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ABSTRACT

THE DETECTION AND IDENTIFICATION OF COMPREHENSIVE
PROBLEM SOLVING STRATEGIES USED BY SELECTED
FOURTH GRADE STUDENTS
By

Joseph Jennings Shields

For the past seventy-five years many persons, within
and without the academic community, have called for more
real life problem solving in the elementary schools.

During the past ten years some programs have been developed
to teach problem solving for specific subject areas and, in
a few cases, to teach problem solving of an interdisciplin-
ary nature. However, these programs have, in general,
assumed a model of problem solving which is appropriate for
adult subjects. The purpose of this study is to examine
the problem solving behavior of selected fourth grade
youngsters to detect what strategies they use in the process
of solving open ended problems, and to determine if the
process they utilize coincides with that of the model ap-
propriate for adult subjects.

A popular view of human problem solving is based on

an informational processing approach to problems. The
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solver processes the problem in four steps: (1) clearly
define the goal of the problem, (2) generate a number of
alternatives, (3) synthesize information concerning these
alternatives, and (4) select the solution which is most
consistent with the goal.

Once the problem is defined, one or more search strat-
egies can be employed to aid the solvervin reaching the
optimal solution. These strategies include: (a) making
inferences, (b) looking at related problems, (c¢) identify-
ing subgoals, (d) use of contradiction, and (e) working

backwards.

Procedures

Three male and three female subjects were randomly
selected from each of two fourth grade classes, the classes
being denoted the experimental and control classes. The
particular classes were chosen by the researcher because
of the students openness and independence shown in self-
initiated activities.

The study involved five interviews for each of the
twelve subjects, and was conducted at regular intervals
over a four month period. The purpose of these interviews
was to gather information concerning the manner in which
the students solved comprehensive problems.

During the study period the experimental class re-
ceived some problem solving training. The results of these

interviews were analyzed to suggest answers to the
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following questions:

a) Is there an identifiable process which elementary
school children use in solving open ended compre-
hensive problems?

b) Which heuristics are used by elementary school
children engaged in solving these comprehensive
problems?

c) Does problem solving training affect the process
or strategies used by the successful fourth
grade problem solver?

d) Do youngsters who are engaged in regular problem
solving activities become more mature in their
view of the nature of problems, solutions, and the
means of attaining these solutions?

Problems and Results

For each of the five interviews conducted, the same
four step problem solving process was apparent in those
cases where the subject reached meaningful solutions.

The first interview involved finding a solution to an
evaluation type of problem: Determine which of five given
notebooks is the best for a school district to buy for all
fourth graders. The generalized problem solving strategy
of making inferences was used by all of the successful solv-
ers. Designing a classroom suitable for fourth grade young-
sters was the focus of the problem in the second interview.
Subjects used contradiction, made inferences, identified
subgoals, and looked at related problems in reaching solu-
tions to this problem. These strategies were also evident
in the solution to the third challenge of planning an ice

skating party for twenty-five children, and in the last
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interview, concerned with planning and laying out a
playground.

The fourth interview centered on the solution to a
describing people problem: Determine which characteris-
tics are most useful in‘describing a person. Due to the
students inexperience with a sampling type of problem,
subjects made little progress in reaching partial solutions,

and did not employ generalized strategies in this problem.

Conclusions and Recommendations

The researcher concluded that fourth grade children
do employ an identifiable process in addressing comprehen-
sive problems, and this process sometimes involves the use
of one or more problem solving strategies. There were no
differences in the quality of solutions given by either the
experimental or control class. The solving process and
strategies became more refined as the study progressed, and
indicates a growth in problem solving ability of these
subjects.

Based in part on these conclusions, the researcher rec-
ommends that more problem solving activities be carried out
at all grade levels. Secondly, new and existing programs
in problem solving training should be structured to build on

the natural processes and strategies of youngsters.
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CHAPTER I

THE PROBLEM

Background and Need for the Study

The cry to make "real world" problems a prominent part
of the curriculum has been heard at various times during the
past seventy-five years. At the turn of the century the
"Perry Movement"” in this country received great impetus from
E.H. Moore in his presidential address1 before the American
Mathematical Society at its annual meeting in 1902. During
this address he stated: "The fundamental problem (in the
pedogogy of elementary mathematics) is that of the unifica-
tion of pure and applied mathematics." Later, the Progres-
sive Education Association report of the Committee on the
Function of Mathematics in General Education2 in 1938 includ-
ed a chapter on some concepts basic to problem solving. The
Committee felt very strongly that "the major role of

mathematics in developing desirable characteristics lies in

lE.H. Moore's presidential address before the American
Mathematical Society at its ninth annual meeting, December
29, 1902. The address was printed first in Science n.s. 17
(March, 1903).

2Progressive Education Association, Mathematics in
General Education: A Report of the Committee on the Function
of Mathematics in General Education. 1938. 1In Readings 1n
The History of Mathematics Education, NCTM (Washington D.C.:
1970), pp. 534-566.

1



the contribution it can make to growth in the abilities in-
volved in . . . problem solving."

To teach students to solve "real world" problems,
educators have emphasized mathematical skills and problem
solving techniques which could be learned by solving
simplified models of "real” problems. This distinction
between problems which are personal to éhe student and exer-
cises presented in class has produced varied meanings to
"problem solving."

Written material on the methods of problem solving has
appeared at various times during the last three score of
yvears. Perhaps the most widely read book on this subject

is How To Solve It by G. Polyal which presented the basic

concepts of problem solving and strategies for teaching
problem solving. During the sixth decade of this century
the twenty-first yearbook of the National Council of
Teachers of Mathematics contained a chapter on "Problem
Solving in Mathematics.”2 This chapter discussed the theory
of problem solving and the implications of this theory for

the classroom.

1G. Polya, How to Solve It, (2nd ed., Garden City, N.Y.,

Doubleday and Company, Inc., 1957).

2Kenneth B. Henderson and Robert E. Pingry, "Problem
Solving in Mathematics," The Learning of Mathematics: Its
Theory and Practice, Twenty-first yearbook of the NCTM
(Boston, Houghton Mifflin Co., 1953).




General educators and learning theorists such as
Thorndike and Ausubell have investigated problem solving;
they state the need for problem solving practice cannot be
overemphasized. O'Brien and Shapiro2 interpret Piaget as
saying that the child is liberated from his egocentric view
of reality by social interaction and by confronting problems
in his daily experience. Hence it is "éroblem (solving) . .
that is a central vehicle for cognitive growth."3 Finally,
mathematics educators in the post "New Math" years continue
to support and encourage problem solving activities. For
example, Johnson and Rising4 state, "learning to solve pro-
blems is the most significant learning in every mathematics
class. . ."

The impact of this emphasis on problem solving, by

virtually every major reform suggestion of this century, is

lRobert L. Thorndike, "How Children Learn the Principles
and Techniques of Problem Solving," Learning and Instruction,
Forty-ninth yearbook of the National Society for the study
of Education, (Chicago: University of Chicago Press, 1950),
pp. 191-216; David P. Ausubel, "Learning by Discovery,"
Educational Leadership, XX (January, 1969), p. 117.

2Thomas C. O'Brien and Bernard J. Shapiro, "Problem
Solving and the Development of Cognitive Structures," The
Arithmetic Teacher, XVI (January, 1969), p. 1ll.

3

Ibid., p. 1l2.

4Donovan A. Johnson and Gerald Rising, Guidelines for
Teaching Mathematics, (Belmont, California: Wadworth
Publishing Company, 1967), p. 104.




apparent in the Cambridge report of 1963 and in the School
Mathematics Study Group (SMSG) report of a Conference on
Secondary School Mathematics, 1966. The first of these re-
ports states, ". . . the problem material (in textbooks)
should get at least half of the time and attention of the

1

authors." And in the March, 1966 meeting of the SMSG

Conference, the committee on problem soiving stated,
". . . the activity of constructing and analyzing mathematic-
al models of scientific and life situations is, apart from
technical questions, the principle link between mathematics
and the rest of civilization."2

The SMSG Secondary School Mathematics Units were
developed during the late sixties to ". . . make clear to
all students that mathematics is indeed useful, that it can
help us in understanding the world we live in and in solving

3 The fourteen units in

some of the problems that face us."
this program are an integrated plan for high school mathema-
tics containing substantial material on problem solving. The
committee on problem solving wanted "understandable remarks

and digressions on models and modeling and their various

aspects (to) be liberally . . . sprinkled throughout the

lGoal§7for School Mathematics, The Report of the
Cambridge Conference on School Mathematics, (Boston:
Houghton Mifflin Co., 1963), p. 28.

2SMSG: A Report of a Conference on Secondary School
Mathematics, March 14-16, 1966.

3The Panel on Secondary School Mathematics of the
School Mathematics Study Group, SMSG: Secondary School
Mathematics, Leland Stanford Junior University, 1971, page 1i.
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mathematical education process."1 Problem solving material
appears in nine of the twenty eight chapters and deals with
problem formation, use of diagrams, tables, guesses, and
deductive reasoning.

Other mathematics programs, developed during the
sixties, utilized problem solving as an integral part of
the teaching and learning process. For-example,the Minneso-
ta School Mathematics and Science Teaching Project
(MINNEMAST) and the Madison Project both challenged the
student to discover solutions to problems through experi-
mentations, collecting data and making conjectures. However,
neither SMSG, MINNEMAST, nor the Madison Project had
comprehensive problem solving as a major theme. 1Indeed, the
recent conference on the K-12 mathematics curriculum held in
Snowmass, Colorado during June, 1973 concluded, "the process
of solving problems of any description has not been given
due attention in curriculum material."2 Throughout the
conference, the topic of problem solving was a continual and
pervasive subjeét of discussion. The conference report

contains the following suggestions:

libid.

2The Report of the Conference on the K-12 Mathematics
Curriculum, Snowmass, Colorado, Mathematics Education
Development Center, Indiana University, 1973, p. 33.




1. There is a need for a center or centers for basic
research in how chi;dren (students) solve problems.

2. There is a need for this same center to develop
curriculum material for both school students as
well as teachers.

There have been programs which attempted to cultivate
problem solving skills and creativity in the learner. For
example, the Creative Education Foundation at‘the State
University of New York at Buffalo has concentrated on the
improvement of adult creative problem solving through special
courses.z This foundation published a student workbook,
instructor's manual and visual aids for use in teaching
creative problem solving courses for business, adult educa-
tion, military and university groups.3 A program developed
at the University of Minnesota to nurture creativity in
Elementary School children was titled "Invitation to Think-
ing and Doing" and was under the direction of R. E. Myers

and E. Paul Torrance.4 Currently, there are several

universities such as University of California at Los Angeles

1The Report of the Conference on the K-12 Mathematics
Curriculum, p. 34.

2Alex F. Osborn, Applied Imagination: Principles and
Procedures of Creative Problem Solving, (3rd Rev. ed.),
New York: Charles Scribner's Sons, 1963.

3S. J. Parnes, Creative Behavior Guidebook, New York:
Charles Scribner's Sons, 1967.

4R. E. Myers and E. Paul Torrance, Invitation to
Thinking and Doing, (Bureau of Educational Research, Univer-
sity of Minnesota, Perceptive Publishing).




and Massachusetts Institute of Technology which offer
courses in problem solving to undergraduates.

During the academic years 1974-1975 and 1975-1976 the
American Association for the Advancement of Science, with
support from the National Science Foundation, conducted
several short courses for college teachers entitled "Pattemns
of Problem Solving."1 This course is désigned to provide a
new dimension in higher education that crosses boundary
lines between disciplines. It is designed to provide the
attitudes and skills necessary in dealing with complex
problems, from the statement of the problem to its creative
solution. The National Science Foundation also supported
a new program, located in centers at Indiana University,

The University of Northern Iowa, and The Oakland Inter-
mediate School District, Oakland County, Michigan. This

new program is developing curriculum material for the teach-
ing of problem solving to elementary school pupils, using
the hand held calculator.

At the elementary level, the only current program of
widespread implementation whose major theme is problem
solving is the Unified Science and Mathematics for Elementary
School (USMES) program. The formulation of the USMES project

was in response to the recommendation of the 1967 Cambridge

1Announcement: NSF Chautauqua - Type Short Courses for
College Teachers, Academic Year 1974-1975 (Office of Science
Education, Washington, D.C.).




Conference on the Correlation of Mathematics and Science
in the Elementary School.l Since its inception in 1970,
USMES has developed units which center on long range in-
vestigation of real and practical problems taken from the

local school and environment of the community.2

Purpose of the Study

The purpose of this study is to collect information
about the problem solving behavior of selected fdurth grade
students, and analyze this information to detect and
identify the strategies used by those youngsters in
addressing comprehensive challenges. This case study of
five interviews with twelve subjects, randomly selected from
two classes, seeks to find regularities in their solving
process. From these reqgularities the researcher will
suggest answers to the following questions:

a) 1Is there an identifiable process which elementary
school children use in solving open ended
comprehensive probiems?

b) Which heuristics are used by elementary school
children engaged in solving these comprehensive

problems?

lGoals for the Correlation of Elementary Science
and Mathematics, Houghton Mifflin Co., 1966.

2USMES Guide, Education Development Center, Inc.,

Boston, June 1973.




c) Does problem solving training affect the process
or strategies used by the successful fourth grade
problem solver?

d) Do youngsters who are engaged in regular problem
solving activities become more mature in their
view of the nature of oroblems, solutions, and

the means of attaining those solutions?

Definition of Terms

No single definition of a meaningful problem and
problem solving as a process is agreed upon by mathematics
educators. For example, at the Snowmass Conference the
meaning of problem ranged from "the simple arithmetical
examples usually found in elementary texts, to the more
formal mathematical problem sets associated with abstract
mathematics."1 Polya defines what he thinks it means to
have a problem by saying that the individual searches

. . . consciously, for some action appropriate to attain
a clearly conceived, but not immediately attainable, aim."2
Dodson defines a problem by suggesting that it has the

following characteristics:

lThe Report of the Conference on the K-12 Mathematics
Curriculum, Snowmass, Colorado, p. 33.

2George Polya, Mathematical Discovery: On Under-
standing, Learning, and Teaching Problem Solving, (John
Wiley & Sons, Inc., 1972), p. 117.
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1) It is a situation or question for which the
student does not already possess a solution, or
answer, or a method of obtaining the solution.

2) It is solvable using previous learning.

3) It cannot be solved by simple recall from memory
or the standard use of a computational algorithm.

4) 1Its solution does not depend on a special trick.1
Robinson, Tickle, and Brison define a comprehensive problem
as "a question that leads to alternatives, and where the
solver must synthesize additional information to decide
which alternative is the best answer to his question."2
Johnson and Rising define problem solving as "finding the
appropriate response to a situation which is unique and

3 All of these definitions

novel to the problem solver."
agree that the subject has a goal, or aim, which is tempo-
rarily unattainable or blocked. Non-mathematical writers
such as Vinacke and Williams4 agree on this characterization

of a problem.

lJoseph Dodson, Characteristics of a Successful In-
sightful Problem Solver, (NLSMA Report No. 31, School
Mathematics Study Group, 1972), p. 9.

2F.G. Robinson, J. Tickle, and D.W. Brison, Inquiry
Training: Fusing Theory and Practice (Ontario Institute
for Studies in Education, Toronto, Ontario, 1972), p. 4.

3Donovan A. Johnson, and Gerald Rising, Guideline for
Teaching Mathematics.

4Edger W. Vinacke, The Psychology of Thinking, (N.Y.:
McGraw-Hill Book Co., 1952), p. 160; Frank Williams,
Foundations of Creative Problem Solving: Principles and
Applications, (Ann Arbor: Edwards Bros., Inc., 1960), p. 20.
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In this study, the researcher shall use problem
solving to mean that activity the student engages in when-
ever he or she consciously looks for answers to a problem
which:

1. Presents a situation or challenge for which the
student desires a solution and to which there is
no immediate correct answer.

2. The student can arrive at a solution compatible
with his understanding of the problem and his
maturation.

3. Solutions cannot be found by employing special
tricks or a simple sequence of algorithms, i.e.,
it is complex.

This definition is global enough to include a wide variety
of problems, and implies that each problem has some condition
or conditions which are given, as well as transformations
which can be used on the given to reach the goal or aim.

It is assumed that the student desires a solution either

as an end in itself or as a means to an end, since problem
solving is an active cognitive process. The student who
already possesses a solution or does not desire a solution
will not act on the givens in a problem to arrive at a
solution. Furthermore, comprehensive problems may have more
than one "correct" solution, and thus, the choice of a
solution is dependent on the solvers understanding of the
problem.and desired goal. Finally, the problem must be
complex and require the solver to work at the higher cogni-
tive levels. This third condition eliminates most of those

problems referred to as exercises, in many texts, which can

be solved by simple recall or the use of an algorithm
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presented in class. Each of the five problems solved by
the subjects in this study satisfy the conditions listed
above.

The solution of a problem is a complete plan which
can be carried out to arrive at the precise goal the
solver desired. Note that a problem has reached a solution
when the learner is aware of the correcf course of action
leading to the goal, irrespective of whether the plan is
implemented. Therefore, to evaluate the "correctness" of a
solution it is necessary that the researcher have the solver
report a solution, or indicate the plan which will lead to
the solution. This definition of a solution is equivalent
to the operational definition which Wickelgren gives,
". . . a solution is a sequence of allowable actions that
produces a completely specified goal expression."1 Polya
also agrees with this characterization of a solution as a
plan leading to the goal or aim.2

To reach a solution, the solver will often use pro-
cedures, called strategies, which aid in organizing data

and eliminating alternatives. Kilpatrick3 calls these

lWayne A. Wickelgren, How To Solve Problems: Elements
of a Theory of Problems and Problem Solving, (W.H. Freeman
and Co., San Francisco, 1974), p. 1l6.

2George Polya, Mathematical Discovery: On Understand-
ing, Learning, and Teaching Problem Solving, p. 118.

3Jeremy Kilpatrick, Analyzing the Solution of Word
Problems in Mathematics, Unpublished doctoral dissertation,
Standord University, 1967, p. 19.
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strategies, heuristics, and defines them ". . . as any rule,
technique, rule of thumb, etc., that improves problem solv-
ing performance." Covingtonl lists thirty-eight of these
rules of thumb for problem solving, and McEver,2 in

Strategy Notebook: Tools for Change, provides fifty-nine

strategies for youngsters to practice.

In this study a generalized probiem solving strategy,
or simply a search strategy, will mean one of five general
procedures which can be used in open ended problem solving.
These five are: (1) inference, (2) using a related problem,
(3) identifying subgoals, (4) contradiction, and (5) working

backwards.

Procedures"

Two fourth grade classes, from schools near a large
metropolitan area, were selected based on the following
criterion:

1. Students learned in an environmént where indivi-

dual feeling, creativity, and intellectual

activity were highly valued. .-

2. Students could accurately express their opinion
when questioned.

3. Students had never worked on, or participated in,
any problem solving program.

1Martin V. Covington, "An Experimental Program for

Increasing Ingenuity in Visual Problem Solving," University
of California, Berkley, 1968.

2Catherine McEver, Strategy Notebook: Tools for
Change, (Interaction Associates, Berkley, California, 1969).
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4. Students were male and female, and from diverse
socio-economic backgrounds.

Three males and three females were selectéd randomly from
each of the classes described above. A two-way analysis of
variance was computed to help determine whether the classes
were similar in problem solving ability, using scores from
the Purdue Elementary Problem Solving Inventory as the
independent variable. This analysis supported the hypothe-
sis that there was no difference in the problem solving
ability of the two classes, or between sexes, at the onset
of the study.

One class was differentiated from the other by having
the teacher integrate problem solving activities into the
usual classroom work during the duration of the study.
These activities took one of two forms: 1) a comprehensive
challenge of the USMES type, or 2) a short puzzle type
problem.

The study involved traging the behavior of the twelve
students during five interviéws, distributed over a four
month period, in which they attempted to solve open ended
comprehensive problems. All of the interviews were conduct-
ed in a comfortable classroom of the school building, and
during each interview only one subject and the researcher
were ih.the room. The interviews were recorded on a
cassett recorder, and observations made by the interviewer
were transcribed. These sixty interviews were analyzed to

find evidence to support or reject the claim that youngsters
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use an identifiable process and specific strategies when
solving open ended problems.

The use of the clinical paradigm was appropriate for
this study, as the problem solving process used by the
subjects had to be analyzed in great detail to identify
strategies, and because any variation in the process or

strategies was of interest.

Assumptions and Limitations of the Study

For purposes of this study, the following assumptions
were applied:
a) That the comprehensive problems used during the
interviews were appropriate and interesting to
the subjects.

b) That all of the subjects wanted to participate in
the study.

c) That variations between the subjects have a ran-
dom effect on the results, and do not produce
erroneous conclusions.

d) That the setting and population in which the study
was conducted was not so unusual that the outcomes,
within limitation, .could not be used to generate
hypotheses for similar populations.

This study was designed and undertaken with the following
restriction: Only students in the'sample were in the study,
and any generalization of the results is limited to popu-

lation similar to the experimental group.



CHAPTER II

THEORY AND SUPPORTING RESEARCH

Introduction

The theory and research related to compfehensive
problem solving shall be presented in two parts. Part one
deals with a theory of problems and problem solving and is
used as a rationale for those strategies which may be useful
to elementary school children in solving problems. Part two
reviews the literature on problem solving and creativity and

those variables which may influence problem solving skill.
PART ONE

A Theory of Problem Solving

Learning theorists have provided a good deal of
material on which to build sound hypotheses for problem
solving. 1In 1956 Bloom1 and his associates prepared a com-
prehensive model descriptive of the possible cognitive
levels. Bloom's taxonomy classified the various thinking
processes, from simple recognition and recall to the most
general process of open search, into levels: Knowledge,

Comprehension, Application, Analysis, and Synthesis.

lp.s. Bloom, et al., Taxonomy of Educational Objec-
tives: Handbook I: Cognitive Domain, (New York: McKay
Publishing Co., 1956).

16
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Problem solving is included in the highest cognitive level
by Bloom. Avital and Shettleworth1 also defined a taxonomy,
somewhat simpler in appearance, analogous to Blooms and
again insisted that solving open ended problems involved the
highest cognitive processes. Gagne considers problem solving
as the highest form of learning wherein the solver does not
apply previously learned rules but must "discover a combina-
tion of previously learned rules that he can apply to
achieve a solution."2
Although problem solving is the highest form of learn-
ing for Gagne, he asserts that it is possible to teach at
this level provided requisite rules have been learned.
According to Gagne, persons who engage in problem solving
develop a collection of "higher-order rules, which are
usually called strategies“3 and which provide guidance to
the thinking process. Bruner agrees that it is possible
to teach children problem solving and states, "there are
certain general attitudes or approaches towards subjects

that can be taught in earlier grades that would have con-

siderable relevance for later learning."4 He continues by

1Shmuel M. Avital and Sara J. Shettleworth, Objectives

for Mathematics Learning: Some Ideas for the Teacher,
(Bulletin No. 3, 1968, The Ontario Institute for Studies in
Education).

2Robert M. Gagne, The Conditions of Learning, (2nd.
edition, Holt, Rinehart and Winston, Inc., N.Y., 1970), p. 214.

3

Ibid., p. 215.

4Jerome s. Bruner, The Process of Education, (Vintage
Books Edition, August, 1963, Random House, Inc., N.Y.), p. 43.
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saying, "it might be wise to assess . . . (which) heuristic
devices are most pervasive and useful, and that an effort
should be made to teach children a rudimentary version of
them that might be further refined as they progress through
school."” The identification and teaching of strategies
which are useful in solving open ended problems depends on

ones conception of the various components of a problem.

Components of a Problem

All problems can be considered to be composed of
three types of information: first, information concerning
the givens; second, information concerning operations which
can be used to transform the givens, and third, information
concerning goals.l The givens are those expressions which
are present when the problem is posed. 1In problems such as
finding the distance from a point S(2,3) to the line given
by 3x + y - 2 = 0, the givens are the point and line in the
plane as well as assumptions, definitions and theorems from
Analytic Geometry. 1In puzzlé problems, such as 'Instant
Insanity,' the givens are the four cubes, each of which has
one of four colors on each side. In comprehensive problems
the givens are all those objects, materials, data, axioms,
and definitions, stated or implied which are known to exist
after tﬁe statement of the problem. Few problems explicitly

specify all of the givens. However, it is usually the case

1Wayne A. Winkelgren, How To Solve Problems: Ele-
ments of a Theory of Problems and Problem Solving, (W.H.
Freeman and Co., San Francisco, 1974), p. 10.
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that some of the givens are implied, for example, a know-
ledge of elementary Calculus is at one's disposal in solv-
ing physics problems even though this fact is not generally
explicitly stated.

An operation is an action which you are permitted to
perform on the givens which can transform the givens into
‘expressions containing the goal or a subgoal. For example,
in a chess game the problem is to find a way to checkmate
your opponent as quickly as possible and the allowable
operations are the ways each piece can move. For comprehen-
sive problems the allowable operations permitted on the
givens are often limited only by the solvers imagination.
For example, in a problem to find ways to increase profit in
a student business, students can examine past profits
statistically, survey prospective consumers for possible
improvements, and examine past marketing and manufacturing
techniques, as possible transformations on the givens.

The goal is the terminal expression which the solver
wishes to exist in the world of the problem. Note that the
goal state may not be completely specified in the statement
of the problem. This is the case in problems where the
solver is "to find" a quantity. For example, 'find the
value of x which satisfies the equation x3 + 2x2 -x=-2=0"'
does not specify the numericél value of the solution and
yet the goal is clear to the solver. To achieve the goal
state the solver may have to pass through one or more inter-

mediate problem states. A problem state is the set of all
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the expressions that exist in the world of the problem at a
particular time. A search strategy for solving a problem is
a plan which directs the learner from initial representation,
through any necessary intermediate problem states, to a

final goal state.

Sequence of Events Involved in Problem Solving

The process of solving problems has been divided into
stages by various authors. Dewey, Polya, Johnson and
Gagnel generally agree that these stages include interpret-
ing the problem, devising a plan, producing solutions, and
deciding among solutions. Because of the vast differences
in types of problems Gagne suggests that this model is not
applicable in all situations nor is the solver totally aware
of the occurrences of such stages in actual problem solving.
Nonetheless, this sequence model is useful in organizing
a discussion of problem solving and in identifying the
strategies which will aid the solver in reaching the goal

state.

Presentation of the Problem

Problems may arise as a result of some external
stimuli such as finding a parking place as close to the

theater as possible yet in a place free of parking

lJ. Dewey, How We Think, (Boston: D.C. Heath and Co.,
1933); G. Polya, How To Solve It, (2nd, edition, Doubleday

and Co., 1957); D.M. Johnson, The Psycholo of Thought and
Judgement, (New York: Harper & Row, 1955); R.M. Gagne, The

Conditions of Learning, p. 217.
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restrictions. On the other hand, the problem may arise as

a result of some internal thought process as in the case of
a good friend who adopts a moral view radically different
from our own, making it necessary to reassess the friend-
ship. Whether the problem is externally presented or not,
the solver becomes aware that there is a problem which he
wants to solve. Parnes refers to this first presentation of
a situation requiring action as the "fuzzy problem"1 which

needs careful definition.

Problem Definition

The first step in problem solving involves carefully
defining the problem in precise terms. Stating a problem

forces some kind of representation. Posner2

states, "the
initial representation of a problem may be the most crucial
single factor governing the likelihood of problem solution."
Although the initial definition of the problem may be less
important in a comprehensive problem, many books on problem

solving such as the ones by Polya and Osborn,3 emphasize

that the initial representation should not be made too

1Sidney J. Parnes, Student Workbook for Creative
Problem Solving Courses and Institutes, (3rd. Rev., 1963,
State University of New York at Buffalo).

2Michael I. Posner, Cognition: An Introduction, (Scott,
Foresman Series, Scott, Foresman and Company, Glenview, Ill.,
1973), p. 149.

3. Polya, How To Solve It; Alex F. Osborn, Applied
Imagination, (Rev. ed., N.Y.: Charles Scribner's Sons,
1957).
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quickly. Parnesl suggests that the solver ask himself
various questions to aid in viewing the problem from dif-
ferent perspectives. For example, suppose that a group of
students are asked to solve the following problem:

On one shool bus, an eight-year-old boy struck and

bit other children and kept the entire busload in

a noisy, confused state. Due to the disturbances,

the driver nearly had several accidents. He pointed

this out, but the boy jeered and continued behaving
the same way. When the boy's victims complained,

the school principal tried to punish the rowdy by

keeping him in at recess. This had no effect, nor

did it appeal to his parents. The driver reported

that he was as bad as ever and was cautioned by the

principal that anyone who spanked him might be sued

or prosecuted. What should the bus driver do?
To aid the solver in viewing this problem from several
vantage points Parnes suggests that the solver should carry
out some "fact-finding" before attempting to define the
problem. The students may wish to know: How does the boy
act in the school building? What are his special interests?
Does he have personal or family problems?

There is evidence to suggest that the initial repre-
sentation of a problem is influenced both by what is in the
problem and by what is in the problem solver. Humphrey and
DeGroot2 both concluded that the difference between average

chess players and chess masters was the way the masters

initially represented a problem in determining the next move

ISidney, J. Parnes, Student Workbook for Creative
Problem-Solving Courses.

2B. Humphrey, Directed Thinking, (New York: Dodd,
Mead & Co., 1948); A. D. DeGroot, Thought and Choice in
Chess, (The Hague: Mouton & Co., 1965).
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in a chess game. The less gifted players reasoned in the
same way as the masters after the initial representation
was reached. However, the time to this initial representa-
tion was considerably longer in the average player. This
suggests that experience in solving problems of one type
aids in initially representing problems of that type.

The factors which influence the way a problem is
coded by the individual has been studied by several indivi-
duals. Duncker1 concluded that if an object had one
established use in a given situation, it was difficult to
use the object in another way. He refers to this condition
as functional fixity. Glucksburg, Weisburg and Danks2
investigated this phenomenon for objects which were labeled
and initially coded with that label. They concluded that
subjects who coded the object in memory, by the label, were
at a disadvantage in solving problems which called for uses
not associated with the label.

This evidence suggests .that for a period prior to
careful definition of the problem the solver should consider

different uses for the givens and view the problem from

1K. Duncker, "On Problem Solving," Psychological
Monographs, 1945, 58.

2S. Glucksberg and J. H. Danks, "Effects of discrimi-
native labels and of nonsense labels upon availability of
novel function," Journal of Verbal Learning and Verbal
Behavior, 1968, 7, pp. 72-76; S. Glucksberg and R. W.
Weisberg, "Verbal behavior and problem solving: Some effects
on labeling in a functional fixedness problem," Journal
of Experimental Psychology, 1966, 71, pp. 659-664.
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various perspectives. After this initial encounter with the
problem the solver should choose that formulation of the
problem which most closely describes the precise goal

the solver wishes to reach. For example, in the school
bus driver problem, the students may decide that the best
way to formulate the problem is: How might the bus driver
achieve peace on the bus? This particular choice may come
after several, less general, formulations of the problem
such as: How might the bus driver settle this boy down?
What might the bus driver do to isolate "problem children"
from the others? What might the bus driver do to obtain a
better understanding of the boy? How might the driver
provide a safe and sane ride?

The first step in the problem solving process, inter-
preting the problem, is embodied in the definition of the
problem. Any limitations on the givens and on possible
transformations should be stated or implied in this
definition. Since the definition of the problem describes
the goal state, it is essential that any evaluation of the
correctness of a solution be carried out in reference to

the stated goal and its meaning to the solver.

Devising A Plan

The second step in the problem solving sequence is
devising a plan or search strategy. Such plans are similar
to hypotheses and tell the solver where to look in memory

or what to examine in the external world in order to
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advance towards a solution. Posner1 suggests that we "know
very little about the development of these plans except that
they appear to be a function of consciousness" and that the
solver can often report them verbally. The development of

a search strategy is at the heart of the problem solving
process. At this stage of problem solving there are three
strategies which will aid in formulating a plan of action;
they are inference, identification of subgoals, and examin-

ing relations between problems.

Inference

All problems, clearly defined, present some of the
relevant information in implicit, rather than explicit, form.
This information is often critical in solving the problem.
When presented with a clearly defined problem the solver
must make inferences and draw conclusions from the given
information which will render explicit statements from
those implied by the givens. For example, consider the
following problem fram Analytic Geometry?

Give an equation which describes the locus of

points, C such that the line segment joining

(-3,0) to any point of C is perpendicular to the

line segment from that point of C to the point

(3,0).
The solver could infer from the given information, 'the two
line segments are perpendicular,' that the slopes of the

two segments are the negative reciprocals of each other.

Inferences can be drawn from implicit or explicit statements

—

1Michael I. Posner, Cognition: An Introduction, p. 162.
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of the givens or the goal state. The solver expands the
goal or givens by bringing to bear all of the knowledge he
has concerning the problem which is stored in memory.

Polyal suggests that the solver be guided in this
search for relevant information by looking for conditions
which relate the givens and the goal. Wickelgren states,
"Drawing inferences (more generally, making transformations
of the goal or the givens) is probably the first problem-
Vsolving method . . ."2 the solver should employ. He conti-
nues by stating that the solver should continue to draw
conclusions which satisfy one, or both, of the following
criterion:

a) The inferences have frequently been made in the
past from the same type of information;

b) The inferences are concerned with properties
(variables, terms, expressions, and so on) that
appear in the goal, the givens, or inferences
from the goal or the givens;

until it is difficult to draw new conclusions which seem to
have any likelihood of being useful. Inferences from
presented information also includes explicit symbolic or
diagrammatic representation of the information that appears
implicitly in the problem.

One method of generating new information from the

divens or goal state is "brainstorming" the problem. This

Procedure which is espoused by the Creative Education

—

1G. Polya, How To Solve It.

2Wayne A. Wickelgren, How To Solve Problems, p. 23.
3

Ibid., p. 28.
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Foundation, involves the deliberate stimulation of an
individual or groups divergent thinking ability. During
this procedure the flow of ideas is enhanced by withholding
all criticism in the early stage so that solvers will feel
free to propose ideas which may be judged as far off the
subject. By deferring judgment, it is assumed that even
"far out" ideas may suggest a realistic, creative solution
or plan. As Osborn, the founder and chairman of Creative
Education Foundation, states, "It is almost axiomatic that
quantity breeds quality in ideation."l
Brainstorming is a generalization of the inference
method appropriate for comprehensive problem solving. For
example, in the problem of keeping peace on the school bus,
brainstorming may lead to conclusions, inferred from the
desired goal of peace, such as:
Don't let the boy take the bus. Keep the boy sepa-
rated from the other children. Arrange the route
so the boy is picked up last and dropped off first.
Arrange activities (on the bus) to keep the children
busy. Provide books and magazines of interest.
Equip the bus with TV.
Parnes suggests using "idea-spurring questions" such as;

Can I modify, magnify, minify, rearrange or combine any

1Alex F. Osborn, Applied Imagination: Principles and
Procedures of Creative Problem Solving, (3rd rev. ed.
Charles Scribner's Sons, New York, 1963), p. 131.
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existing information, or suggestion, to produce new
information which may be useful in solving the problem?l

Inferences can be made about the operations or
transformations which are in a problem. Indeed many
practical problems require the solver to think of a type of
operation that will solve the problem. One example of this
type of problem is the well known radiation problem of
Duncker:

Given a human being with an inoperable stomach tumor,

and rays which destroy organic tissues at sufficient

intensity, by what procedure can one free him of

the tumor by these rays and at the same time avoid

destroying the healthy tissue which surrounds it?2
The solver may infer several possible operations: avoid
contact between rays and healthy tissue, desensitize the
healthy tissue, or lower the intensity of the rays on
their way through healthy tissue. As a second example,
consider the one-heavy-coin problem:

You have a pile of 24 coins, twenty-three of these

coins have the same weight, and one is heavier

than the others. Your task is to determine which

coin is heavier and to do so in the minimum number

of weighings. You are given a beam balance, which

will compare the weights of any two sets of coins.
If the solver infers correctly that the beam balance
actually has three different outcomes, then the solver is

in a position to realize that the balance can provide him

with thé answer to which of three subsets contains the

1Sidney J. Parnes, Student Workbook for Creative
Problem Solving Courses.

2K. Duncker, "On Problem Solving,"” Psychological
Monographs, 1945, 58.




29

heavier coin. Given two equal subsets of coins the left
hand pan of the balance is either above, even with or
below the right hand pan.

Inferences can be made from the givens, the goal or
the operations and practice in drawing conclusions from

these sources should be provided.

Identification of Subgoals

A gecond strategy useful in devising a plan to solve
a problem is to identify one or more subgoals or subproblems.
In essence, the purpose of this strategy is to replace a
single difficult problem with two or more simpler problems.
For example, in the Analytic Geometry problem posed in the
last section a reasonable subgoal would be to find the slope
of the segment from (x,y), a point of the locus, to the
points (-3,0) and (3,0). A second subgoal would be to
equate the negative reciprocal of one of these slopes to
the other.

The subgoal method is advantageous for attacking
problems that require a sequence of more than two or three
actions to solve--which is the case in comprehensive
problems. When a solver defines two or more subgoals to be
achieved in getting from the given state to the goal he
must deéide whether one of these subgoals must be achieved
before the others. 1In some problems it is clear that one
of the subgoals (SGl) is closer to the givens than a second

(SGZ), which is closer to the goal. In such a case the
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solver should work to achieve SGl first. When this
logical distinction can be made the problem contains
ordered subgoals.l A diagram of a problem containing

ordered subgoals is given in Figure One.

Figure 1. Ordered Subgoals

The locus problem is an example of an ordered subgoal
problem. A second example is provided by the following
problem:

Nine men and two boys want to cross a river, using

an inflatable raft that will carry either one man

or the two boys. How many times must the boat

cross the river in order to accomplish this goal?
An excellent subgoal is to find the minimum number of trips
necessary to get one man on tﬁe other side and get the boat
back to the starting side. Since there are nine men, the
solver can simply multiply this minimum number by nine and
subtract one to achieve the goal.

In comprehensive problems the solver usually defines
several‘subgoals which are logically independent. These

"subproblems" may often be broken into further sub-subpro-

blems which lead to the goal. If it is known a priori that

1Wayne A. Wickelgren, How To Solve Problems.
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either of two sequences of actions, through two equivalent
subgoal chains,will lead to the desired solution the
solver is free to choose to begin work on that chain which
he feels will yield the goal more quickly. The problem is
said to contain unordered subgoals. Refer to Figure Two

for a schematic drawing of a problem containing unordered

subgoals.
Givens
|
| | | |
Subgoal 1 Subgoal 2 Subgoal 3 Subgoal 4
L
1 1 1
Sub-subgoal (2,1) Sub-subgoal (2,2)| [Sub-subgoal(2,3)

Figure 2. Unordered Subgoals

More often the solver does not know if a particular
sequence of subgoals will lead to the most "correct"
answer and should choose to work on that subgoal which
contains the fewest subgoals to be solved.

Most often in comprehensive problem solving the care-
ful statement of the problem, producing the problem
definition, is quite broad. For example, consider the
problem; "How might students increase sales in a student
owned and operated store?"” The solver might list ideas
such as, "obtain more customers" or "step up advertising."

These are not solutions to the problem, rather subproblems
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which will lead to an increase of sales in the store. The
solver would choose one of these "approaches" at a time,
and attempt to probe for more specific sub-subgoals. For
example, in the subgoal 'obtain more customers,' the

solver may identify sub-subgoals such as: How can we get
more customers in the store during the morning and early
afternoon hours? How can we get customers into departments
with sagging sales? Once a number of subgoals have been
identified, the solver chooses to work on that subgoal
which he feels will produce the most rapid, or most dramatic,
increase in sales.

The identification of subgoals may be one of the
most usefui problem solving strategies for the elementary
school child, since it can be used throughout the school
years to solve arithmetic, algebra and geometry word
problems. For example, consider the following problem:

Each day, Abe either walks to work and rides his

bicycle home or rides his bicycle to work and

walks home. Either way, the round trip takes

one hour. If he were to ride both ways, it would

take 30 minutes. How long would a round trip take,

if Abe walked both ways.
The first'subgoal the solver might define is to determine
how long it takes Abe to ride one way. The solver can then

determine, as a second subgoal, how long it takes to walk

one way.
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Wickelgren, Parnes and Polya;each identify the subgoal
method as a generalized problem solving strategy which

should be a part of problem solving training.

Examining Related Problems

A third generalized strategy for devising a problem-
solving plan is to examine a related problemﬂ Two problems
can be related in the following ways: one is equivalent
or completely analogous to the second, one may be similar
. in certain elements to the second or one may be a general-
ization of a second, that is, the second is a special case
of the first.

If two problems are equivalent, they are the same
except for the naming of the elements involved, that is,
they are isomorphic. For example, if in a checker game the
checker board is replaced with a chess board and the red
checkers with quarters and the black checkers with pennies,
without changing the operations or goal, the two problems
(games) are equivalent. Recégnizing that a problem is
equivalent to another problem is usually a simple matter,
and will only aid the solver in achieving the desired goal
if the isomorphic copy has been solved. However, the solver
who realizes that his problem is equivalent to another

often gains new perspectives which aid in making inferences.

1Wayne A. Wickelgren, How To Solve Problems; Sidney
J. Parnes, Student Workbook for Creative Problem-Solving
Courses; G. Polya, How To Solve It.
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Two problems which are similar share some but not all
of their essential characteristics. For example, the linear
game of nim, involving the removal of counters from a
line, is similar to the two dimensional game of nim, wherein
the players remove all counters above and to the right of
a selected counter. Two similar problems may be of equiva-
lent difficulty, with the first simpler—than the second or
the first more complex than the second. For example, the
"missionaries-and-cannibals" problem is as difficult as
the similar "man, fox, goose and corn" problem. As in the
case of equivalent problems, knowing how to solve either
aids the solver in reaching the goal for the other.

Looking for a similar, simpler problem is a strategy

Polya stresses throughout his book, How To Solve It.l

A very common technique used to find a simpler problem
(though not the only way) is to reduce the number of
variables involved. For example, the one-heavy-coin problem
presented earlier involved twenty-four coins, and is solved
by weighing a subset of eight coins against any other subset
containing eight coins. The solver who is unable to make
the needed inferences when confronted with this problem
might try the same problem with fewer coins. Note that
examination of a simpler problem will only produce the
insight needed to work the more difficult one if the simpli-

fied problem still contains the essential feature on which

1G. Polya, How To Solve It.
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the solution to the difficult problem depends. For this
reason, simplifying the problem may not aid the solver if
his simplification eliminates that facet of the problem
which made it difficult. However, as Wickelgren states,
". . . it might still be good strategy to pose and
solve . . . a simpler problem before you attempt to solve a
more complex problem.”1
Examination of special cases is especially useful in
proof problems or in problems where the solver must make
inferences concerning a more general problem. Mathematical
induction involves looking at special cases. Special cases
are simplified problems which, taken collectively, sometimes
aid the solver by providing data for the intuition to work
on. For example, determining the number of moves necessary
to complete the "Tower of Hanoi" problem with k disks is
most often approached by examining the problem with two,
then three, then four disks and recognizing a pattern.
Teachers report that students at all level of instruc-
tion use the method of related problems to solve word
Problems. For example, in solving "age problems" in elemen-
tary algebra the learner is taught to mimic the procedures
demonstrated by the teacher. 1In solving comprehensive
pProblems, the student should be guided by previous experience

gained from solving similar problems. This applies to

making inferences which were helpful in similar problems,

1Wayne A. Wickelgren, How To Solve Problems, p. 173.
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identifying subgoals which have proved fruitful in similar
situations, and gathering and interpreting data pertinent
to the problem. For example, students who have learned to
represent the mean time necessary for six different classes
to cross a street by using bar graphs can use this method
in the equivalent problem to represent the mean time
necessary for these classes to pass through the lunch line.
Indeed, Polya suggests that at each step of the solving
process the student ask himself, "Do you know any problem
with the same unknown?, . . . with a similar unknown?, . . .

related to yours and solved before?"1

Producing Solutions

Once the search strategy has been devised, the solver
follows the plan to its conclusion--the goal state. 1In
comprehensive problem solving the solver must accumulate
evidence which will support a decision concerning the
problem. Indeed, Posner suggests, ". . . many problems can
be viewed as involving the cdllection and evaluation of
evidence.”2 For example, consider the simple problem of
"Should I take a raincoat to work this morning?" 1In order
to decide between the two hypotheses, "It will rain," and
"It will not rain," the individual could consider whether

it is raining at the present time. Does it look like it

lG. Polya, How To Solve It, p. 1ll.

2M. I. Posner, Cognition: An Introduction, p. 176.
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may rain? What is the weather report, the conditions of the
wind, a barometer reading, the amount of rain during the
past few days? Gathering and interpreting data is a neces-
sary part of producing solutions.

The solver may find that, after working on a problem
for some time that he is no closer to the goal state than
he was soon after the initial represenéation; The solver
must then concentrate on ways to redirect the search for a
solution. Evidence suggests that once a particular
strategy is chosen, it continues to direct the search in a
direction which may not lead to the goal. Luchingsl found
that subjects continued to use a formula which had worked
on previous problems even when a more direct method of
solution was available. This tendency to repeat a solution
once obtained is called set, or Einstellung. Tresselt and
Leeds2 demonstrated that, unlike functional fixity,
Einstellung does not diminish even when the problem solving
process is interrupted for a period of days. Ways of redi-
recting the search have been suggested by several individuals.

DeBono3 suggested the solver use a method called lateral

lA. S. Luchings, "Mechanization in Problem Solving:
The Effect of Einstellung,"” Psychometric Monographs, 1942,
54 (6), p. 95.

2M. E. Tresselt, and D. S. Leeds, "The Einstellung
Effect in Immediate and Delayed Problem-Solving," Journal
of General Psychology, 1953, 49, pp. 87-95.

3E. DeBono, New Think, The Use of Lateral Thinking in
the Generation of New Ideas, (New York: Basic Books, Inc.,
1968) .
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thinking, in which the solver looks at the problem from
various standpoints. The Creative Education Foundationl
suggests that the solver go back and repeat the brain-
storming process. Crovitz2 suggeSts thinking of action
words which can be inserted into the problem to break old
habits and produce new organizations. Since these methods
are not mutually exclusive, there have been few attempts to
compare them.

Wickelgren3 suggests two methods which are useful in
redirecting the search, working backwards, and the method of
contradiction. These strategies provide more specific ways
to reach a solution than the broad suggestions of DeBono,

Crovitz or the Creative Education Foundation.

Contradiction

The method of contradiction involves drawing conclu-
sions which contradict some piece of given information,
and so proves that a goal can not possibly be obtained
from the givens. This stratégy gives us negative information
which may imply the desired result. The indirect proof
sometimes used in mathematics problems requires the solver
to use contradiction. For example, the proof that 2 is

irrational utilizes the indirect proof.

lA. Osborn, Applied Imagination: Principles of
Creative Problem Solving.

ZH. F. Crovitz, Galton's Walk, (New York: Harper &
Row, Publishers, 1970).

3Wayne A. Wickelgren, How To Solve Problems, pp. 109-

151.
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Another use of contradiction involves the elimination
of alternatives in a small search space. Such elimination
is useful in answering multiple choice problems;

"Which of the following is a solution to the equation

x> + 4x? - 7x - 10 = 02 x equals: (a) -2, (B) -5, (C) 4,
(D) 3, (E) none of these." The solver can determine whether
or not each of these numbers satisfiesuthe equation more
qguickly than he could solve it by a direct approach. This
particular strategy is used to solve logic problems such as
the "brakeman, fireman and engineer problem," wherein the
solver is asked to determine which of three trainmen is the
engineer (given some information about the trainmen and
three passengers on the train). Logic problems using
contradiction in a small search space may provide practice
for elementary school students in using techniques which
could prove useful in later studies of algebra and geometry.

Solving open ended problems often involves a large
number of alternative specific goals making it impractical,
or impossible, to contradict them one at a time. 1In such a
case, it is sometimes possible to eliminate large subgroups
of alternative goals by contradiction. For example, in the
school bus driver problem, several possible alternative
hypotheses such as, provide TV on the bus, provide new games
and puzzles regularly, provide entertainment for the
children, provide movies or storytellers, can be eliminated
because to assume such a solution contradicts the cost

constraint the school board would impose. By drawing
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conclusions from an assumed goal, and contradicting some
given information, the solver can gain considerable insight

into the nature of a plausible solution.

Working Backward

The method of working backwards is a strategy for
redirecting the solving process by focusing attention on the
goal as the starting point. Unlike contradiction, which
attempts to draw inferences from an assumed goal, the method
of working backwards involves trying to guess what step must
immediately precede the goal state. This method is helpful
" particularly when there is a unique goal and several given
statements. In problems where there is a unique goal,
Newell, Shaw and Simonl have demonstrated the superiority
of working backward. In problems where there are a large
number of givens and a unique goal, the givens may have a
disjunctive relationship to one another. Hence, the
solver, using a direct approach, would have to use a great
deal of time trying various gtarting points (givens), some
of which need not be related.

Students who attempt to solve comprehensive problems
often come up with a large number of givens, or inferences
from the givens, in the initial stages of problem solving.

Because of the unique starting point used in working

lA. Newell, J. C. Shaw and H. A. Simon, "The Processes
of Creative Thinking," Contemporary Approaches to Creative
Thinking, Eds. H. E. Gruber, G. Terrell, M. Wertheimer,
(New York: Atherton Press, 1962).
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backwards, namely the goal, the student is directed to
just those aspects of the given information that are
relevant to the solution.

The method of working backwards is useful to students
in less general problem solving contexts such as:

Three people play a game in which one person

loses and two people win each game. The one who

loses must double the amount of money that each

of the other two players has at the time. The

three players agree to play three games. At the

end of the three games, each player has lost once

and each person has $8. What was the original

stake of each player?
In this problem, the operation of exchanging money is
destructive, that is, changes the givens at each stage of
the problem. For this reason, by beginning with the goal
and using the inverse operation at each step the solver
can arrive at the solution that one player had $13, the
second had $7, and the third had $4 at the beginning of the
game. The problem of determining the optimal strategy for
winning the game of "nim" is another example of a problem
with a destructive operation, and hence can be worked
using the method of working backwards from a unique goal.

The method of working backwards is extremely useful
in redirecting the search strategy and it may be that letting
children work with games or puzzles which involve this
method will aid in their understanding of this procedure

and encourage them to use it more often. As Polya states

"Working backwards is a common-sense procedure within the
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xeach of everybody. . ."1 which should be cultivated into a

powerful tool in problem solving.

Deciding Among Solutions

In comprehensive problem solving the solver must deal
wi th a situation in which there is no optimal solution or
in which the solution is unknown. Individualg generally do
not attempt to find an optimal solution even when it can be
com puted. Simon2 found that persons often find solutions
sho xt of optimality which will be good enough or acceptable.
The subjects tended to avoid complex calculations in favor
Of =short procedures on a fraction of the data. Posner
Sug gests that this is the case because "limitations of
OPe@xational memory make it difficult to deal with a long
Sexjes of interrelated steps.">

When the solver has a great deal of data on which to
ba Se a decision concerning solutions, it has been found that

th ese decisions are not made in an optimal or consistent

W& y. Two studies, the first by Edwards4 and the second by

—

16. Polya, How To Solve It, p. 230.
2H. A. Simon, The Sciences of the Artificial, (Cambridge,
Mass.: MIT Press, 1968).

3M. I. Posner, Cognition: An Introduction, p. 175.

4W. Edwards, "Dynamic Decision Theory and Probabilistic
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