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\" ‘I ABSTRACT

STABILITY AND INVARIANCE OF

FUNCTIONAL DIFFERENTIAL EQUATIONS

By

Reng-Song Lo

In recent years, Liapunov's method has been successively

generalized to functional differential equations of retarded type

by using Liapunov functionals. However, in many cases the problems

are still open. For example, we already had a complete characteriza—

tion of integral stability for ordinary differential equations by

a Lipschitz Liapunov function which obeys certain bounds. But the

problem in functional differential equations is still open. Another

fundamental problem in differential equations is the characterization

of invariance sets. In ordinary differential equations, it is known

that invariance of a closed set is equivalent to a notion called

subtangent. But the corresponding result in functional differential

equations was not known.

In this thesis, we investigate the above two Open problems.

First in the case of integral stability, we found the usual approach

of Liapunov's method is not very useful. Although one can easily

get a lower semi-continuous functional which obeys certain bounds,

but "continuity" and "Lipschitz" prOperties are extremely difficult

to obtain. 0n the other hand, in the case of an invariance set,

the hereditary nature of the equation also prevents one from doing
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a straightforward generalization to functional differential equations.

For this purpose, a new Liapunov's theorem based on a class of

lower semi-continuous non-Lipschitz functionals was developed.

In particular, the usual Laipunov comparison principle hold true for this

class of Liapunov functionals. Complete characterizations of in-

tegral stability and sets of invariance are obtained using the

Laipunov theory developed earlier. As an application to the in-

variance characterization we give an invariance principle for a

class of asymptotically autonomous systems.
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INTRODUCTION

A relation of the form

(E) x'(t) = f(t, X(t)),

where x = x(t) is a d-dimensional vector value function defined

on a real interval and f(t,x) is a function from a certain region

of R X Rd into Rd, is called an ordinary differential equation.

The function f is called a vector field and the solution of (E)

are integral curves whose tangent is prescribed by the vector

field f. In most classical applications, the behavior of many

phenomena are assumed to be governed by such ordinary differential

equations. Implicit in this assumption is that the future behavior

is uniquely determined by the present state of the system alone and

is independent of its past history.

There is another type of differential equations, known as

functional differential equations (FDE), in which the past history

influences in a significant way on the future behavior of the system.

It is known [see [6], [7], [19]] that such equations arise in many

areas of application. The systems under study are better represented

by FDE than by ordinary differential equations. Historically FDE

was first encountered in the late eighteenth century, however, very

little was done during the nineteenth and early twentieth century.



For the last forty years and especially the last twenty

years, the subject has developed into one of the most active branches

of differential equations. Much of the stimulus for this was due

to the work of Volterra [17], who was interested in certain ecological

models, and Krasovskii [10], who was interested in the theory of

control, and other mathematicians who had encountered the problem

in several different fields.

A good reference for FDE is Hale [8]. In this thesis we shall

study three fundamental problems of functional differential equa-

tions of retarded type, namely, Liapunov theory, the characterization

of invariance of a set and integral stability.

0.1. Definition of FDE of Retarded Type

and Initial Value Problems

Let Rd be the real Euclidean d-space and \x\ be any nonm.

Let y > 0 and, C = C[-y,0] be the Banach space of all continuous

functions m: [-r,0] —'Rd’ with the usual sup norm

“q“ = sup{\¢(e)‘: -y s e s 0]. Given a continuous function

x: [-y + o, o + A) ... Rd, 0 6 R, A > 0, we define for each

t E [0, o'+ A) an element xt E C by xt(e) = x(t + e), -y s e s O.

Let D CR X C be open and f: D «Rd be continuous. A

functional differential equation of retarded type is a functional

relation of the form

(0.1) x'(t) = f(t, xt)

Let (o,q9 E D. A solution x = x(t, o, m) of (0.1)

-through (o,¢) is an absolutely continuous function defined on

[-y'+ a, 0'+ A) for some A >,o such that



(0.2) x0 = (p ,

(0.3) X'(o+) = f(a. x0) .

and

(0.4) x'(t) = f(t, xt), o < t < A,

where x'(d+) denotes the right hand derivative of x at t = 0-

After defining FDE of retarded type, the immediate questions

that one may ask are:

(i) When does a solution exist?

(ii) When do the equations have uniqueness property?

(iii) Does the family of solutions have certain properties

concerning convergence and continuous dependence

with respect to the initial condition?

The answer to the above questions may be summarized by the

following theorems whose proofs are found in most standard

references, c.f. [8].

Theorem 0.1 (Existence). Suppose U is an open set in

R X C[-y,0] and f: U «IRd is continuous. If (o3q0 E U, then

there is a solution of (0.1) passing through (o,m)-

A function f(t,m) defined on R X C[-y,0] is called

Lipschitzian in m on U CIR X C[-y,0], if there exists a constant

L > 0 such that

HUMP) - f(tml 5L ' \lqJ - Y\\

for all (t,¢), (t,Y) E U.

Theorem 0.2 (Uniqueness). Suppose U is an open set in

R X C[-y,0], f: U a Rd is continuous, and f(t,¢) is Lipschitzian



in Q on each compact set in U. If (o,q9 E U, then there is a

unique solution of (0.1) with initial value (g,¢).

Definition 0.1. A continuous function x: [-y + t, b) —.Rd
 

which is absolutely continuous for t < s <‘b is said to be non-

continuable with respect to an open set D CIR X C[-y,0] if, for

each -y +-t < s < b, (s, xs) 6 D and for each closed bounded set

U C1D, there exists t < tU < b such that

(3, x8) i U for all tU < s < b

For a function x, let Dx denote the domain of this

function. Then we have the following:

Theorem 0.3 (Convergence). Let f: U 4 Rd be continuous

on U czR X C[-y,0] and let \f(t,q9‘ be bounded on each closed

and bounded subset of U. Suppose [xn(°)} is a sequence of non-

continuable functions on U such that D “:3 [to - y, to + an),

for some an >'0. And ¢P(-), qKo) are :ontinuous functions

such that qP(-) a m(-) uniformly on [-y,0], where

mn(t - to) = xn(t), to - y S t s to. Define a sequence of func-

tions {Gn(-)] by

Gn(t) =- xn(t) - .p“(o) - I: f(x, x:)ds for [to, co) nn H.

o x

Assume that for each closed, bounded set B CZU, there exists a

sequence {Bn(B)], an a 0 as n a m, such that if (t, x2) 6 B

for t between to and Vn, then \Gn(Vn)l S Bn(B). Then there

exists a non-continuable function x(-) and a subsequence

n .

{x j(o)] of {xn(-)] such that



n

(i) xtj a xt uniformly on compact subset of D ,

xt

and

(11) x(t) = (9(0) + flares, xs)ds for t 2 to

X =

t W

0

Proof: See [4].

0.2. Liapunov Functions

Let f: I X D aIRd be continuous, where D is an open

set in Rd, and let I denote the interval 0 s t s m. As in the

usual Liapunov theory, see [22], we consider a continuous scalar

function V(t,x) defined on an open set S in I X D. Further-

more, we assume that V(t,x) satisfies locally a Lipschitz con-

dition with respect to x. That is, for each point (to, x0) in

S, there exists a neighborhood U = U(to, x0) and a positive

number L(U) such that

\V(t ,X) - V(t :Y)‘ S L(U)‘X ' 3"

for any (t,x) 6 U, (t,Y) 6 U. We shall denote by V 6 Lipo(x)

for this fact.

Corresponding to V(t,x), we define the function

. _ —__ .l _

(0.5) V(E)(t,x) - éfg+ h {V(t +-h, x + hf(t,x)) V(t,x)} .

Let x(t) be a continuous and differentiable function

defined for S 2 t, denote by V'(t, x(t)) the upper right-hand

derivative of V(t, x(t)), that is,

(0.6) V'(t, x(t)) = IE -1- {V(t + h, x(t + h)) - V(t,x)]

had+‘h



then we have the following, c.f. [22]:

Lemma 0.1. Let x = x(t) be a solution of (0.1) which

stays in S. Then

V'(t, x(t)) = V(E)(t.X)

As is well known, 11': 6(3) (t ,x) s 0 then by Lenma 0.1

V'(t, x(t)) s 0. The function V(t, x(t)) is therefore a non-

increasing function of t along a solution of ( E ). Conversely,

if V(t,x) is nonincreasing along a solution of ( E ), then we

have

V(E)(t,x) S 0 .

By a Liapunov function, in usual Liapunov theory, we always

mean a continuous scalardvalued function such that V 6 Lipo(x).

The following is one of the simplest forms of a very general com-

parison principle, c.f. [22].

Definition 0.2. For the case d = 1 in the equation (E),

if qfit is a solution of (E) passing through (T,§), existing on

some interval I containing 7, with the property that every

other solution m of (E) passing through (T,§) and existing on

I is such that

cp(t) s cpM(t) ('2 E I)

then fin is called a maximum solution of (E) on I passing

through (T,§).

Theorem 0.1. Let V(t,x) be a Liapunov function for (E).

Suppose there exists a realdvalued continuous function w(t,u)



defined for 0 s t < m, \ul < an where u is a scalar, such that

for all (t,x) 6 I X D

(0.7) V (t,x) szt, V(t,x))
(B)

Let U(t, to, uo) be the maximal solution of

' = =

(0-8) p V(t, u) . ”o V(to. x0)

and x(t, to, x0) be a solution of (E). Then

(0.9) V(t, x(t, to, xo)) s U(t, to, x0)

for all t 2 t0 for which both x(t, to, x0) and U(t, to, x0)

are defined.

The comparison principle has been widely used in dealing

with a variety of qualitative problems. It is a very important

tool as it reduces the problem of determining the behavior of

solution of (E) to the solution of a scalar equation (0.8) and

properties of the Liapunov function V.

In this thesis, we shall first develop the Liapunov theory

by using lower semi-continuous Liapunov functionals for FDE of

the retarded type. In the later chapters we shall investigate the

problems of integral stability and invariance of a set in which

the Liapunov theory developed earlier will play an important role.

In Chapter I, we shall define the notion of "derivative

along a solution" for a class of functionals which are assumed

only to be lower semi-continuous and prove a comparison theorem

analogous to‘Theorem 0.1 for FDE.



In Chapter II, we shall deal with the problem of the integral

stability for FDE.

In Chapter III, we shall initiate another type of derivative

for the same class of functionals as in Chapter I, and we shall

also prove another comparison theorem analogous to'Theorem 0.1 for

FDE.

In Chapter IV, we shall deal with the characterization of

invariance of a set for FDE.

For reading convenience, a hollow square [:1 is used to

signal the end of a proof.



CHAPTER I

THE FIRST COMPARISON THEOREM FOR FDE

1.1. Liapunov Functional and Lower semi-continuity

In this chapter, we shall give the definition of "derivative

along a solution" for a Liapunov functional, which is a natural

extension of (0.6), and prove a comparison principle similar to

Theorem 0.1.

Consider the functional differential equation (0.1). Let

x(-) be a solution of (0.1) through (a,¢) and let

V: R X C[-y,0] d»R* where R* denotes the extended real numbers,

we shall refer to ‘V as a Liapunov functional. ‘Throughout this

thesis, the term "Liapunov functional" means only a functional

substantially different from the usual sense of Liapunov function

in which both continuity and local Lipschitz condition are assumed.

Define

(1.1) we, "a’ = 111L331» g1; tv<o+ h, Kan) - V(o, xcn .

This extended realdvalued function is well-defined for

arbitrary V and f.

Let

CAE‘Yao] = A C ["Y,O]

= {the set of all absolutely continuous function

on ['VeoJ} '

9
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Definition 1.1. For a 2 O, a functional

*

V: [a,oo) X CA[-y,0] -' R is called lower-semi-continuous if,

for every (t,cp) 6 [a,oo) X CA[-y,0], we have

(1.2) V(t,gp) 5 11m inf V(s,‘l’)

(3:?)“(tflw

for (s,‘l’) 6 [a ,ao) X CA[-y,0]

where (s,‘¥) —+ (t, ) means \s - t‘ + “Y - q)“ _. 0 .

1.2. A Comparison Principle for FDE of Retarded Type

Assume cpE CA[-y,0], and let x: [-y, t + a) -+ R be

absolutely continuous, where a > 0, such that xt = (p. We define

the upper right -hand derivative of V(t,cp) along the function

X(t) by

V};(t,cp) = TE+ 5- {V(t + h, xt+h) - V(t,cp)]

h—~o

then we have the following theorem.

Theorem 1.1. Let p(t) be a continuous function on

[to, a], where a > to, and let V(t,cp) be a lower semi-continuous

Liapunov functional on [0,co) X CA[-r,0]. If x: [to - y, a) .. R"1

is an absolutely continuous function such that

(61) Kt =cp,

O

(b) V;(t.xt)-<-p(t), VtOSt<a.

then

T
V(T, xr) - V(to, xto) SItop(t)dt v to _<. T < a .

Proof: For fixed T, to S T < a, and a given positive

n

integer n we define A (t, xt) for to S t S T as follows:



ll

1

(1.3) An(t, xt) = {Tlt < T < t + 5' and

WT. X) -V(t. X)
I_ t l

T _ t < P(t) + 3]

Since V);(t, xt) s p(t) V to s t S T, we see that An(t, xt) is

not empty. Next we define recursively a sequence An = {t:]:_1

by taking

n n
t1 6 A (to, xt )

o

and

n n n
(1.4) tk E A (tk-l’ xtn )

k-l

so that

n n _l_ n . n n

tk - tk-l 2 2 SUP {T tk_1lT E A (tk-1’ xtn )}

k-l

n m . . .
Hence the sequence {tk]k 1 13 monotone 1ncreas1ng. Furthermore,

from Lemma 1.2, we know there exists an integer j(n) such that

Tstr,‘ sT+l. Thuswehave

J(n) n

(1.5) 1nn c? = T ,
“Hm J<n)

and

(1.6) lim x n = XI,

mam t,

1(a)

Finally, it follows from (1.2), (1.5) and (1.6) that

(1.7) m, Kr) -v<to. xt >
o

. n
S 11243116 V(tj(n)’ xtn ) V(to, xto)

J(n)
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On the other hand we see from (1.3) and (1.4) that

n n

V(ti, x n) - V(ti_1, x n )

t. t.

1 1-1

stat-.11) + If] (t‘i‘ - t‘? )

Substituting into (1.7), we get

(1.8) V(T, ear) -V(to.. xt >
O

j(n)
5 lim inf 2 (p(t:_1) + int: - 911-1)

mam i=1

j(n) n n n 1

s lfln inf 2 p(ti_1)(ti - ti-l) + lim sup ;'(t

T1400 i=1 n—Doo

I'l

j(n) - to)’

Again, from (1.3), (1.4) and (1.5), we have

n

limt, =T,tr}-trf <1.
J01) 1 1"]. n

n-m

Substituting into (1.8), we conclude that

V(T: xT) -V(t0’ Xt)

O

n—too

T . 1
5 ft p(t)dt + 11m sup E-(T - to)

o

s f: p(t)dt . [:1

0

Remark. In the proof of Theorem 1.1, only the assumption

that x is continuous was used, absolutely continuous is not

required.

Lemma 1.2. For the sequence {t3}:=1 that was defined

in (1.4), there exists an integer j(n) such that



l3

1

T s T +"'-

n

S tn

j(n)

Proof. First we claim lim t: 2 T. Suppose not. Let

n 1T” n
b = lfin t. so that b <'T. If T E A (b , x ), then we assert

n , 1 n n b

1am n n n

that T E A (ti’ x n) for infinitely many values of i. To see

ti

this, we note that

V(T, x) - V(t’f, x )

T 1 “

 

 

 

  

 

t.

(1.9) 1im inf n 1

i-ooo T - t.

1

V(b ) V(tn x
V(w. xT> - V(bn. xb) n Sn 1

s lim inf “ + lim sup

l—too T - t i—m T - t

V(T: X'T') 'V(bna Xb) V(bna Kb)

S Q + lim sup n

T - b .
n l—roo T - t.

1

n

V(ti’ x n)

t.

- 1im inf I:

i—m T - ti

But, bn = 1im t2, so it follows from (1.2) and (1.9), that we have

 
 

14m

V(‘T x) V(I:n )s " ., X _

T 1 t1; V(Te XT) V(b“: fin)

(1.10) lun inf n s T _ b

l—coo ’T - t, n

1

l

< p(bn) + n

o o n

Furthermore, p is a continuous function and t. a b , so that

1 n

from (1.10), we see that there must be a J1 such that

n 11

V e ' V a

(T xr) (ti xt.)

lfin inf 1 < p(t?) + %' whenever j 2 J
 

.
tn

1'

-m -
1 ‘T' I
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Therefore there exists infinitely many values of i 2 J1 such that

n

V(Ta XT) - V(ti’ xtn)

 

n l

+ —
< p(ti) n ’

and

I1 n

t. < r < t. + l
1 , 1 n

n n

Thus 7 E A (ti’ x n) for infinitely many values of i.

t

H
.

And hence there exists a t such that

Z
"
:

n n

T€A(tk3xn) a

tk

and

n l l n

bn - tk < 2 (T - bn) < 2 (T tk)

n

But this contradicts the choice of tk 1, Since

n n 1 n n n

- t 2 — - - .tk 1 k 2 (T tk) >»bn tk so that tk 1 > bn Consequently

we have

1 n T.imtiz . D

l-coo

1.3. C1 Locally Lipschitzian

For (p t CA[-y, 0], define the C norm of (p by
l

llcollcl = IIIII + ISYIn'Ide -

The following property of the functional V(t,q9 is

important, especially in the study of the behavior of solutions

of perturbed systems.
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Definition 1.3. Let V(t,q9 be a functional as before.

We say V is C1 locally Lipschitzian if for every (to, qh) 6 D,

where q)€ CA[-y, 0], there exists a neighborhood N(to, qb) of

(t,q0 and a constant L = L(N(to, qB)) 2 0 such that

(1.11) w(E, cpl) - V(E, cp2)\ s Lunl - ,pZIIC

1

for all (E, (p1), (E, ((32) e N(to, To) and nycpz e cA[-y, 0].

Lemma 1.3. For two continuous functions x(t,q9, y(T,m)

with the right-hand derivatives such that xt = yT = q“ we have

—T_ _L , +- , +

git-l- O HXt+6(t:CP) - Y1+6(T,cp)‘.\ - ‘X (t ) " y (T )\ °

Proof. See [22], page 187.

The following lemma is immediate.

Lemma 1.4. If V(t,¢) is C1 locally Lipschitzian and

x(t), y(t) are two absolutely continuous functions defined on

o - y S t S aI+ o, a > 0, such that x0 = y0 = qg then

I I l U + 0 +

vx(O:(P) SVy(09CP) + 21“" (U) " y (C )‘9

where x'(d+), V'(of) denote the right hand derivative at t = o,

and L is the constant in (1.11) at the point (g,q9.

Proof.

h) " V(CTCP)]

1
V'(c,¢) = lim sup - {V(o+ h, x

X had+ h 6+

1

S Miss-up h {V(o+ h, xdh) - V(O+ha yc-l-h)}

) ' V(C:CP)]

1

+ lim sgp g; {Na + h. ydh

...oh



16

, . .1. . -s Vy(o.cp) + IIESgP h {L llxdlh thhllcll

(1.12) 1

g V):(o,gp) + lim sup h {Luxodrh ‘ yo-l-h‘n

hdo

. 1 0th I .
+ ”£33.51" h {L 3‘0 Ix (e) - y (e)\de} .

But from Lemma 1.3 we have

. 1 ' + ' +

(1.13) 111:ng g {L‘lxon - yflhlll = LIx (o) - y (o >\ .

Substitute (1.13) into (1.12), we conclude that

+ +

V;(o,cp) S V):(o,cp) + L\X'(o) - V'(o )\

+ L‘X'(o+) - V'(o+)\

s vy'<c.n) + 2L\X'(o+) - Y'(o+)\ .



CHAPTER II

INTEGRAL STABILITY OF FDE

2.1. Definition of Integral Stability

Consider the vector ordinary differential equation

(2'1) X'(t) = f(t, X),

for which the identically zero function is a solution, i.e.

f(t,0) = 0 for all time t; we denote this special solution

simply by 0. Now suppose one knows that (2.1) is stable, i.e.

all the solutions of (2.1) which start near 0 remain near 0 for

all future time. If the differential equation (2.1) is subject

to certain small perturbations, the above property concerning the

solutions near 0 may or may not remain true. A more precise formula-

tion of this problem is as follows: If 0 is stable for (2.1) and

if the function p(t) is small in some sense, give condition on

f so that 0 is stable for the perturbed equation

X'(t) = f(t, X) + P(t)

A great deal of work has been done in an attempt to provide

positive answers to this problem. Historically, there have been two

approaches. One approach is to impose conditions on f, such as

being uniformly Lipschuitz, and find out what kind of perturbations

p(t) preserve stability [e.g. [3], Chapter 13]. The second

17
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approach is to restrict the type of perturbations p(t) that will

be allowed, e.g. I:\p(t)\dt < m, and find out which differential

equations (2.1) will have their stability preserved by all such p(t).

As to the second approach, Vrkoc [18], Okamura [15],

Yozhizawa [22], Chow and Yorke [2], etc. all have made tremendous

contributions to our understanding of this problem.

It is our intention in this chapter to consider the

corresponding problem for FDE in the spirit of the second approach.

We shall consider the FDE

(2.2) x' = f(t, xt) ,

. d . .
where (1) f: D a R IS continuous and

D c;R x C[-y, 0] ,

(ii) f takes closed bounded sets into bounded sets,

(iii) f is uniformly continuous in T for all of t, i.e.

Ve>0 35>0 suchthat \f(t,Y)-f(t,cp)\<e

whenever Hm -‘YH < 6, and

(1V) f(t, 0) E 0,

(v) The solution of (2.2) is unique.

Definition 2.1. The zero solution of (2.2) is integral
 

stable if for any 8 > 0, any to 2 0 and any continuous function

p: [to, m) a R, there exists a 6(a) > 0 such that “¢b“'< 6(6)

, (pom < e for alland I: \p(t)\dt < 6(a) imply \y(t, to

o

t 2 to, where y(t, to, m6) denotes a solution of
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(2.3) y'(t) = f(t, yt> + p(t)

that passes through (to, ¢b>°

It is the purpose of this chapter to give a necessary and

sufficient condition for the zero solution of (2.2) to be integral

stable.

2.2. Definition and Properties of VL Function

For an open set U CZR X CA[-y,0] let V: U a R and de-

note by

N((T:Y)y 6) = {(taflp) e U: \t ' T! + “(P ' Y“ S O}

for all (T, Y) E U and 6 > 0. Then the following is immediate.

Lemma 2.1. 1im inf V(t,¢) 2 A if, and only if, for

(t “PA-(T 3‘?)

each s > 0 there is a 6 > 0 such that V(t,¢) 2 A - 3, whenever

(tnp) 6 N(('r,\l'), 6)-

Next we define the function VL: U -oR by

(2.4) vL(t,¢) = lim inf V(T, ‘l’) ,

(Tsw)’*(t:CP)

where (T,Y), (t,m) E U.

Remark: Since U is an open subset of [o,m) X CA, there-

a:

fore for any (t,qD E U, there ex15ts a sequence {(tn, qh)}n=1 CZU

such that

lim V(tn, 9n) =VL(t. cp)

n—m

Then we have the following lemma.

Lemma 2.2. The function V is a lower semi-continuous

L

function on U.
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Proof. Let (t,q9 E U. We would like to prove

1im inf VL(T,Y) 2'VL(t,q9 V (t,q» E U ,

(T filo-'03 TC?)

i.e., for any given 6 > 0 there exists a 6 > 0 such that

VL(T’Y) ZVL(t3CP) - 6 Whenever (TTY) E N((t:CP): 5)

It follows from (2.4) that there must exist a 61 > 0 such that

V(T,Y) 2'VL(t,¢) - 3/2 whenever (T,Y) E N((t,qD, 61).

N
L
O
)

Choosing 5 = we will now show that

VL(T9Y) 2 VL(t9 ) " 6/2 Whenever (Ty?) E N((t9(P)a 6)

Since (T,Y) 6 N((t,m), 6), we can find a 53 > 0 such that

NW. 1), spawn-.111), 51)

Hence

v55?) 2 VL(t,cp) - 6/2 whenever (In?) 6 Nam). 53).

VL(T’ Y) 2VL(t9 (P) " 6/2

Hence we have

VL(T,‘Y) 2VL(t.cp) - 6 whenever (TN) 6 N((t.cp). 6),

i.e.,

1im inf VL(T,Y) 2.VL(t,¢)

(T TY)“.(t aCP)

so VL is lower semi-continuous. [j
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Theorem 2.1. Let U CZR X CA[-y,0] be open and let

W1,W2: U -+ R be continuous. Suppose V: U ... R is any arbitrary

function such that

(2.5) W1(t ,(p) S V(t ,(p) S W2(t ,(p)

for all (t,m) E U. Then the function VL: U a‘R defined by (2.4)

is lower semi-continuous and satisfies

(2.6) W1(t,cp) SVL(t,(p) SW2(t,(p)

for all (t,qD E U.

Proof. The semi-continuity of V follows directly from
L

Lemma 2.2. Next we note from (2.5) that

lim inf w (T,w) 5 lim inf V(T,Y) s lim inf w (7.?)
2

(T.Y)~(t.m) (T.Y)~(t.m) (T.Y)e(t,q9

V (t,cp) E U

Since W1 and W2 are continuous, (2.6) follows. C]

2.3. The V Functional and its Special Properties

Let

c: = We CA[-y,0] : M s n} ,

C:(I) = [q>€ AC(I) : sup\m(t)\ S H] a

tEI

c“ = weer-v.01 = M snI .

CH(I) = {q)6 C(I) : sup‘th)\ S H] .

tEI

For (t,q9 E [2y,m) x C2, we set
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AH(t, ) = {Y E CA[-r,t] FIC2[O,t] : Y E T on [t-y, t],

Y a 0 on [~y,0]} ,

and define

t
(2.7) V(t,(p) = inf \Y' - f(u, Y )‘du, .

YEAH(t,cp)I° ”

We have the following:

Lemma 2.3. Suppose x(t, o, q», (o, q» E [0,m) X CH is

a solution of (2.2). Then for t 2 2y and sup \X(S,o,¢)l S‘H,

s€[o,t]

V(t, xt(o,m)) is a nonincreasing function of t.

Proof. For t > s 2 2y 2 a, sup \x(t,o,¢9‘ S H, we

S€[o,t]

want to prove V(t, xt(g,m)) S V(s, xs(o,q9). It follows from

(2.7) that there exists a sequence of functions {Tn} in

AH(S, Xs(o,(p)) such that

V(S, Xs(o,cp)) = 1im Fn

new

= lhn I: \Y$(u) - f(u,Yn)\dn .

nan

Next for each Yn E AH(S’ xs(o,q9), we define

Tlnm) Yn(u) -y s n s s

x(u) s s n s t

Then we see that “n E AH(t, xt(o,q9) and

ng(u) = f(u. nn H) . s s n s t.

so that
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lilng<u> - f(u, fin “lldu

= l:lYé(e) - f(n, Yn,u)\du = Fn

Consequently,

t

V(t, X (03(9)) = inf Y'(u.) - f(u,‘i’) dp,

t YéA(t.xt(o,cp))f°‘ “ ‘

S 1im Fn SV(s, xs(o',cp)) . D

the

Lemma 2.4. Let U C [0, co) X CH be open and
A

, n

(tn, (pm) -- (7,?) in U. If x (t, tn, cpn), x(t, 'r, Y) are

solutions of (2.2) that pass through (tn, (pm), (T, Y) respectively;

then for small h > 0 there exist a subsequence of [(tn, (9:1)],

which we denote also by {(tn, (pn)], such that

(tn+h,x )-o('T+h,x )

n

tn+h T+h

Proof. See [4], or [8] . D

H

Lemma 2.5. Suppose x(t, o, (p), (g,q)) E [o,oo) x C is

a solution of (2.2). Then for t 2 2y and sup ‘x(s,g,gp)‘ s H,

sE[0.t]

VL(t, xt(a,(p)) is a nonincreasing function of t.

Proof. Suppose t >t 22v and sup \x(s,g,cp)\ SH.

1 2 s€[o,t]

n n , H

Let {(t , (p )] be a sequence in [o,oo) X CA such that

n n

n—voo

and

(tn! cPm) -° (t2: xtz)
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n

Let x (t, tn, cpn) be a solution of (2.2) that passes

through (tn, cp“). If Itl - tZ‘ small enough, then by Lemma 2.4,

there will exist a subsequence of {(tn, $11)], which we denote

also by [(tn, qP)] such that

n

(tn+t1-t2,x )—.(t1,xt)
n

t +t1-t2 1

Thus from (2.4) and (2.8), we have

VL(t1, xt ) - VL(t2, xt )

1 2

(2.9) s 1im inf V(tn + t1 - t2. x“n ) - 1im V(tn, xnn)

n—m t +1: ‘1’. n—cco t

l 2

S 1im inf [V(tn + t1 - t2, xnn )- V(tn, xnn)] .

n—Ioo t +t -t t

1 2

But fran Lemma 2.3 we have

(2.10) V(tn + t1 - t2, x“n ) - V(t“, xnn) s o .

t +t1-t2 t

Substitute (2.10) into (2.9). We conclude that

VL(t1, xtl) - VL(t2, xtz) S 0 . D

15313:; 2.6. For 'T > 2y and cp 6 C2, there exists a

solution x(t) of (2.2) such that xo 5 0, x!r = cp and

\x(t)\ SH for O S t S T if, and only if, V(‘l‘, ) = 0.

Proof. First suppose x(t) is a solution of (2.2) such

that x,r = cp, then by definition of V(T,tp) we have V(T, ) = 0.

Next assume V(T,tp) = 0. We would like to show that there exists

a solution of (2.2) such that x E 0, xT = (p and “xtll S H for
O

O S t S T. Now since V(T,tp) = 0, it follows from the definition
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of V, that there exists a sequence of absolutely continuous func-

tions {xk(t)] where xk(t) E AH(G,¢) and such that

(2.11) 1im file; - f(n, xk )Idn = o .

k4m 2”

Set ¢k(t) = xk(t) - I: f(u, xk,u)du for 0 S t S T. Since

let<t>l = ‘Xk(t) ‘ l: f<ee Xk,n’d”‘

Sj‘glxlz - f(IL. xk,u)ldu.

it follows from (2.11) that qh(t) must converge uniformly to

zero on [0,T].

Setting zk(t) = Xk(t) - ¢k(t)’ then for t1, t2 such

that 0 S t1 s t S T, we have

2

t2
zk(t2) - zk(t1) = [t1 f(n. Xk,u)dn

and

‘Izk(t2) - zk(t1)l, SM(T)(t2 - t1)

where M(T) =‘Max{\f(t, xt)‘ : O S t S T, and \x\ S H}. Thus

{zk(t)} is uniformly bounded and equi-continuous. By Ascoli's

theorem, there exists a uniformly convergent subsequence, which

we denote by {zk(t)} again such that

x(t) = lim zk(t) uniformly on -y S t S T .

kam

__ _ _ t

Then clearly x0 = 0 and xT — m and also x(t) — f0 f(n, xu)du,

since qk(t) « O uniformly as k a m. Thus xk(t) a x(t) uniformly

as k a m. This shows the existence of a solution x(t) such

that xo E O, xT = m and lx(t)i S H since qh(t) converge

uniformly to zero on [0,T], and lxk(t)‘ S H. C]
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Lemma 2.7. Let x(t), y(t) 6 CS [T - y, T + a], where

a > o, T 2 2y such that x(9) = y(e) V T - y S e S T. Then

‘V(S: XS) " V(S, yS)\

(2.12)

S Hxs - ys“c1 +-M(x,y,s) V T S s < a + T 2

where M(x,y,s) is a positive number depending on x, y and s

such that lim 11.05.1112). = 0.
saT s T

Proof. For T < s < a + T, let {¢k] be a sequence of

functions, such that

(1) ‘Pt 6 AH<s. x5).

and

. s

(2) 11m Fn = V(s, x5), where Fn = Io\¢i(”) - f(u, wk LL)ldu.

n—IQ
9

For each (pk define 51: as follows

:pk(e)=cpk(e). 6ST.

= y(e) . T S e S s .

Then

We. Ye) s 13%; - f(n, Them“

5 filth - f(u. tpdes

3““. -- '

+§T1cpk - f(IL. cpkm) - tpk+ f(u. cpkmfldn

slim;

+ $31301», :Pkall.) ' f(lba (Pk,p,)\du'

S _ '1

f(lJu wkflfidu + [TlCPL ‘ Wield”

5 file]; - f(u. TMHdII + filX' ' Y'ldu

+ film. Fem) - f(un smuds .
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Hence

V(s. ys> we. *3) + jjlx' - y'Idu + sup man. In, u)

k ' ’

(2.13) - f(u, cpk’undu

S V(s, xs) + “XS - ySHCI + M(x, y, s)

where

,, = Sf ," '-£ .M(xy 8) 8:9 [fl (U- cnkju) (IL. cpk’quu

It remains to show that

“mutate”,

s -T
S—VT

Since f is uniformly continuous in m for all of t, it follows

that for each 6 > 0, there exists a 6 > 0 such that

2.14 f , _ ) - f , ) < 3 whenever 0 < - T < 6( ) l (u qk,u (u Tk,u \ u

From (2.13) and (2.14), we then have

8 .—

Maa = Pf: 'f9 d(x y s) sip ,T\ (u qk,u) (u ¢k,u)‘ u

S (s - T) ° 6 whenever \s - T] < 6 ,

and the result follows. [3

Lemma 2.8. Let x(t), y(t) E C§[T - y, T +'a) where

a > 0, T 2 2y such that x(9) = y(e) V T - y S 9 S.T. Then

- - l +
[VL(s, x5) VL(S’ ys)\ S “x8 yslcl +~M(x,y,s) V T S s S a T,

where ‘M(x,y,s) is a positive number depends on x, y and s

such that lim miffI-s—l = o.

SdT

Proof. Assume
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VL(S. XS) = lim V(tn. on),

Dan

where

(t T ) a (s x ) in [o m) X CH
n: n 3 S a A 0

Set

Me) =y(s+e) -X(s+e) V-ySeSO .

and

e. = «5.. + “1

Xn(t) = (p(t - tn) for tn - V St Stn

=X(t)+(pn(-y) -X(tn -y) for '1' -'\(St Stn -y,

yn(t) = ¢(t - tn) for tn - y S t S tn

= x(t) + Tn(-Y) - x(tn - y) for T - y S t S tn - y.

Then

(tn: $B) “ (S, yS)

and

VL(S, ys) ' VL(S) XS)

(2.15) S 1im inf V(tn, (pn) - 1im V(tn, (9n)

n—m n—am

s 1im inf [V(tn, E'pn) - V(tn, Tn” -
Ham

But from (2.12) we have

(2°16) V(tn: qh) - V(tn: qh)

tn I l

S ftn-S+T‘xn - yn‘du +'M(xn’ yn’ tn)

Substituting (2.16) into (2.15) we have
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t

_ n e _ I
VL(s, ys) VL(s, xs) S 111:: inf {Itn-s-i-T‘xn ynldp, + M(xn, yn, tn)]

l
A

jjlx' - y'ldu +M<x. y. s)

where

M(X. y. S) = lhn sup M(xn. Y“. t )
n

n—m

By using the same technique as in Lemma 2.7, we can prove that

lim fl$§*1*§l = o . C]
S’T

S —-b’l’

Leanna 2.9. Let x(t), y(t) 6 C:[T - y, T + a) where

8 >0, 'r 2 2y such that

x(e)=y(e) VT-ySeST.

then

vyTo. yo) 5V};(o. x0) + 2Ix'<o+) - V'(o+)l

Proof. From (1.1) we have

v};(a. yo) = liajgp fi- {V(o-I-h, yam) - V(t, ytn

(2.17) S lim S-lII-p % {V(ol'h. xoi-h) - V(o. 1%)}

h-o

l

+limsp-[]V(o+hsy )'V(O+hax )\] 0

bags h ofh lo

On the other hand, fran Lemma 2.7 we have

0 + 9 " 9(218) \V(q h yam) V(o+h xc+h)l

+ M(X, Y: 0+ h)S “yo-‘I-h ' xd+huc1

where
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M(X. y. 0+ h) =
lim h

h-+o

0 .

Substituting (2.18) into (2.17) we get

 

 

 

( > < > “y‘TH‘ - x°+hucl
V'o,y SV'g,x +1imsp

Y o x o h—ooPI- h

“Y -x ll
(2.19) s v};(o. x0) + ligzip ”P“ h Th

db I I

Y " x d6

+ lim sup Ia ‘ 6H1 dh‘

I + h

But, we see from Lemma 1.3 that

lly 'x H
(2.20) 1im 33p 0““,1 “h =\X'(o+) -y'<o+>I .

h—vo

 

Substituting (2.20) into (2.19), we conclude that

V'(o. y) SV'(o. x ) + 21X'(o+) - y'(o+)\ . C]
Y O X o

H

Lemma 2.10. For fixed T 2 2y; (T, (p) 6 [o,oo) X CA’

then V(T, (p) -0 as Htpflc ...0 .

1

Proof. Set $(t) 0 -y S t S 0

linear from 0 to ¢('Y) 0 S t S T - y

(p(t-T) T'YStST.

Then V(T. cp) S [21301) f(llu TJHdu

s TQIZE'uoI +13%“ Spud.»

S T - Max(l\<p\\c 9 cp(-v)/T-\() + jglfm. :pquu .

l
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Since f is uniformly continuous in (p for all of t and

f(t, o) = 0 we have

limo. Ema.» - o as IIeII,1 -» o .

Hence V(T, (p) —+ 0 as “(Que ... 0 .

l

H

Lemma 2.11. For fixed T 2 2y, if (T, (p) E [0, on) X CA’

then VL(T, (p) -e O as “QPHCI —-b 0.

Proof. It follows from Lemma 2.10 that

v(r, o) .. o as “cpHcl —. o .

On the other hand V(T, cp) 2 0 V (T, tp) E U so that

VL(T, (p) -+ 0 as \‘tpficl -+ O . D

Lemma 2.12. Let y(t) E C[oz - y, a] n 021:0“ B], then for

given 3 > 0, there exists a function x(t) with its derivative

x'(t) continuous on at S t S B and x(t) y(t) on

oz-yStSa suchthat

\‘I‘ZIx'm - f(t, xt)\dt - §:\y'(t) f(t, yt)dt\\ < e

and x - < .ll 9 yallc1 s

Proof. Given a > 0, choose 0 < 6(a) < e such that

2.21 ft, -ft, —fi—— forall StS( ) \ ( ) ( TM < 2(6-0!) a 8

whenever “(p(t) - 1’01)“ < 6(a)

Since y'(t) is integrable, there exists a continuous function
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p(t) such that

jgly'(t) - u(t)ldt < 1/2 6(a) .

Set

x(t) = y(a) + I: u(s)ds, for a s t s a.

=y(t), for a-yStSa.

Since

y(t) = y(oz) + j; y'(s)ds for a s t S B

we see that

we» \flU-XUHSIDWG)‘Mflws<%Md.oStSes

and

(2 23> [a I '(t) - x'(t)Idt = B I '<t) - (t) at l-s< )
. B-Y y ”FB‘Y y l-J’ \ < 2 e o

Thus by using (2.21), (2.22) and (2.23), we conclude that

“ye ‘ XBHCI S 6(a) < e

and

”'2‘de - f(t, xt)\dt - fight“) - f(t, yt)\dt\

S Iglx'(t) - y'(t)\dt +~§:\f(t, xt) - f(t, yt)‘dt

_ . __fi___
5(6) + (6 oz) 2(B'o)

l
v
h
d

<

l l E]
- + — = .

< 2 e 2 c 6

Lemma 2.13. Suppose the zero solution of (2.2) is integral

stable. Then there exists a monotonic increasing function
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b: [0, on) -e [0, 00) such that

(1) when) SV(t.cp), v (t. 2?) e [29, e) x Ci ;

(2) lim b(y) = O; and

yao

(3) b(y) = 0 if, and only if, y = O .

Proof. For any y 2 0, we define

(2.24) b(y) = inf HV(t, rp)

(t ,cp)€[2\(.°°) ch

Hell 2 )1

Then we claim b(y) >10 for y > 0. Suppose not, then there

exists sequences {tk} and [wk] such that

(2.25) \lrpkll 2 y , (ck, tpk) 6 [2y, on) x C:

and

V(tk, (91240 as k—em.

Let 6(y/2) be the number in Definition 2.1 of integral stability

that corresponds to y/Z, choose n SO large that V(tn’qh) < 6 4/

and let ”n E AH(tn’ Th) be so chosen that

t

2

fonIuyt) - f(t, umtndu < 41—154’ .

Then it follows from Lemma 2.12 that there exists a function p(t)

with continuous derivative such that

t

(2.26) lonle'“) - f(t, ut)\dt < 502‘), and “lit - Hulk-21 .

n

Next we define
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u'(t) - f(t, u ) for t E [0, t ]

(2.27) p(t) = { t n

0 for t 6 un’ co)

By changing p(t) slightly if necessary, we may further assume

that p(t) is continuous. From (2.26), (2.27) we therefore have

fjlmedt < 562‘) .

On the other hand, we see from (2.27) that p(t) is a solution of

x(t) = f(t, xt) + p(t) on -y S t S tH

so that, by using (2.25), (2.26), we have

III, II 2 He,“ - IIe, - I, II
n n

> He,“ ‘ W2

2 y - y/Z 2 y/2 ,

which contradicts the fact that zero solution of (2.2) is integral

stable. Hence

(2.28) b(y) > 0 for y > O .

It follows from (2.24) that b(y) is a monotonic increasing

function and satisfies (1). Next, from Lemma 2.6 and (2.28), we

see (3) is satisfied. Finally, canbining Lanma 2.10 and (2.24) we

obtain (2). [j I

Lemma_2.l4. Suppose zero solution of (2.2) is integral

stable. Then there exists a monotonic increasing function

b: [0, on) -0 [0, 00) such that
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(1) Mlle“) vac. 9). v (t. 9) e [29. e) x cfi ;

(2) lim b(y) = 0; and

who

(3) b(v) = 0 if, and only if, v = O .

Proof. It follows from Lemma 2.13 that there exists a

monotonic increasing function a: [0, a0 a [0, m) such that

(r) a(\\rp\\) SV(t, cp) , v (t, <9) 6 [2% os) x c2;

(ii) 1im a(y) = 0; and

YTO '

(iii) a(y) =‘0 if, and only if, y = O .

Next we define the function 'b: [0, m) a [0, m) 'by

b(v) = lim inf a(y) V y E [0, m)

tTY

Then the function b(y) is a monotonic function. Also, we see

from (i) that

lim inf a(\\‘l’\\) S 11111 inf V(T, Y)

(T 9Y)"(t 9C?) (T 9‘?)"(t TSP)

’

i.e. MIMI) va(t, cp) v (t, m) e [0, co) x G? .

It is clear from (ii) that lim b(y) = 0. Finally since a(y) = 0

vac

if, and only if, y = 0, we conclude that b(y) = 0 if, and only

if, y = 0. E3
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2.4. Characterization of Integral Stability

Canbining Leruna 2.2, Lemma 2.5, Leanna 2.8, Lanma 2.11,

and Lemma 2.14, we obtain the following theorem.

Theorem 2.2. Suppose the zero solution of (2.2) is integral

stable. Then there exists a lower semi-continuous function

H

VL: [2y, as) X CA -+ [0, on)

Having the following properties:

(1) VL(t, tp) 2 b(l\gpl\) V (t, cp) E [2% on) X Ci, where

b(y) is a monotonic increasing function such that

lim b(v)

'Y-+O

0 and b(y) =0 if, and only if,y=0

(2) VL(t. (p) -+ 0 as \‘tpHCI —0 0 for each fixed t 2 2y

(3) For any solution x(t, o: tp) of (2.2) with

(cup) 6 [0, 0°) X CH, we have for t 2 2y and

sup ‘x(s, a, tp)‘ S H, V(t, xt(c, tp)) is a non-

SE[o,t]

increasing function of t.

(4) Let x,y€C§[T-Y,T+a),where a>0,T22y

such that x(e) III)’(6) V T - y S e S T+ a. Then

\vL(s, x8) - VL(s. ys)l

- +M , , +a,SHxs ysuc (xys)VT<s<T

l

where M(x,y,s) is a positive number which depends on

x, y and s such that

mm”.
8 -

S-"l' T
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Now we consider the converse part of'Theorem 2.2.

Lemma 2.15. Suppose V(t, q» is a lower semi-continuous

functional on [2y, on) X CH Let x,y be two solutions of (2.2)A.

passing through (0, q» Then ‘V;(a, q» Vy(0'a CP) '

Proof. It follows from Lemma 2.9 that

V};(o,cp) svy'(o.o> + 2Ix'(o*)~ y'(o+)|

and

Y'(o+)l -V):(o,cp) s v;(o,rp) + 2Tx'<o+)

Since f(t, (p) is uniformly continuous in cp for all of t, we

have x'(g+) = y'(o+) so that

V}'{(o, (p) =V):(o. cp) . [3

Lemma 2.16. Let v be a functional on [2% on) x c111,

which satisfies (2.12) and the conclusion of Lemma 2.3. Then for

any continuous function p: [2y, oo) _. R and for any solution

V(t, 0. cp) of

(2.29) x' = f(t, xt) + P“) :

we have

V)',(t. yt(o. cp)) s 2tp<t>|

for all t that lie in the domain of y(t, 0, 1p)-

Proof. It follows fran Lemma 2.9 that

(2.30) v};(t. yt(o. o» svgc. yt<o. q») + 2Ix'<o+> - y'(o+)\

Next, we see from Leanna 2.3 that
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(2.31) V}'{(t, yt(g, (p)) s o .

On the other hand, from (2.2), (2.29) we have

(2.32) \X'(o+) - y'(o+>I = Ip<t>I

Substituting (2.31) , (2.32) into (2.30) we have

v;<t. Yt(o. on s men

for all t in the domain of y(t, o. (p) . CI

Lemma 2.17. Let x(o, (p) be a solution of (2.2) passing

through (c, (9). Then for any 6 > 0, there exists 1‘ such that

“xcwucl S 6 whenever “SP“ < Tl .

Proof. Since f(t, tp) is uniformly continuous in cp

for all of t and f(t, 0) = 0, there exists for given 6 > 0

an 111 < 6/2 such that

(2.33) \f(s, cp)‘ < 6/2v whenever “‘9“ < 111 .

Also it follows from the fact that f takes a bounded set into

a bounded set that there exists an 112 > 0 such that

(2.34) \lxfiyll < 111 for all Hell < le .

Choosing

(2.35) Tl = Minflll. n2) .

then for “2p“ < 'n we have from (2.33), (2.34) , (2.35) that

lx'(u)\ S \fm. xnll V H- 6 [0. 0+ )1]

< 6/2v .
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Consequently

ow . .1_ HT -6

I0 \x (“)l < 2v ft 6 du - 2 ’

and

6

“me S “1 < 5

Hence we conclude that

ch+yHc1 S 6 whenever “TH‘< n . C]

Now we are ready to state and prove the following theorem.

Theorem 2.3. For the equation (2.2) suppose there exists

a lower semi-continuous functional

H

v: [2v, ...) x CA" [0. ...)

such that the following four conditions are satisfied.

(1) V(t, .9) 2 MIN“) v (t, q.) 6 [2y, 00) x cl:

b(y) is a monotonic increasing function such that

, where

lim b(y) = o and b(y) = o if, and only if, y = o.

yao

(2) V(t, TD A’O as “m“c .2 0 for each fixed t 2 2y.

1

(3) For any solution x(t, o, q» of (2.2), where

(cup) 6 [0, on) x CH, we have for t 2 2y and

SUP \X(8, Us CP)‘ 5 H) V(t, xt(09 ((3)) is a [1011‘

s€[c,t]

increasing function of t.

(4) Let x, y E C2[T - v, T + a), where a >'0, T 2 2y

such that Ms) =y(e). V T -YS es'r+a, then
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\VL(S. xs) - VL(S. ys)\

Sllxs -y$l\c +M(x, y, s) VT<s<T+a

l

where M(x,y,s) is a positive number depends on x,y

and s such that

111:.wa3 =0
s-T

saT

Then the zero solution of (2.2) is integral stable.

Proof. Suppose not, then for any 6 > 0, and 6 >'0 there

exists a continuous function p(t), to 2 0 such that

I:;\P(t)\ < 6 and a qb E C[-y, 0] such that th“ < 6. for

which the equation

X' = f(t. xt) + P(t)

will have a solution xp = xp(t, to, T6) such that

(2.36) “xp(t2, to, mo)” 2 e, for some t2 > to‘+ y .

It follows from (1), (2), that we can choose N >tt2 so large that

and

b b

(2,37) \V(to+ y, (9)) < —2L§2- whenever “(PHc < Nil

1

On the other hand, in view of Lemma 2.17, we may assume 6 >'0

to be so small that

26 < b(e)

and
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111.2
(2.38) th +Y(°, to, (po)\\61 < N < 3 whenever “mo“ < 6 .

0

Furthermore, from Lemma 2.16, we have

V}; (t. xt) Sz\p(t)| Vto St SI:2 .

P

Thus by Theorem 1.1 we have

t

2
(2.39) V(t2, xtz) S'V(to + y, xtoIY) + ftofv\p(t)‘dt

But then (1), (2.36), (2.37) and (2.38) together hnply

b(e) s b<llxt2ll> sv<t,. xtz) < 9§fl+ s

<tlé£l+12éfl=b(e)

From the above contradiction, we conclude that the zero solution of

(2.2) is integral stable. {:1

Combining Theorem 2.1 and Theorem 2.2, we have the desired

characterization of integral stability for the zero solution of

(2.2).



CHAPTER III

THE SECOND COMPARISON THEOREM FOR FDE

In this chapter, we shall present a new Liapunov theory for

FDE of retarded type. The theory follows closely with that of

Yorke's [20], in which he developed a Liapunov theory for ordinary

differential equations. Due to the hereditary nature of the equations,

we have to use somewhat different techniques.

* _

3.1. Definition of V and V

Let D C R X C be open and f: D-+ Rd be continuous. Con-

sidering the FDE of retarded type

(3.1) x'(t) = f(t, xt) .

Since f is continuous in D, from Theorem 0.1 the initial

value problem for (3.1) is solvable for every (o,m) e D. If, in

addition, f maps bounded sets into bounded sets, then every solution

may be continuous to the boundary 8D of D. For details, see

[8] (p. 13-20). Thus, we assume throughout this thesis that f

maps bounded sets into bounded sets.

Consider now the functional differential equation (3.1).

Let x(-, o,m) be a solution of (3.1) through (o,m). Given a

Liapunov functional V: R X C[-y,o] + R, we define

42
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(3.2) Vx(o, x0) = li:+:nf h [V(o + h, xo+h) - V(o,q0] .

This extended real—valued function is well-defined for arbitrary

V and f.

Definition 3.1. A function V: R X C[—r,o] + R is called

lower semi-continuous if for every (t,m) e R X C[-r,o],

(3.3) V(t,¢) S 1im inf V(s,¢)

(S.w)r(t.o)

Definition 3.2. Let (t,m) c D be given and

V: R X C[-r,o] + R be well-defined. Define the extended real-

valued function,

(3.4) v*(t,rp) = 1im inf ,1: [V(t+h, (pt-hf(t,cp) + be) — V(t.o)l

h+o

|¢(0)|+o

where ¢ 6 C[—r,o] satisfies the following restriction:

(3-5) w
.% [zt+h — T] - f(t,m), for some z(-) e APX<£s¢sh3 f)

APX(t.T.h)

and f(t,¢)€: C[-r,o] is defined by

(3.6) f(t,m)(e) s f(t,¢), -r S e S 0 .

In (3.5), APX(t,¢,h) denotes the set of approximate solutions of

(3.1) through (t,¢) defined on [-r+t, t+h]. More precisely

d

APX(t,m,h) consists of all continuous functions 2: [-r+t, t+h] + R

such that



(3.7) Zt = ¢ .

(3.8) 2 is absolutely continuous on [t, t+h] ,

(3.9) (t+s, zt+s) e D, 0 S s s h ,

(3.10) Iz'(t+s)| s M(t,h) + h, a.e., 0 s s s h

where M(t,h) = sup{|f(t+s, zt+s)| : O s s S h}

(3.11) z'(t+) = f(t,¢) .

Remark. It follows from Theorem 0.1 that for any

(t,¢) e D the set APX(t,¢,h) is non-empty for sufficiently small

h. Hence V*(t,¢) is always well-defined. Moreover, this gives

the following lemma.

£3223 3.1. Let x(.,t,¢) be a solution of (3.1) that pass

through (t,m), then

312 * <”‘< . > v <t.¢) _ vx(t,¢> .

The next theorem says that if V satisfies a local Lipschitz

condition, then the usual Liapunov theorems still hold true when

‘V is replaced by V*.

Theorem 3.1. Suppose that V: R x C[-r,o] + R is well-

defined and for every (t,m) e D there exists a neighborhood

N(t,¢) of (t,w) and a constant L = L(t,m) 2 0 such that

(3.13) |V(E.wl> - V(E.¢2>l s Lle - mg“

for all (E,¢1), (E,¢2) e N(t,¢). Then
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* _

V (t9¢) : Vx(t: xt)

for any solution x(-) of (3.1) through (t,q9.

Proof. By Lemma 3.1, it suffices to show that

V*(t,¢) 2 V;(t, xt). Let the solution x(-) be fixed. By Defini-

tion 3.2, (3.2) and (3.13), we have

—- l

(3.14) Vx(t, xt) - 11m inf-E [V(t+h , x

h+o

t+h) ‘ V(t9¢)]

s lim inf 1 [V(t+h, ¢+hf(t,¢) + hw) - V(t,w)]

h+o

IMO) I+o

+ lim sup-h1LHX - (¢+hf(t,¢) + hW)“
h+0+ t+h

where w is the same as in Definition 3.2. Since

¢ + hf(t,¢0 + hw = zt+h for some z(-) e APX(t,¢,h),

th+h - (w + hf(t,¢) + hp)“ - \x(c+fi) - z(c+E)\

where 0 < h s h. For each fixed h > 0,

,1; Luxt+h - (cp + hf(tup) + hm

<%-L|x(t + E) - x(t) - [z(t + h) - x(t)]l .

Substituting into (3.14),

I
AV;(t, xt) v* (t,¢) + lim sup—1|x(t+h)- x(t) - [z(t+h) - x(t)]I

h+o+

v*(c,¢) + le'(t+) - z'(t+)]

V*(ta¢) B

because of (3.11) and (3.1). This completes the proof.
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Remark. In [22] (p. 186-188), it is shown that if V is

continuous in (t,¢) and is Lipschitzian in m, then V¥(t, xt)

is independent of any particular solution through (t,¢). Theorem

._ *

3.1 says that Vx(t, xt) is in fact equal to V (t,¢).

3.2. A Comparison Principle for FDE

The next theorem shows that the usual Liapunov comparison

principle may be obtained for V* derivative.

Theorem 3.2. Let D c R'X C[-r,o] be Open and f: D + R4

be continuous and map bounded sets into bounded sets. Suppose that

W: D + R is continuous and V: D + R is lower semi-continuous.

If

(3.15) v*(t.cp) s wow). (mp) e D

along x'(t) = f(t, xt), then for every (t,¢) e D there exists

a solution x(t,¢) such that

t+s

(3.16) V(t+s, xt+s) - V(t, xt) S It W(u, xu)du

for all s 2 0 such that x remains to be a solution.

t+s

Remark. In applications, it is often easier to use V

to conclude that 1V¥(t,m) 5 W(t,¢). Lemma 3.1 will show that (3.15)

is true.

3.3. Proof of the Comparison Theorem

In this section the proof of Theorem 3.2 is given. The

following lemmas are needed. For simplicity, all the assumptions

in Theorem 3.2 are assumed in these lemmas.



47

Lemma 3.2. Let (t,¢) e D be given and An(t,¢) denote

the set of (7.1) e D such that

 

 

(3.17) t<r<t+-;11-

— 1

(3°13) IMO: _ 2(0) - f(t.cp)| < E

v , - v , , 1
(3.19) (T “’1’: _ t“ <9) < Mm) + H

(3.20) w = zT for some z(') e APX(t,w, T - t).

Then An(t,¢) is non-empty for n = 1,2,...

Proof. It follows from Definition 3.2 and (3.15) that for

any given n there exist h > 0 and $1 6 C[—r,o] such that

(3.21) h + Iw (0)] < l;- and
1 2n ’

l - l
(3.22) 1h [V(t+h, mwhf(t,¢) + hwl) - V(t,¢)] < W(t,¢) +-;

Let zl(-) e APX(t,¢,h) be such that (3.5) is satisfied. Let

T = t+h and w = It is easy to see that (3.17), (3.19)
z1,t;+h'

and (3.20) are satisfied for this choice of (T,¢). Moreover, by

 

(3.5)

42(0) - cp(0) = 7‘1,t+h(°) - cp(0) = hf(tyco) + hw1(0)

Hence

- 1

|‘1(°?r_ag°)- f(t,:p)| s ”1“” < a .

This proves that (t,w) e An(t,¢) . D
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For each n sufficiently large, we now construct an approxi-

mate solution xn(-) of (3.1) through (t,m).

Since An(t,m) is non-empty,

sup{h : (t + h,w) e An(t,@)} > 0.

We may therefore find (t1, m1) 5 An(t,m) such that

t1 - t >-% sup{h : (t+h, W) e An(t,m)} .

Now, for each i = 1,2,3,... there exists inductively

(ti+1’ ¢i+l) e An(ti, mi) such that

1

(3.23) t1+1 - ti >-§ sup {h . (ti + h,¢) e An(ti, mi)}.

Let

bn = sup ti .

121

d
Define xn: [-r + t, bn) + R by

(3.24)

x = mi. 1 = 1,2,3,... .

The following is immediate from the definition of An(t,¢) .

Lemma 3.3. xn: [-r + t, bn) + Rd is continuous and is

absolutely continuous for t s s < bn' Moreover, (s, xn,s) e D

for all t s s < bn'

Lemma 3.4. For each n, xn(-) is non-continuable with

respect to D.
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Proof. We may assume that bn.<.n. If xn(-) is not

non-continuable with respect to D, then there exists a sequence

t -> b as k +00 such that

k n

(tk, x t ) e U for all k = 1,2,...

“’1:

where U c D is some closed bounded subset. This implies that

xn(s), -r + t s s 1<bn’ is bounded. If M > 0 denotes the bound

of If(1,w)l for (r,w) in the closure of {(s, xn,s) : t s s < bn}’

then it follows from (3.20) and (3.10) that

Ix'(s)| S M +-l a e t s s < bn n , . ., n .

Thus, xn is uniformly continuous on [t - r, bn)' This implies

{(s, xn S) : t S s < bn} belongs to a compact set in D. Hence,

9

is well-defined and (bn’ x ) e U. We now claim that

xn,b n,b
n n

(bn’ xn b ) f U. This contradiction will prove the lemma.

9

n

Proof of claim. (bn’ xn,bn) l U. If (t,¢) e An(bn’ xn,bn)’

and if (T,w) e A (t ,x ) for all sufficiently large 1, then

n i n,t1

for all sufficiently large 1

1 1

t114-1":1<E(T'1’n)<§(1"11) °

This contradicts the choice of t1+1 (3.23). Hence, it suffices

to show that if (T,W) e An(bn’ xn,bn)’ then, (t,¢) 6 (t1, xn,ti)

for all large 1.

Since t '+ bn as 13+ m, by (3.17) we have

i

(3.25) t < T < t +-% for all large 1.

i 1

By the continuity of f and xn and by



 

 

 

  

 

 

lw(o) - qi(0) I

i*» - t1 1 i

w(o) - xn’bn(0) 1

= 1 T - b - f(bn’xn,b )1 <1;
n n

we have

111(0) "' (91(0) 1

T _ t1 - f(ti’qk)| <-;' for all large i .

Next,

V(r.w) - V(t1.q&) V‘T'w’ ’ V‘bn’xn.bn’
(3.27) lim sup _ t s b

i+m T i T - n

+ lim sup 5 W(b .X )
i*» T - t1 n n,bn

+ — + _ b - lim inf ———:—E—‘

n T n i*» i

From the definition of lower semi-continuity of V we have

 

- 11m inf V(t1,¢i) s -v(bn’xn,b )

1+” n

This inequality together with (3.27) implies

V(TOW) - V(t19¢1) 1

(3.28) lim sup < W(b ,x ) +'-
T - t n,b n

i*» i n

a 11m.W(ti,¢i) + n

1+w

The strict inequality in (3.28) says that

V(T ’11)) " V(ti’wi) 1

(3.29) I _ t < W(t1,¢1) +-; for all large i.

i
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Since (I,w) e An(bn,x ). w = zT for some z(') e APX(bn,x ,t-bn).
n,bn

Let zi : [ti - r,t] + R? be defined by

n,bn

21(3) = 2(3), bn - r S s S T

21(3) = xn(s), ti - r S s 5 bn - r .

It is not difficult to see that zi(-)es APX(ti,cg,t - ti) for all

large 1. Since w = z , we have from (3.25), (3.26) and (3.29)
i T

that (I,w).e Ah(ti,¢&) for all large 1. This proves the claim. [J

Lemma 3.5. Let

= _ _ s
(3.30) Gn(s) xn(s) qKo) It f(u, xn,u)du, t s s < bn .

Suppose that for each closed bounded subset U<: D there exists

a sequence {8n}’ 8n 8 8n(U), such that

(3.31) Bn‘+ 0 as n + m

(3.32) if (s, x )e U for all t s s s v , then
n,s n

Icn<vn>l s e.

d

Then there exists a non-continuable function x: [t - r, b) + R

and a subsequence {x (-)} such that

(3.33) xnk(-)‘+ x(-) uniformly on compact subsets of [t - r, b)

as nk'+ m .

(3.34) x(s) - ¢(o) + ;: f(u, xu)du

xt = m .



52

Proof. See [4]. We remark that in [4] it is assumed that

the projection of D onto C[-r, o] is bounded. However, the

same proof may be used in our case with almost no changes. D

Lemma 3.6.

xn(ti+l) - xn(ti)

_ ' f(t ,X )1 ' (t - t.)
t1+1 ti 1 .n,ti 1+1 1

(3.35) [
 

t

=IS+1[ t1+1

1 It

x;(s) - f(s, xn’s)]ds - [f(ti’ x ) -
n,ti

f(s, xn,s)]ds .

Lemma 3.7. Let U C D be closed and bounded and

(3.36) Ul = {(s, xn,s) : n = 1,2,...; (u, xn’u) e U for all

t S u S s} .

Then U1 is relatively compact.

Proof. For each n, we obtain from (3.10) that if

(S,X )EU

n,s 1’

(3.37) Ixr"(s)l s M +¥1§5 (1 + M), a.e.,

where M = sup{|f(s,w)| : (S.W) e U}. We also note that xn t = m

9

for all n. For each xn,s such that (s, xn,s) 6 U1,

x e C[—r, 0] may be broken into two parts. Namely, one part is

n,s

some portion of m and the other part is absolutely continuous

and satisfies (3.37). Since w is uniformly continuous and the

bound in (3.37) is independent of n, the set {xn : (s, Xu 8) 6 U1}

’,S

is equi—continuous. Now, an argument using Ascoli theorem will

complete the proof. D
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Proof of Theorem 3.2. Let U, U1 and M be as in Lemma

3.7, and L = sup{s - t : (s,¢) e U for some w e C[-r, 0]}. Let

an(U) = suplf(sl, $1) - f(sz, wz)l

where sup 18 taken over the set of ($1, $1), (32, wz) e Ul

such that

1

13 -321 <1;
1

“1’1 ' 1’2“ < max{(M-n+1)/n2. 1(a)}

where y(n) is determined from the uniform continuity of xn on

1 l
[t - r, t +-H], i.e., if Isl - 82' ('33 then Ixn(sl) - xn(sz)] <

y(n). It follows from the uniform continuity of Q and (3.37)

that y(n) + o as n + w. Let

(U) - ( (u) +-1)L +-1(2M + 1)
8n - 0"n n n °

Since U1 has compact closure, on(U) < m. Moreover, the uniform

continuity of f on U1 yields that on(U) + o and 8n(U) + o

as n + w. Let Gn(t) be as in Lemma 3.5. We claim that the

condition (3.32) is satisfied by the above choice of an. Let

v > t and (s, x ) e U for all t s s s v . We have

n n,s n

V

(3.38) IGn(vn)| Iftnlx;(s) - f(s, xn,s)]dsl

t

1 0
1ft [xn(s) - f(s, xn’8)]ds +...+

1’.

1+1 ,
ft1 [xn(s) - f(s, xn,s)]ds +...+

V

ft:[xé(s) - f(s, xn,s)]dsl
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where ti's are from the definition of xn(°) and tj is such

that tj S vn < tj+l° It follows from Lemma 3.6 and (3.18) that

t1+1 1
' - — .-

(3.39) Ifti [xn(s) f(s, xn,s)]dsl S n (t1+1 ti)

' t1+1
+ It |£(ci, xn,t ) - f(s, xn,S)|ds .

i 1

. l
— < < —Since for r _ 6 _ 0, ti 5 s s t1+1 < ti + n and ti + 6 2 t

I
"
?

p
.

A C
D

V

II lxn(s + 6) - xn(ti + 6)|

I
A

9+6 , '

fti+e|xn(u)ldu,

we obtain from (3.10) and the uniform continuity of xn(-) on

1

[t-r, t+a],

s max{(Mn + 1)/n2, y(n)} .

This inequality, the definition an(U) and (3.39) yield

1'.

1 1 . 1
liti+ [xn(s) - f(s, xn’s)]dsl s [an(U) + 31(t1+1 - ti) .

Substituting this into (3.38),

1 vn ,

[an(U) +3“:j - t] + ftj Ixn(s) - f(s, xn,s)ldsI
AIGn<vn) I

I
A

1 1 _
[an(U) + 31L + ;[2M + 1] - Bn(U)

This proves the claim. Hence, from Lemma 3.5 there exists a

solution x(-) of (3.1) defined on [t - r, b), b > t, through

(t,¢) which is non-continuable with respect to D and there

exists a subsequence xn (.) such that

j
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xn (-) +-x(-) uniformly on compact subsets of

j

[t - r, b) as n-+ w .

We now prove that this solution x(-) satisfies (3.16).

For simplicity, denote the subsequence xn (.) by xj(-) and the

sequence {ti} used to define x (-) by ti(j). Let sEE [t,b).

J

For each large j let i = i(j) be so chosen that

l

(j) < :16) +3; .

Thus, ti(j) + s as j + w. Since xj(-) + x(') uniformly on

ti(j) s s S t1+1

[t - r, s], “x - xu“ + 0 uniformly for t S u S s as j + m.

Lu

Let Us = {(u, xj u) : t s u s s, j - 1,2,...}. It is shown by

’

the same proof of Lemma 3.7 that U8 is relatively compact. The

uniform continuity of W on Us yields

W(u, x ) + W(u, x ) uniformly on [t,s] as j + w.

j,u u

Thus, if wj = sup{IW(u, xj u) - W(u, xu)l : t s u s s}, then

w + O as j + m. Now,

3

(3.40) V(s, x8) - V(t,¢) 5 lim+inf V(t1(j), xj,ti(j)) - V(t,¢)

1(1)-11 ( ( ) )- lim inf 2 V t j , X

1.... k-O 1‘“ j”141(1)

where to(j) = t for all j = 1,2,... . By the definition of

xn(°) and by (3.19), we have
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V(t (j). x . )
k+1 j.tk+1(J)

s [W(ck(1). xj

Substituting into (3.40),

V(s, x8) - V(t,¢) g lim inf

j—MD

[tk+1(j)

S lim inf

j-mo

[tk+1(j)

5 lim inf

j-xx:

+ lim sup

j+m

- V(tk(j) , X,

.tk<1)’ +

J.tk(j))

ll.

tk+<j>1 °

i<1>~1 . 1
'z=o [W(tk(3), xj’tk(j)) +-;j]

- tk(j)]

i(j)-1

z [W(t (j), x.

k=0 k 3

)1
.tk(j)

- tk(j)1

i(j)-1

Z W(tk(j), xk=o tk(j)>[tm(1)

- t (1)]

i(j)-1 k

X [W(t (j). X . ) - W(t (j).

k=0 k tk(3) k

xj,tk(j)][tk+1(j) - ck<j)1

s
s It W(u, xu)du + 1im sup Wj[s - t]

j+oo

= f: W(u, xu)du .

This completes the proof.



CHAPTER IV

SEMI-INVARIANCE OF FDE 0F RETARDED TYPE

One of the fundamental problems in differential equations

is the characterization of invariance of a set. In ordinary dif—

ferential equations, it is known that invariance of a closed set

is equivalent to a notion called subtangent. This theorem was

first obtained by Nagumu [14], and was later rediscovered by Yorke

[21]. Recently, it was again proven by Hartman [9] and Crandall

[5]. In this chapter, we shall give a complete generalization of

this theorem to functional differential equations. The proof is

different from those given in [14], [21], [9] and [5]. The

Liapunov theory developed earlier in Chapter III is our main tool.

The notion, subtangent, in FDE is more complicated than

that in ordinary differential equations. However, this does not

limit its applicabilities. In section 2 of this chapter, we shall

give an invariance principle for an asymptotically autonomous system

as an application.

4.1. Semi-Invariance

Definition 4.1. Let Q c D. Q is said to be invariant
 

with respect to (3.1) if for each (t,¢) c Q, then any solution

x(-) of (3.1) through (t,¢D satisfies (3, x8) 5 Q for all

s 2 t and (3, x8) 6 D. Q is said to be semi-invariant if for

S7
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each (t,¢) 6 Q there exists a solution x(-) of (3.1) through

(t,¢) such that (3, x8) 6 Q for all s 2 t and (3, x8) 6 D.

The concept of invariance for ordinary differential equations

has been discussed by many authors (see, for example, [23], [11]).

In particular, the necessary and sufficient condition for a set

to be invariant has been given in [14], [21], [9], [5]. In this

section, we present a similar theorem for functional differential

equations. First, we give a definition of f(t,m) to be sub—

tangential to a set Q c D.

Definition 4.2. Let Q c D and (t,¢) 6 Q. We say that
 

f is subtangential to Q at (t,m) if

1 - -
(4.1) lim 131 E do((p + hf(t,cp). Qt+h) - o

h+o

where Qt+h denotes the set of all w such that (t + h,w) 6 Q

and w = zt+h for some 2 e APX(t,¢, h) (see Definition 3.2),

and

do(cp + ham). QM) = inf{lcp(0) + hum) — w<o>| : w eqfih} .

If Qt+h is empty, we define do(¢ + hf(t,¢), Q ) = +0° .
t+h

Theorem 4.1. Let Q c D be closed. Q is semi-invariant

with respect to (3.1) if and only if for each (t,¢) 5 Q, f(t,¢)

is subtangential to Q at (t,¢) .

Proof. Let Q be semi-invariant. For each (I,¢) 6 Q,

let x(-) be the solution of (3.1) through (t,w) such that

(3, x8) 5 Q for all s 2 t and x(s) is defined. It is clear

that x(°) e APX(t,¢, h) and x for every small h > 0.

t+h 5 Qt+h
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Moreover,

1; [4(a) + new - xt+h(o)] = f(t,:p) - “1+“; “1) 

But the right hand side tends to zero as h + 0+. Hence, by

definition f(t,¢) is subtangential to Q at (t,¢).

Conversely, first define

0 (Cd?) 6 Q

(402) V (ttfip) =

Q ~1 (t.¢) { Q

The closeness of Q implies V is lower semi-continuous. By

Q

Definition 4.2, for each a > 0 there exists h, 0 < h < 0, such

that

l
1h |¢(o) + hf(t,¢) - w(o)| < e

where w = zt+h for some z(-) e APX(t,¢,h) such that

(t + h, zt+h) e Qt+h' Let

$1 "h'Izt+h - m - hf(t,m)] -

We have m + hf(t,¢) + hwl = z and |w1(o)| < 5. Hence

t+h

VQ(t + h, m + hf(t,¢) + hwl) - VQ(t,¢) = 0 .

Letting e + 0, we have from the definition

*

VQ(t,¢) = 0 .

By Theorem 3.2, there exists a non-continuable solution x(-)

of (3.1) through (t,m) such that
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V (3, XS) - VQ (t, xt) s 0, s 2 t and x(s) is defined.

Q

From (4.2), (s, xs)i€ Q for s 2 t and x(s) is defined. D

Corollary. Let Q c D be closed. Suppose that for each

(t,¢) 5 D there exists a unique solution of (3.1) through (t,w).

Then Q is invariant if and only if f(t,m) is subtangential to

Q at every (t,¢) 6 Q.

Remark. In applications, it is often that (3.1) is auto-

nomous. For this reason, we will state Theorem 4.1 separately for

the autonomous case.

Let E c C[—r, o] be open and g : E + Rd be continuous

and map bounded sets into bounded sets. Consider the autonomous

system

(4.3) X'(t) = 8(xt) .

Definition 4.3. Let P c E. P is said to be semi—in-
 

variant with respect to (4.3) if for each m 5 P there exists

a solution x(°) of (4.3) through (ng) such that xt e P for

all t 2 0 and x(t) is defined. We say that g(¢) is sub-

tangential to P if

1 -

(4.4) lim inf-E doom + hg(¢), Pb) = 0

h+o

where Ph denotes the set of all w e P such that w = 2b for

some z(-) e APX(0.<p.h; 8)-

Theorem 4.2. Let P¢: E be closed. P is semi-invariant

with respect to (4.3) if and only if for each (9 e p, gm?) is sub-

tangential to P at W-
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4.2. Asymptotically Autonomous Systems

In this section, we consider the autonomous system

(4.5) X'(t) = g(xt)

and its perturbation

(4.6) y'(t) = g(yt) + h(t.‘y;) .

Let E c C[-r, o] be Open. We assume that g : E + Rd and

h : R x E + Rd are continuous and map closed bounded sets into

bounded sets. When h tends to zero (in some sense), (4.6) is

said to be asymptotically autonomous [12]. One is generally

interested in knowing under what conditions on h, the limit sets

of (4.6) are semi-invariant with respect to (4.5). This question

has been studied by many authors (see [23], [ll], [12], [17] and

[1]). In [13], Miller extended the result to functional differential

equations. We shall present an approach different from Miller's

based on our previous work. Note that, the use of Liapunov theory

is not new for ordinary differential equations [23], [1].

Definition 4.4. Let y(°) be a solution of (4.6). The
 

limit set L(y(’)) is the set of all w e C[-r, 0] such that

Yt + w as tnf m for some sequence {tn} .

n

We shall assume the following smallness condition on h.

(H) There exists a decreasing function u : [o,w) + [o, co)

such that p(t) + 0 as t +>w and for every continuous function

z : [-r,e°) + Rd we have
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T
l

IfT
O

h(t, 2t)dt| S p(To)

for all 0 S To S Tl S To + 1.

This condition on h is slightly more general than that

given by Miller [13].

Theorem 4.3. If h satisfies condition (H) and if L

is the limit set of a solution y(')‘ of (4.6), then L is semi-

invariant with respect to (4.5).

We shall assume that L is non-empty. Let g) e L be fixed

and 6 > 0 be so small that if Hm-—¢4\S 6, then w e E. Let

M = sup{|g(w)| : \hp-¢H S 6}. By definition, there exists a

sequence {tn} such that tn + w as n + w and yt -+ m as

n

n + w. The following lemmas are needed.

Lemma 4.1. If a = min{l, 6/3M} and n is large, then

(4.7) Hm - ytn+tH S 6, ’0 S t S a .

Proof. For large tn,

tn+t+9 tn+t+9

y(tn + t +6) = y(tn + 6) +-f£n+e g(ys)ds + ftn+6 h(s,ys)ds .

We assume that tn is so large that “w - yt\\ < 6/3 and

n

p(tn - r) S 6/3. Let tn be fixed. As long as 0 S t S l and

11ytd+t - 6][: 6 , we have for -r §_6 §_0

t +t+9

|¢(e) - y(tn + t +6)| S “W - yt\[ + tM + If n h(s,ys)dsl

‘ ' n tn+6

I
A

6/3 + tM + u(tn + e) g 6/3 + tM + p(tn - r)

25

S ——- .3 + tM

argument yields (4.7). rjA "suppose not "
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Lemma 4.2. The set

Y = {yt +t : n

n

is relatively compact.

Proof. It follows from (4.7) that Y is uniformly bounded

in C[-r, o]. If —r S 6 < 8 < 6 +1, 61 2 1 < 0, and 0 S t S a,

2

then

tn+t+62

(4.8) |y(tn + t + 62) - y(tn + t + el)| S ftn+t+61 |g(ys)|ds

t +t+6

Iftn+t+62 h(s’ ys)dSI
n 1

+

S (e - 91)M+u(tn+ t+61)

2

I
A

(02 - 81)M + p(tn - r)

Let a > 0. Choose tN = tN(e) so large that p(tn - r) < e/2

for all t 2 t . Let

n N

Mn = M(e) = sup{|g(¢)| + Ih(t,¢)l : w e B and

< < co0 _ t _ tN + a} <

where B<: D is a bounded set such that yt +t e B for all tn

n

and 0 S t S a. (The existence of the set B is a consequence

of Lemma 4.1.) We note that Mn depends only on e > 0. Thus

ly'(tn + t + 6)| S Mn, a.e., for all 2r S tn S t 0 S t S a,
N,

and -r S 6 S 0. If I6 - all < minfl, e/MN, e/ZM}, we have

2

ly<tn+t+62)-y(tn+c+el)|<e,ZrStn,oStSz.
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This proves the equi-continuity of Y and completes the proof

by using Ascoli Theorem. U

Corollary 1. Let

8(0) = SUP{|g(qD - g<w)| : w e Y. H¢>- wu s p} .

Then 8(p) decreases monotonically to zero as p + 0.

Corollary 2. For each t, O S t S a, {yt +t} has a

n

limit point 1). Such that “(p - 1])“ S 5 .

Lemma 4.3. Let w be as in Corollary 2 of Lemma 4.2.

Define a function 2 : [-r, t] + Rd by 20 = w, 2t = w. Then

Z(°) e APX(O.m.tS 8) -

Proof. Since y(tn + 6) + w(e) uniformly in 6 as

n + m and y(tn + t + 6)1+ w(e) uniformly in 6 as tn + w

j

(where {tn } is a subsequence of {tn})’ 2 is well-defined.

3

For '0 S 51’ 52 S t, by (4.8)

(4.9) l2(sl) - 2(32)| = lw(s1 - t) - w(s2 - t)|

S |y(tnj + $1) - w(sl - t)|

+ Iy(tnj + $2) - w(s2 - t)| +

Iy<cn + s2) - y(cn + s1)!

3 J

S |y(tnj + 31) - w(sl - t)| +

|y(tnj + $2) - W(s2 - t)|

+ Is2 - Slle + p(tnj - r)

where
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Mj = sup{lg(ys)l : tan s S tnj + t} .

Since g is continuous on the relatively compact set Y (Lemma

4.2), M,j is defined. Since y(tn + s)-+ z(s) uniformly for

-r S s S t as tn + w , we have for large j,

J

Mj S t + sup{lg(zs)l : 0 S s S t}_= t + M2 , say .

Letting tn + m in (4.9),

|z(sl) - 2(32)| S IMz + t] I32 - sll .

Similarly, we can show that z'(o+) = g(¢). Hence,

z(-) e APX(o.cp.t; g). [3

Proof of Theorem 4.3. We will show that g(q» is sub-

tangential to L at m. From Lemma 4.3, z(-) e APX(o,¢,t; g)

and w = 2t 6 L. Thus,

I
A(4.10) do(cp+ téup), Lt) Mo) + tgup) - w(o)|

I
A

lim sup I¢(o) + tg(q9 — y(tn + t)|

W

I
A lim sup {|¢(o) - y(tn)| + If: 8((p) ds

W

t +1:

t n

f0 8(1'tn4-3)dSI + Ift
h(s, ys)dsI}

n

I
A

lim sup |¢(o) - y(tn)| + lim sup lf:[g(¢)

n->0° new

- 8(yt +8)]ds| + lim sup p(tn) S tB(O)

n n*w

where B is from Lemma 4.2 and

- 0 S s S t} .p = lim sup {Hm - yt‘+A\ .

n11"“
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For 0 S s S t, by using (4.8)

[
A

lytn+s(e) - ¢(9)| [y(tn + e) - ¢(e)| + Iy(tn + e) — y(tn + s + e)|

I
A

ly(tn + e) - ¢(9)| + tM + p(tn - r), -r S e S o .

Hence, p S tM. From (4.10)

1“ +c'éc) L)<B(tM)
t o ¢ ¢ ’ t ‘

This completes the proof by an application of Theorem 4.1. C]
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