GRADIENTESTIMATESFORSOLUTIONSTODIVERGENCEFORMELLIPTICEQUATIONSWITHPIECEWISECONSTANTCOEFFICIENTSINDIMENSIONN.ByKhaldounAl-YasiriADISSERTATIONSubmittedtoMichiganStateUniversityinpartialentoftherequirementsforthedegreeofMathematics-DoctorofPhilosophy2016ABSTRACTGRADIENTESTIMATESFORSOLUTIONSTODIVERGENCEFORMELLIPTICEQUATIONSWITHPIECEWISECONSTANTCOEFFICIENTSINDIMENSIONN.ByKhaldounAl-YasiriInaboundedC10domainˆRn,0<01,containstwosimplyconnectedandstrictlyconvexC10subdomains(inclusions)D1andD2thatsatisfyD1[D2ˆˆandD1\D2=f0g,westudythefollowingelliptictialequation8>>>>>>>><>>>>>>>>:div(a(x)ru)=0in;@u(x)=gon@;R@u=0;(1)wherea(x)=1+(k1)˜(D1[D2)(x);00.Thenwebeginbyseparatingtheinclusionsbyadistance>0,thatis,wesetD1=D12en;andD2=D2+2en;whereen=(00;1).Thenwestudytheapproximatetialequationcorrespondingtotheseparatedinclusionswhichis8>>>>>>>><>>>>>>>>:div(a(x)ru)=0in;@u(x)=gon@;R@u=0;(2)wherea(x)=1+(k1)˜(D1[D2)(x).Thesolutionoftheellipticequation(2)hasanintegralrepresentationintermsofpotentialfunctionsontheboundaryofeachsubdomain.Fromtherepresentationformula,wederiveuniformpiecewiseC1,0<<0,estimatesforthissolutionwhichareindependentofthedistancebetweenthesubdomains.Thatis,wetheestimatekukC1~nD1[D2+kukC1(D1)+kukC1(D2)CkgkL2(@;where~=fx2:dist(x;@>~gandCisindependentof.Ourresultextendstheearlierresultfordimensionn=2[1],buttheanalysisismuchmorecomplicated.Finalestimatesrelyondetailedanalysisnearthetouchingpointandcollectivecompactnessofsomeintegraloperators.ACKNOWLEDGMENTSIwouldliketoexpressmydeepestgratitudetomyadvisorDr.ZhengfangZhou,whopro-videsexceptionalguidanceandtremendoussupportduringmygraduatestudy.Withouthisguidance,thisthesiswouldnothavebeenpossible.Ifeelveryluckytohavetheopportunitytostudyunderthesupervisionofsuchaknowledgableandsmartmathematicianwithgreatpersonality.Healwaysgenerouslytimetomeetforquestionsanddiscussions,heisveryinspiringandpatientinenhancingmymathematicalunderstanding,andhisviewonmathematicshelpsmetoshapemyownunderstanding.IamalsoverythankfulforhisencouragementsandsuggestionswhenImeetwithHiselegantpersonalityandpersistentpassioninmathematics&lifewillhavealongtimeonme.IwouldliketothankDr.BaishengYan,Dr.CasimAbbas,Dr.MoxunTang,Dr.WillieWong.forservingasmembersofmydoctoralcommitteeandfortheirinvaluablesuggestions.IwouldliketothankDr.PatriciaLammforthegeneroussupportfromherNSFgrantDMS-126547.IwanttothankDr.ZhengfangZhouandDr.CasimAbbas,formerdirectorsofthegraduatefortheirconsistentsupportandhelpduringmygraduatestudy.MythanksalsogotoDr.keithPromislow,ChairoftheDepartment,forhishelpandguidanceduringmygraduatestudy.IamgratefultotheentirefacultyandintheDepartmentofMathematicswhohavetaughtmeandassistedmeinonewayoranother.MyspecialthanksgotoDr.ZhengfangZhou,Dr.CasimAbbas,Dr.VeraZeidan,Dr.IgnacioUriarte-Tuero,Dr.SheldonNewhousefortheirhelpandsupport.AndIwouldliketoexpressmyappreciationtoMs.BarbaraMiller,Ms.LeslieAitcheson,Ms.BrittaAltinselandMs.AmiMcMurphyandMs.DebieivLecatofortheirassistanceinprovidinginformationandhelpduringmygraduatestudy.Also,Iwanttakethisopportunitytothankmyfellowgraduatestudentsandfriendsforprovidingkindhelp,sharingwithmetheirexpertiseknowledge,andsharingthechallengesandhappinesstogether.ParticularthanksgotoXinYangandJonathanBohn.FinallyIwouldliketothankmyparentsandmybrothersandsistersfortheirendlessloveandalwaysstandingbesidesmeovertheyears.vTABLEOFCONTENTSLISTOFFIGURES...................................viiiChapter1Introduction...............................1Chapter2LayerPotentialsforsystemoftwoinclusions...........202.1Notationsandassumptions............................202.2ExistenceandUniquenessTheorem.......................212.3Approximationoftialequation......................242.4LayerPotentials..................................302.5Representationformula..............................382.6Piecewiseoldercontinuityforthemotialequation.......48Chapter3Decompositionofthesystemofintegralequations........523.1BehaviorofT,>0...............................533.2AuxiliaryfunctionsandBasicproperties.....................583.3DecompositionofL2...............................743.4DecompositionofT................................82Chapter4olderestimatefortheoperatorJ2................864.1Preliminaries...................................884.2L1normforJ2,>0...........................944.3oldercontinuityofJ2,>0..........................1004.3.1BoundednessofR2.............................1014.3.2BoundednessofR3.............................1064.4ConvergenceofJ2................................124Chapter5UniformoldercontinuityforI2..................1265.1L1-normforI2,>0..............................1285.1.1L1-normforI1,>0...........................1285.1.2L1-normforI2,>0...........................1305.2olderestimateforI2,>0..........................1315.2.1olderestimateforI1,>0.......................1315.2.2olderestimateforI2,>0.......................1435.3ConvergenceofI2................................146Chapter6Theconvergenceandthemainresults................1536.1Preliminaries...................................1536.2CollectiveCompactnessandconvergenceofK2................1586.3PointwiseConvergenceofT...........................1626.4Themainresults..................................173viBIBLIOGRAPHY....................................177viiLISTOFFIGURESFigure1.1:Thetouchingsubdomains.......................6Figure1.2:Theapproximatesurfaces.......................14Figure2.1:Thetouchinginclusions........................21Figure2.2:Theseparatedinclusions........................26Figure3.1:Theapproximatesurfaces.......................77viiiChapter1IntroductionThepurposeofthisworkistostudygradientestimatesforsolutionsofdivergenceformellipticequationswithpiecewiseconstantcotsindimensionn2.Theproblemarisesfromstudyingerre-inforcedcompositemediawithcloselyspacedinclusions.AcompositemediumdescribedbyaboundeddomaininRn(n2),whichincludesmanyinclusions(subdomains)Dj,j=1;;m.ThephysicalcharacteristicsofthemediumaresmoothineachinclusionDjaswellasinn(D1[[Dm),buttheyarepossiblydiscontinuousacrosstheirboundaries@Dj,j=1;m.Weusetheexamplefromtheintroductionsof[8,30]tomotivatetheproblemfordi-mensionn=2.TheboundeddomainˆR2modelsthecross-sectionofaer-reinforcedcomposite.LetD1andD2betwosubdomainsrepresentthecross-sectionoftheers,andn(D1[D2)representtheregionsurroundingtheers.Assumethattheshearmodulus(modulusofrigidity)oftheersis1>>>>>>><>>>>>>>>:div1+(k1)˜D1[D2ru=0in;@u(x)=gon@;R@g=0:(1.2)Atthispoint,wecanemphasizetheaimofstudyingsuchclassofdivergenceellipticequations,whichistostudythebehaviorofthestrain(electricruwhentheinclu-sionsapproacheachother(touch)aswellaswhentheshearmodulus(conductivity)oftheinclusionskdegenerate(k=0ork=1).E.BonnetierandM.Vogelius[8]haveshownthatthesolutionuofproblem(1.1)indimensionn=2isinW1;1forany0g,and0<0and0>><>>>:@ia(x)@iu=0in;u=gon@;whereg2H12(@anda(x)=8>>><>>>:1ifx2nD1[D202,theyfoundbyusingtheconformalmappingthefollowingboundskDuk1C(l)inD1andD2;8l;jjl;kDuk1C(k;)inD3\;8l;jjl;4whereD3=nD1[D2.Y.Y.LiandL.Nirenberg[29]generalizedtheresultof[30]intosystemsofellipticentialequationsandtheyfoundthatuthesameboundin(1.4)withslightlybetterregularity0where0<0minf2(1+)g:G.CittiandF.Ferrari[9]followed[30]withslightlytmoandtheyfoundtheoptimalregularityfortheproblem(1.3)whentheinclusionsarestrictlyseparated.Thatis,theyshowedthatthegradientruisC0,ineachcomponent,for0minfgwhentheinclusionsarestrictlydisjoint.J.Mateu,J.OrobitgandJ.Verdera[22]approachedtheproblemdiv(Aru)=0,det(A)=1viaBeltramiequationandtheyusedCalderon-Zygmundoperatorsandquasiconformalmap-ping.IftheinclusionsDmdonottouch,theyshowedthatruisC0,for00.WedenotebyjtobetheboundaryofDj,j=1;2.Westudythefollowingtailequation8>>>>>>>>>>>><>>>>>>>>>>>>:div(a(x)ru)=0in;@u(x)=gon@;R@u=0;R@g=0;(1.5)wherea(x)=1+(k1)˜(D1[D2)(x):Clearly,Lax-Milgramtheoremshowsthattheproblem(1.5)hasauniquesolutionu2H1foragiveng2L2(@Followingtheideasof[1],webeginbyseparatingtheinclusionsbyadistance>0,thatis,wesetD1=D12en;andD2=D2+2en;whereen=(00;1).Thenwestudytheapproximatetialequationcorrespondingtotheseparatedinclusionswhichis78>>>>>>>>>>>><>>>>>>>>>>>>:div(a(x)ru)=0in;@u(x)=gon@;R@u=0;R@g=0;(1.6)whereaisthecorrespondingpiecewiseconstantcocients,thatis,a(x)=1+(k1)˜(D1[D2)(x):Itiswellknownthatequation(1.6)hasauniquesolutionuinH1foragivenNeumannboundarydatag2L20(@:=fg2L2(@:R@gd˙(x)=0g.WeproveinTheorem2.5thesolutionto(1.6),u,approachesuniformlyinH1tou,thesolutionofequation(1.5),asapproaches0.Nowwestatethemainresultofourworkinthefollowingtheoremwhichcoincideswiththeearlierresultfordimensionn=2[1].Theorem1.1.Let~>0and0<<0.Thesolutionto(1.6)kukC1~nD1[D2+kukC1(D1)+kukC1(D2)CkgkL2(@;where~=fx2:dist(x;@>~gandCisindependentof.Inordertoprovethemainresult,wethesingleanddoublelayerpotentialsforthe8Laplacianoperator,respectively,byS@'(x):=Z@x;y)'(y)d˙(y);x2Rn;(1.7)andD@'(x):=Z@@x;y)@(y)'(y)d˙(y);x2Rnn@:(1.8)wherex;y)isthefundamentalsolutiontoLaplaceequationu(x)=0inRn.Itisknownfrom[23],thesolutionofproblem(1.6)canbeuniquelyrepresented(seeTheorem2.14)asu(x)=H(x)+S1'1(x)+S2'2(x);x2;(1.9)whereSjisthesinglelayerpotentialonthesurfacej,j=1;2:andHisaharmonicfunctioninthathasthefollowingformH(x)=S@g(x)+D@(uj@)(x);x2:Whilethepotentials'1and'2solvethefollowingsystemofintegralequations8>>><>>>:K1'1(x)@S2'2(xen)=@Hx2en;x21;@S1'1x+en+K2'2(x)=@Hx+2en;x22;(1.10)whereinthissystem=k+12(k1),andKidenotestheoperatorKi'i(x)=1!nZi(xy)(x)jxyjn'i(y)d˙(y);i=1;2:9Fromtheclassicpotentialtheory,weeasilyshowthatKj,j=1;2:arecompactoperatorsfromC1)intoC2)forany<0.Ifwedefor'1;'22C1)C2)theoperatorT0B@'1'21CA:=0B@K1L2L1K21CA0B@'1'21CA;(1.11)whereL2'2(x)=@S2'2xen;x21;(1.12)andL1'1(x)=@S1'1(x+en;x22:(1.13)Thenwecanrewritethesystem(1.10)inthefollowingformT0B@'1'21CA=0B@@Hy1(x;)@Hy2(x;)1CA;(1.14)wherey1(x;)=x2en;x21;andy2(x;)=x+2en;x22:SinceHisharmonicfunctiononRn,thenweeasilyprovethatHisuniformlyboundedin10C0normonthesurfacesj,j=1,2.Thatis,form=1;2;,thefollowingboundsholdk@HkC0j)CkgkL2(@;(1.15)whereCisindependentof.Fromtheregularityofthesinglelayerpotential(seeLemma2.18)andtherepresentationformula(1.9),wehaveforany0<0<<0and>0thefollowingbound2Xj=1kuk1Dj+kuk1~nD1[D2C 2Xi=1'i0i+kgkL2(@!;(1.16)where~=fx2:dist(x;@>~gandCisdependingon,0,0,,k,and~butindependentof.Weclearlyobservefrom(1.16)thegradientruisCineachcomponentD1,D2and~nD1[D2ifthepotentials'jareuniformlyboundedinCj),j=1;2:,forany<0.Inotherwords,Inordertoobtainpiecewiseoldercontinuityofru,weneedtoshow2Xi=1'ii)CkgkL2(@;8<0;(1.17)whereCisindependentof.Byinvolving(1.14),thebound(1.17)followsifweprovetheoperatorTisinvertibleinC1)C2)anditsinverseisunifromlyboundedonC1)C2),forany<0.Fromelementarypotentialtheorywhen>0,theoperatorTisinvertibleasanoperatoronC1)C2).Tobemoreprecise,TcanbewrittenasT=I+K,whereKisacompactoperatoronC1)C2).ThenweuseFredholmtheorytoshowthe11invertibilityoftheoperatorsT.Recallthat,ifwehaveafamilyofboundedlinearoperators,say,TonaBanachspace,say,X.LetusassumethatTconvergesinnormtoanoperatorT02L(X)(thespaceofallboundedlinearoperatorsonX).Noticethat,if(T0)12L(X),thenthereexist0>0besuchthatforany0thereexistuniformlybounded(T)12L(X),inwhichcase(T)1(T0)1!0:Naively,weconcludefromthisobservationthatwewouldobtaintheexistenceofuniformlybounded(T)12C1)C2)ifweprovedtheexistenceof(T0)12C1)C2)(weconsiderT0asalimitingoperatorcorrespondingtoT)andTconvergesinnormintoT0.Therefore,weaskwhetherwecanhaveconvergenceinnormforthefamilyTintotheirlimitingoperatorT0.Ammari,H.andBonnetier,E.andTriki,F.andVogelius,M.S.[1]haveprovedthatsuchconvergenceinnormcannothold.Infact,theyshowedfortheircaseindimensionn=2thelimitingoperatorsL0j;j=1;2:(thelimitingoperatorscorrespondingtothecompactoperatorsLj;j=1;2:)arenotcompactoperatorsonCforany<0.ThusLj;j=1;2:cannotconvergeinnormtotheirlimits.Therefore,theaboveobservationcannotbeusedtoobtaintheuniformlyboundedoperators(T)1.Indimensionn=2[1]theauthorsusedthenotionofcollectivelycompactoperatorsthatrequirejustpointwiseconvergence[3].Thatis,ForcollectivelycompactoperatorsKn,n=1;2;:::suchthatKn!K(pointwiseconvergence)and(IK)1exists.ThenforsomenNtheoperators(IKn)1existandareboundeduniformly,insuchacase(IKn)1!(IK)1:12Therefore,inordertoobtaintheexistenceofuniformlyboundedoperators(T)1inC1)C1)for<0byusingthenotionofcollectivelycompactoperators,weneedtoshowtwomajorthingswhichare:1.TheoperatorTcanbewrittenasT=I~where~arecollectivelycompactand~convergespointwisetosomelimitingoperator~0.2.ThelimitingoperatorT0=I~0isinvertible.Noticethat,whenapproaches0,thekerneloftheoperatorTbecomessingularatx=0.Infact,theoperatorsL2andL1becomesingularatx=0whenapproaches0.Toovercomethesingularity,wefollow[1]anddecomposetheoperatorsLj,j=1;2.WeonlyshowitforL2butthedecompositionofL1followssimilarly.Fix0andlet00.Wetwoauxiliaryfunctions 1and 2globallyonRn1(seeLemma3.4)suchthat8>>><>>>: j= j;x0j=1;2; j1;Rn1C j10;j=1;2:(1.18)forany<0,=0,andx0=(x1;:::;xn1)2Rn1.Forthenof j;j=1;2seetheRemark2.1.Let>0and'2C2).Forx21,jxj0.Remark2.1.SinceD1andD2arebothC10domains,thenaroundthetouchingpointx=0,1and2wouldbeparametrizedbyx0; 1(x0)andx0; 2(x0)respectively,where jareC10functionsandj:=@Dj,j=1;2.Thegraphof 1liesbelowthex0-hyperplane,whilethegraphof 2liesabovethex0-hyperplane.20x0xnD2D121Figure2.1:ThetouchinginclusionsLetH1:=W1;2betheusualSobolevspaceandC10isthespaceofsmoothfunctionswithcompactsupportinWeoftenusethespaceL20(@:=f'2L2(@:R@'d˙(x)=0g.2.2ExistenceandUniquenessTheoremLetˆRnbeaboundeddomaininRnwithsmoothboundaryandconsideraC10boundeddomainDˆˆLetubeasolutiontotheNeumannproblem8>>>>>>>><>>>>>>>>:div(1+(k1)˜D)ru=0in;@u(x)=gon@;R@ud˙(x)=0;(2.1)whereg2L20(@and˜(D)isthecharacteristicfunctionofD.2.2.Wesaythatu2H1isaweaksolutionto(2.1)ifR@ud˙(x)=0and21thefollowingidentityholds:Za0(x)ru(x)r(x)dx=Z@g(x)(x)d˙(x);82C1:(2.2)Theexistenceofthesolutionto(2.1)isverybasicandweshowitinthefollowingtheorem.Theorem2.3.Foranyg2L20(@,thereexistsauniqueu2H1solves(2.1).Proof.LetH1=fu2H1:R@ud˙(x)=0g.ThenH1isaclosedsubspaceofH1Infact,letunbeasequenceinH1suchthatun!uinH1ThenbyusingthetracetheoremitfollowsthatZ@ud˙=Z@(unu)d˙Z@junujd˙CkunukH1:ThereforeR@ud˙=0.ThusH1isaclosedsubspaceoftheHilbertspaceH1Consequently,H1isaHilbertspace.WeabilinearformonH1asfollowsB:H1H1!R:B[u;v]=Zak(x)DuDvdxforu;v2H1;whereak=1+(k1)˜(D)besuchthatmkakkL1MforsomepositiveconstantsmandM.Let`beaboundedlinearfunctionalonH1by`(v)=Z@gvd˙forv2H1;22ItisclearthatjB[u;v]jkukH1kvkH1forsome>0.WeshowthatB[u;u]Ckuk2H1forsomeC>0.B[u;u]=ZakjDuj2dxmkruk2L2:ByusingPoincare'sinequality(2.7),itfollowsthatB[u;u]Ckuk2H1:(2.3)ByapplyingtheLax-MilgramTheorem,weauniquefunctionu2H1satisfyingB[u;v]=`(v)forallv2H1NowweshowB[u;v]=Z@gvd˙forv2H1:Letv2H1byprojectiontheoremonHilbertspaces,thereareuniquev2H1andc2Rsuchthatv=v+c.SinceR@gd˙=0,thenitfollowsthatZ@gv=Z@gv+cZ@g=Z@gv=B[u;v]:Thatis,B[u;v]=B[u;v]:23Thusthereexistsuniqueu2H1suchthatB[u;v]=`(v)forallv2H1Consequently,uistheuniqueweaksolutionto(2.1).2.3Approximationoftialequation.For0>>>>>>><>>>>>>>>:div(a0(x)ru0)=0in;@u0(x)=gon@;R@u0=0;(2.4)wherea0(x)=1+(k1)˜(D1[D2)(x);˜isthecharacteristicfunctionofD1[D2andg2L20(@Thetialequation(2.4)hasbeenintroducedandverywellstudiedin[1]forthedimensionn=2.Wewillusetheideaof[1]tostudythebehaviorofthesolutiontothetialequation(2.4)nearthetouchingpointforanydimensionn2.For>0,wesetD1=D12en;D2=D2+2en;whereen=(00;1)andwedenotebyathecorrespondingpiecewiseconstantcots,24thatis,a(x)=1+(k1)˜(D1[D2)(x):Letubethesolutiontothefollowingmotialequation8>>>>>>>><>>>>>>>>:div(a(x)ru)=0in;@u(x)=gon@;R@u=0:(2.5)WeclearlyseethatthefunctionuisharmonicinsideandoutsidetheinclusionsD1,D2andthejumpconditionsu+=u;@u+@=k@u@on@Di;j=1;2:(2.6)Whereu+denotesthesolutionto(2.5)outsidetheinclusionD1[D2,whileudenotesthesolutionto(2.5)insideD1[D2andistheoutwardunitnormaltoDj,j=1;2.Next,weshowthattheapproximatesolutionuto(2.5)convergestou0,thesolutionto(2.4),inH1asapproaches0.Forthispurpose,weneedthefollowingmoPoincare'sinequality.TheproofissimilartotheusualPoincare'sinequality[28].Proposition2.4.LetbeaboundedandconnecteddomaininRn,withaC1boundary@.Foru2H1thereexistsaconstantC,dependingonnand,suchthatkuk2L2C kruk2L2+Z@ud˙2!:(2.7)25x0xnD2D1Figure2.2:TheseparatedinclusionsProof.Wearguebycontradiction.Iftheinequality(2.7)werefalse,thenonewouldasequenceoffunctionsfujg2H1besuchthatuj2L2>j ruj2L2+Z@ujd˙2!:(2.8)Wenormalizeujbywj=ujujL2(j=1;2;):(2.9)Then(2.8)impliesrwj2L2+Z@wjd˙2<1j(j=1;2;):(2.10)ClearlyweseethatthefunctionsfwjgareboundedinH1ThenbySobolevembedding26theorem,thereexistsasequencefwjkgˆfwjgandafunctionw2L2suchthatwjk!winL2:(2.11)ToshowthatwhasweakderivativeinL2let˚2C10thenweuse(2.10)toobtainthefollowingZwr˚dx=limjk!1Zwjkr˚dx=limjk!1Zrwjk˚dx=0:Consequentlyw2H1withrw=0.Thuswisconstantbecauseisconnected.Ontheotherhand,themapw0!Z@w0d˙2;iscontinuousonH1Then(2.10)impliesthatw=0;inwhichcasekwkL2=0.Thiscontradictionprovestheinequality(2.7).NowwearereadytostateandprovetheconvergenceofuinH1Theorem2.5.Thesolutionof(2.5)approachestothesolutionof(2.4)inH1asapproacheszero.Thatislim!0kuu0kH1=0:(2.12)Proof.First,weprovethata=1+(k1)˜D1[D2!a0inLpforanyp<1.Let=[4j=1j,where1=D1nD1\D1,2=D1nD1\D1,3=D2nD2\D2,and274=D2nD2\D2.Thenkaa0kpLp=Zjaa0jpdx=Zjaa0jpdx=Zjk1jpdx=jk1jp)!0as!0;whereisthendimensionalLebesguemeasure.Thusa!a0inLpforanyp<1.FromtheoftheweaksolutionwehavethefollowingZ(arua0ru0)r=0;82H1:ThenwehaveZa0(ruru0)rdx=Z(aa0)rurdx:(2.13)Choosing=uu0in(2.13),wegetthefollowingZa0jruru0j2dx=Z(aa0)ru(ruru0)dxkaa0kLpkrukLqkruru0kL2:Thelastinequalitymakessenseifu2W1;qforsomeq>2.Wewillprovethislater.SinceC12.Todothis,ittoproveu2W1;q(V)forasubsetVthatsatisfyingD1[D2ˆˆVˆˆLetUbeasubsetsothatVˆˆUˆand'beafunctionsuchthat'1inVandsupp'ˆU.~u='u,thenweseethat8>><>>:divar~u=finU;~u=0on@U;(2.16)wheref=div(ur')+(rur')andwehaveusedthata1onUnV.Since(ur')2Lqand(rur')2L2ˆW1;q,thenf2W1;q(U)forsomeq>2.Byusing29Meyer'stheorem[7],wehave~u2W1;q0(U)andk~ukW1;q0(U)CkfkW1;q(U):Consequently,u2W1;q(V).2.4LayerPotentialsInthissectionwestudytwointegraloperatorsthatcalledlayerpotentials.Theseoperatorsplayanimportantroleinthederivationofthedecompositiontheoremforthesolutionofthetransmissionproblem(2.4).TheseoperatorsareverywellstudiedforC2-domainsin[10,24,25,26,27].Also[11,15,31]gavesomebasicresultsfortheseoperatorsforC1domains.InvertiblityandcomapctnessforLipschitzdomainsaregivenin[2,32].WebeginbythefundamentalsolutiontotheLaplaceequationindimensionn.Wedenoteby!ntheareaofunitsphereindimensionn.Lemma2.6.[14]AfundamentalsolutiontotheLaplaceequationu=0isgivenbyx;y)=8>>><>>>:12ˇlnjxyjifn=2;1(2n)!njxyj2nifn>2:(2.17)WethelayerpotentialsforL2densityfunctions.GivenaboundedC1domaininRn,n2,wedenoterespectivelythesinglelayeranddoublelayerpotentialsofafunction'2L2(@asS@'andD@',whereS@'(x):=Z@x;y)'(y)d˙(y);x2Rn;(2.18)30andD@'(x):=Z@@x;y)@(y)'(y)d˙(y);x2Rnn@:(2.19)ForafunctionuonRnn@wedenoteu(x)=limt!0+u(x(x));x2@;(2.20)and@@u(x)=limt!0+ru(x(x))(x);x2@;(2.21)ifthelimitexists.Here(x)istheoutwardunitnormalto@atx.Forsimplicity,sometimesweuse@u(x)insteadof@@u(x)andxinsteadof(x).Westatethejumprelationsforthedoubleandsinglelayerpotentials.Lemma2.7.[2]LetbeaboundedC1domaininRn.For'2L2(@S@'+(x)=S@'(x)x2@;(2.22)@S@'(x)=12I+K@'(x)x2@;(2.23)D@'(x)=12I+K@'(x)x2@;(2.24)whereK@isdbyK@'(x)=1!nZ@(yx)(y)jxyjn'(y)d˙(y);(2.25)31andK@istheL2adjointofK@,i.e.,K@'(x)=1!nZ@(xy)(x)jxyjn'(y)d˙(y):(2.26)ThecompactnessoftheoperatorsK@andK@forC2domainshasbeenshownin[10,25],withsomemoweshowthecompactnessforC1domains.Theorem2.8.LetbeaboundedC1domaininRn,theoperatorsK@;K@:C(@!C(@arecompactoperatorsforany0<<1.Proof.First,weshowthattheoperatorK@:C(@!C(@;isboundedoperatorforany<.Thatis,forany'2C(@weshowkK@'kCk'k1;whereCisdependingon@,andn.ItiseasytoshowthefollowinginequalitiesholdforC1domain,j(xy)(x)jCjxyj1+8x;y2@;(2.27)32andj(x)(y)jCjxyj8x;y2@;(2.28)whereCisdependingon@andn.Alsobyusingthemeanvaluetheorem,itisnottoshowthatforanyx1;x2;y2@with2jx1x2jjx1yj,thefollowinginequalityholds1jx1yjn1jx2yjnCjx1x2jjx1yjn+1;(2.29)whereCisdependingonnonly.FortheuniformboundednessoftheoperatorK@,weeasilyseethatjK@'(x)jCk'k1Z@jxyj1+nd˙(y):ThereforewehavejK@'(x)jCk'k1:ThatiskK@'k1Ck'k1:(2.30)Toestablisholdercontinuity,letuseforx2@andr>0,theportionSx;rasfollowsSx;r:=fy2@:jxyj12and0<<1.Thenormalderivativeofthedoublelayerpotentialiscontinuousacrosstheboundaryasweseeinthefollowingtheorem.Theorem2.12.[15]LetbeaboundedC1domaininRn,then@+D@'and@D@'exist.Moreover,@+D@'=@D@';8'2C(@:2.5Representationformula.Beforewegivetherepresentationformulato(2.1),weshowthattheHarmonicfunctionsinanunboundeddomainRnnB(R)withdecayoforderjxj1nsatisfytheGreenidentityasweseeinthefollowingLemma.38Lemma2.13.LetR>>1belargeandubeaharmonicfunctioninRnnBR(0)thathasdecayoforderjxj1ninRnnBˆ(0),whereˆ>4R.ThenthefollowingidentityholdsZ@BR(0)u@ud˙(x)=ZRnnBR(0)jruj2dx:Proof.SinceuisharmonicintheannulusBˆ(0)nBR(0),thenwehaveZBˆ(0)nBR(0)jruj2dx=Z@Bˆ(0)nBR(0)u@ud˙(x);thatis,ZBˆ(0)nBR(0)jruj2dx=Z@Bˆ(0)u@ud˙(x)Z@BR(0)u@ud˙(x):(2.39)Fromtheassumptions,weknowthatu=O(ˆ1n)on@Bˆ(0).Nowweshowthat@u=O(ˆn)on@Bˆ(0).Choosex02@Bˆ(0),thenclearlyweseethatuisharmonicinBˆ4(x0).LetvbeaharmonicfunctionintheballB1(x0),thenbyPoisson'sformulawehavethatv(x)=1!nZ@B1(x0)1jxx0j2jxyjnv(y)d˙(y);x2B1(x0):Bytiation,weobtainthefollowingrv(x)jx=x0=1!nZ@B1(x0)r 1jxx0j2jxyjn!jx=x0v(y)d˙(y);x2B1(x0):Therefore,jrv(x0)jCkvkL1B1(x0):(2.40)39Assumingv(x)=u(ˆ4x)andusing(2.40),itfollowsthatjru(x0)jCˆkukL1Bˆ=4(x0):(2.41)From(2.41)andthedecayconditionofuinBˆ=4(x0),itfollowsthat@u=O(ˆn)on@Bˆ(0).ThenweconcludethatZ@Bˆ(0)u@ud˙(x)=O(ˆ12n):Thusthelemmafollowsbylettingˆ!1in(2.39).Wegivearepresentationformulaforthesolutionto(2.1).ThisformuladependsonthesubdomainDandthepair(uj@;g).Theproofwasgivenin[2,23].Theorem2.14.LetbeaboundeddomainwithsmoothboundaryandletDbeasubdomiancompactlyembeddedinwithC10boundaryandconductivity0>>>>>>>>>>><>>>>>>>>>>>>:rak(x)rh=0inRnn@;hh+=fon@;@h@+h=gon@;h(x)=O(jxj1n)ifjxj!1;(2.45)whereak=1+(k1)˜(D).LetV1(x):=S@g(x)+D@f(x)+S@D'(x)forx2Rn:WebeginbyshowingV1isaweaksolutionto(2.45)inthesenseofthefollowing2.15.Wesayvisaweaksolutionto(2.45)ifthefollowingidentitieshold:Zak(x)rvrdx=082C10;andZRnnrvr~dx=08~2C10(Rnn:LetusverifythejumpandthedecayconditionsforV1.BythecontinuityofthesinglelayerpotentialS@gacross@smoothnessofS@D'on@andthejumpconditionD@f(x)=12I+K@f(x);x2@;41itfollowsthatV1(x)V+1(x)=f(x)forx2@:Similarly,bythecontinuityofthenormalderivativeofthedoublelayerpotentialD@facross@smoothnessofS@D'on@andthejumprelationforthenormalderivativeofthesinglelayerpotential@S@g(x)=12I+K@g(x);x2@;wehave@V1@+V1=gon@:Fromtheofsinglelayerpotential,wehaveS@g(x)=Z@x;y)g(y)d˙(y):Sinceg2L20(@wegetS@g(x)=Z@x;y)x;y0)]g(y)d˙(y);fory02Sincejx;y)x;y0)jCjxj1nwhenjxj!1andy2forsomeconstantC.ThereforeS@g(x)=O(jxj1n)asjxj!1:42Similarly,wehaveS@D'(x)=O(jxj1n)asjxj!1:Obviouslyfromtheonofthedoublelayerpotential,weseethatD@f(x)=O(jxj1n)asjxj!1:ThereforeV1(x)=Ojxj1nwhenjxj!1:NowweshowV1isaweaksolutionto(2.45)inthesenseofthe2.15.SinceV1isharmonicinRnnthenitisclearthatZRnnrV1r~dx=0;8~2C10Rnn:For2C10wehaveZak(x)rV1rdx=ZnDrV1rdx+kZDrV1rdx:SinceV1isharmonicinsidenDandalsoisharmonicinsideD,thenitfollowsthatZak(x)rV1rdx=kZ@D@V1d˙Z@D@+V1d˙:Thatis,Zak(x)rV1rdx=kZ@D@H+@S@D'd˙Z@D@H+@+S@D'd˙:43Notethatifk@H(x)+@S@D'(x)=@H(x)+@+S@D'(x)forx2@D;(2.46)thenwehaveZak(x)rV1rdx=0;82C10:Bysubstitutingthejumpconditions(2.23)inequation(2.46),weobtainthefollowing(k1)@H(x)+k12I+K@D'(x)12I+K@D'(x)=0forx2@D;thatis@H=k+12(k1)IK@D'on@D:(2.47)ThuswehaveshownthatZak(x)rV1rdx=0;82C10;ifandonlyif(2.47)holds.ThereforeV1isaweaksolutionto(2.45).Now,weV2(x)=8>>><>>>:u(x)ifx2;0ifx2Rnn:ThenV2isalsoaweaksolutionto(2.45).Thereforeinordertoprovetherepresentationformula(2.42),ittoshow(2.45)hasuniquesolutioninW1;2loc(Rnn@Forthat,44supposew2W1;2loc(Rnn@isaweaksolutionto(2.45)withf=g=0.ThusweclearlyseethatwiscontinuousonRnandharmonicinRnnD.Thuswisaweaksolutionto(2.45)intheentiredomainRn.ForalargeR,wehaveZBR(0)jrwj2dx1+kkZBR(0)1+(k1)˜(D)jrwj2dx=1+kkZ@BR(0)w@wd˙(byofweaksolution)=1+kkZRnnBR(0)jrwj2dx0(byLemma(2.13)):ThisinequalityholdsforallRandhencewisconstant.Sincew(x)!0aty,weconcludethatw0.Toprovetheuniquenessoftherepresentationformula(2.42),supposethatH0isharmonicinandH+S@D'=H0+S@D'0inThenS@D(''0)isharmonicinandhence@S@D(''0)=@+S@D(''0)on@D:Itfollowsfrom(2.23)that''0=0on@DandthenH=H0.ByusingTheorem2.14,theharmonicpartsH0andHofu0anducanberespectivelyrepresentedasH0(x)=S@g(x)+D@(u0j@)(x);x2;(2.48)H(x)=S@g(x)+D@(uj@)(x);x2:(2.49)ThefollowinglemmashowsthatHisuniformlyboundedindependentlyofinanynormaswellasHapproachesH0whenapproaches0inanycompactsubsetofItwasprovedin[1]fordimensionn=2andtheproofisstillvalidforanydimensionn2.45Lemma2.16.Let0>0andWˆˆ,suchthatD1[D2ˆW,forall<0.Thenforallm=0;1;2;3;:::thereexistsC=C(n;m;k;;d)whered=dist(@;W)suchthatkHkCm(W)CkgkL2(@8<0;(2.50)and,lim!0kHH0kCm(W)=0:(2.51)Proof.From(2.48)and(2.49),weseethatHH0=D@(uj@)D@(u0j@);whereD@(uj@)=1!nZ@(yx)yjxyjnu(y)d˙(y);andD@(u0j@)=1!nZ@(yx)yjxyjnu0(y)d˙(y):SinceWˆˆthenitisclearthatkHH0kCmWCkuu0kL2(@:Bytracetheorem,wehavekHH0kCmWCkuu0kH1:(2.52)46FromTheorem2.5,itfollowsthatlim!0kHH0kCmW=0:Nowweshowtheuniformbound(2.50).FromtheofH,weclearlyseethatkHkCmWCkgkL2(@+kukL2(@:(2.53)Byapplyingtracetheorem,wegetkHkCmWCkgkL2(@+kukH1:(2.54)ToprovekukH1isuniformlyboundedbykgkL2(@,weusethebilinearforminequality(2.3)forHtodeducekuk2H1CZ@gud˙(x)CkgkL2(@kukH1C14kgk2L2(@+kuk2H1:ChoosingC<1inthelastinequality,itfollowsthatkukH1CkgkL2(@(2.55)whereCisindependentof.Thusbysubstituting(2.55)in(2.54),theuniformboundfollows.472.6Piecewiseoldercontinuityforthemodif-ferentialequation.For>0,wepotentialfunctions'1and'2respectivelyontheboundariesofD1andD2by'1(x)=@u+@ux2enforx21;(2.56)and'2(x)=@u+@ux+2enforx22:(2.57)TosimplifythenotationofthesinglelayerpotentialontheboundariesofD1andD2,wewriteS1'1(x)=Z1xy)'1(y)d˙(y);andS2'2(x)=Z2xy)'2(y)d˙(y);Itwasgivenin[1]therepresentationformulafortheapproximatedsolutionuto(2.5)whichworksforanydimensionn2.Theorem2.17.Thesolutionofproblem(2.5)canbeuniquelyrepresentedasu(x)=H(x)+S1'1(x)+S2'2(x);x2;(2.58)whereH(x)=S@g(x)+D@(uj@)(x);x2;48and'1and'2solvethefollowingsystemofintegralequationsK1'1(x)@S2'2(xen)=@Hx2en;x21;@S1'1x+en+(K2)'2(x)=@Hx+2en;x22;(2.59)inthissystem=k+12(k1),andKidenotestheoperatorKi'i(x)=1!nZi(xy)(x)jxyjn'i(y)d˙(y);i=1;2:Proof.For2C10,wehaveZ1+(k1)˜D1[D2rH+S1'1+S2'2rdx=ZnD1[D2rH+S1'1+S2'2rdx+kZD1[D2rH+S1'1+S2'2rdx=Z@D1[@D2@@+H+S1'1+S2'2+k@@H+S1'1+S2'2d˙=Z@D1@@+H+S1'1+S2'2+k@@H+S1'1+S2'2d˙+Z@D2@@+H+S1'1+S2'2+k@@H+S1'1+S2'2d˙=(k1)Z@D1@Hk+12(k1)I+K1'1+@S2'2d˙+(k1)Z@D2@Hk+12(k1)I+K2'2+@S1'1d˙by(2.23):If'1;'2solves(2.59),thenwegetZ1+(k1)˜D1[D2rH+S1'1+S2'2rdx=0;82C10:49Thereforeuisweaksolutionof(2.5).ThefollowingLemmaisveryusefulanditwillbeusedtogivethepiecewiseolderestimateforthemotialequation(2.5).Theproofcanbefoundin[15,21].Lemma2.18.LetˆRnbeaboundeddomainandletDˆˆbeaC10subdomain.ThederivativesofasinglelayerpotentialS@D'(x)=Z@Dx;y)'(y)d˙(y);x2;witholderdensityfunction'2C(@D),0<<0canbeuniformlyextendedinaoldercontinuousfashionfromnDintonDandfromDintoDwithlimitingvalues@S@D'j(x)=12I+K@D'(x);x2@D:(2.60)Furthermore,wehavefor00,let~denotestheset~=fx2:dist(x;@>~g.Thenforany0<0<<0wehavetheboundkuk10D1+kuk10D2+kuk10~nD1[D2C 2Xi=1'ii+kgkL2(@!;(2.63)forsomeconstantCdependingon,0,0,,k,and~butindependentof.AsaconsequenceofthisLemma,weobtainthedesiredpiecewiseoldercontinuityforruoneachcomponentofiftherighthandsideof(2.63)canbeshowntobeuniformlyboundedindependentlyof.Thatis,ifweprove2Xi=1'ii)CkgkL2(@;(2.64)whereCisindependentof,thenweobtainthedesiredboundforru.Theuniformbound(2.64)dependsonthesolvabilityofthesystem(2.59)andthiswillbeourtaskinthenextchapters.51Chapter3Decompositionofthesystemofintegralequations.Ourgoalistosolvethesystem(2.59)withboundsuniformin.Tothatend,letustheoperatoronC1)C2)byT0B@'1'21CA:=0B@K1L2L1K21CA0B@'1'21CA;whereL2'2(x)=@S2'2xen;x21;(3.1)andL1'1(x)=@S1'1(x+en;x22:(3.2)Thusthesystem(2.59)canbewrittenasT0B@'1'21CA=0B@@Hy1(x;)@Hy2(x;)1CA;(3.3)wherey1(x;)=x2en;x21;52andy2(x;)=x+2en;x22:FromLemma2.16wehavethattherighthandsideof(3.3)isuniformlyboundedinC0normonthesurfacesj,j=1;2.Thatisk@HkC0j)CkgkL2(@:Thereforetoshowtheuniformbound(2.64),weneedtoshowthattheoperatorTisinvertibleasanoperatoronC1)C2)anditsinverseisuniformlyboundedinC1)C2),forany<0.ThusthepurposeofthischapteristostudythebehavioroftheTandhowtoovercomethesingularityofitskernelwhenapproaches0.3.1BehaviorofT,>0.Recallthat=k+12(k1),where012.Theorem3.1.For>0,TiscontinuouslinearoperatoronC1)C2),invertiblewithboundedinverseforany0<<0andforanyjj>12.Proof.For>0,weevidentlyseethatTisboundedlinearoperatoronC1)C2).ForI=0B@OO1CAandK=0B@K1L2L1K21CA;TcanbewrittenasT=I+K:SinceKisacompactoperatoronC1)C2),thenTisFredholmoperator.Therefore53theinvertibilityofTfollowsifweshowthatTisinjective.Let('1;'2)2C1)C2)besuchthatT0B@'1'21CA=0B@001CA.Thatis,8>>><>>>:K1'1(x)@S2'2(xen)=0;x21;@S1'1(x+en)+K2'2(x)=0;x22:(3.4)Orequivalently,8>>><>>>:K1'1x+2en@S2'2(x2en)=0;x2@D1;@S1'1(x+2en)+K2'2(x2en)=0;x2@D2:(3.5)ConsiderthefunctionwonRnbyw=S1'1+S2'2:(3.6)Weclaimthatwisaweaksolutionofthefollowingproblem8>>><>>>:div1+(k1)˜(D1[D2)rw=0;x2Rn;w(x)=O(jxj1n);jxj!1:(3.7)Toprovetheclaim,let2C10(BR(0))whereBR(0)˙˙Forak=1+(k1)˜(D1[D2),54weseethefollowingZBR(0)akrwrdx=kZD1rS1'1(x+2en)+S2'2(x2en)rdx+kZD2rS1'1(x+2en)+S2'2(x2en)rdx+ZBR(0)n(D1[D2)rS1'1(x+2en)+S2'2(x2en)rdx:Usingthedivergencetheorem,itfollowsZBR(0)akrwrdx=kZ@D1@S1'1(x+2en)+@S2'2(x2en)d˙(x)+kZD2@S1'1(x+2en)+@S2'2(x2en)d˙(x)Z@D1@+S1'1(x+2en)+@S2'2(x2en)d˙(x)ZD2@S1'1(x+2en)+@+S2'2(x2en)d˙(x):Utilizingthejumpconditionsforthesinglelayerpotential(2.23),wehaveZBR(0)akrwrdx=(k1)Z@D1(K1)'1(x+2en)@S2'2(x2en)d˙(x)+(k1)Z@D2(K2)'2(x2en)@S1'1(x+2en)d˙(x):Byapplying(3.4),weobtainthefollowingZBR(0)akrwrdx=0:55Inordertogetthedecayconditionforw,itisenoughtoshowthefollowingidentityZ1'1(+en)d˙=Z2'2(en)d˙=0;(3.8)since,ifRj'jd˙(y)=0,thenSj'j=Zjx;y)'jd˙(y)=Zjx;y)x;y0)'jd˙(y)Cjjxj1n;(3.9)wherey02Dj.Sincejx;y)x;y0)jCjxj1nifjxj!1andy2j:WeonlyshowR1'1(+en)d˙=0andsameworkwouldholdforR2'2(en)d˙=0.SinceS2'2(en)isharmonicinD1,thereforewegetZ1@S2'2(xen)d˙(x)=0:Thereforebyusing(3.4),itfollowsthat0=Z1(K1)'1(x+en)@S2'2(xen)d˙(x):Thatis,Z1(K1)'1(x+en)d˙(x)=0:56Thusbytheduality(remark2.10),weobtainthefollowingZ11(x+en)K1(1)'1(x+en)d˙(x)=(12)Z1'1(x+en)d˙(x)=0:Sincejj>12,thenitfollowsthatZ1'1(x+en)d˙(x)=0:Weshowthatw0inRn.ForR>>1,wehaveZBR(0)jrwj2dx1+kkZBR(0)1+(k1)˜(D1[D2)jrwj2dx=1+kkZ@BR(0)w@wd˙(x)(byofweaksolution)=1+kkZRnnBR(0)jrwj2dx(bylemma2.13)0:ThuswisconstantinRn.Usingthedecayconditionaty,itfollowsthatw0inRn,thatisS1'1(x+2en)+S2'2(x2en)=0;x2Rn:Consequently,weconcludethatS1'1issmoothacross1andS2'2issmoothacross2.Thereforeapplyingthejumpconditionsforthesinglelayerpotential(2.23),wehave'1(x)=@+S1'1(x)@S1'1(x)=0;x21;'2(x)=@+S2'2(x)@S2'2(x)=0;x22:57ThusTisinjective.3.2AuxiliaryfunctionsandBasicproperties.Asin[1],westudythebehaviorofTanditsinverseasapproaches0andweusethesamenotationsthattheyusedintheirpaper.WhenthesubdomainsD1andD2approachthetouchingpointx=0,thekerneloftheoperators@S2'2(xen)=Z2(xeny)jxenyjn'2(y)d˙(y);x21;and@S1'1(xen)=Z2(xeny)jxenyjn'1(y)d˙(y);x22;becomesingularatx=0.Fordimensionn=2[1]thesingularitywasovercomebydecomposingTasasum+Cwhere,foraxed>0tlysmall,theoperatorcontainsthesingularpartofT(i.e,theidentityplusapieceoftheagonalterms),andCiscompact.Theirideaworksforanydimensionn2withsomenecessarytechnicalmoSowearegoingtomimictheirideatoovercomethesingularityforgeneraldimensionn2.Weasmallparameter0<0<1sothat12<1+02>>>>>>><>>>>>>>>:01;1;x2B(0);krk10:(3.11)Wealsoassumethat0isientlysmallsothataroundthetouchingpointx=0,thesurfaces1and2canbeparametrizedby8>>><>>>:x00!x=x0; 1(x0)21;y00!y=(y0; 2(y0))22;(3.12)forsomeC10parametricfunctions 1and 2.3.2.[1]AclosedandboundedsurfaceˆRniscalledofregularityC1ifitcanbecoveredbyalocalsetofcharts j:x2B0jˆRn1! j;1(x);; j;n(x)ˆRn;whereB0j;1jm,areopenballsinRn1and j;i;1inareC1BjfunctionswithRank(r j)=Rankr 1;;r n=n1.Wesaythatacontinuousfunctionf59isofregularityC0ifforanyofthelocalchartsf jC0Bj:=supx0;y02Bj;jx0y0j<1f j;1(x0);; j;n(x0)f j;1(y0);; j;n(y0)jx0y0jC:ThenormonC0isdbykfk0=maxkfkL1;max1jmf jC0Bj:Lemma3.3.[1]Given0<0<1forwhich(3.12)holdswith(3.12)asoneoflocalcoordinatechart,andgiven0<<1;thereexistsanoperatorE:C2)!C(Rn1);suchthatforany'2C2),wehave8>>>>>>>><>>>>>>>>:kE'k;Rn1(1+0)k'k;2E'(y0)='y0; 2(y0);y00;supp(E')ˆB20:(3.13)Proof.For'2C2),let~'beafunctiononRn1thatby~'(y0)=8>>><>>>:'(y0; 2(y0));ify00;'y; 2(y);ify0>0;wherey=0(y0)and(y0)isthenormalunitvectory0jy0j.Weshow~'isColder60continuousonRn1.Lety01;y022Rn1.Case1:Wheny010andy020.Wetriviallyseethat~'(y01)~'(y02)y01y02='(y01; 2(y01))'y02; 2(y02)y01y02k'k:Case2:Wheny010andy02>0.Wehave~'(y01)~'(y02)y01y02='(y01; 2(y01))'y2; 2y2y01y02:Sincey01y2y01y02,thenweobtain~'(y01)~'(y02)y01y02'(y01; 2(y01))'y2; 2y2y01y2k'k:Case3:Wheny01>0andy02>0.Weshowthatjy1y2jy01y02:(3.14)Theaboveinequalitywouldbetrivialifthedotproducty01y020.Thenitisenoughtoshow(3.14)wheny01y02>0.Withoutlossofgeneralitywemayassumethaty02y01andlet~y2=y012(y0).Weclearlyseethatjy1y2j=0y01y01~y2>>>>>>><>>>>>>>>:ˆ(y0)=1;ify00;krˆk0;supp(ˆ)2B20:(3.16)E'(y0)=ˆ(y0)~'(y0).ItisclearthatkE'k1k'k1.62NowweshowC-normforE'.Fory01;y012Rn1wehavesupjy01y02j<1y016=y02E'(y01)E'(y02)y01y02=supjy01y02j<1y016=y02ˆ(y01)~'(y01)ˆ(y02)~'(y02)y01y02supjy01y02j<1y016=y02"kˆk1~'(y01)~'(y02)y01y02+k~'k1ˆ(y01)ˆ(y02)y01y02#k'k+0k'k(1+0)k'k:ThereforekE'k;Rn1(1+0)k'k;2.NextweetwoC1auxiliaryfunctions 1and 2thatgloballyonRn1besuchthat j1;Rn1=O();j=1;2forevery<0and=0.Lemma3.4.Let<0,=0and0<2<0.ThereexistC1-functions 1and 2donRn1sothat8>>><>>>: j= j;x0j=1;2; j1;Rn1C j10;j=1;2:(3.17)whereCisindependentof.Proof.Recallthatthefunctions j2C10(B00)arelocallytosatisfy j(x0)=r j(x0)=0onlyatx0=0,j=1;2and 2isnon-negativewhile 1isnon-positive.Thenforanyx02B0(0),wehave j(x0)Cx01+0 j10;j=1;2:(3.18)63For<120,let2C1c(Rn1)beafunctionthatsatisfyingthefollowing8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:01;(x0)=1;ifx0(x0)=0;ifx02krk1=O(1);r21=O(2);(3.19)wherer2istheHessianmatrixof.Forany0<<0,wede 2(x0)= 2(x0)(x0)+1(x0)1+0k 2k10; 1(x0)= 1(x0)(x0)1(x0)1+0k 1k10:(3.20)Clearlyweseethat jaregloballyC10and j(x0)= j(x0)forx02B0(),j=1;2.Thenweonlyneedtoshowthebound j1;Rn1Ck 2k10;8<0;j=1;2:(3.21)Weprove(3.21)forj=2andthesameargumentswouldholdwhenj=1.First,weshowtheL1normfor 2.Inthecasex0,wehave 2(x0)= 2(x0)andthenbyusing(3.18)weobtainthefollowing 2(x)Ck 2k10jxj1+0Ck 2k101+0Ck 2k10:64Thatis 2(x0)Ck 2k10:(3.22)Forthecase0and'2C2).Forx21,jxj>><>>>:P:2!Rn1;Py0; 2(y0)=y0;(3.49)7622x02211Figure3.1:TheapproximatesurfacesandS2isthesinglelayerpotentialontheapproximatesurface2.FromthesmoothnessofS2on1wehave(x)@S2E'P(xen)=(x)!nZ2(xyen)(x)jxyenjnE'P(y)d˙(y);(3.50)where(x)isthenormalunitvectorontheapproximatesurface1atthepointx,thatis,(x)=1q1+r 1(x0)20B@ 1(x0)11CA:(3.51)77Werewrite@S2forthepotentialE=E'Patthepoint~x=xenasfollows(x)@S2E(~x)=~C(x0)(x)ZRn1(y0x0)r 1(x0)+ 1(x0) 2(y0)jx0y0j2+( 1(x0) 2(y0))2n=2˚(y0)dy0;(3.52)where˚isdinLemma3.5by˚(y0)=E'(y0)q1+r 2(y0)2and~C(x0)=1!nr1+r 1(x0)2.Now,we(x)K2'(x)=(x)@S2'(xen)+(x)@S2E(~x):(3.53)Wewillprovelaterthatoperatorsin(3.53)formafamilyofcompactoperatorsfromC2)toC1).Alsobyusingtheofthefunction˚wecanrewritetheoperatorsK2asfollows(x)K2'(x)=(x)!nZ2(xyen)(x)jxyenjn'(y)d˙(y);+~C(x)ZRn1(y0x0)r 1(x0)+ 1(x0) 2(y0)jx0y0j2+( 1(x0) 2(y0))2n=2˚(y0)dy0:Fromtheparameterizationofthesurfaces1and2aroundtheorigin,wehavethatx=(x0; 1(x0))21forx0<,andsimilarly,y=(y0; 2(y0))22wheny0<.Thereforeweconcludethatforx00,x22,jxj0asfollows:T0B@'1'21CA=0B@'1'21CA+C0B@'1'21CA;(3.68)82where=0BBBBB@!nr1+r 1(x0)2J2+I1!nr1+r 2(x0)2J1+I11CCCCCA;(3.69)andC=0B@K1K2K2K21CA+(1)0B@0L2L101CA:(3.70)Weclearlynoticethat,for'2C2)andx21thenormalderivativeofthesinglelayerpotential@S2'(x)=1!nZ2(xy)(x)jxyjn'(y)d˙(y)is0oldercontinuouswheneverjxj>0.Therefore,itisconvenienttothelimitofthecompactoperator(1)L2asanoperatorfromC2)intoC1)asfollowsL02'=lim!0L2'inC1\fjxj>0g):(3.71)WehighlightatthispointthattheoperatorL02isasanoperatorfromC2)intoC1\fjxj>0g).Furthermore,theoperatorL02iscompactoperatorbecauseitisthenormlimitofcompactoperators.NowweturntothelimitoftheoperatorsL2'(x),whenjxj0byusingtheoperators(x)K2,(x)J2and(x)I2thatintheprevioussection.Inother83words,for'2C2)andx21\fjxj0g,wed0@K02+1!nq1+r 1(x0)2J02+I021A'(x)(3.72)asalimitoperatorofL2'(x).Globally,weuse(3.71)and(3.72)tothelimitingoperatorcorrespondingtoL2.Thatis,for'2C2)andx21),wedL02'(x)=(x)0@K02+1!nq1+r 1(x0)2J02+I021A'(x)+1(x)L02'(x):(3.73)Similarly,wetheoperatorL01.Thatis,for'2C1)andx22),weL01'(x)=(x)0@K01+1!nq1+r 1(x0)2J01+I011A'(x)+1(x)L01'(x):(3.74)WewillshowlatertheoperatorL02isapointwiselimitofL2asanoperatorfromC2)intoC1)andsimilarywewillobtainthatL01isapointwiselimitofL1asanoperatorfromC1)intoC2).However,in[1]theauthorshaveproventhefollowingTheoremTheorem3.7.[1]TheoperatorsL01andL02arenotcompactonCforany0<<0.Consequently,weconcludethatthecompactoperatorsL:=L1;L2donotconvergeinnormtoL0:=L01;L02.84NowweusetheoperatorsL01andL02tothesystemT00B@'1'21CA=0B@K1L02L01K21CA0B@'1'21CA:(3.75)AlsowewillshowlaterthatT0isapointwiselimitofthecompactoperatorsTasanoperatorfromC1)C2)intoC1)C2).Byusing(3.73)and(3.74),wemaydecomposeT0asfollows:T0=0+C0;where0=0BBBBB@!nr1+r 1(x0)2J02+I01!nr1+r 2(x0)2J01+I011CCCCCA;(3.76)andC0=0B@K1K02K02K21CA+(1)0B@0L02L0101CA:(3.77)Aswehavementionedearlierthattheoperators(L1;L1)donotconvergeinnormto(L01;L02).ThustheoperatorsTdonotconvergeinnormtoT0.Consequently,eventhoughweshowthatthelimitingsystemT0isinvertablewecan'tgetdirectlythattheoperatorsTareinvertibleandtheirinverses(T)1areuniformlybounded.Recallthat,theuniformbounded(2.64)requiresuniformboundednessfor(T)1inC1)C2)for<0.Intheabsenceofnormconvergence,ourgoalistoproveuniformboundednessfor(T)1inC1)C2)for<0byusingthepointwiseconvergence.85Chapter4olderestimatefortheoperatorJ2WedevotethischaptertoprovetheuniformoldercontinuityoftheoperatorJ2whereisthefunctionin(3.11).Thework,whichisinanydimensionn2,dependsontheearlierworkfordimensionn=2[1],weusethesamedecompositionfortheoperatorJ2aswellasweusesamenotationsthatpresentedindimensionn=2fortheauxiliaryoperatorswithsomemothatarerequiredforthehigherdimension.Theorem4.1.Givenany0<<0andany0<0,thenJ2isacontinuouslinearoperatorfromC2)toC1),<0.Moreover,wehave!nq1+r 12J2L(C2);C1))C();8<0;whereistheregularityoftheauxilaryfunctions j,0istheregularityoftheboundariesj,j=1;2,andC()convergesto0asconvergesto0uniformlyin.Beforestartingtheproof,recallthatthefunctions 1and 2areinaneighbor-hoodoftheoriginandhaveregularityC10forsome0<01,whereastheauxiliaryfunctions 1and 2aregloballyonRn1andsatisfythebound j1C j10;j=1;2;86where=0.Thatis, j1C();j=1;2;whereC()approaches0whenapproaches0.TheoperatorJ2isexplicitlyin(3.62)and(3.63)butitisbtowriteitdownhereinordertoseethebehaviorofthekernelfunctionthatcorrespondingtotheoperatorneartheorigin.Forx6=0or6=0and'2C2),themainoperatorJ2isbyJ2'(x)=ZRn1+ 2(y0) 1(x0)r 1(x0)(y0x0)jx0y0j2+ 1(x0) 2(y0)2n2+ 2(x0) 1(x0)r 1(x0)(y0x0)jx0y0j2+ 1(x0) 2(x0)2n2˚(y0)dy0;(4.1)andforx=0and=0,theoperatorisbyJ02'(0)=ZRn1 2(y0)y21+:::+y2n1+ 22(y0)n2˚(y0)dy0;(4.2)where˚(x0)=E'(x0)q1+jr 2(x0)j2hascompactsupportinB0(R0),˚(0)='(0)andboundedbythenormk˚k1+C()(1+0)k'k:(4.3)Furthermore,thereexistsaconstantM>0suchthatforanyx=(x0;xn)21,thefunction0!˚(0+x0)issupportedinB0(M).WestartwithsomebasicpreliminariesthatareneededfortheproofoftheTheorem4.1.874.1PreliminariesInthissectionwepresentsomebasicbutusefulboundsfortheauxiliaryfunctions 2, 1andforsomelinearcombinationsof 2and 1withtheperturbationconstant.Fromtheoftheoperatorin(4.1)andin(4.2)weseethatthedenominatorofthekernelfunctiondependsonthefunctions 1and 2soitisagoodideatostartthelowerboundsofthesefunctions.Lemma4.2.Suppose0<<0.ThenthereexistsaconstantC>0,independentof(whereisassumedtobesmall),suchthatforanyx02Rn1,r (x0)C;k ik10 (x0)1+;i=1;2:(4.4)Proof.Weonlyfocuson 2,butthesameargumentsholdfor 1.Recalltheof 2from(3.20) 2(x)= (x)(x)+(1(x))1+0k kC10;whereisafunctionin(3.19).Foranyx0,˘02Rn1,weseethat 2(x0+˘0)= 2(x0)+r 2(x0)˘0+Z10ddt 2(x0+t˘0)r 2(x0)˘0dt;andclearlywehavethebound 2(x0+˘0) 2(x0)+r 2(x0)˘0+Z10r 2(x0+t˘0)˘0r 2(x0)˘0dt:88Usingtheoldercontinuityofr 2,itfollowsthat 2(x0+˘0) 2(x0)+r 2(x0)˘0+˘01+r 2Z10tdt 2(x0)+r 2(x0)˘0+11+˘01+k 2k10:AssumingC=11+k 2k10whichisevidentlyindependentoftlysmall),weobtain 2(x0+˘0) 2(x0)+r 2(x0)˘0+C˘01+:Thatis, 2(x0+˘0) 2(x0)r 2(x0)˘0C˘01+:Since 2(x0+˘0)0,wegetthat 2(x0)˘0C˘01+ 2(x0):(4.5)Letting˘0=1C(1+)1r 2(x0)11r 2(x0)in(4.5),wehavethefollowing1C(1+)1r 2(x0)1+1C1C(1+)(1+)r 2(x0)1+ 2(x0):Thereforewegetthedesiredboundr 2(x0)C 2(x0)1+:89Thefollowinglemma[1]isastraightforwardconsequenceofYoung'sinequalityandithasbeenusedfrequentlyforthelowerboundsforthedenominatorofthekernelfunctionthatcorrespondingtotheoperatorJ2.Lemma4.3.Foranyr;t0andforany01wehaver2+t2r1+t1:Proof.ByYoung'sinequality,wehavethefollowingr1+t11+2r2+12t2r2+t2Toappropriateuniformboundsforthekernelfunction,weneedsomebasicuniformboundsforalinearcombinationoftheauxiliaryfunctions 1and 2withtheperturbationconstant.Wecompilethemostfrequentlyusedboundsintheupcominglemma.Tosimplifythenotationandbecausethisworkisgeneralizationoftheearlierworkfordimensionn=2,weusesamenotationsforthecombinationoftheauxiliaryfunctionsthathasbeengivenin[1].Foranyx0,y0and0inRn1,wethefollowingquantitiesa:=a(x0)=+ 2(x0) 1(x0);(4.6)^a:=a(y0)=+ 2(y0) 1(y0);(4.7)b:=b(x0;0)=+ 2(0+x0) 1(x0);(4.8)^b:=b(y0;0)=+ 2(0+y0) 1(y0):(4.9)90Lemma4.4.Foranyx0,y0and0inRn1,thefollowingboundshold1.jbajr 20,alternatively;2.jbajr 20+1+r 2(x0)0;alternatively;3.jbajr 2(0+x0)0+r 20+1.4.b^bdr 2+r 1,whered=x0y0,alternatively;5.b^bdr 2(0+y0)+dr 1(y0)+d+1r 2+r 1,alterna-tively;6.b^bdr 2(0+x0)+dr 1(x0)+d+1r 2+r 1,7.ja^ajdr 2+r 1.Proof.1.Fromtheitionofaandb,wehavejbaj= 2(0+x0) 2(x0);andbyusingtheregularityof 2,thedesiredboundfollowsjbajr 20:2.Agianfromthedofaandb,wehavejbaj= 2(0+x0) 2(x0):Usingthemeanvaluetheoremforsome˘0liesonthelinesegmentthatjoining0and910,itfollowsthatjbajr 2(x0+˘0)0:Byaddingandsubtractingthequantityr 2(x0),weobtainjbajr 2(x0+˘0)r 2(x0)+r 2(x0)0:Usingtheoldercontinuityofr 2,thedesiredboundfollowsjbajr 20+1+r 2(x0)0:3.Forthealternativebound.Ifweaddandsubtractthequantityr 2(0+x0)insteadofr 2(x0),itfollowsthatjbajr 2(x0+˘0)r 2(0+x0)+r 2(0+x0)0:Noticingthat0˘00,Thedesiredboundfollowsjbajr 20+1+r 2(0+x0)0:4.Followstriviallyfromtheofband^b.5.Forthealternativeboundforb^b,let (x0)= 2(0+x0) 1(x0).Thenby92applyingthemeanvaluetheoremforsomet2(0;1),wehaveb^b= (x0) (y0)=r (˘0)(x0y0);where˘0=tx0+(1t)y0.Next,weaddandsubtractthequantityr (y0)togetthefollowingb^b=r (˘0)r (y0)+r (y0)(x0y0);equivalently,b^b=r 2(0+˘0) 2(0+y0) 1(˘0)+r 1(y0)+r 2(0+y0) 1(y0)(x0y0):Thusbytheoldercontinuityof 2and 1andnoticingthat˘0y0x0y0,thedesiredboundfollowsb^bd+1r 2+r 1+dr 2(0+y0)+dr 1(y0):6.Followssimilarly.7.Followstriviallyfromtheofaand^a.934.2L1normforJ2,>0InthissectionweshowtheuniformboundednessfortheoperatorJ2asanoperatorfrom2to1,thatis,for'2C2),andx21\B(0;R0),weshowthatJ2'(x)C()k'k;whereC()approaches0asapproaches0.Letk2bethekernelfunctioncorrespondingtotheoperatorJ2,thatis,k2(y0;x0)=+ 2(y0) 1(x0)r 1(x0)(y0x0)jx0y0j2+ 1(x0) 2(y0)2n2+ 2(x0) 1(x0)r 1(x0)(y0x0)jx0y0j2+ 1(x0) 2(x0)2n2;andtheninshortJ2canbewritteninasimpleformJ2'(x)=ZRn1k2(y0;x0)˚(y0)dy0:Usingthechangeofvariables0=y0x0andrecallingthatthefunction˚(+x0)hascompactsupportinB0(M),itfollowsthatJ'(x)=Zj0j0andtheradialfunction0m2isintegrableinthedomain00.For'2C2),letx;y21\B(0;R0)andsetd=x0y0.ToshowtheoldercontinuityoftheoperatorJ2,weformthefollowingJ2'(x)J2'(y)=Zj0j0,thereforewehaveZj0j3.Weusesphericalcoordinatesindimensionn1togetthefollowingT1=Zj0j0andA1(0)=0.Thusbyintegrationbyparts,itfollowsthatZM0(br@rb)rr2+b232A1(r)dr=A1(M)b(M;;x0)pM2+b2(M;;x0)+ZM0bpr2+b2A01(r)dr;(4.31)109whereA01(r)=(n3)0@rn4r2+b2n32rn3(r+b@rb)r2+b2n121A(4.32)WetreatthelastintegralasfollowsZM0bpr2+b2A01(r)dr=(n3)ZM0brn4r2+b2n22brn2r2+b2n2b2@rbrn3r2+b2n2dr=(n3)ZM0brn4r2+b2n22(br@rb)rn2r2+b2n2(b2+r2)@rbrn3r2+b2n2dr=(n3)ZM0(br@rb)rn4r2+b2n22(br@rb)rn2r2+b2n2dr:(4.33)Substituting(4.33)and(4.31)in(4.30),itfollowsthatZM0(br@rb)rn2r2+b2n2dr=1n2A1(M)b(M;;x0)pM2+b2(M;;x0)+n3n2ZM0(br@rb)rn4r2+b2n22dr:(4.34)Repeatingthesameprocessn22timesifnisevenandn32timesifnisodd,weseethatZM0(br@rb)rn2r2+b2n2dr=8>>>><>>>>:Pn32j=1Cj(n)Bj(M)+~Co(n)RM0(br@rb)rr2+b232drifnisodd;Pn22j=1Cj(n)Bj(M)+~Ce(n)RM0(br@rb)r2+b2drifniseven;(4.35)whereBj(M):=Bj(M;;x0)=Aj(M;;x0)b(M;;x0)pM2+b2(M;;x0);(4.36)110Aj(r)=rn(2j+1)r2+b2n(2j+1)2;(4.37)~Co(n)=n32Yj=1n(2j+1)n2j;(4.38)~Ce(n)=n22Yj=1n(2j+1)n2j;(4.39)and~Cj(n)=1n2jj1Yi=1n(2i+1)n2i:(4.40)ToestimateT1itisenoughtoboundBj(M;;x0)Bj(M;;y0)becausetheterminvolv-ingtheintegralRM0(br@rb)rr2+b232dristreatedinthecasen=3andalsotheterminvolvingtheintegralRM0(br@rb)r2+b2dristreatedinthecasen=2[1].NowweboundthetermBj(M;;x0)Bj(M;;y0)Bj(x0)Bj(y0)=Mn(2j+1)b(x0)M2+b2(x0)(n2j2)b(y0)M2+b2(y0)(n2j2);whereb(x0):=b(M;;x0).Usingthemeanvaluetheorem,itfollowsthatBj(x0)Bj(y0)Mn(2j+1)rb(˘0)M2+b2(˘0)(n2j2)(n2j)b2(˘0)rb(˘0)M2+b2(˘0)(n2j+22)x0y0;111forsome˘0liesonthelinesegmentjoiningx0toy0.ThuswehaveBj(x0)Bj(y0)C(n;j;M)1+b2(˘0)rb(˘0)x0y0C(n;j;M)C()d:(4.41)Thereforefromallaboveestimates,wehavethedesiredboundforT1,thatis,jT1jC(n;M)C()d:(4.42)IfweproceedinthesamefashionaswedidforT1andreplacebbya,^bby^aandnoticingthataand^aareindependentof0,wewouldboundT2bythesameboundthatwefoundforT1.Thatis,jT2jC(n;M)C()d:(4.43)ForthelastintegralT3wehaveT3=Zj0j0.NowweshowthevalidityofTheorem(4.1)underthecase=0.Thatis,weneedtoshow!nq1+r 12J02L(C2);C1))C();8<0;(4.50)whereC()approaches0whenapproaches0.Thebound(4.50)followsifweshowthatfor'2C2),thefollowinglimitholdslim!0J2'(x)=J02'(x);x21\B(R):Infact,sinceJ2isuniformlyboundedinoperatornorm,thenitfollowsthatJ02'(x)2C1)\B(R);120andJ02'C1)C()k'k:For'2C2),06=x21\B(0;R0)theoperatorJ02isbyJ02'(x)=ZRn1k02(y0;x0)˚(y0)dy0;(4.51)wherek02(y0;x0)= 2(y0) 1(x0)r 1(x0)(y0x0)jx0y0j2+ 1(x0) 2(y0)2n2 2(x0) 1(x0)r 1(x0)(y0x0)jx0y0j2+ 1(x0) 2(x0)2n2:Whereasforx=0,theoperatorJ02isbyJ02'(0)=ZRn1 2(y0)y21+:::+y2n1+ 22(y0)n2˚(y0)dy0:(4.52)Afterusingthechangeofvariables0=y0x0in(4.51)andrecallingthat˚hascompactsupportinB0(M),itfollowsthatJ02'(x)=Zj0j0anda0(x0)>0.Thuslim!0k(0;x0)=b00r 1(x0)j0j2+b20n2a00r 1(x0)j0j2+a20n2;a.e0C:(4.54)forsomeC>0.WehaveshownthatfJn2'gisuniformlyboundedinC1)andsinceC1)iscompactlyembeddedinC01),thenthereexistsasubsequencefJnj2'gthatconvergestoJ22C01).FromLemma4.5,wehavepointwiseconvergenceforJ2'2.Thatislim!0J2'(x)=J02'(x);x21\B(R0):Fromtheuniquenessofalimit,wehaveJ2=J02'2andthiswouldcontradict(4.54).ThusJ2'!J02'inC0;0<:125Chapter5UniformoldercontinuityforI2.InthischapterwedemonstratethetheuniformoldercontinuityoftheoperatorI2intheoperatornormL(C2);C1)).WewillshowthattheoperatorI2inanydimensionn2isuniformlyboundedbythequantity121+C()(1+0)whichisexactlythesamequantitythathasbeenfoundintheearlierworkfordimensionn=2[1].However,iftheboundweregreaterthan121+C()(1+0),theinvertibilityoftheoperatorthatin(3.69)mayfail.Wecanseethatclearlyfromtheoftheoperator=0BBBBB@!nr1+r 1(x0)2J2+I2!nr1+r 2(x0)2J1+I11CCCCCA;where=k+12(k1)andkistheconductivityinthesubdomains,and0hasbeenchosentosatisfy12<1+020.InthissectionweelaboratetheuniformboundforI,when>0.WediscusstheuniformboundsforitstermsI1andI2separately.Tobeginthediscussionoftheuniformboundedness,weassumethatx=(x0;xn)21\B(0;R0).5.1.1L1-normforI1,>0.Since˚hascompactsupportinB0(R0),weseethatI1'(x)=ZRn1r 1(x0)(y0x0)jx0y0j2++ 2(x0) 1(x0)2n2˚(y0)dy0=ZB0(R0)r 1(x0)(y0x0)jx0y0j2++ 2(x0) 1(x0)2n2˚(y0)dy0:128Let0=y0x0,thenwehaveI1'(x)=Zj0j0,weobtainjI1'(x)jr 1k˚kZj0j0.FromtheofI2,wehaveI2'(x)=ZRn1aj0j2+a2n2˚(0+x0)0:Byusingthechangeofvariable0=a$,itfollowsthatjI2'(x)j=ZRn111+j$j2n2˚(a$+x0)d$k˚k1ZRn111+j$j2n2d$=!n2k˚k1:(5.8)Againfrom(5.1)and(5.8),weseetheuniformboundjI2'(x)j!n21+C()(1+0)k'k:(5.9)Finally,wecombine(5.7)and(5.9)togetthedesireduniformboundforII'1!n21+C()(1+0)k'k:(5.10)1305.2olderestimateforI2,>0.Fortheoldercontinuity,wechoosex=(x0;xn)andx=(x0;x0n)21\B(0;R0).AsbeforeweuseaforthecombinationoftheC1functions 1and 2actingatthepointx0withtheperturbationconstant,thatis,a:=a(x0)=+ 2(x0) 1(x0);andsimilarlyfora,butatthepointx0,thatis,a:=a(x0)=+ 2(x0) 1(x0):InordertogetthedesiredboundforI,weusethesamedecompositionforthetermsI1andI2thatpresentedindimensionn=2[1]withsometechnicalmo5.2.1olderestimateforI1,>0.FromtheofI1,wehaveI1'(x)=Zj0j4j}j0B@r 1(x0)0j0j2+a2n2r 1(x0)(0+})j0+}j2+a2n21CA˚(0+x0)˚(x0)0:ThuswehavethedecompositionB:=B1+B2+B3+B4;whereBiisthecorrespondingintegralintheabovedecomposition,i=1;2;3;4.WebeginbyestimatingtheintegralB1,thatis,B1=Zj0j<4j}jr 1(x0)0j0j2+a2n2˚(0+x0)˚(x0)0:Usingtheoldercontinuityof˚,weeasilyhavethefollowingboundjB1jr 1k˚kZj0j<4j}j01+n0C()k'kj}j:(5.17)134SimilarlywecangettheappropriateboundforB2.Toshowthat,wehaveB2=Zj0j<4j}jr 1(x0)(0+})j0+}j2+a2n2˚(0+x0)˚(x0)0:oldercontinuityof˚allowustohavetheboundsjB2jr 1k˚kZj0j<4j}j0+}j0+}j2+a2n20+}0C()k˚kZj0j<4j}j0+}1+n0C()k˚kZj0j<5j}j01+n0:Using(5.1)andintegrating01+nover0<5j}j,weobtainthedesiredboundjBjC()k'kj}j:(5.18)ForB3,wesubstitute0=0}inordertowriteB3inthefollowingformB3=Zj0}j<4j}jr 1(x0)0j0j2+a2n2˚(x0)˚(x0)0:SinceZj0j<12j}jr 1(x0)0j0j2+a2n2˚(x0)˚(x0)0=0;135thenwehaveB3=Zfj0}j<4j}jnj0j4j}j0B@r 1(x0)0j0j2+a2n2r 1(x0)(0+})j0+}j2+a2n21CA˚(0+x0)˚(x0)0:Weworkwithsomemanipulationsinordertohavethedesiredbound.Westartbyassuming13601=0+}inthesecondintegrandtodecomposeB4asfollowsB4=Z3j}j3j}jr 1(x0)0j0j2+a2n2˚(0+x0)˚(x0)0Z01}>4j}jr 1(x0)01012+a2n2˚(01}+x0)˚(x0)01:=C1+C2;(5.20)whereC1=Z3j}j3j}jr 1(x0)0j0j2+a2n2˚(0+x0)˚(x0)0Z01}>4j}jr 1(x0)01012+a2n2˚(01}+x0)˚(x0)01:WeeasilycanboundC1byC1r 1k˚kZ3j}j3j}jr 1(x0)0j0j2+a2n2˚(0+x0)˚(x0)0Z01}>4j}jr 1(x0)01012+a2n2˚(01+x0)˚(x0)01:WerewriteC2inthefollowingformC2=Zj0j>3j}jr 1(x0)0j0j2+a2n2˚(0+x0)˚(x0)0Z01}>4j}jr 1(x0)01012+a2n2˚(01+x0)˚(x0)01+Z01}>4j}jr 1(x0)01012+a2n2˚(01+x0)˚(01+x0)01:=D1+D2;(5.22)whereD1=Zj0j>3j}jr 1(x0)0j0j2+a2n2˚(0+x0)˚(x0)0Z01}>4j}jr 1(x0)01012+a2n2˚(01+x0)˚(x0)01:andD2=Z01}>4j}jr 1(x0)01012+a2n2˚(01+x0)˚(01+x0)01;138WestartwiththeeasiesttermwhichisD2andafterutilizingthat˚iscompactlysupportedinB0(M),clearlywecanseetheboundsjD2jZ3j}j<013j}jr 1(x0)01012+a2n2˚(01+x0)˚(x0)01Z01}>4j}jr 1(x0)01012+a2n2˚(01+x0)˚(x0)01:139NowwerewriteD1inthefollowingformD1=Z01>3j}j0B@r 1(x0)01012+a2n2r 1(x0)01012+a2n21CA˚(01+x0)˚(x0)01+Z01>3j}jr 1(x0)01012+a2n2˚(01+x0)˚(x0)01Z01}>4j}jr 1(x0)01012+a2n2˚(01+x0)˚(x0)01:LetusouttheboundforthelasttwointegralsinD1anddenotethembyD1;2.Thatis,D1;2=Z01>3j}jr 1(x0)01012+a2n2˚(01+x0)˚(x0)01Z01}>4j}jr 1(x0)01012+a2n2˚(01+x0)˚(x0)01:ThenweeasilyseethatD1;2Z3j}j<01<5j}jr 1(x0)01012+a2n2˚(01+x0)˚(x0)01r 1k˚kZ3j}j<01<5j}j011+n01:ThuswehavethefollowingboundD1;2C()k˚kj}j:(5.24)140FortheintegralinD1weneedtousethemeanvaluetheoreminordertogetthedesiredbound.LetusdenoteitbyD1;1anduse0insteadof01tosimplifythewriting,thatisD1;1=Zj0j>3j}j0B@r 1(x0)0j0j2+a2n2r 1(x0)0j0j2+a2n21CA˚(0+x0)˚(x0)0:Inanaiveway,wecanhavetheboundD1;1r 1k˚kZj0j>3j}j01+02+a2n202+a2n2j0j2+a2n2j0j2+a2n2:(5.25)Usingthemeanvaluetheoremforsomez2thatliesbetweena2anda2,wehavethefollowingD1;1C(n)r 1k˚kZj0j>3j}j01+02+z2n21a2a2j0j2+a2n2j0j2+a2n2:(5.26)Withoutlossofgeneralitywemayassumez2a2andsameworkwillholdwhenz23j}j01+jaajja+ajj0j2+a2j0j2+a2n2:(5.27)Sincea23j}j0njaaj0:(5.29)Sincea=+ 2(x0) 1(x0)anda=+ 2(x0) 1(x0).Thenweeasilyhavetheboundjaajj}jr 2+j}jr 1ThuswecanseethatD1;1C()k˚kj}jZj0j>3j}j0n0C()k˚kj}jZ1r=3j}jr2drC()k'kj}j:(5.30)Combining(5.24)and(5.30),theboundforD1follows,thatis,jD1jC()k'kj}j:(5.31)Whilecombining(5.23)and(5.31)givestheboundforC2,thatis,jC2jC()k'kj}j:(5.32)142ThereforeB4isboundedby(5.21)and(5.32),thatis,jB4jC()k'kj}j:(5.33)ForBtermwecombine(5.17),(5.18),(5.19)and(5.33)togettheboundjBjC()k'kj}j:(5.34)Finally,toletthisendwecombine(5.16)and(5.34)togetjI1'(x)I1'(x)jC()k'kjxxj:(5.35)5.2.2olderestimateforI2,>0.Wefollowthesameideathatpresentedfordimensionn=2in[1]tondtheoldercontinuityforI2.FromtheofI2wehaveI2'(x)=ZRn1aj0j2+a2n2˚(0+x0)0:Weusechangeofvariable0=a$togetI2'(x)=ZRn111+j$j2n2˚(a$+x0)d$:143WeformI2'(x)I2'(x)=ZRn111+j$j2n2˚(a$+x0)˚(a$+x0)d$:Byusingtheoldercontinuityof˚,wehavethefollowingboundjI2'(x)I2'(x)jk˚kZRn111+j$j2n2a$+x0a$x0d$k˚kZRn111+j$j2n2x0x0x0x0jx0x0j+(aa)$jx0x0jd$k˚kx0x0ZRn111+j$j2n21+j$jjaajjx0x0jd$:Weboundjaajjx0x0jC 2 11Ck 2k10+k 1k10:(5.36)Substituting(5.36)intheaboveboundforI2,itfollowsthatjI2'(x)I2'(x)jk˚kx0x0ZRn111+j$j2n21+C()j$jd$:(5.37)Noticethat1+C()j$j1+j$j2n2!11+j$j2n2as!0:144Thusbyusingthedominatedconvergencetheorem,weseethatZRn11+C()j$j1+j$j2n2d$!ZRn1d$1+j$j2n2=!n2as!0:ThereforewehavejI2'(x)I2'(x)j!n2+C()k˚kx0x0:(5.38)Involvingthebound(5.1),wegetthedesiredolderboundforI2jI2'(x)I2'(x)j12!n+C()(1+0)k'kx0x0:(5.39)Combining(5.35)and(5.39),wehaveI2'(x0)I2'(x0)12!n+C()(1+0)k'kx0x0:(5.40)ThustheolderestimateforI2follows,thatis,I2'C1)12!n+C()(1+0)k'k;(5.41)andthetheoremisprovedwhen>0.Forthecase=0,itfollowsifweprovethatfor'2C2),thefollowinglimitholdslim!0I2'(x)=I02'(x);x21\B(R);145andthiswillbetheaimofthenextSection.5.3ConvergenceofI2.TheoperatorI2thatwedealwithinthischapterisnicerthantheoperatorJ2becauseitisproducedfromthenormalderivativeofthesinglelayerpotentialthatontheconstanthypersurface.WhereastheoperatorJ2isthebetweenthenormalderivativeofthesinglelayerpotentialthatontheapproximatesurface2andtheoperatorI2.WehaveshownintheprevioussectionsthatI2iscontinuouslinearoperatorfromC2)toC1)forany<0,aswellasitslimitoperatorI02isagaincontinuouslinearoperatorfromC2)toC1)forany<0.Beforeproceedingtostudytheconvergence,itisappropriatetowritedownthedeoftheoperatorI2inordertovisualizethesingularityofitskernelfunction.For'2C2)andx21\B(R0)werewrotetheoperatorI2inthefollowingformI2'(x)=I2'(x)I1'(x);wherefor>0orx6=0theoperatorsI1andI1arebyI1'(x)=Zj0j1j$j1+j$j2n2d$;Zj$1j$j1+j$j2n2d$ZRn111+j$j2n2d$=!n2:andZj$j>1j$j1+j$j2n2d$Zj$j>1j$jnd$C1:ThereforewehaveI2'(x)I02'(x)Ck˚k:Thatis,I2convergesuniformlytoI02whenx6=0.Finally,weshowtheuniformconver-151gencewhenx=0.InthiscasewehaveI2'(0)I02'(0)=ZRn1 ˚(0)j0j2+2n2˚(0)1+j0j2n2!0:AfterchangingthevariablesweobtainthefollowingI2'(0)I02'(0)=ZRn1˚($)˚(0)j$j2+1n2d$ThenweclearlyseetheboundI2'(0)I02'(0)Ck˚kZRn1j$j1+j$j2n2Ck˚k:Thereforethetheoremfollows.ThefollowingTheoremshowstheconvergenceofI2'inC01)forany00,butithasprovenin[1]thattheoperatorsTdonotconvergeinnormtotheirlimitingoperatorT0.FromelementaryfunctionalanalysisweknowthatIftheoperatorsTweretoconvergeinnormtoT0andif(T0)1exists,thenweimmediatelywouldgettheuniformboundednessfor(T)1inoperatornorm.Therefore,accordingtotheabsenceofthenormconvergence,weneedtostudyfurtherpropertiesfortheoperatorsTinordertohavetheuniformboundednessfortheirinverses.In[1]forthedimensionn=2,theyhaveusedthenotionofcollectivelycompactoperatorstogettheinvertibilityofT0andtheuniformboundednessoftheoperatorsT1.Wewillmimictheideathatpresentedin[1]toobtaintheuniformboundednessfor(T)1inanydimensionn2.6.1PreliminariesLetX,YandZberealorcomplexBanachspacesandletBbetheclosedunitballinX,thatis,B=fx2X:kxk1g:153DenotebyL(X;Y)theBanachspaceofboundedlinearoperatorsT:X!Ywiththeusualoperatornorm,kTk=supx2BkTxk:ItisknownfromelementaryfunctionalanalysisthatasubsetX0ˆXisrelativelycompactX0issequentiallycompactX0istotallybounded.Recallthatasetistotallyboundedifforany>0,thereexistsacoverby-balls.InthisChapter,wewillusekTnTk!0todenoteforconvergenceinnormandTn!Ttodenoteforpointwiseconvergence(strongconvergence),thatisTnx!Tx8x2X:AnoperatorK2L(X;Y)iscalledcompactthesetKBisrelativelycompact.Theconceptofcompactoperatorsplaysanimportantroleinsolvingequationsoftheform(IK)x=y:(6.1)Inappliedmathematics,equation(6.1)isknownasFredholmalternative,thatis,(6.1)has154uniquesolutionthehomogeneousequation(IK)x=0;(6.2)hasonlythetrivialsolutionx=0.Insuchacase,theFredholmoperatorIK:X!Yhasaboundedinverse(IK)1.Thepracticalsolutionofequation(6.1)oftendependsontheapproximationoperators.Thatis,toasolutionof(6.1),itoftenrequirestoasolutionofthecorrespondingapproximateequation(IKn)xn=y;(6.3)whereKnarecompactoperatorsandkKnKk!0.Then(IK)1existsforsomeNandallnNthereexistuniformlybounded(IKn)1.Insuchacase,(IKn)1(IK)1!0:Wenoticethisschemerequiresconvergenceinnorm.Insomecases,convergenceinnormcannothold.Indeed,itispossibletohavepointwiseconvergenceonly.Therefore,weseekanalternativeschemethatrequirespointwiseconvergenceinsteadofthenormconvergence.Suchaschemeisindeedavailable:ForasequenceofcollectivelycompactoperatorsKn,suchthatKn!K(whereKisacompactoperator).Then,(IK)1existsifandonlyifforsomenNtheoperators(IKn)1existandareboundeduniformly,insuchacase(IKn)1!(IK)1:155Letusintroducethenotionofcollectivelycompactoperatorswhichisageneralizationofthenotionofcompactoperators.Collectivelycompactoperatorsareveryimportanttoolsforsolvingintegralequationsofthesecondkindandhavebeenstudiedinseveralpapers[4,5,6].Weuse[3,5]tointroducetheofcollectivelycompactandsomebasicresultsthatareneededforourwork.6.1.[3]AsetKˆL(X;Y)iscalledcollectivelycompactifthesetKB=fKx:K2K;x2Bgisrelativelycompact.Wenoticefromtheofcollectivelycompactness,everyoperatorincollectivelycompactsetiscompact.Example6.2.[3]LetX=`2.Kn2L(X);n=1;2;,byKnx=(xn;0;0;):LetK=fKng.ThenKBisboundedanddim(KX)=1.ThusKiscollectivelycompact.ThefollowingLemmashowsthatpointwiselimitofcollectivelycompactoperatorsiscompact.Lemma6.3.[3]LetK;Kn2L(X);n=1;2;,besuchthatK=fKn;n=1;2;gisacollectivelycompactsetandKnconvergespointwisetotheoperatorK.ThenKiscompact.156Proof.KBˆfKnx:n1;x2Bg=fKngB:ThusKiscompact.Lemma6.4.[5]LetKˆL(X;Y)beacollectivelycompactsetandMˆL(Z;X)beaboundedset.ThenthesetKMiscollectivelycompact.Proof.LetBbetheclosedunitballinXandB0betheclosedunitballinZ.SinceMisboundedthenthereexistr>0besuchthatkMk0thereforetheregularityofH2andtheuniformboundednessfollow.Thereforeweobtaintheregularityandtheuniformboundednessaswellasthecompactnessofthesecondintegralin(6.6).FromtheaboveobservationweconcludethattheoperatorsK2arecompactoperatorsfromC2)intoC01)aswellastheyareuniformlyboundedindependentlyof.ThusthefamilyF=fK2;0<<0gisuniformlyboundedinoperatornormfromC2)intoC01).Since,theembeddingC01),!C1);<0;iscompact,thenweseethatthefamilyFiscollectivelycompact.Asaresultfromtheabovetheorem,wehavethepointwiseconvergenceoftheoperators161K2.Thatis,Corollary6.9.Let0<<0,and0<2<0.Thenforall'2C2),wehaveK2'!K02';inC1);asapproaches0.Proof.ThedenominatorsofthekernelfunctionsassociatedtotheoperatorsK2areboundedawayfrom0eventhough=0aswellasthekernelfunctionhasCregularity.Thusbyusingthedominatedconvergencetheoremwecanpassthelimitinsidetheintegralsign.6.3PointwiseConvergenceofT.ThisSectiondealswiththepointwiseconvergenceoftheoperatorTthatinSection3.4bythefollowing,for>0,TasanoperatorinLC1)C2)andhastheformT=+C;where=0BBBBB@!nr1+r 12J2+I2!nr1+r 22J1+I11CCCCCA;andC=0B@K1K2K1K21CA+(1)0B@0L2L101CA:162For=0,TisbyT0=0+C0;where0=0BBBBB@!nr1+r 12J02+I02!nr1+r 22J01+I011CCCCCA;andC0=0B@K1K02K01K21CA+(1)0B@0L02L0101CA:AsaconsequenceofTheorems4.6,5.4andCorollary6.9,weobtainthefollowing,Corollary6.10.Fix0<2<0.Thenforany0<00suchthattheoperators,00,areinvertiblewithinversesthatsatisfying800;1Cjj121+C()(1+0);(6.7)uniformlywithrespecttointheoperatornormLC1)C2)andC()approaches0asapproaches0.Furthermore,forany('1;'2)2C1)C2),wehave10B@'1'21CA!100B@'1'21CAinC01)C02);0<:Proof.FromTheorems(4.1)and(5.1),wehaveshownthatforany00and00tlysmallsuchthat121+C()(1+0)12,wehaveZ1'1d˙=Z2'2d˙=0:(6.11)168Now,considerthefunctionw=S1'1+S2'2onRn;(6.12)whereSiisthesinglelayerpotentialoni,i=1;2:thatis,Si'i(x)=Zix;y)'i(y)d˙(y);i=1;2:andx;y)isthefundamentalsolutiontotheLaplaceequation.Fromthesmoothnessofthesinglelayerpotentials,weseethatwispiecewiseharmonic,thatis,wisharmonicinsideandoutsidetheinclusionD1[D2.Byusing(6.11),weeasilyconcludethatw(x)=O(jxj1n)asjxj!1:(6.13)SincewisharmonicoutsideD1[D2,thenbyusing(6.13)weobtainrw(x)=O(jxjn)asjxj!1:(6.14)Furthermore,fromLemma2.18,wehavetheboundsrSj'j0Dj+rSj'j0RnnDj)C'j0<;j=1;2:(6.15)Nowweshowthatwislocallyaweaksolutionto8>>><>>>:div(akrw)=0;inRnnf0g;ak=1+(k1)˜(D1[D2):(6.16)169LetR>>1andobservethatZB(R)akrwrdx=kZD1r(S1'1(x)+S2'2(x))rdx+kZD2r(S1'1(x)+S2'2(x))rdx+ZB(R)n(D1[D2)r(S1'1(x)+S2'2(x))rdx:Usingthedivergencetheorem,itfollowsZB(R)akrwrdx=kZ1@S1'1(x)+@S2'2(x)d˙(x)+kZ2@S1'1(x)+@S2'2(x)d˙(x)Z1@+S1'1(x)+@S2'2(x)d˙(x)Z2@S1'1(x)+@+S2'2(x)d˙(x):Utilizingthejumpconditionsforthesinglelayerpotential(2.23),wehaveZB(R)akrwrdx=(1k)Z1 (K1)'1(x)@S2'2(x)!d˙(x)+(1k)Z2 (K2)'2(x)@S1'1(x)!d˙(x):Byapplying(6.8),itfollowsthatZB(R)akrwrdx=0:Thuswisalocalsolutionto(6.16).Next,weshoww0onRn.Letr>>1and=w˜,170where˜2C10(Rn)besuchthat˜1inB(r1)and˜0outsideB(r).ThenwehaveZB(r)akrwrw˜dx=0:ThatisZB(r)akjrwj2˜dx+ZB(r)nB(r1)akrwr˜wdx=0:(6.17)Forthesecondintegralintherighthandsideof(6.17),weusethedecayconditions(6.13)and(6.14)toobtainthefollowingZB(r)nB(r1)akrwr˜wdxCrn+1!0asr!1:(6.18)Thereforewhenrapproaches1in(6.17),weconcludethefollowingZRnakjrwj2dx=0:(6.19)ThuswisaconstantinRn.Thenbyusingthedecaycondition(6.13),wehavew0inRn.Consequently,involvingthejumpconditionsforthesinglelayerpotential(2.23),wehavethefollowing'i(x)=@@+w@@w=0;x2inf0g;i=1;2:Thenbyusingthecontinuityof'iat0,itfollowsthat'i0inRn.ThusT0isinjective.171SinceT0and0areinvertibleandT0=I+C0100:Thenweseethat0T01=I+C0101:Thatis,I+C0101exists.FromTheorem6.12wehaveI+C1!I+C010inC1)C2):ThusfromLemma(6.7)wehavethatI+C11existforistlysmallandtheyareuniformlyboundedwithrespecttointheoperatornorm.Therefore,weobtainthepointwiseconvergenceI+C11!I+C0101:(6.20)SinceT=I+C1,thenbyusingthebound(6.7)weconcludethat(T)1=1I+C11areuniformlynormboundedandsatisfy(T)1!(T0)1inC01)C02);0<;as!0.ThuswehaveprovedthefollowingTheorem.172Theorem6.14.For=k+12(k1)and<0.Thereexists0>0suchthattheopera-torsT,00,areinvertiblewithinversesthatareboundedindependentlyofinL(C1)C1)),<0.Moreover,theoperators(T)1convergepointwiseto(T0)1asapproaches0inL(C01)C01))forany0<<0.6.4Themainresults.Themainresultsaresimilartothecaseofdimensionn=2.Thesolutionofproblem(2.5)hastherepresentation(2.58)intermsofthesolutions'1;'2to(2.59)andtheharmonicfunctionHfrom(2.49).Asimilarrelationshipholdsbetweenthesolutionu0toproblem(2.4)withtouchinginclusionsandthesolutions('01;'02)toT00B@'01'021CA=0B@@H0j1@H0j21CA;(6.21)whereH0istheharmonicfunctionfrom(2.48).Thisistheassertionofthefollowingtheorem.Theorem6.15.[1]Thesolutionu0,to(2.4),maybewrittenu0(x)=S1'01(x)+S2'02(x)+H0(x);x2;(6.22)whereH0isharmonicinside,anddby(2.48),andthepair('01;'02)2C1)C2)istheuniquesolutionto(6.21).Proof.SineH0isharmonicinsideandsince1and2areC1+0,theright-handsideof(6.21)liesinC1)C2)forany0.Byusingtheorem(6.14),theintegralequation(6.21)thereforhasauniquesolution('01;'02)2C1)C2),forany0.173UtilizingLemma(2.16),weseethat@Hji!@H0ji;inCi)as!0:Soweinferfromtheorem(6.14)that0B@'1'11CA0B@'01'011CA=T10B@@Hj1@Hj21CAT010B@@H0j1@H0j21CA=T1"0B@@Hj1@Hj21CA0B@@H0j1@H0j21CA#+"T1T01#0B@@H0j1@H0j21CA!0inC01)C02);0<0<:Thisconvergenceof'iimmediatelyimpliesthatS1'1(x+2en)!S1'01(x);andS2'2(x2en)!S2'02(x);(6.23)uniformlyoncompactsubdomainsofn1[2)as!0.Considernowthesolutiontoproblem(2.5)u(x)=S1'1(x+2en)+S2'2(x2en)+H(x):FromLemma2.16,weknowthatH!H0uniformlyoncompactsubdomainsofand174ifwecombinethiswith(6.23),itfollowsthatu(x)=S1'1(x+2en)+S2'2(x2en)+H(x)!S1'01(x)+S2'02(x)+H0(x);uniformlyoncompactsubdomainsofn1[2as!0.Sincewealsoknowthatu!u0inH1itfollowsfromuniquenessofthelimitthatu0=S1'01+S2'02+H0;(6.24)oncompactsubdomainsofn1[2.Butbothsidesof(6.24)arecontinuousfunctionsinwegetthatu0(x)=S1'01(x)+S2'02(x)+H0(x);x2:Theorem6.16.[1]Let~>0and0<<0.Thesolutionto(2.5)kukC1~nD1[D2)+kukC1(D1)+kukC1(D2)CkgkL2(@;(6.25)whereCisindependentofandg.Proof.Recallthatuhastherepresentationu(x)=S1'1(x+2en)+S2'2(x2en)+H(x);where'1;'2solves(2.59)inC01)C02),forany<0<0.Fromequation175(2.62),wehaveSi'iC1(Di)+Si'iC1(~nDi)C'iC0i);i=1;2:Duetotheorem(6.14)andthefactthat'1;'2solves(2.59),wehave'1C01)+'2C02)CkHkC10~):ApplyingLemma(2.16),wehavethatkHkC10~)CkgkL2(@:176BIBLIOGRAPHY177BIBLIOGRAPHY[1]H.Ammari,E.Bonnetier,F.Triki,andM.Vogelius.Ellipticestimatesincompositemediawithsmoothinclusions:anintegralequationapproach.Ann.Scient.Ec.Norm.Sup.,48(2):453{495,2015.[2]H.AmmariandH.Kang.Reconstractionofsmallinhomogeneitiesfromboundarymea-surement.Springer,2004.[3]P.Anselone.Collectivelycompactoperatorapproximationtheoryandapplicationstoinetgraleqautions.Prentice-Hall,Inc.,1971.[4]P.AnseloneandR.Moore.Approximationsolutionsofintegralandoperatorequations.J.Math.Anal.Appl.,(9):268{277,1964.[5]P.AnseloneandT.Palmer.Collectivelycompactsetsoflinearoperators.J.Math.,25(3):417{422,1968.[6]P.AnseloneandT.Palmer.Spectralanalysisofcollectivelycompact,stronglyconver-gentoperatorsequences.J.Math.,(25):423{431,1968.[7]A.Bensoussan.Asymptoticanalysisforperiodicstructures.AMSChelsea,1978.[8]E.BonnetierandM.Vogelius.Anellipticregularityresultforacompositemidiumwithtochingersofcircularcross-section.SiamJ.Math.Anal.,31(3):651{677,2000.[9]G.CittiandF.Ferrari.Asharpregularityresultofsolutionsofatransmissionproblem.AmeriMath.Society,140(2):615{620,2012.[10]D.ColtonandR.Kress.Integralequationmethodinscatteringtheory.PureandAppliedMath.,JohnWiley&Sons,Inc.,1983.[11]E.DiBendetto.Partialentialequations,secondedition.BirkhauserBoston,2010.[12]Y.L.E.BaoandB.Yin.Gradientestimatesfortheperfectaconductivityproblem.Arch.RationalMech.Anal.,193:195{226,2009.[13]Y.L.E.BaoandB.Yin.Gradientestimatesfortheperfectandinsulatedconductivityproblemswithmultipleinclustions.Comm.Part.Eqs.,35(35):1982{2006,2010.178[14]D.GilbargandN.Trudinger.Ellipticpartialentialequationsofsecondorder.Springer,1977.[15]N.Gunter.Potentialtheoryanditsapplicationstobasicproblemsofmathematicalphysics.FrederickUngar,1967.[16]H.K.H.AmmariandM.Lim.Gradientestimatesforsolutionstoconductivityproblem.Math.Ann.,332(2):277{286,2005.[17]H.K.H.L.H.Ammari,G.CiraoloandK.Yun.Spectralanalysisoftheneumann-poincare'operatorandcharacterizationofthestressconcentrationinanti-planeelastic-ity.Arch.RationalMech.Anal.,208(1):275{304,2013.[18]H.L.H.Ammari,H.KangandM.Lim.Decompositiontheoremsandestimatesforelectricalinthepresenceofcloselylocatedcircularinclusions.J.Eqs.,247(11):2897{1912,2009.[19]H.L.J.L.H.Ammari,H.KangandM.Lim.Optimalestimatesfortheelectricintwodimensions.J.Math.PuresAppl.,88(4):307{324,2007.[20]M.L.H.KangandK.Yun.Asymptoticsandcomputationofthesolutiontotheconductivityequationinthepresenceofadjacentinclusionswithextremeconductivities.J.Math.PuresAppl.,99:234{249,2013.[21]K.Hatano.Existenceandoldercontinuityofderivativesofsinglelayer˚-potentials.HiroshimaMath.J.,13:543{582,1983.[22]J.O.J.MateuandJ.Verdera.Extracancellationofevencalderon-zygmundoperatorsandquasiconformalmappings.J.Math.PuresAppl.,91(4):402{431,2009.[23]H.KangandJ.Seo.Thelayerpotentialtechniquefortheinverseconductivityproblem.InverseProblems,12:267{278,1996.[24]O.Kellogg.Foundationofpotentialtheory.Dover,NewYork,1953.[25]A.KirschandF.Hettlich.Themathematicaltheoryoftime-harmonicMaxwell'sequa-tions.AppliedMath.Sci.Springer,2015.[26]R.Kress.Introductiontopartialentialequations.PrincetonUniv.Press,Princeton,N.J,1976.179[27]R.Kress.LinearIntegralequations.AppliedMath.Sci.82,Springer,1989.[28]L.Evance.Partialentialequations:secondedition.Springer,2010.[29]Y.Y.LiandL.Nirenberg.Estimatesforellipticsystemsfromcompositematerial.Commun.PureAppl.Math.,56(7):892{925,2003.[30]Y.Y.LiandM.Vogelius.Gradientestimatesforsolutionstodivergenceformellipticequationswithdiscontinuouscots.Arch.RationalMech.Anal.,153(2):91{151,2000.[31]S.Mikhlin.AnAdvancedcourseofmathematicalphysics.NorthHolland,1970.[32]G.Verchota.Layerpotentialsandregularityfordirchletproblemforlaplace'sequationinlipschitzdomains.JournalofFunctionalAnalysis,59(3):572{611,1984.180