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ABSTRACT

FAULT DETECTION AND IDENTIFICATION IN PERMANENT MAGNET
SYNCHRONOUS MACHINES

By

Reemon Zaki Saleem Haddad

Permanent Magnet Synchronous Machines are subject to a variety of failures in various

parts of their structure. These faults cause different and independent changes to the motor

parameters and its response behavior. This requires different detection and mitigation meth-

ods based on the fault type, location, and severity. Therefore, an effective fault detection

and identification method is required, not only to identify if the motor is healthy or faulted,

but to detect the fault type, separate it from others, and estimate its severity.

In this research, an algorithm is proposed to detect and separate between different faults

in Permanent Magnet Synchronous Machines under different operating conditions. The

incremental inductance approach is proposed when the motor it at standstill. This method

uses the changes in the machine saturation, due to the presence of faults, as a fault indicator.

Under steady state operation, the change in the machine commanded voltages is proposed

as a fault indicator. However, if the motor is operating at steady state with high torque, the

motor current or voltage signature analysis is proposed. The main advantage of the proposed

method is that it doesn’t require any additional hardware components. The same signals

that are used for the controller can be used for fault detection, separation, and estimation.

The proposed methods also does not require a complicated signal processing techniques.

This makes the proposed methods fast, cost efficient and easy to implement.

Three common faults in Permanent Magnet Synchronous Machines are discussed in this

work: static eccentricity, partial demagnetization and turn-to-turn short circuit faults. Finite



Element Analysis simulations and experimental testes were carried out for three Permanent

Magnet Synchronous Machines under healthy and the faulted conditions. The differences

between the motors are the winding topology, the input/output power, and the slot/pole

combination. The first motor is a 12 poles, 72 slots with a distributed windings, the second

motor is a 16 poles, 48 slots with a concentrated windings, the final machine is a 10 poles,

12 slots fractional slots concentrated winding machine. Both simulations and experimental

results showed that the proposed methods were able to separate between the different faults

with a high level of accuracy.
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Chapter 1

Introduction

1.1 Motivation

Permanent Magnet Synchronous Machines (PMSMs) are playing a major role in a wide

array of industrial and automotive applications due to their high efficiency, reliability, wide

operation range, and their high torque density. These applications include power traction

and steering in electric/hybrid vehicles, robotics, household applications, power tools, and

wind generators. The growth of use of PMSMs in the market has driven these machines to

be exposed to different types of faults. Faults in PMSMs can be classified into three main

categories: stator faults, rotor faults and bearing faults. Stator faults include turn-to-turn

short circuit, phase-to-phase short circuit, phase-to-neutral short circuit, and open circuit

faults. Rotor faults include eccentricity and demagnetization faults. Bearing faults include

outer race, inner race, and ball bearing faults. Based on the industrial and commercial

industries report [4] 10% of the total faults are related to rotor faults, 37% are related to

stator faults and 41% are related to bearing faults.

The main objective of condition monitoring in electric machines is to capture the presence

of faults and estimate the severity while it’s still in the early stages. Detecting the machine

health status and implement the suitable maintenance method, in the case of faulted cases,

can help increase the motor reliability, maximize the machine operating lifetime, and reduce

the maintenance cost.

1



1.2 Problem Statement

Faults develop in different ways and causes different changes to the machine parameters

and performance. Depending on the fault type, severity, and location, different detection

and mitigation methods can be implemented. These methods can be categorized as either

interruption of the machine operation or change in the controller scheme. Some faults require

an immediate actions to be performed to the machine, while other faults allow the machine

to operate normally, if the fault severity is low, until a safe shutdown is performed to the

machine.

Also, in order to avoid catastrophic consequences, it is important to detect the fault while

it is still in the early stages. Proper early maintenance can be performed before the fault

expands and causes severe damage, not only to the machine but also to humans. The work

in this dissertation is focused on developing an algorithm to detect the machine health status

(i.e. if the machine is healthy or faulted) under different operating conditions, determine the

type of the fault and estimate its severity.

1.3 Literature Review

Several approaches have been proposed in the literature for single fault detection in PMSMs.

These methods can be categorized as 1) the motor current or voltage signal analysis [1,5–11],

2) the vibration or noise signals analysis [12–15], 3) model based and analytical methods

[16–19], 4) temperature monitoring, 5) flux monitoring [2], and 6) offline methods [20–22].

The Motor Current Signature Analysis (MCSA) or the Motor Voltage Signature Analy-

sis (MVSA) is the most common technique for fault diagnosis. In this approach, frequency

analysis using Fast Fourier Transform (FFT) (for steady state operation), or time frequency

2



analysis methods using Short Time Fourier Transform (STFT), Discrete Wavelet transform

(DWT), Continuous Wavelet transform (CWT),. . . etc (for non stationary operation condi-

tion) are applied to the stator current or voltage signals. Features using specific harmonic

band can be used as a fault indicator; the amplitude of these signatures are used to estimate

the severity. The main advantage of the MCSA is that it does not require any additional

hardware component, the current signals are always available for the controller to measure.

In addition, this method is non-invasive and cost effective. The stator voltages can also

be used for fault detection. It was shown in [23] that if the controller bandwidth is large

enough, the signature harmonics that appear in the current signals will also appear in the

stator phase voltage signals.

Ebrahimi et al. [5] proposed using the spectrum of the measured stator current for detect-

ing eccentricity faults in PMSMs. The sideband frequency pattern given by (1.1) is proposed

as an eccentricity faults signatures. The appearance of this sideband pattern in the current

spectrum can be used as a fault indicate, and the amplitude of the sideband components

can be used to estimate the fault severity. As the severity of eccentricity faults increase, the

amplitude of the sideband harmonics will also increase.

fecc =

(
1± 2K − 1

P

)
fs (1.1)

where P is the number of pole pairs, K = 1, 2, 3, . . . , and fs is the stator current frequency.

It was noticed that in the case of dynamic eccentricity fault, the amplitude of the sideband

components were higher compared to the case of static eccentricity fault. This was proposed

as an indicator to separate between the two types of eccentricity faults. The same approach

was applied to detect short circuit fault in PMSM [7]. The sideband components of the

3



stator current spectrum given by (1.2) were used as an indicator to detect short circuit fault.

Similar to the case of eccentricity faults, the amplitude of the sideband components was used

to estimate the severity.

fsho =

(
1± 2K + 1

P

)
fs (1.2)

Fig.1.1 shows a comparison of the normalized stator current spectrum under healthy and

faulted PMSM. Fig.1.2a, and Fig.1.2b show the change in the current spectrum under healthy

and different severities of static and dynamic eccentricity faults. Fig.1.1c, and Fig.1.1d shows

the change in the spectrum of the stator current signal under healthy and different severities

of short circuit fault under full load operation.

(a) Current spectrum for healthy and eccentricity faults
[5]

(b) Current spectrum for different severities of dynamic
eccentricity fault [5]

(c) Current spectrum for healthy and short circuit fault
[7]

(d) Current spectrum for different severities of short cir-
cuit fault [7]

Figure 1.1 Comparison of the current spectrum of PMSM under healthy and different faults
for full load operation

4



The increase in the sideband harmonics given by (1.1) can be observed in the case of

eccentricity fault and the increase in the amplitude of the subharmonics given by (1.2) can be

noted in the case of short circuit fault. This indicate that these subharmoncis can be used to

detect the fault and estimate the severities. [24] is a review paper that describes the different

types of faults and the frequency signatures each fault generate and the diagnostics schemes.

The main challenge of using the current spectrum is that the fault signatures depend on the

machine operating speed and load; at lower speeds it is difficult to detect these sideband

patterns [25]. Also, it was shown in [26] and [27], that the relation between the number

of poles and the stator slots affects the appearance of the stator current subharmonics in

the case of eccentricity faults. All these reasons affect the accuracy of this method as an

accurate fault detection and estimation method, since that PMSMs have different topologies,

slot/pole combinations, and will be running at different operating conditions.

In [1,6,9–11] time frequency analysis techniques like Wavelet Transform, Wigner Distribu-

tion and Zhao-Atlos-Marks Distribution were applied for detecting several fault in PMSMs.

Even tho they are capable of faults detection under transient operation. However, these

methods require additional hardware components and more complex software. This will

increase the total cost and the computational time.

The noise and vibration signals are also widely used for fault detection in PMSMs. Faults

cause an increase in the magnetic pull force, which increases the magnetic stress acting on the

stator. The magnetic stress is proportional to the square of the magnetic flux density. There-

fore, any change in the magnetic flux density is reflected in the noise and vibration signals

in the machine. By analysing the vibration signal using FFT or any of the time-frequency

analysis methods, fault signatures can be extracted for fault detection and separation. In [15]

the sideband components of the vibration spectrum given by 1.3 were proposed for detecting
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eccentricity faults in PMSM.

fecc =

(
1± K

P

)
fs (1.3)

Fig.1.2 shows the radial force spectrum for healthy and faulted conditions of PMSM

under under static eccentricity fault.

(a) Healthy machine [15] (b) 30% static eccentricity fault [15]

Figure 1.2 Radial force spectra of the healthy and faulty PMSM under static eccentricity
fault

The increase in the subharmonics components given by 1.3 can be observed in the case

of eccentricity fault. The main drawback of using the vibration signals is that it requires the

installation of a noise and vibration sensor on the motor surface, which might be expensive

and not always possible based on the machine placement. Also the corresponding noise level

of the machine is affected by the machine operating load and speed.

Analytical approaches and online parameter estimation techniques have the advantage of

obtaining an accurate detection results while the motor is operating at different operating

conditions. However, these techniques require an accurate model for the motor. This model

should accounts for the manufacturing and the environmental variations of the machine. On

the other hand, some parameter estimation techniques may require a heavy computation

time, which increases the cost and makes the system more complex. Other methods have
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Table 1.1 Comparison of fault detection techniques

Detection Types of fault
Drawbacks

methods Eccentricity Stator fault Demagnetization
Current/ • • • Depend on the
Voltage speed and load
Noise/ • Extra component

Vibration and cost
Analytical/ • • accurate model

Parameter est. required

Temperature • Depend on the
load and speed

Flux • • • additional
monitor components
Stand • • • Only at
still standstill

been proposed for fault detection when the motor is at standstill [20, 21]. These methods

can be applied for a scheduled check for the motor, and they require a specific test to be

applied to the motor. Table.1.1 summarizes the most common detection methods and the

types of faults each method can detect.

A few methods have been proposed to separate between different faults. Roux et al. [1]

proposed a method to separate between eccentricity faults (static and dynamic eccentricity)

and broken magnets in PMSMs. It was shown that dynamic eccentricity can be detected

using the amplitude of the current sideband harmonics given by (KP fs), and static eccentricity

can be detected using the change in the amplitude of the 5th and 7th harmonics of the

negative sequence current in the abc frame of reference. Broken magnets can be detected by

comparing the estimated magnetic flux linkage and the actual magnetic flux linkage. The

magnetic flux linkage was estimated using the operating speed, the measured voltages and

currents as follows:

λedpm =
vq − rsiq

ωr
− Ldid (1.4)
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where vq is the q-axis voltage, rs is the stator resistance, iq is the q-axis flux, ωr is the

electrical speed, Ld is the d-axis inductance, and id is the d-axis current. Fig.1.3a shows the

current fault frequency components (0.5 = 1
P harmonic components where P is the number

of pole pair) of a PMSM under healthy, broken magnets and eccentricity fault at different

operating conditions. Fig.1.3b shows a comparison of the 7th harmonic of the stator current

between healthy and static eccentricity fault at different operating conditions. Fig.1.3c shows

a comparison between the estimated magnetic flux linkages for healthy and different faults

under different operating conditions.

(a) Dynamic eccentricity detection (b) Static eccentricity detection (c) Broken magnets detection

Figure 1.3 Detecting broken magnets and eccentricity in PMSM [1]

For this method, a base line measurement for the machine need to be conducted first.

During normal operation of the machine, the machine stator currents, phase voltages, and

speed need to be monitored online continuously and the estimated flux is compared with the

baseline measurements. A significant change in the fault harmonics of the stator current or

a decrease in the estimated magnetic flux linkage can be used as a fault indicator to detect

the fault type. The stator current spectrum was also used to separate between eccentricity

and broken magnets in [28]. It was shown that the increase in the 0.75th (i.e. 1 − 1/P )

harmonic was more observed in the case of eccentricity fault, while the increase in the 0.5th
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and the 0.25th (i.e. 1−2/P , and 1−3/P ) were more dominant in the case of broken magnets.

The main drawback of this method is that it requires different indicators for fault detection,

also the detection is based on the harmonics amplitudes. These harmonics are not always

possible to notice, as they vary with the machine geometry and the operating conditions.

In [2] the induced voltages through search coils are used for monitoring the health status

of PMSM, and for multi faults detection. A search coil was wound around each armature

tooth, and the induced voltages were monitored during normal operations. The fundamental

frequency component of the measured voltages were extracted from each coil and were used

for fault detection and separation. Fig.1.4 shows a comparison of the field component of

the measured voltages from each search coil under healthy and three different faults (static

eccentricity, short circuit, and demagnetization faults).

(a) Field component under static
eccentricity

(b) Field component under short
circuit fault

(c) Field component under demagne-
tization

Figure 1.4 Detecting multi faults in PMSM using search coils [2]

A change in the induced voltages can be used as a fault indicator in the machine. Based

on the change, the fault type can be detected and the severity can be estimated. The

method was able to separate between different faults, also it was capable of detecting the

direction of eccentricity fault and the location of inter-turn short circuit fault. The main

drawback for this method is the need for adding a search coil at every stator tooth during
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the manufacturing of the machine, which may be expensive and not always possible.

The work in [13] presents a study of different time and frequency indicators, extracted

from vibration signals, for detecting eccentricity and demagnetization faults in PMSM. It

was shown that the combination of the skewness and the median frequency of the vibration

signal, can be effective to decide whatever the machine is healthy or faulted, and to identify

the type of the fault if existing. [3] studied vibration acceleration to detect and separate

demagnetization from inter-turn short circuit faults using both mode shape and vibration

frequency information. By analyzing the vibration signal using FFT, the change in the

spectrum was used to detect and separate the two faults. Fig.1.5 shows a comparison of the

vibration spectrum for PMSM under healthy, partial demagnetization, and inter-turn short

circuit fault.

(a) Healthy machine (b) Partial demagnetization fault (c) Inter-turn short circuit fault

Figure 1.5 Spectrum of vibration signal under healthy and different faults [3]

In the case of demagnetization fault, vibration acceleration appears at low frequency

region as shown in Fig.1.5b. In the case of short circuit fault, the vibration acceleration

spectrum is spread over the frequency range as noticed in Fig.1.5c. This change in the

spectrum can be used as an indicator to detect the presence and the type of the fault in

PMSM. The main drawback of this approach is that using the vibration sensors is costly.

Also, the operating condition and the placement of the motor affect the vibration signal,

which might affect the clarity of the detection approach.
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Hong et al. [20] proposed an offline method to separate eccentricity from demagnetization

faults in PMSMs. This method is based on the change in the machine saturation, which is

reflected in the incremental inductance curve. This method has the advantage of using the

inverter signals for fault separation, which remove the necessity of adding a new hardware

components. This method will be discussed in more details in chapter 4. There, it is also

implemented to detect inter-turn short circuit fault, beside demagnetization and eccentricity

faults. A classification algorithm is proposed to estimate the fault severity after determining

the fault type.

The different methods for health monitoring in PMSMs, and the different fault diagnosis

and prognosis methods are reviewed in [29]. So far, there is no single effective approach to

separate between different faults. Most of the methods in the literature are only applicable

under specific operating conditions, or can be applied to a specific type and topology of

PMSMs.

1.4 Proposed Methods

This work proposes an algorithm for fault detection and identification in PMSMs based

on the machine operating condition. The basic flow chart of the proposed algorithm is

summarized in Fig.1.6

The proposed algorithm is based on the machine operating status. If the machine is at

standstill, the incremental inductance method is proposed. In this method, the change of

the incremental inductance curve, due to the change in the machine saturation, is used as

a fault indicator. The direction of the shift in the incremental inductance curve peaks and

the change of the peaks amplitude is used to detect the fault type and estimate the severity.
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Start

Standstill?

High I ?

Incremental
inductance

MCSA/LDA

Vd and Vq

no

yes

yes

no

Figure 1.6 Proposed algorithm for fault detection and separation.

This method can also be applied as a last step in a manufacturing line to check the machine

health status. If the motor is operating at steady state (i.e. constant speed and load), the

change in the commanded voltages can be used for fault detection. The shift direction of

the commanded voltages is used to detect the fault type, and the amount of the shift is

used to estimate the fault severity. However, if the machine is operating at high torque, it

is difficult to detect eccentricity faults using the commanded voltages approach. Here, the

Motor Current or Voltage Signature Analysis (MCSA or MVCA) method with the Linear

Discriminant Analysis (LDA) classification is proposed for fault detection and separation.

This method is based on the variation in the amplitude of the stator current or voltage

spectrum to generate the fault signatures. The main goal of the proposed algorithm is to

avoid the need of any additional hardware components. The same signals that are used for

the controller will be used for detecting the fault type and estimating its severity.
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1.5 Organization

Chapter 2 presents the theoretical background and modeling for PMSM under healthy and

faulted conditions. The model for the dq mathematical model for the machine will be used as

the basic model for the proposed detection and estimation methods. An analytical approach

is also discussed to calculate the magnetic flux distribution for both healthy and faulted

conditions. Chapter 3 shows the geometry model and the parameters for the tested machines.

It also shows how each fault was implemented in FEA and experimentally.

Chapter 4-6 are the core chapters for this work. They discuss the three proposed ap-

proaches for fault detection and estimation. Chapter 4 discusses the incremental inductance

approach; how the incremental inductance curve is generated, the effects of each fault on the

incremental inductance curve, and the proposed algorithm that uses it for fault detection.

Chapter 5 talks about the MCSA and the MVSA using the LDA as a classification method.

Chapter 6 discusses the shift in the commanded voltages approach. It shows how to use the

commanded voltages as an easy and effective way to detect the machine health status and

estimate the fault type and severity. Finally Chapter 7 brings the conclusions of this thesis.
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Chapter 2

Theoretical Background

2.1 Healthy PMSM Model

A PMSM is a motor that uses permanent magnets, inserted in the rotor, to produce the airgap

magnetic flux density. This gives these machines the advantages of having a high torque

density and a wide operating range using the field weakening. PMSMs can be classified based

on the direction of the field flux into two main categories [30]; if the flux direction is along the

radius of the machine, the motor is called radial flux PMSM. If the flux direction is parallel

to the rotor shaft, the motor is called axial flux PMSM. PMSMs can also be categorized

based on the placement of the magnets in the rotor. If the magnets are positioned on the

surface of the rotor outer surface, the motor is called Surface Mounted PMSM (SPMSM). If

the magnets are positioned in the grooves of the outer edge of the rotor, the motor is called

Surface Inset PMSM (SIPMSM). If the magnets are positioned in the center of the rotor

laminations, the motor is called Interior PMSM (IPMSM). Fig.2.1 shows the three different

configurations of PMSM based on the magnet placement.

For SPMSMs, all the magnets are in direct contact with the airgap, allowing them to have

the maximum airgap flux density. However, this position for the magnet has lower structure

robustness, which makes these machines suitable only for low speed operation. In the case

of SIPMSMs the magnets are inserted inside the rotor allowing more mechanically robust

structure, which makes these machines more suitable for high speed operation. IPMSMs
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have the most mechanically robust structure, that is why these machines are used for very

high speed applications, but they are harder to be manufactured. Generally in PMSM, two

axes are defined in the rotor: a direct axis (d-axis) and a quadrature axis (q-axis). The

d-axis is the rotor magnet axis and the path for the flux is through the magnet. The q-axis

is 90 electrical degrees from the d-axis, the path of the flux is through the iron laminations

only (elect. deg. = mech.deg
P ). Fig.2.1 also shows the rotor d-axis and the q-axis for each

rotor type.

𝑑

𝑞 𝑁

𝑁

𝑆 𝑆

Magnets

Rotor
Shaft

(a) Surface Mounted PMSM

𝑑

𝑞 𝑁

𝑁

𝑆 𝑆

Magnets

Rotor
Shaft

(b) Surface Inset PMSM

𝑑

𝑞
𝑁

𝑁

𝑆 𝑆

Magnets

Rotor
Shaft

𝑁

(c) Interior PMSM

Figure 2.1 Comparison between the different configurations of PMSM based on the magnet
placement

This work is focus on a balanced three phase IPMSMs with wye connected stator winding,

this is one of the most common configuration for PMSMs. For a balanced three phase PMSM,

the stator voltages, in the stator frame of reference (also known as the abc frame of reference),

is given by (2.1)-(2.3):

va = Raia + La
d

dt
ia +Mab

d

dt
ib +Mac

d

dt
ic + ωeλa (2.1)

vb = Rbib + Lab
d

dt
ib +Mba

d

dt
ia +Mbc

d

dt
ic + ωeλb (2.2)

vc = Rcic + Lc
d

dt
ic +Mca

d

dt
ia +Mcb

d

dt
ib + ωeλc (2.3)
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where va, vb, and vc are the three phase stator voltages, Ri is the stator resistance for phase i,

Li is the self inductance for phase i, Mij is the mutual inductance between phase i and phase

j, ia, ib, and ic are the three phase stator currents, ωe is the electrical speed, λa, λb, and

λc represent the stator flux linkages generated by the rotor magnets. For a balanced three

phase sinusoidal flux λa = λpm sin(θ), λb = λpm sin(θ − 1200), and λc = λpm sin(θ + 1200).

To simplify the machine mathematical model, Park’s transformation is used to transform

the machine model from the stator three phase abc quantities to the rotor two phase dq quan-

tities. This transformation is applied in two stages, first, the stator three phase quantities

given by (2.1)-(2.3) is transformed to the equivalent stator space vector (α, β) components

using Clark’s transformation. Second, the (α, β) components are rotated to to be aligned

with the rotor dq axes. Park’s transformation combined both clack’s transformation and the

rotation matrix. The transformation is applied as follow:

xdq0 = Pa.xabc (2.4)

where x is the variable to be transformed, and Pa is Park’s transformation matrix which is

given by:

Pa =


cos(θ) cos(θ − 2π

3 ) cos(θ + 2π
3 )

sin(θ) sin(θ − 2π
3 ) sin(θ + 2π

3 )

1
2

1
2

1
2

 (2.5)

where (θ) is the rotor position. It is important to note that the transformation is invertible,

the inverse of Park’s transformation matrix can be used to transform back the machine model
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from the dq frame of reference to the abc frame of reference as follow:

xabc = P−1
a .xdq0 (2.6)

where P−1
a is the inverse of Park’s transformation matrix at it is given as:

P−1
a =

2

3


cos(θ) sin(θ) 1

cos(θ − 2π
3 ) sin(θ − 2π

3 ) 1

cos(θ + 2π
3 ) sin(θ + 2π

3 ) 1

 (2.7)

By applying the transformation matrix (2.5) to (2.1)-(2.3), the PMSM model in the dq

frame of reference is given by (2.11)-(2.10). The rotor position angle (θ) is either obtained

using a rotor position sensor or it can be estimated. When the motor is rotating at a

synchronous speed, the dq quantities become DC quantities in the rotor frame of reference.

The equivalent circuit model is shown in Fig. 2.2.

vd = rsid + Ld
did
dt
− ωeLqiq

= rsid +
dλd
dt
− ωeλq

(2.8)

vq = rsiq + Lq
diq
dt

+ ωeLdid + ωeλpm

= rsiq +
dλq
dt

+ ωeλd

(2.9)

λd = Ldid + λpm (2.10)

where vd and vq are the direct and quadrature axis voltages, id and iq are the direct and

quadrature axis currents, rs is the stator resistance, λd and λq are the direct and quadrature

linkage fluxes, Ld and Lq are the direct and quadrature inductances, and λpm is the magnet
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(a) d-axis equivalent circuit
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+

vq

iq
Rs Lq
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− ωeλd

(b) q-axis equivalent circuit

Figure 2.2 The equivalent circuit model of PMSM in the dq frame of reference

flux linkage. Under steady state operation (the motor is rotating at a constant speed and

torque), the dq quantities become DC quantities. In this case the time varying components

did
dt and

diq
dt will be equal to zero. In this case the mathematical model for PMSM in the dq

frame of reference at steady state operation is as follows:

vd = rsid − ωeLqiq (2.11)

vq = rsiq + ωeλd (2.12)

The torque is produced from the interaction between the flux linkages and and the current

in each axis as follow:

T =
3P

2
(λdiq − λqid) =

3P

2
(λpmiq + (Ld − Lq)idiq) (2.13)

A better representation of the machine model transformation is shown in Fig.2.3. In this

orientation, the flux linkage due to the magnets (λpm) is aligned with the d axis. The q axis

is 90 electrical degree counter clockwise from the d axis. The torque is produced mainly by

the q axis current, since that it is perpendicular to the magnet flux (λpm), while id is used

to control the amount of the flux. By controlling the current magnitude (Is) and the current
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angle (δ), the generated torque can be controlled.
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𝐴

𝐵

𝐶

𝑎+

𝑎−

𝑐−

𝑐+

𝑏−

𝑏+

Ɵ

𝑞

𝑑

ɑ

β

(b) Three phase winding transformation

Figure 2.3 Simplified model for PMSM transformation

It is important to note that this model assumes that the stator resistance, and self

inductance for all three phases are the same (i.e. Ra = Rb = Rc = rs, La = Lb = Lc). This

model also does not account for iron losses, nor for the self and cross saturation between

the stator three phases. However, it still represents the machine basic characteristics and

performance accurately. It is important to note that the proposed methods are also applicable

for all the different types of PMSM. Therefore, this model will be used as the reference

machine model for this work.

To provide a better understanding of the machine model, and the change in the machine

parameters under different faults compared to the healthy case, an analytical approach for

calculating the motor magnetic flux density is required. Zhu et al. in [31–34] proposed

an analytical approach to calculate the airgap magnetic flux density, for a surface mount

Brushless Permanent Magnet DC motors. Based on their analysis, the total magnetic flux

density can be calculated by adding the magnetic flux density from the magnets (Brm(r, θ))

[31] to the magnetic flux density generated from the winding (Brw(r, θ)) [32], taking the
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slotting effect (λ̃(r, θ)) [33] into account as follow:

Br(r, θ) = (Brm(r, θ) +Brw(r, θ)).λ̃(r, θ) (2.14)

Only the airgap magnetic flux density due to the magnets is of interest for this work,

since that it is directly related to the motor geometry and it will be affected directly by the

presence of faults in the machine. The radial component of the magnets flux density at the

stator inner surface (r = Rs) (without taking into account the slots opening or the magnetic

flux density from the stator winding) is given by (2.15) when np = 1

Brm(θ) =
∞∑

n=1,3,5,...

2.
µ0Mn

µr
.

np

(np)2 − 1

(
Rs
Rm

)np−1

.

 (np− 1)R
2np
m + 2R

np+1
r R

np−1
m − (np+ 1)R

2np
r

µr+1
µr

[R
2np
s −R2np

m ]− µr−1
µr

[R
2np
m −R2np

s ( RrRm
)2np]

 . cos(npθ)

(2.15)

For np 6= 1 the radial component of the magnetic flux density is given by (2.16)

Brm(θ) =
µ0M1

µr
.


(
Rm
Rs

)2
−
(
Rr
Rs

)2
+
(
Rr
Rs

)2
ln
(
Rm
Rr

)2

µr+1
µr

[
1−

(
Rr
Rs

)2
]
− µr−1

µr

[(
Rm
Rs

)2
−
(
Rr
Rm

)2
]
 .cos(θ) (2.16)

where µ0 is the permeability of free space (µ0 = 4π∗10−7), µr is the relative coil permeability,

Rr = Rs − g − hm, Rm = Rs − g, Rs is the inner stator radius, g is the airgap length, hm
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is the thickness of the magnet, and Mn is given by:

Mn = 2

(
βr
µ0

)
αp
sin
(
nπαp

2

)
(
nπαp

2

) (2.17)

where βr is the magnet remanence, and αp is the pole arc to pole pitch ratio. The airgap

magnetic flux, for each phase can be calculated by integrating numerically the total magnetic

flux density over the entire area as:

λ =

∫ 2π

0

∫ r

0
Br(r, θ)rdrdθ (2.18)

Fig.2.4 shows a comparison of the magnetic flux density calculated analytically (without

taking the slotting effect into account) and using Finite Element Analysis (FEA) for a three

phase concentrated winding IPMSM.
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Figure 2.4 A comparison of the flux density between FEA simulation and analytical calcu-
lation for the concentrated winding machine

The difference between analytical calculations and FEA is due to the fact that the an-

alytical calculations proposed in [31] were applicable to a surface mount PM Brushless DC

machine, while the tested machine is an IPMSM.
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2.2 PMSM Under Eccentricity Faults

Eccentricity is a condition of an uneven airgap between the stator and the rotor. This leads

to an asymmetric airgap flux distribution, which creates an unbalanced magnetic pull causing

vibrations, noise, and possibly wear of the bearings. By time the unbalanced magnetic force

may further increase and cause the rotor and the stator to rub.

Eccentricity faults can be classified into three main types: static eccentricity, dynamic

eccentricity, and mixed eccentricity. In the case of static eccentricity, the center of the

stator geometric axis is different than that of the rotor and the rotation axis. This could

be caused by an incorrect rotor stator aligning during the assembly of the machine or due

to the different mechanical and electrical stresses applied to the machine. In the case of

dynamic eccentricity, the center of the rotor geometric axis is different than that of the

stator and the rotation axis. The main reasons for dynamic eccentricity include: a bend in

the machine shaft, bearing wear, mechanical and thermal stresses applied to the shaft, and

mechanical resonance at critical speed. In the case of mixed eccentricity, the rotation axis is

different than the stator and the rotor geometric axes. This type combines both static and

dynamic eccentricities. Fig.2.5 shows a comparison of the cross section geometry between

healthy machine and the three different types of eccentricity faults. Only static eccentricity

is discussed and tested for this work because it is the most common type of eccentricity.

In the case of static eccentricity, the airgap length (g) in (2.15) and (2.16) will no longer

be symmetric, it depends on the rotor position. Based on Fig.2.6 and following [35], a general

formula for the airgap, in the case of static eccentricity, can be derived as follows:

Rs. cos(θ′) = ε cos(φ) + (Rm + gecc) cos(θ) (2.19)
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Figure 2.5 Comparison between healthy and eccentricity machine
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Rs. sin(θ′) = ε sin(φ) + (Rm + gecc) sin(θ) (2.20)

Taking the square of (2.19) and (2.20), and adding them together is given as:

R2
s = ε2 + (Rm + gecc)

2 + 2ε(Rm + gecc) cos(φ− θ) (2.21)

⇒ gecc = −ε cos(φ− θ)±
√
R2
s − ε2 sin(φ− θ)2 −Rm (2.22)

Since Rs � ε, the airgap in case of static eccentricity is given by:

gecc = (Rs −Rm)− ε cos(φ− θ) = g − ε cos(φ− θ) (2.23)

Fig.2.7 shows a comparison of the airgap between healthy machine and a machine with

eccentricity fault.
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Figure 2.7 Airgap under healthy and eccentricity fault

24



The severity of eccentricity fault is expressed as following:

ECC =
ε

g
× 100% (2.24)

The change in the analytical calculation for the magnetic flux density under eccentricity

fault can be studied by replacing the airgap in (2.15) & (2.16) the new airgap gecc.

It is important to detect eccentricity faults while it is still in the early stage. With

time, the unbalanced magnetic force between the rotor and the stator may further increase

causing the rotor and the stator to rub, which will cause a severe damage to the machine. [36]

studied the effect of rotor eccentricity on the Unbalanced Magnetic Pull (UMP) for large

Synchronous Machines with Permanent Magnets Synchronous Machines and Winding Fields

Synchronous Machines. According to [37], any eccentricity less than 10% can be neglected,

and any eccentricity higher than 60% requires immediate repair to prevent any rubbing

between the stator and the rotor, which will damage the machine.

Static eccentricity fault causes a change in the airgap length, which cases a change in the

reluctance. Changing the reluctance causes a change in the total flux linkages around the

airgap causing a change in the machine saturation level. The machine flux linkages and the

airgap length are related by the machine reluctance as follows:

R =
g

µ0Ag
(2.25)

φ =
F
R

(2.26)

where Ag is the airgap area, R is the reluctance, F is the magnetomotive force, and φ is the

magnetic flux. The area with lower airgap will have lower reluctance and therefore higher
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flux concentration. This causes higher saturation in that region. On the other hand, the area

with higher airgap length will have higher reluctance and therefore lower flux concentration.

This causes lower saturation in the higher airap region. In the case of ideal machine, the

amount of the increase in the flux linkages will be equal to the amount of the decrease in

flux linkage, which average the total flux linkages in the machine. However, due to the non

linearity and the saturation in the machine, the increase in the magnetic flux at the smallest

airgap region will be higher than the decrease of the magnetic flux in the largest airgap

region. This increases the total magnetic flux causing the machine to saturate faster in the

case of eccentricity fault compared to the healthy case. This effect can be explained using

the flux vs Magnetomotive Force (MMF) curve of the machine. Fig.2.8 shows the flux vs

MMF curve under healthy case and eccentricity fault.

𝑀𝑀𝐹

λ

λℎ

λ𝑓

Lower airgap

Higher
airgap

Healthy

Eccentric

Operating point

Figure 2.8 Flux vs MMF under healthy and eccentric machine

The area with the lower airgap region will cause an increase in the slope of the curve,

while the area with higher airgap will decrease the slope of the curve. Due to the saturation

and the nonlinearity in the machine, the average of the two curves will be higher compared to

the healthy machine curve. Therefore, the machine under eccentricity fault saturates faster,

and at any operating point, the total flux linkages in the machine will be higher compared

26



to the healthy case. Fig.2.9b shows the FEA simulation results for the maximum of the

magnetic flux density measured at the center of each pole pair for the FSCW machine (the

machine parameters is in Table3.1) under healthy and two severity levels of static eccentricity

fault (40% and 80%). Fig.2.9c shows the vector summation of the x and y component of the

magnetic flux for all the pole pairs under healthy and four severities of eccentricity fault.
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Figure 2.9 Comparison of the magnetic flux density between a healthy machine and two
severities of eccentricity fault

It can be noted that for healthy machine, the vector summation in the x and y components

equal to zero. This is expected since that the machine is healthy and the distribution of the

airgap length and the magnetic flux is uniform around the machine. However, for eccentric

machine, the sum will no longer be equal to zero. It will be higher compared to the healthy

machine, and the amount of the increase is proportional to the severity of the fault. As the

fault severity increases, the total summation will increase causing more flux linkages. It can

also be noticed that the main increase is in the x axis because the shift of the rotor and the

rotation axis was in the positive x direction.
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2.3 PMSM Under Demagnetization Faults

Demagnetization is also a common rotor fault in PM machines. The demagnetized mag-

nets will cause asymmetric distribution of the flux density, which causes a reduction in the

total permeance flux in the machine. This reduces the average torque, increase the torque

ripple and reduce the motor efficiency. The main factor that cause demagnetization faults

is turn-to-turn short circuit fault, as the severity of short circuit fault increases, a higher

current will flow in the shorted turns, this current will weaken the magnets and by time will

lead to demagnetizing the rotor magnets. Other factors that might cause demagnetization

fault include: the aging of the magnet, high temperature, and operation under strong field

weakening.

Demagnetization faults can be classified into two main types: uniform demagnetization

and partial demagnetization. In the case of uniform demagnetization, all the magnets in the

rotor are demagnetized. In the case of partial demagnetization, only a specific number of

magnets are demagnetized.

In the case of partial demagnetization fault, a nonuniform magnetic flux density generates

in the airgap, which causes a disturbance to the magnetic flux in the motor and reduction

in the total magnetic flux density. The effect of demagnetization can be noted whenever the

demagnetized magnets interact with the stator slots. This can be clearly observed in the case

of single layer fractional slots concentrated winding machines. Fig.2.10 shows a comparison

of the magnetic flux linkages of phase A over one mechanical cycle, under healthy and

demagnetization fault (Mag1 of the FSCW machine was fully demagnetized).

Demagnetization faults affects the saturation of the machine, but in an opposite way

compared to eccentricity faults. The demagnetized magnets will cause a reduction in the
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Figure 2.10 Comparison of the magnetic flux under healthy and demagnetization fault

total magnetic flux linkages, which reduces the total saturation of the machine. In this case,

the machine requires more currents in order to have the same saturation as the healthy

machine.

For analytical calculations, the same analytical approach that was used for healthy macine

can also be used to analyze the effect of demagnetization faults. In the case of demagnetiza-

tion fault, the remanence flux density (βr) of the demagnetized magnets in (2.17) will change

according to the severity and the position of the demagnetized magnets are determined using

the following equation:

βrdem = βr × (1− βrdemag) (2.27)

where βrdemag is the percentage of demagnetization. Fig.2.11 shows the flux density distri-

bution for healthy, 66% eccentricity and one magnet demagnetized, using FEA simulation

compared to the analytical calculations. The change in the magnetic flux density under

eccentricity and demagnetization faults can be observed using both the analytical calcula-

tions and using FEA simulations. In the case of eccentricity fault, the decrease in the airgap

length will cause an local increase in the magnetic flux density and therefore, increase the

total flux of the machine. For demagnetization fault, the demagnetized magnets will cause
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a reduction in the magnetic flux density which will reduce the total generated flux.
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(a) FEA simulation
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Figure 2.11 Comparison between FEA simulation and Analytical calculations or healthy, one
magnet demagnetized and 66% eccentricity

2.4 PMSM Under Turn-to-Turn Short Circuit Fault

Of the many possible types of stator winding faults, turn-to-turn short circuit fault consider

one of the most common. This fault can be caused due to mechanical, electrical and thermal

stress applied to the stator winding. These stresses may lead to an insulation breakdown of

the coil conductor, which leads to shorting some of the turns. In the case of turn-to-turn

short circuit fault, the shorted turns create an extra high current path that is magnetically

and electrically coupled with the winding current and the flux path. This current will heat

the shorted turns, causing further insulation damage and may expand to short the nearby

windings. Therefore, detecting turn-to-turn fault at an early stage is important to protect

the machine and the winding from any further damage. Fig.2.12 shows a series connected

three phase winding with turn-to-turn short circuit fault in phase A. The fault is modeled

by a small resistance Rf connected in parallel across the shorted turns. Two factors defines
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the severity of turn-to-turn short circuit fault: the number of shorted turns, and the shorted

resistance.
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Figure 2.12 Series winding with shorted turns.

Following [38], in the case of turn-to-turn short circuit fault, a high short circuit current

will flow in the shorted turns adding a new induced voltage related to the short circuit

fault. The mathematical model for a machine under turn-to-turn short circuit fault can be

described as follows:
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(2.28)

where vah and vaf are the voltages across the healthy and faulty coils respectively, rah and

raf are the resistance for healthy and faulty section of the coil, if is the short circuit current,

eah and ef are the induced emf voltages across the healthy and faulted coils, eb and ec are

the induced emf voltages of phase B and phase C respectively. Park’s transformation can

also be used to transform the model of a PMSM machine under turn-to-turn short circuit

31



fault from the abc frame of reference to the dq frame of reference. For concentrated winding

machines, the mutual inductance between the shorted turns and the other two phases can

be neglected, only the mutual inductance between the shorted turns and the healthy turns

in the same phase need to be considered. In this case, the model for PMSM machine under

turn-to-turn short circuit fault in the dq frame of reference is given by (2.29)-(2.34)

vdsh = vd + vdf (2.29)

vqsh = vq + vqf (2.30)

where

vd = idrs + Ld
did
dt
− ωeLqiq (2.31)

vdf =
2

3

(
rf cos(θ)if + (Mahaf

+ Laf ) cos(θ)
dif
dt
− ωe(Mahaf

+ Laf )if sin(θ)

)
(2.32)

vq = iqrs + Lq
diq
dt

+ ωe(Ldid + λpm) (2.33)

vqf =
2

3

(
rf sin(θ)if + (Mahaf

+ Laf ) sin(θ)
dif
dt

+ ωe(Mahaf
+ Laf )if cos(θ)

)
(2.34)

It can be noted that the machine model under short circuit fault contains two main

components. The first component is similar to the healthy model, the second component is

related to the short circuit fault. The fault related component depends on the severity of the

short circuit fault (i.e. number of shorted turns and the shorted resistance) and the machine

operating condition (i.e. operating torque and speed). Similar to the healthy machine, at

steady state operation, the time varying components in (2.29)-(2.34) will be equal to zero.
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In this case, the component related to short circuit fault will be given by:

vdf =
2

3

(
rf cos(θ)if − ωe(Mahaf

+ Laf )if sin(θ)
)

(2.35)

vqf =
2

3

(
rf sin(θ)if + ωe(Mahaf

+ Laf )if cos(θ)
)

(2.36)
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Chapter 3

Experimental and Simulation Setup

3.1 Augmented Finite Element Analysis Simulations

Finite Element Analysis (FEA) is a powerful and flexible technique for solving ordinary

and partial differential equation using numerical methods. In the case of electromagnetic

analysis, FEA is used to calculate the magnetic field in electrical machine by solving Maxwell

differential equations. The behaviour of the machine is determined by the distribution of

the magnetic field and current density, which is coupled with an external circuit that is used

to control the stator currents. In FEA simulations, the geometry is dividing into a finite

number of small sections called elements, which makes a grid called mesh. The accuracy of

the solution depends on the element topology, the way they were assigned, and on the size of

each element. The elements are assigned to the geometry according to the variation of the

magnetic potential; such that an area with a high variation in the magnetic vector potential,

need a higher number of elements (i.e. finer mesh) compared to an area with a little or no

magnetic vector potential variation. The result is a system of a nonlinear equations, which

is solved iteratively till it converges to a unique solution.

FEA simulation is used for machine analysis and design; it is used to analyze different

machine topologies with any materials, windings distribution, and slot/pole combinations.

The main advantage of FEA is the ability to calculate the motor inductances, flux linkages,

forces and the electromagnetic torque for the machine accurately without the need to an
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analytical approach. FEA can also be used to study the effect of faults on electrical machines

and shows how the machine parameters and performance changes according to each fault.

Therefore, for this work FEA simulations were performed first in order to understand the

effect of each fault, and then experimental tests were carried out to validate the simulation

results.

In this work, three PMSMs were tested under healthy and faulted conditions. All the

tested machines were a 3 phase Y-connected, with different slot/pole combinations, winding

distribution and different input and output power. The tested motors were as follows: a

12-pole distributed winding machine, a 16-pole concentrated winding machine and a 10-pole

Fractional Slot Concentrated Winding (FSCW) machine. Fig.3.1 shows the cross sections

for the tested machines, and Table 3.1 shows their parameters.

(a) Concentrated winding machine (b) Distributed winding machine (c) FSCW machine

Figure 3.1 Geometry cross section for the tested machines
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Table 3.1 Parameters for the tested machines

Concentrated winding Distribution winding 2/5 SPP FSCW
machine machine machine

Number of phases 3 phase 3 phase 3 phase
Maximum current 300A 300A 25A
Maximum torque 310N.m 315N.m 50N.m
Number of slots 24 48 12
Number of poles 16 12 10
Turns per phase 46 8 150

3.2 Faults Implementation in FEA

3.2.1 Implementing Eccentricity Fault

To apply static eccentricity faults in FEA, the axis of the stator geometry should be differ-

ent than the rotor geometry and the rotational axis center. Therefore, a separate coordinate

system was assigned to the stator geometry that is different than the rotor and the rota-

tional coordinate system; by changing the center of stator coordinate system, only the stator

geometry shifts while the rotor and the rotation axis stay the same. This allows controlling

the direction and the degree of eccentricity fault, and the severity of the fault was varied

based on the machine airgap according to (2.24).

3.2.2 Implementing Demagnetization Fault

To apply partial demagnetization, the material of the chosen demagnetized magnets was

replaced with a material that has the same electrical and mechanical characteristics but

with different permeance flux density compared to the healthy magnets. The permeance is

changing based on the percentage of demagnetization fault (2.27). For a demagnetization

fault with a 100% demagnetization, the magnet remanence flux was changed to 0T . For
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this work a partial demagnetization with a percentage of 100% was tested. To change the

severity of the fault, the number of the demagnetized magnets was varied.

3.2.3 Implementing Turn-to-turn Short Circuit Fault

The way turn-to-turn short circuit fault was applied in FEA simulations depends on the

machine stator winding topology. For the distributed winding machine, two end turns were

shorted through a small resistance. Based on the machine winding diagram, the correspond-

ing coils were assigned to a faulted coil (Cf ), which was shorted through a resistance (Rf ) in

the control circuit, while the healthy coils were assigned to the healthy coil (Ca) as shown in

Fig.3.2. To vary the severity of short circuit fault another two end turns were shorted. The

short resistance for each case was varied as well to study the effect of the short resistance on

the behaviour of short circuit fault.

(a) Distributed winding machine with 12%
short circuit fault

(b) Control circuit with short circuit fault

Figure 3.2 Implementing short circuit fault in FEA for the distributed winding machine

For concentrated windings machines, a new faulted regions related to the shorted turns

needs to be added in the faulted slots. The number of shorted turns need to be assigned to
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the new regions and subtracted from the healthy one. For the control circuit, the shorted

turns were assigned to a faulted coil (Cf ), and a small resistance was connected in parallel

to the shorted coil to represent short circuit fault. Fig.3.3 shows the modified cross section

and the control circuit of the concentrated winding machine with turn-to-turn short circuit

fault. To vary the severity of the fault, the number of shorted turns were varied and also

the short resistance was varied as well.

Ca_f-

Ca_f+

(a) Modified cross section area for the tested machine
with a short circuit fault

Ra La

Lb

Lc

Ca_1Ca_2

Cb

Cc

Ca_f

Rf

Rb

Rc

Ia

Ib

(b) Modified control circuit with extra coil to represent
a short circuit fault

Figure 3.3 Implementing short circuit fault in FEA for the FCSW machine

3.3 Experimental Setup

Experimental tests were performed on the three tested machines to validate the simulation

results. National Instrument (NI) Real Time Lab-VIEW (RTLV), was used to operate and

control the tested machines. This real-time system consists of two desktop computers: one

is used as host and the other as the target. The controller was developed first in the host

computer then deployed to the target where it is run by the target computers processor.
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The host computer was used to monitor the feedback data from the target and applies the

changes to the controller parameters.

The Field Oriented Control (FOC) was used as a control scheme to operate the tested

machines. The main objective of this controller is to control the direct and quadrature

currents (Id and Iq) using the rotor position (θ) to achieve the desired torque. Id is used to

control the amount of the flux linkage, while Iq is the main torque producing component.

Fig.3.4 shows the basic block diagram for the FOC. In this controller, first the three phase

stator currents are measured. These measured currents are fed into Park’s transformation

that output the current in the dq frame of reference. The measured dq currents are contrasted

with the commanded dq currents. The output of the PI controllers are the commanded

voltages (v∗d and v∗q ). These voltages are applied to the inverse Park transformation to

generate the three phase machine voltages in the abc frame of reference. The three phase

voltages are fed to the Space Vector Pulse Width Modulation that control the inverter signals,

that used to control the tested machine.
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Figure 3.4 Block diagram of the Field Oriented Controller for PMSMs

The main advantages of using the FOC include fast dynamic response, high efficiency,

and the ability to control the torque over a wide operating speed using field weakening.

For this type of controller, the measured currents and the commanded voltages are always
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available. Therefore, signatures generated from these signals will be used for fault detection

and estimation.

In order to obtain a model that is a realistic representation of the actual machine, the

main machine parameters need to be calculated accurately. The machine parameters can

be determined using a process known as motor characterization. The main parameters that

need to be estimated in PMSMs are the flux linkages. In this process the machine terminal

voltages, currents and the rotor position are used to calculate the machine parameters for

different operating conditions. Using the method proposed in [39, 40] the characterization

method can be summarized as follows:

• The open circuit voltages are used to align the rotor position sensor with the rotor d

and q flux axis.

• While the machine is rotating at a constant speed (usually lower than the base speed),

the stator current Is is varied from 0 to the base current (Ismax), and for every current

step the current angle δ is varied from 90 to 180 degrees.

• The commanded current magnitude Is and the current angle δ control the amount of

the flux and torque in the machine.

• Park’s transformation, with the rotor position, is applied to the measured three phase

currents and the commanded three phase voltages to calculate the corresponding dq

axes currents and voltages for every data point.

• Based (2.11) and (2.12), the machine flux linkages are calculated and using (2.13) the

generated torque can be estimated.

• For SPMSM the maximum torque is archived at a current angle of (δ = 900) since
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that Ld = Lq, in this case the torque is given by 3.1. However, for IPMSM, Ld 6= Lq

the current angle needs to be estimated from the dq fluxes using 3.2 to find the point

where the motor will be operating at maximum torque.

TSPMSM =
3P

2
λpmiq (3.1)

TIPMSM =
3P

2
(λpmiq + (Ld − Lq)idiq) (3.2)

3.4 Fault Implementation Experimentally

3.4.1 Implementing Eccentricity Fault

For the distributed and the concentrated winding machine, shims of 25% thickness of the

airgap were mounted below the machine bearing to lift the rotor and the rotation axis. This

shifts the rotor geometry and the rotation axis to the positive y direction without affecting

the stator geometry axis, as shown in Fig.3.5a. It would make no difference if the shift was in

any other direction or at a different angle. To apply the second severity; additional 4 shims

were added on the top of the first 4 shims to further shift the rotor and the rotation axis

causing further reduction in the airgap length in the positive y direction and more airgap

length in the negative y direction. Two severities were tested 25% and 50%.

For the FSCW machine, a modified brass rings were mounted between the shaft bearing

and the end ring. The rings were modified such that the center of these rings is shifted.

This caused a shift in the machine rotor geometry and the rotation axis without changing

the stator geometry, as shown in Fig.3.5b. The center for the modified rings was shifted

based on the desired severity of eccentricity fault. Three rings were used to represent three
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severities of eccentricity fault (40%, 60%, and 80%).

Shims

Shims

(a) Implementing eccentricity fault for the distributed
winding machine

𝑔 + ε𝑔 − ε

(b) Modified ring for the FSCW machine

Figure 3.5 Implementing eccentricity fault experimentally for the distributed winding ma-
chine and the FSCW machine

3.4.2 Implementing Turn-to-turn Short Circuit Fault

Turn-to-turn short circuit fault was applied experimentally to the distributed winding ma-

chine and the FSCW machine. For the distributed winding machine, two of the end turns

were welded to a copper wire and shorted using a short resistance equal to 200% of the stator

phase resistance, as shown in Fig. 6.4. The shorted resistance was chosen to be 200% of

the phase resistance because it was the lowest available resistance that can handle the high

flowing current under short circuit fault fault. To represent the second severity, another two

adjacent end turns were shorted to a short resistance using copper wires. Shorting one end

turn is equivalent to shorting 12.5% of the total conductors of phase A, and shorting the

second end turn is equivalent to shorting 25% of the total conductors of phase A.

For the FSCW machine, a percentage of the turns of phase A were shorted through a

resistance. The number of shorted turns represents the fault severity, two severities were

tested, 10% (15 out of 150 turns were shorted) and 20% (30 out of 150 turns were shorted).
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Figure 3.6 Turn-to-turn short circuit fault experimentally

For each fault severity, two shorted resistances were used 0.5Ω and 0.25Ω, which is equivalent

to 25% and 12.5% of the stator winding resistance.

3.4.3 Implementing Demagnetization Fault

Demagnetization fault was applied experimentally only to the FSCW machine. A non-

magnetic material, was used to replaced the healthy magnet. Only partial demagnetization

with 100% demagnetization was applied. Three severities of demagnetization fault were

tested by changing one, two and three magnets. The corresponding demagnetized magnets

is shown in Fig.6.2

Neodymium Iron Boron (NdFeB) Magnets with permeance (βr = 1.2T ) and relative per-

meability of (µr = 1.05) was chosen as the material for the magnets. Stainless steel material

was used to replace the demagnetized magnets. This material have the same conductivity

and relative permeability as the magnets material, but with zero magnet permeance.
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Figure 3.7 Implementing demagnetization fault experimentally.
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Chapter 4

The Incremental Inductance

Approach

Of the different changes faults might cause to the machine, changing the saturation level is

one of these main changes. Faults will cause a disturbance in the magnetic flux distribution,

which affects the localized and the total flux linkages in the machine causing a change in

the machine saturation. This change is reflected in the incremental inductance curve as a

change in the peak amplitude and/or a shifts of the position of the peaks. Based on the shift

direction and the amplitude of the curve peaks, the type of the fault can be detected and its

severity can be estimated. This chapter shows how to use the incremental inductance curve

as a fault detection and separation technique. This approach can be performed when the

motor is at standstill, it can also be used as a testing stage at the end of a manufacturing

line to check the machine health status.

4.1 Definition of Incremental Inductance

Fig.4.1 shows the saturation curve for PMSM. This curve represents the relation between

the d axis flux (λd) and the d axis current (Id). The saturation curve can be divided into

three regions: the linear region, the knee region and the saturation region. In the linear
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region the relation between λd and Id is linear and can be given by:

λd = LdId + λm (4.1)

The knee region, is the region where the machine starts to saturate. There, the relation

between λd and Id starts to change from linear to nonlinear. The saturation region is the

region when the relation between λd and Id is nonlinear. It is important to note that the

saturation curve depends on the machine geometry and the materials characteristics of the

stator, the rotor, and the magnets. The incremental inductance is defined as the rate of

change of λd over Id as follow:

L̂d =
∆λd
∆Id

(4.2)

The knee region will appear as a peak in the incremental inductance curve. This peak

can be used as an indicator to show when the machine starts to saturate. Fig.4.1 shows the

saturation curve and the corresponding incremental inductance.
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Figure 4.1 Incremental inductance curve
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4.2 Effects of Faults on the Incremental Inductance

Curve

It was shown in Chapter 2 that in the case of eccentricity fault the total flux linkages in the

machine will be higher compared to healthy machine. This will cause an early saturation in

the machine. This early saturation means that the machine require less current to saturate,

which can be observed in the incremental inductance as a shift of the knee region peak to the

left, and a change in the peak’s amplitude. The amount of the shift depends on the severity

of eccentricity fault; as the severity of eccentricity fault increases, the machine saturates

sooner, causing the peak to shift more to the left.

In the case of turn-to-turn short circuit fault, the shorted turns will cause a reduction

in the total armature flux in the machine, which causes a shift down in the incremental

inductance curve. This shift causes a reduction in the peaks amplitude, but it wont cause a

shift in position of the saturation curve peaks. The decrease is proportional to the severity

of the short circuit fault. As the number of shorted turns increases or as the value of the

shorted resistance decreases, the incremental inductance curve will shift down more.

For partial demagnetization fault, the region with demagnetized magnets will have a

similar characteristics of an air region. This will cause two effects in the incremental in-

ductance curve. The total magnetic flux will be lower. Therefore, the motor requires more

current to saturate, which mean that the peak of the incremental inductance will have a

higher amplitude. Another effect includes an early saturation due to the concentrated flux

in the demagnetized magnet area. The region of the demagnetized magnets will force more

flux to concentrate causing an early saturation in that region, which causes as an increase in

the curve peak at Id = Id0. Fig.4.2 summarizes the effect of each fault on the incremental
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inductance curve and how it can be used to detect the type of the fault.
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Figure 4.2 Effects on faults on the incremental inductance curve

4.3 Methods to Generate the Incremental Inductance

Curve

Different methods can be used to generate the incremental inductance curve. Hong et al. [20]

proposed a method using the inverter signals to generate the incremental inductance curve.

The method is based on applying a small AC current with different offsets to the positive

d-axis of the machine while the motor is at standstill. The measured three phase currents

and the commanded three phase voltages are fed into Park’s transformation to calculate the

equivalent currents and voltages space vector using 4.3 and 4.4.

vd = cos(θ)va + cos(θ − 2π

3
)vb + cos(θ +

2π

3
)vc (4.3)
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id = cos(θ)ia + cos(θ − 2π

3
)ib + cos(θ +

2π

3
)ic (4.4)

From the commanded voltages and the measured currents space vectors the motor impen-

dence can be calculated, and from the machine impedance, the incremental inductance can

be extracted using 4.5

Zd =
~Vd
~Id

= rd + ωL̂d (4.5)

where ~Vd, and ~Id are the fundamental components of the voltage and current space vector.

Another method to generate the incremental inductance curve is by rotating the machine

at a constant speed and commanding a current to the positive d axis of the machine. As the

commanded d axis current increases, the flux linkages will increase causing the machine to

saturate. From the measured three phase currents and the commanded three phase voltages,

the d and q axis voltages and current can be calculated using (2.11) and (2.12). At steady

state operation, the time varying components in (2.11) and (2.12) are equal to zero, so the

d and q axis fluxes can be calculated as follows:

λd =
Vq −Rs.Iq

ωe
(4.6)

λq =
Vd −Rs.Id
−ωe

(4.7)

The commanded current is applied to the positive d axis of the machine, so the q axis cur-

rent will be equal to zero. Therefore, (4.6) is given by (4.8), and the incremental inductance

curve can be generated using (4.2).

λd =
Vq
ωe

(4.8)
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This approach is different than the typical control for PMSMs. During normal control,

the current is applied to the q axis of the machine in order to produce torque. However, in

this case, the current is applied to the positive d axis (Iq = 0A) to control the flux in the

machine, in this case no torque is produced. The main objective is to increase the saturation

in the machine by increasing the total flux.

4.4 Comparison Between the Incremental Inductance

Approaches

Using any of the two methods should make no difference in order to generate the incremental

inductance curve. However, using the stand still approach might produce some difficulties.

First, the stand still method is affected by the rotor position. Fig.4.3 shows the FEA simu-

lation results for the change in the incremental inductance curve for the FSCW machine by

changing the rotor position in steps of 2 mechanical degrees.
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Figure 4.3 Effects of rotor position

It can be noted that the rotor position affects the shape and the peak position of the

generated incremental inductance curve. This can affect the accuracy of fault detection if
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the motor is tested at different positions. The change in the incremental inductance due to

the rotor position is based on the the motor geometry and the relation between the number

of poles and slots. Fig.4.4 shows a comparison of the incremental inductance curve for both

the concentrated and the distributed winding machines calculated using the two methods.
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Figure 4.4 Comparison between the two methods to generate the incremental inductance
method (FEA simulation)

It can be noticed that for the distributed winding machine, both methods generate similar

curves, in which it is clear to detect the position and the amplitude of the incremental

inductance peaks using both methods. However, for the concentrated winding machine, it

is not possible to detect the peak using the standstill method. This is due the the motor

geometry and the slot/pole combination: for the distributed winding machine, at any rotor
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position, the d-axes are aligned to both a tooth and a slot which average the total flux. For

the concentrated winding machine, all the rotor d-axes are aligned with either a tooth or

a slot at any instant of time, causing an unbalance in the magnetic flux linkages based on

the rotor position. For the rotating method, since that the motor is rotating at a constant

speed, the d-axis will face both a slot and a tooth, which average the total airgap flux. The

effect of the machine geometry can be solved by rotating the motor at a very low speed while

applying the AC current signal. This allows the d-axis to pass by a slot and a tooth, which

average the total flux, and since that the motor is rotating at a very low speed, then the

effect of the Back emf voltage is neglected.

Another factor that needs to be considered while using the standstill approach is the

amplitude of the AC current; applying a large AC amplitude will affect the amplitude

of the generated incremental inductance curve peak. In some cases if the amplitude of the

incremental inductance curve is too high it might mask the appearance of the peak if the knee

region is too small. Fig.4.5 shows the simulation results for the changes in the incremental

inductance curve using the standstill test with different amplitudes of the AC signal for the

FSCW machine under healthy conditions.

−10 −5 0 5
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

I
d
 (A)

L d

 

 

Iac = 0.5A
Iac = 1A
Iac = 1.5A
Iac = 2A
Iac = 2.5A

Figure 4.5 Effects of the AC current amplitude
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It can be noted that as the amplitude of the AC signal increases, it becomes harder to

detect the peak of the incremental inductance curve. Therefore, it is preferred for the AC

signal to be as low as possible. however, the amplitude of the AC signal is chosen based on

the machine parameters and the control resolution.

To overcome the drawbacks of the standstill method, the motor can be rotating at a very

low speed while applying the AC signal to the d-axis. The motor is rotate a very slow speed

to allow the d-axis to pass by a tooth and a slot, which average the total flux, and neglect

the effect of the position dependent. The motor needs to be operating at a very low speed to

neglect the effect of the induced back emf due to the rotation of the rotor. For this work the

incremental inductance curve was generated experimentally by rotating the motor at a low

speed (10rpm), and exciting the positive d-axis with a small AC signal of amplitude 0.5A

at a frequency of 100Hz. Fig.4.6 shows comparison of the incremental inductance generated

using the slow rotation method and the fast speed method using FEA simulation. It can be

noted that there is no difference between the two methods (slow rotation and fast rotation)

in the shape of the incremental inductance curve, since that both of them account for the

variation in the flux due to the slots and tooth. The main drawback of using the rotating

method is that the incremental inductance is generated using the derivative of the flux, which

may introduce noise especially from the experimental data.

4.5 Simulation and Experimental Results

Fig.4.7 shows the calculation of the incremental inductance curve using FEA simulations for

the concentrated winding machines under healthy and the three tested faults with different

severities. The incremental inductance curves were generated using the rotating method,
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Figure 4.6 Incremental inductance comparison between the slow rotation method and the
constant speed method

the motor was operating at a speed of 500rpm, the applied d-axis current was varied from

−50 to 200A in steps of 5A. Four severities of eccentricity fault were tested (20%, 40%, 60%

and 80%), three severities of partial demagnetization fault, by fully demagnetizing 1, 2 and

3 magnets, and three severities of turn-to-turn short circuit fault. The severities of short

circuit fault were varied by shorting 12.5%, 25% and 62.5% of the turns in phase A coils

through a resistance of 0.25Ω.
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Figure 4.7 Incremental inductance variation under different faults

Fig.4.8 shows a comparison between the experimental and the FEA simulation results

for the distributed winding machine under healthy, two severities of eccentricity fault (25%
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and 50%) and two severities of turn-to-turn short circuit fault (12% and 25%).
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Figure 4.8 Comparison between simulation and experimental incremental inductance results

Fig.4.9 shows a comparison between the experimental and the FEA simulation results for

the FSCW machine under healthy, three severities of eccentricity fault (40%, 60% and 50%)

and three severities of demagnetization fault (1, 2, and 3 magnets were fully demagnetized).

As discussed earlier, it can be noted that in the case of static eccentricity fault, the peak

of the incremental inductance is shifted to the left (point B), while no change in the peak

amplitude or position at Id = 0 (point A). It can also be noted that the amount of the

shift depends on the severity of the fault. As the severity of the fault increases, the shift in

the peak will also increases. For the concentrated winding machine, it start to saturate at
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Figure 4.9 Comparison between simulation and experimental results for the FSCW machine

Id = 150A. However, for a static eccentricity fault of 80%, the peak position was shifted

from Id = 150A to Id = 45A. For the distributed winding machine the saturation peak was

shifted from Idsat = 135A to Idsat = 75A under 66% eccentricity. The peak shift can also be

noticed for the FSCW machine under static eccentricity fault. Fig.4.10 shows the relation

between the severity of eccentricity fault vs the saturation current Idsat (point B) for the

concentrated and the FSCW machines. It is clear that the relation between the severity

of eccentricity fault and Idsat is almost linear. Based on this curve, any severity of static

eccentricity fault can be estimated using the peak position.

In the case of partial demagnetization fault, due to the early saturation in the demag-
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Figure 4.10 The change in Idsat under static eccentricity fault

netized magnets region, a change in the peak amplitude and position can be noted in the

incremental inductance curve at Id = 0 (point A). However, no detectable change can be

noticed in the saturation peak. The change in the peak amplitude and position at Id = 0A

can be used as an indicator to detect the severity of partial demagnetization fault. For

turn-to-turn short circuit fault, due to the reduction in the total flux in the motor, the in-

cremental inductance curve is shifted down compared to the healthy case. The amount of

the shift depends on the severity of the fault. As the number of shorted turns increases or

the shorted resistance increase, the reduction in the incremental inductance will increase.

4.6 Fault Detection and Separation Algorithm

The change in the peaks amplitude and position of the incremental inductance curve can be

used as an indicators to detect the fault type and estimate its severity. However, the slope,

the position of the peak, and the peak amplitude varies between motors, depending on the

machine geometry and the material used. To automate the detection method, the algorithm

in Fig.4.11 is proposed.
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Figure 4.11 Block diagram for the incremental inductance approach

[1] Using any of the proposed methods discussed earlier, the incremental inductance for

the tested machine is generated. For the concentrated and the distributed winding

machine 50 points were used to generate incremental inductance curve by varying the

d-axis current from 0A to 250A in steps of 5A. For the FSCW machine 31 points were

used to generate incremental inductance curve by varying the d-axis current from −5A

to 10A in steps of 0.5A

[2] Wavelet transform is applied to the incremental inductance curve to detect the curve

peaks. For this work, a 4 level Haar wavelet decomposition is applied. In order to

have a better resolution for the wavelet transform, interpolation was applied first to

the incremental inductance curve to increase the curve resolution.

58



[3] Using an envelope detection algorithm, the peaks and the corresponding d-axis current

can be detected (points A ad B) as shown in Fig.4.12

[4] The d-axis current and the value of the incremental inductance at the d-axis current

can be used as the classifier features. The output of the classifier defines the machine

health status, detects the fault type, and estimates its severity.
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Figure 4.12 feature extraction for kNN classifier

Three classification approaches were applied to validate the detection and estimation

method: k-Nearest Neighbor, Linear Discriminant Analysis, and Quadrature Discriminant

Analysis. The same features were selected for each classifier.

4.6.1 k-Nearest Neighbor

k-NN [41] is a common non-parametric classification method. In this classifier, for a known

training vector, the sample space is divided into a number of clusters based on a distance

function. A tested sample is assigned to a specific cluster with the nearest k samples. For

this work k is chosen to be 1, which means that the tested sample is assigned to its closest

sample in the sample space. The distance function is chosen to be Euclidean distance. For

a j × n training matrix Y and a l × n testing matrix X, the Euclidean distance is given as:
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dXY =

√√√√ n∑
i=1

(xmi − ypi)2 (4.9)

where X = [xm1, . . . , xmn] is the tested matrix, Y = [yp1, . . . , ypn] is the training matrix,

m = 1, . . . , j is the number of tested samples and p = 1, . . . , l is the number of testing

samples. The amplitude and the position of the peaks are used as features for k-NN classifier.

4.6.2 Discriminant Analysis

Discriminant Analysis is used to maximize the ratio between the variance for different classes

and the variance within the same class to achieve maximum separation between the feature

sets in each class. For this classifier, the sample space is divided into K classes, where each

class consists of a specific number of samples corresponding to the same state. These classes

are associated with weighting coefficients, and each class has its own coefficients that are

used to calculate the corresponding discriminant function for that class. The discriminant

function for class k is given by (4.10)

Ck(X) = α1kx1 + α2kx2 + · · ·+ αNkxN + αN+1k (4.10)

where X = [x1, x2, . . . , xN ] is the N dimensional sample vector and [α1k, α2k . . . αN+1k] is

the coefficient matrix for the kth class.

The weighting coefficient matrix is determined using an iterative process, the training

phase. During this phase, since we know the proper classification for each sample, the

weighting matrix will keep changing until each sample is classified into its correct class. To

classify an unknown sample, the measured coefficients from the training phase are used in

(4.10) to calculate the discriminant functions for this sample. A sample vector belongs to a
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particular class if the linear discriminant function for that sample is greater than any other

linear discernment function. For example, a sample vector i belongs to a class j if,

Cj(Xi) ≥ Ck(Xi) ∀j 6= k (4.11)

4.6.3 Classification Methodology and Results

FEA simulations and experimental tests were performed to generate the incremental induc-

tance curve under healthy and faulted conditions. For the concentrated winding machine, 11

cases were generated using FEA. One case corresponds to the healthy conditions, four cases

correspond to static eccentricity fault, generated by varying the severity from 20% to 80%

in steps of 20% of the airgap length, three cases corresponds to demagnetization fault, by

demagnetized 1, 2 and 3 consecutive magnets, and three cases represent turn-to-turn short

circuit fault (12.5% and 25% and 62.5% of the total phase A conductors are shorted). For

the distributed winding machine, a total of five cases were generated. Two faults were tested

using both FEA and experimentally; a case for healthy condition, two severities of static

eccentricity fault (40% and 66%) and two severities of turn-to-turn short circuit fault (12%

and 25%). For the FSCW machine 12 cases were generated using FEA, one for healthy, 4

for eccentricity fault (20%-40% in steps of 20%), three cases for demagnetization by demag-

netizing 1, 2, and 3 adjacent magnets, and 4 cases represent short circuit fault (10% with

Rf = 0.5, 12% with Rf = 0.25, 20% with Rf = 0.5, and 20% with Rf = 0.25). Experi-

mental tests were performed for the FSCW machine under healthy, static eccentricity, and

partial demagnetization faults.

Four features were extracted from each case: the saturation current Idsat = I(B), the
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incremental inductance peak amplitude at the saturation current (L(Idsat) = L(B)), the

zero d-axis current (Id0 = I(A)), and the incremental inductance peak amplitude at the zero

d-axis current (L(Id0) = L(A)). 100 samples were generated from each case by varying the

selected d-axis and the corresponding incremental inductance amplitude around Id = I(A)

and Id = I(B). 10 currents were selected around Id = I(A) and another 10 currents were

selected around Id = I(B). The variation of the current was chosen to be 15% of the

selected currents, (i.e. if the machine saturates at Id = 150A, the selected currents varies

from 142.5A to 157.5A). A total of 100 combination samples can be generated for all the

current combinations. The feature vector for each sample is selected based on (4.12)

xij = [Iij(A) Lij(A) Iij(B) Lij(B)] (4.12)

where i is the number of machine health status cases, j is the number of samples in each

case, and x is the features vector. All the samples for healthy and faulted cases were com-

bined together in one classification matrix. The leave one out method was used to validate

the classification results; one sample from the sample space is selected and left out. The

coefficient matrix is calculated from the rest of the samples. The selected sample was classi-

fied using these coefficients. This process was then repeated for every sample in the sample

space. Each time the coefficients are recalculated and the left-out sample is classified using

these coefficients. The classification accuracy for each class was calculated as:

CC(%) =
Ncorrect
Ntotal

× 100% (4.13)

where Ncorrect is the number of samples that were classified correctly, and Ntotal is the total

number of samples in the sample space. Table 6.3 compares the classification results for
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the concentrated winding machine using the three classifiers. Table 4.2 shows a comparison

of the classification results between simulations and experimental data for the distributed

winding machine, and Table 6.4 shows the classification results for for the FSCW machine.

Table 4.1 Classification results for the concentrated winding machine

Concentrated winding machine

Machine Status K-NN LDA QDA

Healthy 90% 98% 95%
20% Eccentricity 80% 96% 95%
40% Eccentricity 82% 100% 98%
60% Eccentricity 100% 100% 100%
80% Eccentricity 100% 100% 100%
1 Magnet 82% 98% 95%
2 Magnets 85% 97% 96%
3 Magnets 96% 98% 98%
12.5% Short 83% 92% 92%
25% Short 90% 90% 90%
50% Short 92% 90% 90%

Table 4.2 k-NN Classification results for the concentrated winding machine

Distributed winding machine

FEA Simulation Experimental results

Machine Status K-NN LDA QDA K-NN LDA QDA

Healthy 80% 97% 95% 80% 92% 91%
40% ECC 90% 100% 97% 88% 97% 97%
60% ECC 93% 100% 98% 89% 98% 98%
12.5% Short 88% 95% 95% 85% 90% 90%
25% Short 85% 100% 97% 83% 92% 88%

Table 4.4 summarizes the the average classification results for all tested machines using

the three classification methods.

The classification results show that the proposed algorithm was able to detect the fault

type and estimate its severity accurately. Even for the cases when the severity are not
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Table 4.3 k-NN Classification results for the concentrated winding machine

Distributed winding machine

FEA Simulation Experimental results

Machine Status K-NN LDA QDA K-NN LDA QDA

Healthy 92% 96% 97% 90% 97% 96%
40% ECC 82% 100% 95% 80% 92% 93%
60% ECC 88% 98% 94% 82% 95% 94%
80% ECC 88% 100% 94% 90% 94% 94%
1 Magnet 89% 93% 93% 89% 88% 88%
2 Magnets 84% 96% 95% 85% 88% 87%
3 Magnets 85% 95% 94% 85% 87% 85%

Table 4.4 k-NN Classification results for the concentrated winding machine

Concentrated winding Distributed winding FSCW machine
FEA FEA EXP FEA EXP

KNN 89.1% 87.2% 85% 86.8% 85.8%
LDA 96.2% 98.4% 93.8% 96.8% 91.5%
QDA 95.3% 96.4% 92.8% 94.5% 91%

classified correctly, the algorithm was able to detect the fault type. It is also noted that

using LDA classification provide the highest accuracy for fault detection and classification.

4.7 Effects of Parameter Variation

To test the robustness of the detection method, FEA simulations were performed by varying

the machine operating and environmental conditions. Two parameters were varied: the

aligning angle and the operating temperature. The incremental inductance curve depends

on the change in the saturation of the machine. Therefore, it is important for the applied

d-axis current to be accurately aligned to the rotor d-axis. Any misalignment between the

applied current and the rotor d-axis will affect the saturation in the machine. To estimate
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the sensitivity of the aligning angle, the motor was misaligned by 1, 6 and 10 mechanical

degrees. The results of the incremental inductance under different misalignment angles for

the concentrated winding machine are shown in Fig.4.13
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Figure 4.13 incremental inductance under different misaligning angle

To vary the operating temperature of the machine, the motor stator resistance and the

magnet permeance were changed in the model based on the following equations:

Rs(T ) = Rs0 [1 + αR(T − T0)] (4.14)

Br(T ) = Br0 [1 + αBr(T − T0)] (4.15)
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where αR is the temperature coefficient for the stator resistance (αR = 0.00393), αBr is the

temperature coefficient for the magnets (αBr = −0.0011), T is the operating temperature,

and T0 is the reference temperature. Three temperatures were tested 200C,1000C and

1500C. The results of the incremental inductance curve under temperature variation for

the concentrated winding machine is shown in Fig.4.14
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Figure 4.14 variation of the operating temperature

It can be noted that the effect of the operating temperature won’t affect the shape of

the incremental inductance curve; the two peaks were still detectable. However, in the case

of the aligning angle, as the machine became more misaligned, it became harder to detect

the saturation peak and therefore estimate the fault type. Table 4.5 shows the classification

results for the concentrated winding machine under different parameter variations.

Table 4.5 k-NN Classification results under parameters variation

Classification Results

Classifier 20oC 1000C 1500C 20oC 20oC 20oC
0 degree 0 degree 0 degree 1 degree 6 degree 10 degree

KNN 89.1% 88% 85% 89% 84% 80%
LDA 96.2% 95% 94.2% 96% 91% 83%
QDA 95.3% 93% 92.2% 95% 90% 81%

The classifier was able to detect the fault type and its severity with a good accuracy
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for different levels of variations in the operating temperatures. The main parameter that

needs to be considered is the aligning angle. Inaccurate aligning angle will mask the fault

signature, which will reduce the detection accuracy, only 80% of the samples were classified

correctly in the case of 10 degree misaligned angle compared to a 96.3% with correct aligning

using the KNN classifier.
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Chapter 5

The MC/VSA and LDA Classification

Approach

Most of the detection methods in the literature using the MCSA approach have been tested

for single fault detection. They are based on analyzing the stator current signal under

healthy and faulted conditions. The amplitude of the generated subharmonics are used to

detect the fault type and estimate its severity. The use of these subharmonics presents some

difficulties. It was shown in [5] and [9] that similar side band patterns will appear for both

eccentricity and short circuit faults, which makes this approach unable to separate between

the two faults. Also, the amplitudes of the generated subharmonics depend on the operating

speed and load conditions; at lower speeds it was difficult to detect these sideband patterns

compared to high speed operation [25]. In [26] and [27], it was shown that the relation

between the number of poles and the stator slots affects the appearance of the stator current

subharmonics related to eccentricity faults. Based on this, using the subharmonics only for

fault detection might not be adequate for fault detection and separation. On the other hand,

there will always be a change in the amplitude of the harmonics of the voltage or the current

signals in faulted cases. The change in the amplitude is related to the type and the severity

of the fault.

The main objectives of this chapter include 1) evaluating the accuracy of using the MCSA
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and the LDA to detect the machine status, whether it is healthy or faulted, separation

between different faults, and estimation of the fault severity. 2) Using either the measured

stator currents or the commanded voltages for fault detection and identification. 3) Using

the amplitude of the harmonics as fault detection and classification features instead of the

subharmonics. This approach can be used as a method to separate between different fault

when the motor is operating at steady state. However, Since that only the first 15 harmonics

are needed for the classifier, only few cycles are needed which can be extracted when the

motor is at operating standstill for a short period of time.

5.1 Algorithm for Fault Detection and Classification

Fig.5.1 shows the general flow diagram for the fault detection algorithm using the MC/VSA

approach. The algorithm contains two classifiers: The first classifier is used to detect the

presence and type of the fault, while the second is used to estimate the fault severity once

the type of fault is determined. The proposed method is as follows:

[1] Three phase currents are used to control and operate the machine under both healthy

and faulted conditions. The stator phase current or voltage signals in the abc frame of

reference were measured for processing.

[2] FFT was applied to the measured current or voltage signals. The amplitudes of the

harmonics were selected as features for the classification. In this method, a vector of

the amplitude of the first 15 harmonics was chosen from phase A spectrum, as the

features for each sample. (i.e. the fundamental and the harmonics 2nd-15th)

[3] LDA classification is applied to detect whether the machine is healthy or faulted, and
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Figure 5.1 Block diagram for the MC/VSA approach

determine the type of the fault. The sample space for the first classifier contains

samples from all the studied faults. In the faulted case, it detects the type as one of

the following: static eccentricity, turn-to-turn short circuit, or partial demagnetization.

[4] If the fault is detected as static eccentricity or turn-to-turn short circuit fault, another

LDA classifier is applied to determine the severity of that fault. In this classifier, the

sample space contains samples from the same type of fault but with different severities.
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5.2 Simulation and Experimental Results

Fig.5.2a shows the spectrum of the stator current for the distributed winding machine under

healthy and two faults with different severities (25% and 50% of eccentricity fault and 12%

of the coils in phase A shorted). Fig.5.2b shows the spectrum of the stator current of

the concentrated winding machine under healthy and two severities of eccentricity faults

(25% and 50%). The current spectrum was collected experimentally for a load of 50A and

operating speed of 500 rpm. The change in the amplitudes of the 5th and 7th harmonics were

under faulted cases compared to the healthy one.
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trum for the distributed winding machine
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for the concentrated winding machine

Figure 5.2 Experimental results for the stator current harmonics under different faults

It can be noticed from Fig.5.2 that faults introduces different changes to the current

spectrum, the amplitude of some harmonics like the 5th harmonic increases in the case of

eccentricity fault, but it decreases in the case of turn-to-turn short circuit fault. This change

depends on the type and the severity of that fault. These changes in the harmonics amplitude

can be used as classification features to detect the fault type and estimate the severity. It
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is important to mention that the harmonics of the current signal from phase A only were

selected for the classification features. This might affect the results for short circuit fault

but not demagnetization or eccentricity. However, the short circuit fault was applied using

a high short resistance (Rf = 0.125Ω), while the machine phase resistance is around 0.1Ω.

This reduces the unbalance between the three phases. Fig.5.3 a comparison of the current

spectrum from phase A, B and C in the case of 12% turn-to-turn short circuit fault for the

distributed winding machine. The harmonics from the three phases have similar amplitudes.

Therefore, this method is able to detect the short circuit fault, no matter which phase the

harmonics were selected from. However, it is not able to detect which phase is the shorted

one.
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Figure 5.3 Comparison between the current spectrum from phase A, B and C under 12%
short circuit fault

The reason why all the first 15 harmonics were chosen as features for the classifier, is

that turn-to-turn short circuit fault often generates even order harmonics, Therefore, both

the odd and the even harmonics were selected to improve the detection accuracy in the case

of short circuit fault. Fig.5.4 shows a comparison of the current spectrum between healthy

case and 25% short circuit fault. The increase in the harmonics amplitude at 200 and 400Hz
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(4th and 8th harmonics) can be noted in the case of short circuit fault.
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Figure 5.4 Comparison between the current spectrum under healthy and 25% short circuit
fault

5.2.1 Identifying the Fault Type

LDA classification is used first to detect the type of fault. Since the first 15 harmonics are

used as features for the classifier, a number of samples higher than 15 is required in the sample

space for the classification matrix to converge [42]. Table 5.1 shows the classification results of

fault detection, for the concentrated and distributed winding machines, using FEA simulation

for two different operating loads (30% and 60% of the full load). LDA was performed

separately at each load. The sample space contains 44 samples that correspond to four

different classes. Each class represents a specific machine state as follows: class 0 corresponds

to the healthy case, class 1 corresponds to 12% static eccentricity, class 2 corresponds to

12% shorted conductors (one shorted turn of the distributed winding machine) and class 3

corresponds to 80% demagnetization for one magnet. 11 samples were generated for each

class by varying the speed from 1000 rpm to 2000 rpm in steps of 100 rpm. The samples for
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each fault were chosen as the minimum accepted severity, so that, if the algorithm was able

to detect the fault with lower severity, the fault with a higher severity can also be detected.

The first 15 harmonics from the current or voltage spectrum with a sampling frequency of

10 kHz, were chosen as features for the classification. To validate the classification results

the leave-one-out method was used.

From the results in Table 5.1, it can be noted that LDA was able to classify the type

of fault correctly and distinguish between different faults for both machines at different

operating conditions.

Table 5.1 LDA classification results for fault detection using FEA results. (Each class con-
tains 11 samples correspond to speeds 1000− 2000 rpm).

Classification Results

Concentrated Winding Distribution Winding

30% 60% 30% 60%
full load full load full load full load

Healthy 100% 100% 100% 91%
12% eccentricity 91% 91% 100% 91%
One shorted turn 100% 100% 100% 100%
80% demag. 100% 100% 100% 100%

5.2.2 Determining the Fault Severity

After detecting the fault and determining its type, it is necessary to detect its severity. In this

section, it is assumed that the type of fault is correctly detected. Another LDA classification

was used again to estimate the severity of eccentricity fault or the turn-to-turn short circuit

fault. Table 5.2 shows the classification results for eccentricity severities for both machines

under two different loads at 30% and 60% of full load using FEA simulation. Table 5.3 shows

the classification results for the turn-to-turn short circuit fault. For static eccentricity case,
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the sample space consists of 33 samples for three different severities: 12%, 25%, and 45%.

Each sample corresponds to a specific speed from 1000 rpm to 2000 rpm in steps of 100 rpm.

A total of 3 classes assigned as follows: class 0 corresponds to 12% static eccentricity, class

1 corresponds to 25% static eccentricity and class 2 corresponds to 45% static eccentricity.

For the turn-to-turn circuit fault, the sample space consists of 33 samples, corresponding to

healthy case and two degrees of shorted turns: class 0 corresponds to healthy case, class 1

corresponds to 12% shorted conductors (one turn was shorted) and class 2 corresponds to

24% shorted conductors (two turns were shorted). The leave-one-out method was used to

validate the results.

Table 5.2 LDA classification results to detect the severity of static eccentricity fault using
FEA results. Each class contains 11 samples correspond to speeds 1000− 2000 rpm).

Classification Results

Concentrated Winding Distribution Winding

30% 60% 30% 60%
full load full load full load full load

12% eccentricity 91% 100% 100% 91%
25% eccentricity 91% 100% 100% 100%
45% eccentricity 100% 100% 100% 100%

Table 5.3 LDA classification results to detect the severity of turn to turn short circuit fault
using FEA results. (Each class contains 11 sample corresponds to speeds 1000− 2000 rpm).

Classification Results

Concentrated Winding Distribution Winding

30% 60% 30% 60%
full load full load full load full load

Healthy 100% 100% 100% 91%
12.5% short circuit 91% 100% 91% 100%
25% short circuit 100% 100% 100% 100%

From the classification results, it is clear that LDA classification can be used for either

75



machine, to detect the type of fault and estimate its severity. However, some of the samples

related to the 12% static eccentricity fault were not classified correctly, even though only

simulation experiments were used that did not have measurement noise. The reason for that,

because for low severities of eccentricity faults, most of the harmonic amplitudes for the 12%

eccentricity were close to those for the healthy machine; hence the LDA classification cannot

distinguish between healthy and the 12% static eccentricity fault for a few samples.

5.2.3 Comparing FEA with Experimental Data

To validate the proposed detection method, experimental data were collected for both ma-

chines under different faults. The experimental data for the distributed winding machine

were carried out for healthy and two types of fault: static eccentricity with two severities

(25% and 50%), and one turn-to-turn short circuit fault. The concentrated winding machine

was tested under healthy and two severities of static eccentricity faults (25% and 50%).

The effects of both speed and torque were combined to evaluate the accuracy of LDA

classification for fault detection and identification. First, the training samples and the testing

samples were collected of the same torque. LDA was performed separately for samples

collected from three torque levels (20A, 50A and 70A). Each torque case contains a number

of classes that define the machine health status. The sample space for each class contains

11 samples generated by varying the speed from 500 rpm to 1000 rpm in steps of 50 rpm,

with a sampling frequency of 10kHz (10000 points were recorded for each sample (1s)). The

leave-one-out method was used to test and validate the classification method. (Results are

shown in Tables 5.4 and 5.5 for cases 1, 3 and 4).

In the second case, the training samples and the testing samples were collected using

different torque levels. Two torques was tested: 30A and 100A. In the 30A case, the testing
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samples were collected while the machine is operating at a torque corresponding to 30A while

the training samples were interpolated from samples collected from torques of 20A, 50A and

70A. The sample space for each class contains 11 samples generated by varying the speed

from 500 rpm to 1000 rpm in steps of 50 rpm. The same procedure was followed for the 100A

case and the results are shown in Tables 5.4 and 5.5 for cases 2 and 5).

Table. 5.4 shows a comparison of the classification results for fault detection between

the experimental and FEA simulation for the distributed winding machine under healthy,

25% eccentricity fault and 12% short circuit fault. Table 5.5 shows a comparison of the

classification results between the experimental and FEA simulation for the concentrated

winding machine under healthy and two severities of eccentricity fault (25% and 50%). Table

5.6 shows a comparison of the classification results for fault severity detection between the

experimental and FEA simulation for the distributed winding machine under two severities

of eccentricity fault (25% and 50%).

Table 5.4 Comparison of LDA classification results between experiments and FEA to de-
tect the fault type for the distributed winding machine. Each class contains 11 samples
correspond to speeds 500− 1000 rpm).

Classification Results

Experimental results FEA results

case # Healthy 25% One turn Healthy 25% One turn
eccentricity short eccentricity short

1-20A 91% 91% 100% 100% 100% 100%
2-30A 82% 82% 82% 91% 82% 91%
3-50A 91% 82% 91% 91% 91% 100%
4-70A 91% 82% 82% 90% 82% 82%
5-100A 72% 63% 72% 82% 72% 82%

The results show that the most accurate classification can be achieved when the testing

and the training samples were collected from the same load. A minimum of 82% of the
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Table 5.5 Comparison of LDA classification results between experiments and FEA for the
concentrated winding machine. Each class contains 11 samples correspond to speeds 500−
1000 rpm).

Classification Results

Experimental results FEA results

case # Healthy 25% One turn Healthy 25% One turn
eccentricity short eccentricity short

1-20A 100% 91% 100% 100% 100% 100%
2-30A 82% 72% 82% 91% 82% 91%
3-50A 91% 82% 91% 91% 91% 91%
4-70A 91% 82% 91% 91% 91% 91%
5-100A 72% 72% 72% 72% 72% 82%

Table 5.6 Comparison of LDA classification results between experiments and FEA to de-
tect the fault severity for the distributed winding machine. Each class contains 11 sample
corresponds to speeds 500− 1000 rpm).

Classification Results

Experimental results FEA results

case # Healthy 25% 50% Healthy 25% 50%
eccentricity eccentricity eccentricity eccentricity

1-20A 91% 91% 91% 100% 91% 100%
2-30A 82% 82% 82% 91% 82% 91%
3-50A 91% 82% 82% 91% 91% 91%
4-70A 82% 82% 82% 91% 82% 82%
5-100A 72% 62% 82% 82% 82% 82%

samples were classified correctly. Interpolation for the training samples can be used if the

testing samples were collected from a load close to the training samples load, but the accuracy

decreases if the training samples were collected from loads that were too different from the

testing samples loads. A minimum correct classification of 62% in the case of 100A was

achieved to detect eccentricity fault. A minimum percentage of 72% achieved in the case of

30A for eccentricity fault detection.

To test the method over the operating range and not only at a specific torque, the entire
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sampling space was modified to contain different torques and speeds. Tables 5.7 and 5.8

show a comparison of the correct classification results between experimental data and FEA

of fault detection and classification for the distributed winding machine. The sample space

for each class contains 40 samples, so a total of 120 samples were used to generate the training

matrix. The 40 samples correspond to 4 different currents, each case contains 10 samples

that were generated by varying the speed from 550 rpm to 1000 rpm in steps of 50 rpm. The

combination of the amplitude of the first 15 harmonics were used as the features for the LDA

classification; the leave-one-out method was used to validate the classification. Fig.5.5 shows

the full training matrix construction for the healthy case and two different faults. Fig.5.6

shows the construction of the healthy portion of the full training matrix.
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Figure 5.5 Full training matrix for healthy case and two faults (25% eccentricity and 12%
turns of phase A shorted).

Table 5.7 A comparison of LDA classification results to detect the fault type for the dis-
tributed winding machine between experiments and FEA using the full training matrix.

Classification Results

Exp. using current Exp. using voltage FEA Data

Healthy 87.5% 85% 95%
25% eccentricity 85% 80% 88%
One turn short 88% 85.5% 92.5%
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Figure 5.6 Training matrix for healthy case only.

Table 5.8 A comparison of LDA classification results to detect the severity of eccentricity fault
for the distributed winding machine between experiments and FEA using the full training
matrix.

Classification Results

Exp. using current Exp. using voltage FEA Data

Healthy 85.5% 87.5% 91%
25% eccentricity 77.5% 80% 87.5%
50% eccentricity 80% 77.5% 90.5%

The results show that using the MSCA with the LDA as a classification method was

able to detect the type of the fault and estimate the severity, either by using the harmonics

of the phase voltages or of the current signals. When the training and testing features

are extracted from samples collected at different operating loads, the classification result

was not as accurate compared to the case when the samples are collected from the same

operating torque. For fault detection, an average of 89.6% of the samples were classified

correctly for the FEA samples, while 81% of the total samples were classified correctly from

the experimental data using the harmonics in the measured feedback current, and 81.6%
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were classified correctly based on the harmonics in the voltage signal.

In practical applications, tested machines might differ due to the manufacturing tolerance

and the variations in the material properties. To evaluate the robustness of the detection

methods, Additive White Gaussian Noise (AWGN) with different Signal to Noise Ration

(SNR) levels was added to the tested current samples. A comparison of the classification

results for fault detection between experimental and FEA is shown in Table 5.9. For this

case, the sample space contains 30 samples corresponding to three classes: healthy, 25%

static eccentricity and one turn-to-turn short circuit fault. Each class contains 10 samples

generated by varying the speed from 550 rpm to 1000 rpm in steps of 50 rpm, with a sampling

frequency of 10KHz for a current of 20A. It is noted that the change in the harmonics

amplitude due to the noise affects the classification results, which makes the detection based

on the harmonics amplitude not robust at high noise levels.

Table 5.9 A comparison of LDA classification results for the distributed winding machine for
different SNR levels. Each class 10 contains samples correspond to speeds 550− 1000 rpm).

Classification Results

Experimental results FEA results

SNR H 25% One turn H 25% One turn
(dB) eccentricity short eccentricity short

100 90% 80% 90% 100% 100% 90%
90 90% 80% 90% 100% 100% 90%
80 88% 83% 85% 95% 92% 88%
70 80% 75% 79% 90% 86% 82%
60 70% 65% 71% 80% 70% 76%

5.2.4 Effect of Temperature

The change in the operating temperature causes multiple changes to the stator current and

voltage. The increase of the operating temperature will cause an increase in the stator
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phase resistance and a decrease in the magnet remanence flux. The effect of temperature

is simulated by changing the values of the stator resistance and the magnet remanence flux

based on (4.14) and (4.15).

Table 6.21 shows the simulation results of fault classification for fault detection under

different temperatures. The sample space contains 40 samples corresponding to 4 classes:

Healthy, 12% static eccentricity, 12% short circuit fault and 80% demagnetization. Each

class consists of 11 samples generated by varying the speed from 1000 rpm to 2000 rpm

in a steps of 100 rpm. The training samples were collected at an operating load of 20A

at a temperature of 200C, while the testing samples were collected at a temperatures of

200C, 700C and 1500C.

Table 5.10 LDA classification results for fault detection using FEA results. Each class
contains 11 samples correspond to speeds 1000− 2000 rpm).

Classification Results

Concentrated Winding Distribution Winding

200C 700C 1200C 200C 700C 1200C

Healthy 100% 72% 63% 100% 72% 63%
12% eccentricity 91% 72% 55% 91% 72% 63%
12% short 100% 81% 63% 100% 81% 72%
80% demag. 100% 63% 55% 91% 55% 55%

It can be noticed that if the training samples were collected from an operating temper-

ature that is close to the operating temperature of the testing samples, the classifier was

able to detect the fault type. However, if the testing samples were collected from a different

operating temperatures compared to the temperature at which the training samples were

collected, the accuracy of the classifier reduced, especially for demagnetization fault because

it is mainly related to temperature. A minimum percentage of 63% of the samples were

classified correctly for the 700C case while a minimum correct classification percentage of
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55% achieved for the 1200C case.
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Chapter 6

The Commanded Voltages Approach

Different faults in PMSMs will cause various and independent changes to the machine perfor-

mance and parameters. These changes will be reflected in the machine flux linkages, which

can be determined and measured from the machine voltages. This chapter shows how to use

the commanded voltages as a method for fault detection and separation. The shift direction

in the commanded d-axis and q-axis voltages can be used to detect the type of the fault, and

the amount of the shift can be used to estimate the severity. This method can be applied

during the normal operation of the machine, while the motor is running at steady state.

6.1 Variations of Vd and Vq Under Various Faults

6.1.1 Vd and Vq Variations Under Eccentricity Fault

It was shown in Chapter 2 and Chapter 4 that in the case of static eccentricity, the machine

saturates earlier compared to the healthy machine. This early saturation is reflected as an

increase in the total flux linkages in the machine. Fig.6.1 shows a comparison of the magnetic

flux density for the FSCW machine between the healthy machine and a machine with 80%

static eccentricity fault.

The increase in the machine flux density (in the zoomed region) can be noticed in the case

of eccentric machine. Due to the nonlinearity of the machine, the increase in the magnetic
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(a) Flux density for healthy machine (b) Flux density for a machine with 80% eccentric-
ity

Figure 6.1 Comparison of the magnetic flux density between a healthy machine and a machine
with 80% eccentricity.

flux density, in the lower airgap region, will be larger than the decrease in the magnetic flux

density, in the higher airgap region. This causes an increase in the total flux linkages in the

machine. The increase in the total flux linkages increase the value of both λd and λq. Based

on (2.11) and (2.12), increasing λd and λq, for the same operating load, increases Vd but

decreases Vq. So in the case of an eccentricity fault, the point (Vd, Vq) in the Vd-Vq plane

will shift toward the top left, and as the severity of eccentricity fault increases the point (Vd,

Vq) shifts more to the top left of the curve.

6.1.2 Vd and Vq Variations Under Demagnetization Fault

In the case of partial demagnetization fault, a nonuniform magnetic flux density generates

around the rotor, which causes a disturbance to the magnetic flux in the motor and reduce

the total magnetic flux density generated from the magnets. Fig.6.2 shows a comparison of

the magnetic flux line between healthy and the machine with Mag1 demagnetized.

Demagnetizing one or more of the rotor magnets cause a decreasing in the total magnetic

flux linkages (λpm). Based on (2.10), decreasing λpm causes a reduction in the total d-

axis flux. Other effect of demagnetization fault is the change in the magnetic flux in the
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(a) Flux lines for healthy machine (b) Flux lines for a machine with mag. 1 demag-
netized

Figure 6.2 Comparison of the flux lines between healthy machine and a machine with one
magnet fully demagnetized.

machine. The demagnetized region will have the same effect as an air region, forcing the

flux to concentrate more in the q-axis of the machine. This increases the total q axis flux

linkages in the machine. Based on (2.11) and (2.12), decreasing λd and increasing λq implies

a decrease of both Vd and Vq compared to the healthy case. Therefore, in the case of

demagnetization fault the point (Vd, Vq) in the Vd-Vq plane will shift toward the bottom left,

and as the number of demagnetized magnets increases the shift in the point (Vd, Vq) will

increase.

6.1.3 Vd and Vq Variations Under Turn-to-turn Short Circuit Fault

It was shown in (2.29)-(2.34) that in the case of turn-to-turn short circuit fault, the equiv-

alent model for PMSM will contain two components: a healthy component and a variable

component related to the short circuit fault. The variable component is related to the circu-

lating short circuit current in the shorted turns. This current is can be approximated as a

sinusoidal current and can be described as if = |if | cos(θ+ φf ), where |if | is the magnitude

of the short circuit current, and φf is the phase shift of the short circuit current. Based

on this assumption, the variable component can be expanded to contain a DC component
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and an oscillated component. The DC component of the d and q axes under steady state

operation is given as:

vdf,DC =
1

3

(
rf |if | sin(φf )− ωe(Mahaf

+ Laf )|if | sin(φf )
)

(6.1)

vqf,DC =
1

3

(
rf |if | cos(φf )− ωe(Mahaf

+ Laf )|if | cos(φf )
)

(6.2)

The short circuit current can be estimated using the following equation:

if =
rf ia + ef
rf +Rf

(6.3)

where rf is the equivalent resistance of the shorted turns, and Rf is value of the short

resistance. It is noted from (6.1) and (6.2) that theDC component depends on the magnitude

and the angle shift of short circuit current, which is determined by the severity of the short

circuit fault. Fig.6.3 shows the short circuit current in the FSCW machine under different

severities of turn-to-turn short circuit fault.
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Figure 6.3 Short circuit current for the FSCW machine for different severities of short circuit
fault.

As the severity of turn-to-turn short circuit fault increases, the magnitude of the short
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circuit current and therefore the DC component in both the d and the q axes will increase

as well. Increasing the DC components cases the value of the d and q voltages to increase

too. The effect of short circuit fault can also be observed using the change in the magnetic

flux density and flux lines. Fig.6.4 shows a comparison of the flux density and the flux lines

between healthy machine, and a machine with 20% of the turns of phase A coil conductors

are shorted.

(a) Flux density and flux lines for a healthy ma-
chine

(b) Flux density and flux lines for 20% short circuit
fault

Figure 6.4 Comparison of the flux density between a healthy machine and a machine with
20% of the turns in phase A conductors are shorted.

Under turn-to-turn short circuit fault, the total flux density decreases in the shorted

region (the zoomed region), this means a decrease in the value of λq. However, in the short

region, more flux lines are closing in the d-axis of the machine causing an increase in λd.

Decreasing λq and increasing λd increases the value of Vd and Vq. Therefore, in the case of

short circuit fault, the point (Vd, Vq) shifts towards the top right in the Vd-Vq plane. It is

noticed that turn-to-turn short circuit fault depends on the number of the shorted turns and

the values of the shorted resistance. As the number of shorted turns increases or the value

of the shorted resistance decreases, the values of Vd and Vq increases more.

Fig.6.5 summarize the change in the commanded voltages under different faults compared

to the healthy case.

88



𝑣𝑑

𝑣𝑞

𝑣𝑑
∗

𝑣𝑞
∗

Demagnetization

Eccentricity

Short circuit

Healthy

Figure 6.5 The shift in the commanded voltages under the tested faults

6.2 Numerical And Experimental Results

The tests were applied while the motors were operating at steady state with rated torque.

To find the operating conditions when the machine is operating at this torque, the machine

needs to be characterized (i.e. finding the value of the machine d and q axes inductances

under different operating conditions). Following the characterization method discussed in

chapter 2, the simulation results for the torque, λd, and λq versus the current angle (δ) at

different current loads for the FSCW machine is shown in Fig.6.6
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Figure 6.6 Simulation results for the characterization of the FSCW machine under different
operating loads at a speed of 300rpm

The maximum torque was achieved at an operating angle δ = 120◦. Therefore, all the
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tests will be applied at a control angle of 120◦.

6.2.1 Static Eccentricity Fault Results

Fig.6.7 shows the simulation results for the variation in λd and λq for different severities of

eccentricity faults compared with the healthy machine. The machine was running at a speed

of 300rpm and the applied current was 5A at an angle of 120◦ (i.e.Iq = 4.33A, Id = −2.5A).

As discussed in Section 6.1.1, the extra saturation due to the shift in the stator geometry

will bring up the values of λd and λq relative to a healthy machine.
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(c) Experimental results for λd
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(d) Experimental results for λq

Figure 6.7 λd and λq for healthy and different severities of eccentricity fault at I = 5A and
δ = 120◦
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Fig.6.8 shows the change in the values of Vd and Vq for the FSCW machine under different

severities of static eccentricity compared to the healthy case. It can be noted that in the

case of eccentricity fault, the value of Vd decreases, and the value of Vq increases, moving

the point (Vd, Vq) to the upper left in the Vd-Vq plane. The change in Vd and Vq depends on

the severity of eccentricity fault. As eccentricity becomes more severity, the point (Vd, Vq)

shifts more to the upper left in the Vd-Vq plane.
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Figure 6.8 Simulation and experimental results for the change in Vd and Vq for healthy and
different severities of static eccentricity fault at I = 5A and δ = 120◦

6.2.2 Partial Demagnetization Fault Results

Three levels of partial demagnetization fault were tested for the FSCW machine using sim-

ulations and experimental tests. Fig.6.9 shows a comparison of the variation in λd and λq

between simulations and experimental data. The machine was operated at a speed of 300rpm

and the current applied is 10A at an angle of 120◦.

Fig.6.9 shows that both simulation and experimental results exhibit the same behavior.

The value of λd decreases, but the value of λq increases. This decreases the value of Vd

and Vq moving the point (Vd, Vq) to the bottom left of the Vd-Vq plane. Fig.6.10 shows a
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Figure 6.9 Simulations and experimental results for λd and λq for the FSCW machine under
healthy and 3 levels of demagnetization fault (1, 2 and 3 magnets) at I = 10A and δ = 120◦

comparison between simulations and experimental results for the change in Vd and Vq under

healthy and three severities of partial demagnetization faults.

6.2.3 Turn-to-turn Short Circuit Fault Results

Simulations and experimental tests were performed on two levels of turn-to-turn short circuit

fault: 10% and 20% of the total turns of phase A conductors. To vary the severity of each

level, two different shorted resistances were used (0.5 Ω and 0.25 Ω, which is equal to 33.3%

and 16.6% of the stator resistance respectively). Fig.6.11 shows the variation in λd and λq
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Figure 6.10 Simulation and experimental results for the change in Vd and Vq for healthy and
3 levels of demagnetization fault at I = 10A and δ = 120◦

for the tested turn-to-turn short circuit fault. The machine was operated at a speed of 300

rpm and the current applied was 10A at an angle of 120◦.

In the case of short circuit fault, the value of λd increases, but the value of λq decreases,

which causes an increasing in both Vd and Vq; this shifts the (Vd, Vq) point in the Vd-Vq

plane to the upper right as shown in Fig.6.12.

Based on the previous results, the shift direction of the point (Vd, Vq) can be used as

an indicator to detect the type of fault and also estimate the severity. In the case of an

eccentricity fault, the point (Vd, Vq) shifts towards the upper left of the plane; in the case of

partial demagnetization fault, the point (Vd, Vq) shifts towards the bottom left of the plane;

and for turn-to-turn short circuit fault, the point (Vd, Vq) shifts towards the upper right of

the plane. Fig.6.13 compares the results between simulations and experimental results that

summarize the change in the point (Vd, Vq) at different fault types and severities, for two

torques (I = 5A and I = 10A) at an angle of δ = 120◦ running at a speed of 300rpm.

It can be noted from Fig.6.13 that as the current increases, it became harder to detect

eccentricity fault. As the applied current increases, the saturation in the machine from
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Figure 6.11 Simulations and experimental results for λd and λq under healthy and 2 levels
of turn-to-turn short circuit fault at I = 10A and δ = 120◦

the stator flux will mask the effect of the extra saturation from eccentricity fault makes it

harder to observe the shift in Vd and Vq. However, for partial demagnetization and short

circuit faults, the shift in Vd and Vq can still be observed even at high currents using both

simulations and experimentally. Table6.1 summarize the changes in the d and q axis voltages

under different faults and severities while the machine was operating at a speed of 300rpm

and a current of 5A at an angle of 1200.
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Figure 6.12 Simulation and experimental results for the change in Vd and Vq for healthy and
2 levels of short circuit fault at I = 10A and δ = 120◦

Table 6.1 Simulation and the experimental results for Vd and Vq for the FSCW machine
under different faults

FEA Simulation Experimental

Fault Type Vd Vq Vd Vq

Healthy -64.8 33.6 -78.9 44.6
20% Eccentricity -65 33.6 - -
40% Eccentricity -65.3 33.9 - -
60% Eccentricity -65.6 34.4 - -
80% Eccentricity -66.1 35 - -
1 Magnet Demag. -66.3 30 -81.6 40
2 Magnets Demag. -67.7 27.9 -81.9 31.5
3 Magnets Demag. -69.2 24.2 -82.7 28.6
10% Short Rf = 0.5 -64.3 34.5 -75.3 52.9
10% Short Rf = 0.25 -63.5 35.2 -71.9 52
20% Short Rf = 0.5 -61.8 35.7 -70.6 53
20% Short Rf = 0.25 -59.1 35.3 -68.7 53.7

6.2.4 Effect of Magnet Angle

Fig.6.14 shows the simulation results for the shift in the d and q voltages for the concentrated

winding machine under healthy, and the three tested machine. The same shift behaviour in

the commanded voltages can be observed in the static eccentricity and turn-to-turn short
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(c) Vd vs Vq simulation results I = 10A, δ = 120◦

-114 -112 -110 -108 -106 -104
V

d
 (V)

20

22

24

26

28

30

32

34

V
q
 (

V
)

Healthy

Demagnetization Fault

Short circuit FaultEccentricity Fault

(d) Vd vs Vq experimental results I = 10A, δ =
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Figure 6.13 Simulation and experimental results for the change in Vd and Vq for healthy and
different faults for I = 5A, δ = 120◦ and I = 10A, δ = 120◦

circuit faults. However, for partial demagnetization the shift in the commanded voltages was

mainly in the q axis voltage but not in the d axis.

The behaviour of the reduction in the q-axis voltage is similar to the case of the FSCW

machine. However, the d-axis voltage increased which is opposite to the case of the FSCW

machine. This is due to the magnets rotation angle. In the case of partial demagnetization,

the demagnetized magnet will have properties similar to the air that block the flux lines path.

If the magnets are not rotated (as in the case of the concentrated winding machine), the

flux lines will pass through the back iron of the rotor causing a decrease in λq and therefore
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Figure 6.14 Simulation results for the change in Vd and Vq for healthy and the three tested
faults for the concentrated winding machine for I = 75A and δ = 120◦

increase in Vd. However, if the magnets are rotated, the demagnetized magnets will block

the path of the flux lines and push them toward the q-axis of the machine. This causes

an increase in λq and therefore decrease in Vd. To study the effect of the magnet rotation

angle, the rotor geometry for the concentrated winding machine was modified by rotating the

magnet angle at different degrees. Fig.6.15 shows the modification in the magnet placement

of one pole of the rotor magnets and Fig.6.16 shows the cross geometry for the original

concentrated winding machine and the modified rotor magnets for 0, 10, and 20 rotation

angles.

Θ = 00
Θ = 50
Θ = 100
Θ = 150
Θ = 200

Figure 6.15 Single pole magnet rotation of the concentrated winding machine

Fig.6.17 shows a comparison of the flux lines, for the concentrated winding machine,
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(a) Θ = 00 (b) Θ = 100 (c) Θ = 200

Figure 6.16 Modified magnets for the concentrated winding machine

between a zero rotation angle and 150 rotation angle under one magnet fully demagnetized.

(a) Θ = 00 (b) Θ = 150

Figure 6.17 Comparison of the flux lines for 00 and 150 magnet rotation angle under demag-
netization faut

Fig.6.18 shows a comparison of the shift in Vd and Vq for the concentrated winding

machine under healthy and different severities of demagnetization fault for the different

magnet rotation angles. It can be noted that the value of V q does not change for all the

cases as expected. The only change is in the value of Vd which is due to the change in the

flux concentration due to the magnet rotation angle.
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Figure 6.18 The effect of the magnet rotation on Vd and Vq for the concentrated machine
under healthy and demagnetization fault

The rotation of the magnet angle will also affect the change Vd and Vq under eccentricity

fault. When the magnets are rotated, the flux will have more steel to pass through. This

reduces the saturation in the rotor steel compared to the case when the magnet are not

rotated. In this case, the extra saturation in the machine due to eccentricity fault will be

more noticeable and the effect of the extra saturation can be more noticable with the rotated

magnets compared to original magnets position. Therefore, the increase in λd and λq will

be higher in the case of rotated magnets compared to the non rotated magnets for eccentric

machine. The increase in λd and λq implies that the increase in Vq and the decrease in

Vd will be more in the case of rotating magnets. Fig.6.19 shows a comparison of the shift

in Vd and Vq for the concentrated winding machine under healthy and different severities

of eccentricity fault for the different magnet rotation angles, the motor was operating at a

speed of 2000rpm and the applied current is 75A.

It can be noted from Fig.6.19 that the change in the saturation affect both Vd and Vq,

but it wont change the directing of the shift. In all cases, the point (Vd, Vq) was shifted to

the top left of the Vd-Vq plane, but the amount of the shift was higher in the case of rotated
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Figure 6.19 The effect of the magnet rotation on Vd and Vq for the concentrated machine
under healthy and eccentricity fault

magnets compared to non rotated magnets.

6.2.5 Effect of Speed and Temperature

The operating speed and temperature of PMSM will change frequently. Therefore, it is

important to validate the separation method under different operation speeds and temper-

ature. Three speeds were simulated for the FSCW machine using FEA (300rpm,500rpm

and 600rpm). For each speed the commanded voltages (Vd and Vq) were measured under

different loads. Fig.6.20 shows the simulation results for the variation in the FSCW machine

voltages Vd and Vq under healthy and the three tested faults.

The change in the machine operating temperature causes a change in the machine voltages

due to the change in the stator resistance and the change of the magnet remanent flux with

temperature. The increase in the temperature was simulated in FEA by changing the phase

resistance and the magnet remanence as in (4.14) and (4.15). Fig.6.21 shows the simulation

results for the effect of the temperature increase on the d and q axis voltages for healthy the

three different faults. Table 6.2 summarize the change in the commanded voltages for the
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Figure 6.20 Simulation results for the change of Vd vs Vq for the FSCW machine under healthy

and three different faults under two speeds 300rpm,and 500rpm (I = 5A, angle = 1200 and
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Figure 6.21 Simulation results for the change of Vd vs Vq for the FSCW machine under

healthy and three different faults under three temperatures 200C, 1000C and 1500C (I =
5A, angle = 1200 and speed = 300rpm)

It can be noted from Fig.6.20 and Fig.6.21 that the change in the speed and temperature

shifts the value of both the d and the q axis voltages, which might decrease the accuracy of

101



Table 6.2 Comparison for the simulation results for Vd and Vq for the FSCW machine under
different faults and operating temperatures

200C 1000C 1500C

Status Vd Vq Vd Vq Vd Vq

Healthy -64.9 33.5 -67.8 29.8 -69.5 27.6
20% eccentricity -65 33.6 -67.9 30 -69.7 27.7
40% eccentricity -65.3 33.9 -68.3 30.2 -70.1 28
60% eccentricity -65.9 34.4 -68.7 30.7 -70.6 28.4
80% eccentricity -66.1 35 -69.3 31.4 -71.3 29.2
1 Magnet demag. -66.3 30 -69.3 26.7 -71.1 24.7
2 Magnets demag. -67.7 27.9 -70.7 24.8 -72.5 22.9
3 Magnets demag. -69.2 24.2 -71.9 21.4 -73.6 19.8
10% short R f = 0.5Ω -64.3 34.5 -67.2 31 -69 28.8
20% short Rf = 0.5Ω -61.8 35.7 -64.9 31.4 -66.8 30.4
10% short Rf = 0.25Ω -63.5 35.2 -66.5 31.7 -68.4 29.6
20% short Rf = 0.25Ω -59.1 35.3 -62.3 32.2 -64.2 30.3

the detection method; however the shift of the (Vd, Vq) point caused by the different faults

shows the same behaviour under different temperatures.

6.3 Fault Detection and Separation Algorithm

6.3.1 Proposed Detection Method

The shift in the voltages (Vd and Vq) under different faults is consistent for different operating

loads, speeds and temperatures. Therefore, the shift in the commanded voltages can be used

as a detection method to detect the fault type and estimate its severity. However, the machine

operates at different operating and environmental conditions. Therefore, it is important to

account for the changes in the commanded voltages using these factors into consideration.

Fig.6.22 shows a block diagram of the proposed detection and separation method using the

commanded voltage approach.
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Figure 6.22 Block diagram for fault detection and separation using the commanded voltages

The following detection method is proposed:

• The motor needs to be characterized first to generate the motor flux linkages maps as

shown in Fig.6.6b and Fig.6.6c. These maps can be used as a lookup table to estimate

the d and q inductances at any different operating point.

• At any operating point the value of the motor commanded voltages can be estimated

as follows:
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– The angular speed ωee is calculated from the measured speed as follow:

ωee = Speed ∗ 2π

60
∗ P (6.4)

– The motor inductances (Ld and Lq) are estimated using the operating torque

from the lookup tables. An spline interpolation is used to estimate the value of

(Ld and Lq) if the machine is operating at a torque that is not tested during the

motor characterization.

– The operating temperature affects the stator resistance and the magnet perme-

ance flux. The increase in the stator resistance and the decrease in the magnet

permeance flux can be estimated as follows:

RST = Rs0 [1 + αR(T − T0)] (6.5)

λpmT = λpm0 [1− αBr(T − T0)] (6.6)

– The estimated commanded voltages are estimated using the following equations:

V ed = RsT .Id −  LqIqωee (6.7)

V eq = RsT .Iq +
[
λpmT + LdId

]
ωee (6.8)

• The measured voltages of the machine is recorded and comparing to the estimated

voltages. These voltages can be used a classification features. The classifier output

defines the machine health status (whether it is healthy or faulted), and by using

the voltages shift direction, the fault type can be detected and the severity can be
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estimated.

In order to have a high classification accuracy, it is important for the voltages to be

estimated correctly to the actual measured voltages. Fig.6.23 shows a comparison between

the actual and the estimated voltages for the FSCW machine under different operating con-

ditions. The FSCW machine was first characterized using 6 different operating torques (0, 2,

5, 10, 15 and 20A) at a speed of 300rpm, and for an operating temperature of 200C. The es-

timated voltages were calculated at different speeds, loads, and temperatures. Interpolation

using spline interpolation was performed to estimate the d and q inductances.
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Figure 6.23 Comparison between actual and estimated commanded voltages under different
operating conditions

The results shows that the proposed method is able of estimating the machine voltages

correctly for different operating load, speed, and temperature. It is also shown that the

effect of the speed and temperature can be adjusted analytically, which reduce the num-

ber of variation parameters to only the current. However, the accuracy of the estimated

voltages depends on the number of samples in the lookup tables, the higher the number of

characterization tests, the more accurate the estimation.
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6.3.2 Classification Implementation

To have an accurate results for detecting the fault the type and severity, a classification

method is needed. Two features were extracted from each case: the d-axis voltage and

the q-axis voltage. The actual commanded voltages at different operating condition is used

as the testing samples. For every testing sample, the training samples were generated by

calculating V ed and V eq around that tested sample operating condition. The variation was

chosen to be 10%. For example if the testing sample collected for a machine operating at a

speed of 200rpm, a torque of 10A, and a temperature of 200C, the training training samples

is calculated for all the speeds from 190rpm to 210rpm, for each speed the loads is varied

from 9.5A to 10.5A, and the temperature is varied from 190C to 210C. A total of 1000

combination samples can be generated as a training samples for each testing sample.

For the concentrated winding machine, 11 cases were generated using FEA. One case

corresponds to the healthy conditions, four cases correspond to static eccentricity fault,

generated by varying the severity from 20% to 80% in steps of 20% of the airgap length, three

cases corresponds to partial demagnetization fault, by demagnetized 1, 2 and 3 consecutive

magnets, and three cases represent turn-to-turn short circuit fault (12.5% and 25% and

62.5% of the turns in phase A are shorted). The machine was first characterized at a speed

of 500rpm, the operating temperature is 200C and the current was varying from 0A to 150A

in steps of 10A. The characterization data can be used to generate the lookup tables for the

flux linkages. These lookup tables were used to estimate the flux linkages for the training

samples. The testing samples were collected from speeds of 500rpm and 1000rpm at an

operating temperatures of 200C, 1000C, and 1500C with loads of 10A, 50A, and 100A. 18

samples were generated as a testing samples for each health status (a total of 198 testing

106



samples), and for each testing sample a 1000 samples were generated as a training samples.

For the FSCW machine 11 cases were generated using FEA, one for healthy, 3 for eccen-

tricity fault (40%-80% in steps of 20%), three cases for demagnetization by demagnetizing

1, 2, and 3 adjacent magnets, and 4 cases represent short circuit fault (10% with Rf = 0.5,

12% with Rf = 0.25, 20% with Rf = 0.5, and 20% with Rf = 0.25). The machine was

characterized at a speed of 300rpm, the operating temperature is 200C and the current was

varied from 0A to 20A in steps of 5A. The testing samples were collected from speeds of

300rpm and 500rpm at an operating temperatures of 200C, 1000C, and 1500C with loads

of 2A, 3A, 5A, 8A, and 10A. 36 samples were generated as a testing samples for each health

status (a total of 432 testing samples), and for each testing sample a 1000 samples were

generated as a training samples. Experimental tests were performed for the FSCW machine

under healthy and the tested faults with the same severities. The testing samples for the

experimental data were collected from speeds of 300rpm and 500rpm at an operating tem-

peratures of 200C with loads of 2A, 3A, 5A, 8A, and 10A. 10 samples were generated as a

testing samples for each health status (a total of 110 testing samples), and for each testing

sample a 1000 samples were generated as a training samples.

6.3.3 Classification Results

Table 6.3 shows the classification results of fault detection and separation for the concen-

trated winding machine using three classifiers (KNN, LDA, and QDA). Table 4.2 shows

a comparison of the classification results the classification results of fault detection and

separation between simulations and experimental data for the FSCW machine using the

commanded voltages approach.

Table 6.5 summarizes the the average classification results of fault detection and sepa-
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Table 6.3 Classification results for the concentrated winding machine

Concentrated winding machine

Machine Status K-NN LDA QDA

Healthy 80% 83% 82%
20% ECC 75% 79% 78%
40% ECC 80% 80% 82%
60% ECC 78% 79% 78%
80% ECC 79% 81% 80%
1 Magnet 88% 88% 86%
2 Magnets 89% 91% 90.5%
3 Magnets 91.5% 93% 91.5%
12.5% Short 82% 88% 85%
25% Short 87% 90% 90%
50% Short 88% 92% 91%

Table 6.4 Classification results for the FSCW machine

FSCW machine

FEA Simulation Experimental results

Machine Status K-NN LDA QDA K-NN LDA QDA

Healthy 98% 100% 99% 95% 97% 96%
40% ECC 86% 85% 86% 79% 79% 78%
60% ECC 82% 82.5% 83% 80% 78% 75%
80% ECC 80% 82.5% 82.5% 75% 80% 80%
1 Magnet 92% 95% 95% 90% 92% 88%
2 Magnets 88% 92% 90% 90% 88% 89%
3 Magnets 90% 95% 94% 85% 89% 88%
10% short Rf = 0.5Ω 90% 85% 90% 82% 80% 82%
10% short Rf = 0.25Ω 90% 90% 90% 84% 88% 87%
20% short Rf = 0.5Ω 90% 92% 91% 80% 90% 88%
20% short Rf = 0.25Ω 92% 92% 90% 83% 91% 85%

ration using the commanded voltages approach for all tested machines (including the dis-

tributed winding machine) using the three classification methods.

The classification results show that the proposed algorithm was able to detect the fault

type and estimate its severity accurately for different operating and environmental condi-
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Table 6.5 The average classification results for all the tested machines

Concentrated winding Distributed winding FSCW machine
FEA FEA EXP FEA EXP

KNN 83.4% 88.9% 83.9% 87.8% 82.8%
LDA 85.8% 90.1% 86.5% 88.8% 86.2%
QDA 84.9% 90% 85.1% 87.9% 86.2%

tions. However, at high operating loads, it was hard to classify eccentricity fault correctly

since that the extra saturation due to eccentricity fault is masked because the machine is

saturated at high operating torque.
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Chapter 7

Conclusion

This work proposed a general algorithm for fault detection and identification in PMSMs

under different operating conditions. The incremental inductance approach is proposed as

a detection method when the motor is operating at standstill, the MCSA/MVSA and the

commanded voltages approaches are proposed when the motor is operating at steady state.

The main advantage of the methods is that it doesn’t require any additional hardware

components, the same signals that are used for the controller are used for detecting the fault

type and estimating the severity. This makes the proposed methods cost efficient, easy to

implement regarding the motor placement, and it remove the necessary to take the motor

apart to detect the health status.

The incremental inductance approach is based on the change in the saturation in the

machine under faulted condition compared to the healthy machine. Eccentricity and de-

magnetization faults directly affects the saturation in the machine. Therefore, using the

incremental inductance can be most suitable to detect these two faults. Turn-to-turn short

circuit fault doesn’t cause a direct change in the saturation. Therefore, using the incremental

inductance method can be used as an indicator for a short circuit fault, but the classification

accuracy decreases when it comes to detect the severity of this fault.

The main advantage for the commanded voltage approach is that it can be applied

during normal operation of the machine. The results show a high accuracy in detecting

demagnetization and short circuit faults. Eccentricity showed a high detection classification
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at lower torque level. However, as the operating torque increases, the detection accuracy

decrease. Therefore, this method can be suitable for detecting demagnetization and short

circuit faults regardless of the operating load.

The MCSA is the most straightforward method for fault detection. This method can be

applied for detecting all three faults during steady state operation. However, in order to

have a high classification accuracy, a large number of samples is required to cover the whole

operating range. which might not be possible and easy to obtain.
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