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ABSTRACT

HIGH ORDER FINITE DIFFERENCE WENO SCHEMES FOR IDEAL
MAGNETOHYDRODYNAMICS

By

Xiao Feng

In this dissertation we propose two high order finite difference numerical schemes for

solving the ideal magnetohydrodynamic (MHD) equations.

The first scheme is single-stage single-step, maintains a divergence-free condition on the

magnetic field, and has the capacity to preserve the positivity of the density and pressure. To

accomplish this, we use a Taylor discretization of the Picard integral formulation (PIF) of the

finite difference WENO method proposed in [SINUM, 53 (2015), pp. 1833–1856]. We use the

version where fluxes are expanded to third-order accuracy in time, and for the fluid variables

space is discretized using the classical fifth-order finite difference WENO discretization. We

use constrained transport in order to obtain divergence-free magnetic fields, which means

that we simultaneously evolve the magnetohydrodynamic (that has an evolution equation

for the magnetic field) and magnetic potential equations alongside each other, and set the

magnetic field to be the (discrete) curl of the magnetic potential after each time step. In

this work, we compute these derivatives to fourth-order accuracy. In order to retain a single-

stage, single-step method, we develop a novel Lax-Wendroff discretization for the evolution of

the magnetic potential, where we start with technology used for Hamilton-Jacobi equations

in order to construct a non-oscillatory magnetic field. The end result is an algorithm that

is similar to our previous work [JCP, 268, (2014), pp. 302–325], but this time the time

stepping is replaced through a Taylor method with the addition of a positivity-preserving

limiter. Finally, positivity preservation is realized by introducing a parameterized flux limiter



that considers a linear combination of high and low-order numerical fluxes. The choice of the

free parameter is then given in such a way that the fluxes are limited towards the low-order

solver until positivity is attained. Given the lack of additional degrees of freedom in the

system, this positivity limiter lacks energy conservation where the limiter turns on.

The second scheme is based on an alternative flux formulation of the WENO scheme

[JCP, 77 (1988), pp. 439–471, SIAM J. Sci. Comput., 35 (2013), pp. A1137–A1160, and

Methods Appl. Anal., 21 (2014), pp. 1–30], which can be applied on curvilinear meshes. This

scheme computes the numerical flux by a Taylor expansion in space. The lowest order term

in the expansion is computed by applying a Riemann solver to one-sided approximations

to conserved quantities obtained from WENO interpolation. The higher order terms in

the expansion are computed by central differences. An additional limiter based on the

smoothness indicators from the WENO interpolation is applied to control the oscillations in

the higher order terms. Constrained transport is done in a way similar to [JCP, 268, (2014),

pp. 302–325]. A positivity preserving limiter similar to the one in the first scheme is applied

in order to enhance the robustness of the scheme. When the Riemann solver used in this

scheme is chosen to be a high resolution solver such as the HLLD solver, the scheme exhibits

better resolution than schemes based on WENO reconstruction of fluxes and Lax-Friedrichs

flux splitting.

We present numerical results for several standard test problems including smooth Alfvén

wave problems (to verify formal order of accuracy), shock tube problems (to test the shock-

capturing ability of the scheme), Orszag-Tang, and cloud shock interactions. These results

assert the robustness and verify the high-order of accuracy of the proposed scheme.
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Chapter 1

Introduction

A plasma is a substance where a sufficiently large portion consists of free charged particles,

so that due to the the electromagnetic forces, which are long-range in nature, the substance

as a whole exhibits collective behaviors [11]. Magnetohydrodynamics (MHD) are single-fluid

models for plasmas where it is assumed that the plasma is quasi-neutral (zero net charge in

any spatial scales under consideration). The ideal MHD equations further assume perfect

conductivity (zero electric resistance). Although it is one of the simplest models of plasmas,

it is nonetheless a “remarkably accurate description of the low-frequency, long-wavelength

dynamics of real plasmas” [72]. As a consequence, the MHD equations, both ideal and

non-ideal, find applications in a wide range of areas including space physics and controlled

thermonuclear fusion [53, 11].

In this dissertation, we propose and investigate two high-order finite difference numer-

ical schemes for ideal MHD equations based on the Weighted Essentially Non-Oscillatory

(WENO) methodology. The first scheme is a a single-stage, single-step scheme that is de-

signed with the goal of embedding in Adaptive Mesh Refinement frameworks and achieving

low storage in mind. The second scheme is a scheme based on an alternative flux formulation

of the WENO scheme, which can be applied on curvilinear meshes. In both schemes, we use

unstaggered constrained transport, where a magnetic potential is evolved along side with

the MHD quantities, to control the divergence error of the magnetic field, and we use a flux
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limiter to retain the positivity of the density and pressure in MHD.

High-order numerical schemes based on the Essentially Non-Oscillatory (ENO) [61] as

well as the Weighted ENO (WENO) reconstruction technique [50, 59, 2, 75, 4, 23, 17] have

been applied successfully to ideal MHD in the past two decades. These high order schemes

are capable of resolving complex features such as shocks and turbulences using fewer grid

points than low-order schemes for the same level of error, as is common with many high-order

shock-capturing schemes.

It often happens in large-scale MHD simulations that the complex features are concen-

trated in a small portion of the simulation domain. Adaptive mesh refinement (AMR) is

a technique that is designed for treating such locality of complexity in hydrodynamics and

magnetohydrodynamics. One of the main difficulties with implementing high order schemes

within an AMR framework is that boundary conditions for the refined region need to be

specified in a consistent manner [62]. This becomes difficult for multistage Runge-Kutta

(RK) methods, because high order solutions cannot be found if one simply uses high-order

interpolated values (in time) at the ghost points that are required for the intermediate stages

of the method. Preliminary work that combines WENO spatial discretizations with strong

stability preserving Runge-Kutta (SSP-RK) time-stepping is conducted in [74, 92], and very

recent work makes use of curvilinear grids to extend finite difference methods to problems

with geometry [17]. However, the authors in [17] use global time steps (which precludes the

possibility of introducing local time stepping), and perhaps more troublesome, they drop

mass conservation for their framework to work.

In choosing building blocks for AMR code, it has been argued that single-stage, single-

step methods are advantageous [24, 5], partly because fewer synchronizations are needed per

step than multistage RK methods. The fact that single-stage, single-step methods do not
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have an issue with these synchronizations is possibly one of the reasons they have gained

much attention in the past two decades, and one reason we choose to pursue these methods.

Broadly construed, these methods are based on Lax and Wendroff’s original idea of using

the Cauchy-Kovalevskaya procedure to convert temporal derivatives into spatial derivatives

in order to define a numerical method [54]. Notable high-order single-stage, single-step

methods include the Arbitrary DERivative (ADER) methods [85, 87], the Lax-Wendroff

finite difference WENO methods [68], the Lax-Wendroff discontinuous Galerkin (DG) meth-

ods [67] and space-time schemes applied directly to second-order wave equations [45, 9].

Of the three classes of high-order methods based upon Lax-Wendroff time stepping, only

the ADER methods have been applied to magnetohydrodynamics [5, 4, 13], whereas simi-

lar investigations have not been done for the other classes. An additional advantage that

single-stage single-step Taylor methods offer is their low-storage opportunities. This requires

care, because these methods can easily end up requiring the same amount of storage as their

equivalent RK counterpart (e.g., if each time derivative is stored in order to reduce coding

complexity).

The single-stage single-step scheme we propose in this dissertation is based on the Taylor

discretization of the Picard integral formulation of the finite difference WENO (PIF-WENO)

method [20]. Compared with other WENO methods that use Lax-Wendroff time discretiza-

tions [68], our method has the advantage that its focus is on constructing high-order Taylor

expansions of the fluxes (which are used to define a conservative method through WENO re-

construction) as opposed to the conserved variables. This allows, for example, the adaptation

of a positivity-preserving limiter, which we describe in this document.

The other scheme we propose in this dissertation is based on an alternative flux for-

mulation of WENO schemes [51, 52]. In this alternative formulation, the numerical flux is
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computed by applying a Riemann solver to approximations of conserved quantities obtained

by WENO interpolation. This approach can be found in the early work of Shu and Osher

on ENO schemes [78]. However, direct reconstruction of numerical fluxes has enjoyed a

widespread popularity from early on (see [41] and the references therein), in part due to the

lower computational cost. One disadvantage of this direct reconstruction approach, though,

is that the incorporation of upwinding into the scheme is commonly done through the very

diffusive Lax-Friedrichs flux splitting. The alternative flux formulation can mitigate this

problem by using less diffusive Riemann solvers. For more discussion on the advantages of

this alternative formulation, we refer the reader to [51, 52].

The idea of using Riemann solvers in numerical schemes for hyperbolic conservation

laws has its root in the seminal work of Godunov [35]. Since then, a tremendous amount

of effort has been put in pursuit of good approximate Riemann solvers. Notable work on

Euler equations for hydrodynamics include the work of Godunov [36], Roe [69], Harten et

al [42], and Toro et al [88]. The Harten-Lax-van Leer (HLL) solver in [42] assumes one

intermediate state in the approximate solution to the Riemann problem. The HLLC (C

for contact discontinuity) solver in [88] improved upon that by assuming two intermediate

states and making use of knowledge specific to the Euler equation to achieve exact resolution

of isolated contact discontinuities. Similar ideas were applied to magnetohydrodynamics

in the work of Gurski [40], Li [58], and Miyoshi and Kusano [64]. Of these solvers, the

HLLD (D for discontinuities) solver in [64] assumes the largest number of intermediate

states (four) in the approximate solution and is capable of resolving contact, rotational, and

tangential discontinuities exactly, and, when the estimates of fastest signal speeds are exact,

also resolving fast shocks exactly. This solver has since been used in many mature MHD

simulation codes including FLASH [29] and Athena [82].
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We remark here that there has been an ongoing, inconclusive debate on the correct

conditions to single out the physically correct weak solution to a Riemann problem for ideal

MHD. The entropy conditions that worked very well for Euler equations (see, e.g., [55])

cannot serve this purpose for MHD equations because of lack of convexity in the MHD

fluxes [89]. In numerical tests for the shock tube problem first examined by Brio and Wu

in [15], intermediate shocks, which were deemed inadmissible by earlier criteria [48], show

up ubiquitously in the results. Due to lack of decisive evidence from physical observations

and experiments (however, see [32]), currently there is no agreement on the physical reality

of intermediate shocks. Takahashi and Yamada [83] gives an excellent review of the current

controversy and also reports their own study of this issue, which are in favor of Falle and

Komissarov’s argument [31] that the apparent intermediate shocks are actually a consequence

of a certain symmetry in the setup of the shock tube problem. We also refer the reader to

the same authors’ work [84] for the description of an exact MHD Riemann solver, where one

could switch between the various admissibility conditions.

Another issue that we address in our second scheme is the handling of curvilinear meshes

(also called structured grids by some authors). One reason for solving the MHD equations on

curvilinear meshes is because the geometry for certain MHD applications is best described by

a non-Cartesian coordinate system [28, 70, 37, 81]. More recent work include, for example,

that of Chacon [16] and Stegmeir et al [80]. See also [17] for a very recent piece of work on

high order numerical schemes for generic hyperbolic conservation law on curvilinear meshes.

The way we handle curvilinear meshes in the (second) scheme in this dissertation follows the

method in [52], where a hyperbolic system of conservation laws on the Cartesian coordinates

is transformed to one on the curvilinear coordinates. We refer the reader to the references

therein for further discussions.
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An important issue in simulations of MHD systems is the controlling of the divergence

error of the magnetic field, since numerical schemes based on the transport equations alone

will, in general, accumulate errors in the divergence of the magnetic field. Failure to address

this issue creates an unphysical force parallel to the magnetic field [14], and if this is not

taken care of, it will often lead to failure of the simulation code. Popular techniques used

to solve this problem include (1) the non-conservative eight-wave method [38], (2) the pro-

jection method [14], (3) the hyperbolic divergence cleaning method [27], and (4) the various

constrained transport methods [1, 8, 23, 25, 30, 33, 43, 44, 71]. Tóth conducted an extensive

survey in [90].

Both schemes proposed in this dissertation uses the unstaggered constrained transport

framework proposed by Rossmanith [71]. This framework evolves a vector potential that sits

on the same mesh as the conserved quantities. This vector potential is then used to correct

the magnetic field. Historically, the term “constrained transport” has been used to refer to

a class of methods that incorporate the divergence-free condition into the discretization of

the transport equation of the magnetic field, often done in a way that can be interpreted as

maintaining an electric field on a staggered mesh [30, 90]. Some authors actually still distin-

guish between this type of “constrained transport” and the “vector potential” approach [47].

However, as is well-known, evolving a vector potential is conceptually equivalent to evolv-

ing an electric field. The unstaggered approach has the added benefit of ease for potential

embedding in an AMR framework.

An important piece in any vector-potential based constrained transport method is the

discretization of the evolution equation of the vector potential. This evolution equation

is a nonconservative weakly hyperbolic system, and it can be treated numerically from this

viewpoint [44]. An alternative approach is to view it as a modified system of Hamilton-Jacobi
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equations [23]. Both schemes proposed in this dissertation adopts the latter approach. The

first, single-stage, single-step scheme uses a method inspired by a Lax-Wendroff numerical

scheme for Hamilton-Jacobi equations that was proposed in [66]. The artificial resistivity

terms used in [23] are adapted into the present single-stage, single-step scheme. The second

scheme, which is based on an alternative flux formulation of the WENO scheme, uses the

same method as in [23] to evolve the vector potential, with necessary transformations when

applied on curvilinear meshes.

One further challenge for numerical simulations of MHD is that of retaining the positivity

of the density and pressure. This is critical when the thermal pressure takes up only a small

portion of the total energy, i.e., when the β value is small. Almost all positivity-preserving

methods exploit the presumed positivity-preserving property of certain low-order schemes,

such as the Lax-Friedrichs scheme. Whereas earlier methods often rely on switching between

high- and low-order updates [7, 46], more recent work tends to use combinations of the two.

Examples include the work of Balsara [3] and Cheng et al. [18], which limit the conserved

quantities at certain nodal points, and the work of Christlieb et al. [22], which combines

high- and low-order fluxes through a single free parameter at each flux interface. In the

current work, we adopt an approach similar to that used in [22]. This approach seeks a

suitable convex combination of the high- and low-order fluxes at each cell at each time step.

This flux limiter we adopt is an adaptation of the maximum principle preserving (MPP) flux

limiter [93] (that has its roots in flux corrected transport schemes [12, 95]) for the purposes

of retaining positivity of the density and pressure. We note that positivity-preserving has

also been investigated for hydrodynamics. The limiters mentioned in this paragraph can be

viewed as generalizations of limiters that have been applied to Euler’s equations [96, 21, 73].

The rest of this dissertation is as follows. We will first briefly review ideal MHD equations

7



in Chapter 2 and then review the WENO methodology and include the interpolation and

reconstruction formulas we use for future reference in Chapter 3. After that, in Chapter 4, we

propose and investigate our first scheme, a single-stage, single-step high order finite difference

numerical scheme for ideal MHD equations. In Chapter 5, we propose and investigate our

second scheme, a high order finite difference numerical scheme for ideal MHD equations,

based on an alternative flux formulation of the WENO scheme and applicable to curvilinear

meshes. In Chapter 6, we draw our conclusions.
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Chapter 2

The ideal MHD equations

In this chapter, we briefly review the ideal MHD equations. In particular, we will review its

hyperbolicity and discontinuities, both of which will be used later.

In the conservation form, the (normalized) ideal MHD equations are

∂t



ρ

ρu

E

B


+∇ ·



ρu

ρu⊗ u + ptotI−B⊗B

u(E + ptot)−B(u ·B)

u⊗B−B⊗ u


= 0, (2.1)

∇ ·B = 0, (2.2)

where ρ is the mass density, ρu is the momentum density, E is the total energy density, B

is the magnetic field, p is the thermal pressure, ‖·‖ is the Euclidean vector norm, ptot =

p+ 1
2‖B‖2 is the total pressure, γ = 5/3 is the ideal gas constant, and the pressure satisfies

the equation of state

E =
p

γ − 1
+
ρ ‖u‖2

2
+
‖B‖2

2
. (2.3)

Here the quantities are normalized in such a way that the permeability and permittivity do

not show up explicitly in the equations. In other words, we choose a unit system in which

they are both equal to 1.
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2.1 Hyperbolicity of the ideal MHD equations

We now briefly review the definition of a hyperbolic system of conservation laws, of which

the ideal MHD equations (2.1) are an example. A more thorough treatment can be found

in [56]. We also briefly review the waves in the ideal MHD equations in this section, which

can be found in most of MHD literature. See, for example, [48, 10].

Definition 2.1. An hyperbolic system of conservation laws is a system of equations of the

form

∂tq +∇ · F = 0, (2.4)

where the conserved quantities q, which is a vector function of time t and space x, and the

flux tensor F , which is a (rank-2) tensor function of q, are subject to the condition that for

all (unit) direction vector n, the Jacobian n · ∂F∂q is diagonalizable with real eigenvalues.

In Definition 2.1, if we assume we have n components in q and m dimensions in space

and write out the components, we have

q = (qj)j=1,...,n, F = (Fi,j)i=1,...,m, j=1,...,n,

n = (ni)i=1,...,m, n · ∂F
∂q

=
m∑
i=1

ni

(
∂Fi,j
∂qk

)
j,k=1,...,n

.
(2.5)

For future reference, we also write out the flux in the n direction, which is

n · F =

(
n∑
i=1

niFi,j

)
j=1,...,m

. (2.6)

The diagonalizability condition of the Jacobian in Definition 2.1 means that locally in any

direction at any point in space, the structure of q is approximately that of plane waves. The
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eigenvalues of n · ∂F∂q are the speeds of the waves in direction n at a given point. We note

however that in the case when F is not a linear function of q, the solution to Equation 2.4

can and usually does develop very complex structures as time evolves.

In the ideal MHD system 2.1, the wave speeds are given by

λ1,8 = u · n∓ cf (fast magnetosonic waves), (2.7)

λ2,7 = u · n∓ ca (Alfvén waves), (2.8)

λ3,6 = u · n∓ cs (slow magnetosonic waves), (2.9)

λ4 = λ5 = u · n (entropy and divergence waves), (2.10)

where

a =

√
γp

ρ
(sound speed), (2.11)

ca =

√
(B · n)2

ρ
(Alfvén speed), (2.12)

cf =

1

2

a2 +
‖B‖2
ρ

+

√√√√(a2 +
‖B‖2
ρ

)2

− 4a2 (B · n)2

ρ




1
2

(fast magnetosonic speed),

(2.13)

cs =

1

2

a2 +
‖B‖2
ρ
−

√√√√(a2 +
‖B‖2
ρ

)2

− 4a2 (B · n)2

ρ




1
2

(slow magnetosonic speed).

(2.14)

We note that the eigen decomposition of the Jacobian for ideal MHD is very complicated

and is itself a subtle issue. The work in this dissertation all uses the decomposition given
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in [10].

2.2 Discontinuities in the ideal MHD equations

A distinguished feature of the hyperbolic system (2.4) is that a solution in the classical sense

usually do not exist for all time t. Discontinuities often develop, even if the initial conditions

are smooth. Therefore, one considers weak solutions to Equation (2.4), which are functions q

that satisfy the corresponding integral form of conservation laws, and could possibly contain

discontinuities.

We now review the types of discontinuities in the ideal MHD equations (2.1). This

knowledge will later be applied in Section 5.2.

For the hyperbolic system of conservation laws (2.4), suppose we start with the initial

conditions

q(t = 0,x) =


qL, if n · x < 0,

qR, if n · x ≥ 0,

(2.15)

where qL and qR are constant vectors, and n is an arbitrary direction vector. This is called

a Riemann problem. The solution to such a problem is a function q that depends only on

t and n · x. We are interested in the case when the solution consists of a single moving

discontinuity, that is, when

q(t,x) =


qL, if n · x < St,

qR, if n · x ≥ St,

(2.16)

where S is the speed at which the discontinuity moves. In this case, the integral form of the
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hyperbolic conservation law mandates the Rankine-Hugoniot condition

S(qR − qL) = n · F(qR)− n · F(qL). (2.17)

In the ideal MHD equations, the divergence condition (2.2) implies that the magnetic

field in the initial conditions (2.15) must satisfy

n ·BL = n ·BR. (2.18)

Under the condition (2.18), the Rankine-Hugoniot condition (2.17) implies that a single

moving discontinuity in ideal MHD must be one from the following list.

1. A (fast or slow) shock. In this case, we have

n · uL,n · uR 6= S, (2.19)

n · uL 6= n · uR, (2.20)

ρL 6= ρR. (2.21)

2. A rotational discontinuity. In this case, we have

n · uL,n · uR 6= S, (2.22)

n · uL = n · uR, (2.23)

ρL = ρR, (2.24)

(uR − uL)t =
1√
ρ

(BR −BL)t, (2.25)
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where (·)t represents the vector component tangential to the discontinuity interface

(i.e., the component perpendicular to n).

3. A contact discontinuity. In this case, we have

n ·B 6= 0, (2.26)

BL = BR, (2.27)

uL = uR, (2.28)

pL = pR. (2.29)

4. A tangential discontinuity. In this case, we have

n ·B = 0, (2.30)

ptotL = ptotR. (2.31)

Here we can have arbitrary jumps in the tangential velocities and tangential magnetic

fields.

Remark 2.1. We note that (fast or slow) shocks are the only types of discontinuities that

can possibly admit jumps in the normal velocities or the total pressures.

Remark 2.2. Rotational, contact, and tangential discontinuities are linearly degenerate. Ro-

tational discontinuities correspond to Alfvén waves. Contact and tangential discontinuities

correspond to entropy and divergence waves. None of the discontinuities in this list is gen-

uinely nonlinear.

Remark 2.3. We mentioned that n ·B must be the same on the two sides of the discontinu-
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ity. However, in Section 5.2, when we look at approximate Riemann solvers to be used in

numerical schemes for multidimensional problems, we will need to solve Riemann problems

where this condition does not hold. We will discuss how we handle this issue in that section.

Remark 2.4. For more discussions on weak solutions, integral forms of conservation laws,

Rankine-Hugoniot conditions, linear degeneracy, and genuine non-linearity, see [56]. For

more discussions on discontinuities in the ideal MHD equations, see [83].
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Chapter 3

The WENO methodology

In this chapter, we give a brief description of the WENO interpolation and reconstruction

procedures for future references. The discussion mostly follows [77].

3.1 WENO interpolation

Consider a uniform mesh with xi = i∆x. Let r be a positive integer and m = 2r − 1.

Suppose we want to interpolate the one-sided approximation q−
i+1/2

from values of q on an

m-point (biased) stencil

S− = {xi−r+1, . . . , xi+r−1}. (3.1)

A polynomial interpolation over S− would give q−
i+1/2

as a linear combination of the val-

ues {qi−r+1, . . . , qi+r−1}, which can then be written as a convex linear combination of the

interpolations obtained from r-point substencils of S−. To be more precise, let

Sk = {xi−r+1+k, . . . , xi+k}, where k = 0, . . . , r − 1 (3.2)

be the r-point substencils of S−. The polynomial interpolation over S gives

q−
i+1/2

=
r−1∑

s=−r+1

bsqi+s = q(xi+1/2) +O(∆x2r−1), (3.3)
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where bs’s are constant coefficients. Similarly, the polynomial interpolation over Sk gives

q
(k)
i+1/2

=
0∑

s=−r+1

b
(k)
s qi+k+s = q(xi+1/2) +O(∆xr), (3.4)

where b
(k)
s ’s are constant coefficients. There then exist constant positive numbers dk such

that

q−
i+1/2

=
r−1∑
k=0

dkq
(k)
i+1/2

(3.5)

and
r−1∑
k=0

dk = 1. (3.6)

In the WENO literature, dk’s are called linear weights, because the approximation q−
i+1/2

defined by Equations (3.4) and (3.5) is a linear combination of the qi’s. When q is discon-

tinuous within S−, the polynomial interpolation gives rise to excessive oscillations. This is

known as the Runge’s phenomenon or the Gibb’s phenomenon. The WENO methodology

tackles this problem by replacing dk with some ωk which satisfies

r−1∑
k=0

ωk = 1 (3.7)

and

ωk = dk +O(∆xr−1), when q is smooth on S−, and

ωk = O(∆xr−1), when q is discontinuous on Sk.

(3.8)

In order to obtain ωk’s satisfying Equation (3.8), we can first compute smoothness indicators

17



of the polynomial interpolants over the substencils by setting

βk =
r−1∑
l=1

∫ xi+1/2

xi−1/2

∆x2l−1

(
∂lpk(x)

∂lx

)2

dx, (3.9)

where pk(x) is the polynomial that interpolates q
(k)
i+1/2

from the values of q on Sk. From

these smoothness indicators we compute the unnormalized weights

αk =
dk

(ε+ βk)2
, (3.10)

where ε is a small positive number (taken to be 10−6 in all our examples) to avoid division

by zero. Normalizing the αk’s gives the WENO weights

ωk =
αk∑r−1
s=0 αs

. (3.11)

Since the interpolation given by

q−
i+1/2

=
r−1∑
k=0

ωkq
(k)
i+1/2

(3.12)

is no longer a linear function of the qi’s, the weights ωk are called nonlinear weights in the

WENO literature.

To illustrate the algorithm just described, let’s look at the example with r = 3. In this

case, the big stencil is

S− = {xi−2, xi−1, xi, xi+1, xi+2} (3.13)
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and the substencils are

S0 = {xi−2, xi−1, xi}, S1 = {xi−1, xi, xi+1}, S2 = {xi, xi+1, xi+2}. (3.14)

Equations (3.3) and (3.4) becomes

q−
i+1/2

=
3

128
qi−2 −

5

32
qi−1 +

45

64
qi +

15

32
qi+1 −

5

128
qi+2 (3.15)

and

q
(0)
i+1/2

=
3

8
qi−2 −

5

4
qi−1 +

15

8
qi,

q
(1)
i+1/2

= −1

8
qi−1 +

3

4
qi +

3

8
qi+1,

q
(2)
i+1/2

=
3

8
qi +

3

4
qi+1 −

1

8
qi+2.

(3.16)

From Equations (3.5), (3.15), and (3.16), we can obtain

d0 =
1

16
, d1 =

5

8
, d2 =

5

16
. (3.17)

The smoothness indicators (3.9) become

β0 =
13

12
(qi−2 − 2qi−1 + qi)

2 +
1

4
(qi−2 − 4qi−1 + 3qi)

2,

β1 =
13

12
(qi−1 − 2qi + qi+1)2 +

1

4
(qi−1 − qi+1)2,

β2 =
13

12
(qi − 2qi+1 + qi+2)2 +

1

4
(3qi − 4qi+1 + qi+2)2.

(3.18)

Thus, the approximation q−
i+1/2

given by (3.12) will satisfy q−
i+1/2

= q(xi+1/2) + O(∆x5)

when q is smooth on S−, and will, in the case when S− contains a discontinuity, be effectively

chosen to be the interpolation obtained from the substencils not containing the discontinuity.
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This completes the description of the WENO interpolation procedure to compute q−
i+1/2

.

The approximation to q(xi+1/2) from the other side, q+
i+1/2

, is computed from the stencil

S+ = {xi−r+2, . . . , xi+r}. The interpolation procedure is similar and the formulas can be

obtained from the ones for q−
i+1/2

by exploiting the mirror-symmetry between the stencils

S− and S+.

3.2 WENO reconstruction

The WENO reconstruction solves the problem of computing derivatives. Given a function

q(x), we can define a sliding function h by the implicit formula

q(x) =
1

∆x

∫ x+∆x/2

x−∆x/2
h(ξ) dξ. (3.19)

The Fundamental Theorem of Calculus implies

q′(x) =
1

∆x

(
h

(
x+

∆x

2

)
− h

(
x− ∆x

2

))
. (3.20)

Now suppose we know the values of q on a uniform mesh xi = i∆x. This is equivalent to

knowing the values of the primitive function H of h defined by

H(x) =

∫ x

x−1/2

h(ξ) dξ, (3.21)

where x−1/2 is any fixed number. We thus can interpolate H and obtain an (weighted)

essentially non-oscillatory interpolant polynomial by the WENO interpolation procedure

described in Section 3.1, and take its derivative to get h(xi+1/2). The value of q′(xi) can
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then be computed from Equation 3.20. For stencils of m = 2r − 1 points, the error in

h(xi+1/2) thus obtained is of O(∆xm), and so is the error in q′(xi), due to cancellations in

the leading error terms.

In the case when r = 3, the big stencil S− and its substencils were given in (3.13)

and (3.14). The values h reconstructed from the substencils are

h
(0)
i+1/2

=
1

3
qi−2 −

7

6
qi−1 +

11

6
qi,

h
(1)
i+1/2

= −1

6
qi−1 +

5

6
qi +

1

3
qi+1,

h
(2)
i+1/2

=
1

3
qi +

5

6
qi+1 −

1

6
qi+2.

(3.22)

The linear weights are

d0 =
1

10
, d1 =

3

5
, d2 =

3

10
. (3.23)

The smoothness indicators βk’s are the same as in (3.18). From here, we can then compute

the nonlinear weights ωk’s and take the combination of the hk
i+1/2

’s using these weights to

obtain hi+1/2. For future reference, we shall let ΦWENO5(qi−2, qi−1, qi, qi+1, qi+2) be the

value of hi+1/2 so obtained.
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Chapter 4

A high-order positivity-preserving

single-stage single-step method for the

ideal magnetohydrodynamic equation

In this chapter, we describe our first scheme, a high-order positivity-preserving single-stage

single-step scheme for the ideal MHD equations. In Section 4.1, we describe the unstaggered

constrained transport framework we used a vector potential to control the divergence error of

the magnetic field. In Section 4.2, we review the Taylor-discretization PIF-WENO method,

which is a single-stage method for solving hyperbolic conservation laws. In Section 4.3, we

describe how we solve the evolution equation of the vector potential. In Section 4.4, we

describe the positivity preservation limiter we used. Finally, in Section 4.5, we present our

numerical results.

The contents of this chapter is published in [19].

4.1 A constrained transport framework

In this section we review the unstaggered constrained transport framework proposed in [71].

This framework makes use of the fact that because the magnetic field B is divergence-free,
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it admits a vector potential A that satisfies

B = ∇×A. (4.1)

It is therefore possible to maintain, at the discrete level, the divergence-free property of B

by evolving A alongside the conserved quantities, and correcting B to be the curl of A.

The evolution equation for the magnetic potential can be derived by starting with

Maxwell’s equations. That is, if we start with Faraday’s law (instead of starting with the

ideal MHD equations), we have

∂tB = −∇× E. (4.2)

Next, we approximate the electric field by Ohm’s law for a perfect conductor

E = B× u, (4.3)

which yields the induction equation used for ideal MHD:

∂tB +∇× (B× u) = 0. (4.4)

(After applying some appropriate vector identities, Eqn. (4.4) can be written in a conservative

form.) By substituting (4.1) into (4.4), we obtain

∇× (∂tA + (∇×A)× u) = 0. (4.5)
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This implies there is a scalar function ψ such that

∂tA + (∇×A)× u = −∇ψ. (4.6)

Different choices of ψ in (4.6) correspond to different gauge conditions. It is noted in [43]

that the Weyl gauge, which sets ψ ≡ 0, leads to stable numerical solutions. With the Weyl

gauge, the evolution equation for magnetic potential (4.6) becomes

∂tA + (∇×A)× u = 0. (4.7)

In the constrained transport framework, both the conserved quantities q := (ρ, ρu, E ,B)

and the magnetic potential A are evolved. The time step from tn to tn+1 proceeds as follows:

StepCT 1 Discretize (2.1) and update the conserved quantities

(ρn, ρun, En,Bn) (ρn+1, ρun+1, E∗,B∗), (4.8)

where E∗ and B∗ are subject to corrections described in Steps 3 and 4 below.

StepCT 2 Discretize (4.7) and update the magnetic potential: An  An+1.

StepCT 3 Correct B to be the curl of A through

Bn+1 = ∇×An+1. (4.9)

Note that this step modifies the pressure.

StepCT 4 Modify the total energy so the pressure remains unchanged (see below).
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In the current chapter, the discretization we use for (4.8) is the Taylor-discretization of

the PIF-WENO method [20]. This method is a single-stage single-step method for systems

of hyperbolic conservation laws. We give a brief review of this method in Section 4.2.

It is noted in [43] that Equation (4.7) is a weakly hyperbolic system that must be treated

carefully in order to avoid numerical instabilities. Along the lines of our previous work in [23],

we use a discretization that is inspired by numerical schemes for Hamilton-Jacobi equations,

in order to be able to define non-oscillatory derivatives of the magnetic field. We present

this discretization in Section 4.3.

For certain problems, such as those involving low-β plasma, negative density or pressure

occur in numerical simulations, even when constrained transport is present. This requires

the use of a positivity-preserving limiter [22, 73, 93]. This limiter preserves the positivity of

density and pressure by modifying the numerical flux that evolves the conserved variables.

We describe this limiter in detail in Section 4.4. When this limiter is used, we also apply

the following fix to the pressure in StepCT 4 by modifying the total energy through

En+1 = E∗ +
1

2
(‖Bn+1‖2 − ‖B∗‖2). (4.10)

This energy “correction” keeps the pressure the same as before the magnetic field correction

in (4.9). While this clearly has the disadvantage of violating the conservation of energy, it is

nonetheless needed in order to preserve the positivity of pressure (otherwise the modifications

made to the magnetic field to obtain a divergence free property could potentially cause

the pressure to become negative). This technique is explored in [8, 22, 90]. In the results

presented in the current work, we use the energy correction (4.10) if and only if the positivity-

preserving limiter is turned on.

25



4.2 The Taylor-discretization PIF-WENO method

We now briefly review the Taylor-discretization Picard integral formulation weighted essen-

tially non-oscillatory (PIF-WENO) method [20]. This method applies to generic hyperbolic

conservation laws in arbitrary dimensions, of which the ideal MHD equation is an example.

For the purpose of illustration, we present the method here for a 2D system. In 2D, a

hyperbolic conservation law takes the form

∂tq + ∂xf(q) + ∂yg(q) = 0, (4.11)

where q(t, x, y) : R+×R2 → Rm is the vector of m conserved variables, and f ,g : Rm → Rm

are the two components of the flux function. Formally integrating (4.11) in time from tn to

tn+1, one arrives at the Picard integral formulation of (4.11) given by

qn+1 = qn −∆t∂xF
n(x, y)−∆t∂yG

n(x, y), (4.12)

where the time-averaged fluxes F and G are defined as

Fn(x, y) =
1

∆t

∫ tn+1

tn
f(q(t, x, y)) dt, and Gn(x, y) =

1

∆t

∫ tn+1

tn
g(q(t, x, y)) dt. (4.13)

Given a domain Ω = [ax, bx]× [ay, by], the point-wise approximations qni,j ≈ q(tn, xi, yj)

are placed at

xi = ax +

(
i− 1

2

)
∆x, ∆x =

bx − ax
mx

, i ∈ {1, . . . ,mx}, (4.14)

yi = ay +

(
i− 1

2

)
∆y, ∆y =

by − ay
my

, y ∈ {1, . . . ,my}, (4.15)
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and time t = tn, where mx and my are positive integers. The PIF-WENO scheme

solves (4.11) by setting

qn+1
i,j = qni,j −

∆t

∆x

(
F̂ni+1/2,j − F̂ni−1/2,j

)
− ∆t

∆y

(
Ĝn
i,j+1/2 − Ĝn

i,j−1/2

)
, (4.16)

where F̂i±1/2,j and Ĝi,j±1/2 are obtained by applying the classical WENO reconstruction to

the time-averaged fluxes Fni,j and Gn
i,j instead of to the “frozen-in-time” fluxes, as is tradi-

tional in a method of lines (MOL) formulation. Here, Fni,j and Gn
i,j are approximated using

a third-order Taylor expansion in time, followed by an application of Cauchy-Kovalevskaya

procedure to replace the temporal derivatives with spatial derivatives. The resulting scheme

on the conserved quantities is third-order accurate in time. We omit the details here and re-

fer the reader to [20]. Extensions to three dimensions follow by including a third component

for the flux function.

4.3 The evolution of the magnetic potential equation

Recall that the evolution equation for the magnetic potential is defined in (4.7). If we expand

the curl and cross-product operator, we see that A satisfies

∂tA +Nx∂xA +Ny∂yA +Nz∂zA = 0, (4.17)
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where

Nx =


0 −uy −uz

0 ux 0

0 0 ux

 , Ny =


uy 0 0

−ux 0 −uz

0 0 uy

 , Nz =


uz 0 0

0 uz 0

−ux −uy 0

 (4.18)

are matrices defined by components of the velocity field u = (ux, uy, uz). The system (4.17)–

(4.18) has the following properties that we take into account when making a discretization:

1. This system is weakly hyperbolic. This means that all of the eigenvalues of (4.17) are

real, but in contrast to being strictly hyperbolic, the system is not necessarily diago-

nalizable. While this weak hyperbolicity is an artifact of how the magnetic potential

is evolved, it must be treated carefully to avoid creating numerical instabilities [43];

2. Each equation of this system can be viewed as a Hamilton-Jacobi equation with a

source term [23].

One consequence of this second observation is that we can use Hamilton-Jacobi technology

in order to define magnetic fields that have non-oscillatory derivatives. That is, a single

derivative of B is a second derivative of A, in which case care need be taken in order to

retain a non-oscillatory property.

In the next two subsections, we will describe how we discretize the system (4.17)–(4.18),

with these two properties in mind. Before we do that, we make several remarks. The first

is that in the discretization, A sits on the same mesh as the conserved quantities, hence

the name “unstaggered constrained transport”. The second is that the curl operator ∇×

is discretized in the same way as in [23], which defines a divergence free magnetic field (at

the discrete level). A final remark is that the discretization we present here is third-order
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accurate in time, which is in accordance with the discretization we use for the conserved

quantities.

4.3.1 The 2D magnetic potential equation

We begin with the two-dimensional case, where the conserved quantities and the magnetic

potential do not depend on z. In this case, the divergence-free condition is

∇ ·B = ∂xB
x + ∂yB

y = 0. (4.19)

Thus Bz has no impact on the divergence of B. It therefore suffices to correct only the

first two components of the magnetic field. A computationally cost-efficient way of doing

this is to discard the first two components of the magnetic potential, evolve only the third

component according to the evolution equation

∂tA
z + ux∂xA

z + uy∂yA
z = 0, (4.20)

and for the magnetic field correction, only correct Bx and By through

Bx = ∂yA
z and By = −∂xAz. (4.21)

This is equivalent to imposing ∂zA
x = 0 and ∂zA

y = 0 on the system (4.17)–(4.18), and

skipping Bz in the magnetic field correction in Eqn. (4.9).

Equation (4.20) has the favorable property of being strongly hyperbolic [71], in contrast

to the weak hyperbolicity in the 3D case. This equation is also a Hamilton-Jacobi equation,
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with Hamilton principal function Az, and Hamiltonian

H(t, x, y, ∂xA
z, ∂yA

z) = ux(t, x, y)∂xA
z + uy(t, x, y)∂yA

z. (4.22)

It is therefore possible to discretize Equation (4.20) using a numerical scheme for Hamilton-

Jacobi equations [23]. In line with the single-stage single-step theme of the proposed scheme,

we use a method that is inspired by the Lax-Wendroff WENO schemes for Hamilton-Jacobi

equations from [66].

A Lax-Wendroff WENO scheme for Hamilton-Jacobi equations is based on the Taylor

expansion in time of the Hamilton principal function. In order to retain third-order accuracy

in time, we require a total of three time derivatives of Azi,j :

Az n+1
i,j = Az ni,j + ∆t ∂tA

z n
i,j +

∆t2

2!
∂2
tA

z n
i,j +

∆t3

3!
∂3
tA

z n
i,j , (4.23)

where the temporal derivatives on the right-hand-side are computed in the following manner:

1. The first derivative is approximated by the Lax-Friedrichs type numerical Hamiltonian,

with high-order reconstruction of ∂xA
z and ∂yA

z[65]. Namely, we define

∂tA
z
i,j := −Ĥ(∂xA

z−
i,j , ∂xA

z+
i,j , ∂yA

z−
i,j , ∂yA

z+
i,j )

= −uxi,j

(
∂xA

z−
i,j + ∂xA

z+
i,j

2

)
− uyi,j

(
∂yA

z−
i,j + ∂yA

z+
i,j

2

)

+ αx

(
∂xA

z+
i,j − ∂xA

z−
i,j

2

)
+ αy

(
∂yA

z+
i,j − ∂yA

z−
i,j

2

)
,

(4.24)

where

αx = max
i,j
|uxi,j | and αy = max

i,j
|uyi,j | (4.25)
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are the maximum velocities taken over the entire grid, (i.e., the numerical flux is the

global Lax-Friedrichs flux), and ∂xA
z±
i,j , ∂yA

z±
i,j are defined by WENO reconstructions

through

∂xA
z−
i,j = ΦWENO5

(
∆+
xA

z
i−3,j

∆x
,
∆+
xA

z
i−2,j

∆x
,
∆+
xA

z
i−1,j

∆x
,
∆+
xA

z
i,j

∆x
,
∆+
xA

z
i+1,j

∆x
,

)
,

∂xA
z+
i,j = ΦWENO5

(
∆+
xA

z
i+2,j

∆x
,
∆+
xA

z
i+1,j

∆x
,
∆+
xA

z
i,j

∆x
,
∆+
xA

z
i−1,j

∆x
,
∆+
xA

z
i−2,j

∆x
,

)
,

∂yA
z−
i,j = ΦWENO5

(
∆+
y A

z
i,j−3

∆y
,
∆+
y A

z
i,j−2

∆y
,
∆+
y A

z
i,j−1

∆y
,
∆+
y A

z
i,j

∆y
,
∆+
y A

z
i,j+1

∆y
,

)
,

∂yA
z+
i,j = ΦWENO5

(
∆+
y A

z
i,j+2

∆y
,
∆+
y A

z
i,j+1

∆y
,
∆+
y A

z
i,j

∆y
,
∆+
y A

z
i,j−1

∆y
,
∆+
y A

z
i,j−2

∆y
,

)
,

(4.26)

and ∆+
xA

z
i,j := Azi+1,j − Azi,j and ∆+

y A
z
i,j := Azi,j+1 − Azi,j . The function ΦWENO5 is

the classical fifth-order WENO reconstruction whose formula we gave in Section 3.2

Note that this difference operator is designed for Hamilton-Jacobi problems, and does

not produce the typical flux difference form that most hyperbolic solvers produce.

2. The higher derivatives ∂2
tA

z and ∂3
tA

z are converted into spatial derivatives by way of

the Cauchy-Kovalevskaya procedure, and the resulting spatial derivatives are approxi-

mated using central differences. For example, ∂2
tA

z is converted into spatial derivatives
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by

∂2
tA

z = ∂t(∂tA
z)

= ∂t(−ux∂xAz − uy∂yAz)

= −∂tux ∂xAz − ux∂t∂xAz − ∂tuy ∂yAz − uy∂t∂yAz

= −∂tux ∂xAz − ux∂x(∂tA
z)− ∂tuy ∂yAz − uy∂y(∂tA

z) (4.27)

= −∂tux ∂xAz − ux ∂x(−ux∂xAz − uy∂yAz)− ∂tuy ∂yAz

− uy ∂y(−ux∂xAz − uy∂yAz)

= −∂tux ∂xAz − ux(−∂xux ∂xAz − ux∂2
xA

z − ∂xuy ∂yAz − uy∂x∂yAz)

− ∂tuy ∂yAz − uy(−∂yux ∂xAz − ux∂x∂yAz − ∂yuy ∂yAz − uy∂2
yA

z),

where

∂tu
x = ∂t

(
ρux

ρ

)
=
∂t(ρu

x)ρ− (ρux)∂tρ

ρ2
, (4.28)

and

∂tu
y = ∂t

(
ρuy

ρ

)
=
∂t(ρu

y)ρ− (ρuy)∂tρ

ρ2
, (4.29)

with ∂t(ρu
x), ∂t(ρu

y), and ∂tρ converted into spatial derivatives by way of (2.1). Note

that we do not find it necessary to use a FD WENO discretization for ρt. There are a

total of 49 distinct spatial derivatives that need to be approximated in (4.27)–(4.29).

Similar expressions exist for ∂3
tA

z. These are done by using the central differencing
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formulae

∂xUi,j =
−Ui−1,j + Ui+1,j

2∆x
, (4.30)

∂2
xUi,j =

Ui−1,j − 2Ui,j + Ui+1,j

∆x2
, (4.31)

∂x∂yUi,j =
Ui−1,j−1 − Ui−1,j+1 − Ui+1,j−1 + Ui+1,j+1

4∆x∆y
, (4.32)

∂3
xUi,j =

−Ui−2,j + 2Ui−1,j − 2Ui+1,j + Ui+2,j

2∆x3
, (4.33)

∂2
x∂yUi,j =

2Ui,j−1 − 2Ui,j+1 − Ui−1,j−1 + Ui−1,j+1 − Ui+1,j−1 + Ui+1,j+1

2∆x2∆y
, (4.34)

and similar ones for the y-, yy-, xyy- and yyy-derivatives, where U is any of ρ, ρux,

ρuy, ρuz, E , Bx, By, Bz, or Az.

Remark 4.1. In the current work, the magnetic field correction in Eqn. (4.21) is discretized

to fourth-order accuracy with central difference formulas. For example, we define the y-

derivative of Az to be

Bxi,j = ∂yA
z ≈

Azi,j−2 − 8Azi,j−1 + 8Azi,j+1 − Azi,j+2

12∆y
, (4.35)

and others similarly. Therefore in the discretization of equations (2.1) and (4.17), we aim

for fourth-order accuracy in space. For the fluid equations in (2.1), we use the fifth-order

accurate spatial discretization defined in [20]. In the case of (4.17), Eqn. (4.23) is a fifth-order

approximation to ∂tA
z(tn, xi, yj) since the reconstructions (4.26) give, for example,

∂xA
z+
i,j = ∂xA

z(tn, xi, yj) +O(∆x5), (4.36)

whereas Eqns. (4.30)–(4.34) are chosen so that Eqn. (4.23) is fourth-order accurate in space
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Figure 4.1: Stencil needed for magnetic potential. The values of Az at each “×” (save the
centermost value) is needed to correct the value of B at the center. The shaded points are
needed in Eqns. (4.26) and (4.30)–(4.34) to compute the value of Az at the rightmost “×”
point. Note that this stencil is contained in the stencil shown in [20], Fig. 2.

when ∆t = O(∆x). This fourth-order accuracy is verified in our numerical results.

Remark 4.2. In each dimension, the stencil needed to compute B from A is 5 points wide,

and an inspection of (4.26) and (4.30)–(4.34) indicates that the stencil needed to compute

A is 7 points wide. This results in a stencil that is 11 points wide in each dimension. A

more careful analysis of (4.30)–(4.34) shows that this stencil is indeed contained within the

stencil given by the PIF-WENO discretization of Eqn. (4.11) (which is sketched in Fig. 2

of [20]). We present a sketch of the stencil required to discretize the magnetic potential in

Fig. 4.1.

We note that our discretization differs from that found in [66] in that we do not store

any lower temporal derivatives for use in computation of higher temporal derivatives. That

is, the method proposed in [66] stores the values of ∂tA
z computed in Equation (4.27), and

makes use of the central differences of ∂tA
z. Although that approach saves the trouble of
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expanding Eqn. (4.34), our approach has the following advantages that are in line with our

goals:

Minimal storage. Our approach avoids the necessity of storing the lower temporal deriva-

tives (at the expense of a more complicated code). Note here that it would be not

only ∂tA
z and ∂ttA

z, but also the temporal derivatives of ρ, ρux, ρuy, ρuz, E , Bx, By,

and Bz that must be stored if the approach in [66] were to be taken. This would lead

to a formidable amount of temporary storage when applied to the magnetic potential

evolution equation in 3D;

Smaller stencils. The method in [66] would require a stencil that is 15 points wide in each

dimension in order to provide the necessary A values for correcting the magnetic field.

Our method only needs a stencil that is 11 points wide. This somewhat simplifies

the future work of embedding the scheme into an AMR framework, but the biggest

improvement is the reduction of temporary storage.

4.3.2 The 3D magnetic potential equation

The 3D magnetic potential equation (4.17)–(4.18) is weakly hyperbolic, and therefore special

attention is needed. This can be treated by introducing artificial resistivity terms into the

system [23, 43, 44]. To illustrate the technique, we consider the first row of the system which

is

∂tA
x − uy∂xAy − uz∂xAz + uy∂yA

x + uz∂zA
x = 0. (4.37)
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A discretization of ∂tA
x in the spirit of (4.24) would give the following numerically prob-

lematic formulation

∂tA
x
i,j,k = −uyi,j,k

(
∂yA

x−
i,j,k + ∂yA

x+
i,j,k

2

)
− uzi,j,k

(
∂zA

x−
i,j,k + ∂zA

x+
i,j,k

2

)

+ αy

(
∂yA

x+
i,j,k − ∂yA

x−
i,j,k

2

)
+ αz

(
∂zA

x+
i,j,k − ∂zA

x−
i,j,k

2

)

+ u
y
i,j,k

∂xAy−i,j,k + ∂xA
y+
i,j,k

2

+ uzi,j,k

(
∂xA

z−
i,j,k + ∂xA

z+
i,j,k

2

)
(4.38)

where

αy = max
i,j,k
|uyi,j,k| and αz = max

i,j,k
|uzi,j,k|, (4.39)

and ∂yA
x−
i,j,k, ∂yA

x+
i,j,k, ∂zA

x−
i,j,k, ∂zA

x+
i,j,k, ∂xA

2−
i,j,k, ∂xA

2+
i,j,k, ∂xA

3−
i,j,k, and ∂xA

3+
i,j,k are recon-

structed in a manner similar to (4.26). The problem with (4.38) is that this formulation

lacks numerical resistivity in the x-direction.

As is the case in [23], we find that the addition of an artificial resistivity term to (4.38)

yields satisfactory numerical results. With the artificial resistivity term, the evolution equa-

tion (4.37) becomes

∂tA
x − uy∂xAy − uz∂xAz + uy∂yA

x + uz∂zA
x = εx∂2

xA
x, (4.40)

where εx ideally satisfies

εx = O(∆x6),when ∂xA
x is smooth, (4.41)
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and

εx = O(∆x),when ∂xA
x is non-smooth. (4.42)

We define the artificial resistivity εx in the following manner. Define a smoothness

indicator γx for ∂xA
x as follows:

γxi,j,k =

∣∣∣∣ a−

a− + a+ −
1

2

∣∣∣∣ , (4.43)

where

a− =
(
ε+ (∆x∂xA

x−
i,j,k)

2
)−2

and a+ =
(
ε+ (∆x∂xA

x+
i,j,k)

2
)−2

. (4.44)

Here, ε is a small positive number introduced to avoid dividing by a number close to 0 when

the potential is smooth (ε = 10−8 in all our numerical simulations). Now we define εx to be

εx = 2νγx
∆x2

∆t
, (4.45)

where ν is a positive constant that controls the magnitude of the artificial resistivity. For a

more detailed discussion of the weak hyperbolicity and the reasoning leading up to (4.45),

we refer the reader to [43, 23]. In [43], it is shown that ν has to be in the range of [0, 0.5]

to maintain the stability up to CFL one for their finite volume method. Through numerical

experimentation, we find that ν in the vicinity of 0.01 is sufficient to control potential

oscillations in the magnetic field.
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We thus use the following formulation as our discretization of (4.37)

∂tA
x
i,j,k = −uyi,j,k

(
∂yA

x−
i,j,k + ∂yA

x+
i,j,k

2

)
− uzi,j,k

(
∂zA

x−
i,j,k + ∂zA

x+
i,j,k

2

)

+ αy

(
∂yA

x+
i,j,k − ∂yA

x−
i,j,k

2

)
+ αz

(
∂zA

x+
i,j,k − ∂zA

x−
i,j,k

2

)

+ u
y
i,j,k

∂xAy−i,j,k + ∂xA
y+
i,j,k

2

+ uzi,j,k

(
∂xA

z−
i,j,k + ∂xA

z+
i,j,k

2

)

+ 2νγxi,j,k

(
Axi−1,j,k − 2Axi,j,k + Axi+1,j,k

∆t

)
. (4.46)

The discretization of ∂tA
y and ∂tA

z are similar and we omit them for brevity.

For our Lax-Wendroff formulation, it remains to discretize the higher temporal derivatives

of the components of A. We find it suffices to apply the same techniques as in Section 4.3.1

for ∂2
tA

z and ∂3
tA

z. Namely, we convert all the temporal derivatives to spatial derivatives

via the Cauchy-Kovalevskaya procedure, and approximate the resulting spatial derivatives

with central differences. We note that the artificial resistivity term is only added to the first

temporal derivative.

4.4 Positivity preservation

The scheme presented thus far can be applied to a large class of problems. However, for

problems where the plasma density or pressure are near zero, Gibb’s phenomenon can cause

these values to become negative, and hence the numerical simulation will instantly fail. As

a final ingredient to the solver, we introduce an additional option for retaining positivity

of the solution. Given the lack of number of degrees of freedom, this limiter comes at the

expense of energy conservation, but these regions only occur in small areas where the density
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or pressure become negative.

A positivity-preserving scheme can be constructed by modifying the fluxes F̂ and Ĝ

in (4.16). Let f̂i+1/2,j and ĝi,j+1/2 be the (global) Lax-Friedrichs fluxes defined by

f̂i+1/2,j =
1

2
(f(qni+1,j) + f(qni,j)− αx(qni+1,j − qni,j)),

ĝi,j+1/2 =
1

2
(g(qni,j+1) + g(qni,j)− αy(qni,j+1 − qni,j)),

(4.47)

where αx and αy are the maximal wave speeds in the x and y directions, respectively.

This type of formulation is commonly referred to as Lax-Friedrich’s flux splitting in the

ENO/WENO literature [78, 79, 50].

The update of q using these Lax-Friedrichs fluxes is

qLF
i,j = qni,j −

∆t

∆x

(
f̂ni+1/2,j − f̂ni−1/2,j

)
− ∆t

∆y

(
ĝni,j+1/2 − ĝni,j−1/2

)
. (4.48)

For an 8-component state vector q = (ρ, ρu, E ,B), we also introduce the notation ρ(q) and

p(q) to represent the density and the thermal pressure of q. Also, let ερ and εp be small

positive numbers.

The following claim was conjectured in [18].

Claim 4.1. If ρ(qni,j) > ερ and p(qni,j) > εp for all i, j, and the CFL number is less than or

equal to 0.5, we then have ρ(qLFi,j ) > ερ and p(qLFi,j ) > εp for all i, j.

Though not proven, this claim is verified in [18] using a fairly large number of random

values of q. Our positivity limiter assumes this claim is true. However, as is noted in [18],

if a different flux can be found such that it satisfies a property similar to that of the Lax-

Friedrichs fluxes stated in Claim 4.1, we can then use these different fluxes in place of f̂i+1/2,j
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and ĝi,j+1/2 in the construction of our positivity limiter.

The modified fluxes take the form

F̃i+1/2,j = θi+1/2,j(F̂i+1/2,j − f̂i+1/2,j) + f̂i+1/2,j , (4.49)

G̃i,j+1/2 = θi,j+1/2(Ĝi,j+1/2 − ĝi,j+1/2) + ĝi,j+1/2, (4.50)

where θi+1/2,j and θi,j+1/2 are chosen such that

• 0 ≤ θi+1/2,j ≤ 1, 0 ≤ θi,j+1/2 ≤ 1,

• the update (4.16) with F̂ and Ĝ replaced by the modified fluxes F̃ and G̃ defined in

(4.49)–(4.50) yields positive density and pressure, and

• while subject to the positivity requirement just stated, θi+1/2,j and θi,j+1/2 should

be as close to 1 as possible, so that the high-order fluxes are used in regions where

violation of positivity is unlikely to happen.

Following [22], we choose each θ in a series of two steps:

Step-θ (i) For each i, j, find “large” candidate limiting parameters ΛL, i,j , ΛR, i,j , ΛD, i,j ,

and ΛU, i,j ∈ [0, 1] such that for all

(θL, θR, θD, θU ) ∈ [0,ΛL, i,j ]× [0,ΛR, i,j ]× [0,ΛD, i,j ]× [0,ΛU, i,j ], (4.51)
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the update defined by

q := qni,j

− ∆t

∆x

(
(θR(F̂i+1/2,j − f̂i+1/2,j) + f̂i+1/2,j)

− (θL(F̂i−1/2,j − f̂i−1/2,j) + f̂i−1/2,j)
)

− ∆t

∆y

(
(θU (Ĝi,j+1/2 − ĝi,j+1/2) + ĝi,j+1/2)

− (θD(Ĝi,j−1/2 − ĝi,j−1/2) + ĝi,j−1/2)
)

(4.52)

satisfies ρ(q) > ερ and p(q) > εp;

Step-θ (ii) For each i, j, set

θi+1/2,j := min{ΛR,i,j ,ΛL,i+1,j} (4.53)

θi,j+1/2 := min{ΛU,i,j ,ΛD,i,j+1}. (4.54)

We note that with qni,j , F̂, f̂ , Ĝ, and ĝ already computed, Equation (4.52) expresses the

update q as an affine function of θL, θR, θD, θU , which, by abuse of notation, is denoted by

q(θL, θR, θD, θU ). The coefficients of the θ’s in q(θL, θR, θD, θU ) are denoted by CL, CR,

CD, and CU . Thus we have

CL =
∆t

∆x
(F̂i−1/2,j − f̂i−1/2,j), CR = −∆t

∆x
(F̂i+1/2,j − f̂i+1/2,j),

CD =
∆t

∆y
(Ĝi,j−1/2 − ĝi,j−1/2), CU = −∆t

∆y
(Ĝi,j+1/2 − ĝi,j+1/2),

(4.55)

and, with (4.48) in mind, the limited solution is

q(θL, θR, θD, θU ) = qLF
i,j + CLθL + CRθR + CDθD + CUθU . (4.56)
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With this notation, Step-θ(i) reduces to solving the following problem for each i, j:

Problem 4.1. Given constant real vectors CL, CR, CD and CU , and constant 8-component

state vector qLFi,j such that ρ(qLFi,j ) > ερ and p(qLFi,j ) > εp, find (ΛL, i,j ,ΛR, i,j ,ΛD, i,j ,ΛU, i,j)

in [0, 1] × [0, 1] × [0, 1] × [0, 1] such that for all (θL, θR, θD, θU ) in [0,ΛL, i,j ] × [0,ΛR, i,j ] ×

[0,ΛD, i,j ]× [0,ΛU, i,j ], the expression

q(θL, θR, θD, θU ) = qLFi,j + CLθL + CRθR + CDθD + CUθU (4.57)

satisfies

ρ(q(θL, θR, θD, θU )) > ερ (4.58)

and

p(q(θL, θR, θD, θU )) > εp. (4.59)

The region [0,ΛL, i,j ]× [0,ΛR, i,j ]× [0,ΛD, i,j ]× [0,ΛU, i,j ] should be “as big as possible”.

We note the following fact.

Claim 4.2. The sets Sρ and S defined by

Sρ = {(θL, θR, θD, θU ) ∈ [0, 1]4 | ρ(q(θL, θR, θD, θU )) > ερ} (4.60)
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and

S = {(θL, θR, θD, θU ) ∈ [0, 1]4 | ρ(q(θL, θR, θD, θU )) > ερ and p(q(θL, θR, θD, θU )) > εp}

(4.61)

are both convex.

Proof. Since ρ is a linear function of q and q is a affine function of (θL, θR, θD, θU ), we see

that ρ(q(θL, θR, θD, θU )) is an affine function of (θL, θR, θD, θU ). Thus Sρ is the part of

[0, 1]4 that lies on one side of a hyperplane. This shows Sρ is convex.

To see the convexity of S, note that by the equation of state 2.3, the pressure p is a

concave function of the components of q, whenever ρ > 0. Combined with the fact that

q(θL, θR, θD, θU ) is an affine function of (θL, θR, θD, θU ), we see that p(q(θL, θR, θD, θU )) is

a concave function of (θL, θR, θD, θU ), if ρ(q(θL, θR, θD, θU )) > 0. This shows the convexity

of Sp.

Note that Problem 4.1 is not well-defined, since the notion of “big” is not defined. The

algorithm we are about to describe gives a solution that is satisfactory, in the sense that this

algorithm yields a positivity-preserving limiter that behaves well in our numerical tests.

We now describe this algorithm. The first step of this algorithm is to find a “big”

rectangular subset Rρ := [0,Λ
ρ
L]× [0,Λ

ρ
R]× [0,Λ

ρ
D]× [0,Λ

ρ
U ] of Sρ. The Λρ’s are computed
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by

Λ
ρ
I =



min


1,

ρ(qLF
i,j )−ερ

ε+
∑
J ,

C
(1)
J <0

∣∣∣∣C(1)
J

∣∣∣∣


if C

(1)
I < 0,

1 if C
(1)
I ≥ 0,

(4.62)

where ε is a small fixed positive number (10−12 in all our simulations) and the subscript

letters I and J take values in L, R, D, and U . The value C
(1)
I denotes the first component

of the CI vector.

The second step is to shrink this rectangular subset Rρ to fit into Sp. The vertices of

Rρ are denoted by AkL,kR,kD,kU , where kI = 0 or 1, such that the I-th component of

AkL,kR,kD,kU is

A
kL,kR,kD,kU
I =


Λ
ρ
I if kI = 1,

0 if kI = 0.

(4.63)

Now for each (kL, kR, kD, kU ), shrink AkL,kR,kD,kU to get BkL,kR,kD,kU in the following

way. If p(AkL,kR,kD,kU ) ≥ εp, set BkL,kR,kD,kU = AkL,kR,kD,kU . Otherwise, we solve

for the smallest positive r such that p(rAkL,kR,kD,kU ) ≥ εp, and set BkL,kR,kD,kU =

rAkL,kR,kD,kU . In order to solve for this value, we apply a total of 10 iterations of the

bisection method. A more efficient (approximate) solver could easily replace this step (e.g.,

a single step of the method of false position). Note that the different vertices AkL,kR,kD,kU

are in general shrunk by different factors r. Now we set

ΛI, i,j = min
(kL,kR,kU ,kD),

kI=1

B
kL,kR,kU ,kD
I , (4.64)
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where the subscript I indicates the I-th component. Note that this is equivalent to finding

a rectangular subset inside the convex polygon with vertices BkL,kR,kD,kU , kI = 0, 1.

This completes the description of our positivity-preserving limiter in 2D. The 3D case is

similar.

4.5 Numerical results

In this section, we present the results of numerical simulations using the proposed method.

Unless otherwise specified, constrained transport is turned on, the gas constant γ = 5/3, the

CFL number is 0.5, and for 3D simulations the artificial viscosity coefficient is ν = 0.01.

4.5.1 Smooth Alfvén wave

The smooth Alfvén wave problem is often used for convergence studies of numerical schemes

for ideal MHD equations [43, 71, 90]. This problem is a one-dimensional problem (computed

in multiple dimensions) that has a known smooth solution. In 1D, the initial conditions for

this problem are

(ρ, ux, uy, uz, uz, p, Bx, By, Bz)(0, x)

= (1, 0, 0.1 sin(2πx), 0.1 cos(2πx), 0.1, 1, 0.1 sin(2πx), 0.1 cos(2πx)).

(4.65)

The exact solution to (4.65) propagates with the Alfvén speed that is unity (i.e., q(t, x) =

q(0, x+t)). The 2D and 3D smooth Alfvén wave problems are obtained from the 1D problem

by rotating the direction of wave propagation.
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4.5.1.1 Smooth Alfvén wave: The 2D problem

The 2D version of the smooth Alfvén wave problem is obtained by rotating the direc-

tion of propagation by an angle of φ, so that the wave now propagates in direction n =

〈− cosφ,− sinφ, 0〉. Identical to [43, 23], the computational domain we use is [0, 1/ cosφ]×

[0, 1/ sinφ], where φ = tan−1(0.5). Periodic boundary conditions are applied on all four

sides.

For this problem, we present numerical results with and without the energy correction.

In Table 4.1, we observe the overall third-order accuracy of the method, and in Table 4.2,

we refine ∆t faster than the mesh spacing as well as run the solution to a shorter final

time in order to extract the spatial order of accuracy. For these test cases, we observe the

predicted fourth-order accuracy in space. of convergence in space, third-order in time, and

little difference between the results obtained with and without the energy correction turned

on. When the flag for the positivity-preserving limiter is turned on in the code, we see

identical results as without it, because this problem does not have density or pressure that

is near zero. The choice of my = 2mx allows for ∆x = ∆y.

4.5.1.2 Smooth Alfvén wave: The 3D problem

The setup we use here is the same as that used in [43], Section 6.2.1. The direction of

propagation is

n = 〈− cosφ cos θ,− sinφ cos θ, sin θ〉, (4.66)

and the computational domain is

[
0,

1

cosφ cos θ

]
×
[
0,

1

sinφ cos θ

]
×
[
0,

1

sin θ

]
, (4.67)
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Mesh CFL Error in B Order Error in Az Order

32× 64 0.5 3.842× 10−5 — 5.356× 10−6 —

64× 128 0.5 4.940× 10−6 2.96 7.530× 10−7 2.83

128× 256 0.5 6.324× 10−7 2.97 9.697× 10−8 2.96

256× 512 0.5 8.020× 10−8 2.98 1.218× 10−8 2.99

(a)

Mesh CFL Error in B Order Error in Az Order

32× 64 0.5 3.848× 10−5 — 5.320× 10−6 —

64× 128 0.5 4.938× 10−6 2.96 7.469× 10−7 2.83

128× 256 0.5 6.318× 10−7 2.97 9.628× 10−8 2.96

256× 512 0.5 8.009× 10−8 2.98 1.210× 10−8 2.99

(b)

Table 4.1: 2D smooth Alfvén wave. Here, we show L∞-errors at a final time of t = 1.0
for the solution with and without the energy “correction” step. Table (a) has the energy
correction turned off, and Table (b) has the energy correction turned on. Because time is
only discretized to third-order accuracy, we observe the predicted third-order accuracy of
the solver here.

Mesh CFL Error in B Order Error in Az Order

32× 64 0.5 3.852× 10−6 — 1.078× 10−7 —

64× 128 0.25 2.356× 10−7 4.03 8.121× 10−9 3.73

128× 256 0.125 1.466× 10−8 4.01 5.190× 10−10 3.97

256× 512 0.0625 9.117× 10−10 4.01 3.291× 10−11 3.98

(a)

Mesh CFL Error in B Order Error in Az Order

32× 64 0.5 3.852× 10−6 — 1.078× 10−7 —

64× 128 0.25 2.356× 10−7 4.03 8.121× 10−9 3.73

128× 256 0.125 1.466× 10−8 4.01 5.190× 10−10 3.97

256× 512 0.0625 9.117× 10−10 4.01 3.291× 10−11 3.98

(b)

Table 4.2: 2D smooth Alfvén wave. Here, we show L∞-errors at a short final time of t = 0.01
for the solution with and without the energy “correction” step. Table (a) has the energy
correction turned off, and Table (b) has the energy correction turned on. Here, we refine ∆t
faster than ∆x in order to expose the spatial order of accuracy of the solver. Because we only
use a fourth-order accurate spatial discretization for ∇ × A, we only observe fourth-order
accuracy despite the fact that the fluid variables are discretized to fifth-order accuracy.
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Mesh CFL Error in B Order Error in A Order

16× 32× 32 0.5 4.784× 10−4 — 5.116× 10−5 —

32× 64× 64 0.5 2.452× 10−5 4.29 3.181× 10−6 4.01

64× 128× 128 0.5 3.093× 10−6 2.99 4.612× 10−7 2.79

128× 256× 256 0.5 3.969× 10−7 2.96 6.133× 10−8 2.91

(a)

Mesh CFL Error in B Order Error in A Order

16× 32× 32 0.5 4.882× 10−4 — 5.176× 10−5 —

32× 64× 64 0.5 2.485× 10−5 4.30 3.191× 10−6 4.02

64× 128× 128 0.5 3.105× 10−6 3.00 4.621× 10−7 2.79

128× 256× 256 0.5 3.977× 10−7 2.96 6.147× 10−8 2.91

(b)

Table 4.3: 3D smooth Alfvén wave. In this table we show the L∞-errors at a moderate
time of t = 1.0. In Table (a) the positivity-preserving limiter is off, and the the positivity-
preserving limiter (and the energy correction step) is turned on for the results in Table (b).
Because time is discretized to third-order accuracy, the final method is formally only third-
order accurate in time. In Table 4.4 we run the solver to a short final time in order to expose
the spatial order of accuracy.

where φ = θ = tan−1(0.5). Periodic boundary conditions are imposed on all directions.

We again seek to numerically investigate the spatial and temporal orders of accuracy,

with and without the energy correction step. The errors in B and A are presented in Tables

4.3–4.4. Here we choose my = mz = 2mx so that ∆x = ∆y = ∆z/ cos θ. Similar to the

2D case, we observe fourth-order of convergence in space, third-order in time, and little

difference between the results obtained with and without the energy correction step turned

on.

4.5.2 2D rotated shock tube problem

Similar to the smooth Alfvén problems, the rotated shock tube problem is a 1D problem,

with direction of wave propagation rotated a certain angle. The setup we use in the current
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Mesh CFL Error in B Order Error in A Order

16× 32× 32 0.5 6.752× 10−5 — 5.715× 10−7 —

32× 64× 64 0.25 4.280× 10−6 3.98 3.856× 10−8 3.89

64× 128× 128 0.125 2.666× 10−7 4.00 2.613× 10−9 3.88

128× 256× 256 0.0625 1.652× 10−8 4.01 1.711× 10−10 3.93

(a)

Mesh CFL Error in B Order Error in A Order

16× 32× 32 0.5 6.752× 10−5 — 5.715× 10−7 —

32× 64× 64 0.25 4.280× 10−6 3.98 3.856× 10−8 3.89

64× 128× 128 0.125 2.666× 10−7 4.00 2.613× 10−9 3.88

128× 256× 256 0.0625 1.652× 10−8 4.01 1.712× 10−10 3.93

(b)

Table 4.4: 3D smooth Alfvén wave. Here, we show the L∞-errors at a short final time of
t = 0.01. In addition, we refine ∆t faster than the mesh spacing in order to extract the
spatial order of accuracy. Table (a) has the positivity-preserving limiter turned off, and
Table (b) has the positivity-preserving limiter (as well as the correction step) turned on.
The results are almost identical.

work is the same as that in [15], which we repeat here for completeness.

The initial conditions consist of a shock

(ρ, u⊥, u‖, u
z, p, B⊥, B‖, B

z) =


(1, 0, 0, 0, 1, 0.75, 1, 0) if ξ < 0,

(0.125, 0, 0, 0, 0.1, 0.75,−1, 0) if ξ ≥ 0,

(4.68)

where ξ = x cosφ + y sinφ, and u⊥ and B⊥ are vector components perpendicular to the

shock interface, and u‖ and B‖ are the vector components parallel to the shock interface.

Namely

ux = u⊥ cosφ− u‖ sinφ, uy = u⊥ sinφ+ u‖ cosφ, (4.69)

Bx = B⊥ cosφ−B‖ sinφ, By = B⊥ sinφ+B‖ cosφ. (4.70)
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The initial condition for magnetic potential is

Az(0, x, y) =


0.75η − ξ if ξ ≤ 0,

0.75η + ξ if ξ > 0,

(4.71)

where η = −x sinφ+ y cosφ.

The computational domain is [−1, 1]× [−0.5, 0.5] with a 200× 100 mesh. The boundary

conditions used are zeroth order extrapolation on the conserved quantities and first-order

extrapolation on the magnetic potential. That is, we set the conserved quantities at the

ghost points to be identical to the last value on the interior of the domain, and we define

values for the magnetic potential at ghost points through repeated extrapolation of two point

stencils starting with two interior points. On the top and bottom boundaries, the direction

of extrapolation is parallel to the shock interface.

In Figure 4.2 we present results for the density of solutions computed using PIF-WENO

with and without constrained-transport. We note that the contour plot of the solution

obtained without constrained transport does not exhibit the unphysical wiggles as is the case

in Fig 2(b) of [23]. However, as can be seen from the plots of the slice at y = 0, unphysical

oscillations appear in the PIF-WENO scheme that has constrained transport turned off. It is

also clear from these plots that the constrained transport method we propose in the current

work is able to suppress the unphysical oscillations satisfactorily. As a side note, we find it

helps to use a global, as opposed to a local value for α in the Lax-Friedrichs flux splitting

for the high-order WENO reconstruction in order to further reduce undesirable spurious

oscillations.
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0.4

Density, with CT, t= 0. 2

1.0 0.5 0.0 0.5 1.0

0.4

0.2

0.0

0.2

0.4

Density, no CT, t= 0. 2

1.0 0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Density, slice at y= 0, with CT, t= 0. 2

1.0 0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Density, slice at y= 0, no CT, t= 0. 2

Figure 4.2: The rotated shock tube problem. Here, we compare the solver with (left panels)
and without (right panels) constrained transport turned on. A uniform mesh of size 200×100
is used for both simulations. The angle of rotation for the initial conditions is φ = tan−1(0.5),
and 30 equally spaced contours ranging from the minumum to the maximum of each function
are used for the top two panels. The contour plot for the solution without CT contains small
wiggles that are much more pronounced when slices of the solution are sampled. To this end,
a slice of the solution along y = 0 is presented in the bottom two panels. Further evolution
produces a solution that causes the code to fail in the case where CT is turned off. The
positivity-preserving limiter is turned off in order to exercise the code. The solid lines in the
bottom images are reference solutions that are computed by solving the equivalent 1D shock
problem on a uniform mesh with 50,000 points with the fifth-order finite difference WENO
method.
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1.0 0.5 0.0 0.5 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5
B , slice at y= 0, with CT, t= 0. 2

1.0 0.5 0.0 0.5 1.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5
B , slice at y= 0, no CT, t= 0. 2

1.0 0.5 0.0 0.5 1.0
0.735

0.740

0.745

0.750

0.755

0.760
B , slice at y= 0, with CT, t= 0. 2

1.0 0.5 0.0 0.5 1.0
0.735

0.740

0.745

0.750

0.755

0.760
B , slice at y= 0, no CT, t= 0. 2

With Constrained Transport No Constrained Transport

Figure 4.3: 2D rotated shock tube problem. The left panels have constrained transport
turned on, and the right panels have constrained transport turned off. Components of the
magnetic field at t = 0.2 along the slice y = 0. The mesh size is 200× 100. The positivity-
preserving limiter is turned off in order to exercise the code. Each solid line is the reference
solution described in Fig. 4.2. We observe that constrained transport (with the Hamilton-
Jacobi solver) allows us to numerically compute magnetic fields with far fewer oscillations
than would otherwise be obtainable.
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4.5.3 2D Orszag-Tang vortex

In this section, we investigate the Orszag-Tang vortex problem. A notable feature of this

problem is that shocks and cortices emerge from smooth initial conditions as time evolves.

This is a standard test problem for numerical schemes for MHD equations [23, 26, 71, 90, 94].

The initial conditions are

ρ = γ2, u = (− sin(y), sin(x), 0) , B = (− sin(y), sin(2x), 0) , p = γ, (4.72)

with an initial magnetic potential of

Az(0, x, y) = 0.5 cos(2x) + cos(y). (4.73)

The computational domain is [0, 2π]× [0, 2π], with double-periodic boundary conditions.

We present in Figure 4.4 the density contour plots at t = 0.5, t = 2, t = 3, and t = 4,

computed by PIF-WENO with constrained transport on and positivity-preserving limiter

on.

Control of divergence error of the magnetic field is critical for this test problem. If we turn

off the constrained transport, the simulation crashes at t = 1.67. In Figure 4.5 we present

plots of the density at time t = 1.5 obtained with different configurations of the numerical

schemes. Note the development of the nonphysical features in the solution obtained without

constrained transport.

We also note that in this problem, where the positivity-preserving limiter is not needed

for the simulation, the limiter leads to little difference in the solution. We present in Figures

4.5 and 4.6 plots that demonstrate this. The plots of the type in Figures 4.4 and 4.6 are
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Figure 4.4: The Orszag-Tang problem. We show density contour plots at (a) t = 0.5, (b)
t = 2, (c) t = 3, (d) t = 4. The solution is computed using PIF-WENO with constrained
transport on and positivity-preserving limiter on, on a 192×192 mesh. A total of 15 equally
spaced contours are used for each graph.
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presented in many sources. Our plots agree with results from the literature [23, 26, 71, 90, 94].

4.5.4 2D rotor problem

This is a two-dimensional test problem that involves low pressure values [8]. The setup we

use here is the same as the very low β version found in [91]. These initial conditions are

ρ =



10 if r ≤ 0.1,

1 + 9f̃(r) if r ∈ (0.1, 0.115),

1 if r ≥ 0.115,

(4.74)

ux =



−10y + 5 if r ≤ 0.1,

(−10y + 5)f̃(r) if r ∈ (0.1, 0.115),

0 if r ≥ 0.115,

(4.75)

uy =



10x− 5 if r ≤ 0.1,

(10x− 5)f̃(r) if r ∈ (0.1, 0.115),

0 if r ≥ 0.115,

(4.76)

uz = 0, Bx =
2.5√
4π
, By = 0, Bz = 0, p = 10−8, Az =

2.5√
4π
y, (4.77)

where

r =

√
(x− 0.5)2 + (y − 0.5)2, f̃(r) =

1

3
(23− 200r). (4.78)

The computation domain we use is [0, 1]× [0, 1], with zeroth order extrapolation on the

conserved quantities and first order extrapolation on the magnetic potential as the boundary
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Figure 4.5: The Orszag-Tang problem. Density plots at t = 1.5 for solutions computed using
different configurations in the numerical scheme. (a) PIF-WENO, with constrained transport
turned off; (b) PIF-WENO with constrained transport and positivity preserving limiter
turned on; (c) PIF-WENO with constrained transport turned on and positivity preserving
limiter turned off; (d) The slice along y = 0.5072. The solutions are computed with a
192× 192 mesh. A total of 15 equally spaced contours are used for each of (a), (b), and (c).
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Figure 4.6: The Orszag-Tang problem. Pressure plots at t = 3.0 for solutions computed using
different configurations in the numerical scheme. (a) PIF-WENO with constrained transport
turned on and positivity preserving limiter turned off; (b) PIF-WENO with constrained
transport and positivity preserving limiter turned on; (c) The slice along y = 1.9799. The
solutions are computed with a 192 × 192 mesh. A total of 15 equally spaced contours are
used for each of (a) and (b).
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Figure 4.7: The 2D rotor problem. Shown here are (a) the pseudocolor plot of the magnetic
pressure and (b) the magnetic field line. This solution is computed on a mesh of size 400×400.
Constrained transport and positivity-preserving limiters are turned on.

conditions on all four sides (i.e., conserved quantities at the ghost points are set equal to

the last interior point, and values for the magnetic potential are defined through repeated

extrapolation of two point stencils).

We compute the solution to a final time of t = 0.27 using a 400× 400 mesh and present

the plots of the magnetic pressure and the magnetic field line in Figure 4.7. The magnetic

field line plot presented here is the contour plot of Az. A total of 50 levels are used in this

contour plot. Our result is consistent with the one presented in [91]. We note that the

positivity-preserving limiter is necessary to complete this test problem, because otherwise

the code fails.
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4.5.5 Cloud-shock interaction

The cloud-shock interaction problem is a standard test problem for MHD [23, 26, 43, 44, 71].

The initial conditions are

(ρ, ux, uy, uz, p, Bx, By, Bz)

=



(3.86859, 11.2536, 0, 0, 167.345, 0, 2.1826182,−2.1826182) if x < 0.05,

(10, 0, 0, 0, 1, 0, 0.56418958, 0.56418958) if x > 0.05 and r < 0.15,

(1, 0, 0, 0, 1, 0, 0.56418958, 0.56418958) otherwise,

where r =

√
(x− 0.25)2 + (y − 0.5)2 in 2D, and r =

√
(x− 0.25)2 + (y − 0.5)2 + (z − 0.5)2

in 3D denotes the distance to the center of the stationary cloud. For both problems, we use

the initial magnetic potential

Ax = 0, Ay = 0, Az =


−2.1826182x+ 0.080921431 if x ≤ 0.05,

−0.56418958x if x ≥ 0.05.

(4.79)

In the 2D case, we only keep track of Az.

4.5.5.1 Cloud-shock interaction: The 2D problem

The computational domain we use is [0, 1] × [0, 1], with zeroth order extrapolation on the

conserved quantities and first order extrapolation on the magnetic potential as the boundary

conditions on all four sides (i.e., conserved quantities at the ghost points are set equal to

the last interior point, and values for the magnetic potential are defined through repeated

extrapolation of two point stencils).
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(d) (e) (f)

Figure 4.8: The 2D cloud-shock interaction problem. Here, we run the solver to a final
time of t = 0.06. In the first three panels, we show Schlieren plots for (a) the natural
log of the density, (b) the norm of the magnetic field, and (c) the pressure for a mesh of
size 256 × 256. The same results for a mesh of size 512 × 512 are presented in panels (d)–
(f), where we observe much higher resolution for the problem. Constrained transport and
positivity-preserving limiter are turned on for both simulations.
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We compute the solution at t = 0.06 using a 256 × 256 mesh. The Schlieren plots of

ln ρ and of |B| are presented in Figure 4.8. We note here that the current scheme is able

to capture the shock-wave-like structure near x = 0.75. This is consistent with our previous

result in [23], and an improvement over earlier results in [26, 71]. We also note that the

positivity-preserving limiter is not required for this simulation. Nonetheless, we present the

result here to demonstrate the high resolution of our method, even when the limiter is turned

on.

4.5.5.2 Cloud-shock interaction: The 3D problem

The computational domain for this problem is [0, 1]× [0, 1]× [0, 1], with zeroth order extrap-

olation on the conserved quantities and first order extrapolation on the magnetic potential

as the boundary conditions on all six faces (i.e., conserved quantities at the ghost points are

set equal to the last interior point, and values for the magnetic potential are defined through

repeated extrapolation of two point stencils).

We compute the solution to a final time of time t = 0.06 on a 256× 256× 256 mesh. In

Figure 4.9, we show the evolution of the density of the solution. We have two remarks on

this result. The first is that the shock-wave-like structure near x = 0.75 at the final time is

also visible when we use a 128×128×128 mesh. The second is that the positivity-preserving

limiter is required to run this simulation with 256 × 256 × 256 mesh. The reason is that

extra structure that contains very low pressure shows up in this mesh at time t = 0.0378.

This extra structure cannot be observed on the coarser mesh with the method proposed in

the current work, nor do we observe it with our previous SSP-RK solver [23]. Therefore, it

does not cause trouble for simulations using a 128× 128× 128 mesh.
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Figure 4.9: The 3D cloud-shock interaction problem. Schlieren plots of ln(ρ). The solution
here is computed using a 256 × 256 × 256 mesh. Cross-sections at y = 0.5 and z = 0.5 for
the region y ≥ 0.5 and z ≥ 0.5 are shown. Constrained transport and positivity-preserving
limiter are turned on.
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4.5.6 Blast wave example

In the blast wave problems, strong shocks interact with a low-β background, which can

cause negative pressure if not handled properly. These problems are often used to test the

positivity-preserving capabilities of numerical methods for MHD [5, 8, 22, 34, 57, 63, 97].

The initial conditions contain a piecewise defined pressure:

p =


0.1 r < 0.1,

1000 otherwise,

(4.80)

where r is the distance to the origin, and a constant density, velocity and magnetic field:

(ρ, ux, uy, uz, Bx, By, Bz) = (1, 0, 0, 0, 100/
√

4π/
√

2, 100/
√

4π/
√

2, 0). (4.81)

The initial magnetic potential is simply

A = (0, 0, 100y/
√

4π/
√

2− 100x/
√

4π/
√

2). (4.82)

In 2D we only keep track of Az, as we do with all the 2D examples.

4.5.6.1 Blast wave example: The 2D problem

In this section, we present our result on the 2D version of the blast wave problem. The

computational domain is [−0.5, 0.5] × [−0.5, 0.5], with zeroth order extrapolation on the

conserved quantities and first order extrapolation on the magnetic potential as the boundary

conditions on all four sides (i.e., conserved quantities at the ghost points are set equal to

the last interior point, and values for the magnetic potential are defined through repeated

63



extrapolation of two point stencils).

Results for the solution computed to a final time of t = 0.01 on a 256 × 256 mesh are

presented in Figure 4.10. There, we display contour plots of ρ, p, |u|, and |B|. These plots

are comparable to the previous results in [22]. We note that negative pressure occurs right

in the first step if positivity-preserving limiter is turned off.

4.5.6.2 Blast wave example: The 3D problem

For the 3D version of the blast wave problem, we choose the computational domain to

be [−0.5, 0.5] × [−0.5, 0.5] × [−0.5, 0.5] with zeroth order extrapolation on the conserved

quantities and first order extrapolation on the magnetic potential as the boundary conditions

on all six faces (i.e., conserved quantities at the ghost points are set equal to the last interior

point, and values for the magnetic potential are defined through repeated extrapolation of

two point stencils).

The solution at t = 0.01 is computed using a 150 × 150 × 150 mesh. We present in

Figure 4.11 the plots of the density and pressure, and also in Figure 4.12 the contour plots

of the slice at z = 0 of the density, pressure, velocity, and magnetic pressure. These results

are comparable to those found in [22, 34, 63, 97]. We note here that negative pressure occurs

in the second time step if the positivity-preserving limiter is turned off.

4.5.7 Errors in energy conservation

When the positivity-preserving limiter is turned on, we make use of an energy correction step

in Eqn. (4.10) in order to keep the pressure the same as before the magnetic field correction.

This breaks the conservation of the energy, and therefore we investigate the effect of this step

for several test problems. Because (global) energy conservation only holds for problems that
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Figure 4.10: 2D blast problem. Shown here are the contour plots at t = 0.01 of (a) density,
(b) thermal pressure, (c) magnitude of velocity, and (d) magnetic pressure. A total of 40
equally spaced contours ranging from the min to the max of the function are used for each
plot. The mesh size is 256× 256.
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(a) (b)

Figure 4.11: 3D blast problem. Shown here are the pseudocolor plots at t = 0.01 of (a)
density and (b) pressure. The mesh size is 150 × 150 × 150. In Figure 4.12 we plot a cut
of the solution along z = 0. The positivity-preserving limiter is required to simulate this
problem.

have either periodic boundary conditions or constant values near the boundary throughout

the entire simulation, we only choose problems with this property for our test cases.

For the 2D problems, the (relative) energy conservation error at time t = tn is defined as

Energy conservation error :=

∣∣∣∑i,j

(
Eni,j − E0

i,j

)∣∣∣∑
i,j E0

i,j

, (4.83)

and the energy conservation errors for the 3D problems are defined similarly.

Results for the 2D and 3D smooth Alfvén test case are presented in Figure 4.13, where

we observe negligible errors produced by the energy correction step. We attribute this to the

fact that this problem retains a smooth solution for the entirety of the simulation. Results

for problems with shocks and vortices are presented in Figure 4.14, where we find non-zero

errors. For each of these test problems, we present the results from several different sizes of

meshes. All the problems are run to the final time found in Sections 4.5.1–4.5.6 save one.
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Figure 4.12: 3D blast problem. Shown are the contour plots at time t = 0.01 cut at z = 0
of (a) density, (b) thermal pressure, (c) norm of velocity, and (d) magnetic pressure. The
solution is obtained using a 150× 150× 150 mesh. A total of 40 equally spaced contours are
used for each plot.
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Figure 4.13: Energy conservation errors for the smooth Alfvén test cases. Shown here are
results for the (a) 2D smooth Alfvén , and (b) 3D smooth Alfvén test cases. In order to
extract the errors, we plot the results on a semi-log scale because otherwise the results are
indiscernible from the t-axis. For this smooth test case, the effect of the the energy correction
step (and hence the positivity-preserving limiter) is negligible because the solution remains
smooth for the entire simulation.

For the 2D Orszag-Tang problem, we run the simulations to a much later time of t = 30 in

order to quantify the energy conservation errors for a long time simulation on a non-trivial

problem.

Finally, in Figure 4.15 we also include the conservation errors when the positivity-

preserving limiter is turned off. We observe that the solver retains total energy up to machine

roundoff errors, as should be the case.

We note the following patterns in the energy conservation errors:

• The errors are below 1% for all the test problems in the duration of the simulations

presented;

• When the positivity-preserving limiter is turned on, the errors grow linearly in time

and decrease as the mesh is refined.

We therefore conclude that the violation in energy conservation introduced by the positivity-

preserving limiter is insignificant for the problems tested in this work.
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Figure 4.14: Energy conservation errors. Shown here are conservation errors when the
positivity-preserving limiter (and hence the energy correction step) is turned on. (a) 2D
Orszag-Tang problem, (b) 2D rotor problem, (c) 2D blast problem, and (d) 3D blast problem.
Note that the rotor and blast problems require the application of a positivity-preserving
limiter in order to run, but this comes at the expense of losing energy conservation. For the
Orszag-Tang test problem, we run to a late final time. Again, we observe that the errors in
energy conservation decrease as the mesh is refined.

0.0 0.2 0.4 0.6 0.8 1.0
t

10−26

10−24

10−22

10−20

10−18

10−16

10−14

en
er

gy
co

ns
er

va
ti

on
er

ro
r

32× 64

64× 128

128× 256

256× 512

(a)

0.0 0.2 0.4 0.6 0.8 1.0
t

10−20

10−18

10−16

en
er

gy
co

ns
er

va
ti

on
er

ro
r

16× 32× 32

32× 64× 64

64× 128× 128

128× 256× 256

(b)

Figure 4.15: Energy conservation errors. Here, we show results for conservation errors when
the positivity-preserving limiter (and hence the energy correction step) is turned off. The
solver analytically conserves the discrete total energy up to machine precision. Shown here
are results for the (a) 2D smooth Alfvén , and (b) 3D smooth Alfvén test cases. Note the
logarithmic scale for the axes, and that these errors are numerically conserved up to machine
precision.
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Chapter 5

A high-order finite difference scheme

for ideal magnetohydrodynamics on

curvilinear meshes based on an

alternative formulation of the WENO

scheme and constrained transport

In this chapter, we describe our second scheme, a high-order finite difference scheme for the

ideal MHD equations, which is based on an alternative formulation of the WENO scheme

and uses constrained transport to control the divergence error of the magnetic field.

In Section 5.1, we describe an alternative flux formulation of the WENO scheme, which

is based on the scheme proposed in [51, 52], with the addition of an limiter on the higher

order terms. This scheme will be the base scheme we use to solve the ideal MHD equations.

In Section 5.2, we describe several HLL type approximate Riemann solvers for the ideal

MHD equations. In particular, we describe the HLLD solver in 5.2.3, which is one of the two

Riemann solvers we experiment in a component of our base scheme (see Equation (5.22)), the

other being Lax-Friedrichs. In Sections 5.3 and 5.4, we describe constrained transport and
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positivity-preserving in the current context. Finally in Section 5.5, we present the numerical

results.

5.1 An alternative flux formulation of the WENO

scheme

In this section, we describe a WENO scheme based on an alternative formulation of fluxes.

5.1.1 Introduction

The simplest hyperbolic conservation law takes the form

∂q

∂t
+
∂f(q)

∂x
= 0, (5.1)

where q is a scalar function of t and x, and f is a function of q. Here q is the conserved

quantity and f is the flux. Note this is Equation (2.4) with m = n = 1. In order to solve

Equation (5.1), we use a semi-discrete conservative finite difference scheme, where we use a

uniform mesh with xi = i∆x and discretize Equation (5.1) in space to get

∂qi
∂t

+
1

∆x
(f̂i+1/2 − f̂i−1/2) = 0. (5.2)

Here qi sits on xi and f̂ is some numerical flux that sits on half grid points and depends on

the qi’s. This numerical flux satisfies

1

∆x

(
f̂i+1/2 − f̂i−1/2

)
= ∂xf(q(x))|xi +O(∆xm), (5.3)
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where m is the spatial order of accuracy of the scheme. Equation (5.1) is then integrated in

time using some ODE solver, e.g. Runge-Kutta method. In the current work, we have used

the third-order SSP-RK method proposed in [39].

The numerical flux f̂ is a high order approximation to the so-called sliding function h of

f(q). If we let h be the function such that

f(q(x)) =
1

∆x

∫ x+∆x/2

x−∆x/2
h(ξ) dξ, (5.4)

we would have

f̂i+1/2 = h(xi+1/2) +O(∆xm). (5.5)

Equations (5.4) and (5.5) actually says that we are given the average of h over cells centered

at the grid points xi’s and we need to approximate the values of the function h at half grid

points xi+1/2’s from those cell averages. This is the reconstruction problem at the heart

of standard finite volume schemes [41, 60] and has been used to construct various finite

difference numerical schemes for hyperbolic conservation laws [79, 49, 6, 77]. It is possible to

compute f̂i+1/2 directly from the values of f on grid points using the procedure described

in Section 3.2. This is sometime called the finite difference WENO scheme. We refer the

reader to [77] for details. It was noted in [76] that while Equation (5.3) requires the error in

Equation (5.5) be of O(∆xm+1), the O(∆xm) error is sufficient because when f is smooth,

cancellations in the error terms will give rise to (5.3).

It is noted in [78] that a Taylor expansion of the sliding function h at xi+1/2 gives the
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following expression of hi+1/2 in terms of the cell average function f ,

hi+1/2 = fi+1/2 +

[(m−1)/2]∑
k=1

a2k∆x2k

(
∂2k

∂x2k
f

)
i+1/2

+O(∆xm), (5.6)

where the a2k’s are some constants. In the examples we show later, we use a truncation at

m = 5, and therefore approximate f̂ by

f̂i+1/2 = fi+1/2 −
1

24
∆x2∂2

xf |i+1/2 +
7

5760
∆x4∂4

xf |i+1/2. (5.7)

The first term in Equation (5.7) is approximated by

fi+1/2 = F (q−
i+1/2

, q+
i+1/2

), (5.8)

where F is a monotone flux [86] and q±
i+1/2

are sufficiently high-order one-sided approxima-

tions to q at xi+1/2. The WENO interpolation described in Section 3.1 is used to obtain

q±
i+1/2

. The higher order terms in Equation (5.7) are approximated using central differences

together with a limiter constructed from the WENO smoothness indicators in (3.18).

In what follows, we shall first describe the aforementioned limiter in Section 5.1.2. After

that, we will describe how we handle one-dimensional systems, multidimensional cases, and

curvilinear meshes in Sections 5.1.3, 5.1.4, and 5.1.5, respectively.

5.1.2 A limiter on the higher order terms in the numerical flux

In this section, we look at approximations to the terms in the summation in Equation (5.6).

In order that we retain an O(∆xm) error, the approximation to

(
∂2k

∂x2k f

)
i+1/2

must be
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of error O(∆xm−2k). In the special case when m = 5, this requirement can be satisfied by

using the central differences

∆x2∂2
xf |i+1/2 ≈

1

48
(−5fi−2 + 39fi−1 − 34fi − 34fi+1 + 39fi+2 − 5fi+3) ,

∆x4∂4
xf |i+1/2 ≈

1

2
(fi−2 − 3fi−1 + 2fi + 2fi+1 − 3fi+2 + fi+3) .

(5.9)

Note that the stencil needed in Equation (5.9) is contained in the union of S± used in the

WENO interpolation procedure described in Section 3.1.

Equation (5.9) is the approach used in [52] to approximate the second and third terms

in (5.7). In the original article [51] on the alternative flux formulation WENO scheme,

the higher order derivatives ∂2
xf |i+1/2 and ∂4

xf |i+1/2 are further expanded in terms of the

derivatives of f with respect to q and the derivatives of q with respect to x, before central

differences are applied. In both of these articles, which deal with Euler equations of hy-

drodynamics, satisfactory results can be obtained without using special treatments on these

terms. However, in experimenting with the MHD equations, we find it necessary to apply

an additional limiter on these terms.

In the case of m = 5, we would like to multiply the second and third terms on the right

hand side of (5.9) by a number σ that satisfies

σ = 1 +O(∆x3), when q is smooth on the stencil S = {xi−2, . . . , xi+3},

σ = O(∆x2), when q contains a strong discontinuity on S.

(5.10)

Such σ can be constructed from the smoothness indicators used in WENO interpolation
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in the following way. We start from the βk’s defined in Equation (3.18) and then set

σmax = 1 +
|β0 − β2|

ε+ min{β0, β1, β2}
,

σmin = 1 +
|β0 − β2|

ε+ max{β0, β1, β2}
,

(5.11)

where ε is a small positive number (taken to be 10−6 in all our examples) to avoid division

by zero. We can thus obtain a candidate for the coefficient σ by

σ− =
σmin

σmax
. (5.12)

Note that σ− depends only on the stencil S− = {xi−2, . . . , xi+2}. A similar formula for

S+ = {xi−1, . . . , xi+3} gives rise to another candidate σ+. We then set

σ = min{σ−, σ+}. (5.13)

5.1.3 One-dimensional systems

We consider one-dimensional hyperbolic systems of conservation laws, which are the special

case of (2.4) with m = 1.

A one-dimensional system of conservation law takes the form

∂q

∂t
+
∂f(q)

∂x
= 0, (5.14)

where

q = (q1(t, x), . . . , qn(t, x)) (5.15)
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is a vector function of t and x and

f(q) = (f1(q), . . . , fn(q)) (5.16)

is the flux function. Here superscripts denote the components of the vectors. Suppose the

system (5.14) is hyperbolic, that is, the Jacobian ∂f/∂q has n real eigenvalues

λ1(q) ≤ · · · ≤ λn(q) (5.17)

and a set of n independent (right) eigenvectors

r1(q), . . . , rn(q). (5.18)

Thus, if we let

R(q) = (r1(q), . . . , rn(q)) (5.19)

be the matrix whose columns are the eigenvectors of ∂f/∂q, we will have

R−1(q)
∂f

∂q
R(q) = diag(λ1(q), . . . , λn(q)). (5.20)

Similar to Equation (5.7), we have, in the case of spatial order of accuracy m = 5, the

numerical flux

f̂i+1/2 = fi+1/2 −
1

24
∆x2∂2

xf |i+1/2 +
7

5760
∆x4∂4

xf |i+1/2, (5.21)
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where

fi+1/2 = F(q−
i+1/2

,q+
i+1/2

) (5.22)

is obtained from some monotone flux F resulted from any of a variety of Riemann solvers,

with q±
i+1/2

obtained from WENO interpolation, and the higher order terms is obtained

using a combination of central differences and an additional limiter, same as described in

Section 5.1.2.

In the case of a hyperbolic system, the WENO interpolation we use to obtain q±
i+1/2

is

performed on the local characteristic variables instead of on the components of q. To be

more precise, we have the following algorithm.

1. At each half grid point xi+1/2, compute an average state qi+1/2. In all the examples

we show later for the MHD equations, we have used the arithmetic mean of primitive

variables, that is, set

ψi+1/2 =
1

2
(ψi + ψi+1) (5.23)

for the variables ψ ranging over {ρ,u, p,B}, and recover the conserved variables q =

{ρ, ρu, E ,B} from the ψ’s.

2. At each half grid point xi+1/2, compute the right and left eigenvectors of the Jacobian

∂f/∂q.

3. At each half grid point xi+1/2, project the conserved quantities in the stencil needed

for computing the numerical flux f̂i+1/2 onto the local characteristic variables. That

is, let

vi,k = R−1
i+1/2

qi, for k = −r + 1, . . . , r, (5.24)

where we use vi,k to denote the local characteristic variables, and R−1 is the left
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eigenvectors computed in last step.

4. For each i, perform the WENO interpolation on the vi,k’s to get v±
i+1/2

.

5. For each i, project v±
i+1/2

back onto the conserved quantities,

q±
i+1/2

= Ri+1/2v±
i+1/2

. (5.25)

5.1.4 Multidimensional cases

Hyperbolic conservation laws in more than one spatial dimensions can be treated in a

dimension-by-dimension fashion, as is usually done in finite difference schemes.

For example, a system of hyperbolic conservation law in two dimensions takes the form

∂q

∂t
+
∂f(q)

∂x
+
∂g(q)

∂y
= 0, (5.26)

where q is a vector function of t, x, and y, and f and g are the fluxes in the x and y

directions, respectively. On a uniform mesh with xi = i∆x and yj = j∆y, Equation (5.26)

can be solved by using the semi-discrete scheme

∂qi,j
∂t

+
1

∆x
(f̂i+1/2,j − f̂i−1/2,j) +

1

∆y
(ĝi,j+1/2 − ĝi,j−1/2) = 0, (5.27)

where

1

∆x

(
f̂i+1/2,j − f̂i−1/2,j

)
= ∂xf(q(x, y))|(xi,yj) +O(∆xm−1) (5.28)

and

1

∆y

(
ĝi,j+1/2 − ĝi,j−1/2

)
= ∂yg(q(x, y))|(xi,yj) +O(∆ym−1) (5.29)
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Jacobian = J

Jacobian = J-1

ξ

η

x

y

Computational DomainPhysical Domain

Figure 5.1: A schematic diagram of the physical and computational domain for curvilinear
meshes.

for a scheme with spatial order of accuracy equal to m. Now f̂ and ĝ can be approximated

by using the method described in the previous sections.

5.1.5 Curvilinear meshes

In this section, we consider the situation where the mesh on the physical domain is obtained

from a uniform mesh on the computational domain via a continuous map.

Suppose we have a two-dimensional scalar equation of hyperbolic conservation law (5.26).

Also, suppose the coordinates (x, y) is related to the curvilinear coordinates (ξ, η) via some

continuous coordinate transformation. We also let

J =

∣∣∣∣∣∣∣
ξx ξy

ηx ηy

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
xξ xη

yξ yη

∣∣∣∣∣∣∣
−1

(5.30)

be the Jacobian of the transformation. See Figure 5.1 for a schematic diagram.
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Transforming Equation (5.26) into an equation of conservation law in the curvilinear

coordinates gives

∂q̃

∂t
+
∂f̃

∂ξ
+
∂g̃

∂η
= 0, (5.31)

where

q̃ = q/J, f̃ = ξ̃xf + ξ̃yg, g̃ = η̃xf + η̃yg, (5.32)

for the metric terms defined by

ξ̃x = ξx/J = yη, ξ̃y = ξy/J = −xη,

η̃x = ηx/J = −yξ, η̃y = ηy/J = xξ.

(5.33)

We note that Equation (5.31) is hyperbolic as long as Equation (5.26) is hyperbolic.

If we equip the domain in the (ξ, η)-plane with a uniform mesh, we can solve Equa-

tion (5.31) using the method we described in the previous sections. In the course of doing

that, we will need to compute the metric terms in Equation (5.33), which can be approxi-

mated using sufficiently high order central differences.

5.2 HLL type Riemann solvers for MHD equations

In this section, we describe several HLL type Riemann solvers for MHD equations, which we

shall use in the alternative flux formulation of the WENO scheme. See Equation (5.22).

The HLL approximate Riemann solver was proposed by Harten, Lax, and van Leer [42].

This solver employs an approximate solution to the Riemann problem in which there is one

intermediate state connected to the left and right states by discontinuities. This interme-

diate state is obtained by exploiting the conservation of the equations, which is called the
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consistency condition in the literature. The HLL solver applies to any hyperbolic conserva-

tion law and does not make use of knowledge on the particular system. When applied to

the Euler equations for hydrodynamics, the HLL solver exhibits excessive dissipation in the

presence of contact discontinuities. To remedy this, Toro, Spruce, and Speares [88] proposed

what is now known as the HLLC (C for contact) solver for the Euler’s equations. This solver

assumes two intermediate states in the approximate solution, connected to each other by

a contact discontinuity and to the left and right states by shocks. The Rankine-Hugoniot

condition, in addition to the consistency condition, is used to determine the intermediate

states.

Similar ideas were also applied to the ideal MHD equations in [40, 58, 64]. Gurski [40]

and Li [58] named their solvers “HLLC” solvers for MHD, because they assume two interme-

diate states connected to each other by a contact discontinuity, as was the case in the HLLC

solvers for the Euler’s equations. Miyoshi and Kusano [64] named their solver “HLLD” (D for

discontinuities) solver, because their solver assumes four intermediate states and can exactly

resolve most types of discontinuities in the ideal MHD equations, the only exception being

the slow shocks. The HLLD solver is one of the two Riemann solvers we experiment when

we explore the effects of the choice of Riemann solver in the alternative flux formulation of

the WENO scheme, the other being Lax-Friedrichs. In [64], it is assumed that the normal

vector to the discontinuity interface is parallel to one of the coordinate axes and that the

magnetic field component normal to the discontinuity interface is the same at all points in

space. Neither necessarily holds true in the problems we need the Riemann solver to handle.

Curvilinear meshes demand that we consider Riemann problems with initial conditions (2.15)

where the normal vector n to discontinuity interface could be any direction. Multidimen-

sional MHD problems allows for jumps in the normal magnetic field because divergence-free
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condition can be saved by such jumps in other directions. We present our version of an

HLLD solver that can handle these issues by dropping the assumptions on the direction n

and the normal magnetic field. Since the HLLD solver uses certain results obtained from the

HLL and HLLC solvers, we first present these two simpler solvers in Sections 5.2.1 and 5.2.2.

After that, we present the HLLD solver in Section 5.2.3.

5.2.1 The HLL approximate Riemann solver

Consider the Riemann problem given by the initial conditions (2.15). We use F to denote

the flux in the n direction which we wrote as n · F in (2.6). We also introduce the notation

[a] = a+ − a− (5.34)

to denote the jump of a quantity a across a discontinuity interface normal to n, where a+

is the value on the side that n points to, and a− is on the side that n points from. For

example, for the discontinuity in the initial conditions (2.15), [ρ] = ρR − ρL.

The approximate solution q̃ employed in the HLL solver consists of three states, qR,

qHLL, and qR, separated by two discontinuities propagating at wave speeds SL and SR,

respectively, where SL ≤ SR. In other words,

q̃(t,x · n) =



qL, if (x · n)/t ≤ SL,

qHLL, if SL ≤ (x · n)/t ≤ SR,

qR, if SR ≤ (x · n)/t.

(5.35)

Here SL and SR are respectively the smallest and the largest of all the signal speeds, ap-
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proximated by the smallest and largest among all wave speeds in qL and qR. The in-

termediate state qHLL is so defined that for all T , ξL, and ξR such that T > 0 and

ξL ≤ min(0, TSL) ≤ max(0, TSR) ≤ ξR, the consistency condition

∫ ξR

ξL

q̃(t, ξ) dξ = ξRqR − ξLqL + TFL − TFR (5.36)

is satisfied (see [86]). In the subsonic situation, where SL < 0 < SR, the consistency

condition with ξL = TSL and ξR = TSR implies

qHLL =
SRqR − SLqL + FL − FR

SR − SL
. (5.37)

The Godunov type numerical flux corresponding to this approximate solution is

F =



FL, if 0 ≤ SL,

SR − SL + SLSR(qR − qL)

SR − SL
, if SL ≤ 0 ≤ SR,

FR, if SR ≤ 0.

(5.38)

5.2.2 The HLLC approximate Riemann solver

The HLLC approximate Riemann solver we present in this section was first proposed by

Li in [58]. The approximate solution employed in this solver has two intermediate states
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connected by a contact discontinuity. That is, the approximate solution is given by

q̃(t,x · n) =



qL, if (x · n)/t ≤ SL,

q∗L, if SL ≤ (x · n)/t ≤ SM,

q∗R, if SM ≤ (x · n)/t ≤ SR,

qR, if SR ≤ (x · n)/t,

(5.39)

where SL and SR are the estimated smallest and largest signal speeds, SM is the estimated

speed of the entropy wave (as well as that of the divergence wave), and q∗L and q∗R are some

intermediate states to be determined. Once this approximate solution is determined, the

corresponding Godunov type numerical flux is

F =



FL, if 0 ≤ SL,

F∗L = FL + SL(q∗L − qL), if SL ≤ 0 ≤ SM,

F∗R = FR + SR(q∗R − qR), if SM ≤ 0 ≤ SR,

FR, if SR ≤ 0.

(5.40)

We now proceed to describe the approximate solution in the case where SL ≤ 0 ≤ SR.

We mentioned before that the normal velocities and the total pressures do not change across

a contact discontinuity in MHD. It is therefore reasonable to assume

u∗L · n = u∗R · n = SM = uHLL · n (5.41)
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and

ptot
∗
L = ptot

∗
R. (5.42)

We shall further make the assumption that

B∗L · n = B∗R · n = BHLL · n. (5.43)

The Rankine-Hugoniot condition (2.17) across Sα, where α is either L or R, implies

Sαq∗α − F∗α = Sαqα − Fα. (5.44)

Equation (5.44) on ρ gives

Sαρ
∗
α − ρ∗αu∗α · n = Sαρα − ραuα · n. (5.45)

Therefore

ρ∗α = ρα
Sα − uα · n
Sα − SM

, (5.46)

in view of (5.41). Equation (5.44) on ρu gives

Sαρ
∗
αu∗α − (ρ∗α(u∗α · n)u∗α + ptot

∗
αn− (B∗α · n) B∗α)

= Sαραuα − (ρα(uα · n)uα + ptotαn− (Bα · n) Bα).

(5.47)
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Taking dot products of both sides of (5.47) with n, we get

Sαρ
∗
αSM − ρ∗αS2

M − ptot
∗
α + (B∗α · n)2 = SαραSM − ρα(uα · n)2 − ptotα + (Bα · n)2. (5.48)

From this and (5.46), we get

ptot
∗
α = ptotα + ρα(Sα − uα · n)(SM − uα · n) + (B∗α · n)2 − (Bα · n)2. (5.49)

Thus we are able to compute from (5.48) the momenta in the intermediate states,

ρ∗αu∗α =
ρα(Sα − uα · n) + (ptot

∗
α − ptotα)n + (Bα · n)Bα − (B∗α · n)B∗α

Sα − SM
(5.50)

To obtain the total energy Eα in the intermediate states, we again use the Rankine-Hugoniot

condition (5.44) across Sα. This time we get

SαE∗α − ((E∗α + ptot
∗
α)(u∗α · n)− (u∗α ·B∗α)(B∗α · n))

= SαEα − ((Eα + ptotα)(uα · n)− (uα ·Bα)(Bα · n)).

(5.51)

Solving for E∗α, we get

Eα(Sα − uα · n) + ptot
∗
αSM − ptotα(uα · n) + (Bα · n)(Bα · uα)− (B∗α · n)(B∗α · u∗α)

Sα − SM
.

(5.52)

We still need to determine B∗α in (5.50) and (5.52). We shall use the consistency condition,

which in the current context takes the form

SM − SL

SR − SL
q∗L +

SR − SM

SR − SL
q∗R = qHLL. (5.53)
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Apply (5.53) and (5.37) to ρu and simplify with (5.42) taken into account, and we get

−
(
B∗R · n

)
B∗R +

(
B∗L · n

)
B∗L = 0. (5.54)

In view of (5.43), it is reasonable to set

B∗L = B∗R = BHLL. (5.55)

Now the intermediate states in the approximate solution are completely determined

in (5.41), (5.43), (5.46), (5.49), (5.55), (5.50), and (5.52). Li [58] noted that if the Rankine-

Hugoniot condition (5.44) on B were used in place of the consistency condition (5.53) on ρu

to get Bα, the consistency condition will be violated and instabilities will happen.

5.2.3 The HLLD approximate Riemann solver

The approximate solution employed in the HLLD solver has four intermediate states, con-

nected by two rotational discontinuities and one contact or tangential discontinuity. In other

words,

q̃(t,x · n) =



qL, if (x · n)/t ≤ SL,

q∗L, if SL ≤ (x · n)/t ≤ S∗L,

q∗∗L , if S∗L ≤ (x · n)/t ≤ SM,

q∗∗R , if SM ≤ (x · n)/t ≤ S∗R,

q∗R, if S∗R ≤ (x · n)/t ≤ SR,

qR, if SR ≤ (x · n)/t,

(5.56)
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where SL and SR are estimated fast shock speeds, S∗L and S∗R are estimated speeds of

the rotational discontinuities, and SM is the estimated speed of the contact or tangential

discontinuity. The corresponding Godunov type numerical flux is

F =



FL, if 0 ≤ SL,

F∗L = FL + SLq∗L − SLqL, if SL ≤ 0 ≤ S∗L,

F∗∗L = FL + S∗Lq∗∗L −
(
S∗L − SL

)
q∗L − SLqL, if S∗L ≤ 0 ≤ SM,

F∗∗R = FR + S∗Rq∗∗R −
(
S∗R − SR

)
q∗R − SRqR, if SM ≤ 0 ≤ S∗R,

F∗R = FR + SRq∗R − SRqR, if S∗R ≤ 0 ≤ SR,

FR, if SR ≤ 0.

(5.57)

We now proceed to describe the approximate solution in the case where SL ≤ 0 ≤ SR.

Similar to the assumptions (5.41), (5.42), and (5.43) made in HLLC solver, we assume

u∗L · n = u∗∗L · n = u∗∗R · n = u∗R · n = SM = uHLL · n, (5.58)

ptot
∗
L = ptot

∗∗
L = ptot

∗∗
R = ptot

∗
R, (5.59)

and

B∗L · n = B∗∗L · n = B∗∗R · n = B∗R · n = BHLL · n. (5.60)

Recall that rotational discontinuities are linearly degenerate and correspond to the Alfvén

waves, which propagate at speeds u · n ∓
√

(B · n)2/ρ. Since [ρ] = 0 across rotational
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discontinuities, we can set

S∗L = SM −
√

(BHLL · n)2

ρ∗L
(5.61)

and

S∗R = SM +

√
(BHLL · n)2

ρ∗R
, (5.62)

where ρ∗α can be obtained by using the Rankine-Hugoniot condition (5.44) on ρ across Sα,

which gives

ρ∗α = ρα
Sα − uα · n
Sα − SM

, (5.63)

the same as (5.46). The four-intermediate-state approximate solution (5.56) degenerates

to a two-intermediate-state solution when S∗L and S∗R are either too close to SL and SR,

respectively, or when they are too close to SM. In both cases, we fall back to the HLLC

solver and forego what we describe below.

We now consider the non-degenerate case where SL, S∗L, S∗∗L , SM, S∗∗R , S∗R, and SR are

sufficiently spread apart. The state q∗α is obtained from the Rankine-Hugoniot condition

across Sα. The value of ρ∗α was given in (5.63). Equations (5.49) and (5.50) in HLLC remain

valid in the current context. We repeat them here:

ptot
∗
α = ptotα + ρα(Sα − uα · n)(SM − uα · n) + (B∗α · n)2 − (Bα · n)2, (5.64)

ρ∗αu∗α =
ρα(Sα − uα · n) + (ptot

∗
α − ptotα)n + (Bα · n)Bα − (B∗α · n)B∗α

Sα − SM
. (5.65)
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Now apply the Rankine-Hugoniot condition across Sα on B, which gives

SαB∗α − ((u · n)B− (B · n)u)∗α = SαBα − ((u · n)B− (B · n)u)α. (5.66)

With u∗α · n given by (5.58), B∗α · n given by (5.60), ρ∗α given by (5.63), and ptot
∗
α given

by (5.64), we see that (5.65) and (5.66) form a linear system of (algebraic) equations in u∗α

and B∗α. The solution to this system is

u∗α =
ρα(Sα − uα · n)(Sα − SM)− (BHLL · n)(Bα · n)

ρα(Sα − uα · n)(Sα − SM)− (BHLL · n)2
uα

+
(ptot

∗
α − ptotα)(Sα − SM)

ρα(Sα − uα · n)(Sα − SM)− (BHLL · n)2
n

+
(Bα · n)(Sα − SM)− (BHLL · n)(Sα − uα · n)

ρα(Sα − uα · n)(Sα − SM)− (BHLL · n)2
Bα

(5.67)

and

B∗α =
ρα(Sα − uα · n)2 − (BHLL · n)(Bα · n)

ρα(Sα − uα · n)(Sα − SM)− (BHLL · n)2
Bα

+
ρα(Sα − uα · n)(Bα · n−BHLL · n)

ρα(Sα − uα · n)(Sα − SM)− (BHLL · n)2
uα

− (ptot
∗
α − ptotα)(BHLL · n)

ρα(Sα − uα · n)(Sα − SM)− (BHLL · n)2
n.

(5.68)

Using the Rankine-Hugoniot condition across Sα on E , we can obtain

E∗α =
Eα(Sα − uα · n) + ptot

∗
αSM − ptotα(uα · n) + (Bα · n)(Bα · uα)− (B∗α · n)(B∗α · u∗α)

Sα − SM
,

(5.69)

which has the same form as (5.52). We note that whereas in the HLLC solver we used

consistency condition (5.53) on ρu to obtain a equation for B∗α (5.55), in the HLLD solver
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we used the Rankine-Hugoniot condition across Sα on ρu and B to get ρu∗α and B∗α, and

save a consistency condition similar to (5.53) for determining (ρu)∗∗α and B∗∗α in the two

inner intermediate states.

We now proceed to find the values of the inner intermediate states q∗∗α . The Rankine-

Hugoniot condition across S∗α on ρ gives

S∗αρ
∗∗
α − (ρu)∗∗α · n = S∗αρ

∗
α − (ρu)∗α · n. (5.70)

Solve (5.70) with (5.58) taken into account, we get

ρ∗∗α = ρ∗α. (5.71)

Note that this is consistent with the fact that [ρ] = 0 across a rotational discontinuity, which

we assumed in deriving the estimates of S∗L and S∗R in (5.61) and (5.62).

Since we have been considering the case where SL, S∗L, S∗∗L , SM, S∗∗R , S∗R, and SR are

sufficiently spread apart, we can assume that

BHLL · n 6= 0, (5.72)

in view of (5.61) and (5.62). Under the assumption (5.72), the Rankine-Hugoniot condition

across SM on ρu implies

B∗∗L = B∗∗R (5.73)
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and the same condition on B implies

u∗∗L = u∗∗R . (5.74)

The consistency condition (consistency with the integral conservation law) in the current

context takes the form

(
SR − S∗R

)
q∗R+

(
S∗R − SM

)
q∗∗R +

(
SM − S∗L

)
q∗∗L +

(
S∗L − SL

)
q∗L−SRqR+SLqL+FR−FL = 0.

(5.75)

We regroup the terms in (5.75) and get

(
S∗R − SM

)
q∗∗R +

(
SM − S∗L

)
q∗∗L +

(
SR
(
q∗R − qR

)
+ FR

)
−
(
SL
(
q∗L − qL

)
+ FL

)
− S∗Rq∗R + S∗Lq∗L = 0.

(5.76)

The Rankine-Hugoniot condition (2.17) across S∗α gives

Sα(q∗α − qα) = F∗α − Fα (5.77)

Substitute (5.61), (5.62), (5.77) into (5.76), and we get

|BHLL · n|

 q∗∗R√
ρ∗R

+
q∗∗L√
ρ∗L

+ F∗R − F∗L − S∗Rq∗R + S∗Lq∗L = 0. (5.78)

Applying (5.78) to ρu with (5.71) and (5.74) taken into account, we get

|BHLL · n|
(√

ρ∗R +
√
ρ∗L
)
u∗∗α + ((u · n)ρu + ptotn− (B · n)B)∗R

− ((u · n)ρu + ptotn− (B · n)B)∗L − S∗R(ρu)∗R + S∗L(ρu)∗L = 0.

(5.79)
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Solving for u∗∗α with (5.58), (5.59), (5.60), (5.61), and (5.62) taken into account gives

u∗∗α =

√
ρ∗Lu∗L +

√
ρ∗Ru∗R + sign (BHLL · n)

(
B∗R −B∗L

)√
ρ∗L +

√
ρ∗R

. (5.80)

Applying (5.78) to B with (5.73) taken into account gives

|BHLL · n|

 1√
ρ∗R

+
1√
ρ∗L

B∗∗α + ((u · n)B− (B · n)u)∗R

− ((u · n)B− (B · n)u)∗L − S∗RB∗R + S∗LB∗L = 0.

(5.81)

Solving for B∗∗α with (5.58), (5.60), (5.61), and (5.62) taken into account gives

B∗∗α =

√
ρ∗RB∗L +

√
ρ∗LB∗R + sign (BHLL · n)

√
ρ∗Lρ
∗
R

(
u∗R − u∗L

)√
ρ∗L +

√
ρ∗R

. (5.82)

The Rankine-Hugoniot condition across S∗α on E gives

S∗αE∗∗α −((E + ptot)(u · n)− (u ·B)(B · n))∗∗α = S∗αE∗α−((E + ptot)(u · n)− (u ·B)(B · n))∗α.

(5.83)

Solving for E∗∗α with (5.58), (5.59), (5.60), (5.61), and (5.62) taken into account gives

E∗∗α = E∗α ∓
√
ρ∗α (u∗α ·B∗α − u∗∗α ·B∗∗α ) sign(BHLL · n), (5.84)

where − and + corresponds to α = L and α = R, respectively.

Now the intermediate states in the approximate solution are completely determined

in (5.58), (5.59), (5.60), (5.61), (5.62), (5.63), (5.64), (5.67), (5.68), (5.69), (5.71), (5.73),
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(5.74), (5.80), (5.82), and (5.84).

5.3 Constrained transport

In our current scheme, we use the same constrained transport framework as in Section 4.1 to

control the divergence error of the magnetic field. Namely, we evolve a vector potential A,

which satisfies (4.1)

B = ∇×A.

The evolution equation is given by (4.7)

∂tA + (∇×A)× u = 0.

In the current multistage setting, we set

B = ∇×A

after each stage in the time integrator.

As explained in Section 4.3.1, in the case of two spatial dimensions, the divergence-free

condition becomes (4.19)

∇ ·B = ∂xB
x + ∂yB

y = 0,

where Bz does not play any role. It therefore suffices to correct only Bx and By in 2D,

which can be done by evolving Az according to (4.20)

∂tA
z + ux∂xA

z + uy∂yA
z = 0
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and correcting Bx and By through (4.21)

Bx = ∂yA
z, By = −∂xAz.

In the current multistage scheme, Equation (4.20) is solved by a WENO method for

Hamilton-Jacobi equations in the same way as in [23]. The magnetic field correction (4.21)

is discretized by using fourth-order accuracy central differences, also in the same way as in

[23].

Constrained transport on curvilinear meshes is done similarly. In the curvilinear coordi-

nates, Equation (4.20) becomes

∂tA
z + J(uxξ̃x + uy ξ̃y)∂ξA

z + J(uxη̃x + uyη̃y)∂ηA
z = 0 (5.85)

and Equation (̃4.21) becomes

Bx = J(ξ̃y∂ξA
z + η̃y∂ηA

z), By = −J(ξ̃x∂ξA
z + η̃x∂ηA

z). (5.86)

Equation (5.85) is solved by a WENO method for Hamilton-Jacobi equations and Equa-

tion (5.86) is discretized by using fourth-order accuracy central differences. We note that

while such discretization only guarantees the divergence-free condition of magnetic field to

truncation errors, in practice we find this is sufficient to suppress the unphysical oscillations

associated with the divergence error of B.
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5.4 A positivity-preserving limiter

When we apply the current scheme with the HLLD Riemann solver, we find it necessary

to apply a positivity-preserving limiter similar to the one described in Section 4.4. This is

possibly due to the enhanced resolution provided by the HLLD solver. We encountered a

similar situation in Section 4.5.5.2, where a finer mesh reveals a region of low pressure not

resolved in coarser meshes.

The positivity-preserving limiter goes mostly the same as the limiter in Section 4.4. The

differences are as follows.

1. On a curvilinear mesh, the equation actually being solved is given by (5.31). There-

fore the expressions for the updates and fluxes in Section 4.4 need to be modified

accordingly.

2. In the current multistage scheme, the procedure described in Section 4.4 is to be applied

at each stage. We note that while it is suggested in [22] that it is sufficient to apply the

limiter only at the final stage of each time step, we find it necessary to apply it at each

stage in the current scheme. This, again, is possibly due to the enhanced resolution

provided by the HLLD solver.

3. We have used f and g to denote the high order fluxes in the current chapter. In

Chapter 4, however, we used F and G to denote the high-order time-averaged fluxes

and f and g to denote the low-order fluxes. It should be clear how to translate the

description in Section 4.4 into a description with the notations in the current chapter.
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5.5 Numerical results

5.5.1 2D smooth Alfvén wave problem

We use the smooth Alfvén wave problem to test the order of convergence of our numerical

scheme. The initial conditions were given in (4.65) as

(ρ, ux, uy, uz, uz, p, Bx, By, Bz)(0, x)

= (1, 0, 0.1 sin(2πx), 0.1 cos(2πx), 0.1, 1, 0.1 sin(2πx), 0.1 cos(2πx)).

The exact solution propagates with the Alfvén speed, which equals 1 (i.e., q(t, x) =

q(0, x+ t)).

In Section 4.5.1 we rotated the direction of Alfvén wave propagation so that it is not

parallel to any mesh lines. In the current section, we keep the direction of wave propagation

parallel to the x-axis and tweak the mesh to achieve the same effect.

The computational domain is set to be (ξ, η) ∈ [0, 1]2, with the mesh lines perturbed

according to

x = ξ + εx sin(2πηax),

y = η + εy sin(2πξay),

(5.87)

where εx and εy are the magnitude of perturbation and ax and ay are the wave numbers of

the perturbation. In the results we show below, we use εx = 0.01, εy = 0.02, ax = 2, and

ay = 4. As an illustration, we plot a 32× 32 mesh with these parameters in Figure 5.2.

In Tables 5.1 and 5.2, we present the L∞-errors in B and Az, obtained using the alter-

native WENO method with the Lax-Friedrichs flux and with the HLLD flux, respectively.

These results confirm that our method has fourth order of accuracy. We note that for this
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Figure 5.2: Perturbed mesh used for 2D Alfvén problem. 32 × 32 mesh. (ξ, η) ∈ [0, 1]2.
x = ξ + 0.01 sin(2πη · 2), y = η + 0.02 sin(2πξ · 4).

Mesh Error in B Order Error in Az Order

32× 32 5.131× 10−3 — 1.560× 10−4 —

64× 64 4.090× 10−4 3.65 8.394× 10−6 4.22

128× 128 2.658× 10−5 3.94 5.266× 10−7 3.99

256× 256 1.677× 10−6 3.99 3.322× 10−8 3.99

Table 5.1: L∞-errors in 2D smooth Alfvén problem. Alternative WENO with Lax-Friedrichs
flux. Constrained transport and positivity-preserving limiter on.

smooth problem, the difference between using the Lax-Friedrichs flux and the HLLD flux is

very small.

5.5.2 Brio-Wu shock tube

This is a frequently tested Riemann problem. The initial conditions are as given in (4.68),

(ρ, ux, uy, uz, p, Bx, By, Bz) =


(1, 0, 0, 0, 1, 0.75, 1, 0) if x < 0,

(0.125, 0, 0, 0, 0.1, 0.75,−1, 0) if x ≥ 0.

(5.88)
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Mesh Error in B Order Error in Az Order

32× 32 5.257× 10−3 — 1.604× 10−4 —

64× 64 4.090× 10−4 3.68 8.388× 10−6 4.26

128× 128 2.658× 10−5 3.94 5.264× 10−7 3.99

256× 256 1.677× 10−6 3.99 3.322× 10−8 3.99

Table 5.2: L∞-errors in 2D smooth Alfvén problem. Alternative WENO with HLLD flux.
Constrained transport and positivity-preserving limiter on.

In Section 5.5.2.1, we run our scheme on both uniform and non-uniform 1D meshes, so as

to test its handling of shocks across abrupt changes in mesh spacing. In Section 5.5.2.2, we

run our scheme on a 2D mesh, with the initial conditions rotated, so as to test the handling

of shocks and control of divergence error of the magnetic field.

5.5.2.1 1D shock tube

In Figures 5.3–5.6, we present plots of the density and the transverse magnetic field using

various setups of 1D simulations. In all results, we have used meshes of 200 points. The

meshes in Figures 5.3 and 5.4 are uniform. The meshes in Figures 5.5 and 5.6 are determined

by

x =


10
9 ξ if |ξ| ≤ 0.2,

sign(ξ)
(

2
9 + 20

9 (|ξ| − 0.2)
)

otherwise,

(5.89)

with −1 ≤ ξ ≤ 1. We note that both the alternative WENO methods with Lax-Friedrichs

flux and with the HLLD flux can handle the abrupt change in the spacing in the non-uniform

cases without introducing too much oscillations.
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Figure 5.3: Brio-Wu shock tube. t = 0.2. Alternative WENO with Lax-Friedrichs flux. A
uniform mesh of 200 points were used. Positivity-preserving limiter is turned on.
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Figure 5.4: Brio-Wu shock tube. t = 0.2. Alternative WENO with HLLD flux. A uniform
mesh of 200 points were used. Positivity-preserving limiter is turned on.
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Figure 5.5: Brio-Wu shock tube. t = 0.2. Alternative WENO with Lax-Friedrichs flux. A
non-uniform mesh of 200 points were used. Positivity-preserving limiter is turned on.
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Figure 5.6: Brio-Wu shock tube. t = 0.2. Alternative WENO with HLLD flux. A non-
uniform mesh of 200 points were used. Positivity-preserving limiter is turned on.
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5.5.2.2 2D rotated shock tube

We also run the Brio-Wu shock tube test on 2D meshes. In all the results presented in

this section, we use a 200 × 100 uniform mesh on the domain [−1, 1] × [−0.5, 0.5]. We

have rotated the initial condition by an angle of tan−1(0.5). In this setup, the enforcing

of the divergence-free condition becomes crucial. Without the constrained transport, the

simulation using alternative WENO with HLLD flux crashes before t reaches 0.2, whereas

the simulation using alternative WENO with Lax-Friedrichs flux demonstrates excessive

unphysical oscillations, which can be seen from the plots in 5.7. On the other hand, the

plots in Figures 5.8 and 5.9 show that turning on constrained transport can satisfactorily

control the unphysical oscillations.

5.5.3 2D Orszag-Tang vortex

In this section, we test our scheme on the 2D Orszag-Tang vortex problem, which we inves-

tigated in Section 4.5.3 with our first scheme. The initial conditions were given in (4.72),

ρ = γ2, u = (− sin(y), sin(x), 0) , B = (− sin(y), sin(2x), 0) , p = γ, (5.90)

with an initial magnetic potential given in (4.73),

Az(0, x, y) = 0.5 cos(2x) + cos(y). (5.91)
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Contour plots of density.
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Figure 5.7: Rotated Brio-Wu shock tube. t = 0.2. Alternative WENO with Lax-Friedrichs
flux. 200×100 uniform mesh. Constrained transport and positivity-preserving limiter turned
off.
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Contour plots of density.
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Figure 5.8: Rotated Brio-Wu shock tube. t = 0.2. Alternative WENO with Lax-Friedrichs
flux. 200×100 uniform mesh. Constrained transport and positivity-preserving limiter turned
on.
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Contour plots of density.
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Figure 5.9: Rotated Brio-Wu shock tube. t = 0.2. Alternative WENO with HLLD flux.
200× 100 uniform mesh. Constrained transport and positivity-preserving limiter turned on.
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Figure 5.10: Orszag-Tang test problem. Contour plot of density at t = 3. A perturbed
192 × 192 mesh. 15 equally spaced contour lines. Alternative WENO with Lax-Friedrichs
flux. Constrained transport and positivity-preserving limiter turned on.

The computational domain is (ξ, η) ∈ [0, 2π]× [0, 2π], and the mesh is given by

x = ξ + εx sin(ηax),

y = η + εy sin(ξay),

(5.92)

where εx = 0.03, εy = 0.05, ax = 2, and ay = 4. We present the contour plots of the

density at time t = 3 in Figures 5.10 and 5.11. The results agree with those found in the

literature [23, 26, 71, 90, 94]. We note that we have also successfully run the simulation to

the much later time of t = 10, which shows the robustness of the our scheme.
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Figure 5.11: Orszag-Tang test problem. Plot of density at t = 3. A perturbed 192 × 192
mesh. 15 equally spaced contour lines. Alternative WENO with HLLD flux. Constrained
transport and positivity-preserving limiter turned on.

107



5.5.4 2D cloud-shock interaction

In this section, we test the 2D cloud-shock interaction problem, which we tested in Sec-

tion 4.5.5. The initial conditions were given in (4.79)

(ρ, ux, uy, uz, p, Bx, By, Bz)

=



(3.86859, 11.2536, 0, 0, 167.345, 0, 2.1826182,−2.1826182) if x < 0.05,

(10, 0, 0, 0, 1, 0, 0.56418958, 0.56418958) if x > 0.05, r < 0.15,

(1, 0, 0, 0, 1, 0, 0.56418958, 0.56418958) otherwise,

where r =

√
(x− 0.25)2 + (y − 0.5)2. The initial magnetic potential we use was given

in (4.79),

Az =


−2.1826182x+ 0.080921431 if x ≤ 0.05,

−0.56418958x if x ≥ 0.05.

In Figures 5.12 and 5.13, we show results obtained by running the simulation on a 256×

256 uniform mesh that covers the physical domain (x, y) ∈ [0, 1] × [0, 1]. We note that

the HLLD flux gives better resolution of shocks and other complex features. A similar

phenomenon is also observed in Figures 5.15 and 5.16, where we show results obtained by

running the simulation on a 256× 256 non-uniform mesh determined by

x = (3− 2ξ) cos(π + (1− 2η)π/4) + 3 cos(π/4),

y = (3− 2ξ) sin(π + (1− 2η)π/4) + 0.5,

(5.93)

where (ξ, η) ∈ [0, 1]× [0, 1].
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ln(density). ‖B‖. Pressure.

Figure 5.12: 2D cloud-shock interaction. Alternative WENO with Lax-Friedrichs flux. 256×
256 uniform mesh. Schlieren plots at t = 0.06. Constrained transport and positivity-
preserving limiter turned on.

ln(density). ‖B‖. Pressure.

Figure 5.13: 2D cloud-shock interaction. Alternative WENO with HLLD flux. 256 × 256
uniform mesh. Schlieren plots at t = 0.06. Constrained transport and positivity-preserving
limiter turned on.
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Figure 5.14: Sketch of the non-uniform mesh used in cloud-shock problem. Actual mesh is
256× 256. A 32× 32 mesh is shown here for clarity.
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ln(density). ‖B‖. Pressure.

ln(density). ‖B‖. Pressure.

Figure 5.15: 2D cloud-shock interaction. Alternative WENO with Lax-Friedrichs flux.
256 × 256 non-uniform mesh. Schlieren plots at t = 0.06. Constrained transport and
positivity-preserving limiter turned on. The second row shows the region near the center of
the computational domain.
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ln(density). ‖B‖. Pressure.

ln(density). ‖B‖. Pressure.

Figure 5.16: 2D cloud-shock interaction. Alternative WENO with HLLD flux. 256×256 non-
uniform mesh. Schlieren plots at t = 0.06. Constrained transport and positivity-preserving
limiter turned on. The second row shows the region near the center of the computational
domain.
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Chapter 6

Conclusions and future work

In this dissertation we proposed two high order finite difference schemes for the ideal mag-

netohydrodynamics.

The first scheme is single-stage single-step. The base scheme uses a finite difference

WENO method with a Lax-Wendroff time discretization that is based on the Picard integral

formulation of hyperbolic conservation laws. A discrete divergence-free condition on the

magnetic field is enforce by using an unstaggered constrained transport method that evolves

a vector potential alongside the conserved quantities on the same mesh as the conserved

variables. This vector potential is evolved with a modified version of a finite difference Lax-

Wendroff WENO method that was originally developed for Hamilton-Jacobi equations. This

allows us to define non-oscillatory derivatives for the magnetic field. To further enhance the

robustness of our scheme, a flux limiter is added to preserve the positivity of the density

and pressure. Unlike our previous solvers that are based on SSP-RK time stepping [23, 22],

this solver does not require the use of intermediate stages. This reduces the total storage

required for the method, and may lead to more efficient implementation for an AMR setting.

Moreover, we need only apply one WENO reconstruction per time step for the fluid variables,

whereas the third and fourth-order solvers in [23] require three and ten, respectively, WENO

reconstructions per time step. Numerical results show that our scheme has the expected

high-order accuracy for smooth problems, and is capable of solving some very stringent test
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problems.

The second scheme is based on an alternative flux formulation of the WENO scheme.

In this formulation, the numerical flux is Taylor expanded in space. The leading (lowest

order) term in the expansion is approximated by applying a Riemann solver on one-sided

approximations to the conserved quantities on half grid points. These one-sided approxi-

mations are obtained by WENO interpolation. The higher order terms in the expansion

is approximated by a combination of central differences and an additional limiter that is

based on the smoothness indicators for WENO interpolation. Similar to our first scheme,

an unstaggered constrained transport method is used to control the divergence error of the

magnetic field. The magnetic potential is evolved using a WENO scheme originally designed

for the Hamilton-Jacobi equations in the same way we did in [23, 22]. Also similar to our

first scheme, a positivity-preserving flux limiter is applied to further enhance the robustness

of the scheme. This scheme is also applied on curvilinear meshes, where we change the

ideal MHD equations to a new hyperbolic system of conservation laws under the curvilinear

coordinates and change the magnetic potential evolution equation to a new equation under

the curvilinear coordinates. Numerical results shows that when we use the HLLD Riemann

solver in the base scheme, the resolution of shocks and other complex features is better than

what we would get by using the Lax-Friedrichs flux, which is comparable to the results we

got by using the classical WENO scheme with Lax-Friedrichs flux splitting. The numerical

results also demonstrated the robustness of our scheme, on both uniform and non-uniform

meshes.

This dissertation serves as the starting point for the following directions of possible further

explorations.

1. Single-stage single-step schemes based on the alternative flux formulation of the WENO
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scheme. The work in [51] suggested that the alternative flux formulation can be made

into a Lax-Wendroff type single-stage single-step scheme by applying the Cauchy-

Kovalevskaya procedure similar to what we described in Chapter 4. Such a scheme

would have an even smaller effective stencil than what we have in Chapter 4.

2. Treatment of more complex physical boundary conditions. The periodic and zeroth

order extrapolation we used in our numerical examples are useful in areas such as

simulations of galaxial formations and large-scale structures of matters in the universe.

However, in areas such as solar system physics and thermonuclear fusion, more complex

boundary conditions are needed and it is a non-trivial task to implement them in a

high order finite difference scheme.

3. Incorporate the single-stage single-step scheme into AMR frameworks. This is an

important motivation for work in this dissertation, as well as the work in [23, 22].
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