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ABSTRACT

THE RATIONAL EXPECTATIONS HYPOTHESIS:

A FRAMEWORK FOR SOLUTIONS

WITH ECONOMETRIC IMPLICATIONS

By

Dennis Lee Hoffman

This study investigates the impact of the rational expecta-

tions hypothesis (REH) on economic models by constructing a frame-

work for analyzing rational expectations solutions, outlining an

approach to estimation and tests of hypothesis regarding struc-

tures which incorporate the REH, and surveying the recent literature

to evaluate the use or misuse of the theory of rational expecta-

tions in previous studies.

The need for an analysis of the REH is derived from two

.distinct factors. First, the expanding role of expectations in

economic models warrants the development of an explanation for how

these generally unobservable perceptions of future events are

formed. Second, the REH, which is one explanation, is not based

upon a well developed theoretical foundation. Specifically,

neither the guidelines for incorporating the REH into general

models nor the econometric implications of applying the theory to

economic models have been explicitly stated in previous studies.

In an effort to eliminate these deficiencies in the

theoretical development of the REH, the present study adopts the
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following format. First, a framework for the implementation of

rational expectations in general models is constructed. Particular

emphasis is centered upon the conditions under which one may Ob-

tain an observable expression for the expectation terms. This

expression is designated as a rational expectations solution (RES).

Second, the study reveals the econometric implications of replacing

the expectations in the original structure with the RES suggested

by the theory of rational expectations. Finally, a literature

review compares the methodology employed in some recent treatments

of the REH with that adopted in the present study.

The pursuit of this format yields a number of significant

contributions. In the first place, the framework provides guide-

lines for the application of the REH to general models and

accentuates the major complications a researcher is likely to

encounter. Specifically, the analysis reveals that the RES de—

pends upon the specification of stability Conditions and the nature

of the processes assumed to generate the exogenous variables con-

tained in the original structure under consideration.

A second contribution of this study is the examination

of the econometric significance of replacing the expectations

terms with a relevant RES to generate a structure which is void Of

unobservable variables. In this econometric analysis the restric-

tions implied by the particular functional form of this re-

formulated system are revealed and a method for testing their

validity is outlined. Consequently, this study provides a pro-

cedure for testing the validity of the REH as an explanation for

individual's perceptions of future events.
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Finally, the literature review reveals that many recent

studies have avoided the significant aspects of the REH which are

emphasized in the present study. This neglect generally stems

from either a misinterpretation Of the REH or the use of special

cases which enable researchers to avoid many of the complexities

inherent in the application of the theory Of rational expectations

to general economic models.
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CHAPTER I

INTRODUCTION

l.l The Problem

This study investigates the impact of the rational expecta-

tions hypothesis (REH) on economic models by constructing a frame-

work for analyzing rational expectations solutions in general models,

outlining an approach to the estimation and testing structures which

incorporate the REH and surveying the recent literature to evaluate

the use or misuse of the theory of rational expectations in pre-

vious studies.

A Study of rational expectations requires the considera-

tion of models containing explanatory variables which appear as

expectations of future endogenous variables. Since data is, for the

most part, unavailable, one needs to determine how agents formulate

these perceptions of future events. The theory of rational ex-

pectations, originally advanced by Muth (l96l), is one explanation.

This theory suggests that the rational agent equates expectations

with the conditional forecasts of the "relevant economic theory“.1

The extensive application of this theory to models in current

literature is the primary motivation of this analysis.

 

1See Muth (1961), p. 3l6.



1.2 Need for the Study
 

The need for an analysis of the role of the REH is derived

from two distinct factors. The first concerns the increasing

emphasis placed upon expectations in recent studies coupled with an

ad hoc explanation for how expectations are formed. Second, few

studies have recognized the theoretical and econometric implications

of the REH in general models.

Since the analysis of Fisher (T930), the significance of

expectations of price changes has been understood. Within the past

decade new emphasis on price expectations has accompanied the natural

rate hypothesis (NRH) which renders long run stabilization policy

impotent [Friedman (l968), Lucas (l972)]. Sargent and Wallace

(l975, l976) demonstrate that the addition of the REH to the NRH

models preempts the role of short term stabilization policy, en-

abling the results of the long run natural rate proposition to hold

in the short run as well. This controversial result is most

responsible for the movement away from the ad hoc notion of extra-

polative or adaptive expectations first employed by Cagan (l956).2

 

2Extrapolative expectations pertains to the idea that expectations

are adjusted according to the amount realized values deviate from

previously formulated expectations: For example let t-lyt repre-

sent the expectation Of the value of y in period t formulated on

the basis of information in period t-l; then

* * *

{t-lyt ‘ t-Zyt-l} = (I ' °){yt-1 ' t-2yt-l} 0 < a < 1

describes an extrapolative scheme. This leads to an expression for

expectations in terms of past values of y alone;

* w i-l

t-lyt ‘ (I " “’ Zi=l °‘ _yt-i‘

This framework has often been criticized for its lack of theoretical

foundation as well as its suggestion that only knowledge of past

values of the variable in question enter into the formation of ex-

pectations.



However, price expectations are not the only concern of

rational expectations theorists. Theories of consumption and income,

for example, the permanent income hypothesis; and interest rates,

for example, the expectations theory of the term structure, place

considerable emphasis upon expectations. An examination of the

proper employment and validity of the REH is essential if rational

expectations is to serve as a viable alternative to the extra-

polative schemes employed in the previous analysis of these concepts.

The second problem area which this study addresses is the

deficiency of theoretical developments applying the REH to general

models, specifically models with both multi-period future (lead)

expectations and lagged endogenous variables. An outline of the

solution procedure applicable to general models and an analysis of

the conditions under which rational expectations solutions may be

obtained would clearly aid both previous and forthcoming studies.

A method of estimating and testing models which incorporate these

general solutions is essential in augmenting the theoretical de-

velopment of rational expectations. Finally, an investigation of

the use of rational expectations in recent studies is warranted to

alleviate the discord generated by the Muth article and assist in

developing a uniform interpretation of the REH.3

l.3 Format

To meet these problem areas, this study applies the REH to

models of increasing generality in Chapters II, III, and IV. In

 

3The simple examples used by Muth in illustrating the REH have been

the source of some confusion. This is discussed in chapter VI.



each chapter the model under consideration is specified and the steps

leading to the reformulated structure suggested by the REH are out-

lined in detail. The individual treatment accentuates the different

procedures required to obtain rational expectations solutions and

. outlines the various restrictions under which stable solutions are

obtained in different modeis.4

Chapter V offers an approach to estimation and hypothesis

testing which is consistent with the REH according to the general

framework outlined in the introductory chapters.

Chapter VI supplies a discussion of a number of applications

of the REH in current literature, highlighting both the improper

interpretations of Muth's theory and the various assumptions which

serve to circumvent the complexities of coping with the REH in more

general specifications.

l.4 Limitations
 

Although this study provides an extensive treatment of

rational expectations in economic models, it is not without limita-

tions. It provides no explanation of how agents obtain the informa-

tion required to form perceptions of future events which are rational

in the sense of Muth. This difficult problem requires a general

theory of rational expectations which has yet to be developed and

is outside the scope of this study.

Furthermore, the analysis offers no mechanism for how

rational expectations adjust when the relevant theory Changes or is

 

4Stability is referred to, not in the probabilistic sense, but in

the difference equation context.



expected to change. Some advances in this direction have been made

in recent studies by Shiller (1978) and Taylor (l975). However,

these endeavors overlook the significant problems encountered when

the relevant theory is static. These problems are revealed in the

present analysis.

Finally, although the test outlined in chapter V may prove

useful in future applied work, the present study-offers no motive

for employing rational expectations in economic models, but examines

the implications of this choice for most of the models a researcher

is likely to encounter.



CHAPTER II

MODELS WITH CURRENT PERIOD

ENDOGENOUS EXPECTATIONS

This chapter examines a specific class of models which

contain expectations of endogenous variables. The expectations

are expressed, following the REH, as functions of Observable vari-

ables. Then,the reformulated version of the original model,

incorporating the REH, is derived.

2.l An Outline of Model I Structures
 

Perhaps the most common usage of expectations in economic

models involves the assumption that present period (t) levels of

endogenous variables are explained by perceptions of those variables

formed by agents on the basis of information available one period

earlier (t-l). Examples of this class are prevalent in the current

literature and the general implications of the REH for these simple

models are discussed in some of these studies. Nevertheless, these

structures will be examined in the present analysis to provide a

complete framework for analyzing the impact of the REH upon economic

models. A model which contains the characteristics of these simple

structures will be designated, Model I, and may be represented:

_ e _
Ayt - B(L)xt + W(L)yt + et-lyt + at t - l,2,...,T (2.l.l)

where;
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i) A is an m x m matrix of structural co-

efficients,

ii) yt is an m x l vector of endogenous

variables,

iii) B(L) is an' m x n matrix with elements

consisting of finite polynomials in the

lag operator L. Hence, typical elements

are:

q
Ii

3.. = Z 3.. L9; Lgx = x _
9:0 139 t t g

i = l,2,...,m; j = l,2,...,n,

is the order of the lag of the

th

a. qij

jth exogenous variable in the i

equation,

h
b. B.. is the gt coefficient in the

1J9

polynomial lag of order q,
J

jth exogenous variable in the i

for the

th

equation,

iv) xt is an n x 1 vector of exogenous variables,1

v) V(L) is an m x m matrix with elements con-

sisting of finite polynomials in the lag

operator L. Similarly:7

 

1The term exogenous pertains to those variables which are deter-

mined outside the system (2.l.l) while endogenous variables are de-

termined by the simultaneous interaCtion of the system. Including

expectations of exogenous variables wOuld be a trivial extension of

(2.l.l). The ensuing analysis would be unaltered and the problem

created by their unobservability would be eliminated by an assumption

comparable to (2.2.6) in the following section.

 



i,j = l,2,...,m,

a. r.. and v. are analogous to 91
1.1 iih J’

and Bijg above,

b. wijo = O for all i,j,

vi) 6 is an m x m matrix of structural co-

efficients,

vii) t_]y§ is an m x l vector of the values the

endogenous variables are expected to take on in

period t formulated on the basis of all in-

formation available as of period t-l,

viii) at is an m x 1 vector of structural dis-

turbances which follow a stationary, multivariate,

ARMA process:

E(L)et = 5(L)Ut.

where both 5(L) and 6(L) are m x m

matrices whose elements are finite order

polynomials in the lag operator L. ”ti is

independently and identically distributed

N{O, oEIT} for each i = l,...,m. -Following

Zellner and Palm (l974) this may be expressed

as an infinite order moving average process:

= e“(L)a(L>u

(O(L)Ut ,

8t t



provided the roots Of |5(L)1 = 0 lie out-

side the unit circle.

The final assumption (viii) accommodates any order of auto-

correlation in the vector Of disturbances at and is amenable to

the moving average structures examined by Muth in his seminal article.

Incorporating this general expression for disturbances,

(2.l.l) may be written:

Ayt e B(L)xt + v(L)yt + et_]yi + C(L)ut, t = l,2,...,T. (2.1.2)

The system described by (2.l.2) is the most general repre-

sentation of a simultaneous equations system that includes expecta-

tions of current period endogenous variables formed from informa-

tion available last period.

2.2 A Rational Expectation Solution for Model I
 

A rational expectatiOns solution (RES) is an expression for'

rational expectations in terms of observable variables Obtained by

the application of the REH to a specific model. To obtain the

RES for a general Model I structure, consider the reduced form for

(2.1.2): '

I I- .. - e -

yt = A 1B(L)xt + A v(L)yt + A 1Ot_]yt + A w(L)u (2.2.1)t'

This system represents the "relevant economic theory" for the m

endogenous variables in the system.

The theory of rational expectations suggests:
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9

-_y = E{le_}E EY:

t 1 t t_1 t t 1 t_1 t

where It-l pertains to the set of information from which expecta-

tions are formulated. Hence, rational expectations are the condi-

tional forecasts of the relevant theory.

Making conditional forecasts from a Model I structure assumed

to contain rational expectations yields:

E yt = E A“B(L)xt + E A"v(L)yt + E A’19 E yt + E A"O(L)ut.(2.2.2)

t-l t-l t-l t-l t-l t-l

This expression may be simplified by noting;

1) EElzt1 = Zt-i for any variable 2

= l 2,

t-i’

ii) Lag Operators affect realization dates, not

expectation formation dates, therefore,

k
E L z = E z , k = 1,2,...

t-l t t- 1 t k

for any variable Zt’

iii) V110 = O for all i,j;

to obtain:

-1 -1 . -1 -1
[I - A e] E yt= E A B(L)xt + A v(L)yt + E A C(L)ut (2.2.3)

t- 1 t-l . t-l

Assuming A“e is of full rank yields:

' _ -1 -1 -1 -1 -1
E y - {I - A e} I E A B(L)x + A Y(L)y + E A w(L)U }. (2.2.4)

t-l t t-l t t t-l t

Therefore, the application of REH to Model I yields an ex-

pression for the rational expectations of endogenous variables
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which contains expectations of both current exogenous variables and

the disburbance term, plus all the lagged variables in the original

structure. Particular functions of the original structural para-

meters form the coefficients of this expression.

However, (2.2.4) becomes a RES only when the expectation

terms on the right side of (2.2.4) are expressed in terms of Observ-

able variables.2 Assumption viii, section 2.l, insures that:

while all other values of E A'1w(L)ut are observable reduced form

disturbances realized in prEDious periods. Additional assumptions

are required to deal with the expectations of exogenous variables.

Assume all exogenous variables follow known deterministic rules.

This allows current exogenous variables to be predicted with

certainty on the basis Of last period's information. This assump-

tion allows (2.2.4) to be written as:3

E I
e}']{A']B(L)xt + A"v(L)yt + A'In'(L)ut_1}, (2.2.5)

t 1
yt={I-A

which is a (RES) to a general Model I structure subject to the

stated assumptions.

A more comprehensive assumption is that the exogenous vari-

ables follow some identifiable, stable, stochastic process!

 

2This is the definition of a rational expectation solution employed

in the present context.

3Writing w(L) = woLo + NIL] +... where O1 is the matrix of co-

efficients on the lag Of order i on u in (2.1.2) then
t

w'(L) a w1L° + OZL] +...
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i.e. xt = r(L)xt_1 + nt , (2.2.6)

where r(L) is a diagonal matrix whose elements are finite poly-

nomials in the lag operator L and nt ~ N{O,zn}.

Re-expressing the expectations term in (2.2.4), and follow-

ing (2.2.6) yields: 4

-1 _

E A B(L)xt -

t-l

= A'1B E x + A"B'(L)x
O t t-l
t-l

_ '1 '1 I

- A BOF(L)Xt_1 + A B (L)xt~1

_ '1 l

- A {BOF(L) + B (L)}xt_1 . . (2 2.7)

The substitution of (2.2.7) into (2-2-4) VIéIdSI

E y = {I - A"e}“IA‘1(B r(L) + B'(L))x + A"v(L)y
t‘] t . O t‘]‘ t

+ A'Ie'(L)ut_1}. (2-2-8)
I

which is a RESfOr a Model I structure conditional upon (2.2.6).

Hence, a valid RES for systems which have the charac-

teristics of Model I, as defined above, depends upon two distinct

factors. First, it demands the exact specification Of the relevant

theory, including the nature of the reduced form disturbances.

Second, the nature of the process from which agents form'expecta-

tions of the exogenous variables is required.

 

4

Writing B(L) = BOL0 +...+ Bqu, q = Max(q1j) over all i,j where

B1 is the matrix of coefficients on the lag of order i gon xt in

(2.l.2), then:

1 = O 1 q'1

B (L) 81L + BZL +...+ BqL .
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2.3 Observable Reduced Form for Model I
 

Having derived the RES, the Observable reduced form is ob-

tained by substituting (2.2.8) for' t_1y: in (2.2.1) to obtain:5

_ -1 -1
yt - A B(L)xt + A v(L)yt

+ A']e{I - A']e}-]{A-](BOF(L) + B'(L))}Xt-]

+ A-1e{I - A‘IOI‘IIA‘WHMt + A‘1w'(L)ut_1}

+ A"u(L)ut . (2.3.1)

This expression represents the reformulated, reduced form structure

obtained by replacing the expectations with the RES derived from'

the application of the REH to the original reduced form system.

Consequently, adding the REH to (2.2.1) yields an alternative

structure which is void of the unobservable variables.

2.4 Summary

The analysis of Model I structures reveals several important

factors. First, when the only expectations terms encountered in a

model are perceptions of present period endogenous variables formed

 

5Similarly an observable reduced form form (2.1.2) when the exogenous

variables follow a known deterministic rule is obtainable, - making

(2.3.1),

I l l--1 -
yt - A B(L)xt + A

+ A-]w(L)yt + A'

-1 - - -
v(1.)yt + A eII - A ‘91 {A B(L)x

l

t

+ A-1w(L)Ut .
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one period earlier (Model I), the RES and consequent observable

reduced form are computationally easy to obtain regardless of the

6 The investigation Of modelsmagnitudes of structural parameters.

whiCh contain expectations of endogenous variables for future

periods, pursued in ensuing chapters, reveals that this is not

always the case.

In addition, section 2.2 demonstrates that the REH alone is

insufficient to Obtain expressions for expectations of endogenous

variables in terms of observable variables. Hence, the RES is con-

ditional upon assumptions about the nature Of the processes gen-

erating the exogenous variables and disturbances.

Finally, the application of the REH to a Model I structure

yields a reformulation which is a function of a particular set of

variables whose coefficients are, in turn, specific functions of the

orfiginal structural parameters. Thus, the observable reduced form

suggested by the REH is distinguishable from any other reformulation

of (2.2.l) obtained under an alternative assumption about how

expectations are formed.

 

6Recall that the only restriction imposed upon structural para-

meters to obtaina RES was that A‘1e be of full rank.



CHAPTER III

MODELS WITH MULTI-PERIOD

FUTURE EXPECTATIONS

This chapter investigates a class of models which contain

expectations of endogenous variables for a finite number of future

periods. The RES and resulting Observable reduced form are derived

according to the format outlined in the previous chapter.

3.l An Outline of Model II Structures
 

In the event that economic agents base current decisions

upon expectations (formed in period t-l) of endogenous variables

in future time periods t+l, t+2,..., the Model I framework may

be broadened to include these multi-period future expectations.

A few simple examples of these structures appear in the current

literature.1 However, a general treatment of these structures is

not explicitly stated in any of the previous studies of rational

expectations. Models which possess these Characteristics will be

designated Model II structures and may be represented as:2

Ayt = B(L)xt + e(F)t_1y: + m(L)ut, t = l,2,...,T (3.1.1)

 

1Some of these are discussed in Chapter VI.

gThe effect of introducing lagged endogenous variables into (3.1.1)

15 examined in Chapter III.

TS



T6

where;

i) A, yt, B(L), xt, t_1y:, w(L), ut are defined

as in Chapter II,

ii) 6(F) is an m x m matrix with elements con-

sisting of finite polynomials in the lead

operator F; hence, typical elements are,

6.. = X1J 9.. Fk° Fk ye = e

13 k=O ijk ’ t-l t t-lyt+k’

i,j = l,2,...,m,

a) s.. is the order of the lead of the
13

expectations of the jth endogenous

variable in the ith equation.

th coefficient in theb) eijk is the k

lead polynomial equation for the

expectation of the jth

th

endogenous vari-

able in the i equation,

c) Since no information is available for

periods later than (t-l), lead operators

apply to realization dates and not ex-

pectation formation dates.

The system described by (3.l.l) is more general than (2.l.l)

in the sense that it allows future expectation terms to enter as

explanatory variables. However, it cannot accommodate lagged

endogenous variables which could appear in Model I.
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3.2 A_Rational Expectation Solution for Model I;_

As in Model I, the construction Of the reduced form is the

first step toward replacing the expectations terms with expressions

which are free of unobservables. Hence, Consider:

1B(L)x + A“e(E) + A“a(t)u (3.2.1)
_. ' e

yt ‘ A t-lytt t'

This system represents the "relevant economic theory" for the m

endogenous variables in the system.

Following the REH, the conditional forecasts from (3.2.1)

are equated with the expectations in (3.2.1) to obtain:

1
E yt = E A‘ B(L)xt + E A"e(f) E yt + E A‘1a(L)ut. (3.2.2)

t-l t-l t-l t-l t-l

Combining the expectations terms yields:

{I - A"e(F)} E yt = E A"B(L)xt + E A“a(L)ut. (3.2.3)

t-l t-1 t-1

At first glance, this expression resembles the Model I

analogue (2.2.3) which is a system of m equations in m unknown,

current period, rational expectations. However, closer investiga-

tion reveals that the Model II expression, (3.2.3) above, contains

In equations and up to m(s+l), s = max sij’ unknown rational

expectations. This structure, which represents current period

rational expectations ( E

t-l

tions in later periods (51 yt+], tEl yt+2,...) contains m,

finite order, difference equations in leads as opposed to lags.

Yt) as functions of rational expecta-



18

The typical equation of this system may be Obtained by applying

Nold's Chain Rule of forecasting to (3.2.3)3, yielding;

-1 -1
{I - A“e(F)1 E y

t-l

= A E B(L)

t-1

+ A E CO(L)

t-l

j = 0,1,...

t+j xt+j Ut+j’ (3.2.4)

The relevant solution procedure for this system is analogous

to the calculation of the "final form" of a simultaneous equations

model.4’ In a "final form" all lagged endogenous variables are

eliminated by substituting recursively. The lead expectation

——-_._. .#

terms in (3.2.3) may be eliminated analogously, by recursive

substitutions, utilizing the structures defined in (3.2.4) to

obtain:5

E
l )3

{I - A-16(F)}'1{A']B(L)xt + A‘

t 1

yt = E w(L)ut} . (3.2.5

t 1

The condition which guarantees the stability of this solu-

tion is that the roots (with respect to F) of the determinantal

 

3wo1d (l938), Chapter 3.

4See Theil and Boot (1952), p. 135-152.

5The substitution procedure implied by (3.2.5) insures that all

terms in periods t, t+l,..., later periods, appear as expecta-

tions terms while those in t-l, t-2,..., and earlier represent

actual realized values. This interpretation is unambiguously

Inaintained when lag and lead operators are manipulated prior to

expectation operations. Hence, the expectation term is positioned

outside of the inverted lead coefficient.

Fk E 2t = E szt for all variables 2

t-1 t 1

t in this analysis.
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16(F)1 = 0, lie outside the unit Circle.6 Nhenequation, [I - A'

this condition is satisfied, the system (3.2.5) expresses current

period rational expectations as functions of all the lagged

exogenous variables and disturbances in the original structure,

plus expectations of exogenous variables and disturbances for all

future periods.

Following the definition employed in Chapter II, (3.2.5)

becomes a RES when the expectations terms on the right hand side

of (3.2.5) are replaced by observable variables. As in the Model I

analysis, assumption viii, section 2.1, insures that all future

disturbances have zero expectatiOn. Consequently:

1e(F)}“A‘1u(L)u =E {I - A t

t-l

DII - A'le(f)i"A“a(L)ut

where,

{I‘A-]9(F)}-]A-]w(L)Ut for periods

w(L)Ut = t-l,t-2,...,earlier,OII-A“e(F)1'1A"

O for periods

t,t+l,t+2,...,later.

This notation accentuates the fact that (3.2.5) contains no un-

observable expectations of disturbances.7

 

6This condition is derived from considering an analogous example

in Zeller and Palm (1974), p. l9.

—_
,‘Hht ~v..f.-v_- _. ’.—. .A—-‘.-.._.—.-—

The lag and lead operators affect the time period for the dis-

ttrrbance term. Therefore if {I-A'19(F)}.]A-1w(L)ut is depicted as:
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The expectations of exogenous variables are eliminated by

utilizing the assumptions Of Chapter II. As discussed in the Model

I analysis, when exogenous variables follow known deterministic

rules, they may be predicted with certainty for all future periods.

The RES subject to this assumption is obtained by equating actual

and expected future exogenous variables:

E yt = {I - A’19(F)}‘1{A“B(L)xt} +

t-1

1 -1
DII - A' (F)} w(L)U (3.2.6)t .

An alternative assumption is that the exogenous variables

follow the process described by (2.2.6). Taking conditional fore-

casts on (2.2.6) and leading 2 periods obtains expressions for

the R-period forecasts of the n exogenous variables:

/

1
1

>
0

tEIXit ‘ it( = Yilxi-t-l + Yi2xit-2 +'°'+ Yipxit-p

tE1Xit+l Xit(1) ‘ Iiixit(0) I Yizxit-I +°°'+ Yipxit-p+1

tflxit+£ ' xit(£) = YiTXit(““) I Yi2xit(£-2) +"°+ Yipxit(“‘p)

i = 1,2,...,n

 

1;-“ C1ut+1 ; C1 m x m matrix for all 1.

Then;

m -1

D Z Ciut+i
1:-” i=§m Ciut+i
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where;

i) 2 is arbitrary.

ii) P is the order of the autoregressive process

which generates all exogenous variables,

iii) i1t(-j) = x1t_j

Following Box and Jenkins (1976), the forecasts for lead times

; j = 1,2,...

2 :10 may be expressed in terms of the observable lagged

exogenous variables to obtain:8

E x. e i. (t) = E Y(“i x (3 2 7)
t-l 1,t+£ T,t 1:] 1,3 l,t-J

(2) - 2 (R-h)

YisJ' ‘ Yi.j+2+ .2. Yi.h+1Yi.I
h-O

(0) -

*id ‘ Yip”

Substituting (3.2.7) into (3.2.5) obtains tié‘RES when exogenous

variables adhere to (2.2.6):

’

E yt = {I - A"e(F)}‘1{A"B(L)xt(t)} +

t 1 -

1 -1
+ D{I - A- (F)} {w(L)ut} (3.2.8)

where;

i) xt(2) represents the n-dimensional vector of

R-period forecasts of exogenous variables when

A 3_O, and realized, lagged, exogenous vari-

ables when” I < O,

 

8These expressions are obtained by Box and Jenkins (l976), pp.

141—142. The notation is altered in (3.2.7) to accommodate 2

period forecasts.

0
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ii) Fkxt(2) =.£t(t + k),

iii) kat(2) = Xt(l - k) ,

In retrospect, the RES obtained for models which exhibit the

characteristics of Model II, depend upon thesame factors required in

the Model I solution; namely the exact specification of both the

structural model and process generating the exogenous variables.

However, the present analysis reveals that models with lead

endogenous expectations warrant the use of extremely intricate sub-

stitution procedures to Obtain the weights on lagged variables which

appear in the RES, as well as consideration for the conditions which

guarantee the stability of the solution.

3.3 Observable Reduced Form for Model II
 

Following the format of the previous chapter, the observable

reduced form is obtained by the substitution of the RES (3.2.8) into

(3.2.1) to obtain:9

Yt = A']B(L)xt + A“e(F)II - A"e(F)1"IA“B(L)§t(t)}

+ A“e(F)O(I - A“e(F)}‘1{A'1a(L)ut}

+ A“u(L)ut . (3.3.1)

This expression denotes the reformulated reduced form obtained by

the application Of the REH to a general Model II structure. This

reformulation suggests that the original endogenous variables may

be expressed as a function of all the predetermined variables 1"_PPP”-

 

gThe observable reduced form for Model II when all exogenous vari-

ables follow known deterministic rules is obtained by substituting

xt+£ for xt(2).
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system (3.1.1) plus the lagged terms inherent in the processes

which generate the exogenous variables. This result is not unlike

that obtained for Model I, in (2.3.l), in regard to the designa-

tion of the menu of variables which appear in the observable re-

duced form. However, the coefficients of (3.3.1) are considerably

more complex functions of structural parameters than those in the

observable reduced form (2.3.1) obtained for Model I.

A simple example exhibiting the characteristics of a Model

II structure illustrates the steps leading to a Model II RES. Con-

sider the single equation model:

- . e z
yt - B xt + eFt-Iyt + at t 1,2,...,T

where from (3.1.1); //

1 yt is a scalar,

11 B(L) = 8' is a l x n vector,

)

)

111) xt is a n x 1 vector,

)

)

)

1v 6(F) = OF is a scalar,

e .

v t-lyt 15 a scalar,

v1 w(L)Ut = 6t ~ N{O,X€} scalar.

The structure (3.4.1) describes the "relevant economic

theory" for the variable yt. Therefore, following the procedure

outlined in 3.2, the application of the REH yields an expression

analogous to (3.2.5):
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-l
E y E {1 - 6F} 8' x

t-l t+l t-l t+l

” i i
E Z O F 8' x

t-l i=0 FT]

E Z 913' x .. (3.4.2)

t-l i=0 t+1*‘

Assume all exogenous variables are generated by first order,

autoregressive processes. Hence, F(L), in (2.2.6), is a diagonal,

n-dimensional, matrix Of zero order polynomials, r; where;

F.. = y. l = 1,2,...,n.

Therefore:10

Et_1 xt+1+i = I xt_, i = O.1,2,..., (3.4.3)

The RES for this example may be obtained by the substitution of

(3.4.3) into (3.4.2); yielding:

!

- l . 1+2
E yt+1 - i 0 e B T Xt‘I’ (3.4.4)

t 1 1
1
M
B

 

:an the notation of (3.2.7),

=« A+l

t5] X18t+£ xi,t(l) i,j xjgt'I

2
. - + . .

Since; Ygf} = Y1,j+£+ % OYi,h+lYifjh) = 7%,} for all 1 1f the

x's are generated by first order processes. Hence,

71,1 = Yi,h+1 = O for j = 2,3,... and h = 1,2,3,...
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provided the stability condition, |e| < l, is satisfied}1 Since

(3.4.4) is a geometric progression, it may be simplified to obtain:12

E
_ . 2 -1

t 1 yt+1 - B r {I - er} Xt-l‘ (3.4.5)

Finally, the observable reduced form for this simple example

is obtained by the substitution of (3.4.5) into (3.4.1):

2_ . . -1
yt 3 xt + as r {I - er} Xt-l + at . (3.4.6)

This example reveals two aspects of the application of the

REH to Model II structures. First, the RES requires consideration

of all future expectations of the exogenous variables, even when

only one period lead expectations appear in the original model.

Also, both the coefficients and stability conditions for the RES

may, in some cases, be simple functions of the original structural

parameters; regardless of the complicated expressions obtained in

the analysis of a general Model II RES.

 

11Recall the condition defined in 3.2 requires that the roots of

II - A'1e(F)| = 0 lie outside the unit circle. In this example the

stability condition becomes, -

|l-eF|=O ;|F|>l

OY‘ [Hz—[RT ; |F1>1

Therefore the single root lies outside the unit circle when |e| < 1.

12lim r1 = D null matrix since |y11| < l for all i = l,...,n

i-roo

because (2.2.6) is assumed to be a stable, stochastic process.
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3.5 Summary

The implications of the REH for Model II structures are re-

vealed by a comparison of the results Obtained in Chapters II and

III. First, the existence of a RES in models with lead expecta-

tions depends upon specific stability conditions which are, in

turn, satisfied when structural parameters lie within particular

intervals. This result differs from the Model I analysis which

leads to a RES for all possible values of the original structural

parameters.

Second, as in the Model I analysis, the particular RES ob-

tained depends upon the assumption made about the process which

generates the exogenous variables. However, the RES for Model II

demands more extensive forecastingirfoture exogenous variables

since the solution contains expectations of all future exogenous

variables.

Finally, the arguments of the observable reduced form for

models with lead expectations correspond with those obtained in

the study of Model I. Also, the REH suggests a functional form for

the weights on these variables that allows one to distinguish the

observable reduced form, implied by the REH, from that obtained by

employing an alternative expectations generating scheme. However,

these weights are generally more complicated functions of the original

structural parameters than those obtained in the observable reduced

form for Model I. This complexity stems from the substitution

procedure required to obtain a Model II RES.



CHAPTER IV

MODELS WITH MULTI-PERIOD FUTURE EXPECTATIONS

AND LAGGED ENDOGENOUS VARIABLES

This chapter examines a Class of structures which allow

lagged endogenous variables to accompany multi-period future

endogenous expectations as explanatory variables, thereby avoiding

the simplification employed in the Model II analysis.

4.1 Afl_0utline gj_Model III Structures

In an effort to analyze the impact of the REH on the most

general models that a researcher is likely to encounter, lagged

endogenous variables are added to the models with multi-period lead

expectations to obtain a class of structures denoted as Model III.

The general expression for this class is:

=NUx+wuwt+MHbfli+MU%, (Ahn
t t

where all terms have been defined in previous analyses.

This class is the most general representation of models

which contain expectations formed from information available in

period t-1.1 Unlike Model I and Model II, which may be expressed

 

1Shiller (1978), p. 29, deals with a more general version of (4.1.1)

by including period t-2,t-3,... expectations of endogenous vari-

ables. The import of his analysis is discussed in Chapter VI.

27
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as special cases of Model III, the details for obtaining a RES for

models with both lagged endogenous variables and future endogenous

expectations have yet to be explicitly stated in the literature.

The present analysis intends to fill this void.

4.2 A_Rational Expectations Solution for Model III

Following the format employed in previous chapters, the

first step toward a RES is to obtain the reduced form:

1 1
B(L)x + A‘ + A‘1u(L)ut (4.2.1)RUA+AJNH

= - e

yt A t-lyt
t'

According to the REH, the expectations in (4.2.1) are equated

with the conditional forecasts from the "relevant theory" [in this

case (4.2.1)]. These forecasts are generated by taking expectations

on (4.2.1) to obtain:

yt = E A“3(L)x + E A"t i(L)yt + E A‘]e(F) E y

t-T

E e

- t-l t-l tt 1 t-l

+ E A’1

t-1

w(L)U (4.2.2)t .

Combining the expectations terms with the lagged endogenous vari-

ables and noting; E E yt+S = E yt+s for all

t-1 t-1 t-1

1

yt+s:

1 1 1
E {I - A-

t-l

6(F) - A- B(L)x + E A-V(L)}yt = E A t t-l

t-1

w(L)Ut.

(4.2.3)

As with Model II, rational expectations solutions for the

expected endogenous \ariables (up to m(s+l) in number) may be
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obtained by leading (4.2.3) j-periods and substituting to obtain ex-

preSSTOns for tEl yt, tEl yt+],...,tE yt+S in terms of Observable

variables. The typical lead equation for (4.2.3) may be obtained by

using the chain rule:2

1 1
E {I - A-

t-1

O(F) - A’ V(L) = E B(L)

t-1

E w(L)
}yt+j-l _, ”t+j-1'

x . +

t+j-l t

J = 1,2,... (4.2.4)

Inspection of (4.2.4) reveals that the Model III rational expecta-

tion for period t+j depends upon rational expectations of endo-

genous variables in both later (t+j+l, t+j+2,...) and earlier

(t+j-l, t+j-2,...) periods. Furthermore, rational expectations for

periods t+j: j 5_r depend upon lagged endogenous variables.3

Therefore, there is simultaneous feedback through time among the

expre551ons for tEl yt,...,tE1 yt+j in (4.2.4), i.e.

yt+j-1 depends uponE yt+jE

t 1 -t 1

depends upon E yand E

- t-l

y .

t 1 t+3
t+j-1'

This result is not obtained in the Model II analog (3.2.4) where the

relationship among rational expectations expressions is shown to be

strictly recursive through time, i.e.

 

2No1d, Chapter 3.

3This result follows from section 2.2, assumption i, expectations

of variables in period t-l and before equal actual values of those

variables.
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E yt+j~l depends upon E y

12-1 t-I t+j

but E. . ‘ ' ., t-l yt+J is independent of tEl yt+j-l

As a result, the substitution procedure required to obtain a RES for

Model III may not be described, by the inversion Of lead operator

processes, the mechanism employed in the Model II analysis.

Even though the simultaneous substitutions involved in ob-

taining a Model III RES from (4.2.4) may not be characterized by

convenient notation, the solution may be expressed in general terms

as:

' }E yt = Rl{yt-r"°"yt-lixt-q""’Xt-litE xt,..., E xt+n-1;KO""’Ks-l

t-l -1 t-1

(4.2.5)

E y = R {y ,...,y ;x _ ,...,x _ ; E x ,..., E x _ ;K ,...,K _ }
t-l t+s s+l t-r t-l t q t l t-l t t-l t+n l O s l

where;

i) R1, j = l,...,s+l, are linear functions which describe

the RES for tE1 yt+j_1.

solving the system of lead equations in (4.2.4) for

These may be obtained by

E yt,..., E

t-l t-l

ii) Kk; k = 0,1,...,s-l, are the values of distant future

yt+s.

endogenous expectations which invariably appear in

R1,...,RS‘],

iii) the effect of K0’°"’Ks-l in the solution for

' ' = ..., + , ' ' ishestEl yt+j~l in (4.2.5), J 1,2, 5 l dimin 4

as n increases; hence, the solution is stable.

 

4An analogous assumption is imposed in the Model II analysis. The

condition which insures that the effect Of distant future values

Of endogenous expectations attenuate as the time horizon lengthens,
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Two separate issues will be addressed in the analysis Of

this general RES for Model III structures. The first concerns the

determination of the functional form for R1, j = l,...,s+l, in

(4.2.5) by analyzing the nature of the substitution procedure re-

quired to obtain a RES for Model III. The second is the Specifica-

tion of conditions which guarantee that the effect of distant future

endogenous variables K0,...,Ks_1 in (4.2.5) declines as n in-

creases, thereby insuring the stability of the solutions. Both of

these objectives may be achieved by considering a simplified version

of (4.2.1). Assume (4.2.1) is a single equation model; A = l,

B(L) = B(L), B(L) and xt are n x l vectors, all other vari-

ables are scalars, and at - N{O,z€}.5 Therefore (4.2.1) becomes:

.. I e

yt - B(L) xt + V(L)yt + 6(F)t-1yt + at . (4.2.6)

The functional form of the solutions described in (4.2.5),

when the relevant theory follows (4.2.6), may be obtained by the

following procedure.

1) Assume initially that E yt+n’ E yt+n+l""’

- t-lt l

tEl yt+n+S-l are known. Denote these as

. 6
K0,...,KS-1 respectively.

 

is that the roots of the characteristic equation 11 - A’]e(F)| = 0

lie outside the unit circle.

S\II(L) is a polynomial of order r in the lag operator L. 6(F) is

a polynomial of order s in the lead operator F.

6Models with S lead endogenous expectations require S of these

assumptions.
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ii) Construct a system of n-equations in n-"unknowns,"

E yt,..., E yt+n-l’ by making j-period forecasts

t-1 t-1

outlined in (4.2.4) where, j = l,...,n.

iii) Solve this system Of equations by inverting the nth-

order coefficient matrix for this system.

When the relevant theory is (4.2.6), the particular system

of n-equations Obtained by leading (4.2.3) may be described as:

J<T

tEl {1 - 6(F)}yt*j“ - igl WI tEl yt+j‘1 . tEl B(L)'Xt+j"

r

+ 1=§frwiyt+j-i-1

for j = l,...,r;

tEl {l - e(F) - 111(L)}yt,_‘1._.1 = tE] B(L)'xt+~1.__1

for j = r+1,...,n-s,

S

tEi1-60- V(L)}yt+j_] = tEl B(L)'xt+1._1 + i=n§j+1 91K1_(n_1+1)

for j = n-(s-l),...,n.

The jth equation j-e l,...,n is obtained by the analysis of the

j-period forecast from (4.24). This system may be expressed in

matrix notation as:

{(r,S)A(")Iz = b + c .(4.2.7)

where;

i) ,r and 5 refer to the order of w(L) and e(F)

respectively,
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ii) {(r,s)A(n)} is an n x n ”band” matrix which may

be described:

(r 5)Agng _ O for i-j > r

= -v for i-j = g; g = 1,2,...,r

= 1-60 for l-J = O

= -Oh for i-j = h; h = -l,-2,...,-s

=0 for i-j<s,

iii) Z is an n x 1 vector of rational expectations of

endogenous variables for period t through period

t+n-l,

iv) b is an n x 1 vector of predetermined variables,‘

and future expected exogenous variables where;

r

bi = tEl £3(L)xt+1._1 + 921 wgyt+i-g+1 for 1 = 1,2,...,r

E B(L)x

t-1

t+i-1 TOP 1 = r+1,...,n-S

n-(s-l),...,n.

I

m- B(L)x . for i
t‘] t+1".1

v) c is an n x 1 vector of distant future endo-

genous expectations where;

O for i = 1,2,...,n-s

5

Ci

for i = n-(s-l),...,n.e K .
h=n-i+l h h-(n-1+l)

Following the procedure for Obtaining a Model III RES out-

lined above, the coefficient matrix from (4.2.7) is inverted to

obtain:
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2:: {(P,S)A(n)};:()b + C)

={ad3:::,:)A:)n)}(}(b + C)

)l

 

where;

i) adj{(r S)A(n)} is the adjoint matrix of

(n)

Hus)“ h

ii) A n) is the determinant of the coefficient

(r.S)

matrix.

Letting asnd) be the cofactor of the 1th row and jth column of

the matrix {(r S)A(")}, the adjoint matrix is the transpose of the

matrix of cofactors:7

(n-l) (n-l)

c‘1,n an,l

. (n) _ . 2

{ads (r S)A 1 - .(n_1) .(n-1)

a1," . . . an,"

Therefore, the solutions for the first (s+l) elements of the

vector Z in (4.2.7) may be expressed:

n

g aintlhb, + c1.)

. = ' = ,..., + . .2.8Z A(n)| J 1 5 I (4 )
 

 

7The cofactor, a1n71), is the determinant of the (n-l)St-order

‘ 9 .th
rninor obtained by deleting the 1 row and jth column from

[1,,5A(n)}, multiplied by (-l)1+j.
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Hence,(4.2.8) describes the particular functional form of R1,

j = l,...,s+l, in (4.2.5) when the relevant theory is (4.2.6).

The isolation of stability conditions for this particular

solution may be accomplished by considering only the portion of R1

in (4.2.5) which contains Kk’ k = 0,1,...,S-l. This portion,

denoted Q1, may be expressed by multiplying the last

 

of A.1 by the elements of c to Obtain:

a(n- 1)6

Q. , E 1.1. ehFh-(n-i+1)

J '=.. - :-' n)1 n (s l) h n 1+1 |(r,S)A 1

Summing over i and h yields:

- ( ) -l ( -l)

QJ " I(ms) n I an?(s-l),i esKo +

-l -l

I(F,S) (”)1 £n(szz),J{O 1K + OSK1} +

. -1 ,

l(r,s)A(n)l ”h1,3{62Ko +...+65KS-2} +

1(r’S)A(n)1-1G(Tj1){61KO +...+ OSKS_]}, j = 1,2,...

Combining terms in the Kk’ k 0,1,...,S-l, yields:

AIM-l E , (n-i) K .
J = l(13$) han-(h-l),j o

I(r,s) h=2 h“n-(h-2),3 1

I A(n)|-l Ee (n-i) K ,
(P.S) ' h=s- 1 6“hn- (h- (s 1)) S-2

1(,.,S)A(n)l.1 Osa£?31) KS_] 3 = 1,2,. ,s+1

columns

(4.2.9)

,s+1.

(4.2.10)
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Hence, from (4.2.10), the coefficients on the distant future

values Ko”"’Ks-l’ in the RES for 21 ( E y , are ratios-_)
t-l t+j l

with the determinant of )A(n)} being the common denominator.
.{(r,s

The weighted sums of cofactors, which comprise the numerators of

these coefficients, may be expressed as single determinants for

each Kk' For example, the numerator of the coefficient on K in
0

(4.2.10) equals the determinant of the matrix formed by deleting

the jth column of {(r SA(n)} and augmenting it with a new nth

column,

(0,...,0 OSOS_],...,O])

This new determinant must be weighted by (-l)n+J to account for

8
the sign carried by the sum of cofactors. The numerators of the

remaining Kk’ k = l,...,s-l, equal determinants which differ only

with respect to the augmented column which becomes

(O,...,O 65,...,ek+1)' for Kk .

These newly formed determinants may, in turn, all be

expressed as cofactors of a common matrix: {(r S)A(n+s)}. This is

illustrated by the following system which links the numerators Of

the coefficients on Kk from (4.2.10) to cofactors of {(r s A(n+s)} 9

 

8The Sign must correspond to that carried by the (n,j)th cofactor

which is the first element in the weighted sum of cofactors for

the coefficients on all Kk'

9The distinction between cofactors from {(r S)A(")} and

{(r S)A(n+s)} will be emphasized by letting p1 j denote the

i,jth cofactor from {(r S)A('H"5)}.
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when

s
_ ( -1) _ ( )

k - 03 h-E] aha :‘(h-1),J - (-1)Op(:+1 ,j)o(n+2,n+2)oooo (n+s,n+S),

s

_ . ( -l) - 1 ( )

k - 1’ n42 ehan3(h.2).i ‘ (“) p<£+1.il-(n+2.n+1>in+3,n+3)°"° (n+sin+sli

k = S-2; E e ("-1) = (-l)s'2 (n)

h=s-1 han-(h-(s-l)),j p(n+l,j)(n+2,n+1)----

(n+S-l,n+s-2) (n+s,n+s),

l_ n- _ S-1 (n)

5’1’ 6Sunni _ ('1) p(n+1,J)in+2,n+1)"°'~(“+5’“+5‘1)'

7
? I
I

The subscript on 9(n) denotes the S pairs of rows and columns

th
deleted from {(r,S)A(n+S)} to form the particular cofactor (n

order determinant) that equals the weighted sum of cofactors ((n-l)St

order determinants from {(r,s)A(n)} ) which constitute the numerators

of the coefficients on Kk’ k = O,...,S-l ih (4.2.10). The Sign

(-l)k is necessary since the sign included in the cofactor, ,

(n)

p(n+l,j)(n+2,n+l)-°-(n+k+l,n+k)(n+k+2,n+k+2)°'°(n+s,n+s)s k = 0,1,...,S-1,

corresponds to (-l)n+3 only when k is even.10

Turning to the denominators of the Coefficients in (4.2.10),

the determinant of I~(r s)A(n)} may also be expressed as a cofactor

A<n+s)}:
.

)
Of {(T‘ S

 

10By definition, all cofactors are weighted by‘ (-l)v; where

v = the sum of the numbers of all the deleted rows and columns.
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(n) _ (n)

)A "°<I(r,s n+l,n+l)::-- (n+s,n+s)-

Therefore, by isolating the coefficients on the distant

future endogenous expectations in the RES for Z. ( E y .

J t-l t+3"

k = O,...,s-l, in (4.2.8)

), it

is clear that the effect of Kk’

dissipates iff:

(n)

(-l)k p(n+l,j)(n+2,n+l)---(n+k+l,n+k)(n+k+2,n+k+2)---(n+s,n+s) =
 

lim n 0

“*a p(n+l,n+l)---(n+s,n+s)

(4.2.ll)

for k = O,l,...,s-l

j = l,2,...,s+l

The stability condition (4.2.ll) is expressed in terms of the ratios

th order determinants. These are determinants of matrices whichof n

have (n-l) common columns. This fact is useful in expressing the

stability conditions in terms of structural parameters for certain

values of r and 5 (shown in the example in 4.4). However, no

restrictions which are necessary to satisfy (4.2.ll) are apparent

when r and s are arbitrary.

An alternative approach to simplifying (4.2.ll) is to write

the determinants as the infinite products of their latent roots.

The stability condition, (4.2.ll), becomes:

n

H L.

.= 13k

{-1)k lim lfil—————-= 0 (4.2.12)

n+°° A

n i
i=l

where;

t
i) Aijk is the i h latent root of the n x n matrix

obtained by deleting the following 5 pairs of rows
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(n+5)
and columns from {(r s)A }:

(n+l,j)-(n+2,n+l)°--- (n+k-l,n+k)(n+k+2,n+k+2)

(n+s,n+s),

ii) A, is the ith latent root of the n x n matrix

{ A(")} obtained by deleting (n+l,n+l)°'°' (n+s,n+s)
YRS

from {(r S)A("+S)}.

Since the matrices which generate Aijk

columns, the relationship between Aijk and xi may be exploited

and A1 have n-l common

to simplify (4.2.l2) for certain values of r and s. This idea

is pursued in 4.4 for r = s = l. However, no general simplifica-

tion may be achieved unless knowledge of the root formulas for

arbitrary r and s is obtained.

The RES of (4.2.8) may now be expressed in terms of observ-

able variables by invoking the stability conditions (4.2.ll) and

adopting an assumption about how expectations of exogenous variables

are formed, thereby yielding :

 

(n-1)Al
. - D.

z. = lim E a“ (n) j= l,2,...,s+l (4.2.13)

J n+m 1=T.| A I

(m5)

where;

i) the expectations in .bi have been replaced by the

t-period forecasts of (3.27) generated by assuming

the exogenous variables follow a stable stochastic

process as in (2.2.6); hence bi becomes Bi’

ii) the stability conditions insure that the effect of

distant future endogenous expectations is negligible
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when n is sufficiently large; hence,

n ogntl) c.

lim 2 477—"1 = 0.

mm i=l IP SA " I

Consequently, the application of the REH to (4.2.6) yields an ex-

pression which depends upon all the predetermined variables in the

original structure, plus any additional lagged exogenous variables—

which are needed to forecast the exogenous variables.

This RES compares quite closely with that obtained in

Chapter III in regard to the specification of relevent variables.

The complexity of the coefficients stems from the complicated sub-

stitution procedure required to eliminate future expectations

of endogenous variables from the Model III RES.

4.3 An Observable Reduced Form for Model III
 

Following the procedure employed in the analysis of both

Model I and Model II, the observable reduced form for Model 111 is

obtained by substituting the RES, (4.2.13), into the original

reduced form (4.2.6) to obtain:

yt = B(L)'xt + W(L)yt + e(F)Z1 + c (4.3.l)
t

where Z1 corresponds to the RES for E yt; therefore:

t-l

e(F)Z1 = 9021 +...+ eSZS+].

This observable reduced form may be simplified by consider-

ing:
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5+1 n (n--l)6

e(F)Z] = jg] ej_1 i; -—4:—T-7—- n-large

a("-_"l)

-_- E 5+] 61““:1») bl

'= '= (n)
1 l J l lr,sA |

Combining terms in b; yields:

n

e(F)Z1 = |(r,S)A(")| Izl{eoa§?;1)+...Sasngl])}b1+6 (4.3.2)
i

Analogous to the procedure in section (4.2), the linear combinations

of cofactors, which form the coefficients on b; in (4.3.2) may

be expressed as single determinants for each b'. The coefficient,

(n-l) (n- l)
{eoai, 1 +...+Gsai, 5+]

tained by replacing the ith row of {(

}, equals the determinant of the matrix ob-

‘ (n ) -
r,S)A } Wlth

{60,6],...,e$, 0 O ... O}.

For example;.assume i = 1, then:
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Assume i = 2, then:

  

  

 

(n-l) (n-l) = _ _ _
60a2,1 +...+ 950125+1 (l 60) 91 as O . 0

e e e 0 . 0

o l 5

~42 'I1

_ (n-Z)

-wr wr-l {(r,s)A }

O -vr

O

0 0

(l-eo) -e1 -eS 0 . 0

-60 -e1 -95 O . 0

'V2 ‘W1

-WP -wr‘] {(r S)A(n-2)}

0 ~vr

' O

o 6

Expanding down the first column, this determinant may be expressed,11

(n-l) (n-l) _ (n-l)

+(1 ’ eo)°‘2,1 + eo°‘2,1 ' “2,1

Hence,

ll d

The elements of the Laplace expansion of the 3r through nth terms

in the first column equal zero since they contain determinants of

singular matrices.
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(n-l) (n-l)

e0&2,l +"’;es 2,s+l _

(n -l

I(ms)A |

i = 3, then:

+ +9 0 '1 = 1P(l-e )
’ s 3,s+l o

-411

-e
o

-lil3

-v r

0

) O 

 

a(n‘])

2‘41n

l(ms)A '

-e1 -e2 .

(l-eo) -e1

-e1 ~62 .

‘*2 “V1

'wr-l 'wr-Z

'wr “yr-l

0 -Wr

I O

0 0

'65 o .....0

-es_1 ‘95 0.. 0

~95 o ..... 0

' (n-3)

{(r,s)A }
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Interchanging the second and third row yields:

  
  

 

(n-l) (n- l)
(90013,1 +. +esa3 5+1 = (1-60) -e1 ............ 6S 0 ........ 0

-60 -e1 -92 . -es 0 ........ 0

-v] (l-eo) -e1 -eS_]-es 0 . 0

‘I3 ‘Iz ‘I1

3 01-5)
-v -vr_1 -vr_2 {(F,S)A }

-wr J1Ir-l

0 -W r

O

-- o o o _

_ (n 1) (n 1) oIn'I)
1(1 6001) +1an31 =3’1 H

" i (n) n

‘ I(r.s)A I Inns.)A I

Therefore, continuing the analysis would yield:

(n ) (n-1) (n-l _ A(n ) -l (n-l)

I(r,s)An I{eoai,l + 6s 1,s+l} I((r,s)A I ai,l

for i = 2, ,n

Hence;12

. n ugh-1) x ,

e(F)Z1 - -bi + .2 -—4——fi—-bi'. . (4.3.3)

1-l Ir,sA |

l2
This type of simplification allows the conditions for

lim 6(F)Q1 = O

n—m
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The observable reduced form may now be re-expressed by substituting

(4.3.3) into (4.3.1) to obtain:

B(L)'xt - tEl B(L)kt(0)

“(n- l)
n

+1111) -—z——fl{Ls() (1-1) + Z v._yt(1_j+])}

n+w 1=l j: i

ljf

yt

(4.3.4)

 

to be stated in simpler terms than considering each Qj separately

as in section 4.2. Consider the coefficient on K0 in e(F)Q1:

s+l
{p(n) }-l 2 6 Dn

(n+l,n+l)°°-(n+s,n+s) i=1 j-l (n+l,j)(n+2,n+2)°°°(n+s,n+s)

But this equals the determinant of the matrix formed by replacing the

first row of the (n+1)St order minor.bbtained by eliminating

(n+2,l)-(n+3,n+3)---(n+s,n+s) from {(r s)AA(n+s)

- {90 e1 --- es O---O}. Expanding down the first column as in the pre-

sent analysis this new determinant may be evaluated as:

{°(n+l ,n+l)°°°(n+s,n+s)}-1{'eo”(1'6oIIDInIl, l)(n+2,n+2) (n+s,n+s)

I _°(:Il, l)(n+2, n+2) 1(n+s,n+s) ,

9(211, n+1)---(n+s,n+s)

Similarly all other coefficients of Kk could be simplified to obtain

e(F)Q]=

SE1(;1)k _(n+l 1)(n+2)(n+l)---(n+k-l)(n+k)(n+k+2.n+k+2)” (n+s,n+s)

°?n+1,n+l)--°(n+s,n+s)

Hence the stability of the weighted sum of rational expectations solu-

tions which appear in the observable reduced form is insured if the

limit of the above expression approaches zero for all values of

= O, ...,sl.

 

}, with ‘ '
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This observable reduced form differs very little from that

obtained for Model I and Model II in terms of specifying the ob-

servable variables which must appear. The complexity of the co-

efficients stem from the intricate substitution procedure required

l

)An}, an inves-

to obtain a Model III RES. However, since the adjoints (agn-1))

are determinants of (n-l)St order minors from {(

(“‘I) I

1,1 (r.s

simplify (4.3.4) for certain values of r and s. This is demon-

r,s

n

tigation of the relationship between a and )A( Il may

strated in the following section.

4.4 An_Example gf_a_Model III Structure

A simple example exhibiting the characteristics of a Model III

structure illustrates the steps leading to a Model III RES and re-

sulting observable reduced form. Consider the single equation model:

- . e _
yt - B(L) xt + vLyt + eFMyt+1 + at t - l,2,...,T (4.4.1)

where from (4.l.l),

i) yt is a scalar,

ii) B(L)I is a (l x n) vector of polynomials in the

lag operator L,

iii) xt is a n x l vector of exogenous variables,

iv) 1(L) 1L is a scalar,

v) 9(F) eF is a scalar,

V1) 3t ~ N{09»£€}-

The structure (4.4.1) describes the "relevant economic theory"

fiar the variable yt. Therefore, following the procedure outlined in

4..2, the application of the REH to (4.4.l) yields an expression
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analogous to (4.2.4):

E {l - eF - 19L}yt = E B(L)'X

124 12-4

t , (4.4.2)

The RES for (4.4.l) is obtained by leading (4.4.2) and follow-

ing the solution procedure suggested in section 4.2, hence:

 

'2‘ wk.” 5.
I ."1 1"] 1 o

E y . - z. - l1m I , 1 = 1,2,... (4.4.3)
M t+J-l J n+°°| AI"I|

where,in this simple example:

i) {(1 1)AIIII} is a tri-diagonal matrix with

(n) _ ._.
(1,1)A i,j - l for 1 - 3

= -e for i-j = -l

= -v for i-j = +l

= 0 for elsewhere,

ii) b; = B(L) xt(0) + yt_1 for i = l

= B(L)'it(i-l) for i = 2,...,n.

The stability conditions for the RES (4.4.3) are obtained by

applying (4.2.ll) to this example; hence the RES is stable iff:

p(n)

lim (n+l,2) = 0; since 5

"*“ p(n+1,n+1)

The numerator of this expression is the determinant of the matrix

st

l.

formed by eliminating the (n+1) row and 2nd column of

A(n+l)} ("+II} is tridaigonal, any minor

formed by eliminating thelast row will be a lower trianglar matrix.

Hence, the cofactor is expressed as the product of the diagonal

elements:
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DE”) ) = (_])n+3(_9)n-l = (-1)nen-l.

n+l,2

Focusing on the denominator of this expression, the latent roots of

the minor which yields pggl] n+l); {(1 1)AInI}, may be expressed:13

I1 = (1 + 2 (IE'Cos-il—) 1 = 1,2,...,n.
n+l

n .

. n) - n 1P“. - ' -
hence p(n+l,n+l) - (-l) 121 (l + 2 M19 Cos n+lI' The stab1l1ty con

dition may now be explicitly stated in terms of the structural para-

 

meters as:

en-l

lim . = O .

4*” n {1 + 2 /T3 Cos-ll—l
1:1 n+l

I converges when lel < l. The infinite productClearly, lim en’

n-HJO

limit in the denominator may be examined by noting:

l for i-small

0 for 1 : 9%;-

a
—
l
o

v

N

(
'
3

O U
)

_
l

.
4

u

-l for i-large ,H

ii) C05 6 = -Cos(w - e) O 5_e 5_n.

Therefore, if n is even;

i

Cos(3§jfi -COS(11 - #:T)

-cos(«c1‘%};ri1) 1=1,2,....n/2,

if n is odd;

 

13S.J. Hammarling, (1970), pp. l53-154.
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in _ ‘n+l-i . = n-l
Cos-R;T - - Cos(nE n+l l) 1 l,2,...,—§—-

=0 1=-—”I2'I

Therefore;

lim (n) = 3 {l + 2 /EV Cos 11—
n+m p(n+1,n+1) i=1 n+l

m .
_ - 2111

‘ H {1 49? C05 n+1},

1=1

m n/2 for n-even

m (n-1)/2 for n-odd.

Hence, $12 9(211,n+1) diverges to infinity when av < O. The suf-

ficient conditions for the stability of the RES for this example may

now be stated:

lel <1,

'61 < 0

Therefore, knowledge of the formulas for the infinite deter-

minants of (4.2.11), as provided in this particular example, will

allow the researcher to obtain sufficient conditions for the stability

of the RES, which may be stated in terms of the original structural

Parameters.

The observable reduced form for (4.4.1) may be obtained from

(4.3.4). Since r = s = 1;



51

However, since {(1 1)AIIII} is tridiagonal;

(-l)I+IeI'I|(1,1)A("'III’
a. =

1,1

the observable reduced form becomes:

yt = B(L). {Xt " Xt(0)}

("'1)|
I A .

+111" LIIL) {B(L)'Xt(0) " {Vt-1}
 

 

n” |(1’])A(n7l

n . . [ A(n-i)l .

+ lim 2 (-1)‘+Ie“I (1,1)( 7. B(Ll'xt(i-1)

4” 1‘2 H1J)AnI

(4.4.4)+ at .

The analysis of this simple example of a Model III structure

emphasizes two distinct characteristics of the application of the

REH to models with both lead endogenous expectations and lagged

(endogenous variables. First, when expressions for the infinite de-

tearminants in (4.2.11) exist, the stability conditions may be stated

1r: terms of the original structural parameters. 'Also, inspection of

04u24.4) reveals that, in the simple one lead-one lag case, the co-

eFficients in the Model III observable reduced form may be simplified

-—.
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to obtain ratios which are different ordered determinants from

identical band matrices.

4.5 fig_0ut1ine 9f_the Multivariate Extension gf_Model III Analysis
 

The procedure which generates a RES for the single equation

model (4.2.6) may be extended to multi-equation structures with gen-

eral disturbance assumptions as described by (4.2.1). The coefficient

matrix {(r )AInII becomes mn-dimensional since (4.2.1) contains
,5

up to m-(s+l) rational expectations which need to be replaced with

expressions of observable variables. The RES is obtained by inverting

this coefficient matrix and post-multiplying it by an mn-dimensional

vector analogous to b' in (4.2.13). The elements in b' depend

upon the nature of the relevant theory and assumptions about the

processes which generate the exogenous variables.I4

The stability conditions require that the coefficients on up

to s-m values of distant future endogenous expectations (Kk in

(4.2.5)) converge to zero for each of the (5+1)m rational expecta-

tions.solutions.

Finally, the RES may be substituted into (4.2.1) to obtain

a reformulated reduced form which is free of unobservable variables.

4.6 Summary

Despite the complex substitution procedured required to ob-

tain a RES for Model III, the resulting observable reduced form is

(quite similar to that obtained in Model II. The RES depends upon

‘

l _

4If m(L) # I in (4.4.1), b' will contain lagged disturbance terms.
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stability conditions which insure that the coefficients on distant

future endogenous variables converge to zero when the number of sub-

stitutions is large. In Model II, the restrictions required for this

condition are stated in terms of the roots of a characteristic equa-

tion. The Model III analysis obtains this condition in terms of

limits of latent roots of infinite order determinants.

A second similarity between the application of the REH to

Model II and Model III structures is the dependence of the solutions

on the process assumed to generate the exogenous variables. The RES

for both models contains expectations of exogenous variables for all

future periods. Hence, assumptions analogous to (2.2.6) are required

to obtain reformulated, reduced forms, void of unobservable variables.

Finally, the observable reduced form for Model III is generally

indistinguishable from that obtained in the analyses of Models I and

II in regard to specifying the set of explanatory variables which

must appear. However, the particular functional form of the co-

efficients is more complex than that obtained for either Model I or

Model II. This complexity stems from the degree of simultaneity in

the system of equations (4.2.4) which gives rise to the Model III

RES.



CHAPTER V -

THE ECONOMETRIC IMPLICATIONS '

0F MODELS WITH RATIONAL EXPECTATIONS

This chapter examines three major topics in the econometric

analysis of models with rational expectations of endogenous vari-

ables. First, the identification of reduced form (RF) parameters

from knowledge of those in the observable reduced form (ORF) is con-

sidered. Second, a method of estimating structural parameters is

introduced. Finally, a procedure for testing the restrictions

implied by the REH is developed.

5.1 The Approach
 

The point of departure for the econometric analysis will be

the models,analyzed in Chapters II, III, and IV. It will be

assumed that the structural parameters of the models in question

may be identified from knowledge of those in the corresponding

reduced form (RF) expression.I

The analysis in previous chapters reveals that the applica-

tion of the REH to these RF structures yields expressions for the

expectations terms which are free of unobservable variables. These

expressions may be substituted into the original RF to obtain an

ORF. This ORF structure is advantageous for applied work since it

 

IThis is the standard notion of identification.
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no longer contains unobservable variables. However, the implica-

tions of employing the particular ORF suggested by the REH as

opposed to any alternative reformulation of the original RF

structure (for example, that obtained by assuming adaptive ex-

pectations) cannot be realized without considering three econo-

metric questions. First, under what conditions are the RF para-

meters identified relative to those in the ORF? Second, what

estimation procedure is appropriate for a model which incorporates

the REH? Third, is the nature of the ORF, obtained by following

the procedure outlined above, conducive to a test of the REH?

The following analysis reveals the econometric implications of the

REH by responding to these three questions.

The first two questions are pursued in some detail for

simple Model I structures in a paper by Wallis (1977).2 The

reference made to a test of the REH in Hallis' analysis is unde-

tailed.3 Consequently, the following analysis contains two primary

contributions. First, it extends the identification and estimation

analysis pioneered by Wallis to more general rational expectations

4 At the same time, some of Wallis' results are modifiedmodels.

to account for general specifications. Second, it provides the

details for a test based upon the particular functional form of the

ORF obtained by following the theory of rationalTexpectations.

 

2Wallis considers models which do not contain lagged variables.

3Wallis, p. 25-26.

4Wallis makes no reference to structures which may be categorized

as Model III.
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5.2 Identification
 

When the parameters of the original RF can be obtained from

knowledge of the ORF coefficients the application of the REH to

models with expectations, generates useful results. In this case,

when the structural parameters are also identified in the standard

sense, from knowledge of RF coefficients, estimates of structural

parameters may be obtained from those in the ORF.5 Hence, by

applying the REH, the researcher is able to perform tests of

hypotheses regarding the structural parameters of models which

originally contained unobservable expectations terms.

Generally, identification will depend upon the number of

independent parameter estimates which are available from the ORF,

relative to the number of original RF coefficients. The follow-

ing analysis concentrates on Model I structures and outlines an

approach for determining the identification conditions for models

with lead expectations.

Consider the following Model I reduced form expression:

- e
yt - 111(L)xt + 112(L)yt + "3t-lyt + vt, (5.2.1)

where, from (2.2.1);

1) n](L) = A-IB(L) - an m x n matrix of lag polynomials,

 

5In some cases structural parameters may be identified from know-

ledge of ORF coefficients even when RF parameters are not. Wallis

points out, p. 25, that it may be possible to "tradeoff" the over-

identification of structural parameters from RF against the under-

identification of RF parameters from the ORF. Nevertheless, the

separate treatments of the two concepts of identification is

significant since no general solution for this "tradeoff" procedure

has yet been obtained.
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ii) «2(L) = A-IW(L) - an m x m matrix of lag polynomials,

recall 10 a 9

iii) n3 = A'Ie - an m x m matrix of reduced form co-

efficients,

. _ -l . . .
1v) vt — A at , at N{0,z€}. 28 1s unrestricted. The

analysis is intended to accommodate any assumption

about the distribution of error terms.

Following (2.3.1), the corresponding ORF obtained by applying the

REH to (5.2.1) is:

yt = "lILIXt + "2(L)yt

+ «3(1 - 131‘11.?1(L1 + «((L11xt_1

+ «3(1 - n3)-]{n2(L)yt} + Vt (5.2.2)

where;

1) n? = A'IBO - an m x n matrix of RF coefficients

containing all the coefficients on those exogenous

variables in period t which occur in (5.2.1),

11) ni(L) = A‘IB'(L) - an m x n matrix of lag poly-

nomials containing all the coefficients on lagged

exogenous variables in (5.2.1),6

iii) it = r(L)xt_]' from (2.2.6) where r(L) is an n x n

diagonal matrix of lag polynomials. For convenience

each of these polynomials is of order P.

- - p-l
o. - o + o +...+ o .

' rJJII‘I 1&1 Y.12" YJPL

 

6Reca11 B'(L) = 131 + 32L +...+ Bqu‘I from (2.2.7).
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Re-express (5.2.2) by combining all lagged terms, which enter (5.2.2)

from the RES, with those appearing in (5.2.1) to obtain:

-0 -1

yt ‘ 1T1X1; + "zILIYt I "3II ‘ ”3)

)‘1 0

"2(L)yt

+ n3(I - n3

+ ni(L)Xt_1 + n3(I - n3) n](L)Xt-1 + Vt

_ 0 -1

yt " "1xt + [I + "3(1 ‘ "3) 1W2(L)yt

-1 0
+ n3(I - n3) n1F(L)Xt_1

+ [I + n3(I - n3)-]]ni(L)X + V
t-1 t

0
- 11xt + (I - n3)

-1
n'

~
<

d
-

I

2(Llyt

-1 0
+ n3(I - n3) n]P(L)xt_]

+ (I - .31"..;(L)xt.1 + Vt . (5.2.3)

The analysis of (5.2.3) is facilitated by noting that each

equation of a reduced form system contains all the predetermined

variables in the system. Hence, the explanatory variables in each

equation of (5.2.3) may be categorized;

n1 2 the number of period t exogenous variables in each

equation of (5.2.1). Without loss of generality, let

these be the first 111 of the nth order vector x .
t

the total number of lagged variables in (5.2.1)

which can be obtained by lagging members of n].

Note, Max k1 = (111 - q); q = Max q from 2.1
11

assumption iii.
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k2 a the total number of lagged variables that do not have

corresponding period t values in (5.2.1). Note,

Max k2 = (n - n1)q.

k3 a the total number of lagged endogenous variables in

(5.2.1). Note, Max k3 = m - r

r = Max rij from 2.1 assumption v.

I (L) an n x n diagonal matrix of polynomials in the lag

operator L which contain the coefficients on only

those lagged exogenous variables from the auto-

regressive process (2.2.6) which do not also appear

in (5.2.1). Hence, the jth diagonal element of

*

r (L) 15

1* (L) - * + * L + + * Lp’I ' - 1 n
33 Yj.1 Y.132 "' Yj.p ’ J ""’ l

where;

y. when the 9th lag on the jth exogenous vari-

3,9 able does not appear in (5.2.1), 9 = 1,2,...,p

* .

Y- = * 1

3’9 0 when the 9th lag on the jth exogenous vari-

ables does appear in (5.2.1)

*

r**(L) s I‘(L) - r (L).7

Employing these assumptions, (5.2.3) may be written:

 

7The question of locating the last n - 111 diagonal elements in

*

r*(L) or r *(L) is immaterial since the last n - 111 columns

of n? are null vectors.



60

_ 0 -1

yt ’ "lxt + (I ’ "3) "2(L)yt

- *

+ 13(1 - .3) In$r (L)xt_]

_ **

+ n3(I - n3) 1n?F (L)Xt_]

+ (I - n3)ni(L)Xt_1 + Vt . (5.2.4)

Equation (5.2.4) illustrates that the m - n1 elements of

n? are immediately obtainable from knowledge of the ORF coefficients.

The parameters of the autoregressive processes, r(L) from (2.2.6),

are identified outside the system (5.2.4). The condition which

insures that the remaining RF coefficients can be obtained from

those in the ORF is that the individual elements of n3 are

identified from knowledge of:

This may be demonstrated by equating the ORF coefficients of (5.2.4)

with those obtained in the simple linear regression of yt on the

set of variables which appear i

from this unrestricted version

0
m x n matrix, m0 5 n],

the m x m matrix, ¢1(L)

the m x n matrix, ¢2(L)

the m x n matrix, ¢3(L)

n (5.2.4). Denoting the coefficients

of (5.2.4) by ¢(L), define the

-1
(I ' Tr3) "2(L):

n3(I - n3)-]n?F*(L),

-In?P**

'1 1

n](L).

"3(1 ‘ TI'3) (L) +

(I ‘ "3)



61

Since n3 is an m x m matrix of full rank;

:
3

N

A

‘
—

v

I

T (I - n3)¢](L) and

:
3

—
—
J
-

A

r

V

II

(I - 113) (p3(L) - 113(1 - 113) (pOI‘ (L) .

Therefore, when the elements of W3 may be obtained from

o0, r*(L), and ¢1(L); then 12(L) and "IILI may be expressed

in terms of the $1 and r. Hence, when the conditions for the

identification of the elements of n3 are satisfied, the

m(k1 + k2 + k3) remaining in the ORF provide the information to

solve for the m(k1 + k2 + k3) remaining unidentified parameters

in "IILI and 112(L).8 Consequently, the following analysis con-

centrates on the coefficients in the third term in (5.2.4):

.. 'k
) l 0

113(1 - 113 1111" (L). (5.2.5)

By construction, the last n - "1 columns of n? are

*

null vectors. The jjth diagonal element of r (L) will be non-

zero if at least one lagged value of the jth type of exogenous

variable j = 1,2,...,n1 appears in the autoregressive process

for the jth variable but not.as an explanatory variable in (5.3.1).

Let 112 be the number of null diagonal elements in the first 111

rows and columns of r*(L). Then a necessary and sufficient

condition for identifying the elements of n3 from knowledge of

ORF coefficients is:

 

8A simple example which illustrates this point is contained in the

Appendix; Example III.
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0*

p{11.II‘ (L)} = m. (5.2.5)

Hence, only when the rank of n?F*(L) equals m will there be

m2 independent equations for the m2 unknown elements of n3.

But, oh?) =<_ min{n.‘, m}

In
*

and p I‘ (L) I 5n] - n29;

0 0

D{fl?r*(L)} ;,MIn{m, "1 - ”2}.

Clearly, a necessary condition for the identification of the elements

of n3, and hence, all RF parameters, from knowledge of ORF co-

efficients is:

r1.I - n2 > m . (5.2.7)

Therefore, the condition for identification requires that the

number of period t exogenous variables, for which at least one

lagged value (lag i P) does not appear in the original system,

exceeds the number of equations. Clearly, the condition could be

modified to account for the possibility that not all endogenous

variables appear in expectation form. In this case (5.2.7) would

be:

nl-n2>m1

 

9Only the rank of this submatrix is of concern since the last

n - n1 columns of n? are null vectors. Hence, independent rows

*

and columns in the last n - 111 rows and columns of P (L) will

*

not augment pIn?P (L)}.
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where, m1 is the number of endogenous expectations in each equa-

tion.

This result generalizes Wallis' identification condition

for models with lagged variables.10 However, when lagged variables

are considered, two conclusions reached by Wallis must be modified.

First, his identification condition no longer applies to general

models. Second, the nature of the autoregressive process does

have a role in the identification analysis, contrary to Wallis'

contention. The following analysis demonstrates these results.

In the simple models employed by Wallis, the condition for

identification of RF coefficients from those in the ORF is that

the number of exogenous variables exceed the number of expectations

terms. This condition is a special case of (5.2.7). When no

lagged terms exist, the elements of n3 are the only terms which

are not immediately identified from knowledge of the ORF coefficients.

*

Also, n1 - n, r (L) = r(L) and r12 = 0. Therefore;

*

pfn?F (L)} étmin{m, n}.

Hence, Wallis' identification condition,

n > m, (5.2.8)

is confirmed. However, expression (5.2.7) reveals that this state-

ment is invalid when some of the explanatory variables in the

original RF are lagged exogenous or lagged endogenous variables.

Clearly, the ORF coefficients on lagged values provide no

 

Iowa111s, p. 25.
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information for identifying the elements of N3 11

' An additional result obtained from the Wallis study must

be modified in light of the present analysis. Wallis maintains

that substituting the autoregressive processes for exogenous

variables into the ORF (as opposed to merely calculating a single

value for the optimum forecast) is of "no assistance" in

identifying the elements of n3.I2 This result is confirmed for

Wallis' simple model by considering (5.2.8). The rank of r*(L)

will be n, regardless of the orders of the individual auto~

regressive processes for the n exogenous variables. However,

(5.2.7) reveals that 112 corresponds to the number of current

period exogenous variables which are generated by a particular

set of lagged exogenous variables that also appear in the original

RF equation. The previous analysis demonstrates that when auto-

regressive processes for these exogenous varialbes are sub-

stituted into the ORF, the form of the resulting coefficients is

not conducive to identifying elements of n3. Hence, the value

of 112 depends upon the particular lag structure of the auto-

regressive processes. As a result, when the model under investi-

gation contains lagged variables, the condition for identification

does depend upon the nature of the process generating the

exogenous variables. However, when m > n], the additional

 

1IExamp1e III in the Appendix offers an illustration of this

fact.

IzWallis, p. 25.
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information which may be gained by extending the order of the pro-

cess assumed to generate the exogenous variables will never-be

great enough to identify the elements of n3.

When the question of identifying RF parameters from those in

the ORF is extended to models with lead expectations, the analysis

is complicated by two factors. One stems from the increased number

of expectations terms contained in models with lead expectations.

As a result, the number of elements in «3 increased from a maximum

of m2 to a maximum of mZIS + l}. Secondly, the ORF coefficients

are much more complicated functions of the RF parameters. The

ensuing analysis contains an outline of the general approach for

determining the conditions for identification for Model II and Model

III structures.

Initially, consider an unrestricted version of any Model II

or Model III ORF as a function, linear in both parameters and vari-

ables, which contains the set of variables appearing in the ORF of

the model under investigation. Hence, let:

yt =:p(L)zt + Vt (5.2.9)

where;

. ' 1

I) 21: {xti‘yt-l} ’

ii) tp(L) is an m x n + m matrix whose elements are

13
polynomials in the lag operator L. The length

 

13The elements of :p(L) are defined analogous to those of B(L)

in section 2.1, assumption ii.
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of the lags will depend upon the lags in «1(L),

n2(L), and F(L),

iii) forecasts from i = F(L)x have been entered to
t t-l

eliminate all "future" values.

The general ORF structure obtained by an analysis of either Model II

or Model III, illustrated in (3.3.1) and (4.3.4) respectively may

be designated:

yt = 1r(L)2t + vt (5.2.10)

where;

i) zt is defined in (5.2.9),

ii) n(L) is an m x n + m matrix whose elements

correspond to those in either (3.3.1) or (4.3.4)

when expressions for the lead forecasts of 2t(2)

have been substituted for the expected future

values of exogenous variables.

Since (5.2.9) and (5.2.10) contain identical sets of explanatory

variables, the conditions for identification may be examined by

equating the coefficients from (5.2.9) with the functions of original

RF parameters which constitute the coefficients of (5.2.10). The

resulting system is a functional relation from the elements of

«(L) to the elements of <p(L). If the rank of the Jacobian matrix

for this transformation equals or exceeds the number of original

RF parameters, one may solve for the elements of n(L) in terms of



67

those in<p(L).I4’15 Therefore the condition fin~identification is:16

afp(L)i the number of parameters

0 3n(l). = in the RF system.

where;

3.9(L).
1 . . .

-7;;n:x; are the grad1ents which comprise the

Jacobian 3'°(L)i

31111:)J. '

In conclusion, the conditions under which RF coefficients may

be obtained from knowledge of ORF parameters becomes more obscure as

one investigates more general models with rational expectations.

Nevertheless, the issue is important if statements about values of

the structural parameters must be made. Furthermore, the question

of identification must be considered prior to that of structural

estimation; the subject bf the next section.

5.3 Estimation
 

This section outlines an approach to the estimation of the

structural coefficients for any model with rational expectations.

The analysis is somewhat abbreviated since it follows the procedure

17
outlined by Wallis. The estimators obtained by this method are

 

I4See Ramsey (1976), p. 170.

ISSee Hadley (1954), p. 48.

16Clearly, the Model I Condition is a Special case of this formula.

With simple models it is easier to isolate the analysis upon those

terms which are crucial for identification.

I7Wallis, p. 28—30.
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then compared with approaches to estimation employed in earlier

studies.

The estimation of structural parameters in models with

rational expectations is accomplished by the following procedure.

Obtain a RES by applying the REH to the relevant reduced form

system. Substitute this expression into the system of structural

equations to eliminate the unobservable expectations terms. Full

information maximum likelihood (FIML) estimators for the structural

coefficients may be obtained from the resulting system which is

nonlinear in the parameters but linear in the variables.18

This procedure yields consistent and asymptotically effi-

cient estimates when two conditions are satisfied. The first re-

quires that efficient estimates for the elements of r(L), obtained

from a Zellner's seemingly unrelated regressions technique, appear

in the particular RES which serves as the observable expression for

the expectations terms. Second, structural coefficients must be

identified from knowledge of ORF coefficients.

Following Wallis, this procedure may be outlined by writing:

Ayt = M(L; a: f)Z + 8 (5.3.1)

 

t t

where;

l) A is the coefficient matrix employed in the descrip-

tions of Models I, II, and III,

18
An analysis of this type of estimation procedure is contained in

Bard (1974), p. 64.
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ii) M(L; a, I) is an m x m + n matrix of structural co-

efficients that contains parameters corresponding to

any model in which expectations terms have been re-

placed by a relevant RES. Forecasts from

A

xt = f‘(L)xt_1 have been employed to eliminate all

exogenous expectations,

iii) 0 represents the vector of structural parameters

which comprise the coefficients of this reformulated

system.

When the vector of disturbance terms ~ NIO, :8}, the FIMLE:

t

estimators are those which maximize:19

'
— l
l

1 T
-§-MT 109(21) - E-log [Eel

+ 1 10931111) ~12- tr Z;IIAY - M(L; a, ‘1‘)Z}'{AY - M(L; a, 1)}

where, Y and Z are matrices of observations for yt and 2t.

Suggestions for the particular numerical optimization pro-

cedure for this problem may be found in Wallis.20 Much of Wallis'

analysis is based upon an earlier study by Sargan and

Sylvwestrowicz (1976).

The properties of the estimators generated by this pro-

cedure may be compared to those obtained in previous studies by

McCallum (1976) and Sargent and Wallace (1973). Briefly, McCallum

 

I9Wallis points out, p. 26, that estimation may require the sample

period to be "appropriately truncated."

20Wallis, p. 29.
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substitutes actual values of endogenous variables for the expecta-

tions to overcome the problem of unobservables. The analysis reduces

to an "errors in variables" problem where it is assumed that unbiased

forecast errors separate actual and expected values of the future

endogenous variables. McCallum obtains consistent estimators by

using the predetermined variables in the original structural model

as instruments for the future endogenous variables. Sargent and

Wallace (S-W) suggest replacing the unobservable expectations with

the forecasts of endogenous variables formulated from a menu of

variables chosen from the set of predetermined variables. A FIML or

3SLS technique applied to this reformulated structure results in

consistent estimates for the structural parameters. When the in-

formation set used to forecast endogenous variables in the S-W

approach equals the set of instruments employed by McCallum, the

two procedures yield identical estimators.21 ‘

Although these procedures yield consistent estimates of

structural parameters, the manner in which expectations are elim-

inated from the structural equations reduces to replacing expecta—

tions terms with arbitrary linear functions of the set of variables

which comprise the RES. Hence, the McCallum and S-W approaches

ignore the REH result which links expectations terms with expres-

sions, obtained by making conditional forecasts on the relevant

theory, whose coefficients are known functions of structural para-

meters. In contrast, the estimators described in the present

 

2IMcCanum (1976), p. 45.
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analysis reflect all the information revealed by the application of

the REH to a specific model, including the particular functional form

obtained in a RES. Hence, the FIML estimation procedure, outlined

above, incorporates any constraints on the parameters of the re-

formulated structural equations generated by substituting a suitable

RES for the expectations terms.22 Therefore, by incorporating in-

formation about structural parameters which is ignored in the pre-'

vious approaches, the estimators derived from the present analysis

are necessarily more efficient than those suggested by McCallum or

Sargent and Wallace.23

5.4 Testing the REH
 

The REH may be tested by examining the validity of the

restrictions inherent in the ORF generated by applying the theory of

rational expectations to a model which contains expectations. These

restrictions arise since the coefficients of the ORF are functions

of the RF parameters and there are generally more variables in the

ORF than there are parameters in the RF. If the REH is a valid

hypothesis, these restrictions on the ORF coefficients must be true.

The restrictions may be tested by comparing the explanatory power

of the ORF suggested by the REH with an alternative, unrestricted

version, which is a simple function, linear in both parameters and

 

22The nature of these constraints are the subject of the following

section. -

23Th1s point is confirmed in Kmenta (1971). p. 450-
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variables, of the set of variables which appear in the ORF.24

Clearly, a test which rejects the hypothesis that these restric-

tions are true would cast doubt on the validity of the REH.

TWo separate test procedures may be employed; Wald's test

25
or the Likelihood Ratio test. For Wald's test, the estimates of

cp from (5.2.9) and of r from (2.2.6) are obtained.26 The re-

strictions implied by the REH are of the form:27

f{Vec(p,f)} = 0 ; Q 5 null vector

therefore, the test statistic is:

W = f{Vec(‘13 ,f)}'Vf{Vec('b ,f‘)}

where;

i) W ~ XIR); R 5 total number of restrictions,

ii) V is the asymptotic covariance matrix of

f{Vec($ ,f‘)}.

 

24The test could also be undertaken with respect to the structural

equations. In this case the restricted structure is (5.3.1) while

an alternative, unrestricted specification is simple linear func-

tion containing the variables in (5.3.1). Emphasis is placed upon

ORF analysis in the present analysis to avoid any confusion between

standard overidentifying restrictions and those restrictions implied

by the REH.

25An excellent discussion of these tests may be found in Silvey (1970),

p. 108-118.

26Each of these estimators may be obtained by a Zellner's seemingly

unrelated regressions approach. Furthermore, equally efficient

estimates of :p could be obtained by applying 0.L.S. to each equa-

tion in (5.2.9); since the regressors in each equation are identical.

See Kmenta (1971), p. 521.

27"Vec" maps the elements of matrices into a single vector.
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The likelihood ratio test compares the values obtained by

maximizing the likelihood function with, first, a restricted and

then an unrestricted parameter space to obtain:

Max L|H0 ; ”0‘1: restricted,

Max LIHA ; HA=”‘P unrestricted.

The value of Max L|HA is obtained by maximizing the likeli-

hood function formed when the relationship between yt and 2t is

described by (5.2.9). Hence, the alternate hypothesis suggests:

yt =’p(L)Zt + Vt .

The likelihood function in this case is maximized with respect to

the elements of cp.

r’ Alternatively, Max L|H0 may be calculated by obtaining the

restrictions imposed on the elements of (p by the REH, substituting

these into (5.2.9) to eliminate R elements of :p. and then maximize

the modified likelihood function, containing the restrictions, with

respect to the remaining elements of 4p. 'However, the ORF incor-

porates the REH restrictions. Therefore, Max L|H0 could also be

obtained by maximizing the likelihood function formed by assuming

the true relationship between yt and z is (5.2.10):
t

yt = 11(L)Zt + Vt .

In this case, the maximization is undertaken with respect to the RF

parameters when the RF coefficients can be obtained from knowledge

of those in the ORF. When RF parameters are not identified, the
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REH may still be a testable proposition; in this case, the value for

Max LIH0 may be obtained by maximizing with respect to a sutiable

combination of RF parameters.28

Having obtained Max L1H0 and Max LIHA, the relevant test

statistic is:

= Max L|H0

where;

2
- 2 log 1 ~ X(R)'

Both test procedures require enumeration of the restrictions

implied by the REH. In the following analysis, the number of re-

-strictions for general Model I structures is established and the pro-

cedure for counting restrictions for models with lead expectations

is outlined. Examples of the form of these restrictions are con-

tained in the Appendix for Chapter V.

 

28For example, assume that the elements of n cannot be obtained

from knowledge of the ORF coefficients. In tfiis case the maximum

likelihood value is obtained by maximizing with respect to:

i) m - n1 elements of fl?,

ii) m(n - n1) elements of the product n3(I - n3)n?:

iii) the m - k.l elements formed by summing the first 111

columns of the product (I - n3)-1ni(L) and the product

n3(I - n3)- n0,

iv) the m - k2 elements of the last n - n1 columns of

the product (I - «3)'In;(L),

v) the m - k3 elements of the product, (I - n3)n2(L).

The following analysis demonstrates that restrictions may exist in

the underidentified case and an example is provided by IId in the

Appendix.



 

 

75

The number of restrictions implied by the REH, when the

relevant theory is a Model I structure, may be revealed by recon-

sidering (5.2.5):

- -*

n3(I - n3) In? F (L).

Since every set of coefficients, except (5.2.5), may be expressed in

terms of a greater number of RF coefficients, (5.2.5) is the only

source of restrictions.

It is convenient to divide the restrictions into two separate

categories. One set, type I, may be attributed to the extent in

which the elements of n3 are overidentified by independent estimates

from the ORF. By construction, the number of independent estimates

for the terms in (5.2.5) is m(n1 - n2) and the number of parameters

to be estimated is m2; n? and r*(L) are identified outside of

(5.2.5). Hence, there are

2
m(n1 - n2) - m

overidentifying restrictions.29’30

A second class of restrictions, type II, may be revealed from

(5.2.5) by comparing the ORF coefficients for each of the lagged

values of the jth, j = 1,2,...,n], exogenous variable within each

equation. This is facilitated by denoting the elements of the dia-

* 1k *

gonal matrix P (L) as rjj(L) and letting cj equal the number of

 

29This type of restrictions are noted by Wallis, p. 25.

30Examples of these type I restrictions are provided in Ib, IIb,

and III in the Appendix.
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lagged values, (lag §_P) that appear in the original RF (5.2.4) and

th
which can be generated by lagging the j period t exogenous vari-

*

able xjt' Then, P - cj is the number of nonzero coefficients in

th
the polynomial in L which constitutes the j diagonal element in

* , * . . . .th
r (L). S1nce F (L) 15 a d1agonal matr1x, the J

1th row of the m x n matrix product (5.2.5) is obtained by

element of the

multiplying the ith row of n3(I - 113)'1 by the jth column of n?

' 'k

which, in turn, is weighted by the scalar, rjjIL)‘ Therefore, the

coefficients on the lagged values of the jth exogenous variable in

the ith thequation of the ORF share a common factor, namely the i, j

element of n3(I - n3)-1n?. Hence, these coefficients differ only

* * * *

by factors of yj’], yj’2,...,yj,P_c3s the terms in r... S1nce the

33
*

elements of r (L) are identified by estimation of (2.2.6), the

*

relation between these P - cj coefficients may be expressed in

1k

P - cj - l restrictions. For example, let ’Pijg be the coeffi-

cient on the gth lagged value of the jth exogenous variable in the

th
1 equation of the ORF. Then the restrictions described above may

be expressedz3I

*

. . y.

Ifljl.=._%l g = 2,3,...,P - cf
m--‘ J

for each individual j;

j = 1,2,...,n].

Combining these n1 sets of P - c; - l, j = l,...,n],

restrictions yields

 

*

31When P = c., no restrictions are implied by the nature of the

coefficients 6n the lagged values of the jth exogenous variable in

the ORF.
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n

1 4

X MaxIP - c.

n=1 J

- 1,0}

th equation.32 Since each equa-total type II restrictions in the i

tion contains exactly the same set of variables, this is

n

l 4

m X MaxIP - c. - 1,0}

1=1 3

type II restrictions for the system.

Combining restrictions of both type I and II yields

R = m - Max{n1 - n2 - m,0}

n

l 4

+ m 2 Max{P - c. - 1,0} (5.4.1)

1=1 3

*

total independent restrictions.33 But P - cj - l = -1 only when

* .

P = cj, or when every term in the process which generates the jth

exogenous variable also appears in the original RF. By construc-

*

tion, P = cj for 112 exogenous variables. Hence;

n1 . n1

2 MaxIP - Cj - 1,0} = { X

J 1 j l

34

* +
P ‘ Cj} ' n1 ”29

and R may be expressed as:

 

32Examples of these restrictions are provided by Ic, IIc, IId, and

III in the Appendix.

33There are many ways to express the restrictions, but any addi-

tional ones are redundant -the (R+l)St may be obtained from the

original R.

34Section A-3 of the Appendix for Chapter V compares these restric-

tion rules with the number of restrictions which appear in the

examples considered.
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"1

m{.§ 1 {P - cg} - Min(n1 - n2, m)}. (5.4.2)

1

This result may be verified by comparing the total number of

variables in the ORF with the total number of identifiable para-

meters contained in the ORF coefficients. Initially, recall that

the number of ORF parameters is less than or equal to the number of

RF parameters for all the groups ORF coefficients defined above,

except for those contained in ‘PZIBI (from section 5.2). Hence,

35
all restrictions are isolated in (5.2.5). The number of ORF terms

n

described by (5.2.5) is m Zjl](P - c3). When the RF parameters are

)

'k
11

identified from knowledge of those in the ORF, these m 2j11(P - cJ

unrestricted ORF coefficients can be expressed in terms of the m2

3%

(elements of n3, since n? and r (L) are identified outside of

(5.2.5). This suggests

n
1 4

mlE Z P - c.} - m]

1=1 J

restrictions. This result conforms to the rule, (5.4.2), since

m 5_n1 - 112 when the RF parameters are identified. When the RF

parameters are not identified, restrictions may still exist since

the m 221] (P - c3) unrestricted ORF coefficients may be expressed

in terms of m(nI - n2) identifiable functions of RF parameters;

namely, the elements in the 111 - n2 nonzero columns of

 

35Example III of the Appendix for Chapter V illustrates this

point.
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n]. As a result this yields

n

1 4

[“6121 P - Cj} - (n1 - n23

restrictions. This result also follows the rule, (5.4.2), Since

m 3_n] - 112 when the RF parameters are not identified.

The present analysis reveals that testable REH restrictions

may exist, even when the elements of the RF are not separately

37
identified from knowledge of ORF coefficients. Therefore,

Wallis' contention that the overidentified case is "more interesting,

since it permits a test of the REH...," is somewhat misleading.38

Having obtained the number of restrictions implied by the

REH, it is a trivial matter to set up a critical region for the

maximum likelihood ratio test at a chosen level of significance.

The usefulness of Wald's test procedure depends upon the degree of

difficulty encounteredzin determining the form of the restrictions.

For simple Model I structures this is relatively easy; but it may

be quite demanding for more complicated models with lead expectations.

However, a test of the REH may be facilitated by noting that, re-

gardless of the complexity of the model in question, the likelihood

ratio test requires only the number of restrictions, since their

 

36Example 11d of the Appendix illustrates this point.

37A value for Max L|H is obtained with respect to a combination

of sums and products f RF parameters in this case.

38Wallis, p. 25. Wallis hints at the existence of Type II restric-

tions on p. 7, but ignores them in his brief statements about test-

ing the REH.
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form is implied by the nature of the nonlinear functions of RF

parameters, which constitute the restricted ORF coefficients.

Analyzing the test procedure for general Model I structures

provides some insight for testing the REH when the relevant theory

contains lead expectations. For special cases one may be able to

dichotomize the restrictions into type I and type 11; however, the

nature and actual form of the restrictions, for general Specifica-

tions, will be obscured by the complexity of the coefficients ob-

tained in the Model II and Model III ORFS. Nevertheless, it is

relatively easy to compare the number of variables in the ORF with

the number of identifiable RF parameters. Given the experience of

the Model I analysis, it is reasonable to assume that when the RF

parameters are identified, the number of restrictions is the dif-

ference between the total number of unrestricted ORF coefficients

and the total number of RF parameters that form the coefficients in

the restricted version of the ORF. Therefore, let:

# of unrestricted ORF parameters,
QORF

# of RF parameters.
QRF

Then, total R = QORF - QRF in the identified case. When the RF

elements are not identified, the QORF coefficients cannot be ex-

pressed by QRF individual RF coefficients but may be represented

. 3'12- '
by “(5711) identifiable functions: of the RF parameters. Therefore,

3'

a general rule for counting the restrictions implied by the REH is:

R = QORF ' M1n(QRFa QJ)’ (5.4.3)
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where, QJ equals the rank of the Jacobian matrix of transformation

for the relation between the elements of n and ,9, described in

section 5.2.

The similarity between (5.4.3) and (5.4.2), the rule for

Model I restrictions, is not surprising Since the Model I result is

a special case of (5.4.3) obtained by isolating the analysis on only

those terms in the ORF in which QORF exceeds QRF'

5.5 Summary

The econometric implications of applying the REH to models

with expectations have been investigated by exploring the three

questions posed at the outset of this chapter. The answer to these

questions, provided in the above analysis may be briefly summarized.

In regard to the identification of RF parameters from know-

ledge of those in the ORF, a general condition for identification is

determined, placing specific emphasis on Model I structures. When

no lagged variables appear, this condition requires that the number

of exogenous variables exceed the number of expectations terms in

each equation. Analysis of models with lagged variables reveals

that this simple condition, originally suggested by Wallis, is not

applicable for all specifications. The current study reveals that

lagged variables may not be treated like period-t exogenous vari—

ables in establishing the condition for identification. Moreover,

the appearance of period t exogenous variables contributes to the

identification of RF parameters only when the entire generating pro-

cess for that particular variable does not appear in the original

RF system. Finally, the complex nature of the ORF coefficients will
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often make it difficult to actually obtain expressions of RF co-

efficients in terms of those in the ORF, but the procedures outlined

in 5.2 provide guidelines for determining those Situations in which

the RF are simply not identified and consequently, when the endeavor

will be futile.

The estimation procedure outlined in section (5.3) serves

as the response to the second inquiry broached at this chapter's

inception. Estimators, obtained by following the technique outlined

above, account for the restrictions implied by the REH and, consequently,

are more efficient than those obtained by procedures which ignore this

additional information. The major disadvantage of this approach to

estimation is the complex numerical solution procedures required to

maximize the likelihood function. Nevertheless, given the nonlinear

nature of the particular RES which is substituted for the expecta-

tions terms, the FIML approach which incorporates the REH restric-

tions, is the appropriate estimation procedure.

Finally, the test developed in section (5.4) provides an

answer to the most important question posed in Chapter V. By em-

ploying this test procedure in various models with expectations, the

applied researcher will be able to judge the durability of the REH

restrictions. In this manner, the validity of the REH, as a proxy

for the perceptions of economic agents, may be determined.



CHAPTER VI

AN ANALYSIS OF THE RECENT LITERATURE

ON THE THEORY OF RATIONAL EXPECTATIONS

This chapter compares the use of rational expectations in

previous studies with the guidelines for employing the REH, provided

in the current analysis. Particular emphasis is centered upon past

researchers' concerns about three issues highlighted in the current

study; namely, the conditions which insure the stability of a RES,

the role of specifying generating mechanisms for exogenous variables,

and the particular functional form of the observable structure ob-

tained by applying the REH to the model in question. I

The following analysis considers several of the numerous

treatments of the REH contained in recent studies. These range

from applied studies to strictly theoretical analyses. First, this

survey considers studies which employ the REH contrary to the guide-

lines of the current framework. Second, examples of Simple models

with lead expectations are explored. Third, the result of applying

,the REH to a relevant theory which reflects the natural rate hypo-

thesis is analyzed. Finally, the alternative solution procedures

employed by Muth (1961) and Shiller (1978) are considered.

A common theme of many of these recent studies is that re-

searchers often fail to discuss the three issues listed above. The

reasons for the de-emphasis of these seemingly important topics is

revealed in the ensuing analysis._
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6.1 Examples which Deviate from the Approach Employed in the

Current Study
 

This section explores the manner in which the REH is applied

to models investigated by McCallum (1977) and Haley (1976). These

results are compared with those obtained by following the guidelines

of the current approach under similar circumstances. Finally,

possible explanations for the methodologies employed by these authors

are provided. I

McCallum, in an analysis of foreign exchange rates, proposes

the following structural model:I

- * ' e

F ‘ Yo I Y1Ft I Y25t+3 I u1tt

*—

Ft - St + (Rt - l)

*

- e -

Ft - Ft - (B/a)$t + (8/0)Ft_3 (S/Q)Rt + conStant’

where;

i) Ft is the three-period forward rate as of period t,

*

ii) Ft is the interest parity forward rate,

1ii) Si+3 is the expected spot rate three periods hence,

iv) S is the period t Spot rate,

t o

l + 1ct

“551—7716;;

ict and iut are the 90-day interest rates in Canada

and the U.S., respectively,

 

1This model is obtained from equations 7, 8, and A-5, McCallum (1977),

p. 147.
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vi) 1. B. a are structural parameters,

vii) u1t is a structural disturbance,

*

viii) Ft’ Ft and St are the endogenous variables in the

system.

McCallum obtains a reduced form for the interest parity forward rate,

designated (9), from his model:

* _ e

Ft ' "o I Tr1Rt I "2Ft-3 I 1r35t+3 I Vt’

where the form of the hi, i = 0,1,2,3 are not explicitly specified.

At this point, McCallum invokes the REH to obtain the follow-

ing expression, labeled (13), for the expectations terms:

EISt+3I9tI = 50 I 611Rt I 612Ft-3

R + 6 F
I 621 t-1 22 t-4 +°°'

where;

i) gt represents the relevant information set as of period-t,

11) 60: 6]], 612, 622,... are unspec1f1ed parameters.

The basis for McCallum's RES is clearly stated,

"...since St is an endogenous variable in the

system consisting of equstions (7), (8) and (9),

our model implies that spot prices are 'actually'

determined by the predetermined variables of that

system. Thus we see that 0 will consist of the

values of these variables -- and perhaps additional

lagged endogenous variables -- that are known to

market participants at time t. Consequently,

EISt+3|0t} is a function -- which we assume to be

linear -- of current and past values of the sysEem's

predetermined variables (now excluding— SE+3)."

 

2McCallum, p. 147.
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Therefore, McCallum presumes the information set contains

knowledge of the variables appearing in the relevant theory for spot

prices, but not its particular functional form. The details of his

solution procedure are left unexplained.

Following the guidelines of the present analysis, the reduced

form (relevant theory) for S could have been obtained by sub-
t

Stituting (9) into the identity (8). This is identical to a RF equa-

tion for St from McCallum's model. Since (8) is an identity and

*

(9) is the RF for Ft from 7, 8, and A-5, then the RF for St

written in McCallum's notation may be designated as 9':

= _ 3

St (W0 + 1) + (11.I 1)Rt + nth_3 + n3St+3 + Vt .

Since Ft is an endogenous variable, (9') is one equation of a

three equation Model III structure. By making conditional forecasts

on (9') a Model III RES following (4.2.13) may be obtained.

Hence, the McCallum study contains a number of theoretical

deficiencies. It fails to account for the constraints on the parari

meters of 9' (analogous to (4.2.ll)) which insure the stability of

the solution. Also, it ignores the generating mechanism for Rt

required by the solution. And finally, McCallum obtains a RES con-

taining coefficients which bear no relation to those in the original

reduced form. Moreover, McCallum's estimates of the reduced form

parameters are obtained by substituting actual spot prices, St+3’

into (7) to eliminate the expectations terms. Consistent estimates

obtained by using the variables in (13) as instruments. However,

the estimators obtained in this approach assume less information
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than those obtained by following the FIML procedure of section 5.3.

Consequently, the latter are more efficient.

In another example, Haley constructs a simple model of the

cherry market using expectations as a determinant of the level of

inventories:

*

pt+1 pt BIt

d

(It 'It-1+qt ' It

d _ a

qt ‘ “o I OI1pt I “zpt I “3pt + O‘4yt

s _

qt ' qt T ut

where;

i) p:+] is the expected price one period hence,

ii) pt is the current price,

iii) It (It—l) is the current (last period) level of

inventories, I

iv) p: is the price of a substitute,

v) pi is an index of all prices,

vi) yt is income,

vii) supply (qt) is assumed to be exogenous,

viii) q: and q: are the quantities demanded and supplied,

respectively,

ix) the endogenous variables are pt, It’ qg, qi, and

*

pt‘I’

x) ut is the Single structural disturbance.

Appealing to Muth's definition of rational expectations, Haley

closes the model by assuming expectations are rational:
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it

pt+1 = apt 9 5 6 (091)-

This RES is designated as equation (4). The desired reduced form

expression for cherry prices, void of unobservables, is then obtained:

pt = "o I "1p: + "ZPI + 1T3Y1: + 1T4‘11; + "S It-1 I Vt '

The similarities between the Haley and McCallum results is

not surprising Since earlier McCallum studies are specifically re-

ferenced by Haley.3 However, Haley's RES reflects an information

set which is even more restricted than that employed by McCallum.

The foundation for (4) is unexplained by Haley; except that it is

obtained "according to Muth's rational expectations hypothesis."4

Alternatively, the guidelines provided by the present

analysis would suggest obtaining the relevant theory for cherry

prices from the RF of the equation for prices,

_ _ -1 -1 a I _

pt ’ ’Ial B I {“0 I “zpt + “3pt I “4yt It-1 I qt

-1 * -1
+ 8 Pt+]} + (a1 - B )-Iut.

and apply the Model III solution procedure applicable to this struc-

ture. In this case the three issues ignored by Haley, stability

conditions; exogenous variable generating processes; and the specific

functional form of the RES, would all be considered.

 

3For example McCallum (1972) and (1974).

4Haley, p. 58.
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The degree in which the Haley and McCallum applications of

the REH diverge from the approach suggested by the framework of

Chapters II, III and IV warrants an investigation of the probable

motivation for their particular solution procedures. Most of

McCallum's numerous applications of the REH, including the one cited

in the present analysis, reference an article by Lucas (1972) as the

source of the particular solution procedure employed.5 Lucas

initiates his analysis by clearly Specifying the "relevant theory"

under consideration. His example takes the form of a simple Model II

single equation structure with one period lead expectations. He

then obtains an ORF subject to two stated conditions; a second order

process assumed to generate the exogenous variables, and "reasonable

parameter values" -- insuring the existence of the solution.6’7

This reformulation is identical to that which can be obtained

by applying the Model II RES under similar circumstances. However,

when McCallum appeals to this analysis as a justification for his

own, neither the particular functional form of the solution nor the

conditions which must be satisfied for its existence are discussed.

Omission of these details allows McCallum to treat Model III struc-

tures as lightly as Lucas' simple Model II Example. The analyses of

previous chapters demonstrates that this uniform treatment of models

with rational expectations is not justified.

 

5For example McCallum (1974), (1975), and (1976).

6Lucas treats the problem in a difference equation context and solves

it using the method of undetermined coefficients.

7Lucas, p. 56.
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The Haley article references the studies of McCallum (1972),

(1974) and Muth but not the paper by Lucas. Therefore, the probable

source of Haley's solution is Muth's original paper. The RES ob-

tained by Haley is identical to that obtained in Muth's inventory

example. However, casual inspection reveals that the two inventory

models contain very different sets of explanatory variables. Muth's

model contains no exogenous variables and his RES requires knowledge

of the weights in the process assumed to generate the disturbance

term. This clearly is not characteristic of Haley's structural

model. Moreover, Nelson (1975) has demonstrated that Muth's RES is

a particular result of the structure of his relevant theory. Surely,

Muth's simple solution is not a general rule applicable to all in-

ventory models.

In summary, the different approaches'required to obtain RESs

when the relevant theory appears in various forms is ignored by

researchers whose interpretation of the REH follows the two cited

examples. Whether these interpretations reflect erroneous generali-

zations from Muth's Simple examples (Haley), or the omission of

assumptions required to fill the steps from the relevant theory to

the resulting ORF generated by the REH (McCallum), the resulting

studies will contain a number of theoretical deficiencies. The

solution's dependence upon stability conditions and processes assumed

to generate exogenous variables will be overlooked. Furthermore,

the estimation techniques employed will yield estimators which are

ineffecient relative to those suggested in 5.3 Since the particular

functional form of the reformulated observable structures is ignored.
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6.2 Examples of Models with Lead Expectations

The following discussion compares the simple models with one

period lead expectations of Sargent and Wallace (1973), Turnovsky

(1977), and Wickens (1976), with the Model II solution procedures

outlined in Chapter III.

Sargent and Wallace apply the REH to Cagan's (1956) model

of hyperinflation. This single equation structure is:

Xt=Ut-QEXt+]+a E Xt-Ut+Ut"]

t t-l

where;

Xt a log Pt/Pt-l ; Pt 5 pr1ce level,

= log Mt/Mt-l ; M money stock,
tP

t

I

random disturbance.

Sargent and Wallace derive a RES for this model:

1 °° -a 14
E x =— Z {——--1 E u .
t t+1 1‘0 j=1 1‘6 t . t+3

1 °° -.. 1-1
-_..._ 29.—.1 {EU.-EU.-}.

subject to the terminal condition:

. - -1
11m {-9—}" E x = o.

n-No 1-0' t t+n

This solution could be verified by comparing it to one

obtained using the Model II framework. Initially lead the struc-

ture one period to obtain:



-U +U
X t+l t °

=U

t+1 t+1

Utilizing this expression as the "relevant theory" for X the
t+l’

Model II solution would be:

- -l

E Xt+l ‘ E II ’ a ' “FI I”t+l ‘ Ut+l + UtI’

with the stability condition:

roots of {l - a - of} = 0

lie outside the unit circle;

 = 122., - a
=|F| IaI>1 1<]-a<1,

Since a < 0 (restriction of Cagan's model),

 

Clearly, this stability condition is equivalent to the terminal con-

dition obtained by Sargent and Wallace.

Sargent and Wallace confront another problem emphasized in

the Model II framework: the specification of the process which gen-

erates the exogenous variables. They demonstrate that the adaptive

scheme employed by Cagan will be "rational" only under specific

restrictions on both the disturbances and the stochastic process

governing the growth of the money stock.8

Hence, Sargent and Wallace obtain a reformulated structure

which corresponds to the form of the RES suggested in the Model 11

framework. .Furthermore, they state the conditions under which stable

 

8Sargent and Wallace (1973), p. 336.
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solutions may be obtained and accentuate the role of specifying the

nature of the sequence of exogenous expectations generated by applying

the REH to models with lead expectations.

The recent studies by Wickens and Turnovsky each contain

theoretical sections which outline the procedure for dealing with

rational expectations in a simultaneous equation model that contains

one period lead endogenous expectations but no lagged endogenous

variables.

Turnovsky employs a solution procedure which is identical,

except for the omission of lead operator notation, to that outlined

in the Model II framework. An analogous stability condition and

corresponding ORF are obtained.

An innovative aspect of Turnovsky's analysis is the computa-

tion of the effects of "incremental" and sustained" changes in

gexogenous (policy) variables on the endogenous variables in the

system.9 This is accomplished through a comparative static analysis

of Turnovsky's system of equations.

In principle, Wickens obtains identical results, but the

methodology employed varies somewhat. Wickens' solution procedure

may be outlined as follows;

i) eliminate expectations from the model by utilizing:

_ e

Yt+1 ‘ Yt+1,t I nt+1,t

where;

 

9Turnovsky, p. 855.
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Yt+1 is a vector of endogenous variables,

b. YE+l,t is the forecast for period t+l for

these variables based upon knowledge of the struc-

ture in period t,

c. nt+l,t is the forecast error, observed in

period t+l, for a forecast made in period t,

ii) solve this original structure as a system of dif-

ference equations, by "successive substitution or '

utilizing a lead operator," to obtain current Y as
t

a function of future exogenous variables, disturbances

and forecast errors under a specified stability con-I

dition,IO

iii) make conditional forecasts on this reformulated struc-

tUre and simplify to obtain the desired RES.

Therefore, Wickens' approach involves purging the lead endogenous

variables from the original structure prior to making conditional

forecasts.

Nevertheless, the solution obtained by Wickens is Similar to

that suggested by the Model II framework.H The presence of expected

forecast errors ("2+l,t) in the Wickens solution could be accounted

for in the Model II RES by allowing the existence of forecast errors

in the conditional expectations on the original reduced form. This

is a trivial extension of the Model II solution procedure. Hence,

 

IOWickens, p. 8.

HWickens, p. 8.



95

the Model II, Turnovsky and Wickens approaches yield identical

results when the conditional forecasts are set equal to the rational

.expectations.

Therefore, the Sargent and Wallace, Turnovsky, and Wickens

studies compare closely with the methodology and emphasis of the

Model II framework. However, they do contain several limitations.

The omission of lead operator notation is not conducive to extending

the results of these studies to multi-lead models (i.e. more gen-

eral Model II Structures). Also, the solution procedures offer no

guidelines for obtaining a Model III RES. Finally, none of the

studies suggest estimation procedures comparable to Section 5.3,

which account for the Specific functional form of the RES.

6.3 The Natural Rate Hypothesis

Perhaps the most notable application of the REH is Sargent

and Wallace's (1975) simple "textbook" macro model which demon-

strates that the level of output is independent of the choice of the

deterministic money supply rule. This controversial result warrants

a comparison of Sargent and Wallace's treatment of the REH with the

framework outlined in the current analysis.

Initially, Sargent and Wallace specify the "relevant theory"

.for prices from their structural model to obtain:

pt 3 Jo E pt T J1 tE pt+1 I JzI'It I Xt
t-l —l

where;

price level_
a

v U
fl

"
I

money stock
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iii) E pt 5 expectation of prices based upon information

t-l

as of period t-l; assumed to be rational.

iv) Xt 2 reduced form disturbances.

Clearly, this single equation reduced form designated equation

(15) by Sargent and Wallace, is a scalar Model II. Therefore the

rational expectation for this structure may be expressed as a func-

tion of current and future expected Mt and Xt.

However, output in this model is presumed to be affected by

the difference between expected and actual prices (the natural rate

hypothesis). This is reflected in the structural equation for real

output designated by Sargent and Wallace as equation (1):

*

yt = a1Kt-1 + azIpt ‘ tpt-l) + u1t

where;

i) yt a real output,

ii) Kt-l a capital stock,

iii) ”1t a structural disturbance,

iv) tPI-l a agent's expectations of the price level

for period t formulated as of period t-l.

Following the theory of rational expectations, conditional forecasts

obtained from the relevant theory (15) are equated with the expecta—

tions in (1). However, the natural rate hypothesis allows an '

alternative to the standard solution procedure. By taking expecta-

tions on (15) and subtracting the resulting forecast from (15),

one obtains Sargent and Wallace's equation (16):

pt - E pt = szMt - E Mt} + Xt - E x .

t-l t-l tt-1
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Since the intent of the analysis is to obtain an observable expres-

sion for the expectations terms in (l), casual inspection reveals

that an observable expression for the entire difference,

*

pt ’ tpt-l’

would be equally valuable for this model. But this is supplied by

(16). Assuming the rule that generates the money supply is deter-

ministic

Mt - tEl Mt = O, and (16)

is substituted into (1) to obtain:

yt = a1 t-l + a2 xt ' t5] xt + ”lt'

Since K is exogenous in this model, Sargent and Wallace con-
t-l

clude that output is independent of the money supply rule.I2

Therefore, when actualland expected values appear in dif-

ference form, as in the structure which displays the natural rate

hypothesis, the issues emphasized in the current study are no longer

significant. Clearly, the question of stability is no longer crucial,

and, when exogenous variables are initially assumed to be deter-

ministic, Sargent and Wallace demonstrate that the solution is in-

dependent of the exogenous variable generating rule.

This result agrees with that obtained by following the guide-

lines of the current study when actual and expected values appear

 

12Sargent and Wallace (1975), p. 247.
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as a difference. Moreover, this simplification may be employed even

when the relevant theory for pt, (15), appears as a Model III struc-

ture. Hence, the examination of the Sargent and Wallace article

reveals that a researcher may avoid the complex problems of obtain-

ing an RES by imposing certain restrictions on the coefficients of

the model in question.

A brief comment on Sargent and Wallace's policy prescriptions

is noteworthy in light of the current examination of the natural rate

hypothesis and the role of rational expectations. Many critics have

attacked the use of the REH in Sargent and Wallace's study since

policy rules regain their potency if expectations are assumed to

be generated by an autoregressive scheme. However, the natural

rate hypothesis is equally culpable since Sargent and Wallace's

result hinges upon the occurance of pt - tPE-l in the original

structural equation. For example, assume output is affected by the

individual levels of prices and expected prices (the long run

13
Phillips Curve is not vertical). Therefore, (1) becomes:

*

yt ‘ a1Kt-1 * azpt ‘ a3 tPt-1+ “1t:

Applying a Model II solution procedure from a reformulated version

of (15) obtains:

y = fIK _ , p , x , E x ,..., M , E M ,..., U 1 ,
t t 1 t t t_] t t t_, t 1t

where the deterministic money supply rule now obviously affects the

 

I3No theoretical basis is provided for this alternative structure.

It is constructed only for expositional purposes.
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I4 Clearly, the REH alone is not responsible for

the controversial policy conclusions derived in the Sargent and

Wallace investigation.

6.4 Muth's Approach
 

The difficulties encountered in obtaining a RES by follow-

ing the guidelines of the framework outlined above are mitigated by

. utilizing the solution procedure employed in Muth's original study.

This is revealed by comparing Muth's approach with that employed in

the current study.

Muth suggests the following RES procedure:

1')

ii)

iii)

iv)

v)~

express endogenous variables, expectations, and

disturbances as output of a white noise process,

substitute these expressions into the "relevant

theory" (reduced form),

assume knowledge of the weights on the process gen-

erating the disturbances,

since the "relevant theory" must hold for all

shocks, obtain the weights on the white noise

process for endogenous variables from those on

the process generating disturbances,

solve for the "rational expectation? in terms of

past disturbances.

This procedure contains a number of limitations. Initially,

endogenous variables may be expressed as functions of white noise

 

14
The relevant theory for prices would no longer be (15) due to the

change in (1). However, only the coefficients would be different.
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only when the model is void of exogenous variables. Second, the

solutidn obtained is totally dependent upon knowledge of the weights

in the process assumed to generate the disturbances. And finally,

the solution is expressed in terms of "past realizations as opposed

to current state variables."15

In the unlikely event that Muth's solution procedure is

applicable (when all elements of B(L) equal zero), assumption

(viii) section 2.1 insures that the framework of Chapters II, III

and IV is able to accommodate the assumptions required for Muth's

RES. Furthermore, the solution procedures yield identical results

under similar assumptions.

Therefore, Muth provides the definition for rational ex-

pectations in his seminal paper; but his suggested solution pro-

cedure, useful only for restricted structural models, offers little

insight for coping with the issues raised in the current study. As

a result, researchers who consider models which are restricted to

accommodate Muth's solution procedure do not confront the problems

of stability; specifying exogenous variable generating processes;

and the particular function form of the solution, which are inherent

in obtaining a RES for more general structures.

6.5 Shiller's Approach
 

Shiller provides an extensive treatment of the REH in his

recent study. A solution procedure for general models is outlined.

 

IsThe last point is attributed to Lucas (1970). P- 55-
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It is suggested that the most general models (for example, Model

111) may be handled by solving them as partial difference equation

I6 Shiller emphasizes the difficulty inwith variable coefficients.

obtaining solutions in this case. A comparison of Shiller's

approach with the framework outlined in the present study reveals

that the overall scope of the two analyses is very similar but there

is a distinct divergence in emphasis.

Shiller questions the uniqueness of a "rational expectations

17
equilibrium." Since agents gain information each period, addi-

tional knowledge on the structure of the relevant theory and the

18
process generating the exogenous variables is obtained. This

prompts Shiller to examine models of the form.I9

yt = th + V(L)yt + 91(F) E yt +...+ 6K(F) E yt + 8t (26)

t l t-K

Therefore, current endogenous variables are not only influenced by

expectations of future values of endogenous variables based upon

information available last period - (t-l), but aIso expectations

of future endogenous variables formulated up to K periods in the

past. Since there are innumerable ways to model the manner in which

 

I55hi11er (1978), p. 30.

17Shiller (1978), p. 4; this term is analogous to "rational expecta-

tion solution."

18Shiller incorporates the idea of Taylor (1975), noting that the

RES is influenced by the influx of information.

IgThis is Shiller's equation (26) expressed in the notation outlined

in Chapters II, III and IV.
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agents alter their perceptions about the future in response to new

information, Shiller argues that an infinite number of solutions, or

rational expectations equilibria, exist for models with lead endogenous

expectations. Therefore, he concludes that "the existence of so

many solutions to the rational expectation model implies a funda-

mental indeterminacy for these models."20

In comparison with the Shiller approach, the framework out-

lined in the preceding chapters does not take issue with the notion

that the economy will reach a unique rational expectations equili-

brium. Instead, emphasis is centered upon the examination of the

specific stability conditions required for a solution's existence,

the specification of an exogenous variable generating scheme to in-

sure that the RES is void of unobservable variables, and the econo-

metric implications of the particular functional form of the re-

formulated structure suggested by the REH. These issues originate

from simply extending Muth's definition to more general models.

Therefore, while Shiller emphasizes the difficulty of obtaining

unique rational expectations solutions when agents' perceptions change

in light of new information, he fails to note the problems stressed

in the current study which are significant even when the information

set is fixed.ZI

 

20Sh111er (1978), p. 33.

2IShiller's point is analogous to the questions raised by Lucas (1976)

for economic models that did not contain expectations. Lucas

emphasizes the difficulty in monitoring the effects of policy actions

due to the constant changes in the structure of the system in light

of the new information precipitated by the policy action itself.
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6.6 Summary

The applications of the REH which appear in recent litera-

ture have taken on a number of different forms. However, to varying

degrees, all studies neglect the issues which were emphasized in

the development of the framework constructed in Chapters II, III,

IV and V. These issues involved the specification of stability

conditions which guarantee the existence of the solutions derived in

the Model II and Model III frameworks, the process assumed to gen-

erate the exogenous variables, and taking advantage of the specific

functional form of the reformulated structure to fully realize the

econometric implications of the REH.

In spite of this common theme, past researchers have been

led to de-emphasize these issues by following diverse approaches to

the theory of rational expectations. Some have overlooked these

problems by failing to specify the steps leading to a RES (Haley,

McCallum). Others have confined the scope of their analyses to

simple models; thereby, not realizing the theoretical and econo-

metric implications of applying the theory to more general models

(Sargent and Wallace (1973), Lucas, Turnovsky, Wickens). Still

others confront models with such severe parameter restrictions that

all the difficulties of obtaining general solutions vanish (Sargent

and Wallace (1975), Muth). Finally, some articles deal with such

 

Since rational expectations are conditional forecasts of the

relevant theory, this constant evolution of the structure of

economic models poses complications for the theory of rational ex-

pectations. Shiller's analysis focuses upon some of these prob-

lems.
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a broad scope that other difficulties of coping with the REH take

precedence over the issues raised in the present framework (Shiller,

Taylor).

Therefore, the general approach to the REH provided in the

present framework provides insight which may not be gained by

analyzing individual studies. This framework, which accommodates

many types of specifications, provides the foundation for determining

the validity of the theory of rational expectations as an explanation

for the perceptions of economic agents.



CHAPTER VII

SUMMARY AND CONCLUDING COMMENTS

The goal of this study is to examine the implications of

the theory of rational expectations as an explanation of indi-

viduals' perceptions of future events. The investigation con-a

centrates upon construction of a framework for applying the REH

to various economic models, examination of the econometric

implications of incorporating the REH into a structural model,

and briefly reviews the manner in which rational expectations have

been employed in recent studies.

The framéwork provides an analysis of three categories of

models (Model I, Model II, and Model III) which contain rational

expectations formed on the basis of all the information available

I'prior to the current period. Model I refers to those structures

which contain expectations of current period values of endogenous

variables. Models which allow expectations of a finite number of

future periods to appear as explanatory variables, but omit lagged

endogenous variables, are conSidered in the analysis of Model II.

Model III structures possess both multi-period future expectations

and lagged endogenous variables. The framework follows a uniform

format in its investigation of all of these structures. First,

the expectations are equated with conditional forecasts from the

105
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model in question to obtain observable expressions for the ex-

pectations terms. These expressions are referred to as rational

expectations solutions (RESs). Second, these RESs are substituted

into the original model to obtain a structure which no longer con-

tains unobservable variables.

Several significant implications of the REH are revealed in

this framework. First, restrictions on the parameters of the

structural model are necessary to insure the stability of the

solutions. Second, a RES will invariably be dependent upon the

nature of the process assumed to generate the exogenous variables

in the model under investigation. Finally, the observable struc—

ture obtained in the analysis is a function of the predetermined

variables in the model and the variables inherent in the exogenous

variable generating process. Moreover, the coefficients of this

expression are known functions of the parameters in the original

model under investigation. '

The econometric implications of the REH are,realized by

pursuing three issues which arise due to the particular functional

form of the observable structure suggested by the REH. The study

examines the conditions which insure that the original reduced

form Coefficients can be identified from knowledge of those in

the observable reduced form. An estimation procedure which

accounts for the functional form of the observable structure is

develOped. Finally, the analysis reveals the restrictions implied

by this reformulated observable structure and outlines a procedure

for testing the theOry of rational expectations.
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The survey of current literature confirms the import of

the present analysis since the significant issues discussed through-

out this study and briefly summarized above are notably absent

from many previous applications of the REH. The literature review

accentuates this omission and offers explanations for the de-

emphasis of some of these important aspects of the theory of

rational expectations.

In the final analysis, this study provides a number of

significant contributions to the continuing study of the REH as

an explanation for the expectations of economic agents. The

framework of Chapters II, III, and IV accentuates the problems

of specifying rational expectations solutions which must be con-

sidered in any application of rational expectations. Moreover,

the complexity of these solutions illustrates how difficult it

may be to formulate a general theory which explains the process

whereby agents obtain enough information to form "rational" ex—

pectations. Also, the framework establishes guidelines for the

uniform interpretation of the REH in all economic models. This

may eliminate potential disagreements about what is meant by assum-

ing expectations are "rational" in the sense of Muth. Finally,

this study provides the details for a test of the theory of

rational expectations, thereby establishing a method for deter-

mining the validity of the hypothesis as an explanation of indi-

vidual's perceptions of future events.
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APPENDIX FOR CHAPTER V

The actual form of the restrictions generated by the REH

may be examined by considering a number of simple examples. The

distinction between type I and type II restrictions is noted and the

number of restrictions obtained is compared with the restriction

rule developed in Chapter V.

A-1 A Description of the Examples Considered

Following the notation of Chapter V:

1')

ii)

iii)

iv)

vi)

m is the total number of equations and the number

of expectations terms contained in each,

n is the number of exogenous variables in each

equation,

n1 is the number of period-t exogenous variables

in each equation,

n2 is the number of these "1 period -t exogenous

variables for which every lagged value, lag §.P,

appears in the original RF,

P is the order of the auto-regressive process gen-

erating all of the exogenous variables,

c; is the number of lagged values of the jth

period t exogenous variable, j = l,...,n],

lag §.P, which appear in the original RF; i.e.

n] *

zj=1 cj = k
1,

111
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vii) k1 is the total number of lagged variables the

original RF which can be obtained by lagging members

of n],

viii) k2 is the total number of lagged exogenous vari-

ables that do not have corresponding period t

values in the original RF.

The examples which will be considered may be described:

Ia: m = 1, n = n1 = 1, P = 1, ki = 0 for all i,

Ib: m = l, n = n1 = 2, P = l, ki = 0 for all i,

Ic: m = 1, n = n1 = l, P = 2, ki = 0 for all, i,

IIa: m = 2, n = n1 = 2, P = 1, k1 = 0 for all i,

IIb: m = 2, n = n] = 3, P = l, ki = 0 for all i,

IIc: m = 2, n = n1 = 2, P = 2, k1 = 0 for all i,

IId: m = 2, n = r1 = 1, P = 2, k = 0 for all i,

III: m = l, n = 4, n1 = 3, n2 = 1, k1 = 3, k2 = l, k = 1, P

Two additional comments clarify the following analysis.

First, the disturbances in all the models considered are assumed

to be individually and identically distributed normal -- the

standard disturbance assumption. Also, the notation employed in

the single equation examples corresponds to the symbols used to

denote structural parameters in Chapters II, III, IV, since the

reduced form and structural model are indistinguishable in the

single equation case.



113

A-2 REH Restrictions in Simple Theoretical Models

EXAMPLE I

Ia: Assume the ”relevant theory" may be expressed as:

e

yt th + eyt + 5t: (Ia)

where; m = 1, n l, assume P = 1,

Applying the REH to (Ia), obtain the resulting RES:

-1 -1
E y = (1 - e) B E x = (1 - e) Byx .

t-l t t-l t t“ -

Hence, the ORF is:

yt = th + 6(1 - 9)-]BYXt-1 + at. (Ia-ORF)

The unrestricted version of this structure is:

yt = mlxt + ¢2xt_] + at. (Ia-ORF-HA)

Clearly there are no restrictions implied by the application of

the REH to Ia since the number of RF parameters in (Ia-ORF) equals

the number of coefficient estimates obtainable from (Ia-ORF-HA).

However, the RF parameters are-identified from knowledge of

(Ia-ORF-HA) since:

u
: u

cl’1

6 = ($1Y + ¢z)-1¢2

where y can be obtained from (AR-l).



114

Ib: Assume the relevant theory of Ia is altered by

adding an exogenous variable:

y = B x + B x + eye + 8 (lb)
t 1 1t 2 2t t t

where; m = 1, n = 2, assume P = 1,

xlt = lelt-l I ”it ; th ‘ Y2x2t-l T ”2t °

Applying the REH to Ia, obtain the resulting RES:

: _ -1

tEIYt ‘1 9’ (Bllelt-l + 82Y2x2t-1)°

Hence, the ORF is:

_ -1

yt ‘ lelt I B2x2t I 9(] ’ e) (Blylxlt-l + 82Y2x2t-1) + 8t'

(Ib-ORF)

The unrestricted version of this structure is:

Vt ‘ ”lxlt I szzt T P3Xit-i + P4X2t-i + at' (Ib‘ORF'HA)

The numberof coefficient estimates from (Ib-ORF-HA) exceeds the

number of RF parameters. The restriction may be revealed by

equating the coefficients in the two structures:

41 = 8].

m2 = 82.

$3 = 6(1 - 9)-1B]Y1,

44 = 9(1 - 9)-]BZY2-

v v v

Clearly; -—3- = —1--—1-.

P4 32 Y2
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There may be a number of ways to express this single restriction.

The restriction is a type I, or overidentifying, restriction since

it stems from the fact that this four equation system contains two

independent solutions for e in terms of the ”i and vi:

-1

I (PiYi I P3) P3

—
J

‘
0

C
D I

and 9 = (@2Y2 I $4)-1W4°

Ic: Assume the relevant theory is (Ia) but the process

generating the exogenous variables is changed:

_ e

yt ‘ th I 6yt I et

1; but now P = 2,where; m = 1, n

I°e° Xt I Illxlt-l I Yizxit-z I ”t /’ (AR'Z)

Applying the REH to Ic, obtain the resulting RES:

_ '1

Hence, the ORF is:

- -1 _

The unrestricted version of this structure is:

yt I q’i"it I ¢2x1t-1 I q’3"it--2 I Et' (IC'ORF‘HA)

Following the procedure outlined above, equate the coefficients in

(Ic-ORF) and (Ic-ORF-HA) to reveal the restriction:
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W]: BI,

W2 ‘ 8(1 ‘ GI-IBIYII’

'1

W3 T 9(1 ' 9) B1Y12'

32.. 311.
Clearly; .

I3 Y12

This restriction may be classified as a type II since it is

obtained from the fact that the ORF coefficients on the lagged

values of the single exogenous variable differ only by a factor of

., i = 1,2.
Yli

EXAMPLE II

IIa: Assume the relevant theory is:

_ e - e

ylt ‘ "iixit I "izxzt I "13y1t I "14y2t I Vlt’

- e e

y2t ‘ "lelt I Izzxzt I "23y1t I "24’2t I Vzt

I

N

U

3

N

N

U

.
0

N

.
.
.
—
a

H

where; m -

I°e' Xlt I lelt-l I ”lt’

th I szzt-i I “2t'

Applying the REH to obtain a RES:

tflylt (‘ ‘ "24) "14 I "11 "12
-1

= 0

Elth 1‘23 (I ' "13) "21 "22

. ‘1 -
where, D - (I - n24)(1 - n13) - n23n14.

(IIa)

lelt-l

szzt-i
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1

tflylt I D {(1 ‘ "24)"11 I "14"21}Y1X1t-1

-1
I D {(1 ‘ I24)"12 I "i4I22IY2X2t-i’

= -1 -
E th D I"23"11 I (I "13)"21IY1x1t-1

t 1

-1

I D {I23Iiz I (I ' "13)"22}Y2x2t-1'

The resulting ORF is:

yit I "iixit I "izxzt

+ D-I{n13((1-n + ) +
24)"11 Ii4I21 "14("23Iii I (I‘I13)I21)}Yixit-i

-1

I D {"13((I‘I24)“12 I "i4I22) I "14("23"12 I (I' "13)"22)IY2x2t-i

I Vlt’I

th I "lelt I Tr22X2t

-l

I D {"23((I'"24)"11 I "14I21) I 1T24("23Iii I (I‘I13)"21Ile1t-l

1

I D I"23((“I24)I12 I "14"22) I Tr24("23Iiz I (I‘Ii3)I22}Y2x2t-i

+ V2t.

The unrestricted version of this structure is:

ylt I Piixit I opizxzt I Piaxit-i I cPiaxzt-i I Vlt’

th I Izixzt I I22x2t I stxit-i I 324x2t-i I Vlt'

Equating the coefficients in the restricted and unrestricted ver-

sions obtains:
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Xit‘ I11 ‘ "11

x2t‘ I12 I "12

. _ -1 -

xlt-l' 313 ’ D ("13((I'IZ4ID11 I "14"21) I Tr14("23"ii I (I'Ii3)"2i)}Yi

. -‘I .

x2t-i' 914 ‘ D {"13III'I24)"12 I I14I22) I 1T14("23"12 I (I'Iis)“2z)}Y2’

xit‘ 921 I "21

x2t‘ Ip22 I “22

° = -1 -

xlt-l' q’23 D ("23((I "24)"11 I "14”21) I 1T24("23Iii I (I'D13)"21)}Y1

, - -1

x2t-1' I’24 ' D {"23((I‘"24)"12 I "l4"22) I Tr24("23Iiz I (I'I13II22)}Y2’

Opii I "11’ 912 I "12

GPi3 I {c11D11 I chIZlIYl

D14 I {C11"12 I c12I22IY2

C11 I ("13(I ‘ "24) I "14"23ID.1

c12 I "140-1

q’21 I "21’ 0P22 I T‘22

up23 I (c21"11 I C22"21)Yi

q’24 I (CaiIiz I c22"22)Y2

c21 I "23

c22 I ("23"14 I "24‘1 ‘ “23))D-1°

Hence, the eight unrestricted ORF coefficient estimates can be ex-

pressed in terms of eight RF parameters. Therefore, no restrictions

eixst. However, the RF parameters can be identified from these

eight equations; n13, n14, n23, «24 can be obtained from the

solutions for c1], C12, c2], c22.
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IIb: Assume Case a) is altered by the addition of one exogenous

variable; m = 2, n = n1 = 3, P = 1

the relevant theory is:

= ‘ e e

ylt "10 x0t I "llxlt I Iizxzt I "13y1t I "14y2t I Vlt

(IIb)

= e e

y2t "zoXOt I "zixit I 1T22x21.- I "zayit I "24Y2t I V2t°

Following the procedure from IIa, obtain a RES and resulting ORF.

Then equate the coefficients with an unrestricted ORF. Hence,

for the coefficient on;

XDtI qpio I Trio

"11

"12

1

Xit‘ q’11

x2tI IP12

x0t-1I GPi3 I D- {I13II‘"24)"10 I "14Izo) I "14("23IIO I (I'"13)"2o)IYo

xlt-1I $14 ' 0-]{D13II'"24)"11 I "14"21) I "14("23Dll I ‘1'"13II21)I71

, -1

x2t-1' Dis ‘ D {I13II'I24)“12 I "14I22) I "14("23Iiz I (I‘Ii3)I22)}Y2’

XOt‘ P20 ‘ 1T20

xltI cp21 I "21

xzt‘ 1’22 I 1T22

x0t-i‘ IP23 I D ]{"23((I’"24)"10 I "i4“2o) I Tr24(I23Iio I (I‘Ii3)I20)IYo

. g ‘1 -

xlt-l' q’24 D {"23IIIID24II11 I I14I21) I "24("23"11 I (I "13)"21)IY1

. g ‘I -

x2t-1‘ IP25 D {"23((I'"24)"12 I “i4"22) I 1T24(I23Iiz I (I "13)"22)II2’

07‘;

"10 ’ opii I "ii ’ op12 I "12

(CiiIio I c12"20)Io

I10

cPi3
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914 I (CiiIii I ci2I2i)Yi

q’15 I (c11D12 I ci2"22)72

_ -l

cii ‘ D ("13(I ‘ I24) I "i4I23)

- -1

C12 ‘ D ("14)

920 I "20’ 921 I "21’ fiz I Tr22

923 I (c21"10 I c22I20)Yo

924 I (c21Dll I C22I2i)Yi

925 I (c21"12 I c22"22)Y2

where;

-1

C2i D ("23):

_ -1

c22 ‘ D ("23"14 I "24(IIIi3))'

Eliminating C11 and c12 from the first system reveals:

913 GPii Yi ‘ 914 fio Y0 = II’13 opiz Y2 ‘ opis q’io Yo

Pii op20 Yi '.fio q’21 Yi 912 320 Y2 ' 310 322 Y2

  

Similarly, eliminating c2] and c22 from the second system

yields:

323 Iii Yi ' I24 I10 Y0 = OP23 qpi2 Y2 ‘ 325 Rio Yo .

Pii i’20 Yi ’ CI’io I21 Yi 912 I’20 Y2 ‘ Irio W22 Y2

These two restrictions are type I, or overidentifying, since there

are three independent equations for C11 and c12 and three

independent equations for C2] and c22' As a result there are

six independent expressions for four of the RF parameters n13,

n14, n23, n24 -- resulting in two restrictions.
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11c: Assume the "relevant theory” is IIa but the processes

generating the exogenous variables are altered:

Xit I "llxlt-l I Iizxit-z I Dlt’

th I I2ix2t-i I "22x2t-2 I D2t'

Again, following the previous format, obtain a RES and ORF. Then

equate the coefficients with an unrestricted ORF to obtain:

For;

xit‘ Iii Iii

xzt‘ Iiz I12

-1

D {Ii3(("I24)IiiIIi4I21 "14("23"11+(IIi I2i)}Yii

. -‘I ‘

x1t-2' I’i32 ' D {Ii3III'I24)IiiIIi4I2i

-l

Xit-i‘ Ii3i )II

)

th-i‘ Ipi4i I D {I13III‘I24)I12IIi4I22)

)

4.1'.

IIIi4(I23I22I("Ii3 I22)}I2i

-1

31f)

Ii4(I23IiiI(I'Ii3) I21)}I12

)W

xzt-z‘ I142 I D {"13IIIIDZ4)"12+"14"22 IIi4II23IizIII'I13)I22)IY22’

x2tI II22 I I22 ’

. ,‘I -

x1t-1‘ Ip231 D {I23((I‘I24II 11+"14"21)+"24("23"11I(I I13)I21)}Iii

xit-2‘ I232 I D:II23III'I24II11+"14"21)+"24("23"1l+(1'"13)"21)IY12

x2t-2‘ I’24i I D{I23I(I'I24)I12IIi4I22)II24II23Ii2III‘Ii3)I22)II21

. -‘I -

x2t-2' I242 ' D ”23‘(1"I24)Ii2IIi4I22)II24(I23I12I(1 I13)I22)}Y22’

07‘;

Iii I Iii

q’i2 I Iiz

@131 : {CIIWII + C12W21}Y11 C11, C12 dEfIHEd as in bOth

q’132 I IciiIii I ci2I2iIIi2 III and 11b
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I141 I IciiIiz I ci2I22IY2i

I142 I {C11D12 I C12I22IY22’

Izi I I21

I22 I I22

I23i I Ic21"11 I C22IziIYii

$232 = {c21w11 + C22w211v12 c2], c22 defined as in both

$24] = {C21W12 + c22n221v21 11a and 11b.

I242 I {CziIiz I C22I22IY22 °

I Y 4 Y

Clearly; _1§1.= .11.; .111.= .21..

I132 712 I142 I22 ’

cp232 I12 I242 Y22

As before there are numerous ways to express the four independent

restrictions implied by this system. The restrictions originate

from the similarity (up tofla factor of Yij) of the coefficients

for the lagged values of each of the exogenous variables in each

equation. Analogous to Ic, these restrictions are not over-

identifying. Although there are eight equations in the four un-

knows, (c11, c12’ c2], c22), it is obvious that only four of these

are independent. Consequently, the values for n13, n14, n23, n24

may be obtained from exactly four expressions which link the cij

with unrestricted ORF coefficients.

IId: Assume the relevant theory now contains only one

exogenous variable -- but the process generating it is second

order:
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- e e

It ‘ Iiixt I Iiayit I "14y2t I Vlt’

y = n x + n ye + w ye + v
t 21 t 23 1t 24 2t 2t'

Once again, following the REH and comparing the resulting ORF with

an unrestricted version obtains:

For;

t‘ ' I11 I "ii

= -1 -

D {"13((‘ I24)IiiIIi4I21)IIi4II23IiiIII‘I13)I21)IIii

, _ -l

xt-2' I122 ‘ D {"13III'I24)"11+"14"21)ID14("23"11+(I'D13)"21)IYlZ’

xt-i‘ Iizi

Xt I21 I I21

, _ -1

xt-l' I221 ' D {I23III'I24)IiiIIi4I21)II24II23IiiIII'Ii3II2i)IIii

' = -1 - -

xt-2' I222 D {"23“1 "24)"11ID14DZl)+"24("23"11+(I I13)I21)}Iiz°

¢ Y W
C]ear]y; ijzl=_ll.=._ggl .

122 Yi2 I222

These two restrictions, like those in IIc, are type II. This is

especially clear in this case since the values of «13, n14, n23,

"24 cannot be identified from knowledge of the ORF coefficients

in the above system. Despite the existence of six equations and six

RF parameters, there are clearly only four independent equations in

the above system. Nevertheless, the REH does generate testable re-

strictions in this case.

Example III

Assume the "relevant theory" contains lagged variables:

yt I Dlxlt I szzt I B3X3t I B4X2t-i I 85x3t-1 I D6X3t-2

e

I D7X4t-l I Iyt-i I Dyt I 8t‘



m=1,n1=4,n1=3,k1=3,k2=13k=1.

Assume all exogenous variables are generated by second order pro-

(2855852

I I 2’ xit I Yiixit-i I Iizxit-z I Dit’

x2t I Yzixzt-i I Y22x2t-2 I Dit’

x3t I Y3iX3t-i I Y32x3t-2 I Dit’

x4: I Y4ix4t-i I Y42x4t-2 I ”it“

n2 = 1

Apply the REH to obtain the resulting RES for this model:

E
_ -l

t 1y: ‘ (I‘D) {BlYllxlt-l I BiYizxit-z I 82Y21x2t-i I B2I22X2t-2

I DsIsixat-i I 83*32X3t-2 I B4X2t-i I B5x3t-i

I szat-z I 87x4t-l I Iyt-iI °

Combining terms and substituting the RES into the relevant theory

yields the ORF:

yt I Dlxlt I szzt I D3X3t

)‘I

+ [v + 9(1 - e vlyt_]

I GEIIDJ-IIDlyllxlt-1 I BiIizxit-z I 82Y22x2t-2}

+ [34 + 9(1 - e)'I(82v21 + 84)Jx3t_1

+ [85 + 9(1 - 9)-I(83v3] + 85)]x3t_1

I [35 I 9(‘ ' 9)-1(83I32 I 86)]x3t-2

+ £87 + 9(1 - e)‘Is7Jx4t_1 + It'

In the notation of section 5.2, the coefficients on;
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x x x corres ond to 0'
1t’ 2t’ 3t D ”1’

-1 .

yt_1 - correspond to (I - n3) n2(L),

_ *

XIt-I’ XIt-Z’ X2,t-2 correspond to n3(I - n3) In?F (L);

since III] + Y12L 0 0 0

* 0 Y L 0 0

0 0 0 0

3 0 0 0 0
 

and,

I _ **

x2t_], x3t_], X3t-2’ x4t_1 correspond to n3(I - n3) Ingr (L) +

(I - n3)“n:(L).

Therefore, following the notation used in the general example

from Cahpter V, page 60, the (ORF-HA) for this example is:

It I Ip0ixit I Ioéxzt I I02x3t I Ith-i I I21xit-i I I22x2t-2

I Izaxat-z I IP3iX2t-i I I32x3t-1»+;I33x3t-2 I I34x4t-i I It

where; the unrestricted ORF coefficients; $01: i = 1,2,3 apply

to period t exogenous variables;

o1 apply to lagged endogenous variables;

¢2i’ i = 1,2,3 apply to lagged values whose coefficients

appear in r*(L);

I3i’ i = 1,2,3,4 apply to lagged values which appear

in the original RF.

To examine the conditions for identification and reveal the REH

restrictions, equate the restricted and unrestricted ORF coefficients:
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I01 I 8i

I02 I 82

I03 I 83

m1 = [v + e(l - e)'Iv3

921 = 9(1 - 9)-181Y11

$22 = 6(1 - e)'Ie1v12

923 = 9(1 - 6)'182722

v3] = [84 + 9(1 - e) 1(82v21 + 84)]

$32 = [85 + 6(1 - 6) 1(8373] + 85)]

433 = [86 + 9(1 - a)' (83v32 + 86)]

$34 = [87 + 6(1 - e)-IB7J

The condition for the identification of the nine RF para-

meters from the relevant ORF coefficients is satisfied since;

In the example above, 6 corresponds to n3. Clearly, a solution

for e, in terms of p and v , can be obtained from any of the

expressions, oz], 922: 923- This solution may then be substituted

into the expressions for m], 931» i = l,...,4 to identify the

remaining RF parameters.

The restrictions implied by this structure are:

'
8

N

.
4

—
-
l

1

22

1

22

39.1. lu..I21

I02 Y22 23

.
e

.
4

The restrictions are obtained by analyzing the expressions for
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pg], 922: $23 which are the coefficients contained in the ex-

pression analogous to (5.2.5) for this example.

The first restriction is type I, or overidentifying, since

the system contains ten independent equations and nine RF para-

meters. The second restriction is obtained by noting the similarities

of the coefficients on lagged values of xlt’ hence, it is a type II.

A-3 Comparing the REH Restrictions with the Rule of Chapter V
 

The rule for counting restrictions is:

Type I = m - Max{n1 - n2 - m, 0},

n

I *

Type II = m X Max{P - c. - l, 0},
.=1 3

J

n

I *

and R = m{ X {P - c.} - Min(n1 - n2, m)}.

i=1 3

*

Both n2 and cj equal zero for examples I and II due to the

absence of lagged variables.

Example Ia: m = l, n = n1 = l, P = 1,

type I = 1 Max{D, 0} = 0.

type II = l Max{O, 0} = 0.

R = l{l - Min(l, 1)} = 0.

Rule agrees with restrictions obtained.
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type I = l{Max(1, 0)} = 1.

type II = l{Max{0, O} + Max{D, 0}} = 0.

R = 1{1 + 1 - Min(2, 1)} = 1.

Rule agrees with restrictions obtained.

type I = l{Max(D, 0)} = 0.

type II = l{Max(1, 0)} = l.

R = 1{2 - Min(l, 1)} = 1.

Rule agrees with restrictions obtained.

IIa: m = 2, n = n1 = 2, P = 1,

type I = 2{Max(0, 0)} = 0.

type II = 2{Max(0, 0) + Max(0, 0)} = 0.

R = 2{1 + 1 - Min(2, 2)} = 0.

Rule agrees with restrictions obtained.

IIb: m = 2, n = n1 = 3, P = 1,

type I = 2 - Max{1, 0} = 2.

type II = 2(Max(0, 0) + Max(0, 0) + Max(0, 0)) = 0.

R = 2C1 + l + l - Min(3, 2)] = 2.

'. Ru1e agrees with restrictions obtained.

 



IIc: m

R

= 2, n = n1 = 2, P = 2,

type I = 2 - Max{O, 0} = 0.

type II = 2{Max(1, 0) + Max(l, 0)} 4.

2(2 + 2 - Min(2, 2)} = 4.

Rule agrees with restrictions obtained.

2.

= 2, n = n1 = 1, P = 2,

type I = 2 - MaxI-l, 0} = 0.

type II = 2 ~ {Max(l, 0)}

R = 2 - {2 - Min{1, 2}} = 2.

Rule agrees with restrictions obtained.

III: m

3
O

w
i
m
fl
'
d
fl
-
N

O
0

type I

type II

R

1; P,:'2’

4 : x],x2,x3,x4.

3 Z X-I.X2,X3.

1 : x3.

0.

l.

2.

1 - Max{3 - l - l, 0} =

l - Max{2 - 0 - 1, 0} +

1 - Max{2 - 1 - 1, 0} +

l . Max{2 - 2 - 1, 0} =

11(2-0) + (2-1) + (2-2)

Ru1e agrees with restrictions

1.

- Min(2,l)} = 2.

obtained.



"I7'11IIIIIIIIIIIIII

  


