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ABSTRACT

HOPF'S BIFURCATION FOR NON-LINEAR FUNCTIONAL

DIFFERENTIAL EQUATIONS WITH APPLICATIONS

TO EPIDEMIC MODELS

BY

David Green, Jr.

.In this thesis we consider systems of functional

differential equations with several parameters.

Assuming a generic condition on the rate of change

of the real part of eigenvalues of the linearized

problem, we are able to show the existence of the

bifurcating oscillations for the system of equations.

The general theorem is then applied to the equations of

epidemics to obtain the existence of bifurcating

solutions.
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CHAPTER I

INTRODUCTION

The spread of communicable diseases through society

involves many disease related factors such as incubation

period, susceptibility, infectious period, mode of trans-

mission, and resistance to the disease. Also social, cultural,

economic, and geographic factors may be considered in any

model describing the spread of the disease. To analyze

communicable diseases, differential equation models which

incorporate some of these factors are useful. In this

thesis. deterministic models are employed to study the

spread of a communicable disease through society. We use

deterministic models rather than stochastic models so that

differential equations are used to describe changes in the

pOpulation. Stochastic models are necessary when dealing

with diseased p0pulation which have very few individuals

sick at various times, but these models are very difficult

to analyze since there is no single solution x:[t .t1] 4 R,

where x(t) is the number of individuals in the p0pulation

at time t. Both deterministic and stochastic models are

described in the book by N.T. Bailey [1]. Deterministic



threshold models are considered in the monograph by P.

waltman [11]. These models assume that a susceptible

individual does not'become infectious upon first exposure

to an infectious individual, but only after repeated

exposure to infectious individuals has broken down the sus-

ceptible individual's resistance.

The population or community under consideration in

these models is divided into four disjoint classes which

change with time t. The susceptible class, S(t), con-

sists of those individuals who can incur the disease but

who are not yet infected. Infectious individuals will be

referred to as infectives. The infective class, I(t),

consists of those who are transmitting the disease to

others. The removed class. R(t), consists of those

individuals who are removed from the susceptible infective

interaction by recovery. The exposed class, R(t). consists

of those individuals exposed to the infection, who will as

a result become infectious (but are not yet infectious).

It is customary to scale the functions I(t). S(t),

R(t) and R(t) so that they represent the corresponding

fractions of the total populations: I(t) + S(t) + S(t) +

R(t) = 1. Deterministic models treat each of these functions

as being continuously varying.



In the sections that follow we present some communicable

disease models and give explicit equations that govern the

spread of the disease through society. An analysis of the

equations derived from these models is given in Chapter III.

§l. Infectious Disease MOdel for Gonorrhea

In this section we present an infectious disease model

for gonorrhea. The model presented here is by Cooke and

YOrke [3].

Individuals who become infected with gonorrhea recover

only after drug therapy and do not develop any observable

resistance to the disease. After recovery, they immediately

become susceptible. The incubation period is from 3 to 7

days and can be ignored when lodking for long term oscilla-

tions. we therefore assume that an exposed individual

immediately becomes infectious so that R(t) e 0. Also we

assume that there is no immunity from the disease so that

R(t) a O. The pOpulation for the gonorrhea model is composed

of two types of individuals, the susceptibles and the in-

fectives. we call these the active population. we assume

that the active papulation remains constant. Let x(t)

denote the size of the infectious pOpulation and S(t) the

number of susceptibles. The rate of new infection depends

only on contacts between susceptibles and infectious indivi-

duals. we assume that there is a small time lag o,

O < o < 1, between contacts with a susceptible and an



infective, before new infectives are observed. Since S(t)

equals the constant total minus x(t), this rate in effect

depends only on x(t) and can be written g(x(t - 0)) for

some continuous function g. This model also assumes that

there is a single infectious period L, 0 < o < L (the

time it takes an individual to seek out and receive treat-

ment). Therefore pe0ple are infected at the rate g(x(t - 0))

and are cured at the rate at which they contacted the disease

L time units ago, g(x(t - L)). The function x(t) then

satisfies the differential equation

(1.1) S—E=g<x<t- 0)) —g(x(t- L))

Equation (1.1) can be written in integral form as

(1.2) x(t) = I:-: g(x(s))ds + c

for some constant c. The integral term in (1.2) is the

number of individuals infected over the time period

[t — L,t - 0]. To have a correct.biologica1 interpretation

we must have c = 0, since x(t) is the infected pOpula-

tion.

Assume instead of a single infectious period that there

is a distribution of times until cure. Let P(a) be the

probability of having the disease continuously for at least

time "a" after infection, and let L be the maximum cure

time so that P(L) = 0. As befbre, let g(x(t)) be the rate



of new infection. Then the number of persons cured per

unit time at t is

-IL g(x(t - s))P’(s)ds

0

since -P'(s)ds is the prdbability of being cured in

[3,8 + ds]. In this model the function x(t) satisfies

(1.3) %%-= g(x(t - 0)) - I: g(x(t - s))p(s)ds

where for 0.3 a‘g L,

(1.4) P(a) = (L p(s)ds, p(0) = 1, p(s) 2 o.

o

The existence of the density p(s) is assumed. Equation (1.4)

has integral form

(1.5) x(t) = It‘° P(t - s)g(x(s))ds + c
t-L

The constant c is chosen to be zero for the same

reason as in (1.2). NOte that.if c > 0, this is inter-

preted as meaning that there is a constant suprpulation of

size c of incurable infectious carriers of the disease.

The active pOpulation in the case of gonorrhea is com-

posed of two subp0pulations, the infected males and the

infected females. This decomposition into suprpulations

is necessary for a more accurate and detail analysis in

studying the spread of the disease. For males, gonorrhea

is easily detected since pain usually develops a couple days

after initial infection, whereas with females infection can

go undetected for longer periods of time. Thus females can



be infectious and is able to transmit the disease without

knowing they have it. To study the disease when both the

female and male population are considered as separate sub—

populations of the active pOpulation, we assume that the

number of males with the disease is directly proportional

to the number of females with the disease. we call the

female pOpulation the main reservior for spreading the

disease. This assumption seems quite reasonable when one

considers the social behavior of society at large. In this

model, x(t) is the size of the total pOpulation. Let

cm and cf be the prOportions of the population which are

male and female respectively. Let Pm(s) and Pf(s) be

respectively the fraction of the infected male and female

population which takes longer than time s to be cured after

infection begins. Thus Pm(0) = Pf(0) = 1. Let L be

the maximum cure time. Choose L large enough so that

Pm(L) = Pf(L) = 0. Let P(s) = cum(s) + cfPf(s), then

the function x(t) satisfies (1.5). we will delay analyzing

the solutions of the gonorrhea model and the following models

until Chapter III.

§2. An Economic Interpretation

we now consider an economic interpretation of the second

model for gonorrhea presented above.



Let x(t) denote the value of a capital stock at time

t. Assume that the rate of production of new capital de-

pends only on x(t). and that this rate is given by

g(x(t)) for some continuous function 9. we assume

equipment depreciates over a time L to value 0. L is

the lifetime of the equipment. we further assume that the

depreciation is independent of the type of equipment and

at time ”a" after production, the value of a unit of

capital equipment has decreased in value to P(a) times its

original value (so P(O) = l and P(L) = 0). Thus at any

time t, x(t) equals the sum of the capital product over

the period [t — L,t] plus some constant c, where c

denotes the value of non-depreciating assets. The function

x(t) satisfies

(2.1) x(t) = J‘L P(a)g(x(t - a))da + c

o

Letting s = t — a, ‘we Obtain

(2.2) x(t) = I: L P(t - s)g(x(s))ds + c

Equation (2.2) is the same as (1.5) with o = 0. It

is easy to see that (1.3) is the differentiated form of

(2.2) where p(a) =«ég P(a) is the rate of decrease in the

value at age "a" for a capital unit whose value at the

beginning of production is l.



§3. Infectious Disease Model
 

In this section we present an epidemic model by

Heppensteadt and waltman [7]. This particular model is a

generalization of the model of Cooke and Yerke [3] presented

in section 1.

At time t = 0, I0 infectious individuals, called

infectives, are introduced in a homogeneous way into a

pOpulation of S susceptibles. At any time t >)O, the
O

pOpulation is divided into four disjoint subpopulations,

S(t), I(t), R(t) and E(t). These functions have been

defined previously. we assume the disease spreads through

the pOpulation according to the following rules:

I i) The rate of exposure of susceptibles to

infectives at time t is —r(t)I(t)S(t),

where r is a positive continuous function.

ii) An individual exposed at time T becomes

infective at time t if I: [p1(x) +

p2(x)I(x)]dx = m 'where p1(x), 92(x) are

given non-negative continuous functions and

m is a non-negative constant.

iii) An individual infected at time t recovers and

becomes immune at time t + U, o a positive

constant.



iv) An individual first immune at time t becomes

susceptible at time t + w, w a positive

constant.

v) The pOpulation remains constant.

Let Io(t), -o'g_t g 0 be the function which describes

the past history of the infectives. Io(t) is monotone and

satisfies 10(0) = I Io(-G) = 0. Assuming that condition
00

(iii) applies to these initial infectives, the future of

these infectives is then known. we take this into account

by defining an extension of Io(t) to the real line by

0, lt|.2 o

10(t) = 10(t), «53th

10(0) - Io(t - 0). °.S tIg a

we also assume the existence of to < 0 such that

t

foo [pl(x) + p2(x)Io(x)]dx = m.

This condition expresses the fact that some of the initial

susceptibles must'become infectious before time 0. Any

monotone function Io(t) whose extension to the reals

satisfies the above integral-equation is called an admissible

function.

We can describe the spread of the infection by three

functional equations in the unknowns T, S, and 1. Equations

for R(t) and E(t) can be Obtained from these. The

equations for the model will be derived from the rate at
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which individuals are leaving the susceptible class. To do

this, it is necessary to account for those initially in—

fective individuals who are in classes S(t) and R(t)

for the first time. These will be denoted by Il(t) and

12(t) respectively. The earliest possible entry for an

initial infective into class S(t) is t = w, and for

t > w. the number of initially infective individuals who

are in class S(t) for the first time is the number who

recover before t — w. Therefore.

'0: t S U.)

11(t) =

10(0) - 10(1: — w). u) g t

For 0 S t g u), those initially infective individuals

who are now in class R(t) are those who were initially

infective at time t = 0 minus those who are still

infective from this initial infective population. For

t.2 w. those initially infective who are now in class R(t)

are those who are in class R(t) for 0 S t g (1) minus

those in class S(t) for t.2 w. Therefore,

10(0) - 10(t). Ogtgw

12(t) =

Io(t - w) - IOIt). (us t

The equations for 1,8 and T that describe the

spread of the disease are as follows:

t .

(3.1) Int) [p1(x) + p2(x)I(x)dx = m, 1'(t) :.-= 0 if t g to.

The equation T(t) 5 0 is just a convenience fer eliminating

special cases in the equations that follow. Also, to be
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infective at time t, a susceptible must be exposed before

T(t). Therefore, we require that the susceptible population

at time t consists of all those individuals who have not

been exposed in the interval (7(t - o - m),t). Any indivi-

dual exposed in this interval is eliminated from class S(t):

exposure before T(t - o - w) results in infection befOre

time t - 0 - w. recovery before t - w and readmission

to class S(t) before time t. It follows that

(3.2) S(t) = 11m + 30 - ft r(x)I(x)S(x)dx

1’(t-O’-w)

In a similar manner, the class of infectives at time

t consists of the initial infectives who are still infective

at time t plus those individuals who were exposed between

T(t - o) and T(t). Those who were exposed before T(t - 0)

have recovered by time t and those exposed after T(t)

are not yet infective. Therefore, we have

T(t)

T(t-O)

(3.3) I(t) = 10(t) + I r(x)I(x)S(x)dx

Equations (3.1)-(3.3) constitute the basic equations

that describe the spread of the disease through society.

The questions of the existence, uniqueness, and continuous

dependence of solutions for these models have been resolved

[3,7]. Also all the models presented above are very similar

in that the oscillatory behavior of their solutions is

similar. Each of these models has solutions which eXhibit

behavior that indicate the solutions may be periodic. The
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numerical work of J. Mosevich [9], and the work of

Greenberg [4] indicates that the solutions of the functional

differential equations which arise in the model by Hoppensteadt

and waltman are periodic for certain values of w- In

Chapter II, we will develop some general theory for the

existence of nonzero periodic solutions to functional

differential equations with a real parameter y. Using

this theory we show in Chapter III that these models pre-

sented above all have nonzero periodic solutions.



CHAPTER II

A BIFURCATION THEOREM FOR NONLINEAR FDE'S

§l. Preliminaries

Let En denote the real or complex Euclidean n—

space. For r >IO, let G = C[-r,0] be the space of

continuous functions from [-r,0] to En with the usual

supremum norm. If x is a continuous function defined on

[o — r,o + 1).), o e R, A > o, with values in En, let

x t 6 [0,0 + A) be the element in C[-r,0] defined byt!

(1-1) Xt(6) = x(t + 6). -r.S 6,S,0-

we will denote by BV[-r,0], the space of vector-

valued functions, n, on [-r,0] which are of bounded

variation and are normalized such that

n(e)=o ego

E(B) = n(-r) e g_-r

and n is left-continuous on [-r,o).

Consider the autonomous linear functional differential

equation

(1.2) x(t) = L(xt)

13
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where L(-) is a continuous linear Operator mapping

C[-r,0] into En. By the Reisz representation theorem,

there exists a unique n x n normalized matrix n(:) e

BV[—r,0] such that

(1.3) L(cp) = 1" [dn(6)]cp(e). e e C[-r,0].

-r

Let x(m). be the unique solution of (1.2) through

(O,¢) and let T(t) be the bounded linear operator mapping

C[-r,0] into C[-r,0] defined by

(1.4) T(t)cp = Xt(cp)

It is well-known that {T(t):t 2;0} is a strongly continuous

semi—group of bounded linear Operators on C[-r,0] (see

Hale [5, p.94]). The infinitesimal generator A of the

semi-group T(t), t.2 O is given by

{p(a) -r g e < o

L(cp) = j‘° [dn(6)]cp(9). e = o
-r

(1.5) Am(9) =

It is known that the domain of A consists of all continuously

differentiable functions (p(a). -r g e g o, with

(1.6) 1im M= [dn(e)]op(e)
ago. e .. o I:

It is welleknown that if A is defined by (1.5), then the

spectrum of A, 0(A) is the same as the point spectrum of

A and possibly A = 0. .Moreover, A e 0(A) if and only if

(1.7) det Am = det[u - 1‘0 e"6 dn(e)] = o

—r
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where A(x) = XI - f0 e)‘6 dn(6)- Equation (1.7) is called

-r

the characteristic equation of (1.2) and its roots are the

eigenvalues of (1.2). For any real B, the set

[xzdet AU.) = 0, Re ). > B} is finite.

Given a fixed eigenvalue No of (1.2), the null spaces

n(A — x01)J of (A - IOIIJ, j = 1,2,..., satisfy the

following nested relations: n(A - 1.01) c n(A - on)2 c: -- - .

There exists a smallest integer k.2 1 such that

n(A - x01)m is a subspace of n(A - ADI)k for all

1 g m 3k, and n(A - L01)m = n(A - lonk for all m 2 k.

The generalized eigenspace Px0 ‘belonging to A0 is defined

)0 is the complementary subspace

of P , the following prOperties are known:

’0

i) dim P10 < e, where dim Px0 = algebraic

multiplicity of to .

"o
_ k k
— R(A - A01) , the range of (A - X01) .

tobe 11(A- ADDk. If Q

ii) P and Q

"o

’o

iv) C = P O Q). , where 9 denotes direct sum.

’o o

§2. Space Decomposition

are invariant under T(t).

iii) Q

In this section we consider the projection “P on the

space C = C[—r,0].

Definition 2.1. An eigenvalue of (1.2) is called simple

if its algebraic multiplicity is one.
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Theorem 2.1. Let ID = ivo, v0 51 0 be a purely

imaginary simple eigenvalue of (1.2) and let PAD be the

generalized eigenspace belonging to go with projection

11 :C[-r,0] -o P ,
PM *0

then

(2.1) HP (cp) = mo<¢omp> for any cp E C[-r,0], ()0 e C[O,r].

)0

x09

(2.2) (90(9) = e a0, -r g e g 0

T " s '1' , -1
(2.3) (0(3) = boe x0 (bob ”oIao) , 0g 3 g r

and <-, -> is a bilinear form defined by

(2.4) <).op> = (25mm) - f° I: (T(g - eIaneIcp(§)d§.
-r

where a0 is the unique solution of A(>O)a = O with

Ial = 1, 1.3

[bl = 1. ("T" denotes the transpose).

is the unique solution of bTAuO) = O with

Proof: Clearly cpo 6 n(A - x01) Since qu0 = xocpo

implies (A - ‘01)“)0 = 0. Thus by definition of a simple

eigenvalue P>0 consists of exactly those scalar multiples

of (po. This shows the uniqueness of a Similarly we have0.

. 'r * _ 'r “"os
the uniqueness of b0. Let ¢o(s) - b() e , 0 g s g r,

then
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(6-5) A 5'r
b0[I - fir]: e"o d'n(6)e ° d§]ao

)Oe

= by: - I: dn(e)ee 1ao

*

T .

bOA (>.o)a0

where

A e

A’(>b) = I - J'0 dn(e)ee ° .

-r

It follows from the proof of Lemma 21.2 in [5, p.109]

* , , *

that <¢O.mb>)#'0. Therefore ¢0(8) is defined. <IO'QO> #'0

also follows from more general results in functional analysis

(see, for example [10]).

- s

<¢o.qo> = (bge x0 (bgA'(ko)ao)-1.qo>

T . -1 'r “‘08

= (bgA '( x0) a0) -1 <¢;.ch>

(bga'uomofl (bgA’UDHOI = 1.

Therefore,

HP (CD) = ¢O<UOOCP>¢

In applications, system (1.2) is often given in the

real Euclidean n-space RP. For this reason, it is often

desirable to Obtain the projections and the constant of

. . . n

variation formula in R .
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Suppose (1.2) is real. All complex eigenvalues of

(1.2) appear in complex conjugate pairs. Assume )0 = 1Y0

is a simple eigenvalue of (1.2). Hence 30 = -ivo is also

an eigenvalue of (1.2). Let P be the generalized eigen—

space belonging to [ivo,-iuo]. Then, dim P = 2 and

Q = (Re m0, im m0) is a basis for P (where wb is as
O

in Theorem 2.1).

Theorem 2.2. Let IO = iVo' V0 >»O be a simple

eigenvalue of the real system (1.2) and P be the generalized

eigenspace belonging to {ivo,-iyo}. Then the projection HP

onto P is given by

(2.5) flp(m) = §o<Yo.m>

where

N39

(2-6) mo(6) = e 60. -r.S 9.§ 0

'r 'r . -1 " s
(2.7) ¢0(s) = bo(boA ()0)ao) e to , o g s g r

where

90 = (Re %0 Im CPO)

(2.8) Re

Y0 =( I0)

Im *0

a0 6 En is the unique solution of A(Ao)a = 0 with [a] = 1,

b3 is the unique solution of bgA(xo) = O with 1b] = 1.
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Proof: 60 = (Re $0.1m mb) is a ba31s fer P. By

Lemma 21.4, Hale [5, p.109], we have ((0430) = l, <w0,?p0> = O,

(Wo,qo> = O and <EO'$O> = 1. These imply that <20,§0> =

1 O).

(O 1 This proves the theorem.

Corollary 2.1. For any m E C[-r,0],

(2.9) HP(cp) = (Re I{lopcp>Re mo + (1111 ¢O,cp>Im cpo

Proof: Since (Re $0,Re mo) = 1, (Re $0,1m.q0> = 0,

(Im ¢O,Im $0) = l and (Im wo,Re go) = 0, writing out (2.5)

gives the corollary.

§3. Linear Autonomous FDE's With Real Parameter

In this section we consider (1.2) with a real parameter

y. ‘With real parameter y, system (1.2) becomes

(3.1) E(t) = L(y,xt)

where for each y, L(y,-) is a continuous linear operator

mapping C[—r,0] into B“. we assume that there exists a

unique n x n normalized matrix n(y,-) 6 BV[-r,0] such

that

(3.2) L(y.¢) = j° -dn(y.e)]m(6). e e C[-r,0].
-r

and the dependence of n on y is smooth. By smoothness,

we mean the following:

(3.3) n(y.e) = no(e) + yn1(e) + Y2n2(9) + o<|v|2)
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where no, n1 and n2 6 BV[-r,0]. The characteristic

equation of (3.1) has eigenvalues which also depend on y.

Let y = be fixed. If Re A < O for every eigen-
”’0

value x of (3.1) with y = VO' then the zero solution of

(3.1) for y = V0 is exponentially stable. Suppose for a

different value of y, say y = Y1: there exists a pair

of complex conjugate eigenvalues of (3.1) with real part

greater than zero, then the zero solution of (3.1) for

y = Y1 is unstable.

we assume that there exist such a and V1“ Re A
*0

is a continuous function of the real parameter y and

therefore by the intermediate value property for continuous

functions there is a y, say y = l; with Y0 < Q, < Y1

and a x(?) such that Re I(?) = 0. ‘Without loss of

generality we may assume ?'= 0. we further assume that

the eigenvalue, x(y) = g(y) + iv(y), of the characteristic

equation of (3.1) satisfies near y = 0,

no + up! + uzvz + 0<Iv|2)

(3.5) MY) ='vo + le + vzvz + 0(IvI2)

(3.4) My)

‘where pi,vi E R for i = 0,1,2. The condition Re A = 0

then implies “(0) = ”0 = 0 and v(O) = v0 # 0. Also for

y = 0 in (3.1) there exist periodic solutions of period

Zwvgl. FOr non-linear systems we expect periodic solutions

to bifurcate from y = 0. In the next sections we discuss

such possibilities.
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§4. Non-linear Autonomous FDE's‘With Real Parameters
 

Consider the real non-linear system

(4.1) km = L(v.xt) + N(y.xt)

where y is a real parameter, L is as in section 3, N

is the non—linear part and is smooth in its arguments.

Assume that for w near zero, N(y,¢) = 0(ImI) uniformly

on bounded sets of y.

The unique solution of (4.1) with initial condition

x0 = m is given by the constant of variation formula

(4.2) xt = T(y) (t — O')cp + j: T(Y) (t - s)XON(y,xs)ds

where T(y)(t) is the semi—group Operator associated

with (3.1) and

‘0 -r'g e < O

(4.3) x0(e)= {

I 6 = 0

where I is the identity matrix.

we seek to study the solutions of (4.1) on generalized

eigenspaces of the linear part of (4.1). In fact on generalized

eigenspaces, the solutions of (4.1) behave as solutions of

an ordinary differential equation [5, p.101].

Suppose A {A1,x2,...,xk] is a finite set of eigenvalues

of (3.1) and C C[-r,0] is decomposed by A as C = P 6 Q
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where P is the generalized eigenspace belonging to A

and Q is the complementary subspace of P.

Let 9(y) be a basis for the generalized eigenspace P

associated with A and Y(y) be a basis for the generalized

eigenspace of the adjoint equation of (3.1) associated with

A. As in Hale [5, p.101], the operator A defined by (1.5),

satisfies .AP c P. Since P is finite dimensional, there

is a n x n matrix B(y) such that A§(Y) = QT(y)B(y).

Here n is the dimension of the subspace P.

*

Let A be the adjoint operator of the Operator A

*

*

defined by (1.5). Also define C = C([O.r],Rp ) where

*

RI is the n-dimensional vector space of row vectors. Then

*

for any I 6 C*, the operator A is defined by (see [55],

$3.105):

(4 4) A*()- 4(8)’ 0 (Ssr

j° H-e)dn(e). s = 0

"Y

I *

It is known that if the domain of A consists of all

*

functions I in C which have a continuous first deri-

vative such that

. o
(4.5) -()(o) =]‘ )(-a)dn(e)

-r

* o * o * 0

then A maps the domain of A into C and the domain

* , *

of A is dense in C [5, p.104].



 

 

23

*

n * n
For m e C = C([-r,0],R ) and I E C = C([0,r],R )

define the bilinear form <-,->~ by

(4.6) <).cp> = I((OIOIOI - 1° (3 ((s - 9)[dn(6)]cp(6)ds
-r

we may assume that <Y(y),§(y)>)= I, where I is the

identity matrix. Also if the decomposition of any element

m in C is written m = ¢P + m9 where mp is in P and

To is in Q: then mp Q(v)<Y(Y).m(y)>. ‘we now consider

the following situation.

Let y be fixed, *0 = p + iv and i0 = u - iv be

simple eigenvalues of (3.1). Let P be the generalized

eigenspace associated with 10 = p + iv and 10 = H - iv.

Then the dimension of P is 2, and the Operator A

defined by (1.5) satisfies AP CLP. Therefore there is a

2 x 2 matrix B such that A4 = 4TB. where 9 is the

basis for the generalized eigenspace P. The subspace P

is spanned by eigenfunctions of the form eke, -r‘g e S_O.

we will now determine the form of the matrix B.

Let ¢b be the eigenfunction corresponding to yo.

Since the system is real, Eb is the eigenfunction corres-

_ 6

ponding to A0. .Moreover, qo(e) = ex0 a0, a0 6 En. Let

41(9) = §Iopo(e) + 30(9)]

42(9) Eli-[40(9) - 60(9)]
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The eigenfunctions $1 and $2 are real and are a basis

for P. we will consider this basis because the Banach

space C = C[—r,0] is real. Applying the operator A

defined by (1.5) to these basis elements, we have

1 _

5 EIISOIGI + 90(9)](4.7) Am1(9)

= §INn¢oIBI + ioab‘e’] = uml<e> - 442(9)

1 d -
figquoOIe) - 430(9)](4.8) Am2(9)

= {Inflow - 1060(9)] = (142(9) + vcpfle)

= VCp1(9) + “(92(9)

Therefore,

(4.9) A = (41(9).e2(e))(_3 :)

The matrix B is given by

_ u v(4.10) B _ (w (1)

Thus the matrix B is strictly determined by the basis for

*

the generalized eigenspace P. The Operator A defined by

(4.4) has eigenfunctions of the form e'”, o g e g r. We

'will now prove the following.

Theorem 4.1. Let y ‘be fixed. Let I(Y) = p(y) + iv(Y)

and 1(y) = p(y) - iv(y) 'be simple eigenvalues of (3.1),

and P be the generalized eigenspace associated with x(y)

and I(v) ‘with projection
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HP:C[-r,0] 4 P

Consider the real non-homogeneous system (4.1) . If X(Y,Qp)

is the unique solution of (4.1) through (0,¢) and

w(y) (t) = <YO(Y) .xt(Y)>

then

(4.11) fi-ww) (t) = B(Y)W('v)(t) + Yo(v)(O)N(Y.Xt(y))

(4.12) zt = HQT(Y) (t - (mp + no]: T(y) (t - s)on(y.xS(y))ds

where no = 1 - HP and 2t = [Ith

MY) vhf)

(4.13) B(y) =

-v(YI MY)

2521:: Let x(y) (t) be a solution of (4.1), and

y(y) (t) be a solution of the adjoint equation to (4.1) on

(-.,o]. For each t e (-.,O], let y(y)t be the element

in C* = C[O,r] defined by y(y)t(a) = y(y) (t + a.) for

a e [0,r]. Then by Theorem 17.1, [5, p.90] we have for all

t 2 o,

t t 0

<Y(Y) .xt(v)> =f Y”) (8)N(Y.xs(y))ds + (YIY) .xo(v)>-

a

Each row y the matrix e-B(Y)e. YOIY) (O), 0 S e g s is

a solution of the adjoint equation on (-¢, a) . Therefore

42'3”” Y0(y)xt(v)> = j: e’BI‘I’s (ow) (O)N(v.xs(y))ds

+ <e'BIY” Yo(y).q)(y)>
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t eB(y)(t-s)
(YOIY).Xt(Y)> = I YO(Y)(0)N(y,xS(y))ds

0'

+ <eB‘Y’It‘O’ Yo(v).m(v)>-

Let

(My) (t) = <Yo(v).xt(\()>

then

My) (0) = (YO(Y).cp(Y)>

Therefore.

w(v)(t) = (t eB‘YIIt'S’ (0(y)(o)N(y.xs(y))ds
O

+ eBW) (t-O)
w(y)(0)

Differentiating with respect to t, ‘we get

5; B(v)(t-o)
dt w(v)(t) = B(Y)e (MY) (0)N(v.xt(y))

Let 0 = t, then

391? (My) (t) = B(y)m(y) (t) + (OH) (O)N(Y:Xt(Y))

Equation (4.10) follows immediately from (4.2) be taking

projection IIQ on both sides. This completes the proof

of the theorem.

§5. The Bifurcation Theorem

In this section the main theorem is proved. we shall

show the existence of non-zero periodic solutions using a

technique employed by Hopf for ordinary differential equations

with a real parameter y [2,6].
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Theorem 5.1. Consider the non-linear system
 

(5.1) x(t) = L(y,xt) + N(y,xt)

where y is a real parameter, L(y,-) is a continuous

linear Operator mapping C[-r,0] {into En, and the

associated linear system

(5.2) {<(t) = L(y.xt)

Assume

i) N is Fréchet differentiable and N = 0(Iml)

uniformly on bounded sets of y.

ii) For y = 0, there exists a unique pair of simple

purely imaginary eigenvalues ivo, -ivo.

v0 # 0 and no other purely imaginary roots

that are integral multiples of ivo.

iii) Re x’(o) 7! 0.

Then there exist non-zero periodic solutions bifurcating

from y = 0.

To prove Theorem 5.1, we need the following lemmas.

Let go and $0 be the eigenfunctions corresponding

to No and 10' It is known that (see Section 2)

A09

¢b(6) = e a0, -r g 9‘s 0

-A 8

(0(3) = bge ° (bga'uonorl. o g s g r

with
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<Wooq30> = 10 <$OI (p0) = 0

ll

H

<‘Io'°-'30> = 0' @0598

Let

691(9) = %[coo(9) 4' 50(9)]

42(9) = Eli-[40(9) - 80(9)]

(1(9) = §Iwo(e) + 30(9)]

(2(9) = Eli-HOW) - 170(9)]

T(Y.t) = T(th). T(O,t) = T(t)

we will now prove the fellowing lemma.

Lemma 5.1. Let T(t) = T(O,t) and gi(t) = (Yi,T(t)¢1>.

Then

331. o
at

332. 39.
at t=“b 2

Proof: Applying the solution operator T(t) to “0

and Eb we have

T(t)cpo = e cpo

T(t)§b = e ob
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Therefore

1 _ ..

<Y1.T(t)¢1> = 4<¢0 + WO.T(t)(¢b + moi)

Act 1 - Int1 -

= z<Wooe ¢b>’+ Z<¢Ooe go)

It follows that

=——<Y1.T(t)m1>lt_qo

t " t

= Ill; AO<W0oe)U ch> + % AO<IIOoexo 80>] =°‘b

%(x0 + 10) = 0.

Also

(Y T(t) = 1<$() - I ) T(t)( + " )>
2' Op1 410 0' OF’o CI’o

t 't
11 11.. ..

= 4<I Wo.exo Q0) - Z<I $0.8x0 ¢b>

Differentiating with respect to t, we Obtain

.53E1 —§<: T(t) >| 41% — I
at t-ub at 2' ‘91 t-wo 4i ‘0 "o

_ 4i VI0 2

This proves Lemma 5.1.

Lemma 5.2. Let T(y,t)cqD = xt(y) where 9b is

complex and x satisfies (3.1). Let
t

V(t) = any XI?) (t)

then



3O

) ) Rot. L (v + L (m e

(5.3) v(t) = <0 t 1 0

v0 = 0

where A0 is a complex eigenvalue of the characteristic

equation of (3.1) and

(5.4) I Lo(cp) = jo [drb(e)]cp(e)

-r

(5.5) L1I¢)I= Ifr [dn1(6)]m(e)o

Proof: Since x(0) = ¢(O) and .x(y)(e) = p(a) for

— —.a_ = __B_ =all e e [-r.0]. then v(9) - BY XIYHB) BY (p(a) 0

for all e in [-r,0]. Therefore v0 = 0. we also have

i(y)(t) = L(v.xt) = 1" tan”. 9) ]X(y) (s + e)
-r

Therefore

x(th) = X(v)(0) + jtj" (dim. e)]x(v) (s + ems
O -r

Since the initial conditions for any solution are the same,

‘we have

x(v) (t) - x(o) (t) = jg]: [dn(v.e)]x(v) (s + ems

- I: Lo(xs(0))ds

.4 I21: [dno(9) + vdnlm)

+ 0(IvI2)]x(y)(s + e)ds — j: LbIXs(O))ds

= j: LO(XS(Y) - xs(0))ds

+ v]: L1(xs(v))ds + o(lvl2)
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Therefore

 

Y)(t) - (oHt) _ 1 tx(, y x _ I} I0 Lo(xs(y) - xs(0))ds]

+ I: L1(xS(Y))ds + 0(Iyl2)

lot

Letting y 4 O and recalling that xt(0) = mbe , we get

8

v(t) = I: Lo(vs)ds + I: L1(¢b)exo ds.

Differentiating with respect to t, 'we get

th

v(t) = Lo(vt) + L1(¢0)e

This proves Lemma 5.2.

Lemma 5.3. Let A1 = x'(O). Assume Re l1 # 0. Then

'1' . __ 'r ’o

>abo‘) ”o’ao " boL1Ie ”‘0‘

Proof: Let x(y) be an eigenvalue of the characteristic

equation det A(x(y)) = 0 with corresponding eigenvector

a(y). By a result in Hale [5, p.99] we have

[MYII - [0 [dnm eHeMY) e1am) = o.

-r

Differentiating with respect to y at y = 0, we have

A09

]a

9

[x'(0)I - JO [6111(9)]e)‘o - )6ij [dno(e)]ee

-r -r

e

‘0 ]a‘KO)

O

= o.+ MOI-[o [dno(e)]e

r

Therefore
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A 9 A06
0 0

[A11 - i1f_r [drb(OIJBe ]ao - (j: [dnl(e)]e ]a0

6

+ [x01 - j: [drb(e)]ex° ]a’(o) = 0

Since b3 annihilates the range of MAO), we have

6

b3[ x01 — fr [dno(e)]e)b ]a’(O) = 0. If we multiply the above

. T T . _ T ‘0'
expre531on by bO 'we get, xiboA (x0)aO — boLl(e )aO

X06

where A’().O) = [0 [d'rb(9)]9e . This completes the proof

—r

of Lemma 5.3.

Lemma 5.4. Let v(t) be as in Lemma 5.2. Then

21r

 

Y(t) = (woovt>

By Theorem 4.1 (in the complex form) and Lemma 5.2,

. )‘ot

y(t) = koy(t) + ¢O(O)L1(cp0)e

Since vO E 0. y(0) = 0. Therefore

(t—s) s

Y(t) = [t e)“ to(0)L1(q)o)e)'o ds

0

A t

= e 0 I: ¢O(O)Ll(¢o)ds

t o

= ex0 It bg(bgA’(xo)ao)-l Ll(e)‘o )a0 ds

0

t

Ale)V0 It ds (by Lemma 5.3)

O

th

= Alte .
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Therefore

(WO.V(u)o)> = .35 )1.

This follows from the fact that “’o = €15 and x = ’b = ivo

at t = ”0‘ This proves Lemma 5.4.

Lemma 5.5. %¢1,T(y) (u)o)cpl> = 25-0 Re A1 and

3%«2um) «howl:= ;6- Im x1.

Proof:
 

N
H
N
H

_§:{<¢1'T(Y)(w0)¢1>4—§;<¢:+ Eo'T(Y) (m0) $0 + T(Y) (nb) 60>

+ %<¢o,a %T(v) (wo)cpo>

+ 4(60' '36; R(y) (ub)> by Lemma 5.2

i<¢o.v(mo)> + fidofimb»

l - _2__1T
.—.. x —+ ), by Lemma 5.4

4 1 vb 4 1 “O

=-'-—-- Re I.
2vo 1

Similarly

a _ l

“(IT‘NYI (mo)¢1> - 35% 'Io '3‘": TH) (0)0)ch

+ 35--T(YHuqub)



_. 1 1 - —
- ZI<WOoV(TO)> - Z§<¢Oov(qo)>

.. _1. 21: _ _1. 21 = .23:
- 45. X1 v0 45. XI. v0 v0 Im >‘l

We will now prove Theorem 5.1.

Proof: The existence of urperiodic solutions of (5.1)

is equivalent to solving

o T(v) (on + (2’ Th!) ((1) - S)X0N(v.xs(v.cp))ds

T(wOICp + [T(Y) (wIcp - T(ub)cp

+ I: T(v) (u) - s)XoN(Y.Xs(y.cp)]ds.

Let P be the generalized eigenspace associated with

A = {iVo'-ivb} and Q be the complementary subspace of P

such that C = P GIQ. we scale the above equation by letting

T = 6(m1 + I) where 6 ‘belongs to R, I 6.0, and ¢1 E P.

Let HP and no be the projections of C[-r,0] onto P

and Q respectively. The projection n on the scaled
P

equation for cp(q)P = 11P(cp)) gives

nP{T(v)(m)(eo1 + 64) - T(qDIIeol + 6))

+ I: T”) (u) " SIXONIYoxs(y.€cpl + ands} = o

where T(mb)¢P = mp. Let '3 e C[-r.o]. By Theorem 2.2,

Rpm = <¢I,¢>¢1 + (#2.$>¢2 ‘where T1 and $2 span the

subspace P and (1. t2 belong to the span of the generalized

eigenspace P* of the adjoint equation of (5.1) associated
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with A. Therefore UPS = 0 if and only if (Il'$> = O

and <¢Z,$> = 0. Thus we have

+ if: T(v) (u) - sIXON(v.xs<Ya€cp1 + EIHds> = 0

(W20T(Y)(w)(cp1 + In " T(ub) ($1 + W)

+ 46-1”: T(v) (u) - smouwncsaw.(an1 + e())ds> = 0

Because there are no other eigenvalues that are integral

multiples of ivo, the operator (I - T(qo)) is invertible.

Thus the projection HQ(¢Q = nQ(¢)) defined by (4.12), on

the scaled equation for T gives,

)- (I - T(won'lInQ'uy) ((1)) (el + I) - T(ub) (cpl + I)

+-1é nojg'rmm - s)onw.x,=.,(ecp1 + e)))ds} = 0

Let G be the map from R3 x Q into R2 x Q defined by

G = G(€,Y.w.¢) = (Gl,Gz,G3) where

G1 = ()1.T(y)(w)(o1 + t) - T(ub)(01 + I)

+ éfw T(Y)(w - SIXbN(vas(Yo€¢1 + GIIIdS>

O

C
) II2 <)2.T(y)(m)(o1 + 4) - T(mo) (el + (I)

+ if: T(y) (u) - s)X0N(y,xs(y,ECp1 + €$Hds>

G3 = v- (I - T(mo))—1[HQT(y) (m) (cp1 + I) - T(ub) (o1 + I)

+ % 110]: TM) ((1) - s)xON(v.xs(v.ecpl + ends}-
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Note that G is well defined for 6 = 0 since N = 0(I¢I).

Also G is continuously differentiable in a neighborhood

of (0,0,wb,o) since each 61' i = 1,2,3 is continuously

differentiable. By Theorem 2.2, the zeros of G are

solutions of (5.1). Let 6 = y = I = 0. Since T(O)(mo) =

T(mb) and N = 0(ImIIo we have G1 = Gl(o,o,mb,o) = 0

and G = G2(O,O,qo,0) = 0. Also for y = O,
2

UQT(0)(mb)(cp1 + w) = T(qo)(m1 + TIQ = I- Therefore for

D defined by

D = 6G2 362 3G2

aw BY 3)

6G3 363 363

  LOU.) BY BI) .4 (E. Yul): U) = (oooouboo)

To prove that D is an isomorphism from R2 x Q onto R2 x Q,

it suffices to show that the matrix A defined by

  

r- q

361 3G1

6w BY

A =

562 3G2

_30) BY d (60 Yo I”: w) = (0000 “b00)

is non-singular and that

3G3

.3;— (60 You): U) = (0,0.ub,0)
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is an isomorphism on Q. We compute the entries of A as

follows:

Therefore,

6G

...; _ _8_

OLD (0:00 flbIO) — Bu.) (wl'T(w)ml>lquO

= O by Lemma 5.1.

Similarly,

G2 = 62(0000 Woo) = ($20T(w)cp1 " T(Ub)m1>

and

3G

2 .. _EL

SID—- (000: “1000) — Bu) (WZOT(w)m1>IUFWO

V0
= _2— by Lemma 5.].

Computing the partial derivative of G1 with respect to y,

we Obtain

5G1

_ .1

ST (o.y.mo.0) “ <‘Il' av T”) (WW)

<(1. {in x(v.o1)(mo)>

17'

2V0

Re II by Lemma 5.5.
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Similarly,

Therefore

6G2 a

57" (0,v,u)o.0) - <‘I2' 5? '1‘”) (wow)?

= <42. 35:, X‘Yocpl) (ub)>

v

2V Im A1 by Lemma 5.5

0

Thus the matrix A is given by

- w
0 -—— Re A

2V0 1

A = V

0 w
-— --- Im A

2 Zvo 1

Since Re k1 # O, A is clearly non-singular. we now com-

363

pute ST 0

GB = 63(0100 (lb: ‘1‘) = U

66

Therefore, SE—-= I, where 1:0 4 Q is the identity map.

we therefore have that D is a linear isomorphism from

R2 x Q onto R2 x Q. Therefore, by the implicit function

theorem in Banach spaces ([8, p.17]), there exist C’ maps

w(€). v(E) and 4(6) defined for 6 in ('50'60) where

' 2W
> 0 such that (”(0) = = —-, v(o) = O, ((0) = 0

6. mo .0

and G(€.v(e).m(€).¢(e)) = 0. "£0 < 6 < 60- This gives
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a one parameter family of non-zero periodic orbits bifurcating

from (o,x0). This completes the proof of Theorem 5.1.

Definition 5.1. Let I:C x R 4 R where C = C[-r,0].

I is called a first integral of

(5.1) x(t) = L(y,xt) + N(y,xt)

if, for every solution x I(xt,y) = constant for allti

t > 0.

Theorem 5.2. Consider the non-linear FDE (5.1).

Assume (5.1) has first integral I, and I:C x R 4 R is

smooth. Assume that M,= [m:I(¢,y) = C, C = constant,

y E R] is a smooth manifold of co-dimension one in C. Let

Q be the smooth vector field defined on M induced by the

solution of (5.1), and 5 e.M. be a critical point of 4.

By using local coordinates around g, *we obtain a FDE

in the form of (5.1). Then the conclusions of Theorem 5.1 is

valid for the vector field Q.



CHAPTER III

EXAMPLES

§l. Infectious Disease Model

As an application of the theory presented in

Chapter II, we consider the infectious disease model

of Hoppensteadt and waltman [7] given in Chapter I.

In this model the spread of the disease is governed

by three functional differential equations in the

unknowns T. I and S. These equations are:

(1.1) [2) [91(x) + 92(x)1(x)]dx = 111. T(t) E 0. t S. to

T t

(1.2) S(t) = 11(t) + 50 - jt r(x)S(x)I(x)dx

T(t-G-w)

(1.3) I(t) = Io(t) + [T(t) r(x)S(x)I(x)dx

T(t-O)

The functions 11 and ID are as defined in Chapter I:

o. |t| _>_ o

10(t) = 10(t). -GSt_<.°

10(0) -Io(t-o). ogtgo

0: t S (D

11(t) =

10(0) - IOIt - w). T‘s t

40
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The function I1 gives the fraction of those

initially infected at time t = 0 who are now in class

S(t) for the first time, while for t E [-o,o], Io(t)

describes the past history of the disease. The function

Io(t) has been extended to all reals so that the future

behavior of the initial infectives is known. The value

to in (1.1) satisfies,

t0
]‘ [p (x) + p (x)I (x)]dx = m.
0 1 2 O

In our study we are interested in the behavior of I

and S for large time t, so without loss of generality

we consider the differentiated forms of (1.2) and (1.3)

for t.2 o + m. (o is the fixed time during which an

infective remains infected, and w is the period of

immunity). For ti; o + m. the functions Io(t), 16(t),

and I£(t) are all zero ("’" denotes derivative with

respect to time). The differentiated forms are: (taking T(t)==t)

(1.4) s’(t) -r(t){I(t)S(t) — I(t - o - m)S(t — o - (0)}

(1.5) I’(t) r(t){I(t)s(t) - I(t - o)s(t - 0)}

Every pair of constants is a solution of (1.4) and

(1.5). It is customary in the stability theory of non-

linear differential equations to study solutions which are

"close" to constant solutions. To study the stability of

(1.4) and (1.5) we choose a particular pair of constants
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a, B which solves (1.4) and (1.5) and linearize about

this pair of constants. we make the following substitutions

(1.6) I(t) Y(t) + I3

(1.7) S(t) X(t) + (1

Substituting (1.6) and (1.7) into (1.4) and (1.5) respectively

and for simplicity choosing r(t) = c, c is a constant,

we Obtain, after drOpping non-linear terms,

(1.8) km = -cB{x(t) - x(t — o - wH

— ca[y(t) - y(t - O - w)]

(1.9) {r(t) = cB[x(t) - x(t - 0)) + ca{y(t) - y(t - 0))

Note that (1.8) and (1.9) are functional differential

equations with real parameters c, 8, d, O and To In

Chapter II we develOped some general theory for non-linear

functional differential equations with real parameter y.

we showed that if A 'was a simple complex eigenvalue of

the non-linear functional differential equation (II, 4.1)

‘with dependence on the real parameter y, such that

Re A'(v = o) #'0, then (11.4.1), has non—zero periodic

solutions. we showed such existence in part by studying

the zeros of the characteristic equation associated with

(II, 4.1). Therefore to examine the behavior of the

solutions of (1.8) and (1.9), we shall study the solutions

in terms of the characteristic roots of the characteristic
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equation associated with (1.8) and (1.9). To obtain the

characteristic equations for (1.8) and (1.9) we let

x(t) = kle)‘t and y(t) = kzext' where k1 and k2 are

constants, k is an eigenvalue of the characteristic

equation associated with (1.8) and (1.9). Substituting

these values of x(t) and y(t) into (1.8) and (1.9)

we Obtain

(1.10) xkl = -c(3[k1 — kle'*(°+w)} _ ca[k2 _ kZe—i(0+w)}

(1.11) xkz = c8{kl - kle-xo} + ca[k2 - kze-xg}

Rearranging equations (1.10) and (1.11) we Obtain,

(1.12) {x + c8 - ope-x(o+u”]kl + [co - cue-I(O+w)]k2 = O

(1.13) [cBe-xo - cfilk1 + [x — ca + cue-XOIk2 = O

The characteristic equation for system (1.12) and

(1.13) is Obtained by solving the determinant below:

A + CD - cBe-X(G+w) ca - cue-x(o+w)

-A0 A0
cBe - CD A - ca + cae-

Evaluating the determinant, we obtain

(1.14) f(x,a,8,c,m,o) = x2 + CBX _ che'*(°+w)

- cox + lcae-xo = 0

From the model, we fix c, o, a, and B, then (1.14)

becomes

(1.15) f(x,w) = A2 + cfil - che-A(O+w) - cox + lode-IO = 0
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Note that A = 0 is a solution of (1.15). This

expresses the fact that every constant is a solution of

(1.8) and (1.9). It is of interest to study the zeros

of (1.15) for l # 0. Applying Theorem 5.2 to (1.8) and

(1.9) we Obtain the equivalent form of (1.15) for A # 0.

This equivalence is given by

A0

-A(U+w) - c0 + c0e- = 0.(1.16) f(l.m) = x + CB - CBe

we examine the roots of the characteristic equation (1.16)

with values of c = 0.2 and 0 = l. we also assume

x = iv and x = -iv are purely imaginary eigenvalues of

(1.16). With these values of c, 0 and l. (1.16)

becomes

(1.17) f(iv.w) = iv + 0.25 - 0.20e'i"(1+‘”)

— 0.20 + 0.2ae'iV = 0

Equation (1.17) is equivalent to

(1.18) iv + 0.28 - 0.28 cos v(l + w) + 0.2i8 sin v(l + w)

- 0.20 + 0.20 cos v - 0.2i0 sin v = 0

Equating real and imaginary parts we Obtain

(1.19a) 0.28 - 0.28 cos v(l + w) + 0.20 cos v — 0.20 = 0

(l.l9b) v + 0.28 sin v(l + w) - 0.20 sin v = 0

For fixed v and u) we solve (1.19) for a particular

pair of constants 0 and 8. Table 3.1 shows values of

0 and 8 Obtained by fixing values of w in (1.19).
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TABLE 3.1

v w 0 3

v/z 1 7.85398 3.92699

W/2 2 3.92699 3.92699

W 2.25 3.25323 22.21441

W/4 3 5.75094 19.63495

w/4 4 . .56270 4.74030

w/4 5 .81331 4.74030

W/B ‘ 5.23599 4.88524  
For each fixed 0 and corresponding 0 in Table

3.1, we plot 8 versus v to find additional values of

8 and v which solve (1.19). There are an infinite

number of pairs (v.5) which solve (1.19). For each

choice of 0 and w‘ choose that pair (v.8) for which

iv and -iv are closest to the origin. Other pairs

of intersections in the vB-plane will not be considered.

In Figure (3.1), we have 0 = 7.85398 and w = l.

The graph is for 8 versus v. There appear to be no

intersections. However, there is an intersection at

infinity since

5 _ 0 sin v - 5v

- sin 2v

by (l.l9b).
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FIGURE 3.1
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In Figures (3.2)-(3.7), there are several pairs of

(0,8) intersections shown. It appears from Figures

(3.2)-(3.7) that for each such pair (v,8) which solves

(1.8) and (1.9), there are no integral multiples of v

such that (kv,8) solves (1.8) and (1.9). At these

intersections we will show first that Re A’ # 0, then,

by applying Theorem 5.1, that the system (1.8) and (1.9)

has non-zero periodic solutions, at least for the values

of 0, 0 and w used in each graph, Figure (3.2)-(3.7).

TO ShOW d RSBX(fi) # 0' at Bil i = 0,112,000, we

differentiate (1.16) with respect to 8 and Obtain

(taking 0 = l)

(1.20) gg-+ c - c[—8(l + w)e'*(1+w’.%%-+ e‘*(1+w’]

-1 91..
— c0e d5 - 0

dA
Solv1ng for 554 we have

9-2: — ce-XCL'I'UJ) _ C

(1.21) —

d5 1 + c8(l + m)e’*(1+w) - c0e
-A

The 8's which solve system (1.19) in Figures (3.2)-

(3.7) correspond to those eigenvalues A which solve

(1.16) with real part equal to zero. Thus for all such

8's, A(B) = iv. The pair (vj,8j) such that ivj and

-ivj are closest to the origin will be denoted by

(vb.80). At 8 = 80, (1.21) becomes
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FIGURE 3.7
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92.
(1.22) dBIB=Bo

.c[cos vo(1+w) -i sin v0(l+w) -1}

 

1+cfio(1+w) (cos VO(T+ w) -1 Sin vo(1+w)-ca(cos vO—51n v03

writing (1.22) in the form B + hi and considering only

the real part, we obtain

(1.23) d R§B3151|a=fi0 = {c cos “0(1 + w) - c + c260(1 + m)

c260(l + m)cos yo(l + w)

cza cos Yo(1 + w) + cza cos “0

2 . .

c a Sin vb(l + w)31n yo}/

2

(1 + cBO(l + w)cos v0(1 + w) - CO COS v0)

+ (ca sin v0 - caou + w)sin vo(1 + w))2

Computed values of Re x’(Bo) are given in Table 3.2.

The calculations show that Re X'(BO) # O for all values

of B0 considered. Thus for each pair (Vb’BO) we have

Re l(fio) = 0,. Re x’(Bo) #’O and lo = ivb.

Remarks. (1) NO is a purely imaginary simple

eigenvalue if x0 satisfies, A(iyo) = O and A'(iVo) #'0.

These conditions are easy to check and are not considered

here.

(2) To check that there are no integral multiples of

ivb. we note that there are finitely many roots of the

characteristic equation (1.16) that are purely imaginary.

If there exist integral multiples of iv . then there
0

exists a largest integral multiple niyo. Let v1 = nyo.
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Applying Theorem 5.1 to v1 ‘we Obtain the desired results.

That is (1.8) and (1.9) has non-zero periodic solutions.

 

 

TABLE 3.2

a B v Re l'(5) w

3.92699 3.92699 1.57080 .428318 2

18.9612 42.5261 9.21942 4.19972 2.25

5.75094 115.682 5.14383 5.26839 2.5

.562698 11.93520 2.77406 .32172 3

.81331 7.08452 2.18788 1.29186 4

5.23599 4.11505 1.74635 1.30180 5       
§2. The Gonorrhea Model

As a second example, we consider the gonorrhea model

prOposed by Codke and Yorke [3]. The model is described

in Chapter I. The spread of the disease through society

is given by

(1.24) in» = g(x(t - on - g(x(t - 1.))

where 0 < o < L. Without loss of generality we choose

L = 1 by a change of time scale. The rate of new in-

fection is given by g(x(t — 0)); g(x(t - 1)) is the

rate at which the infectives are being cured assmming

they contacted the disease 1 time unit ago. One choice

for the function g is

(1.25) [g(u) = au(1 - u), a > 0 constant.
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This choice of g is reasonable since at u = 0 there

are no new infections and at u = 1 all new infectives

have been cured. With this choice of g, (1.25) becomes

(1.26) R(t) = ax(t — o) - ax(t - 1) - ax2(t — o)

+ ax2(t - l)

Linearizing (1.26) about zero, and considering only the

linear part, we Obtain

(1.27) R(t) = ax(t - O) - ax(t — l).

The solution of the linear equation (1.27) can be

studied in terms of its charactersitic roots. To Obtain

the characteristic equation. let x(t) = ext ‘where l

is an eigenvalue of the characteristic equation of (1.27).

Substituting x(t) into (1.27) we Obtain

(1.28) l = ae-xd — ae-x

Clearly x = 0 is a characteristic root of (1.28).

Applying Theorem 5.2. we eliminate the zero solution of

(1.28). Assume l = iv is a purely imaginary simple

eigenvalue of (1.28), then separating real and imaginary

parts of (1.28) we Obtain

(1.29a) a cos v0 - a cos v = 0

(1.29b) a sin v - a sin v0 = v. 0 < o < l.



57

The first equation in (1.29) shows that if v0 =

-v + 27m, m an integer, then any positive value of "a"

will satisfy (1.29a). We do not consider a < 0. Setting

vo = -v + Zwm in (1.29b) gives

(1.30) 2a sin v = v.

For fixed a e (0.1) and any integer m. such that

%E%' is non-integral, we find values of "a" which satis-

fy (1.29).

By assumption, the pairs (Vb'ao) which satisfy

(1.29) correspond to the eigenvalues X(ao) = Re x(ao) +

i Imx(ao) of (1.28) with Re x(ao) = O. For all pairs

(Vb'ao) which satisfy (1.29) we first show that

Re l’(a0) # 0. then, applying Theorem 5.1, concludes

that (1.27) has non-zero periodic solutions.

6

TO show 33' Re 1|
a=aO # O for all pairs (Vb'ao)

which satisfy (1.29) we differentiate (1.28) with respect

to a. we Obtain

(1.31) Re l’(a = )
ao

_ v0 Sin yo-v00 Sin “00

— r

2 2 . . 2

[(1HF300 COS vbG-ao cos vb) -ao(31n Wo"o Sln V00) ]
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TABLE 3.3

o v a Re x’(a)

.25 15.0796 12.8275 11.0795

.25 20.1062 10.5705 23.9027

25 40.2124 34.2067 29.545

.5 83.7758 48.3680 108.828

.5 71.2094 41.1128 92.5038

.5 58.6431 33.8576 76.1796

.5 46.0767 26.6024 ' 59.8554

.5 33.5103 19.3472 43.5312

.5 20.9440 12.0920 27.2070

.5 8.3776 4.8368 10.8828

.75 7.18078 4.59228 9.82478

.75 14.3616 7.36545 24.5026

.75 21.5423 24.8250 16.3570

.75 32.3135 20.6653 44.2115

 

At each pair

tions in Table 3.3 show that Re x’(ao) # O.

 
(vo.ao) which satisfy (1.29), the computa-

The same

remarks stated in Example 1 above applies here. Applying

Theorem 5.1, (1.27) has non-zero periodic solutions.
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