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ABSTRACT

THE BERRY CONNECTION AND OTHER ASPECTS OF THE
GINZBURG-LANDAU THEORY IN DIMENSION 2

By

Ákos Nagy

In the first chapter, we analyze the 2-dimensional Ginzburg-Landau vortices at critical cou-

pling, and establish asymptotic formulas for the tangent vectors of the vortex moduli space

using theorems of Taubes and Bradlow. We then compute the corresponding Berry curvature

and holonomy in the large area limit.

In the second chapter, we generalize Bradlow’s theorem about existence of irreducible

absolute minimizers of the Ginzburg-Landau functional.
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Chapter 1

Ginzburg-Landau vortices

1.1 Introduction

The Ginzburg-Landau theory is a phenomenological model for superconductivity, introduced

in [GL50]; for a more modern review see [AK02]. The theory gives variational equations –

the Ginzburg-Landau equations – for an Abelian gauge field and a complex scalar field.

The gauge field is the EM vector potential, while the norm of the scalar field is the order

parameter of the superconducting phase. The order parameter can be interpreted as the

wave function of the so-called BCS ground state, a single quantum state occupied by a large

number of Cooper pairs.

This paper focuses on certain static solutions of the 2-dimensional Ginzburg-Landau

equations called τ -vortices. Physicists regard the number τ as a coupling constant, sometimes

called the vortex-size. Mathematically, τ is a scaling parameter for the metric. The geometry

of τ -vortices have been studied since [JT80, B90], and there is a large literature on the subject;

cf. [MN99, MS03, CM05, B06, B11, DDM13, BR14, MM15].

Families of operators in quantum physics carry canonical connections. This idea was

introduced by Berry in [B84], and generalized by Aharonov and Anandan in [AA87]. These

so-called Berry connections were used, for example, to understand the Quantum Hall Effect

[K85].

1



In gauge theories – including the Ginzburg-Landau theory – the Berry connection can be

understood geometrically as follows: the space P of solutions of gauge invariant equations is

an infinite dimensional principal bundle over the part of moduli spaceM where the action

of the gauge group G is free. Thus if all solutions are irreducible, then P is an infinite

dimensional principal G-bundle

P
G
��
M

over M. The canonical L2-metric of P defines a horizontal distribution – the orthogonal

complement of the gauge directions – which defines the Berry connection.

A connection on a principal G-bundle P → X defines parallel transport: for each smooth

map Γ : [0, 1]→ X, parallel transport around Γ is aG-equivariant isomorphism from the fiber

at Γ(0) to the fiber at Γ(1). If Γ is a closed loop, then Γ(0) = Γ(1), and the corresponding

parallel transport is called holonomy. If G is Abelian, holonomy is given by the action of an

element in G.

Holonomies of the Berry connection are gauge transformations, which have a physical

interpretation: they describe the adiabatic evolution of the state of the system, that is its

behavior under slow changes in the physical parameters such as external fields, or coupling

constants.

This dissertation investigates the Berry connection of the τ -vortex moduli space associ-

ated to a degree d hermitian line bundle over a closed, oriented Riemannian surface Σ. The

Berry holonomy assigns a gauge transformation gτ to each closed curve Γ in Mτ . These

gauge transformations are U(1)-valued smooth functions on Σ. When d is positive and τ is

greater than the geometry-dependent constant τ0 = 4πd
Area(Σ)

, then the moduli space, Mτ ,
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is identified with the d-fold symmetric power of the surface Symd(Σ). A closed curve Γ in

Symd(Σ) defines a 1-cycle in Σ, called sh(Γ), the shadow of Γ, which is defined by choosing

a lift of Γ to Σd → Symd(Σ), and taking the union of the non-constant curves appearing in

the lift (see equation (1.50) for precise definition). The main theorem of this paper gives a

complete topological and analytical description of these gauge transformations in terms of

the shadow:

Main Theorem of Chapter 1. [The Berry holonomy of the τ -vortex principal bundle] Let

gτ ∈ G be the Berry holonomy of a smooth curve Γ in the τ -vortex moduli space Mτ , and

sh(Γ) be the closed 1-cycle in Σ defined in equation (1.50). Then the following properties

hold as τ →∞:

1. [Convergence] gτ → 1 in the C1-topology on compact sets of Σ− sh(Γ).

2. [Crossing] Let j : [0, 1] → Σ be a smooth path that intersects sh(Γ) transversally and

positively once, and write gτ ◦ j = exp(2πiϕτ ). Then ϕτ (1)− ϕτ (0)→ 1.

3. [Concentration] As a 1-current, 1
2πig

−1
τ dgτ converges to the 1-current defined by sh(Γ).

The map Γ 7→ gτ induces a pairing

hol? : H1(Σ;Z)→ H1(Σ;Z),

defined in (1.53).

(4) [Duality] For all τ > τ0, the homomorphism hol? is Poincaré duality.

When Γ is a positively oriented, bounding single vortex loop, or a positively oriented

vortex interchange (see Section 1.6 for precise definitions) our main theorem implies that
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the corresponding holonomy can be written as gτ = exp(2πifτ ), for a real function fτ on Σ.

Moreover, fτ can be chosen so that it converges to 1 on the inside of the curve, and to 0 on

the outside. This makes physicists’ intuition about the holonomy precise; cf. [I01].

As mentioned above, τ is a scaling parameter for the metric: one can look at the Ginzburg-

Landau theory with τ = 1 fixed, but the Kähler form ω scaled as ωt = t2ω. Our results,

including the Main Theorem above, can be reinterpreted as statements about the large area

limit (i.e. t→∞), which can be more directly related to physics (see Section 1.7 for details).

This chapter is organized as follows. In Section 1.2, we give a brief introduction to the

geometry of the τ -vortex equations on a closed surface, derive the tangent space equations

of the τ -vortex moduli space, and then recast them in a compact form. In Section 1.3,

we use theorems of Taubes and Bradlow to prove a technical result, Theorem 1.8, that

establishes asymptotic formulas for the tangent vectors of the of the τ -vortex moduli space.

In Section 1.4, we introduce the Berry connection associated to this problem. We then prove

asymptotic formulas for the Berry curvature in Section 1.5. In Section 1.6, we prove our

Main Theorem; the proofs are applications of Theorem 1.8. Section 1.7 discusses the large

area limit.

1.2 Ginzburg-Landau theory on closed surfaces

1.2.1 The τ -vortex equations

Let Σ be a closed surface with Kähler form ω, compatible complex structure J , and Rie-

mannian metric ω(−, J(−)). Let L→ Σ be a smooth complex line bundle of positive degree

d with hermitian metric h. For each unitary connection ∇, and smooth section φ, consider
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the Ginzburg-Landau free energy:

Eλ,τ (∇, φ) =

∫
Σ

(
|F∇|2 + |∇φ|2 + λw2

)
ω, (1.1)

where λ, τ ∈ R+ are coupling constants, F∇ is the curvature of ∇, and

w = 1
2

(
τ − |φ|2

)
. (1.2)

The Euler-Lagrange equations of the energy (1.1) are the Ginzburg-Landau equations:

d∗F∇ + i Im(h(φ,∇φ)) = 0 (1.3a)

∇∗∇φ− λwφ = 0. (1.3b)

When λ = 1, the energy (1.1) can be integrated by parts and rewritten as different sum

of non-negative terms, and get the lower bound 2πτd. The minimizers satisfy the τ -vortex

equations:

iΛF∇ − w = 0 (1.4a)

∂∇φ = 0, (1.4b)

where ΛF∇ is the inner product of the Kähler form ω and the curvature of ∇, and ∂∇ =

∇0,1 is the Cauchy-Riemann operator corresponding to ∇. Solutions (∇, φ) to the first

order equations (1.4a) and (1.4b) automatically satisfy the second order equations (1.3a)

and (1.3b).
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1.2.2 The τ -vortex moduli space

As is standard in gauge theory, we work with the Sobolev W k,p-completions of the space

of connections and fields. Let CL be the W 1,2-closure of the affine space of smooth uni-

tary connections on L and Ω0
L be the W 1,2-closure of the vector space of smooth sections

of L. Similarly, let Ωk, and ΩkL be the W 1,2-closure of k-forms, and L-valued k-forms

respectively. The corresponding gauge group G is the W 2,2-closure of Aut(L) in the W 2,2-

topology. The gauge group is canonically isomorphic to the infinite dimensional Abelian

Lie group W 2,2(Σ,U(1)), whose Lie algebra is W 2,2(Σ; iR). Elements g ∈ Aut(L) act on

CL × Ω0
L as g(∇, φ) =

(
g ◦ ∇ ◦ g−1, gφ

)
, and this defines a smooth action of G on CL × Ω0

L.

Finally, the energy (1.1) extends to a smooth function on CL × Ω0
L. The space Pτ of all

critical points of the extended energy is an infinite dimensional submanifold of CL × Ω0
L.

Due to the gauge invariance of energy (1.1), G acts on Pτ , and every critical point is gauge

equivalent to a smooth one by elliptic regularity. The τ -vortex moduli space is the quotient

spaceMτ = Pτ/G. Elements of Pτ are called τ -vortex fields, while elements ofMτ (gauge

equivalence classes of τ -vortex fields) are called τ -vortices. For brevity, we sometimes write

τ -vortex fields as υ = (∇, φ) ∈ Pτ and the corresponding τ -vortices as [υ] = [∇, φ] ∈Mτ .

There is a geometry-dependent constant τ0 = 4πd
Area(Σ)

, called the Bradlow limit, with

the property that if τ < τ0, then the moduli space is empty and if τ > τ0, then there is

a canonical bijection between Mτ and the space of effective, degree d divisors; cf. [B90,

Theorem 4.6]. This space is also canonically diffeomorphic to the d-fold symmetric product

of the surface Symd(Σ), which is the quotient of the d-fold product Σ×d = Σ × . . . × Σ

by the action of the permutation group Sd. Although this action is not free, the quotient

is a smooth Kähler manifold of real dimension 2d. For each value of τ > τ0, there is a
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canonical L2-Kähler structure (see Section 1.2.3). In the borderline τ = τ0 case, the φ-field

vanishes everywhere and the moduli space is in one-to-one correspondence with the moduli

space holomorphic line bundles of degree d [B90, Theorem 4.7]. Accordingly, we focus on

the τ > τ0 case in this paper.

When τ > τ0, Bradlow’s map fromMτ to Symd(Σ) is easy to understand: By integrating

equation (1.4a), one sees that the L2-norm of φ is positive. On the other hand, φ is a

holomorphic section of L by equation (1.4b). Since φ is a non-vanishing holomorphic section

it defines an effective, degree d divisor, giving us the desired map. The inverse of this map

is much harder to understand an involves non-linear elliptic theory.

Much of this picture carries over to open surfaces, even with infinite area (for example

Σ = C), if one imposes proper integrability conditions; cf [T84]. For simplicity we will always

assume that Σ is compact. Furthermore the moduli space is empty for d < 0, and a single

point for d = 0. Thus we will always assume that d > 0 in this paper.

1.2.3 The horizontal subspaces

The tangent space at any point of the affine space CL × Ω0
L is the underlying vector space

iΩ1 ⊕ Ω0
L. The tangent space of Pτ is described in the next lemma.

Lemma 1.1. The tangent space of Pτ at the τ -vortex field υ = (∇, φ) is the vector space of

pairs (a, ψ) ∈ iΩ1 ⊕ Ω0
L that satisfy

iΛda+ Re(h(ψ, φ)) = 0 (1.5a)

∂∇ψ + a0,1φ = 0. (1.5b)
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Proof. The linearization of equations (1.4a) and (1.4b) in the direction of (a, ψ) is:

lim
t→0

1
t

(
iΛF∇+t a − 1

2

(
τ − |φ+ t ψ|2

))
= iΛda+ Re(h(ψ, φ))

lim
t→0

1
t

(
∂∇+t a(φ+ t ψ)

)
= ∂∇ψ + a0,1φ,

where we used that υ is a τ -vortex field. This completes the proof, since the tangent space

is the kernel of the linearization of equations (1.4a) and (1.4b).

The affine space CL × Ω0
L has a canonical L2-metric given by

〈
(a, ψ)

∣∣(a′, ψ′)〉 =

∫
Σ

(
a ∧ ∗a′ + Re

(
h
(
ψ, ψ′

))
ω
)

(1.6)

where ∗ is the (conjugate-linear) Hodge operator of the Riemannian metric of Σ. One

can check that the restriction of the L2-metric (1.6) to the solutions of equations (1.5a)

and (1.5b) makes Pτ a smooth, weak Riemannian manifold, and that gauge transformations

act isometrically on Pτ .

The pushforward of the tangent space T1G by the gauge action is called the vertical sub-

space of TυPτ . We define the horizontal subspace of TυPτ to be the orthogonal complement

of the vertical subspace by the L2-metric (1.6). SinceMτ = Pτ/G, the horizontal subspace

is canonically isomorphic to the tangent space T[υ]Mτ of the moduli space. The next lemma

shows that the horizontal subspace is also the kernel of a first order linear elliptic operator.

Lemma 1.2. The horizontal subspace of TυPτ , at the τ -vortex field υ = (∇, φ) ∈ Pτ , is the
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vector space of pairs (a, ψ) ∈ iΩ1 ⊕ Ω0
L that satisfy

(iΛd+ d∗)a+ h(ψ, φ) = 0 (1.7a)

∂∇ψ + a0,1φ = 0. (1.7b)

Proof. The real part of equation (1.7a) is equation (1.5a) and equation (1.7b) is equa-

tion (1.5b); thus solutions of equations (1.7a) and (1.7b) are in TυPτ . To finish the proof,

we must check that a pair (a, ψ) in TυPτ is orthogonal to the vertical subspace at υ ex-

actly if equations (1.7a) and (1.7b) hold. The pushforward of if ∈ Lie(G) at υ is given

by Xf (υ) = (−idf, ifφ), hence horizontal vectors are pairs (a, ψ), that satisfy the following

equation for every f ∈ C∞(Σ;R):

0 = 〈(a, ψ)|(−idf, ifφ)〉 =

∫
Σ

(a ∧ ∗(−idf) + Re(h(ψ, ifφ))ω).

Integrating the right-hand side by parts yields

0 =

∫
Σ

(d∗a+ i Im(h(ψ, φ)))ifω.

Because this holds for all f , we conclude that (a, ψ) is orthogonal to the vertical subspace

at υ exactly if d∗a + i Im(h(ψ, φ)) = 0 holds. Adding this (purely imaginary) equation to

the (purely real) equation (1.5a) gives equation (1.7a).

Equations (1.7a) and (1.7b) depend on the choice of υ, but if (a, ψ) is a solution of

equations (1.5b) and (1.7a) for υ and g ∈ G, then (a, gψ) is a solution of equations (1.5b)

and (1.7a) for g(υ) =
(
∇+ gdg−1, gφ

)
. Since gauge transformations act isometrically, the
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L2-metric on the horizontal subspaces of TPτ descends to a Riemannian metric onMτ .

Let K be the anti-canonical bundle of Σ, and Ω0,1 = Ω0
K
, the W 1,2-completion of the

space of smooth sections of K. We recast equations (1.7a) and (1.7b) in a more geometric

way in the next lemma.

Lemma 1.3. Equations (1.7a) and (1.7b) are equivalent to the following pair of equations

on (α, ψ) ∈ Ω0,1 ⊕ Ω0
L:

√
2 ∂
∗
α− h(φ, ψ) = 0 (1.8a)

√
2 ∂∇ψ + αφ = 0. (1.8b)

Moreover, the unitary bundle isomorphism

(a, ψ) 7→
(

1√
2
(a+ i∗a), ψ

)
(1.9)

interchanges solutions of equations (1.7a) and (1.7b) with solutions of equations (1.8a)

and (1.8b).

Proof. A complex 1-form α is in Ω0,1 exactly if α = i∗α. For a ∈ iΩ1, define the unitary

map u by

u(a) = 1√
2
(a+ i∗a). (1.10)

Using ∗2a = −a = a, we see that ∗u(a) = −iu(a), and thus u(a) ∈ Ω0,1. Set α = u(a). With

this notation a0,1 = α√
2
, which proves the equivalence of equations (1.7b) and (1.8b). The

Kähler identities yield (iΛd+ d∗)a = −
√

2 ∂∗α, which is equivalent to equation (1.8a).

The vector space of solutions to equations (1.8a) and (1.8b) has a canonical almost
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complex structure coming from the complex structures of K and L, and this defines an

almost complex structure for Mτ . Mundet i Riera [R00] showed that this structure is

integrable, and together with the L2-metric it makesMτ a Kähler manifold.

To put equations (1.8a) and (1.8b) in a more compact form, note that they are equivalent

to the single equation

Lυ(a, ψ) = 0,

where Lυ = D∇ +Aφ is defined as

D∇ : Ω0,1 ⊕ Ω0
L → Ω0 ⊕ Ω

0,1
L ; (α, ψ) 7→

(√
2 ∂
∗
α,
√

2 ∂∇ψ
)

Aφ : Ω0,1 ⊕ Ω0
L → Ω0 ⊕ Ω

0,1
L ; (α, ψ) 7→ (−h(φ, ψ), αφ),

The operator D∇ is a first order elliptic differential operator, and the operator Aφ is a bundle

map. Straightforward computation shows that for all Z ∈ Ω0,1 ⊕ Ω0
L

AφA∗φ(Z) = |φ|2Z. (1.11)

Thus A∗φ is non-degenerate on the complement of the divisor of φ. Note that D∇, Aφ, and

hence L(∇,φ) make sense for any pair (∇, φ) ∈ CL × Ω0
L.

Lemma 1.4. Let υ = (∇, φ) ∈ CL × Ω0
L be a pair such that ∂∇φ = 0. Then the operator

D∇A∗φ +AφD∗∇ is identically zero.
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Proof. The adjoint operators are

D∗∇(f, ξ) =
(√

2 ∂f ,
√

2 ∂
∗
∇ξ
)

(1.12a)

A∗φ(f, ξ) = (h(φ, ξ),−fφ) (1.12b)

for any (f, ξ) ∈ Ω0 ⊕ Ω
0,1
L . The lemma follows from equations (1.12a) and (1.12b), the

holomorphicity of φ, and the definitions of D∇ and Aφ.

Corollary 1.5. Let υ = (∇, φ) ∈ CL × Ω0
L be a pair such that ∂∇φ = 0. Then ker(L∗υ) is

trivial.

Proof. From Lemma 1.4 and equation (1.11), we obtain LυL∗υ = D∇D∗∇ +AφA∗φ. Hence if

Z is in the kernel of L∗υ, then

0 = ‖L∗υ(Z)‖2
L2 = ‖D∗∇(Z)‖2

L2 + ‖A∗φ(Z)‖2
L2 ,

which implies that both terms on the right vanish. By equation (1.11), Z vanishes where

φ does not, which is the complement of a finite set. But then Z vanishes everywhere by

continuity. Hence the kernel of L∗υ is trivial.

1.3 The asymptotic form of horizontal vectors

In this section we will use of the following results of Taubes and Bradlow about the large τ

behavior of τ -vortex fields. Recall from equation (1.2) that

w = 1
2

(
τ − |φ|2

)
.
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Theorem 1.6. [Bradlow and Taubes] There is a positive number c such that each τ -vortex

field υ = (∇, φ) ∈ Pτ satisfies

|φ|2 6 τ (1.13a)

w + |∇φ| 6 cτ exp

(
−
√
τdistD
c

)
, (1.13b)

where distD is the distance from the divisor D = φ−1(0), and w is defined in equation (1.2).

Proof. In [B90, Proposition 5.2] Bradlow showed inequality (1.13a), using the fact that τ -

vortex fields satisfy the elliptic equation

(
∆ + |φ|2

)
w = |∂∇φ|2. (1.14)

The right-hand side is positive away from a finite set, so the maximum principle and equa-

tion (1.2) implies inequality (1.13a). Inequality (1.13b) was proved in [T99, Lemma 3.3].

We call a divisor simple if the multiplicity of every divisor point is 1.

Lemma 1.7. Fix a simple divisor D ∈ Symd(Σ) and a corresponding τ -vortex field υ =

(∇, φ) with τ > τ0. The smooth function

hD,τ = 1
2πτ

(
|∂∇φ|2 + 2w2

)
(1.15)

depends only on D and τ , but not on the choice of υ. Moreover,

lim
τ→∞

hD,τ =
∑
p∈D

δp, (1.16)
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in the sense of measures, where δp is the Dirac measure concentrated at the point p ∈ Σ.

Proof. Every term in equation (1.15) is gauge invariant, which proves the independence of

the choice of υ for D. Using equation (1.14) we get hD,τ = 1
2πτ (∆w + τw), hence for any

smooth function f :

∫
Σ

hD,τfω = 1
2πτ

∫
Σ

(∆w + τw)fω

= 1
2πτ

∫
Σ

w(∆f)ω + 1
2π

∫
Σ

wfω.

By [HJS96, Theorem 1.1], w converges to 2πδD in the sense of measures as τ → ∞. Thus

the first term converges to 0, and the second term converges to
∑
p∈D

f(p), which completes

the proof.

The space of simple divisors, Symd
s(Σ), is an open dense set in Symd(Σ), and its comple-

ment is called the big diagonal. When D is simple, a tangent vector in TDSymd(Σ) can be

given by specifying a tangent vector to Σ at each divisor point. Thus the rank d complex

vector bundle K → Symd
s(Σ) defined by

KD = ⊕
p∈D

Kp

is isomorphic to T 0,1Symd
s(Σ). We next use ideas of [T99, Lemma 3.3] to construct an almost

unitary isomorphism from K to T 0,1Symd
s(Σ).

Fix a simple divisor D, and let υ be a corresponding τ -vortex field. Define

ρD = min({dist(p, q)|p, q ∈ D & p 6= q} ∪ {inj(Σ, ω)}), (1.17)
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where inj(Σ, ω) is the injectivity radius of the metric. Let χ be a smooth function on [0,∞)

that satisfies 0 6 χ 6 1, χ|[0,1] = 1, and χ|[2,∞) = 0, and set

χp = χ
(

2distp
ρD

)
. (1.18)

For each Θ =
{
θp
}
p∈D ∈ KD let θ̂p be the extension of θp to the open ball of radius inj(Σ, ω)

centered at p using the exponential map. Define a smooth section σΘ of K supported in

neighborhood of D by setting

σΘ =
∑
p∈D

χpθ̂p (1.19)

and extending by 0 to all of Σ. Note that σΘ satisfies

σΘ(p) = θp & |∇σΘ| = O(distD) ∀p ∈ D. (1.20)

Finally, for each such υ and Θ define Yυ,Θ as

Yυ,Θ = 1√
2πτ

(√
2wσΘ, iΛ(σΘ ∧ ∂∇φ)

)
∈ Ω0,1 ⊕ Ω0

L, (1.21)

where again w = 1
2

(
τ − |φ|2

)
. Note that Yυ,Θ is gauge equivariant, that is, for every g ∈ G:

g∗Yυ,Θ = Yg(υ),Θ. (1.22)

The following analytic result is the key ingredient needed to compute the asymptotic

curvature in Theorem 1.11 and holonomies in the Main Theorem.

Theorem 1.8. [The asymptotic form of horizontal vectors] For every υ ∈ Pτ and Θ ∈ KD
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as above, there is a unique Zυ,Θ ∈ Ω0 ⊕ Ω
0,1
L such that

Xυ,Θ = Yυ,Θ − L∗υ
(
Zυ,Θ

)
(1.23)

is a horizontal tangent vector at υ. Moreover, the following asymptotic estimates hold:

1. [L2-estimate] ‖Yυ,Θ‖2L2(Σ)
→

∑
p∈D

∣∣θp∣∣2 as τ →∞.

2. [Pointwise bound]
∣∣Xυ,Θ − Yυ,Θ∣∣ = O

(
τ−1/2 exp

(
−
√
τdistD
c

))
, where distD is the

distance from D, and c is the positive number from Theorem 1.6.

Equation (1.23) defines a bundle map from K to T 0,1Symd
s(Σ) by

(D,Θ) 7→
(
D,Π∗

(
Xυ,Θ

))
, (1.24)

where υ is any τ -vortex field corresponding to the divisor D, and Π is the projection from

Pτ toMτ
∼= Symd(Σ). Equation (1.22) implies that (1.24) does not depend on the choice

of υ. Furthermore, this map is almost unitary by Statements (1) and (2). Similar results

have only been known for flat metrics [T99, Lemma 3.3].

Proof of Theorem 1.8: Fix Yυ,Θ as in equation (1.21). Since Lυ is elliptic, and ker(L∗υ) =

{0}, by Corollary 1.5, the operator LυL∗υ is has a bounded inverse (LυL∗υ)−1. Thus the

equation

Lυ
(
Yυ,Θ − L∗υ

(
Zυ,Θ

))
= 0 (1.25)

has a unique solution for Zυ,Θ given by

Zυ,Θ = (LυL∗υ)−1(Lυ(Yυ,Θ)) (1.26)
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Consequently Xυ,Θ in equation (1.23) is horizontal.

The pointwise norm of Yυ,Θ satisfies

∣∣Yυ,Θ∣∣2 = hD,τ |σΘ|2,

where hD,τ is defined in equation (1.15). Using equation (1.16), one gets Statement (1).

In order to prove Statement (2), we put Zυ,Θ =
(
fυ,Θ, ξυ,Θ

)
∈ Ω0⊕Ω

0,1
L in equation (1.25)

to obtain the equations

(
1
2∆ + 1

2 |φ|
2
)
fυ,Θ = 1√

8πτ
w∂
∗
σΘ, (1.27a)(

∂∇∂
∗
∇ + 1

2 |φ|
2
)
ξυ,Θ = i√

4πτ
Λ
(
∇0,1σΘ ∧ ∂∇φ

)
. (1.27b)

Let G[φ] be the Green’s operator of the non-degenerate elliptic operatorH[φ] = 1
2∆+ 1

2 |φ|
2

on Ω0. Both H[φ] and G[φ] depend only on the gauge equivalence class of φ. By an abuse

of notation G[φ] will also denote the corresponding Green’s function, which is a positive,

symmetric function on Σ × Σ with a logarithmic singularity along the diagonal. With this

definitions, we can write fυ,Θ as

fυ,Θ = 1√
8πτ

∫
Σ

G[φ]w∂
∗
σΘω. (1.28)

Standard elliptic theory gives the following bounds on the Green’s function:

G[φ](x, y) 6 c
(
1 +

∣∣ln(√τdist(x, y)
)∣∣) exp

(
−
√
τdist(x,y)

c

)
(1.29a)∣∣∣dG[φ](x, y)

∣∣∣ 6 c√
τdist(x,y)

exp
(
−
√
τdist(x,y)

c

)
(1.29b)
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for some c ∈ R+ independent of τ or D (see [T99, Equation (6.10)]). Using equation (1.28)

and inequalities (1.29a) and (1.29b), together with the bound on w in inequality (1.13b) and

on |∇σΘ| in equation (1.20) we get (after possibly increasing c)

∣∣fυ,Θ∣∣ 6 c
τ exp

(
−
√
τdistD
c

)
(1.30a)

∣∣∂fυ,Θ∣∣ 6 c√
τ

exp

(
−
√
τdistD
c

)
. (1.30b)

Before turning our attention to equation (1.27b), note that we have the following two scalar

identities

∆
∣∣ξυ,Θ∣∣2 = 2Re

(〈
ξυ,Θ

∣∣∇∗∇ξυ,Θ〉)− 2
∣∣∇ξυ,Θ∣∣2. (1.31a)

∆
∣∣ξυ,Θ∣∣2 = 2

∣∣ξυ,Θ∣∣∆∣∣ξυ,Θ∣∣− 2
∣∣d∣∣ξυ,Θ∣∣∣∣2, (1.31b)

Using the Kähler identity on Ω
0,1
L

∇∗∇ = 2∂∇∂
∗
∇ − iΛF∇ = 2∂∇∂

∗
∇ − 1

2

(
τ − |φ|2

)
, (1.32)

in equation (1.27b), together with the Cauchy-Schwarz inequality in equation (1.31a), and

Kato’s inequality (cf. [FU91, Equation (6.20)])

∣∣d∣∣ξυ,Θ∣∣∣∣ 6 ∣∣∇ξυ,Θ∣∣ (1.33)

gives us (
∆ + 1

2τ
)∣∣ξυ,Θ∣∣ 6 c√

τ
|∇σΘ|

∣∣∂∇φ∣∣. (1.34)
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Equation (1.34), together with the bound on
∣∣∂∇φ∣∣ in inequality (1.13b) and the bound on

|∇σΘ| in equation (1.20) gives us (again after possibly increasing c)

∣∣ξυ,Θ∣∣ 6 c
τ exp

(
−
√
τdistD
c

)
. (1.35)

Applying ∂
∗
∇ to equation (1.27b) gives an elliptic equation on ∂

∗
∇ξυ,Θ. Similarly to the

previous computation we get the following inequality:

(
∆ + 1

2τ
)∣∣∣∂∗∇ξυ,Θ∣∣∣ 6 c

√
τ exp

(
−
√
τdistD
c

)
.

Thus (after possibly increasing c one last time)

∣∣∣∂∗∇ξυ,Θ∣∣∣ 6 c√
τ

exp

(
−
√
τdistD
c

)
. (1.36)

Finally, inequalities (1.30a), (1.30b), (1.35) and (1.36) give us

∣∣Xυ,Θ − Yυ,Θ∣∣ =
∣∣L∗υ(Zυ,Θ)∣∣

6
√

2
∣∣∂fυ,Θ∣∣+ |φ||f |+

√
2
∣∣∣∂∗∇ξ∣∣∣+ |φ||ξ|

= O

(
τ−1/2 exp

(
−
√
τdistD
c

))
,

which completes the proof of Statement (2).

19



1.4 The Berry connection

The τ -vortex principal bundle is the principal G-bundle Π : Pτ → Mτ described in Sec-

tion 1.2, with Π(υ) = [υ]. In Lemma 1.1 we constructed a horizontal distribution on the

τ -vortex principal bundle, which is the orthogonal complement of the kernel of Π∗. This

distribution is G-invariant, so is a connection in the distributional sense (cf. [KN63, Chap-

ter II]), which we call the Berry connection. The corresponding connection 1-form is the

unique Lie(G)-valued 1-form A that satisfies the three conditions:

1. ker(Aυ) is the horizontal subspace at υ ∈ Pτ ,

2. (g∗A)g(υ) = adg(Aυ), for all g ∈ G,

3. A
(
Xf
)

= if , for all if ∈ W 2,2(Σ; iR) ∼= Lie(G), where Xf (υ) = (−idf, ifφ), as defined

in Lemma 1.2.

The next lemma gives a formula for Aυ. Recall that for each τ -vortex field υ = (∇, φ), the

Green’s operator G[φ] is the inverse of the non-degenerate elliptic operatorH[φ] = 1
2∆+ 1

2 |φ|
2.

Lemma 1.9. The Lie(G)-valued 1-form on Pτ defined as

Aυ(a, ψ) = −1
2G[φ](d

∗a+ i Im(h(ψ, φ))) (1.37)

is the connection 1-form corresponding to the Berry connection.

Proof. The right-hand side of equation (1.37) is the composition of the non-degenerate

Green’s operator and a Lie(G)-valued 1-form. In the proof of Lemma 1.1 we saw that the

kernel of this 1-form is exactly the horizontal subspace. This proves Condition (1) above.
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Because G is Abelian, the adjoint representation of G is trivial, and hence the Condition

(2) reduces to (g∗A)g(υ) = Aυ. Since g∗(a, ψ) = (a, gψ), we have

g∗Ag(υ)(a, ψ) = −1
2 G[φ](d

∗a+ i Im(h(gψ, gφ)))

= −1
2 G[φ](d

∗a+ i Im(h(ψ, φ))),

thus g∗Ag(υ) = Aυ. This proves Condition (2).

Finally, we show that A is the canonical isomorphism between the fibers of the vertical

bundle and the Lie algebra of G, that is A
(
Xf
)

= if for every f ∈ C∞(Σ;R):

Aυ
(
Xf
)

= −1
2 G[φ](d

∗(−idf) + i Im(h(ifφ, φ)))ω

= iG[φ]

((
1
2∆f + 1

2 |φ|
2
)
f
)

= if,

thus Condition (3) holds.

We can use Lemma 1.9 to compute the curvature 2-form of the Berry connection. Since

G is Abelian, the curvature, called the Berry curvature, is a Lie(G)-valued 2-form which

descends to the base spaceMτ .

Theorem 1.10. The curvature 2-form of the Berry connection at [υ] ∈Mτ is

Ω[υ](X, Y ) = G[φ](i Im(h(ψX , ψY ))) (1.38)

where (aX , ψX) and (aY , ψY ) are the horizontal lifts of X and Y , respectively, at υ. More-

over, equation (1.38) does not depend on the choice of the τ -vortex field υ representing [υ].
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Proof. The claim about the independence of the choice υ is immediate since everything on

the right-hand side is gauge invariant.

The curvature is the unique Lie(G)-valued 2-form Ω on Mτ that satisfies Π∗(Ω) = dA,

where Π is the projection from Pτ to Mτ . Thus it is enough to compute the expression

dAυ((aX , ψX), (aY , ψY )), and compare it with equation (1.38). Recall, that the formula for

the exterior derivative

dA
(
X̃, X̃

)
= X̃

(
A
(
Ỹ
))
− Ỹ

(
A
(
X̃
))
− A

([
X̃, Ỹ

])
, (1.39)

where X̃ and Ỹ are smooth local extensions of (aX , ψX) and (aY , ψY ) respectively. Choose

the extensions so that their Lie bracket vanishes at υ. Let Υt be the local flow generated by

X̃, so Υt(υ) = υ + t (aX , ψX) +O
(
t2
)
. Since A

(
Ỹ
)

= 0 at Υ0(υ) = υ, we have

X̃υ

(
A
(
Ỹ
))

= lim
t→0

1
tAΥt(υ)

(
Ỹ (Υt(υ))

)
.

Note that Ỹ (Υt(υ)) = ((Υt)∗(aY , ψY )) +O
(
t2
)
, because

[
X̃, Ỹ

]
υ

= 0. Finally, let us write

G[
φ+t ψX+O

(
t2
)] = G[φ] + t GX[φ] +O

(
t2
)
.
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Keeping only the linear terms, we obtain

X̃υ

(
A
(
Ỹ
))

= lim
t→0

1
tAΥt(υ)

(
Ỹ (Υt(υ))

)
= lim
t→0
− 1

2tG
[
φ+t ψX+O

(
t2
)](d∗aY + i Im(h(ψY , φ+ t ψX)) +O

(
t2
))

= lim
t→0
− 1

2t

(
itG[φ](Im(h(ψY , ψX))) + t GX[φ](d

∗aY + i Im(h(ψY , φ)))
)

= − i
2G[φ](Im(h(ψY , ψX))),

where we used the fact that d∗aY + i Im(h(ψY , φ)) = 0 for tangent vectors. Interchanging X̃

and Ỹ changes sign, since Im(h(ψY , ψX)) is skew. Substituting these into equation (1.39),

and noting that the commutator vanishes, gives equation (1.38).

1.5 The asymptotic Berry curvature

In this section we use Theorems 1.8 and 1.10 to analyze the Berry curvature in the large τ

limit.

As before, let D be a simple divisor, and υ = (∇, φ) be th corresponding τ -vortex field.

For each p ∈ D, choose Θp = {θp,q}q∈D ∈ KD, so that |θp,q| = δp,q. Let σp = σΘp be the

corresponding section defined by equation (1.19), and let Xυ,Θp =
(
ap, ψp

)
, as defined in

Theorem 1.8. By equation (1.23),

Xυ,Θp = Yυ,Θp − L
∗
υ

(
Zυ,Θp

)
. (1.40)

where Zυ,Θp =
(
fp, ξp

)
∈ Ω0 ⊕ Ω

0,1
L . It is easy to see that in Statement (2) of Theorem 1.8

we can now replace distD with distp, the distance from the single point p.
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The set {Xp}p∈D, where Xp = Π∗
(
Xυ,Θp

)
∈ T[υ]Mτ , is an asymptotically orthonormal

basis for the horizontal subspace at υ, in the sense that as τ →∞

〈
Xp
∣∣Xq〉 = δp,q +O

(
exp

(
−
√
τρD
c

))
→ δp,q.

Finally, for each tangent vector X, let X[ = 〈X|−〉 be the metric-dual covector.

Theorem 1.11. [The asymptotic Berry curvature] There is a positive number c such that if

τ > τ0 = 4πd
Area(Σ)

and [υ] is a simple τ -vortex, then the Berry curvature satisfies

Ω[υ] =
∑
p,q∈D

((
χpδp,q

iw
πτ + iA

p,q
τ

)
X[
p ∧
(
iXq

)[
+ iB

p,q
τ X[

p ∧X[
q + iC

p,q
τ
(
iXp

)[ ∧ (iXq)[),
(1.41)

where χp as defined in Equation (1.18), and Ap,qτ , B
p,q
τ , and Cp,qτ are real functions, with

∣∣Ap,qτ ∣∣+
∣∣Bp,qτ ∣∣+

∣∣Cp,qτ ∣∣ = O

(
τ−1 exp

(
−
√
τρD
c

))
. (1.42)

Proof. For p 6= q, Theorems 1.6 and 1.8 imply that

∣∣h(ψp, ψq)∣∣ = |ψp||ψq| 6 c exp

(
−
√
τ(distp+distq)

c

)
6 c exp

(
−
√
τρD
c

)
.

This inequality together with the fact that G[φ](1) = O
(
τ−1

)
from inequality (1.29a), gives

equation (1.42) in this case.

In general, for every p ∈ D, Theorem 1.10 shows that

1
iΩ[υ]

(
Xp, iXp

)
= G[φ]

(∣∣ψp∣∣2). (1.43)

24



This is non-negative, becauseG[φ] is given by convolutions with the positive Green’s function.

By equation (1.40), we can write

ψp = 1√
2πτ

iΛ
(
σp ∧ ∂∇φ

)
−
√

2 ∂
∗
∇ξp + fpφ. (1.44)

Applying the bounds in Theorems 1.6 and 1.8 to equations (1.43) and (1.44), we obtain

1
iΩ[υ]

(
Xp, iXp

)
= 1

2πτG[φ]

(∣∣σp∣∣2|∂∇φ|2)+G[φ]

(
O

(
exp

(
−
√
τdistp
c

)))
. (1.45)

By inequality (1.29a), and the positivity of the Green’s function the last term is

G[φ]

(
O

(
exp

(
−
√
τdistp
c

)))
= O

(
τ−1 exp

(
−
√
τdistp
c

))
. (1.46)

Theorem 1.6 and equation (1.14) gives us

H[φ]

(
χpw

)
= 1

2χp|∂∇φ|
2 +O

(
τ exp

(
−
√
τdistp
c

))
. (1.47)

Thus we can write the main term in equation (1.45) as

G[φ]

(
|σp|2|∂∇φ|2

2πτ

)
= G[φ]

(
χp|∂∇φ|2

2πτ

)
+O

(
G[φ]

(
τdist2

p exp

(
−
√
τdistp
c

)))
= χp

w
πτ +O

(
τ−1 exp

(
−
√
τdistp
c

))
, (1.48)

since
∣∣σp∣∣2 − χp = O

(
dist2

p

)
by (1.20). Combining equations (1.45), (1.46) and (1.48) yields

1
iΩ[υ]

(
Xp, iXp

)
= χp

w
πτ +O

(
τ−1 exp

(
−
√
τdistp
c

))
.
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This completes the proof of equations (1.41) and (1.42).

1.6 The asymptotic Berry holonomy

A connection on a principal G-bundle P → X defines the notion of parallel transport; cf.

[KN63, Chapter II]. Parallel transport around a loop is called holonomy. Holonomy can be

viewed as a map from the loop space of X to the space of conjugacy classes of G. For Abelian

G, the later space is canonically isomorphic to G.

In our case, the τ -vortex principal bundle, Pτ →Mτ , is a principal G-bundle equipped

with the Berry connection. The physical interpretation is that if one adiabatically moves

the divisor points along a curve Γ in Symd(Σ), then the corresponding τ -vortex field evolves

by the parallel transport defined the Berry connection (cf. [K50], and [B84]). In particular,

when Γ is a loop, the holonomy of the Berry connection, called the Berry holonomy, is a

gauge transformation. In this section, we give analytic and topological descriptions of the

gauge transformations that arise as Berry holonomies.

Since the Berry holonomy is a map from the loop space of τ -vortex moduli space, we

recall some well-known properties of loops inMτ
∼= Symd(Σ).

We call a loop Γ in Symd(Σ) a single vortex loop if only one of the divisor points moves,

and all other divisor points are fixed. In other words, single vortex loops are induced by loops

in Σ that are based at one of the divisor points. Every loop in Symd(Σ) can be decomposed

up to homotopy (and thus homology) to a product of single vortex loops. Moreover,

H1(Mτ ;Z) ∼= H1

(
Symd(Σ);Z

)
∼= H1(Σ;Z), (1.49)
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where the last isomorphism is given by sending single vortex loops to their homology classes

by the Hurewicz homomorphism.

Recall that the complement of Symd
s(Σ) is called the big diagonal. A loop in Symd(Σ) is

regular if it is a smooth, embedded (immersed, if d = 1) loop that does not intersect the big

diagonal. The big diagonal is empty when d = 1. When d > 1 the big diagonal is a subvariety

of codimension at least 2, thus every smooth loop in Symd(Σ) can be made regular after

a small smooth perturbation. Now consider the canonical covering map Σ×ds → Symd
s(Σ),

where Σ×ds is the space of ordered d-tuples in Σ without repetition. Given a regular loop Γ

that starts at the simple divisor D = Γ(0) ∈ Symd
s(Σ), each lift D̃ ∈ Σ×d of D determines

a unique lift Γ̃ of Γ. The lift Γ̃ can be regarded as a d-tuple (γ1, . . . , γd) of curves (not

necessarily loops) in Σ. The shadow of Γ, sh(Γ) ⊂ Σ is

sh(Γ) =
⋃

image(γi), (1.50)

where the union is over all non-constant γi. The set sh(Γ) has a natural orientation coming

from the orientation of Γ. Since Γ is regular, sh(Γ) is a union of immersed, oriented loops,

hence it is an integer 1-cycle in Σ. The homology class in H1(Σ;Z) represented by sh(Γ)

is independent of the choice of the lift D̃. We denote this class by [Γ]. It is easy to check

the homotopy class of Γ in Symd(Σ) is sent to the homology class [Γ] by the isomorphism

(1.49). In general, for a single vortex loop, only one of the γi’s is not constant, say γ, and

[Γ] = [γ] ∈ H1(Σ;Z).

Example 1.12. An example of sh(Γ) is seen on Figure 1.1, where

[Γ] = [γ1] + [γ2] + [γ3] = [γ3],
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since both γ1 and γ2 are null-homologous. Thus Γ is homologous to a single vortex loop.

We call a loop a (positively oriented) vortex interchange if, as in Figure 1.2, only two

γi’s, say γ1 and γ2, are not constant, and the composition Γ = γ1 ∗ γ2 is the (oriented)

boundary of a disk.

γ1

γ2
γ3

Figure 1.1: Single vortex loops: One divi-
sor point moves along one of the γi’s. All
other divisor points are fixed.

γ1

γ2

Figure 1.2: Vortex interchange: One di-
visor point moves along γ1 and another
divisor point moves along γ2. All other
divisor points are fixed.

Since the Berry holonomy has values in the gauge group G, we also recall a couple well-

known properties of gauge transformations. Elements g ∈ G represent classes in H1(Σ;Z)

as follows: For a closed manifold X and a finitely generated Abelian group G, Hn(Σ;G)

is canonically isomorphic to the space [X,K(G, n)] of homotopy classes of continuous maps

from X to the Eilenberg-MacLane space K(G, n) (cf. [H02, Theorem 4.57]). Since K(Z, 1) ∼=

U(1) and G is homotopy equivalent to [Σ,U(1)], we get that H1(Σ;Z) is canonically isomor-

phic to π0(G), which is also a group, because G is. In fact, if G0 is the identity component

of G, then π0(G) ' G/G0, and the short exact sequence

{0} → G0 ↪→ G � H1(Σ;Z)→ {0} (1.51)

is non-canonically split.

The isomorphism between π0(G) and H1(Σ;Z) can be understood on the (co)cycle level;

since Σ is a closed, oriented surface, H1(Σ;Z) is canonically isomorphic to Hom(H1(Σ;Z),Z).

28



An element g ∈ G defines an element [g] ∈ Hom(H1(Σ;Z),Z) via

[g]([γ]) = g(γ) = 1
2πi

∫
γ

g−1dg ∈ Z. (1.52)

The Berry holonomy can be viewed as a map from the loop space ΩMτ ofMτ to G. It

then induces a map hol∗ on the connected components:

π1(Mτ )
∼−→ π0(ΩMτ )

hol∗−−−→ π0(G)
∼−→ H1(Σ;Z).

Since cohomology groups are Abelian, the above map factors down to the homology, and

thus defines a homomorphism:

hol? : H1(Σ;Z)
∼−→ H1(Mτ ;Z)

hol∗−−−→ H1(Σ;Z), (1.53)

where the first isomorphism is from (1.49). Using equation (1.52), an explicit formula for

hol? can be given as follows: if g = hol(Γ), then hol?([Γ]) evaluates on any 1-cycle γ by

hol?([Γ])([γ]) = 1
2πi

∫
γ

g−1dg. (1.54)

Finally, recall that a k-current is a continuous linear functional on Ωk. A 1-form a ∈ Ω1

defines a 1-current by

Ca(b) =

∫
Σ

a ∧ b. (1.55)
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Similarly, a smooth 1-chain γ defines a 1-current by

Cγ(b) =

∫
γ

b. (1.56)

We say that the 1-currents in equations (1.55) and (1.56) are the 1-currents defined by a and

γ respectively.

Now we are ready to prove our main theorem about the Berry holonomy, stated in the

introduction.

The proof of the Main Theorem. Since every smooth path can be made regular by an arbi-

trarily small smooth perturbation, it is enough to check regular loops, Γ.

We prove Statement (1) first: Let υ be a τ -vortex field corresponding to D, and Γ̂ be the

horizontal lift of Γ starting at υ ∈ Pτ . Since Γ is regular, Γ(t) is simple for all t, thus we

can apply Theorem 1.8 to the velocity vector Γ̂′(t) = (at, ψt), which is horizontal, and hence

obtain

|at|+ |ψt| 6 cτ
d∑
i=1

∣∣γ′i(t)∣∣ exp

(
−
√
τdistγi(t)

c

)
. (1.57)

By definition of the holonomy,

gτ (υ) = υ +

1∫
0

Γ̂′(t)dt =

∇+

1∫
0

atdt, φ+

1∫
0

ψtdt

.
On the other hand, by the definition of the gauge action (for Abelian groups),

gτ (υ) =
(
∇+ gτdg

−1
τ , gτφ

)
.
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Thus we have

gτdg
−1
τ =

1∫
0

at dt, (1.58)

and

(gτ − 1)φ =

1∫
0

ψt dt. (1.59)

Let V ⊂ Σ be any compact set in the complement of sh(Γ). Since dist(sh(Γ),V) > 0,

Theorem 1.6 shows that |φ| >
√
τ

2 on V for all large τ . Hence equations (1.57) and (1.59)

imply that for x ∈ V

|φ||gτ − 1|x 6
√
τ

2 |gτ − 1|x 6
1∫

0

|ψt(x)|dt 6 cτ
d∑
i=1

1∫
0

∣∣γ′i(t)∣∣ exp
(
−
√
τdist(γi(t),x)

c

)
dt.

(1.60)

Using |gτ | = 1,
∣∣dg−1

τ

∣∣ = |dgτ |, and equations (1.57) and (1.58), we also obtain

|dgτ |x 6
d∑
i=1

1∫
0

|at(x)|dt 6 cτ
d∑
i=1

1∫
0

∣∣γ′i(t)∣∣ exp
(
−
√
τdist(γi(t),x)

c

)
dt. (1.61)

Combining the last two inequalities gives

√
τ |gτ − 1|x + |dgτ |x 6 c′τ exp

(
−
√
τdist(sh(Γ),V)

c

)
, (1.62)

for all large τ , which implies that |gτ−1| and |dgτ | converge to 0, uniformly on V , as τ →∞.

This proves Statement (1).

In order to prove Statement (2), we first assume that Γ is a single vortex loop, for which

sh(Γ) is an embedded loop, that bounds an embedded disk B in Σ, and D = Γ(0) = Γ(1)

has no divisor points in the interior B, and let p be the divisor point in D that is moved by
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Γ. There is a canonical embedding of B into Mτ that sends a point x ∈ B to the divisor

x + (D − p). The image of this map, B̂, is an (oriented) disk in Mτ , whose (oriented)

boundary is Γ. We will denote this embedding by πB : B → B̂.

Since Γ is null-homotopic, gτ is in the identity component of G, and so can be written as

gτ = exp(2πifτ ), where fτ is a smooth, real function on Σ. By Stokes’ Theorem,

fτ = 1
2πi

∫
B̂

Ω. (1.63)

If j is a path as in Statement (2) of the Main Theorem, then ϕτ = fτ◦j. Using equation (1.63)

we see that

ϕτ (1)− ϕτ (0) = fτ (j(1))− fτ (j(0)) = 1
2πi

∫
B̂

(Ω(j(1))− Ω(j(0))),

where j(1) is in B, and j(0) is not. To evaluate this integral, we reparametrize using πB . By

Theorem 1.8, if ωτ is the pullback of the Kähler class ofMτ from B̂ to B using πB , then

ωτ = πτω +O(1).

For each x ∈ B, let wx be the function w, defined in equation (1.2), corresponding to

the divisor D = πB(x), and let dx = dist(x, {j(0), j(1)}). By [HJS96, Lemma 1.1], wx|B

converges to 2πδx, in measure, since D∩B = {x}. Now using Theorem 1.11, the last integral
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above equals to

ϕτ (1)− ϕτ (0) = 1
2π

∫
B

(
wx(j(1))−wx(j(0))

πτ +O
(
τ−1 exp

(
−2
√
τdx
c

)))
(πτ +O(1))ωx

=

∫
B

(
δ(x, j(1)) +O

(
exp
(
−
√
τdx
c

)))
ωx +O

(
τ−1

)

= 1 +O
(
τ−1

)
.

This implies Statement (2) in the case where Γ is a simple vortex loop that bounds a disk.

In the general case, let I(2ε) be the tubular 2ε-neighborhood of I = image(j), where ε is

small enough so that I(2ε) ∩ sh(Γ) is a single embedded arc. Let Γ◦ be a single, embedded

bounding loop in Σ, as in the previous case, for which sh(Γ) and sh(Γ◦) coincide on I(2ε).

Let Γout and Γ◦out denote the parts of Γ and Γ◦, respectively, for which sh(Γout) and sh
(
Γ◦out

)
lie in the complement of I(2ε). Similarly Γin = Γ◦in is their common part. Now one can join

Γ◦out with the reverse of Γout to get a piecewise smooth loop Γnew, such that sh(Γnew) is

disjoint from I(2ε), and furthermore, the loop sum Γ ∗Γnew and Γ◦y differ only by Γout and

its reverse, thus

gτholΓnew = holΓ◦ .

On I(ε) we have that holΓnew converges to 1 in the C1-topology as τ → ∞. Since the

crossing formula holds for Γ◦, it must hold for Γ as well. This establishes the general case

of Statement (2).

In order to prove Statement (3) we pick a finite cover U of Σ by coordinate charts such

that for every (U,Ψ) ∈ U the preimage of the intersection Ψ−1(sh(Γ) ∩ U) ⊂ R2 is either (i)

empty, (ii) the x-axis, or (iii) the union of the two axes. By using a subordinate partition of

33



unity, it is enough to prove Statement (3) for 1-forms that are supported inside one of these

charts. Fix one such chart (U,Ψ) ∈ U , and let b ∈ Ω1 a 1-form with supp(b) ⊂ U . Let us

also write

Ψ∗aτ = dfτ (1.64a)

Ψ∗b = Adx+Bdy, (1.64b)

where A and B are compactly supported functions on R2.

If Ψ−1(sh(Γ) ∩ U) is empty, then the support of b and sh(Γ) are disjoint, hence

Csh(Γ)(b) =

∫
sh(Γ)

b =

∫
sh(Γ)∩supp(b)

b =

∫
∅

b = 0.

On the other hand, as τ →∞, aτ → 0 on supp(b) by Statement (1), and hence

|Caτ (b)| 6 max
supp(b)

{|aτ |}‖b‖L1 → 0,

which proves Statement (3) in the case (i).

Next, if Ψ−1(sh(Γ) ∩ U) is the x-axis, then by equation (1.64b),

Csh(Γ)(b) =

∫
Ψ−1(sh(Γ)∩U)

Ψ∗b =

∞∫
−∞

A(x, 0)dx. (1.65)

We also have

Caτ (b) =

∫
Σ

aτ ∧ b =

∫
U

aτ ∧ b =

∫
R2

dfτ ∧Ψ∗b. (1.66)
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Again using equation (1.64b), this becomes

Caτ (b) =

∫
R2

dfτ ∧ (Adx+Bdy) =

∫
R2

d(fτAdx+ fτBdy)−
∫
R2

fτ

(
∂B
∂x −

∂A
∂y

)
dx ∧ dy.

The first integral on the right-hand side is zero by Stokes’ Theorem and the fact that A and

B are compactly supported. By Statement (2), we choose fτ so that it converges to 0 when

y is positive and to 1 when y is negative. As τ →∞, we then have

Caτ (b) =

∫
R2

fτ

(
∂A
∂y −

∂B
∂x

)
dx ∧ dy

→
∞∫
−∞

0∫
−∞

(
∂A
∂y (x, y)− ∂B

∂x (x, y)
)
dydx

=

∞∫
−∞

A(x, 0)dx.

Together with equation (1.65) this proves Statement (3) for case (ii).

Finally, if Ψ−1(sh(Γ) ∩ U) is the union of the two axes, then again by equation (1.64b),

Csh(Γ)(b) =

∫
Ψ−1(sh(Γ)∩U)

Ψ∗b =

∞∫
−∞

A(x, 0)dx+

∞∫
−∞

B(0, y)dy. (1.67)

As before, we also have

Caτ (b) =

∫
R2

fτ

(
∂A
∂y −

∂B
∂x

)
dx ∧ dy. (1.68)

But now Statement (2) shows that, as τ →∞, fτ converges to 0 in the upper left quadrant,

to 1 in the upper right and the lower left quadrants, and to 2 in the lower right quadrant.
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Hence by equation (1.68),

Caτ (b)→ 2

∫
R+

∫
R−

(
∂A
∂y (x, y)− ∂B

∂x (x, y)
)
dydx

+

∫
R+

∫
R+

(
∂A
∂y (x, y)− ∂B

∂x (x, y)
)
dydx

+

∫
R−

∫
R−

(
∂A
∂y (x, y)− ∂B

∂x (x, y)
)
dydx

=

∞∫
−∞

A(x, 0)dx+

∞∫
−∞

B(0, y)dy,

where the last step is an elementary computation. Together with (1.67), this proves State-

ment (3) for the case (iii).

To prove Statement (4), according to equation (1.54) and the definition of the Poincaré

duality, we need to show that for any [γ] ∈ H1(Σ;Z),

hol?([Γ])([γ]) = 1
2πi

∫
γ

g−1
τ dgτ = [Γ] · [γ]. (1.69)

Since everything in (1.69) is homotopy invariant, we have the freedom to change Γ by a

homotopy. Recall from (1.49) that Γ can be decomposed, up to homotopy, to a product of

single vortex loops; thus it suffices to check Statement (4) for a basis of π1

(
Symd(Σ)

)
∼=

H1(Σ;Z). We use a “symplectic” basis: a set of simple closed curves {αi, βi}16i6g(Σ) such

that αi intersects βi transversally and positively once, and αi ∩ βj = αi ∩ αj = βi ∩ βj = ∅

for i 6= j. There is always such a set, and {[αi], [βi]}16i6g(Σ) is a basis of H1(Σ;Z), with

[αi] · [αj ] = 0, [βi] · [βj ] = 0, [αi] · [βj ] = δi,j ,
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where · is the homology intersection. Denote the corresponding single vortex loops in

Symd(Σ) by {α̂i, β̂i}16i6g(Σ).

To prove Statement (4), we need only to verify (1.69) for every pair in the basis. When

γ ∈ {αi, βi}, and Γ ∈ {α̂j , β̂j} with i 6= j, we have by Statement (1) that

∫
γ

ig−1
τ dgτ = O

(
τ exp

(
−
√
τdist(γ,sh(Γ))

c

))
. (1.70)

When γ = αi and Γ = α̂i, for some i, we can chose another representative α′i for [γ] = [αi]

that is disjoint from αi. Thus, again by Statement (1), we have

∫
γ

ig−1
τ dgτ = O

(
τ exp

(
−
√
τdist

(
αi,α
′
i

)
c

))
. (1.71)

Thus all integrals in (1.70) and (1.71) converge to 0 as τ → ∞. On the other hand, these

integrals are integer multiples of 2π, so they had to be 0 for all τ > τ0.

Finally, assume that i = j and γ = αi and sh(Γ) = β̂i, or γ = βi and sh(Γ) = α̂i. In

order to prove the first of these cases, let us fix a small embedded segment j on γ = βi

that intersects sh(Γ) = αi once positively. Such paths exist by the construction of the basis.

Write gτ |I = exp(2πiϕτ ), and so g−1
τ dgτ |I = 2πidϕτ . Thus by equation (1.54),

hol?([Γ])([γ]) =

∫
I

dϕτ + 1
2πi

∫
γ−I

g−1
τ dgτ

= ϕτ (1)− ϕτ (0) +O
(√

τ exp
(
−
√
τdist(sh(Γ),{j(0),j(1)})

c

))
.

By Statement (2), this converges to 1 as τ → ∞. On the other hand, hol?([Γ])([γ]) is an

integer, so it had to be 1 for all τ > τ0. The same argument can be used in the case
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of sh(Γ) = β̃i and γ = αi, which completes the proof of Statement (4) and the Main

Theorem.

Corollary 1.13. For all τ > τ0, the space Pτ is an infinite-dimensional vector bundle over

a connected, oriented and smooth manifold without boundary, M̂τ . This manifold has real

dimension 2d+1 and is a U(1)-principal bundle over the universal cover ofMτ . In particular

Pτ is homotopy retracts to M̂τ .

Proof. First we will impose the Coulomb gauge: fix a τ -vortex field υ0 = (∇, φ) ∈ Pτ . We

say that υ =
(
∇′, φ′

)
is in Coulomb gauge with respect to υ0 if the 1-form a = ∇′ − ∇ is

satisfies:

d∗a = 0.

For each υ ∈ Pτ there is in fact a gauge transformation g that is in the identity component

of G, and is unique up to constant gauge transformations (factors in U(1)), such that g(υ)

is in Coulomb gauge with respect to υ0. A proof of this, which applies to our case too, can

be found, for example, in [EN11, Lemma 2.1]. The set M̂τ ⊂ Pτ , called the Coulomb slice,

consisting the τ -vortex fields that are in Coulomb gauge with respect to υ0 intersects each

fiber.

Fix then a point x ∈ Σ, and require g(x) = 1. Such a g = gυ is then unique, moreover,

can be written as gυ = exp(ifυ), and fυ is also unique if one prescribes fυ(x) = 0. Set

gt,υ = exp(itfυ). Then the map defined as r(t, υ) = gt,υ(υ) is a homotopy retraction of Pτ

to the Coulomb slice.

The intersection of each fiber with the Coulomb slice is a collection of circles, due to

the U(1) ambiguity mentioned above. Moreover, these circles are in bijection with π0(G) ∼=
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π1(Mτ ). Thus M̃τ = M̂τ/U(1) is a π1(Mτ )-cover of Mτ , which is the universal cover if

connected.

Our Main Theorem implies that Pτ is connected, by the following argument: let υ and υ′

be two arbitrary τ -vortex fields. Since simple divisors are dense in Symd(Σ), we can assume,

that the corresponding divisors are simple. Join the two divisors by a regular path Γ0. Then

holΓ0
(υ) is equal to g

(
υ′
)
for some g ∈ G. If g is not in the identity component of G, then it

represents a non-zero cohomology class [g] ∈ H2(Σ;Z). Let γ be a smooth loop based at a

divisor point of υ that represents the Poincaré dual of [g]; let γ̂ be the induced single vortex

loop, and set Γ = γ̂−1 ∗Γ0. Now υ and holΓ(υ) = υ′′ are connected by the path in Pτ given

by parallel transport. On the other hand, υ′′ and υ are gauge equivalent, and the connecting

gauge transformation is in the identity component of G, which means that there is a path

from υ′′ to υ. Thus Pτ is connected, but then so is M̂τ , which completes the proof.

1.7 The large area limit

Consider the energy (1.1) for the critical coupling constant λ = 1 and with τ = 1. Bradlow’s

criterion for the existence of irreducible vortices in this case becomes

τ0 = 2πd
Area(Σ)

< 1, (1.72)

using the area with respect to the given area 2-form ω. Even when inequality (1.72) does

not hold for ω, it still holds for ωt = t2ω if t > t0 =
√
τ0.

Let Pt be the space of all solutions of the 1-vortex equations with Kähler form ωt for
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t > t0. A pair (∇, φ) ∈ CL × Ω0
L is in Pt if

iΛtF∇ = 1
2

(
1− |φ|2

)
(1.73a)

∂∇φ = 0, (1.73b)

where Λt = Λ/t2. Let Mt be the corresponding moduli space Pt/G. Bradlow’s Theorem still

holds, hence Mt
∼= Symd(Σ), where the diffeomorphism is again given by the divisor of the

φ-field.

By [B90, Proposition 5.1], the following diagram is commutative when t2 = τ :

Pt
Φt //

$$

Pτ

zz

Symd(Σ)

,

where Φt is the isomorphism of principal bundles given by Φt(∇, φ) = (∇, tφ).

The L2-metric on Pt is defined by equation (1.6), but with Hodge operator and area form

given by ωt. For all X ∈ TPt, we now have:

‖(Φt)∗X‖Pτ = t‖X‖Pt . (1.74)

Thus the L2-metric of Pt is conformally equivalent to the pullback of the L2-metric of Pτ

via the bundle isomorphism Φt.

The Berry connection on Pt →Mt is again defined as the orthogonal complement of the

vertical subspaces, hence it is the same as the pullback of the Berry connection on Pτ via

Φt. Thus the results of Theorems 1.8 and 1.11 and our Main Theorem hold in the large area
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limit (t→∞):

Main Theorem for the large area limit. The conclusions of the Main Theorem in the

introduction hold for the principal G-bundle Pt →Mt with τ replaced everywhere by t2.
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Chapter 2

Irreducible Ginzburg-Landau fields

In this chapter we show that the Giznburg-Landau equations (1.3a) and (1.3b) admit irre-

ducible solutions under certain conditions. This generalizes Bradlow’s result for the critical

λ = 1 case [B90, Theorem 4.3]. We use the hypotheses and notation of Chapter 1.

As mentioned in the introduction of Chapter 1, the Ginzburg-Landau theory is a mathe-

matical model for superconductivity. The reducible solutions correspond to insulating states,

while irreducible solutions model superconducting states.

The results of this chapter are summarized in our second main theorem.

Main Theorem of Chapter 2. The Ginzburg-Landau equations (1.3a) and (1.3b) admit

irreducible solutions if and only if λτ > 4π|d|
Area(Σ)

.

The content of the main theorem is illustrated by the following phase-diagram:

1

λτ

Area

τ -vortex solutions exist

II

I

Figure 2.1: Phase Diagram: In Region I, defined by λτ 6 4π|d|
Area(Σ)

, only reducible solutions
exist (Insulator Phase). In the complementary Region II (shaded), there exist irreducible
solutions (Superconductor Phase).

For simplicity, we assume that d, the degree of the line bundle, is non-negative. The

results for negative degrees can be proven similarly.
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This chapter is organized as follows. In Section 2.1 we use standard geometric analytic

methods to show that there are only reducible solutions for parameters in Region I in Fig-

ure 2.1. In Section 2.2, we prove the existence of irreducible solutions for parameters in

Region II. This is done using a gauged version of the Palais-Smale compactness property.

2.1 Non-existence

First of all, any critical point of the energy (1.1) is gauge equivalent to a smooth critical

point, which satisfies equations (1.3a) and (1.3b) (see [JT80]). Furthermore, if a smooth

connection ∇ ∈ CL satisfies the vacuum Maxwell equations:

d∗F∇ = 0. (2.1)

We call such a connection aMaxwell connection. Note that a pair (∇, 0), consisting a Maxwell

connection and the identically zero section of L, is always a solution of equations (1.3a)

and (1.3b). We call such a solution a Maxwell solution.

A solution (∇, φ) is called reducible, if there is a gauge transformation g ∈ G such that

g(∇, φ) = (∇, φ), otherwise irreducible. Maxwell solutions are all reducible, because constant

gauge transformations act ineffectively on them. On the other hand, if (∇, φ) is a pair with

non-vanishing φ-field, then the only way a non-trivial U(1)-valued gauge transformation act

ineffectively on this pair is if φ vanishes on an open subset of Σ. Since equation (1.3b) is

elliptic, by unique continuation, any such solution would vanish everywhere. Thus Maxwell

solutions are the only reducible ones.

To prove that there are no irreducible solutions – and hence the only solutions are the
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Maxwell solutions – when λτ 6 4πd
Area(Σ)

, we first prove the following technical lemma.

Lemma 2.1. If (∇, φ) ∈ CL ⊕ Ω0
L is a critical point of Eλ,τ , then

(
4πd

Area(Σ)
− λτ

)
‖φ‖2

L2 6 −λ2‖φ‖
4
L4 . (2.2)

Proof. Fix a Maxwell connection ∇0, and write (∇, φ) = (∇0 + a, φ), where a ∈ iΩ1. With

this notation, equation (1.3a) becomes

(
d∗d+ |φ|2

)
a = i Im

(
h
(
∇0φ, φ

))
. (2.3)

Take the L2-inner product of both sides with a, use the fact that a is imaginary-valued, and

integrate by parts to get

0 6 ‖da‖2
L2 + ‖aφ‖2

L2 = Re
(
〈aφ|∇0φ〉

L2

)
.

In particular, this shows that the right hand side is non-negative.

Next, rewrite equation (1.3b) in terms of ∇0, a, and φ:

(
∇0
)∗
∇0φ+ a∗

(
∇0φ

)
+
(
∇0
)∗

(aφ) + |a|2φ = λ
2

(
τφ− |φ|2φ

)
. (2.4)

Take the L2-inner product of both sides with φ, and integrate by parts to get

‖∇0φ‖2
L2 + 2Re

(
〈aφ|∇0φ〉

L2

)
+ ‖aφ‖2

L2 = λτ
2 ‖φ‖

2
L2 − λ

2‖φ‖
4
L4 . (2.5)

To obtain a third equation, note that that all Maxwell connections have the same curvature,
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given by

F∇ = 2πd
iArea(Σ)

ω, (2.6)

or equivalently that iΛF∇0 = 2πd
Area(Σ)

. Combining this with the Kähler identity yields

‖∇0φ‖2
L2 = 2‖∂∇0φ‖2L2 + 2πd

Area(Σ)
‖φ‖2

L2 . (2.7)

Using equation (2.7), equation (2.5) becomes

2‖∂∇0φ‖2L2 + 2πd
Area(Σ)

‖φ‖2
L2 + 2Re

(
〈aφ|∇0φ〉

L2

)
+ ‖aφ‖2

L2 = λτ
2 ‖φ‖

2
L2 − λ

2‖φ‖
4
L4 . (2.8)

Every term on the left hand side is non-negative. Leaving the first, the third, and the fourth

term gives the inequality

2πd
Area(Σ)

‖φ‖2
L2 6

λτ
2 ‖φ‖

2
L2 − λ

2‖φ‖
4
L4 ,

which is equivalent to inequality (2.2).

The non-existence of irreducible solutions is an immediate consequence of Lemma 2.1.

Corollary 2.2. If λτ 6 4πd
Area(Σ)

, and (∇, φ) ∈ CL ⊕Ω0
L is a critical point of Eλ,τ , then φ is

identically zero.

Proof. If λτ 6 4πd
Area(Σ)

and φ is not identically zero, then the left hand side of inequality (2.2)

is non-negative, whereas the right hand side is strictly negative, which is a contradiction.
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2.2 Existence

We now turn to the proof of the existence of irreducible solutions of equations (1.3a)

and (1.3b) when λτ > 4πd
Area(Σ)

. We will show two things: (i) absolute minimizers of the

energy (1.1) exist, and (ii) that when λτ > 4πd
Area(Σ)

, the Maxwell solutions are unstable, in

the sense that there are configurations arbitrarily close with lower energy. It follows that the

absolute minimizers cannot be Maxwell solutions, and therefore are irreducible.

First we prove that the functional Eλ,τ satisfies a gauged version of the Palais-Smale

compactness condition.

Lemma 2.3. Let (∇n, φn) ∈ CL ⊕ Ω0
L be a sequence with the following properties:

1. The sequence Eλ,τ (∇n, φn) is bounded,

2. The sequence of derivatives E ′λ,τ (∇n, φn) converges to zero in the
(
W 1,2

)∗.
Then there is a subsequence (∇nk , φnk) ∈ CL⊕Ω0

L, together with a sequence of gauge trans-

formations gnk ∈ G, such that gnk(∇nk , φnk) converges in CL ⊕ Ω0
L.

Proof. Since smooth pairs in CL ⊕ Ω0
L are dense, it is enough to prove the statement for

smooth sequences.

Fix a reference connection ∇0 and define the W k,p norms, as

‖ψ‖
Wk,p =

k∑
n=0

‖
(
∇0
)n
ψ‖Lp (2.9)

We pick ∇0 to be a smooth Maxwell connection, and write an = ∇n −∇0.

By the Hodge decomposition, the imaginary valued 1-forms an can be decomposed as

an = idfn + id∗gn + ihn, (2.10)
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where fn is a smooth function, gn is a smooth 2-form, and hn is a harmonic 1-form. We can

eliminate the first term by applying the gauge transformations exp(ifn) to the pair (∇n, φn).

We can also assume, after suitable gauge transformations, that the sequence hn is a bounded

sequence in L2. By elliptic regularity, the space of harmonic 1-forms is finite dimensional,

so we can chose a subsequence, so that hn is convergent. Because all hn are harmonic, this

implies convergence in the W 1,2 as well.

The Ginzburg-Landau free energy (1.1) can now be written as

Eλ,τ
(
∇0 + an, φn

)
= EM

λ,τ + ‖dan‖2L2 + ‖
(
∇0 + an

)
φn‖2L2 + λ

4

∫
Σ

(
τ − |φ|2

)2
ω. (2.11)

Since all of the terms on the right hand side are non-negative, and the energy of the sequence

is bounded, we get the following:

(1) The sequence ‖dan‖2
L2 is bounded,. Because an has no exact part, and has convergent

harmonic part, this means that an is bounded in W 1,2. By the Sobolev inequality the

sequence an is also bounded in L4.

(2) The sequence ‖
(
∇0 + an

)
φn‖2

L2 is bounded, and thus so is |‖∇0φn‖2
L2 − ‖anφn‖

2
L2|

(3) The sequence
∫

Σ

(
τ − |φ|2

)2
ω is bounded. Jensen’s inequality implies that

(
τArea(Σ)− ‖φ‖2

L2

)2
6
∫
Σ

(
τ − |φ|2

)2
ω,

so φ is bounded in L2. This in turn immediately implies that φn is bounded in L4 as
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well, because of the equality

‖φ‖4
L4 =

∫
Σ

(
τ − |φ|2

)2
ω − τ2Area(Σ) + 2‖φn‖2L2 . (2.12)

(4) Combining (1) and (3), together with the Cauchy-Schwarz inequality, shows that anφn

is bounded in L2.

(5) Combining (2) and (4), we get that ∇0φn is bounded in L2, and thus φn is bounded

in W 1,2.

Using that E ′λ,τ
(
∇0 + an, φn

)
converges to zero, and the fact that d∗an = 0, we get

∆an = −|φn|2an + i Im
(
h
(
∇0φ, φ

))
+ bn, (2.13)

where bn converges to zero in iΩ1, and

(
∇0
)∗(
∇0
)2
φ = −a∗

(
∇0φ

)
−
(
∇0
)∗

(aφ) + |a|2φ+ λ
2

(
τφ− |φ|2φ

)
+ ψn, (2.14)

where ∆ = d∗d + dd∗ is the Laplace-de Rahm operator, and ψn converges to zero in Ω0
L.

It is easy to see, using the previous observations, that the right hand sides are bounded

in L2. Elliptic regularity then implies, (an, φn) is bounded in W 2,2. Since the embedding

W 2,2 ↪→ W 1,2 is compact in dimension 2, we conclude that the sequence (an, φn) has a

convergent subsequence in W 1,2.

Corollary 2.4. The infimum of Eλ,τ is achieved by some field (∇, φ) ∈ CL ⊕ Ω0
L.

Proof. The functional Eλ,τ non-negative, thus so is its infimum. Pick a minimizer sequence
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(∇n, φn) ∈ CL ⊕Ω0
L. By Lemma 2.3, there is a subsequence, and gauge transformations gn,

such that the sequence gn(∇n, φn) converges to a limit. Since Eλ,τ is gauge invariant, and

analytic in the W 1,2 norm, the limit is an absolute minimizer.

Finally we show that the infimum cannot be a Maxwell solution when λτ > 4πd
Area(Σ)

. To

this end, note that all Maxwell solutions have the same Ginzburg-Landau free energy, which

we call the Maxwell energy:

EM
λ,τ =

4π2d2

Area(Σ)
+
λτ2Area(Σ)

4
. (2.15)

The next lemma computes the second variation of the energy functional (1.1) around a

Maxwell solution.

Lemma 2.5. Let ∇0 be a Maxwell connection. Then for any (a, φ) ∈ iΩ1⊕Γ(L) the following

second variation formula holds:

Eλ,τ
(
∇0 + a, φ

)
− EM

λ,τ = ‖da‖2
L2 + 2‖∂∇φ‖2L2

+
(

2πd
Area(Σ)

− λτ
2

)
‖φ‖2

L2 +O
(
‖(a, φ)‖3

W1,2

)
. (2.16)

Proof. In the expansion of Eλ,τ
(
∇0 + a, φ

)
the linear terms in (a, φ) vanish, because (∇0, 0)

is a critical point of Eλ,τ . Thus up to quadratic order we get

Eλ,τ
(
∇0 + a, φ

)
− EM

λ,τ = ‖da‖2
L2 + ‖∇0φ‖2

L2 − λτ
2 ‖φ‖

2
L2 +O

(
‖(a, φ)‖3

W1,2

)
.
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By the Kähler identity the middle term can be rewritten as

‖∇0φ‖2
L2 = 〈∇0φ|∇0φ〉

L2

= 〈φ|
(
∇0
)∗
∇0φ〉

L2

= 〈φ|2
(
∂∇0

)∗
∂∇0φ+ 2πd

Area(Σ)
φ〉
L2

= 2‖∂∇0φ‖2L2 + 2πd
Area(Σ)

‖φ‖2
L2 ,

which concludes the proof.

Corollary 2.6. When λτ > 4πd
Area(Σ)

the minimum of the Ginzburg-Landau free energy, Eλ,τ

is not the Maxwell energy (2.15).

Proof. In the formula (2.16) let a = 0 and φ be a non-zero holomorphic section with respect

to the holomorphic structure induced by ∇0. If λτ > 4πd
Area(Σ)

, then for t > 0 small enough

Eλ,τ
(
∇0, t φ

)
= EM

λ,τ + t2
(

2πd
Area(Σ)

− λτ
2

)
‖φ‖2

L2 +O
(
t3
)
< EM

λ,τ , (2.17)

because the coefficient of the quadratic term is negative.

Lemma 2.3 and Corollary 2.6 imply the existence part of the main theorem of Chapter 2:

Corollary 2.7. There exist irreducible solutions of the equations (1.3a) and (1.3b) when

λτ > 4πd
Area(Σ)

.
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