping β1 + β2 =0.9. As before this only changes the dynamics of 

the relationship, and does not affect the equilibrium of the system (Kiviet, 1995).  

In each configuration, we start from a random network and simulate based on 

equation (22) and (23), using the proposed estimation methods to get estimates for β1 
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and β2.10 Other model configurations include β3 = 0.1 (to keep consensus within the 

initial range of ci (Friedkin, 1999)), 2~ (0,0.2 )ite N , and density = 0.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Simulation results for prior 

 

                                                             
10 In T=2 cases, for IV estimation we use 2SLS with behavioral outcomes from first time point as 
instrumental, which is shown to be the same as GMM-IV estimation when the model is just-identified 
(Wooldridge 2002;2010). 
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Figure 9 (cont’d) 
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Figure 10: Simulation results for exposure 
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Figure 10 (cont’d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The biases of mean estimates for prior and Exposure are shown in Fig 9 and 10 

respectively (each point is a result of 500 simulations. For latent space modeling 

each point is a result of 100 simulations, due to its longer running time). For 
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estimates of the prior: (1) the magnitude of bias is smaller for all estimation methods 

when we include more time points (bigger T), while it is not affected much by 

increasing node sizes (bigger N); (2) random effects estimates are always positively 

biased and fixed effects estimates are always negatively biased, which is as expected 

and consistent with Nickell (1981); and (3) GMM-IV estimates exhibit small bias 

when the true coefficient is small, but as the true coefficient of the prior increases, 

we will be more likely to encounter weak instrument problems, and the magnitude of 

bias thus increases (Wooldridge, 2010; Arellano and Bond, 1991). Also when T = 2, 

GMM-IV estimates are more unstable with larger variance (we exclude several 

outliers in this case). (4) SEM estimates are one of the least biased estimates when T 

is large; however the bias is larger when T is small. (5) Latent space estimates are the 

least biased estimates in all cases, out-performing other estimates. They are stable 

and have small bias even when T is small.   

For estimates of the network exposure term: (1) as above, the magnitude of bias is 

smaller for all estimation methods when we include more time points (bigger T), 

while the bias is not decreasing when we increase node size (bigger N); (2) random 

effects estimates are always positively biased and fixed effects estimates are always 

negatively biased, although fixed effects estimates for the exposure term produce 

much smaller bias than fixed effects estimates for the prior term, especially when T 

is large; (3) GMM-IV estimates overall have small bias, though they are more 

unstable when T is small (bias and variance are larger, and we exclude several 

outliers when T = 2); (4) SEM and latent space estimates out-perform other estimates 

in terms of producing the smallest bias across all cases.      

Overall, random-effects and fixed-effect estimates produce the biggest bias among 

all estimators; GMM-IV estimates sometimes have small bias but are unstable and 

largely biased when T is small and the true coefficient of the prior is large; SEM and 

latent space estimators outperform others in terms of producing the smallest bias 

across most cases, especially for identifying contagion effects. But note that SEM 
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estimates for prior can be severely biased when T is small, and the latent space 

method is very time consuming as it uses a simulation based estimation method 

(MCMC) and requires lots of burn-in time (Hoff et al., 2002).    

 

IV. Robustness Test 

i. Results with covariates 

We also test the robustness of results when we include covariates in both influence 

and selection models. Specifically, in the data generating process, let the influence 

and selection process be 

1 1
1 1 2 3 4

1

ijt jt
it it i i it

ijt
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Y Y c X e
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β β β β− −

−
−

= + + + +∑
∑

.                                             (24) 

Correspondingly, let the “true” selection model be represented as  

0 1 2( 1) ( | | | |)ijt i j i jP Z c c X Xα α α= = Φ + − + −                                               (25) 

All notations are the same as previously used, and X is an observed time invariant 

attribute that follows a N(0,1) distribution. All simulation setups are as before, 

except that we include X when estimating each proposed model.  
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Figure 11: Results with covariates 
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Figure 11 (cont’d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results above are generally consistent with our main results, that is, (1) random 

and fixed effects produce the largest bias, while (2) the latent space adjusted 



 

47 
 

approach produces the least bias across all cases, and (3) SEM and GMM-IV 

perform well with more time points, but perform poorly (especially in estimating the 

prior term) when we have a short time frame. One thing to note is that the bias is 

generally smaller for each estimation method in the presence of covariates. A 

possible reason is that by including an observed covariate X, the correlation between 

the unobserved trait and observed variables (outcome, exposure term etc.) become 

smaller. And as a result, the impact of any omitted variable becomes less important. 

ii. Results with cluster membership 

Although the latent space adjusted approach performs best across all cases, it is very 

computationally intensive, and usually requires lots of computer space and time. 

And, the estimated social positions are somewhat arbitrary, and can easily vary from 

simulation to simulation, something which lacks sociological meaning. Instead, we 

will try an alternative approach: using cluster membership as a proxy for the latent 

trait. The rationale is that, as for latent social position, actors’ cluster membership 

can also account for the selection process, so that actors embedded in similar 

networks belong to the same cluster. This measure is coarser than the latent social 

position, but is much more computationally efficient. The detail of this approach 

works as follows: 1. we use a community detection algorithm (e.g. Kliqfinder, 

Girvan-Newman etc.) to find the cluster membership for each actor; and 2. we create 

dummy variables to represent each cluster and include these dummies when 

estimating the influence model. We use the previous simulation setup as in our main 

results, and we test how this new estimator performs:   
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Figure 12: Results with cluster membership 
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Figure 12 (cont’d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results show that, as for the latent space adjusted approach, the method that 

accounts for cluster membership is robust to different T and N. However, this 

method cannot eliminate much bias, and its performance is only better than the 

random-effects and fixed-effects estimators in most cases. A possible reason is that 
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using dummies to represent an actor’s cluster membership is a relatively poor proxy 

for the actor’s latent trait that also drives the actor’s network selection. 

iii. Fixed intercept 

To deal with the scaling issue in the latent space adjusted approach, we test the 

robustness of our model by starting the simulation with a different prior distribution 

of the intercept in the latent space model. Specifically, in the latent space model we 

have  

 0log ( 1) | |ijt i jodds Z c cα= = − − ,   (26) 

Where we use MCMC estimation and the prior distribution of α0 follows a N(0,1). 

 

 

 

 

 

 

  

 

 

Figure 13: Results with fixed intercept 
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Figure 13 (cont’d) 
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Figure 13 (cont’d) 

 

 

 

 

 

 

 

 

 

The results show that with different intercepts, estimates from the new latent space 

adjusted approach is almost identical to the original latent space adjusted approach. 

So we conclude that although shifting the intercept will possibly change the scale of 

latent social positions, it does not change the correlation between estimated latent 

social positions and the actual latent trait, so that the new latent social positions are 

still valid proxies for the latent trait, which will eliminate much bias in estimating 

contagion effects. 

 

V. Discussion and Conclusion 

While contagion effects have important implications for both theoretical and 

empirical studies, they are generally difficult to identify, as influence processes are 

often entangled with other processes such as selection and environmental factors. 

Here we show that this entanglement/difficulty can essentially be framed as an 
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omitted variable bias problem, and the methods currently used (e.g. SIENA, 

propensity score etc) either do not deal with this problem or require strong 

assumptions.  

In this chapter, we propose several alternative estimation methods that have the 

potential to identify contagion effects when there are omitted variables present, and 

we use Monte Carlo simulation to test the performance of these estimators. Although 

we choose a specific form of influence model (dynamic model with mean influence), 

our methods have the potential to be adapted to other forms of influence models. 

A possible extension of the proposed latent space adjusted approach is to apply it to 

multilevel data. For example, if we have students nested within classrooms, most of 

the networks we observe will be within classrooms and there will be few ties 

between classrooms. And to identify contagion/peer effects across classrooms, we 

need to adjust our approach to reflect the network structure in the latent space. If we 

estimate the latent social position using all networks as one global network, and 

estimate the influence model using all available data, the estimated latent social 

position will not reflect the difference in actors’ latent trait, because people holding 

similar latent traits might not know each other, due to the structural constraint. For 

example, if node A from organization 1 hold a similar latent trait to node B from 

organization 2, if we estimate networks from organizations 1 and 2 as a whole, the 

latent space estimates of persons A and B will deviate greatly from each other as they 

do not have a tie, even though they are similar in terms of the latent trait. And this 

will give biased results in the subsequent estimation of influence. Note that their lack 

of relationship is due to structural constraint rather than dissimilarity in the latent 

trait, and by not accounting for the structural constraints in the latent space model the 

estimated social position will be a poor proxy for the actual latent trait.  

For the multilevel network, I propose to estimate the contagion effect in each 

network using latent space adjustment. Then we will use a meta-analysis method to 
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estimate overall contagion/peer effects.     

Note that although none of these methods can 100% eliminate the bias in the 

estimation of contagion effects, our simulation results do suggest that these methods 

can still significantly reduce the bias under plausible assumptions, especially the 

latent space adjusted approach. We have no intention in stating that we have found 

the cure for identifying contagion effects, since there is no universal cure, and an 

estimation method is only part of the solution. Furthermore, the choice of the 

appropriate estimation methods almost always depends on the empirical situation. 

Nonetheless, we believe that with plausible alternative explanations that come from 

good theory, carefully measured covariates from longitudinal data, and a set of 

appropriate estimation models, we can effectively inform the debate about the 

contagion effects, and move forward scientifically. 
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CHAPTER 3: Sensitivity Analysis  

I. Introduction and Literature Review 

Though much progress has been made in modeling social network data, the validity of 

the network observations is still relatively a blind spot in available methods for social 

network analysis (Steglich et al., 2010; Moffitt, 2001). Most or all currently available 

statistical analysis methods assume that network observations are perfectly accurate 

and fully representative, while we know that social network data are sometimes 

unreliable and prone to error, especially network relations (Marsden, 1990; 2005). 

And this lack of validity in network observations is not just a result of simple random 

measurement errors, but often due to systematic bias that can lead to the 

misinterpretation of actors’ preferences for network selections, which have a 

substantial impact on issues related to causal inferences. As a consequence, these 

misinterpretations that are manifest in observed networks could directly decrease the 

validity of the study and limit the inference we can draw from the data, such as those 

pertaining to inferences of contagion effects. In this chapter we explore a sensitivity 

analysis framework (Rosenbaum & Rubin, 1983; Frank et al., 2013; VanderWeele, 

2011) for making inferences under the concerns of lack of validity in social network 

relations. First we will discuss the misinterpretation of actors’ preferences that are 

manifest in observed network relations, and introduce the idea of simulation-based 

sensitivity analysis through the rewiring of observed network relations; and then we 

will talk about different mechanisms for rewiring; after that we will apply our 

proposed methods to test the robustness of inferences for contagion effects and give 

specific examples; finally we will derive two sets of analytical solutions for random, 

homophily and anti-homophily based sensitivity analysis methods. 

The validity of network observations is often of concern in empirical studies, since 

observed networks are prone to error and may not represent the population of interest. 

This lack of validity is not just a result of random measurement errors, but often due 

to systematic bias that can lead to the misinterpretation of actors’ preferences of 
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network selections, which that are manifest in observed networks.  And this 

misinterpretation can occur due to various reasons:  

(1) Observation errors. While measurement errors exist in all sorts of data, the 

accuracy of observations in network relations is especially of concern (Marsden, 

1990). The most common self-reported measures of network relations are known to 

suffer from cognitive bias (Freeman et al, 1987; Feld and Carter, 2002). For example, 

Freeman & Romney (1987) show that peoples’ perception of social ties will be biased 

toward the routine, typical structure. And other studies have shown that self-reported 

measures of network relations often are biased towards self, group structure, balance, 

routine interaction etc. (Marsden, 2005). Studies by Bernard, Killworth, and Sailer 

(Killworth & Bernard, 1976, Bernard & Killworth, 1977, Bernard et al., 1981; 1982) 

showed that there are discernable differences between social ties data obtained via 

questionnaires, and behavioral records obtained via various methods including diaries, 

monitoring of radio communication, observers, or electronic monitoring. Later studies 

have found a higher (80%) agreement between network questions in surveys and 

interviews (Pitts and Spillane, 2009). However, in general, observation errors in 

network relations are often a mixture of both random measurement errors and 

systematic bias that is driven by many known or unknown mechanisms in actors’ 

preferences for network selection.  

(2) Mismatch between the frequency of interaction and functions of the network. 

Even when network observations are 100% accurate, the validity of the observations 

still depends on the functions of the network. For example in an information flow 

network, the frequency of interaction does not necessarily represent how much or how 

valuable certain information/resources are that flow through this tie, and weak ties are 

known to be more useful in terms of delivering novel information than strong ties 

(Granovetter, 1973). Furthermore, the observed frequency/importance of interaction is 

often not the same as that which actors actually perceive (Casciaro, 1998). For 

example, in the context of influence, actors may perceive more influence from those 

with whom they shared more similar interests but have less frequent interactions, 
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compared with those with whom they shared less similar interests but talk more often. 

This is because it is more likely that these actors share the same identity and find it 

easier to talk to homophilous others, and in contrast they find it more difficult and 

thus have to spend a longer time communicating with dissimilar others while actually 

conveying less information (Byrne, 1971; Mark, 1998; Carley, 1991). As a result, the 

frequency of interaction may not be the best representation of an actor’s perception of 

the importance of their alters in terms of influence.  

(3) Sampling bias. The observed networks may not represent the population of 

interest. And this can occur both on the network level and actors’ level. On a network 

level, the observed network can be seen as one realization from a set of possible 

networks that are generated by the same underlying stochastic process (Robins et al., 

2007). It is possible that the one realization we observe does not represent the actual 

underlying preferences of actors in network selection. At the actors’ level, if the actors 

in the study sample have preferences for network selection which are different to the 

population of interest, the observed network will be biased and cannot represent the 

population network of interest as well.   

Due to these various reasons, by using the observed networks in the analysis, actors’ 

actual preferences for interactions are often misinterpreted. And this misinterpretation 

will have a direct impact on issues related to causal inference, such as internal validity 

– whether the observed relationship is confounded by the unobserved mechanisms 

that drive the network selection, or external validity – whether the observed network 

best represents the population of interest. And with all these issues, analyses based on 

observed social network data are subject to unobserved bias and we should be 

cautious when drawing inferences from such data. 

The purpose of this chapter is not to propose methods that can reduce the bias or the 

errors in network observations, rather, we follow a sensitivity analysis framework and 

investigate the extent to which the validity of network relations can essentially affect 

our results or invalidate our inference. Following Frank et al. (2013), we propose that 

instead of stating that inference drawn from the study is invalid because of 
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unobserved errors/bias in network relations, one should really ask how much bias 

(and what kind) must have been in network relations to invalidate the inference. We 

focus on sensitivity analyses of network relations for several reasons:  

(1) While a lot of work has been done on sensitivity analysis dealing with unobserved 

variables (Rosenbaum & Rubin, 1982; Frank, 2000; Pan & Frank, 2004; 

VanderWeele, 2011), few have focused on social network data, especially the 

misinterpretation of selection mechanisms that are manifest in observed networks.  

(2) Sensitivity analysis of the errors/bias in network relations helps to frame external 

validity issues in social network studies. As network data usually contains the whole 

population of interest, external validity issues are rarely of concern. But as the 

observed network can also be treated as one realization from a set of possible 

networks that are generated by the same underlying stochastic process (Robins et al., 

2007), a natural question to ask is to what extent the observed network can represent 

the underlying stochastic process. So sensitivity analysis helps to frame the validity of 

network observations into an external validity issue. While the sampling bias of 

observed networks can also be translated into a sample replacement problem (Frank et 

al., 2013), social network data usually has unique characteristics like non-random 

sampling and non-independent observations, also known as network auto-correlation 

(Manski, 1993; Doreian, 1989); and this poses additional challenges for sensitivity 

analysis in social network data and calls for alternative methods that account for 

unique features of network relations.  

(3) While some forms of observation errors/bias in network relations (missing data for 

example) and their impact on network outcomes have been studied (Robins et al., 

2004; Kossinets, 2006), the impact of many other forms of errors/bias in network 

relations are rarely considered and largely unknown.  Thus we contribute to the 

literature by exploring various mechanisms that can generate observation errors in 

network relations, and their impact on outcomes in a sensitivity analysis framework. 
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II. Theoretical Framework  

i. Sensitivity analysis through rewiring networks  

The sensitivity analysis we propose is a simulation-based approach that operates 

through the rewiring of a currently observed network. Our basic model assumes that 

in an observed network, actors control their out-degrees and can rewire their ties 

based on various mechanisms given the current network, and each actor preserves 

his/her number of out-degrees as constant. In this way, we assume errors/bias in 

network relations only reside in with whom actors interact, not how many people they 

interact with. Assuming there is errors/bias in network relations, we can explore the 

magnitude of errors/bias through rewiring, and assess the extent to which errors/bias 

in network structure can bias our estimates and ultimately alter our inference. And 

more importantly, this method allows us to ground analysis in theory and to test 

specific forms of error/bias existing in network relations as represented in actors’ 

preferences of network selection. This is different from previous research in which 

errors are assumed to be random, or ties are rewired at random (e.g. the QAP test 

(Krackhardt, 1987)). Through this framework we want to contribute to the discussion 

of validity in studies of social network analysis and shift the attention to be more 

magnitude-based and theory-based, and this framework enables us to devise clear and 

testable alternative hypotheses when making such inferences, which is the key to 

making strong inference in any field of science (Platt 1964). Essentially we are asking 

(1) “what  percentage of network relations have to be rewired to invalidate current 

inference” and (2) “what forms of errors/bias must exist in network relations to 

invalidate current inference”. 11 

ii. Mechanisms for rewiring 

While there are many potential mechanisms that drive interaction between actors 

                                                             
11 In principle our proposed methods are analogous to a community detection algorithm (Girvan 
& Newman 2002) that identifies edges with high betweeness (Freeman 1977) that need to be removed 
to create separable components in the graph.  
 

https://scholar.google.com/citations?user=npKBI-oAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=rQ68pVwAAAAJ&hl=en&oi=sra
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(thus also errors in observed networks), we follow a long tradition of “structure versus 

agency” (Emirbayer and Goodwin, 1994), or as Mayhew (1980) called 

“individualistic” and “structuralist” views of the world. Structure, representing the 

social-organizational structure in which actors are embedded, limits the choices and 

opportunities available. Agency represents the capacity of actors to act freely, based 

on their own preferences and intentions. Studies have found that both can play an 

important part in shaping humans’ interactions, sometimes reinforcing each other 

(Kossinets & Watts, 2009). In our proposed methods we include some widely studied 

factors from both views of the world. However, for the purpose of sensitivity analysis 

we also want to separate each mechanism and explore how our inferences are 

sensitive to the specific form of errors/bias  resulting from each mechanism. Thus in 

our sensitivity analysis we only rewire an observed network based on one mechanism 

at a time. Next, we will introduce six mechanisms that can possibly bias our network 

observations, and we categorize them into either agency or structure. Specifically for 

Agency we have: random, homophily, anti-homophily; for Structure we have: 

reciprocity, transitivity, and preferential attachment. 

For Agency rewiring, first we have random rewiring. In this case, we assume there are 

random measurement errors in our observed network. As is similar to the QAP test 

(Krackhardt, 1987) we rewire network ties randomly among nodes, but we preserve 

nodes’ out-degree, and the purpose is not to simulate the distribution of estimates in a 

random network, but to assess the extent to which our inference is robust to random 

errors in networks. Each time we rewire a certain percentage of observed ties 

randomly, and re-estimate our model of interest. We repeat this many times to get an 

average estimate, and compare with a pre-set threshold for inference. For example, if 

we assume 30% of our network observations are due to random error, we would 

randomly rewire 30% of observed ties and compare our average estimates with a pre-

set threshold to decide if our inference is altered. 

Next we have homophily rewiring. Homophily, or “birds of a feather flock together”, 

refers to a pervasive phenomenon that people tend to seek similar others for 
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interaction (McPherson et al., 2001). It is an important network-generating 

mechanism that sometimes produces clustered networks or segregation (Schelling, 

1971). Here particularly we focus on the agency of actors and refer to this type of 

behavior as a result of “choice homophily” as noted in Kossinets & Watts (2009), 

which attribute the choice of similar other as results of individual, psychological 

preferences. This is different from “induced homophily” where the choice of similar 

others is a consequence of the homogeneity of structural opportunities for interaction, 

as in neighborhoods, schools, workplaces and friendship circles (Feld, 1981). Thus in 

our model, as actors rewire their ties, they tend to choose other actors who are most 

similar to themselves without being subject to structural constraints. And here, 

homophily can be broadly defined to be based on various attributes available in the 

observed data. For example, in a study of contagion effects examining best friends’ 

smoking behavior on actors’ smoking behavior, if we suspect that networks of interest 

are more homophilous based on smoking behavior than observed, we can rewire a 

certain percentage of observed ties based on homophily. That is, we rewire a certain 

percentage of observed ties to connect actors with those of most similar smoking 

behavior who are not previously connected, re-estimate our model and compare 

average estimates with a pre-set threshold to decide if our inference is altered.   

For agency we also have anti-homophily rewiring. Given the importance of 

homophily, it would make sense to consider the opposite of homophily for both 

practical and theoretical reasons. Practically, given the predominant evidence that 

homophily exists in networks, a natural question to ask is “what if the observed 

network is too homophilous?”, or how to account for errors/bias that occurs at the 

opposite direction to homophily. Theoretically, anti-homophily, or “heterophily” in a 

broader sense, reflects the tendency of people seeking to interact with dissimilar or 

diverse others. There is agency in heterophily as heterophilous ties are mostly formed 

voluntarily (Rivera et al., 2010), and they are found to be more and more common 

over time in situations such as team building and scientific collaboration (Moody, 

2004; Page, 2007). Thus it would make sense to include anti-homophily as an 
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alternative network-generating mechanism and possible source of bias. In our model, 

if we need to assess how our inference is robust to “anti-homophily”, we would 

rewire a certain percentage of observed ties to connect actors with the most dissimilar 

attributes of concern, then re-estimate our model and compare average estimates with 

a pre-set threshold to decide if our inference is altered. 

Next we turn to a set of structural mechanisms that account for errors/bias in 

networks. The first is transitivity, or “triadic closure”, which refers to the phenomenon 

that people tend to become friends with the friends of their friends (Rivera et al., 

2010). This is found to be true across various social settings such as corporate board 

members (Davis et al., 2003), Hollywood movie actors (Watts, 1999), Broadway 

musical artists (Uzzi & Spiro, 2005), inventors (Fleming et al., 2007), scientists 

(Newman, 2001b) etc. While there are various motivations for transitivity (increased 

encounter opportunities (Granovetter, 1973), decreased risk and uncertainty (Burt & 

Knez, 1995), it has important implications for network structure. For example, Jin, 

Girvan & Newman (2001) found that with higher probability to meet if a pair has 

more mutual friends, the resulting network exhibits high levels of clustering and 

strong community structure.   

Thus we include transitivity as an important source of bias, and rewire networks based 

on shared numbers of friends, and we update the graph sequentially. For example, if 

we were to rewire certain of observed ties based on transitivity, we will create an 

order list for the ties to be rewired, then we rewire the first tie to the alter node who is 

not connected to the ego in the current graph but shares most common friends12 with 

ego. Then we update the graph and recalculate the network measures (the number of 

common friends shared by each pair in the updated graph), and do the same thing for 

the second tie to be rewired, so on and so forth. In this way, the order of movement 

                                                             
12 Our network is directed, but we define common friends as in a undirected graph to capture various 
definitions of transitivity or triads. For details see Davis and Leinhardt (1972) on triad censuses, or 
Wasserman and Faust (1994, p 243) , Robins et al (2007) 
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matters since actors are more Markovian driven, and at the same time it explores the 

whole space in terms of simulation results. As an illustration, consider Fig 14a as our 

original network, which is a random network with N = 50 and density = 0.1. Fig 14b 

is one example of the resulting network if we rewire 100% of the ties based on 

transitivity, which contains many more triads and exhibits a community structure. 

Reciprocity represents bi-directional connections (if i selects j, j will also select i) in a 

directed network. It has been found in friendship networks among students in various 

grade levels (Runger & Wasserman, 1980; Mollica et al., 2003). Possible reasons for 

the occurrence of reciprocity include people tending to like others who like them 

(Newcomb, 1956; Backman & Secord, 1959; Sprecher, 1998; Montoya & Insko, 

2008), and reciprocation relative to a first advance of friendship decreases the chance 

of being rebuffed (Goffman, 1963). Reciprocity also has important implications for 

network structure such as stabilizing networks over time (Rivera et al., 2010). In our 

model, we include reciprocity as an alternative mechanism for rewiring, following 

similar sequential steps as in the transitivity case, except that actors will rewire their 

out-going ties to create more reciprocated ties. Fig 14c is one example of the network 

if we rewire 100% of the ties of the network in Fig 14a based on reciprocity, thus 

creating many more reciprocated relations. 

Finally, we consider preferential attachment. Preferential attachment states that Social 

connections tend to accrue to those who already have them, also known as “rich get 

richer” or the “Matthew Effect” (Merton, 1968), and the main reason driving this 

mechanism could be that people use others’ degree as a proxy for their own fitness, 

status, power etc. Empirical and simulation results suggest that preferential 

attachment can generate a core-periphery structure or power-law degree distribution 

in networks (Barabási & Albert, 1999; Newman, 2001), which is found in many 

settings such as online friendship networks, scientific collaborations, sexual contact 

networks, etc. (Golder et al., 2006; Moody, 2004; Newman, 2001; Liljeros et al., 

2001). For the reasons above we include preferential attachment as a possible 

mechanism for rewiring, that accounts for errors/bias in networks. The steps we use to 
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rewire are the same as for previous mechanisms, except that actors will now rewire to 

others who possess a higher in-degree for the current graph.  Fig 14d is one example 

of the network if we rewire 100% of the ties of the network in Fig 14a based on 

preferential attachment, thus exhibiting a clear core-periphery structure (Borgatti & 

Everett, 2000).13 

 

 

 

                                 A                                                                       B 

Figure 14: Structural rewiring example 

 

 

 

 

 

 

 

                                                             
13 Note that for random and homophily based rewiring, the maximum percentage of network relations 
that can be rewired is constrained by the density of the network, since observed ties must be rewired 
to different pairs. However, for structure-based rewiring there are no such constraints, and observed 
ties do not necessarily have to be rewired to different pairs, as actors can choose whichever pairs  
maximize their utility. 
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Figure 14 (cont’d) 
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III. Applying Sensitivity Analysis: Examples on Contagion Effects 

After establishing our sensitivity analysis method and various rewiring mechanisms, 

in the next section we give some specific examples of how it can be applied to 

empirical data. Note that though the sensitivity analysis method we propose could 

potentially be applied to many different inferences using social network data, we are 

particularly interested in making inference on contagion effects for several reasons: 

(1) Contagion effects, which are defined as the propensity of an individual to behave 

in some way varying with the prevalence of that behavior in the network neighbors of 

the individual (Manski, 1993), have received lots of attention and have been widely 

studied (Kandel, 1978; Marsden and Friedkin, 1993; Doreian, 2001; An, 2011) as they 

have potential implications on health behavior (e.g. obesity and smoking), 

information diffusion, and teacher practice changes, among others (Christakis et al., 

2007; 2008; Valente 1995, 1996; KA Frank et al., 2004). (2) There are many 

difficulties in identifying contagion effects, as they are often confounded with other 
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unobserved variables (individual attributes, social-environmental factors etc), 

especially homophily in the selection process (Aral, 2009; Shalizi, 2011). Though 

many sophisticated statistical models have been developed to identify contagion 

effects (Christakis et al., 2007; Steglich, 2010; An, 2011), there is still much debate 

about the validity of these methods (Vanderweele et al., 2013; Lyon, 2013; Frank & 

Xu, 2016). Sensitivity analysis has been proposed as an alternative to deal with the 

impact of unobserved variables (Rosenbaum & Rubin, 1982; Frank, 2000, 2004; 

VanderWeele, 2011). However, the validity of network relations has largely been 

neglected from the inference.  In this context our proposed methods can contribute to 

questions such as how inference about contagion effects are robust to errors/bias  in 

networks generated by various possible mechanisms (homophily in the selection 

process for example). (3) Since outcomes and identification of contagion effects are 

critically contingent upon the network structure or to whom individuals are exposed 

(Friedkin, 1999), it is vital to investigate how inference of contagion effects are robust 

to alternatives or possible errors in network structure.14  

Next, we use a simulated dataset to illustrate how to apply our proposed methods to 

empirical data to test the robustness of inference about contagion effects to various 

errors/bias in networks. First, we estimate a social influence model as usual, and 

acquire model estimates. Second, we calculate thresholds to alter our inference for 

each parameter, using the sensitivity analysis method in Frank et al. (2013). Third, we 

assume there are errors in observed networks, and we then rewire observed networks 

based on various mechanisms (random, homophily, anti-homophily, transitivity, 

reciprocity, preferential attachment respectively) repeatedly and re-estimate the 

influence model to get new estimates for each parameter, which are used to compare 

with a threshold set in the second step to decide what percentage of networks (and 

under what mechanisms) need to be rewired to invalidate our inference. 

                                                             
14 This in principle is very similar to the case in Frank (2000) where he talked about the attenuation 
bias due to measurement errors in confounding variables. Here we discuss how measurement errors in 
networks (and as a result in exposure terms) can attenuate our inference. 
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Here we provided an example. We construct a simulated network dataset where N = 

50, T = 2, density = 0.2. The influence process follows 

1 1
0 1 1 2

1

,ijt jt
it it it

ijt

Z Y
Y Y e

Z
β β β − −

−
−

= + + +∑
∑

                                                                  (27)             

where Y represents the behavioral outcome of interest, Z is a binary variable 

representing a network relationship, and eit is an error term following N(0,0.22). To 

identify contagion effects we estimate an influence model as in (1); estimated 

parameters are in Table 3 (CorPrior,Exposure = 0.07 in this example). Furthermore, we 

calculate the thresholds to alter the inference for each parameter, following Frank et 

al. (2013).  

To explore how our estimates are robust to various errors in the observed network, we 

then rewire a different percentage of existing ties (varying from 10 to 90 percent) 

based on  

(1) random selection;  

(2) homophily, that is, actors will rewire to unestablished ties with the smallest value 

of |Yit-1-Yjt-1|;15  

(3) anti-homophily, that is, actors will rewire to unestablished ties with the largest 

value of |Yit-1-Yjt-1|;  

(4) transitivity, wherein actors will rewire to others whom they are not previously 

connected to but share most common friends with;  

(5) reciprocity, where actors will rewire to others with whom connections are mutual;  

(6) Preferential attachment. Actors will rewire to others with highest in-degree. Note 

that in each case existing ties to be rewired are selected randomly and actors preserve 

their out-degree. For each configuration we simulate 500 times and re-estimate model 

(27) after each simulation, and for each simulation we record the estimates for β1, β2 

and correlation between the prior term and the network exposure term. And we 

                                                             
15 Note that in empirical data, we can incorporate variables other than Y for rewiring based on 
homophily. 
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compare the mean estimates with the pre-set threshold to determine if our inference 

should be invalidated. 

 

 Estimates Standard 

Error 

t-value Pr 

1̂β  0.41834     0.07563    5.532 1.37e-06 *** 

2β̂  0.83638     0.28675    2.917   0.00541 ** 

Table 3: Influence model example 

 

Results are shown in Fig 15. Figs 15A and 15B shows the average estimates of prior 

and network exposure vs % of ties rewired respectively. Black lines in each graph 

represent the threshold to alter the inference, which is calculated as in Frank et al. 

(2013). The graph shows estimates of the prior that are generally not influenced by 

various mechanisms of rewiring, except when we rewire by homophily or anti-

homophily. Nevertheless, estimates of the prior are all significant and the inference is 

robust to all mechanisms of rewiring.  

 

 

 

 

 

 

 

 

 

 



 

69 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Impact of rewiring on the estimates 
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Figure 15 (cont’d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Estimates of network exposure effects exhibit more interesting patterns, as expected. 

Fig 15B shows that inference about contagion effects is least robust to anti-homophily 

rewiring, and inference is invalidated even if only 10% of ties are rewired. For other 

types of rewiring, inference about contagion effects are generally more robust, 

varying from 20% for random rewiring and 30% for rewiring based on homophily, in 

order to invalidate the inference, with effects of structural types of rewiring 

(transitivity, reciprocity, preferential attachment) in between. Note that a calculation 

from Frank et al. (2013) indicates that 31% of the estimates of contagion effects have 

to be due to bias, in order to invalidate the inference. Thus in this example contagion 

effects are less robust to errors/bias in networks than replacing cases with null effects.  

Fig 15C represents the mean correlation between prior and network exposure vs % of 

ties rewired. Correlation is greatly impacted by homophily-based rewiring (positive 

for homophily and negative for anti-homophily) but not so much by random rewiring 

or structural rewiring. 



 

71 
 

IV. Analytic Solutions 

While these simulation-based sensitivity analysis methods are intuitive and easy to 

implement, they still have several limitations: 1. Sometimes these simulation-based 

methods are not time efficient, and it could take a long time to run the full sets of 

simulations, especially  when the network size is large or when there are many 

actors’ characteristics/variables of interest; 2. to completely understand the 

behavior/performance of these sensitivity analysis methods under various conditions, 

it would be helpful if we could derive some sort of closed form/analytic solutions, 

such as solutions that can be represented as functions of observed networks and 

correlations between variables. 

Thus in this section, we develop analytical solutions for our sensitivity analysis 

methods based on three rewiring mechanisms, namely random rewiring, homophily 

rewiring and anti-homophily rewiring.  

For simplicity we assume there are only three variables in our influence model: 

dependent variable Y,  a prior term Z and a network exposure term X (although it is 

possible to extend this analysis to models with more covariates). And the key 

relationship of interest is the relationship between network exposure X and 

dependent variable Y. 

To determine the impact of different rewiring mechanisms on the inferences about 

network influence, we follow a partial correlation framework as in Frank (2000). 

The robustness of inference is essentially decided by the partial correlation between 

the dependent variable Y and the network exposure term X, conditional on other 

covariates, such as |xy zr , as shown in Fig 16 below. And by rewiring the network 

relations we are only recreating a new exposure term X without changing the 

correlation between the dependent variable Y and the prior term Z, given by yzr . As a 

result, we only need to consider how rewiring changes the correlation xyr  between 

the network exposure and the dependent variable, and xzr , the correlation between 
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network exposure and prior term (or other covariates), and how these new 

correlations generate the new partial correlation *
|xy zr . 

In this section, we will derive two sets of analytical solutions. In the first set, for (1-

p)*100% of ties rewired we assume (1-p)*100% of nodes rewire all of their ties. In 

the second set, for (1-p)*100% of ties rewired we assume ties rewired are distributed 

evenly across all nodes. Note that the first set is more intuitive and the second set is 

more technically challenging, but the operations of our simulations are in principle 

more similar to the second set of analytical solutions. And as we will show later, the 

second set of analytical solutions  will have a better fit to raw correlations xyr , xzr  

after rewiring, but in terms of goodness of fit to partial correlations between network 

exposure and the dependent variable |xy zr (which is the sufficient statistic determining 

the robustness of inference), both sets of analytical solutions perform equally well. 

Finally note that in this memo we have not derived analytical solutions for structural 

rewiring such as transitivity rewiring, preferential attachment rewiring, or reciprocity 

rewiring. This is because in these mechanisms we need to know the full network and 

exact distributions of the variables of interest (rather than their correlations) to 

calculate the new partial correlations. This topic we leave for future work. 

 

 

 

 

 

Figure 16: Analytical solution framework 
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The rest of the section is organized as follows: first we will derive one set of 

analytical solutions in which we assume a certain percentage of actors rewire all 

their ties while others do not. Next we will derive another set of analytical solutions 

in which we assume ties rewired on average are evenly distributed across all actors. 

Finally we will give some simulated examples to examine how well the two derived 

analytical solutions fit the actual simulation results. 

i. First set of analytical solutions 

In the first set of analytical solutions we assume only that certain actors in the 

network have errors in their networks while other actors’ network are perfectly 

measured. For example, in a network with evenly distributed degrees, if there are (1-

p)100% of the observed ties that need to be rewired due to errors/biases, we assume  

there is zero accuracy in observed networks for (1-p)100% of the actors, all of whom 

have to rewire all their networks. And for the remaining p*100% actors, their 

networks are perfectly measured and are 100% accurate. In empirical cases this is 

less likely to happen, unless some actors identify the wrong primary social group, 

misread the network question, or deliberately sabotage the study by reporting all 

their network relations wrongly. However, for the derivation of an analytical 

solution, this is more intuitive and easier to derive. Next we derive analytical 

solutions for random, homophily and anti-homophily rewiring under this 

assumption. 

For random rewiring, Assuming that we randomly rewire (1-p)% of ties in the 

observed network, the variance of network exposure wll not change, and the new 

raw correlation between the network exposure X and a dependent variable Y after 

rewiring -- *
xyr  would become (assume all variables are grand-mean-centered) 

*
0

1*
(1 ) (1 )*0

var( ) var( )xy xy xy

p xy
nr p H pr p pr
x y

= + − = + − =
∑

                               (28) 

Here, H0 is the hypothesis of correlation for the rewired ties, which in this case is the 



 

74 
 

new correlation of zero, for random rewiring.   

For a similar reason the new raw correlation between the network exposure X and 

the prior term Z after rewiring -- *
xzr  would become  

*
0

1*
(1 ) (1 )*0

var( ) var( )xz xz xz

p xz
nr p H pr p pr
x z

= + − = + − =
∑

                                 (29) 

After deriving the two new raw correlations after rewiring, we now derive the key 

partial correlation  

*
|xy zr  after rewiring (Z represents the prior here, which can also be other covariates), 

having the form: 
* *

*
| *2 2 2 2 21 1 1 1

xy xz yz xy xz yz
xy z

xz yz xz yz

r r r pr pr r
r

r r p r r

− −
= =

− − − −
                                                          (30) 

As this shows, we can now represent the new partial correlation in terms of p (the 

percentage of ties retained) and the original correlations in the observed data.  

To understand the robustness of inference we need to know one more thing – the 

threshold of inference.  In this case the threshold of partial correlation |xy zr  -- #r , can 

be calculated as 

#
#

#2 .
tr

t res df
=

+
, 

where t# is the critical value of t needed to invalidate inference, and res.df represents 

the residual degrees of freedom. 

Thus to invalidate the observed inference we need to randomly rewire (1-p)% of ties 

in order to get 

* #
| 2 2 21 1

xy xz yz
xy z

xz yz

pr pr r
r r

p r r

−
= =

− −
                                                                              (31) 

To write p as function of other variables we have 

# 2

#2 2 2 2

1

(1 ) ( )
zy

zx zy xy yz xz

r r
p

r r r r r r

−
=

− + −
                                                                      (32) 
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For homophily-rewiring, Next we derive an analytical solution for homophily 

rewiring. Assume that homophily is based on the prior (this can also extend to 

homophily based on a prior and other covariates) and for ties, that rewired people 

will rewire to others who hold exactly the same behavior. The underlying assumption 

here is that the network is big and diverse enough so that everyone can find others 

who show exactly the same behavior). 

Then for a large network where everyone can find perfectly homophilous others 

based on the prior, to rewire (1-p)*100% of ties, we assume (1-p)*100% of nodes 

rewire all their ties (so that on average (1-p)*100% of the total ties are rewired), and 

the new raw correlation between network exposure X and the prior term Z after 

rewiring -- *
xzr  becomes 

(1 )(1 )

* 1 11 1

0

11 ' )( ' )
(1 )

var( ) var( ) var( ) var( )
(1 )* (1 )*1

np n pnp n p

xz

xz xz

p pxz x zxz x z
np n pnr

x z x z
pr p H pr p

−− −
++

−= =

= + − = + −

∑ ∑∑ ∑
                                    (33) 

Here, x’ represents the new network exposure after rewiring, and for the (1-p)*100% 

of nodes who rewire to perfectly homophilous others based on the prior, their new 

correlation between network exposure and prior term, as stated in H0, should be 1.  

For a similar reason, the new raw correlation between the network exposure X and 

the dependent variable Y after rewiring -- *
xyr  would become 

(1 )(1 )

* 1 11 1

11 )( ' )
(1 ) (1 )*

var( ) var( ) var( ) var( )

np n pnp n p

xy xy yz

p pxy zyxy x y
np n pnr pr p r

x y x y

−− −
++

−= = = + −
∑ ∑∑ ∑

        (34) 

Note that here for the (1-p)*100% of nodes who rewire all their ties to perfectly 

homophilous others, their network exposure becomes exactly the same as in their 

prior term. As a result, for these people, the new correlation between network 

exposure X and the dependent variable Y after rewiring becomes the correlation 

between the prior term Z and the dependent variable Y -- yzr . 

After deriving the two new raw correlations after rewiring, we now derive the key 
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partial correlation *
|xy zr after rewiring, which has the form: 

* *
*

| *2 2 2 2

( (1 )* ) ( (1 ))*

1 1 1 ( (1 )) 1
xy xz yz xy yz xz yz

xy z

xz yz xz yz

r r r pr p r pr p r
r

r r pr p r

− + − − + −
= =

− − − + − −
                         (35) 

As this shows, we can now represent the new partial correlation in terms of p (the 

percentage of ties retained) and the original correlations in the observed data.  

Finally, as before the threshold for partial correlation |xy zr  -- #r , can be calculated as 

#
#

#2 .
tr

t res df
=

+
, 

where t# is the  critical value of t to invalidate inference, and res.df represents the 

residual degrees of freedom. 

Thus to invalidate the observed inference, we need to randomly rewire (1-p)% of ties 

in order to get 

* #
| 2 2

( (1 )* ) ( (1 ))*

1 ( (1 )) 1
xy yz xz yz

xy z

xz yz

pr p r pr p r
r r

pr p r

+ − − + −
= =

− + − −
                                                (36) 

To write p as function of other variables we have 

2 #2

2 2 2 #2 2 #2 2 #2 #2 2 #2 #2

2( 1)( 1)
( ) 2 2

xz yz

xy xz yz xz yz xz xz yz xz yz

r r r
p

r r r r r r r r r r r r r r r r
− −

=
− − + + − − +

                 (37)
 

For anti-homophily rewiring, Next we derive an analytical solution for anti-

homophily rewiring. Assume that anti-homophily is based on the prior (this can also 

be extended to other covariates), and for ties, that rewired people will rewire to 

others who hold the most dissimilar behavior/belief.  

As before, to rewire (1-p)*100% of ties, we assume that (1-p)*100% of nodes rewire 

all their ties (so that on average (1-p)*100% of the total ties are rewired), and the 

new raw correlation between network exposure X and the prior term Z, after 

rewiring -- *
xzr  becomes  
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                                                                                                                         (38) 

Here, x’ represents the new network exposure after rewiring, and for the (1-p)*100% 

of nodes who rewire to the most dissimilar others based on the prior, their new 

correlation between network exposure and the prior term, as stated in H0, should 

approximately be -1. Note that for each different distribution of the prior term, the 

correlation *
xzr after rewiring will be different. So we pick the most intuitive one here. 

For example, if the prior is a binary variable representing whether actors smoke or 

not, and when all actors connect to others who have different behavior to themselves, 

the correlation between network exposure and the prior would be -1.

 

 

For a similar reason, the new raw correlation between network exposure X and the 

dependent variable Y after rewiring -- *
xyr  would become 

(1 )(1 )

* 1 11 1

11 ( ) '( ' ')
(1 ) (1 )

var( ) var( ) var( ) var( )

np n pnp n p

xy xy yz

p pxy z yxy x y
np n pnr pr p r

x y x y

−− −
+ −+

−= = = − −
∑ ∑∑ ∑

     (39) 

Note that here for the (1-p)*100% of nodes who rewire all their ties to the most 

dissimilar others, their new network exposure term and their prior term have a 

perfect negative correlation of -1. As a result, for these people, the new correlation 

between network exposure X and the dependent variable Y after rewiring becomes 

yzr− , the correlation between the prior term Z and the dependent variable Y, with a 

negative sign. 

After deriving the two new raw correlations after rewiring we now derive the key 

partial correlation *
|xy zr after rewiring, which has the form: 

*
| 2 2

( (1 ) ) ( (1 ))*

1 ( (1 )) 1
xy yz xz yz

xy z

xz yz

pr p r pr p r
r

pr p r

− − − − −
=

− − − −
                                                        (40) 

As this shows, we can now represents the new partial correlation in terms of p (the 
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percentage of ties retained) and the original correlations in the observed data.  

Finally, as before the threshold for partial correlation |xy zr  -- #r , can be calculated as 

#
#

#2 .
tr

t res df
=

+
, 

where t# is the critical value of t to invalidate inference and res.df represents the 

residual degrees of freedom. 

Thus to invalidate the observed inference, we need to randomly rewire (1-p)% of ties 

in order to get 

* #
| 2 2

( (1 )* ) ( (1 ))*

1 ( (1 )) 1
xy yz xz yz

xy z

xz yz

pr p r pr p r
r r

pr p r

+ − − + −
= =

− + − −
                                              (41) 

To write p as a function of other variables we have 

2 #2

2 2 2 #2 2 #2 2 #2 #2 2 #2 #2

2( 1)( 1)
( ) 2 2

xz yz

xy xz yz xz yz xz xz yz xz yz

r r r
p

r r r r r r r r r r r r r r r r
− + −

=
− − + − + − +

                   (42) 

 

ii. Second set of analytical solutions  

In the previous derivation we reasoned as if we were rewiring all ties for (1-p)*100% 

of the nodes. However, in the actual simulation we randomly selected (1-p)100% of 

all observed ties, and rewired them. As a result, on average we are essentially 

rewiring (1-p)100% of ties evenly across all nodes. Here we give a simulation 

example where we randomly rewire 30% of the total ties from a random network. 

Figure 17 below shows the distribution of the percentage of the ties rewired on an 

individual level. As this shows, the percentage of ties rewired for each individual 

varies from 10% to 80%, but on average each node has rewired 30% of its original 

ties. Compared with the assumptions in the first set of analytical solutions, this 

assumption is more reasonable, as network measurements for each actor can be 

imperfect for various reasons, such as bias towards self, group structure, balance, 

routine interaction etc. (Marsden, 2005). So in this section, we derive a new set of 
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analytical solutions by assuming that rewiring occurs evenly for each node. This 

approach would have more similarity to the empirical situation and the actual 

simulation, but is more difficult to derive. Here we provide some intuition for this 

scenario. Note that here we only derive an analytical solution for homophily rewiring 

and anti-homophily rewiring, since in random rewiring the result will not be affected 

much by whichever way we randomly rewire the ties, as long as we simulate 

sufficiently often.  

 

 

 

 

 

 

 

 

Figure 17: Distribution of percent of the ties rewired 

For homophily rewiring, as before let the network exposure term be X, let the prior 

term be Z, let the outcome be Y, and let the average out-degree for each node be n. If 

we rewire (1-p)*100% of the ties to perfectly homophilous others, then the new 

exposure term for an actor i would become 

n

ZZpn
X

np

j
ji ∑

=

+−
= 1

)1(
'  , 

where Zj represents the behavior of actor i’s original network neighbors, Zi represents 
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the behavior of actor i’s new network neighbors (who hold exactly the same behavior 

as actor i). 

Since 
n

ZVar
n

Z
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n

)()()( 1 ==
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n
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ZVarrXsdZsdZXCov )()()(),( == .                                                               (43) 

As a result, the new correlation between network exposure and the prior, after 

rewiring becomes 
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Similarly, the new correlation between network exposure and the outcome after 

rewiring becomes   
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Finally, as before the threshold of partial correlation |xy zr  -- #r , can be calculated to 

be 

#
#

#2 .
tr

t res df
=

+
, 

where t# is the critical value of t to invalidate inference, and res.df represents the 

residual degrees of freedom. 

Thus to invalidate the observed inference we need to randomly rewire 100(1-p)% of 

ties in order to get 

* *
* #

| |* 2 21 1
xy xz yz

xy z xy z

xz yz

r r r
r r

r r

−
= =

− −
                                                                             (46) 

As we can see, we can now represent the new partial correlation in terms of p (the 

percentage of ties retained), the original correlations in the observed data, and the 

average out-degree n. We can also write p as a function of other variables, but the 

formula is too complicated, so we do not provide it here.  
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For the anti-homophily rewiring we follow the same setup and let network exposure 

be X, the prior term be Z, the outcome be Y, and the average out-degree for each 

node  be n. If we rewire (1-p)*100% of the ties of the nodes to the most dissimilar 

others, then assuming Z is centered at 0, which only affects the value of the new 

network exposure term X but not the correlation we are interested in, the new 

exposure term for actor i would become 
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As a result, after rewiring the new correlation between network exposure and the 

prior becomes 
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Similarly, after rewiring, the new correlation between network exposure and the 
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outcome becomes 
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Finally, as before the threshold for partial correlation |xy zr  -- #r , can be calculated to 

be 

#
#

#2 .
tr

t res df
=

+
, 

where t# is the critical value of t to invalidate inference, and res.df represents the 

residual degrees of freedom. 

Thus to invalidate the observed inference we need to randomly rewire 100(1-p)% of 

ties in order to get 
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                                                                             (50) 

As we can see we can now represent the new partial correlation in terms of p (the 

percentage of ties retained), the original correlations in the observed data, and the 

average out-degree n. 

We can also write p as a function of other variables, but the formula is too 
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complicated, so we do not provide it here. 

iii. Validation 

In this section we provide three simulated examples to examine how well our 

analytical solutions fit the actual simulation results.  

In each example we construct a simulated network dataset where N = 100, T = 2, and 

the density = 0.1. The influence process follows 

1 1
0 1 1 2

1

,ijt jt
it it it

ijt

Z Y
Y Y e

Z
β β β − −

−
−

= + + +∑
∑

                                                                  (51) 

where Y represents the behavioral outcome of interest, Z is a binary variable 

representing a network relationship, and eit is an error term following N(0,0.22). In the 

three simulated examples, we fix the correlation ryz between the prior and the 

dependent variable to be ~ 0.6, the correlation rxz between the prior and the network 

exposure to be 0.1 ~ 0.2, but vary the correlation rxy between network exposure and 

the dependent variable to be > 0.4 (strong influence/inference), 0.3 (moderate 

influence/inference) and < 0.2 (weak influence/inference). 

To explore how our estimates are robust to various errors in the observed network 

we then rewire a different percentage of existing ties (varying from 10 to 90 percent) 

based on (1) random selection; (2) homophily, that is, actors will rewire to 

unestablished ties with the smallest value of |Yit-1-Yjt-1|; or (3) anti-homophily, that 

is, actors will rewire to unestablished ties with the largest value of |Yit-1-Yjt-1|. 

In each configuration, we simulate 1000 times and calculate the mean of (1) the new 

raw correlation rxz between the prior and the network exposure after rewiring; (2) the 

new raw correlation rxy between network exposure and the dependent variable after 

rewiring; and (3) the partial correlation rxy|z between network exposure and the 

dependent variable after rewiring. We then compare the simulation results with the 

two sets of analytical solutions below. 



 

85 
 

Example 1 is a case when there is strong influence/inference. rxy > 0.4. Random 

rewiring results are shown in figure 18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Strong influence - random rewiring example  

The graphs from left to right respectively show (1) raw correlations rxy between 

network exposure and the dependent variable after rewiring; (2) raw correlations rxz 

between the prior and network exposure after rewiring; and (3) partial correlations 

rxy|z between network exposure and the dependent variable after rewiring. The X axis 

shows the percentage of ties rewired. The Y axis shows the values of correlation. 

Blue dots are the results from actual simulations (each point is a result of 1000 
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simulations), the green line is the result from the first set of the analytical solutions, 

and the red line is the result from the second set of analytical solutions. The black 

line represents the threshold to change the inference. The same description applies to 

all the graphs set out below. Homophily rewiring results are shown in figure 19, 

where anti-homophily results are shown in figure 20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Strong influence - homophily rewiring example 
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Figure 20: Strong influence – anti-homophily rewiring example 

 

Example 2 is a case when there is moderate influence/inference, rxy ≈ 0.3. Same as 

before random-rewiring results are shown in figure 21, homophily rewiring results 

are shown in figure 22, anti-homophily rewiring results are shown in figure 23. 
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Figure 21: Moderate influence – random rewiring example 
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Figure 22: Moderate influence – homophily rewiring example 
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Figure 23: Moderate influence – anti-homophily rewiring example 

 

Example 3 is a case when we have weak influence/inference, rxy  < 0.2. Same as 

before random-rewiring results are shown in figure 24, homophily rewiring results 

are shown in figure 25, anti-homophily rewiring results are shown in figure 26. 
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Figure 24: Weak influence – random rewiring example 
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Figure 25: Weak influence – homophily rewiring example 
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Figure 26: Weak influence – anti-homophily rewiring example 

As the three examples show, the first set of analytical solutions (assuming that (1-

p)100% actors rewire all their ties) do not fit well to the actual raw correlations rxy 

and rxz after rewiring, but the second set of analytical solutions (assuming (1-p)100% 

ties are rewired evenly across all nodes) fit quite well to the raw correlations rxy and 

rxz from the simulations.  

However, in terms of determining the robustness of inference, both sets of analytical 

solutions are equally useful and fit very well with the partial correlation rxy|z 
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calculated from the simulation, except for anti-homophily rewiring, where the 

analytical solution overestimates the partial correlation to some extent. One possible 

reason could be that for the anti-homophily rewiring, we assume the new correlation 

rxz between network exposure and prior after rewiring is -1. But the magnitude of the 

actual correlation is usually smaller than 1, depending on the distribution of the prior 

term. As a result, our analytical solutions for anti-homophily rewiring are likely to 

provide an upper bound for the actual partial correlation of interest. In the Figure S2 

in the Appendix, we give another simulation example where the prior term is a 

binary variable, so that the new correlation between network exposure and the prior 

after rewiring should be -1. As Figure S2 shows, in this case most of the bias is 

eliminated, and the analytical solutions fit very well with the simulation results.   

Finally, note that in the homophily-rewiring, we assume that actors can rewire to 

others who hold exactly the same behavior. This generally requires a large network 

where everyone can find perfectly homophilous others. It should not be surprising 

that the fit between the analytical solution and actual simulation would be worse 

with a smaller size of the network, or higher density of the ties, in which the actors 

are forced to talk to others who are different from themselves. And indeed, examples 

(Figures S3 and S4) in the Appendix show a worse fit between the analytical solution 

and homophily rewiring when we reduce the network size or increase the density of 

the network. 

 

V. Discussion and Conclusion 

Concerns for the validity of network observations are common, yet less studied in 

social network analysis. The lack of validity in network observations is not just a 

result of simple random measurement errors, but is often due to systematic bias that 

can lead to misinterpretation of actors’ preferences in network selection. And they 

can affect how we draw inferences from our empirical studies. This chapter applies a 
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set of simulation based sensitivity analysis methods, that can test the robustness of 

inferences made in social network analysis, to six forms of selection mechanisms 

that can cause errors/bias in networks, namely random, homophily, anti-homophily, 

transitivity, reciprocity and preferential attachment. Specifically, we show how these 

approaches are useful in testing the robustness of inferences for contagion effects. 

Besides, we have also derived two sets of analytical solutions for sensitivity analysis 

methods that can account for selection mechanisms based on random, homophily 

and anti-homophily. Examples show that the analytical solutions generally fit well to 

the simulation results, under reasonable assumptions.  

The simulation-based sensitivity analysis methods developed in this Chapter can be 

easily adapted and applied to many different forms of network analysis, such as a 

one-mode selection model (e.g. P2, ERGM), bipartite graph analysis and models that 

deal with co-evolution between behavior and networks (SIENA). Nevertheless, our 

focus in this chapter is on the robustness of inference in influence models. Our 

sensitivity analysis methods essentially re-construct the network exposure terms by 

rewiring the observed interaction matrix W, and different rewiring mechanisms have 

distinct implications for the network structure and the distribution of the network 

exposure term, as follows.  

(1) Different agency rewiring (random, homophily and anti-homophily) can create 

distinct distributions of network exposure. For example random rewiring can create a 

network exposure that is close to the overall mean of the actor’s prior belief/behavior 

distribution; homophily rewiring (in the extreme) can create a network exposure that 

is exactly the same as the actor’s prior belief/behavior distribution; and anti-

homophily rewiring often creates a network exposure with a polarized bimodal 

distribution, as actors seek most dissimilar others in this case, and their network 

exposure will be clustered around those with most distinct behaviors/beliefs.  

(2) Structural rewiring (transitivity, reciprocity, and preferential attachment) can 
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create distinct network structures. For example, if observed ties are completely 

rewired based on transitivity, we would see a network with a strong community 

feature and local clustering; if observed ties are completely rewired based on 

reciprocity we would see a network with fewer paths but much more bi-directional 

interactions; finally, if observed ties are completely rewired based on preferential 

attachment we would see a network with a core-periphery structure or a network 

with a power-law degree distribution. 

Besides simulation-based sensitivity analysis methods, in this Chapter we have also 

developed analytical solutions for random, homophily and anti-homophily rewiring. 

However, it should be noted that the motivation behind the analytical solutions in 

this Chapter is not to replace the simulation based rewiring, but to better understand 

the how simulation-based rewiring methods work, and how they affect the inference 

of contagion effects in various scenarios. In general, the goodness of fit between 

analytical solutions and simulation based rewiring depends on the observed network 

structure and the distribution of covariates of interest (e.g. prior, individual 

characteristics such as gender, age etc.), some of which have direct sociological 

implications, as follows. 

(1) The analytical solution for homophily rewiring requires that actors rewire to 

perfectly homophilous others, and this fits better to simulation results when we have 

a larger network, as is plausible since actors are more likely to find similar others in 

a large social structure with a lot of heterogeneity (Blau, 1977). In contrast, their 

choices will be more confined if the network is smaller and thus more homogeneous. 

And it will be even more difficult if actors are seeking similar others on multiple 

dimensions (age, race etc.). Furthermore, the analytical solution also fits better to 

simulation results when we have a sparser network, as for each individual it is easier 

to find and maintain a small homogenous social group than a large one.  

(2) The analytical solution for anti-homophily rewiring assumes that the new 
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correlation between network exposure and the prior term after rewiring should 

approximately be -1. This assumption is more likely to hold when the distribution for 

actors’ prior belief/behavior is binary or bimodal. For example, if actors seek 

dissimilar others based on whether they smoke or not (1 yes, 0 no), the resulting 

correlation after rewiring between network exposure and the prior term should be 

exactly -1. Or if the variable of interest is a continuous measure of political 

ideas/belief, and actors’ prior orientation are clustered around two polarizing 

political ideas/beliefs, the resulting correlation after rewiring between network 

exposure and the prior term should be approximately -1 as well. As a result, the 

analytical solution for anti-homophily rewiring will fit better with simulation results 

in cases where there are two ideologically polarized groups.     

Finally note that there are several limitations in this study.  

1. In our study we represent network relations using binary variables, either there is a 

relation or there is no relation. However, there are many other representations of 

network relations, using descriptors such as ranks and weights. The sensitivity 

analyses developed in this study do not apply to these cases.  

2. We have only applied our sensitivity analyses to inference for contagion effects. 

Although our simulation based sensitivity analyses can potentially be applied to any 

case using network data, in our study we only give examples for the inference for 

contagion effects, and our analytical solutions also only apply to one type of 

contagion effects. 

 3. Our sensitivity analysis methods only deal with observed variables in networks, 

not unobserved variables. As a result, for the homophily and anti-homophily 

rewiring, our sensitivity analysis methods only apply to homophily/anti-homophily 

based on observed variables. That is, our methods do not deal with any issues 

pertaining to unobserved/confounding variables as in many other sensitivity analysis 

methods (Frank, 2000; Vanderweele, 2011). Potentially, this limits how useful our 
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methods are in terms of testing the internal validity of the inference for contagion 

effects, since latent homophily/shared environmental factors are usually the biggest 

concerns.  

Nevertheless, we consider the sensitivity analyses developed in this Chapter to be 

important steps in terms of understanding how misinterpretation of actors’ 

preferences that are manifest in observed networks can affect the robustness of 

inferences. And they are also useful as empirical tools that allow us to test the 

robustness of our inferences by devising clear and testable alternative hypotheses, 

which are the keys to making strong inference in any field of science (Platt, 1964). 
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APPENDIX
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APPENDIX 

a. Negativity Bias  

Why contagion effects are negatively biased when there is an unobserved variable in 

the influence model and the network is static 

(1) 1 1 2 1 1 2
ˆ ˆ ˆY Y Y Y Yβ β ε β β ε− −= + + = + +   

' 1 '
1 1 2 1 1 2
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( ' 1 ' ˆ( ) 0Y Y Y ε− =    by construction) 
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Another way to see why 1̂β  is positively biased but 2β̂  is negatively biased is 

through the Frisch–Waugh–Lovell (FWL) theorem.  
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Using the same derivation we have 
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(2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1: Cases when true prior is 0 (Big N vs Big T) 

 

Figure S1 shows the estimates of exposure when the true prior is 0. If the prior term 

is excluded from estimation, the bias in exposure is smaller. The bias is possibly due 

to a combination of Hurwicz bias (correlation between exposure, and c decreases 

with lower average node degree or larger network size, correlation between exposure 
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and error decreases with larger T) and correlation between the prior and c. However 

if the true prior is not 0, excluding it will positively bias the exposure estimate. 

To illustrate negative correlation between 1itY and−


ic (Hurwicz bias), 

let 2 1it it i itY Y c eβ −= + + , assume that ic has mean 0 and that we only have one 

observation for each node, so that 
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 .  

Then 1it iY c−
  will be positive as 1itY − appears in some other peoples’ exposure term. 

Together, 1( , ) 0it iCOV Y c− < , and 2β will be negatively biased. 

 

b. Reflection problem 

Consider a two person system where both are simultaneously influencing each other: 

1 1 2 1t t ty y uα= +  

2 2 1 2t t ty y uα= +  

Solving these two equations, we have 

1 1 2 2 2 1
1 2

1 2 1 2

,
1 1

t t t t
t t

u u u uy yα α
α α α α
+ +

= =
− −

 

As we can see, 1tu , 2ty  are correlated ( 1tu  is a function of 2ty ) and 2tu , 1ty  are 

correlated ( 2tu is a function of 1ty ), and the system is not identified using OLS. 

i. By imposing a structural constraint we can have identification. Assume person 2 is 

influencing person 1, but not vice versa. So we have 

1 1 2 1t t ty y uα= +  and 

2 0 2t ty uα= + . 
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In this case 1 1 0 1 2 1t t ty u uα α α= + + , but as observed variables are not correlated with 

errors, the system is identified using OLS. 

ii. By having extra exogenous variables in each equation we can have identification, 

using the instrumental variable (IV) method. To see this, let the system be 

1 11 2 12 1 1t t t ty y z uα α= + +  

2 21 1 22 2 2t t t ty y z uα α= + +  

Assume 1tz , 2tz are exogenous variables that are not correlated with 1tu or 2tu . For 

example 1tz  could be attributes of person 1’s friends who do not know person 2, 

similarly 2tz  are attributes of person 2’s friends who do not know person 1. Then 1tz

can be an instrumental variable for 1ty  in the second equation and 2tz  can be an 

instrumental variable for 2ty in the first equation, and the system is identified using 

IV estimation methods such as 2SLS. 

iii. Influence is not simultaneous but lagged: 

1 1 2 1 1t t ty y uα −= +  

2 2 1 1 2t t ty y uα −= +  

Then we have 1 1 1 2 1 3 1 2 2 1 1t t t ty y u uα α α− − − −= + + , 2 1 1 2 2 3 2 1 2 2 1t t t ty y u uα α α− − − −= + + . As we 

can see 1 1ty − , 2 1ty − only correlate with past values of u, not with contemporaneous 

error terms  1tu and 2tu , so the system is identified using OLS. 

 

c. Algebraic derivation  

Here we show Algebraic derivation for confounding between influence and selection 

through a latent trait. 

To see why the network exposure term is correlated with the latent trait, let the 

influence model be  
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1 1
1 1 2 3

1

ijt jt
it it i it

ijt

Z Y
Y Y c e

Z
β β β− −

−
−

= + + +∑
∑

,                                                                               

and correspondingly the “true” selection model can be represented as  

1 0 1 11[ | | 0]ijt i j ijtZ c cα α ε− −= + − + >   where 1[.] is an indicator function.                                                                                      

For 1jtY −  we have 

2 1
1 2 11 3

1 1 0 2 1 1
0 111

t t
t t x t x

jt j jx j jx
x x

Y Y Y c eβ ββ β β β
β

− −
− − − − −

−
= =

= + + +
−∑ ∑ , 

where jxY  represents the network exposure term for person j at time x. For 

convenience assume 0jY , jxY , jxe  are not correlated with ci. 

If 1 0α <  (homophily effect), then i jc c≥  and 

1 0
1

1

1[ ]ijt
ijt j iZ c c

ε α
α
−

−

−
= < − , otherwise  1 0

1
1

1[ ]ijt
ijt j iZ c c

ε α
α
−

−

−
= > + . 

Substitute Zijt-1 and Yjt-1 into the network exposure term 
2 1

1 0 1 2 11 3
1 0 2 1 1

0 11 1

1 0

1

1[ ]( )
1

1[ ]

t t
ijt t t x t x

j i j jx j jx
x x

ijt
j i

c c Y Y c e

c c

e α β ββ β β β
α β

e α
α

− −
− − − − − −

= =

−

−
< − + + +

−
−

< −

∑ ∑ ∑

∑



. 

Even if we assume 1ijtε − , 0jY , jxY , and jxe  are not correlated with ci, the term cj is still 

a complex function of ci, so the network exposure term is correlated with an 

unobserved trait. 

 

d. Upper bound 

Here we establish upper bound of contagion effects using estimation from 

homophily effects. 

Estimated selection model 

0 1 1 2( ) deg ...ijt jt ijg Z In ree Similarityggg  −= + + +  
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Here, Z represents a network relationship. The term Similarityij can be a composite 

measure of multiple attributes such as a cosine similarity: 

cos( , )
| | | |

ik jk
k

i j
i j

x x
x x

x x
=
∑


, where xi is the vector of attributes for person i. 

Then the relative magnitude of the standardized coefficient 2γ represents the 

magnitude of relational balance, which is 2

1 2 ...
γ

γ γ+ +
. Let the influence model be  

1 1
0 1 1 2 3 1

1

...ijt jt
it it it it

ijt

Z Y
Y Y X e

Z
β β β β− −

− −
−

= + + + + +∑
∑

 

Here X is a set of control variables, and the relative magnitude of standardized 

coefficient 2β represents the magnitude of relational balance in the selection model, 

which is 2

1 2 ...
β

β β+ +
. 

Then assuming that influence operates no faster than selection (which can be tested 

using empirical data), the upper-bound of 2

1 2 ...
β

β β+ +
 should be 2

1 2 ...
γ

γ γ+ +
.  

If 2β  is over-estimated due to omitted variable bias, this upper bound can be useful 

in terms of determining the magnitude of bias. 

It would be interesting to have multiple empirical data sets to test two things: (1) if 

the homophily effect is the upper bound for contagion effects; (2) if homophily 

effects and contagion effects are indeed correlated. 

 

e. Anti-homophily rewiring example 

Here we give an anti-homophily rewiring example, N = 100. Density = 0.1, rxy > 0.2. 

The prior term is a binary variable. Each point is a result of 1000 simulations. The 

analytical solutions in this case fit much better to the simulation results, compared 

with cases where the prior term is normally distributed. 
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Figure S2: Anti-homophily rewiring example (better fit) 

 

f. Homophily rewiring example 

Here we provide some extra simulation examples for homophily rewiring, where 

they show fitting between analytical solutions and simulation results would be worse 

if we had a smaller or denser network. Example 1 in Figure S3 shows results for 

homophily rewiring when network is smaller, N = 50 instead of 100. Density = 0.1. 

Example 2 in Figure S4 shows results for homophily rewiring when network is 

denser, density = 0.2 instead of 0.1. N = 100. 
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Figure S3: homophily rewiring example when network is smaller 
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Figure S4: homophily rewiring example when network is denser 
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