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CHAPTER I

INTRODUCTION

The spread of communicable diseases through society
involves many disease related factors such as incubation
period, susceptibility, infectious period, mode of trans-
mission, and resistance to the disease. Also social, cultural,
economic, and geographic factors may be considered in any
model describing the spread of the disease. To analyze
communicable diseases, differential equation models which
incorporate some of these factors are useful. 1In this
thesis, deterministic models are employed to study the
spread of a communicable disease through society. We use
deterministic models rather than stochastic models so that
differential equations are used to describe changes in the
population. Stochastic models are necessary when dealing
with diseased population which have very few individuals
sick at various times, but these models are very difficult
to analyze since there is no single solution x:[t ,tl] + R,
where x(t) is the number of individuals in the population
at time t. Both deterministic and stochastic models are

described in the book by N.T. Bailey [1l]. Deterministic



threshold models are considered in the monograph by P.
Waltman [11]. These models assume that a susceptible
individual does not become infectious upon first exposure
to an infectious individual, but only after repeated
exposure to infectious individuals has broken down the sus-

ceptible individual's resistance.

The population or community under consideration in
these models is divided into four disjoint classes which
change with time t. The susceptible class, S(t), con-
sists of those individuals who can incur the disease but
who are not yet infected. Infectious individuals will be
referred to as infectives. The infective class, I(t),
consists of those who are transmitting the disease to
others. The removed class, R(t), consists of those
individuals who are removed from the susceptible infective
interaction by recovery. The exposed class, E(t), consists
of those individuals exposed to the infection, who will as

a result become infectious (but are not yet infectious).

It is customary to scale the functions I(t), S(t),
E(t) and R(t) so that they represent the corresponding
fractions of the total populations: I(t) + S(t) + E(t) +
R(t) = 1. Deterministic models treat each of these functions

as being continuously varying.



In the sections that follow we present some communicable
disease models and give explicit equations that govern the
spread of the disease through society. An analysis of the

equations derived from these models is given in Chapter III.

§1. Infectious Disease Model for Gonorrhea

In this section we present an infectious disease model
for gonorrhea. The model presented here is by Cooke and

Yorke [3].

Individuals who become infected with gonorrhea recover
only after drug therapy and do not develop any observable
resistance to the disease. After recovery, they immediately
become susceptible. The incubation period is from 3 to 7
days and can be ignored when looking for long term oscilla-
tions. We therefore assume that an exposed individual
immediately becomes infectious so that E(t) = 0. Also we
assume that there is no immunity from the disease so that
R(t) = 0. The population for the gonorrhea model is composed
of two types of individuals, the susceptibles and the in-
fectives. We call these the active population. We assume
that the active population remains constant. Let x(t)
denote the size of the infectious population and S(t) the
number of susceptibles. The rate of new infection depends
only on contacts between susceptibles and infectious indivi-
duals. We assume that there is a small time lag o,

0 < 0 <1, Dbetween contacts with a susceptible and an



infective, before new infectives are observed. Since S(t)
equals the constant total minus x(t), this rate in effect
depends only on x(t) and can be written g(x(t - 0)) for
some continuous function g. This model also assumes that
there is a single infectious period L, 0 < 0 <L (the

time it takes an individual to seek out and receive treat-
ment). Therefore people are infected at the rate g(x(t - 0))
and are cured at the rate at which they contacted the disease
L time units ago, g(x(t - L)). The function x(t) then
satisfies the differential equation

(1.1) X = g(x(t - 0)) - g(x(t - L))

Equation (1.1) can be written in integral form as

(1.2) x(t) = f:-z g(x(s))ds + c

for some constant c¢. The integral term in (l1l.2) is the
number of individuals infected over the time period

[t - L,t - 0]. To have a correct biological interpretation
we must have ¢ = O, since x(t) is the infected popula-

tion.

Assume instead of a single infectious period that there
is a distribution of times until cure. Let P(a) be the
probability of having the disease continuously for at least
time "a" after infection, and let L be the maximum cure

time so that P(L) = O. As before, let g(x(t)) Dbe the rate



of new infection. Then the number of persons cured per

unit time at t 1is

-~ g(x(t - 5))p*(s)ds
0]

since -P’(s)ds is the probability of being cured in
[s,s + ds]. In this model the function x(t) satisfies

(1.3) g% = g(x(t - 0)) - j‘L g(x(t - s))p(s)ds
o

where for 0 { a { L,

(1.4) P(a) = [“ p(s)ds, P(0) =1, p(s) >oO.
o

The existence of the density p(s) is assumed. Equation (1.4)

has integral form

(1.5) x(t) = It—o P(t - s)g(x(s))ds + ¢
t-L

The constant c¢ is chosen to be zero for the same
reason as in (l.2). Note that if ¢ > O, this is inter-
preted as meaning that there is a constant subpopulation of

size ¢ of incurable infectious carriers of the disease.

The active population in the case of gonorrhea is com-
posed of two subpopulations, the infected males and the
infected females. This decomposition into subpopulations
is necessary for a more accurate and detail analysis in
studying the spread of the disease. For males, gonorrhea
is easily detected since pain usually develops a couple days
after initial infection, whereas with females infection can

go undetected for longer periods of time. Thus females can



be infectious and is able to transmit the disease without
knowing they have it. To study the disease when both the
female and male population are considered as separate sub-
populations of the active population, we assume that the
number of males with the disease is directly proportional

to the number of females with the disease. We call the
female population the main reservior for spreading the
disease. This assumption seems quite reasonable when one
considers the social behavior of society at large. In this
model, x(t) is the size of the total population. Let

Cn and Ce be the proportions of the population which are
male and female respectively. Let Pm(s) and Pf(s) be
respectively the fraction of the infected male and female
population which takes longer than time s to be cured after
infection begins. Thus Pm(o) = Pf(o) =1, Let L be

the maximum cure time. Choose L 1large enough so that

Pm(L) = Pf(L) = 0. Let P(s8) = cum(s) + cfPf(s), then

the function x(t) satisfies (1.5). We will delay analyzing
the solutions of the gonorrhea model and the following models

until Chapter III.

§2. An Economic Interpretation

We now consider an economic interpretation of the second

model for gonorrhea presented above.



Let x(t) denote the value of a capital stock at time
t. Assume that the rate of production of new capital de-
pends only on x(t), and that this rate is given by
g(x(t)) for some continuous function g. We assume
equipment depreciates over a time L to value O. L is
the lifetime of the equipment. We further assume that the
depreciation is independent of the type of equipment and
at time "a" after production, the value of a unit of
capital equipment has decreased in value to P(a) times its
original value (so P(0) =1 and P(L) = O). Thus at any
time t, x(t) equals the sum of the capital product over
the period ([t - L,t] plus some constant c¢, where ¢
denotes the value of non-depreciating assets. The function

x(t) satisfies

(2.1) x(t) = j‘I‘ P(a)g (x(t - a))da + ¢
)

Letting s =t - a, we obtain

(2.2) x(t) = I: . P(t - 8)g(x(s))ds + c

Equation (2.2) is the same as (l1.5) with o0 = 0. It
is easy to see thaf (1.3) is the differentiated form of
(2.2) where p(a) = ég P(a) is the rate of decrease in the
value at age "a" for a capital unit whose value at the

beginning of production is 1.



§3. Infectious Disease Model

In this section we present an epidemic model by
Hoppensteadt and Waltman [7]. This particular model is a
generalization of the model of Cooke and Yorke [3] presented

in section 1.

At time t = O, Io infectious individuals, called
infectives, are introduced in a homogeneous way into a

population of S susceptibles. At any time t > O, the

o
population is divided into four disjoint subpopulations,
S(t), I(t), R(t) and E(t). These functions have been
defined previously. We assume the disease spreads through
the population according to the following rules:
i) The rate of exposure of susceptibles to

infectives at time t is -r(t)I(t)s(t),

where r 1is a positive continuous function.

ii) An individual exposed at time T Dbecomes
infective at time t if Iﬁ [pl(x) +
pz(x)I(x)]dx = m where pl(x), p2(x) are
given non-negative continuous functions and
m is a non-negative constant.

iii) An individual infected at time t recovers and

becomes immune at time t + 0, 0 a positive

constant.



iv) An individual first immune at time t becomes
susceptible at time t + w, w a positive
constant.

v) The population remains constant.

Let I, (t), -0t O be the function which describes
the past history of the infectives. Io(t) is monotone and

satisfies Io(o) =1I Io(-o) = 0. Assuming that condition

o'
(iii) applies to these initial infectives, the future of
these infectives is then known. We take this into account

by defining an extension of Io(t) to the real line by

o, lt] >0
I (t) = Iot), -o<tgo
I,00) - I,(t -0, 0L to

We also assume the existence of to < 0 such that
t

o =
Io [Py (x) + py (%) I (x)]ax = m.
This condition expresses the fact that some of the initial
susceptibles must become infectious before time 0. Any
monotone function Io(t) whose extension to the reals
satisfies the above integrai~equation is called an admissible

function.

We can describe the spread of the infection by three
functional equations in the unknowns T, S, and I. Equations
for R(t) and E(t) can be obtained from these. The

equations for the model will be derived from the rate at
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which individuals are leaving the susceptible class. To do
this, it is necessary to account for those initially in-
fective individuals who are in classes S(t) and R(t)

for the first time. These will be denoted by Il(t) and
Iz(t) respectively. The earliest possible entry for an
initial infective into class S(t) is t = @, and for

t > w, the number of initially infective individuals who
are in class S(t) for the first time is the number who

recover before t - wy. Therefore,

'O, t<w
I,(t) =
I5(0) - I (t - w, 0wt

For 0 t < w those initially infective individuals

who are now in class R(t) are those who were initially
infective at time t = O minus those who are still
infective from this initial infective population. For

t > w, those initially infective who are now in class R(t)
are those who are in class R(t) for O0 < t { w minus

those in class S(t) for t > w. Therefore,

I,(0) - I (t), 0<t<w

I,(t) =
Ig(t - w) = Ig(t), ot

The equations for I,S and 1T that describe the

spread of the disease are as follows:
(3.1) ‘[“;(t) [Py (X) + p,()I(X)Ax =m, 7(t) =0 if t< t,.

The equation 7T(t) = O is just a convenience for eliminating

special cases in the equations that follow. Also, to be



11

infective at time t, a susceptible must be exposed before
7(t). Therefore, we require that the susceptible population
at time t consists of all those individuals who have not
been exposed in the interval (1(t - 0 - w),t). Any indivi-
dual exposed in this interval is eliminated from class S(t):
exposure before T(t - 0 - w) results in infection before
time t - 0 - w, recovery before t - w and readmission

to class S(t) before time t. It follows that

(3.2)  S(t) = I,(t) + s, - J‘t(t | TEOT60s (x)ax
T(t-0-w

In a similar manner, the class of infectives at time
t consists of thé initial infectives who are still infective
at time t plus those individuals who were exposed between
T(t - o) and T(t). Those who were exposed before T(t - 0)
have recovered by time t and those exposed after T(t)
are not yet infective. Therefore, we have

T(t)

(3.3) I(t) = Io(t) + j ( )
T(t-0

r(x)I (x)s(x)dx

Equations (3.1)-(3.3) constitute the basic equations

that describe the spread of the disease through society.

The questions of the existence, uniqueness, and continuous
dependence of solutions for these models have been resolved
[3,7]. Also all the models presented above are very similar
in that the oscillatory behavior of their solutions is
similar. Each of these models has solutions which exhibit

behavior that indicate the solutions may be periodic. The



12

numerical work of J. Mosevich [9], and the work of

Greenberg [4] indicates that the solutions of the functional
differential equations which arise in the model by Hoppensteadt
and Waltman are periodic for certain values of . In

Chapter II, we will develop some general theory for the
existence of nonzero periodic solutions to functional
differential equations with a real parameter y. Using

this theory we show in Chapter III that these models pre-

sented above all have nonzero periodic solutions.



CHAPTER 1II

A BIFURCATION THEOREM FOR NONLINEAR FDE'S

§1. Preliminaries

Let E" denote the real or complex Euclidean n-
space. For r >0, let C = C[-r,0] be the space of
continuous functions from [-r,0] to E® with the usual
supremum norm. If x 1is a continuous function defined on
[0 = r,0+A), 0 €R, A >O, with values in En, let

x t € [0,0 + A) Dbe the element in C[-r,0] defined by

tl
(1.1) x () =x(t+ 86, -r<egO.
We will denote by BV[-r,0], the space of vector-

valued functions, 1n, on [-r,0] which are of bounded

variation and are normalized such that

n(e) =0 8 >0
n(8) = n(-r) 8 £ -r

and n is left-continuous on [-r,0).

Consider the autonomous linear functional differential

equation

(1.2) x(t) = L(x,)

13
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where L(-) 1is a continuous linear operator mapping
c[-r,0] into E. By the Reisz representation theorem,
there exists a unique n x n normalized matrix n(-) €

BV[-r,0] such that

(1.3) Lig) = [° [an(e)]e(0), o € c[-r,0].
-r

Let x(y) be the unique solution of (1.2) through
(0,9) and let T(t) be the bounded linear operator mapping

Cc[-r,0] into c[-r,0] defined by
(1.4) T(t)o = x (o)

It is well-known that {T(t):t > O} is a strongly continuous
semi-group of bounded linear operators on C[-r,0] (see
Hale [5, p.94]). The infinitesimal generator A of the

semi-group T(t), t > 0 is given by

®(6) -r<e8<o0
Lig) = [° [an(e)]p(®), o

-X

(1.5) Ap(8) =

(o)

It is known that the domain of A consists of all continuously

differentiable functions ¢(8), -r < 6§ < 0, with

(1.6) Lin ole) - 20) . © [an(e)Ie(e)
-r

It is well-known that if A is defined by (1.5), then the
spectrum of A, 0(A) is the same as the point spectrum of

A and possibly )\ = O. Moreover, \ € 0(A) if and only if

(1.7) det a(N) = det[a - [© M an(e)] = o0
-X
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where A()\) = AI - ]O exe dn(e). Equation (1.7) is called
-r

the characteristic equation of (1.2) and its roots are the

eigenvalues of (1.2). For any real B, the set

{(A:det A()) =0, Re A DB} is finite.

Given a fixed eigenvalue )‘O of (1.2), the null spaces
n(a - ).OI)j of (A - xOI)j, j=1,2,..., satisfy the
following nested relations: n(A - )OI) cn(a - )01)2 C c--
There exists a smallest integer k > 1 such that
n@Aa - \OI)m is a subspace of n(A - ).OI)k for all
1<m<k, and n@ - \D™ = n@ - \,D* for all m > k.

"o

is the complementary subspace

The generalized eigenspace P

of P, , the following properties are known:

)

i) dim P < ®», where dim P, = algebraic
» o

multiplicity of )0

o

_ k k
= R(A - kOI) , the range of (A - on) .

belonging to )‘O is defined
to be n(a - AOI)k. If Q

ii) P and Q

LY
%

iv) Cc=7P @ Q). . Wwhere @ denotes direct sum.
(o)

A

§2. Space Decomposition

are invariant under T(t).

iii) Q

In this section we consider the projection rlp on the

space C = C[-r,0].

Definition 2.1l. An eigenvalue of (1.2) is called simple

if its algebraic multiplicity is one.
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Theorem 2.1. Let o = ivo. Vo # O be a purely

imaginary simple eigenvalue of (1.2) and let Pxo be the
generalized eigenspace belonging to )O with projection
n, :c[-r,0] » P, ,
P
% o

then

(2.1) Ip (p) = m°<¢o.cp> for any ¢ € C[-r,0], Vo € c[o,r].
o
).06
(2.2) cpo(e) = e ajy -r<8g£0
St

S WThe -1
(s) = b e (bga®(Nglag) = 0K s

(2.3) o

wO
and <+,°*> is a bilinear form defined by

(2.4)  <po> = yoe(0) - [© 2 VT(g - e)an(a)p(e)de,
-r

where ag is the unique solution of A()O)a = 0 with
la] = 1, bg is the unique solution of bTA()U) = 0 with

[b|] = 1. ("T" denotes the transpose).

Proof: Clearly oy € n(A - ).OI) since Ag, = %
implies (A - ).OI)cpo = 0. Thus by definition of a simple

eigenvalue P consists of exactly those scalar multiples

of Po° This shows the uniqueness of ag. Similarly we have
-A\-S
the uniqueness of bg. Let 0;(3) = bg e % » 0<s(<r,

then
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(e-¢) A~E
o dn(e)e 0

T 6
b-[I - d
ol j?rjo e glag

*
e

= ba[I - f‘jr an(e) ee © la,

T, .
boA (xo)a0

where

Aq0
8*0g) =1 - [° an(elee ° .

-r

It follows from the proof of Lemma 21.2 in [5, p.1l09]

* ] . *
that <¢o.qb> # 0. Therefore (s) is defined. <¢O,Qo> # 0

Yo
also follows from more general results in functional analysis

(see, for example [10]).

Vg B> = <no§e-x°s (g b’ (h)ag) ~F, go>
- BlarOgag ! @le L g>
= (bgb*(hg)ag) ™t <igrv>
= (BJA*(A)ag) ™ B3A‘ (N )ay) = 1.
Therefore,

In applications, system (1.2) is often given in the
real Euclidean n-space R®. For this reason, it is often
desirable to obtain the projections and the constant of

. . . n
variation formula in R .
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Suppose (1.2) is real. All complex eigenvalues of
(1.2) appear in complex conjugate pairs. Assume ),0 = i\;o
is a simple eigenvalue of (1.2). Hence 'io = -ivo is also
an eigenvalue of (1.2). Let P Dbe the generalized eigen-
space belonging to [ivo.—iyo]. Then, dim P = 2 and
8y = (Re gy, im 9®y) 1is a basis for P (where ¢, is as

in Theorem 2.1).

Theorem 2.2. Let o = ivb, Vo > O be a simple

eigenvalue of the real system (1.2) and P be the generalized
eigenspace belonging to [ivo,—ivb]. Then the projection Ny
onto P is given by

where

Lo

(2.6) P (8) = e a5y -r<6g£0

-A~S
(2.7) Vo (s) = bg(bgA'(xo)ao)_l e % . 0s(<r
where

QO = (Re th Im @0)

(2.8) (Re Yo
Y0
- o)

a. € E® is the unique solution of A(Ao)a =0 with J|a| =1,

(0]

bg is the unique solution of bgA(\o) = 0 with |b| = 1.
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Proof: &, = (Re g, Im ¢b) is a basis for P. By
Lemma 21.4, Hale [5, p.l109], we have <wo,go> =1, <¢o,¢b> = 0,
<$o,¢o> =0 and <Eo,mo> = 1. These imply that <Y, §,> =

(é g). This proves the theorem.

Corollary 2.1. For any ¢ € C[-r,0],

(2.9) I(p) = <Re §5.9>Re gy + <Im ¥, edIm o

Proof: Since <Re Vo’ Re ¢o> =1, <Re vo.Im ¢b> = 0,

<Im Vova ¢o> =1 and <Im wo,Re ¢b> = 0, writing out (2.5)

gives the corollary.

§3. Linear Autonomous FDE's With Real Parameter

In this section we consider (1.2) with a real parameter

Y. With real parameter vy, system (1l.2) becomes
(3.1) x(t) = L(y,x,)

where for each Yy, L(y,-) 1is a continuous linear operator
mapping C[-r,0] into E'. We assume that there exists a

unique n x n normalized matrix n(y,+) € BV[-r,0] such

that

(3.2)  L(v,e) = [° -an(v. 9 1e(e), o €c[-r,0],
-r

and the dependence of n on ¢y is smooth. By smoothness,

we mean the following:

(3.3) n(y. 8) = ny(8) + yn;(8) + vznz(e) + O(Ivlz)
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where Tor M and n, € BV[-r,0]. The characteristic

equation of (3.1) has eigenvalues which also depend on .

Let vy = Yo be fixed. If Re A < O for every eigen-
value )\ of (3.1) with y = Yo' then the zero solution of
(3.1) for vy = Yo is exponentially stable. Suppose for a
different value of vy, say vy = Yy- there exists a pair
of complex conjugate eigenvalues of (3.1) with real part
greater than zero, then the zero solution of (3.1l) for

Y=y is unstable.

We assume that there exist such a and Y+ Re A

Yo
is a continuous function of the real parameter y and
therefore by the intermediate value property for continuous
functions there is a vy, say vy = ? with Yo < ? < Yy
and a A(Y) such that Re A(Y) = O. Without loss of
generality we may assume Y = O. We further assume that

the eigenvalue, A(y) = u(y) + iv(y), of the characteristic

equation of (3.1) satisfies near vy = O,

(3.4) H(Y) = gy + Wy + uf‘,\f2 +o(lvl?

2

(3.5) v(Y) + vy + vy +o(ly]?)

Yo
where y;,v; € R for i =0,1,2. The condition Re A =0
then implies u(0) = Mo =0 and v(0) = v, # O. Also for
y =0 in (3.1) there exist periodic solutions of period

2wv61. For non-linear systems we expect periodic solutions

to bifurcate from Yy = O. In the next sections we discuss

such possibilities.
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§4. Non-linear Autonomous FDE's With Real Parameters

Consider the real non-linear system
(4.1) x(t) = Ly, x) + N(v,x.)

where Y 1is a real parameter, L 1is as in section 3, N
is the non-linear part and is smooth in its arguments.
Assume that for ¢ near zero, N(y,) = O(|p|) uniformly

on bounded sets of .

The unique solution of (4.1) with initial condition

X =9 is given by the constant of variation formula

(4.2) x, = T(y) (t - 0o + Iz T(Y) (t - S)X N(y,x_)ds

where T(y)(t) is the semi-group operator associated

with (3.1) and

‘0 -r<e<o
(4.3) X, (8)= {

1 g =0

where I 1is the identity matrix.

We seek to study the solutions of (4.1) on generalized
eigenspaces of the linear part of (4.1). In fact on generalized
eigenspaces, the solutions of (4.1) behave as solutions of

an ordinary differential equation [5, p.l1l0Ol].

Suppose A (Xl,xz,...,xk} is a finite set of eigenvalues

of (3.1) and C

C[-r,0] 1is decomposed by A as C =P @ 0Q



22

where P 1is the generalized eigenspace belonging to A

and Q is the complementary subspace of P.

Let ¢&(y) Dbe a basis for the generalized eigenspace P
associated with A and Y(y) be a basis for the generalized
eigenspace of the adjoint equation of (3.1l) associated with
A. As in Hale [5, p.10l1], the operator A defined by (1.5),
satisfies AP c P. Since P 1is finite dimensional, there
isa n xn matrix B(y) such that A§(y) = QT(y)B(y).

Here n is the dimension of the subspace P.

Let A* be the adjoint operator of the opsrator A
defined by (1.5). Also define C* = C([O,r],Rp ) where
R" is the n-dimensional vector space of row vectors. Then
for any ¢ € c*, the operator A* is defined by (see [ 5],
p-105),
* -;(S)u 0<s(<r

(4.4) a'y =
° v(-ean(e, s=o0
-y

*
It is known that if the domain of A consists of all
*
functions § in C which have a continuous first deri-

vative such that

. o)
(4.5) -y(0) = [~ y(-a)dn(e)

-r
* 3 * 3 * 3
then A maps the domain of A into C and the domain

* . *
of A 1is dense in C [5, p.lo4].
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*
For @ € C = C([-r,O],Rn) and ¢ € ¢ = c([O,r],Rn )

define the bilinear form <-, > by

(4.6) <y, 9> = y(0)p(0) - j° j: ¥(s - 8)[dn(8) Jo(e)ds
-

We may assume that <¥(y),&(y)> = I, where I is the

identity matrix. Also if the decomposition of any element

@ in C is written ¢ = ¢P + ¢p where mp is in P and

Q

o is in Q, then wp $(yv)<¥(Y),.p(y)>. We now consider

the following situation.

Let Yy be fixed, )\, =u +iv and %) = u - iv be
simple eigenvalues of (3.1). Let P be the generalized
eigenspace associated with )y = p+ iv and i =y - iv.
Then the dimension of P is 2, and the operator A
defined by (1.5) satisfies AP c P. Therefore there is a
2 x 2 matrix B such that A} = QTB, where § is the
basis for the generalized eigenspace P. The subspace P
is spanned by eigenfunctions of the form exe. -r < g £ 0.

We will now determine the form of the matrix B.

Let % be the eigenfunction corresponding to xo.

Since the system is real, Gb is the eigenfunction corres-

)
ponding to io. Moreover, ,(6) = e)‘o a

0o’ a € EXI- Let

(o)

() = 3[05(8) + 3, (0)]

% (8) = 3l9y(8) = 3,(8)]
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The eigenfunctions Py and ®p, are real and are a basis

for

space

P. We will consider this basis because the Banach

C = C[-r,0] 1is real. Applying the operator A

defined by (1.5) to these basis elements, we have

(4.7 Agy(8) = 5 &[0, (8) + (0]
= 31090 (8) + Xy3p(8)] = oy (8) - v, (0)
1l 4d -
(4.8) Ap, (8) = 37 FglPo(®) — wp(0)]
= 2rlAg@p (8 = KB ()] = up,(8) + vo (O
= vy (8) + uo, (0)
Therefore,
¥, (0)
(4.9) At = (9,(8) ., (8)) (4 V)
@, (8) u

The matrix B is given by

= (¥ V
(4.10) B (-v u)
Thus the matrix B is strictly determined by the basis for

*
the generalized eigenspace P. The operator A defined by

(4.4)
will

and
and

and

has eigenfunctions of the form P L £ pa<r. We

now prove the following.

Theorem 4.1. Let vy be fixed. Let A(y) = u(y) + iv(y)

My = u(y) - iv(y) be simple eigenvalues of (3.1),
P Dbe the generalized eigenspace associated with \(y)

A(y) with projection
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HP:C[-r,O] -+ P

Consider the real non-homogeneous system (4.1). If x(vy, o)

is the unique solution of (4.1l) through (0,¢) and

w(y) (t) = <Y°(Y),xt(v)>
then

(4.11) £ WM (t) = BNW(Y) (1) + ¥, (%) (OIN(v,x, (V)

(4.12)  z, = IT(W (t - Ao+ D [5 T(V (t - )X N(v.x (V)ds
g

where l'lQ =1 - IIP and z, = ant

w(y) vy
(4.13) B(y) =
-v(y) u(y)

Proof: Let x(y)(t) be a solution of (4.1), and
y(y) (t) Dbe a solution of the adjoint equation to (4.1) on
(-»,0]. For each t € (-w,0], 1let y(y)t be the element
in c* = C[O0,r] defined by y(y)t(a) = y(y)(t + a) for
a € [0,r]. Then by Theorem 17.1, [5, p.90] we have for all
t > o,

(M Ex (0> = [C y(v (8)N(y.x, (v)as + <y (9 x (v)>.
o

Each row y the matrix e"B(V O Yo(v)(0), 0L 88 is

a solution of the adjoint equation on (-e,®). Therefore

<e BVt Yo (M x (V> = Iz e Yo (¥) (OIN (v, x5 (v))ds

+ < BNy (y),p(n>
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t B(y) (t-s)

<Y (Y)ox (Y)> = Io e ¥o (¥) ()N (y,x_(y))ds
+ <eB 9Dy (), 0>,
Let
w(y) (t) = <Yo(v).xt(y)>
then
w(y) (0) = <Y (V). (y)>
Therefore,
wiv) (8 = [* BV (E8) y () 0IN(y.x_ () as
o
+ B (V) (t-0) w(y) (0)

Differentiating with respect to t, we get

a B(y) (t-0)

3¢ @(¥) () = B(yle

w(y) (o)N(v.xt(y))

Let o0 =1t, then

S 0y (£) = B(Yuly) (£) + ¥ () OIN(y,x, ()

Equation (4.10) follows immediately from (4.2) be taking
projection nQ on both sides. This completes the proof

of the theorem.

§5. The Bifurcation Theorem

In this section the main theorem is proved. We shall
show the existence of non-zero periodic solutions using a
technique employed by Hopf for ordinary differential equations

with a real parameter vy [2,6].
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Theorem 5.1. Consider the non-linear system

(5.1) x(t) = L(v,x.) + N(y,x,)

where vy 1is a real parameter, L(y,*) 1is a continuous
linear operator mapping C[-r,0] into En, and the

associated linear system
(5.2) x(t) = L(Y,x)

Assume
i) N 1is Fréchet differentiable and N = O(|eo])
uniformly on bounded sets of .
ii) For y = 0, there exists a unique pair of simple
purely imaginary eigenvalues ivo, -ivo.
Vo # 0 and no other purely imaginary roots

that are integral multiples of ivo.

iii) Re A’(0) # O.

Then there exist non-zero periodic solutions bifurcating

from vy = 0.
To prove Theorem 5.1, we need the following lemmas.

Let % and wo be the eigenfunctions corresponding

to )\, and io. It is known that (see Section 2)

0
Po(8) = e)‘o aj, -r{e8g0
o ~MN

S
Vo(s) =Dbge O m3A*(AJ)a)™h, o0gs<r

with
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<Vgrog> = 1. <-*O’ 9> = O

]
-]

gr®p> = 0, Ve 3

Let

,(8) = 3[qy(8) + 3y(8)]

%, (8) = 37l (8) - §o(8)]

¥ (0) = %[wo(e) + ¥ (8)]

¥, (8 = 35015(8) = Fo(8)]

T(y,t) = T(y)(t), T(0,t) = T(t)
o = 1%

We will now prove the following lemma.

= 2T

W »
(o) Vb

Lemma 5.1. Let T(t) = T(O,t) and gi(t) = <Yi,'1'(t)cp1>.
Then

°d;

ot

ag2 \ao

3 ooy,

Proof: Applying the solution operator T(t) to %

and 60 we have
t
T(t)py = eAO %

ANt
T(t)q:o = e P
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Therefore

YT g> = 3<HG + TorT(E) (g + 5) >

t t
= %<*ooexo Cp0> + %<.'Ilo:ek) .C-po>
It follows that
99, 3
3€—| = = SE<Y1'T(t)¢1>It=qo
t _ ozt
1 -
= z(ko.+ xo) = 0.

Also
KU, T(B) oy = 2L (4 = )0 T(E) (@n + B D>
2’ Py =33 ¥ =~ V! % * %

ot 11 - Mot
o

Differentiating with respect to t, we obtain

it Y D P IS VAN S SIS
3 =y, Bt 2 Py t=w°‘4i’*o L
- Lliiv) =0
=31\ T 2

This proves Lemma 5.1.
Lemma 5.2. Let T(y,t)¢b = xt(y) where % is
complex and X, satisfies (3.1). Let
vit) = = x(y) (t)
oY

then
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) ) Not
. L.(v,) + L, (p.)e
(5.3) v(t) = {° t 1770

vo =0

where xo is a complex eigenvalue of the characteristic

equation of (3.1) and

(5.4) Lo (@) = [© [dn () Jo(e)

-

(5.5) L1(¢)'= I?r [dnl(e)]m(e)-

Proof: Since x(0) = @(0) and x(y) (@) = ¢@(8) for

2 2
oy 3y
for all § in [-r,0]. Therefore v, = O. We also have

all ¢ € [-r,0], then v(g) = x(vy) (8) = p(8) =0

o)

x(y) (£) = Livx,) = [° [an(y, 0 ]x(y) (s + o)
-r

Therefore

x(y) (£) = x(v) ) + [[° [an(v. 0)1x(v) (s + o)as
O -r

Since the initial conditions for any solution are the same,

we have

x(y) (t) - x(0) () = j:j‘_’r [dn(y, 8) Ix(y) (s + @)ds
- jz L (x, (0))ds
= [*1°_ tang(®) + van (9
+o(lyI®)Ix(v) (s + 0)ds - I totxg(0))ds
= j’: Lo (x () - x_(0))ds

+ vj': L, (x_(¥))ds + o(lyl?
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Therefore

(Y) (£) - x(0) (t) _ (1 ¢t
X > X = [Q Io Lo(xs(y) - xs(o))ds]

+ jz Ly (x_(y))ds + o(]y[?

xot

Letting y - O and recalling that xt(o) = e , Wwe get

s
v(t) = Iz Lo(vs)ds + I; Ll(qb)exo ds.

Differentiating with respect to t, we get

xot

V(t) = Ly(v,) + Ly(pe O .

This proves Lemma 5.2.

Lemma 5.3. Let \; = 2’(0). Assume Re M # 0. Then

T, L T
MPoA (Ng)ag = boLy (e = )a,.
Proof: Let A(y) Dbe an eigenvalue of the characteristic

equation det A(A(y)) = O with corresponding eigenvector

a(y). By a result in Hale [5, p.99] we have

(AT - [° [anty. 912 8a(y = o.

-r
Differentiating with respect to y at vy = 0, we have
oL

]a

0
[A*(@1 - j‘o [drll(e)]e)’o - ).'(o)‘]O [dny(6) ] ee
-r -r
%

o)

]
]Ja‘’(0) = O.

+ DgI-[° [ang(e) e
r

Therefore
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A, B 9
(AT - xlffr [dn,(0)]6e ° lag - [j?r [dnl(e)]eNO Ja

s

0)

0
+ (AT - © [dny(8)]e ~ Ja‘’(0) =0
-r

Since bg annihilates the range of A(ko), we have

bT[ I - |: [dn,(8) ]e :e]a'(o) =0 If we multiply the abov

0o No o o = 0. Ply e

. T T, ., L T Y
expression by bj we get, xiboA (xo)aO = boLl(e

o8

where A’(Ao) = Jo [dno(e)]ee . This completes the proof
-r

)aO

of Lemma 5.3.

Lemma 5.4. Let v(t) be as in Lemma 5.2. Then
2T

) VN
Vo 1

<*0'V(m0) > =

By Theorem 4.1 (in the complex form) and Lemma 5.2,

Xot

y(t) = Ay (t) + ¥, (0L (g )e

Since Vo = O, y(0) = 0. Therefore
(t-s) s
y(t) = f: oo to(O)Ll(cpo)eM ds

ALt
e © jz ¥ (0) L () ds

A"

t
e)‘0 It bg(bgA'(xo)ao)-l L, (e )ao ds
o]

t
xleko [t as (by Lemma 5.3)
o

xot

klte .
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Therefore
<ipr Ving) > = vo Ape
This follows from the fact that u, = 31 and A= ) = iy,
Vo

at t = U« This proves Lemma 5.4.

d = 21
Lemma 5.5. -g;(&l.'r(y) (wo)cp1> = vo Re ; and

3 = 2T

Proof:

o) _1 3 - ‘ -
—;(<¢1.‘1‘(Y) (w) o> = 7 3;(#0 + Yo T(Y) (w) oy + T(y) (4) 05>
= I<Vor 2 TV () o>

1- -
+ 7<¥o’ Y T(y) (wo)cpo>
= %<vo. -a-a;xw) (wg) >

+ i(;o, %:’c(y) (ub)> by Lemma 5.2

1 1

T 2T
-111\,0*1 MY,

by Lemma 5.4

= —— Re ).
2vb 1°
Similarly
3 _ 1
'a'?f(‘z'T(Y) () @3> = 71<% to BY T (V) (w,) 9
+ -ga— T(vy) (u.b)q>o>
1
= 4_i<*o' -a-; x(y) (ub)>

1

- 3P0 = X9 (up)>



1 1 - -
= 21<Vo’ V (uy )> - ——-<WO.V(Q)O)>
=1y 2T 2r _ 2w
=21 M S Yo 41 MoSo o _ Vo Im N\

We will now prove Theorem 5.1.

Proof: The existence of yw-periodic solutions of (5.1)

is equivalent to solving

o= T(Y) (Wo + f(‘;’ T(Y) (0 - S)XN(v,x (v, ))ds

T(wy)e + [T(V) (W - Ty
+ j;” T(y) (0 = 8)XN(v,x (v, ) ]ds.

Let P be the generalized eigenspace associated with

A= ivo,-ivo} and Q be the complementary subspace of P
such that C = P ® Q. We scale the above equation by letting
o = €(p; + y) where € belongs to R, ¢ €Q, and o, € P.
Let 1, and nQ be the projections of C[-r,0] onto P
and Q respectively. The projection I, on the scaled

equation for cp(cpp = Mp(p)) gives
N(T(Y) (0 (€py + €y) - T(w,) (€p; + €¥)
+ j'om T(v) (w - S)XN(y,x_ (v, €p, + €y))ds]} =

where 'I'(mo)cpP = cpP. Let g € ¢[-r,0]. By Theorem 2.2,

np$= <q1,$>¢p1 + <¢2,$>cp2 where ¢@; and ¢, span the
subspace P and “’1' 12 belong to the span of the generalized

*
eigenspace P of the adjoint equation of (5.1) associated
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with A. Therefore nP$ =0 if and only if <¢l,$> =0
and <y,,p> = O. Thus we have
<Y T(Y) (w) (0 + ¥) = T(w,) (@ + V)

+ lef: T(Y) (w - S)XN(y,x_(y, €, + €y))ds> =0

<¢2.T(Y) (W (o + ¥) - T(wo) (p; + V)
+ %I;’ T(Y) (0 = S)XN(y, %, (Y, €pp + €4))ds> = O
Because there are no other eigenvalues that are integral
multiples of iv,, the operator (I - T(wo)) is invertible.
Thus the projection IlQ(ch = [IQ(cp)) defined by (4.12), on
the scaled equation for ¢ gives,
V- (@ = Tl IR () (g + ¥) = Tlug) (g + ¥
+ 2 TJZ T(¥) (w = 8)XgN(v.x, (€py + €4))ds) = O
Let G be the map from R3 x Q into R2 x Q defined by

G=G(6Y wy) = (Gl’GZ'G3) where

Gy = <¥1,T(Y) (0) (9 + ¥) = Tlup) (@ + ¥)

+ lef‘” T(Y) (0 - 8)X N(y,x_(y, €p; + €y))ds>

o)

Q
I

5 = <¥or T(Y) (w) (@ + ¥) = Tluy) (@ + ¥)
+ lejg T(Y) (0 - S)XN(y,X_ (v, €, + €¥))ds>
Gy = ¥ = (T - T(a) "M () (@) + ¥ = Tlup) gy + ¥)

+ % nofc‘)” T(y) (0 - s)XN(v,x_(v, €p; + €y))ds].
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Note that G is well defined for ¢ = O since N = O(|o]).
Also G 1is continuously differentiable in a neighborhood
of (o,o,ub,o) since each G,., i =1,2,3 is continuously
differentiable. By Theorem 2.2, the zeros of G are
solutions of (5.1). Let €=y = § = 0. Since T(0)(u,) =
T(w,) and N = o(le]), we have G, = G;(0,0,u,,0) =0

and G, = GZ(O,O,ub.O) = 0. Also for y =0,

HQT(O)(QO)(¢1 + §) = Tluy) (p; + ¢)Q = §. Therefore for
€=yY=4¥=0, G =G3(0,0,w,,0) =0. Consider the matrix
D defined by

-

3G, 3G, 3G,
Jw Y Y]

D = 3G2 3G2 3G2
ow Y oy
3G3 3G3 3G3

wa oY Bt - (e:Y:W: t) = (ololublo)

To prove that D 1is an isomorphism from R2 x Q onto R2 x Q,

it suffices to show that the matrix A defined by

BGl aGl
ow Y
A=
3G, 3G,
L dw oY . (€, Y, W, *) = (O:oa (lboo)

is non-singular and that

BG3

_av— (€, Ylwl*) = (oloo(lblo)
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is an isomorphism on Q. We compute the entries of A

follows:
Gy = G;(0,0,w,0) = <y;,T(weo; - Tluy) o>
Therefore,
oG
1 = O
dw 1(0,0,1,,0) ~ 3w <‘”1'T(‘”)°"1>|w=ub
= 0 by Lemma 5.1.
Similarly,
GZ = Gz(olol w, 0) = <*20T(W)Cpl - T(wo)wl>
and

oG

2 = 2
55 1(0,0, 4,00 = 3w SY2rTlWor >l
Yo
=5 by Lemma 5.1

as

Computing the partial derivative of G1 with respect to

we obtain

BGl

oY

- 2
©, ¥ 4, 0) <¥pr 3y TV () 0y >

= <"10 'a'av x(qu’]_) (W0)>

= T _
= ZVb Re kl by Lemma 5.5.

Y.
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Similarly,

Gy = G, (0, Y, 0y 0) = <ypo T(Y) (W) = Tluy)py>
Therefore

3G2

- 2
3 [0, v.ug.00 = V2r 3y TV (wp)ey >
= <¥ye oy X(YVegpy) (o) >

T
zYo Im *1 by Lemma 5.5

Thus the matrix A 1is given by

~ T

(0] =— Re )\

2vo 1
A = v

o T

- > Im )\

2 ZVO 1
Since Re )\ # 0, A 1is clearly non-singular. We now com-

3G,
pute —a—‘i— .
BG3

Therefore, YR = I, where I:Q - Q is the identity map.
We therefore have that D is a linear isomorphism from

R2 Xx Q onto R2 x Q. Therefore, by the implicit function

theorem in Banach spaces ([8, p.17]), there exist C’ maps

w(e), y(€) and y(€) defined for € 1in (-go,eo) where

- = 2T = =
% > 0 such that w(0) = Wy = ”0' v(0) o, y(0) (o)

and G(& v(€),w(€),y(€)) =0, -€,< €< €. This gives
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a one parameter family of non-zero periodic orbits bifurcating

from (o,xo). This completes the proof of Theorem 5.1.

Definition 5.1. Let I:C x R+ R where C = C[-r,0].

I 1is called a first integral of
(5.1) x(t) = L(y,xt) + N(y,xt)

if, for every solution x I(xt,y) = constant for all

tl
t > 0.

Theorem 5.2. Consider the non-linear FDE (5.1).

Assume (5.1) has first integral I, and I:C x R+ R 1is
smooth. Assume that M = {@:I(p,Y¥) = C, C = constant,

y € R} is a smooth manifold of co-dimension one in C. Let
$ be the smooth vector field defined on M induced by the
solution of (5.1), and @ € M be a critical point of §.

By using local coordinates around @, we obtain a FDE

in the form of (5.1). Then the conclusions of Theorem 5.1 is

valid for the vector field §.



CHAPTER III
EXAMPLES

§1. Infectious Disease Model

As an application of the theory presented in
Chapter 1II, we consider the infectious disease model
of Hoppensteadt and Waltman [7] given in Chapter I.
In this model the épread of the disease is governed
by three functional differential equations in the

unknowns T, I and S. These equations are:

(1.1) T py(x) +p,(x)I(x)]Ax =m, T(t) =0, t <t
I P 2 0
(1.2) S(t) = I,(t) + S, - Jt r(x)S(x)I(x)dx
T(t-0-w)
(1.3) 1(t) = 1500 + [T reoseormax
T(t-0)

The functions I, and Io are as defined in Chapter I:

0, lt] >0
Io(t) = I,(t), -cLtoO

Io0) - Ig(t -0, o0Ltgo

o, t<w
I,(t) =

IO(O) - Iyt - w, w<t

40
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The function I1 gives the fraction of those
initially infected at time t = O who are now in class
S(t) for the first time, while for t € [-0,0], Io(t)
describes the past history of the disease. The function
Io(t) has been extended to all reals so that the future
behavior of the initial infectives is known. The value
to in (1.1) satisfies,

tO
I [Py (xX) + p,(X)I.(x)]dx = m.
o 1 2 (o]

In our study we are interested in the behavior of I
and S for large time t, so without loss of generality
we consider the differentiated forms of (1.2) and (1.3)
for t >0 + w. (0 1is the fixed time during which an
infective remains infected, and ¢ 1is the period of
immunity) . For t > 0 + w the functions I (t), IJ(t),
and I{(t) are all zero ("‘" denotes derivative with

respect to time). The differentiated forms are: (taking T(t) =1t)

(1.4) S’(t) = -r(t){I(t)S(t) - I(t - 0 - wWSsS(t -0 - w]}

(1.5) I°(t) r(t){I(t)sS(t) - I(t - o)s(t - 0)}

Every pair of constants is a solution of (1.4) and
(1.5). It is customary in the stability theory of non-
linear differential equations to study solutions which are
"close" to constant solutions. To study the stability of

(1.4) and (1.5) we choose a particular pair of constants
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a, B which solves (1.4) and (1.5) and linearize about

this pair of constants. We make the following substitutions

(1.6) I(t)

y(t) + B

(1.7) S(t) x(t) + a

Substituting (1.6) and (1.7) into (1.4) and (1.5) respectively
and for simplicity choosing r(t) = c¢, ¢ 1is a constant,

we obtain, after dropping non-linear terms,

(1.8) x(t) = -cB(x(t) - x(t - 0 - w))
- cafy(t) - y(t - 0 - w)
(1.9) y(t) = cB{x(t) - x(t - 0)) + caly(t) - y(t - 0)}

Note that (1.8) and (1.9) are functional differential
equations with real parameters ¢, 8, a, 0 and . In
Chapter II we developed some general theory for non-linear
functional differential equations with real parameter v.
We showed that if )\ was a simple complex eigenvalue of
the non-linear functional differential equation (II, 4.1)
with dependence on the real parameter Y, such that
Re A’(y =0) # 0, then (II,4.1l), has non-zero periodic
solutions. We showed such existence in part by studying
the zeros of the characteristic equation associated with
(II, 4.1). Therefore to examine the behavior of the
solutions of (1.8) and (1.9), we shall study the solutions

in terms of the characteristic roots of the characteristic
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equation associated with (1.8) and (1.9). To obtain the
characteristic equations for (1.8) and (1.9) we let

x(t) = kle)‘t and y(t) = kzeXt where k1 and k2 are
constants, 1\ 1is an eigenvalue of the characteristic
equation associated with (1.8) and (1.9). Substituting
these values of x(t) and y(t) into (1.8) and (1.9)
we obtain

(1.10) Ny = ~cBlk, - kle-l(o+w)} _ ca[k2 _ kze-x(g+w)]

(1.11) k, = cBlk, - kle‘*°} + calk, - kze‘*°]

Rearranging equations (1.10) and (1.11) we obtain,
(1.12) (AN + cB - cBe-Mc"'w)]kl + {ca - cae-X(o+w)}k2 =0

(1.13) [cBe-kc - cB}kl + (AN - ca + cae'xolk2 =0

The characteristic equation for system (1.12) and
(1.13) is obtained by solving the determinant below:

=\ (o+w) ae-k(0+m)

A\ + cB - cBe ca - ¢

-\O \O

cBe - cB A - ca + cae

Evaluating the determinant, we obtain

(1.14) £(0a.B,C, 0 0) = A2 + cBA - cBreM(+w)

- cak + rcae M = o

From the model, we fix ¢, 0, a, and B, then (1.14)

becomes

(1.15) f(h, ) = xz + cB\ - che-X(o+w) - cah + xae M =0
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Note that )\ = O is a solution of (1.15). This
expresses the fact that every constant is a solution of
(1.8) and (1.9). It is of interest to study the zeros
of (1.15) for 1\ # O. Applying Theorem 5.2 to (1.8) and
(1.9) we obtain the equivalent form of (1.15) for ) # O.
This equivalence is given by

A\

“AOtw) g 4 cae” v = oO.

(1.16) f(xw) = A+ cB - cBe

We examine the roots of the characteristic equation (1.16)
with values of ¢ = 0.2 and 0 = 1l. We also assume
A =1iy and )\ = =iy are purely imaginary eigenvalues of
(1.16). With these values of ¢, 0 and ), (l.1l6)

becomes

(1.17) £(ivew) = iv + 0.2 - 0.2pe " +V(1+w
- 0.2a + 0.2ae” vV = ¢

Equation (1.17) is equivalent to

(1.18) iv + 0.28 - 0.28 cos v(l + w) + 0.2iB sin v(1 + )

- 0.2a + 0.2a cos v - 0.2ia sin v =0
Equating real and imaginary parts we obtain
(1.19a) 0.28 - 0.28 cos v(1 + @) + 0.2a cos v - 0.2a = O
(1.19Db) v + 0.28 sin v(1 + @) - 0.2a sin v =0
For fixed v and o we solve (1.19) for a particular

pair of constants a and PB. Table 3.1 shows values of

a and B obtained by fixing values of w in (1.19).
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TABLE 3.1
v w a 3
T/2 1 7.85398 3.92699
/2 2 3.92699 3.92699
T 2.25 3.25323 22.21441
T/4 3 5.75094 19.63495
/4 4 .56270 4.74030
T/4 5 .81331 4.74030
T/6 . 5.23599 4.88524

For each fixed a and corresponding ® in Table

3.1, we plot B versus v to find additional values of

B and v which solve (1.19). There are an infinite

number of pairs (v,B) which solve (1.19). For each
(v,B)

Other pairs

choice of o and w choose that pair for which

iv and -iy are closest to the origin.

of intersections in the vB-plane will not be considered.

In Figure (3.1), we have a = 7.85398 and w = 1.

The graph is for B versus v. There appear to be no
intersections. However, there is an intersection at
infinity since

B = a sin v - Sy
- sin 2y

by (1.19Db).
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In Figures (3.2)-(3.7), there are several pairs of
(v,B) intersections shown. It appears from Figures
(3.2)-(3.7) that for each such pair (v,B) which solves
(1.8) and (1.9), there are no integral multiples of v
such that (kv,g) solves (1.8) and (1.9). At these
intersections we will show first that Re A’ # O, then,
by applying Theorem 5.1, that the system (1.8) and (1.9)
has non-zero periodic solutions, at least for the values

of a, 0 and ®w used in each graph, Figure (3.2)-(3.7).

d Re A(B) s
TO ShOW da #O' at Bi[ l - 0,1,2,..., We
differentiate (1.16) with respect to B and obtain

(taking 0 = 1)

(1.200 G+ c-cl-B(L+ we (1+w) b oM (14w |
- cae™? %% =0
Solving for %%, we have
-A(1+w)
a) ce - C
(1.21) =L =
B 11+ we MW gemh

The PB's which solve system (1.19) in Figures (3.2)-
(3.7) correspond to those eigenvalues )\ which solve
(1.16) with real part equal to zero. Thus for all such
B's, A(B) = iv. The pair (vj.Bj) such that ivj and
-ivj are closest to the origin will be denoted by

(VO.BO). At B = Bo. (1.21) becomes
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da
(1.22) dB|B=Bo

~cfcos vo(l+w) -i sin vo(l+w) -1}

1+cBo(1+ w) (cos VO(T+ w) -1 sin vo(1+w) - ca (cos Vo - §in vo)
Writing (1.22) in the form B + bi and considering only

the real part, we obtain

(1.23) -—192-319116_6 = (e cos vy(l + w - ¢+ c?B (1 + w
- c Bo(l + w)cos vo(l + w)
- c%a cos vo(l + w) + c®a cos Vo
- c2¢ sin \)o(l + w)sin vo]/
(1 + cBo(l + w)cos vo(l + w) - ca cos \)0)2

+ (ca sin Vo = cﬁo(l + w)sin vo(l + w))2

Computed values of Re k'(ﬁo) are given in Table 3.2.
The calculations show that Re k'(Bo) # O for all values
of ﬁo considered. Thus for each pair (vo,Bo) we have

Re x(Bo) =0, Re x'(ao) # 0 and Ao = vy

Remarks. (1) \o is a purely imaginary simple
eigenvalue if % satisfies, A(iyo) = O and A'(iVo) # 0.
These conditions are easy to check and are not considered
here.

(2) To check that there are no integral multiples of
ivb. we note that there are finitely many roots of the
characteristic equation (1.16) that are purely imaginary.
If there exist integral multiples of iv.,, then there

(o]
exists a largest integral multiple nivo. Let vy = Dy,
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Applying Theorem 5.1 to v, we obtain the desired results.

That is (1.8) and (1.9) has non-zero periodic solutions.

TABLE 3.2

a B v Re \°(B) w
3.92699 3.92699 1.57080 .428318 2
18.9612 42.5261 9.21942 4.19972 2.2
5.75094 115.682 5.14383 5.26839 2.5

.562698 11.93520 2.77406 .32172 3

.81331 7.08452 2.18788 1.29186 4
5.23599 4.11505 1.74635 1.30180 5

§2. The Gonorrhea Model

As a second example, we consider the gonorrhea model
proposed by Cooke and Yorke [3]. The model is described
in Chapter I. The spread of the disease through society

is given by

(1.24) x(t) = g(x(t - 0)) - g(x(t - L))

where O < 0 < L. Without loss of generality we choose
The rate of new in-

g(x(t - 1))

L =1 by a change of time scale.
fection is given by g(x(t - 0)): is the
rate at which the infectives are being cured assuming
they contacted the disease 1 time unit ago. One choice

for the function g is

(1.25) g(u) = au(l - u), a > 0 constant.
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This choice of g is reasonable since at u = O there
are no new infections and at u =1 all new infectives

have been cured. With this choice of g, (1.25) becomes

(1.26) x(t) = ax(t - 0) - ax(t - 1) - ax?(t - 0)

+ axz(t - 1)

Linearizing (1.26) about zero, and considering only the

linear part, we obtain

(1.27) x(t) = ax(t - 0) - ax(t - 1).

The solution of the linear equation (1.27) can be
studied in terms of its charactersitic roots. To obtain

the characteristic equation, let x(t) = e)‘t

where )\
is an eigenvalue of the characteristic equation of (1.27).
Substituting x(t) into (1.27) we obtain

(1.28) x = ae~r - ae”?

Clearly A = O 1is a characteristic root of (1.28).
Applying Theorem 5.2, we eliminate the zero solution of
(1.28). Assume )\ = iy 1is a purely imaginary simple
eigenvalue of (1.28), then separating real and imaginary

parts of (1.28) we obtain
(1.29a) acos Vo -acos v=_0

(1.29Db) asiny-asinvo=y,, 0<o0<1l.
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The first equation in (1.29) shows that if o =
-v + 2mm, m an integer, then any positive value of "a"
will satisfy (1.29a). We do not consider a < O. Setting

VO = -y + 2mm in (1.29b) gives

(1.30) 2a sin v = V.

For fixed o0 € (0,1) and any integer m, such that

%E% is non-integral, we find values of "a" which satis-
fy (1.29).

By assumption, the pairs (vb,ao) which satisfy
(1.29) correspond to the eigenvalues X(ao) = Re k(ao) +
i Imx(ao) of (1.28) with Re x(ao) = 0. For all pairs
(vo,ao) which satisfy (1.29) we first show that
Re A'(ao) # 0, then, applying Theorem 5.1, concludes

that (1.27) has non-zero periodic solutions.

da
To show 3 Re Xl

a=a, # 0 for all pairs (vb.ao)
which satisfy (1.29) we differentiate (1.28) with respect

to a. We obtain

(1.31) Re A’(a = ao)

_ Vo Sin vg = vy0 sin v, 0

——

- 2 2, . . 2
[(1+a00 cos v,0 -a, cos vo) -ao(s:.n Vo= O sin \;oo) ]
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TABLE 3.3
o v a Re A‘(a)
.25 15.0796 12.8275 11.0795
.25 20.1062 10.5705 23.9027
.25 40.2124 34.2067 29.545
.5 83.7758 48.3680 108.828
.5 71.2094 41.1128 92.5038
.5 58.6431 33.8576 76.1796
.5 46.0767 26.6024 59.8554
.5 33.5103 19.3472 43.5312
.5 20.9440 12.0920 27.2070
.5 8.3776 4.8368 10.8828
.75 7.18078 4.59228 9.82478
.75 14.3616 7.36545 24.5026
.75 21.5423 24.8250 16.3570
.75 32.3135 20.6653 44.2115
At each pair (qo,ao) which satisfy (1.29), the computa-

tions in Table 3.3 show that Re x'(ao) # 0.

remarks stated in Example 1 above applies here.

The same

Theorem 5.1, (1.27) has non-zero periodic solutions.

Applying
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