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Robert Arthur Jackson

The major purpose of this study was to present and evaluate a new

item-analysis technique applicable in situations where the primary in-

terest is in the discrimination between the members of two or more

groups, rather than discriminating between the members within groups.

This type of problem occurs frequently in assigning letter grades and

in selection work where individuals are to be divided into two groups

(that is, those who may be expected to succeed and those who may be ex-

pected to fail in a particular situation). A procedure for computing

the adjacent-group itenrvalidity indices was presented. This adjacent-

group technique resulted in a maximized ratio of between-groups variance

to total variance.

It was assumed in this investigation that the test-score distribu-

tion should be the one best fitting the need of the particular situation

where the test is to be used. In the case of two groups, the most

discriminating test was found to be one that yields a score distribution

with a point of partition at the abscissa of the minimal ordinate be-

tween the two group modes. A theoretical examination of the score dis—

tribution for two groups showed that a non—overlapping bimodal distri-

bution may be obtained by selecting a sufficient number of appropriate

items. In the theoretical comparison of the bimodal test-score distri-

bution with a normal test-score distribution, it was demonstrated that

the bimodal distribution resulted in fewer chance errors than the normal

distribution. In the case of more than two groups, the distribution

should have points of partition at the abscissa of the minimal ordinate

between any two adjacent-group modes.
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The empirical findings of this study indicated that the selected

test items tended to be stable under cross-validation. The empirical

studies on the error of measurement of the multimodal test-score dis-

tribution also showed this error to be minimal at the points of parti-

tion separating two adjacent groups; the tendency seemed to be that the

error of measurement approaches zero at the points of partition. These

findings were interpreted in terms of the small number of cases involved

in the data.

Since test items discriminating perfectly between two adjacent

groups are difficult to obtain, it is quite apparent that the adjacent-

group technique for the selection of items is used to greater advantage

in situations where a large source of test items is available. However,

the adjacent-group technique can also be applied in Situations where

intra—group comparisons are to be made and the source of items is more

limited. This technique was found to be as satisfactory as Horst's more

laborious technique of maximizing function in the selection of the most

valid items in terms of an external criterion. It was feund to be

superior to the technique of Flanagan.
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CHAPTER I

INTRODUCTION

In the construction of a test for measurement purposes, the test

writer is confronted with a two-fbld.problem. He must adjust the length

of the test to stay within the amount of time available and to avoid fa-

tiguing the individuals taking the test. At the same time, he must make

certain that the items in the test constitute an adequate sampling of all

possible items related to the trait being measured. A basic purpose of a

test is to place individuals along a scale for measurement of a given trait

in accordance with real differences. This means that a test used in the

measurement of a trait must possess discriminative power; and since tests are

made up of individual items, each item should contribute to this discrimina-

tion. The original construction of items, which are to represent the the-

oretical pool of possible items, depends upon the skill and judgment of the

test writer. Since the personal judgment of an individual is subject to

error, many statistical processes, called item analysis techniques, have

been utilized to evaluate each of the test items. All item analysis tech-

niques are subject to certain limitations:

(1) no item analysis technique can by itself turn poor items into

good items or operate satisfactorily without a reliable criterion;

(2) the results obtained by item analysis techniques must be under-

stood before they may be used efficiently;

(3) item analysis results from one eXperimental group may not be

exactly parallel for another group; and

(h) the item analysis data should supplement, not supplant, sub-

jective opinion.
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The test items are classified as satisfactory or unsatisfactory by

examining two statistical characteristics fer each item; (1) the diffi-

multy of each item (percent of the students failing to succeed on the

item); and (2) an index of discrimination (degree to which the item is

effective in differentiating between those who are high and those who are

low in respect to the trait being measured). A satisfactory item would

not be failed or passed by all of the students; it would be passed by

students who possess the trait to a high degree more often than students

who possess the trait to a Ian'degree. .An item which was not satisfactory'

would be passed by the lower individual more often than the higher one.

Unsatisfactory test items occur when the item.and the general criterion

are not measuring the same trait. Satisfactory test items Should function

well; they should have a firm theoretical basis.

It seems desirable to point out that a fundamental assumption, under-

lying all item analysis techniques, is that the items differ from one to

another in respect to difficulty and discrimination. Merrill stated:

If the items are heterogeneous with respect to validity, one can say

with some confidence that the most valid items in one sample will in

general be the most valid in any other sample, and the use of good

items for predictive purposes is therefore justified. In the event,

however, that there is a strong probability of the items being homo-

geneous, there is no justification for any selection.1

A great variety of procedures have been employed to determine which

items should be selected for a test. These procedures yield statistical

data to be used as a guide in assembling the final form of the test, and

they do not take the place of ability in.item construction. Useful sur-

 

lW} W} merrill, "Sampling Theory in Item Analysis," Psychometrika,
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veys of indices of validity or consistency have been provided by Lentz,

et. al.,1 Lindquist and Cookz, Zubin3, Long and Sandifordb, Guilfords,

Swinefordé, and Davis7.

When item selection techniques are applied, two major types of situ-

ations are encountered. In the first type, we are relating the perfbrm-

ance of the individuals on an item to their performance on some type of

continuous measure. This continuous measure is usually the total score

on the test, but it may be some external criterion. The second type is

one in which the individuals' performance on the item is related to a di-

chotomous grouping on the criterion variable.

Item Analysis With a Continuous Score

When the variable with which the item is being analyzed is continu-

ously distributed, two statistical approaches are possible. In one, the

 

1T. F. Lentz, B. Hirshstein, and J. H. Finch, "Evaluation of Methods

of Evaluating Test Items," Journal 23 Educational Psychology, XXIII, 3hh—

350, 1932.

2E. F. Lindquist ande.‘W. Cook, ”Experimental Procedures in Test

Evaluation," JOurnal g; Expgrimental Education, I, 163-185, 1933.

3J. Zubin, "The Method of Internal Consistency for Selecting Test

Items," Journal 9_f_ Educational Psychology, XXI, 3145-356, 19314.
 

1‘J. A. Long and P. Sandiford, The Validation 9: Test Items. Toronto:

Department of Educational Research, University of Toronto, Bulletin No. 3,

1935, pp. 126.

  

5J. P. Guilford, Psychometric Methods. New York: McGraw-Hill,

pp. h28'h37, 19360

 

6F. Swineford, "Validity of Test Items," Journal 9f Educational

Payphology, XXIVV, 68-78, 1936.

7F. B. Davis, Chapter 9. Item Selection Techniques. E. F. Lind-

quist, et. al., Educational measurement. washington: American Council

on Education, pp. 266-328, 195I:
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degree of relationship between success on the item and.the criterion score

1
is determined by using rbis’ rp,T\, and V All of these indices are

mlb'

dependent upon the proportion of the group answering the item correctly,

the standard deviation of the criterion scores of the entire group, and

the difference between the mean criterion score of the students answering

the item correctly and the mean criterion score of the students answering

the item incorrectly. The second approach is dependent upon the difference

in the criterion scores of the individuals passing the item and those fail-

ing. Two statistical techniques used to indicate whether there is a sig-

nificant relationship between the performance of the students on the item

and the criterion are the standardized difference between the means and

the F-ratio.

The simple difference between the mean criterion score of the indi-

viduals answering the item right and those answering it wrong, or'the

overlapping methods derived from the proportion of the individuals fail-

ing the item whose criterion scores exceeded the median scores of those

passing the item yield rough indications of difference.2

Item Analysis With Groups

Some simplified item analysis procedures have been developed for use

when the criterion scores are treated as a dichotomy; When the criterion

variable is a natural dichotomy these techniques must be used; these pro-

cedures may also be used when a continuous criterion is divided into a

 

1Long and Sandiford, pp, 213., pp. 2h-29.

2loid.
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dichotomy for ease of computation. In treating a continuous variable as

a dichotomy, an arbitrary dividing line is set up for the continuous

score; those individuals falling below the dividing line constitute one

group and those with scores greater than the dividing score constitute

the other. Most of the techniques used with a dichotomous criterion are

computed from the cell entries of a fourfold table. The techniques ap-

plicable in this situation are either correlation—methods or difference-

methods. The degree of relationship between success on the item and suc-

cess on the criterion can be measured by'a tetrachoric coefficient of

correlation, a coefficient of colligation, or a phi coefficient.1 The

other methods depend upon the percent of the upper and the percent of the

lower groups getting the item right. The simple difference between the

two percentages is the easiest to compute but a chi-square comparison is

preferable because it indicates the significance of a difference.2

The selection of test items with either a continuous score or a di-

chotomy requires a considerable amount of time for the computation. To

reduce this computational time, extreme groups are used for item selec-

tion purposes. These short-cut methods economize on the time by sacrific-

ing the quantitative nature of a continuous test score distribution. If

the relationship of item.score to test score is linear, so that the per—

centage of successes on the items increases as the total score increases,

the differences on a single item between the upper and lower groups will

 

1P. E. Vernon, "Indices of Item Consistency and Validity," British

Journal 9f Psycholqu, Statistical Section, I, 152-66, 19h8.
 

2Ibid.
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be sharpened by taking extreme groups. However, the increased sharpness

of discrimination is somewhat offset by a loss of information which re—

sults from excluding some cases in the middle of the test score distri-

bution.

The use of extreme groups necessitates balancing the sharpness of

the discrimination and the stability of the indices. Kelleyl has pre-

sented the mathematical proof that the upper and lower 27 percent of a

sample are the Optimum groups to use, provided the difference in the cri-

terion scores among the members of each group is not utilized. The 27

percent maximizes the critical ratio based upon the difference between

the means of the two groups. Each item and the criterion score are re-

garded as normally distributed and continuous variables. Kelley2 also

outlined a procedure for estimating a product-moment correlation coeffi-

cient between the item and the criterion score, excluding the item in

question. Three techniques have been developed that are applicable where

the two extreme groups each constitute 27 percent of the total group. A

summary description of these methods follows.

(1) Biserial r (rbis) approximation by Flanagan's method3

A table containing the values of the correlation coefficients in a

normal bivariate surface corresponding to various combinations of propor—

 

1T. L. Kelley, "The Selection of Upper and Lower Groups for the Vali-

dation of Test Items," Journal ngEducational P§ycholggy, XXX, pp. 17-2b,

1939.

21bid.

3J. C. Flanagan, ”General Considerations in the Selection of Test

Items and a Short method of Estimating the Product-Moment Coefficient

from the Data at the Tails of the Distribution,” Journal 93 Educational

Psychology} XXX, pp. 67h-80, 1939.



tions in the upper and lower 27 percent of the group was constructed. A

normal bivariate surface assumes a normal distribution underlying both

the dichotomous item response and the criterion variable; it also assumes

rectilinearity of regression. To use this technique, it is necessary to

determine the number of the high group that answered the item correctly

and express this as the proportion of the high group; a similar number

is obtained for the low group. These two proportions are looked up in

the table and the approximate correlation coefficient is feund.

(2) z methodl

Since equal increments in rbis do not represent equal increments in

discriminating power, Davis transformed the r's into 2's and converted z

to a scale with a mean of fifty and a standard deviation of twentybone.

The 2 values may be added, subtracted, or averaged. A chart is provided

from which one may read off the difficulty (expressed in sigma units) and

the discrimination indices corresponding to various values of'the upper

and lower proportions of success. To use this chart the criterion scores

and the percent knowing the correct answer to an item are corrected for

chance.

(3) Probable error of percent difference

Votaw2 and Arnold} gave formulae and nomographs for reading off the

probable error of the percent difference in the upper and lower 27 percents.

 

1F. B. Davis, Item—Analysis Data: Their Computation, Interpretation

and Egg in_Test Construction, (Harvard Education Papers, No. 2.), Cam-

bridge: Craduate School of Education, Harvard University, 19h6.

  

2D. F. Votaw, "Graphical Determination of Probable Error in Valida-

tion of Test Items," Journal 92 Educational Psychology, XXVI, 682-86, 1935.

3J. N. Arnold, "Nomogram for Determining Validity of Test Items,"

Journal of Educational Psychology, XXVI, 151-53, 1935.
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The difference-methods subsumed under the rubric dichotomous groups1

are applicable using the extreme 27 percents of the criterion group. The

level of significance for the difference-method indices is dependent up—

on the number of cases in the groups; this makes it impossible to compare,

by a statistical test, indices based on extreme groups with those based

on dichotomous groups.

Other techniques of item validation have been proposed. One of these,

the double tetrachoric index?, is computed by dividing the criterion into

three groups on the basis of the thirtybthird and the sixtyesixth percen—

tiles and averaging the tetrachoric correlations obtained by the two

splits.

A simplified formula for the product-moment correlation coefficient

of a dichotomous variable with a multiple-categoried variable, when the

criterion is coded 2, l, O, -l, -2 to yield a rectangular distribution, is

2m+£~fl~28

\flékan-JF)

where n=number of persons, k: number of persons selecting the correct

 

l1.
 

37

response, and a, b, c, d, and e reSpectively denote the frequency of cor-

rect choices by the five coded groups.3

Although many item selection techniques have been presented that are

based upon the relationship between the item and the criterion, when one

considers the computational time and the stability of the discrimination

indices, Flanagan's method appears to be the most satisfactory one to use.

 

1?. h.

2Vernon, loc. git.

3D. C. Adkins and H. A. Toops, "Simplified Formulas for Item Selec—

tion and Construction,” Psychometrika, II, 165-171, 1937.





Item Analysis to Maximize Validity

In most cases it is probable that the selection of items to increase

reliability will increase validity; however, it has been demonstrated

that it is possible to increase reliability and decrease validity or in-

crease validity while decreasing reliability.l Thus it is found that

mere selection of items correlating highest with an external criterion

does not necessarily produce the most valid test. The ideal test is one

composed of items which correlate highly with an external criterion and

poorly with one another. Theoretically, if suitable external criterion

scores were available, correlation coefficients between each item and the

criterion could be obtained; the intercorrelations between test items

could also be obtained. A multiple regression weight could be computed

for each item and those items having regression'weights significantly dif-

ferent from zero at a specified level of confidence could be selected fer

the final fbrm of the test. Since the computations necessary to determine

which combination of items would yield the largest multiple correlation

coefficient is laborious, many approximation methods to this multiple re-

gression problem have been suggested. The method of successive residuals2

and the L-method3 depend on building up successive composites of the most

valid items; they require fewer item intercorrelations than the multiple

 

1H. E. Brogden, "Variation in Test Validity with Variations in the

Distribution of Item.Difficulties, Number of Items and Degree of Their

Intercorrelations," Psychometrika, XI, 197-21h, 19L6.

2A. P. Horst, "Item Analysis by the Method of Successive Residuals,"

JOurnal‘gfquperimental Education, II, 25h-63, l93h.

3H. A. Toops, "The L-Method," Psychometrika, VI, 2h9-66, l9hl.
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regression solution, but the task is a lengthy one. A presentation of

these two techniques is given by the authors.

1
Richardson and Adkins presented a simple approximation to the mul-

tiple correlation procedure that compared favorably with the L-method.2

This formula is

[L .../'L II.

c yu :0 X)’
n.

X

y (nkj’n'yu Raw 0';

 

where y: criterion variable,

xztest variable, and

u:any test item.3

Flanaganh adapted the method of solving for regression coefficients

by means of successive approximations to provide an item selection method.

A second technique proposed by HorstS, the maximizing function, is

dependent on the ratio of the validity of the item to the consistency of

the item. Items are selected that correlate highly with the external cri-

terion and poorly with the test score.

 

1M. W. Richardson, and D. C. Adkins, "A Rapid Method of Selecting

Test Items ," Journal o_f Educational Psychology, XXIX, 5147-52, 1938.

2H. A. Toops, 3:93. c_i_§.

3M. W. Richardson and Adkins, pp. git. p. 5h9.

L‘J. C. Flanagan, "A Short Method for Selecting the Best Combination

of Test-Items for a Particular Purpose ," Psychology Bulletin, XXXIII,

603-14, 1936. (Seen in abstract only).

5A. P. Horst, "Item Selection by Means of a Maximizing Function,"

Psychometrika, I, 229-141;, 1936.



Use of Item Analysis Data

In the construction of a test, the distribution of test scores may

be predetermined, within limits, by the proper selection of items with

certain difficulty indices. The following formulae show that the sample

mean and variance are functions of the item difficulty'indices and the

interaction between items.

)7 = 221?,

0-2::IZJEZ§+«2.g;-(XEf'IEIE).>

4'.“

where Pi: the proportion of the individuals in the sample passing item i,

qi : l-pi, and

Pij=:the prOportion of the individuals in the sample passing both

items 1 and j.

The symmetry or asymmetry of the distribution of test scores, the skew-

ness, kurtosis, or modality are also functions of the item difficulty in-

dices and the item interactions.

Since the score distribution properties are dependent upon the item

indices, items should be selected which will yield a score distribution

best serving the purpose for which the test is to be used. No one fre-

quency distribution exists which would be ideal fer all testing situations.

In objective testing, extensive use has been made of the normal test score

distributions because: (1) the ability being measured was assumed to be

normally distributed, and (2) the statistical methods applied in the the-

ory of measurement are based on normal probability theory. The first

reason is meaningless unless the ability is given an operational defini-

tion; normality is usually assumed on a philosophical basis. The second
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reason is not relevant since the test was constructed for a specific pur-

pose other than the application of statistical methods to the obtained

data.

There are certain testing situations where the primary purpose is

to classify individuals into two or more groups; no attempt is made to

identify differences between the individuals within a particular group.

Some personality testing is undertaken to measure the presence or the ab-

sence of a trait, with no attempt being made to measure the intensity of

the trait. A test, best serving the purpose of this situation, would have

sufficient accuracy at the critical point of partition to insure that the

classification of a student into one of the two groups was not a result

of chance fluctuations. In the measurement of interest, a test is desired

'which would classify individuals into certain interest groups. The test

would need accuracy of distinction between groups rather than within

groups. In achievement testing for the purpose of assigning grades on

the basis of a specified point scale, a test should identify students re—

ceiving one grade from students receiving other grades. Test items se-

lected by the item analysis techniques now in use generally result in a

test score distribution not significantly different from a normal distri-

bution. Consequently, various mathematical transformations are applied

to the raw score data to obtain the critical points of partition between

groups 0

Purpose of This Study

This study was undertaken to develop and test a new technique fer the

selection of those items most applicable in testing situations where it is
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desired to place individuals into a number of mutually exclusive groups.

A technique was desired which would select the test items yielding a maxr

imum discrimination between the groups. To obtain this maximum difference

between the mean scores of the groups, it is necessary to maximize the

ratio of the between groups variance to the total variance.

The theoretical aspects of the problem consist of the presentation

of the technique and an analysis of its effectiveness. To test the worth

of this technique an analysis of the resulting test score distribution is

necessary; it is also necessary to compare the resulting distribution

with a normal test score distribution to see which is more efficient in

differentiating between two groups of individuals.

It is possible that a theoretical proof is true even though such a

technique does not work in an actual situation. For this reason, some

empirical data are necessary in order to determine the practical value of

the technique. The primary need of any statistical technique is that it

is stable and consistent when reapplied in another situation; to investi-

gate the stability of the new technique it is necessary to use cross-

validation procedures. Empirical data are necessary to investigate wheth—

er the new technique results in a score distribution with minimum error

at the critical score points between two adjacent groups. Also, a com-

parison with other techniques seems desirable. Since it is not practi-

cal to compare the new procedure with all the present procedures, it will

be compared with Flanagan's technique, which is based on item-criterion

relationship only, and the method of maximizing function,1 which is one

of the better techniques based upon both the item—criterion and the item-

item.relationship.

 

1A. P. Horst, i9_c_. 9g.



CHAPTER II

THE THEORETICAL SOLUTION OF THE PROBLEM

The assumption underlying the placing of individuals within a Spec-

ified grouping arrangement should be that there exists a real difference

between the members of different groups and that the members of any one

group are fairly homogeneous with reSpect to the trait being measured. Any

test utilized for grouping purposes should yield an array of scores for a

particular group that does not overlap the score distribution of any of the

other groups. In the ideal case, with perfect items, individuals could be

placed into m categories with m—l items. Item one would be failed by

group 1 and passed by groups 2, 3,...,m; item two would he failed by

groups 1 and 2 and passed by groups 3, h,...,m; item mr2'would be failed

by groups 1, 2, 3,...,m-2 and passed by groups mrl and m; the last item

mrl would be failed by all groups except group m. These mrl perfect items

would yield a score distribution where all the individuals in group 1 re-

ceived a score of zero, those in group 2 a score of one, those in group

m-l a score of m-2, and those in group m.a score of m—l. It is not prac-

tical to utilize a single item because (1) a single item is subject to

fluctuation in response from trial to trial, and (2) the correlation

between an item and the criterion being predicted by the total test is

so low that an item curve is comparatively flat and not representative

of the total test discrimination. The many factors that operate to re-

duce the efficiency of a test result in a greater likelihood of error

. in predicting when a single item is used than when the total test is

used. Since perfection is not likely attainable, a nunber of items
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that function within chance limits of a perfect item might serve the same

purpose as one perfect item. To place students into m categories we

would need mrl groups of items with each group of items approximating a

perfect test item functioning about a particular critical point separat-

ing two adjacent groups. A technique is proposed for the selection of

test items when the trait being measured is on a continuum and the groups

are separated by a specified number of critical points along the continu-

um. The application of this technique in the situation.where the test is

measuring traits not on a continuum but rather on two or more continua

would possibly result in a single item's functioning at a critical point

on more than one of the continua. In this situation it is necessary to

score the tests on the basis of sub-parts identifiable with one of the

continua; this could result in a single item's being included in the scor-

ing arrangement of more than one sub-test. It should.be noted that if a

single trait is being measured, an item would function at only one criti-

cal point; an individual's performance on the test would be indicated by

a single score. In the case of two or more continua, an item.may func-

tion at one critical point on one or more continua; an individual's per-

formance must be indicated by more than one score.

Procedure for Item Selection

According to the above discussion, the procedure for the selection

of test items where individuals are to be classified into m groups would

be as follows:

1. Classify the individuals into the proper one of the m groups

on the basis of either an external or internal criterion.

2. Select a sample of size ni from group i. The calculations will

be simplified if all 111 are equal.
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3. For each test item determine the number of each group that

answered the item correctly.

b. On an a priori basis obtain the theoretical frequency of group

i. This is obtained by assuming a perfect test item so all n1

people of a group would pass the item if that group were above

the critical point at which the item was discriminating, and all

n peeple of a group below the critical point would fail the

i em.

5. The observed frequency is obtained by examining the number of

each group that answered the item correctly. If the group is

above the critical point the observed frequency is equal to the

number of the group that answered the item correctly. The nume

ber of the group that failed the item we will denote by'e . The

observed frequency of successful predictions by the item or the

group i is than equal to ni minus e.. If the group is below the

critical point we would predict that all the members of the group

would fail the item. The number of errors is thus equal to the

number of the group that answered the item correctly. If we al-

so designate this number by e., the observed frequency of suc-

cessful predictions is also equal to n. minus a .

6. Using the above theoretical and observed frequencies we use chi-

square to test whether the observed frequencies deviate signifi-

cantly from the theoretical frequencies.

7. By specifying the chi-square limits of acceptance and.rejectance,

we can identify the items that are acceptable at the various

' critical points.

8. If we restrict ourselves to chance deviations from the theoret-

ical frequencies, the value of ei is equal to qn , where q is

the probability of getting an item right on the asis of chance

alone. For a test item of a alternatives q is equal to l/a.

Using these limits we have an acceptance point for chi-square

equal to 1; qzni.

A

The chi-square value is obtained by the formula

2 (1r 4 )1
X :2 ° 9 where fo observed frequency,

*9 and fe expected frequency.

An example of the procedure in the case of five groups is presented

for clarification purposes. Let I denote the highest group and V the

lowest and have all n equal to 10.

1 Groups (from high to low)

I II III IV V

Number in each group 10 10 10 10 10

Number in each group

answering the items correctly 10 8 h h l



17

This item.tends to separate groups I and II from groups III, IV, and

V. For a perfect test item Operating at this critical point we would ex?

pect all the individuals of groups I and II to pass and the other indi-

viduals to fail. The chi-square value is calculated as follows:

Groups (from high to low)

I II III IV v

fe 10 10 10 10 10

fo 10 8 6 6 9

fo-fe 0 2 h h 1

(fo-fe)2 o h 16 16 1

$£932923- .00 .ho 1.60 1.60 .10

 

fe

e_ (we—{.22 z , ,
X_ Z fife 370

It is unlikely that we can find a sufficient number of items which will

satisfy the chance deviation limits; but we may then use some other chi-

square value, based on predetermined levels of significance, for the ac—

ceptance point. A satisfactory item has a chi-square value less than the

acceptance value.

Theoretical Analysis of the Score Distribution

in the Case of Two Groups

Let us denote the higher group by'l and the lower group by 2. Con-

sider a test consisting of k items with a alternatives and assume that

the credit given is either 1 or 0 depending on whether the response is

correct or incorrect. Let us further assume that for each item the prob-

ability of success is 2h-D/a. for group 1 and 5 Va. for group 2. If we

denote the probability of success for group 1 on item i by pi, we consider
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the case of k trials with different probabilities of success pi, where

i=1, 2,...,k.

Aitkenl has shown that this type of distribution has

(1) 0:2 BZRZ; where 3;=l"1,.:°

Let p represent the mean probability of success for group 1, F: 7‘"? ,3.)-

the variance of the probability in the k trials is

(2) are: £(B‘?)% '

We have L

2

(3) Zfi3.'=KP-K?z‘z(3‘7’)o

Substituting the value for the last term on the right from equation (2),

we have

(u) gJZ-SwW-kpz-K‘T-z-

Simplifying equation (h), we obtain

(5) 2:21;; kPe- K673-

Substituting from equation (5) in equation (I), we have

(6) 072 = Kfsv - K 07.6.

It is apparent that 6:2 will be a maximum for a mean probability,

when 07.1:0 . If we let 07,2: 0 , it follows that

(7) Z (it-F92: 0,

Hence I}: P fdr allc.

In a similar manner it may be shown that

(8) 02,2: K??- “K 07.2. , where p is the mean probability of group 2,

z .

and 0’2 is a maximumwhen 3:? for all L.

 

1A. C. Aitken, Statistical Mathematics, 2nd Edition, Interscience

Publishers Inc., New York, N. Y., l9h2, pp. 50-51.
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In the theoretical analysis of the problem we will choose f2 so that

the maximum variance is obtained, which means that 1: -’- (4" 9A..) 5‘ 521"" K)

for group 1 and B-=%)£=L2,-'-, K , for group 2.

The distribution of scores for group 1 is characterized by

(9) Z=k§a~0 ) 5:3..- KCa-l)

Q; Q2

The mean and variance for group 2 is

‘ k(e~D
42

'

 

_. 2

(10) x2: '2,“ ’ 3: ._.

It is now necessary to determine whether the observed score distri-

butions, identified by equations 9 and 10, classify the individuals in-

to one of two groups with a small probability of error. The exact amount

of error could be determined if the true scores for all individuals were

known. Since true scores are unattainable, reasonable limits for the

difference between the true scores of the individuals must be expressed

in terms of the observed scores. To derive the relationship between true

score differences and observed score differences, it is necessary to make

some assumptions regarding the relationship between observed scores and

true scores. The relationship between the observed scores, true scores,

and error scores is assumed to be

(11) X“ : t6 +9;

where xi = observed deviation score of individual i,

t.1 true deviation score of individual i, andN

ei = error deviation component of individual i.

All errors are assumed to be random errors and are such that

(12) '5 : 0

rte -

r =’CL
8163
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In the derivation of the relationship between true score and observed

score differences, the summation index is omitted for ease of presenta-

tion. The summation is over i unless otherwise stated.

The relationship between the variance of the true, the error, and

the observed scores is determined. From equation (11), we have

on X=t+e'

Squaring and summing gives

(u) zxZ=ZtZ+ZeZ+ZZet

Dividing both sides by N, we have

3 2 Z
a S .(15) s} . 5. *3. .2 ta .5.

From (12), we see that the last term of equation (15) is zero, and we have

2 2

(16) S, = 5‘: + 5,, -

we may solve for the variance of true scores in terms of the relia-

bility of the test and the variance of the observed scores. The correla-

tion between two parallel tests is defined, from elementary statistics, as

(17) fl. _, z x1 x2

,2 .— N31 52

where x1 and x2 are the scores of an individual on tests 1 and 2, and

s1 and 32 are the variance on tests I and 2.

From (13) we may express the numerator on the right side of (l?) as follows,

(18) 2 )9": = Z (l‘.*9.)(l‘z*ez)~

Expanding equation (18) gives

(19) 2515:2131; +Ze‘tz +§€2t,+zecez'

From the definitions of (12) we see that the last three terms of equation

(19) are each zero. Since we have parallel tests, the true score on 1

and the true score on 2 are equal. Therefore equation (19) becomes

a

(m Znh:ft-
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we may divide both sides of equation (20) by N, and fronxthe definition

of a variance we see that

2

X' P .

(21) ——————Z'X‘ ‘ St
N

substituting equation (21) in equation (g7) gives

t—L—S 0

Since tests 1 and 2 are parallel, 31::3 and we see that

Z Z

(23) -

St " [L12 SX)

where sx: 81: 52.

Since the reliability of a test, rxx’ is defined as the correlation be-

tween two parallel tests, we have 2

(210 S: -= Rxx 5} '

Next we may solve for the error variance by substituting equation

(2b) in equation (16), obtaining

Z
Z 2

(25) S, = 5e *h'xx 5): '

Solving equation (25) for s2 give;

2

(26) Se = S): (l’n'xx '

It is necessary to determine the standard error of the difference

between two scores, xi-x . To write the formula for this error, we use

3

equation (11) and write

The term in the parentheses indicates the error. The variation of the

observed difference from.the true difference is denoted by

2 2 z

(28) {(62-95) = 279‘. .z e: . Ziegex.
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From (12), we see that the last term of equation (28) is zero. Substi-

tuting equation (26) in equation (28), we have

(29) Z (9395f = 2 (“3,2041”).

Dividing by N and taking the square root, we have

(30) 52%;?» = S, {—2-— VI~R,,, .

It should be noted that in the development of the equation for the stan-

dard error of a difference, no assumptions were made regarding the dis-

tribution of errors. However, in order to utilize this error to obtain

reasonable limits for the value of the difference between true scores,

some assumption regarding the frequency distribution of errors is neces-

sary. Let us make the usual assumption that the distribution of errors

is normal.

For two individuals with a given score difference xi-xj, reasonable

limits for the difference of true scores, ti—tj’ may be taken as

(31) x,-x5 +3r'r’ 51m; >124,- >X.--¥;~3V75,VI-An .

If the above limits include zero, there is no significant difference be-

tween ti and t since ti-t may be zero. Since true differences were

.1 J

assumed to exist between the individuals of the different groups, that

is ti-t )0, it follows that both of the limits of the above inequality

3

must be positive and

(32) 1f,_.--t8 >x,.-xd--3.S;V"é"m 20'

Hence it is necessary that

(33) Xiva-3sxfi’q“nn ->- 0

to be certain that true score differences exist between the individuals

of group 1 and those of group 2.
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If our selected test items were perfect for group 1 and Chance 0p-

erated for group 2, the groups would have the following means and vari-

ances:

(3h) Group 1 Group 2

x k k/a

s: O (a-l)k/a2.

It is quite apparent that no individual was placed in the wrong group on

the basis of chance errors.

The k test items were selected so that the two groups have the means

and variances given in (9) and (10). Since we have assumed that a real

difference exists between the individuals of group 1 and the ones in group

2, we are saying the true scores of the individual at the low extreme of

the group 1 distribution is greater than the true score of the highest

scoring individual in the other group. If we let i represent the indi-

vidual from the high group and j the one from the low group, we can ex-

press our assumption as ti-t ) O. For our distributions we may be cer-

J

tain that

(35) x5?- a; K -235. We») , and

XJ-f g. +%Uk(¢-O 0

Taking the maximum value for xj and the minimum value for X1 and substi-

tuting these values in (33), we have

- x’ _ - 2-C>-

(3o) (Lam-ifs») ~3-évkw 35;“ VIM

Multiplying both sides of the inequality by a and combining like terms,

we have

(37) (¢-2)K 3 (Ha-I) [6* 3V?- Vl-Axx] .
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Squaring both sides and simplifying, we have

(38) Ni (%~;)2[g+3\f_§" V7532] / 6L >2 .

Considering the quantityVl:r;; as one variable and k as the other vari-

able, the inequality (38) yields boundary values that represent a family

of parabolas dependent upon the parameter a. The value of k must always

lie in the positive quadrant because positive square roots are taken.

Since 05 rn$1.00, we are concerned only with the half parabolas. The

value of k which will meet the equality of (38) for a fixed a lies on

the curve defined by (38); all k greater than this value of k will satis—

fy (38). Figure 1 indicates the number of test items needed for various

combinations of test reliabilities and the number of alternatives for

each test item.

An example is given to illustrate the method of reading Figure l.

A feur-choice item test with a reliability of .20 would require 72 items

to efficiently separate the individuals into two groups; a three-choice

item.test would need a reliability of 1.00 to accomplish the same end.

From Figure 1 it appears that the number of alternatives each item has

is an important factor in the number of items required to perform the

discrimination between the two groups; however, the test will usually

have a reliability greater than .50, so it is apparent that the number

of alternatives is not of great importance when the number of alternatives

is five or more.
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FIGURE 1. The Number of Items Required to Make a Discrimination Between

Two Groups as a Function of the Test Reliability and the Num-

ber of Alternatives for Each Item.

It follows that for any test of reliability rxx’ we may be reason-

ably certain, probability of 9,987.5 in 10,000, that ti-tj )0 by select-

ing k large enough so that (38) is satisfied. It is apparent that if

the items were more homogeneous for group 1, the variance of the group

would become smaller and the mean would approach k.

Comparison of the Bimodal Distribution and the Normal Distribution

When the probability of success of the group is a constant for each

item, the scores for the group will form a Bernoulli distribution. The

theoretical relative frequencies for the dichotomous situation are given

k

by the terms of (p-rq) . This type of distribution is characterized by



26

the following functions:L

((40) .x. = K F

a-2 .— K P 3

‘(3 '7 (s—P)/\fi<_?—é—

._L_... ‘
49:1:1’3 m+3‘

The skewness is positive for p<l/2, negative for p >1/2, and zero for

 

p =l/2. As k approaches infinity, «’3 tends to zero and dqtends to 3.

In the comparison let the range of the distributions be from 0 to h;

and let the bimodal distribution be such that 551-3 Wye$2.3 W/a,

which means that the score distributions for the two groups intersect at a

point. This point is the weighted average of their respective means; when

the size of the two groups is equal the point of intersection is equidis-

tant between the two means. For the normal distribution we have x=h/2,

and 8X: 11/6.

Let us assume that for the bimodal distribution we have a standard

error of measurement equal to the standard deviation of the group, or

assume the reliability of the test is zero for the group. Let us also

assume the entire distribution of each of the two groups in the bimodal

case lies in the interval 3'6 1 381,(i =1, 2) . For the normal distribution

nearly all the cases lie in the interval 3138:. If we define a critical

region about the critical point of partition between the two groups, we

would have a certain percentage of the cases of each bimodal group within

this band. For our assumed error of measurement equal to the standard

 

l
Aitken, 92. 933., pp. 119-50.
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deviation of one of the groups, the area under the curve for group 1 that

is within this critical region is equal to the area under the normal prob-

ability curve between the t values of 2 sigma and 3 sigma. This area is

equal to .023 of the total area, and it follows that 2.3% of the individ-

uals in group I lie within this critical region. The percentage of the

individuals in group 2 that are within this region is also equal to 2.3%

of the group. For the combined total 2.3% of all of the individuals lie

within this error band. For the normal distribution to have as small a

percentage of the cases within a critical region, it is necessary that

(kl) I :96; t2

____ "27

v27; 3 cu : .023, where c is the critical point de-

c- 6' pending upon the proportions in each

t of the two parts of the normal curve.

It is apparent from the Table of the Normal Curve and the standard error

of measurement of a standard score1 that the reliability of the test,

necessary to obtain this accuracy, is dependent upon the point of parti-

tion between the two groups. If the point of partition is in the tail of

the normal distribution at a t value of 2.00, this accuracy is attainable

only if the reliability of the test is greater than .91. As the point of

partition approaches the mean of the normal distribution, the reliability

of the test must increase to maintain the same degree of accuracy; in the

limiting case with a t value of .00, the reliability of the test must be

at least equal to .9991.

If we assume that the two distributions have equal errors of meas-

 

lStandard error of measurement of a standard score G‘fi-r .

2 xx
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urement, we have the following areas under the curve in the critical re-

 

gion

.300 -)z
3.00 ~ 2

L*1- , arr.)
(’42) Bimodal caseo_f e 2‘} on, ,. e 90;" 09"

2
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Normal case 63 091'
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c-S-E

where c is the point of partition between the two groups.

From the properties of the normal curve, it is immediately seen that

 

-200 3-09 - 3 C995 2

,1... -(x,"“ng J’s-0&9 , €- ‘3."an

MONTE/e 2” x' 621'??? e 2“ XZ<VEF ‘
-345 3-5.5 C -S-£.

fer all values of c.

The preteding theoretical development indicates a bimodal test score

distribution is superior to a normal test score distribution in the class-

ification of individuals into two groups. To minimize the occurance of

chance errors in this type of testing situation, a bimodal test score

distribution, with a critical point of partition at the minimal ordinate

between the modes of the two groups, should be used. A similar proof

will show that an m-modal distribution will best serve the purpose of

classifying the individuals into m.groups. It is apparent that an in-

crease in the number of items needed to adequately perform the job of

classification is necessary when more than two groups are used.



CHAPTER III

DATA RELaTED TO THE PROBLEM

To test the adequacy with which the adjacent-group item selection

technique functions, two studies directed at the empirical verification

of the technique were undertaken. The first investigated the stability

of items selected by this technique under cross validation. The second

study compared the adjacent-group technique with a technique based on

itemrcriterion relationship and a technique based on both itemvcriterion

and inter—item relationships. Comprehensive achievement tests given in

courses of the Basic College at Michigan State College were used in these

empirical studies.

Stability of the Selected Items under CrOSSAValidation

Any satisfactory item selection technique must yield items that

will be valid when applied to similar populations. This study was under-

taken to investigate whether the adjacent—group technique would yield a

bimodal distribution for two groups that was consistent when used with

another independent sample.

Th§_zg§t. The adjacent-group item selection technique was applied to an

achievement examination. The examination consisted of three hundred

items; the majority of the items were of the five response, multiple

choice variety, of which only one response was considered correct. The

questions were scored one for a correct reaponse and zero for an incor-

rect response or omitted item. The time limit was sufficient to allow

everyone adequate time to attempt all items.
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Selection 2: the items. The 1,782 individuals taking the test were di-

vided into five groups according to a letter grade of A, B, C, D, or F

on the basis of the score on the 300-item examination. A sample of 50

individuals was obtained by selecting ten individuals from each of the

five strata A, B, C, D, and F. For the five groups, items were analyzed

to determine the number in each group that answered each item.sorrectly.

From this data chi-square values were computed for each of the 300 items.

0n the basis of chi-square acceptance values, three sub-tests were formed.

The first consisted of 59 items emphasizing discrimination between the B

and C groups; the second consisted of the 12 best items for discriminat-

ing between the two lower categories; and the third consisted of these

12 plus the next best 16 items discriminating between the D and F groups.

Consistency Data. For the cross-validation study a stratified random
 

sample of 199 papers was selected from the total group of 1,782 papers.

For the first sub-test a score of 190 on the original BOO-item test was

the minimum of the B letter grade group. Since the original test had an

error of measurement of 6.8h, all the scores of'the other groups should

be below 162 before we could be certain real differences existed between

the two groups.1 From the sample of 199 individuals, we obtained 62 peo—

ple with a score equal to or greater than 190 and 57 people with a score

of 161 or less. These 119 papers were rescored on the basis of the 59

selected items. The mean and range of scores fer each group are given

in Table I.

 

1P. 22, equation (33).
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TABLE I. MEANS, RANGES, AND FREQULNCIES FOR THE TWO GROUPS ON THE

59-ITEM TEST

 

 

Group N Range 3?
 

Original score greater

than or equal to 190 62 36-52 hS.79

 

Original score less

than or equal to 161 57 19-35 29.05    
The data presented in Table 1 indicate the selected test items resulted

in a nonroverlapping bimodal distribution.

The second part of the consistency study was carried out with the

199 individuals placed into a pass-fail dichotomy; The pass group con-

sisted of 192 individuals receiving a letter grade of A, B, C, or D, and

the seven students receiving a letter grade of F made up the failing

group. These papers were scored on the basis of the 12- and 28-item

sub-tests. The frequency distribution for the pass and fail groups for

the selection sample and the cross-validation sample on the 12-item test

are given in Table 11.

TABLE II. FREQUENCY DISTRIBUTION OF EACH SAMPLE ON THE 12~ITEM TEST

 

 

 

 

 

Raw Score Selection Sample Cross-validation Sample

pass fail pass failfi' I

12 1h 'h2

ll 10 60

10 8 h2

9 8 2h 1

8 9

7 10 1

6 3 h

5 l

h 1 1

3

2

1 H
U
N

W
P
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For the selection group a marked non-overlapping bimodal distribu-

tion was obtained. For the crOSdealidation sample the distributions

for the pass and fail group overlapped. An investigation was made of

the original test scores of the passing group individuals with a sub-

test score of six or less and the failing individuals with a sub-test

score of seven or more. The original scores fer the incorrectly classi-

fied individuals are given in Table III.

TABLE III. ORIGINAL TEST SCORES FOR THE INDIVIDUALS INCORRECTLY PLACED

ON THE lZ-lTEM TEST
 

 

 

Group Original Score

Passing original test 150

and failing the 12- 1&5

item sub-test 136

132

130

Failing original test 123

and passing the 12— 120

item sub-test   
Reasonable limits for observed score differences, in order to be

certain that true score differences exist, may be obtained from the orig-

inal test.1 This implies that to have a criterion score different from

a criterion score of 128 an individual must have a total score of 157 or

greater.2 Of the individuals incorrectly classified by the 12-item test

no differences existed on the original test of a magnitude sufficient to

be reasonably certain that true score differences did exist.

 

1P. 22, equation (33).

2Probability of 9,987.5 in 10,000.
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For the 28-item test a similar analysis was undertaken and 17 indi-

viduals were within the fringe area. The original criterion scores for

these individuals are given in Table IV.

TABLE IV. ORIGINAL TEST SCORES FOR THE INDIVIDUALS IRCORRECTLY'PLACED

ON THE 28-ITEM TEST

 

 

 

 

Group Original Score

Passing original 169 lbh

and failing 28- 165 133

item sub-test 152 132

ISO 130

it? 1.30

1146 129

116

Failing original ~ 128 125

and passing 28- 126 120

item test   
From Table IV we see that two individuals in the high group were

incorrectly classified when we restrict ourselves to those individuals

with true score differences. On the basis of the obtained data it ap-

pears that the adjacent-group technique does result in bimodal test score

distributions, and it is consistent provided the items do not deviate too

greatly from perfect items. The 12-item test and the S9-item test con-

sisted of those items having a chi-square value less than b.00; the 28-

item test consisted of some with chi-square values greater than h.00.

It is apparent from the data that selecting additional items with large

chi-square values causes a decrease in the accuracy of the test and a

corresponding increase in the number of errors.

Although the theory covered only the case of two groups, this study

was undertaken to investigate whether a multimodal test score distribu-

tion was attainable by the group technique; if it were attainable, the
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multimodal test score distribution would be investigated with respect to

the variation of its standard error of measurement as the magnitude of

the test score changed. It seemed desirable to obtain items which groups

above the critical point would pass with a probability as near to 1.00 as

possible and the groups below the critical point would pass with a prob-

ability of .20 or less. A pool of 900 items was secured by combining

three 300-item achievement tests. Since only 110 individuals were avail-

able who had taken all three tests, it was necessary to select test items

without using these cases in the item selection process.

Individuals taking each test were classified into five grade groups, ./

A, B, C, D, or F QEAEEE_EEES§~ f total test score. Four critical points

determined the groups. For each of the three 300—item tests, a sample of

ten individuals was selected from each of the five groups, and a chi-square

value was computed for each of the items. From these 900 chi-square val-

ues, a test of 60 items was selected on the basis of the adjacent-group

technique; and a second set of items was selected on the same basis to

yield a statistically parallel test.

The 110 individuals were divided into five groups on the basis of

their average fOr the three tests. Table V presents the means, variances,

and frequencies for each group on the two parallel tests and a total test

score for individuals obtained by summing the part scores for an individual.

 

 

 

 

 

TABLE v. MEANS, VARIANCES, AND FREQUENCZES FOR THE FIVE GROUPS ON THREE

TESTS

_LGroups N Parallel Test 1 Parallel Test 2 Total Test

32 52 3: __§2 3E §_2__

1 6 5u.00 8.67 53:667 10.33 107.00 23.67

2 19 uh.16 8.88 h3.16 5.38 87.32 lb.h3

3 32 33.38 7.29 3h.06 5.96 67-bh 1h.72

h 35 2h.63 6.55 28.23 6.92 £8.86 13.56

5 18 11.91 5.29 15.09 6.25 30.33 17.5h        



35

To compute the standard error of measurement for a test, on which

the total score is the sum of the scores on two parallel tests, one may

take the sum of the squares of the differences between corresponding in-

dividual scores, divide by the number of individuals, and extract the

 

square root. In symbols, 2

- (Xia-XIZ)

(1) 6;! Z __;‘___.

where xi1::the observed score of individual i on test 1,

xiz=rthe observed score of individual i on test 2, and

n s the number of individuals.

An indication of the magnitude of the standard error of measure—

ment at several points on the test score scale is provided by the means

of the squared differences for individual scores. The means of the

squares of differences between parallel test scores were calculated at

each score point along the total test score scale. To secure a somewhat

more stable value, the means of the squared differences were computed

for groups of five score points along the total score axis. The values

of the means of the squared differences obtained from the groups of five

score points is not too stable since in the eighteen groups the greatest

frequency for any group was seventeen and six of the groups consisted of

only two or three individuals. The frequency distribution of the total

score and the means of the squared differences for each score point and

each group of five score points are presented in Figure 2. The empirical

curve best fitting the data on the mean of the squared differences is al-

so shown.

The four critical points of partition separating the five groups

are located at the total raw scores of to, 60, 80, and 100; and the fre-
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quency at these points is zero. .An examination of Figure 2 shows the

curve of the mean squared difference of the multimodal score distribu-

tion is also multimodal in nature and the error of measurement is a min-

imum at the critical score points. This minimum at these points results

in a smaller percentage of the cases being within the critical region

about the feur critical points. It is obvious that a distribution which

yields a minimum standard error of measurement at critical points is the

type of distribution that best fits the purpose of assigning individuals

into groups separated by critical points and best meets the assumption

that there is a real difference between the individuals of two adjacent

groups 0

Comparison of the Adjacent—Group Technique and Two Other Techniques

This empirical study was undertaken to compare the adjacent-group

technique of item selection and a technique based on itemrcriterion re-

lationship with respect to the reliability and the validity of the sub-

tests selected by each method.

ZEE.ZE§E' Items were selected from an achievement examination in an area.

The test consisted of 300 items; the majority of the items were of the

five reSponse, multiple choice variety of'which only one response was

considered correct. The questions were scored one for a correct reaponse

and zero for an incorrect one; omitted items were counted as wrong re—

aponses. The time limit of the test was sufficient to allow everyone

adequate time to attempt all items.

Selection g£_th§_It§m§. A stratified random sample of 185 papers was se-

lected for use with the upper-lower 27% technique.1 The highest and low-

 

lFlanagan, _1_9_<_:_. git.
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est 27% of the 185 papers were selected as criterion groups (50 papers in

each group). Each of the 300 items was analyzed by the IBM Graphic Item

Counter to determine the number of the high and the low 27% selecting the

correct reSponse. Two indices were computed for each item: (1) a dif-

ficulty index that was the percentage of the combined criterion groups

missing the item, and (2) an index of discrimination computed from a

chart yielding an approximate biserial correlation coefficient estimated

from obtained proportions of the upper and lower 27%.

For the adjacent-group technique the 1,782 individuals were placed

into five groups on the basis of their obtained grade and from each of

these five groups a sample of ten individuals was selected. The 300 items

were analyzed to determine the number in each group answering the item

correctly; from these data a chi-square value was computed for each item.

Reliability and validity'lndices. After the item.indices were obtained,

four tests were made as a result of the analyses: (1) the best 31 items

selected by the upper-lower method, (2) the best 31 items as indicated by

the adjacent-group technique, (3) the best 59 items selected by the upper-

lower method, and (b) the best 59 items selected by the adjacent-group

technique.

A new stratified random sample of 199 papers was selected and re-

scored on the basis of the four new tests. For each of’the four sub-

tests a reliability estimate was obtained by the following formula1

2

(2) 7;, == [352— flK-YUfl-I) s ,

where k e number of items,

s2: variance of the test scores,

SE cmean of the test scores.

 

1H. E. Garrett, Statistics in Psychology and Education. Third Edi-

tion. New York: Longmans, Green and Company. 19L7, p. 385.
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TABLE VI. RELIABILITY ESTIMATES FOR THE FOUR TESTS ‘

 
 

 

Number of Items in Test Items Selected by Reliability Estimate

31 upper-lower .6h

31 adjacent-group .58

59 upper-lower .77

59 ' adjacent-group .78  
 

It is quite apparent that the reliability estimates for the two 31-

item tests are not significantly different; no significant difference

exists between the estimates for the 59-item tests.

Validity estimates were obtained by correlating the scores on the

sub—tests with the original test scores. The obtained correlations for

the two 31-item tests are tested for the significance of the difference

in Table VII.

TABLE VII. TEST OF THE SIGNIFICANCE OF THE DIFFERENCE BETWEEN THE VALID-

ITY COEFFICIENT ESTIMATES OF THE TWO 31-ITEM TESTS

 

Selection Technique r z 1/(n93)

adjacent-group .853 1.271 .00510

upper-lower .775 1.03h .00510

 
difference .237 sum .01020

 

sd=v.01020:.101 J t=.237/.101=2.35 d.f.=OO P=.O2.

The obtained difference between the two r's in favor of the adjacent-

group selection technique could have occurred by chance factors alone

about two times in one hundred. A similar test for the validity coef-

ficients of the 59-item tests is given in Table VIII.

TABLE VIII. TEST OF THE SIGNIFICANCE OF THE DIFFERENCE BETWEEN THE

VALIDITY COEFFICIENT ESTIMATES OF THE TWO 59-ITEM TESTS

 

 

Selection Technique r z l/(n—3)

adjacent-group .91 1.535 .00510

upper-lower .88 1.3bh .00510

 

difference .189 sum .01020

ed: .101, t =.189/.101=1.87, d.r.=oo , P =.06.
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For the two 59-item tests, the obtained difference in favor of the ad-

jacent-group technique could have been caused by chance factors alone in

about six cases in one hundred.

This study indicates that the adjacent-group technique will probably

yield higher validity coefficients than the upper-lower technique, although

there may be no appreciable difference in the reliability coefficients.

The most satisfactory method of selecting test items from a theoret-

ical approach, is to consider the selection process as being similar to

a multiple regression problem. The solution of a multiple regression

problem in the case of a large number of variables is prohibitive; in

test-item selection the number of variables would generally be greater

than one hundred. To approximate the regression solution numerous tech-

niques have been proposed; these techniques have been mentioned before.1

Since these methods are the most efficient for the selection of the bet—

ter items, the adjacent-group technique presented in this study was com—

pared wiih one of them, namely, Horst's maximizing function.2 A sub-

test was constructed from the best 30 items as identified by the adjacent-

group technique; a second sub—test consisted of the best 30 items selected

by the maximizing function.3 Estimates of reliability and validity were

obtained for each of the two sub-tests. These estimates were tested for

significance of the difference.

Thg_T§§E. The test items were selected from an achievement examination

consisting of 150 items (Form 1); the majority of the items were of the

 

1P. 9-10.

2Horst, 132. Egg.

3Horst, ibid.
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five reaponse, multiple choice variety of which only one of the responses

was considered correct. One score point was given for a correct response

and no points for an incorrect one. Omitted items were considered wrong

since adequate time was given to enable all individuals to finish the

test. A second test (Ferm II) over the same subject matter field was

used as an external criterion. The correlation between the external cri—

terion and the test was .68. Two stratified random samples were selected;

one sample of 100 papers was used to select the test items for a 30-item

test using the maximizing function and a 30-item test using the group

method; the second was reserved for the computation of the reliability

and validity estimates.

Selection 9; thg Itgmg. The mathematical theory underlying the selec-

tion of test items by the method of maximizing function was developed in

the article by Horst:L and will not be discussed in this paper. The com-

putational procedure followed to select the best items by this method is:

1. Reduce both raw criterion and raw test score to class interval

values ranging from O to 9.

- 2. For each item obtain the sum of the criterion measures (:7) and

the sum of the test measures (Z5 ) for all individuals answering

the item correctly.

3. Next calculate the mean of the criterion measures ([47) and the

mean of the total test score (M; ).

h. For each itenxmultiply the mean criterion score and the mean

test score by the number of the people answering the item cor-

rectly. Indicate these bnyy and '91,.

5. Subtract {My fromZ Y and designate the result by 11. Subtract

{M3 from [S and designate the result by v. The u value is pro-

portional to the product moment of the corresponding item.with

the criterion.

6. If the u value is negative, discard the item since it correlates

negatively with the criterion. Items having positive u values

and negative v values are selected for the test.

 

1'Horst, loc. gt.
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7. For all the items not previously accepted or rejected divide

u by Vs

8. Find the highest u value and the highest v value. Divide the

u by the v to obtain a ratio. Divide this ratio by 2.

9. Select all items greater than the ratio.

10. Make a frequency distribution of all u/v ratios which lie between

the ratio and the ratio divided by 2. Select as many of the re—

maining items as are necessary to obtain a test of the desired

number of items.

For the adjacent-group technique, the 100 papers were divided into five

groups on the basis of four critical points of the external criterion.

For each group the number getting each item correct was obtained and a

chi—square value was conputed fer each item.

Reliability and Validity. After the two analysis methods had been com-

pleted, two tests of 30 items were chosen. The one test was made up of

the best 30 items selected by Horst‘s method; the other consisted of the

best 30 items as shown by the adjacent-group method. For each test an

estimate of the reliability was obtained using the second sample and is

presented in Table IX.

TABLE IX. RELIABILITY ESTILATES FOR THE TWO 30-ITEM TESTS

 

method of Item Selection I Reliability

Horst ob?

Group .52

 

These two estimates are obviously not significantly different. The valid-

ity estimates, based on the second sample, were obtained by correlating

the scores on the sub-tests with the criterion scores (Form II) and are

presented in Table X.

TABLE X. VALIDITY ESTIMATES FOR THE TWO 30—ITEM TESTS
 

 

Method of'Item Selection lValidity

HOI‘St I 0514

Group .58



17.3

These two correlation coefficients are also not significantly different.

The validity estimates of the original test (Form I) and the 30-

item sub-test consisting of items selected from Form I by the adjacent-

group method were also tested for the significance of the difference.

The results are given in Table XI.

TABLE XI. TEST OF SIGNIFICANCE OF THE DIFFERENCE BETWEEN THE VALIDITY

COEFFICIENT OF FORM I AND THE SUB-TEST SELECTED FROM FORM.I

BY THE ADJACENT-GROUP METHOD
 

 

 

Test r 2 1/(n—3)

Form I .68 .828 .00508

Sub-test from

Form I .58 .663 .00508
 

difference .165 sum .01016

sd:V.01016 =.101, t c.165/.101 =1.62, d.f.=°°, P =.11.

 

The difference between the two validity coefficients was not significant-

ly different from zero. The obtained difference could have been caused

by chance alone eleven times in one hundred.

These data indicate the difference between the correlation of the

external criterion (Fbrm II) and each of the sub-tests (Horst and Group)

is not significant. The group method selected a 30-item test from the

original test that was not significantly less valid than the original

test of 150 items. On the basis of the data of this study, the pr0posed

technique appears to be as good fer the selection of items as the more

complex method ofHorst.l

 

lHorst, 122. gig.



CHAPTER IV

SUKMARY AND CCNCLUSICNS

The major purpose of this study was to present and evaluate a new

item—analysis technique applicable in situations where the primary in-

terest is in the discrimination between the members of two or more

groups, rather than discriminating between the members within groups.

This type of problem occurs frequently in assigning letter grades and in

selection work where individuals are to be divided into two groups (that

is, those who may be expected to succeed and those who may be expected

to fail in a particular situation). The adjacent-groups technique of

item analysis resulted in a maximized ratio of between-groups variance

to total variance.

The procedure for computing the adjacent-group technique validity

indices was presented. It was assumed that the test-score distribution

should be the one best fitting the need of the particular situation where

the test is to be used. In the case of two groups, the most discriminat—

ing test was found to be the one that yields a score distribution with a

point of partition at the abscissa of the minimal ordinate between the

two group modes. A theoretical examination of the score distribution

showed that for any test, a non—overlapping bimodal distribution may be

obtained in selecting a sufficient number of items. In the theoretical

comparison of the bimodal test-score distribution with a normal test-

score distribution, it was demonstrated that the binndal score distribu-

tion resulted in fewer chance errors than the normal distribution. In the

case of more than two groups, the distribution should have points of par-
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tition at the abscissa of the minimal ordinate between any two adjacent-

group modes.

The empirical findings of this study must be interpreted in terms of

the small number of cases involved in the data. The selected test items

tended to be stable under cross-validation. The empirical studies on the

error of measurement of the multimodal test-score distribution showed

this error to be minimal at the points of partition separating two adja-

cent groups; the tendency seemed to be that the error of measurement ap~

proached zero at the points of partition.

Since test items discriminating perfectly between two adjacent groups

are difficult to obtain, it is quite apparent that the adjacent-groups

technique for the selection of items is more feasible in situations where

a large source of test items is available. However, the adjacent-group

technique can also be applied in situations where intra—group comparisons

are to be made and the source of items is limited. The empirical findings

showed that the adjacent-group technique was as satisfactory as Horst's

more laborious technique of maximizing function in the selection of the

most valid items in terms of an external criterion. The adjacent—group

technique was found to be superior also to the technique of Flanagan.

If future studies support these findings, it would seem desirable

to assume a distribution of scores best suited to the purpose of a test

and to select items which will tend to yield this distribution, instead

of assuming the usual normal distribution of scores in all situations and

selecting items which will tend to yield the normal distribution.

Experience has shown that better prediction is attainable in the

tails of a normal distribution than in the center of the distribution;
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this could be a possible indication that the normal distribution fails

to accurately differentiate between the individuals in the center of the

distribution. A multimodal type of test score distribution should in-

crease the efficiency of prediction for the middle group; the overall

efficiency of prediction would be increased.
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