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ABSTRACT 

QUANTITATIVE LITERACY IN GENERAL EDUCATION SCIENCE COURSES AT A 
COMMUNITY COLLEGE: STUDENT AND INSTRUCTOR REPORTS  

 
By 

Richard A. Edwards 

Research indicates that significant numbers of community college students enroll in quantitative 

literacy (QL) courses, yet we know little about the quantitative experiences of these students 

after they complete QL coursework. This qualitative case study was designed to explore with a 

sample of community college students and science instructors connections between general 

education science courses and the students’ QL course. The rationale for this study emanates 

from the researcher’s desire to uncover new ways of describing the role of QL courses in 

preparing students for further academic study. The sample was composed of six community 

college students and five science instructors. The primary data collection method was in-depth 

interviews. Supportive methods included demographic surveys, a focus group, and a document 

review. This research revealed that (1) students are able to make many connections between 

tasks in a QL course and tasks in a subsequent science course, (2) student and instructor 

descriptions of science tasks emphasize data analysis and representation, and (3) student 

descriptions of science tasks included more references to higher order quantitative thinking than 

science instructor descriptions of science tasks. Recommendations are offered for QL curriculum 

writers and instructors, for mathematics and science instructors, and for further research.  
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CHAPTER I: INTRODUCTION 

 Quantitative literacy is a bridge to further learning. Steen (2004, p.9) argued that to be 

quantitatively literate in the twenty-first century, a person must possess “a new set of problem 

solving and behavioral skills that emphasize the flexible appreciation of reasoning abilities”. 

Hughes-Hallett (2003) suggested that the hallmark of quantitative literacy is not the amount of 

mathematics one understands, but how widely a person can apply the mathematics they do know. 

With that in mind, this study is focused on the phenomenon of how students and instructors 

perceive aspects of quantitative literacy (QL) in general education science courses. The purpose 

of this study was to explore with a group of community college students, and their science 

instructors, the quantitative literacy demands of general education science courses, and the ways 

in which students connect quantitative ideas across courses. The knowledge generated from this 

inquiry should afford new insights into the role of QL courses, highlight connections between 

QL and science instruction for non-STEM majors, and further polish existing theoretical lenses 

on how students connect mathematical ideas across different academic contexts. This study 

employed qualitative multicase study methodology to illustrate the phenomenon. Participants in 

this study included a purposefully selected group consisting of six community college students 

who completed a quantitative literacy mathematics course, and who were subsequently enrolled 

in general education science courses. Other participants included the instructors of the science 

courses in which these students enrolled. 

 This chapter begins with an overview of the context and background that informed the 

study. Following this is the problem statement, the statement of purpose, and accompanying 

research questions. Also included in this chapter is a discussion about the research approach, the 

researcher’s perspectives, and the researcher’s assumptions. The chapter concludes with a 
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discussion of the proposed rationale and significance of this research study and definitions of key 

terminology. 

Background and Context 

 A significant issue in community college mathematics education is how to best serve 

students who place into the lowest level of developmental courses. Nationwide, over half of all 

community college students who place into developmental mathematics courses never complete 

a college-level mathematics course (Hern & Snell, 2010; Hagedorn & DuBray, 2010; Aud, Fox, 

& KewalRamani, 2010), and thus never receive a college degree. Students from racial-ethnic 

backgrounds are disproportionately affected by multi-semester developmental course 

requirements, meaning that the same students who were underserved by their high school 

mathematics courses are denied access to college-level mathematics (Aud, Fox, & 

KewalRamani, 2010). The failure of many students to complete core mathematics requirements 

not only represents personal setbacks to individuals’ pursuit of college education, but the 

situation is also wasteful in terms of resources, time, and money for institutions and departments 

(Bailey, Jeong, & Cho, 2010).  

 The typical curriculum and pedagogy found in developmental mathematics classes 

focuses largely on developing procedural skill efficiency, with less emphasis given to developing 

conceptual understanding (Goldrick-Rab, 2010). Unfortunately, many students who place into 

developmental mathematics courses are not motivated to learn these mathematical skills and 

procedures, in part because they do not consider such skills to have any connection with their 

personal lives or educational goals (Cavazos, Johnson, & Sparrow, 2010). There are no quick 

answers to the problems of developmental mathematics instruction in community colleges, but 
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one popular trend in shifting the focus of developmental mathematics courses toward helping 

students develop quantitative literacy (QL). 

 QL courses are intended, in part, to prepare students for the kinds of quantitative 

reasoning they might experience in everyday life. Such reasoning might include interpreting the 

statistics in a physician’s report, or making informed decisions as a voter (Steen, 2003). In 

contrast to Steen’s vision of QL for all,  QL courses have grown in popularity as alternatives to 

traditional mathematics coursework for students who do not intend to major in the sciences, 

technology, engineering or mathematics (STEM) fields (Blair, Kirkman, & Maxwell 2010). QL 

courses result in improved completion rates for developmental mathematics students (Carnegie 

Foundation for the Advancement of Teaching, 2012). In other words, the percent of students who 

pass QL courses at many institutions is higher than the pass rate in traditional developmental 

courses such as Intermediate Algebra (see also Clyburn, 2013; Hern & Snell 2010; Goldrick-

Rab, 2010). In addition to allowing more students to complete their mathematics requirements, 

QL instruction is often promoted as preparing students for the quantitative demands of other 

academic subjects (Wolfe, 1993; Grawe, 2011; Steele & Kiliç-Bahi, 2008). 

 Educators outside mathematics departments are also interested in QL instruction. Efforts 

to improve students’ QL are promoted by many different stakeholders, including instructors in 

partner disciplines such as the biological and physical sciences (Rheinlander & Wallace, 2011), 

social sciences (Caufield & Persell, 2006), and business (McClure & Sircar, 2008). A common 

theme across multiple QL curriculum initiatives (Carnegie Foundation for the Advancement of 

Teaching, 2012; Clyburn, 2013; Goldrick-Rab, 2010; Hern & Snell 2010;) is the notion that if 

the content of QL curriculum is chosen and taught appropriately, students will be more 

comfortable with similar mathematics and statistics when it appears in other contexts. 
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 As with any educational endeavor, there are those who voice concern. For example, Sally 

(2003) argues against the notion of over-contextualizing mathematics instruction: 

This notion that one has to 'interest' students in mathematics in order to make 
them do it has gone much too far, to the point where real mathematics in many 
cases has just disappeared entirely from the courses. They're just a discussion of 
what mathematics does, or beautiful pictures and imprecise ideas. 
 

 Hayden (2004) echoed such concerns, warning that the biggest temptation in teaching a 

quantitative literacy courses is to teach watered-down versions of traditional mathematics 

content. Estry and Ferrini-Mundy (2005) report that such concerns represent a dominant theme in 

discussions surrounding QL instruction.  Likewise, Fitzsimons (2006) reported on a trend toward 

diminishing the mathematics content in mathematics courses for non-STEM majors. His analysis 

led him to conclude that the decision to reduce the mathematics content in such courses was 

made primarily to improve completion rates – a metric that is often used to measure the success” 

of QL courses.  

 Although there has been a proliferation in the number of QL courses offered in 

institutions of higher learning in the past two decades (Dingman & Madison, 2010), there has 

been little research into the relationship between students’ experiences in QL courses, and their 

experiences in subsequent academic courses. QL instruction, particularly as an alternative to 

traditional developmental mathematics courses, does seem to hold great promise for certain 

groups of college students, including the fact that students generally pass QL courses at higher 

rates than students typically pass developmental mathematics courses (Betne, 2010; Clyburn, 

2013). What is less understood is the extent to which QL instruction prepares students for 

quantitative experiences in other courses. As a specific example, we have little research-

grounded evidence that QL courses prepare students for the quantitative demands of general 
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education science courses, even though such courses are frequently taken by the same non-

STEM students. 

 In this study, I document the experiences of students who took a two-semester QL course 

called “Quantway” (described more thoroughly in the next chapter). One goal of Quantway is to 

prepare students for further academic study (Carnegie Foundation for the Advancement of 

Teaching, 2012). This notion was among several that originally motivated this dissertation 

research. Most, if not all published research on Quantway—and to a large extent on QL courses 

in general—is bounded by time and stops the moment a student completes a QL course. In this 

study, I explore the academic experiences of students post-Quantway. In particular, I wished to 

know when and how students perceive aspects of QL in subsequent science courses, and also the 

ways in which community college science instructors perceive aspects of QL in their courses.  

 By exploring these issues, I hoped to further explicate (a) the QL demands of general 

education science courses as described by both students and instructors, (b) the opportunities 

these students have to engage in a variety of types of quantitative reasoning during their science 

courses, and (c) the ways in which students transfer understanding of mathematical concepts to a 

science context.  

Problem Statement 

 Despite significant investment on the part of community colleges to implement QL 

courses, we do not know much about the academic experiences of students once they pass such 

courses. Research indicates that there are significant benefits of QL instruction for community 

college students in terms of pass rates and completion times for mathematics requirements, yet 
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how or when students have opportunities to draw on QL in subsequent academic experiences 

remains under-researched. In particular, we have little information as to how students and 

instructors perceive the quantitative literacy demands of general education science courses. 

Statement of Purpose and Research Questions 

 The purpose of this multicase study was to explore with six community college students, 

and their science instructors, perceptions of the QL-demands of general education science 

courses and the ways in which non-STEM majors connect quantitative ideas across mathematics 

and science. I anticipate that this research will give us a better understanding of the QL 

components with which students engage in their science courses, the extent to which students 

make connections between a QL course and a subsequent science course, and the ways that 

science instructors perceive the extent to which QL is needed for learning science. It is 

anticipated that the findings of this research will help inform the process of developing and 

implementing QL courses in community colleges, and foster thoughtful consideration of the role 

that science instructors play in advancing students’ quantitative literacy. To shed light on these 

issues, the following research questions are addressed: 

1. Which mathematical/statistical components of a specific QL course (Quantway) do 

students report in tasks from subsequent general education science courses? 

2. Which mathematical/statistical components of a specific QL course (Quantway) are 

to be found in instructor descriptions of tasks in general education science courses?  

3.  What levels of QL-demand characterize student descriptions of tasks in subsequent 

general education science courses?  

4. What levels of QL-demand characterize instructor descriptions of tasks in general 

education science courses? 
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Research Approach 

 With the approval of the University’s institutional review board, I studied the experiences 

of six community college students enrolled in general education science courses. These 

participants had all previously completed the same QL pathway that fulfilled both their 

developmental and college-level mathematics requirements. This investigation employed a 

multicase study using qualitative research methods. 

 In-depth interviews were the primary method of data collection. The interview process 

began with the researcher conducting three pilot interviews, which influenced the final interview 

protocol used in the main study. Students were interviewed three times over the course of the 

semester–twice individually, and once in a focus group. Each student’s respective science 

instructor was interviewed once. The information obtained through a total of 18 interviews 

formed the basis for the overall findings of this study. Each interviewee was identified by a 

pseudonym, and all interviews were digitally recorded and transcribed.  

 This study employed methods suggested by Lincoln and Guba (1986) for establishing 

validity and reliability in qualitative research. First, the study methods were designed to establish 

credibility—which means working to establish confidence in the truth of the findings. In this 

study, various methods were employed, including the use of multiple sources of data, member 

checking, negative case analysis, pattern matching, and the use of secondary coders.  

 Second, this study frames issues of external validity in terms of transferability—by 

showing that the findings have applicability in other contexts. In this study, thick description of 

the research context is the primary method of establishing transferability, but the researcher also 

used replication logic by selecting cases for both literal and theoretical replication. 
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 Third, this study frames the issue of reliability in terms of dependability and 

confirmability. Dependability refers to the extent that research is conducted in a consistent 

manner that can be repeated (Lincoln & Guba, 1986). To help establish dependability, the same 

data collection procedures were employed for each case, including consistent protocols and a 

consistent set of initial questions for each interview. Confirmability refers to the extent that the 

study respondents, not researcher bias, shape the findings (Glesne, 2011). To help establish 

credibility in this study, multiple data sources were involved, attention was paid to reflexivity (by 

documenting researcher biases), and outside investigators were recruited to independently code 

sections of transcripts. Employing an outside person in this manner is one way for qualitative 

researchers to enhance the credibility of their methods (Riege, 2003). 

Assumptions 

 Based on the researcher’s background and experiences with QL curriculum and 

instruction, as well as teaching in community colleges, four primary assumptions were made 

regarding this study. First, that more research is needed on alternatives to traditional 

developmental mathematics courses, because those courses are not serving the needs of the 

majority of community college students who take them. This assumption is based on the premise 

that the percent of community college students who pass traditional developmental courses is 

very low–as low as 10% for certain demographics. Although alternative pathways, such as QL 

courses are gaining popularity in community colleges, the field suffers from a lack of 

information about student experiences with these alternatives. Second, that there are a variety of 

reasons for teaching mathematics courses to non-STEM majors, including preparation for 

subsequent academic courses. This assumption is guided by the notion that although many non-

STEM majors who take developmental mathematics courses never take more than two college-
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level mathematics courses, they do take other courses with significant quantitative demands. 

Third, that the percent of students who pass a course is not, by itself, a sufficient measure of 

success when it comes to assessing the effectiveness of a course. This assumption is based on the 

belief that one goal of mathematics instruction is for students to understand the material being 

taught, not just pass courses. Related to this assumption is the idea that it is a good thing when 

students can see connections between mathematics and other college courses. A fourth 

assumption is that community college students who complete their developmental mathematics 

requirements are motivated to succeed in other college-level coursework. This assumption is 

based on the premise that the students who invest the time, energy, and financial resources 

necessary to pass remedial courses will be willing to invest just as much in courses, such as 

subsequent science courses, that count toward their degrees.  

The Researcher 

 In qualitative research, the researcher is the primary instrument of data collection 

(Creswell, 2013). My contribution to the research is not necessarily a negative limitation, but my 

interpretations of constructs such as quantitative literacy and my experiences with community 

college students and instructors did influence how I perceived the research. I therefore take 

seriously the process of documenting and clearly articulating my own perceptions and biases.  

 I began my own post-secondary education as a community college student (1999–2001), 

and have served several semesters as a community college mathematics instructor (2010–2012; 

2015). I believe that my knowledge of the research context enhances my awareness of, and 

sensitivity to the complex challenges faced by my research participants. I also bring certain 

biases to the research. Although every reasonable effort was made to ensure objectivity, these 

biases presumably shaped the way I interpreted the data. For example, I began this study with the 
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perspective that mathematics and science instruction for non-STEM majors in community 

colleges suffers from a lack of consistent approach across courses, and more effective 

collaboration between mathematics and science instructors would be largely positive for 

students. I heard many first-hand accounts from students who were required to take mathematics 

courses that they perceived had no connection with courses in their major, or other general 

education requirements. As a former community college instructor, I am aware that the content 

of my Intermediate Algebra, and College Algebra courses was not altogether in line with the 

kinds of quantitative skills students needed in subsequent coursework.  

 In addition, my curriculum work at Michigan State University includes the design and 

implementation of quantitative literacy courses. This experience shaped my own views on the 

importance of QL, and also made me more attuned to the challenges of implementing QL 

curriculum. Even my own mental conceptions of QL are better aligned with the Quantway 

curriculum than with other, no less valid, conceptions of QL such as mathematics for social 

justice. Tracing when and how my own biases appeared throughout this study was an important 

step toward self-monitoring. 

Rationale and Significance 

 The rationale for this study stems from my desire to gain a better understanding of the 

academic experiences of community college students, particularly after they complete their 

general mathematics requirements. Community college students may be traditional full-time 

students, part-time students, working parents, or people who are returning to college after many 

years away from the classroom. Many of my own students had negative experiences with 

mathematics in the past, and failed to see its usefulness outside the mathematics classroom. QL 

instruction seems to offer many benefits to these students, but the benefits are often advertised in 
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such a way as to make mathematics seem like an obstacle to be overcome, as opposed to a useful 

lens for understanding the world. 

 Increased understanding of the experiences of QL students in subsequent science courses 

not only has the potential to inform the design and implementation of QL courses, but could also 

shed light on the conditions under which students’ make use of QL in other academic contexts. 

Improving QL instruction, based on research-grounded evidence, may afford more students with 

opportunities for academic success, improve their learning in subsequent courses, and improve 

their personal gratification at learning a new subject. Such understanding may also benefit our 

society at large. 

Definitions of Key Terminology 

 Community college students: This term is used to refer to students who are enrolled solely 

in a 2-year post-secondary institution (formerly called junior colleges–see Medsker, 1960). They 

are considered a student whether or not they are pursuing a 2-year degree, certificate, or intend to 

transfer to a four-year institution.  

 Developmental mathematics: Consistent with other research on community college 

mathematics education (e.g. Blair, 2006), I use this term to refer to any mathematics course 

which a student must complete before they are allowed to enroll in credit-bearing mathematics 

coursework. Other terms for such courses include remedial, foundational, or pre-college courses. 

 General education science courses: Occasionally shorted to general science courses, I 

use this term to refer to courses that fulfill the core curricular requirements that exist for all 

students regardless of major. Broadly, these include 100- and 200- level courses connected to 

both the physical and biological sciences. This term does not include courses directed primarily 

at science majors such as physics or organic chemistry. 
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 Mathematical/statistical components: In this study, I largely use the term components to 

refer to broad categories such as basic numeracy, data analysis, or geometric reasoning. Each 

component is associated with more specific techniques such as ‘the ability to estimate an answer 

before performing a calculation’. I also use this term to differentiate such components from 

affective components such as attitudes toward, or beliefs about, mathematics. 

 Quantway: A two-semester undergraduate mathematics pathway geared toward 

improving students’ quantitative literacy. When I use this term without any modifiers, I refer to 

the Quantway course in which a student can enroll. Students whose placement scores put them in 

the lowest level of developmental mathematics may choose to take Quantway. If they pass both 

semesters, they receive credit for one college-level mathematics course. 

 Quantway students: Students who take Quantway as part of their undergraduate 

coursework. 

 Quantway curriculum: The written documents that comprise the daily lessons for 

Quantway. In this dissertation, I primarily drew on the instructor’s manual, provided by the 

Carnegie Foundation for the Advancement of Teaching. 

 Task: Used with modifiers such as science, or quantitative literacy, this term refers to a 

unit of classroom activity, the purpose of which is to focus students’ attention on a particular 

idea (Stein, Grover, & Henningsen, 1996). A task includes the products students are expected to 

produce, the operations students use to generate those products, and the resources available to the 

student while they are generating the product (Doyle, 1988). A single classroom lesson may 

incorporate multiple tasks, each characterized by the particular idea on which each task is 

focused. 
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 Task-description: The verbal description of a task provided by a participant (either a 

student or an instructor).   
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CHAPTER II: LITERATURE REVIEW 

Overview and Organization  

 The purpose of this study was to explore with a group of community college students, 

and their science instructors, the quantitative literacy demands of general education science 

courses, and the ways in which students connect quantitative ideas across courses. I sought to 

understand ways in which the quantitative experiences of students in a specific QL course 

(Quantway; Carnegie Foundation for the Advancement of Teaching, 2012) related to the 

quantitative experiences of these same students in subsequent general science courses, by 

concentrating on connections students and instructors reported between those two educational 

experiences. To carry out this study, it was necessary to conduct a critical review of relevant 

literature. This review was ongoing during throughout the data collection, analysis, and synthesis 

phases of the study.  

 This critical review explores the interconnectedness of multiple bases of literature, 

including quantitative literacy, the quantitative demands of general education science courses, 

and ways in which students connect concepts between mathematics and science courses. The 

literature basis for each of those areas is vast, so it was necessary to narrow my focus to research 

and literature that is pertinent to ongoing work in community college mathematics education, and 

that has informed the conceptual framework used for analyzing study data. In light of this, I 

chose to include in this review three major areas of literature: (a) Quantitative literacy, with a 

specific focus on how QL is operationalized through the Quantway curriculum, (b) Research 

reports of the quantitative demands of general science courses, with a focus on potential overlap 

with the Quantway curriculum, and (c) Research and literature on factors that influence student 

connection-making across mathematics and science courses. 
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 Reviewing literature on QL, as it is operationalized in Quantway, provides information 

on a mathematical experience shared by the student participants, and suggests certain QL 

components that these students might be able to recognize in their subsequent science courses. 

The section on the quantitative demands of general education science courses provides a 

complementary angle on hypothesizing which aspects of Quantway might appear in such 

courses, and provides insight into instructor reports. Literature on the ways in which students 

connect mathematics and science instruction provides a tentative theoretical lens through which 

we might make sense of student reports. 

 Those readers wishing to know the conclusion before reading the literature review will 

find that that the overall picture features several key points: (1) The mathematical/statistical 

components of the Quantway curriculum can be characterized in terms of a several broad 

categories, including basic numeracy, algebraic reasoning, data analysis and representation, 

spatial reasoning, and mathematical modeling. The Quantway program is intended to help 

students acquire the quantitative literacy skills needed in everyday life and for academic success. 

(2) The quantitative demands of a general education science course can be characterized in terms 

of similar mathematical/statistical components, but framing quantitative demands in terms of 

different levels of quantitative thinking provides a rich complementary dimension. Both 

dimensions will be important for analyzing study data. (3) Whenever students are asked to report 

connections between two academic courses, we run into issues of transfer – a complex cognitive 

phenomenon. One way to make sense of student reports is to classify them in terms of 

spontaneous connections, prompted connections, no connections, or incorrect connections. All of 

these assertions are based on the overall judgments I have formed from the following analysis of 

literature. 
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 To conduct this selective review, I drew upon several sources of information, including 

books, dissertations, policy reports, professional journals, and conference presentations. I 

primarily accessed these sources through Jstor, ProQuest, ERIC, and Google Scholar. No 

specific fixed time frame was used to delimit my search. Because of the nature of the literature 

reviewed, including historical perspectives on the place of QL in mathematics in science 

education, I felt that an arbitrary time frame might inhibit the inclusion of notable material.  

 Throughout this review, I attempt to point out important gaps in particular components of 

the literature when they become apparent. I also highlight a few contested issues and provide 

alternate interpretations. I close each section of this review by synthesizing the pertinent 

information, and focusing on the research implications for this present study. The chapter 

concludes with an interpretive summary that demonstrates how the literature led to the formation 

of the conceptual framework used in both data collection and analysis. 

QL and the Quantway Program 

 The concept of quantitative literacy did not originate in the United States, and its usage in 

mathematics education can be traced to British educators who used the term numeracy as early 

as the 1950s (Department of Education and Science, 1959). An influential report on mathematics 

in British schools, Mathematics Counts (Cockcroft, 1982), suggested that schools place more 

emphasis on teaching numeracy–the ability to understand quantitative information, and (notably 

for our study) to use mathematical skills in everyday situations. These situations included the 

kinds encountered during the course of one’s normal day, at the workplace, and in further 

academic courses and training. 

 Steen (1990) suggested that quantitative literacy consists of several elements, including 

Practical, Civic, Professional, Leisure, and Cultural numeracy. These are the skills and habits of 
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mind necessary to navigate situations as diverse as estimating unit prices, understanding public 

policy debates, comparing interest rates and terms on loans, and appreciating the role of 

mathematics in one’s culture. Furthermore, Steen (2001) argued that although QL possesses no 

inherent content of its own, it is always to be found rooted in the real data that humans 

experience as part of life’s manifold contexts and situations. 

 This present study specifically deals with QL as it appears in selected community college 

courses. Therefore, it is important to consider how QL came to become part of community 

college mathematics instruction. Consistent with reform documents at the K-12 level (e.g. 

Principles and Standards for School Mathematics, National Council of Teachers of 

Mathematics, 2000), the American Mathematical Association of Two-Year Colleges 

(AMATYC) released Crossroads in Mathematics (Cohen, 1995), and Beyond Crossroads (Blair, 

2006) to conceptualize the two-year college position on reforming mathematics curriculum and 

instruction. The authors of the Crossroads documents encouraged community colleges to 

incorporate more QL in mathematics instruction, and to consider using QL as the basis for 

mathematics courses for non-STEM majors (Blair, 2006).  

 The American Mathematical Association also published a policy report with respect to 

the first two years of collegiate mathematics instruction that has been influential in many 

community college mathematics departments. College Renewal Across the First Two Years 

(CRAFTY) (Ganter & Barker, 2004) called for increased emphasis on improving students’ 

quantitative reasoning abilities, which the authors defined as (1) the ability to use and interpret 

mathematics in real-life situations; (2) the ability to interpret statistics and other forms of data; 

and (3) fluency with the computational skills that are useful in the workforce.  
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 Does one’s everyday life actually require the use of mathematical or statistical thinking? 

Several reports indicate that quantitative skills are necessary for success in diverse areas of life, 

including managing one's personal health (Apter et al. 2009; Brown et al. 2011; Schwartz, 

Woloshin, Black, & Welch, 1997), understanding the informed consent process (Couper & 

Singer 2009), access to opportunities for employment (Charette & Meng 1998; Kirsch, Leathers, 

& Snead, 1993) and for making good financial decisions (Gerardi, Goette, & Meier, 2013). 

 Steen (2004) and others have emphasized that QL is more than just a list of specific 

mathematical or statistical techniques, and that it includes behavioral and dispositional elements. 

This is important for the present study because the students were being asked to reason with 

mathematics in new contexts. As Steen (2004) puts it [italics added]: 

Personal success in the new information economy requires a new set of problem 
solving and behavioral skills that emphasize the flexible appreciation of reasoning 
abilities. These skills involve sophisticated reasoning with elementary 
mathematics, more often than elementary reasoning with sophisticated 
mathematics (p. 9). 
 

 From the research and literature highlighted above, it appears that QL involves at least 

two dimensions: Specific mathematical and statistical tools needed to make sense of real-life 

experiences, and the dispositional (e.g. behavioral, motivational) tendencies to reason critically 

using mathematics. Furthermore, the fact that Steen views QL as involving a “flexible 

appreciation of reasoning abilities” indicates that one goal of QL instruction ought to be 

developing the capacity to recognize when and where such reasoning abilities are needed. 

Moving from ideals to actual curriculum is no small challenge, which leads us to consider one 

way in which QL is currently operationalized in many community colleges. 
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Background  

 In response to calls for action from AMATYC and the MAA, many groups connected 

with community colleges developed quantitative literacy courses, which were often intended as 

alternatives to the normative mathematics sequence of intermediate and college algebra 

(Cullinane and Treisman, 2010). Many of those efforts were intended to help community college 

students who had placed into developmental coursework. Examples include the AMATYC New 

Life program (Rotman, 2013), and the New Mathways Project (Charles A. Dana Center, 2014). 

The largest effort, in terms of current student enrollment, to implement QL courses in 

community colleges is Quantway, a creation of the Carnegie Foundation for the Advancement of 

Teaching.  

 Quantway is a two-semester pathway for students who place into developmental 

mathematics that leads to credit for a college-level mathematics course. The program is a 

sequence of two quantitative literacy courses meant to replace Intermediate and College Algebra 

for students who do not intend to pursue STEM majors. The goal of the courses is primarily to 

improve students’ quantitative reasoning abilities so that they might use and apply mathematics 

in their daily lives, and be prepared for future academic study. The written curriculum is centered 

on several mathematical and statistical categories (such as statistics and data analysis), and each 

of these categories is further defined by specific learning goals such as distinguishing between 

statements involving absolute and relative change. The Quantway curriculum includes a system 

of inquiry-based learning activities, and uses heavily contextualized problems1.  

 To date, forty-nine community colleges in fourteen states offer the Quantway course 

sequence to approximately 10,000 students (Carnegie Foundation for the Advancement of 

                                                
1 A limited overview of the Quantway program, may be found at: 
http://www.carnegiefoundation.org/in-action/carnegie-math-pathways/ 
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Teaching, accessed 2016). Support materials for instructors include specific routines faculty are 

to follow to improve the quality of group-work, and implement the Quantway instructional 

approach in their classrooms (Howington, Hartfield, & Hillyard, 2015). Each community college 

is responsible for determining whether or not the courses can count for college mathematics 

credit, and for which other courses Quantway is allowed to serve as a prerequisite. 

 Some of the most persistent problems surrounding developmental mathematics courses 

involve withholding instruction of complex and interesting material until students have mastered 

easier material (Hiebert et al., 1996). Such practices may be fostered by widely-held beliefs 

among students and teachers (Mtetwa & Garofalo, 1989; Felbrich, Müller, and Blömeke, 2008) 

that (a) mathematics is a set of rules that require memorization, (b) problems are always solved 

by using formulas, and (c) problems always have one correct answer. The Quantway program 

represents an attempt to bring complex mathematical problems into developmental mathematics 

classrooms.  

 One way to characterize the Quantway curriculum is through the types of mathematical 

and statistical content featured throughout the written curriculum. I grouped this content in five 

areas: basic numeracy, algebraic reasoning, statistics and data analysis, spatial/geometric 

reasoning, and mathematical modeling. I further visualized the Quantway curriculum may be 

thought of as a sequence of reality-related tasks (Maaß, 2006) in which students learn to use 

mathematical and statistical tools in the context of realistic situations. Let us briefly consider a 

few examples of these tasks, with an eye toward how the Quantway curriculum helps delineate 

the mathematical/statistical components of QL for the conceptual framework used in this study. 
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Basic Numeracy 

 Basic numeracy has a variety of meanings within literature on QL (Karaali, Villafane 

Hernandez, & Taylor, 2016), where it is occasionally used as a synonym for QL, and 

occasionally used as an aspect of QL. Vacher (2014) notes that numeracy is associated with 

numbers, whereas QL in a larger sense incorporates many non-numerical aspects of logic and 

mathematical or statistical reasoning. In the Quantway curriculum, there are several learning 

objectives related to basic numeracy, all of which give us a picture of how this construct is 

operationalized in the curriculum: These include performing arithmetical calculation, estimating 

an answer before performing calculations, using and interpreting scientific notation, using and 

interpreting percentages, checking the reasonableness of one’s answers, displaying measurement 

sense (e.g. in terms of units), and understanding absolute versus relative change.  

 Figure 1 represents a portion of a Quantway lesson centered on basic numeracy. These 

examples, and all subsequent images from the Quantway curriculum, are copyright 2015 by the 

Carnegie Foundation for the Advancement of Teaching and should not be reproduced. It is 

important to note that this dissertation is not an analysis of the Quantway curriculum. Indeed, 

one should refrain from drawing too many conclusions from written Quantway materials, due to 

the significant role instructors and support materials play during actual classroom 

implementation.  
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Following the scenario are a series of questions that involve estimation, converting fractions to 

decimals, and making sense of percents. 

Algebraic Reasoning 

 The notion of algebraic reasoning extends beyond the content of the typical Algebra 

courses taught in many U.S. middle and high schools. It includes reasoning about formal, rule-

governed structures, and the manipulation of mathematical expressions (Smith and Thompson, 

2007). In Quantway, lessons centered on algebraic reasoning also include reasoning more 

generally about covariation. Specific learning objectives from Quantway that are considered 

aspects of algebraic reasoning include understanding the role of variables, describing the effect 

of changing one variable in an algebraic relationship, constructing and using equations in one or 

more variables, as well as applying algebraic relationships to solve real-life problems.  

 A problem situation in the Quantway curriculum that centers on algebraic reasoning is 

shown in the quote below (Quantway lesson 4.3): 

Table 1.  

Quantway Lesson 1.3 
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Follow the problem situation, students are asked to create linear equations representing soda and 

milk consumption versus time, re-arrange the equations to solve for specific variables, and find 

the point of intersection of the two lines by algebraic manipulation. 

Statistics and Data Analysis 

 Several scholars have noted the place of statistics in operationalizing QL, including 

Mayes, Peterson, and Bonilla (2013) and Steen (2001). The Cockcroft report (1982, p. 236) 

included “a commonsense approach to the use of data…and a judicious understanding of widely 

used concepts such as means and percentages” in a list of characteristics of statistical numeracy. 

In Quantway, there are several learning objectives related to statistics and data analysis. These 

include: Computing basic statistics (measures of center and spread), evaluating statistics that 

appear in the media, describing correlation and causation, reading and making decisions based 

on visual displays of data, evaluating the sampling strategy used in a study, determining sources 

of bias in a media report, and using the language of probability to evaluate statements regarding 

risk. A portion of a Quantway lesson that emphasizes statistics and data analysis is shown in the 

quote from lesson 6.8, and Figure 1:  
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 Figure 1.  Quantway Lesson 6.8 (used with permission) 

 In this lesson, students are asked to derive meaning from different types of graphical 

representations, and eventually construct their own graphs based on two-way tables. Although 

the Quantway curriculum, and in particular the support materials for instructors, considers 

probability and statistics as one set of learning goals, the conceptual framework I selected for this 

study separates these constructs. This decision was based, in part, on literature surrounding QL 

and science, so I will explain this decision in an upcoming section. 

Geometric Reasoning 

 Geometry occupies an interesting position both within Quantway, and within larger 

discussions on QL. Karaali et al., (2016) note that geometry frequently appears in textbooks and 

other documents in which the focus is on helping students develop an appreciation for 

mathematics, but that geometric thinking has limited popularity in discussions on QL. These 
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authors note that spatial reasoning is a skill used in many professions including engineering and 

architecture, but that the role of spatial reasoning in the everyday lives of most people is limited. 

Wiggins (2003) includes aspects of spatial reasoning in his discussion of QL, including the 

geometry of transformations and the use of simple formulas for finding areas, perimeters, or 

volumes of shapes. 

 Geometric reasoning occupies the smallest portion, in terms of sheer number of daily 

lessons, in the Quantway curriculum (with Basic Numeracy representing the largest). Lessons 

involving geometric reasoning include estimating cost per acre of property, or drawing a scale 

model of a township. Other lessons combine geometric reasoning with one or more additional 

categories, such as creating a pie chart (i.e. determining areas of circle sectors) based on survey 

data. In fact, there are only three learning goals in the instructor’s manual for Quantway that are 

connected with geometric reasoning: (1) Solving geometric problems involving area, perimeter, 

or volume (2) Translating between different units of measurement and (3) Solving problems 

involving scaling. 

 A portion of a Quantway lesson involving geometric reasoning is shown in the following 

quote from Quantway lesson 3.4 and Figure 2. In this lesson, students calculate the areas of 

different suburban lots, and use these areas to compute the cost of fertilization.  
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Figure 2. Quantway Lesson 3.4 (used with permission) 

Mathematical Modeling 

 Modeling with mathematics features prominently throughout the Quantway curriculum. 

For example, one of the learning goals intended to improve students’ algebraic reasoning is that 

students will model a real-life scenario using an equation in one or more variables. Other 

learning objectives include: Create models of contextual situations in one or more variables, 

recognize that all mathematical models are subject to error, apply a mathematical model to solve 

a real-life problem, and develop a linear model to approximate data. 

 A portion of a Quantway lesson centered on mathematical modeling is shown in the 
quote below from Quantway lesson 4.3 and Figure 3. Students are asked to create a linear model 
given a scatter plot, and use the model to answer various questions.  
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 Figure 3. Quantway Lesson 4.3 (used with permission) 

 Mathematical modeling is found throughout Quantway both as the focus of entire units, 

and also within a spectrum of other lessons. This reflects the notion that it is difficult to separate 

modeling from quantitative literacy. Indeed, Kaput (1988, p. 16) claimed, “Quantitative 

reasoning…can be regarded as modeling”. Although this perspective has some merits, it forces 

us to consider how mathematical modeling fits within the conceptual framework for this study.  

 The conceptual framework used in this study draws on aspects of QL that appear in the 

Quantway curriculum, but it also takes into account how and when aspects of QL might appear 

in general education science courses. Considering QL in light of science courses led me to make 
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certain decisions with respect to categorizing the mathematical/statistical components of 

Quantway. I now present the science literature that informed many of those decisions.  

QL and General Education Science Courses 

 In the previous section, we considered quantitative literacy from a primarily 

mathematical perspective, and cited authors who primarily work in the field of mathematics 

education. These authors described QL in terms of using mathematics in everyday life-situations 

such as personal finance, or being an informed democratic citizen. The Quantway curriculum 

represents a very mathematical conception of QL, and we have seen that one of its major 

purposes is to help students reason with mathematics outside the classroom. At the same time, 

one of the goals of Quantway is to prepare students for further academic study, and it is this goal 

that originally motivated the present research. One of the areas of further academic study that 

many Quantway students encounter in community colleges is the study of science. 

 There is a growing cognizance that many students who take undergraduate science 

courses are unprepared for the quantitative demands of those courses (Ganter & Haver, 2011; 

Speth et al., 2010). Most research on this phenomenon has centered on the plight of students 

majoring in scientific fields such as physics, pre-engineering, or pre-med (e.g. Bassok & 

Holyoak, 1989; Frith & Gunston, 2011; Rheinlander & Wallace, 2011;). Less represented in the 

existing literature is a body of work on the quantitative demands of science courses taken by the 

general population of non-STEM majors. Nevertheless, there is a sufficient research base on 

general education science courses that has been instrumental in shaping the conceptual 

framework for this study. 
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Mathematics, Statistics, and Science Courses 

 A majority of the nation’s undergraduates are required to complete general science 

courses (Follette, McCarthy, Dokter, Buxner, & Prather, 2015), which include survey courses in 

both the physical and life sciences. There is some evidence that quantitative literacy and science 

literacy represents a reflexive relationship. For example, Shamos (1995) argued that without 

understanding the role of mathematical reasoning in science, a person could never fully 

appreciate the scope of scientific discovery. Alternately, several studies (Hathcoat, Sundre, & 

Johnson, 2015; Hester, Buxner, Elfring, & Nagy, 2014; Powell & Leveson, 2004; Speth et al., 

2010) indicate that general education science courses have the potential to improve students’ 

numerical skills. 

 Educators have long considered the role of mathematics in general science instruction 

(see Dewey, 1909; Miller, 1983; Rutherford & Ahlgren, 1991; Shamos, 1995). Indeed, Miller 

(1983,  2010) has argued for over thirty years that quantitative reasoning is necessary to make 

rational decisions about scientific problems. He cites a variety of scientific issues that face the 

average citizen, and which require a non-trivial amount of quantitative reasoning. These issues 

ranged from the fluoridation of drinking water, to the use of genetically modified foods, to 

carbon emissions caps on industry, to containing the spread of disease. Miller (2010) estimated 

that only 28 percent of American adults have enough knowledge of science to make sense of the 

Science section of the New York Times, and one reason for this low incidence of scientific 

literacy is the relatively low percent of adults who can read and interpret numerical information. 

 Mayes, Peterson, and Bonilla (2013) suggested that science literacy includes the ability to 

think in terms of both macro and micro scales. For example, a scientifically literate person 

should be able to consider environmental issues at both the molecular scale (what exactly is 



30 
 

carbon dioxide?), and the global scale (what effect does climate change have on island nations?). 

Viewing scientific phenomena at both scales involves skills such as estimation, pattern 

recognition, modeling future events, measurement, number sense, proportional reasoning, and 

basic knowledge of statistics and probability. 

 What does a desire to increase levels of science literacy in the general population mean 

for college science courses? Trefil and Hazen (2010) note that many science courses, particularly 

those aimed at the general population of undergraduates, cover a broad range of scientific ideas 

without getting looking deeply at any particular topic . A greater focus is placed on giving 

students sufficient knowledge of the physical universe to deal with science issues that affect our 

daily lives, and also to develop a desire to further study science.  

 Creating a science curriculum that will prepare students to deal with scientific issues 

throughout their lives seems to require some prophetic abilities. As Miller (2010) asserts, it is 

somewhat challenging to prepare students to deal with future scientific ideas when we don’t 

know what ideas will arise over the next few decades. Few of today’s citizens learned about the 

human genome project in school—it didn’t exist—yet genetics is a major theme in today’s 

scientific discussions and even appears in elementary school science standards (NGSS, 2013).  

Many first-year undergraduate science courses, particularly those aimed at non-science majors, 

appear to deliver a blend of training in disciplinary-specific techniques, and scientific reasoning 

skills. Table 2 summarizes previous research on the quantitative components that play a role in a 

selection of such courses. 
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Table 2. 
 
Quantitative components of first-year college science courses 
Study 
 

Discipline  Quantitative Components 

Downs & 
Liben 
(1991) 

Geosciences Understanding different map projections 
Scaling 

 
Dyche et al. 
(1993) 

Astronomy Units of measurement (astronomical distances) 
 

Chang 
(1999) 

Geosciences Spatial reasoning (kinetic-molecular theory) 
 

Lake (1999) Life Sciences Data analysis and representation 
Fitting a line to a scatter plot 
 

Phoenix 
(1999) 

Life Sciences  Performing and simplifying arithmetic calculations 
Mentally estimating answers 
Checking to see if an answer is within reasonable bounds 
Manipulating algebraic expressions 
Using exponents and logarithms 
Scientific notation 
 

Slater & 
Adams 
(2002) 

Astronomy Basic arithmetic 
Comparing graphical representations 
Logical reasoning 
Algebraic manipulation 
 

Black 
(2005) 

Earth Sciences Interpreting visual representations of data 
Scientific notation and geologic time 
Scale models 
Spatial reasoning 
 

Schapira et 
al. (2008) 

Health sciences Basic arithmetic 
Interpreting graphs 
Probability and chance 
Understanding uncertainty 
Variation in outcomes 
Estimation 
 

Speth et al. 
(2010) 

Biology Basic arithmetic (averages, percentages, frequencies, and 
proportions) 
Representing data 
Interpret simple statistics (error bars and trendlines) 
Experimental design 
Hypothesis testing 
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 It is worth noting that several of the authors listed in Table 2 note that the students who 

take undergraduate science courses frequently suffer from a weak foundation in quantitative 

reasoning. Rheinlander and Wallace (2011) report that the ability to model change is a common 

theme across all biological sciences, but that many students are not prepared for either creating 

or interpreting even linear models. Black (2005) and Chang (1999) separately report common 

earth science misconceptions (e.g. that the earth’s shadow causes the phases of the moon) that 

are due to weak spatial reasoning skills.  

 In terms of this study, the value of understanding this body of literature lies in forming 

conjectures about the mathematical/statistical elements of Quantway that might appear in 

participants’ general education science courses. In summarizing the literature above, we can see 

that there are multiple elements of QL related to science, including (1) the ability to carefully 

measure and comprehend quantities, (2) basic number sense including orders of magnitude and 

the ability to interpret both large and small numbers, (3) algebraic and proportional reasoning, 

(4) descriptive statistics, (5) familiarity with the language of uncertainty and the ability to reason 

about chance, (6) the ability to estimate those things which cannot easily be easily measured, and 

(7) understanding how the geometry of shapes and scaling influences natural processes and 

phenomena. Such knowledge acts as a window into general science classes, and served as a 

formative component of the conceptual framework used throughout this study.  

 Earlier, I noted that listing specific mathematical/statistical components is only one way 

to consider quantitative literacy or, for that matter, the quantitative demands of science courses. 

Steen’s (2004) suggestion that QL includes an appreciation of flexible reasoning abilities leads 

us to consider an entirely different dimension to QL, namely, levels of QL-demand. 
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Levels of QL Demand 

 It has been said that many academic courses, ranging from the humanities to law (Frith, 

et al., 2010) place significant quantitative literacy demands on learners. Disciplines such as 

Engineering make complex demands, not just in terms of mathematics, but also QL (Rheinlander 

& Wallace, 2011). Whereas the mathematical elements of certain science courses (i.e. physics 

for engineers) are well understood, the quantitative literacy demands of many academic courses 

are often un-stated, or not explicitly recognized (Macdonald & Bailey, 2000). The previous 

section summarized research into the mathematical/statistical components related to QL that 

have been reported in a variety of science courses. Yet defining the QL demand of a course 

simply as a list of mathematical topics only tells part of the story. 

 How else might we characterize the QL demands of academic courses? Frith and Prince 

(2009) created a taxonomy (Figure 9) by which any academic task might be analyzed in terms of 

the kinds of thinking and reasoning it requires. The authors define a quantitative literacy event as 

any classroom task, homework assignment, laboratory experience, or classroom discussion 

involving quantitative reasoning. Each event carries with it opportunities for students to think 

and reason quantitatively, regardless of the actual mathematical tools required by the task. Frith 

and Prince (2009) describe six levels of quantitative literacy demand that may exist within an 

academic task: Knowing, Identifying and Distinguishing, Deriving Meaning, Applying 

Mathematical Techniques, and Expressing Quantitative Concepts.  

 To date, very little research exists on identifying the levels of quantitative literacy 

demand in courses across the general undergraduate curriculum. Instructors often equate 

quantitative literacy demands with doing calculations, and therefore fail to recognize the 

substantial cognitive requirements certain tasks place on students with respect to QL (Frith & 
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Prince, 2009). Specifying the various demands that different tasks place on students’ cognitive 

processes is important in the larger context of this study. For example, Mesa (2012) notes that 

many community college instructors, in the absence of data, are forced to make assumptions 

about the kinds of reasoning that classroom tasks will require. Finding ways to be explicit about 

the QL demands of tasks can only help this situation. 

 Frith and Prince (2009) acknowledge that many levels can exist simultaneously within 

the same quantitative literacy event. Nevertheless, as I began this study, I conjectured that there 

are fewer opportunities for students to engage in higher order thinking and expressing 

quantitative concepts within a general science course, than there are for lower levels such as 

knowing, or identifying and distinguishing. Furthermore, tasks that involve higher order thinking 

are important for this study, because Quantway claims to prepare students to synthesize 

information, reason logically, make and interpret conjectures, and evaluate the adequacy of 

solutions. Such actions relate to the idea of becoming “critically aware” (Johnston, 2007, p. 53).  

 It is not at all certain that community college students have opportunities to engage in 

higher order thinking in general education science courses, or if there is any relationship between 

the kinds of reasoning practiced in tasks throughout a QL course, and that which is required by 

tasks in students’ subsequent coursework. Stein, Grover, and Henningsen (1996) note that an 

important distinction in research on academic tasks is the differences between tasks that engage 

students at a surface level and those that engage students at deeper levels. The Frith & Prince 

taxonomy is one lens that researchers can use to see this distinction more clearly.  
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 It is important for the reader to know that the only accounts of the Frith & Prince (2009) 

taxonomy in published research involve applying the taxonomy to written curriculum 

documents. While important, the written curriculum only represents one perspective on any 

academic task. Remillard (2005) notes that teachers are more than conduits who convey 

curriculum to students, and therefore the written curriculum can differ significantly from the 

enacted curriculum. Furthermore, Jansen (2011) and others (e.g. Goodlad, 1979) note that 

students also mediate curriculum, resulting in a received curriculum that may differ based on 

Table 3.  
Levels of QL-demand (Frith & Prince, 2009, p. 89) 
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personal student characteristics. This study will represent a first attempt at applying the Frith and 

Prince taxonomy of quantitative literacy demand levels to student and instructor descriptions of 

science tasks. 

 There remains one final lens that I wish to discuss before moving to a summary and 

presentation of a conceptual framework. Part of this dissertation research relied on the ability of 

students or instructors to report connections between tasks in one academic experience 

(Quantway) and those in another (a subsequent science course). Is it even reasonable to expect 

them to make and report such connections at all? If so, how might we characterize the ways in 

which students make such connections? 

Bridging Mathematics and Science: How Students Connect Tasks 

 One of the most persistent results in mathematics education studies is that students who 

solve problems in one area are often unable to transfer their conceptual or procedural knowledge 

to solve similar problems in other areas (Bassok & Holyoak, 1989). Such results are 

disappointing because one goal of mathematics education is to impart knowledge that can be 

applied to situations other than those in which the material was originally taught. Quantitative 

literacy is inherently tied to the idea of preparing students to apply quantitative techniques to 

problems that exist outside the mathematics classroom. Knowing how to provide classroom 

experiences that equip students to develop general principles for making sense of quantitatively 

complex situations, without providing instruction in every specific context imaginable, is an 

important and enduring problem in our field (Lobato & Siebert, 2002).  

 Why is the problem of knowledge transfer so intractable? The problem certainly does not 

suffer from lack of attention. As early as 1906, Thorndike discussed the transfer problem, 

suggesting there is no reason to expect that improving one mental function should improve 
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others closely related to it. Whitehead (1929) noted students’ inability to use appropriate 

mathematics across similar situations, and referred to the phenomena as “fossilized behavior”. 

Vygotsky (1978) argued that many students’ knowledge of school mathematics was “inert”, 

because they could not apply it to situations beyond its original context. Lave (1988) sparked a 

renewed interest in the theoretical underpinnings of knowledge transfer, eventually leading 

researchers to study how language, social activity, and cultural artifacts mediate transfer (e.g. 

Greeno, Smith & Moore, 1993; Pea, 1987). Nevertheless, for reasons still shrouded in mystery, 

even very proficient students do not readily transfer newly acquired skills to new settings 

(Barnett & Ceci, 2002). Important for both the conceptual framework and methodology of this 

study, literature on situated cognition (Cobb, 1988;  Cobb & Bowers, 1999; Greeno, 1991) 

indicates that student memory is episodic and inherently tied to the environment in which 

learning occurs. 

 In this study, I sought to understand the connections Quantway students make between 

what they learned from tasks in their QL course, and new tasks in a general education science 

course. A primary method for generating data (discussed at length in the next chapter) was to 

give students a task from Quantway and ask them to think of a similar task in their science 

course. Part of my intent was to take advantage of students’ episodic memory. In order to make 

such connections, the students would need to recognize similar components in different contexts. 

During the data analysis phase, I realized that student recognition of QL components was 

mediated by several interesting factors. Furthermore, a student might make a connection between 

their science course and their QL course in various ways. This led me to amend the conceptual 

framework to permit categorization of student connections. 

 Previous transfer studies suggest that there are several ways in which students might 
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describe a connection between two tasks: They might do so spontaneously, with no prompting 

from the interviewer (or classroom teacher, as the case may be), or they might make a connection 

only after prompts that hint to the existence of a similarity between two situations (e.g., “this 

stock market task resembles the racetrack task you already know,” Ceci & Ruiz, 1993, p. 177). 

Gick and Holyoak (1980) and Reed (1974) have noted effectiveness of simply pointing out the 

existence of a connection between two problems when asking students to transfer knowledge 

across contexts. There is no guarantee, however, that a student will make a connection even with 

prompting from the researcher. Furthermore, a student might even make an inappropriate 

connection between two tasks (e.g. stating that two tasks involve proportional reasoning when in 

fact they do not). There may yet be other types of connections, but these formed the main source 

of bins into which I categorized student connection-making throughout the later phases of this 

dissertation. 

Overall Summary 

 This intent of this review of literature was to identify the key constructs that would 

inform my research, as well as position the current study in terms of existing theoretical and 

practical frames. I began this review by exploring characteristics of quantitative literacy, 

especially as it is operationalized in the Quantway curriculum. Although QL is inherently tied to 

context, the Quantway curriculum includes some broad mathematical/statistical categories 

including algebraic reasoning, basic numeracy, geometric reasoning, and data analysis.  

 A major purpose of this present dissertation is to help describe the academic experiences 

of Quantway students after they complete their QL coursework. One of the natural areas in 

which we might expect elements of QL to re-surface is in these students’ science courses. A brief 

review of literature on the quantitative aspects of general education science courses revealed a 
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tentative list of QL components that might reasonably appear in the science courses taken by 

Quantway students. This dissertation will help us understand how both students and science 

instructors perceive and report such components.  

 I reviewed a complementary lens through which to analyze QL that goes beyond listing 

of mathematical or statistics topics. This lens was suggested by the work of Frith & Prince 

(2009) and others who consider the quantitative literacy demand levels of undergraduate 

curricula. Their taxonomy has the potential to help both researchers and instructors bring specific 

attention to the QL-demands of academic tasks. I concluded with a brief review of literature with 

respect to the ways in which students might make connections (in short, transfer knowledge) 

across different academic courses. 

 In the remaining chapters of this dissertation, I explore the ways in which students and 

instructors perceive the existence of QL in general science courses, and the connections that 

students make between their QL course and subsequent courses. In order to analyze the study 

data, I propose the following conceptual framework. 

Conceptual Framework 

 The above review and critique of literature led to the development of a conceptual 

framework for the design and implementation of this dissertation. The conceptual framework 

helped to focus and shape the research process, informed methodological decisions, and 

influenced the data collection instruments I used. The conceptual framework also became a 

reservoir for the data I collected, providing the basis for various iterations of a coding scheme. 

Therefore, this framework provides an organizing structure both for reporting this study’s 

findings and for the analysis, interpretation, and synthesis of these findings. As is the case in 

many qualitative studies, the conceptual framework was essentially a working tool that both 
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guided the analysis of data, and remained flexible enough to adapt to emerging themes during 

analysis.  

 Each category of the conceptual framework is directly associated with the study’s 

research questions as outlined in the introduction. The first research question seeks to discover 

which aspects of a quantitative literacy course students would observe within the arena of a 

subsequent general education science course. The second research question seeks to discover 

which QL components general science instructors identify as existing within their respective 

courses. A logical starting place from which to categorize responses to these questions is a series 

of QL components found in the written curriculum for the students’ QL course. As stated earlier, 

there is much more involved with QL than specific mathematical or statistical components, 

including various affective structures and habits of mind. For the purposes of this study, 

however, it was necessary to limit my scope to more easily detected constructs. The specific 

categories listed below are based on the instructors’ lesson plans for each day in the two-

semester Quantway course.  

 The reader will note that the framework below represents a slightly different 

categorization of quantitative components from that which appears in the Quantway curriculum 

(summarized earlier). For instance, I have split apart data analysis and representation and 

reasoning about chance and uncertainty into their own categories. Statistical thinking certainly 

uses probabilistic descriptions of variability (Brown & Kass, 2009), but the literature cited on 

first-year science courses indicates that students encounter probability and data analysis in 

qualitatively different ways. For example, data analysis appears in conjunction with the ability to 

read and interpret graphical representations, while probabilistic reasoning appears in conjunction 

with interpreting statements about risk or chance. Furthermore, analysis of student and instructor 
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task-reports suggested that splitting this category into two would allow for a more fine-grained 

analysis. 

 The second significant choice I made in arranging the Quantway components was to 

highlight components of mathematical modeling among the major categories, instead of 

establishing modeling as its own conceptual category. This was done, for three important 

reasons: The main reason was to facilitate a more straightforward coding process. It was 

challenging to separate out precisely which Quantway tasks, and which science tasks were 

representative of modeling and which were not. Modeling and QL are so intertwined that parsing 

them would not only be an artificial process, but would distract from the larger goals of this 

dissertation.   

 The second reason was because in the data analysis phase of this dissertation, it became 

highly problematic to decide which science tasks included modeling and which did not,. After 

much discussion with two Quantway instructors and further attempts to code science tasks, it 

became clear that practically every science task included some aspect of modeling. This result 

would have had the effect of obscuring other patterns that might exist in the data.  

 Finally, most of the Quantway lessons that explicitly address mathematical modeling as a 

process are to be found in the last sections of the written curriculum. One of the Quantway 

instructors told me that she did not really cover that section of lessons during the semester in 

which my student participants were taking the course. Therefore, asking those students to make 

connections between modeling tasks in Quantway and tasks from their science courses seemed 

unreasonable. By not including mathematical modeling as a distinct category in my framework, 

however, I am unable to comment on how this important idea appeared in the data. A study of 

how modeling appears in science tasks would be valuable. 
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  The third and fourth research questions are intended to uncover the levels of quantitative 

literacy demand featured in student and instructor reports of tasks in general education science 

courses. To better analyze data with respect to these research questions, I relied on the taxonomy 

of quantitative literacy demand levels suggested by Frith & Prince (2009). In borrowing this 

taxonomy, I made a significant adaptation to achieve a better fit in terms of this present study.  

 The reader will note that I have only included five of the six QL-demand levels that 

appeared in the original taxonomy. In particular, I removed the level expressing quantitative 

concepts. This was also a methodological decision, and will be discussed further in the next 

chapter. The main reason was that, because the taxonomy was developed to analyze written 

curricular materials, this level did not translate well to an analysis of task descriptions given by 

students and instructors. 

 Finally, the methodology of this study relied on students to generate connections between 

tasks in Quantway and tasks in their general education science course. Although not represented 

in the original research questions as proposed at the start of this study, the data I collected 

revealed several interesting patterns with respect to student connection-making. In the 

framework below (Figure 4), I use four different categories to classify the types of connections 

students reported. This information provided a complementary lens through which to consider 

the research questions. 
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Conceptual Framework 

 Mathematical/Statistical Components of a QL Course  

• Basic Numeracy 
o Perform basic arithmetic 
o Demonstrate understanding of magnitude (including scientific notation) 
o Use estimation skills 
o Demonstrate measurement sense (including units, precision, accuracy, error) 
o Use and interpret percentages 
o Understand absolute and relative change 
o Check the reasonableness of calculations 

• Algebraic Reasoning 
o Understand the role of variables in an equation or relationship  
o Describe the effect that a change in one variable has on the others 
o Construct and use equations in one or more variables 
o Recognize covariant relationships (including direct and inverse variation) 
o Solve real world problems using the language and structure of algebra 
o Solve real world problems using ratios and proportions 

• Data Analysis and Representation 
o Compute basic statistics including measures of center and measures of spread 
o Evaluate statistics that appear in a written report 
o Determine sources of bias in data 
o Describe the difference between correlation and causation 
o Evaluate the sampling strategy used in a study 
o Read, interpret, and make decisions based on visual displays of quantitative 

information 
• Reasoning About Chance and Uncertainty 

o Use the language of probability to evaluate statements regarding risk or chance 
o Recognize the presence of uncertainty in measurements, predictions, or data 
o Apply rules of probability to solve real-life problems 
o Interpret statements involving conditional probability 
o Understand that mathematical models of real-life situations are subject to error  

• Spatial/Geometric Reasoning 
o Solve geometric problems involving area, perimeter, or volume 
o Understand and translate between different units of measurement 
o Solve problems involving geometric scaling 
o Attend to geometric information on graphs, images, and diagrams 

 

 

 

Figure 4. Conceptual Framework 
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Figure 4 (cont’d) 

Levels of quantitative literacy demand required by science tasks 

• Knowing 
o Understanding the meanings of verbal representations of quantitative terms and 

phrases 
o Knowing the conventions for the symbolic representations of quantitative 

information 
o Knowing the conventions for the representation of quantitative information on 

tables, charts, graphs, diagrams, and objects 
• Identifying and distinguishing 

o Identifying connections between different representations of quantitative 
information 

o Identifying the mathematics to be done and strategies to do it 
o Identifying relevant and irrelevant information in representations 

• Deriving meaning 
o Understanding a verbal description of a quantitative concept/situation/process 
o Deriving meaning from representations of data in context 
o Deriving meaning from graphical representations of relationships 
o Deriving meaning from diagrammatic representations of spatial entities 
o Translating between different representations 

• Applying mathematical techniques 
o Use mathematical techniques to solve a problem, or clarify understanding – for 

example, calculating, estimating, measuring, ordering, modeling, applying 
algebraic techniques, etc. 

• Higher order thinking 
o Synthesizing information and ideas from more than one source 
o Logical reasoning 
o Conjecturing 
o Interpreting, reflecting, evaluating 
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Figure 4 (cont’d) 

Type of connection made by student 

• Spontaneous Connection 
o Given a description of a Quantway task, the student recalls a science task that 

shares similar mathematical characteristics 
• Prompted Connection 

o Given a description of a Quantway task, and a description of a science task, the 
student is able to describe a mathematical connection 

• No Connection 
o Student is not able to describe a connection between a given Quantway task and a 

given science task. 
• Incorrect Connection 

o Given a description of a Quantway task, and a description of a science task, the 
student is able to describe a mathematical connection, but the connection is, 
overall, mathematically inaccurate. 
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CHAPTER III: METHODOLOGY 

Introduction 

 The purpose of this study was to explore with a group of community college students, 

and their science instructors, the quantitative literacy demands of general education science 

courses, and the ways in which students connect quantitative ideas across courses. I believe that 

a better understanding of this phenomenon would allow educators to proceed with a more 

informed perspective in terms of designing and implementing mathematics and science courses 

for non-STEM majors in two-year colleges. In seeking to understand this phenomenon, the study 

addressed four research questions: (a) Which mathematical/statistical components of a specific 

QL course (Quantway) do students report in tasks from subsequent general education science 

courses? (b) Which mathematical/statistical components of a specific QL course (Quantway) are 

to be found in instructor descriptions of tasks in general education science courses? (c) What 

levels of QL-demand characterize student descriptions of tasks in subsequent general education 

science courses? (d) What levels of QL-demand characterize instructor descriptions of tasks in 

general education science courses? 

 This chapter describes the study’s research methodology and includes discussions related 

to the following areas: (a) rationale for the research approach, (b) description of the research 

participants, (c) summary of information needed to answer the research questions, (d) overview 

of research design, (e) methods of data collection, (f) methods for analysis and synthesis of data, 

(g) ethical considerations, (h) issues of trustworthiness, and (i) limitations of the study. The 

chapter concludes with a brief summary.  

Rationale for Qualitative Research Design 

 In a broad sense, qualitative educational research is grounded in a philosophical position 
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that is primarily concerned with how we experience, interpret, and understand the world at a 

particular moment in time (Glesne, 2011). The intent of qualitative research is to examine a 

social situation by allowing the researcher to see the world through other’s eyes, and to achieve a 

holistic understanding of phenomena (Schram, 2003; Schwandt, 2000). Qualitative methodology 

emphasizes discovery and descriptions, with a general focus on distilling and interpreting the 

meaning behind human experiences (Bogdan & Biklen, 2003). This focus largely contrasts with 

that of quantitative research, in which the intent is usually to test hypotheses, establish facts, 

distinguish relationships between variables, and make generalized predictions based on data.  

 Early in the formation of my ideas for this dissertation, I realized that quantitative 

methods would be unlikely to elicit the kinds of rich data necessary to address the proposed 

research questions. Instead, I came to see that various features of qualitative research would fit 

well with my ideas for the study. Some of these features included (a) understanding the processes 

by which events occur, (b) developing an understanding of a phenomenon that is situated in 

context, (c) facilitating meaningful interaction between the researcher and the research 

participants, (d) adopting an interpretive stance, and importantly, (e) maintaining design 

flexibility. Finally, qualitative methods are often useful when exploring phenomena around 

which there is little existing research (Glesne, 2011). 

Rationale for Case Study Methodology 

 Within the overarching framework of qualitative methodology, this study was well suited 

for a case study design. Case study is a research methodology that provides a rich description 

and analysis of a phenomenon social unit, or system bounded by time or place (Cresswell, 2013; 

Stake, 1995). In particular, case study is an ideal design for understanding and interpreting 

educational phenomena. As Merriam (1998) states [italics added], 
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A case study is employed to gain an in-depth understanding of the situation and 
meaning for those involved. The interest in the process rather than outcomes, in 
context rather than a specific variable [and] in discovery rather than confirmation. 
Insights gleaned from case studies can directly influence policy, practice, and 
future research (p. 19). 

 
 The present research fits well with Merriam’s criteria because I sought to understand how 

and when community college students and instructors connect quantitative literacy with general 

education science courses, and the relationships students themselves perceive between those 

educational experiences. There are several different types of case study, including heuristic, 

descriptive and particularistic (Merriam, 1998). The specific methodology I chose for this study 

was comparative case study, which has its roots in the field of anthropology, and which Guba 

and Lincoln (1981, p. 119) describe as useful for “interpreting the meaning of… descriptive data 

in terms of cultural norms…community values, deep-seated attitudes and notions”.  

The Research Sample 

 A purposeful sampling procedure was used to select the study participants. Purposeful 

sampling is a method that is typical of case study methodology, and is used to discover as great a 

variety of information about the phenomenon of interest as possible (Glesne, 2011). As a 

researcher, I was interested in finding individuals who experienced quantitative literacy (QL) 

instruction as part of their community college mathematics coursework, and who would be able 

to speak about their experiences in a subsequent general education science course. The criterion 

for selection of research participants was as follows: First, all participants had passed (with a 

grade of C- or higher) a two-semester sequence in quantitative literacy, called Quantway 

(Carnegie Foundation for the Advancement of Teaching, 2012) in Spring 2015 at a large urban 

community college in the Midwest. Second, all participants were still enrolled at that same 
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community college, and were scheduled to take a science course to fulfill general education 

(non-major) requirements in Fall 2015. I wanted to find students who were taking a variety of 

different science courses, not in an attempt to generalize my findings across science courses, but 

to allow for as wide a variety of student perspectives as possible. This multiplicity of 

perspectives, I hoped, would reveal many connections between QL instruction and community 

college science courses for non-STEM majors. 

 The choice to only recruit students enrolled at a specific community college was made in 

order to secure participants who had experienced roughly the same instantiation of a QL 

curriculum. As discussed in the previous chapter, there is no standard definition of what counts 

as QL in colleges, and therefore a QL course at one institution may look quite different from a 

course at a different institution. Although I could have studied the experiences of students with a 

variety of QL curriculum, Quantway had several factors in its favor: It is the largest (by 

enrollment) QL program offered in the country, which made finding a research site more 

straightforward. Quantway is also a well-established program, and many future readers of my 

work will be familiar with it. The Carnegie Foundation has built a substantial professional 

development network in which community college instructors receive training and course 

materials that are intended to create a relatively consistent curriculum across the country. Finally, 

I already had a working relationship with two Quantway instructors, who were able to put me in 

contact with representatives from the Carnegie Foundation. These contacts proved vital in 

securing copies of the written curriculum for Quantway.  

 The final list of research participants included six community college students and the 

instructors of their general science courses. Two of the students were enrolled in the same 

section of an introductory astronomy course. Purposeful selection was also based on variation 
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across certain distinguishing characteristics. Although all participants completed Quantway, 

there were differences among them including gender, previous collegiate mathematics 

experiences (other than Quantway), career aspirations, and age. The students were enrolled in the 

following general education science courses for the duration of this study: Introduction to 

Astronomy, Principles of Geology, World Geography, Human Anatomy & Physiology, and 

Cellular Biology. 

 In Summer 2015, I recruited students through an intermediary–their Quantway instructors. 

I met with the Quantway instructor at each campus and explained the purpose and nature of my 

research. I then sent the Quantway instructors a letter asking for volunteers, which they sent to 

their former students on my behalf. Eleven students responded to this email, and I sent them a 

brief demographic survey (Appendix B). Ten students returned the survey, and of those ten, 

seven were enrolled in a science course in Fall, 2015. Before the semester began, I emailed the 

students to ensure their participation in the research program. One of the students had changed 

his plans with respect to his class schedule and was no longer taking a science course. The 

remaining six agreed to participate in the research program (Table 4), and I began the process of 

scheduling initial interviews. 

Participant Descriptions 

 Carol is a white woman in her second year of college. She was the youngest participant in 

the study, and had been homeschooled throughout high school. In our first interview, she 

discussed her desire to become an elementary school teacher, and her plans to transfer to a four-

year private college. Carol described herself as a good student, who had always done well in 

mathematics in high school. Her college placement score had been just high enough to qualify 

for college algebra, but her advisor encouraged her to take the Quantway sequence. At the time 
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of our interviews, Carol was unsure whether or not she would be able to transfer her credits from 

Quantway to the four-year college. 

 Gary is an African-American man in his mid-twenties, who has been in and out of college 

for seven years. During those years he had changed his major twice, worked different jobs, and 

even considered a military career. At the time of our first interview, he was planning to become a 

paramedic or other first responder. He had joined a volunteer fire department and was trying to 

finish an associate’s degree so he could begin studying to become a paramedic. He told me that 

mathematics had always been a struggle for him, but that he really enjoyed the Quantway 

sequence. 

 Kelsey is a white woman in her early twenties, pursing a career in physical therapy. She 

was excited to participate in this study, and emailed me several times before our first interview to 

make sure she had done everything necessary to participate. Throughout our interviews, she 

often spoke with enthusiasm about her experiences in Quantway. She was in her final semester at 

the community college and was preparing to transfer to a state university. 

 Erica is a white woman in her early twenties. She was soft-spoken, and often apologetic 

about her mathematical abilities. She told me that she was interested in getting into the film 

industry, and had already worked on one independent film while in college. In our first interview, 

she told me that she had liked mathematics until middle school, but struggled in high school 

algebra. After that, she claimed, she had only bad experiences with mathematics until taking the 

Quantway sequence.  

 Daliah is an African-American woman in her early twenties, who was attending 

community college part-time while working as a teller at a local bank. She was attempting to 

complete an associate’s degree in finance, and was taking a biology class simply because it fit 
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her schedule. She told me that she was an average student in high school, but had found 

mathematics to be her most difficult subject. In our first interview, Daliah told me plainly that 

she “hated math”, but had enjoyed both the content of Quantway, and her instructor. 

 Heather is a white woman in her early twenties, with a passion for gourmet cooking and 

entertaining. She told me she wanted to pursue a career in the hospitality industry, but was 

unsure exactly what aspect of the industry interested her the most. In high school, Heather had 

disliked mathematics until her senior year when she “finally had a great teacher”. Since then, she 

told me that she enjoyed seeing connections between mathematics and her everyday life. As 

Heather told me, “there’s a lot of math in cooking”. 

Table 4. 
 
Student participant matrix 

Name Gender 
Previous College 

Math Courses Science Course Career Aspiration Age 

Carol F Quantway 
Principles of 

Geology 
Elementary 
Education 19 

Gary M 
Quantway and 

College Algebra 
Introduction to 

Astronomy Associate of Arts 26 

Kelsey F 
Quantway and 

College Algebra 
Human Anatomy 
and Physiology Physical Therapy 21 

Erica F Quantway 
Introduction to 

Astronomy Film Studies 20 

Daliah F 
Quantway and 

College Algebra Cellular Biology Finance 20 

Heather F Quantway 
World 

Geography 
Hospitality 

Services 22 
 

 Once I had secured the student participants, and knew which sections of their science 

courses they planned to take, I contacted the instructors of those courses. All five of the 

instructors agreed to participate in the research program. I collected demographic information 
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using a survey (Appendix C), and their demographics are summarized below (Table 5). The 

instructors varied in age and experience. The most senior instructor had been teaching courses in 

her discipline since completing graduate school in the 1981. Three were part-time adjunct 

instructors, and two of those were also teaching courses at a different community college. In 

order to help the reader remember which instructor taught each course, I chose pseudonyms that 

reflect their respective disciplines.  

Table 5. 

Instructor participant matrix 

Name Gender Course taught 
Years teaching 

this course Job description 

Prof. Geol F Principles of Geology 15 
Associate Professor of 

Geology 

Prof. Astro F 
Introduction to 

Astronomy 3.5 
Adjunct Faculty, Physics 

Department 

Prof. Physio M 
Human Anatomy and 

Physiology 7 Lecturer of Biology 

Prof. Cell M Cellular Biology 4 
Associate Professor of 

Biology 

Prof. Geog. F World Geography 6 
Adjunct Professor, Earth 

Science 

     
 

Information Needed to Conduct the Study 

 This multicase study focused on the experiences of six community college students in a 

large urban community college in the Midwest. In seeking to understand the connections these 

students (and their science instructors) made between quantitative literacy instruction and 

general science instruction, I developed four research questions. To answer these questions, I 
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developed a conceptual framework, and determined what information would be needed to 

answer the questions. This information fell roughly into four categories: (a) contextual, (b) 

perceptual, (c) demographic, and (d) theoretical. Contextual information included descriptions of 

the setting in which the study occurred, including the cultural and environmental factors. These 

factors include history of efforts in this particular community college to improve students’ QL, 

the vision and objectives of the Quantway course, the organizational structure with respect to 

pre-requisite and co-requisite course requirements, and a description of the curriculum used in 

both Quantway and science courses. Perceptual information included community college 

students’ perceptions of how and when QL components surfaced in their general science courses, 

the levels of quantitative literacy demand required by general science courses, and reports from 

general science instructors as to the quantitative literacy aspects of these courses. Demographic 

information included information pertaining to study participants, including major, previous 

mathematical experiences, age, gender and ethnicity. Furthermore, I conducted an ongoing 

review of literature to provide theoretical grounding for this study. 

Overview of the Research Design 

 The following list summarizes the steps used to carry out this research, including early 

groundwork from the 2014 – 2015 academic year. Following this list is a more in-depth 

discussion of each step. 

1.  A review of selected literature was conducted to study the contributions of other 

 researchers in the broad areas of quantitative literacy instruction, general education 

 science instruction, developmental mathematics in community colleges, and knowledge 

 transfer between mathematics and science courses. 

2.  Contextual information was gathered through analysis of the written Quantway 
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 curriculum (Carnegie Foundation for the Advancement of Teaching, 2012) to uncover the 

 objectives and vision for the course. Additional contextual information was gathered with 

 respect to how Quantway fits in the larger web of course offerings at the research site.  

3.  A pilot study was conducted to determine: (a) whether it was reasonable to expect 

 community college students to notice aspects of a previous QL course during a general 

 education science course, (b) the types of connections students might make between these 

 educational experiences, (c) the topics within a general science course that might require 

 students to exercise their quantitative literacy, and (d) science instructor perceptions of 

 QL in their own courses. 

4.  Following the proposal defense, I acquired IRB approval to proceed with the research. 

 This process involved outlining all procedures and processes needed to ensure adherence 

 to standards for conducting research involving human participants, including participants’ 

 confidentiality and informed consent.  

5.  Potential research participants were contacted, using two Quantway instructors as 

 intermediaries. Those students who agreed to participate were sent a brief electronic 

 survey. This survey was designed to collect demographic data and to ascertain which 

 science courses they planned to take. 

6.   Six student participants were identified and the researcher invited their general science 

 instructors to participate in the research. Two of the students were took same section of a 

 general science course, so only five instructors were included. All five instructors agreed 

 to participate in the research. 

7.  Semistructured, in-depth interviews were conducted with five community college science 

 instructors early in Fall 2015 
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8.  Instructor interview responses were analyzed within and across courses. 

9.  Semistructured, in-depth interviews were conducted with six community college students 

 during early Fall, 2015 

10. Student interview responses were analyzed within and across cases. 

11. A second round of interviews was conducted with six community college students to 

 follow up on issues that arose during the first interview, and provide additional 

 opportunities for participants to report connections. 

12. A focus-group was conducted with four of the six student participants to cross-check data 

collected through interviews, and further discuss levels of quantitative literacy demands of 

their science courses. 

Prior to the Study 

Literature Review 

 An ongoing and selective review of literature was conducted to inform this study. Three 

areas of literature were identified: (a) Quantitative literacy, with a specific focus on how QL is 

operationalized through the Quantway curriculum, (b) Research reports of the quantitative 

demands of general science courses, with a focus on potential overlap with the Quantway 

curriculum, and (c) Research and literature on factors that influence student connection-making 

across mathematics and science courses. The focus of the review was to gain a better 

understanding of the aspects of QL that appeared in Quantway, the conditions under which 

students might make connections between Quantway and their subsequent general science 

courses, and the likelihood of QL appearing in general education science courses in the first 

place. In addition, the review pointed to gaps in our knowledge of the purpose of QL instruction 

for students, particularly with respect to the claim that QL courses prepare students for the 
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quantitative demands of subsequent academic courses. 

Contextual Information 

 Following the literature review, I identified a particular community college as a potential 

research site. This institution has a long track record of QL instruction, a large pool of students 

from which to draw research participants, and demonstrated an eagerness to work with me in 

conducting this study. I gathered information on the college’s demographics, enrollments in QL 

courses, pass rates in those courses, and other forms of demographic data. I collected information 

on the Quantway curriculum used in this institution, obtained a complete copy of the instructor’s 

materials from the publisher, observed a Quantway class, and had lengthy discussions with two 

Quantway instructors about course objectives and vision. I searched the written curriculum for 

prominent mathematical and statistical components, which formed an early coding scheme for 

pilot data. 

Pilot Study 

 In Spring 2015, I conducted a small pilot research project in which I interviewed three 

community college students and one community college science instructor. The purpose of this 

pilot study was threefold: First, I wanted to ascertain whether or not it was reasonable to expect 

students to make any connections whatsoever between their QL course and the science courses in 

which they were then enrolled. The students did, in fact, make several interesting connections. 

Second, I wished to test interview protocols on both students and an instructor. The process of 

interviewing led to important changes in the protocol, specifically in the examples I used to 

prompt students’ thinking, and in the language I used to communicate ideas from math education 

to instructors whose expertise lies in other areas. Finally, I wanted to use the results of the 

interviews to test my initial coding scheme. As a result of coding pilot data, I expanded certain 
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coding categories, and collapsed or refined others (see Appendix D for a complete record of 

changes to the coding scheme throughout this dissertation). 

IRB Approval 

 Following the literature review and pilot study, I developed and successfully defended a 

proposal for this study that included the background/context, problem statement, purpose 

statement, and research questions outlined in chapter one; a literature review similar to that 

included in Chapter 2; and the proposed methodological approach outlined in this chapter.  

 Once the proposal was successfully defended, the researcher applied for approval from 

the Michigan State University institutional review board for permission to conduct research 

involving human subjects. This application included a summary of the research proposal, 

including all data collection instruments and informed consent documents. The research was 

designated Exempt by the IRB. 

Data Collection Methods 

 Multiple data collection methods were used for attempting to gain an in-depth 

understanding of the phenomenon under study. In qualitative research, such methods add rigor, 

breadth and depth to the study and provide corroborative evidence for the claims made with 

respect to data (Creswell, 2013). Therefore, I relied on a number of different sources of data, 

including the pilot study, a demographic survey, document summaries, multiple rounds of 

individual interviews with students and instructors, and a focus group with students. 

 The interview was the primary method for data collection in this dissertation. There are 

three reasons why interviewing was chosen for this study: First, because of its potential to elicit 

rich, thick descriptions (Geertz, 1973). Second, the nature of semi-structured interviews allows 

the researcher to ask participants to clarify statements and probe for additional information. 
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Finally, a major benefit of collecting data through interviews is that they offer a potential to 

capture individual perspectives of events or experiences (Cresswell, 2013).  

 The interview is a fundamental tool in many forms of qualitative research (Glesne, 2011), 

because it is an attempt to understand the world from the point of view of the research participant, 

and to derive meaning from their life experiences. Patton (1990, p. 278) note, “qualitative 

interviewing begins with the assumption that the perspective of others is meaningful, knowable, 

and able to be made explicit”. In choosing this method of data collection, I was assuming that a 

legitimate way to gather data is by listening to the accounts told by actual students and 

instructors. My intention was to capture the meaning of their experiences, in their own words. 

 Interviewing, as a form of data collection, is not without limitations. Not all people are 

cooperative, not all articulate well, not all are equally perceptive, and not all reflect deeply on 

classroom experiences. The person conducting the interview must possess certain skills including 

tact, the ability to phrase questions well, the perception and inclination to follow-up on important 

points, the ability to probe for additional data, and to know when to move on. The interviewer 

must help the participant to feel comfortable and confident that his or her experiences matter, and 

that their confidentiality will be protected. Finally, interviews are not neutral tools of data 

collection but are inherently tied to the context in which they take place (Schwandt, 1997). This 

context includes both the physical location and time of day, as well as the time during the 

semester. For this study, I felt that the promises of semi-structured interviewing as a research 

tool outweighed its limitations. 

Interview Schedule and Pilot Interviews 

 With guidance from members of the dissertation committee, I used the study research 

questions to develop two sets of interview questions–one for use with instructors, and one for use 
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with students. I constructed a data use matrix to illustrate the relationship between the interview 

questions and the research questions. During a pilot study, the researcher conducted three 

interviews using the initial sets of questions. The preliminary themes that emerged from this pilot 

centered on students’ perceptions of QL components in their science courses, students’ 

perceptions of quantitative literacy demand required by their science courses, and instructor’s 

perceptions as to what aspects of QL appear in a science course. Based on responses from the 

pilot interviews, as well as feedback from the dissertation committee, the interview questions 

were adjusted to include more specific references to the Quantway curriculum, to make certain 

questions more open-ended, and to include specific prompts for additional information. These 

adaptations allowed the researcher opportunities to follow new directions that might emerge 

during an interview. The final interview protocols for students are included in Appendices E, F, 

and G and the final instructor interview protocol is included in Appendix H. 

Interview Process 

 Interviews with instructors took place during August and September 2015, while student 

interviews took place between September and December, 2015. Before the commencement of 

each interview, the participant was asked to read and sign an informed consent form (Appendix 

I) required for participation in this study. All interviews were conducted face-to-face and were 

digitally recorded in their entirety. Each participant was enumerated $50 per interview (in the 

form of a VISA gift card), using funds provided by a dissertation continuation fellowship from 

the College of Natural Sciences at Michigan State University. During the interview, the 

researcher kept field notes of the conversation, and on completion of each interview the audio 

was transcribed in clean verbatim. Field notes included references that participants made to 

specific textbook pages, assignments and diagrams. I purchased a copy of each science textbook 
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so that I might refer to it when re-reading the transcripts. 

 The logic of inquiry necessitated that the instructor interviews precede the student 

interviews. This is because the student interview protocol calls for the researcher to occasionally 

prompt the student for their thoughts about specific tasks in the general science course (e.g. 

carbon dating, plate tectonics, the flow of blood through a constriction). I am not an expert on 

fields such as astronomy or human physiology, and neither did I have much prior knowledge as 

to which topics constitute a course in introductory astronomy (for example) at this particular 

community college. Therefore it was necessary to first elicit from the instructors a list of topics 

that they felt contained important QL components. These instructor reports allowed the 

researcher to more effectively probe students about their experiences in general education 

science classes during the student interviews and focus group.  

Focus Group 

 Group interviews contain elements of both individual interviews and participant 

observation (Glesne, 2011) but stand apart as their own qualitative research method 

(Liamputtong, 2011). A focus group is essentially a group discussion focused on a single theme 

(Cresswell, 2013). The goal of a focus group is to generate open, impromptu conversations that 

address the selected topic in depth. Liamputtong (2011) states that researchers can obtain a more 

complete and revealing understanding of issues when the discussion takes place in an 

atmosphere that fosters a range of opinions. As such, focus groups are planned and structured 

around specific questions, but are also flexible in responding to the direction of the participants. 

Krueger and Casey (2009) list several uses for focus groups that made this choice of data 

collection a good fit for this study. These include: (a) the potential to elicit a range of feelings, 

opinions, and ideas, (b) the chance to understand differences in perspectives, (c) the opportunity 
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to drill down into specific factors that influence opinions, and (d) the capability of the group to 

generate new ideas. 

 As with any data collection instrument, focus groups also possess certain limitations. One 

of these limitations is the possibility that group think (Conrad & Serlin, 2006) will occur. Other 

limitations include logistical difficulties in organizing a meeting around multiple participants’ 

schedules, and the likelihood that one or more invited participants will not be able to attend. 

Finally, group conversations require that the researcher balance conversation management and 

the need to extract data with the desire to value the perspectives of all participants. This requires 

strong facilitation and inter-personal skills. 

 At the conclusion of all student interviews in early December, one focus group took place 

involving four of the six student research participants. All six students were invited to participate, 

but two were unable to find time in their schedules to attend. The group conversation lasted one 

hour and fifteen minutes. The purpose of the conversation was threefold: (a) to allow the students 

to add to their statements from individual interviews and thus provide additional data, (b) to 

explore the issue of QL demand levels in more depth, and (c) to provide a measure of 

trustworthiness and credibility to the study. Although the format was open-ended, a skeleton 

framework was used to facilitate the conversation (Appendix G). The framework hinged on two 

important issues: First, would students provide any additional instances in which QL arose 

during general science instruction that were not mentioned in previous interviews? Second, how 

would they themselves describe the levels of quantitative literacy demand required by specific 

tasks in their respective courses? 

Methods for Data Analysis and Synthesis 

 One persistent challenge throughout the phases of data collection, synthesis, and analysis 
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was to make sense of the sheer volume of data that arose through qualitative inquiry. My main 

concerns were to follow up on significant patterns and to remain faithful to the research plan as 

approved by the dissertation committee. This later concern became particularly challenging when 

faced with myriad paths over which to pursue interesting ideas. It required discipline to stick 

with the original research questions and many potential avenues of inquiry remain open, even at 

the writing of this dissertation. With respect to the former concern, to reduce the volume of data 

in a sensible way, Merriam (2014) advises researchers to conduct data analysis simultaneously 

with the process of data collection. In following this advice, I was better able to collect focused, 

manageable, and novel data. For example, by proactively analyzing a significant portion of the 

data from the first round of student interviews, I was able to ask more pointed questions in the 

second round. 

 The initial phase of analyzing data included the assignment of codes associated with the 

categories and descriptions of the conceptual framework outlined in the previous chapter. The 

researcher used Microsoft Excel to prepare spreadsheets that served as repositories for sections 

of transcribed data. One spreadsheet was created for each student research participant, and for 

each instructor participant. The spreadsheets were organized by the descriptors under each 

category of the conceptual framework. As the process of coding proceeded, the spreadsheets 

were enlarged to include new themes as they emerged from the data. 

Coding for QL: Mathematical/statistical Components 

 Transcripts were coded based on specific tasks, rather than line-by-line or turn-by-turn. 

For example, if a student began to tell me about a task involving carbon dating, I coded the entire 

conversation surrounding that same task as one unit of analysis. The same unit was often coded 

for multiple mathematical/statistical components. These components were taken from the 
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conceptual framework, and were organized into five broad categories according to the 

framework presented at the end of Chapter Two. These categories were: Basic Numeracy, 

Algebraic Reasoning, Data Analysis and Representation, Spatial/Geometric Reasoning, and 

Reasoning about Chance and Uncertainty. Each major category was composed of several 

specific sub-categories (see Appendix J for the full coding scheme). Below is a sample from an 

interview with Erica, to demonstrate how the coding scheme was employed (See Appendices K 

and L for sample segments of coded transcripts): 

Erica: When we talked about – the last thing we talked about was like the chances of 
there being life somewhere else in the universe, using the probability, like the universe is 
so big there probably is a chance that there’s some sort of life; maybe not intelligent life.  
But it actually takes a lot – like it has to be exact conditions for life to form because it’s a 
really strict formula for – 
 
IN: Strict, as in, what is necessary for life to form– 
 
Erica: Yeah.  Temperature, water, sun, heat and – 
 
IN: Right amount of gravity so we don’t – 
 
Erica: Yeah, so it’s kind of hard for that to happen but since the universe is so big, it’s 
probably like there is something. And we just guessed at some of the numbers, so it’s not 
exact, right? But it’s [the Universe] so large that when you multiply the number of 
planets, or whatever, you still would think there should be some life out there. 
 
 Here is how I coded this task, which I labeled the extra-terrestrial life task: 

 P1. (Use the language of probability to interpret statements regarding risk or chance) 
 P2. (Apply rules of probability to solve real-life problems) 
 P3. (Recognize the presence of uncertainty in measurements, predictions, or data) 
 N1. (Perform basic arithmetic) 
 N3. (Use estimation skills) 
 N5. (Use and interpret percentages) 
 
In terms of broader categories, the extraterrestrial life task is therefore coded as Basic Numeracy, 

and Reasoning about Chance and Uncertainty.  

 In analyzing all of the interview transcripts, it became helpful to name each task as it 
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appeared in student and instructor reports. This allowed me to compare same-task descriptions a 

student gave to those given by his/her instructor. For example, here is a segment of Professor 

Astro’s description of the extra-terrestrial life task: 

PA: I’m not sure they really, well maybe no one really does, but they don’t understand how 
 big the Universe really is. The sheer number of stars, planets, planetary systems–it’s 
 mind-boggling.  
 
IN:  And how do you help them make sense of that kind of scale, those numbers? 
 
PA:  Not very well! I mean, what does it mean that there are, oh, 1024 planets in the Universe? 
 Who knows what that number even means? 
 
IN:  Right, is that like the number of grains of sand on a beach, or– 
 
PA:  Right. It’s so big that, well, one activity I like to do with them is, especially if we have 
 some extra time, is to think about the possibility of life existing somewhere else in the 
 Universe. 
 
IN:  Oh, that’s really interesting. 
 
PA:  Yeah, and it’s a good way to help them interpret the sheer size of the Universe. Because 
 you take your different parameters, what percent of all planets are far enough from a star 
 to be warm enough to support life, but not too warm? What percent have the right 
 atmosphere? What percent have the right size? All these things. So we just put values on 
 these parameters, and the thing is, you can make them as small as you want. Really small 
 percentages. But when you consider the number of planets out there–well, the likelihood 
 is actually pretty decent. 
 
IN:  Really? 
 
PA:  Absolutely. But then this gets into a discussion of aliens, and someone mentioned [the 
 movie] Contact, and it turns into a fifteen-minute discussion. And the result is I don’t get 
 through all my slides. 
 
Here is how I coded this task for mathematical/statistical components: 

 P1. Use the language of probability to interpret statements regarding risk or chance 
 P2. Apply rules of probability to solve real-life problems 
 N1. Perform basic arithmetic 
 N2. Demonstrate understanding of magnitude (including scientific notation) 
 N3. Use estimation skills 
 N5. Use and interpret percentages 
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In terms of broader categories, the extraterrestrial life task is therefore coded as Basic Numeracy, 

and Reasoning about Chance and Uncertainty.  

 Coding by task is helpful because it allows the researcher to consider a natural unit of 

classroom activity (the task) rather than an arbitrary unit such as a spoken turn, or even single 

lines in a written transcript. The use of larger categories (such as Basic Numeracy) is helpful 

because they provide a “big picture” image of the mathematical/statistical demands of general 

science tasks, thus allowing the researcher to more easily observe broad trends, both within a 

single course, and across multiple science courses. Notwithstanding these benefits, coding by 

larger categories tends to obscure other aspects of the data that may be important. For example, 

in the above transcripts, Erica did not mention that one purpose of the task was to help make 

sense of very large numbers. The fact that she still mentioned the need for performing 

multiplication caused me to code the task for Basic Numeracy, but the types of numeracy in 

Erica’s description are not identical to the types mentioned by Professor Astro. 

 In reporting data in the following chapter, I will typically stick to larger categories and 

broad trends. In my own coding documents, however, I have the capability for a more fine-

grained analysis of sub-components, and I will occasionally bring this kind of secondary analysis 

to bear. 

Coding for Levels of QL-demand  

 Each task was also coded based on its level of QL-demand (as suggested by Frith & 

Prince, 2009). In their work, these authors described six levels of QL-demand, but as can be seen 

from the conceptual framework from the end of Chapter Two, I used only five of their levels in 

coding my data. In particular, I decided to eliminate the level Expressing Quantitative Concepts 

for the following reason: Frith and Prince (2009) originally designed this particular framework to 
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evaluate the QL demands of written science curriculum. Written curriculum was the only source 

of data in that paper, and in all subsequent papers where this framework appears (see Frith, 2011; 

Frith, 2012; Frith & Gunston, 2011; Frith et al., 2010). In examining written materials, it is 

logical to ask if a situation would require students to express quantitative concepts, or simply to 

consider information in a passive way. Frith and Prince (2009) note that not all curricular 

materials require this stage (e.g. the description of a biological process in a textbook for first-

year medical students did not require the reader to express anything–reading and understanding 

the diagram could be an entirely passive event from the perspective of the student).  

 In my study, however, I was only looking at reports of tasks, whether mentioned by an 

instructor or a student. Every task mentioned by a student or instructor required some action on 

the part of the students, and this action meant expressing a quantitative concept. Rather than code 

every task with this level, I eliminated it from the coding scheme, to provide better resolution as 

I focused on the other levels of QL-demand. 

 A second question I needed to answer with respect to the Frith & Prince (2009) 

framework was whether or not the six (now five in my adapted framework) represented a 

continuum. That is, if a task required a student to engage in a higher level, such as applying 

mathematical techniques, should I code that task as automatically requiring all the lower levels 

of QL-demand? Arguments might be made for both the affirmative and the negative. In their 

original paper, the authors treated the QL-demand levels as a continuum, although they did not 

provide an explicit theoretical reason for doing so. The task they chose as an example 

(hemoglobin and myoglobin binding curves) required all six levels of QL-demand, and the 

authors hypothesized how a students’ thinking might progress through the six levels, one at a 

time.  
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 In this dissertation, however, I do not apply the framework for QL-demands as if it were 

a continuum. Perhaps the strongest evidence against the continuum method lies in the notion that 

a student is capable of applying a mathematical technique (such as adding fractions) without 

deriving meaning, or even knowing the conventions for the symbolic representation of numbers. 

The classic case of Benny (Erlwanger, 1973) comes to mind as an example of a student who 

could apply mathematical techniques without understanding their meaning, but there are multiple 

instances of this in the mathematics education literature. Indeed, a driving motive behind the goal 

of teaching for conceptual understanding is that students frequently apply mathematical 

procedures without understanding what is going on (Hiebert & Lefevre, 1986). My personal 

experience as a high school teacher tends to support the idea that a student might engage with 

some levels of quantitative demand without first thinking through lower levels.  

 Finally, I explored later work by the original authors of the framework and found 

instances in which the framework was not applied as a continuum (e.g. Frith & Gunston, 2011). 

Given the authors’ own use of the framework in such papers, my own experiences as a classroom 

teacher, and the mathematics education literature on conceptual vs. procedural understanding, I 

decided (for this study) against treating the framework as a continuum. Thus, a task might be 

coded for higher order thinking, without needing to code it for applying mathematical techniques, 

or coded as applying mathematical techniques without having to code it for deriving meaning.  

Coding for Connection Types 

 When I coded the first instructor interviews, I only had codes based on mathematical and 

statistical components, and levels of QL-demand. After a first pass through the student 

interviews, it became apparent that several codes were too overlapping, and I collapsed similar 

codes (e.g. interpret percentages in a variety of contexts, and apply percentages to solve a real-
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life problem). It was during the data analysis phase that an entirely new category of coding, types 

of connections students make, became apparent. As referenced in the conceptual framework at 

the end of chapter two, I noticed four different ways in which students connected tasks in their 

general science course with a task from their QL course. The student might make the connection 

spontaneously, they might make a prompted connection, they might make an incorrect 

connection, or they might make no connection at all.  

 For example, here is how I applied this coding scheme to a segment of my discussion 

with Carol:  

IN: What about volume? If the Earth were a basketball- 
 
C: Oh, yeah we did that one. Calculating how big a sphere the inner core, outer core,  yeah. 
 
IN: So when you say how big a sphere? I mean, is the mantle a sphere? 
 
C: Well, I guess diameter. We had to figure the diameter inside the basketball. And we had 
 to convert from kilometers to centimeters or maybe  millimeters? Yeah. Millimeters. 
 
IN: And can you see a connection between this activity and the Quantway lesson I mentioned 
 about acreage in the city? 
 
C: So, yes. Once you point it out. Sure, they both have to do with, like, a scale?  I mean, 
 using a model at scale to make calculations. 
 
 In this exchange, I was probing to see how Carol might describe the similarities between 

a task from her QL course (in which she had to transfer information about the size of a city to a 

particular two-dimensional representation) and a task in her geology course (in which she had to 

sketch a model of the Earth’s interior as if it were a basketball). I coded this exchange as an 

example of a prompted connection, because I provided the science context before the student 

saw a connection to a task in her QL course. If Carol had volunteered the basketball scenario, 

without my probing, this task might have been coded as a spontaneous connection. 

 It is worth noting, at the risk of redundancy, that a students’ description of a single task 
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was coded in at least two different ways. The task was first coded for specific 

mathematical/statistical components, and then also coded by level of QL-demand. Finally, if the 

student made a connection between the task and Quantway, or if the researcher attempted to 

probe for such a connection (even if no connection was made), the exchange was coded for type 

of connection made. Not all tasks were coded for type of connection, because many descriptions 

of tasks arose while talking about other tasks, not as a result of the researcher first providing a 

specific task from Quantway. 

Document Summary 

 Frequently, during instructor and students interviews, a participant would direct my 

attention to physical documents to explain a science task. These were primarily textbooks or lab 

manuals, although instructors occasionally gave me copies of their syllabi and even assessments. 

Although I had not proposed to conduct document analysis as part of the research project, it 

became apparent that these documents offered contextual clues to help make sense of task 

reports. For example, students often pointed to specific graphs in their textbooks when 

describing science tasks. Within the written transcript, such references lack significant meaning 

because the reader cannot see the textbook page. I attempted to record the location of such 

references in my field notes.  

 Furthermore, the documents tended to shed light on the QL-demands of tasks. For 

example, when analyzing Kelsey’s description of the muscle contraction task, she referred to a 

specific graph as something she needed to comprehend in order to complete the task. Examining 

the graph closely reveals that in order to interpret it, the student would need to attend to two 

different units of scale. If I were to restrict my coding to strictly what Kelsey had verbalized, I 

would miss a significant QL demand of the task. 
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 Therefore, I decided to use a document as a source of data, but only if a student or 

instructor directly referenced it in an interview. In making this decision, I was placing my level 

of inference at one level beyond the literal words used by a participant. For each document that 

appeared in an interview, I completed a brief document summary form (Appendix M) that put 

each document in context, explained its significance, and gave a brief content summary. 

Inter-rater Reliability 

 I prepared two samples of transcribed interviews to test my refined coding scheme. I 

shared these samples, along with an initial list of codes and descriptors, with one of the 

Quantway instructors at the research site. Discussion with this instructor was extremely helpful 

in both confirming certain coding designations and providing fresh insights as to how certain 

phrases might indicate aspects of QL. In the sample transcriptions coded by the Quantway 

instructor and myself, inter-rater reliability was just over 85% (36/42 codes agreed). After yet 

another pass through the data, I asked a fellow graduate student to code sections of the 

transcripts using a refined coding scheme. This student coded for both mathematical/statistical 

components as well as QL-demand levels.  Inter-rater reliability between the fellow graduate 

student and myself was just over 87% (33/38 codes agreed). Both the Quantway instructor and 

the fellow graduate student assigned slightly more codes to each section of transcript than I did. 

This indicates that I was, perhaps, too conservative in assigning codes to the statements given by 

students and their science instructors.  

Synthesis 

 In general, the coding process breaks interview data into separate categories, so that the 

researcher can attend to the data in greater detail. This process was followed by a synthesis stage, 

which involved reconstructing the fragments to produce a holistic and integrated description. I 
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took an approach to synthesis that looked for patterns and themes that collectively described the 

research environment, including an exploration of contradictory instances that did not agree with 

a more general pattern. To accomplish this, I used a three-stage approach suggested by Glesne 

(2011). In the first stage, I examined and compared themes within categories. Next, I examined 

and compared themes across different categories. Finally, I compared and contrasted my results 

with respect to prior research on issues connected with the broader literature base. This is not to 

say that the three stages occurred in distinct chunks. Rather, I took an iterative approach 

throughout the synthesis stage that resulted in occasionally blending stages together, much like 

layers of rock tend to interlock at their boundaries.  

 After all the interviews were coded, I prepared written narratives based on each of the 

spreadsheets. These narratives were helpful in cross-examining the data. Based on a thorough 

analysis and synthesis of data, I was able to move forward with thinking about the broader 

implications of this research. I formed several conclusions, highlighted specific questions that 

remain unanswered, and proposed specific research-related recommendations. 

Ethical Considerations 

 Issues related to the protection of the participants are of concern in any research study 

(Schram, 2003). In the process of conducting social science research, it is the responsibility of 

the investigator to inform participants of their rights, and protect those rights. This study 

involved the assistance of many participants, and a basic premise of such work is that the 

participants are well informed about the purpose of the study. As issue of first order is the way I 

treated personal information about the participants. I did not expect that any serious ethical 

threats would arise with respect to any of the participants, but I nevertheless employed various 

strategies to ensure the protection of participants’ rights. 
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 I obtained informed consent from each participant throughout the course of the study. 

This took the form of written, signed consent to voluntarily participate in the study, with the 

understanding that any participant was free to cease participation at any time. Enumeration was 

built into the study in a tiered structure, so that a participant who chose to only sit through one 

interview would still receive some compensation for their time. In addition, I kept the 

participants’ rights and interests in mind throughout the reporting of data, and will continue to do 

so throughout future dissemination of results. Names and other signifying characteristics were 

kept confidential. Instructors did not know which, if any, of their students were participating in 

the research project. Instructors did not know which other instructors participated in the research.  

 I took multiple measures to secure physical data, which including my field notes, digital 

recordings, and typed transcripts. These measures included storing all written material in a 

locked filing cabinet within my locked office, and storage of all digital data on a password 

protected external hard drive. Overall, I did my best to ensure that no one other than the 

researcher had access to such material. 

Issues of Trustworthiness 

 In seeking to establish the trustworthiness of this study, I choose to draw on the criteria 

set forth by Lincoln and Guba (1985), which represents something of a break from traditional 

measures used in quantitative studies. Given the significant differences between quantitative and 

qualitative research methods, it seemed logical that I seriously attend to what counts as 

trustworthiness in terms of qualitative research methods. For example, how can a researcher 

address issues of validity (the extent to which something measures that which it purports to 

measure) or reliability (the consistency with which something is measured over time) without 

traditional quantitative tools? 
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 To this end, Lincoln and Guba (1985) suggest that qualitative methods be judged by the 

following criteria: Credibility, Dependability, Confirmability, and Transferability. In this section, 

I briefly address the measures taken to attend to each criterion. Other qualitative researchers 

suggest different criteria, but in general, attending to trustworthiness means finding ways to 

control for biases that might be present in the design, implementation, and analysis of the study. 

Credibility 

 Cresswell (2013) indicates that credibility is the qualitative analog to the quantitative 

notion of validity. As such, the extent to which qualitative research is credible depends on the 

extent to which the findings are accurate from the perspective of the reader, the participants, and 

the researchers (see also Lincoln & Guba 1985, 1986; Mason, 1996; Merriam, 2009). In 

qualitative research, the focus is less on attempting to verify results and conclusions, and more on 

interpreting the validity of conclusions (Mason, 1996). 

 One way that researchers can demonstrate credibility is by showing that there is a good 

match between the logic of inquiry and the research questions. It is important to consider the 

relationships between various research design components such as the purpose of the study, the 

conceptual framework, the research questions, and the research methods. The extent to which 

there is a tight fit between these components is called methodological validity. Another form of 

credibility is called interpretive validity (Altheide & Johnson, 1994), and is concerned with the 

kinds of explanations the researcher tries to develop. As such, this form of credibility asks how 

valid the data analysis is, and whether or not we can trust the interpretations that are based on 

such data. Both forms of credibility are, to some extent, interwoven, but they look at the research 

design from different directions (see Figure 5): 

 



75 
 

 RESEARCH QUESTIONS à    RESEARCH DESIGN   ß   EXPLANATIONS 

   Methodological Validity  Interpretive Validity 

    Figure 5. Two forms of qualitative validity 

 To strengthen the methodological validity of this study, I triangulated data sources as 

well as data collection methods. The process of gathering data from multiple sources, through 

multiple methods, results in a richer description of research phenomena. For example, I obtained 

information from individual students, individual instructors, and a focus group of students. I 

employed interviews and demographic surveys. I collected information from textual sources, 

such as the written QL curriculum, and science textbooks. A thorough review of literature also 

provided information on national trends and supplied important background data on the nature of 

both QL and general education science courses. 

 I also employed various strategies to improve the interpretive validity of this research. I 

specified my assumptions at the start of the project, and tracked the steps in which I made my 

interpretations through annotations to transcripts and field notes. I searched for contradictory 

evidence (a technique recommended by Lincoln & Guba, 1985), and relied on colleagues to 

conduct peer review of my coding scheme. I looked for variations in how I might make sense of 

the study data, and noted specific instances that challenged my expectations or emergent findings. 

Finally, I reviewed and discussed my findings with professional colleagues, seeking their 

insights as to ways we might best portray the reality of the situation. 

Dependability 

 In a quantitative study, I would discuss measures taken to ensure the reliability of the 

findings. That is, the extent to which the findings can be replicated by other researchers under 

similar conditions. In this qualitative study, the research sample simply does not include 



76 
 

sufficient numbers of subjects or experiences to provide a realistic degree of reliability.  Lincoln 

and Guba (1985) argue that a more important question for qualitative researchers is whether the 

findings are consistent and dependable in relation to the data collected. I interpreted this to mean 

that the goals of qualitative research are not necessarily to eliminate inconsistencies or control 

for uncertainty. Instead, high-quality research in a qualitative tradition demands that the 

researcher document how procedures, coding schemes, and other tools of data analysis have been 

used consistently. 

 I established inter-rater reliability (Miles & Huberman, 1994) by asking colleagues to 

code several samples of interview transcriptions. Coding was generally consistent across these 

samples (approx. 85%). There were some instances in which the raters made inferences that I did 

not see supported in the data. In such cases, I reviewed the data more thoroughly, and we 

attempted to reconcile our differences in interpretation. In a few cases where reconciliation did 

not occur, I report the common aspects of the two counts (e.g. when one coder assigned five 

mathematical/statistical codes to a particular task, and another coder only assigned four of those 

codes, I counted the four codes they shared in common). I maintained an in-depth audit trail 

(Cresswell & Miller, 2000) in which I chronicled my rationale for the major decisions made 

during the research process. The purpose of this audit trail was to provide some degree of 

transparency to the research methods, and the trail consisted of journaling, as well as a system of 

research memos that detailed how the data was analyzed and interpreted. Finally, I kept a record 

of changes to the coding scheme (see Appendix D) along with the rationale for expanding or 

collapsing coding categories. 

Confirmability 

 In many traditions of qualitative research, confirmability relates to the quantitative notion 
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of objectivity. That is, the extent to which the findings are the result of research as opposed to 

researcher bias. The nature of this study makes pure objectivity impossible. Nevertheless, it is 

incumbent on the researcher to illustrate how the actual data can be traced to its origins–such 

origins hopefully being outside the mind of the researcher. Toward this end, a popular method in 

qualitative research is the aforementioned audit trail (Creswell & Miller 2000), which exposes 

the decision-making process to public scrutiny. In addition, I have tried to be forthright with the 

reader with respect to my own researcher biases. I have attempted to do this by documenting my 

own history with community colleges, with community college students, and with quantitative 

literacy curricula through a statement of researcher bias in the introduction to this study. Finally, 

I have attempted to remain reflexive throughout the inquiry, attending to and documenting the 

presence of the researcher and its effect on the phenomena under investigation. 

Transferability 

 Generalizing results from sample to population is not the goal of this study. Instead, 

Lincoln & Guba (1985) stress the notion of transferability–the ways in which the reader 

determines the extent to which the phenomena that appear in this context can transfer to a 

different context. Patton (1990) describes this process as one of “context-bound extrapolations” 

(p. 491), in which the reader speculates on the likelihood that similar findings would also arise in 

other situations, under similar (but not identical) conditions. To help the reader make this 

decision, I provide thick, rich description (Geertz, 1973) of both the participants and the research 

context. It is through such descriptions that qualitative researcher have a claim that their results 

possess relevance in other contexts (Schram, 2003). 

 Furthermore, although the small sample size in this dissertation forbids empirical 

generalizations in the statistical sense, case study research does permit analytic generalization. 
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Analytic generalization is related to the discovery of “underlying and patterned dimensions to 

social life” (Karp, 2001, p. 278). Yin (2013) describes analytic generalization as a process of 

expanding and generalizing theories by comparing the results of a case study to previously 

developed theories. This is the type of generalization that I apply in Chapter Five, particularly 

when comparing the results of this study with Lobato and Seibert’s (2002) theory of actor-

oriented transfer, and to the word of Stein, Grover, and Henningsen (1996) on the 

implementation of academic tasks. 

Limitations of the Study 

 I now turn to a brief discussion of certain limiting conditions in this study, some of which 

are common to most forms of qualitative research, and some of which are specific to the design 

of this particular study. I have attended carefully to these limitations, and considered several 

ways in which to minimize their impact.  

 In qualitative research, analysis is closely tied to the thinking and choices of the 

researcher. As such, qualitative studies are limited by researcher subjectivity. Researcher bias 

tends to flavor the study’s underlying assumptions, the perceptions of the researcher, and the data 

that was deemed to be interesting and worthy of analysis. One key limitation of this study is the 

issue of subjectivity and potential for bias arising from the researcher’s previous experiences as a 

community college student, community college instructor, high school science teacher, and QL 

curriculum designer. 

 A second limitation is what Maxwell (2012) refers to as participant reactivity. This is a 

phenomena connected with the interview process in which participants’ responses are affected by 

the relationship between participants and interviewer. For example, in this study, none of the 

participants knew the researcher prior to their first interview, and this may have influenced their 



79 
 

responses. They may have tried to help the researcher by giving answers they perceived the 

researcher was seeking. Alternatively, it is possible that speaking to a stranger caused 

participants to be more guarded or hesitant in their responses.  

 I took several measures to mitigate these limitations. First, I acknowledged my research 

agenda and stated my assumptions in the introduction to this dissertation. Professional colleagues, 

including community college professors, a fellow graduate student, and a small group of 

interested STEM-educators, analyzed my coding schemes. I de-identified all transcripts, 

removing personal names and markers, so as to reduce the likelihood of associating data with 

any particular individual. I continually reflected on the problem of participant reactivity, and 

made a conscious effort to create an environment that fostered open, honest dialog. My previous 

experiences conducting semi-structured interviews throughout my doctoral program became very 

helpful in establishing a positive environment.  

 Ongoing conversation between the researcher and participants during in-depth interviews 

allowed me to quickly confirm or modify my written field notes. Finally, all participants were 

invited and given two weeks to read and respond to their final case study report. All student 

participants took park in this opportunity, as well as four of the five instructors. This member 

checking (Glesne, 2011) unearthed small errors and minor inaccurate perceptions I had made, 

that I was able to correct in the final narratives presented here.  

 Piloting of the data collection instruments the semester before the main study allowed me 

to anticipate some of the questions that would be generated by the data, which in turn provided 

an opportunity to refine the data collection instruments.  This enabled greater consistency in data 

collection for the main study. 
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 In addition to limitations surrounding researcher bias and participant reactivity, this study 

was limited by the fact that the research sample was restricted. It should be noted that the student 

participants volunteered their assistance with the research project. It may well be that there are 

interesting characteristics shared by the students who did not participate that would yield 

conclusions other than those presented in this study. It is also conceivable that common 

characteristics of my participants may have led to a set of viewpoints that are not necessarily 

representative of quantitative literacy students in general science courses. A likely characteristic 

may be their level of interest in quantitative literacy; those interested in QL may have been more 

likely to respond to my initial calls for participants. Indeed, I strongly suspect that at least two 

student participants were motivated to do so because of their overwhelmingly positive 

experiences with the Quantway course itself, and a desire to talk about their experiences. 

 Therefore, one critique of this study might be that the results cannot be generalized to 

other students, or other community colleges. To this critique I would say that generalizability 

was not the goal of the study. Instead, I concentrated on transferability (Lincoln & Guba, 1985), 

through the use of thick description, detailed information about the research context, and 

background information about the study. Judgments of external validity therefore rest entirely 

with the reader of this dissertation. I have tried to enable the reader to evaluate possible 

connections between my research and the reader’s own circumstances. This research does not 

make any claim to empirical generalizability, but instead presents a snapshot of the role QL 

instruction played in the general education science courses taken by participants at their 

particular community college.  

 This study was not intended to evaluate approaches to QL instruction being used in 

community colleges. Instead, this study may serve as a reference for mathematics or science 
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departments to use when evaluating and revising their own programs. It may also raise questions 

within the collegiate mathematics community about the role of QL programs in preparing 

students for further academic study, which may in turn lead to further advances in the field of 

mathematics education. Finally, this study lays the groundwork for future research into the value 

of a QL course for non-STEM majors. 

Summary 

 This chapter provided a description of the research methodology that framed this study. I 

employed a qualitative method known as comparative case study to advance our understanding 

of the connections students and instructors make between QL and general education science 

courses. The participant sample consisted of six community college students and five general 

science instructors. Multiple data collection methods were employed, including semi-structured 

interviews with students and instructors, focus group discussions with students, and document 

summaries. I examined the data in light of existing literature, and explored emerging themes in 

the data itself. I accounted for credibility and dependability through various strategies, including 

triangulation of sources and methods.  

 I conducted a literature review to establish a conceptual framework that influenced both 

the design and analysis of this study. Interpretations and conclusions drawn from study data were 

compared with existing literature, allowing recommendations to be made for QL instruction, 

science instruction, and further research. The intent of this study was to increase researchers’ 

understanding of the role of QL in students’ preparation for further academic study, particularly 

in the sciences. Additionally, I hope that the results of this research will be helpful for those 

involved with mathematics and science education in community colleges. 
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CHAPTER IV: PRESENTATION OF FINDINGS 

Introduction 

 The purpose of this study was to explore with a group of community college students, 

and their science instructors, the quantitative literacy demands of general education science 

courses, and the ways in which students connect quantitative ideas across courses. Obtaining an 

understanding of this phenomenon would help mathematics educators better design quantitative 

literacy courses, and inform multi-disciplinary efforts between science and math educators. A 

major assumption underlying this study was the importance of attending to student and instructor 

reports of tasks in a general science course. Furthermore, by focusing on the ways in which 

students make connections across contexts (from a QL course to a science course), this study 

could inform efforts to improve both QL and science instruction. Finally, attending to the 

quantitative experiences of a group of students after they leave a QL course offers a unique way 

to describe the value added by taking a QL course in the first place. 

 In the previous chapter, I outlined the methodology employed in conducting this study. 

This chapter presents the key findings obtained from multiple interviews with six community 

college students and their five science instructors. The purpose of this chapter is to give the 

reader several specific findings that came out of these interviews. These findings are organized 

around the study’s research questions: 

1.  Which mathematical/statistical components of a specific QL course (Quantway) do 

 students report in tasks from subsequent general education science courses? 

2. Which mathematical/statistical components of a specific QL course (Quantway) are to be 

 found in instructor descriptions of tasks in general education science courses?  
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3. What levels of QL-demand characterize student descriptions of tasks in subsequent 

 general education science courses?  

4.  What levels of QL-demand characterize instructor descriptions of tasks in general 

 education science courses? 

 In this chapter, I largely refrain from drawing many conclusions or offering specific 

interpretations of the findings. Except for where an explanation is necessary for making sense of 

a finding, I have chosen to leave these interpretive aspects for the following chapter. I do, 

however, attempt to draw the reader’s attention to several salient points that I will synthesize in 

chapter five. I provide the reader with summary statistics and carefully selected quotes from the 

study participants. These quotes represent an attempt at thick description (Denzin, 2001; Geertz, 

1973) of the study phenomena by documenting a broad range of student and instructor responses. 

The purposes of this description are to allow the reader to experience the context of this study, 

and begin to understand reality as portrayed by study participants. The emphasis in what follows 

is to let the participants speak for themselves. The data used to support these findings are rich 

and complex, as illustrated by the quotations taken from interview transcripts. These illustrative 

quotations give some sense of the multiple perspectives brought to bear by study participants. 

Where appropriate, field notes and diagrams are included with the interview data to supplement 

the discussion. The primary topic of conversation throughout all the in-depth interviews was a 

set of science tasks as described by both students and instructors. The reader may wish to refer to 

Appendix A for a full summary of these task descriptions. 

 Five major findings emerged from this study. Findings 1 through 4 address the original 

research questions. Finding 5 arose through detailed analysis of study data, and provides 

additional insight related to the purpose of the study. The reader will recall that the interviews 
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were coded by task, through a process described in chapter three. Altogether, the five general 

science instructors described 54 tasks, and the six student participants reported a total of 61 tasks 

(across 12 individual interviews and a focus-group). I coded these task descriptions for both 

mathematical/statistical components, and for QL-demand levels (Frith & Prince, 2009). I also 

tracked qualitative differences in the ways students and instructors talked about the same tasks, 

and the different ways in which students made connections between tasks in a general science 

course, and previous tasks in their QL course (Quantway). 

1. Of the five broad categories of mathematical/statistical components in a QL course, 

students reported that Data representation and analysis appeared in their general 

education science courses more than any other component. The other components, in 

order of frequency reported by students throughout their general science course are: Basic 

numeracy, Algebraic reasoning, Spatial/Geometric reasoning; and Reasoning about 

chance and uncertainty.  

2. Of the five broad categories of mathematical/statistical components in a QL course, 

science instructors also reported that Data representation and analysis appeared in their 

general education science courses more than any other component. The other components, 

in order of frequency reported by instructors throughout their general science course are: 

Algebraic reasoning, Basic numeracy, Spatial/Geometric reasoning, and Reasoning 

about chance and uncertainty.  

3. Student reports of general education science tasks featured multiple levels of quantitative 

literacy demand. Analyzed in terms of the highest level a task requires, Deriving 

Meaning appeared more frequently (36.0%) than any other. Applying Mathematical 

Techniques was the highest level in 29.5% of student task reports. Higher Order Thinking 
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was the highest level in 16.5% of task reports, Identifying and Distinguishing was the 

highest level in 11.5% of task reports, and Knowing was the highest level in 6.5% of task 

reports.  

4. Science instructor reports of general education science tasks featured multiple levels of 

quantitative literacy demand. Analyzed in terms of the highest level required by a task, 

Deriving Meaning appeared more frequently (35.2%) than any other. Applying 

Mathematical Techniques was the highest level in 29.6% of instructor task reports. 

Identifying and Distinguishing was the highest level in 18.5% of task reports, Knowing 

was the highest level in 11.1% of task reports, and Higher Order Thinking was the 

highest level in 5.6% of task reports. 

5. Students were often (21/38 times = 55%) able to make a connection between tasks in 

their general education science courses and tasks from their QL course (Quantway) when 

prompted to do so by the researcher. They were occasionally (7/38 = 18%) able to do so 

spontaneously, they occasionally made incorrect connections (3/38 = 8%), and 

occasionally made no connection, even with prompting (7/38 = 18%). 

 

 Following is a full presentation of these findings, including data to support and enrich 

them. I present several quotes that are illustrative of each finding, the purpose of which is to (a) 

illustrate the perceptions and experiences of a group of people (whether students or instructors) 

and (b) to indicate the existence of patterns within the data. The quotes provide evidence for the 

assertions I will make in the following chapter, and also provide examples of the human 

experiences that lie behind the summary statistics.  
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Mathematical/statistical QL Components in Student Task Reports 

 A major goal of this research was to determine the extent to which community college 

students could recognize components from their quantitative literacy course in the context of 

general science courses, and what those components might be. In this study, I took an approach 

that views QL along two dimensions–one being mathematical/statistical components, and the 

other being types of thinking and reasoning. Finding one speaks to the mathematical/statistical 

dimension. During the interviews, students were presented with various tasks from their QL 

course, and asked to think of specific tasks from their general science courses that they thought 

shared any similarities. When necessary, the interviewer prompted the student by suggesting 

science tasks that had come up in interviews with the students’ science instructors. The 

interviews gave the students an opportunity to describe science tasks, and to consider the extent 

to which science tasks were connected to tasks from a QL course. 

 Students described tasks from five separate general education science courses, and these 

tasks contained many mathematical/statistical components. Overall, students reported more tasks 

involving data analysis and representation than any other category of mathematical or statistical 

components. Students also reported many instances in which they had to perform basic 

numerical operations, and employ algebraic reasoning. Spatial reasoning tasks were reported 

with slightly less frequency, and tasks that involved reasoning about chance and uncertainty were 

occasionally reported (See Table 6). 
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Data Analysis and Representation 

 Student descriptions of science tasks often included direct references to visual displays of 

data. Carol indicated that such displays occasionally required her to consider multiple ideas at 

once: 

I think that was something we really concentrated on in [Geology], was how to 
interpret a graph, and the information that a graphs gives. Does it make sense? 
Like this chart [Figure 6] has two different scales on the vertical axis. One is 
pressure and one is depth. And we were looking at all three. Kilobars, it's 
matching. So if we knew two out of three we could estimate the other one. (Carol) 

Figure 6. Temperature, pressure and depth of geologic formations (Busch & Tasa, 2014, p. 173) 

Table 6. 
 
QL components in general education science tasks (Student reports) 

Name 
(# of tasks) 

Data 
representation 
and analysis 

Basic 
numeracy 

 
Algebraic 
Reasoning 

Spatial 
Reasoning 

Reasoning 
about chance 

and uncertainty 
      

Carol (14) 9/14 8/14 5/14 4/14 2/14 
Gary (10) 6/10 6/10 5/10 3/10 0/10 
Kelsey (6) 4/6 2/6 3/6 1/6 0/6 
Erica (12) 6/12 4/12 5/12 2/12 1/12 
Daliah (6) 3/6 2/6 2/6 2/6 1/6 

Heather (13) 6/13 5/13 4/13 5/13 3/13 
Total: (N = 61) 34/61 

(56%) 
27/61 
(44%) 

24/61 
(39%) 

17/61 
(28%) 

7/61 
(11%) 

 
Note: The parenthetical counts represent the total number of tasks reported by each student. Many 
tasks were coded as including multiple QL components.  
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 Students frequently referred back to a QL experience when explaining how they learned 

to interpret such graphs. For example, Kelsey described a connection between a muscle 

contraction task and a previous experience in Quantway:  

This really struck me as something that made sense because of what we did in 
Quantway. Just being able to look at this [Figure 7] and being able to make sense 
of it you know as tension goes up and time goes like this, this is a muscle 
contraction. I feel like I'm – can do that better because of Quantway. The maximal 
stimuli– this is what that looks like, so it's making sense of the vocabulary, and 
what it looks like on a chart or a graph. If I was to get one of these terms, and this 
was a graph and it wasn't labeled, and you had to circle where the, the maximal 
stimuli is, you know, you'd have to make sense of what that is on a graph.  
(Kelsey) 

 
   

 It often happened that a student would not recall the details of a science task with perfect 

clarity, but still attempted to describe the task in the interview. On occasion, a student would 

come up with a task from their science course that they felt had some connection to a graph they 

had seen in Quantway. For example, I gave Gary a Quantway task involving lines with negative 

slopes, and he described learning about main sequence stars in his astronomy class: 

Actually I recall us doing like, she [Astronomy Instructor] drew a graph that 
shows how light bends. She drew a line, like an axis, and then the line will curve 
down. There is a graph for that. [Figure 8]…The more hot ones were like, the blue, 
the bigger ones at the top. They are the hottest, and the cooler ones were down 
here. Hard to explain. [Drawing]. Like here are the white dwarfs, how they fell on 
that graph. So one axis is temperature, and the other I believe size. If I'm not 

Figure 7. Muscle twitch response (Marieb & Hoehn, 2012, p. 294) 
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mistaken. I definitely know the bigger it is, pretty much the hotter. (Gary) 
 

 
Figure 8. Main sequence of stars. (Arny & Schneider, 2013, p. 360) 
 
 Exactly how Gary viewed this graph as similar to the Quantway graph is not altogether 

clear, but this relates to a discussion on the different ways that students made connections that 

appears in a later section. 

Basic Numeracy 

 All six of the student participants described multiple science tasks involving basic 

numeracy. This QL category includes performing basic arithmetic, converting between units of 

measurement, and making sense of numbers at different orders of magnitude. Often, science 

tasks involved multiple aspects of basic numeracy, as can be seen in Erica’s description of a task 

involving the force of gravity between two bodies. Erica also seemed to recognized that the way 

in which she reported an answer often depended on the accuracy of numbers in the problem. 

There’s an equation for the force of gravity between two planets. Or a planet and 
a star, I guess? But we didn’t really have to remember the formula. We just had to 
plug things in and do the math. So like multiplying these numbers, then this 
number raised to some power, then dividing that answer–boom. Now, then again, 
something we discussed a lot was, how precise can the answer be? And that was 
also something from Quantway I remember. Rounding, I guess. Like, the speed of 
light. How precise do we want to be? Nine decimals? No, it depends on the other 
units in the problem (Erica). 
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 Another aspect of basic numeracy that appears in many Quantway lessons, and which 

featured prominently in student reports of science tasks was working with percentages. When I 

gave Heather a task involving absolute versus relative percent change, and after some prompting, 

she offered a science task involving absolute versus relative humidity: 

We did a problem with relative humidity and absolute. Relative is the, oh, how 
close the air is to being saturated with water. So if you know the absolute 
humidity. No. If you know the, the capacity of the air, you just divide by the 
amount of water in the air, and multiply by 100 to get the percent. Or maybe the 
other way, I think. (Heather) 

 
 A Quantway task on percent of the U.S. federal budget devoted to different categories led 

Daliah, after some prompting, to give a description of percents in her cellular biology class: 

When we had to do basic metabolic rate, so that’s like the minimum number of 
calories you need every day. Just to stay alive, I think. He made us do one about 
the calories we eat. And we had to keep track of what we ate, and how many 
calories we ate. And had to figure out how many calories were in the different 
nutrients, and so what percent of our calories are coming from fat? What percent 
are coming from proteins? I actually thought it was a good project, because you 
don’t usually think about what percent of your calories are coming from different 
things. (Daliah) 

 
 Occasionally, students described a science task that involved multiple 

mathematical/statistical categories, such as basic numeracy and data analysis/representation. One 

example appears in this exchange between the interviewer and Carol, in which she described 

both using a table of data, and also understanding the role of percents in a task: 

Carol: We looked at another chart, and the sill has crystals with this percentage of U, U- 
IN: Like carbon dating? 
Carol: Yes. We just did multiplication. Not too hard. 
IN:  So how does carbon dating work? I mean, what did you have to do? 
Carol: Ah, so I think, I don’t, well we can just look at it. So like this [lab sheet]. If you have this 
 percent of the parent atoms, then you know how many half-lives you’ve got. And then 
 it’s just multiplication. 
IN: Oh nice, so like percents and multiplication in two steps. 
Carol: Sort of, but we didn’t actually figure out the percents. We basically just had to take the 
 percent and multiply. 
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 In the above exchange, Carol specified exactly what this science task required her to do. 

For example, she stated that she did not actually have to do any calculations or conversions them 

before turning to a chart to determine the number of half-lives (and thus the age) of certain 

crystals. Most students were not naturally this specific about the demands of science tasks, which 

meant that I often had to press them to clarify what the task required, as opposed to giving a 

broad description. 

Algebraic Reasoning 

 Variables, covariance, slopes, algebraic relationships, and other expressions of symbolic 

relationships were a frequent feature in student reports. Tasks reports featured a mix of formal 

expressions and manipulations and informal reasoning about relationships between changing 

quantities. 

 Gary provided an example of a science task involving inverse variation, noting how this 

kind of thinking was important in astronomy when considering the relationship between the 

apparent brightness of a star and its distance from the observer. Note that Gary also remembered 

that the relationship is non-linear, and was able to connect this task with a former experience in 

his QL course: 

Brightness, distance, and, oh actual brightness…yeah luminosity. There’s a 
relationship and so if you have two stars with the same…luminosity, and one is 
twice as far away from you as the other…which one looks brighter? And is it 
twice as bright as the far one? Actually, it’s not that easy. But we figured it out. 
So its not linear, and we had done some of that in [Quantway instructor’s] class 
(Gary) 

 
 Heather spoke of an example of inverse variation from her geography course, and noted 

that she had previously worked with non-linear relationships in Quantway: 

So like I’m thinking of the percent of air pressure…there’s like 30% of the air 
pressure at the top of Mt. Everest as there is at sea level. And at sea level there’s 
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100%. So as you increase altitude, the percent of air pressure goes down… And I 
don’t know what the rate is exactly. It might have been, well, I think it curved. 
But we did curves like that in Quantway, too. (Heather) 

 
 Most student task descriptions featured this kind of informal language with respect to 

algebraic reasoning. Statements in which students referred to specific formulas or variables were 

somewhat rare (of the 24 task descriptions that featured algebraic reasoning only 6 were coded as 

construct or use equations in one or more variables). Erica’s description of the universal 

gravitation task (see above) was one example in which a student drew my attention to the use of 

formal variables. The formula to which Erica referred is: 

𝐹 = 𝐺 !!!!
!!

   where  G = 6.67 x 10-11 !
!

!"∙!!
 

After Erica described the task, noting that it mainly required her to plug numbers into a formula, 

she admitted to struggling with the manipulation of variables, laughing, “I mean, what is that k 

though? Do I multiply it by g?” 

 Curiously, students occasionally described tasks that could have featured formal 

algebraic reasoning, but which the instructor appeared to modify so as to eliminate variables. 

Carol’s description of a task involving density and continents is telling: 

Carol: Okay, so yes we did talk about that [isostacy] a little. I mean, I guess it’s cool that 
 continents are basically floating on the Earth. Like an iceberg, you know? 
IN:  And you used a formula – 
Carol:  Right, well, there is a formula for density, I think? I don’t really remember– 
IN:  Is this familiar? [Writing  𝑃 = 𝜌𝑔ℎ] 
Carol:  No – 
IN:  This is pressure, this is gravity – 
Carol:  Oh, yeah we did do that. It didn’t look like what you wrote. Just words. 
IN:  Words? 
Carol:  Like she would write out the words “density”, “gravity”, whatever. On both sides of the 
 equation. 
  
 I took from this description that the instructor had elected to give Carol a formula 

involving density without resorting to the symbolic forms. I suspected that the reason for such an 
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action was due in part to the instructor’s perception that her students were not prepared to deal 

with formal symbolism in geology, and I elaborate further on this theme in the next chapter. 

Spatial/Geometric Reasoning 

 Student task reports featured spatial reasoning several times throughout the interviews 

and focus group, including references to the geometry of shapes, and also to such things as scale 

factors on maps and diagrams. Some science tasks required students to consider how two 

quantities were related in terms of area or volume. For example, Carol described a task in which 

the class had to represent the layers of the Earth’s interior as a cross-section of a basketball: 

We had this one problem where we took a basketball and pretended it was the 
Earth. And had to find the size of the different layers, you know? So if the inner 
core is…this big in reality, then it’s like 2 centimeters on the basketball. The 
diameter, I mean. And so the outer core is this big, how big is it…on the 
basketball? And again, that was something we did in Quantway, scaling 
something down. Yeah. (Carol) 

 
 
 Scaling was a frequent feature of student descriptions, and Heather reported multiple 

tasks involving this component throughout her geography course: 

In a lot of the maps, you have to consider the scale. Like, are we looking at the 
whole United States? Or just a region? Or maybe one state or even a township. 
And the scales can be large or small. So maybe one map has a scale of, oh I don’t 
know, 1 inch equals a thousand miles. And another might be one inch equals 10 
miles. Just depends on the purpose. How much detail you need (Heather). 

 
 Spatial reasoning was not restricted to the physical sciences, as evidenced by Daliah’s 

description of the importance of attending to scale on diagrams and images of the cell: 

It was, we had to know how magnified a picture was that we were looking at. 
Like, is that zoomed in 10 times? 40 times? 100 times? I mean, if two pictures in 
the book, side by side, and they looked the same size. But one is actually 100 
times bigger than the other. And when we used the different lenses on the 
microscopes, you could figure out how many times zoomed something was. And 
what that meant, really. (Daliah) 
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 Given the relative lack of attention to geometric reasoning in many discussion of QL (as 

discussed in chapter two), it is important to note that over one-quarter of all student task-

descriptions featured some form of geometric reasoning. Although this may have been a result of 

the particular sample used in this dissertation, the role of geometric reasoning in QL courses 

aimed at preparing students for further academic study warrants additional discussion. 

Reasoning About Chance and Uncertainty 

 Students provided descriptions of multiple opportunities to engage in thinking about 

uncertainty and chance throughout their general education science courses. Reasoning about 

chance and probability was often informal (for example, no student reported a need to apply 

Bayes’ Theorem). A typical instance of probabilistic reasoning is found Carol’s description of a 

phenomenon known as the hundred-year flood: 

It’s…how big the flood is. We’re supposed to get one that big every hundred 
years. And a thirty-year flood would happen every…thirty years. Well you’re 
supposed to get one that often…but that doesn’t mean you couldn’t get two. But 
we didn’t really get into any calculations. Just thinking about the meaning of the 
term, and how it is just a probability (Carol). 
 
 

 In response to seeing a Quantway task in which three lines were plotted on one graph, 

Heather made a connection to a task involving global warming predictions: 

 

Yes, I remember seeing graphs like that. Like when we talked about global 
warming. So there are different predictions, and I guess no one can know for sure. 
But like, best case, worst case, or whatever. And, oh, I don’t remember it all. But 
I know that there are different predictions, and I think she said the different 
chances of them coming true. (Heather) 
 
 

 This was one of many instances in which I was inquiring about one QL component (data 

analysis and representation) and the student made a connection to a task involving a different 
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component (reasoning about chance and uncertainty). 

Summary 

 Overall, this finding suggests several interesting avenues of interpretation that I will 

describe more fully in the next chapter.  It seems clear that of the broad mathematical/statistical 

components present in the students’ QL course, Data representation and analysis featured most 

prominently in student task-descriptions across different general science courses. Students made 

several statements that suggest that they connected specific tasks in a science course with 

specific tasks in a previous QL course. They also suggest that certain mathematical ideas, such as 

algebraic reasoning, are treated with caution in general education science courses. Student 

descriptions, however, tell only one side of the story. There were interesting qualitative 

differences in the ways these students’ science instructors described many of the same tasks, 

which leads us to consider finding two: 

Mathematical/statistical QL Components in Instructor Task Reports 

 Of the five broad categories of mathematical/statistical components in a QL course, 

science instructors also reported that data representation and analysis appeared in their general 

education science courses more than any other component. The other components, in order of 

frequency reported by instructors throughout their general science course are: Algebraic 

reasoning, Basic numeracy, Spatial/Geometric reasoning, and Reasoning about chance and 

uncertainty. 

 A second goal of this study was to understand the aspects of a quantitative literacy course 

that science instructors emphasize in general education science courses. The instructors in this 

study had very little previous knowledge of the content of Quantway, but they were able to speak 

at length about specific science tasks that they perceived to be connected to quantitative literacy. 
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It is perhaps not surprising that there is an overlap between the QL components reported by 

students, and those reported by their science instructors, since in both cases the student and 

instructor were describing the same course.  

 Instructors reported that the ability to read, interpret, and make decisions based on visual 

displays of data was important for success in their courses.  They also described many tasks in 

which students needed to employ algebraic reasoning. Multiple instructors described spatial 

reasoning tasks, as well as the need for basic numeracy. Tasks involving chance and uncertainty 

were reported occasionally (Table 7). 

Table 7. 
 
QL components in general education science tasks (Instructor reports) 

Name 
(# of tasks) 

Data 
representation 
and analysis 

Algebraic 
reasoning 

Basic 
numeracy Spatial reasoning 

Reasoning about 
chance and 
uncertainty 

      
Prof. Geol (11) 9/11 5/11 4/11 4/11 2/11 
Prof. Astro (13) 6/13 6/10 3/10 2/10 1/13 
Prof. Physio (7) 5/7 5/7 4/7 3/7 0/7 
Prof. Geog (12) 8/12 5/12 7/12 5/12 3/12 
Prof. Cell (11) 5/11 6/11 7/11 3/11 4/11 

Total: (N = 54 ) 33/54 
(61%) 

27/54 
(50%) 

25/54 
(46%) 

17/54 
(31%) 

10/54 
(19%) 

 
Note: The parenthetical counts represent the total number of tasks reported by each instructor. Many 
tasks were coded as including multiple QL components. 
 

Data Analysis and Representation 

 Professor Astro described several tasks in which her students had to interpret information 

presented in graphical form. In the following description, she also noted that her students usually 

lacked the skills needed to make sense of such graphs. This tendency to describe student skills in 

terms of deficits is a common theme among instructor reports, and one that I will probe more 

deeply in the next chapter. 

The graph version of this [Figure 9], and you have your intensity and your peak 
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wavelength. You have the independent variable. You have a shift like this versus 
this. Finding that peak, looking down here, it was lights out. They have no idea. 
They got none of it at all. This is really depressing. I don't have a single student 
this semester, perhaps in the past, who was able to interpret this. This is really 
where they get lost. (Prof. Astro) 

 Figure 9. Wien's law (Arny & Schneider, 2013, p. 98) 

 
 Professor Geol described more tasks involving visual displays of data than any of the 

other instructors. For example, she reported that students in her geology course actually construct 

their own graphs based on real data:  

They have to look at the pictures of the charts, and I do make them go back and 
forth between different graphs. They’re interpreting isolines…And like I said, a 
lot of looking at data and plotting it on a graph. There’s one activity where they 
have to construct a graph of change in elevation based on isolines (Prof. Geol) 

 
 In geography, students are asked to interpret a graph that includes multiple projected 

scenarios. As mentioned earlier, this task also features an element of probabilistic reasoning:  

It’s a potentially divisive topic, but we do get into climate change, and models for 
rising temperature. So this is one graph [Figure 10] where there are three 
predications–sort of a worst case, best case, and no change situation. And the 
ability to follow what’s going on here, I have to spend a lot of time on this. Which 
line are we on now? How do we find the difference between these predictions 25 
years from now? (Prof. Geog.) 
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Figure 10. Three models of climate change. (Hess & Tasa, 2013, p. 229) 

 Even in a course such as cellular biology, which according to Professor Cell doesn’t 

include “much statistics”, students need to engage in data analysis: 

We do talk about mortality rate, so they’re taking data off a table and using it to, 
well, understand mortality rates basically. I mean, these columns [Table 8], what 
we’re trying to get them to see is that mortality rates are just a factor of the 
number of organisms still alive after a certain duration of time. (Professor Cell) 

 

 

Table 8.  

Life table of Dall Mountain sheep (OpenStax College, 2013). 
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 Through the use of tables, graphs, charts, and diagrams, all the science instructors in this 

study reported that they convey scientific ideas that require students to analyze and represent 

data. Task descriptions featured many instances in which students were asked to use data to think 

about how two or more scientific phenomena, such as brightness and wavelength, varied with 

respect to one another. The notion of covariation also plays an important role in algebraic 

reasoning with respect to science. 

Algebraic Reasoning 

 Science instructors presented several examples of tasks in which students were asked to 

engage with either formal or informal algebraic reasoning. These descriptions point to a tenuous 

relationship between algebra and science instruction for non-STEM majors. One task from 

Introduction to Astronomy asks students to think about the meaning of an inverse relationship as 

represented by a formula:  

Yeah, we use Wien’s Law which is the relationship temperature and wavelength. 
So it's as simple as, I'll just write it on here. [Writing    T = !.!×!"!

!!"#
  ]. And this, 

even this idea. This is simply saying that the hotter something is, we should 
expect a shorter wavelength. The cooler something is, the longer. To even explain 
this inverse is, wow. (Prof. Astro) 
 

 Professor Astro indicated that her students struggle to explain the inverse relationship 

represented by the formula. When I asked Erica about this task (see Finding 5 below) she also 

struggled to explain it. Students in Quantway have multiple opportunities to work with 

relationships such as this, in which increasing the value of one variable leads to a decrease in 

another. In particular, Quantway students explore several contexts in which they change the 

value of a denominator and note the result on the value of the entire term. All of the Quantway 

contexts, however, involve more every-day situations. 
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 A particular task in Geology, involving glaciation, presented an opportunity for students 

to think about variation, with the science instructor specifically referring to the use of a variables. 

Note that this quote also reveals the instructor’s perception that her students are unable to 

understand the role of variables in such a task: 

The plate movement, or glacial movement for example. How fast is the glacier 
receding? And then I’d do the equation of D over T and then I’d move it all 
around.  And they’d all look at me like, “What?” But it’s just a proportion, right? 
But they don’t really understand the symbols so they struggle to get the big idea 
here. (Prof. Geol.) 

 
 Algebraic reasoning tasks were not limited to the physical sciences. Professor Cell 

explained to me how he pushes students to think about covariance between quantities in terms of 

diet, calories, and nutritional needs: 

I bring up the issue of nutrients, and the balance of that sort of thing. So if this 
were a really carb-heavy mean, what do you need to do to balance it out, and that 
sort of thing. I want them to talk about it in terms of proportions, and if the 
proportion of your daily calories coming from carbs goes up, then the proportion 
coming from other nutrients must go down. Or else increase your total calorie 
intake. And some students actually take that and straight away think, okay, if can 
eat x more carbs in this meal then I normally would, that translates into so many 
calories, and I have to sacrifice somewhere. (Professor Cell) 

 
Basic Numeracy 

 Basic numeracy, including performing simple arithmetic, considering orders of 

magnitude, and working with percents, appeared in nearly one-half of all instructor task-

descriptions. Professor Geog described her frustration with students who struggle to tell the 

difference between percent and cumulative percent: 

Here, this [Figure 11]…is the percent of a percent. The sea floor is shaded what 
color? Blue. Lowlands are shaded what color? Green, and the mountains are 
shaded. Can they read this? No. Do they get the point of cumulative percentage? 
No. Okay, now elevation. Highest percentage of Earth's surface, highest 
percentage not cumulative, percentage. What they are doing, I don't know if they 
are not reading the questions, or they aren't comprehending. Difference between 
percent of surface or cumulative percent of surface. And that's, most of them get 
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that wrong (Prof. Geog.) 
 

 Figure 11. Histogram of global topography (Busch & Tasa, 2014, p. 19) 

 Professor Cell coupled his own remarks about the need for basic numeracy with a lament 

that his students neglected to attend to precision in their numerical answers: 

The equations that I give them–say the Harris Benedict equation–are usually a 
reliable estimator, and I tell them they have a margin of error of about 10%. And 
there’s one I give them that has a decimal point in the wrong place, to see if 
they’re following me, you know. So it makes a huge difference, and people were 
giving me these absurdly low numbers, but they didn’t think anything about it! I 
had to bring it to their attention. You’re off by an order of magnitude here, people. 
(Prof. Cell) 

 
Spatial/Geometric Reasoning 

 Instructors from all five courses described tasks that involved spatial or geometric 

reasoning. For example, Geography students appear to do a lot of map work. In her description 

of one such task, Professor Geog described how attending to scale is important: 

They don’t know how to think logically. We’re talking about a location at 49 
degrees North latitude. And I tell them, one degree off is about 69 miles. And I 
had one student who, instead of giving me Indianapolis gave me Cleveland. And 
another gave me South Bend. They don’t really attend to the scale on a map like 
this. (Prof. Geog) 
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 In his Human Anatomy and Physiology course, Professor Physio directs students’ 

attention to the different shapes of muscles in the human body, and how the geometry of a 

muscle reflects its purpose: 

I mean, I don’t know if this is what you’re looking for, but when we study fascicle 
arrangements, we’re basically studying the different shapes of muscles. Circular, 
convergent, parallel, pennate. And why they have those shapes. I mean, what kind 
of mechanical advantage are you getting based on shape? Or which arrangement 
would shorten the most in a contraction? (Prof. Physio) 

 
 Professor Cell described a task involving surface are to volume ratio, noting that it is a 

“crucial” concept in his course: 

In the same unit, we talk about scale, this comes up because the shape of cells is 
often related, and I get into this a lot, the surface area to volume ratio is crucial to 
understand. Basically, the more surface area you have, it is a clue that there is a 
going to be a lot of stuff happening at that spot. You have much less surface area 
if you are trying to conserve volume in terms of…usually water. So we talk about 
what is the optimal packing of cell and why are honeycombs hexagons and that 
sort of thing. (Prof. Cell) 

 
 At the risk of redundancy, it is notable that over one-quarter of task descriptions given by 

science instructors included an aspect of geometric or spatial reasoning. 

Reasoning About Chance and Uncertainty 

 Instructors reported several opportunities for students to engage in probabilistic thinking. 

One aspect of this category that surfaced multiple times involved interpreting statements 

regarding conditional probabilities. Professor Geog noted her students’ difficulty in grasping the 

notion of a 100-year flood, and described attempts she has made to help improve their 

understanding: 

The one that really messes them up is flood re-occurrence interval. Just because 
we had a 100-year flood doesn't mean we won't see those flood waters again for 
another 100 years. It’s a probability, really. We haven't seen it in 100 years means 
what? We won't see it for another 100 years? No. And how to calculate it. What is 
a "100-year flood"? I go to YouTube. I try all kinds of different tools, methods, 
because everybody learns differently. (Prof. Geog) 
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Professor Cell also noted that he makes use of probability as it relates to genetics: 

Actually, there are some significant consequences related to probabilities, and one 
of the ones that I bring up has to do with eye color. Everyone thinks brown eyes, 
blue eyes, dominant, recessive, and that’s the way we teach it. If you have two 
blue-eyed parents, you shouldn’t have a brown-eyed child, and if you do, then 
somebody did something wrong. The question, “Who’s my daddy?” comes up. 
Well, it’s not that straightforward, and we work through the probabilities. In fact, 
there are a minimum of three sets of genes that control eye color, and what’s more, 
even if you have the dominant alleles for brown eye color, they can get shut off 
through other things…and then they can pop up again in the next generation. So 
there is a certain probability that blue-eyes parents could have a brown-eyed kid 
without any hanky-panky. (Prof. Cell) 

 
Summary 

 Finding two suggests that a major mathematical/statistical component featured in 

instructor reports of science tasks was data analysis and representation. It also suggests 

that a significant number of science tasks require basic numeracy and algebraic reasoning. 

Furthermore, the types of tasks found in these general education science courses feature a 

significant amount of geometric and spatial reasoning. Instructor reports tend to be 

critical of their own students’ abilities to engage with the quantitative aspects of general 

science courses. I will elaborate on these themes in the next chapter. For now, let us 

consider the quantitative aspects of general science instruction from a different lens, 

levels of QL-demand.  

Levels of QL-demand in Student Task Reports 

 Student reports of general education science tasks featured multiple levels of quantitative 

literacy demand. Analyzed in terms of the highest level a task requires, Deriving Meaning 

appeared more frequently (36.0%) than any other. Applying Mathematical Techniques was the 

highest level in 29.5% of student task reports. Higher Order Thinking was the highest level in 

16.5% of task reports, Identifying and Distinguishing was the highest level in 11.5% of task 
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reports, and Knowing was the highest level in 6.5% of task reports. 

 One of the assumptions behind this dissertation is that quantitative literacy cannot be 

reduced to a simple list of mathematical or statistical techniques. Although familiarity with 

certain techniques may a part of what it means for a person to be quantitatively literate, there are 

other dimensions to QL. One such dimension is the reasoning competencies required by a task. 

This dimension describes the range of knowledge, behaviors, and processes required to engage 

with a general education science task.  In analyzing the study data, it was clear that a single task 

might make QL demands at multiple levels. The percentages reported above represent the 

highest level of QL demand reported by a student when describing a task. Thus it should not be 

taken that the QL-demand level knowing was required in only 6.5% of science tasks, but rather 

that 6.5% of tasks only required the kinds of reasoning characterized by knowing. 

 Furthermore, I do not mean that if a student task report featured characteristics of higher 

order thinking, that the student necessarily engaged with all the lower levels. Multiple examples 

occur in the data in which a student reported having to evaluate or reflect on a quantitative 

solution, without having to apply any particular mathematical techniques.  

 In this study, I did not take the approach that a science task inherently requires any 

quantitative competencies. To be sure, there are mathematical or statistical components that one 

would expect a student to employ during the course of a task (such as multiplication, or fitting a 

line to data). In terms of levels of QL-demand, however, I wish to be very careful not to specify 

that any task forces every participant to engage in the same cognitive demands. Research (Stein, 

Grover, & Henningsen 1996) indicates that the quantitative demand of a task depends largely on 

how the task is enacted in a classroom. Furthermore, following Lobato’s (2006) actor-oriented 

ontology, it is perfectly possible that two participants (e.g. the student and the instructor) might 
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describe the same task in terms of different levels of QL-demand. Therefore, in this analysis, I 

coded tasks according to what the participants told me they did, not according to what I could 

deduce from a textbook or lab sheet. The fact that a student (or an instructor) described the 

process of engaging in certain QL-demand levels throughout a task does not mean that the task 

itself inherently required those levels of thought. There is no objective prerequisite on thinking in 

tasks. Although I categorized task reports according to a conceptual framework, which required 

me to make certain inferences, I have tried to be straightforward in reporting what the 

participants described. 

 A few tasks, as described by students, only required knowing the meaning of quantitative 

terms or phrases, or the conventions for symbolizing numbers or variables in equations or on 

tables in graphs: 

We did talk about it…if a river enters a gorge, its flow constricts. So does it speed 
up, or slow down? So it speeds up, right? We didn’t really do any calculations. 
Just that statement, and that was all she asked on the test. At which point in river 
the does the flow have greater velocity? (Carol) 
 
We did one worksheet about knowing the difference between speed and 
velocity…yes, speed is just how fast you’re going. And velocity is like your speed 
plus…your direction. And displacement, which is like distance, but more like the 
difference between you’re starting and ending points. So we had worksheet where 
we just had to know that. I mean, that was literally all. You had to know those 
terms. (Gary) 
 
She gave us a few problems, like a pre-test, and we had to know what scientific 
notation looks like. So whatever times ten to the whatever power. Like, was it the 
right form? And did you know the significant digits, but it was just multiple 
choice, you know? (Erica) 

 
 More frequently, students described tasks in which they had to engage in thinking that 

went beyond simple knowing. In such tasks, coded as requiring identifying and distinguishing, 

students reported a need to recognize distinctions between different representations, to identify 
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the relevant information in a representation, or determine what mathematics needs to be done 

(but perhaps not carry out any actual computations). For example: 

We did talk about differences in the kinds of maps you can make. And she made a 
big deal about how hard it is to put a 3-D world onto a 2-D paper. So there’s 
different projections. Like one looked like orange peels, and another like the 
normal map, and one was circular top down…yeah, there are advantages to 
each...but I don’t really remember what they were. Just that idea that there are 
different ways to make maps of the world, but they’re all showing the same thing 
differently (Heather) 
 
We did these discussion board assignments, and they were just things he wanted 
us to read. From magazines, or whatever. Some of it was really boring, to be 
honest! But he really wanted us to be able to read it and say, okay, what was 
important here, what was relevant, what was irrelevant. What was just 
[somebody’s] opinion, and what was scientific fact? (Daliah) 

 
 Still more frequently, students described tasks in which they were asked to derive 

meaning from textual, graphical, or diagrammatic representations. This category also applies to 

tasks in which students had to translate between different representations of the same phenomena. 

For example, in Kelsey’s description of the muscle contraction graphs, her report indicates that a 

student had to recognize that a diagram consists of multiple different kinds of representations, 

understand the implicit differences in scale between the diagrams, consider the relationships 

between the text in the caption of the diagram and the graphs in the diagram, and then derive 

meaning from the diagram as a whole. 

And, like I said, this is where I thought the stuff we did in Quantway was really 
helpful, because you’re looking at a lot of things at once here. Three graphs of 
muscle contractions, you know? And here’s a drawing of the contracting muscle. 
There’s different units going on here, and then the caption helps you know what 
you’re looking at. But what’s the big picture here? And because we did a lot with 
graphs in Quantway, I wasn’t, I didn’t feel intimidated by this stuff. I knew where 
to look for things (Kelsey) 

 
Erica provided an example of a task in which she had to derive meaning from a diagram and use 

it to help make sense of geometric (rotational) phenomena: 
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My presentation was on Uranus, and so basically I just had to make a 
PowerPoint…but there were a lot of graphs. And I remember this one where I had 
to explain how the seasons are really weird because of its tilt [Figure 12]. I 
actually have it here. And I remember thinking this is so hard to understand at 
first, but then…she explained it some more to me. Basically it is so tilted that 
sometimes the sun will be up for, like, years. And then in other seasons it rises 
and sets almost like on Earth. It’s weird. (Erica) 

 
 
 Students reported opportunities for applying mathematical techniques such as calculating, 
estimating, measuring, or applying algebraic or geometric techniques. For example: 
 

So we had to, that was early in the semester, so at one point America and Africa 
were one continent. And as time went by, the plates separated. So we had to say, 
how many years ago were the two points together? Or calculating the rate they 
moved…kilometers per year. Not per year. They don’t move like that, so more 
like per million years. So this map is how it looks now, and as you go back in 
time, these points were closer. How long ago, knowing the current rate, were they 
together? (Carol) 
 
Figuring out gravity, there’s this one problem. Like how much gravity is there at 
the space station, and it was like you had to consider the variation that the Earth, 
like the center of the Earth, to the top, the crust of the Earth, so you had to add 
that distance in. Into the distance between the Earth and the satellite. At first I 
didn’t get why that was important. But like here, calculating the force of gravity, 
you have to use the circumference. Radius. Stuff like that. You need the distance 
between the centers of the objects. (Erica) 

 
 Finally, students reported some tasks that emphasized aspects of higher order thinking. In 

such tasks, the students reported opportunities to synthesize information from multiple sources, 

make conjectures, reflect, or evaluate. There were instances in which students reported having to 

Figure 12. Orit of Uranus (Arny & Schneider, 2013, p. 275) 
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engage with higher order thinking as a final step in a problem that also required all the lower 

levels of thought. But there were also instances in which higher order thinking was apparent, but 

a particular lower level (e.g. applying a mathematical technique) was not required. An example 

of the former instance came from Carol. 

In going from point A to A′, how much, what is your change in elevation? And 
you can’t tell very well from this map [contour lines]. I mean, you know what the 
lines mean, but on the whole trip, did you go down, then up a bit, then down a lot, 
and then up a lot? She made us think, is that an easy hike? Because it starts and 
ends at the same elevation. How can you tell? But on this [graph of elevation vs. 
distance] it’s easy to see. And this was a task that I really struggled with at first, 
because, well, I jut didn’t know how to transfer these points [contour lines] onto 
this axis [elevation graph]. But then once I got the technique down, I understood. 
So we had to sit back and think, what is it about this display that is better? (Carol) 

 
 In Carol’s description, she had to know the conventions for graphical representations, 

identify the mathematics to be done (transferring points between graphs), derive meaning from a 

graphical representation, measure, estimate, and construct, and finally reflect on and evaluate the 

final product. In the focus group, Heather described a task in which she engaged in higher order 

thinking, but it is less clear what specific mathematical technique she applied (if any).  

I think we really got into that kind of [higher order] thinking when we talked 
about global warming. Like, I remember when we had to look at these graphs of 
predictions, and in one the map of the Earth is colored red, and the other is more 
like a line graph. And this was something that, before Quantway, I think I would 
have just been like, woah graphs. That’s scary, right? But I felt like, no, I can 
make sense of this, and even see that the graphs were both showing the same 
thing, and they actually help you think about–what’s going to happen in the next 
twenty years or whatever. And why are there different predictions, anyway?  
(Heather) 

 
 Overall, Finding Three indicates that when these students describe the quantitative tasks 

in their general education science courses, the majority of task descriptions do not include 

aspects of higher order thinking. On the other hand, it appears from student reports that the 

majority of quantitative tasks do require them to engage with levels of QL-demand beyond mere 
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knowing. Furthermore, student task reports included aspects of higher order thinking with more 

frequency than instructor task-descriptions. I discuss possible reasons for this result in the next 

chapter. To see how the different QL-demand levels appeared in instructor reports of science 

tasks, we now turn to Finding Four. 

Levels of QL-demand in Instructor Task Reports 

 Science instructor reports of general education science tasks featured multiple levels of 

quantitative literacy demand. Analyzed in terms of the highest level required by a task, Deriving 

Meaning appeared more frequently (35.2%) than any other. Applying Mathematical Techniques 

was the highest level in 29.6% of instructor task reports. Identifying and Distinguishing was the 

highest level in 18.5% of task reports, Knowing was the highest level in 11.1% of task reports, 

and Higher Order Thinking was the highest level in only 5.6% of task reports. 

 As with finding three, I relied on human interpretation of tasks as the basis for 

determining the levels of QL-demand featured in each task. Therefore, I coded tasks based on the 

instructors’ perceptions of what students would have to do to accomplish each task. Furthermore, 

just as with finding three, the above percentages represent the highest level of QL demand that 

could be found in an instructor’s description of each task. 

 Professor Geol provided an example of tasks that, according to her description, only 

required students to know the meaning of quantitative terms and phrases: 

There is a lot of vocabulary that they need to know, sort of up front. What’s the 
difference between volume and density? Do you know what those words even 
mean? And I try to get them to think in terms of different materials, pumice and 
whatnot. And say, these are the same volume, roughly. But one is so much 
heavier. So what is density? I don’t even talk about a formula at that point, I just 
want them to have a conceptual understanding of the terms we’re going to use. 
(Prof. Geol) 
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 Professor Geog described a task in which students need to know the conventions for the 

symbolic representations of numbers: 

I give them a tutorial at the beginning of the year. And they just flat out aren’t 
competent. What does it mean when I say, “sig figs”? No idea. “What’s a whole 
number?” No. So I have to go over all these terms. Round to the nearest whole 
number. Do they get it? No. They also don’t understand that if you type it into 
your calculator, there are no commas for large numbers. So they give me a large 
number, and I say, “read me that number”, and they don’t know. So I have to 
review all these conventions. (Prof. Geog) 

 
 Professor Cell described his experiences teaching students to distinguish between 

relevant and irrelevant information in a scientific article: 

From my perspective, it is something that, if they are reading about science in the 
news or a scientific study, how likely is it that they got the answer they got? But 
we can’t really get into that very deeply. But we do talk about, in this article, can 
you separate scientific fact from opinion, from conjecture? I mean, I give them 
articles from the news, from journals, I try to make it interesting. But I want them 
to be able to point to the important information in an article. (Prof. Cell) 
 

 Professor Astro stated that the overwhelming majority of the tasks she uses in her course 

only ask students to engage with knowing and identifying and distinguishing: 

I wish I could do more of that [higher order thinking]. But honestly, most of what 
we do is in these two levels [Knowing; Identifying and Distinguishing]. I’d say 
90%...But honestly, most of them can’t even do that. It’s really hard for them 
(Prof. Astro) 

 
 I found it remarkable that Professor Astro would make such a claim about tasks in a 

college-level science course, but at the time I had no way of knowing whether or not her 

assertion was true. After coding, it appears that of the 13 different tasks described by Professor 

Astro, 3 tasks (23%) required only the kinds of thinking characterized by the two lowest levels of 

the QL-demand framework. Of course, Professor Astro did not spend much time contemplating 

the QL-demand framework before making her claim, but her perception of the kind of thinking 

required for tasks in her class is important nonetheless. The reasons behind this perception, and 
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the possible ways in which such a perception influenced the way tasks were used in her course, is 

one theme I pursue in the next chapter.  

 Tasks in which instructors expected that students needed to engage in deriving meaning 

included the isolines task described in the previous section, and this example from Professor 

Physio: 

I mean, take something like this, this idea of twitch response. I want them to be 
able to read this graph [Figure 13] and just be able to say, the response time is 
greater for a muscle in your calf than a muscle in your eye. Right? And you know 
that from experience, but this graph, I labor over this. Just tell me what’s going on 
here. And they should be able to see that the three muscles each experiences the 
same level of tension. But one takes much longer to relax. (Prof. Physio) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Instructors reported multiple tasks in which students had to apply mathematical 

techniques, such as calculating, estimating, measuring, or applying an algebraic or geometric 

technique. 

 

 

 

 

Figure 13. Difference in muscle twitch response times (Marieb & Hoehn, 2012, p. 294) 
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 Many examples of tasks in which students had to apply mathematical techniques featured 

domain-specific terminology. Terms such as arc-seconds, BMI, and declination appeared with 

much regularity, adding an additional level of complexity to the required mathematical 

procedures: 

  
I make them locate stars on the star maps that are in there. So the measurement is 
in degrees, but they need to know how to get increments of degrees. We talk 
about increments of 360, you know a degree is about this, so if we shift that way, 
minutes, arc-seconds. They need to be able to make those calculations. (Prof. 
Astro) 
 
One of the things that struck me a few years ago as being rather funny, and so I’ve 
kept this example in my classes, is if you do my BMI I am at the high end of 
obese. Barry Sanders is my exact height and weight. And those are the only two 
pieces of data that go into that. But the students calculate the BMI, and there is no 
way Barry Sanders is obese. So BMI is a really lousy statistics to use for yourself. 
It is good for populations, but not individually (Prof. Cell). 
 
One problem they have to do dealing with maps is, you have different years of the 
same map. And you have magnetic declination changes. Since it is moving. 
Eventually we’re going to be flipped upside down. So they have to calculate the 
difference in the magnetic declination. I even give them a hint here. Put it into 
minutes and then calculate so it’s like 1.5 degrees, and put that into 90 minutes. 
And the other one is three degrees, 25 minutes. Put that into minutes. Then 
subtract, and then you re-convert back into degrees and minutes. Can’t do 
it….different base systems. It’s not in base ten. (Prof. Geol) 

 
 Finally, instructors reported a few opportunities for students to engage in higher-order 

thinking. In one task, described by Professor Astro, students are asked to make logical 

conjectures that synthesize facts about temperature, gravity, and the solar system: 

Like for instance, in one class we spend a good amount of time pursuing some 
hypothetical questions. And I said, if the sun were a little hotter, what would 
happen? And it was 15 minutes of, well, it would be bluer. And what else would 
happen? We would get hotter. And what else? Mercury would be in trouble. And 
what else? So we’re drawing out all these things. Let’s conjecture, like you said. 
Think about this logically. Or another one I like to use is, what would happen if 
the Earth were bigger? Or if it were spinning faster? Just some fun questions like 
that.  (Prof. Astro) 

 



113 
 

 Overall, finding four indicates that when science instructors describe the quantitative 

tasks in their general education science courses, the majority of tasks do not require much higher 

order thinking. In fact, the instructor reports contained even less of what might be considered 

higher-order thinking than task-descriptions from their students. Furthermore, instructor 

comments indicate that they are aware of the lack of higher-order thinking tasks in their courses. 

At least one professor perceived the vast majority of science tasks in her course as only requiring 

the two lowest levels of QL-demand. Finally, instructor descriptions of tasks frequently relied on 

terms that are specific to their individual disciplines. 

 Before closing this chapter, I wish to present a finding that was not originally a target of 

the study’s research questions. This finding arose as a direct result of the data analysis methods I 

employed, notably the search for themes within and across semi-structured interview data. The 

reader will recall that my primary method for eliciting student descriptions of QL in their science 

courses was to first remind them of specific tasks from their Quantway course. Usually, students 

spent some time recalling the Quantway task, and would often give me additional details about 

how it was implemented. Once a student indicated some degree of familiarity with the Quantway 

task, I would ask students whether or not they could think of a science task that contained similar 

QL components (see Appendices D and E). 

 As I studied the transcripts of individual student interviews, a certain pattern became 

clear: The students were indeed making connections between tasks in their science courses and 

tasks in a QL course, and the conditions under which they made these connections generally fell 

into four distinct categories. These distinctions are summarized in Finding Five. 

Types of Connections Made by Students 

 Students were often (21/38 times = 55%) able to make a connection between tasks in 



114 
 

their general education science courses and tasks from their QL course (Quantway) when 

prompted to do so by the researcher. They were occasionally (7/38 = 18%) able to do so 

spontaneously, they occasionally made incorrect connections (3/38 = 8%), and occasionally 

made no connection, even with prompting (7/38 = 18%). 

 One finding to arise out of the data analysis process itself was that students made 

connections between tasks in their general education science courses and tasks in Quantway 

under qualitatively different circumstances. In coding transcripts, I realized that I often had to 

prompt a student with a specific science task (provided ahead of time by instructors) before they 

would begin to describe any connections between the science tasks and the Quantway task. On 

other occasions, students seemed able to describe such connections without a specific task 

prompt. Upon further review of the transcripts, I discovered instances in which the students did 

not make a connection at all, even after I prompted them with the specific science task. And 

finally, there were a few instances in which a student tried to connect two tasks in ways that were 

inappropriate from a mathematical standpoint.  

 Over the course of all the interviews, students described 61 different science tasks, but 

the way in which these tasks came up during the interviews differed. Sometimes students 

initiated conversation about a task. Kelsey, for example, arrived at her second interview with a 

folder full of handouts she had collected from her science course, and began the interview by 

excitedly describing each task. At other times, a student would bring up a science task near the 

end of an interview, and I was unable to tell which (if any) task from Quantway had prompted 

their thinking. In other instances, a student would describe one science task, and then 

immediately follow up with a description of a different task.  
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 Therefore, Finding Five specifically deals with the category of student descriptions that 

began with the researcher describing a specific task from Quantway. Overall, this type of 

interaction occurred 38 times. That is, on 38 occasions, I described a specific task from 

Quantway, and noted how the student responded. This finding does not directly address any of 

the major research questions guiding this study, but does have a bearing on the forthcoming 

discussion and synthesis of the study findings. 

 What follows is an example of an interchange in which the student made a spontaneous 

connection between a QL task and a task in her general education science course. I had just 

reminded Carol of Quantway task involving the federal budget, percents of the whole, and 

percents of portions of the whole budget. 

Carol: So basically all the math that's been in Geology has been a review for me- it basically has 
 just been basic arithmetic and some percentages. There's been, oh! The last couple 
 chapters we were talking about percentages of percentages. 
IN: Yes? 
Carol: Which, if I hadn't done all the things in QW about percentages, and percentage points and 
 all those different things, it could have been confusing. But I felt like I had a good grasp 
 on things like, what's 32% of 8%, and what does that look like? 
IN: That's great. Can you be more specific about what context in geology that came up? What 
 were you looking at? 
Carol:  We were looking at these maps of the Earth’s surface, and the percentages of it in 
 mountains, or in oceans, or at what depth, and then what percentage of that is where in 
 the world, and it's a lot of breaking down percentages. 
 
 An example of an interchange in which the student made a prompted connection between 

her QL course and a subsequent science course began with my reminding Erica of a Quantway 

task involving inverse variation. After prompting her with a specific science context, she 

connected both tasks through the mathematical property of inverse variation: 

IN: Now what I would like for you to think of is this: Have you seen anything like this task 
 so far in your astronomy course?  
Erica: [Pauses] No, not really. 
IN: Okay, have you studied the relationship between brightness, luminosity, and distance at 
 all?  
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Erica: We did some with stars and the distances, yeah.  
IN: So do you remember the relationship? Between how bright a star is and how far away it 
 is? 
Erica: Yeah, the further star is, you’d have to, it’s not as bright. Oh yeah, for sure. The further to 
 a star, the dimmer it is.  
IN: So is there a connection to these Quantway lessons? 
Erica: So, yeah, like the more miles you drive, the cheaper it gets to rent the car. They’re all like 
 an inverse. 
IN: All? 
Erica: I mean both situations. 
 
 In a follow-up interview with Erica, I again provided a task from Quantway involving 

inverse variation. This time, however, I prompted her with a different science context (Wien’s 

law), but she struggled to report any connection: 

IN: Okay, can you think of anything else in your astronomy course like this? 
Erica: This kind of thing? 
IN: Like this Quantway lesson? 
Erica: (Pause) I don’t think so. I’m pretty sure that’s it. 
IN: Has she [instructor] talked at all about wavelengths and temperature? 
Erica: There was one like a diagram to show sun rays, or something.   
IN: Okay? 
Erica: I don’t think I wrote that down. You had to say, oh which one would be more- there's an 
 equation for that. 
IN: Okay, do you remember this? [Drawing graph of Wien’s law] 
Erica: Yeah, we did that. 
IN: Do you remember what’s going on here? 
Erica: Yeah, no. At least, not that I can remember. I mean, I remember her talking about it, but 
 that’s about it. Sorry. 
 
 Finally, there were instances in the transcripts in which a student made what I would 

consider to be a mathematically incorrect connection between a QL task and a general education 

science task. I wish to be very careful in using this term, however, because under Lobato and 

Seibert’s (2002) re-conceptualized view of transfer, it is up to the student to decide the extent to 

which two tasks are similar or different (as opposed to the researcher stipulating the extent to 

which two contexts share underlying mathematical structure). Nevertheless, it would be 

intellectually dishonest if I considered all of the students’ statements as mathematically correct.  
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 Admittedly, there were only three times in the transcripts where students appeared to be 

making connections in ways that were mathematically inappropriate (it was much more likely 

that a student would refrain from reporting any connection at all). One example is in this 

interchange between Gary and myself about a task in his astronomy course. We had been 

discussing a task from Quantway in which students considered the differences between 

exponential, polynomial, and linear curves. In that task, they had to consider which type of curve 

was the best fit for a scatter plot.  

Gary: Right, that one [the polynomial] we did squared and third degree. And tried to see which 
 curve was the, well, the best for the data. If I recall. 
IN:  That’s great. So if you think about your astronomy course so far, have you had to do 
 anything like that?  
Gary:  This image reminds me of the wavelengths that we do. So a wave moving through space. 
 It curves like that graph of the polynomial. The wave coming toward us or leaving us. 
 That whole thing. 
IN:  Can you explain that, or maybe, can you just sketch what you’re thinking about? 
Gary: Sure. I mean, it just looks like [sketching a representation of a light wave] this isn’t very 
 good, but–  
IN:  No, that’s fine. 
 
 In this exchange, Gary tried to make a connection between the pictorial representation of 

a light wave he had seen in his textbook, and the graph of a polynomial he had drawn in 

Quantway. Indeed, there are certain surface-level similarities between the two graphs, but it is 

certainly not the case that a light wave can be described as a behaving like a polynomial function. 

In this sense, I coded Gary’s connection as mathematically incorrect. 

 Overall, finding five illustrates the extent to which these particular students made 

connections between tasks in their previous QL course, and specific tasks in their general science 

courses. The conditions that associated with spontaneous connections, prompted connections, 

lack of connection, or incorrect connections, are a subject of the next chapter. Furthermore, the 



118 
 

qualitatively different ways that we see students making connections across different contexts 

will aid in interpreting findings one and three. 

Chapter Summary 

 This chapter presented five major findings from this study, organized according to the 

study research questions. Data from individual interviews with student and professors, as well as 

a focus group conducted with students, revealed participants’ perceptions of quantitative literacy 

in general education science courses. In the tradition of qualitative research, this chapter included 

extensive quotations from study participants. By using the participant’s own words as data, I am 

attempting to build the reader’s confidence that I have accurately represented the people and 

situations being studied. This chapter represented my attempt at thick description, and it is hoped 

that the reader has gained some sense of both the relevant data, as well as the participants’ 

personalities.  

 A primary finding from this research is that the students were able to describe 

connections between tasks in a quantitative literacy course and tasks in their subsequent general 

education science courses. These connections took the form of recognizing certain 

mathematical/statistical components that connected both academic experiences. These 

components included data analysis and representation, basic numeracy, algebraic reasoning, 

spatial/geometric reasoning, and reasoning about chance and uncertainty. Some students made 

more connections in one category and some in others, but the overall picture is one in which non-

STEM majors recognize aspects of quantitative literacy in their science courses. The different 

ways in which the students made connections across contexts seems to be mediated by several 

factors, including scientific context, and I will develop this idea more fully in the next chapter.  
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 A second finding of this research was that instructors of general education science 

courses report that their courses require many different mathematical/statistical components of 

QL. In general instructors described more opportunities for students to engage in data analysis 

and representation than any other QL component. Other components featured in instructor 

reports included algebraic reasoning, basic numeracy, spatial/geometric reasoning, and reasoning 

about chance and uncertainty. The overall picture is one in which science instructors can identify 

important aspects of QL as being necessary for completing tasks in their courses. There were 

qualitative differences between the ways in which instructors described science tasks and the 

ways their own student(s) described the same tasks. Furthermore, instructor reports of the 

quantitative aspects of their courses were often, though not always, colored by the instructor’s 

perceptions of the students’ mathematical abilities.  

 The third finding from this study was that student descriptions of tasks in general 

education science courses contain several different levels of QL-demand. Students reported tasks 

in which they merely had to know the meaning of terms and phrases, tasks in which they had to 

distinguish between different representations, tasks in which they had to derive meaning from 

quantitative representations, tasks in which they had to apply mathematical techniques, and tasks 

that required higher order thinking. Students reported fewer opportunities to engage in higher 

order thinking than in other levels of QL demand. 

 The fourth finding from this research was that although instructor descriptions of tasks in 

their general science courses contain many different levels of QL-demand, instructor task-

descriptions contain fewer examples of higher-order thinking than task-descriptions given by 

students who had previously taken a QL course. While a few instructors reported opportunities 
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for students to engage with higher order thinking, most identified tasks in which the highest 

levels of QL demand required were applying mathematical techniques or deriving meaning.  

 The fifth finding was that the students made connections between tasks in their QL 

course and tasks in their science course in qualitatively different ways. In some instances, 

students could spontaneously identify a science task that shared underlying mathematical 

characteristics with a given task from their QL course. In other instances, students were able to 

make such connections only after the researcher provided both the QL task and the science task 

for them to consider. On yet other occasions, students were unable to report a connection 

between the two contexts even when the interviewer provided both tasks. Finally, there were 

occasions in which students would attempt to connect a QL task and a science task in ways that 

were mathematically inappropriate. 

 In the following chapter, I will attempt to synthesize and interpret these findings, ground 

them in the context of existing literature, and compare and contrast them with existing theories. I 

also explain how one or more findings help us interpret others, and how theories of knowledge 

transfer between mathematics and science courses for undergraduates can shed some light on 

these findings. 
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CHAPTER V: ANALYSIS, SYNTHESIS, AND INTERPRETATION 

Introduction 

 Science, in all its major branches, seeks not only to describe the phenomena in the world 
 of our experience, but also to explain or understand them.  

– Carl Hempel, Aspects of Scientific Explanation, 1965 

 The purpose of this dissertation was not only to describe the experiences of community 

college students and instructors with quantitative literacy in general science courses, but to begin 

to understand and explain these experiences. In particular, I hoped to better understand the kinds 

of connections students and instructors make between tasks in a QL course and quantitative tasks 

in subsequent general science courses. I also wished to understand how students and instructors 

described science tasks in terms of levels of quantitative literacy demand.  

 By doing so, the field may gain some new insights into the quantitative literacy demands 

of general science courses, and the ways in which students connect quantitative ideas across 

courses. This in turn may push us to think more deeply about the role of QL courses in the 

broader picture of undergraduate mathematics education. At present, reports on the benefits of 

QL courses are mainly phrased in terms of pass rates and completion times, and these metrics are 

used to compare QL courses with other gateway mathematics courses such as College Algebra. 

While important, such a perspective offers only one lens on the experiences of students who have 

taken a QL course. To help provide a broader perspective, this study addressed the following 

research questions: 

1.  Which mathematical/statistical components of a specific QL course (Quantway) do 

 students report in tasks from subsequent general education science courses? 

2. Which mathematical/statistical components of a specific QL course (Quantway) are to be 

 found in instructor descriptions of tasks in general education science courses?  
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3. What levels of QL-demand characterize student descriptions of tasks in subsequent 

 general education science courses?  

4.  What levels of QL-demand characterize instructor descriptions of tasks in general 

 education science courses? 

 This study relied on a form of naturalistic inquiry (Lincoln & Guba, 1985; Glaser, 2004) 

to collect qualitative data through in-depth, semi-structured interviews, focus group discussions, 

and limited summaries of science documents. Study participants included six community college 

students who had all passed a specific QL course called Quantway (Carnegie Foundation for the 

Advancement of Teaching, 2012), as well as five instructors who taught the general science 

courses in which these students were enrolled. The data were coded, analyzed, and organized by 

categories and sub-categories from the conceptual framework presented in chapter two.  

 The analytic categories used to code the data were directly aligned with these research 

questions. These categories then served as a backbone from which I presented the findings in the 

previous chapter. In analyzing data, I searched for patterns within these categories, as well as 

connections across categories. As an additional layer of analysis, I explored existing research and 

literature for relevant theories and themes, to see how my own data compares and contrasts with 

larger issues in the web of research. 

 In the previous chapter, I presented the main findings from this study in narrative form, 

organized by the research questions. By doing so, I hoped to give the reader a sense of the 

environment in which the study occurred, the personalities of the research participants, and 

salient examples from the vast trove of qualitative data that the study generated. Providing this 

rich description of the research, however, resulted in splitting apart sections of data into well-

defined bins. The purpose of this chapter is to shed a holistic light on the research, and provide 
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interpretive insights. Whereas the previous chapter presented facts, figures, and discrete packets 

of data, this chapter attempts to synthesize the findings into a cohesive whole. In doing so, I draw 

from literature on quantitative literacy, transfer, and task implementation. Many of the findings 

from this study are not conclusive, and some may not even be immediately helpful toward 

advancing our understanding of the role of QL courses in undergraduate mathematics education. 

From my perspective, I hope to start a conversation – not have the final word. 

Analytic Category Development 

 Upon inspection of the findings from the previous chapter, including analysis of the 

concentrated data tables and descriptions provided by both students and instructors, certain 

themes and patterns began to emerge. In all likelihood, the reader has already formed some 

tentative impressions as to which aspects of the findings are particularly intriguing. I can only 

address the themes that stand out to myself as the researcher, and trust that others will pick up 

where I leave off. One of the exciting (though possibly vexing) aspects of this kind of research is 

that there is no definitive end to a particular research program, and every loose end can become a 

new avenue of inquiry. 

 From my perspective then, one primary finding of this study is that community college 

students who take a QL course both recognize mathematical/statistical components when they re-

appear in subsequent science coursework, and are able to describe connections between tasks in 

two different academic courses. Related to this finding, student science instructor task 

descriptions featured the QL component data representation and analysis more than any other. 

The first analytic category I will discuss is therefore “Observations on the 

mathematical/statistical components of general science courses”. This category speaks to 

Findings one and two, as well as Finding five. 



124 
 

 Quantitative literacy is much more than a list of mathematical or statistical techniques. It 

includes knowledge of different ways of thinking, understanding what quantitative skills to 

employ, and a disposition to engage in quantitative thinking (Hughes-Hallett, 2003). Therefore, I 

envisioned a second dimension for analyzing student and instructor reports – levels of 

quantitative literacy demand (as suggested by Frith & Prince, 2009). A primary finding related to 

this dimension is that although student and instructor reports of tasks in general science courses 

indicate multiple levels of QL-demand, there are fewer reports that include higher-order thinking 

than the other levels of QL-demand. Furthermore, student descriptions of science tasks tended to 

include aspects of the higher levels of QL-demand more frequently than descriptions of tasks 

provided by science instructors. The second analytic category I will discuss is therefore 

“Observations of the quantitative literacy demand levels of general education science courses”. 

This category speaks primarily to findings three and four, but also touches on finding five.  

Mathematical/statistical Components in Science Task Descriptions 

 Findings one and two report a series of mathematical or statistical components that 

appeared in student and instructor reports of tasks from several general education science 

courses. There was general overlap between student and instructor reports in terms of specific 

mathematical/statistical categories. For example, both groups reported more tasks involving data 

representation and analysis than any other category. Descriptions featuring basic numeracy, as 

well as algebraic reasoning also featured prominently in reports from both groups. Instructors 

tended to report more tasks involving algebraic reasoning than did students. Reports featuring 

geometric reasoning represented about one-fourth of all science tasks. Tasks involving reasoning 

about chance and uncertainty appeared with least frequency, but still formed a significant portion 

of the data.  
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 Why is it important that students were able to identify these mathematical/statistical 

components in their science courses? One might object that this study did not generate any data 

about how the students actually performed on the quantitative tasks they described. What is 

indicated by the fact that students could make connections between science tasks and previous 

quantitative experiences? To what extent was the students’ ability to describe tasks a product of 

their previous QL coursework, the science context, or of researcher prompting? Let us consider 

these questions in a logical order. 

 Aspects of data analysis and representation appeared prominently across many different 

scientific disciplines. The sample for this dissertation included reports originating from both the 

physical (geology, geography, and astronomy) and biological (human anatomy and physiology, 

cellular biology) sciences. Does this mean that data analysis and representation is the most 

prevalent aspect of QL when one engages with scientific ideas? Perhaps there are other 

explanations for the preponderance of this category.  

 First, it could be that the make-up of this particular sample affected the results. For 

example, there were no students enrolled in courses such as physics or chemistry (courses not 

generally taken by non-STEM majors at this community college). Perhaps courses like physics 

require students to spend much more time engaged in algebraic reasoning than in interpreting 

graphs, but the sample for this study precludes such a discussion.  

 Second, it could be that students noticed (and reported) a lot of graphical interpretation 

tasks because data analysis was a major component of Quantway, and they were more prepared 

to look for this aspect of QL than for the others. If so, Finding One may be due to the students’ 

QL course producing a priming effect (Kahneman, 2011) as opposed to any real preponderance 

of data analysis tasks in science courses. It is true that the Quantway curriculum places a heavy 
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emphasis on teaching students to read, interpret, and create representations of data. Yet this alone 

cannot account for the frequency with which this component appeared in science task-

descriptions, because science instructors (who had not taken Quantway, and therefore did not 

experience the priming effect) also reported data analysis tasks more frequently than other QL 

components. Thus, one explanation for the findings from this study is that that undergraduate 

science courses taken by non-STEM majors in community colleges are significantly data-driven.  

 Student and instructor task-descriptions featuring basic numeracy are plentiful, and the 

contexts are broad. Aspects of basic numeracy appeared in the neighborhood of one-third to one-

half of all task-descriptions.  Numeracy components often appeared in association with other 

quantitative components, such as interpreting displays of data, or spatial reasoning. When 

students spoke of the basic numeracy aspects of their science courses, they reflected mixed levels 

of confidence. Carol, Heather, and Erica all described the numerical computation aspects of 

science tasks as relatively easy. Gary and Daliah expressed certain trepidation over the kinds of 

calculations they had to do, especially when faced with multiple arithmetical operations in one 

problem (e.g. the formula for gravitational force between two bodies). The instructors in this 

study occasionally described their students’ numeracy abilities using particularly negative 

language.  

 Instructor reports that featured algebraic reasoning primarily focused on the use of 

variables, how changes in one variable might effect changes in other variables, and the need to 

re-arrange equations to solve for a particular variable. These types of algebraic reasoning are 

similar to a conception of algebra as the study of relationships among quantities (Usiskin, 1999). 

For example, Professor Geol described the continental drift rate as a relationship between 

distance and time: Given a known distance between two continents, and an estimated rate of 
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continental drift, one can work backwards to determine how much time has passed since the two 

continents were connected. The instructors also expressed disappointment at their students’ lack 

of algebraic abilities. Professor Geol, Professor Astro, and Professor Physio all stated that the 

ability to do basic algebra was the single skill they most longed for in new students. It should be 

noted that when instructors made negative comments about their students’ quantitative abilities, 

such comments were made with respect to their general population of students. They did not 

differentiate between the students who had taken a QL course, and those who had not. Likewise, 

it is probably the case that some students possessed the ability to do basic algebra, but my 

interview protocol did not elicit such comments from instructors. 

 In my discussions with students, it was often challenging to elicit descriptions of science 

contexts involving algebraic reasoning. A typical response is given by Gary, who told me, “I saw 

no x’s”.  Only after prompting the students to think about algebra in a broader sense (e.g. in 

terms of a language for describing patterns, or a way of describing relationships between 

changing quantities) did the students begin to describe science tasks involving algebraic 

reasoning. In fact, of the twelve individual student interviews, seven interviewees initially 

dismissed the idea of algebra in their science courses. One way to explain this is that the 

students, by and large, hold a limited conception of algebra, such as the procedures one uses to 

solve certain kinds of problems (Usiskin, 1999). For example, Gary’s remark might indicate that 

he is used to algebra looking a certain way, such as: 

5𝑥 + 2 = 3𝑥 − 1 

Perhaps the relative absence of formal notation throughout their science courses led the students 

to report fewer opportunities to engage with algebraic reasoning in science. Astronomy was a 

significant exception in this study. 
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 Students and instructors both identified units as a barrier to algebraic reasoning with 

respect to scientific principles. Consider Erica’s description of the universal gravitation task, in 

which she was asked to calculate the force of gravity between two planets. In particular, Erica 

expressed some frustration with the mix of units, variables, and constants in this formula, 

exclaiming, “What is that k though? Do I multiply it by g?” 

𝐹 = 𝐺 !!!!
!!

   where  G = 6.67 x 10-11 !
!

!"∙!!
 

 Such a remark suggests that differences in content specificity (Bassok & Holyoak, 1989) 

between the students’ QL course and their science course affected students’ thinking. For 

example, calculations in Quantway frequently contain no units, whereas in a science context the 

units give meaning to the results. Multiplying acceleration (m/sec2) by time (sec) gives the unit 

for velocity (m/sec). In Erica’s description of the universal gravitation task, we can see evidence 

that the units, metric prefixes, and constants all combined to produce some sort of cognitive 

interference with respect to both basic numeracy and algebraic reasoning. 

 Looking at other research on this issue, Smith and Thompson (2007) argue that students’ 

difficulties with algebra often stem from mathematics curriculum that fails to prepare them for 

the use of formal, rule-governed notational systems, and also from a lack of opportunities to 

reason about complicated relationships. In particular; “If students are eventually to use algebraic 

notation and techniques to express their ideas…then their ideas and reasoning must become 

sufficiently sophisticated to warrant such tools” (Smith & Thompson, 2007, p. 100). This study 

suggests that science instructors occasionally tried to reduce the sophistication of algebraic 

symbolism. In Carol’s description of the Itostasy task, she claimed that her instructor (Professor 

Geol) removed the symbolic variables from a formula, and replaced them with the English words 

“pressure”, “density”, and “gravity”. This was an interesting instructional move, perhaps made in 
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order to bring meaning to the scientific ideas behind the symbols. Although one might argue that 

by doing so the instructor was eliminating the need for students to reason using abstract symbols, 

the English words themselves are nonetheless a form of symbolic representation.  

 The question remains as to what can be done about improving students’ algebraic 

reasoning with respect to science, and which parties (QL instructors, science instructors, others) 

are responsible for improving students’ algebraic reasoning. Placing an increased focus within 

quantitative literacy instruction on helping develop students' abilities to conceptualize, reason 

about, and operate on quantities and relationships in algebraic problems seems like a good 

starting point. Furthermore, findings one and two of this study suggest the importance of 

attending to domain-specific conditions under which students need to recognize mathematical 

components, both during QL instruction, and future science courses. This leads to another 

specific recommendation, outlined in the final chapter. 

 Before moving on to consider student connection-making more broadly, I wish to point 

out one more unexpected result. Task descriptions featuring spatial/geometric reasoning 

accounted for over 25% of all descriptions given by students and instructors. Geometric/spatial 

reasoning tasks represent only about 6% of all tasks in Quantway. Karaali, Hernandez, and 

Taylor (2016) note that geometry is rarely a significant component of QL courses, and if often 

omitted in discussions surrounding QL for undergraduates. The results of this study, however, 

suggest that geometric and spatial reasoning are a significant aspect of the study of science. 

These results agree with prior research (Black, 2005; Chang, 1999; Downs & Liben, 1991;) on 

the quantitative aspects of undergraduate science courses. Taken as a whole, this research 

suggests that although Quantway is intended to prepare students for further academic study, the 
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amount of geometry in general education science courses is disproportionate to the coverage of 

this topic in Quantway. 

 Having considered the implications of this study in terms of the appearance of specific 

mathematical/statistical QL components in general education science courses, let us now proceed 

to answer the question: What is indicated by the fact that students could make connections 

between science tasks and previous quantitative experiences? 

QL Tasks, Science Tasks, and Transfer 

 Consider the words of David Hume (1896): “The conception always precedes the 

understanding; and where the one is obscure, the other is uncertain; where the one fails, the other 

must fail also”. Applying this philosophy to the current study, one might say that a student’s 

conception of the quantitative elements of a task precedes his or her understanding of those same 

elements. Therefore, it is important to note that the students in this study took this first step 

toward understanding by recognizing different quantitative aspects in science tasks.  

 Furthermore, the reader will recall the method by which students were asked to describe 

science tasks: The researcher provided the student with a task from his or her QL course (such as 

calculating costs associated with car ownership) and asked the student to think of task(s) in a 

science course that they believed were similar. This method initially put the responsibility on the 

student to think up a science task and to describe the connection with the given QL task. There 

were many occasions where the researcher had to provide the science task as well as the QL task 

(at which point the student may or may not be able to report a connection). Nevertheless, the 

starting point for these discussions was a non-science task. I posit that the students’ ability to 

identify similarities between a science task and a QL task suggests that the students were 

transferring knowledge from one educational experience (their QL course) to another (their 
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subsequent science course). To justify this contention, let us consider some important ideas 

regarding knowledge transfer. 

 Analogical transfer studies typically involve training a subject to complete one task, 

followed by testing the subject with a novel task that is analogous to the first (Barnett & Ceci, 

2002). The researcher usually looks to see how much of the training transfers to the analogical 

task. Studies of analogical transfer have yielded many apparently conflicting results. Scholars 

note the common failure of transfer studies to show that training in one context or on one type of 

problem generalizes to related problems in different contexts (Schooler, 1989). Detterman (1993, 

p. 5) notes, “Transfer has been one of the most actively studied phenomena in psychology 

…reviewers are in almost total agreement that little transfer occurs”. 

 In contrast, some studies suggest that human beings can and do transfer knowledge across 

contexts. One early study (Judd, 1908) found that certain types of training can have long-lasting 

mental effects and produce generalized thinking that extends past the specific training a subject 

received. More recently, Halpern (1998) noted that critical thinking can be learned in ways that 

promote transfer to novel contexts. 

 In this present study, I will not attempt to solve a psychological problem that has existed 

for over a century. Instead, I wish to note the importance of the transfer issue, and claim that the 

students in my study demonstrate transfer – if transfer is defined in a very particular way. In 

most studies of analogic transfer, the researchers decided a priori that two tasks (the training task 

and the novel task) shared significant features, but this was not the approach I used in this study. 

It seems plausible that the conflicting results we see in transfer studies may be due in large part 

to the types of tasks selected, and the rubric by which performance was measured. In other 

words, I suggest that the same data might be used as evidence either for or against the existence 
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of transfer depending on definitions and researcher assumptions. In this, I agree with Lobato 

(1996) who argued for a new way of measuring transfer. 

 Actor-oriented transfer (Lobato, 1996; Lobato & Siebert, 2002) is defined as the 

students’ personal construction of relationships between activities, or the extent to which the 

actors see contexts as similar or different. Under this theory, students actively invent and 

reorganize relationships between two contexts. Students’ ability to construct such relationships is 

the measure of knowledge transfer (as opposed to performance of specific procedures or the 

application of specifically learned facts). Researchers find evidence for actor-oriented transfer by 

examining student discourse for reports that their perceptions or behavior have been influenced 

by previous activities, and investigate how students interpret two situations as similar. 

 Under this lens, a student who is given a QL task and is able to both come up with a 

related science task, and describe how the tasks are related, shows strong evidence of actor-

oriented transfer. Even in a case where the researcher has to provide both tasks, evidence for 

transfer may be found if the student can describe how the two tasks are related. I believe that 

Finding One, and in particular the student quotes that support finding one, imply that actor-

oriented transfer has occurred for all six students in this study. 

 There is a relationship between transfer and quantitative literacy more generally. Note 

that most definitions of QL include something similar to a disposition to use mathematics or 

statistics in everyday contexts. This implies that the quantitatively literate person is able to apply 

knowledge gained in one context (perhaps a classroom) in another (perhaps the grocery store). If 

a person cannot transfer knowledge, then it seems difficult for that person to be considered 

quantitatively literate under common definitions of QL. For example, in Hughes-Hallett’s (2003) 

description of quantitative literacy transfer is implicit [emphasis added]: 
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A mathematically literate person grasps a large number of mathematical concepts 
and can use them in mathematical contexts, but may or may not be able to apply 
them in a wide range of everyday contexts. A quantitatively literate person may 
know fewer mathematical concepts, but can apply them widely (p. 92). 
 

 Does finding one suggest that the six students in this study are quantitatively literate? It at 

least suggests that the students were able to recognize a mathematical or statistical technique 

from one context (their QL course) and were beginning to understand how that same component 

helps make sense of a task in another context (their science course). The data also support a 

claim that each student recognized mathematical/statistical components in multiple scientific 

contexts.   

 Furthermore, quantitative literacy is not something a person has or lacks in entirety. Just 

as with language literacy, quantitative literacy can be considered as a spectrum ranging from 

novice to mastery (Wiggins, 2003). The evidence from this study indicates that these students are 

all beyond the novice stage in their QL because they are able to both recognize the importance of 

a certain technique, and that they should apply the technique in different contexts. Nevertheless, 

knowing when and where to apply previously learned quantitative skills seems to require 

metacognitive abilities that vary greatly by student. Carol, Heather, Kelsey and Erica seemed 

more comfortable connecting the quantitative components of their science courses back to 

Quantway than Daliah and Gary.  

 Finding five provides additional insight to issues of transfer in this study. On certain 

occasions, the students spontaneously provided a science context that they deemed similar to a 

Quantway task, and also told the researcher why the two contexts were similar. On other 

occasions, the researcher had to provide both the Quantway task and the science task, and the 

student was able to describe similarities. On yet other occasions, a student reported no 

connection between tasks, or even suggested mathematically inappropriate ways in which two 
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tasks were related. How might we account for these different responses? What factors contribute 

to the likelihood of a student either making connections or struggling to connect different 

quantitative experiences? 

Conditions Affecting Student Connection-Making 

 In combining the results of findings one and five, I posit the following hypothesis: In 

tasks where the scientific context was relatively straightforward and plain, students were better 

able to connect mathematical/statistical components from Quantway to their science courses. In 

general, the occasions in which students failed to make a connection, or made an inappropriate 

connection, were usually instances in which the scientific context was more complex or non-

intuitive. That is, science contexts can interfere with a student’s ability to process a connection 

between two academic tasks. This is not to say that every student will find the same contexts to 

be straightforward, or the same contexts to be non-intuitive. In addition, in the context of an 

interview, less complex contexts are likely easier for students to describe and report. 

Furthermore, I recognize that non-intuitive contexts have a place in general education science 

courses – indeed, to avoid them would be to shortchange students of opportunities to learn about 

many powerful ideas in science.  

 This hypothesis is supported both by evidence from this study and by research on 

transfer. Let us first consider examples in which the science context is straightforward: Kelsey 

described a clear connection between reading and interpreting graphs in a Quantway task and 

similar tasks in her anatomy and physiology course. In particular, she volunteered (a spontaneous 

connection) the example of stimulated muscle contraction. This is an example of what I would 

classify as a relatively straightforward scientific context. Many of us have experienced a muscle 

contraction in response to a stimulus. There is a brief moment of considerable contraction, 
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followed by a longer period of gradual relaxation. The quantitative literacy needed to make sense 

of the graph of this phenomenon is straightforward, and the graph of the phenomenon agrees 

with our intuition. It does not appear from Kelsey’s description of the task that the scientific 

context interfered very much with her ability to make a connection back to her Quantway course. 

 A second example of a scientific context that seems to agree with one’s preconceived 

notions of the natural world is the relationship between brightness and distance of stars. Gary and 

Erica both described the brightness/luminosity/distance task as being similar to a Quantway task 

involving inverse variation. They noted that the further a star is from an observer, the less bright 

it appears to be. In fact, the students’ descriptions go even deeper because they explained that for 

two stars of equal luminosity, whichever is further away would appear less bright. Furthermore, 

Gary and Erica accurately described the relationship as non-linear and mentioned working with 

non-linear curves in Quantway. Again, this scientific context is one that seems in line with one’s 

expectations: We know from personal experience that far away objects are more difficult to see, 

and that the sun appears to be the brightest object in the sky, although it is not the most 

luminescent.  

 Astronomy tasks as reported by students and instructors also provided an example of a 

scientific context that did appear to interfere with a student’s ability to form connections. In 

conversations with Erica and Gary, I asked them about the Wien’s Law task (the relationship 

between temperature, peak wavelength, and color of a star). Even though this is also an example 

of inverse variation, neither student described any connection between this task and the given 

Quantway task. Even after I provided additional prompting by sketching the graph of Wien’s 

Law, both students recalled discussing it but neither offered much description of the task. We 

know from the instructor interview that the students had seen the graph and spent class time 
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discussing what the graph represented. Under my hypothesis, the scientific context interfered 

with these students’ ability to make a quantitative connection. Unlike the relationship between 

brightness and distance, the notion that a cooler star would appear ‘redder’ is not a concept with 

which Erica, Gary, or myself, has much experiential knowledge. 

 Even in these few examples, we continue to see just how challenging it is to determine 

whether or not a student is able to transfer knowledge from one context to a novel context. For 

example, did Erica transfer her knowledge of inverse variation or not? Toward this end, Barnett 

& Ceci (2002) conceptualize transfer as occurring across a spectrum as opposed to either 

happening or not happening. This spectrum allows researchers to discuss transfer in terms of 

near or far transfer, depending on many differences between the two contexts (see Figure 14). 

 How might this framework help us interpret the data from our present study? In terms of 

this taxonomy for transfer, the different contexts (Quantway task vs. Science task) represent 

differences in knowledge domains. A student in Quantway learns about inverse variation 

primarily through examples involving personal finances (gas mileage, spending habits, etc.). In 

astronomy, inverse variation is be found in many phenomena, including those mentioned above, 

which have nothing to do with personal finance. 
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 Figure 14. Taxonomy for transfer (Barnett and Ceci, 2002, p. 621) 

 Looking at the left column, we note that differences between physical contexts also exist 

in this study. The students were asked to think about inverse variation in different classrooms. 

The temporal context is also important because the students experienced a gap of several months 

between thinking about inverse variation in Quantway and in their science courses. Both 

Quantway and the science courses were academic experiences and thus represent similar 

functional contexts, although the interview context was not as clearly academic. It is likely that 

there were also differences in social context, and modality between the Quantway course and the 

astronomy course, and certainly between both of those experiences and the social context of an 

interview or focus group. However, in this study, the knowledge domain seems to be the greatest 

factor in determining whether students were asked to engage in near or far transfer. 
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 Using the Barnett and Ceci (2002) taxonomy allows us to be more specific about what 

exactly the data from this study suggests. For one, it suggests that these students might be more 

successful in making connections between QL tasks and science tasks when differences in 

knowledge domains between the tasks were not too great. When the knowledge domain for a 

science task represented far transfer, students reported fewer (or occasionally mathematically 

incorrect) connections. 

 At first glance, it may appear that Lobato and Siebert (2002) disagree with Barnett and 

Ceci (2002) with respect to who is responsible for determining whether two contexts are similar 

or different. In the former case, it is the actors who have the authority for determining the 

nearness or farness of two contexts. In the latter, it is the role of the researcher to determine 

where along a spectrum two contexts fall in terms of similarity. I see these two frameworks as 

complementary in that the taxonomy of Barnett and Ceci helps us understand why an actor might 

see two contexts as similar or different.  

 An alternative (and perhaps complementary) explanation for findings one and five is that 

student thinking is not characterized by the mere presence or absence of understanding, but is 

better described as falling somewhere on a continuum between deep and surface-level 

understanding. I can, for example, grasp the general concept of a phenomenon such as the 

Doppler effect without a deep understanding of the physical processes behind sound or light 

waves, pressure, frequency, and so on. Thus there is a distinction between understanding a 

principle at a deep level (and thus the ability to connect principles across contexts), and 

understanding at a more surface level (which may inhibit me from making connections). Perhaps 

Judd’s (1908) participants learned a principle at a deep level, which is why they were able to 

transfer that principle to a novel task, whereas participants in other transfer studies (e.g. 
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Detterman, 1993) failed to demonstrate transfer because they did not understand the principle at 

a deep level.  

 The notion of deep versus surface learning is attractive, but it can only account for part of 

the picture. What would we say about the presence or absence of deep learning if a student could 

describe a mathematical principle in some follow-up tasks but not others? For example, did Gary 

possess deep or only surface level understanding of inverse variation? Since he was able to 

recognize that mathematical component in one task (brightness/distance) but not another (Wien’s 

law) we cannot say for certain. Perhaps one explanation is that both the deep/surface distinction 

and my scientific-context hypothesis combined to produce the variety of results we see in this 

study. 

 Another interpretation comes from the theory of situated cognition, which states that our 

conceptions of mathematical notions are tied to the particular problems in which those 

conceptions emerged. For example, Newton’s conception of function was substantially different 

than Dirichlet’s because each man was working with a different phenomenon. Researchers have 

long suggested that cognition is strongly situated in context, and that context affects our ability to 

perform mathematical operations (see Greeno, 1991, 1997; Leinhardt, Zaslavsky, & Stein 1990; 

Putnam & Borko, 2000). For example, unschooled street vendors were 98% accurate in 

calculations involving the cost of coconuts during actual business transactions on the streets, but 

their accuracy dropped to 37% on written tests of identical mathematical problems (T. N. 

Carraher, Carraher, & Schliemann, 1985).  

 By and large, subjects fail to solve transfer tasks unless prodded to use previously learned 

solution methods. (D. Carraher & Schliemann, 2002, p. 4). One difference between those kinds 

of studies and my present work is that in this study I was not assessing students’ ability to solve 
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problems, but rather to report whether or not two tasks are similar. Under Greeno’s (1997) 

version of situated cognition (see Nunez, Edwards, & Matos, 1999 for yet another), we might 

interpret Gary’s occasional ability to recognize inverse variation based on the extent to which 

each context was similar to the context in which he learned inverse variation (either in 

Quantway, or earlier in his other mathematical studies). 

 Coming full circle, let us return to Hume (1896) [emphasis added]:  

When any object is presented to us, it immediately conveys to the mind a lively 
idea of that object, which is usually found to attend it; and this determination of 
the mind forms the necessary connection of these objects. But when we change 
the point of view…the uniting principle among our internal perceptions is as 
unintelligible as that among external objects, and is not known to us any other 
way that by experience (p. 169). 
 

 In terms of my findings, it is quite possible that the students already possessed a “lively 

mental idea” about certain mathematical components (such as inverse variation), which they 

usually conjured up whenever the idea was mentioned in Quantway. But when asked to change 

their point of view, (e.g. to an astronomy context), their internal perception of inverse variation 

was challenged, and became less intelligible. More experience with mathematical ideas in an 

astronomy context would help build up their perception again. I return to this theme in the final 

chapter. 

Summary 

 Looking across Findings One, Two and Five, there is evidence to suggest that students 

are able to make mathematical connections between tasks in their general science classes and 

tasks in their previous QL course. The conditions under which they make such connections 

appear to be mediated by a number of factors, including specific science contexts, the QL 

context in which the mathematical notion first arose, the quality of the students’ mental ideas 

about the specific mathematical principle, and even mathematical notation. 
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 In addition, the findings of this study suggest that general education science courses for 

non-STEM majors feature a significant dose of data analysis and representation. Basic numeracy, 

as well as algebraic reasoning also appears prominently in both student and instructor reports of 

science tasks. This finding agrees, in part, with past policy reports on the quantitative aspects of 

collegiate science courses (Ganter and Haver, 2011) as well as with prior research. For example, 

Mayes, Peterson, and Bonilla (2013) noted four elements of QL related to science: numeracy, 

measurement, proportional reasoning, and descriptive statistics/basic probability. In this study, 

over 25% of all descriptions of science tasks featured some aspect of geometric or spatial 

reasoning. 

 The relatively high number of data representation tasks connects with findings three and 

four, because those same tasks often involved the QL-demand level deriving meaning. In order 

to synthesize these findings further, I now turn to a different analytic lens: Levels of quantitative 

literacy demands. 

QL-demand Levels in Science Task Descriptions 

 Resnick (1987) wrote, “The goals of increasing thinking and reasoning ability are old 

ones for educators, . . . such abilities have been the goal of some schools at least since the time of 

Plato” (p. 7). Whereas analytic category one dealt with the placement of specific 

mathematical/statistical components in science courses, and the conditions under which a student 

might recognize those components across contexts, this category deals in the realm of reasoning. 

In particular, I explore the kinds of quantitative thinking required by general education science 

courses, as perceived by both students and instructors. In particular, I present a synthesis of 

findings three and four. 
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 Findings three and four had to do with the levels of quantitative literacy demand (Frith & 

Prince, 2009) required by tasks in specific general science education courses for non-STEM 

majors at a community college. The process for determining which tasks were associated with 

which levels of QL-demand was two-fold: First, I relied on experiential descriptions from both 

students and science instructors. I then coded these descriptions based on five different levels of 

QL-demand. Admittedly, this was a clear case of the researcher imposing a framework on the 

data, but others who coded the same tasks tended to assign the same codes over 85% of the time. 

 A second method employed to determine the QL-demand levels of science tasks was the 

use of a focus group with a subset (4 of 6) of student participants, in which a significant portion 

of the conversation involved students discussing levels of QL-demand associated with various 

science tasks. Conversation on QL-demand levels also occurred during individual student 

interviews (particularly in the second round). By using this approach, I wanted to see the extent 

to which the students might perceive that different science tasks required different kinds of 

quantitative thinking. This conversation went well beyond a discussion of which tasks were easy 

or difficult, and I pressed the students to think about why certain tasks were more or less 

challenging than others. 

 Thinking about such issues is significant because a body of research indicates that 

students (and even instructors) often struggle to distinguish between notions such as conceptual 

difficulty and procedural difficulty (see Hiebert & Lefevre, 1986 for a landmark summary of 

such research). Furthermore, a half-century’s worth of studies of student motivation (Battle, 

1965; Chouinard, Karsenti, & Roy, 2007; Locke & Latham, 2002) suggest that understanding 

why a task is difficult is one of many factors that contributes to student persistence in task 

completion. When students can see a challenge as tangible, especially if when doing so they can 
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recognize the challenge as one similar to others they have already overcome (e.g. similar in 

terms of procedural difficulty), their expectancy (Battle, 1965) increases with respect to 

completing the task. In addition, one aspect of QL (Steen, 2004) is a disposition to appreciate the 

role different reasoning abilities. 

 On the other side of the desk, instructors who understand which aspects of a particular 

task are challenging for specific reasons, are better able to assist learners in overcoming such 

challenges, as opposed to simply lowering the cognitive level of a task to make it easier for 

students (see Henningsen & Stein, 1997 for a deeper explanation of this phenomenon). Such 

were the theoretical ideas that came to the forefront during my analysis of study findings.  

QL-demand Levels in Student Task Descriptions 

 As early as 1912, Thorndike noted the role of the instructor in focusing student attention 

on particular aspects of classroom activity, whether for mastering specific content, or for helping 

students think deeply and thus self-educate (p. 197). A century of research has confirmed the role 

of the teacher in influencing what students attend to in the classroom. Therefore, it is only with 

significant reserve that we can discuss the student descriptions of QL in science tasks as 

something independent from the instructor descriptions. Taken together, findings three and four 

provide at least two interesting avenues worth pursuing: First, student task-descriptions of tasks 

included several different levels of QL-demand, but relatively few descriptions of higher-order 

thinking. Second, student task-descriptions were characterized by containing generally higher 

levels of QL-demand than instructor task-descriptions. Let us consider each of these avenues in 

some depth. 

 Not only did student accounts feature five levels of QL-demand, all six of the students 

were able to point to specific tasks in their science courses that they felt featured different kinds 
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of QL-demand. For example, in the focus group, I asked the students to think of two tasks, one 

that did not require higher-order thinking and one that did. Students were generally able to 

differentiate between such tasks. For example, Carol described the requirements of the river 

entering a gorge task as not requiring higher order thinking, whereas she described the isolines 

task as requiring reflection (a marker of higher order thinking). Likewise, Heather described the 

global warming predications task as requiring higher-order thinking because the task made her 

think about why there are different predications for rising temperatures, and how uncertainty 

plays into scientific predications. During the focus group, when I asked students to come up with 

a task that did not involve higher order thinking, Heather told the group about a task involving 

the angle of the sun’s rays at different latitudes on Earth: 

Heather: “So the closer you are to…the North Pole, the more air, I think, the rays pass 
  through. So it’s like, a different angle. Like if the rays hit you straight on, it’s 
  going to be more concentrated, and that area is going to be heated better. 
 
IN:   And which of these [QL-demand] levels do you think this task required? 
 
Heather: Yeah, well, I’d say these first three. There really isn’t any calculation, right? And 
  I mean there’s not even a lot to think through. It’s just something where you look 
  at this picture [Figure 15] and figure out what’s going on. But we didn’t really do 
  anything more than just learn the rule.  
 

  

 

 

 

 

 

 Figure 15. Variations in heating due to latitude (Hess & Tasa, 2013, p. 80) 
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 Heather’s words are encouraging, because one of the goals of QL instruction is to help 

students understand that there are different types of quantitative thinking that one can bring to 

bear in solving a problem (Gal, 1993, 1997). The reason this kind of metacognition is important 

lies in the idea that student perceptions of tasks strongly influence their motivation in persisting 

toward solutions.  

 Reports of science tasks in this study differed in the types of end-products the tasks 

required: Some tasks called for generative responses, i.e., computing a number or generating an 

estimate. Some required multi-step operations, and using the results to make decisions. Other 

tasks called for interpretive responses, i.e., making sense of quantitative statements or data 

displays or being able to ask critical questions about the information and arguments presented 

without performing any calculations. These types of tasks, and many mixed types, varied in 

terms of the quantitative literacy demands they require.  

 It appears from the findings of this study, that the students were able to identify various 

quantitative literacy demand levels in science tasks, and understand why certain tasks were more 

cognitively challenging than others. While the instructors might have associated quantitative 

demand levels with problems in more abstract ways (discussed below), the Quantway students in 

this study were able to recognize a fairly broad range of QL-demand levels within different 

science tasks.  

 The second avenue of inquiry I would like to address is the finding that student task-

descriptions featured more instances of higher-order thinking than instructor task-descriptions. 

One might be tempted to interpret these findings as evidence that students simply perceived 

science tasks as more difficult than did their instructors, but reality is likely more nuanced. One 

possible explanation for this finding is that, because the students are not experts in the field, they 
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do attend to different features of tasks than their instructors (Stein, Engle, Smith, & Hughes, 

2008). Therefore, if a task purports to elicit higher-order thinking, through the use of key words 

or phrases, the students may interpret that task as actually requiring higher-order thought, 

regardless of how the task actually played out during the course. In this study, some tasks stood 

out as less structured, more complex, and longer than typical tasks (for example, the isolines task, 

and the star mapping task discussed below). According to Doyle (1988) students may perceive 

tasks as cognitively challenging when it is not readily apparent what they should do to complete 

the task. If so, perhaps the students in my study described certain tasks as higher-order thinking 

tasks, but did not consider the very real possibility that their instructor lowered the demands of 

the task during classroom implementation.  

 Evidence for this idea comes from descriptions of the star map task in Astronomy. A 

portion of Professor Astro’s description of this task was included in Chapter Four, but I repeat it 

here along with its surrounding context: 

IN: So what do you want them to do in that activity? 
 
PA: What I want them to do? I’d like them to be able to think about how the night sky would 
 appear from different points on the Earth, and why we need a consistent system for 
 describing the location of celestial objects. 
 
IN: And how do you– do you do that? 
 
PA: I mean, and I admit this is an area where I usually fail, but we never get to that kind of 
 thing. Because they don’t understand the math, to be honest. We just get bogged down in 
 just trying to find a star given right ascension and declination. I make them locate stars on 
 the star maps that are in there. So the measurement is in degrees, but they need to know 
 how to get increments of degrees. We talk about increments of 360, you know a degree is 
 about this, so if we shift that way, minutes, arc-seconds. They need to be able to make 
 those calculations. 
 
 This description certainly suggests that students were engaged with QL-demand levels 

such as deriving meaning and applying mathematical techniques. The description stops short of 
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providing evidence that this task required higher-order thinking, although the instructor initially 

described the task goals with language (“why we need a consistent system for describing the 

location of celestial objects”) that approaches higher-order thinking. In Professor Astro’s 

description, the goal of the task seems to drift away from a focus on meaning and understanding 

to a focus on procedural accuracy. 

 Two of the student participants (Gary and Erica) also described this task. Here is Gary’s 

description: 

Gary: Yeah, that one was super hard. For me, at least.  
 
IN:  What do you think was hard about it? 
 
Gary: Just the, the math you know? I mean, wow, all those measurements, and like, 
 thinking about how the Earth is tilted, and rotating. I’m still not sure I know what 
 is going on. Like, she gave us these maps and by the end I could kind of get it, get 
 how to do the calculations. But, woah. 
 
And here is Erica’s: 

Erica: The thing about that [star chart task] that I thought was interesting was that the stars 
 appear in different places depending on where you’re at on the Earth. Like, we had to say 
 what we thought would be different about the sky if we lived in South Africa, or 
 something. So like, and I don’t remember this exactly, but there’s a constellation that 
 would appear right overhead if you are on the Equator, but it’s like on the horizon if 
 you’re at the North Pole. Something like that. So the sky looks totally different up there. 
 It was kind of cool, actually. 
 
IN: So what kind of math did you have to do in that activity? 
 
Erica: It was just like converting units, I guess. I mean, it was pretty confusing. Let’s be honest. 
 But I just kept thinking about how if you were trying to navigate, it would have been 
 super hard without this system, because everywhere you’d go, the stars would look like 
 they had totally changed positions. So I get why we need this method. I just wish it 
 weren’t so complicated.  
 
 Gary’s description seems focused on the mathematical computations, in much the same 

way as did Professor Astro’s description. Even though Gary described this task as “super hard”, 

he did not indicate that the task required reflection, conjecturing, evaluating, or other indicators 
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of higher-order thinking. For Gary, the task was procedurally difficult. Erica also described the 

mathematics as complicated, but went one step further, saying that the task gave her the 

opportunity to reflect on the need for a mathematically consistent system, and conjecture as to 

how the night sky would look from different geographical locations. Because the data for my 

study does not include classroom observations, I cannot comment on how the task was actually 

implemented in the Astronomy class. Nevertheless, at least one of the students who experienced 

this task described it with words that suggest higher-order quantitative thinking.  

 Of course, many factors inside and outside the classroom influence how students engage 

with a science task, including their attentiveness during instruction, their interpretations of the 

teacher’s presentations and of the tasks they are assigned, and their entry knowledge and skills 

(Wittrock, 1986). One factor that mediated how students engaged with science tasks appears to 

be the extent to which instructors focused attention on different aspects of quantitative reasoning 

when assigning and implementing tasks. This leads us to consider the instructor side of the 

equation. 

QL-demand Levels in Instructor Task Descriptions 

 One of the first things to strike me as remarkable about Finding Four was the low percent 

of instructor task-descriptions that involved higher-order thinking. To help understand this 

finding, I searched through transcripts of instructor interviews for evidence that the instructors 

themselves perceived few opportunities for students to engage in higher-order thinking. The 

results were striking: Four of the five instructors, upon seeing the Frith and Prince (2009) 

framework, suggested that practically all the tasks in their course required only the first two 

levels (Knowing; Identifying and Distinguishing). Professor Astro’s statement is typical of such 

remarks: “I wish I could do more of that [higher order thinking]. But honestly, most of what we 
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do is in these two levels [Knowing; Identifying and Distinguishing]. I’d say 90%... honestly, most 

of them can’t even do that. It’s really hard for them”. As we have seen, however, Erica did 

engage in higher-order thinking with respect to astronomy. 

 Such perceptions are interesting for at least three reasons: First, because my own detailed 

analysis of instructor task-descriptions suggests that most science tasks actually require levels of 

QL-demand beyond the first two. Second, because the reason instructors gave for spending so 

much time on tasks that only require low-level QL-demand is that many students struggle with 

even the lower levels of QL-demand. Professor Astro is not alone in ascribing poor quantitative 

reasoning skills to her students. During my interview with Professor Physio, when the 

conversation turned toward levels QL-demand levels, he commented, “I don’t think they really 

know how to think”. We do not know, however, if Professor Astro’s statement refers to all of her 

students, or only a subset. Third, the students who participated in this study do show some 

potential for reflection, conjecture, and evaluation – hallmarks of higher-order thinking. 

 Looking across the quotes provided to support findings two and four, one finds ample 

evidence of instructors commenting on where their students’ thinking and reasoning abilities 

seem to be on science tasks, even multiple times in the same interview: 

“They have no idea. They got none of it at all. This is really depressing. I don't 
have a single student this semester, perhaps in the past, who was able to interpret 
this.” (Professor Astro) 
 
“And they’d all look at me like, “What?” But it’s just a proportion, right? But 
they don’t really understand the symbols so they struggle to get the big idea here.” 
(Professor Geol) 
 
“They don’t know how to think logically.” (Professor Geog) 
 
“Can they read this? No. Do they get the point of cumulative percentage? No. 
Okay, now elevation. Highest percentage of Earth's surface, highest percentage 
not cumulative, percentage. What they are doing, I don't know if they are not 
reading the questions, or they aren't comprehending.” (Professor Geog) 
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“… people were giving me these absurdly low numbers, but they don’t think 
anything about it!” (Professor Cell) 
 

 What can we make of such statements? First, the above quotes corroborate the findings of 

previous research on community college instructor perceptions. For example, Mesa (2012) found 

that community college instructors tend to hold significantly more negative views about student 

competence than the students do about themselves. In general, she has found that community 

college students expect and believe that they can handle challenging work, that they exhibit 

positive mathematical behaviors, and that they are interested in improving their quantitative 

competencies. She found that many community college instructors believed that their students 

were incapable of completing challenging quantitative material. 

 Instructors who possess negative opinions of their students’ quantitative abilities are 

more likely to avoid assigning challenging tasks and, if such tasks are assigned, they tend to 

make pedagogical decisions which result in watering-down the cognitive demands of these tasks 

(Henningsen & Stein, 1997). In light of this, I conjecture that the instructors in this study shied 

away from implementing science tasks that required high levels of QL-demand in part because 

they felt their students simply could not handle the challenge.  

 The instructors’ comments in this dissertation were referring to a general population of 

students, and were not intended as a critique of any particular student’s ability. The instructors 

did not make, nor did I ask them to make, a distinction between the reasoning abilities of 

students who had taken a QL course and those who had not. Furthermore, the fact that an 

instructor speaks negatively about his or her students’ quantitative abilities could result from an 

instructor making an evaluation of where most students are in terms of reasoning abilities for the 

purposes of knowing how best to meet the students’ needs. Finally, it should not be surprising 
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that instructors spoke negatively about their students’ quantitative abilities, because of the nature 

of my interview questions. I did not ask the instructors to comment on instances in which 

students reasoned well, but instead probed into an area that was likely a contentious subject to 

begin with—the mathematical preparation of incoming science students. 

 One might of course argue that it was the researcher who coded the task-descriptions as 

containing fewer elements of higher-order thinking than levels such as knowing or identifying 

and distinguishing. Furthermore, the argument might go, we only have evidence about instructor 

descriptions of tasks, and no evidence about how the tasks were actually enacted in science 

classrooms. Perhaps if researchers were to actually observe the implementation of tasks, with all 

of the attendant social norms, we would see more evidence of higher-order thinking. To all of 

this, I agree. More research in this area would be highly useful. Nevertheless, we can take 

something important away from the evidence of instructor descriptions, because the instructors’ 

task-descriptions indicate the presence of a social fact (Durkheim, 1938).  

 The notion of the social fact stems from the idea that there is always an element of 

coercion in social phenomena. The source of coercion can take many forms, including 

colleagues, past instructional experiences, and media. In this study, the tendency among 

instructors to believe that students are incapable of higher levels of quantitative reasoning likely 

derives from both colleagues and previous classroom experiences. Professor Geog described a 

conversation with her colleague in the chemistry department that re-enforced a negative 

perception about student abilities: 

My departmental coordinator teaches chemistry. And we sit down for hours chit-
chatting and comparing. She can't get them to do problems, either. And she's first 
semester chemistry. And also third and fourth semester. Their math skills coming 
in to community college, college, or University, is so far behind. (Professor Geog) 
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 Speaking from my own experience as a community college mathematics instructor, such 

conversations are commonplace. Just within the context of this study, two other professors made 

offhand remarks that conversation among colleagues about he poor quantitative abilities of 

students are commonplace. Such conversations can lead to a group-mind (l’ame collective) in 

which a group of instructors come to perceive student abilities in roughly the same ways. 

 Other researchers have found evidence for the l’ame collective among instructors. Trefil 

and Hazen (2010) reported on a tendency of science instructors (and presumably the same is true 

of instructors in many fields) to fall into the fallacy of expecting that all students should ‘think 

like us’, and lament when their students fall short of this ideal. In addition, there is an 

expectation, as Shamos (1995) has suggested, that in order for a person to be truly scientifically 

literate, he or she must be able to draw independent conclusions using the same kind of 

reasoning that a professional scientist might apply. Trefil and Hazan (2010) note that many 

science instructors even view mastery of certain mathematical techniques as a pre-requisite for 

scientific thinking. Students who can’t understand difficult mathematics, let alone basic 

mathematics, are thus deemed incapable of engaging with serious scientific ideas. As Professor 

Geol noted, “This is college. We shouldn’t be doing fourth-grade math. Once in a while, you get 

a student who had calculus [in high school], but even then, they’ve probably forgotten the 

basics. I mean, I taught myself the math I needed in college. But they can’t do it.” In the 

language of Durkheim (1938), then, the instructors in this study use few higher-order thinking 

tasks because their own thinking is coerced by colleagues and past experiences into believing 

that many students can’t engage in higher-order thought during science tasks 

 This explanation for findings three and four is somewhat limited, because it does not 

fully account for the discrepancy between appearances of higher-order thinking in 16.5% of 
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student task-descriptions and in only 5.6% of instructor reports. More likely, these results can be 

explained by a combination of students attending to different features of a task than instructors, 

and the workings of the l’ame collective in instructor task implementation. 

Summary 

 The findings of this study suggest that despite a broad disciplinary overlap between 

science and mathematics, science instructors generally avoided placing too great an emphasis on 

the quantitative aspects of science in general education science courses. This reluctance is due in 

part to instructors’ perceptions of innumeracy among community college students. This 

perceived innumeracy is seen by science instructors as both frustrating and inescapable: Multiple 

instructors noted that the students’ previous education (K-12 or postsecondary) failed to foster 

the skills necessary to make sense of the quantitative aspects of science, and that it is highly 

unlikely the students’ skills will improve by taking a single semester general science course. The 

data from this study is insufficient to say exactly how this perception influenced classroom 

decisions. Furthermore, this study did produce evidence to show that some students do engage in 

higher-order thinking during a general education science course.  

Overall Summary and Limitations 

 This chapter portrayed the experiences of a sample of students who completed a 

quantitative literacy course and who were subsequently enrolled in general education science 

courses. It portrayed science task-descriptions given by both community college students science 

instructors. The prior discussion illustrates the complex and multi-faceted intersection of 

quantitative literacy and science, as experienced by both students and instructors. The discussion 

revealed various QL components that students and instructors noticed throughout different 

science courses, and suggested underlying reasons for why certain components are more 
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commonly reported than others. In addition, this synthesis pointed to ways in which students 

make connections between tasks in a QL course, and tasks in a science course. Finally, the 

discussion highlighted different kinds of quantitative thinking (in the form of QL-demand levels) 

required by tasks in a variety of science courses. I offered explanations as to why community 

college instructors report or indicate the presence of low levels of quantitative literacy demand in 

science tasks, and suggested ways to account for differences in perceptions between students and 

instructors. 

 In this chapter, I attempted to produce a holistic and integrated synthesis of the study 

findings. Some major challenges with the synthetic process involved distilling a large volume of 

qualitative information, identifying significant connections between findings, and remain faithful 

to report findings using a framework that makes sense for the purposes of the study. Not all of 

the collected data figured substantially in the findings. For example, extensive within- and 

across-case analysis did not reveal any particular relationships between any of the participants’ 

demographic characteristics (age, gender, field of study, etc.) in explaining the findings. 

 “Human behavior is influenced by a dazzlingly complex set of incentives, social norms, 

framing references, and the lessons gleaned from past experiences. In a word: Context” (Levitt & 

Dubner, 2009). To some extent the findings in this dissertation are related only to those 

community college students and instructors who took part in the research. Perhaps the students 

were scientific do-gooders, motivated by a desire to help a doctoral researcher or advance the 

cause of quantitative literacy instruction. These students were relatively organized and 

dedicated– at least organized enough to keep regular appointments with a researcher. It is left to 

the reader to decide whether or not other students fit this description, and the extent to which 

these findings are transferrable to other settings. It is likely that at least some of students enrolled 
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in QL courses across the country are able to make connections between the things they study in 

those courses and subsequent academic experiences.  

 One might suggest that the participants in this study were motivated to tell the researcher 

things that the researcher wanted to hear, because of their positive experiences with Quantway. 

While this no doubt played a part, the students’ experience Quantway (which they often 

described as standing in contrast to negative experiences in other mathematics courses) led the 

students to tell the researcher great things about the Quantway program, not about their 

experiences in general education science courses. In fact, it was occasionally difficult for me to 

get them to talk about their science courses at all, especially in the first round of interviews. This 

may have been because the participants were initially invited to the study by their QL instructor, 

and might have thought that they were joining a study focusing primarily on Quantway. The 

result was that, although they may have tried to please the researcher by making enthusiastic 

statements about their QL course, we have less reason to think that this motive influenced 

descriptions of science tasks. 

 In looking at the data, one should ask if the very act of conducting this study might have 

had unexpected consequences. Perhaps one unexpected consequence is that, because the 

instructor interviews occurred early in the semester, instructors emphasized the QL components 

they had discussed with the researcher while teaching their courses. This is not unlike the 

educator who attends a workshop on a specific topic, and when that topic comes up in the natural 

flow of curriculum, they teach that topic with more detail or with greater care. Such action might 

have subsequently influenced the QL components noticed and described by the students. 

 In fact, it is very likely that participating in the study led at least one of the students to 

notice more aspects of QL in her science course than she would have had she not been a 
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participant. This student was Kelsey, and the evidence is in the fact that she collected graphs 

(unbeknownst to me) during the last few weeks of her science course, brought them to the 

interview, and preempted the interview by showing me everything she had brought. Had she not 

been participating in the study, it is unlikely she would have gone to such lengths to think about 

how those handouts connected back to pervious experiences in Quantway. 

 For most human beings, scrutiny has a powerful effect that can lead to significant 

changes in behavior. One might argue that by prompting the students to think about specific 

science tasks during an interview, the researcher caused the task-reports to feature more QL 

components than might naturally occur in the normal flow of conversation. While possibly true, 

the point of this study was not to determine which aspects of a QL course a student would notice 

in a subsequent science course if left to their own devices.  

 Other limitations of this study were a result of methodological decisions made by the 

researcher. For example, I made the decision not to have a distinct category for mathematical 

modeling in my analytic framework. I discussed the reasons for this decision in an earlier 

chapter, but it is important to be explicit about how such a decision might have affected the 

findings of this study. For one, I am unable to make any claims with respect to the ways that 

students or instructors perceive aspects of modeling in science tasks. Throughout the interviews, 

both students and instructors described science tasks that required students to engage in some 

mathematical modeling similar to how modeling appears in the written curriculum for 

Quantway. Perhaps, if I were to have pursued a form of analysis that included mathematical 

modeling as a separate category, it would have revealed some interesting patterns between 

modeling tasks and tasks involving other mathematical/statistical components.  
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 As explained earlier, my conceptual framework separates data analysis/representation 

from reasoning about chance and uncertainty. It could be argued, however, that understanding 

the role of uncertainty is extremely important if one is to analyze and represent data. 

Understanding how students and instructors perceive the role of uncertainty in science tasks 

involving data analysis/representation seems valuable—but would require a different study.  

 Supposing that a major goal of college education is to refine students’ critical thinking 

abilities, the results of this study paint an optimistic picture with respect to student connection-

making across quantitative courses. The results of this study indicate that the students were 

capable of making connections between QL and science tasks, especially with some prompting. 

This is good news for science instructors hoping to connect the quantitative aspects of their 

courses with students’ previous mathematics coursework. For effective promptings to occur, 

however, the science instructors would need a better understanding of exactly what topics 

students had covered in their pervious coursework. To this optimism we must maintain a sense of 

caution. Instructor remarks about their students’ quantitative reasoning abilities were frequently 

negative, and multiple instructors reported that they implement few quantitative tasks that 

require higher order thinking. 

 As noted earlier, there are alternative ways to explain the negative instructor comments 

that appeared throughout this study. For example, one job of an instructor is to move the students 

from lower levels to higher levels of reasoning. Perhaps the instructors’ comments indicate 

recognition that many students have not yet attained those higher levels. Some of the instructors 

reported methods that they employ to help students make sense of the quantitative aspects of 

science, such as helping them interpret symbols, drawing on outside resources, and teaching 

students to critically read science articles. Perhaps the student task-reports featured more 
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evidence of higher-order thinking than instructor task-reports because the two groups are 

viewing the tasks from different perspectives. Whereas the QL students see how far they’ve 

come in their quantitative reasoning skills, the science instructors see how far they still have to 

go. 

 The data from this study indicates that some of the students engaged in higher levels of 

quantitative reasoning than their science instructors expected on specific tasks. Erica, for 

example, engaged in higher-order thinking in the star chart task—a task that Professor Astro 

described as featuring only lower levels of QL-demand. In this study, however, I did not ask the 

instructors to comment on the quantitative skills of specific students. That is, the negative 

instructor comments are directed toward a general population of their students. Given that some 

of the students in that population are engaging in high levels of quantitative reasoning, the results 

of this study should give science instructors something to strive for when implementing 

quantitative tasks. Such thoughts lead us to the final chapter of this dissertation, in which I 

present certain recommendations for both practice, and future research. 
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CHAPTER VI: CONCLUSIONS AND RECOMMENDATIONS 

 School instruction is plagued by a push for quick answers. 
– John Dewey (quoted in Hiebert et al., 1996, p. 15) 

 The purpose of this study was to explore with a group of community college students, 

and their science instructors, the quantitative literacy demands of general education science 

courses, and the ways in which students connect quantitative ideas across courses. In particular, 

the study sought to understand the kinds of connections students themselves make between a QL 

course, and their subsequent general science coursework. The conclusions from this study follow 

the research questions, and address three areas: (a) student and instructor perceptions of specific 

mathematical/statistical components of QL in general education science courses, (b) student and 

instructor perceptions of the levels of QL-demand required by tasks in general education science 

courses, and (c) the ways in which students make connections between QL and science courses. I 

begin by reviewing the major findings of the study organized around the three areas listed above, 

and draw conclusions from these findings. I then present recommendations for research and 

practice based on these conclusions. The chapter ends with the researcher’s final reflections on 

the entire study. 

Conclusions 

QL Components in General Education Science Courses 

 One major finding of this dissertation is that community college students, who have taken 

a QL course, are able to notice many mathematical/statistical components from that course when 

they appear in subsequent general education science courses. Data representation and analysis 

was the component of students’ previous QL course that they reported most frequently in tasks 

from subsequent science classes. Science tasks involving geometric or spatial reasoning made up 

over 25% of all reports. Student task-reports also contained occurrences of basic numeracy, and 
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less frequently, algebraic reasoning. Probabilistic reasoning was reported in fewer tasks than the 

other components. Instructor reports of science tasks featured these components in generally the 

same order, although instructor task reports included more instances of algebraic reasoning than 

student task-reports.  

 A conclusion drawn from this finding is that students who enroll in general education 

science courses should expect to engage with a significant amount of data analysis, including 

many opportunities for both creating and interpreting graphical representations of data. Related 

to this, we can conclude that the types of data analysis required in general science courses are 

similar to those that the students experienced in their QL course. The warrant for this conclusion 

is the many occasions throughout the study in which a student was given a QL task involving 

data analysis, and was able to come up with a science task that shared similar features. A second 

conclusion drawn from this finding is that general education science courses, at least in this 

community college, feature a non-trivial amount of geometric reasoning. Related to this, we can 

conclude that if QL courses are to prepare students for the further study of science, they should 

prepare students to engage in geometric and spatial reasoning.  

 Instructors described several science tasks that required algebraic reasoning, but they also 

expressed a desire to include more algebra in their courses. Underlying many of the algebraic 

and data analysis components of general education science tasks is the notion of covariation. 

Understanding covariation seems to be a significant aspect of understanding scientific 

phenomena. A commonly reported perception was that the majority of students are 

underprepared to use algebra in the study of science. Drawing a conclusion from this aspect of 

the finding is not straightforward. It could be that these science instructors are mistaken in their 

assessment of the students’ algebraic reasoning abilities. Alternatively, it could be that the kind 
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of algebraic reasoning involved in the study of science differs significantly from that which 

students generally experience in developmental or first-year mathematics courses. Third, it could 

be the case that the students do possess the algebraic reasoning abilities required for the study of 

science, but lack the metacognitive skills necessary to operationalize this knowledge in a science 

context.  

Levels of QL-demand in General Education Science Courses 

 This study revealed that tasks in general education science courses require many different 

levels of quantitative literacy demand, and that the majority of science tasks required knowing, 

identifying and distinguishing, and deriving meaning. Students reported fewer instances in which 

they engaged in higher-order quantitative thinking than in the lower-levels of QL demand. 

Student task-descriptions included more aspects higher-order thinking than task-descriptions 

provided by science instructors. All five of the instructors in this study told me plainly that they 

largely avoided implementing higher-order thinking tasks, but evidence from this study suggests 

they actually do implement such tasks. Evidence from instructor interviews suggests that this 

avoidance is due, in part, to a perception that the students are incapable of the kind of higher-

order quantitative reasoning required by different scientific disciplines. 

 One conclusion that can be drawn from this finding is that making sense of scientific 

ideas, at least the kind of ideas generally covered in community college science courses for non-

STEM majors, requires more than the ability to apply certain mathematical or statistical 

techniques. The ability to comprehend important scientific ideas requires that students identify 

connections and distinctions between different quantitative ideas, and derive meaning from 

graphical, diagrammatic, and textual representations of information. The students who 

participated in this study showed clear evidence that they engaged in these kinds of thinking. 
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 A second conclusion that may be taken from this finding is that these community college 

students, who had taken Quantway, are able to perceive that science tasks require different kinds 

of quantitative thinking. We also see evidence that students can differentiate science tasks based 

on the kind of quantitative reasoning they require. 

Connecting Concepts from a QL Course to Science Courses 

 Another major finding of this study is that these students who have taken Quantway are 

able to take tasks from that course, and identify tasks in a general education science course that 

share underlying mathematical/statistical properties. On occasion, students were able to 

spontaneously describe a science task that they felt shared similar mathematical properties to a 

QL task. More frequently, students were able to describe a mathematical connection once they 

were provided with both tasks. On other occasions, the students failed to report any connection 

between a given QL task and a given science task. Factors that seem to influence the students’ 

ability to describe connections include differences in knowledge domains between tasks, the 

context in which a mathematical component first arose in Quantway, and the extent to which the 

science context was intuitively sensible. 

 A conclusion that can be taken from this finding is that community college students, even 

those who have only taken one or two QL courses, possess the ability to see quantitative 

connections between science and math tasks, but may require explicit prompting to do so. The 

instances in which a student failed to perceive any connection, or suggested inappropriate 

connections, represented only about one-quarter of all attempts, and this was in the context of an 

interview, not during classroom instruction. Using Lobato’s (2002) conception of actor-oriented 

transfer, we can conclude that the students in this study did transfer knowledge from their QL 
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course to their subsequent science courses. It appears that the Quantway program, to some 

extent, does prepare students for further academic study.  

 Following the finding that some science contexts pose greater challenges to students’ 

ability to make mathematical connections across tasks, I conclude that many of scientific ideas 

presented in a general education courses are sufficiently challenging to induce cognitive conflict 

in the mind of an undergraduate. Thus, although the instructors did not include many features of 

higher-order quantitative thinking in their descriptions of science tasks, their descriptions do 

appear to require the synthesis and analysis of complex scientific notions that do not always 

agree with one’s intuition. 

Recommendations 

 In what follows, I offer recommendations based on the findings, analysis, and 

conclusions of this study. The recommendations are primarily for those involved with (a) 

designing and implementing QL courses, (b) improving general education science courses, and 

(c) further research. 

Recommendations for QL Course Design and Implementation 

 The goals of the Quantway program, which also appear (in one form or another) in many 

arguments for teaching quantitative literacy more broadly are that students will learn 

mathematical skills that are useful in a variety of life experiences, including private life, in the 

workplace, and for further study (Carnegie Foundation for the Advancement of Teaching, 2012). 

This dissertation explored students’ experiences with QL in their subsequent science courses. If 

we are serious about using QL courses to prepare students for further academic study, in addition 

to teaching QL for everyday life outside the classroom, then the conclusions of this dissertation 

suggest the following recommendations: 
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1. Carefully select the contexts for QL instruction so as to avoid teaching mathematical skills 

too narrowly (i.e. only for use in everyday life). Bringing developmental mathematics and 

discipline-based instruction closer together may increase the capacity of students to apply 

mathematical skills in meaningful ways during subsequent academic tasks. One way to 

accomplish this would be to use authentic materials, such as the textbooks used in college 

science courses, during QL instruction. The content of discipline-area courses taken by 

large numbers of non-STEM majors (such as the physical or life sciences) would be a good 

starting point to look for authentic contexts. Linking QL instruction directly to authentic 

content area applications that students will encounter in a disciplinary course may increase 

the likelihood that students make connections between academic experiences. 

2. Maintain the emphasis that currently exists in QL courses on data analysis and 

representation, provide more opportunities for students to engage in both formal and 

informal reasoning about covariation, and consider the role of geometric and spatial 

reasoning in QL courses. These components should be re-visited throughout a QL course, 

appearing as horizontal strands running throughout the semester. For example, rather than a 

multi-day lesson on inverse variation using one context (personal finance), this topic should 

appear throughout a QL course in various contexts (at least some of which should be taken 

directly from other academic courses). In this way, students will have opportunities to build 

on their developing knowledge, and to see each component in a variety of guises. Such an 

approach could mitigate the effects of content-specificity on student learning in QL 

courses. 
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Recommendations for Improving General Education Science Courses 

 The present study highlights the perspectives, and important strengths that, students 

whose placement scores originally put them in the lowest levels of mathematics courses, bring to 

the science classroom. Unfortunately, instruction for such students can tend to focus on their 

weaknesses rather than their strengths. The science instructors in this study reported strong 

perceptions that many of their students were mathematically underprepared for the study of 

science, and that this perception affected the choice of science tasks they employed in class. To 

help tap into student strengths and better connect science instruction with students’ other 

quantitative experiences, the conclusions of this dissertation suggest the following 

recommendations: 

1. Create conditions for interdisciplinary collaboration, so that instructors of developmental 

mathematics and general science courses can familiarize each other with their curricula, 

learning objectives, and student outcomes. This would give science instructors greater 

awareness of the kinds of mathematical competencies they can expect from incoming 

students. Of course, such an effort would require substantial time and resources, including 

the participation of the many part-time instructors who teach the majority of developmental 

mathematics courses (including QL courses) in community colleges. 

2. Identify the similarities and differences in the language and methods used by science and 

mathematics instructors, so as to advance mutual understanding. Such work would help 

science instructors avoid re-inventing the wheels that mathematics instructors have already 

invented, and help mathematics instructors understand how to better mathematize and make 

sense of scientific. A shared language is also valuable because it gives students a consistent 

experience across quantitative courses. 
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3. Emphasize the cognitive aspects of problem solving (e.g. the levels of QL-demand) when 

implementing science tasks. Training students to recognize and process different types of 

quantitative thinking while studying science may allow instructors to more effectively 

implement tasks that involve higher-order thinking. A greater focus on the quality of mental 

processes, as well as the production of technically correct answers, should be our measures 

of educative growth. 

4 General science instructors would do well to emphasize the quantitative aspects of their 

disciplines. Such an emphasis on the quantitative aspects of science has the potential to push 

students down a path toward making quantitative reasoning part of their academic tool-kit 

for the remainder of their lives.  

Recommendations for Further Research 

 As Mesa (2007) noted, there is little research on the relationship on how mathematics 

instruction fits in the larger scheme of student learning in community colleges. Therefore, the 

field is ripe with potential studies. Regarding further studies in the field of quantitative literacy, 

and in particular with respect to the role of QL in science education, the conclusions of this study 

suggest the following recommendations: 

1. Based on the limitations of this study, and to help correct for researcher bias, a survey of a 

large sample of general education science instructors and students should be conducted to 

assess the extent to which different mathematical/statistical components of quantitative 

literacy appear in such courses. Similarly, the survey should inquire as to the representation 

of different QL-demand levels in science courses, to see if the same or similar findings 

would be uncovered. 
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2. A further study, under similar conditions, should be undertaken among QL students who 

subsequently enrolled in a wider variety of courses, such as principles of finance, 

sociology, anthropology, marketing, and philosophy. The results of such a study could then 

be compared to, and contrasted with, the results of this study on students enrolled in 

general education science courses. 

3. A comparison and analysis of research should be conducted to assess the subsequent 

academic experiences of students who take more traditional mathematics courses (e.g. 

College Algebra) and those who take QL courses. This research could be used to uncover 

similarities and/or differences in student perceptions of the quantitative literacy demands of 

science, as well as their relative abilities to make connections between mathematics 

contexts and science tasks. 

4. A longitudinal study of student performance on specific science tasks (perhaps those 

involving algebraic reasoning) should be conducted to compare and contrast the 

experiences of students who take traditional developmental mathematics courses with those 

who take QL courses. This research would push us to move beyond student perceptions in 

assessing the value added by taking a QL course. In short, such a study would improve our 

ability to assess and evaluate the effects of QL instruction in preparing students for further 

academic study. 

Researcher Reflections 

 I began this study with a notion that quantitative literacy is a bridge to further learning. 

This notion stood in contrast to a very real perception among students that mathematics is simply 

a barrier to be overcome. During some early research and experiences surrounding QL courses, I 

began to hear that such courses might be a better way to get students over the barrier. When I 
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read several reports in which the success of QL courses was reported in terms of the percent of 

students who passed them, I became uneasy. For me, a QL course should not an obstacle that 

students overcome, but a place where they can refine their abilities to think and reason. Such 

skills should then serve them well in subsequent coursework, as well as in non-academic 

situations. Pass rates will continue to be an important metric in assessing the efficacy of QL 

courses, but in this study I wanted to find a different way to describe the role a QL course played 

in the academic experiences of community college students. In the process of conducting the 

study, I was honored to spend time talking with several talented students and instructors. As 

expected, the science instructors who participated in this study seemed genuinely concerned 

about helping students learn, and the students impressed me with their thoughtfulness, insights, 

and evident desire to learn. The future of these students seems bright. As the field considers how 

best to serve students who place into developmental mathematics courses, we are reminded once 

again of the words of Lynn Steen (2001), that there is indeed a case for quantitative literacy. 
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APPENDIX A: STUDENT AND INSTRUCTOR TASK DESCRIPTIONS 

Legend: 
 
Level of QL-Demand 
 K: Knowing ID: Identifying and distinguishing   DM: Deriving meaning 
 AMT: Applying mathematical techniques  HOT: Higher-order thinking 
Mathematical/Statistical Components 
 A: Algebraic reasoning   D: Data analysis and representation  
 G: Spatial/Geometric reasoning   N: Basic numeracy    
 U: Reasoning about chance and uncertainty 
Type of Student Connection 
 S: Spontaneous   P: Prompted   N: None   I: Incorrect 
 
N/A: Participant did not provide a description for this task 
 
 
Table 9.  
Summary of geology task descriptions  

 

 Task Name 

Highest 
QL-

Demand 
Level in 
Student 

Description 

Highest 
QL-

Demand 
Level in 

Instructor 
Description 

Math/Stats 
Components  
in Student 

Description 

Math/Stats 
Components 
in Instructor 
Description 

Type of 
Student 

Connection to 
Quantway 

Task 
1 Global 

topography DM DM D, N D, N S 
2 Glacial 

movement AMT AMT A, N A, D P 
3 Volume versus 

density ID K G, N N  
4 Basketball 

model of Earth AMT N/A G, N N/A P 
5 Atlantic seafloor 

spreading AMT AMT A, D A, D  
6 Igneous rock 

classification AMT ID D, N D, N P 
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Table 9 (cont’d) 

 
 

 Task Name 

Highest 
QL-

Demand 
Level in 
Student 

Description 

Highest 
QL-

Demand 
Level in 

Instructor 
Description 

Math/Stats 
Components  
in Student 

Description 

Math/Stats 
Components 
in Instructor 
Description 

Type of 
Student 

Connection 
to 

Quantway 
Task 

7 Radiocarbon 
dating AMT AMT D, N, U A, D, N, U P 

8 Magnetic 
declination AMT AMT A, D, G A, D N 

9 Hundred-year 
flood HOT DM U U  

10 Topographic 
profile 

construction HOT HOT D D  
11 Velocity of 

river through a 
gorge K K A A, D P 

12 Temperature, 
pressure, depth 

of geologic 
formations DM N/A D, N N/A S 

13 Reading 
contour maps 

(isolines) DM DM D D  
14 Isostacy DM N/A A, G, N N/A  
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Table 10.  
Summary of astronomy task descriptions 

 Task Name 

Highest QL-
Demand 
Level in 
Student 

Description 

Highest 
QL-

Demand 
Level in 

Instructor 
Description 

Math/Stats 
Components  
in Student 

Description 

Math/Stats 
Components 
in Instructor 
Description 

Type of Student 
Connection to 

Quantway Task 
1 Main 

sequence 
of stars 

Gary: DM 
Erica: DM DM 

Gary: A, D 
Erica: D A, D 

Gary: S 
Erica: P 

2 Universal 
gravitation 

Gary: AMT 
Erica: AMT AMT 

Gary: A, D, N 
Erica: A, D, N A 

 
Erica: P 

3 Brightness, 
distance, 

and 
luminosity 

Gary: AMT 
Erica: ID ID 

Gary: A, D, N 
Erica: A, D A, D 

Gary: S 
Erica: P 

4 Wien’s law 
(graph) 

Gary: DM 
Erica: DM DM 

Gary: D 
Erica: D D 

Gary: N 
Erica: N 

5 Wien’s law 
(equation) 

Gary: * 
Erica: * AMT 

Gary: A, N 
Erica: A A 

Gary: N 
Erica: N 

6 Speed 
versus 

velocity 
Gary: K 
Erica:K K 

Gary: G, N 
Erica: G G, N  

7 Practicing 
scientific 
notation 

Gary: K 
Erica: ID ID 

Gary: N 
Erica: N N 

Gary: I 
 

8 Orbits of 
Planets 

Gary: N/A 
Erica: DM DM 

Gary: N/A 
Erica: G G  

9 Gravity on 
a satellite 

Gary: N/A 
Erica: AMT AMT 

Gary: N/A 
Erica: N, A A  

10 Star 
mapping 

task 
Gary: AMT 
Erica: HOT AMT 

Gary: D, G, N 
Erica: D, N D  
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Table 10 (cont’d) 
 

 Task Name 

Highest QL-
Demand 
Level in 
Student 

Description 

Highest 
QL-

Demand 
Level in 

Instructor 
Description 

Math/Stats 
Components  
in Student 

Description 

Math/Stats 
Components 
in Instructor 
Description 

Type of Student 
Connection to 

Quantway Task 
11 The 

sensitive 
solar 

system  
Gary: N/A 
Erica:HOT HOT 

Gary: N/A 
Erica: A, D D, A  

12 Extra-
terrestrial 

life 
Gary: * 

Erica: HOT AMT 
Gary: A 

Erica: N, P N, P  
13 Model of a 

light wave 
Gary: ID 

Erica: N/A DM 
Gary:  D, G 
Erica: N/A D 

Gary: I 
 

______________________________________________________________________________ 
*Student’s description of task was insufficient to code for this category 
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Table 11.  
Summary of human anatomy and physiology task descriptions 

 Task Name 

Highest QL-
Demand 
Level in 
Student 

Description 

Highest QL-
Demand 
Level in 

Instructor 
Description 

Math/Stats 
Components  
in Student 

Description 

Math/Stats 
Components 
in Instructor 
Description 

Type of 
Student 

Connection 
to Quantway 

Task 

1 Phases of 
muscle 
twitch 

response DM DM D D, N S 
2 Shapes of 

muscles HOT DM A, G A, G  
3 Differences 

in twitch 
response 

times DM DM D, N A, D, N  
4 Length-

tension 
relationship 
in muscles DM DM A, D A, D, G, N P 

5 Ohm’s law DM ID A, N A, N P 
6 Action 

potential DM AMT D D, G  
7 Electro-

magnetic 
spectrum N/A DM N/A A, D N 
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Table 12.  
Summary of “The Cell” task descriptions 

 Task Name 

Highest 
QL-

Demand 
Level in 
Student 

Description 

Highest 
QL-

Demand 
Level in 

Instructor 
Description 

Math/Stats 
Components  
in Student 

Description 

Math/Stats 
Components 
in Instructor 
Description 

Type of 
Student 

Connection to 
Quantway 

Task 
1 Calorie 

counting AMT AMT A, N A, N P 
2 Magnification 

of an image DM DM G G, N P 
3 Mortality rate 

and life 
expectancy AMT AMT D A, D, N, U P 

4 Basal 
metabolic rate AMT AMT D A, D, N I 

5 Surface are to 
volume ratio 

of cells N/A ID N/A G N 
6 Hexagonal 

packing of 
cells N/A K N/A G  

7 Eye color and 
genes HOT AMT U U P 

8 Critically 
reading 
science 
articles ID ID N D, N, U P 

9 Body mass 
index AMT AMT A, D, G A, D, N  

10 Phylogenetic 
trees N/A ID N/A D, U N 

11 pH scale N/A K N/A A, N  
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Table 13.  
Summary of geography task descriptions 

 Task Name 

Highest QL-
Demand 
Level in 
Student 

Description 

Highest QL-
Demand 
Level in 

Instructor 
Description 

Math/Stats 
Components  
in Student 

Description 

Math/Stats 
Components 
in Instructor 
Description 

Type of 
Student 

Connection 
to 

Quantway 
Task 

1 Relative 
versus 

absolute 
humidity DM ID N A, N P 

2 Changes in 
air pressure 

due to 
elevation AMT N/A A N/A S 

3 Scale on 
maps DM ID G G P 

4 Global mean 
temperatures 
since 1880 DM ID A, D, U A, D, N, U  

5 Global 
warming 

predictions HOT HOT A, D, U A, D, U S 
6 Global 

topography AMT AMT N D, G, N P 
7 One-hundred 

year flood HOT DM U U N 
8 Representing 

a 3D world 
on a 2D map ID N/A G N/A  

9 Significant 
figures 
tutorial ID K N N P 

10 Angle of 
sun’s rays 

due to 
latitude HOT DM D, G D, G  
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Table 13 (cont’d) 
 
 

 Task Name 

Highest QL-
Demand 
Level in 
Student 

Description 

Highest QL-
Demand 
Level in 

Instructor 
Description 

Math/Stats 
Components  
in Student 

Description 

Math/Stats 
Components 
in Instructor 
Description 

Type of 
Student 

Connection 
to 

Quantway 
Task 

11 Latitude, 
longitude, 

and location DM DM D, G D, G  
12 Composition 

of 
atmosphere DM DM A, D A, D, N P 

13 Mapping 
pressure with 

isobars AMT DM N D, N  
14 Oceans, seas, 

and surface 
area DM DM D, G, N D, G, N P 
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APPENDIX B: DEMOGRAPHIC SURVEY (STUDENTS) 
 

Thank you for your interest in participating in this study. Please complete the survey below and 
return it to Abe Edwards at edwar491@msu.edu. 
 
The information collected in this survey is completely confidential, and will only be used for the 
purposes of this research study. No reports will ever link your real name to this demographic 
information. 

 
1. My gender is: _____ Female  _____ Male 
 
2. My age is: _______ 
 
3. My race/ethnicity is: ______ White 
    ______ African American 
    ______ Asian 
    ______ Hispanic 
    ______ Native American 
    ______ Other 
      Explain (optional): 
 
4. Please list all previous math courses you have taken since high school 
 
 
 
 
 
5. Please list all courses you are enrolled in for Fall 2015 (including lecture and lab sections) 
 
 
 
 
 
6. What program are you enrolled in (if any)? 
 
 
7. What are your career plans (if known)? 
 
 
 
 
Thank you for completing this questionnaire. Your time and participation are greatly appreciated, 
and will contribute to our growing understanding of quantitative literacy courses for community 
college students. 
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APPENDIX C: DEMOGRAPHIC SURVEY (INSTRUCTORS) 
 
 
Thank you for your interest in participating in this study. Please complete the survey below and 
return it to Abe Edwards at edwar491@msu.edu. 
 
The information collected in this survey is completely confidential, and will only be used for the 
purposes of this research study. No reports will ever link your real name to this demographic 
information. 
 
1. My gender is: _____ Female  _____ Male 
 
2. My age is: _______ 
 
3. My race/ethnicity is: ______ White 
    ______ African American 
    ______ Asian 
    ______ Hispanic 
    ______ Native American 
    ______ Other 
       Explain (optional): 
 
4. What is your job title at this institution (e.g. “Assistant Professor of Biology”)? 
 
 
 
5. How long have you been teaching at this institution? 
 
 
 
 
6. Please list all the courses you currently teach at this institution, and the number of years you 
have been teaching each course (including 2015-2016). 
 
 
 
 
 
 
Thank you for completing this questionnaire. Your time and participation are greatly appreciated, 
and will contribute to our growing understanding of quantitative literacy courses for community 
college students. 
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APPENDIX D: CODING SCHEME DEVELOPMENT CHART 
 
Table 14. 
 
Coding scheme development chart 

 
Developmental Phases of 

Analytic Framework 
 

Explanation and Description of Resulting Changes to 
Coding Scheme 

 
(1) Coding scheme version April 
2015. After conducting reviews of 
relevant literature, the researcher 
developed an initial literature-
based coding framework for a 
pilot study 

This was a coding scheme based on the researcher’s initial 
ideas about a conceptual framework. It featured (a) fine-
grained codes for mathematical/statistical components based 
on the Quantway curriculum, and (b) six levels of QL-
demand from Frith & Prince (2009). At the outset, the 
original scheme contained 52 codes. 
 
 

(2) Coding scheme version July 
2015. After analyzing pilot data, 
and discussions with colleagues 
and faculty, the researcher 
developed a revised conceptual 
framework and related coding 
scheme for the dissertation 
proposal. 

Analysis of data revealed that some of the 
mathematical/statistical categories were too broad (e.g. 
geometric reasoning, which had only 1 code) and others 
were too fine-grained (e.g. basic numeracy, which included 
both “recognize percents in context”, and “interpret 
percentages in context”. This modified scheme contained 46 
codes. 
 
 

(3) Coding scheme version 
September 2015. After 
completing the instructor 
interviews, an initial pass through 
that data, conversations with 
faculty, and further review of 
literature, the coding scheme from 
the proposal was expanded. 

Instructor interviews and additional review of literature 
suggested a new conceptual category related to the QL 
components students/instructors might perceive in the 
course. This category was based on Barnette & Ceci’s 
(2002) idea that transfer is mediated by type of information  
“specific fact”, “general procedure”, “problem-solving 
strategy”). As a result, three codes were added to the 
scheme, bringing the total to 49 codes. 
 

(4) Coding scheme version 
November 2015. After initial 
analysis of data from the first 
round of student interviews, and 
conversations with faculty, the 
coding scheme was refined and 
contracted. 

Analysis of instructor interviews and the first round of 
student interviews revealed a significant issue with the 
“modeling” category of the mathematical/statistical 
components. Based on further review of literature, and 
conversations with faculty, the modeling codes were first 
compressed, and then distributed across the other categories. 
In addition, the Ceci & Barnett codes for type of information 
were eliminated, as they did not seem to be closely related 
to the study research questions. The resulting scheme 
contained 46 codes 

 



181 
 

Table 14 (cont’d) 
  

Developmental Phases of 
Analytic Framework 

 

 
Explanation and Description of Resulting Changes to 

Coding Scheme 
 

(5) Coding scheme version 
January 2016. After further 
analysis of student interview and 
focus group data, and discussion 
with faculty and colleagues, the 
coding scheme was enriched and 
expanded to its final form. 

Analysis of student data revealed an entirely new dimension 
for analysis, the ways in which students make connections 
between tasks in different courses. After discussion with 
faculty, and a work-in-progress public presentation, I added 
four codes in the category “Type of Connection”. Additional 
minor modifications to the list of mathematical/statistical 
components (in the category reasoning about chance and 
uncertainty). Removal of the “Expressing Quantitative 
Concepts” level from the framework resulted in a loss of 2 
codes. Final coding scheme contains 48 individual codes 
across 14 broad coding categories. 
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APPENDIX E: STUDENT INTERVIEW PROTOCOL - ROUND ONE 

 
 
“Good afternoon (evening). Thank you for taking the time to discuss quantitative literacy at 
[Community College]. 
 
My name is Abe Edwards and I am conducting research on quantitative literacy here at 
[Community College]. In particular, I hope to learn which parts of the Quantway course have 
been beneficial to you in your other courses. 
 
I want to talk with you about your experiences as a student who completed Quantway. In 
particular, I will be asking you about how that course has helped you in your other courses here 
at [Community College]. 
 
Before we begin, let me just suggest some things to make our discussion more productive. With 
your permission, I will be recording this discussion for an accurate record. It is important that I 
hear all of your comments, so please speak up, and be as honest and reflective as possible. No 
reports will ever link what you say to your name, and no one here at [Community College] will 
even know that you participated in these discussions. In this way, I will work to maintain your 
confidentiality.  
 
If it is OK with you, I will turn on the recorder and start now. 
 
[Start Recording] 
 
This interview is being conducted as part of a study on quantitative literacy at [Community 
College]. My name is Abe Edwards and today is [Today’s Date]. 
 
I I’d like to begin by simply getting some background information. Please say how you came to 
be a student at [Community College], what program you are in, and what you hope to do after 
you finish. 
 
Other than Quantway, which math courses have you taken at [Community College]? 
 
What courses are you enrolled in this semester? 
 
I am really interested to know if the things you studied in Quantway have come up again in your 
[Name of Science Course] this semester. To help get the conversation going, I will give you 
some specific tasks from Quantway that I hope you remember. We’ll talk about each task briefly, 
and then I will ask you if you can think of anything you’ve done in your science course that you 
think is similar to the Quantway lesson. I know it’s early in the semester, so if you can’t think of 
any particular science lesson, that’s fine. 
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II. Let’s begin with Basic Numeracy. Now, in Quantway, you had this lesson [Handout 1] on the 
percent of men and women who smoke on college campuses. Do you remember this lesson? 
 
Probe: What can you tell me about this lesson? What did you have to do to complete it? 
 
In this lesson you covered topics such as converting from ratios to percents and using a reference 
value. You might have had to convert from decimals to percents, use scientific notation, or 
calculate percent increase or decrease. Let’s think about your science course for a minute.  
 
Can you think of anything you’ve done in your science course this semester that used this kind of 
math? 
 
 Probe: [If student speaks in general terms, as for a specific instance in the science 
 course] 
 
 Probe: [If student fails to mention a task and the Instructor cited a clear example  in the 
 course] While preparing for this interview, I noticed a problem from the textbook [lab 
 manual], here on page [Page #]. Do you cover this problem in class? 
 
What did you have to do to complete this task in your science course? 
 
Do you think there is any connection between this science task and this Quantway task? 
 
 Probe: What can you tell me about how they are similar? OR What do you think is 
 different about these two tasks? 
 
III. Let me ask about another mathematical category, Algebraic Reasoning. Now, in Quantway, 
you had this lesson [Handout 2] on the factors associated with the costs of car ownership. Do you 
remember this lesson? 
 
Probe: What can you tell me about this lesson? What did you have to do to complete it? 
 
In this lesson you had to make some assumptions about the real-life situation, decide, come up 
with a linear function relating purchase cost, daily expense, and total cost of ownership, and then 
describe how the cost was either directly or inversely proportional to the different factors.  
 
Can you think of anything you’ve done in your science course this semester that used this kind of 
math? 
 
 Probe: [If student speaks in general terms, as for a specific instance in the science 
 course] 
 
 Probe: [If student fails to mention a task and the Instructor cited a clear example  in the 
 course] While preparing for this interview, I noticed a problem from the textbook [lab 
 manual], here on page [Page #]. Do you cover this problem in class? 
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What did you have to do to complete this task in your science course? 
 
Do you think there is any connection between this science task and this Quantway task? 
 
 Probe: What can you tell me about how they are similar? OR What do you think is 
 different about these two tasks? 
 
IV. The next category is Data Analysis and Representation. Now in Quantway, you had this 
lesson [Handout 3] on homelessness in different parts of the country. Do you remember this 
lesson? 
 
 Probe: What can you tell me about this lesson? What did you have to do to complete it? 
 
In this lesson you had to read and interpret graphs and tables, and take information from a table 
and create your own graphs.  
 
Can you think of anything you’ve done in your science course this semester that used this kind of 
math? 
 
 Probe: [If student speaks in general terms, as for a specific instance in the science 
 course] 
 
 Probe: [If student fails to mention a task and the Instructor cited a clear example  in the 
 course] While preparing for this interview, I noticed a problem from the textbook [lab 
 manual], here on page [Page #]. Do you cover this problem in class? 
 
What did you have to do to complete this task in your science course? 
 
Do you think there is any connection between this science task and this Quantway task? 
 
 Probe: What can you tell me about how they are similar? OR What do you think is 
 different about these two tasks? 
 
 
V. The next category is Spatial and Geometric Reasoning. In Quantway, you had this lesson 
[Handout 4] on finding the costs associated with fertilizing someone’s yard. Do you remember 
this lesson? 
 
Probe: What can you tell me about this lesson? What did you have to do to complete it? 
 
In this lesson you had to calculate areas and perimeters, make estimates based on different 
shapes, and think about the scale of different sizes of objects.  
 
Can you think of anything you’ve done in your science course this semester that used this kind of 
math? 
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 Probe: [If student speaks in general terms, as for a specific instance in the science 
 course] 
 
 Probe: [If student fails to mention a task and the Instructor cited a clear example  in the 
 course] While preparing for this interview, I noticed a problem from the textbook [lab 
 manual], here on page [Page #]. Do you cover this problem in class? 
 
What did you have to do to complete this task in your science course? 
 
Do you think there is any connection between this science task and this Quantway task? 
 
 Probe: What can you tell me about how they are similar? OR What do you think is 
 different about these two tasks? 
 
VI. This will be the last category for today, and thanks for your patience. This category is 
Chance and Uncertainty. Now in Quantway, you had this lesson [Handout 5] on the probabilities 
associated with medical testing. Do you remember this lesson? 
 
Probe: What can you tell me about this lesson? What did you have to do to complete it? 
 
In this lesson you had to calculate different probabilities, and interpret what the different 
probabilities meant. But you also had to do some converting from percents to probabilities, and 
use different graphics to interpret probabilities.  
 
Can you think of anything you’ve done in your science course this semester that used this kind of 
math? 
 
 Probe: [If student speaks in general terms, as for a specific instance in the science 
 course] 
 
 Probe: [If student fails to mention a task and the Instructor cited a clear example  in the 
 course] While preparing for this interview, I noticed a problem from the textbook [lab 
 manual], here on page [Page #]. Do you cover this problem in class? 
 
What did you have to do to complete this task in your science course? 
 
Do you think there is any connection between this science task and this Quantway task? 
 
 Probe: What can you tell me about how they are similar? OR What do you think is 
 different about these two tasks? 
 
VII. Those are the main categories that I was hoping to talk about, but is there any mathematics 
or statistics from Quantway that we haven’t discussed that you’ve noticed in your science 
course? 
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VIII. I want to shift gears for my final questions. And really, since it is early in the semester, this 
is just something to be thinking about over the upcoming weeks. [Handout 6]. One way to think 
about QL is by describing certain techniques, which is pretty much what we’ve done so far. But 
another way is to ask about the kinds of thinking you have to do to complete a task. Such 
thinking can range from very simple knowing, or identifying, all the way up to reflecting, 
evaluating, or conjecturing.  
 
I would like you to think about a task from your science course that you believe required you to 
use some higher-order thinking. Maybe even something we’ve discussed today. Can you 
describe any task where you had to do these things [refer to Frith & Prince description] 
 
 Probe: What was it about this task that made you choose it? What did you have to do to 
 complete the task? 
 
Finally, I would like you to think about a task from your science course that you believe did not 
require any higher-order thinking. Maybe even something we’ve discussed today. Can you 
describe any task where only had to use these lower levels of thinking [refer to Frith & Prince 
description]? 
 
 Probe: What was it about this task that made you choose it? What did you have to do to 
 complete the task? 
 
IX. That’s about all the time we have today, but I want to say thank you so much for all your 
help. I think your perspective is really going to be valuable for this study. 
 
Is there anything we left out, or that you did not get a chance to say? 
 
Thank you again for taking the time to participate in this discussion. 
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APPENDIX F: STUDENT INTERVIEW PROTOCOL - ROUND TWO 
 
 
“Good afternoon (evening). Thank you for taking the time to discuss quantitative literacy at 
[Community College]. 
 
My name is Abe Edwards and I am conducting research on Quantitative Literacy here at 
[Community College]. In particular, I hope to learn which parts of the Quantway course have 
been beneficial to you in your other courses. 
 
I want to talk with you about your experiences as a student who completed Quantway. In 
particular, I will be asking you about how that course has helped you in your other courses here 
at [Community College]. 
 
Before we begin, let me just suggest some things to make our discussion more productive. With 
your permission, I will be recording this discussion for an accurate record. It is important that I 
hear you, so please speak clearly, and be as honest and reflective as possible. No reports will 
ever link what you say to your name, and no one here at [Community College] will even know 
that you participated in these discussions. In this way, I will work to maintain your 
confidentiality.  
 
If it is OK with you, I will turn on the recorder and start now. 
 
[Start Recording] 
 
This interview is being conducted as part of a study on quantitative literacy at [Community 
College]. My name is Abe Edwards and today is [Today’s Date]. 
 
As you may recall from the last time we met, the goal of this research is to discover which, if 
any, components of your quantitative literacy course have re-appeared in your [name of course]. 
The last time we met, you gave me some great information, but many weeks have passed since 
then. I’m interested to see what else you’ve noticed. As with our first interview, I am going to 
remind you of some specific lessons from Quantway. I’ll then ask you to think if any of the math 
from those lessons has re-appeared in your [Science Course]. I may probe for specific examples, 
or ask you to elaborate on specific mathematical components. But feel free to share anything that 
comes to mind. Do you have any questions before we begin? 
 
I. Let’s begin with Basic Numeracy. For example, in Quantway, you had this lesson [Handout 1] 
on the breakdown, by percent, of federal government spending.  
 
What can you tell me about this lesson? What did you have to do to complete it? 
 
 
In that lesson you covered mathematics such as absolute percents and cumulative percent, but 
you also had to do some basic arithmetic, and conversions. You also had to deal with some really 
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large numbers. Let’s think about your science course for a minute. Can you think of anything 
you’ve done in your science course this semester that used this kind of math? 
 
 Probe: [If student speaks in general terms, as for a specific instance in the science 
 course] 
 
 Probe: [If student fails to mention a task and the Instructor cited a clear example  in the 
 course] While preparing for this interview, I noticed a problem from the textbook [lab 
 manual], here on page [Page #]. Do you cover this problem in class? 
 
What did you have to do to complete this task in your science course? 
 
Do you think there is any connection between this science task and this Quantway task? 
 
 Probe: What can you tell me about how they are similar? OR What do you think is 
 different about these two tasks? 
 
III. Let me ask about another mathematical category, Algebraic Reasoning. In Quantway you 
had this lesson [Handout 2] on selling t-shirts. Do you remember this lesson?  
 
What can you tell me about this lesson? What did you have to do to complete it? 
 
This kind of thinking includes more than just solving for x and y, right? It also includes contexts 
like “if I change the value of one variable in an equation, what effect does this have on another 
variable?” For example, there was a direct relationship between the number of t-shirts sold and 
income. But there was an inverse relationship between price of t-shirt and the number sold.  
 
Can you think of anything you’ve done in your science course this semester that used this kind of 
math? 
 
 Probe: [If student speaks in general terms, as for a specific instance in the science 
 course] 
 
 Probe: [If student fails to mention a task and the Instructor cited a clear example  in the 
 course] While preparing for this interview, I noticed a problem from the textbook [lab 
 manual], here on page [Page #]. Do you cover this problem in class? 
 
What did you have to do to complete this task in your science course? 
 
Do you think there is any connection between this science task and this Quantway task? 
 
 Probe: What can you tell me about how they are similar? OR What do you think is 
 different about these two tasks? 
 
IV. The next category is data analysis and representation. In Quantway, you had this lesson 
[Handout 3] on child abuse and links to homelessness. Do you recall this lesson? 



189 
 

 
What can you tell me about this lesson? What did you have to do to complete it? 
 
Some of the math involved in this lesson included correlation, causation, matching a line to a 
scatter plot, and interpreting graphs of data.  
 
Can you think of anything you’ve done in your science course this semester that used this kind of 
math? 
 
 Probe: [If student speaks in general terms, as for a specific instance in the science 
 course] 
 
 Probe: [If student fails to mention a task and the Instructor cited a clear example  in the 
 course] While preparing for this interview, I noticed a problem from the textbook [lab 
 manual], here on page [Page #]. Do you cover this problem in class? 
 
What did you have to do to complete this task in your science course? 
 
Do you think there is any connection between this science task and this Quantway task? 
 
 Probe: What can you tell me about how they are similar? OR What do you think is 
 different about these two tasks? 
 
 
V. Another mathematical category we’re interested in is Spatial or Geometric Reasoning. In 
Quantway you had this lesson [Handout 4] on the Great Pacific Garbage Patch. Do you 
remember this lesson? 
 
What can you tell me about this lesson? What did you have to do to complete it? 
 
This lesson had a lot of scaling in it. You had to basically make a scale model of a real-life 
situation, you had to use some basic geometry formulas, and even make some predictions based 
on the geometry of the situation. 
 
Can you think of anything you’ve done in your science course this semester that used this kind of 
math? 
 
 Probe: [If student speaks in general terms, as for a specific instance in the science 
 course] 
 
 Probe: [If student fails to mention a task and the Instructor cited a clear example  in the 
 course] While preparing for this interview, I noticed a problem from the textbook [lab 
 manual], here on page [Page #]. Do you cover this problem in class? 
 
What did you have to do to complete this task in your science course? 
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Do you think there is any connection between this science task and this Quantway task? 
 
 Probe: What can you tell me about how they are similar? OR What do you think is 
 different about these two tasks? 
 
VI. This will be the last category for today, and thanks for your patience. This category is 
reasoning about chance and uncertainty. In Quantway, you had this lesson [Handout 5] on 
basketball free-throws. Do you recall this lesson? 
 
What can you tell me about this lesson? What did you have to do to complete it? 
 
This lesson was primarily about conditional probabilities, but you had to make predictions, 
interpret two-way tables, and think about dependent vs. independent events. 
 
Can you think of anything you’ve done in your science course this semester that used this kind of 
math? 
 
 Probe: [If student speaks in general terms, as for a specific instance in the science 
 course] 
 
 Probe: [If student fails to mention a task and the Instructor cited a clear example  in the 
 course] While preparing for this interview, I noticed a problem from the textbook [lab 
 manual], here on page [Page #]. Do you cover this problem in class? 
 
What did you have to do to complete this task in your science course? 
 
Do you think there is any connection between this science task and this Quantway task? 
 
 Probe: What can you tell me about how they are similar? OR What do you think is 
 different about these two tasks? 
 
VII. Those are the main categories that I was hoping to talk about, but is there any mathematics 
or statistics from Quantway that we haven’t discussed that you’ve noticed in your science 
course? 
 
 
VIII. Let me shift gears for my final questions. In our first meeting, we briefly talked about 
levels of quantitative literacy demand [Handout 6]. Do you remember talking about these? 
 
In any task, you might have to engage with multiple levels. You might have to do some reading 
and interpreting, some deriving meaning, maybe even some higher order thinking. Think back to 
different tasks in your [Science course], even the activities you mentioned today. Are you able to 
describe a problem where you had to use some higher-order thinking? 
 
 Probe: What was it about this task that made you choose it? What did you have to do to 
 complete the task? 
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Finally, I would like you to think about a task from your science course that you believe did not 
require any higher-order thinking. Maybe even something we’ve discussed today. Can you 
describe any task where only had to use these lower levels of thinking [refer to Frith & Prince 
description]? 
 
 Probe: What was it about this task that made you choose it? What did you have to do to 
 complete the task? 
 
IX. That’s about all the time we have today, but I want to say thank you so much for all your 
help. I think your perspective is really going to be valuable for this study. 
 
Is there anything we left out, or that you did not get a chance to say? 
 
Thank you again for taking the time to participate in this discussion. 
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APPENDIX G: FOCUS GROUP PROTOCOL 
 
“Good afternoon (evening). Thank you for taking the time to join our discussion of quantitative 
literacy at [Community College]. 
 
My name is Abe Edwards and I am conducting research on Quantitative Literacy here at 
[Community College]. I want to talk with you about your experiences as students who have 
completed Quantway, and the extent to which it has been helpful in your current science courses.  
 
Before we begin, let me suggest some things to make our discussion more productive. I will be 
recording this discussion for an accurate record, but your real names will be deleted from any 
written transcripts or research reports.  It is important that we hear all of your comments, so 
please speak up, and only speak one at a time. We’ll only use first names here. No reports will 
ever link what you say to your name, and no one here at [Community College] will even know 
that you participated in these discussions. In this way, I will work to maintain your 
confidentiality. I would ask that you respect the confidentiality of others, by not repeating what 
people say outside of this room. 
 
During the next hour, I will ask you questions, and I will listen carefully to what you have to say. 
I will not really participate in the discussion. So please, feel free to respond to each other and to 
speak directly to others in the room. You don’t need to raise your hand, or wait to be called on to 
speak.  
 
I really want to hear from all of you. I am interested in both your experiences, and your opinions. 
If you are pretty quiet during the discussion, I might act as a traffic cop and encourage you to 
speak, while asking the others to remain quiet for a short time. 
 
If it is OK with you, I will turn on the recorder and start now. 
 
[Start Recording] 
 
This focus group is being conducted as part of a study on quantitative literacy at [Community 
College]. My name is Abe Edwards, and I am the moderator of this discussion. 
 
I. Let’s begin with introductions. Please tell us your first name, what program you are in, and 
what courses you are currently taking here at [Community College].  
 
II. I am really interested to know which of the things you learned in Quantway have been 
beneficial to you in your other classes. To help get the conversation going, I will ask about some 
specific mathematical topics, and if you think of other parts of the course that were really useful, 
you can talk about those, as well.  
 
To refresh your memories of the kinds of things you did in Quantway, I have created a list of the 
learning goals for that course. We can refer to it during our discussion if that would be helpful 
[Pass out Handout of Learning Goals] 
 



193 
 

III. In our one-on-one interviews, some of you mentioned [Topic related to Basic Numeracy] 
[Topics for follow-up determined by initial student interviews] 
 
Can someone share how [that topic] came up in your current science classes? 
 
 
Has anyone else noticed [this topic] in your current science classes?  
 
Has anyone noticed any similar topics in your current science classes [Refer students to list of 
learning goals for Numbers and Operations] 
 
 Probe: If more than one student mentions a topic in different classes, pursue similarities 
 or differences in the frequency/treatment of the topic in each course. 
 
IV. Another topic that came up in the one-on-one interviews was [Topic related to Algebraic 
Reasoning] [Topics for follow-up determined by initial student interviews] 
 
Can someone share how [that topic] came up in your current science classes? 
 
 
Has anyone else noticed [this topic] in your current science classes? 
 
Has anyone noticed any similar topics in your current science classes [Refer students to list of 
learning goals for Proportional Reasoning] 
 
 Probe: If more than one student mentions a topic in different classes, pursue similarities 
 or differences in the frequency/treatment of the topic in each course. 
 
V. In our one-on-one interviews, some of you mentioned [Topic related to Data Analysis and 
Representation] [Topics for follow-up determined by initial student interviews] 
 
Can someone share how [that topic] came up in your current science classes? 
 
 
Has anyone else noticed [this topic] in your current science classes?  
 
Has anyone noticed any similar topics in your current science classes [Refer students to list of 
learning goals for Data Analysis and Representation] 
 
 Probe: If more than one student mentions a topic in different classes, pursue similarities 
 or differences in the frequency/treatment of the topic in each course. 
 
VI. In our one-on-one interviews, some of you mentioned [Topic related to Spatial/Geometric 
Reasoning] [Topics for follow-up determined by initial student interviews] 
 
Can someone share how [that topic] came up in your current science classes? 
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Has anyone else noticed [this topic] in your current science classes?  
 
Has anyone noticed any similar topics in your current science classes [Refer students to list of 
learning goals for Statistical Thinking] 
 
 Probe: If more than one student mentions a topic in different classes, pursue similarities 
 or differences in the frequency/treatment of the topic in each course. 
 
VII. In our one-on-one interviews, some of you mentioned [Topic related to Probabilistic 
Reasoning] [Topics for follow-up determined by initial student interviews] 
 
Can someone share how [that topic] came up in your current science classes? 
 
 
Has anyone else noticed [this topic] in your current science classes?  
 
Has anyone noticed any similar topics in your current science classes [Refer students to list of 
learning goals for Statistical Thinking] 
 
 Probe: If more than one student mentions a topic in different classes, pursue similarities 
 or differences in the frequency/treatment of the topic in each course. 
 
VIII. I want to shift gears and talk about a different aspect of my research. [Hand out the 
framework for Quantitative Literacy Demand]. Of course we’re interested in which mathematical 
topics have come up in your science courses, but it’s also important for us to know the kinds of 
thinking you are had to do throughout the science course. 
 
First, does this handout make sense to you? What questions do you have about it? 
 
Someone mentioned [Specific Topic from earlier in the discussion]. Let’s use that as our 
example. When [That Topic] came up, which of the things on this handout did you have to do? 
 
How about [Another specific topic from earlier in the discussion]. Who mentioned this in your 
course? When you had to do that task, what kinds of thinking do you feel that you had to do? 
 
Can anyone think of an example in your science course where you’ve done anything listed under 
higher order thinking? 
 
IX. We’re almost done now, and you’ve provided a lot of great feedback regarding the 
connections between Quantway and your other courses. Is there anything we left out, or that you 
did not get a chance to say? 
 
Thank you again for taking the time to participate in this discussion. 
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APPENDIX H: INSTRUCTOR INTERVIEW PROTOCOL 
 
 
“Good afternoon (evening). Thank you for taking the time to discuss your [Course Name] at 
[Community College] 
 
My name is Abe Edwards and I am conducting research in mathematics education here at 
[Community College]. In particular, I hope to learn more about the quantitative components of 
your [Course Name] course. The intent of this research is really to learn more about how we can 
help improve the math and science experiences of [Community College] students. I am not here 
to evaluate or critique either your course, or yourself as an instructor.  
 
With your permission, I will be recording this discussion for an accurate record. It is important 
that you feel the freedom be as honest and reflective as possible. No reports will ever link what 
you say to your name, and no one here at [Community College] will even know that you 
participated in these discussions. In this way, I will work to maintain your confidentiality.  
 
If it is OK with you, I will turn on the recorder and start now. 
 
[Start Recording] 
 
This interview is being conducted as part of a study on quantitative literacy at [Community 
College]. My name is Abe Edwards and today is [Today’s Date]. 
 
I. I’d like to begin by simply getting some background information. Please say how you came to 
be an instructor at [Community College], how long you have been here, and what courses you 
currently teach. 
 
Today, we’re discussing your [Course Name] course. How long have you been teaching this 
course? 
 
Which textbook are you using for this course? Can you tell me approximately how far you hope 
to cover in the book? 
 
Do you use any other resources for this course, such as a lab manual? 
 
I am really interested to know what kinds of mathematics, or other quantitative skills, students 
encounter in your class. For convenience, I have grouped some potential mathematical topics 
according to five broad categories [Provide Handout 1]. I’d like to talk about these one at a time, 
and then you can add anything else that doesn’t appear to fit this list. 
 
 
II. Let’s begin with Basic Numeracy. Now, in a math course, we might ask students to convert 
from decimals to percents, use scientific notation, or calculate percent increase or decrease. But 
other topics, like orders of magnitude, also fall into this category. Here is a more detailed list of 
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components [Refer to Handout 1, section on Basic Numeracy]. As you think about your science 
course, do any tasks stand out as requiring these types of quantitative skills? 
 
 Probe: [Depending on the specific course, prompt for a reasonable context in which such 
 topics might appear] 
 
Can you give me a specific task (assignment/activity) in which students would have to use this 
kind of mathematics? 
 
What do you want the students to be able to do during, or as a result of, this task?  
 
 Probe: Can you give me any more examples of tasks from your course that involve this 
 kind of mathematics? 
 
III. Let me ask about another mathematical category, Algebraic Reasoning. This includes more 
than just solving for x and y, it also includes creating or using equations in one or more variables, 
working with direct or inverse variation, and many other things. Here is a more detailed list of 
components [Refer to Handout 1, section on Algebraic Reasoning]. 
As you think about your science course, do any tasks stand out as requiring these types of 
quantitative skills? 
 
 Probe: [Depending on the specific course, prompt for a reasonable context in which such 
 topics might appear] 
 
Can you give me a specific task (assignment/activity) in which students would have to use this 
kind of mathematics? 
 
What do you want the students to be able to do during, or as a result of, this task?  
 
 Probe: Can you give me any more examples of tasks from your course that involve this 
 kind of mathematics? 
 
IV. The next category I’d like to discuss is data analysis and representation. This includes both 
calculating and using statistics, as well as interpreting graphs, tables of data, or interpreting the 
results of statistical studies. Here is a more detailed list of components [Refer to Handout 1, 
section on Data Analysis].  
 
As you think about your science course, do any tasks stand out as requiring these types of 
quantitative skills? 
 
 Probe: [Depending on the specific course, prompt for a reasonable context in which such 
 topics might appear] 
 
Can you give me a specific task (assignment/activity) in which students would have to use this 
kind of mathematics? 
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What do you want the students to be able to do during, or as a result of, this task?  
 
 Probe: Can you give me any more examples of tasks from your course that involve this 
 kind of mathematics? 
 
V. Another category we’re interested in is Geometric or Spatial Reasoning. This includes using 
geometric formulas for perimeter, area, surface area, volume, and so on. But it also includes 
things like scaling, or thinking about how the geometry of space helps us make sense of the 
world. Here is a more detailed list of components [Refer to Handout 1, section on Data 
Analysis].  
 
As you think about your science course, do any tasks stand out as requiring these types of 
quantitative skills? 
 
 Probe: [Depending on the specific course, prompt for a reasonable context in which such 
 topics might appear] 
  
Can you give me a specific task (assignment/activity) in which students would have to use this 
kind of mathematics? 
 
What do you want the students to be able to do during, or as a result of, this task?  
 
 Probe: Can you give me any more examples of tasks from your course that involve this 
 kind of mathematics? 
 
VI. This will be the last category for today, so thanks for your patience. Reasoning about chance 
and uncertainty. This would include things like calculating probabilities using specific rules, 
thinking about conditional probability, understanding the role of uncertainty or variability, and so 
on. Here is a more detailed list of components [Refer to Handout 1, section on Data Analysis].  
 
As you think about your science course, do any tasks stand out as requiring these types of 
quantitative skills? 
 
 Probe: [Depending on the specific course, prompt for a reasonable context in which such 
 topics might appear] 
 
Can you give me a specific task (assignment/activity) in which students would have to use this 
kind of mathematics? 
 
What do you want the students to be able to do during, or as a result of, this task?  
 
 Probe: Can you give me any more examples of tasks from your course that involve this 
 kind of mathematics? 
 
VII. Are there any quantitative skills your course requires that we haven’t mentioned? 
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 If so, probe: Can you describe this task? What do you want the students to be able to do? 
 
 
VIII. I’d like to shift gears here and think about the quantitative demands of your course in a 
different way. I’m going to ask you to step back and think less about specific mathematics, and 
more about the levels of quantitative demand of the tasks in your course.  
 
If you are familiar with Bloom’s taxonomy, this might look familiar (Handout 2). As you look 
over these levels of quantitative demand, can you think of tasks or experiences in your course 
that would require students to think at these various levels? 
 
 Probe: Can you give me an example of a task that requires some higher-order thinking? 
 
 Probe: What do you want students to be able to do in that task? 
 
 [Repeat as necessary] 
 
 Probe: Can you give me an example of a task that only requires some of the lower levels? 
 
 Probe: What do you want students to be able to do in that task? 
 
 [Repeat as necessary] 
 
IX. That’s about all the time we have today, but I want to say thank you so much for all your 
help. I think your perspective is really going to be valuable for this study. 
 
Is there anything we left out, or that you did not get a chance to say? 
 
Thank you again for taking the time to participate in this discussion. 
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APPENDIX I: INFORMED CONSENT FORM 
 
1. EXPLANATION OF THE RESEARCH and WHAT YOU WILL DO:  

• You are being asked to participate in a research study of connections between a 
quantitative literacy course “Quantway” and general education science courses at  
[Community College]. 

• In order to participate in this research, you agree to participate in at least one individual 
interview with a researcher about your experiences with quantitative literacy in your 
course(s). You will also be asked to complete a short demographic survey. For students, 
you also agree to participate in a small-group interview about your experiences with both 
Quantway and your general science courses.  

• You must be at least 18 years old to participate in this research. 
 
2. YOUR RIGHTS TO PARTICIPATE, SAY NO, OR WITHDRAW: 

• Participation in this research project is completely voluntary. You have the right to say 
no. You may change your mind at any time and withdraw. You may choose not to answer 
specific questions or to stop participating at any time. 

• For students, whether you choose to participate or not will have no affect on your grade 
or evaluation in Quantway, or any other course. Your instructors will not know who, if 
anyone, participates in this research.  

 
3. COSTS AND COMPENSATION FOR BEING IN THE STUDY:  
Points to include: 

• Immediately upon completion of each interview, you will be given a $50 VISA gift card. 
Students who participate in multiple interviews will be given a $50 VISA gift card per 
interview. 

 
4. CONTACT INFORMATION FOR QUESTIONS AND CONCERNS: (Investigator contact 
information is necessary; HRPP contact info is NOT required for EXEMPT research) 
 
If you have concerns or questions about this study, such as scientific issues, how to do any part 
of it, or to report an injury, please contact: Richard Edwards, [Address]. By email at [email].  
 
If you have questions or concerns about your role and rights as a research participant, would like 
to obtain information or offer input, or would like to register a complaint about this study, you 
may contact, anonymously if you wish, the Michigan State University’s Human Research 
Protection Program at 517-355-2180, Fax 517-432-4503, or email irb@msu.edu or regular mail 
at 207 Olds Hall, MSU, East Lansing, MI 48824. 
 
5. DOCUMENTATION OF INFORMED CONSENT. 
A signature is not a required element of consent for EXEMPT protocols 
Your signature below means that you voluntarily agree to participate in this research study. 
 
 
Signature _______________________________________________   Date_________________ 
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APPENDIX J: CODING SCHEME 
 
1. Mathematical/Statistical QL Components in Science Tasks 
 
 Basic Numeracy 
  N1. Perform basic arithmetic 
  N2. Demonstrate understanding of magnitude (including scientific notation) 
  N3. Use estimation skills 
  N4. Demonstrate measurement sense (including units, precision, accuracy, error) 
  N5. Use and interpret percentages 
  N6. Distinguish between absolute and relative change 
  N7. Check the reasonableness of calculations 
 Algebraic Reasoning 
  A1. Understand the role of variables in an equation or relationship 
  A2. Describe the effect that a change in one variable has on the others 
  A3. Construct and use equations in one or more variables 
  A4. Recognize covariant relationships (including direct and inverse variation) 
  A5. Solve real world problems using the language and structure of algebra 
  A6. Solve real world problems using ratios and proportions 
 Data Analysis and Representation 
  D1. Compute basic statistics including measures of center and measures of spread 
  D2. Evaluate statistics that appear in a written report 
  D3. Determine sources of bias in data 
  D4. Describe the difference between correlation and causation 
  D5. Evaluate the sampling strategy used in a study 
  D6. Read, interpret and make decisions based on visual displays of quantitative  
  information 
 Reasoning about chance and uncertainty 
  P1. Use the language of probability to interpret statements regarding risk or  
  chance 
  P2. Apply rules of probability to solve real-life problems 
  P3. Recognize the presence of uncertainty in measurements, predictions, or data 
  P4. Interpret statements involving conditional probability 
  P5. Understand that mathematical models of real-life situations are   
  subject to error 
Spatial/Geometric Reasoning 
  G1. Solve problems involving area, perimeter, or volume 
  G2. Understand and translate between different units of measurement 
  G3. Solve problems involving geometric scaling 
  G4. Attend to geometric information on graphs, images, and diagrams 
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2. Quantitative Literacy Demand Levels of Science Tasks: 
 
Knowing 
 K1. Knowing the meaning of quantitative terms and phrases (verbal representations) 
 K2. Knowing the conventions for the symbolic representation of numbers, measurements, 
 variables and operations 
 K3. Knowing the conventions for the representation of quantitative information in tables, 
 charts, graphs, diagrams, and objects.  
Identifying and Distinguishing 
 ID1. Identifying connections and distinctions between different representations of 
 quantitative concepts 
 ID2. Identifying the mathematics to be done and strategies to do it 
 ID3. Identifying relevant and irrelevant information in representations 
Deriving Meaning 
 DM1. Understanding a verbal description of a quantitative concept/situation/process 
 DM2. Deriving meaning from representations of data in context 
 DM3. Deriving meaning from graphical representations of relationships 
 DM4. Deriving meaning from diagrammatic representations of spatial entities 
 DM5. Translating between different representations 
Applying Mathematical Techniques 
 AMT Use mathematical techniques to solve a problem, or clarify understanding – for 
 example, calculating, estimating, measuring, ordering, modeling, applying algebraic 
 techniques, etc. 
Higher Order Thinking 
 HOT1. Synthesizing information and ideas from more than one source 
 HOT2. Logical reasoning 
 HOT3. Conjecturing 
 HOT4. Interpreting, reflecting, evaluating 
 
3. Types of Connections Made By Students 
 
 SC. Spontaneous connection. Student is given a QL task, comes up with the science task 
 and describes a connection 
 PC. Prompted connection. Student is given both the QL task and the science task, and 
 describes a connection 
 NC. No connection. Student is given both the QL task and the science task, and is not 
 able to describe a connection 
 IC. Incorrect connection. Student describes a connection between two tasks that is 
 mathematically inaccurate. For example, claiming that both tasks are examples of inverse 
 variation when they are not. 
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APPENDIX K: SAMPLE INTERVIEW CODED FOR MATHEMATICAL/STATISTICAL 
COMPONENTS  

 
Extra-terrestrial Life Task 
 
Participant: Erica 
Date: December 9, 2015 
Final Codes: [P1, P2, P3, N1, N3, N5] 
 
Erica: When we talked about – the last thing we talked about was like the chances of there being 
life somewhere else in the universe, using the probability, like the universe is so big there 
probably is a chance that there’s some sort of life; maybe not intelligent life.  But it actually 
takes a lot – like it has to be exact conditions for life to form because it’s a really strict formula 
for –  
 
IN: Strict, as in, what is necessary for life to form– 
 
Erica: Yeah.  Temperature, water, sun, heat and – 
 
IN: Right amount of gravity so we don’t – 
 
Erica: Yeah, so it’s kind of hard for that to happen but since the universe is so big, it’s probably 
like there is something. And we just guessed at some of the percents, so it’s not exact, right? But 
it’s [the Universe] so large that when you multiply the number of planets, or whatever, you still 
would think there should be some life out there.  
 
----- 
 
Participant: Professor Astro 
Date: September 7, 2015 
Final Codes: [N1, N2, N3, N5, P1, P2] 
 
PA: I’m not sure they really, well maybe no one really does, but they don’t understand how 
 big the Universe really is. The sheer number of stars, planets, planetary systems–it’s 
 mind-boggling. 
IN:  And how do you help them make sense of that kind of scale, those numbers? 
PA:  Not very well! I mean, what does it mean that there are, oh, 1024 planets in the Universe? 
 Who knows what that number even means? 
IN:  Right, is that like the number of grains of sand on a beach, or– 
PA:  Right. It’s so big that, well, one activity I like to do with them is, especially if we have 
 some extra time, is to think about the possibility of life existing somewhere else in the 
 Universe. 
IN:  Oh, that’s really interesting. 
PA:  Yeah, and it’s a good way to help them interpret the sheer size of the Universe. Because 
 you take your different parameters, what percent of all planets are far enough from a star 
 to be warm enough to support life, but not too warm? What percent have the right 
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 atmosphere? What percent have the right size? All these things. So we just put values on 
 these parameters, and the thing is, you can make them as small as you want. Really small 
 percentages. But when you consider the number of planets out there –well, the likelihood 
 is actually pretty decent. 
IN:  Really? 
PA:  Absolutely. But then this gets into a discussion of aliens, and someone mentioned [the 
 movie] Contact, and it turns into a fifteen-minute discussion. And the result is I don’t get 
 through all my slides. 
----- 
 
Muscle Contraction Task 
 
Participant: Kelsey 
Date: November 30, 2015 
Final Codes: [D6, A4, G4] 
 
IN:  Can you say more about what’s going on here?  
 
K:  Right. This really struck me as something that made sense because of what we did in 
 Quantway. Just being able to look at this [see Figure 7] and being able to make sense of 
 it you know as tension goes up and time goes like this, this is a muscle contraction.  I feel 
 like I'm – can do that better because of Quantway. The maximal stimuli– this is what that 
 looks like, so it's making sense of the vocabulary, and what it looks like on a chart or a 
 graph. If I was to get one of these terms, and this was a graph and it wasn't labeled, and 
 you had to circle where the, the maximal stimuli is, you know, you'd have to make sense 
 of what that is on a graph.  
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APPENDIX L: SAMPLE INTERVIEW CODED FOR LEVELS OF QUANTITATIVE 
LITERACY DEMAND 

 
Extra-terrestrial Life Task 
 
Participant: Erica 
Date: December 9, 2015 
Final Codes: [K1, ID2, DM1, AMT, HOT2, HOT3, HOT4] 
 
E: When we talked about – the last thing we talked about was like the chances of there being 
life somewhere else in the universe, using the probability, like the universe is so big there 
probably is a chance that there’s some sort of life; maybe not intelligent life.  But it actually 
takes a lot – like it has to be exact conditions for life to form because it’s a really strict formula 
for –  
 
IN: Strict, as in, what is necessary for life to form– 
 
E: Yeah.  Temperature, water, sun, heat and – 
 
IN: Right amount of gravity so we don’t – 
 
E: Yeah, so it’s kind of hard for that to happen but since the universe is so big, it’s probably 
like there is something. And we just guessed at some of the percents, so it’s not exact, right? But 
it’s [the Universe] so large that when you multiply the number of planets, or whatever, you still 
would think there should be some life out there.  
----- 
 
Participant: Professor Astro 
Date: September 7, 2015 
Final Codes: [K1, K2, ID2, DM1, AMT, HOT2, HOT3, HOT4] 
 
PA: I’m not sure they really, well maybe no one really does, but they don’t understand how 
 big the Universe really is. The sheer number of stars, planets, planetary systems–it’s 
 mind-boggling.  
IN:  And how do you help them make sense of that kind of scale, those numbers? 
PA:  Not very well! I mean, what does it mean that there are, oh, 1024 planets in the Universe? 
 Who knows what that number even means?  
IN:  Right, is that like the number of grains of sand on a beach, or– 
PA:  Right. It’s so big that, well, one activity I like to do with them is, especially if we have 
 some extra time, is to think about the possibility of life existing somewhere else in the 
 Universe.  
IN:  Oh, that’s really interesting. 
PA:  Yeah, and it’s a good way to help them interpret the sheer size of the Universe. Because 
 you take your different parameters, what percent of all planets are far enough from a star 
 to be warm enough to support life, but not too warm? What percent have the right 
 atmosphere? What percent have the right size? All these things. So we just put values on 
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 these parameters, and the thing is, you can make them as small as you want. Really small 
 percentages. But when you consider the number of planets out there –well, the likelihood 
 is actually pretty decent.   
IN:  Really? 
PA:  Absolutely. But then this gets into a discussion of aliens, and someone mentioned [the 
 movie] Contact, and it turns into a fifteen-minute discussion. And the result is I don’t get 
 through all my slides. 
----- 
 
Muscle Contraction Task 
Participant: Kelsey 
Date: November 30, 2015 
Final Codes: [K3, ID1, ID3, DM1, DM2, DM3, DM5] 
 
IN:  Can you say more about what’s going on here?  
 
K:  Right. This really struck me as something that made sense because of what we did in 
 Quantway. Just being able to look at this [see Figure 7] and being able to make sense of 
 it you know as tension goes up and time goes like this, this is a muscle contraction. I feel 
 like I'm – can do that better because of Quantway. The maximal stimuli– this is what that 
 looks like, so it's making sense of the vocabulary, and what it looks like on a chart or a 
 graph. If I was to get one of these terms, and this was a graph and it wasn't labeled, and 
 you had to circle where the, the maximal stimuli is, you know, you'd have to make sense 
 of what that is on a graph.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



206 
 

APPENDIX M: DOCUMENT SUMMARY FORM 
 
 
Name of Document: 
 
Document No.: 
 
Date Published: 
 
Event or Contact With Which Document Is Associated:  
 
 
Specific Portion of Document Used: 
 
Page # Key Words/Concepts/Images Comments: 
   

   

   

   

   

   

 
Brief Summary of Contents: 
 
 
 
 
Questions/Issues to Consider: 
 
 
 
Additional Comments: 

  



207 
 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 

 

 

 

 

 

 

 

 

 

 

 

 



208 
 

 

REFERENCES 
 
 

Altheide, D.L., & Johnson, J.M. (1994). Criteria for assessing interpretive validity in qualitative 
research. In N.K. Denzin & Y.S. Lincoln (Eds.), Handbook of qualitative research (pp. 
485-499). Thousand Oaks, CA: Sage Publications. 

 
Apter, A. J., Wang, X., Bogen, D., Bennett, I. M., Jennings, R. M., Garcia, L., … & Ten Have, 

T. (2009). Linking numeracy and asthma-related quality of life. Patient Education and 
Counseling, 75(3), 386-391. 

Arny, T., & Schneider, S. (2013). Explorations: An introduction to astronomy (7th ed.). New 
 York, NY: McGraw-Hill. 

Aud, S., Fox, M. A., & KewalRamani, A. (2010). Status and trends in the education of racial 
and ethnic groups (NCES 2010-015). Washington, DC: National Center for Education 
Statistics. 

Bailey, T., Jeong, D. W., & Cho, S. W. (2010). Referral, enrollment, and completion in 
developmental education sequences in community colleges. Economics of Education 
Review, 29(2), 255-270. 

Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn?: A taxonomy 
for far transfer. Psychological Bulletin, 128(4), 612–637. 

Bassok, M., & Holyoak, K. J. (1989). Interdomain transfer between isomorphic topics in algebra 
and physics. Journal of Experimental Psychology: Learning, Memory, and Cognition, 
15(1), 153. 

Battle, E. S. (1965). Motivational determinants of academic task persistence. Journal of 
Personality and Social Psychology, 2(2), 209-218. 

Betne, P. (2010). Project Quantum Leap and SENCER at LaGuardia Community College. 
Science Education & Civic Engagement: An International Journal, 2(2), 12-16.  

Black, A. A. J. (2005). Spatial ability and earth science conceptual understanding. Journal of 
Geoscience Education, 53(4), 402-414. 

Blair, R. (Ed.). (2006). Beyond crossroads: Implementing mathematics standards in the first two 
years of college. Memphis, TN: AMATYC. 

Blair, R., Kirkman, E. E., & Maxwell, J. W. (2010). Statistical abstract of undergraduate 
programs in the mathematical sciences in the United States: Fall 2010 CBMS survey. 
Providence, RI: American Mathematical Society. 



209 
 

Bogdan, R. C. & Biklen, S. K. (2003). Qualitative research for education: An introduction to 
theories and methods. New York, NY: Pearson. 

Brown, E. N., & Kass, R. E. (2009). What is statistics? (with discussion). American Statist, 63, 
105-123. 

Brown, S. M., Culver, J. O., Osann, K. E., MacDonald, D. J., Sand, S., Thornton, A. A., … & 
Robson, M. E. (2011). Health literacy, numeracy, and interpretation of graphical breast 
cancer risk estimates. Patient Education and Counseling, 83(1), 92-98. 

Busch, R.M., & Tasa, D. (2014). Laboratory manual in physical geology (10th ed.). New York, 
NY: Pearson. 

Carnegie Foundation for the Advancement of Teaching. (2012). Quantway. Available from 
http://www.carnegiefoundation.org/quantway 

Carraher, D., & Schliemann, A. (2002). The transfer dilemma. The Journal of the Learning 
Sciences, 11(1), 1-24. 

Carraher, T. N., Carraher, D. W., & Schliemann, A. D. (1985). Mathematics in the streets and in 
schools. British Journal of Developmental Psychology, 3(1), 21–29. Retrieved from 
http://doi.org/10.1111/j.2044-835X.1985.tb00951.x 

Caufield,  S., & Persell, C. H. (2006). Teaching social science reasoning and quantitative 
literacy: The role of collaborative groups. Teaching Sociology 34(1), 39-53. 

Cavazos, J., Johnson, M. B., & Sparrow, G. S. (2010). Overcoming personal and academic 
challenges: Perspectives from Latina/o college students. Journal of Hispanic Higher 
Education, 9(4), 304-316. 

Ceci, S. J., & Ruiz, A. (1993). The role of context in everyday cognition. In M. Rabinowitz 
(Ed.), Applied Cognition (pp. 164 –183). Hillsdale, NJ: Erlbaum. 

Chang, J. Y. (1999). Teachers college students' conceptions about evaporation, condensation, 
and boiling. Science Education, 83(5), 511-526. 

Charette, M. F., & Meng, R. (1998). The determinants of literacy and numeracy, and the effect of 
literacy and numeracy on labour market outcomes. Canadian Journal of Economics, 
31(3), 495-517. 

Charles A. Dana Center. (2014). New mathways project. Retrieved from 
http://www.utdanacenter.org/higher-education/new-mathways-project/ 

Chouinard, R., Karsenti, T., & Roy, N. (2007). Relations among competence beliefs, utility 
value, achievement goals, and effort in mathematics. British Journal of Educational 
Psychology, 77(3), 501-517. 



210 
 

Clyburn, G. M. (2013). Improving on the American dream: Mathematics pathways to student 
success. Change: The Magazine of Higher Learning, 45(5), 15-23. 

Cobb, P. (1988). The tension between theories of learning and instruction in mathematics 
education. Educational Psychologist, 23(2), 87-103. 

Cobb, P., & Bowers, J. (1999). Cognitive and situated learning perspectives in theory and 
practice. Educational Researcher, 28(2), 4-15. 

Cohen, D. (Ed.). (1995). Crossroads in mathematics: Standards for introductory college 
mathematics before calculus. Memphis, TN: AMATYC. 

Conrad, C. F. & Serlin, R. C. (2006). The SAGE handbook for research in education: Engaging 
ideas and enriching inquiry. Thousand Oaks, CA: Sage Publications. 

Couper, M. P., & Singer, E. (2009). The role of numeracy in informed consent for surveys. 
Journal of Empirical Research on Human Research Ethics, 4(4), 17-26. 

Creswell, J. W. (2013). Research design: Qualitative, quantitative, and mixed methods 
approaches. Thousand Oaks, CA: Sage Publications. 

Creswell, J. W., & Miller, T. L. (2000). Getting good qualitative data. Theory into Practice, 
39(3), 124-130. 

Crockcroft, W. H. 1982. Mathematics counts. London, UK: HM Stationery Office. 

Cullinane, J., & Treisman, P. U. (2010). Improving developmental mathematics education in 
community colleges: A prospectus and early progress report on the Quantway Initiative 
(NCPR working paper). New York, NY: National Center for Postsecondary Research.  

Denzin, N. K. (2001). The reflexive interview and a performative social science. Qualitative 
Research, 1(1), 23-46. 

Department of Education and Science (DES). (1959). 15 to 18 (The Crowther report). London, 
UK: HM Stationery Office. 

Detterman, D. K. (1993). The case for the prosecution: Transfer as an epiphenomenon. In D. K. 
Detterman & R. J. Sternberg (Eds.), Transfer on trial: Intelligence, cognition, and 
instruction (pp. 1-24). Westport, CT: Ablex Publishing. 

Dewey, J. (1909). Moral principles in education. Boston, MA: Houghton Mifflin. 

Dingman, S. W., & Madison, B. L. (2010). Quantitative reasoning in the contemporary world, 1: 
The course and its challenges. Numeracy, 3(2), 4. 

Downs, R. M., & Liben, L. S. (1991). The development of expertise in geography: A cognitive-
developmental approach to geographic education. Annals of the Association of American 
Geographers, 81(2), 304-327. 



211 
 

Doyle, W. (1988). Work in mathematics classes: The context of students' thinking during 
instruction. Educational Psychologist, 23(2), 167-180. 

Durkheim, E. (1938). The rules of sociological method (8th ed.). Glencoe, IL: The Free Press. 

Dyche, S., McClurg, P., Stepans, J., & Veath, M. L. (1993). Questions and conjectures 
concerning models, misconceptions, and spatial ability. School Science and Mathematics, 
93(4), 191-197. 

Erlwanger, S. H. (1973). Benny's conception of rules and answers in IPI mathematics. Journal of 
Children’s Mathematical Behavior, 1(2), 7-26. 

Estry, D. W., & Ferrini-Mundy, J. (2005). Quantitative literacy task force final report and 
recommendations. East Lansing, MI: Michigan State University. 

Felbrich, A., Müller, C., & Blömeke, S. (2008). Epistemological beliefs concerning the nature of 
 mathematics among teacher educators and teacher education students in mathematics. 
 ZDM, 40(5), 763–776.  

FitzSimons, G. E. (2002). What counts as mathematics?: Technologies of power in adult and 
vocational education. New York, NY: Kluwer Academic Publishers. 

Follette, K. B., McCarthy, D. W., Dokter, E., Buxner, S., & Prather, E. (2015). The Quantitative 
Reasoning for College Science (QuaRCS) assessment, 1: Development and validation. 
Numeracy, 8(2), 2. 

Frith, V. (2011). Quantitative literacy provision in the first year of medical studies. South African 
Journal of Higher Education, 25(4), 725-740. 

Frith, V. (2012). A quantitative literacy course for Humanities and Law students: The challenges 
of a context-based curriculum. Perspectives in Education, 30(2), 41-49. 

Frith, V., & Gunston, G. (2011). Towards understanding the quantitative literacy demands of a 
first-year medical curriculum. African Journal of Health Professions Education, 3(1), 19-
23. 

Frith, V., Le Roux, K., Lloyd, P., Jaftha, J., Mhakure, D., & Rughubar-Reddy, S. (2010). 
Tensions between context and content in a quantitative literacy course at university. In U. 
Gellert, E. Jablonka, & C. Morgan (Eds.), Proceedings of the sixth mathematics 
education and society conference (pp. 230-240). Berlin: Freie Universität Berlin. 

Frith, V., & Prince, R. (2009). A framework for understanding the quantitative literacy demands 
of higher education. South African Journal of Higher Education, 23(1), 83-97. 

Gal, I. (1993). Issues and challenges in adult numeracy (Technical report TR93-15). 
Philadelphia, PA: National Center on Adult Literacy. 



212 
 

Gal, I. (1997). Numeracy: Imperatives of a forgotten goal. In L.A. Steen (Ed.), Why numbers 
count: quantitative literacy for tomorrow’s America (pp. 36-44). New York, NY: The 
College Board. 

Ganter, S. L., & Barker, W. (Eds.). (2004). The curriculum foundations project: Voices of the 
partner disciplines. Washington, DC: Mathematical Association of America. 

Ganter, S. L., & Haver, B. (2011). Responding to the recommendations of the Curriculum 
Foundations Project. In S. L. Ganter & B. Haver (Eds.), Partner discipline 
recommendations for introductory college mathematics and the implications for College 
Algebra, (pp. 39-41). Washington, DC: Mathematical Association of America. 

Geertz, C. (1973). The interpretation of cultures: Selected essays (Vol. 5019). New York, NY: 
Basic Books. 

Gerardi, K., Goette, L., & Meier, S. (2013). Numerical ability predicts mortgage default. 
Proceedings of the National Academy of Sciences, 110(28), 11267-11271. 

Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12(3), 
306-355. 

Glaser, B. (2004). "Naturalist inquiry" and grounded theory. Forum Qualitative Sozialforschung, 
5(1), 7.  

Glesne, C. (2011). Becoming qualitative researchers: An introduction. Boston: Pearson. 

Goldrick-Rab, S. (2010). Challenges and opportunities for improving community college student 
success. Review of Educational Research, 80(3), 437–469. 

Goodlad, J. I. (1979). Curriculum inquiry: The study of curriculum practice. New York, NY: 
McGraw-Hill.  

Grawe, N. D. (2011). The potential for teaching quantitative reasoning across the curriculum: 
Empirical evidence. International Journal for the Scholarship of Teaching and Learning, 
5(1), 14. 

Greeno, J. G. (1991). Number sense as situated knowing in a conceptual domain. Journal for 
Research in Mathematics Education, 22, 170-218. 

Greeno, J. G. (1997). Theories and practices of thinking and learning to think. American Journal 
of Education, 106(1), 85–126. 

Greeno, J. G., Smith, D. R., & Moore, J. L. (1993). Transfer of situated learning. In D. K. 
Detterman & R. J. Sternberg (Eds.), Transfer on trial: Intelligence, cognition, and 
instruction (pp. 99 – 167). Westport, CT: Ablex Publishing. 



213 
 

Guba, E. G., & Lincoln, Y. S. (1981). Effective evaluation: Improving the usefulness of 
evaluation results through responsive and naturalistic approaches. San Francisco, CA: 
Jossey-Bass. 

Hagedorn, L. S., & DuBray, D. (2010). Math and science success and nonsuccess: Journeys 
within the community college. Journal of Women and Minorities in Science and 
Engineering, 16(1), 31–50. 

Halpern, D. F. (1998). Teaching critical thinking for transfer across domains: Disposition, skills, 
structure training, and metacognitive monitoring. American Psychologist, 53(4), 449. 

Hathcoat, J. D., Sundre, D. L., & Johnston, M. M. (2015). Assessing college students’ 
quantitative and scientific reasoning: The James Madison University story. Numeracy, 
8(1), 2. 

Hayden, R. W. (2004). Planning a statistical literacy program at the college level: Musings and a 
bibliography. ASA 2004 Proceedings of the Section on Statistical Education. Retrieved 
from http://www.statlit.org/PDF/2004HaydenASA.pdf 

Hempel, C. G. (1965). Aspects of scientific explanation. New York, NY: The Free Press. 

Henningsen, M., & Stein, M. K. (1997). Mathematical tasks and student cognition: Classroom-
based factors that support and inhibit high-level mathematical thinking and reasoning. 
Journal for Research in Mathematics Education, 28(5), 524-549. 

Hern, K., & Snell, M. (2010). Exponential attrition and the promise of acceleration in 
developmental English and math. Berkeley, CA: The Research and Planning Group for 
California Community Colleges. Retrieved from http://rpgroup.org/resources/accelerated-
developmental-english-and-math 

Hess, D., & Tasa, D. (2013). McKnight’s physical geography: A landscape approach (11th ed.). 
Upper Saddle River, NJ: Prentice Hall. 

Hester, S., Buxner, S., Elfring, L., & Nagy, L. (2014). Integrating quantitative thinking into an 
introductory biology course improves students’ mathematical reasoning in biological 
contexts. CBE-Life Sciences Education, 13(1), 54-64. 

Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K., Human, P., Murray, H., ... & Wearne, D. 
(1996). Problem solving as a basis for reform in curriculum and instruction: The case of 
mathematics. Educational Researcher, 25(4), 12-21. 

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge for teaching on student 
achievement. In J. Hiebert (Ed.), Conceptual and procedural knowledge: the case of 
mathematics (pp. 1-27). Hillsdale, NJ: Erlbaum. 

Howington, H., Hartfield, T., & Hillyard, C. (2015). Faculty viewpoints on teaching 
Quantway®. Numeracy, 8(1), 10. 



214 
 

Hughes-Hallett, D. H. (2001). Achieving numeracy: The challenge of implementation. In L. A. 
Steen (Ed.), Mathematics and democracy: The case for quantitative literacy (pp. 93-98). 
Princeton, NJ: National Council on Education and the Disciplines. 

Hughes-Hallett, D. H. (2003). The role of mathematics courses in the development of 
quantitative literacy. In B. L. Madison and L. A. Steen (Eds.), Quantitative literacy: Why 
numeracy matters for schools and colleges (pp. 91-98). Princeton, NJ: National  Council 
on Education and the Disciplines. 

Hume, D. (1896) A treatise of human nature. L.A. Selby-Bigge (Ed.). Oxford, UK: Clarendon 
Press. Retrieved from http://oll.libertyfund.org/titles/342 

Jansen, A. (2011, October). How do students create opportunities to learn mathematics?: 
Representing students in research on curriculum use. In L. R. Wiest & T. d. Lamberg 
(Eds.), Proceedings of the thirty-third annual conference of the North American Chapter 
of the International Group for the Psychology of Mathematics Education (pp. 70-78). 
Reno, NV: University of Nevada, Reno. 

Johnston, B. (2007). Critical numeracy?. In S. Kelly, B. Johnston, & K. Yasukawa (Eds.), The 
adult numeracy handbook: Reframing adult numeracy in Australia (pp. 50–56). Sydney, 
NSW: Adult Literacy and Numeracy Australian Research Consortium. 

Judd, C. H. (1908). The relation of special training to general intelligence. Educational Review, 
36, 28-42. 

Kahneman, D. (2011). Thinking, fast and slow. New York, NY: Macmillan. 

Kaput, J. (1998). Transforming algebra from an engine of inequity to an engine of mathematical 
power by “algebrafying” the K-12 curriculum. In National Council of Teachers of 
Mathematics & Mathematical Sciences Education Board (Eds.), The nature and role of 
algebra in the K-14 curriculum: Proceedings of a national symposium (pp. 25–26). 
Washington, DC: National Research Council, National Academy Press. 

Karaali, G., Villafane Hernandez, E. H., & Taylor, J. A. (2016). What's in a name? A critical 
review of definitions of quantitative literacy, numeracy, and quantitative reasoning, 
Numeracy, 9(1), 2. 

Karp, D. A. (2001). The burden of sympathy: Caring for the mentally ill and boundaries of 
obligation. New York, NY: Oxford University Press. 

Kirsch, R. J., Leathers, P. E., & Snead, K. C. (1993). Student versus recruiter perceptions of the 
importance of staff auditor performance variables. Accounting Horizons, 7(4), 58-69. 

Krueger, R.A., & Casey, M.A. (2009). Focus groups: A practical guide for applied research (4th 
ed.). Thousand Oaks, CA: Sage Publications. 

Lake, D. (1999). Helping students to go SOLO: Teaching critical numeracy in the biological 
sciences. Journal of Biological Education, 33(4), 191-198. 



215 
 

Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life. 
Cambridge, UK: Cambridge University Press. 

Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, 
learning, and teaching. Review of Educational Research, 60(1), 1-64. 

Levitt, S., & Dubner, S. J. (2009). Superfreakonomics: Global cooling, patriotic prostitutes, and 
why suicide bombers should buy life insurance. New York, NY: HarperCollins. 

Liamputtong, P. (2011). Focus group methodology: Principle and practice. Thousand Oaks, CA: 
Sage Publications. 

Lincoln, Y. S. & Guba, E. G. (1985). Naturalistic inquiry. Newbury Park, CA: Sage 
Publications. 

Lincoln, Y. S., & Guba, E. G. (1986). But is it rigorous? Trustworthiness and authenticity in 
naturalistic evaluation. New Directions for Program Evaluation, 1986(30), 73-84. 

Lobato, J. (1996). Transfer reconceived: How “sameness” is produced in mathematical activity 
(Doctoral dissertation, University of California, Berkeley). Dissertation Abstracts 
International, 58(02), 406.  

Lobato, J. (2006). Alternative perspectives on the transfer of learning: History, issues, and 
challenges for future research. The Journal of the Learning Sciences, 15(4), 431-449. 

Lobato, J., & Siebert, D. (2002). Quantitative reasoning in a reconceived view of transfer. The 
Journal of Mathematical Behavior, 21(1), 87-116. 

Locke, E. A., & Latham, G. P. (2002). Building a practically useful theory of goal setting and 
task motivation: A 35-year odyssey. American Psychologist, 57(9), 705-717. 

Maaß, K. (2006). What are modelling competencies?. ZDM, 38(2), 113-142. 

Macdonald, R. H., & Bailey, C. M. (2000). Integrating the teaching of quantitative skills across 
the geology curriculum in a department. Journal of Geoscience Education, 48(4), 482-
486. 

Marieb, E. & Hoehn, K. (2012). Human anatomy and physiology (9th ed.). SanFransisco, CA: 
Pearson. 

Mason, J. (1996). Qualitative researching. Thousand Oaks, CA: Sage Publications. 

Maxwell, J. A. (2012). Qualitative research design: An interactive approach. Thousand Oaks, 
CA: Sage Publications. 

Mayes, R. L., Peterson, F., & Bonilla, R. (2013). Quantitative reasoning learning progressions 
for environmental science: Developing a framework. Numeracy, 6(1), 4. 



216 
 

McClure, R., & Sircar, S. (2008). Quantitative literacy for undergraduate business students in the 
21st century. Journal of Education for Business, 83(6), 369-374. 

Medsker, L. (1960). The junior college: Progress and prospect. New York, NY: McGraw-Hill. 

Merriam, S. B. (1998). Qualitative research and case study applications in education. San 
Francisco, CA: Jossey-Bass Publishers. 

Merriam, S. B. (2009). Qualitative research: A guide to design and implementation. San 
Francisco, CA: Jossey-Bass. 

Merriam, S. B. (2014). Qualitative research: Designing, implementing, and publishing a study. In 
V. C. X. Wang (Ed.), Handbook of research on scholarly publishing and research 
methods (pp. 125-140). Hershey, PA: Information Science Reference. 

Mesa, V. (2007). The teaching of mathematics in community colleges (Unpublished manuscript). 
Ann Arbor, MI: University of Michigan. 

Mesa, V. (2012). Achievement goal orientations of community college mathematics students and 
the misalignment of instructor perceptions. Community College Review, 40(1), 46–74. 
http://doi.org/10.1177/0091552111435663 

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. 
Thousand Oaks, CA: Sage Publications. 

Miller, J. D. (1983). Scientific literacy: A conceptual and empirical review. Daedalus, 112(2), 
29-48. 

Miller, J. D. (2010). Civic scientific literacy: The role of the media in the electronic era. In D. 
Kennedy & G. Overholser (Eds.), Science and the media (pp. 44-61). Cambridge, MA: 
American Academy of Arts and Sciences. 

Miller, J. D. (2010). The conceptualization and measurement of civic scientific literacy for the 
twenty-first century. In J. Meinwald & J. G. Hildebrand, Science and the educated 
American: A core component of liberal education (pp. 241-255). Cambridge, MA: 
American Academy of Arts and Sciences. 

Mtetwa, D., & Garofalo, J. (1989). Beliefs about mathematics: An overlooked aspect of student 
difficulties. Academic Therapy, 24(5), 611-618. 

Mulhern, G., & Wylie, J. (2004). Changing levels of numeracy and other core mathematical 
skills among psychology undergraduates between 1992 and 2002. British Journal of 
Psychology, 95(3), 355-370. 

National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for 
school mathematics. Reston, VA: NCTM. 



217 
 

NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. 
Washington, DC: The National Academies Press. 

Núñez, R. E., Edwards, L. D., & Matos, J. F. (1999). Embodied cognition as grounding for 
situatedness and context in mathematics education. Educational Studies in Mathematics, 
39(1-3), 45-65. 

OpenStax College (2013). Concepts of biology. Available from 
 http://cnx.org/content/col11487/latest/ 

Patton, M. Q. (1990). Qualitative evaluation and research methods. Thousand Oaks, CA: Sage 
Publications. 

Pea, R. D. (1987). Socializing the knowledge transfer problem. International Journal of 
Educational Research, 11, 639-663. 

Phoenix, D. A. (1999). Numeracy and the life scientist!. Journal of Biological Education, 34(1), 
3-4.   

Powell, W., & Leveson, D. (2004). The unique role of introductory geology courses in teaching 
quantitative reasoning. Journal of Geoscience Education, 52(3), 301-305. 

Putnam, R. T., & Borko, H. (2000). What do new views of knowledge and thinking have to say 
about research on teacher learning?. Educational Researcher, 29(1), 4-15. 

Remillard, J. T. (2005). Examining key concepts in research on teachers’ use of mathematics 
curricula. Review of Educational Research, 75(2), 211-246. 

Reed, S. K. (1974). Structural descriptions and the limitations of visual images. Memory & 
Cognition, 2(2), 329-336. 

Riege, A. M. (2003). Validity and reliability tests in case study research: A literature review with 
“hands-on” applications for each research phase. Qualitative Market Research: An 
International Journal, 6(2), 75-86. 

Rheinlander, K., & Wallace, D. (2011). Calculus, biology and medicine: A case study in 
quantitative literacy for science students. Numeracy, 4(1), 3. 

Rotman, J. (2013). Inside new life: A grand vision for developmental mathematics. 
MathAMATYC Educator, 4(3), 27-35. 

Rutherford, F. J., & Ahlgren, A. (1991). Science for all Americans. New York, NY: Oxford 
University Press. 

Sally, P. (2003, January). Is teaching about mathematics the same as teaching mathematics?. 
MAA Invited Address presented at the Joint Mathematics Meetings, Baltimore, MD. 



218 
 

Schapira, M. M., Fletcher, K. E., Gilligan, M. A., King, T. K., Laud, P. W., Matthews, B. A., ... 
& Hayes, E. (2008). A framework for health numeracy: how patients use quantitative 
skills in health care. Journal of Health Communication, 13(5), 501-517. 

Schooler, C. (1989). Social structure effects and experimental situations: Mutual lessons of 
cognitive and social science. In K. W. Schaie & C. Schooler (Eds.), Social structure and 
aging: Psychological processes (pp. 131-141). Hillsdale, NJ: Erlbaum. 

Schram, T. H. (2003). Conceptualizing qualitative inquiry: Mindwork for fieldwork in education 
and the social sciences. Upper Saddle River, N.J: Merrill/Prentice Hall.  

Schwandt, T. A. (1997). Qualitative inquiry: A dictionary of terms. Thousand Oaks, CA: Sage 
Publications. 

Schwandt, T.A. (2000). Three epistemological stances for qualitative inquiry: Interpretivism, 
hermeneutics, and social constructionism. In N. K. Denzin & Y. S. Lincoln (Eds.), 
Handbook of qualitative research (2nd ed., pp. 189-213). Thousand Oaks, CA: Sage 
Publications. 

Schwartz, L. M., Woloshin, S., Black, W. C., & Welch, H. G. (1997). The role of numeracy in 
understanding the benefit of screening mammography. Annals of Internal Medicine, 
127(11), 966-972. 

Shamos, M. H. (1995). The myth of scientific literacy. New Brunswick, NJ: Rutgers University 
Press.  

Slater, T., & Adams, J. (2002). Mathematical reasoning over arithmetic in introductory 
astronomy. The Physics Teacher, 40(5), 268-271. 

Smith, J., & Thompson, P. W. (2007). Quantitative reasoning and the development of algebraic 
reasoning. In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early 
grades (pp. 95-132). New York, NY: Erlbaum. 

Speth, E. B., Momsen, J. L., Moyerbrailean, G. A., Ebert-May, D., Long, T. M., Wyse, S., & 
Linton, D. (2010). 1, 2, 3, 4: Infusing quantitative literacy into introductory biology. 
CBE-Life Sciences Education, 9(3), 323-332. 

Stake, R. E. (1995). The art of case study research. Thousand Oaks, CA:  Sage Publications. 

Steele, B., & Kiliç-Bahi, S. (2008). Quantitative literacy across the curriculum: A case study. 
Numeracy, 1(2), 3. 

Steen, L. A.. (1990). Numeracy. Daedalus, 119(2), 211–231. Retrieved from 
http://www.jstor.org/stable/20025307 

Steen, L. A. (2001). Embracing numeracy. In L. A. Steen (Ed.), Mathematics and democracy: 
The case for quantitative literacy (pp. 107-116). Princeton, NJ: National Council on 
Education and the Disciplines. 



219 
 

Steen, L. A. (2003). Data, shapes, symbols: Achieving balance in school mathematics. In B. 
Madison & L. A. Steen (Eds.), Quantitative literacy: Why numeracy matters for schools 
and colleges (pp. 53-74). Princeton, NJ: National Council on Education and the 
Disciplines. 

Steen, L. A. (2004). Achieving quantitative literacy: An urgent challenge for higher education 
(MAA Notes No. 62). Washington, DC: Mathematical Association of America. 

Stein, M. K., Engle, R. A., Smith, M. S., & Hughes, E. K. (2008). Orchestrating productive 
mathematical discussions: Five practices for helping teachers move beyond show and tell. 
Mathematical Thinking and Learning, 10(4), 313-340. 

Stein, M. K., Grover, B. W., & Henningsen, M. (1996). Building student capacity for 
mathematical thinking and reasoning: An analysis of mathematical tasks used in reform 
classrooms. American Educational Research Journal, 33(2), 455-488. 

Thorndike, E. L. (1912). Education, a first book. New York, NY: Macmillan. 

Trefil, J., & Hazen, R. M. (2010). Scientific literacy: A modest proposal. In J. Meinwald & J. G. 
Hildebrand, Science and the educated American: A core component of liberal education, 
(pp. 57-69). Cambridge, MA: American Academy of Arts and Sciences. 

Usiskin, Z. (1999). Conceptions of school algebra and uses of variables. In B. Moses (Ed.), 
Algebraic thinking, grades K-12: Readings from NCTM’s school-based journals and 
other publications (pp. 7–13). Reston, VA: National Council of Teachers of 
Mathematics. 

Vacher, H. L. (2014). Looking at the multiple meanings of numeracy, quantitative literacy, and 
quantitative reasoning. Numeracy, 7(2), 1. 

Vygotskiĭ, L. S. (1978). Mind in society: The development of higher psychological processes. M. 
Cole, V. John-Steiner, S. Scribner, & E. Souberman (Eds.). Cambridge: Harvard 
University Press.  

Weber, M. (1949). The methodology of the social sciences. Wilmington, IL: The Free Press. 

Whitehead, A. N. (1929). The aims of education and other essays. New York, NY: Macmillan. 

Wiggins, G. (2003). Get real!: Assessing for quantitative literacy. In B. L. Madison & L. A. 
Steen (Eds.), Quantitative literacy: Why numeracy matters for schools and colleges (pp. 
121-143). Princeton, NJ: National Council on Education and the Disciplines. 

Wittrock, M. C. (Ed.). (1986). Handbook of research on teaching (3rd ed.). New York, NY: 
Macmillan. 

Wolfe, C. R. (1993). Quantitative reasoning across a college curriculum. College Teaching, 
41(1), 3-9. 



220 
 

Yin, R. K. (2013). Case study research: Design and methods. Thousand Oaks, CA:  Sage 
Publications. 

 


