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ABSTRACT

A STUDY OF A CLASS OF FUNCTIONS
HOLOMORPHIC IN THE UNIT DISK

By
Philip James Pratt

The non-constant holomorphic function f 1s in class B *
if and only if for each point of a dense subset of the unit
circle f 1s bounded on an arc which ends at the point. The
class& * i3 investligated with respect to 1ts closure pro-
perties under certaln elementary operations.

An approximation technique of Bagemihl and Seidel is
used to show that any holomorphic function can be written as
the sum and product of two functions each having radial 1limit
zero on a dense subset of C. This result 1s used to showa,*
1s not closed under addition or multiplication.

Approximation techniques involving a repeated use of
Mergelyan's Approximation Theorem and modifications of a
technique of Barth and Schneider are used to show the
exlstence of a function f which is not 1in & * such that
ef 13 in B * and a function g which is in E * such that

/OZ g (t)dt 1s not in B *,

It 1s also shown that 1f £ 1s in B *, ef 1s 1n B *.

If £ 1s in B * and f omits the finite value a, then

1/(f(z)-a) 1s in B *_ The fact that f is in B * does not
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imply that f' is in B *, There are no sufficient slow or
fast (infinite) growth conditions for a function to be in

E*ornotin E *.
Finally, the possibility of extending theorems from nor-

mal functions to functions in B * 1s discussed.
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I. INTRODUCTION
Throughout this paper we shall let D denote the unit
disk, fz: ]z[(l? » and let C denote the unit eircle,

§2: J2l =1f.

By a boundary path in D is meant a simple continuous

curve z = z(t) (04t 1) where 1lim ’z(t)l =1, If lim z(t)=
t9l t9l

6, where C € C, we say that the path ends at & . If there

is a path which ends at C and along which f(z) tends to

the complex number ¢, we say that f has asymptotic value ¢

at & .

0
If fxnyn 1 is a sequence of continuous compact
curves in D and & 1s an arc of C, fz €C:o¢ Larg zsﬂf ,

we say that Xn converges to )' and use the notation that
Xn—’ 7, if for each € »O0 there exists a positive integer
N such that

(1) ¥, € fx1-e<lzl<1y

(2) Jint argz - o] € €

z&
(3) l:\:%: arg z - 8 | { €

Qo
if n> N. We then call ;x i a sequence of Koebe arcs
nd npe=l
and 1 the end of the sequence.
If, for a complex number ¢, there exists an arc X con-
oo
tained in C and a sequence of arcs anim_l contained in D

that converges to X such that



1im sup lf' (z) - c, =0 1if c 1s finite and
n-» ze¥,

1im inf  |f (z)) =9 1f ¢ = 00,

00
n< zen

then we say that f has ¢ as a Koebe value.

If f 1s a holomorphic function in D and S is the
family of all one-to-one conformal mappings of D onto it-
self, then f is sald to be normal if the family ff(s(z))}ses
is normal in the sense of Montel E.Y, Pe. 533 . We de-
fine 72 to be the class of all non-constant normal holo-
morphic functions defined in D.

In EL?] 5 Maclane defined some subsets of C as

follows:

A = 5C, € C: f has asymptotic value a at G 2

B* = f C, € C: there i3 a boundary path which ends
at C; and on which f 1s bounded3

A = UAa where the union 1is taken over all complex

numbers a.

B = B+ U a,

He then used these to define two classes of functilons,
a and B . We say the non-constant holomorphic function
£f1s in A ( B ) if and only if A (B) 1is dense in C.
MacLane showed A - B ang proved several properties about
class a- .

These results have been generalized in various ways.

Barth [6J generalized many of them to meromorphic func-
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tions. In E16J » lLappan defined a similar class of

functions which he called B * by saylng the non-constant

holomorphic function f is 1in El * 1f and only if B* is

dense in C. He then proved it was possible to characterize
B * 1n a slightly different way.

Koebe 's Lemma [13] may be stated in the following
way: A non-constant bounded holomorphic function has no
Koebe values. This has been extended to normal functions

[:5, Theorem 1, p. 10:] and Lappan showed 1t could also
be extended to functions 1in Ea *, He actually showed more
than this; he showed that it could not be extended to any
larger class of functions. That 1is, Ez * can be
characterized as the class of all holomorphic functions
having no Koebe values.

It i1s the purpose of this paper to study class Ea *,
Before beginning, 1t should be noted that our definition 1is
not preclsely the same as Lappan's, although it certainly is
equivalent to it. When he defined the set B* he required
the paths on which the function is bounded to begin at the
origin. Doing this enabled him to prove some theorems about
the set B*, For our purposes, however, 1t 1s simpler to
drop this restriction.

Lapran gave another characterization for B * which
1s more useful to us in this paper and that 1s the fact that
a non-constant holomorphic function is in B * i1f and only

if it does not have ©O as a Koebe value. In general, in the
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results in this paper, when we know a non-constant holo-
morphic function 1is not in Ei * we use the fact that it
has OO as a Koebe value.
Before getting to the results in this paper, it would
be useful to point out the relationship between Ei * and
two very well known classes, 72 and ‘1 . Since non-con-

stant normal holomorphic functions have no Xoebe values,

’7 C Ea * [: 5:]. In [:14:] » Lappan constructed a

non-normal holomorphic function that was a product of a nor-
mal holomorphic function and a bounded holomorphic function.
Since the product of a bounded holomorphic function and a
function in E? * 18 obviously in Ea *, this function is
in B * and the inclusion 1s proper. Turning our attention
to class ¢l » we note that if B* 1s dense in C, then so 1is

B (=8B URAg ), and this shows that [ * & B . Then
B »<C Q,since d <@ . 1n [ 19, Example 3, p. 57 ],
MacLane presented a function in class CZ which has ©@ as

a Koebe value and thus 1s not 1in Ea *, This shows that
this inclusion 1is also proper.

The first question we answer in Chapter II 18 whether
or not the sum or product of two functions in Ei *, 1s
necessarily in B *, This question has been answered in
the negative for class 7? by Lappan [14] and for a. by
Ryan and Barth [:22:] . The answer for Ei * 13 negative
as well as 1s the answer to the next logical question: must

the sum or product of two functions in Ea * be 1n class 61 ?
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We answer both of these in Theorem 1, Corollary 1.1 and
Corollary 1.2 by showing that any holomorphic function can
be expressed as the sum or as the product of two functions
each having radial limit zero on a dense subset of C. (We

say that f has the radial limit a at C, &€ C if 1im f
r=1

(r &) =a ). In Theorem 2 we show a corresponding result

for meromorphic functions.

We show in Theorem 3 that if f 1s in B * and f omits
the finite value a, then 1 / (f (z) - a) 1s in B *. 1In
Theorem 4, we show that if f is in & and f omits a finite
value, then f 1s 1in B *. This generalizes a result in [17_7
which says that a holomorphic function which omits two fi-
nite values is in 7] .

Theorem 5 shows that if f 1s in B * then el 1s 1n B *.
This 1s not true for a as Barth and Schneider showed 1n

[&‘J . Ve cannot always define a logarithm but a related
question is: 1if f 1s 1in B * and we can define a single
valued holomorphic function log f, then 1s log f in B *9
We answer this question negatively in Theorem 6 by con-
structing a holomorphic function f which is not in E *

f:!.s.‘LnB*.

but for which e
We define I" (f) by I ( f (z2) ) = foz £ (t) d t and

" (f) =1 (In-l (f)). We show in Theorem 7 that f € a *

does not imply I (f) € B * and in Theorem & that f & a*

does not imply f' € B. *, The same results were proved

for class a by Barth and Schneider [ 9 ] . A related
question 1s: if f is in & * can we get out of a * by
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integrating or differentiating f enough times or, converse-
ly, 1f f 1s outside of B * can we get into a * by inte-
grating or differentiating f enough times? We answer both

of these negatively. In Theorem 3, we construct a function

f in B * such that r{7) and I (f) are also in B * for
all positive integers n. In Theorem 10 we exhibit a func-

(n)

tion g such that g is not in El * for any positive inte-

ger n and in Theorem 11 we exhibit a function g where In(g)

is not in B * for any positive integer n.
In Chapter III we turn our attention first to growth
functions with the two growth functions
M (r) = sup ‘ £ (z) ‘
Iz} =r

and

m(r)= (1/2M) L0 b )r (el ®)ae,

the maximum modulus and the Nevanlinna characteristic func-
tion. We show there 1s no sufficient condition involving
either slow or fast growth for a function to be in Ei * or
not to be in B *, By way of contrast, there 1s a suffi-
cient slow growth condition for a functlion to be in Cl
E 19, pp. 36-38] and a sufficient fast growth condition
for a function not to be in ’7 [:17, section 18, pp.57-
58 .

There are uniqueness theorems for bounded functions and

functions in class ’? that say if f - g has zero as a

Koebe value, then f & g, We show in Corollary 1.4 that



these do not extend to H *.
Finally, we investigate the possibillity of extending
certain types of results from the class 71 to the class
Ei.*. We show in Theorem 14 the impossibility of extend-
ing theorems based on properties of normal functions along

sequences.



II. OPERATIONS IN cLASS & *
Iet & denote the class of all holomorphic functions
defined in D that have readial 1limit zero on a dense subset
of C. Let R’m be the corresponding class for meromorphic

functions.

THEOREM 1: ILet h be a holomorphic function in D.

Then there exist functions fo s £1 , 8, » and g, in class
Rsuchthath=f+g and h = f, . .
o o an 1 - 81 0o
Proof: Let {"‘n 3n=1 and 23n3n=1 be
two disjJoint dense subsets of C. Let H, be the radius to

ol intersected with Sz :1-(1/2") ¢ | z | 413

and K Dbe the radius to ﬂn intersected with the same set
<o

QO
(n=1,2 ). tetti= U u aax= J x
n =1 n =1
We define a continuous function s on H \J K by

s (z) = h (z2) 1If z € H
s (z) = 0 if z € K.

Since s 1s continuous on H \/ Kand H V K 1s a closed

subset of D, we can extend s to be a continuous function 1in

all of D by Tietze's extension theorem [ 12, pp. 149-151 ] .
The collection of radii to the °‘n's and /gn's form
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a tress E 2 j so that by Ez » Theorem 1, p. 18‘7] there
exlists a holomorphic function f such that

(1) lim 'frel )-s(ro{ )] 0
@ e p) -t B[ o

Remembering what s 1s equal to, these become

(1') iﬁ’nl It (r o, ) -n(r o )|

(21) um e g )| =

r—1
Thus, 1f we letfo=fandgo= h-f, h= ¢ + 8, and

o
ft, € R vy (2" ), s, € R vy (1),
The result for the product has been proved by Brannan

and Hornblower in Eloj .

COROLLARY 1.1: There exist functions fo’ fl’ 8o ? and
gy in class P * such that f + g, and f; * g; are not in
B *.
Rather than prove this corollary, we prove this more

general result.

COROLLARY 1.2: There exist functions f, , f; , g, and

g, in class B * such that fo + 8o and fy ° g; are not in
Proof': Iet h be a holomorphic function that 1s not

in a . (For the existence of such a function see EZO,

Example 16, p. 803. By Theorem 1, there exist functions
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fo 5 £15 85 » and g1 1n class R such that h = 4, + g,
and h = f;° g7 . Since R 1s certainly contained in B *,

the result follows.

COROLLARY 1.3: There exist functions f and g in R

such that f - g has a zero Koebe value, but £ # g.

Proof: ILet h be any non-constant holomorphic function
that has a zero Koebe value. Using Theorem 1, we get func-
tions.fo and 85 in class R such that h = f‘o + 8, -
Letting f = f, and g = - g, , the conclusion follows.

Since R _C_. B_ *, we also have the following trivial

extension.

COROLLARY 1.4: There exist functions f and g in a *

such that f - g has a zero Koebe value, but f # g.

The result of Theorem 1 is also valild for meromorphic

functions, with the use of some functions from R. me

THEOREM 2: Iet h be a meromorphic function in D.

Then there exist functions f, and fy in R and functions

go and g1 in R_msuchthath=fo+goandh==fl'gl.
Proof: We observe that in the proof of Theorem 1 the
only properties of h that we used in constructing f, were

that it was continuous and finite valued on the set H. If
Q@
we pick Eo!n gn =1 so that none of the poles of h 1lle

on H, this will still be true. We now get f, just as before

and let g5 =h - £, . Now g, is meromorphic rather than
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holomorphic, but it still has radial 1limit zero on a dense
subset of C. Thus, h=f +g,,»f, € R .2, € R
and the theorem is proved for the sum.

For the product, we pick gd ? n = 1 1n the same
way but we define our continuous function s a little dif-
ferently. We still define s (z) to be zero if z € K. For
each positive integer n, we now define s (z) on H, to be
a real-valued continuous function that tends monotonically

to ©@ as |z | tends to 1 and which satisfies

2
ls (ret )] > (sx_xp( 1/2g§ ‘l )
for 1 - (1 /2" ) € r € 1. We again have that s 1s con-
tinuous on H V K. By the same argument as 1in Theorem 1,
we obtain a holomorphic function f such that
(3) 1m Jlr(rep)-s(re)]= 0
repl

(4) iﬂllf(rﬂn)-s(rﬂn”= 0

By the definition of s, these become
(3') 1m |n(re, )/t (r o(n)/ = 0
r=)1

() Um e g = o

If we let f{ = fand gy =h / f, then h = f; - gy , where

£f, € R by (3') and gy € R » by (u1).

THEOREM 3: If £ € B * and if £ omits the finite
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value a and g (z) =1 / (f (z) - a), then g & B *,

Proof: If g & E*; then g has @@ as a Koebe value

so that there 1s an arc X contained in C, a sequence of
o0
arcs sxng n =1 1Iin D and a sequence of positive real
i 4

numbers Mngn = 1 such that zn — X M, = 00,
and lg (Z)’ Z Mn on Xn s n=1, 2, ***. But then
lf(Z)-a l -<- l/&‘on ,n,nzl: 2, ***, and

1 /M, — 0. This says that a is a Koebe value for f so

that f & a *, This contradictlion proves the theorem.

THEOREM 4: Let f € @ . If f omits a finite value,

then f & a*.
Proof: Iet ¢ be the omitted finite value so that

g (z) =1/ (f (z) - ¢) 1s holomorphic in D. If f has an
asymptotic value at a point, then so does g. (If f — 0O ,
g =» 0; if f~pc, g —=—>00; 1if f9b and b #¥ ¢, 0° ,

g =p1l/ (b-c)). Thus ¢ & A .

If &€ B *, £ has ©0 as a Koebe value. A similar
argument to the previous theorem shows that g has zero as a
Koebe value. By E19, Theorem 4, p. 18], this shows that
g # d . This contradiction proves the theorem.

Putting Theorems 3 and 4 together gives the following

corollary.

COROLLARY 4.1: If f €  and if f omits the finite

value ¢, then g (2) =1 / (f (2)-c) € Q *,
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THEOREM 5: If £ € [ * and g (2) = ef(?), then g
€ R -

Proof: Let u (z) be the real part of f (z) and suppose
C, & B* for the function f. Then there 1is an arc r'
that ends at E and a constant M such that lf(z) | <M
on r’ Thuslg(z)l = e¥2) 56 that 'g(z)’ < Mo M
Thus é & B* for g and B* for f 1s contained in B* for g.

Since B* for f 1is dense in C, B¥* for g must also be dense in

candg € B ~*.

THEOREM 6: There exists a function h not in B * such

that if g (z) = eh(z)’ then g € E *,

Proof': We pick two subsets of C as follows:
1 2

iy = §1, 2 T3 T3 He =S W3, 4, o5T1/3]

1 ¢ 2kMi/ 8 (2K+1) T 1/9
e P i ¢ 3

K=0
n-1 y337-1 n-1yy 30-1
1_ Sele'ri/(3 yx i 01 )’(2K+1)]Ti/(3 )}K i

1
Let Ay = nul Hn , 1 =1, 2, 80 that A) and A, are

countable dense disjoint subsets of C. (See Figure 1).

For each non-negative integer n, let s, =1 - 1/(n+1)

u.
and let xl be the 1line segr{ent from the point Sh e"i/

Tin

to the point s ., e and let xn be the 1line
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Figure 1.
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segment Joining the conjugates of these points. Let r’ 1 =
o0

h=o0
FQ’ andfl}. let t) ) t, » ty > *** L 0 be a sequence

picked so that

Xi s 1 =1, 2, and 1let T be the domain bounded by r;,

t, € 1/2 min Ssn‘sn-l’ sn-l—l-sn] and
Fn-fz"‘x+iy:,y‘ 4 t. (sn_1+8n)/2$x

L(sp+s) 28 &

Let b, = upper boundary F, N Sz: lz‘ "Sng
n = lower boundary Fn /) SZ: lzl -sn3
4, = line segment from b, to ¢,
a.n=-=An N Sz: Inz=0 3§
dn*$z=x+1y:x=an,tn/2 Ly étng
ﬁn=fz=x+iy: x-an,-’cnéyé-tn/2?
Wnafz:'z-an]-tn/2, M/ 2 éarg(z-a)é37r/2?

(See Figure 2)

IetTn=TA fz:|z| 2 sn-l}’ n=1,2, """  1f

1e 2
p=e €A, , there exists N such that p & H3 but p ¢

2
Hn_7 - Define TP to ve T, rotated through the angle ‘€.
P
For n 2 N, let Fp , dﬁ :ﬂg s 0’2 s ag be the rotations of
Frh » o, An s T s a, respectively through angle g .

et T = 5z= IzZl=e,3 N G Us Fn )

P eH,
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In
Fn
bn '/ /Fn+'
] 1
tn
4
s |t} =
N 19p+1 dp+p —
— S+ /- S11- | — ]
Figure 2

— _PEH?

Figure 3

U (= Y B;)
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and't;=‘t'n U ( U2 (dp Uﬂg) ).

n
P € Hp
where C represents complementation with respect to the

disk. (See Figure 3).

If p € Ay, there exists M such that p éﬂnl1 but p &

1
Hp_1 . Define R_ to be the interséction of the radius to p

p
and !z:sméz<13 and let R= \_J Rr_.
o0 peA; P
Then R U( U/ 't'; ) 1s a network that does not disconnect
n =1
the plane ( 1. e. 1ts complement is connected ) , so that
we can repeatedly apply Mergelyan's Approximation Theorem
[ 22, Theorem 20.5, p. 386 ) to the function 1 / (1 - lz] )

to get a holomorphic function f that satisfies

(1) |£(z) -1n | <1 1rz €T*
(2) f (z) = €0 as |z[ —> 1 along R, in such a
way that Re f (z) <1 for all p €Ay ., (For examples of

such a use of Mergelyan's Theorem see Theorem 14 in this

paper, [:2, Theorem 1, p. 187_7, [7_], and £8_7).

We now construct another holomorphic function g as

(]
follows. Enumerate A2 as fpm 3 me 1 ° If m 1s a positive

integer, there exists N such that Pn é HI?J but p, ¢ HI% 1 -

The constructions have been virtually identical to those
of Barth and Schneider [ 7] so that by the same technique
that they used we get a holomorphic function Zn such that

1) Jey (2) <1/2"* ton B( U B
J2N
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p m
(2) Im(gm(z))7-1/2onJ;JN(dJmu/3Jp)

(3) len @] > swp ()o@ )+ 5on g

1f J 2 N. !
oo

let g (z) = z gy (z). If K is any compact subset
ma== 1 '
of D, K intersects only finitely many Fmp S, So that for all

but finitely many m's we have ,gm (z)’ < 1/t 1 for

all z in K. The series thus converges uniformly on each

compact subset and g 1s holomorphic in D.

Set h (z) = ¢ (2) + g (2) and)), = 2‘* p s
peH 2

so that 5)/ 3,—, = 1 18 a sequence of closed curves tend-
ing to C.

D
On 0'§m s len ()] 2 e (Z)I +nandn=1£n#mlgn(2),
w 2
< 5: 1 /2" =1 so that
n =1 ol

|h(2)'=‘lf(2)+sm(Z) + = (z)l

n=1, n#mgn

len (2)] - e 2) [~ = le, (2)/

n=1,ngsm

2 ,f(z)l +n -If(z)[—l
2 n-3
mep™ U g™, |r(z)-1n | €1, Mg (2) -1/

so that we have
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Ms

h (z) =lf(2)+gm(2)+nzl’n#mgn(Z)/
2 |t (2) + gy (2)] p le, ()]
n=1,ns%¥m
2(n-1)-1/2 -1
2 n-3 0
on T, It(z)-1nl <& 1, fe (2)| & ngl 1/2"

= 1, so that
,h (Z)I 2 f(z) - g (2)
2 (n-1) -1

n

-3
Thus, on V, , [h(z)l 2 n - 3 so that h has @9 as

W

a Koebe value and is not in 8 *.

If £ p € A) andz € Ry, Re (f(z)) <1 and [g (2)]

< i 1 / 2" =1 so that Re (h(z)) € 2 and thus leh(z)l
n =1

Re h(z
e ( ) £ e2 Since Al is dense in C, thils shows that

h(z) € B * and the result is proved.

For notational purposes, let I° (£) =f, I (f) (2) =

3
fo £f(t)dt,and I (£) =1 (1" ~ l(f) ).

THEOREM 7: There exists a function f in [ * such
that I (f) is not in B

Proof: Let Ay , Ay , HX , H! , T, ™ , F° , &P, @P,
O‘z, aﬁ s (tJn’ T*, and Y be defined exactly as in the
proof of Theorem 6. ( n =1, 2, ***)

ILet 07: z=z (t) (0%t <1 ) be an unrectifiable
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curve lying in T and joining the points O and 1 such that

t1 & tp =D [z (6] < |z ()], 1m f2(e)) =1,
t=>1
and let ? be sufficiently smooth so that if ”Z 1s para-

meterized with respect to arc length s, then "d?" i1s contin-

d z
uous and arg 35 (0) =0. Let € (s8) =arg d—a% (s) and
-1 & (8)

define a continuous function r by r (z (s) ) =e

If L (z) is the arc length along 7 from O to z, then

z (z)
jo r(w) dw ='[: Zr-(z(s)) d75%-(s)ds

I(I).(z) e "1 @ (s) Si_dg, (s) d s

L(z)
= {o , id%l ds
- IOL(Z)'dzI = L (2)

so that I (r) (z) is a real valued function that tends mono-

tonically to ©9 along ’)Z . Further, ,r(z)l = 1 for all
z in ﬂ . We also require that the length of the inter-
section of M and Sz:sl,l £ )z} _(_sn+lgbeat

least one for each positive 1nteger n.

i
If p=e ¢ é Ay 5 let "2 D be the rotation of 9]

through angle ? « Defilne r on 47 in exactly the same

p
manner that we defined r on 07 (r 1s well defined since
-i 0 1

in both cases arg "'d's (o) = 0 and thus r (0) =
and O 1s the only point of intersection of 77 and 92 ).

Let S = U "? . We observe that any component of
P é Al P
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\J/ T .* intersects S at exactly one point. We define r
n =1
to be constant on each component (namely equal to the value

of r at the point of intersection). We now have r con-

tinuous on S L/(YIC:,I'an* ) which is a network that does
not disconnect the=p1ane so that we can again use the approxi-
mation techniques we used in the proof of Theorem 6, this

time being careful to keep the 1ﬁtegral of our holomorphic
function f "reasonably close" to the integral of r on this

network. We thus obtain a holomorphic function f such that

(1) For each p in A, , f 1s bounded on '77 p °
(2) T (£)(z) ] ¥, and Im (I (£)(z)) < 1

on 'C'n" n=1,2, *°°

We again construct another holomorphic function g as follows.
The constructions have been virtually the same as those Barth
and Schneider used in the proof of [:9, Example 1, pp. 15-22;]
so that, Just as they did in that proof, for each positive

integer m we get a holomorphic function 8, Such that

m+1 Py
o) ()
(1) Jg, ()] € 1/2 nC(J?NFJ )

P
m+l on z( u FJ m )
J 2N
(3) 11 (g )(2) | 9 sup p, (I (£)(2)) + 4
2603
Pm
on O‘J » J Z N.

(2) |1 (g)(2) | €1 /2
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(4) Fe (I (g)(2)) > -1/20on V(" U g,

2 2
where N is thteo.}nteger such that p_ € Hy Dbut P < Hy , -

Let g(z) = z (z) so that, as before, g is holomor-
m=1

phic in D. Also, 1f p € Ay, [g (2)]| < Z' (1/2") =1

so that, if h = f+g, h 1s bounded on %) , (both £ and g are)
and hence h € [ =*,

We now show I (h) has 00 as a Koebe value along V,'s

so that I (h) & B *.

on O, |1 (e) (2)] = II (£)(z) | + n and

n
o0
= 1o s)(Z)l<Zl/2=1sothat
n-lxn#m n =j

1 (0)(2) | = |1(£)(z) + T(gy)(2) + 2: e () |
©0
2 |r(en)(2) | - 1(£)( z)l -

2 1 (e)z)] +n - [1(£)(2)] -
2 n - 3
« U B 'I(f)(z)'>n,‘Im(If)(Z))‘<1:
and Re (I (g )(z)) > -1/2 and f I(g,)(2) £

n"l, n*m
Z 1 /2% =1 so that

n = 1 o0

l1n)(2) | = |U0 (=) + Hey)(z) + = eg)(2) |

n"l,n?‘m
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(-~

S|t + 1)) - ) ,‘% ,I‘Iélsnuz)l

2((n-1)-1%)-1
2n-3
(-2
On 't‘n , ()] v a1 (&)(2)] $n€1(1/2n) =1

80 that
[z () = )1 (e)z) + 1 ()z) |

2 )1 (e)z))l- |1 ()(2)]
2> n -1

> n-3

Thus on ), T (h)(z)] 2 n - 3 and the theorem is
proved.

Lappan, in [:15:], constructed a function that had
OO as a Koebe value, but whose integral was uniformly nor-
mal, hence normal. Since normal functlons are 1n E{ *, we

note the following result.

THEOREM 8: There exists a function f in Ea * such

that ' is not in [ *.

THEOREM 9: There exists a function f in 8 * such that

n n
I (f) and f( ) are in B * for all positive integers n.

Proof: If | f(z)| < M in D, then | I(f)(2z)| =
z
Ho f(t)dt | € M*|z] £ MinD. Thus, for the
integral any bounded function will suffice. We need a 1lit-

tle more care for the case of the derivative, but this is

easily rectified by taking a function holomorphic 1in ?:z :



24
lz ‘ {2 3 « Then each of its derivatives 1s also holo-
morphic in fz : Iz I £ 2 } so that they are all bounded

in B which 1s a compact subset of this domain.

THEOREM 10: There exists a function g not in R *

(J
such that g is not in Ei * for any non-negative inte-
ger J.

Proof: For each positive integer n we define three

subsets of D as follows.
ie p:
T, = jre : r=1-1/(n4l), - JT/4 £ 95]7'/143

Sy = 5x=(1-1/n)+1/(4'n°(n+1)) < x <
(1 -1Mm)+3 /(4 *n -+ (n+l) ) 3
Gn= §z: |zl <(1-1/n)+1/(8n (n41)) 3

We now construct a sequence of functions inductively.

Let V, be the continuous function defined on EZLITI

which is equal to zero on G, and 1% on T, . We approxi-

mate Vl to within 4 by Mergelyan's theorem E22, Theorem
20.5, p. 386:] to get a holomorphic function g, (z) with
the property that

ley (z) | ¢ 1/2 1rz gq,

lg,; (z) 1 ¥ ifz €T, ,

If gy -8, °°° , 8,-1 have been defined let
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n -1 (1
My=n+1+ S max (sup(lgj (z) ).

3=1 o0<ign zeT,

Iet Vn (z) be a continuous function which is zero in 5; ’
sufficiently small and real on Tn’ sufficiently large and
real on S,, and linear on the two parts of the real axis

from G, to T, that are not in S, and approximate V_(z) to

within 1 / 2D by Mergelyan's theorem to get a holomorphic

function f,(z) with the property that

(1" (£) (2) | € 1/2%1rz € &

J
o Tin | ;r‘lgn(ll (£,)(2))) > My

n

Then, setting g, =1I (fn) we see that

lea(z)] € 172 1r 2 €0

(J)
o &izn [, e 20 2

00
let g (z) = : 8, (z). Since ,gn (z)|€1/2" 1n
n=1

Gn this series converges uniformly on each compact subset

so that g 1s holomorphic.

Let J be a non-negative integer and m ? j and look at

g(J) on T,.
(9) = )
's (Z)l !nzzlgn (Z)l
m-1 (J) (3) =
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- o0
2 lgr(nj)(z)l - % /s,(,J)(Z)I - Z a/"
n=1 n = m+l

m-1
_ (3) m-1
2 m+1 v 2 Je” - = [l (4] o

= ] n“=1
= m
Thus, for all non-negative integers J, g(‘j) has ©© as

a Koebe value and hence is not in Q *, This proves the

theorem,

THEOREM 11: There exists a function g not in B *
such that I (g) is not in f@ * for any non-negative inte-

ger J.

Proof: Let T, , Sn » and G, be as before. Again, we

shall define a sequence of functions inductively.

Iet g; be as in the proof of Theorem 10 and suppose g,,

’ gn-l have been defined. This time we will let
h-

I o <n' se, | ,1(1)(%)(2)’ )

and, 1n exactly the same manner, construct a holomorphic

function gn such that
len ()] € 1 /2" if z & G

mn ;néan I () (2) 1) > m,
[V,

We set g (z) = 12:7. g, (z) and again the series con-
n =13
vVerges uniformly on each compact subset so that g is holo-

morphic.
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Iet J be a non-negative integer and m > J and look at
1J (g) on T.

o0
|Pel=1 = 1 () (2

n=1]
B lm -1 ; 3 h =
TLE T ¢ Uaz) ¢ 2 T )(2) |

-1 o2
2ty - :'%‘1 hj(gn)(z)' - = 172"

n = m+l
m -1 P m-1 3
2(m+1 +nE_—.:l lI (gn)(z)l) -n‘z;:l 'I (gn)(z)l -1

2 m

Thus IJ (g) has ©2 as a Koebe value and is not in B *

for any non-negative integer J.



III. FURTHER PROPERTIES OF FUNCTIONS IN CLASS Ei_ *
We now turn to growth conditions. As usual, we use

the following two measures of growth

M(r) = sup (|t (Z), )
'Z = I
and

-
m(r) =(1/2M Si 1og+ ,f(reie),da

THEOREM 12: There exist functions in @ * of arbi-

trarily slow (infinite) growth and functions in R * of

arbitrarily fast (infinite) growth.

Proof: We first observe that
el +
m(r) = (1/2mW) {o log If ( reio)’ 4

2Tr +
€ (1/2T) go log lm(r)lde'

- log ' M (r)
so that for slow growth it is sufficient to look at M (r)
and for fast growth it is sufficient to look at m (r).

In [:19, Example 6, p. 6q:] » MacLane constructed a
function f for which M (r) grows arbitrarily slowly and for
which A, is dense in C. This function is thus in B * and
the result for slow growth 1s proved.

If there were an upper bound on the growth rate for func-

tions in B *, then there would also be an upper bound on

28
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the growth rate for functions in Fz . Since any holomor-
phic function h can be expressed as the sum of two functions
f and g, in class F{ and m (r, h) < (rs £) + m (r, g8) +
bounded terms, this would say there 1is an upper bound on

the growth rate for all holomorphic functions. This con-

tradiction proves the result.

THEOREM 13: There exist functions not in [ *

=

arbitrarily slow (infinite) growth and functions not in

of arbitrarily fast (infinite) growth,

Proof: As in the proof of Theorem 12, for slow growth
it 1s sufficient to look at M (r) and for fast growth it
is sufficient to look at m (r).

InEl, Theorems 3 and 5_7 , Bagemihl, Erdos, and
Seidel constructed a function f for which M (r) grows
arbitrarily slowly and which has ©9 as a Koebe value and
1s thus not in Ea *, This proves the slow growth result.

For the fast growth, let AL (r) be a positive,
strictly increasing function defined on [b, 1) that tends
to ©© as r tends to 1. Letr, = 1 -1 /2" and S, =
§rnel®: - T/2 £ & ¢RI, nnl2 ",
Through a slight variation in the technique of repeatedly
using Mergelyan's Theorem we obtain a holomorphic function
f such that

)r(z) - e2,4v.(rn +1) 1 {( 1 for all z € S,

so that f has ©0 as a Koebe value and is thus not in B *.
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Further

w
m(rn) = (1 / 2m) foir/;og+ ’f (rn ei‘ )’ a8

.).(1 / 2T) I‘ﬂ/2 log * ’ £ (r, eio)’ aé
w/2
2 (1 /2M) M 108 + |2 Mlrnn) | 40

2 (1 / 2) e 2 °ﬂ(rn+1)
= M (rp;1) ne=1l, 2, °°°

But A¢ and m are increasing functions so that, if r €r
Lrpyy o m(r) 2 miry) 2 A (r,,,) Z 7%(r). Since
any r that 1is bigger than rl i1s in some interval Ern ’
r,,1) » this shows that m (r) 2 A (r) and the result is

proved.

o0
THEOREM 1l4: Let fzngn =1 be a sequence of points

in D such that 0 < lzll < |z, <]23|< *e+p Um |z =1
o0 n=% e
and l_egiwng n = 1 2e 2 sequence of complex numbers. Then

There exists a function f in a * such that 1lim 'f(zn) -w /
- T T ndee n

= Q,

Proof: Let fr 3 ol be a sequence of real numbers
—_ ndn =o

such that r, £ ,21‘<r1< {zo] 4 r, (Iz3|<”'. Let
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oo
Sotn g n 1 be a dense subset of C such that the col-

lection of radii to the oln 's do not contaln any z4 's.

We denote 52 : ,Zl-r}by C, and jz

: lz[ £ rgby Dr'
Rn will denote the radius to o

n, n=1: 2, eee . We set

F =

o) BI'—OU(RlnCrl)Uleg

— n —
’n U E Jyl RJ ) n ( Dr'n+1 ) Drnﬂ
U (Rnta N Crns1 ) V {zn 3

Then each F  1s a compact set which does not disconnect the

plane.

By Mergelyan's Theorem, there exists a polynomial po(z)
such that

oo (2)] €372 3tz € 0] Uimy e, )

Ipg (z) - wy| <1 /2

To construct pj (z) we first define a continuous func-

tion hy (z) on Ry /) ( Dr, - Dp ) by

hy (r &y ) =py(ry A3 )(rp-r)/(r,-r

l )
Then, if we define a function g, (z) on F

1 oy

€1 (z) = 0 1if z € Drl

= hy (z) - po(2) 1rz € Ry ﬂ(ﬁ;;-prl)
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= Wy, =D, (z) if  z =2z,

= - Py (z) if zéRanrz

g1 (z) 1s continuous on F1 and holomorphic at each interior
point of Fl 8o, by Mergelyan's Theorem, there exists a poly-

nomial p; (z) such that

pl(z)| L 1/4 if z &Dr.l

wo = (po (22) +py (25) )| ¢ 1/

hy (z) - ( Py (2) + py (2) )l < 1/ 4 1r

z € Ry N ( 5;; - Drl )

lpo (z)+p1(z)]<1/u if z € R, Cr2

For the inductive step, suppose that polynomials Po»

P1, °*°-° Pn have been defined such that

I

lon (2| K272 4r 2 € B

1
w1 - (po(zpiq) + P1(Z q) + °o0 + pn(zn+1))f<l/2n+

|hn(z) - (po(z) + pl(z) + c° 4 pn(z)) , < 1 / 2n+1

n —
if 2 G(J‘-'-jl RJ)/](DI,n+l - Drn )

|po(z) + pl(z) + ° 4 pn(z)l <1/ 2“*1

itz € R, N Cr 1
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where h (z) 1s defined by

h, (r °‘J ) = (po(rn",j) + pl(rn dj) + *°° + pn_l(rnofj))

* (rpya-r) / (rpy1 - r,) 3 =1,2,0-, n

n+1
We define a continuous function h .y on ( U/ Rj )
—_— J=1
D - b
M | oo Dp i1 ) by

hnsy (* @) = (py (rp,; ©y) + py (rpe1 ®y) + oo
+ P, (rn+lc‘d) ) (rn+2 -r)/ (rn+2'rn+l)

J o= 1’ 2’ ...,n+l

and then a function 8,41 On Fn+1 by

8nt1(2) =0 1r z € Dr .1

= hny1(2) - (Po(2) + «+ + py(z) )

n+l —_—
if z€(\J Ry)O( Dy p-Dp )

n+l

= Wn42 - (Py(z) + *+*+ pp(z)) 1if z = N

- - (po(z) + eee + pn(z)) if z € Rpyp Acrn+1

Agailn, €,+1 18 continuous and holomorphic at each interior

point so that we can approximate it to get a polynomial

Pn41 (2) such that
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]pn+l (z)' L 1/2™2 372 ¢ Dr .1

lwn+2 = (Po(zn+2) + eee + pn+l(%+2) )l Z l/2n+2

Ihnsa(2) = (pg(2) + ++os pa(2) ) | <1 /2™

n+1 -
i ZG(JS-J]. RJ) N Drn+2 - D)

n+1l

n+2
'po(z) + + Pnil (z)l < 1/2 if ZéRn+2nCrn+2

°°This completes the inductive step. We now define f(z)
- = o . D >
150 J(z) IiE‘zGDr,n andm__n,then'pm(z)l.{
1/ 2m+1 80 the series converges on each compact subset and

f 1s holomorphic.

Ifz &€R,and |z | > Ty there exists n 2 J such

J
that r, £ |z| < rp4) so that h, 1s defined at z. Further

'hn(Z)’ = lpo (Pa@RJ) + =+ + pn_q (rndJ)l

(rny1 - 1) / (rpya - Tn )
S 1 /2n+1

We have
o0

[ na(z) - £(2) | = g (2) - Z e @l
n 20
= |ny(2) - o Pt - = o, (2)]

J = n+l

00
= [», (2)]

J = n+1

< () - 2 py)l
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£ 1 /20 Z 1/ 29t

J = n+l

= 1/2"
Putting these together gives
[t(z)] £ 1/28 + 1,204

3 / 2n+1

|

ﬁ 1 / 21‘1-1

As z —) 1 the r, involved tends to 1 and n —» ©2 ., Thus

liml f (r ®35 ) = 0. This shows f has radial 1imit zero
r-»

at each point of a dense subset of C and hence 1is in Ea *.
(It 1is actually in R ).

Next o
lf (z4) - wy ‘ = ,n:E;; Pn (zj) - W (

< J -1 o0
$IZ B -wle 2l

S 12, = 12
n-= j
= 1/ 1/2J

1/ pd-1
Thus, 1lim lf (ZJ) - WJ ' = O and the result 1s
J—vo00

proved.
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Remark: This is an example of the technique of re-
peatedly using Mergelyan's Theorem. It 1s essentially the
same as that used by Bagemihl and Seidel in E 2, Theorem 1 _j
and is generally attributed to them,
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