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ABSTRACT

GRADIENT ESTIMATES FOR SOLUTIONS TO DIVERGENCE FORM
ELLIPTIC EQUATIONS WITH PIECEWISE CONSTANT COEFFICIENTS

IN DIMENSION N .

By

Khaldoun Al-Yasiri

In a bounded C1,α0 domain Ω ⊂ Rn, 0 < α0 ≤ 1, contains two simply connected and

strictly convex C1,α0 subdomains (inclusions) D1 and D2 that satisfy D1 ∪ D2 ⊂⊂ Ω and

D1 ∩D2 = {0}, we study the following elliptic differential equation



div (a(x)∇u) = 0 in Ω,

∂νu(x) = g on ∂Ω,

∫
∂Ω u = 0,

(1)

where

a(x) = 1 + (k − 1)χ(D1∪D2)(x), 0 < k <∞, k 6= 1,

and

g ∈ L2
0(∂Ω) := {g ∈ L2(∂Ω) :

∫
∂Ω

g = 0}.

The problem arises from studying fiber re-inforced composite media with closely spaced

inclusions in dimension n = 2. For dimension n = 3, the problem also appear in the study

of steady state solutions to Maxwell’s equations.

The bound on the gradient yields the boundedness of the strain in fiber re-inforced

materials and electrical fields when the two inclusions are touching each other.

Following the ideas of [1], we assume that D1 lies in the half space xn < 0, and D2 in



the half space xn > 0. Then we begin by separating the inclusions by a distance δ > 0, that

is, we set

Dδ
1 = D1 −

δ

2
en, and Dδ

2 = D2 +
δ

2
en,

where en = (0′, 1). Then we study the approximate differential equation corresponding to

the separated inclusions which is



div (aδ(x)∇uδ) = 0 in Ω,

∂νuδ(x) = g on ∂Ω,

∫
∂Ω uδ = 0,

(2)

where aδ(x) = 1+(k−1)χ
(Dδ1∪D

δ
2)

(x). The solution of the elliptic equation (2) has an integral

representation in terms of potential functions defined on the boundary of each subdomain.

From the representation formula, we derive uniform piecewise C1,α, 0 < α < α0, estimates

for this solution which are independent of the distance between the subdomains. That is,

we find the estimate

‖uδ‖
C1,α

(
Ωε̃\Dδ1∪D

δ
2

) + ‖uδ‖
C1,α(Dδ1)

+ ‖uδ‖
C1,α(Dδ2)

≤ C ‖g‖
L2(∂Ω)

,

where Ωε̃ = {x ∈ Ω : dist(x, ∂Ω) > ε̃} and C is independent of δ. Our result extends the

earlier result for dimension n = 2 [1], but the analysis is much more complicated. Final

estimates rely on detailed analysis near the touching point and collective compactness of

some integral operators.
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Chapter 1

Introduction

The purpose of this work is to study gradient estimates for solutions of divergence form

elliptic equations with piecewise constant coefficients in dimension n ≥ 2. The problem

arises from studying fiber re-inforced composite media with closely spaced inclusions. A

composite medium described by a bounded domain Ω in Rn (n ≥ 2), which includes finitely

many inclusions (subdomains) Dj , j = 1, · · · ,m. The physical characteristics of the medium

are smooth in each inclusion Dj as well as in Ω \ (D1 ∪ · · · ∪Dm), but they are possibly

discontinuous across their boundaries ∂Dj , j = 1, · · ·m.

We use the example from the introductions of [8, 30] to motivate the problem for di-

mension n = 2. The bounded domain Ω ⊂ R2 models the cross-section of a fiber-reinforced

composite. Let D1 and D2 be two subdomains represent the cross-section of the fibers, and

Ω \ (D1 ∪D2) represent the region surrounding the fibers. Assume that the shear modulus

(modulus of rigidity) of the fibers is 1 < k <∞, and is 1 for the materials in the surround-

ing area. Using a standard model of anti-plane shear, we obtain the following differential

equation

div

((
1 + (k − 1)χ(

D1∪D2

))∇u) = 0 in Ω, (1.1)

with appropriate boundary data, for instance,

u = g on ∂Ω.

1



The function u represents the out of plane elastic displacement and ∇u represents the strain.

For dimension n = 3, the problem also appear in the study steady state solutions to

Maxwell’s equations.

Let E be the electric field and D be the electric displacement in conducting isotropic

medium Ω ⊂ R3. The fields E and D satisfy the differential equations

curl E = 0, D = ε E, and div(D) = 0 in Ω,

where the real valued function ε represents the conductivity (dielectricity) of the materials.

Therefore, there exists a potential function u (representing the voltage) such that

E(x) = −∇u(x) in Ω,

where Ω assumed to be simply connected domain in R3. Hence,

D(x) = −ε(x) ∇u(x), and div
(
ε∇u

)
= 0 in Ω.

Now suppose that a conductor filling the region Ω that consists of different materials,

say, D1, D2 and Ω \ (D1 ∪D2). We assume that conductivity ε(x) equals to k in D1 ∪D2

and ε(x) equals to 1 in Ω \D1 ∪D2. The current flux on ∂Ω is represented by the normal

derivative ∂u
∂ν . Therefore, for a given Neumann boundary data g on ∂Ω, we obtain the

2



following differential equation



div

((
1 + (k − 1)χ(

D1∪D2

))∇u) = 0 in Ω,

∂νu(x) = g on ∂Ω,

∫
∂Ω g = 0.

(1.2)

At this point, we can emphasize the aim of studying such class of divergence elliptic

equations, which is to study the behavior of the strain (electric field) ∇u when the inclu-

sions approach each other (touch) as well as when the shear modulus (conductivity) of the

inclusions k degenerate (k = 0 or k =∞).

E. Bonnetier and M. Vogelius [8] have shown that the solution u of problem (1.1) in

dimension n = 2 is in W 1,∞(Ω) for any fixed 0 < k < ∞ when the inclusions D1 and D2

are two disks.

Y. Y. Li and M. Vogelius [30] studied more general class of elliptic differential equations,

where Ω is a bounded domain in Rn with a C1,α boundary, 0 < α < 1, containing m

disjoint subdomains Dk, 1 ≤ k ≤ m, each with a C1,α boundary such that Ω = ∪mk=1Dk

(for precise geometric picture of the subdomains see [30]). The matrix A(x) = (aij(x)) is

uniformly elliptic matrix and A(x) is Cµ in each subdomain Dk, k = 1, · · · ,m (but possibly

discontinuous across the boundaries ∂Dk). For a vector valued function g = (g1, · · · , gn)

that is Cµ in each subdomain Dk, k = 1, · · · ,m (but also possibly discontinuous across the

boundaries ∂Dk), denote gk to be the function g restricted to the subdomain Dk. They

found that for h ∈ L∞(Ω), if u ∈ H1(Ω) is a solution to

∂i
(
aij ∂ju

)
= h+ ∂igi in Ω, (1.3)

3



then the following estimate holds

max
1≤k≤m

‖u‖
C1,α′(Dk∩Ωε)

≤ C
(
‖u‖L∞(Ω) + ‖h‖L∞(Ω) + max

1≤k≤m

∥∥∥gk∥∥∥
Cα
′
(Dk)

)
, (1.4)

where C is independent of the distance between the inclusions, Ωε = {x ∈ Ω : dist(x, ∂Ω) >

ε}, and 0 < α′ ≤ µ and α′ < α
n(1+α)

. They also have studied special case in R2 when Ω is a

disk centered at the origin with radius R and it contains two unit disks D1 and D2 centered,

respectively, at (0,−1) and (0, 1). That is, the boundaries ∂D1 and ∂D2 touch at the origin.

They considered the following differential equation


∂i
(
a(x) ∂iu

)
= 0 in Ω,

u = g on ∂Ω,

where g ∈ H
1
2 (∂Ω) and

a(x) =


1 if x ∈ Ω \D1 ∪D2

0 < a0 <∞ if x ∈ D1 ∪D2.

For R > 2, they found by using the conformal mapping the following bounds

‖Dγu‖∞ ≤ C(l) in D1 and D2,∀l, |γ| ≤ l,

‖Dγu‖∞ ≤ C(k, ε) in D3 ∩ Ωε,∀l, |γ| ≤ l,

4



where D3 = Ω \D1 ∪D2.

Y.Y. Li and L. Nirenberg [29] generalized the result of [30] into systems of elliptic differ-

ential equations and they found that u satisfies the same bound in (1.4) with slightly better

regularity α′ where

0 < α′ ≤ min{µ, α

2(1 + α)
}.

G. Citti and F. Ferrari [9] followed [30] with slightly different modifications and they found

the optimal regularity for the problem (1.3) when the inclusions are strictly separated. That

is, they showed that the gradient ∇u is Cα
′
, in each component, for α′ ≤ min{µ, α} when

the inclusions are strictly disjoint.

J. Mateu, J. Orobitg and J. Verdera [22] approached the problem
(

div(A∇u)=0, det(A)=1
)

via Beltrami equation and they used Calderon-Zygmund operators and quasiconformal map-

ping. If the inclusions Dm do not touch, they showed that ∇u is Cα
′
, for α′ < min{µ, α} in

each inclusion and their Cα
′

norm is independent of the distance between the inclusions.

Recently, H. Ammari, E. Bonnetier, F. Triki, M.S. Vogelius [1] have studied problem

(1.5) in dimension n = 2 and they found that ∇u is piecewise uniformly bounded in Cα
′

norm for any α′ < α independent of the distance between the subdomains. In this work, we

will generalize the results of [1] into higher dimensions n ≥ 2 by mimicking their ideas with

necessary modifications. Before we start outline our work, we briefly mention some results

when the conductivity k degenerates.

In the case of k =∞ (perfect conductivity) or k = 0 (insulated conductivity) the gradient

may blow-up as the inclusions approach each other (touch). In [12, 13] it has been shown

that the rate of the blow-up for the perfect conductivity problem is δ−1/2 for dimension

n = 2, (δ |ln δ|)−1 for dimension n = 3 and δ−1 for higher dimensions n ≥ 4, where δ is the

5
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Figure 1.1: The touching subdomains

distance between the inclusions. For the insulated conductivity problem they have found

δ−1/2 as an upper bound of the gradient.

H. Kang, M. Lim and K. Yun [20] studied problem (1.1) in dimension n = 2 when the

inclusions are two disks separated by a distance δ. They decomposed the solution u to (1.1)

as

u = g + b,

where ∇g is singular function depending on the distance between the inclusions while ∇b

is bounded function regardless of the distance δ. They found an explicit formula for the

singular part ∇g that describes the behavior of the ∇u which may blow-up at rate δ−1/2

when k = 0 or k =∞.

H. Ammari, G. Ciraolo, H. Kang, H. Lee and K. Yun [17] generalized the results of [20]

to any strictly convex simply connected C1,α subdomains D1 and D2 in R2.

For more results in dimension n = 2 when the inclusions are circles, see [16, 18, 19].

Now, we return to our problem in dimension n ≥ 2. Let Ω ⊂ Rn be a bounded smooth

6



domain containing the origin 0. For 0 < α0 ≤ 1, let D1 and D2 be two C1,α0 simply

connected and strictly convex subdomains (inclusions) contained in Ω satisfying D1∪D2 ⊂⊂

Ω and D1 ∩D2 = {0}. Furthermore, we assume that D1 lies in the half space xn < 0, and

D2 in the half space xn > 0. We denote by Γj to be the boundary of Dj , j = 1, 2. We study

the following differentail equation



div (a(x)∇u) = 0 in Ω,

∂νu(x) = g on ∂Ω,

∫
∂Ω u = 0,

∫
∂Ω g = 0,

(1.5)

where

a(x) = 1 + (k − 1)χ(D1∪D2)(x).

Clearly, Lax-Milgram theorem shows that the problem (1.5) has a unique solution u ∈

H1(Ω) for a given g ∈ L2(∂Ω).

Following the ideas of [1], we begin by separating the inclusions by a distance δ > 0, that

is, we set

Dδ
1 = D1 −

δ

2
en, and Dδ

2 = D2 +
δ

2
en,

where en = (0′, 1). Then we study the approximate differential equation corresponding to

the separated inclusions which is

7





div (aδ(x)∇uδ) = 0 in Ω,

∂νuδ(x) = g on ∂Ω,

∫
∂Ω uδ = 0,

∫
∂Ω g = 0,

(1.6)

where aδ is the corresponding piecewise constant coefficients, that is,

aδ(x) = 1 + (k − 1)χ
(Dδ1∪D

δ
2)

(x).

It is well known that equation (1.6) has a unique solution uδ in H1(Ω) for a given Neumann

boundary data g ∈ L2
0(∂Ω) := {g ∈ L2(∂Ω) :

∫
∂Ω g dσ(x) = 0}. We prove in Theorem 2.5

the solution to (1.6), uδ, approaches uniformly in H1(Ω) to u, the solution of equation (1.5),

as δ approaches 0.

Now we state the main result of our work in the following theorem which coincides with

the earlier result for dimension n = 2 [1].

Theorem 1.1. Let ε̃ > 0 and 0 < α < α0. The solution to (1.6) satisfies

‖uδ‖
C1,α

(
Ωε̃\Dδ1∪D

δ
2

) + ‖uδ‖
C1,α(Dδ1)

+ ‖uδ‖
C1,α(Dδ2)

≤ C ‖g‖
L2(∂Ω)

,

where Ωε̃ = {x ∈ Ω : dist(x, ∂Ω) > ε̃} and C is independent of δ.

In order to prove the main result, we define the single and double layer potentials for the

8



Laplacian operator, respectively, by

S∂Ωϕ(x) :=

∫
∂Ω

Φ(x, y) ϕ(y) dσ(y), x ∈ Rn, (1.7)

and

D∂Ωϕ(x) :=

∫
∂Ω

∂Φ(x, y)

∂ν(y)
ϕ(y) dσ(y), x ∈ Rn \ ∂Ω. (1.8)

where Φ(x, y) is the fundamental solution to Laplace equation ∆u(x) = 0 in Rn.

It is known from [23], the solution of problem (1.6) can be uniquely represented (see

Theorem 2.14) as

uδ(x) = Hδ(x) + S1ϕ
δ
1(x) + S2ϕ

δ
2(x), x ∈ Ω, (1.9)

where Sj is the single layer potential on the surface Γj , j = 1, 2. and Hδ is a harmonic

function in Ω that has the following form

Hδ(x) = −S∂Ωg(x) + D∂Ω (uδ|∂Ω) (x), x ∈ Ω.

While the potentials ϕδ1 and ϕδ2 solve the following system of integral equations


(
λI −K∗

1

)
ϕδ1(x)− ∂νS2ϕ

δ
2(x− δen) = ∂νHδ

(
x− δ

2en
)
, x ∈ Γ1,

−∂νS1ϕ
δ
1

(
x+ δen

)
+
(
λI −K∗2

)
ϕδ2(x) = ∂νHδ

(
x+ δ

2en
)
, x ∈ Γ2,

(1.10)

where in this system λ =
k + 1

2(k − 1)
, and K∗i denotes the operator

K∗i ϕ
δ
i (x) =

1

ωn

∫
Γi

(x− y) · ν(x)

|x− y|n
ϕδi (y) dσ(y), i = 1, 2.

9



From the classic potential theory, we easily show that K∗j , j = 1, 2. are compact operators

from Cα(Γ1) into Cα(Γ2) for any α < α0.

If we define for
(
ϕδ1, ϕ

δ
2

)
∈ Cα(Γ1)× Cα(Γ2) the operator

T δ

ϕδ1
ϕδ2

 :=

λI −K∗1 Lδ2

Lδ1 λI −K∗2


ϕδ1
ϕδ2

 , (1.11)

where

Lδ2ϕ
δ
2(x) = −∂νS2ϕ

δ
2

(
x− δen

)
, x ∈ Γ1, (1.12)

and

Lδ1ϕ
δ
1(x) = −∂νS1ϕ

δ
1(x+ δen

)
, x ∈ Γ2. (1.13)

Then we can rewrite the system (1.10) in the following form

T δ

ϕδ1
ϕδ2

 =

∂νHδ(y1(x, δ)
)

∂νHδ
(
y2(x, δ)

)
 , (1.14)

where

y1(x, δ) =
(
x− δ

2
en
)
, x ∈ Γ1,

and

y2(x, δ) =
(
x+

δ

2
en
)
, x ∈ Γ2.

Since Hδ is harmonic function on Rn, then we easily prove that Hδ is uniformly bounded in

10



Cα0 norm on the surfaces Γj , j=1,2. That is, for m = 1, 2, · · · , the following bounds hold

‖∂νHδ‖Cα0(Γj) ≤ C ‖g‖
L2(∂Ω)

, (1.15)

where C is independent of δ.

From the regularity of the single layer potential (see Lemma 2.18) and the representation

formula (1.9), we have for any 0 < α′ < α < α0 and δ > 0 the following bound

2∑
j=1

‖uδ‖
1,α

(
Dδj

) + ‖uδ‖
1,α

(
Ωε̃\Dδ1∪D

δ
2

) ≤ C

(
2∑
i=1

∥∥∥ϕδi∥∥∥α′(Γi) + ‖g‖
L2(∂Ω)

)
, (1.16)

where Ωε̃ = {x ∈ Ω : dist(x, ∂Ω) > ε̃} and C is depending on α, α′, α0, Ω, k, and ε̃ but

independent of δ.

We clearly observe from (1.16) the gradient ∇uδ is Cα in each component Dδ
1, Dδ

2 and

Ωε̃ \Dδ
1∪D

δ
2 if the potentials ϕδj are uniformly bounded in Cα(Γj), j = 1, 2., for any α < α0.

In other words, In order to obtain piecewise Hölder continuity of ∇uδ, we need to show

2∑
i=1

∥∥∥ϕδi∥∥∥α(Γi)
≤ C ‖g‖

L2(∂Ω)
, ∀ α < α0, (1.17)

where C is independent of δ.

By involving (1.14), the bound (1.17) follows if we prove the operator T δ is invertible in

Cα(Γ1)×Cα(Γ2) and its inverse is unifromly bounded on Cα(Γ1)×Cα(Γ2), for any α < α0.

From elementary potential theory when δ > 0, the operator T δ is invertible as an operator

on Cα(Γ1) × Cα(Γ2). To be more precise, T δ can be written as T δ = λI + Kδ, where Kδ

is a compact operator on Cα(Γ1) × Cα(Γ2). Then we use Fredholm theory to show the

11



invertibility of the operators T δ.

Recall that, if we have a family of bounded linear operators, say, T δ defined on a Banach

space, say, X. Let us assume that T δ converges in norm to an operator T 0 ∈ L(X) (the

space of all bounded linear operators on X). Notice that, if (T 0)−1 ∈ L(X), then there exist

δ0 > 0 be such that for any δ ≤ δ0 there exist uniformly bounded (T δ)−1 ∈ L(X), in which

case ∥∥∥(T δ)−1 − (T 0)−1
∥∥∥ −→ 0.

Naively, we conclude from this observation that we would obtain the existence of uniformly

bounded (T δ)−1 ∈ Cα(Γ1)×Cα(Γ2) if we proved the existence of (T 0)−1 ∈ Cα(Γ1)×Cα(Γ2)

(we consider T 0 as a limiting operator corresponding to T δ) and T δ converges in norm into

T 0. Therefore, we ask whether we can have convergence in norm for the family T δ into

their limiting operator T 0. Ammari, H. and Bonnetier, E. and Triki, F. and Vogelius,M.S. [1]

have proved that such convergence in norm cannot hold. In fact, they showed for their case

in dimension n = 2 the limiting operators L0
j , j = 1, 2. (the limiting operators corresponding

to the compact operators Lδj , j = 1, 2.) are not compact operators on Cα for any α < α0.

Thus Lδj , j = 1, 2. cannot converge in norm to their limits. Therefore, the above observation

cannot be used to obtain the uniformly bounded operators (T δ)−1. In dimension n = 2 [1]

the authors used the notion of collectively compact operators that require just pointwise

convergence [3]. That is, For collectively compact operators Kn, n = 1, 2, ... such

that Kn −→ K (pointwise convergence) and (I −K)−1 exists. Then for some

n ≥ N the operators (I −Kn)−1 exist and are bounded uniformly, in such a case

(I −Kn)−1 −→ (I −K)−1 .
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Therefore, in order to obtain the existence of uniformly bounded operators (T δ)−1 in Cα(Γ1)×

Cα(Γ1)× for α < α0 by using the notion of collectively compact operators, we need to show

two major things which are:

1. The operator T δ can be written as T δ = I− Λ̃δ where Λ̃δ are collectively compact and

Λ̃δ converges pointwise to some limiting operator Λ̃0.

2. The limiting operator T 0 = I − Λ̃0 is invertible.

Notice that, when δ approaches 0, the kernel of the operator T δ becomes singular at

x = 0 . In fact, the off-diagonal operators Lδ2 and Lδ1 become singular at x = 0 when δ

approaches 0.

To overcome the singularity, we follow [1] and decompose the operators Lδj , j = 1, 2. We

only show it for Lδ2 but the decomposition of Lδ1 follows similarly.

Fix ε0 and let 0 ≤ ε ≤ ε0. We define two auxiliary functions ψ1,ε and ψ2,ε globally on

Rn−1 (see Lemma 3.4) such that


ψj,ε = ψj ,

∣∣x′∣∣ ≤ ε, j = 1, 2,

∥∥ψj,ε∥∥1,β;Rn−1 ≤ C εν
∥∥ψj∥∥1,α0

, j = 1, 2.

(1.18)

for any β < α0, ν = α0−β, and x′ = (x1, ..., xn−1) ∈ Rn−1. For the definition of ψj , j = 1, 2

see the Remark 2.1.

Let δ > 0 and ϕ ∈ Cα(Γ2). For x ∈ Γ1, |x| < R0, we set xε = (x′, ψ1,ε(x
′)) and then we

define the approximate surface

Γ2,ε = {yε = (y′, ψ2,ε(y
′)) | y′ ∈ Rn−1}.

13
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Γ2,ε

Γx
′

2,ε

Γ2

Γ1

Γ1,ε

Figure 1.2: The approximate surfaces

Let S2,εE be the single layer potential defined on the approximate surface Γ2,ε for some

potential E that defined on the surface Γ2,ε be such that

E ≡ ϕ on Γ2 ∩ B(ε).

We also define for the point xε = (x′, ψ1,ε(x
′)) ∈ Γ1,ε the hyper-plane

Γx
′

2,ε = {y ∈ Rn | yn = ψ2,ε(x
′)}. (1.19)

Again, let Sx′
2,εE be the single layer potential defined on the hyper-surface Γx

′
2,ε for the po-

tential E (we remark here that the potential E is also well defined on the hyper-plane Γx
′

2,ε

see Section 3.3).

For a cut-off function η defined on Rn that is supported in the ball B(R0) and identically

equals to 1 in the ball B(ε0), we write the off-diagonal operator Lδ2 in the following form

Lδ2ϕ(x) = η(x)Lδ2ϕ(x) +
(
1− η(x)

)
Lδ2ϕ(x).

14



Since the singular part of the operator Lδ2 is ηLδ2, we decompose it as follows

Lδ2ϕ(x) = K
ε,δ
2 ϕ(x) +

1

ωn

√
1 +

∣∣∇ψ1,ε(x′)
∣∣2
(
J
ε,δ
2 ϕ(x) + I

ε,δ
2 ϕ(x)

)
. (1.20)

For

x̃ = xε − δen,

the operators K
ε,δ
2 , J

ε,δ
2 and I

ε,δ
2 are defined as follows

K
ε,δ
2 ϕ(x) = −∂νS2ϕ(x− δen) + ∂νεS2,εE(x̃), (1.21)

Jδ2ϕ(x) =
(
ωn

√
1 +

∣∣∇ψ1,ε(x′)
∣∣2)(∂νεSx′

2,εE(x̃)− ∂νεS2,εE(x̃)
)
,

and

Iδ2ϕ(x) =
(
ωn

√
1 +

∣∣∇ψ1,ε(x′)
∣∣2)∂νεSx′

2,εE(x̃),

where νε(xε) is the normal unit vector on the approximate surface Γ1,ε at the point xε, that

is,

νε(xε) =
1√

1 +
∣∣∇ψ1,ε(x′)

∣∣2
−∇ψ1,ε(x

′)

1

 . (1.22)

Remark 1.2. Since ψ2 = ψ2,ε around the origin, then we see the operators K
ε,δ
2 are not

singular in the neighborhood of the origin. Also we notice that away from the origin, the

kernel functions that are corresponding to the operators K
ε,δ
2 are uniformly bounded. Then

we can easily show that the operators {Kε,δ
2 } form a family of collectively compact operators

from Cα(Γ2) into Cα(Γ1).

Remark 1.3. In the definition of the operator Jδ2 , we have involved the operator ∂νεS
x′
2,εE(x̃)
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in order to take the advantage of the difference ψ2,ε(x
′)−ψ2,ε(y

′) to get the Hölder continuity

for the operator J
ε,δ
2 .

After decomposing the off-diagonal operators Lδj , the operator T δ defined in (1.11) may

now be decomposed as follows

T δ

ϕ1

ϕ2

 = Λε,δ

ϕ1

ϕ2

+ Cε,δ

ϕ1

ϕ2

 , (1.23)

where

Λε,δ =


λI η

ωn

√
1+
∣∣∣∇ψ1,ε(x

′)
∣∣∣2
(
J
ε,δ
2 + I

ε,δ
2

)
η

ωn

√
1+
∣∣∣∇ψ2,ε(x

′)
∣∣∣2
(
J
ε,δ
1 + I

ε,δ
1

)
λI

 , (1.24)

and

Cε,δ =

−K∗1 ηK
ε,δ
2

ηK
ε,δ
2 −K∗2

+ (1− η)

 0 Lδ2

Lδ1 0

 . (1.25)

We prove in Theorems (4.1) and (5.1) for any 0 ≤ δ ≤ δ0 and α < α0 the following bound

∥∥∥∥∥∥ η

ωn

√
1 +

∣∣∇ψ1,ε

∣∣2
(
J
ε,δ
2 + I

ε,δ
2

)∥∥∥∥∥∥
L(Cα(Γ2),Cα(Γ1))

≤ 1

2

(
1 + C(ε)

)
(1 + ε0) .

Similarly, we will get the bound

∥∥∥∥∥∥ η

ωn

√
1 +

∣∣∇ψ2,ε

∣∣2
(
J
ε,δ
1 + I

ε,δ
1

)∥∥∥∥∥∥
L(Cα(Γ1),Cα(Γ2))

≤ 1

2

(
1 + C(ε)

)
(1 + ε0) .
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Since

1 + ε0
2

< |λ| ,

then we readily see the invertibility of the operators Λε,δ and the uniform bound

∥∥∥Λ−1
ε,δ

∥∥∥ ≤ C

|λ| − 1
2

(
1 + C(ε)

)
(1 + ε0)

, 0 ≤ δ ≤ δ0. (1.26)

As a consequence of the uniform bound (1.26), we have the pointwise convergence

Λ−1
ε,δ

ϕ1

ϕ2

 −→ Λ−1
ε,0

ϕ1

ϕ2

 in Cα
′
(Γ1)× Cα

′
(Γ2), α′ < α.

We show in Theorem 6.12 that the operators {Cε,δ Λ−1
ε,δ } are collectively compact on Cα(Γ1)×

Cα(Γ2), and Cε,δ Λ−1
ε,δ −→ Cε,0 Λ−1

ε,0 pointwise in L
(
Cα(Γ1) × Cα(Γ2)

)
as δ approaches 0.

Consequently, we obtain the compactness of the operator {Cε,0 Λ−1
ε,0} on Cα(Γ1)× Cα(Γ2).

In Theorem 6.13 we show that the operator T 0 is invertible. Thus, since T 0 and Λε,0 are

invertible and

T 0 =
(
I + Cε,0Λ−1

ε,0

)
Λε,0.

Then we see that

Λε,0 T
0−1

=
(
I + Cε,0Λ−1

ε,0

)−1
.

Therefore, we get the pointwise convergence

I + Cε,δΛ
−1
ε,δ −→ I + Cε,0Λ−1

ε,0 in Cα(Γ1)× Cα(Γ2).

Thus from Lemma (6.7) we have that
(
I + Cε,δΛ

−1
ε,δ

)−1
exist when δ is sufficiently small and
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they are uniformly bounded with respect to δ in the operator norm. Therefore, we obtain

the pointwise convergence

(
I + Cε,δΛ

−1
ε,δ

)−1
−→

(
I + Cε,0Λ−1

ε,0

)−1
. (1.27)

Since T δ =
(
I + Cε,δΛ

−1
ε,δ

)
Λε,δ , then by using the bound (1.26) we obtain

(T δ)−1 = Λ−1
ε,δ

(
I + Cε,δΛ

−1
ε,δ

)−1
,

are uniformly norm bounded and satisfy

(T δ)−1 −→ T 0−1
in Cα

′
(Γ1)× Cα

′
(Γ2), α′ < α.

Therefore, the bound (1.17) has been proved and the Theorem 1.1 follows. That is, we have

proved

2∑
j=1

‖uδ‖
C1,α(Dδj )

+ ‖uδ‖
C1,α

(
Ωε̃\Dδ1∪D

δ
2

) ≤ C ‖g‖
L2(∂Ω)

. (1.28)

Since

uδ −→ u0 in H1(Ω), (see Theorem 2.5),

and

(T δ)−1 −→ T 0−1
in Cα

′
(Γ1)× Cα

′
(Γ2), α′ < α.
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Then we have that the solution u0, to (1.5), can be represented by

u0(x) = H0(x) + S1ϕ
0
1(x) + S2ϕ

0
2(x), x ∈ Ω, (1.29)

where H0 is harmonic inside Ω, and defined by

H0(x) = −S∂Ωg(x) + D∂Ω (u0|∂Ω) (x), x ∈ Ω, (1.30)

and the pair (ϕ0
1, ϕ

0
2) ∈ Cα(Γ1) × Cα(Γ2) is the unique solution to the limiting system

corresponding to (1.14).

The dissertation is organized as follows: In Chapter 2, we introduce all necessary ingre-

dients for the representation formula to the solution of equation (1.6). Chapter 3 is devoted

to the decomposition of the operators Lδj , j = 1, 2. as well as the operator T δ. In Chapter

4, we prove for any 0 ≤ δ ≤ δ0 and α < α0 the following bound holds

∥∥∥∥∥∥ η

ωn

√
1 +

∣∣∇ψ1,ε

∣∣2 Jε,δ2

∥∥∥∥∥∥
L(Cα(Γ2),Cα(Γ1))

≤ C(ε).

While in Chapter 5 we prove that

∥∥∥∥∥∥ η

ωn

√
1 +

∣∣∇ψ1,ε

∣∣2 Iε,δ2

∥∥∥∥∥∥
L(Cα(Γ2),Cα(Γ1))

≤ 1

2

(
1 + C(ε)

)
(1 + ε0) .

Finally, in Chapter 6 we show the invertibility of the operator T 0 and then the existence of

uniformly boundedness of the operators (T δ)−1.
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Chapter 2

Layer Potentials for system of two

inclusions

2.1 Notations and assumptions

Let n ≥ 2. We denote by B(r) the open ball in Rn centered at the origin of radius r and by

B′(r) the open ball in Rn−1. For x = (x1, · · · , xn) ∈ Rn, let x′ = (x1, · · · , xn−1) where we

often regard x′ as a point in Rn−1. Let Ω ⊂ Rn be a bounded smooth domain containing the

origin 0. For 0 < α0 ≤ 1, let D1 and D2 be two C1,α0 simply connected and strictly convex

domains (inclusions) contained in Ω such that D1 ∪D2 ⊂⊂ Ω and D1 ∩D2 = {0}. Recall

that we say Dj is a C1,α0 domain if each point of the ∂Dj has a neighborhood in which ∂Dj

is the graph of C1,α0 function of n− 1 variables x1, ...., xn−1, j = 1, 2. Furthermore, assume

that D1 lies in the half space xn < 0, and D2 in the half space xn > 0.

Remark 2.1. Since D1 and D2 are both C1,α0 domains, then around the touching point

x = 0, Γ1 and Γ2 would be parametrized by
(
x′, ψ1(x′)

)
and

(
x′, ψ2(x′)

)
respectively, where

ψj are C1,α0 functions and Γj := ∂Dj, j = 1, 2. The graph of ψ1 lies below the x′-hyperplane,

while the graph of ψ2 lies above the x′-hyperplane.
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Figure 2.1: The touching inclusions

Let H1(Ω) := W 1,2(Ω) be the usual Sobolev space and C∞0 (Ω) is the space of smooth

functions with compact support in Ω. We often use the space L2
0(∂Ω) := {ϕ ∈ L2(∂Ω) :∫

∂Ω ϕ dσ(x) = 0}.

2.2 Existence and Uniqueness Theorem

Let Ω ⊂ Rn be a bounded domain in Rn with smooth boundary and consider a C1,α0

bounded domain D ⊂⊂ Ω. Let u be a solution to the Neumann problem



div (1 + (k − 1)χD)∇u = 0 in Ω,

∂νu(x) = g on ∂Ω,

∫
∂Ω u dσ(x) = 0,

(2.1)

where g ∈ L2
0(∂Ω) and χ(D) is the characteristic function of D.

Definition 2.2. We say that u ∈ H1(Ω) is a weak solution to (2.1) if
∫
∂Ω u dσ(x) = 0 and
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the following identity holds:

∫
Ω
a0(x)∇u(x) ∇η(x) dx =

∫
∂Ω

g(x) η(x) dσ(x), ∀ η ∈ C∞(Ω). (2.2)

The existence of the solution to (2.1) is very basic and we show it in the following theorem.

Theorem 2.3. For any g ∈ L2
0(∂Ω), there exists a unique u ∈ H1(Ω) solves (2.1).

Proof. Let H1
∗ (Ω) = {u ∈ H1(Ω) :

∫
∂Ω u dσ(x) = 0}. Then H1

∗ (Ω) is a closed subspace of

H1(Ω). In fact, let un be a sequence in H1
∗ (Ω) such that un → u in H1(Ω). Then by using

the trace theorem it follows that

∣∣∣∣∫
∂Ω

u dσ

∣∣∣∣ =

∣∣∣∣∫
∂Ω

(un − u) dσ

∣∣∣∣ ≤ ∫
∂Ω
|un − u| dσ ≤ C ‖un − u‖H1(Ω)

.

Therefore
∫
∂Ω u dσ = 0. Thus H1

∗ (Ω) is a closed subspace of the Hilbert space H1(Ω).

Consequently, H1
∗ (Ω) is a Hilbert space.

We define a bilinear form on H1
∗ (Ω) as follows

B : H1
∗ (Ω)×H1

∗ (Ω) −→ R.

B[u, v] =

∫
Ω
ak(x) Du Dv dx for u, v ∈ H1

∗ (Ω),

where ak = 1 + (k− 1)χ(D) be such that m ≤ ‖ak‖L∞ (Ω) ≤M for some positive constants

m and M . Let ` be a bounded linear functional on H1
∗ defined by

`(v∗) =

∫
∂Ω

g v∗ dσ for v∗ ∈ H1
∗ (Ω),
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It is clear that |B[u, v]| ≤ α ‖u‖
H1(Ω)

‖v‖
H1(Ω)

for some α > 0.

We show that B[u, u] ≥ C ‖u‖2
H1(Ω)

for some C > 0.

B[u, u] =

∫
Ω
ak |Du|2 dx ≥ m ‖∇u‖2

L2(Ω)
.

By using Poincaré’s inequality (2.7), it follows that

B[u, u] ≥ C ‖u‖2
H1(Ω)

. (2.3)

By applying the Lax-Milgram Theorem, we find a unique function u ∈ H1
∗ (Ω) satisfying

B[u, v∗] = `(v∗)

for all v∗ ∈ H1
∗ (Ω).

Now we show

B[u, v] =

∫
∂Ω

g v dσ for v ∈ H1(Ω).

Let v ∈ H1(Ω), by projection theorem on Hilbert spaces, there are unique v∗ ∈ H1
∗ (Ω) and

c ∈ R such that v = v∗ + c.

Since
∫
∂Ω g dσ = 0, then it follows that

∫
∂Ω

g v =

∫
∂Ω

g v∗ + c

∫
∂Ω

g =

∫
∂Ω

g v∗ = B[u, v∗].

That is,

B[u, v] = B[u, v∗].
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Thus there exists unique u ∈ H1
∗ (Ω) such that

B[u, v] = `(v)

for all v ∈ H1(Ω). Consequently, u is the unique weak solution to (2.1).

2.3 Approximation of differential equation.

For 0 < k < +∞ and k 6= 1, we study the differential equation



div (a0(x)∇u0) = 0 in Ω,

∂νu0(x) = g on ∂Ω,

∫
∂Ω u0 = 0,

(2.4)

where

a0(x) = 1 + (k − 1)χ(D1∪D2)(x),

χ is the characteristic function of D1 ∪D2 and g ∈ L2
0(∂Ω). The differential equation (2.4)

has been introduced and very well studied in [1] for the dimension n = 2. We will use the

idea of [1] to study the behavior of the solution to the differential equation (2.4) near the

touching point for any dimension n ≥ 2.

For δ > 0, we set

Dδ
1 = D1 −

δ

2
en, Dδ

2 = D2 +
δ

2
en,

where en = (0′, 1) and we denote by aδ the corresponding piecewise constant coefficients,
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that is,

aδ(x) = 1 + (k − 1)χ
(Dδ1∪D

δ
2)

(x).

Let uδ be the solution to the following modified differential equation



div (aδ(x)∇uδ) = 0 in Ω,

∂νuδ(x) = g on ∂Ω,

∫
∂Ω uδ = 0.

(2.5)

We clearly see that the function uδ is harmonic inside and outside the inclusions Dδ
1, Dδ

2

and satisfies the jump conditions

u+
δ = u−δ ,

∂u+
δ

∂ν
= k

∂u−δ
∂ν

on ∂Dδ
i , j = 1, 2. (2.6)

Where u+
δ denotes the solution to (2.5) outside the inclusion Dδ

1 ∪D
δ
2, while u−δ denotes the

solution to (2.5) inside Dδ
1 ∪D

δ
2 and ν is the outward unit normal to Dδ

j , j = 1, 2.

Next, we show that the approximate solution uδ to (2.5) converges to u0, the solution

to (2.4), in H1(Ω) as δ approaches 0. For this purpose, we need the following modified

Poincaré’s inequality. The proof is similar to the usual Poincaré’s inequality [28].

Proposition 2.4. Let Ω be a bounded and connected domain in Rn, with a C1 boundary

∂Ω. For u ∈ H1(Ω) there exists a constant C, depending on n and Ω, such that

‖u‖2
L2(Ω)

≤ C

(
‖∇u‖2

L2(Ω)
+

(∫
∂Ω

u dσ

)2
)
. (2.7)
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Figure 2.2: The separated inclusions

Proof. We argue by contradiction. If the inequality (2.7) were false, then one would find a

sequence of functions {uj} ∈ H1(Ω) be such that

∥∥uj∥∥2
L2(Ω) > j

(∥∥∇uj∥∥2
L2(Ω) +

(∫
∂Ω

uj dσ

)2
)
. (2.8)

We normalize uj by defining

wj =
uj∥∥uj∥∥L2(Ω)

(j = 1, 2, · · · ). (2.9)

Then (2.8) implies

∥∥∇wj∥∥2
L2(Ω) +

(∫
∂Ω

wj dσ

)2

<
1

j
(j = 1, 2, · · · ). (2.10)

Clearly we see that the functions {wj} are bounded in H1(Ω). Then by Sobolev embedding
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theorem, there exists a sequence {wjk} ⊂ {wj} and a function w ∈ L2(Ω) such that

wjk −→ w in L2(Ω). (2.11)

To show that w has weak derivative in L2(Ω), let φ ∈ C∞0 (Ω), then we use (2.10) to obtain

the following

∫
Ω
w ∇φ dx = lim

jk→∞

∫
Ω
wjk ∇φ dx = − lim

jk→∞

∫
Ω
∇wjk φ dx = 0.

Consequently w ∈ H1(Ω), with ∇w = 0. Thus w is constant because Ω is connected. On

the other hand, the map

w′ 7−→
(∫

∂Ω
w′ dσ

)2

,

is continuous on H1(Ω). Then (2.10) implies that w = 0; in which case ‖w‖
L2(Ω)

= 0. This

contradiction proves the inequality (2.7).

Now we are ready to state and prove the convergence of uδ in H1(Ω).

Theorem 2.5. The solution of (2.5) approaches to the solution of (2.4) in H1(Ω) as δ

approaches zero. That is

lim
δ→0
‖uδ − u0‖H1(Ω)

= 0. (2.12)

Proof. First, we prove that aδ = 1 + (k − 1)χ
Dδ1∪D

δ
2
→ a0 in Lp(Ω) for any p <∞.

Let Ωδ = ∪4j=1Ω
δ
j , where Ωδ

1 = Dδ
1 \
(
Dδ

1 ∩D1

)
, Ωδ

2 = D1 \
(
Dδ

1 ∩D1

)
, Ωδ

3 = Dδ
2 \
(
Dδ

2 ∩D2

)
, and
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Ωδ
4 = D2 \

(
Dδ

2 ∩D2

)
. Then

‖aδ − a0‖
p
Lp(Ω)

=

∫
Ω
|aδ − a0|p dx =

∫
Ωδ
|aδ − a0|p dx

=

∫
Ωδ
|k − 1|p dx = |k − 1|p µ(Ωδ)→ 0 as δ → 0,

where µ is the n−dimensional Lebesgue measure. Thus aδ → a0 in Lp(Ω) for any p <∞.

From the definition of the weak solution we have the following

∫
Ω

(aδ∇uδ − a0∇u0)∇η = 0, ∀η ∈ H1(Ω).

Then we have

∫
Ω

(
a0(∇uδ −∇u0)

)
∇η dx = −

∫
Ω

(aδ − a0)∇uδ∇η dx. (2.13)

Choosing η = uδ − u0 in (2.13), we get the following

∫
Ω
a0 |∇uδ −∇u0|2 dx = −

∫
Ω

(aδ − a0)∇uδ(∇uδ −∇u0) dx

≤ ‖aδ − a0‖Lp(Ω) ‖∇uδ‖Lq(Ω) ‖∇uδ −∇u0‖L2(Ω)
.

The last inequality makes sense if uδ ∈ W 1,q(Ω) for some q > 2. We will prove this later.

Since C1 < ‖a0‖L∞(Ω) < C2 for some positive constants C1 and C2, we obtain the

following

‖∇uδ −∇u0‖L2(Ω)
≤ C ‖aδ − a0‖Lp(Ω) ‖∇uδ‖Lq(Ω) ,
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Also since ‖aδ − a0‖Lp(Ω) → 0 as δ → 0, then we have

‖∇uδ −∇u0‖L2(Ω)
→ 0 as δ → 0. (2.14)

By applying Poincare’ inequality (2.7) for uδ − u0, we have

‖uδ − u0‖2L2(Ω)
≤ C ‖∇uδ −∇u0‖2L2(Ω)

.

Thus

‖uδ − u0‖L2(Ω)
→ 0 as δ → 0. (2.15)

Then (2.14) and (2.15) imply

‖uδ − u0‖H1(Ω)
→ 0 as δ → 0.

Now we prove our claim that uδ ∈ W 1,q(Ω) for some q > 2. To do this, it suffices to

prove uδ ∈ W 1,q(V ) for a subset V that satisfying Dδ
1 ∪D

δ
2 ⊂⊂ V ⊂⊂ Ω. Let U be a subset

so that V ⊂⊂ U ⊂ Ω and ϕ be a cut-off function such that ϕ ≡ 1 in V and supp ϕ ⊂ U .

Define ũ = ϕ uδ, then we see that


div
(
aδ∇ũ

)
= f in U,

ũ = 0 on ∂U,

(2.16)

where f = div(uδ∇ϕ) + (∇uδ∇ϕ) and we have used that aδ ≡ 1 on U \ V . Since

(uδ∇ϕ) ∈ Lq and (∇uδ∇ϕ) ∈ L2 ⊂ W−1,q, then f ∈ W−1,q(U) for some q > 2. By using
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Meyer’s theorem [7], we have ũ ∈ W 1,q
0 (U) and

‖ũ‖
W

1,q
0 (U)

≤ C ‖f‖
W−1,q(U)

.

Consequently, uδ ∈ W 1,q(V ).

2.4 Layer Potentials

In this section we study two integral operators that called layer potentials. These operators

play an important role in the derivation of the decomposition theorem for the solution of

the transmission problem (2.4). These operators are very well studied for C2-domains in

[10, 24, 25, 26, 27]. Also [11, 15, 31] gave some basic results for these operators for C1,α

domains. Invertiblity and comapctness for Lipschitz domains are given in [2, 32]. We begin

by defining the fundamental solution to the Laplace equation in dimension n. We denote by

ωn the area of unit sphere in dimension n.

Lemma 2.6. [14] A fundamental solution to the Laplace equation ∆u = 0 is given by

Φ(x, y) =


1

2π ln |x− y| if n = 2,

1
(2−n)ωn

|x− y|2−n if n > 2.

(2.17)

We define the layer potentials for L2 density functions. Given a bounded C1,α domain

Ω in Rn, n ≥ 2, we denote respectively the single layer and double layer potentials of a

function ϕ ∈ L2(∂Ω) as S∂Ωϕ and D∂Ωϕ, where

S∂Ωϕ(x) :=

∫
∂Ω

Φ(x, y) ϕ(y) dσ(y), x ∈ Rn, (2.18)

30



and

D∂Ωϕ(x) :=

∫
∂Ω

∂Φ(x, y)

∂ν(y)
ϕ(y) dσ(y), x ∈ Rn \ ∂Ω. (2.19)

For a function u defined on Rn \ ∂Ω, we denote

u±(x) = lim
t→0+

u (x± tν(x)) , x ∈ ∂Ω, (2.20)

and

∂

∂ν±
u(x) = lim

t→0+
∇u (x± tν(x)) · ν(x), x ∈ ∂Ω, (2.21)

if the limit exists. Here ν(x) is the outward unit normal to ∂Ω at x. For simplicity, sometimes

we use ∂νu(x) instead of ∂
∂νu(x) and νx instead of ν(x).

We state the jump relations for the double and single layer potentials.

Lemma 2.7. [2] Let Ω be a bounded C1,α domain in Rn. For ϕ ∈ L2(∂Ω)

S∂Ωϕ
+(x) = S∂Ωϕ

−(x) x ∈ ∂Ω, (2.22)

∂ν±S∂Ωϕ(x) =

(
±1

2
I +K∗∂Ω

)
ϕ(x) x ∈ ∂Ω, (2.23)

D∂Ωϕ
±(x) =

(
∓1

2
I +K∂Ω

)
ϕ(x) x ∈ ∂Ω, (2.24)

where K∂Ω is defined by

K∂Ωϕ(x) =
1

ωn

∫
∂Ω

(y − x) · ν(y)

|x− y|n
ϕ(y) dσ(y), (2.25)
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and K∗∂Ω is the L2 adjoint of K∂Ω,i.e.,

K∗∂Ωϕ(x) =
1

ωn

∫
∂Ω

(x− y) · ν(x)

|x− y|n
ϕ(y) dσ(y). (2.26)

The compactness of the operators K∂Ω and K∗∂Ω for C2 domains has been shown in [10, 25],

with some modifications we show the compactness for C1,α domains.

Theorem 2.8. Let Ω be a bounded C1,α domain in Rn, the operators

K∂Ω, K
∗
∂Ω : Cβ(∂Ω) −→ Cβ(∂Ω)

are compact operators for any 0 < β < α ≤ 1.

Proof. First, we show that the operator

K∗∂Ω : C(∂Ω) −→ Cβ(∂Ω),

is bounded operator for any β < α. That is, for any ϕ ∈ C(∂Ω), we show

‖K∗∂Ωϕ‖β ≤ C ‖ϕ‖∞ ,

where C is depending on ∂Ω, β, α and n.

It is easy to show the following inequalities hold for C1,α domain,

|(x− y) · ν(x)| ≤ C |x− y|1+α ∀ x, y ∈ ∂Ω, (2.27)
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and

|ν(x)− ν(y)| ≤ C |x− y|α ∀ x, y ∈ ∂Ω, (2.28)

where C is depending on ∂Ω, α and n. Also by using the mean value theorem, it is not difficult

to show that for any x1, x2, y ∈ ∂Ω with 2 |x1 − x2| ≤ |x1 − y|, the following inequality holds

∣∣∣∣ 1

|x1 − y|n
− 1

|x2 − y|n

∣∣∣∣ ≤ C |x1 − x2|
|x1 − y|n+1

, (2.29)

where C is depending on n only.

For the uniform boundedness of the operator K∗∂Ω, we easily see that

|K∗∂Ωϕ(x)| ≤ C ‖ϕ‖∞
∫
∂Ω
|x− y|1+α−n dσ(y).

Therefore we have

|K∗∂Ωϕ(x)| ≤ C ‖ϕ‖∞ .

That is

‖K∗∂Ωϕ‖∞ ≤ C ‖ϕ‖∞ . (2.30)

To establish Hölder continuity, let us define for x ∈ ∂Ω and r > 0, the portion Sx,r as follows

Sx,r := {y ∈ ∂Ω : |x− y| < r}. (2.31)
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By using (2.28), it follows that

∣∣ν(x) ·
(
ν(x)− ν(y)

)∣∣ ≤ C |x− y|α .

Notice that,

ν(x) · ν(y) = 1− ν(x) ·
(
ν(x)− ν(y)

)
.

Thus we can find R ∈ (0, 1] be such that for any x, y ∈ ∂Ω with |x− y| ≤ R, the following

holds

ν(x) · ν(y) ≥ 1

2
. (2.32)

We assume R is sufficiently small be such that Sx,R is connected for each x ∈ ∂Ω. Thus

by the help of (2.32), Sx,R can be bijectively projected into the tangent plane to ∂Ω at the

point x. The surface element dσ(y) on Sx,R and the surface element dσ̃(y) on the tangent

plane are related by

dσ(y) =
dσ̃(y)

ν(x) · ν(y)
≤ 1

2
dσ̃(y). (2.33)

Let x1, x2 ∈ ∂Ω be such that |x1 − x2| ≤ R
4 and let r = 4 |x1 − x2|. We estimate over the

portion Sx,r to obtain

∣∣∣K∗Sx1,r
ϕ(x1)−K∗Sx1,r

ϕ(x2)
∣∣∣ ≤ C ‖ϕ‖∞

(∫
Sx1,r

|x1 − y|1+α−n dσ(y) +

∫
Sx2,2r

|x2 − y|1+α−n dσ(y)

)
.
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Thus by using polar coordinates, we obtain

∣∣∣K∗Sx1,r
ϕ(x1)−K∗Sx1,r

ϕ(x2)
∣∣∣ ≤ C ‖ϕ‖∞

∫ 2r

0
ρα−1 dρ.

That is,

∣∣∣K∗Sx1,r
ϕ(x1)−K∗Sx1,r

ϕ(x2)
∣∣∣ ≤ C ‖ϕ‖∞ |x1 − x2|α . (2.34)

Now, we estimate over the portion Sx1,R
\ Sx1,r. Notice that for y ∈ Sx1,R

\ Sx1,r and

4 |x1 − x2| = r, we have 2 |x1 − x2| < |x1 − y| . Observe the following

(x1 − y) · ν(x1)

|x1 − y|n
− (x2 − y) · ν(x2)

|x2 − y|n
=

(x1 − y) · ν(x1)− (x2 − y) · ν(x1)

|x1 − y|n
+

(x2 − y) ·
(
ν(x1)− ν(x2)

)
|x1 − y|n

+
(x2 − y) · ν(x2)

|x1 − y|n
− (x2 − y) · ν(x2)

|x2 − y|n
.

Therefore by using (2.27), (2.28), (2.29) and noticing that

|x2 − y| ≤ |x2 − x1|+ |x1 − y| <
1

2
|x1 − y|+ |x1 − y| =

3

2
|x1 − y| ,

we have

∣∣∣∣(x1 − y) · ν(x1)

|x1 − y|n
− (x2 − y) · ν(x2)

|x2 − y|n

∣∣∣∣ ≤ C |x1 − x2|α

|x1 − y|n−1
+
C |x1 − x2|
|x1 − y|n−α

.

Thus after converting to the polar coordinates, we have the following

∫
S̃R,r

∣∣∣∣(x1 − y) · ν(x1)

|x1 − y|n
− (x2 − y) · ν(x2)

|x2 − y|n

∣∣∣∣ dσ(y) ≤ C |x1 − x2|β
∫ R

r
4

ρ(α−β)−1 dρ,
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where S̃R,r = Sx1,R
\ Sx1,r. Thus we have

∫
S̃R,r

∣∣∣∣(x1 − y) · ν(x1)

|x1 − y|n
− (x2 − y) · ν(x2)

|x2 − y|n

∣∣∣∣ dσ(y) ≤ C |x1 − x2|β .

That is

∣∣∣∣K∗S̃R,rϕ(x1)−K∗
S̃R,r

ϕ(x2)

∣∣∣∣ ≤ C ‖ϕ‖∞ |x1 − x2|β . (2.35)

Similarly, estimating over the portion ∂Ω \ Sx1,R
, we have

∫
∂Ω\Sx1,R

∣∣∣∣(x1 − y) · ν(x1)

|x1 − y|n
− (x2 − y) · ν(x2)

|x2 − y|n

∣∣∣∣ dσ(y) ≤ C

∫
∂Ω\Sx1,R

(
|x1 − x2|
|x1 − y|n−α

+
|x1 − x2|α

|x1 − y|n−1

)
dσ(y).

Therefore

∫
∂Ω\Sx1,R

∣∣∣∣(x1 − y) · ν(x1)

|x1 − y|n
− (x2 − y) · ν(x2)

|x2 − y|n

∣∣∣∣ dσ(y) ≤ C |x1 − x2|α .

That is

∣∣∣∣K∗∂Ω\Sx1,R
ϕ(x1)−K∗∂Ω\Sx1,R

ϕ(x2)

∣∣∣∣ ≤ C ‖ϕ‖∞ |x1 − x2|α . (2.36)

By combining (2.34), (2.35), and (2.36), we obtain

|K∗∂Ωϕ(x1)−K∗∂Ωϕ(x2)| ≤ C ‖ϕ‖∞ |x1 − x2|β , ∀ β < α. (2.37)
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Then by combining (2.30) and (2.37), it follows that

‖K∗∂Ωϕ‖β ≤ C ‖ϕ‖∞ .

For compactness of the operator K∗∂Ω, let {ϕn} be a bounded sequence in Cβ(∂Ω). That is

‖ϕn‖β ≤ C̃. (2.38)

Then clearly we see that

|ϕn(x)| ≤ C̃, ∀ x ∈ ∂Ω,

and

|ϕn(x)− ϕn(y)| ≤ C̃ |x− y|β , ∀ x, y ∈ ∂Ω,

Thus by Arzelà- Ascoli Theorem, {ϕn} has convergent subsequence {ϕnj}. That is,

ϕnj −→ ϕ0 in C(∂Ω).

Thus we have

K∗∂Ωϕnj −→ K∗∂Ωϕ0 in Cβ(∂Ω).

Therefore we conclude that K∗∂Ω is compact operator. The compactness of the operator K∂Ω

follows similarly.
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Theorem 2.9. [11] Let Ω be a bounded C1,α domain in Rn, then we have K∂Ω(1) = 1
2 . That

is

1

ωn

∫
∂Ω

(y − x) · ν(y)

|x− y|n
dσ(y) =

1

2
.

Remark 2.10. Since K∗∂Ωis the L2 adjoint operator of K∂Ω, then we have

∫
∂Ω

K∗∂Ωϕ dσ(x) =

∫
∂Ω

ϕK∂Ω(1) dσ(x) =
1

2

∫
∂Ω

ϕ dσ(x) ∀ϕ ∈ L2(∂Ω).

Theorem 2.11. [2, 32] Let Ω be a bounded C1,α domain in Rn, the operator

λI −K∗∂Ω : Cβ(∂Ω) −→ Cβ(∂Ω)

is invertible on for |λ| > 1
2 and 0 < β < α ≤ 1.

The normal derivative of the double layer potential is continuous across the boundary as

we see in the following theorem.

Theorem 2.12. [15] Let Ω be a bounded C1,α domain in Rn, then ∂ν+D∂Ωϕ and ∂ν−D∂Ωϕ

exist. Moreover,

∂ν+D∂Ωϕ = ∂ν−D∂Ωϕ, ∀ϕ ∈ Cα(∂Ω).

2.5 Representation formula.

Before we give the representation formula to (2.1), we show that the Harmonic functions in

an unbounded domain Rn \ B(R) with decay of order |x|1−n satisfy the Green first identity

as we see in the following Lemma.
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Lemma 2.13. Let R >> 1 be large and u be a harmonic function in Rn \ BR(0) that has

decay of order |x|1−n in Rn \Bρ(0), where ρ > 4R. Then the following identity holds

∫
∂BR(0)

u ∂νu dσ(x) = −
∫
Rn\BR(0)

|∇u|2 dx.

Proof. Since u is harmonic in the annulus Bρ(0) \BR(0), then we have

∫
Bρ(0)\BR(0)

|∇u|2 dx =

∫
∂

(
Bρ(0)\BR(0)

) u ∂νu dσ(x),

that is,

∫
Bρ(0)\BR(0)

|∇u|2 dx =

∫
∂Bρ(0)

u ∂νu dσ(x)−
∫
∂BR(0)

u ∂νu dσ(x). (2.39)

From the assumptions, we know that u = O(ρ1−n) on ∂Bρ(0). Now we show that ∂νu =

O(ρ−n) on ∂Bρ(0). Choose x0 ∈ ∂Bρ(0), then clearly we see that u is harmonic in Bρ
4

(x0).

Let v be a harmonic function in the ball B1(x0), then by Poisson’s formula we have that

v(x) =
1

ωn

∫
∂B1(x0)

1− |x− x0|2

|x− y|n
v(y) dσ(y), x ∈ B1(x0).

By differentiation, we obtain the following

∇v(x)|x=x0 =
1

ωn

∫
∂B1(x0)

∇

(
1− |x− x0|2

|x− y|n

)
|x=x0v(y) dσ(y), x ∈ B1(x0).

Therefore,

|∇v(x0)| ≤ C ‖v‖
L∞
(
B1(x0)

) . (2.40)

39



Assuming v(x) = u(ρ4x) and using (2.40), it follows that

|∇u(x0)| ≤ C

ρ
‖u‖

L∞
(
Bρ/4(x0)

) . (2.41)

From (2.41) and the decay condition of u in Bρ/4(x0), it follows that ∂νu = O(ρ−n) on

∂Bρ(0). Then we conclude that

∫
∂Bρ(0)

u ∂νu dσ(x) = O(ρ1−2n).

Thus the lemma follows by letting ρ −→∞ in (2.39).

We give a representation formula for the solution to (2.1). This formula depends on the

subdomain D and the pair (u|∂Ω, g). The proof was given in [2, 23].

Theorem 2.14. Let Ω be a bounded domain with smooth boundary and let D be a subdomian

compactly embedded in Ω with C1,α0 boundary and conductivity 0 < k 6= 1 <∞. The solution

to (2.1) can be uniquely represented as

u(x) = H(x) + S∂Dϕ(x), x ∈ Ω, (2.42)

where H is a harmonic function given by

H(x) = −S∂Ωg(x) + D∂Ωf(x), x ∈ Ω, f := u|∂Ω, (2.43)

and ϕ ∈ L2
0(∂D) satisfies the integral equation

(
k + 1

2(k − 1)
I −K∗∂D

)
ϕ =

∂H

∂ν
|∂D on ∂D. (2.44)
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Proof. Consider the following problem



∇ ·
(
ak(x) ∇h

)
= 0 in Rn \ ∂Ω,

h− − h+ = f on ∂Ω,

∂ν−h− ∂ν+h = g on ∂Ω,

h(x) = O(|x|1−n) if |x| → ∞,

(2.45)

where ak = 1 + (k − 1)χ(D).

Let

V1(x) := −S∂Ωg(x) + D∂Ωf(x) + S∂Dϕ(x) for x ∈ Rn.

We begin by showing V1 is a weak solution to (2.45) in the sense of the following definition:

Definition 2.15. We say v is a weak solution to (2.45) if the following identities hold:

∫
Ω
ak(x) ∇v ∇η dx = 0 ∀ η ∈ C∞0 (Ω),

and

∫
Rn\Ω

∇v ∇η̃ dx = 0 ∀ η̃ ∈ C∞0 (Rn \ Ω).

Let us first verify the jump and the decay conditions for V1. By the continuity of the

single layer potential S∂Ωg across ∂Ω, smoothness of S∂Dϕ on ∂Ω and the jump condition

D∂Ωf
±(x) =

(
∓1

2
I +K∂Ω

)
f(x), x ∈ ∂Ω,
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it follows that

V −1 (x)− V +
1 (x) = f(x) for x ∈ ∂Ω.

Similarly, by the continuity of the normal derivative of the double layer potential D∂Ωf across

∂Ω, smoothness of S∂Dϕ on ∂Ω and the jump relation for the normal derivative of the single

layer potential

∂ν±S∂Ωg(x) =

(
±1

2
I +K∗∂Ω

)
g(x), x ∈ ∂Ω,

we have

∂ν−V1 − ∂ν+V1 = g on ∂Ω.

From the definition of single layer potential, we have

S∂Ωg(x) =

∫
∂Ω

Φ(x, y) g(y) dσ(y).

Since g ∈ L2
0(∂Ω), we get

S∂Ωg(x) =

∫
∂Ω

[Φ(x, y)− Φ(x, y0)] g(y) dσ(y),

for fixed y0 ∈ Ω. Since

|Φ(x, y)− Φ(x, y0)| ≤ C |x|1−n when |x| → ∞ and y ∈ Ω

for some constant C. Therefore

S∂Ωg(x) = O(|x|1−n) as |x| → ∞.
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Similarly, we have

S∂Dϕ(x) = O(|x|1−n) as |x| → ∞.

Obviously from the definition of the double layer potential, we see that

D∂Ωf(x) = O(|x|1−n) as |x| −→ ∞.

Therefore V1(x) = O
(
|x|1−n

)
when |x| −→ ∞.

Now we show V1 is a weak solution to (2.45) in the sense of the definition 2.15. Since V1

is harmonic in Rn \ Ω, then it is clear that

∫
Rn\Ω

∇V1∇η̃ dx = 0, ∀η̃ ∈ C∞0
(
Rn \ Ω

)
.

For η ∈ C∞0 (Ω), we have

∫
Ω
ak(x) ∇V1∇η dx =

∫
Ω\D
∇V1∇η dx+ k

∫
D
∇V1∇η dx.

Since V1 is harmonic inside Ω \D and also is harmonic inside D, then it follows that

∫
Ω
ak(x) ∇V1∇η dx = k

∫
∂D

∂ν−V1 η dσ −
∫
∂D

∂ν+V1 η dσ.

That is,

∫
Ω
ak(x) ∇V1∇η dx = k

∫
∂D

(
∂νH + ∂ν−S∂Dϕ

)
η dσ −

∫
∂D

(
∂νH + ∂ν+S∂Dϕ

)
η dσ.
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Note that if

k
(
∂νH(x) + ∂ν−S∂Dϕ(x)

)
= ∂νH(x) + ∂ν+S∂Dϕ(x) for x ∈ ∂D, (2.46)

then we have

∫
Ω
ak(x) ∇V1∇η dx = 0, ∀η ∈ C∞0 (Ω).

By substituting the jump conditions (2.23) in equation (2.46), we obtain the following

(k − 1)∂νH(x) + k

(
−1

2
I +K∗∂D

)
ϕ(x)−

(
1

2
I +K∗∂D

)
ϕ(x) = 0 for x ∈ ∂D,

that is

∂νH =

(
k + 1

2(k − 1)
I −K∗∂D

)
ϕ on ∂D. (2.47)

Thus we have shown that

∫
Ω
ak(x) ∇V1∇η dx = 0, ∀η ∈ C∞0 (Ω),

if and only if (2.47) holds. Therefore V1 is a weak solution to (2.45).

Now, we define

V2(x) =


u(x) if x ∈ Ω,

0 if x ∈ Rn \ Ω̄.

Then V2 is also a weak solution to (2.45). Therefore in order to prove the representation

formula (2.42), it suffices to show (2.45) has unique solution in W
1,2
loc (Rn \ ∂Ω). For that,
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suppose w ∈ W 1,2
loc (Rn \ ∂Ω) is a weak solution to (2.45) with f = g = 0. Thus we clearly

see that w is continuous on Rn and harmonic in Rn \D. Thus w is a weak solution to (2.45)

in the entire domain Rn. For a large R, we have

∫
BR(0)

|∇w|2 dx ≤ 1 + k

k

∫
BR(0)

(
1 + (k − 1)χ(D)

)
|∇w|2 dx

=
1 + k

k

∫
∂BR(0)

w ∂νw dσ (by definition of weak solution)

= −1 + k

k

∫
Rn\BR(0)

|∇w|2 dx ≤ 0 (by Lemma (2.13)).

This inequality holds for all R and hence w is constant. Since w(x) → 0 at infinity, we

conclude that w ≡ 0.

To prove the uniqueness of the representation formula (2.42), suppose that H ′ is harmonic

in Ω and H + S∂Dϕ = H ′ + S∂Dϕ
′ in Ω. Then S∂D(ϕ− ϕ′) is harmonic in Ω and hence

∂ν−S∂D(ϕ− ϕ′) = ∂ν+S∂D(ϕ− ϕ′) on ∂D.

It follows from (2.23) that ϕ− ϕ′ = 0 on ∂D and then H = H ′.

By using Theorem 2.14, the harmonic parts H0 and Hδ of u0 and uδ can be respectively

represented as

H0(x) = −S∂Ωg(x) + D∂Ω (u0|∂Ω) (x), x ∈ Ω, (2.48)

Hδ(x) = −S∂Ωg(x) + D∂Ω (uδ|∂Ω) (x), x ∈ Ω. (2.49)

The following lemma shows that Hδ is uniformly bounded independently of δ in any

norm as well as Hδ approaches H0 when δ approaches 0 in any compact subset of Ω. It was

proved in [1] for dimension n = 2 and the proof is still valid for any dimension n ≥ 2.
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Lemma 2.16. Let δ0 > 0 and W ⊂⊂ Ω, such that Dδ
1 ∪D

δ
2 ⊂ W , for all δ < δ0. Then for

all m = 0, 1, 2, 3, ... there exists C = C(n,m, k,Ω, d) where d = dist(∂Ω,W ) such that

‖Hδ‖Cm(W ) ≤ C ‖g‖
L2(∂Ω)

∀ δ < δ0, (2.50)

and,

lim
δ→0
‖Hδ −H0‖Cm(W ) = 0. (2.51)

Proof. From (2.48) and (2.49), we see that

Hδ −H0 = D∂Ω (uδ|∂Ω)−D∂Ω (u0|∂Ω) ,

where

D∂Ω (uδ|∂Ω) =
1

ωn

∫
∂Ω

(y − x) · νy
|x− y|n

uδ(y) dσ (y) ,

and

D∂Ω (u0|∂Ω) =
1

ωn

∫
∂Ω

(y − x) · νy
|x− y|n

u0(y) dσ (y) .

Since W ⊂⊂ Ω, then it is clear that

‖Hδ −H0‖Cm
(
W
) ≤ C ‖uδ − u0‖L2(∂Ω)

.

By trace theorem, we have

‖Hδ −H0‖Cm
(
W
) ≤ C ‖uδ − u0‖H1(Ω)

. (2.52)
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From Theorem 2.5, it follows that

lim
δ→0
‖Hδ −H0‖Cm

(
W
) = 0.

Now we show the uniform bound (2.50). From the definition of Hδ, we clearly see that

‖Hδ‖Cm
(
W
) ≤ C

(
‖g‖

L2(∂Ω)
+ ‖uδ‖L2(∂Ω)

)
. (2.53)

By applying trace theorem, we get

‖Hδ‖Cm
(
W
) ≤ C

(
‖g‖

L2(∂Ω)
+ ‖uδ‖H1(Ω)

)
. (2.54)

To prove ‖uδ‖H1(Ω)
is uniformly bounded by ‖g‖

L2(∂Ω)
, we use the bilinear form inequality

(2.3) for Hδ to deduce

‖uδ‖2H1(Ω)
≤ C

∫
∂Ω

g uδ dσ(x)

≤ C ‖g‖
L2(∂Ω)

‖uδ‖H1(Ω)

≤ C

(
1

4ε
‖g‖2

L2(∂Ω)
+ ε ‖uδ‖2H1(Ω)

)
.

Choosing Cε < 1 in the last inequality, it follows that

‖uδ‖H1(Ω)
≤ C ‖g‖

L2(∂Ω)
(2.55)

where C is independent of δ. Thus by substituting (2.55) in (2.54), the uniform bound

follows.
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2.6 Piecewise Hölder continuity for the modified dif-

ferential equation.

For δ > 0, we define potential functions ϕδ1 and ϕδ2 respectively on the boundaries of D1 and

D2 by

ϕδ1(x) =
(
∂νu

+
δ − ∂νu

−
δ

)(
x− δ

2
en
)

for x ∈ Γ1, (2.56)

and

ϕδ2(x) =
(
∂νu

+
δ − ∂νu

−
δ

)(
x+

δ

2
en
)

for x ∈ Γ2. (2.57)

To simplify the notation of the single layer potential on the boundaries of D1 and D2, we

write

S1ϕ
δ
1(x) =

∫
Γ1

Φ(x− y)ϕδ1(y) dσ(y),

and

S2ϕ
δ
2(x) =

∫
Γ2

Φ(x− y)ϕδ2(y) dσ(y),

It was given in [1] the representation formula for the approximated solution uδ to (2.5) which

works for any dimension n ≥ 2.

Theorem 2.17. The solution of problem (2.5) can be uniquely represented as

uδ(x) = Hδ(x) + S1ϕ
δ
1(x) + S2ϕ

δ
2(x), x ∈ Ω, (2.58)

where

Hδ(x) = −S∂Ωg(x) + D∂Ω (uδ|∂Ω) (x), x ∈ Ω,
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and ϕδ1 and ϕδ2 solve the following system of integral equations

(
λI −K∗

1

)
ϕδ1(x)− ∂νS2ϕ

δ
2(x− δen) = ∂νHδ

(
x− δ

2
en
)
, x ∈ Γ1,

− ∂νS1ϕ
δ
1

(
x+ δen

)
+ (λI −K∗2)ϕδ2(x) = ∂νHδ

(
x+

δ

2
en
)
, x ∈ Γ2,

(2.59)

in this system λ =
k + 1

2(k − 1)
, and K∗i denotes the operator

K∗i ϕ
δ
i (x) =

1

ωn

∫
Γi

(x− y) · ν(x)

|x− y|n
ϕδi (y) dσ(y), i = 1, 2.

Proof. For η ∈ C∞0
(
Ω
)
, we have

∫
Ω

(
1 + (k − 1)χ

Dδ1∪D
δ
2

)
∇
(
Hδ + S1ϕ

δ
1 + S2ϕ

δ
2

)
∇η dx =

∫
Ω\
(
Dδ1∪D

δ
2

)∇(Hδ + S1ϕ
δ
1 + S2ϕ

δ
2

)
∇η dx

+ k

∫(
Dδ1∪D

δ
2

)∇(Hδ + S1ϕ
δ
1 + S2ϕ

δ
2

)
∇η dx

=

∫
∂Dδ1∪∂D

δ
2

(
− ∂

∂ν+

(
Hδ + S1ϕ

δ
1 + S2ϕ

δ
2

)
+ k

∂

∂ν−
(
Hδ + S1ϕ

δ
1 + S2ϕ

δ
2

))
η dσ

=

∫
∂Dδ1

(
− ∂

∂ν+

(
Hδ + S1ϕ

δ
1 + S2ϕ

δ
2

)
+ k

∂

∂ν−
(
Hδ + S1ϕ

δ
1 + S2ϕ

δ
2

))
η dσ

+

∫
∂Dδ2

(
− ∂

∂ν+

(
Hδ + S1ϕ

δ
1 + S2ϕ

δ
2

)
+ k

∂

∂ν−
(
Hδ + S1ϕ

δ
1 + S2ϕ

δ
2

))
η dσ

= (k − 1)

∫
∂Dδ1

(
∂νHδ −

(
k + 1

2(k − 1)
I +K∗δ1

)
ϕδ1 + ∂νS2ϕ

δ
2

)
η dσ

+ (k − 1)

∫
∂Dδ2

(
∂νHδ −

(
k + 1

2(k − 1)
I +K∗δ2

)
ϕδ2 + ∂νS1ϕ

δ
1

)
η dσ

(
by (2.23)

)
.

If
(
ϕδ1, ϕ

δ
2

)
solves (2.59), then we get

∫
Ω

(
1 + (k − 1)χ

Dδ1∪D
δ
2

)
∇
(
Hδ + S1ϕ

δ
1 + S2ϕ

δ
2

)
∇η dx = 0, ∀ η ∈ C∞0 (Ω).
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Therefore uδ is weak solution of (2.5).

The following Lemma is very useful and it will be used to give the piecewise Hölder

estimate for the modified differential equation (2.5). The proof can be found in [15, 21].

Lemma 2.18. Let Ω ⊂ Rn be a bounded domain and let D ⊂⊂ Ω be a C1,α0 subdomain.

The first derivatives of a single layer potential

S∂Dϕ(x) =

∫
∂D

Φ(x, y)ϕ(y) dσ(y), x ∈ Ω,

with Hölder density function ϕ ∈ Cα(∂D), 0 < α < α0 can be uniformly extended in a

Hölder continuous fashion from Ω \D into Ω \D and from D into D with limiting values

∂νS∂Dϕ|±(x) =

(
±1

2
I +K∗∂D

)
ϕ(x), x ∈ ∂D. (2.60)

Furthermore, we have for α′ < α the estimate

‖S∂Dϕ‖1,α′
(
D
) + ‖S∂Dϕ‖1,α′

(
Ω\D)

≤ C ‖ϕ‖
α
(
∂D
) . (2.61)

Applying Lemma 2.18 for the potentials ϕδ1 and ϕδ2 that solve (2.59), we immediately

have for any 0 < α′ < α < α0 the following estimate

∥∥∥Siϕδi∥∥∥
1,α′
(
Dδi

) +
∥∥∥Siϕδi∥∥∥

1,α′
(

Ω\Dδi

) ≤ C
∥∥∥ϕδi∥∥∥α(Γi)

, i = 1, 2, (2.62)

where C is independent of δ. From the representation formula (2.58), Lemma (2.16) and the

estimate (2.62), we obtain
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Lemma 2.19. Let uδ be the solution to (2.5) and let
(
ϕδ1, ϕ

δ
2

)
be the solution to (2.59).

For any small ε̃ > 0, let Ωε̃ denotes the set Ωε̃ = {x ∈ Ω : dist(x, ∂Ω) > ε̃}. Then for any

0 < α′ < α < α0 we have the bound

‖uδ‖
1,α′
(
Dδ1

) + ‖uδ‖
1,α′
(
Dδ2

) + ‖uδ‖
1,α′
(

Ωε̃\Dδ1∪D
δ
2

) ≤ C

(
2∑
i=1

∥∥∥ϕδi∥∥∥α(Γi) + ‖g‖
L2(∂Ω)

)
,

(2.63)

for some constant C depending on α, α′, α0, Ω, k, and ε̃ but independent of δ.

As a consequence of this Lemma, we obtain the desired piecewise Hölder continuity for

∇uδ on each component of Ω if the right hand side of (2.63) can be shown to be uniformly

bounded independently of δ. That is, if we prove

2∑
i=1

∥∥∥ϕδi∥∥∥α(Γi)
≤ C ‖g‖

L2(∂Ω)
, (2.64)

where C is independent of δ, then we obtain the desired bound for ∇uδ. The uniform bound

(2.64) depends on the solvability of the system (2.59) and this will be our task in the next

chapters.
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Chapter 3

Decomposition of the system of

integral equations.

Our goal is to solve the system (2.59) with bounds uniform in δ. To that end, let us define

the operator on Cα(Γ1)× Cα(Γ2) by

T δ

ϕδ1
ϕδ2

 :=

λI −K∗1 Lδ2

Lδ1 λI −K∗2


ϕδ1
ϕδ2

 ,

where

Lδ2ϕ
δ
2(x) = −∂νS2ϕ

δ
2

(
x− δen

)
, x ∈ Γ1, (3.1)

and

Lδ1ϕ
δ
1(x) = −∂νS1ϕ

δ
1(x+ δen

)
, x ∈ Γ2. (3.2)

Thus the system (2.59) can be written as

T δ

ϕδ1
ϕδ2

 =

∂νHδ(y1(x, δ)
)

∂νHδ
(
y2(x, δ)

)
 , (3.3)

where

y1(x, δ) =
(
x− δ

2
en
)
, x ∈ Γ1,
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and

y2(x, δ) =
(
x+

δ

2
en
)
, x ∈ Γ2.

From Lemma 2.16 we have that the right hand side of (3.3) is uniformly bounded in Cα0

norm on the surfaces Γj , j = 1, 2. That is

‖∂νHδ‖Cα0(Γj) ≤ C ‖g‖
L2(∂Ω)

.

Therefore to show the uniform bound (2.64), we need to show that the operator

T δ is invertible as an operator on Cα(Γ1) × Cα(Γ2) and its inverse is uniformly

bounded in Cα(Γ1) × Cα(Γ2), for any α < α0. Thus the purpose of this chapter is

to study the behavior of the T δ and how to overcome the singularity of its kernel when δ

approaches 0.

3.1 Behavior of T δ, δ > 0.

Recall that λ = k+1
2(k−1)

, where 0 < k <∞ and k 6= 1. That is, we conclude that |λ| > 1
2 .

Theorem 3.1. For δ > 0, T δ is continuous linear operator on Cα(Γ1)×Cα(Γ2), invertible

with bounded inverse for any 0 < α < α0 and for any |λ| > 1
2 .

Proof. For δ > 0, we evidently see that T δ is bounded linear operator on Cα(Γ1)×Cα(Γ2).

For

λI =

λI O

O λI

 and Kδ =

−K∗1 Lδ2

Lδ1 −K∗2

 , T δ can be written as T δ = λI + Kδ.

Since Kδ is a compact operator on Cα(Γ1)×Cα(Γ2), then T δ is Fredholm operator. Therefore
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the invertibility of T δ follows if we show that T δ is injective. Let (ϕδ1, ϕ
δ
2) ∈ Cα(Γ1)×Cα(Γ2)

be such that T δ

ϕδ1
ϕδ2

 =

0

0

. That is,


(
λI −K∗1

)
ϕδ1(x)− ∂νS2ϕ

δ
2(x− δen) = 0, x ∈ Γ1,

−∂νS1ϕ
δ
1(x+ δen) +

(
λI −K∗2

)
ϕδ2(x) = 0, x ∈ Γ2.

(3.4)

Or equivalently,


(
λI −K∗1

)
ϕδ1
(
x+ δ

2en
)
− ∂νS2ϕ

δ
2(x− δ

2en) = 0, x ∈ ∂Dδ
1,

−∂νS1ϕ
δ
1(x+ δ

2en) +
(
λI −K∗2

)
ϕδ2(x− δ

2en) = 0, x ∈ ∂Dδ
2.

(3.5)

Consider the function wδ defined on Rn by

wδ = S1ϕ
δ
1 + S2ϕ

δ
2. (3.6)

We claim that wδ is a weak solution of the following problem


div

((
1 + (k − 1)χ

(Dδ1∪D
δ
2)

)
∇wδ

)
= 0, x ∈ Rn,

wδ(x) = O(|x|1−n), |x| → ∞.

(3.7)

To prove the claim, let η ∈ C∞0 (BR(0)) where BR(0) ⊃⊃ Ω. For ak = 1+(k−1)χ(Dδ
1∪D

δ
2),
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we see the following

∫
BR(0)

ak∇wδ∇η dx = k

∫
Dδ1

∇
(

S1ϕ
δ
1(x+

δ

2
en) + S2ϕ

δ
Γ2

(x− δ

2
en)

)
∇η dx

+ k

∫
Dδ2

∇
(

S1ϕ
δ
1(x+

δ

2
en) + S2ϕ

δ
2(x− δ

2
en)

)
∇η dx

+

∫
BR(0)\(Dδ1∪D

δ
2)
∇
(

S1ϕ
δ
1(x+

δ

2
en) + S2ϕ

δ
2(x− δ

2
en)

)
∇η dx.

Using the divergence theorem, it follows

∫
BR(0)

ak∇wδ∇η dx = k

∫
∂Dδ1

(
∂ν−S1ϕ

δ
1(x+

δ

2
en) + ∂νS2ϕ

δ
Γ2

(x− δ

2
en)

)
η dσ(x)

+ k

∫
Dδ2

(
∂νS1ϕ

δ
1(x+

δ

2
en) + ∂ν−S2ϕ

δ
2(x− δ

2
en)

)
η dσ(x)

−
∫
∂Dδ1

(
∂ν+S1ϕ

δ
1(x+

δ

2
en) + ∂νS2ϕ

δ
2(x− δ

2
en)

)
η dσ(x)

−
∫
Dδ2

(
∂νS1ϕ

δ
1(x+

δ

2
en) + ∂ν+S2ϕ

δ
2(x− δ

2
en)

)
η dσ(x).

Utilizing the jump conditions for the single layer potential (2.23), we have

∫
BR(0)

ak∇wδ∇η dx = (k − 1)

∫
∂Dδ1

(λI −K∗1) ϕδ1(x+
δ

2
en)− ∂νS2ϕ

δ
2(x− δ

2
en) dσ(x)

+ (k − 1)

∫
∂Dδ2

(λI −K∗2) ϕδ2(x− δ

2
en)− ∂νS1ϕ

δ
1(x+

δ

2
en) dσ(x).

By applying (3.4), we obtain the following

∫
BR(0)

ak∇wδ∇η dx = 0.
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In order to get the decay condition for wδ, it is enough to show the following identity

∫
Γ1

ϕδ1(·+ δen) dσ =

∫
Γ2

ϕδ2(· − δen) dσ = 0, (3.8)

since, if
∫

Γj
ϕδj dσ(y) = 0, then

Sjϕ
δ
j =

∫
Γj

Φ(x, y)ϕδj dσ(y) =

∫
Γj

(
Φ(x, y)− Φ(x, y0)

)
ϕδj dσ(y) ≤ Cj |x|1−n , (3.9)

where y0 ∈ Dj . Since

|Φ(x, y)− Φ(x, y0)| ≤ C |x|1−n if |x| −→ ∞ and y ∈ Γj .

We only show
∫

Γ1
ϕδ1(·+ δen) dσ = 0 and same work would hold for

∫
Γ2
ϕδ2(· − δen) dσ = 0.

Since SΓ2
ϕδ2(· − δen) is harmonic in D1, therefore we get

∫
Γ1

∂νS2ϕ
δ
2(x− δen) dσ(x) = 0.

Therefore by using (3.4), it follows that

0 =

∫
Γ1

(λI −K∗1)ϕδ1(x+ δen)− ∂νS2ϕ
δ
2(x− δen) dσ(x).

That is,

∫
Γ1

(λI −K∗1)ϕδ1(x+ δen) dσ(x) = 0.

56



Thus by the duality (remark 2.10), we obtain the following

∫
Γ1

(
λϕδ1(x+ δen)−K1(1) ϕδ1(x+ δen)

)
dσ(x) = (λ− 1

2
)

∫
Γ1

ϕδ1(x+ δen) dσ(x) = 0.

Since |λ| > 1
2 , then it follows that

∫
Γ1

ϕδ1(x+ δen) dσ(x) = 0.

We show that wδ ≡ 0 in Rn. For R >> 1, we have

∫
BR(0)

|∇wδ|2 dx ≤
1 + k

k

∫
BR(0)

(
1 + (k − 1)χ(Dδ

1 ∪D
δ
2)
)
|∇wδ|2 dx

=
1 + k

k

∫
∂BR(0)

wδ ∂νwδ dσ(x) (by definition of weak solution)

= −1 + k

k

∫
Rn\BR(0)

|∇wδ|2 dx (by lemma 2.13)

≤ 0.

Thus wδ is constant in Rn. Using the decay condition at infinity, it follows that wδ ≡ 0 in

Rn, that is

S1ϕ
δ
1(x+

δ

2
en) + S2ϕ

δ
2(x− δ

2
en) = 0, x ∈ Rn.

Consequently, we conclude that S1ϕ
δ
1 is smooth across Γ1 and S2ϕ

δ
2 is smooth across Γ2.

Therefore applying the jump conditions for the single layer potential (2.23), we have

ϕδ1(x) = ∂ν+S1ϕ
δ
1(x)− ∂ν−S1ϕ

δ
1(x) = 0, x ∈ Γ1,

ϕδ2(x) = ∂ν+SΓ2
ϕδ2(x)− ∂ν−S2ϕ

δ
2(x) = 0, x ∈ Γ2.
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Thus T δ is injective.

3.2 Auxiliary functions and Basic properties.

As in [1], we study the behavior of T δ and its inverse as δ approaches 0 and we use the same

notations that they used in their paper. When the subdomains Dδ
1 and Dδ

2 approach the

touching point x = 0, the kernel of the operators

∂νS2ϕ
δ
2(x− δen) =

∫
Γ2

(x− δen − y) · ν
|x− δen − y|n

ϕδ2(y) dσ(y), x ∈ Γ1,

and

∂νS1ϕ
δ
1(x− δen) =

∫
Γ2

(x− δen − y) · ν
|x− δen − y|n

ϕδ1(y) dσ(y), x ∈ Γ2,

become singular at x = 0.

For dimension n = 2 [1] the singularity was overcome by decomposing T δ as a sum

Λε,δ +Cε,δ where, for a fixed ε > 0 sufficiently small, the operator Λε,δ contains the singular

part of T δ (i.e, the identity plus a piece of the off-diagonal terms), and Cε,δ is compact.

Their idea works for any dimension n ≥ 2 with some necessary technical modifications. So

we are going to mimic their idea to overcome the singularity for general dimension n ≥ 2.

We fix a small parameter 0 < ε0 < 1 so that

1

2
<

1 + ε0
2

< |λ| , (3.10)

where λ = k+1
2(k−1)

and recalling that the constant k is the conductivity in the subdomains

D1 and D2 while the constant 1 is the conductivity in Ω \ (D1 ∩D2). Let R0 = 2(1 + 1
ε0

),

58



r1 = diam(D1), r2 = diam(D2) and % = 20(1 + r1 + r2)R0 where diam(Di) is the diameter

of the subdomain Di, i = 1, 2. We rescale the domain Ω by assuming x = %x to make sure

that the surface Γ1 ∪ Γ2 within the ball B(2R0) meets xn-axis at 0 only.

Let η be a smooth cut-off function in Rn that supported in the ball B(R0) be such that



0 ≤ η ≤ 1,

η ≡ 1, x ∈ B(ε0),

‖∇η‖∞ ≤ ε0.

(3.11)

We also assume that ε0 is sufficiently small so that around the touching point x = 0, the

surfaces Γ1 and Γ2 can be parametrized by


∣∣x′∣∣ ≤ ε0 −→ x =

(
x′, ψ1(x′)

)
∈ Γ1,∣∣y′∣∣ ≤ ε0 −→ y = (y′, ψ2(y′)) ∈ Γ2,

(3.12)

for some C1,α0 parametric functions ψ1 and ψ2.

Definition 3.2. [1] A closed and bounded surface Γ ⊂ Rn is called of regularity C1,α if it

can be covered by a local set of charts

ψj : x ∈ B′j ⊂ Rn−1 −→
(
ψj,1(x), · · · , ψj,n(x)

)
⊂ Rn,

where B′j , 1 ≤ j ≤ m, are open balls in Rn−1 and ψj,i, 1 ≤ i ≤ n are C1,α
(
Bj
)

functions

with Rank(∇ψj) = Rank
(
∇ψ1, · · · ,∇ψn

)
= n − 1. We say that a continuous function f
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is of regularity C0,α(Γ) if for any of the local charts

∣∣f ◦ ψj∣∣C0,α
(
Bj
) := sup

x′,y′∈Bj ,|x′−y′|<1

∣∣∣f(ψj,1(x′), · · · , ψj,n(x′)
)
− f

(
ψj,1(y′), · · · , ψj,n(y′)

)∣∣∣
|x′ − y′|α

≤ C.

The norm on C0,α(Γ) is defined by

‖f‖0,α = max

(
‖f‖L∞(Γ) , max

1≤j≤m

∣∣f ◦ ψj∣∣C0,α
(
Bj
)) .

Lemma 3.3. [1] Given 0 < ε0 < 1 for which (3.12) holds with (3.12) as one of local

coordinate chart, and given 0 < α < 1; there exists an operator

E : Cα(Γ2) −→ Cα(Rn−1),

such that for any ϕ ∈ Cα(Γ2), we have



‖Eϕ‖
α,Rn−1 ≤ (1 + ε0) ‖ϕ‖α,Γ2(

Eϕ
)

(y′) = ϕ
(
y′, ψ2(y′)

)
,
∣∣y′∣∣ ≤ ε0,

supp(Eϕ) ⊂ B
(

2
ε0

)
.

(3.13)

Proof. For ϕ ∈ Cα(Γ2), let ϕ̃ be a function on Rn−1 that defined by

ϕ̃(y′) =


ϕ(y′, ψ2(y′)), if

∣∣y′∣∣ ≤ ε0,

ϕ
(
y∗, ψ2(y∗)

)
, if

∣∣y′∣∣ > ε0,

where y∗ = ε0 ν(y′)and ν(y′) is the normal unit vector y′
|y′| . We show ϕ̃ is Cα Hölder
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continuous on Rn−1.

Let y′1, y
′
2 ∈ Rn−1. Case 1: When

∣∣y′1∣∣ ≤ ε0 and
∣∣y′2∣∣ ≤ ε0. We trivially see that

∣∣ϕ̃(y′1)− ϕ̃(y′2)
∣∣∣∣y′1 − y′2∣∣α =

∣∣ϕ(y′1, ψ2(y′1))− ϕ
(
y′2, ψ2(y′2)

)∣∣∣∣y′1 − y′2∣∣α ≤ ‖ϕ‖α .

Case 2: When
∣∣y′1∣∣ ≤ ε0 and

∣∣y′2∣∣ > ε0. We have

∣∣ϕ̃(y′1)− ϕ̃(y′2)
∣∣∣∣y′1 − y′2∣∣α =

∣∣ϕ(y′1, ψ2(y′1))− ϕ
(
y∗2, ψ2

(
y∗2
))∣∣∣∣y′1 − y′2∣∣α .

Since
∣∣y′1 − y∗2∣∣ ≤ ∣∣y′1 − y′2∣∣, then we obtain

∣∣ϕ̃(y′1)− ϕ̃(y′2)
∣∣∣∣y′1 − y′2∣∣α ≤

∣∣ϕ(y′1, ψ2(y′1))− ϕ
(
y∗2, ψ2

(
y∗2
))∣∣∣∣y′1 − y∗2∣∣α ≤ ‖ϕ‖α .

Case 3: When
∣∣y′1∣∣ > ε0 and

∣∣y′2∣∣ > ε0. We first show that

|y∗1 − y
∗
2| ≤

∣∣y′1 − y′2∣∣ . (3.14)

The above inequality would be trivial if the dot product y′1 · y
′
2 ≤ 0. Then it is enough to

show (3.14) when y′1 · y
′
2 > 0. Without loss of generality we may assume that

∣∣y′2∣∣ ≥ ∣∣y′1∣∣
and let ỹ2 =

∣∣y′1∣∣ ν2(y′). We clearly see that

|y∗1 − y
∗
2| =

ε0∣∣y′1∣∣
∣∣y′1 − ỹ2

∣∣ < ∣∣y′1 − ỹ2

∣∣ ≤ ∣∣y′1 − y′2∣∣ .
Where we naively can see that validity of last inequality if we assume after rotation that
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y′1 = (0, 0, · · · , 0, y1,n−1). Now we form the following

∣∣ϕ̃(y′1)− ϕ̃(y′2)
∣∣∣∣y′1 − y′2∣∣α =

∣∣∣ϕ(y∗1, ψ(y∗1)
)
− ϕ

(
y∗2, ψ(y∗2)

)∣∣∣∣∣y′1 − y′2∣∣α .

By taking account of (3.14), we obtain

∣∣ϕ̃(y′1)− ϕ̃(y′2)
∣∣∣∣y′1 − y′2∣∣α ≤

∣∣∣ϕ(y∗1, ψ(y∗1)
)
− ϕ

(
y∗2, ψ(y∗2)

)∣∣∣∣∣y∗1 − y∗2∣∣α ≤ ‖ϕ‖α .

Thus we have shown that

‖ϕ̃‖α ≤ ‖ϕ‖α . (3.15)

Next, let ρ ∈ C1(Rn−1) be such that 0 ≤ ρ ≤ 1 and



ρ(y′) = 1, if
∣∣y′∣∣ ≤ ε0,

‖∇ρ‖ ≤ ε0,

supp(ρ) ∈ B
(

2
ε0

)
.

(3.16)

Define Eϕ(y′) = ρ(y′)ϕ̃(y′). It is clear that ‖Eϕ‖∞ ≤ ‖ϕ‖∞.
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Now we show Cα-norm for Eϕ. For y
′
1, y
′
1 ∈ Rn−1 we have

sup
|y′1−y′2|<1

y′1 6=y′2

∣∣Eϕ(y′1)− Eϕ(y′2)
∣∣∣∣y′1 − y′2∣∣α = sup
|y′1−y′2|<1

y′1 6=y′2

∣∣ρ(y′1)ϕ̃(y′1)− ρ(y′2)ϕ̃(y′2)
∣∣∣∣y′1 − y′2∣∣α

≤ sup
|y′1−y′2|<1

y′1 6=y′2

[
‖ρ‖∞

∣∣ϕ̃(y′1)− ϕ̃(y′2)
∣∣∣∣y′1 − y′2∣∣α + ‖ϕ̃‖∞

∣∣ρ(y′1)− ρ(y′2)
∣∣∣∣y′1 − y′2∣∣α
]

≤ ‖ϕ‖α + ε0 ‖ϕ‖α

≤ (1 + ε0) ‖ϕ‖α .

Therefore ‖Eϕ‖
α,Rn−1 ≤ (1 + ε0) ‖ϕ‖α,Γ2

.

Next we define two C1,β auxiliary functions ψ1,ε and ψ2,ε that defined globally on Rn−1

be such that
∥∥ψj,ε∥∥1,β;Rn−1 = O(εν), j = 1, 2 for every β < α0 and ν = α0 − β.

Lemma 3.4. Let β < α0, ν = α0 − β and fix 0 < 2ε < ε0. There exist C1,β-functions ψ1,ε

and ψ2,ε defined on Rn−1 so that


ψj,ε = ψj ,

∣∣x′∣∣ ≤ ε, j = 1, 2,

∥∥ψj,ε∥∥1,β;Rn−1 ≤ C εν
∥∥ψj∥∥1,α0

, j = 1, 2.

(3.17)

where C is independent of ε.

Proof. Recall that the functions ψj ∈ C1,α0(B′
(
ε0)
)

are defined locally to satisfy ψj(x
′) =∣∣∇ψj(x′)∣∣ = 0 only at x′ = 0, j = 1, 2 and ψ2 is non-negative while ψ1 is non-positive. Then

for any x′ ∈ B′(ε0), we have

∣∣ψj(x′)∣∣ ≤ C
∣∣x′∣∣1+α0

∥∥ψj∥∥1,α0
, j = 1, 2. (3.18)
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For ε < 1
2ε0, let ηε ∈ C∞c (Rn−1) be a cut-off function that satisfying the following



0 ≤ ηε ≤ 1,

ηε(x
′) = 1, if

∣∣x′∣∣ ≤ ε,

ηε(x
′) = 0, if

∣∣x′∣∣ ≥ 2ε,

‖∇ηε‖∞ = O(ε−1),

∥∥∇2ηε
∥∥
∞ = O(ε−2),

(3.19)

where ∇2ηε is the Hessian matrix of ηε.

For any 0 < β < α0, we define

ψ2,ε(x
′) = ψ2(x′)ηε(x′) +

(
1− ηε(x′)

)
ε1+α0 ‖ψ2‖1,α0

,

ψ1,ε(x
′) = ψ1(x′)ηε(x′)−

(
1− ηε(x′)

)
ε1+α0 ‖ψ1‖1,α0

.

(3.20)

Clearly we see that ψj,ε are globally C1,α0 and ψj,ε(x
′) = ψj(x

′) for x′ ∈ B′(ε), j = 1, 2.

Then we only need to show the bound

∥∥ψj,ε∥∥1,β;Rn−1 ≤ C εν ‖ψ2‖1,α0
, ∀β < α0, j = 1, 2. (3.21)

We prove (3.21) for j = 2 and the same arguments would hold when j = 1. First, we show

the L∞−norm for ψ2,ε. In the case
∣∣x′∣∣ ≤ ε, we have ψ2,ε(x

′) = ψ2(x′) and then by using

(3.18) we obtain the following

∣∣ψ2,ε(x)
∣∣ ≤ C ‖ψ2‖1,α0

|x|1+α0 ≤ C ‖ψ2‖1,α0
ε1+α0 ≤ C ‖ψ2‖1,α0

εν .
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That is

∣∣ψ2,ε(x
′)
∣∣ ≤ C ‖ψ2‖1,α0

εν . (3.22)

For the case ε <
∣∣x′∣∣ < 2ε, we have

ψ2,ε(x
′) = ψ2(x′)ηε(x′) + (1− ηε(x′))ε1+α0 ‖ψ2‖1,α0

.

Again by using (3.18) it follows that

∣∣ψ2,ε(x
′)
∣∣ ≤ C ‖ψ2‖1,α0

∣∣x′∣∣1+α0 + 2ε1+α0 ‖ψ2‖1,α0
.

Thus we have

∣∣ψ2,ε(x
′)
∣∣ ≤ Cεν ‖ψ2‖1,α0

. (3.23)

For the last case
∣∣x′∣∣ ≥ 2ε, we have ψ2,ε(x

′) = ε1+α0 ‖ψ2‖1,α0
. Then trivially we get

∣∣ψ2,ε(x
′)
∣∣ ≤ C εν ‖ψ2‖1,α0

. (3.24)

Combining (3.22), (3.23), and (3.24), it follows that

∥∥ψ2,ε

∥∥
∞ ≤ C εν ‖ψ2‖1,α0

. (3.25)
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We proceed to show the boundedness of L∞−norm for ∇ψ2,ε. For that we have

∇ψ2,ε(x
′) = ∇ψ2(x)ηε(x

′) + ψ2(x)∇ηε(x′)− ε1+α0 ‖ψ2‖1,α0
∇ηε(x).

When
∣∣x′∣∣ ≤ ε, we have ∇ψ2,ε(x

′) = ∇ψ2(x′)ηε(x′) and since ∇ψ2,ε(0) = 0, then we get

∣∣∇ψ2,ε(x
′)
∣∣ =

∣∣∇ψ2,ε(x
′)−∇ψ2,ε(0)

∣∣ ≤ ‖ψ2‖1,α0
|x|α0 ≤ ‖ψ2‖1,α0

εα0 .

Therefore

∣∣∇ψ2,ε(x
′)
∣∣ ≤ C εν ‖ψ2‖1,α0

. (3.26)

For the case ε <
∣∣x′∣∣ < 2ε, we see the following

∣∣∇ψ2,ε(x
′)
∣∣ ≤ ∣∣∇ψ2(x′)

∣∣+
C

ε

∣∣ψ2(x′)
∣∣+ Cεα0 ‖ψ2‖1,α0

. (3.27)

Since ψ2,ε(0) =
∣∣∇ψ2,ε(0)

∣∣ = 0, then it follows that

∣∣∇ψ2,ε(x
′)
∣∣ ≤ C εν ‖ψ2‖1,α0

. (3.28)

Finally, when |x| ≥ 2ε, then ∇ψ2,ε(x) = 0 and trivially we get the bound

∣∣∇ψ2,ε(x
′)
∣∣ ≤ C εν ‖ψ2‖1,α0

. (3.29)
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Thus we have shown the bound

∥∥∇ψ2,ε

∥∥
∞ ≤ C εν ‖ψ2‖1,α0

. (3.30)

For the β-Hölder estimate of ∇ψ2,ε, we have seven cases and we elaborate these cases as

follows:

1. If
∣∣x′∣∣ ≤ ε and

∣∣y′∣∣ ≤ ε, we have

∣∣∇ψ2,ε(x
′)−∇ψ2,ε(y

′)
∣∣

|x′ − y′|β
=

∣∣∇ψ2(x′)−∇ψ2,ε(y
′)
∣∣

|x′ − y′|β
≤
∣∣x′ − y′∣∣α0−β ‖ψ2‖1,α0

.

Thus we conclude that

∣∣∇ψ2,ε(x
′)−∇ψ2,ε(y

′)
∣∣

|x′ − y′|β
≤ Cεν ‖ψ2‖1,α0

. (3.31)

2. If ε <
∣∣x′∣∣ < 2ε and ε <

∣∣y′∣∣ < 2ε, we have

∣∣∇ψ2,ε(x
′)−∇ψ2,ε(y

′)
∣∣

|x′ − y′|β
≤
∣∣∇ψ2(x′)ηε(x′)−∇ψ2(y′)ηε(y′)

∣∣
|x′ − y′|β

+

∣∣ψ2(x′)∇ηε(x′)− ψ2(y′)∇ηε(y′)
∣∣

|x′ − y′|β

+
ε1+α0 ‖ψ2‖1,α0

∣∣∇ηε(x′)−∇ηε(y′)∣∣
|x′ − y′|β

.

We estimate each term in the right hand side of the above inequality separately. Let

|A| =
∣∣∇ψ2(x′)ηε(x′)−∇ψ2(y′)ηε(y)

∣∣
|x′ − y′|β

.
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Then we see the following

|A| ≤
∣∣∇ψ2(x′)ηε(x′)−∇ψ2(y′)ηε(x′)

∣∣
|x′ − y′|β

+

∣∣∇ψ2(y′)ηε(x′)−∇ψ2(y′)ηε(y)
∣∣

|x′ − y′|β

≤
∣∣x′ − y′∣∣α0−β

∣∣∇ψ2(x′)−∇ψ2(y′)
∣∣

|x′ − y′|α0
+

∣∣∇ψ2(y′)
∣∣ ∣∣ηε(x′)− ηε(y′)∣∣
|x′ − y′|β

.

Thus for some ξ′ lies on the line that joining x′ and y′, and since ∇ψ2,ε(0) = 0, we

have

|A| ≤ C εν ‖ψ2‖1,α0
+ ‖ψ2‖1,α0

∣∣y′∣∣α0
∣∣x′ − y′∣∣1−β ∣∣∇ηε(ξ′)∣∣ .

Therefore

|A| ≤ Cεν ‖ψ‖1,α0
. (3.32)

Similarly, let

|B| =
∣∣ψ2(x′)∇ηε(x′)− ψ2(y′)∇ηε(y′)

∣∣
|x′ − y′|β

.

Then we have

|B| ≤
∣∣ψ2(x′)∇ηε(x′)− ψ2(y′)∇ηε(x′)

∣∣
|x′ − y′|β

+

∣∣ψ2(y′)∇ηε(x′)− ψ2(y′)∇ηε(y′)
∣∣

|x′ − y|β
.

For some ξ′1 that joining x′ and y′, we obtain the following bound

|B| ≤ C

ε

∣∣ψ2(x′)− ψ2(y′)
∣∣

|x′ − y′|β
+

∣∣ψ2(y′)
∣∣ ∣∣x′ − y′∣∣ ∣∣∇2ηε(ξ

′
1)
∣∣

|x′ − y′|β
.
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Again for some ξ′2 that joining x′ to y′, we obtain the following bound

|B| ≤ C

ε

∣∣∇ψ2(ξ′2)
∣∣ ∣∣x′ − y′∣∣

|x′ − y′|β
+
C

ε2
‖ψ2‖1,α0

∣∣y′∣∣1+α0
∣∣x′ − y′∣∣1−β .

That is

|B| ≤ C εν ‖ψ2‖1,α0
. (3.33)

For the last term, we have for some ξ′ that joining x′ and y′ the following bound

ε1+α0 ‖ψ2‖1,α0

∣∣∇ηε(x′)−∇ηε(y′)∣∣
|x′ − y′|β

≤ ε1+α0 ‖ψ‖1,α0

∣∣x′ − y′∣∣1−β ∣∣∣∇2ηε(ξ
′)
∣∣∣ .

That is

ε1+α0 ‖ψ2‖1,α0

∣∣∇ηε(x′)−∇ηε(y′)∣∣
|x′ − y′|β

≤ C εν ‖ψ2‖1,α0
. (3.34)

3. For the case
∣∣x′∣∣ ≥ 2ε and

∣∣y′∣∣ ≥ 2ε, we have ∇ψ2,ε(x
′) = 0 and ∇ψ2,ε(y

′) = 0. The

desired bound follows trivially.

4. If
∣∣x′∣∣ ≤ ε and ε <

∣∣y′∣∣ < 2ε, we have ∇ψ2,ε(x
′) = ∇ψ2(x′) and

∇ψ2,ε(y
′) = ∇ψ2(y′)ηε(y′) + ψ2(y′)∇ηε(y′)− ε1+α0 ‖ψ2‖1,α0

∇ηε(y′).
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Then we have the following bound

∣∣∇ψ2,ε(x
′)−∇ψ2,ε(y

′)
∣∣

|x′ − y′|β
≤
∣∣∇ψ2(x′)−∇ψ2(y′)ηε(y′)

∣∣
|x′ − y′|β

+

∣∣ψ2(y′)∇ηε(y′)
∣∣

|x′ − y′|β

+
ε1+α0 ‖ψ2‖1,α0

∣∣∇ηε(y′)∣∣
|x′ − y′|β

Since ∇ηε(x′) = 0, then we clearly see that the last two terms on the right hand side of

the above inequality satisfy the desired bound. For the first term we have ηε(x
′) = 1

then we form the following bound

∣∣∇ψ2(x′)−∇ψ2(y′)ηε(y′)
∣∣

|x′ − y′|β
≤
∣∣∇ψ2(x′)

∣∣ ∣∣ηε(x′)− ηε(y′)∣∣
|x′ − y′|β

+

∣∣ηε(y′)∣∣ ∣∣∇ψ2(x′)−∇ψ2(y′)
∣∣

|x′ − y′|β
.

Thus for some ξ′ lies on the line segment that joining x′ and y′, we obtain the bound

∣∣∇ψ2(x′)−∇ψ2(y′)ηε(y′)
∣∣

|x′ − y′|β
≤
∣∣x′ − y′∣∣1−β ∣∣x′∣∣α0 ‖ψ2‖1,α0

∣∣∇ηε(ξ′)∣∣+
∣∣x′ − y′∣∣α0−β ‖ψ2‖1,α0

.

Therefore we obtain the bound

∣∣∇ψ2(x′)−∇ψ2(y′)ηε(y′)
∣∣

|x′ − y′|β
≤ C εν ‖ψ2‖1,α0

.

5. When
∣∣x′∣∣ ≤ ε and

∣∣y′∣∣ ≥ 2ε, we have ∇ψ2,ε(x
′) = ∇ψ2(x′) and ∇ψ2,ε(y

′) = 0. Thus

we have the bound

∣∣∇ψ2,ε(x
′)−∇ψ2,ε(y

′)
∣∣

|x′ − y′|β
=

∣∣∇ψ2(x′)
∣∣

|x′ − y′|β
≤ C ε−β

∣∣x′∣∣α0 ‖ψ2‖1,α0
.
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That is

∣∣∇ψ2,ε(x
′)−∇ψ2,ε(y

′)
∣∣

|x′ − y′|β
≤ C εν ‖ψ2‖1,α0

. (3.35)

6. When ε <
∣∣x′∣∣ < 2ε and 2ε <

∣∣y′∣∣ < 3ε, we have ∇ψ2,ε(y
′) = 0. Then we have

∣∣∇ψ2,ε(x
′)−∇ψ2,ε(y

′)
∣∣

|x′ − y′|β
=

∣∣∣∇ψ2(x′)ηε(x′) + ψ2(x)∇ηε(x′)− ε1+α0 ‖ψ2‖1,α0
∇ηε(x′)

∣∣∣
|x′ − y′|β

.

Since ηε(y
′) =

∣∣∇ηε(y′)∣∣ = 0, then we obtain the following bound

∣∣∇ψ2,ε(x
′)−∇ψ2,ε(y

′)
∣∣

|x′ − y′|β
≤
∣∣∇ψ2(x′)ηε(x′)−∇ψ2(x′)ηε(y′)

∣∣
|x′ − y′|β

+

∣∣ψ2(x′)
∣∣ ∣∣∇ηε(x′)−∇ηε(y′)∣∣
|x′ − y′|β

+
ε1+α0 ‖ψ2‖1,α0

∣∣∇ηε(x′)−∇ηε(y′)∣∣
|x′ − y′|β

.

Thus for some ξ′1 and ξ′2 that lie on the line segment joining x′ and y′ we obtain the

following bound

∣∣∇ψ2,ε(x
′)−∇ψ2,ε(y

′)
∣∣

|x′ − y′|β
≤

∣∣x′∣∣α0 ‖ψ2‖1,α0

∣∣x′ − y′∣∣ ∣∣∇ηε(ξ′1)
∣∣

|x′ − y′|β

+
C
∣∣x′∣∣1+α0 ‖ψ2‖1,α0

∣∣x′ − y′∣∣ ∣∣∇2ηε(ξ
′
2)
∣∣

|x′ − y′|β
+
ε1+α0 ‖ψ2‖1,α0

∣∣x′ − y′∣∣ ∣∣∇2ηε(ξ
′
2)
∣∣

|x′ − y′|β
.

Therefore we have the desired bound

∣∣∇ψ2,ε(x
′)−∇ψ2,ε(y

′)
∣∣

|x′ − y′|β
≤ C εν ‖ψ2‖1,α0

. (3.36)
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7. If ε <
∣∣x′∣∣ < 2ε and

∣∣y′∣∣ ≥ 3ε, then ∇ψ2,ε(y
′) = 0 and we have the following

∣∣∇ψ2,ε(x
′)−∇ψ2,ε(y

′)
∣∣

|x′ − y′|β
≤
∣∣∇ψ2(x′)

∣∣
|x′ − y′|β

+

∣∣ψ2(x′)
∣∣ ∣∣∇ηε(x′)∣∣

|x′ − y′|β
+
ε1+α0 ‖ψ2‖1,α0

∣∣∇ηε(x′)∣∣
|x′ − y′|β

.

That is

∣∣∇ψ2,ε(x
′)−∇ψ2,ε(y

′)
∣∣

|x′ − y′|β
≤ C εν ‖ψ2‖1,α0

. (3.37)

Thus we have shown the following bound

sup
x′,y′∈Rn−1

x′ 6=y′

∣∣∇ψ2,ε(x
′)−∇ψ2,ε(y

′)
∣∣

|x′ − y′|β
≤ C εν ‖ψ2‖1,α0

. (3.38)

Therefore the Lemma follows by combining (3.25), (3.30) and (3.38).

The following Lemma will be needed for the decomposition of the operator Lδ2 and it will

be used as a tool to extend the integral over the surface Γ2 to the whole space Rn−1. It was

stated in [1] for dimension n = 2. The proof is elementary.

Lemma 3.5. Let 0 < α < α0, for ϕ ∈ Cα(Γ2) we define

φ(y′) = Eϕ(y′)
√

1 +
∣∣∇ψ2,ε(y′)

∣∣2, y′ ∈ Rn−1.

Then φ ∈ Cα(Rn−1) and

‖φ‖
α;Rn−1 ≤ (1 + C(ε))(1 + ε0) ‖ϕ‖α;Γ2

, (3.39)

where α0 is the regularity of the surface Γ2, Eϕ is defined in Lemma 3.3 and C(ε) −→ 0 as
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ε approaches 0.

Proof. First, we see that φ is well-defined on Rn−1 because Eϕ has compact support in

B( 2
ε0

). From Lemma 3.3, we have the bound

‖Eϕ‖
α;Rn−1 ≤ (1 + ε0) ‖ϕ‖α;Γ2

. (3.40)

Also from Lemma 3.4 we have for any α < α0 that
∥∥ψ2,ε

∥∥
1,α = O(εν) where ν = α0 − β,

then for any x′ ∈ Rn−1, it follows that

∣∣φ(x′)
∣∣ ≤ ∣∣Eϕ(x′)

∣∣ (1 + C(ε)
)
.

That is

‖φ‖∞ ≤
(

1 + C(ε)
)

(1 + ε0) ‖ϕ‖α . (3.41)

Next for x′, y′ ∈ Rn−1, we estimate

∣∣φ(x′)− φ(y′)
∣∣

|x′ − y′|α
=

∣∣∣∣Eϕ(x′)
√

1 +
∣∣∇ψ2,ε(x′)

∣∣2 − Eϕ(y′)
√

1 +
∣∣∇ψ2,ε(y′)

∣∣2∣∣∣∣
|x′ − y′|α

≤

∣∣Eϕ(x′)− Eϕ(y′)
∣∣√1 +

∣∣∇ψ2,ε(x′)
∣∣2

|x′ − y′|α
+

∣∣Eϕ(y′)
∣∣ ∣∣∣∣√1 +

∣∣∇ψ2,ε(x′)
∣∣2 −√1 +

∣∣∇ψ2,ε(y′)
∣∣2∣∣∣∣

|x′ − y′|α
.

By using (3.40), we easily see that

∣∣Eϕ(x′)− Eϕ(y′)
∣∣√1 +

∣∣∇ψ2,ε(x′)
∣∣2

|x′ − y′|α
≤
(

1 + C(ε)
)

(1 + ε0) ‖ϕ‖α . (3.42)
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For the second term, let

I2 =
∣∣Eϕ(y′)

∣∣
∣∣∣∣√1 +

∣∣∇ψ2,ε(x′)
∣∣2 −√1 +

∣∣∇ψ2,ε(y′)
∣∣2∣∣∣∣

|x′ − y′|α
.

Then we have

I2 ≤
∣∣Eϕ(y′)

∣∣ ∣∣∇ψ2,ε(x
′)−∇ψ2,ε(y

′)
∣∣ ( ∣∣∇ψ2,ε(x

′)
∣∣+
∣∣∇ψ2,ε(y

′)
∣∣ )

|x′ − y′|α
(√

1 +
∣∣∇ψ2,ε(x′)

∣∣2 +

√
1 +

∣∣∇ψ2,ε(y′)
∣∣2) .

That is,

I2 ≤
∣∣Eϕ(y′)

∣∣ ∣∣∇ψ2,ε(x
′)
∣∣+
∣∣∇ψ2,ε(y

′)
∣∣√

1 +
∣∣∇ψ2,ε(x′)

∣∣2 +

√
1 +

∣∣∇ψ2,ε(y′)
∣∣2
∣∣∇ψ2,ε(x

′)−∇ψ2,ε(y
′)
∣∣

|x′ − y′|α
.

Therefore we obtain the following bound

I2 ≤ Cεν (1 + ε0) ‖ϕ‖α
∥∥ψ2,ε

∥∥
1,α0

. (3.43)

Thus the bound (3.39) follows by combining (3.41), (3.42) and (3.43).

3.3 Decomposition of Lδ2

In this section we elaborate a method to decompose the operator Lδ2 in order to overcome

the singularity when x = 0 and δ = 0. The method was introduced in [1] for dimension

n = 2 . We start with the following Lemma which will be used frequently during our work.
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Lemma 3.6. For n ≥ 2, we have

∫
Rn−1

dz′(
|z′|2 + 1

)n
2

=
ωn
2
, (3.44)

where ωn is the surface area of unit sphere ∂B(1) in Rn.

Proof. The surface area ωn is represented in polar coordinates by the following form

ωn =

∫ π

φ1=0
...

∫ π

φn−2=0

∫ 2π

φn−1=0
(sinφ1)n−2...(sinφn−3)2 (sinφn−2) dφn−1 dφn−2 · · · dφ1.

Then we can see that

ωn = ωn−1

∫ π

0
(sinφ1)n−2 dφ1, (3.45)

where ωn−1 is the surface area of unit sphere ∂B(1) in Rn−1. Thus by using the polar

coordinates, the left hand side of (3.44) becomes

∫
Rn−1

dz′(
|z′|2 + 1

)n
2

= ωn−1

∫ ∞
0

rn−2(
r2 + 1

)n
2
dr. (3.46)

Substituting r = tanφ1 in the right hand side of (3.46), we have

∫
Rn−1

dz′(
|z′|2 + 1

)n
2

= ωn−1

∫ π
2

0
(sinφ1)n−2 dφ1 =

ωn
2

To begin, let δ > 0 and ϕ ∈ Cα(Γ2). For x ∈ Γ1, |x| < R0, we set xε = (x′, ψ1,ε(x
′)) and
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we define the approximate surface

Γ2,ε = {yε = (y′, ψ2,ε(y
′)) | y′ ∈ Rn−1}.

The off-diagonal operator Lδ2 is defined by

Lδ2ϕ(x) = −∂νS2ϕ(x− δen).

Let η be the cut-off function defined in (3.11). Then we decompose the operator Lδ2 as follows

Lδ2ϕ(x) = η(x)Lδ2ϕ(x) +
(
1− η(x)

)
Lδ2ϕ(x). (3.47)

Notice that the term (1− η(x))Lδ2ϕ(x) has smooth kernel. Whereas the term η(x)Lδ2ϕ(x) is

singular when x = 0 and δ = 0. To simplify the notation, we define

Lδ2(x) := η(x)Lδ2ϕ(x), x ∈ Γ1, ϕ ∈ Cα(Γ2).

Next we decompose the operator Lδ2 as follows:

Lδ2(x) =
(
Lδ2(x) + η(x)∂νεS2,εEϕ ◦ P (xε − δen)

)
− η(x)∂νεS2,εEϕ ◦ P (xε − δen), (3.48)

where P is the projection map from Γ2,ε onto Rn−1, that is


P : Γ2,ε −→ Rn−1,

P
(
y′, ψ2,ε(y

′)
)

= y′,

(3.49)
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ε 2ε

Γ2,ε

Γx
′

2,ε

Γ2

Γ1

Γ1,ε

Figure 3.1: The approximate surfaces

and S2,ε is the single layer potential on the approximate surface Γ2,ε. From the smoothness

of S2,ε on Γ1,ε we have

η(x)∂νεS2,εEϕ ◦ P (xε − δen) =
η(x)

ωn

∫
Γ2,ε

(xε − yε − δen) · νε(xε)
|xε − yε − δen|n

Eϕ ◦ P (yε) dσ(yε),

(3.50)

where νε(xε) is the normal unit vector on the approximate surface Γ1,ε at the point xε, that

is,

νε(xε) =
1√

1 +
∣∣∇ψ1,ε(x′)

∣∣2
−∇ψ1,ε(x

′)

1

 . (3.51)
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We rewrite ∂νεS2,ε for the potential E = Eϕ ◦ P at the point x̃ = xε − δen as follows

η(x)∂νεS2,εE(x̃) = C̃(x′)η(x)

∫
Rn−1

(y′ − x′) · ∇ψ1,ε(x
′) +

(
ψ1,ε(x

′)− ψ2,ε(y
′)− δ

)
(
|x′ − y′|2 + (ψ1,ε(x′)− ψ2,ε(y′)− δ)2

)n/2 φ(y′) dy′,

(3.52)

where φ is defined in Lemma 3.5 by φ(y′) = Eϕ(y′)
√

1 +
∣∣∇ψ2,ε(y′)

∣∣2 and C̃(x′) = 1

ωn

√
1+
∣∣∣∇ψ1,ε(x

′)
∣∣∣2 .

Now, we define

η(x)K
ε,δ
2 ϕ(x) = −η(x)∂νS2ϕ(x− δen) + η(x)∂νεS2,εE(x̃). (3.53)

We will prove later that operators in (3.53) form a family of compact operators from Cα(Γ2)

to Cα(Γ1). Also by using the definition of the function φ we can rewrite the operators ηK
ε,δ
2

as follows

η(x)K
ε,δ
2 ϕ(x) =

−η(x)

ωn

∫
Γ2

(x− y − δen) · ν(x)

|x− y − δen|n
ϕ(y) dσ(y),

+ C̃η(x)

∫
Rn−1

(y′ − x′)∇ψ1,ε(x
′) +

(
ψ1,ε(x

′)− ψ2,ε(y
′)− δ

)
(
|x′ − y′|2 + (ψ1,ε(x′)− ψ2,ε(y′)− δ)2

)n/2 φ(y′) dy′.

From the parameterization of the surfaces Γ1 and Γ2 around the origin , we have that

x = (x′, ψ1(x′)) ∈ Γ1 for
∣∣x′∣∣ < ε, and similarly, y = (y′, ψ2(y′)) ∈ Γ2 when

∣∣y′∣∣ < ε.

Therefore we conclude that for
∣∣x′∣∣ < ε and

∣∣y′∣∣ < ε the two integrands in the definition of

η(x)K
ε,δ
2 coincide. We further define for each xε = (x′, ψ1,ε(x

′)) ∈ Γ1,ε the hyper-plane

Γx
′

2,ε = {y ∈ Rn | yn = ψ2,ε(x
′)}. (3.54)
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Thus we rewrite η(x)L
ε,δ
2 ϕ(x) as follows

η(x)Lδ2ϕ(x) = η(x)K
ε,δ
2 ϕ(x)− η(x)∂νεS2,εE(x̃) + η(x)∂νεS

x′
2,εE(x̃)− η(x)∂νεS

x′
2,εE(x̃),

(3.55)

where Sx′
2,ε is the single layer potential on the hyper-surface Γx

′
2,ε and its normal derivative

for the potential E is defined by

η(x)∂νεS
x′
2,εE(x̃) =

η(x)

ωn

∫
Γx
′

2,ε

(
xε − y(x′)− δen

)
· νε(xε)

|xε − y(x′)− δen|n
E(y(x′)) dσ(y(x′)), (3.56)

where y(x′) = (y′, ψ2,ε(x
′)). To be more explicit,

η(x)∂νεS
x′
2,εE(x̃) = C̃η(x)

∫
Rn−1

(y′ − x′) · ∇ψ1,ε(x
′) +

(
ψ1,ε(x

′)− ψ2,ε(x
′)− δ

)
(
|x′ − y′|2 +

(
ψ1,ε(x′)− ψ2,ε(x′)− δ

)2)n2 φ(y′) dy′.

(3.57)

Note that we have perturbed by the operator η(x)∂νεS
x′
2,εE(x̃) in order to get the Hölder

continuity for the operator −η(x)∂νεS2,εE(x̃). That is, we will use the advantage of the

difference ψ2,ε(x
′)− ψ2,ε(y

′) to get the Hölder continuity for the term

η(x)∂νεS
x′
2,εE(x̃)− η(x)∂νεS2,εE(x̃).

While the term η(x)∂νεS
x′
2,εE(x̃) will be easily proved is Hölder continuous because it is

produced from the single layer potential over the hyper-plane Γx
′

2,ε.
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For Γ1 3 x 6= 0 or δ 6= 0 and ϕ ∈ Cα(Γ2) we define the operator

I
ε,δ
2 ϕ(x) =

∫
Rn−1

(δ + ψ2,ε(x
′)− ψ1,ε(x

′))−∇ψ1,ε(x
′) · (y′ − x′)(

|x′ − y′|2 +
(
ψ1,ε(x′)− ψ2,ε(x′)− δ

)2)n2 φ(y′) dy′. (3.58)

whereas for x = 0 and δ = 0, we define I
ε,0
2 ϕ(0) as follows

I
ε,0
2 ϕ(0) = lim

δ→0

∫
Rn−1

δ(
|y′|2 + δ2

)n
2
φ(y′) dy′. (3.59)

Using the change of variable z′ = y′
δ , we have

I
ε,0
2 ϕ(0) = lim

δ→0

∫
Rn−1

1(
|z′|2 + 1

)n
2
φ(δz′) dz′. (3.60)

From the dominated convergence theorem, it follows that

I
ε,0
2 ϕ(0) =

∫
Rn−1

1(
|z′|2 + 1

)n
2
φ(0) dz′ =

ωn
2
ϕ(0), (3.61)

where φ(0) = ϕ(0) and ωn−1 is the surface area of unit sphere ∂B(1) in Rn−1. Again to

simplify the notation, let

J2(x) = −η(x)∂νS2,εE(x̃) + η(x)∂νSx′
2,εE(x̃).

80



From (3.52) and (3.57), we have

J2(x) = C̃(x′) η(x)

∫
Rn−1

(
δ + ψ2,ε(y

′)− ψ1,ε(x
′)
)
−∇ψ1,ε(x

′) · (y′ − x′)(
|x′ − y′|2 +

(
ψ1,ε(x′)− ψ2,ε(y′)− δ

)2)n2
−

(
δ + ψ2,ε(x

′)− ψ1,ε(x
′)
)
−∇ψ1,ε(x

′) · (y′ − x′)(
|x′ − y′|2 +

(
ψ1,ε(x′)− ψ2,ε(x′)− δ

)2)n2 φ(y′) dy′.

For x 6= 0 or δ 6= 0 and ϕ ∈ Cα(Γ2), we define the operator

J
ε,δ
2 ϕ(x) =

∫
Rn−1

(δ + ψ2,ε(y
′)− ψ1,ε(x

′))−∇ψ1,ε(x
′) · (y′ − x′)(

|x′ − y′|2 +
(
ψ1,ε(x′)− ψ2,ε(y′)− δ

)2)n2
−

(δ + ψ2,ε(x
′)− ψ1,ε(x

′))−∇ψ1,ε(x
′) · (y′ − x′)(

|x′ − y′|2 +
(
ψ1,ε(x′)− ψ2,ε(x′)− δ

)2)n2 φ(y′) dy′, (3.62)

whereas, when x = 0 and δ = 0, we set

J
ε,0
2 ϕ(0) =

∫
Rn−1

ψ2,ε(y
′)(

y2
1 + ...+ y2

n−1 + ψ2
2,ε(y

′)
)n

2
φ(y′) dy′, (3.63)

where this integral is well- defined because when
∣∣y′∣∣ < ε, we have

∣∣ψ2,ε(y
′)
∣∣ ≤ C

∣∣y′∣∣1+α0 .

Thus we write η(x)Lδ2 as

η(x)Lδ2ϕ(x) = η(x)K
ε,δ
2 ϕ(x) +

η(x)

ωn

√
1 +

∣∣∇ψ1,ε(x′)
∣∣2
(
J
ε,δ
2 ϕ(x) + I

ε,δ
2 ϕ(x)

)
. (3.64)
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Using the above definitions, we have

Lδ2ϕ(x) = η(x)

Kε,δ
2 +

1

ωn

√
1 +

∣∣∇ψ1,ε(x′)
∣∣2
(
J
ε,δ
2 + I

ε,δ
2

)ϕ(x)

+ (1− η(x))Lδ2ϕ(x). (3.65)

In a similar manner, we define operators η(x)K
ε,δ
1 , η(x)J

ε,δ
1 and η(x)I

ε,δ
1 from Cα(Γ1) into

Cα(Γ2), that help to decompose the operator Lδ1. That is, we decompose the operator Lδ1

as follows: For δ > 0, x ∈ Γ2, |x| < R0 and ϕ ∈ Cα(Γ1) we form the following:

Lδ1ϕ(x) = η(x)Lδ1ϕ(x) + (1− η(x))Lδ1ϕ(x) (3.66)

= η(x)

Kε,δ
1 +

1

ωn

√
1 +

∣∣∇ψ2,ε(x′)
∣∣2
(
J
ε,δ
1 + I

ε,δ
1

)ϕ(x)

+ (1− η(x))Lδ1ϕ(x). (3.67)

3.4 Decomposition of T δ.

After decomposing the off-diagonal operators Lδ2 and Lδ1, we may now decompose the oper-

ator T δ for δ > 0 as follows:

T δ

ϕ1

ϕ2

 = Λε,δ

ϕ1

ϕ2

+ Cε,δ

ϕ1

ϕ2

 , (3.68)
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where

Λε,δ =


λI η

ωn

√
1+
∣∣∣∇ψ1,ε(x

′)
∣∣∣2
(
J
ε,δ
2 + I

ε,δ
1

)
η

ωn

√
1+
∣∣∣∇ψ2,ε(x

′)
∣∣∣2
(
J
ε,δ
1 + I

ε,δ
1

)
λI

 , (3.69)

and

Cε,δ =

−K∗1 ηK
ε,δ
2

ηK
ε,δ
2 −K∗2

+ (1− η)

 0 Lδ2

Lδ1 0

 . (3.70)

We clearly notice that, for ϕ ∈ Cα(Γ2) and x ∈ Γ1 the normal derivative of the single

layer potential

∂νS2ϕ(x) =
1

ωn

∫
Γ2

(x− y) · ν(x)

|x− y|n
ϕ(y) dσ(y)

is α0-Hölder continuous whenever |x| > ε0. Therefore, it is convenient to define the limit of

the compact operator (1− η)Lδ2 as an operator from Cα(Γ2) into Cα(Γ1) as follows

L0
2ϕ = lim

δ→0
Lδ2ϕ in Cα(Γ1 ∩ {|x| > ε0}). (3.71)

We highlight at this point that the operator L0
2 is defined as an operator from Cα(Γ2) into

Cα(Γ1 ∩ {|x| > ε0}). Furthermore, the operator L0
2 is compact operator because it is the

norm limit of compact operators.

Now we turn to define the limit of the operators Lδ2ϕ(x), when |x| ≤ ε0 by using the

operators η(x)K
ε,δ
2 , η(x)J

ε,δ
2 and η(x)I

ε,δ
2 that defined in the previous section. In other
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words, for ϕ ∈ Cα(Γ2) and x ∈ Γ1 ∩ {|x| ≤ ε0}, we define

Kε,0
2 +

1

ωn

√
1 +

∣∣∇ψ1,ε(x′)
∣∣2
(
J
ε,0
2 + I

ε,0
2

)ϕ(x) (3.72)

as a limit operator of Lδ2ϕ(x). Globally, we use (3.71) and (3.72) to define the limiting

operator corresponding to Lδ2. That is, for ϕ ∈ Cα(Γ2) and x ∈ (Γ1), we define

L0
2ϕ(x) = η(x)

Kε,0
2 +

1

ωn

√
1 +

∣∣∇ψ1,ε(x′)
∣∣2
(
J
ε,0
2 + I

ε,0
2

)ϕ(x)

+
(
1− η(x)

)
L0
2ϕ(x). (3.73)

Similarly, we define the operator L0
1. That is, for ϕ ∈ Cα(Γ1) and x ∈ (Γ2), we define

L0
1ϕ(x) = η(x)

Kε,0
1 +

1

ωn

√
1 +

∣∣∇ψ1,ε(x′)
∣∣2
(
J
ε,0
1 + I

ε,0
1

)ϕ(x)

+
(
1− η(x)

)
L0
1ϕ(x). (3.74)

We will show later the operator L0
2 is a pointwise limit of Lδ2 as an operator from Cα(Γ2)

into Cα(Γ1) and similary we will obtain that L0
1 is a pointwise limit of Lδ1 as an operator

from Cα(Γ1) into Cα(Γ2). However, in [1] the authors have proven the following Theorem

Theorem 3.7. [1] The operators L0
1 and L0

2 are not compact on Cα for any 0 < α < α0.

Consequently, we conclude that the compact operators Lδ :=
(
Lδ1, L

δ
2

)
do not converge

in norm to L0 :=
(
L0

1, L
0
2

)
.
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Now we use the operators L0
1 and L0

2 to define the system

T 0

ϕ1

ϕ2

 =

λI −K∗1 L0
2

L0
1 λI −K∗2


ϕ1

ϕ2

 . (3.75)

Also we will show later that T 0 is a pointwise limit of the compact operators T δ as an

operator from Cα(Γ1)×Cα(Γ2) into Cα(Γ1)×Cα(Γ2). By using (3.73) and (3.74), we may

decompose T0 as follows:

T 0 = Λε,0 + Cε,0,

where

Λε,0 =


λI η

ωn

√
1+
∣∣∣∇ψ1,ε(x

′)
∣∣∣2
(
J
ε,0
2 + I

ε,0
1

)
η

ωn

√
1+
∣∣∣∇ψ2,ε(x

′)
∣∣∣2
(
J
ε,0
1 + I

ε,0
1

)
λI

 , (3.76)

and

Cε,0 =

−K∗1 ηK
ε,0
2

ηK
ε,0
2 −K∗2

+ (1− η)

 0 L0
2

L0
1 0

 . (3.77)

As we have mentioned earlier that the operators (Lδ1, L
δ
1) do not converge in norm to

(L0
1, L

0
2). Thus the operators T δ do not converge in norm to T 0. Consequently, even though

we show that the limiting system T 0 is invertable we can’t get directly that the operators

T δ are invertible and their inverses (T δ)−1 are uniformly bounded. Recall that, the uniform

bounded (2.64) requires uniform boundedness for (T δ)−1 in Cα(Γ1) × Cα(Γ2) for α < α0.

In the absence of norm convergence, our goal is to prove uniform boundedness for (T δ)−1 in

Cα(Γ1)× Cα(Γ2) for α < α0 by using the pointwise convergence.
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Chapter 4

Hölder estimate for the operator J
ε,δ
2

We devote this chapter to prove the uniform Hölder continuity of the operator ηJ
ε,δ
2 where η

is the cut-off function defined in (3.11). The work, which is in any dimension n ≥ 2, depends

on the earlier work for dimension n = 2 [1], we use the same decomposition for the operator

J
ε,δ
2 as well as we use same notations that presented in dimension n = 2 for the auxiliary

operators with some modifications that are required for the higher dimension.

Theorem 4.1. Given any 0 < ε < ε0 and any 0 ≤ δ < δ0, then ηJ
ε,δ
2 is a continuous linear

operator from Cα(Γ2) to Cα(Γ1) , α < α0. Moreover, we have

∥∥∥∥∥∥ η

ωn

√
1 +

∣∣∇ψ1,ε

∣∣2 Jε,δ2

∥∥∥∥∥∥
L(Cα(Γ2),Cα(Γ1))

≤ C(ε), ∀ α < α0,

where α is the regularity of the auxilary functions ψj,ε, α0 is the regularity of the boundaries

Γj, j = 1, 2, and C(ε) converges to 0 as ε converges to 0 uniformly in δ.

Before starting the proof, recall that the functions ψ1 and ψ2 are defined in a neighbor-

hood of the origin and have regularity C1,α0 for some 0 < α0 ≤ 1, whereas the auxiliary

functions ψ1,ε and ψ2,ε are defined globally on Rn−1 and satisfy the bound

∥∥ψj,ε∥∥1,α ≤ Cεν
∥∥ψj∥∥1,α0

, j = 1, 2,
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where ν = α0 − α. That is,

∥∥ψj,ε∥∥1,α ≤ C(ε), j = 1, 2,

where C(ε) approaches 0 when ε approaches 0. The operator J
ε,δ
2 is defined explicitly in

(3.62) and (3.63) but it is beneficiary to write it down here in order to see the behavior of

the kernel function that corresponding to the operator near the origin. For x 6= 0 or δ 6= 0

and ϕ ∈ Cα(Γ2), the main operator J
ε,δ
2 is defined by

J
ε,δ
2 ϕ(x) =

∫
Rn−1

(
δ + ψ2,ε(y

′)− ψ1,ε(x
′)
)
−∇ψ1,ε(x

′) · (y′ − x′)(
|x′ − y′|2 +

(
ψ1,ε(x′)− ψ2,ε(y′)− δ

)2)n2
−

(
δ + ψ2,ε(x

′)− ψ1,ε(x
′)
)
−∇ψ1,ε(x

′) · (y′ − x′)(
|x′ − y′|2 +

(
ψ1,ε(x′)− ψ2,ε(x′)− δ

)2)n2 φ(y′) dy′, (4.1)

and for x = 0 and δ = 0, the operator is defined by

J
ε,0
2 ϕ(0) =

∫
Rn−1

ψ2,ε(y
′)(

y2
1 + ...+ y2

n−1 + ψ2
2,ε(y

′)
)n

2
φ(y′) dy′, (4.2)

where φ(x′) = Eϕ(x′)
√

1 + |∇ψ2(x′)|2 has compact support in B′(R0), φ(0) = ϕ(0) and

bounded by the norm

‖φ‖α ≤
(

1 + C(ε)
)

(1 + ε0) ‖ϕ‖α . (4.3)

Furthermore, there exists a constant M > 0 such that for any x = (x′, xn) ∈ Γ1, the function

ζ ′ → φ(ζ ′ + x′) is supported in B′(M).

We start with some basic preliminaries that are needed for the proof of the Theorem 4.1.
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4.1 Preliminaries

In this section we present some basic but useful bounds for the auxiliary functions ψ2,ε,ψ1,ε

and for some linear combinations of ψ2,ε and ψ1,ε with the perturbation constant δ. From

the definition of the operator in (4.1) and in (4.2) we see that the denominator of the kernel

function depends on the functions ψ1,ε and ψ2,ε so it is a good idea to start finding the lower

bounds of these functions.

Lemma 4.2. Suppose 0 < α < α0. Then there exists a constant C > 0, independent of ε

(where ε is assumed to be sufficiently small), such that for any x′ ∈ Rn−1,

∣∣∇ψi,ε(x′)∣∣ ≤ C
(
α, ‖ψi‖1,α0

) ∣∣ψi,ε(x′)∣∣ α
1+α , i = 1, 2. (4.4)

Proof. We only focus on ψ2,ε, but the same arguments hold for ψ1,ε. Recall the definition of

ψ2,ε from (3.20)

ψ2,ε(x) = ψ(x)ηε(x) + (1− ηε(x))ε1+α0 ‖ψ‖
C1,α0

,

where ηε is a cut-off function defined in (3.19). For any x′, ξ′ ∈ Rn−1, we see that

ψ2,ε(x
′ + ξ′) = ψ2,ε(x

′) +∇ψ2,ε(x
′) · ξ′ +

∫ 1

0

d

dt
ψ2,ε(x

′ + tξ′)−∇ψ2,ε(x
′) · ξ′ dt,

and clearly we have the bound

ψ2,ε(x
′ + ξ′) ≤ ψ2,ε(x

′) +∇ψ2,ε(x
′) · ξ′ +

∫ 1

0

∣∣∇ψ2,ε(x
′ + tξ′) · ξ′ −∇ψ2,ε(x

′) · ξ′
∣∣ dt.
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Using the Hölder continuity of ∇ψ2,ε, it follows that

ψ2,ε(x
′ + ξ′) ≤ ψ2,ε(x

′) +∇ψ2,ε(x
′) · ξ′ +

∣∣ξ′∣∣1+α ∥∥∇ψ2,ε

∥∥
α

∫ 1

0
tα dt

≤ ψ2,ε(x
′) +∇ψ2,ε(x

′) · ξ′ + 1

1 + α

∣∣ξ′∣∣1+α ‖ψ2‖1,α0
.

Assuming C = 1
1+α ‖ψ2‖1,α0

which is evidently independent of ε (sufficiently small), we

obtain

ψ2,ε(x
′ + ξ′) ≤ ψ2,ε(x

′) +∇ψ2,ε(x
′) · ξ′ + C

∣∣ξ′∣∣1+α
.

That is,

ψ2,ε(x
′ + ξ′)− ψ2,ε(x

′)−∇ψ2,ε(x
′) · ξ′ ≤ C

∣∣ξ′∣∣1+α
.

Since ψ2,ε(x
′ + ξ′) ≥ 0, we get that

−∇ψ2,ε(x
′) · ξ′ − C

∣∣ξ′∣∣1+α ≤
∣∣ψ2,ε(x

′)
∣∣ . (4.5)

Letting ξ′ = −
(

1
C(1+α)

)1/α ∣∣∇ψ2,ε(x
′)
∣∣ 1
α−1 ∇ψ2,ε(x

′) in (4.5), we have the following

(
1

C(1 + α)

)1/α ∣∣∇ψ2,ε(x
′)
∣∣ 1
α+1 − C

(
1

C(1 + α)

)(1+α)/α ∣∣∇ψ2,ε(x
′)
∣∣1+α
α ≤

∣∣ψ2,ε(x
′)
∣∣ .

Therefore we get the desired bound

∣∣∇ψ2,ε(x
′)
∣∣ ≤ C

∣∣ψ2,ε(x
′)
∣∣ α
1+α .
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The following lemma [1] is a straightforward consequence of Young’s inequality and it has

been used frequently for finding the lower bounds for the denominator of the kernel function

that corresponding to the operator J
ε,δ
2 .

Lemma 4.3. For any r, t ≥ 0 and for any 0 ≤ µ ≤ 1 we have

r2 + t2 ≥ r1+µ t1−µ.

Proof. By Young’s inequality, we have the following

r1+µ t1−µ ≤
(1 + µ

2

)
r2 +

(1− µ
2

)
t2 ≤ r2 + t2

To find appropriate uniform bounds for the kernel function, we need some basic uniform

bounds for a linear combination of the auxiliary functions ψ1,ε and ψ2,ε with the perturbation

constant δ. We compile the most frequently used bounds in the upcoming lemma. To simplify

the notation and because this work is generalization of the earlier work for dimension n = 2,

we use same notations for the combination of the auxiliary functions that has been given in

[1]. For any x′, y′ and ζ ′ in Rn−1, we define the following quantities

a := a(x′) = δ + ψ2,ε(x
′)− ψ1,ε(x

′), (4.6)

â := a(y′) = δ + ψ2,ε(y
′)− ψ1,ε(y

′), (4.7)

b := b(x′, ζ ′) = δ + ψ2,ε(ζ
′ + x′)− ψ1,ε(x

′), (4.8)

b̂ := b(y′, ζ ′) = δ + ψ2,ε(ζ
′ + y′)− ψ1,ε(y

′). (4.9)
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Lemma 4.4. For any x′, y′ and ζ ′ in Rn−1, the following bounds hold

1. |b− a| ≤
∥∥∇ψ2,ε

∥∥
α

∣∣ζ ′∣∣ , alternatively;

2. |b− a| ≤
∥∥∇ψ2,ε

∥∥
α

∣∣ζ ′∣∣α+1
+
∣∣∇ψ2,ε(x

′)
∣∣ ∣∣ζ ′∣∣ , alternatively;

3. |b− a| ≤
∣∣∇ψ2,ε(ζ

′ + x′)
∣∣ ∣∣ζ ′∣∣+

∥∥∇ψ2,ε

∥∥
α

∣∣ζ ′∣∣α+1
.

4.
∣∣∣b− b̂∣∣∣ ≤ d

(∥∥∇ψ2,ε

∥∥
α +

∥∥∇ψ1,ε

∥∥
α

)
, where d =

∣∣x′ − y′∣∣ , alternatively;

5.
∣∣∣b− b̂∣∣∣ ≤ d

∣∣∇ψ2,ε(ζ
′ + y′)

∣∣ + d
∣∣∇ψ1,ε(y

′)
∣∣ + dα+1

(∥∥∇ψ2,ε

∥∥
α +

∥∥∇ψ1,ε

∥∥
α

)
, alterna-

tively;

6.
∣∣∣b− b̂∣∣∣ ≤ d

∣∣∇ψ2,ε(ζ
′ + x′)

∣∣+ d
∣∣∇ψ1,ε(x

′)
∣∣+ dα+1

(∥∥∇ψ2,ε

∥∥
α +

∥∥∇ψ1,ε

∥∥
α

)
,

7. |a− â| ≤ d
(∥∥∇ψ2,ε

∥∥
α +

∥∥∇ψ1,ε

∥∥
α

)
.

Proof. 1. From the definition of a and b, we have

|b− a| =
∣∣ψ2,ε(ζ

′ + x′)− ψ2,ε(x
′)
∣∣ ,

and by using the regularity of ψ2,ε, the desired bound follows

|b− a| ≤
∥∥∇ψ2,ε

∥∥
α

∣∣ζ ′∣∣ .
2. Agian from the definition of a and b, we have

|b− a| =
∣∣ψ2,ε(ζ

′ + x′)− ψ2,ε(x
′)
∣∣ .

Using the mean value theorem for some ξ′ lies on the line segment that joining 0 and
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ζ ′, it follows that

|b− a| ≤
∣∣∇ψ2,ε(x

′ + ξ′)
∣∣ ∣∣ζ ′∣∣ .

By adding and subtracting the quantity ∇ψ2,ε(x
′), we obtain

|b− a| ≤
( ∣∣∇ψ2,ε(x

′ + ξ′)−∇ψ2,ε(x
′)
∣∣+
∣∣∇ψ2,ε(x

′)
∣∣ ) ∣∣ζ ′∣∣ .

Using the Hölder continuity of ∇ψ2,ε, the desired bound follows

|b− a| ≤
∥∥∇ψ2,ε

∥∥
α

∣∣ζ ′∣∣α+1
+
∣∣∇ψ2,ε(x

′)
∣∣ ∣∣ζ ′∣∣ .

3. For the alternative bound. If we add and subtract the quantity ∇ψ2,ε(ζ
′ + x′) instead

of ∇ψ2,ε(x
′), it follows that

|b− a| ≤
( ∣∣∇ψ2,ε(x

′ + ξ′)−∇ψ2,ε(ζ
′ + x′)

∣∣+
∣∣∇ψ2,ε(ζ

′ + x′)
∣∣ ) ∣∣ζ ′∣∣ .

Noticing that
∣∣ζ ′ − ξ′∣∣ ≤ ∣∣ζ ′∣∣, The desired bound follows

|b− a| ≤
∥∥∇ψ2,ε

∥∥
α

∣∣ζ ′∣∣α+1
+
∣∣∇ψ2,ε(ζ

′ + x′)
∣∣ ∣∣ζ ′∣∣ .

4. Follows trivially from the definition of b and b̂.

5. For the alternative bound for
∣∣∣b− b̂∣∣∣, let ψ(x′) = ψ2,ε(ζ

′ + x′) − ψ1,ε(x
′). Then by
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applying the mean value theorem for some t ∈ (0, 1), we have

b− b̂ = ψ(x′)− ψ(y′) = ∇ψ(ξ′) · (x′ − y′),

where ξ′ = tx′ + (1− t)y′. Next, we add and subtract the quantity ∇ψ(y′) to get the

following

b− b̂ =
(
∇ψ(ξ′)−∇ψ(y′) +∇ψ(y′)

)
· (x′ − y′),

equivalently,

b−b̂ =
(
∇ψ2,ε(ζ

′+ξ′)−∇ψ2,ε(ζ
′+y′)−∇ψ1,ε(ξ

′)+∇ψ1,ε(y
′)+∇ψ2,ε(ζ

′+y′)−∇ψ1,ε(y
′)
)
·(x′−y′).

Thus by the Hölder continuity of ψ2,ε and ψ1,ε and noticing that
∣∣ξ′ − y′∣∣ ≤ ∣∣x′ − y′∣∣,

the desired bound follows

∣∣∣b− b̂∣∣∣ ≤ dα+1 (∥∥∇ψ2,ε

∥∥
α +

∥∥∇ψ1,ε

∥∥
α

)
+ d

∣∣∇ψ2,ε(ζ
′ + y′)

∣∣+ d
∣∣∇ψ1,ε(y

′)
∣∣ .

6. Follows similarly.

7. Follows trivially from the definition of a and â.
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4.2 L∞ − norm for J ε,δ2 , δ > 0

In this section we show the uniform boundedness for the operatorJ
ε,δ
2 as an operator from

Γ2 to Γ1, that is, for ϕ ∈ Cα(Γ2), and x ∈ Γ1 ∩B(0, R0), we show that

∣∣∣Jε,δ2 ϕ(x)
∣∣∣ ≤ C(ε) ‖ϕ‖α ,

where C(ε) approaches 0 as ε approaches 0. Let k
ε,δ
2 be the kernel function corresponding

to the operator J
ε,δ
2 ,that is,

k
ε,δ
2 (y′, x′) =

(
δ + ψ2,ε(y

′)− ψ1,ε(x
′)
)
−∇ψ1,ε(x

′) · (y′ − x′)(
|x′ − y′|2 +

(
ψ1,ε(x′)− ψ2,ε(y′)− δ

)2)n2
−
(
δ + ψ2,ε(x

′)− ψ1,ε(x
′)
)
−∇ψ1,ε(x

′) · (y′ − x′)(
|x′ − y′|2 +

(
ψ1,ε(x′)− ψ2,ε(x′)− δ

)2)n2 ,

and then in short J
ε,δ
2 can be written in a simple form

J
ε,δ
2 ϕ(x) =

∫
Rn−1

k
ε,δ
2 (y′, x′)φ(y′) dy′.

Using the change of variables ζ ′ = y′ − x′ and recalling that the function φ(· + x′) has

compact support in B′(M), it follows that

Jε,δϕ(x) =

∫
|ζ′|<M

k
ε,δ
2 (ζ ′, x′)φ(ζ ′ + x′) dζ ′.
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Involving the definitions of a(x′) and b(x′, ζ ′) that defined in (4.6) and (4.8) respectively, the

kernel function k
ε,δ
2 has the equivalent form

k
ε,δ
2 (ζ ′, x′) =

b(x′, ζ ′)− ζ ′ · ∇ψ1,ε(x
′)[

|ζ ′|2 + b2(x′, y′)
]n

2
−
a(x′)− ζ ′ · ∇ψ1,ε(x

′)[
|ζ ′|2 + a2(x′)

]n
2

. (4.10)

In naively way, we have the bound

∣∣∣Jε,δ2 ϕ(x)
∣∣∣ ≤ ‖φ‖∞ ∫|ζ′|<M

∣∣∣∣∣∣∣
b(x′, ζ ′)− ζ ′ · ∇ψ1,ε(x

′)[
|ζ ′|2 + b2(x′, ζ ′)

]n
2
−
a(x′)− ζ ′ · ∇ψ1,ε(x

′)[
|ζ ′|2 + a2(x′)

]n
2

∣∣∣∣∣∣∣ dζ ′.

We proceed to simplify the integrand by using the least common denominator. We note that

∣∣∣Jε,δ2 ϕ(x)
∣∣∣

≤ ‖φ‖∞
∫
|ζ′|<M

∣∣∣∣∣∣
(
∣∣ζ ′∣∣2 + a2)

n
2 (b− a) +

(
(
∣∣ζ ′∣∣2 + a2)

n
2 − (

∣∣ζ ′∣∣2 + b2)
n
2
)(
a− ζ ′ · ∇ψ1,ε(x

′)
)

(|ζ ′|2 + b2)
n
2 (|ζ ′|2 + a2)

n
2

∣∣∣∣∣∣ dζ ′
≤ ‖φ‖∞

∫
|ζ′|<M

|b− a|

(|ζ ′|2 + b2)
n
2

:= A

+ ‖φ‖∞
∫
|ζ′|<M

∣∣∣(∣∣ζ ′∣∣2 + a2)
n
2 − (

∣∣ζ ′∣∣2 + b2)
n
2

∣∣∣ ∣∣∣(a− ζ ′ · ∇ψ1,ε(x
′)
)∣∣∣

(|ζ ′|2 + b2)
n
2 (|ζ ′|2 + a2)

n
2

dζ ′ := B.

For A term, we use bound (3) from Lemma 4.4 to obtain the following inequality

A ≤ ‖φ‖∞
∫
|ζ′|<M

∥∥∇ψ2,ε

∥∥
α

∣∣ζ ′∣∣1+α(
|ζ ′|2 + b2

)n/2 +

∣∣∇ψ2,ε(x
′ + ζ ′)

∣∣ ∣∣ζ ′∣∣(
|ζ ′|2 + b2

)n/2 dζ ′ := A1 + A2,

where

A1 = ‖φ‖∞
∫
|ζ′|<M

∥∥∇ψ2,ε

∥∥
α

∣∣ζ ′∣∣1+α(
|ζ ′|2 + b2

)n/2 dζ ′,
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and

A2 = ‖φ‖∞
∫
|ζ′|<M

∣∣∇ψ2,ε(x
′ + ζ ′)

∣∣ ∣∣ζ ′∣∣(
|ζ ′|2 + b2

)n/2 dζ ′.

Naively, we can bound A1 by

A1 ≤ ‖φ‖∞
∥∥∇ψ2,ε

∥∥
α

∫
|ζ′|<M

∣∣ζ ′∣∣1+α−n
.

We easily conclude the bound

A1 ≤ C(M,α) ‖φ‖∞C(ε). (4.11)

For A2, we recall that b = δ + ψ2,ε(ζ
′ + x′) − ψ1,ε(x

′) and use Lemma 4.3 to conclude the

bound

A2 ≤ ‖φ‖∞
∫
|ζ′|<M

∣∣∇ψ2,ε(x
′ + ζ ′)

∣∣ ∣∣ψ2,ε(x
′ + ζ ′)

∣∣−(1−µ)n2
∣∣ζ ′∣∣1−(1+µ)n2 dζ ′,

then we use lemma (4.2) to bound ∇ψ2,ε(x
′ + ζ ′), that is, we obtain the following bound

A2 ≤ C
(
α, ‖ψ2‖1,α0

)
‖φ‖∞

∫
|ζ′|<M

∣∣ψ2,ε(x
′ + ζ ′)

∣∣ α
1+α−(1−µ)n2

∣∣ζ ′∣∣1−(1+µ)n2 dζ ′.

Choosing 1−
(

α
1+α

)
2
n < µ < 1, we clearly approach the desired bound bound, i.e, we get

A2 ≤ C
(
α, ‖ψ2‖1,α0

)
‖φ‖∞

∥∥ψ2,ε

∥∥ α
1+α−(1−µ)n2
1,α

∫
|ζ′|<M

∣∣ζ ′∣∣1−(1+µ)n2 dζ ′.
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Thus we have

A2 ≤ C
(
α, n,M, ‖ψ2‖1,α0

)
‖φ‖∞C(ε). (4.12)

Finally, combining (4.11) and (4.12), we have the desired bound for A which is

A ≤ C
(
α, n,M, ‖ψ2‖1,α0

)
‖φ‖∞C(ε). (4.13)

Continuing in the same fashion to bound the term B uniformly, where

B = ‖φ‖∞
∫
|ζ′|<M

∣∣∣(∣∣ζ ′∣∣2 + a2)
n
2 − (

∣∣ζ ′∣∣2 + b2)
n
2

∣∣∣ ∣∣a− ζ ′ · ∇ψ1,ε(x
′)
∣∣

(|ζ ′|2 + b2)
n
2 (|ζ ′|2 + a2)

n
2

dζ ′.

By using the mean value theorem, we have

∣∣∣(∣∣ζ ′∣∣2 + a2)
n
2 − (

∣∣ζ ′∣∣2 + b2)
n
2

∣∣∣ ≤ n

2

(∣∣ζ ′∣∣2 + z2
)n

2−1 ∣∣∣b2 − a2
∣∣∣ ,

for some z2 that lies in the line segment joining a2 to b2. Without loss of generality we may

assume that a2 < z2 < b2. On other hand, same arguments would hold if b2 < z2 < a2.

Therefor we get the following bound

B ≤ C ‖φ‖∞
∫
|ζ′|<M

∣∣a− ζ ′ · ∇ψ1,ε(x
′)
∣∣ |b− a| |b+ a|(

|ζ ′|2 + b2
) (
|ζ ′|2 + a2

)n
2

dζ ′.
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Using Schwartz inequality to bound the quantity
∣∣a− ζ ′ · ∇ψ1,ε(x

′)
∣∣ |b+ a|, it follows that

B ≤ C ‖φ‖∞
∫
|ζ′|<M

|b− a|
(∣∣a− ζ ′ · ∇ψ1,ε(x

′)
∣∣2 + |b+ a|2

)
(
|ζ ′|2 + b2

) (
|ζ ′|2 + a2

)n
2

dζ ′.

Notice the following

∣∣a− ζ ′ · ∇ψ1,ε(x
′)
∣∣2 + |b+ a|2 ≤ 6

(
b2 +

∣∣ζ ′∣∣2 ∥∥∇ψ1,ε

∥∥2
∞

)
.

So we conclude the following

B ≤ C ‖φ‖∞
∫
|ζ′|<M

|b− a|
(
b2 +

∣∣ζ ′∣∣2 ∥∥∇ψ1,ε

∥∥2
∞

)
(
|ζ ′|2 + b2

) (
|ζ ′|2 + a2

)n
2

dζ ′. (4.14)

Since (
b2 +

∣∣ζ ′∣∣2 ∥∥∇ψ1,ε

∥∥2
∞

)
|ζ ′|2 + b2

≤ 1 +
∥∥∇ψ1,ε

∥∥2
∞ ,

then B can be bounded by

B ≤ C
(
1 +

∥∥∇ψ1,ε

∥∥2
∞
)
‖φ‖∞

∫
|ζ′|<M

|b− a|(
|ζ ′|2 + a2

)n
2
dζ ′.

Using the bound (2) form Lemma 4.4, the following bound follows

B ≤ C
(
1 +

∥∥∇ψ1,ε

∥∥2
∞
)
‖φ‖∞

∫
|ζ′|<M

∥∥∇ψ2,ε

∥∥
α

∣∣ζ ′∣∣1+α(
|ζ ′|2 + a2

)n
2

+

∣∣∇ψ2,ε(x
′)
∣∣ ∣∣ζ ′∣∣(

|ζ ′|2 + a2
)n

2
dζ ′.
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Thus easily we have the bound

B ≤ C
(
1 +

∥∥∇ψ1,ε

∥∥2
∞
)
‖φ‖∞

∫
|ζ′|<M

∥∥∇ψ2,ε

∥∥
α

∣∣ζ ′∣∣α+1−n
+

∣∣∇ψ2,ε(x
′)
∣∣ ∣∣ζ ′∣∣

|ζ ′|
n
2 (1+µ) a

n
2 (1−µ)

dζ ′,

where we used Lemma 4.3 for the second integrand with the choice 1 − 2
n

(
α

1+α

)
< µ < 1.

Again for the second integrand we use Lemma 4.2 and the trivial inequality ψ2,ε(x
′) ≤ a to

obtain the following

B ≤ C
(
1 +

∥∥∇ψ1,ε

∥∥2
∞
)
‖φ‖∞

(
C(ε)

Mα

α
+

∫
|ζ′|<M

∣∣ψ2,ε(x
′)
∣∣m1

∣∣ζ ′∣∣m2 dζ ′
)
,

where m1 = α
1+α −

n
2 (1−µ) and m2 = 1− n

2 (1 +µ). Clearly m1 > 0 and the radial function∣∣ζ ′∣∣m2 is integrable in the domain
∣∣ζ ′∣∣ < M . Thus we have

B ≤ C(α,M, n)
(

1 +
∥∥∇ψ1,ε

∥∥2
∞

)
‖φ‖∞C(ε). (4.15)

Therefore the desired uniform bound for J
ε,δ
2 follows by combining (4.13) and (4.15),that is,

∣∣∣Jε,δ2 ϕ(x)
∣∣∣ ≤ C(ε), (4.16)

where C(ε) approaches 0 as ε approaches 0.
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4.3 Hölder continuity of J ε,δ2 , δ > 0.

For ϕ ∈ Cα(Γ2), let x, y ∈ Γ1∩B(0, R0) and set d =
∣∣x′ − y′∣∣. To show the Hölder continuity

of the operator J
ε,δ
2 , we form the following

J
ε,δ
2 ϕ(x)− Jε,δ2 ϕ(y) =

∫
|ζ′|<M

k
ε,δ
2 (ζ ′, x′)φ(ζ ′ + x′)− k

ε,δ
2 (ζ ′, y′)φ(ζ ′ + y′) dζ ′. (4.17)

We use the same decomposition for the case n = 2 [1], that is, we form the following

J
ε,δ
2 ϕ(x)− Jε,δ2 ϕ(y) =

∫
|ζ′|<M

k
ε,δ
2 (ζ ′, x′)

(
φ(ζ ′ + x′)− φ(ζ ′ + y′)

)
dζ ′

+

∫
|ζ′|<M

(
k
ε,δ
2 (ζ ′, x′)− k

ε,δ
2 (ζ ′, y′)

)(
φ(ζ ′ + y′)− φ(y′)

)
dζ ′

+

∫
|ζ′|<M

(
k
ε,δ
2 (ζ ′, x′)− k

ε,δ
2 (ζ ′, y′)

)
φ(y′) dζ ′

:= R1 +R2 +R3.

The fact that we split up R2 and R3 is technical. Naively, one may try to not do the splitting

and estimate directly their sum (canceling out the factors of φ(y′)), but this won’t give the

desired estimate that we want.

We easily bound R1 as follows

|R1| ≤ ‖φ‖α
∫
|ζ′|<M

∣∣x′ − y′∣∣α ∣∣∣kε,δ2 (ζ ′, x′)
∣∣∣ dζ ′.
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In the previous section 4.2 we have shown that

∫
|ζ′|<M

∣∣∣kε,δ2 (ζ ′, x′)
∣∣∣ dζ ′ ≤ C(ε).

Thus we conclude that

|R1| ≤ C(ε) dα ‖φ‖α . (4.18)

The work for the terms R2 and R3 are tedious so we will deal with them separately in the

next subsections.

4.3.1 Boundedness of R2.

For R2 we have

R2 =

∫
|ζ′|<M

(
k
ε,δ
2 (ζ ′, x′)− k

ε,δ
2 (ζ ′, y′)

) (
φ(ζ ′ + y′)− φ(y′)

)
dζ ′,

where

k
ε,δ
2 (ζ ′, x′) =

b− ζ ′ · ∇ψ1,ε(x
′)[

|ζ ′|2 + b2
]n

2
−
a− ζ ′ · ∇ψ1,ε(x

′)[
|ζ ′|2 + a2

]n
2

,

and

k
ε,δ
2 (ζ ′, y′) =

b̂− ζ ′ · ∇ψ1,ε(y
′)[

|ζ ′|2 + b̂2
]n

2
−
â− ζ ′ · ∇ψ1,ε(y

′)[
|ζ ′|2 + â2

]n
2

.

We rewrite R2 as follows

R2 = S1 + S2 + S3 + S4,
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where

S1 =

∫
|ζ′|<d

k
ε,δ
2 (ζ ′, x′)

(
φ(ζ ′ + y′)− φ(y′)

)
dζ ′,

S2 = −
∫
|ζ′|<d

k
ε,δ
2 (ζ ′, y′)

(
φ(ζ ′ + y′)− φ(y′)

)
dζ ′,

S3 =

∫
d<|ζ′|<M

b− ζ ′ · ∇ψ1,ε(x
′)[

|ζ ′|2 + b2
]n

2
−
b̂− ζ ′ · ∇ψ1,ε(y

′)[
|ζ ′|2 + b̂2

]n
2

(φ(ζ ′ + y′)− φ(y′)
)
dζ ′,

and

S4 = −
∫
d<|ζ′|<M

a− ζ ′ · ∇ψ1,ε(x
′)[

|ζ ′|2 + a2
]n

2
−
â− ζ ′ · ∇ψ1,ε(y

′)[
|ζ ′|2 + â2

]n
2

(φ(ζ ′ + y′)− φ(y′)
)
dζ ′.

For S1, we use the Hölder continuity of φ to obtain the following

|S1| ≤ ‖φ‖α
∫
|ζ′|<d

∣∣ζ ′∣∣α ∣∣∣kε,δ2 (ζ ′, x′)
∣∣∣ dζ ′.

Then we clearly have the following bound

|S1| ≤ ‖φ‖α dα
∫
|ζ′|<M

∣∣∣kε,δ2 (ζ ′, x′)
∣∣∣ dζ ′.

Thus by using the L∞-norm for J
ε,δ
2 (4.16), we obtain the desired bound for S1. That is,

|S1| ≤ C(ε) ‖φ‖α dα. (4.19)
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Clearly, the same bound holds for S2. Thus we conclude that

|S1|+ |S2| ≤ C(ε) ‖φ‖α dα. (4.20)

We still have to show the uniform boundedness for S3 and S4. For S3 we have

S3 =

∫
d<|ζ′|<M

b− ζ ′ · ∇ψ1,ε(x
′)(

|ζ ′|2 + b2
)n

2
−
b̂− ζ ′ · ∇ψ1,ε(y

′)(
|ζ ′|2 + b̂2

)n
2

(φ(ζ ′ + y′)− φ(y′)
)
dζ ′,

then trivially by using the least common denominator, it follows that

|S3| =
∫
d<|ζ′|<M

{(b− ζ ′ · ∇ψ1,ε(x
′)
) [(∣∣ζ ′∣∣2 + b̂2

)n
2 −

(∣∣ζ ′∣∣2 + b2
)n

2
]

(
|ζ ′|2 + b2

)n
2
(
|ζ ′|2 + b̂2

)n
2

−
(
ζ ′ · ∇ψ1,ε(y

′)− ζ ′ · ∇ψ1,ε(x
′)
)(

|ζ ′|2 + b̂2
)n

2
− (b̂− b)(
|ζ ′|2 + b̂2

)n
2

}(
φ(ζ ′ + y′)− φ(y′)

)
dζ ′

Using the Hölder continuity of φ and ∇ψ1,ε and the mean value theorem for some z2 that

lies on line segment of b2 and b̂2, we can form the following decomposition

|S3| ≤ C ‖φ‖α
∫
d<|ζ′|<M

∣∣ζ ′∣∣α ∣∣b− ζ ′ · ∇ψ1,ε(x
′)
∣∣ (∣∣ζ ′∣∣2 + z2

)n
2−1 ∣∣∣b2 − b̂2∣∣∣(

|ζ ′|2 + b2
)n

2
(
|ζ ′|2 + b̂2

)n
2

dζ ′ := S3,1

+ C ‖φ‖α
∫
d<|ζ′|<M

dα
∣∣ζ ′∣∣α+1 ∥∥∇ψ1,ε

∥∥
α(

|ζ ′|2 + b̂2
)n

2
dζ ′ := S3,2

+ C ‖φ‖α
∫
d<|ζ′|<M

∣∣∣b̂− b∣∣∣ ∣∣ζ ′∣∣α(
|ζ ′|2 + b̂2

)n
2
dζ ′ := S3,3.
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For S3,1 we assume b̂2 < z2 < b2 and again the same work holds when b2 < z2 < b̂2. We

obtain the following

∣∣S3,1

∣∣ ≤ C ‖φ‖α
∫
d<|ζ′|<M

∣∣∣b− b̂∣∣∣ ∣∣∣b+ b̂
∣∣∣ ∣∣b− ζ ′ · ∇ψ1,ε(x

′)
∣∣ ∣∣ζ ′∣∣α(

|ζ ′|2 + b2
)(
|ζ ′|2 + b̂2

)n
2

dζ ′.

Using the bound (4) from Lemma 4.4, it follows that

∣∣S3,1

∣∣ ≤ C ‖φ‖α d
(∥∥∇ψ2,ε

∥∥
α +

∥∥∇ψ1,ε

∥∥
α

) ∫
d<|ζ′|<M

∣∣∣b+ b̂
∣∣∣ ∣∣b− ζ ′ · ∇ψ1,ε(x

′)
∣∣ ∣∣ζ ′∣∣α(

|ζ ′|2 + b2
)(
|ζ ′|2 + b̂2

)n
2

dζ ′.

Since ∣∣∣b+ b̂
∣∣∣ ∣∣b− ζ ′ · ∇ψ1,ε(x

′)
∣∣ ≤ 3

(
b2 +

∣∣ζ ′∣∣2 ∣∣∇ψ1,ε(x
′)
∣∣2 ),

we conclude the following

∣∣S3,1

∣∣ ≤ ‖φ‖α C(ε) d

∫
d<|ζ′|<M

(
b2 +

∣∣ζ ′∣∣2 ∣∣∇ψ1,ε(x
′)
∣∣2) ∣∣ζ ′∣∣α(

|ζ ′|2 + b2
)(
|ζ ′|2 + b̂2

)n
2

dζ ′.

Thus we approach the desired bound, that is, we have

∣∣S3,1

∣∣ ≤ ‖φ‖α (1 +
∥∥∇ψ1,ε

∥∥2
∞
)
C(ε) d

∫
d<|ζ′|<M

∣∣ζ ′∣∣α−n dζ ′.

That is, we have proved that

∣∣S3,1

∣∣ ≤ C(n, α) ‖φ‖α
(
1 +

∥∥∇ψ1,ε

∥∥2
∞
)
C(ε) dα. (4.21)
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We easily bound S3,2 as follows. We have

S3,2 = C ‖φ‖α dα
∫
d<|ζ′|<M

∣∣ζ ′∣∣α+1 ∥∥∇ψ1,ε

∥∥
α(

|ζ ′|2 + b̂2
)n

2
dζ ′.

Trivially, we have the bound

∣∣S3,2

∣∣ ≤ C ‖φ‖α
∥∥∇ψ1,ε

∥∥
α dα

∫
d<|ζ′|<M

∣∣ζ ′∣∣α+1−n
dζ ′.

There fore we have

∣∣S3,2

∣∣ ≤ C(M,α) ‖φ‖α C(ε) dα. (4.22)

For the last term S3,3 we use the bound (4) from Lemma 4.4 to get

∣∣S3,3

∣∣ ≤ C ‖φ‖α C(ε) d

∫
d<|ζ′|<M

∣∣ζ ′∣∣α−n dζ ′.

Thus ∣∣S3,3

∣∣ ≤ C(M,α) ‖φ‖α C(ε)dα. (4.23)

Combining (4.21), (4.22) and (4.23) , the desired estimate for S3 follows, that is, we get

|S3| ≤ C(n,M, α) ‖φ‖α C(ε) dα. (4.24)

Observe that S4 has the same bound as S3 does because the quantities
∣∣∣b− b̂∣∣∣ and |a− â|

have the same upper bound which is d
( ∥∥∇ψ2,ε

∥∥
α+

∥∥∇ψ2,ε

∥∥
α

)
. Therefore we gather all the
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above uniform bounds to end with the desired uniform bound for R2 which is

|R2| ≤ C(n,M, α) ‖φ‖α C(ε) dα. (4.25)

4.3.2 Boundedness of R3.

Even we are working in higher dimensions n ≥ 2, we form the same decomposition that has

been presented for the dimension n = 2 [1] but we need some technical modification to deal

with the exponent n
2 . For the term

R3 =

∫
|ζ′|<M

(
k
ε,δ
2 (ζ ′, x′)− k

ε,δ
2 (ζ ′, y′)

)
φ(y′) dζ ′.

We form the following

R3 = φ(y′)
∫
|ζ′|<M

(
b− ζ ′ · ∇ψ2,ε(ζ

′ + x′)(
|ζ ′|2 + b2

)n
2

−
b̂− ζ ′ · ∇ψ2,ε(ζ

′ + y′)(
|ζ ′|2 + b̂2

)n
2

)
dζ ′ := φ(y′) T1

+ φ(y′)
∫
|ζ′|<M

(
â(

|ζ ′|2 + â2
)n

2
− a(
|ζ ′|2 + a2

)n
2

)
dζ ′ := φ(y′) T2

+ φ(y′)
∫
|ζ′|<M

(
ζ ′ · ∇ψ2,ε(ζ

′ + x′)− ζ ′ · ∇ψ1,ε(x
′)(

|ζ ′|2 + b2
)n

2
−
ζ ′ · ∇ψ2,ε(ζ

′ + y′)− ζ ′ · ∇ψ1,ε(y
′)(

|ζ ′|2 + b̂2
)n

2

)
dζ ′ := φ(y′)T3

+ φ(y′)
∫
|ζ′|<M

(
ζ ′ · ∇ψ1,ε(x

′)(
|ζ ′|2 + a2

)n
2
−

ζ ′ · ∇ψ1,ε(y
′)(

|ζ ′|2 + â2
)n

2

)
dζ ′ := 0.

Notice that for the term T1 we have used ζ ′ · ∇ψ2,ε(ζ
′ + .) instead of ζ ′ · ∇ψ1,ε(.) in order

to obtain an exact differential form as you will see later. Also notice that the last integral is
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vanishing. We start with the most technical term which is T1, that is, we begin with

T1 =

∫
|ζ′|<M

(
b− ζ ′ · ∇ψ2,ε(ζ

′ + x′)(
|ζ ′|2 + b2

)n
2

−
b̂− ζ ′ · ∇ψ2,ε(ζ

′ + y′)(
|ζ ′|2 + b̂2

)n
2

)
dζ ′.

We remark here that the work for this term is depending on the dimension n. Since for the

dimension n = 2 it has already proven in [1] that |T1| ≤ C(ε) d, so we restrict our work for

n ≥ 3. Now let us bound T1 uniformly when n = 3. For such case we have

T1 =

∫
|ζ′|<M

(
b− ζ ′ · ∇ψ2,ε(ζ

′ + x′)(
|ζ ′|2 + b2

)3
2

−
b̂− ζ ′ · ∇ψ2,ε(ζ

′ + y′)(
|ζ ′|2 + b̂2

)3
2

)
dζ ′.

Since b = δ+ψ2,ε(ζ
′+x′)−ψ1,ε(x

′), then ∇ζ′ b = ∇ψ2,ε, where ∇ζ′ means that the gradient

is taken with respect to the variable ζ ′. By utilizing the polar coordinates ζ1 = r cos θ and

ζ2 = r sin θ, then we clearly see that r ∂rb = ζ ′ · ∇ζ′ b. Thus it follows that

∫
|ζ′|<M

b− ζ ′ · ∇ζ′ b(
|ζ ′|2 + b2

)3
2

dζ ′ =

∫ 2π

0

∫ M

0

(
b(r, θ, x′)− r ∂r b

)
r(

r2 + b2(r, θ, x′)
)3

2

drdθ

=

∫ 2π

0

−b(r, θ, x′)√
r2 + b2(r, θ, x′)

|r=Mr=0 dθ.

Noticing that b(0, θ, x′) = δ + ψ2,ε(x
′)− ψ1,ε(x

′) > 0, therefore we have

∫
|ζ′|<M

b− ζ ′ · ∇ζ′ b(
|ζ ′|2 + b2

)3
2

dζ ′ =

∫ 2π

0

−b(M, θ, x′)√
M2 + b2(M, θ, x′)

dθ + 2π. (4.26)
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Similarly we have

∫
|ζ′|<M

b̂− ζ ′ · ∇ζ′ b̂(
|ζ ′|2 + b̂2

)3
2

dζ ′ =

∫ 2π

0

−b(M, θ, y′)√
M2 + b2(M, θ, y′)

dθ + 2π. (4.27)

Using (4.26) and (4.27), we have the following

|T1| ≤
∫ 2π

0

∣∣∣∣∣ −b(M, θ, x′)√
M2 + b2(M, θ, x′)

+
b(M, θ, y′)√

M2 + b2(M, θ, y′)

∣∣∣∣∣ dθ.
We use the mean value theorem for some ξ′ lies on the line segment that joining x′ to y′ to

obtain the following

|T1| ≤
∫ 2π

0

∣∣∣∣∣∣ M2 ∇ξ′ b(M, θ, ξ′)(
M2 + b2(M, θ, ξ′)

)3
2

∣∣∣∣∣∣ ∣∣x′ − y′∣∣ dθ. (4.28)

Since

∇ξ′ b(M, θ, ξ′) = ∇ψ2,ε(M, θ, ξ′)−∇ψ1,ε(ξ
′),

thus we have

|T1| ≤
C

M

∫ 2π

0

(∥∥∇ψ2,ε

∥∥
α +

∥∥∇ψ1,ε

∥∥
α

) ∣∣x′ − y′∣∣ dθ.
That is for dimension n = 3 we have the desired bound which is

|T1| ≤ C(M) C(ε) dα. (4.29)
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We continue to find the uniform boundedness for T1 in higher dimensions n > 3. We use

spherical coordinates in dimension n− 1 to get the following

T1 =

∫
|ζ′|<M

f(ζ ′) dζ ′ =

∫ π

θ1=0
...

∫ π

θn−3=0

∫ 2π

θn−2=0

∫ M

0
f(ζ ′(r,Θ)) J(n, r,Θ) dr dΘ,

where

f(ζ ′(r,Θ)) =

(
b− ζ ′ · ∇ζ′ b

)
(
|ζ ′|2 + b2

)n
2

=

(
b(r,Θ, x′)− ∂r b(r,Θ, x′)

)
(
|ζ ′|2 + b2(r,Θ, x′)

)n
2

,

J(n, r,Θ) = rn−2(sin θ1)n−3...(sin θn−4)2 (sin θn−3),

and

Θ = (θ1, · · · , θn−2).

We use integration by parts to compute the following

∫ M

0

(b− r ∂r b) rn−2(
r2 + b2

)n
2

dr =

∫ M

0

(b− r ∂r b) r(
r2 + b2

)3
2

rn−3(
r2 + b2

)n−3
2

dr. (4.30)

Let

A1(r) := A1(r,Θ, x′) =
rn−3(

r2 + b2
)n−3

2

.

Notice that b(0,Θ, x′) = δ + ψ2,ε(x
′)− ψ1,ε(x

′) > 0 and A1(0) = 0. Thus by integration by

parts, it follows that

∫ M

0

(b− r ∂r b) r(
r2 + b2

)3
2

A1(r) dr =
−A1(M) b(M,Θ, x′)√
M2 + b2(M,Θ, x′)

+

∫ M

0

b√
r2 + b2

A′1(r) dr, (4.31)
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where

A′1(r) = (n− 3)

 rn−4(
r2 + b2

)n−3
2

− rn−3 (r + b ∂rb)(
r2 + b2

)n−1
2

 (4.32)

We treat the last integral as follows

∫ M

0

b√
r2 + b2

A′1(r) dr = (n− 3)

∫ M

0

b rn−4(
r2 + b2

)n−2
2

− b rn−2(
r2 + b2

)n
2
− b2 ∂rb r

n−3(
r2 + b2

)n
2
dr

= (n− 3)

∫ M

0

b rn−4(
r2 + b2

)n−2
2

− (b− r ∂rb) rn−2(
r2 + b2

)n
2

− (b2 + r2) ∂rb r
n−3(

r2 + b2
)n

2
dr

= (n− 3)

∫ M

0

(b− r ∂rb) rn−4(
r2 + b2

)n−2
2

− (b− r ∂rb) rn−2(
r2 + b2

)n
2

dr. (4.33)

Substituting (4.33) and (4.31) in (4.30), it follows that

∫ M

0

(b− r ∂r b) rn−2(
r2 + b2

)n
2

dr =
( −1

n− 2

) A1(M)b(M,Θ, x′)√
M2 + b2(M,Θ, x′)

+
(n− 3

n− 2

)∫ M

0

(b− r ∂r b) rn−4(
r2 + b2

)n−2
2

dr.

(4.34)

Repeating the same process n−2
2 times if n is even and n−3

2 times if n is odd, we see that

∫ M

0

(b− r ∂r b) rn−2(
r2 + b2

)n
2

dr =


∑n−3

2
j=1 Cj(n) Bj(M) + C̃o(n)

∫M
0

(b− r ∂r b) r(
r2 + b2

)3
2

dr if n is odd,

∑n−2
2

j=1 Cj(n) Bj(M) + C̃e(n)
∫M

0
(b− r ∂r b)
r2 + b2

dr if n is even,

(4.35)

where

Bj(M) := Bj(M,Θ, x′) =
Aj(M,Θ, x′)b(M,Θ, x′)√

M2 + b2(M,Θ, x′)
, (4.36)
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Aj(r) =
rn−(2j+1)(

r2 + b2
)n−(2j+1)

2

, (4.37)

C̃o(n) =

n−3
2∏
j=1

n− (2j + 1)

n− 2j
, (4.38)

C̃e(n) =

n−2
2∏
j=1

n− (2j + 1)

n− 2j
, (4.39)

and

C̃j(n) =

(
−1

n− 2j

) j−1∏
i=1

n− (2i+ 1)

n− 2i
. (4.40)

To estimate T1 it is enough to bound
∣∣Bj(M,Θ, x′)−Bj(M,Θ, y′)

∣∣ because the term involv-

ing the integral
∫M

0
(b− r ∂r b) r(
r2 + b2

)3
2

dr is treated in the case n = 3 and also the term involving

the integral
∫M

0
(b− r ∂r b)
r2 + b2

dr is treated in the case n = 2 [1]. Now we bound the term∣∣Bj(M,Θ, x′)−Bj(M,Θ, y′)
∣∣

∣∣Bj(x′)−Bj(y′)∣∣ = Mn−(2j+1)

∣∣∣∣∣∣∣∣
b(x′)(

M2 + b2(x′)
)(
n−2j

2 )
− b(y′)(

M2 + b2(y′)
)(
n−2j

2 )

∣∣∣∣∣∣∣∣ ,

where b(x′) := b(M,Θ, x′). Using the mean value theorem, it follows that

∣∣Bj(x′)−Bj(y′)∣∣ ≤Mn−(2j+1)

∣∣∣∣∣∣∣∣
∇b(ξ′)(

M2 + b2(ξ′)
)(
n−2j

2 )
− (n− 2j)b2(ξ′)∇b(ξ′)(

M2 + b2(ξ′)
)(
n−2j+2

2 )

∣∣∣∣∣∣∣∣
∣∣x′ − y′∣∣ ,
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for some ξ′ lies on the line segment joining x′ to y′. Thus we have

∣∣Bj(x′)−Bj(y′)∣∣ ≤ C(n, j,M)
(

1 + b2(ξ′)
) ∣∣∇b(ξ′)∣∣ ∣∣x′ − y′∣∣

≤ C(n, j,M) C(ε) dα. (4.41)

Therefore from all above estimates, we have the desired bound for T1, that is,

|T1| ≤ C(n,M) C(ε) dα. (4.42)

If we proceed in the same fashion as we did for T1 and replace b by a, b̂ by â and noticing

that a and â are independent of ζ ′, we would bound T2 by the same bound that we found

for T1. That is,

|T2| ≤ C(n,M) C(ε) dα. (4.43)

For the last integral T3 we have

T3 =

∫
|ζ′|<M

(
ζ ′ · ∇ψ2,ε(ζ

′ + x′)− ζ ′ · ∇ψ1,ε(x
′)(

|ζ ′|2 + b2
)n

2
−
ζ ′ · ∇ψ2,ε(ζ

′ + y′)− ζ ′ · ∇ψ1,ε(y
′)(

|ζ ′|2 + b̂2
)n

2

)
dζ ′

We write T3 as

T3 = T3,1 + T3,2 + T3,3 + T3,4,

where

T3,1 =

∫
d<|ζ′|<M

ζ ′ ·
(
∇ψ2,ε(ζ

′ + x′)−∇ψ1,ε(x
′)−∇ψ2,ε(ζ

′ + y′) +∇ψ1,ε(y
′)
)

(
|ζ ′|2 + b2

)n
2

dζ ′,
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T3,2 =

∫
d<|ζ′|<M

ζ ′ ·
(
∇ψ2,ε(ζ

′ + y′)−∇ψ1,ε(y
′)
)( 1(
|ζ ′|2 + b2

)n
2
− 1(
|ζ ′|2 + b̂2

)n
2

)
dζ ′,

T3,3 =

∫
|ζ′|<d

ζ ′ ·
(
∇ψ2,ε(ζ

′ + x′)−∇ψ1,ε(x
′)
)(

|ζ ′|2 + b2
)n

2
dζ ′,

and

T3,4 =

∫
|ζ′|<d

ζ ′ ·
(
∇ψ1,ε(y

′)−∇ψ2,ε(ζ
′ + y′)

)(
|ζ ′|2 + b̂2

)n
2

dζ ′.

We can easily bound T3,1 by

∣∣T3,1

∣∣ ≤ dα
(∥∥∇ψ1,ε

∥∥
α +

∥∥∇ψ2,ε

∥∥
α

) ∫
d<|ζ′|<M

∣∣ζ ′∣∣(
|ζ ′|2 + b2

)n
2
dζ ′.

For any α′ < α < α0, we would have

∣∣T3,1

∣∣ ≤ dα
′
C(ε)

∫
d<|ζ′|<M

∣∣ζ ′∣∣1+(α−α′)(
|ζ ′|2 + b2

)n
2
dζ ′.

Thus by using polar coordinates, we obtain the following

∣∣T3,1

∣∣ ≤ C dα
′
C(ε)

∫ M

d

r(α−α′)+n−1(
r2 + b2

)n
2

dr.

Therefore we have the bound

∣∣T3,1

∣∣ ≤ C(α, α′,M) dα
′
C(ε). (4.44)

For T3,2 we use the mean value theorem for some z2 that lies on the line segment joining b̂2
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to b2 to obtain the following

∣∣T3,2

∣∣ ≤ C

∫
d<|ζ′|<M

∣∣∇ψ2,ε(ζ
′ + y′)−∇ψ1,ε(y

′)
∣∣
(∣∣ζ ′∣∣2 + z2

)n
2−1 ∣∣∣b− b̂∣∣∣ ∣∣ζ ′∣∣ ∣∣∣b+ b̂

∣∣∣(
|ζ ′|2 + b2

)n
2
(
|ζ ′|2 + b̂2

)n
2

dζ ′.

Let first assume that b̂2 < z2 < b2. Then we clearly see that

∣∣ζ ′∣∣ ∣∣∣b+ b̂
∣∣∣ ≤ 2

( ∣∣ζ ′∣∣2 + b2
)
.

Therefore we have

∣∣T3,2

∣∣ ≤ C

∫
d<|ζ′|<M

∣∣∇ψ2,ε(ζ
′ + y′)−∇ψ1,ε(y

′)
∣∣

∣∣∣b− b̂∣∣∣(
|ζ ′|2 + b̂2

)n
2
.

Using the bound (5) from Lemma 4.4, we obtain the following

∣∣T3,2

∣∣ ≤ C

∫
d<|ζ′|<M

∣∣∇ψ2,ε(ζ
′ + y′)−∇ψ1,ε(y

′)
∣∣
( ∥∥∇ψ2,ε

∥∥
α +

∥∥∇ψ1,ε

∥∥
α

)
d1+α(

|ζ ′|2 + b̂2
)n

2
dζ ′ := T3,2,1

+ C

∫
d<|ζ′|<M

∣∣∇ψ2,ε(ζ
′ + y′)−∇ψ1,ε(y

′)
∣∣
( ∣∣∇ψ2,ε(ζ

′ + y′)
∣∣+
∣∣∇ψ1,ε(y

′)
∣∣ ) d(

|ζ ′|2 + b̂2
)n

2
dζ ′ := T3,2,2.

The first integral T3,2,1 follows easily, that is,

T3,2,1 ≤ C(ε) dα. (4.45)
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For the second integral T3,2,2, we have the bound

T3,2,2 ≤ C d

∫
d<|ζ′|<M

∣∣∇ψ2,ε(ζ
′ + y′)

∣∣2 +
∣∣∇ψ1,ε(y

′)
∣∣2(

|ζ ′|2 + b̂2
)n

2
dζ ′.

Then we apply Lemma 4.3 for some 0 < µ < 1 to bound the denominator and Lemma 4.2

to bound the numerator, it follows that

T3,2,2 ≤ C d

∫
d<|ζ′|<M

∣∣ψ2,ε(ζ
′ + y′)

∣∣ 2α
1+α

|ζ ′|(1+µ)n2 b̂(1−µ)n2
dζ ′ + C d

∫
d<|ζ′|<M

∣∣ψ1,ε(y
′)
∣∣ 2α
1+α

|ζ ′|(1+µ)n2 b̂(1−µ)n2
dζ ′.

Choosing µ = 1 − 2α
n in both integrals and noticing that

∣∣∣b̂∣∣∣ ≥ ∣∣ψ2,ε(ζ
′ + y′)

∣∣ as well as∣∣∣b̂∣∣∣ ≥ ∣∣ψ1,ε(y
′)
∣∣, we get the following bound

T3,2,2 ≤ C d

∫
d<|ζ′|<M

∣∣ψ2,ε(ζ
′ + y′)

∣∣α(1−α)
1+α

|ζ ′|n−α
dζ ′ + C d

∫
d<|ζ′|<M

∣∣ψ1,ε(y
′)
∣∣α(1−α)

1+α

|ζ ′|n−α
dζ ′.

Thus we obtain the bound

T3,2,1 ≤ C(ε) dα. (4.46)

Then the desired bound for T3,2 follows when b̂2 < z2 < b2. That is, we have proved that

T3,2 ≤ C(ε) dα. (4.47)

While for the case b2 < z2 < b̂2 we need some modification for the above work in order to
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get the bound (4.47). For this case we would have that

∣∣T3,2

∣∣ ≤ C

∫
d<|ζ′|<M

∣∣∇ψ2,ε(ζ
′ + y′)−∇ψ1,ε(y

′)
∣∣

∣∣∣b− b̂∣∣∣(
|ζ ′|2 + b2

)n
2
,

where b = δ+ψ2,ε(ζ
′+x′)−ψ1,ε(x

′). We see that the function b depends on the variables ζ ′

and x′ while the functions ∇ψ2,ε and ∇ψ1,ε depend on the the variables ζ ′ and y′ so we will

perturb the the functions ∇ψ2,ε and ∇ψ1,ε in order to match their variables with variables

of the function b. For that we offer the following decomposition

∣∣T3,2

∣∣ ≤ T̃3,2,1 + T̃3,2,2 + T̃3,2,3,

where

T̃3,2,1 = C

∫
d<|ζ′|<M

∣∣∇ψ2,ε(ζ
′ + x′)−∇ψ1,ε(x

′)
∣∣

∣∣∣b− b̂∣∣∣(
|ζ ′|2 + b2

)n
2
,

T̃3,2,2 = C

∫
d<|ζ′|<M

∣∣∇ψ2,ε(ζ
′ + y′)−∇ψ2,ε(ζ

′ + x′)
∣∣

∣∣∣b− b̂∣∣∣(
|ζ ′|2 + b2

)n
2
,

and

T̃3,2,3 = C

∫
d<|ζ′|<M

∣∣∇ψ1,ε(x
′)−∇ψ1,ε(y

′)
∣∣

∣∣∣b− b̂∣∣∣(
|ζ ′|2 + b2

)n
2
.

Evidently, we can bound T̃3,2,1 by C(ε) dα if we use the earlier work the for T3,2 because

we have the alternative bound (6) for
∣∣∣b− b̂∣∣∣ that involving x′ instead of (5) that involving

y′. For the integrals T̃3,2,2 and T̃3,2,3 we trivially get the desired bound by using the Hölder

continuity of the auxiliary functions and the bound (4) for
∣∣∣b− b̂∣∣∣. That is, the desired bound

(4.47) still valid when b2 < z2 < b̂2. After finishing T3,2, we are ready to bound the last two
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integrals T3,3 and T3,4 in the decomposition of the T3 term. If we look at

T3,3 =

∫
|ζ′|<d

ζ ′ ·
(
∇ψ2,ε(ζ

′ + x′)−∇ψ1,ε(x
′)
)(

|ζ ′|2 + b2
)n

2
dζ ′,

and

T3,4 =

∫
|ζ′|<d

ζ ′ ·
(
∇ψ1,ε(y

′)−∇ψ2,ε(ζ
′ + y′)

)(
|ζ ′|2 + b̂2

)n
2

dζ ′.

We see that they are both in the same style. So we work to bound T3,3 only. On the other

hand, the bound for integral T3,4 will follow in the same manner. To begin bounding T3,3,

we add and subtract ∇ψ2,ε(x
′) and using the advantage of the integral

∫
ζ′<d

ζ ′ ·
(
∇ψ1,ε(x

′)−∇ψ2,ε(x
′)
)(

|ζ ′|2 + a2
)n

2
dζ ′ = 0,

to offer the beneficiary decomposition

T3,3 =

∫
|ζ′|<d

ζ ′ ·
(
∇ψ2,ε(ζ

′ + x′)−∇ψ2,ε(x
′)
)(

|ζ ′|2 + b2
)n

2
dζ ′ := T3,3,1

+

∫
|ζ′|<d

ζ ′ ·
(
∇ψ2,ε(x

′)−∇ψ1,ε(x
′)
)( 1(

|ζ ′|2 + b2
)n

2
− 1(
|ζ ′|2 + a2

)n
2

)
dζ ′ := T3,3,2.

Since ∇ψ2,ε is Hölder continuous, we easily bound T3,3,1 by C(ε) dα. For the second integral,

we use the mean value theorem for some z2 that lies on the line segment that joining a2 to

b2 to obtain the following

∣∣T3,3,2

∣∣ ≤ C

∫
|ζ′|<d

∣∣ζ ′∣∣ ∣∣∇ψ2,ε(x
′)−∇ψ1,ε(x

′)
∣∣
(∣∣ζ ′∣∣2 + z2

)n
2−1

|b− a| |b+ a|(
|ζ ′|2 + b2

)n
2
(
|ζ ′|2 + a2

)n
2

dζ ′

117



First we assume that a2 < z2 < b2. Then by using the bound

∣∣ζ ′∣∣ |a+ b| ≤ 2
( ∣∣ζ ′∣∣2 + b2

)
,

it follows that

∣∣T3,3,2

∣∣ ≤ C

∫
|ζ′|<d

∣∣∇ψ2,ε(x
′)−∇ψ1,ε(x

′)
∣∣ |b− a|(
|ζ ′|2 + a2

)n
2
dζ ′.

using the bound (2) from Lemma 4.4, we get the bound

∣∣T3,3,2

∣∣ ≤ C

∫
|ζ′|<d

∣∣∇ψ2,ε(x
′)−∇ψ1,ε(x

′)
∣∣ ∣∣∇ψ2,ε(x

′)
∣∣ ∣∣ζ ′∣∣+

∥∥∇ψ2,ε

∥∥
α

∣∣ζ ′∣∣α+1(
|ζ ′|2 + a2

)n
2

dζ ′.

Then we easily have the following

∣∣T3,3,2

∣∣ ≤ C(ε)

∫
|ζ′|<d

∣∣ζ ′∣∣1+α(
|ζ ′|2 + a2

)n
2
dζ ′ + C

∫
|ζ′|<d

∣∣∇ψ2,ε(x
′)
∣∣2 ∣∣ζ ′∣∣(

|ζ ′|2 + a2
)n

2
dζ ′

+ C

∫
|ζ′|<d

∣∣∇ψ1,ε(x
′)
∣∣2 ∣∣ζ ′∣∣(

|ζ ′|2 + a2
)n

2
dζ ′.

We clearly see the first integral is bounded by C(ε) dα. The second and the third integral

will be treated in the same manner. To bound the second integral, we use Lemma 4.3 with

the choice µ = 1− 2α
n to bound the denominator and also we use Lemma 4.2 to bound the

nominator. Then the following follows

∫
|ζ′|<d

∣∣∇ψ2,ε(x
′)
∣∣2 ∣∣ζ ′∣∣(

|ζ ′|2 + a2
)n

2
dζ ′ ≤ C

∫
|ζ′|<d

∣∣ζ ′∣∣1+α−n ∣∣ψ2,ε(x
′)
∣∣α(1−α)

1+α dζ ′.
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Thus the second and the third integral are bounded by C(ε) dα. Therefore when b2 < z2 < a2

we obtain

∣∣T3,3

∣∣ ≤ C(ε) dα.

Now for the case b2 < z2 < a2 which is almost the same work but with some modification.

We clearly would have the bound

∣∣T3,3,2

∣∣ ≤ C

∫
|ζ′|<d

∣∣∇ψ2,ε(x
′)−∇ψ1,ε(x

′)
∣∣ |b− a|(
|ζ ′|2 + b2

)n
2
dζ ′.

using the bound (3) from Lemma 4.4, we get the bound

∣∣T3,3,2

∣∣ ≤ C

∫
|ζ′|<d

∣∣∇ψ2,ε(x
′)−∇ψ1,ε(x

′)
∣∣ ∣∣∇ψ2,ε(ζ

′ + x′)
∣∣ ∣∣ζ ′∣∣+

∥∥∇ψ2,ε

∥∥
α

∣∣ζ ′∣∣α+1(
|ζ ′|2 + b2

)n
2

dζ ′.

Clearly the term with
∣∣ζ ′∣∣ follows trivially. So we just need to bound the integral

T̃3,3,2 =

∫
|ζ′|<d

∣∣∇ψ2,ε(x
′)−∇ψ1,ε(x

′)
∣∣ ∣∣∇ψ2,ε(ζ

′ + x′)
∣∣ ∣∣ζ ′∣∣(

|ζ ′|2 + b2
)n

2
dζ ′.

We perturb by adding and subtracting the function ∇ψ2,ε(ζ
′ + x′) to get the following

T̃3,3,2 ≤
∫
|ζ′|<d

∣∣∇ψ2,ε(ζ
′ + x′)−∇ψ2,ε(x

′)
∣∣ ∣∣∇ψ2,ε(ζ

′ + x′)
∣∣ ∣∣ζ ′∣∣(

|ζ ′|2 + b2
)n

2
dζ ′

+

∫
|ζ′|<d

∣∣∇ψ2,ε(ζ
′ + x′)−∇ψ1,ε(x

′)
∣∣ ∣∣∇ψ2,ε(ζ

′ + x′)
∣∣ ∣∣ζ ′∣∣(

|ζ ′|2 + b2
)n

2
dζ ′,
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then the bound follows trivially. Thus the desired bound for T3,3 follows. That is

∣∣T3,3

∣∣ ≤ C(ε) dα. (4.48)

Finally, we enclose this subsection by combining all the above bounds to get the desired

bound for R3 which is

|R3| ≤ C(n, α, α′,M) ‖φ‖α C(ε) dα
′
, ∀ α′ < α < α0. (4.49)

Therefor, at this point, Theorem (4.1) has been proven when δ > 0.

Now we show the validity of Theorem (4.1) under the case δ = 0. That is, we need to

show

∥∥∥∥∥∥ η

ωn

√
1 +

∣∣∇ψ1,ε

∣∣2 Jε,02

∥∥∥∥∥∥
L(Cα(Γ2),Cα(Γ1))

≤ C(ε), ∀ α < α0, (4.50)

where C(ε) approaches 0 when ε approaches 0. The bound (4.50) follows if we show that for

ϕ ∈ Cα(Γ2), the following limit holds

lim
δ→0

J
ε,δ
2 ϕ(x) = J

ε,0
2 ϕ(x), x ∈ Γ1 ∩ B(R).

In fact, since J
ε,δ
2 is uniformly bounded in operator norm, then it follows that

J
ε,0
2 ϕ(x) ∈ Cα(Γ1) ∩ B(R),
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and ∥∥∥Jε,02 ϕ
∥∥∥
Cα(Γ1)

≤ C(ε) ‖ϕ‖α .

For ϕ ∈ Cα(Γ2), 0 6= x ∈ Γ1 ∩B(0, R0) the operator J
ε,0
2 is defined by

J
ε,0
2 ϕ(x) =

∫
Rn−1

k
ε,0
2 (y′, x′)φ(y′) dy′, (4.51)

where

k
ε,0
2 (y′, x′) =

(
ψ2,ε(y

′)− ψ1,ε(x
′)
)
−∇ψ1,ε(x

′) · (y′ − x′)(
|x′ − y′|2 +

(
ψ1,ε(x′)− ψ2,ε(y′)

)2)n2
−
(
ψ2,ε(x

′)− ψ1,ε(x
′)
)
−∇ψ1,ε(x

′) · (y′ − x′)(
|x′ − y′|2 +

(
ψ1,ε(x′)− ψ2,ε(x′)

)2)n2 .

Whereas for x = 0, the operator J
ε,0
2 is defined by

J
ε,0
2 ϕ(0) =

∫
Rn−1

ψ2,ε(y
′)(

y2
1 + ...+ y2

n−1 + ψ2
2,ε(y

′)
)n

2
φ(y′) dy′. (4.52)

After using the change of variables ζ ′ = y′ − x′ in (4.51) and recalling that φ has compact

support in B′(M), it follows that

J
ε,0
2 ϕ(x) =

∫
|ζ′|<M

k
ε,0
2 (ζ ′, x′)φ(ζ ′ + x′) dζ ′,
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where a0(x′) = ψ2,ε(x
′)− ψ1,ε(x

′), b0(x′, ζ ′) = ψ2,ε(ζ
′ + x′)− ψ1,ε(x

′) and

k
ε,0
2 (ζ ′, x′) =

b0(x′, ζ ′)− ζ ′ · ∇ψ1,ε(x
′)(

|ζ ′|2 + b20(x′, ζ ′)
)n

2
−
a0(x′)− ζ ′ · ∇ψ1,ε(x

′)(
|ζ ′|2 + a2

0(x′)
)n

2
.

Proposition 4.5. Let ϕ ∈ Cα(Γ2). Then for any 2ε < ε0 and x ∈ Γ1 ∩ B(R0), we have

lim
δ→0

J
ε,δ
2 ϕ(x) = J

ε,0
2 ϕ(x).

Proof. For x 6= 0, it is clear that b0(x′) > 0 and a0(x′) > 0. Thus

lim
δ→0

kε,δ(ζ ′, x′) =
b0 − ζ ′ · ∇ψ1,ε(x

′)(
|ζ ′|2 + b20

)n
2
−
a0 − ζ ′ · ∇ψ1,ε(x

′)(
|ζ ′|2 + a2

0

)n
2

, a.e
∣∣ζ ′∣∣ < M.

Also we notice that the kernel function kε,δ is uniformly bounded because the denominator is

bounded away from zero. Therefore by using the dominated convergence theorem, it follows

that

lim
δ→0

J
ε,δ
2 ϕ(x) =

∫
|ζ′|<M

b0 − ζ ′ · ∇ψ1,ε(x
′)(

|ζ ′|2 + b20

)n
2
−
a0 − ζ ′ · ∇ψ1,ε(x

′)(
|ζ ′|2 + a2

0

)n
2

φ(ζ ′ + x′) dζ ′.

That is,

lim
δ→0

J
ε,δ
2 ϕ(x) = J

ε,0
2 ϕ(x), x 6= 0. (4.53)
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For x = 0, we have the following

J
ε,δ
2 ϕ(0) =

∫
|ζ′|<M

 δ + ψ2,ε(ζ
′)(

|ζ ′|2 +
(
δ + ψ2,ε(ζ ′)

)2)n2 − δ(
|ζ ′|2 + δ2

)n
2

 φ(ζ ′) dζ ′.

Let

fδ(ζ
′) =

δ + ψ2,ε(ζ
′)(

|ζ ′|2 +
(
δ + ψ2,ε(ζ ′)

)2)n2 − δ(
|ζ ′|2 + δ2

)n
2
,

and

f0(ζ ′) =
ψ2,ε(ζ

′)(
|ζ ′|2 +

(
ψ2,ε(ζ ′)

)2)n2 .

By the mean value theorem, we clearly see that

∣∣fδ(ζ ′)∣∣ ≤ n
∣∣ψ2,ε(ζ

′)
∣∣

|ζ ′|n
,

which is integrable on the domain {
∣∣ζ ′∣∣ < M}. Thus by the dominated convergence theorem

we obtain the pointwise convergence. That is,

lim
δ→0

J
ε,δ
2 ϕ(0) =

∫
|ζ′|<M

ψ2,ε(ζ
′)(

|ζ ′|2 + ψ2
2,ε(ζ

′)
)n

2
φ(ζ ′) dζ ′ = J

ε,0
2 ϕ(0).
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4.4 Convergence of J ε,δ2 .

In this Section we study the convergence of the operator J
ε,δ
2 as an operator from the Banach

space Cα(Γ2) to the Banach space Cα(Γ1) for any α < α0, where α0 is the regularity of

the boundaries Γj and α is the regularity of ∇ψj,ε, j = 1, 2. Before we start showing the

pointwise convergence, recall the definition of the operator J
ε,δ
2 , which is

J
ε,δ
2 ϕ(x) =

∫
|ζ′|<M

k
ε,δ
2 (ζ ′, x′)φ(ζ ′ + x′) dζ ′,

where

kε,δ(ζ ′, x′) =
b(ζ ′, x′)− ζ ′ · ∇ψ1,ε(x

′)(
|ζ ′|2 + b2(ζ ′, x′)

)n
2
−
a(x′)− ζ ′ · ∇ψ1,ε(x

′)(
|ζ ′|2 + a2(x′)

)n
2

,

b(ζ ′, x′) = δ + ψ2,ε(ζ
′ + x′)− ψ1,ε(x

′),

b0(ζ ′, x′) = ψ2,ε(ζ
′ + x′)− ψ1,ε(x

′),

a(x′) = δ + ψ2,ε(x
′)− ψ1,ε(x

′),

and

a0(x′) = ψ2,ε(x
′)− ψ1,ε(x

′).

Theorem 4.6. [1] Fix 0 < 2ε < ε0. Then for any 0 < α′ < α < α0 and for all ϕ ∈ Cα(Γ2),

we have

ηJ
ε,δ
2 ϕ

α′−→ ηJ
ε,0
2 ϕ as δ −→ 0,
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where
α′−→ means the convergence take place in Cα

′
(Γ1).

Proof. For ϕ ∈ Cα and α′ < α, we argue the convergence of ηJ
ε,δ
2 by contradiction. If the

sequence ηJ
ε,δ
2 ϕ does not converge to ηJ

ε,0
2 ϕ in Cα

′′
(Γ1). Then there is a sequence {ηJε,δn2 ϕ}

that satisfying ∥∥∥ηJε,δn2 ϕ− ηJε,0ϕ
∥∥∥
α′
> C. (4.54)

for some C > 0.

We have shown that {ηJε,δn2 ϕ} is uniformly bounded in Cα(Γ1) and since Cα(Γ1) is

compactly embedded in Cα
′
(Γ1), then there exists a subsequence {ηJ

ε,δnj
2 ϕ} that converges

to Jε2 ∈ C
α′(Γ1). From Lemma 4.5, we have pointwise convergence for ηJ

ε,δ
2 ϕ2. That is

lim
δ→0

ηJ
ε,δ
2 ϕ(x) = ηJ

ε,0
2 ϕ(x), x ∈ Γ1 ∩ B(R0).

From the uniqueness of a limit, we have Jε2 = ηJ
ε,0
2 ϕ2 and this would contradict (4.54). Thus

ηJ
ε,δ
2 ϕ −→ ηJ

ε,0
2 ϕ in Cα

′
, α′ < α.

125



Chapter 5

Uniform Hölder continuity for I
ε,δ
2 .

In this chapter we demonstrate the the uniform Hölder continuity of the operator ηI
ε,δ
2 in the

operator norm L(Cα(Γ2), Cα(Γ1)). We will show that the operator ηI
ε,δ
2 in any dimension

n ≥ 2 is uniformly bounded by the quantity 1
2

(
1 +C(ε)

)
(1 + ε0) which is exactly the same

quantity that has been found in the earlier work for dimension n = 2 [1]. However, if the

bound were greater than 1
2

(
1 + C(ε)

)
(1 + ε0), the invertibility of the operator Λε,δ that

defined in (3.69) may fail. We can see that clearly from the definition of the operator

Λε,δ =


λI η

ωn

√
1+
∣∣∣∇ψ1,ε(x

′)
∣∣∣2
(
J
ε,δ
2 + I

ε,δ
2

)
η

ωn

√
1+
∣∣∣∇ψ2,ε(x

′)
∣∣∣2
(
J
ε,δ
1 + I

ε,δ
1

)
λI

 ,

where λ = k+1
2(k−1)

and k is the conductivity in the subdomains, and ε0 has been chosen

to satisfy 1
2 <

1+ε0
2 < |λ|. Thus for the operator Λε,δ to be invertible, it suffices that the

off-diagonal operators be bounded by a quantity strictly less than |λ|. The invertibility and

the convergence of the operator Λε,δ will be fully illustrated in the next chapter. The proof

of the uniform Hölder continuity of I
ε,δ
2 is similar to but easier than what we have seen for

J
ε,δ
2 in Chapter 4. We state and prove the main theorem of this chapter,

Theorem 5.1. Given any 0 < ε < ε0 and any 0 ≤ δ < δ0, the operator ηI
ε,δ
2 is a continuous
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linear operator from Cα(Γ2) to Cα(Γ1) , α < α0. Moreover, we have

∥∥∥∥∥∥ η

ωn

√
1 +

∣∣∇ψ1,ε

∣∣2 Iε,δ2

∥∥∥∥∥∥
L(Cα(Γ2),Cα(Γ1))

≤ 1

2

(
1 + C(ε)

)
(1 + ε0) ,

where C(ε) converges to 0 as ε converges to 0, uniformly in δ.

Remark 5.2. We use the definition 3.2 to show the uniform bound to the operator I
ε,δ
2 .

That is, for ϕ ∈ Cα(Γ2) and x, y ∈ Γ1 ∩ B(R0), we show that

max

(∥∥∥Iε,δ2 ϕ
∥∥∥
∞
, sup
|x|,|y|≤R0

∣∣∣Iε,δ2 ϕ(x)− Iε,δ2 ϕ(y)
∣∣∣

|x− y|α

)
≤ 1

2

(
1 + C(ε)

)
(1 + ε0) ,

where ∥∥∥Iε,δ2 ϕ
∥∥∥
∞

= sup
|x|≤R0

∣∣∣Iε,δ2 ϕ(x)
∣∣∣ .

Let ϕ ∈ Cα(Γ2), x ∈ Γ1 ∩ B(R0). Recall the definition of I
ε,δ
2

I
ε,δ
2 ϕ(x) =

∫
Rn−1

(
δ + ψ2,ε(x

′)− ψ1,ε(x
′)
)
−∇ψ1,ε(x

′) · (y′ − x′)(
|x′ − y′|2 +

(
δ + ψ2,ε(x′)− ψ1,ε(x′)

)2)n2 φ(y′) dy′,

where φ(y′) = Eϕ(y′)
√

1 +
∣∣∇ψ2,ε(y′)

∣∣2 has compact support in B′(R0) and bounded by the

norm

‖φ‖α ≤
(

1 + C(ε)
)

(1 + ε0) ‖ϕ‖α . (5.1)

For x = (x′, xn) ∈ Γ1 ∩B(0, R0), we decompose the operator I
ε,δ
2 as I2 − I1, where

I1ϕ(x) =

∫
Rn−1

∇ψ1,ε(x
′) · (y′ − x′)(

|x′ − y′|2 +
(
δ + ψ2,ε(x′)− ψ1,ε(x′)

)2)n2 φ(y′) dy′, (5.2)
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and

I2ϕ(x) =

∫
Rn−1

(
δ + ψ2,ε(x

′)− ψ1,ε(x
′)
)(

|x′ − y′|2 +
(
δ + ψ2,ε(x′)− ψ1,ε(x′)

)2)n2 φ(y′) dy′. (5.3)

Before we start proving the Theorem , recall from Lemma 3.6 that

∫
Rn−1

dz′(
|z′|2 + 1

)n
2

=
ωn
2
. (5.4)

We will use it frequently during the proof of the Theorem.

5.1 L∞-norm for Iε,δ2 , δ > 0.

In this section we elaborate the uniform bound for Iε,δ, when δ > 0. We discuss the

uniform bounds for its terms I1 and I2 separately. To begin the discussion of the uniform

boundedness, we assume that x = (x′, xn) ∈ Γ1 ∩B(0, R0).

5.1.1 L∞-norm for I1, δ > 0.

Since φ has compact support in B′(R0), we see that

I1ϕ(x) =

∫
Rn−1

∇ψ1,ε(x
′) · (y′ − x′)(

|x′ − y′|2 +
(
δ + ψ2,ε(x′)− ψ1,ε(x′)

)2)n2 φ(y′) dy′

=

∫
B′(R0)

∇ψ1,ε(x
′) · (y′ − x′)(

|x′ − y′|2 +
(
δ + ψ2,ε(x′)− ψ1,ε(x′)

)2)n2 φ(y′) dy′.
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Let ζ ′ = y′ − x′, then we have

I1ϕ(x) =

∫
|ζ′|<M

∇ψ1,ε(x
′) · ζ ′(

|ζ ′|2 + a2
)n

2
φ(ζ ′ + x′) dζ ′, (5.5)

where

a := a(x′) = δ + ψ2,ε(x
′)− ψ1,ε(x

′).

Since ∫
|ζ′|<M

∇ψ1,ε(x
′) · ζ ′(

|ζ ′|2 + a2
)n

2
φ(x′) dζ ′ = 0,

then clearly we see that

I1ϕ(x) =

∫
|ζ′|<M

∇ψ1,ε(x
′) · ζ ′(

|ζ ′|2 + a2
)n

2

(
φ(ζ ′ + x′)− φ(x′)

)
dζ ′.

Thus we have the bound

|I1ϕ(x)| ≤
∥∥∇ψ1,ε

∥∥
∞ ‖φ‖α

∫
|ζ′|<M

∣∣ζ ′∣∣1+α(
|ζ ′|2 + a2

)n
2
dζ ′.

Since a = δ + ψ2,ε(x
′)− ψ1,ε(x

′) > 0, we obtain

|I1ϕ(x)| ≤
∥∥∇ψ1,ε

∥∥
α ‖φ‖α

∫
|ζ′|<M

∣∣ζ ′∣∣1+α−n
dζ ′

≤ C(M,α) C(ε) ‖φ‖α . (5.6)
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Therefore from (5.1) and (5.6), we have the bound

|I1ϕ(x)| ≤ C(ε) ‖ϕ‖α . (5.7)

5.1.2 L∞-norm for I2, δ > 0.

From the definition of I2, we have

I2ϕ(x) =

∫
Rn−1

a(
|ζ ′|2 + a2

)n
2
φ(ζ ′ + x′) dζ ′.

By using the change of variable ζ ′ = a $, it follows that

|I2ϕ(x)| =

∣∣∣∣∣∣∣
∫
Rn−1

1(
1 + |$|2

)n
2
φ(a $ + x′) d$

∣∣∣∣∣∣∣
≤ ‖φ‖∞

∫
Rn−1

1(
1 + |$|2

)n
2
d$ =

ωn
2
‖φ‖∞ . (5.8)

Again from (5.1) and (5.8), we see the uniform bound

|I2ϕ(x)| ≤ ωn
2

(
1 + C(ε)

)
(1 + ε0) ‖ϕ‖α . (5.9)

Finally, we combine (5.7) and (5.9) to get the desired uniform bound for Iε,δ

∥∥∥Iε,δϕ∥∥∥
∞
≤ ωn

2

(
1 + C(ε)

)
(1 + ε0) ‖ϕ‖α . (5.10)
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5.2 Hölder estimate for Iε,δ2 , δ > 0.

For the Hölder continuity, we choose x = (x′, xn) and x̄ = (x̄′, x′n) ∈ Γ1 ∩ B(0, R0). As

before we use a for the combination of the C1,α functions ψ1,ε and ψ2,ε acting at the point

x′ with the perturbation constant δ, that is,

a := a(x′) = δ + ψ2,ε(x
′)− ψ1,ε(x

′),

and similarly for ā, but at the point x̄′,that is,

ā := a(x̄′) = δ + ψ2,ε(x̄
′)− ψ1,ε(x̄

′).

In order to get the desired bound for Iε,δ, we use the same decomposition for the terms I1

and I2 that presented in dimension n = 2 [1] with some technical modification.

5.2.1 Hölder estimate for I1, δ > 0.

From the definition of I1, we have

I1ϕ(x) =

∫
|ζ′|<M

∇ψ1,ε(x
′) · ζ ′(

|ζ ′|2 + a2
)n

2
φ(ζ ′ + x′) dζ ′,

and

I1ϕ(x̄) =

∫
|ζ′|<M

∇ψ1,ε(x̄
′) · ζ ′(

|ζ ′|2 + ā2
)n

2
φ(ζ ′ + x̄′) dζ ′. (5.11)

Let } = x′ − x̄′ and ζ ′ = ζ ′1 + } in (5.11), it follows that
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I1ϕ(x̄) =

∫∣∣∣ζ′1+}
∣∣∣<M

∇ψ1,ε(x̄
′) · (ζ ′1 + })(∣∣ζ ′1 + }
∣∣2 + ā2

)n
2
φ(ζ ′1 + } + x̄′) dζ ′1. (5.12)

Since φ has compact support, we have the following

I1ϕ(x̄) =

∫
Rn−1

∇ψ1,ε(x̄
′) · (ζ ′1 + })(∣∣ζ ′1 + }
∣∣2 + ā2

)n
2
φ(ζ ′1 + x′) dζ ′1. (5.13)

Letting ζ ′ = ζ ′1 in (5.13), it follows that

I1ϕ(x̄) =

∫
Rn−1

∇ψ1,ε(x̄
′) · (ζ ′ + })(

|ζ ′ + }|2 + ā2
)n

2
φ(ζ ′ + x′) dζ ′. (5.14)

Now we form the following decomposition

I1ϕ(x)− I1ϕ(x̄) =

∫
Rn−1

(
∇ψ1,ε(x

′)−∇ψ1,ε(x̄
′)
)
· ζ ′(

|ζ ′|2 + a2
)n

2
φ(ζ ′ + x′) dζ ′

+

∫
Rn−1

 ∇ψ1,ε(x̄
′) · ζ ′(

|ζ ′|2 + a2
)n

2
−
∇ψ1,ε(x̄

′) · (ζ ′ + })(
|ζ ′ + }|2 + ā2

)n
2

 φ(ζ ′ + x′) dζ ′

:= A+B. (5.15)

For A we have

A =

∫
Rn−1

(
∇ψ1,ε(x

′)−∇ψ1,ε(x̄
′)
)
· ζ ′(

|ζ ′|2 + a2
)n

2
φ(ζ ′ + x′) dζ ′.
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Since

∫
Rn−1

(
∇ψ1,ε(x

′)−∇ψ1,ε(x̄
′)
)
· ζ ′(

|ζ ′|2 + a2
)n

2
φ(x′) dζ ′ = 0,

then the following bound follows

|A| ≤
∥∥∇ψ1,ε

∥∥
α |}|

α
∫
Rn−1

∣∣ζ ′∣∣(
|ζ ′|2 + a2

)n
2

∣∣φ(ζ ′ + x′)− φ(x′)
∣∣ dζ ′

≤
∥∥∇ψ1,ε

∥∥
α |}|

α ‖φ‖α
∫
|ζ′|<M

∣∣ζ ′∣∣1+α(
|ζ ′|2 + a2

)n
2
dζ ′

≤ C(M,α) C(ε) ‖φ‖α |}|
α .

Using Hölder estimate (5.1) for φ, the desired bound for A follows

|A| ≤ C(ε) ‖ϕ‖α |}|
α . (5.16)

We proceed to find the bound for B, where

B =

∫
Rn−1

 ∇ψ1,ε(x̄
′) · ζ ′(

|ζ ′|2 + a2
)n

2
−
∇ψ1,ε(x̄

′) · (ζ ′ + })(
|ζ ′ + }|2 + ā2

)n
2

 φ(ζ ′ + x′) dζ ′
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We decompose B into four terms as follows

B =

∫
|ζ′|<4|}|

∇ψ1,ε(x̄
′) · ζ ′(

|ζ ′|2 + a2
)n

2

(
φ(ζ ′ + x′)− φ(x′)

)
dζ ′

−
∫
|ζ′|<4|}|

∇ψ1,ε(x̄
′) · (ζ ′ + })(

|ζ ′ + }|2 + ā2
)n

2

(
φ(ζ ′ + x′)− φ(x̄′)

)
dζ ′

−
∫
|ζ′|<4|}|

∇ψ1,ε(x̄
′) · (ζ ′ + })(

|ζ ′ + }|2 + ā2
)n

2

(
φ(x̄′)− φ(x′)

)
dζ ′

+

∫
|ζ′|>4|}|

 ∇ψ1,ε(x̄
′) · ζ ′(

|ζ ′|2 + a2
)n

2
−
∇ψ1,ε(x̄

′) · (ζ ′ + })(
|ζ ′ + }|2 + ā2

)n
2

 (
φ(ζ ′ + x′)− φ(x′)

)
dζ ′.

Thus we have the decomposition

B := B1 +B2 +B3 +B4,

where Bi is the corresponding integral in the above decomposition, i = 1, 2, 3, 4. We begin

by estimating the first integral B1, that is,

B1 =

∫
|ζ′|<4|}|

∇ψ1,ε(x̄
′) · ζ ′(

|ζ ′|2 + a2
)n

2

(
φ(ζ ′ + x′)− φ(x′)

)
dζ ′.

Using the Hölder continuity of φ, we easily have the following bound

|B1| ≤
∥∥∇ψ1,ε

∥∥
α ‖φ‖α

∫
|ζ′|<4|}|

∣∣ζ ′∣∣1+α−n
dζ ′ ≤ C(ε) ‖ϕ‖α |}|

α . (5.17)
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Similarly we can get the appropriate bound for B2. To show that, we have

B2 = −
∫
|ζ′|<4|}|

∇ψ1,ε(x̄
′) · (ζ ′ + })(

|ζ ′ + }|2 + ā2
)n

2

(
φ(ζ ′ + x′)− φ(x̄′)

)
dζ ′.

Hölder continuity of φ allow us to have the bounds

|B2| ≤
∥∥∇ψ1,ε

∥∥
α ‖φ‖α

∫
|ζ′|<4|}|

∣∣ζ ′ + }
∣∣(

|ζ ′ + }|2 + ā2
)n

2

∣∣ζ ′ + }
∣∣α dζ ′

≤ C(ε) ‖φ‖α
∫
|ζ′|<4|}|

∣∣ζ ′ + }
∣∣1+α−n

dζ ′

≤ C(ε) ‖φ‖α
∫
|ζ′|<5|}|

∣∣ζ ′∣∣1+α−n
dζ ′.

Using (5.1) and integrating
∣∣ζ ′∣∣1+α−n

over
∣∣ζ ′∣∣ < 5 |}|, we obtain the desired bound

|B| ≤ C(ε) ‖ϕ‖α |}|
α . (5.18)

For B3, we substitute ζ ′ = ζ ′ − } in order to write B3 in the following form

B3 = −
∫
|ζ′−}|<4|}|

∇ψ1,ε(x̄
′) · ζ ′(

|ζ ′|2 + ā2
)n

2

(
φ(x̄′)− φ(x′)

)
dζ ′.

Since ∫
|ζ′|<1

2 |}|

∇ψ1,ε(x̄
′) · ζ ′(

|ζ ′|2 + ā2
)n

2

(
φ(x̄′)− φ(x′)

)
dζ ′ = 0,
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then we have

B3 = −
∫
{|ζ′−}|<4|}|\|ζ′|< |}|2 }

∇ψ1,ε(x̄
′) · ζ ′(

|ζ ′|2 + ā2
)n

2

(
φ(x̄′)− φ(x′)

)
dζ ′.

We clearly can bound B3 as follows

|B3| ≤
∥∥∇ψ1,ε

∥∥
α ‖φ‖α |}|

α
∫
{|ζ′−}|<4|}|\|ζ′|< |}|2 }

∣∣ζ ′∣∣1−n dζ ′

≤
∥∥∇ψ1,ε

∥∥
α ‖φ‖α |}|

α
∫(
|}|
2 <|ζ′|<5|}|

) ∣∣ζ ′∣∣1−n dζ ′.

Therefore,

|B3| ≤ C(ε) ‖ϕ‖α |}|
α . (5.19)

For the last integral B4, we have

B4 =

∫
|ζ′|>4|}|

 ∇ψ1,ε(x̄
′) · ζ ′(

|ζ ′|2 + a2
)n

2
−
∇ψ1,ε(x̄

′) · (ζ ′ + })(
|ζ ′ + }|2 + ā2

)n
2

 (
φ(ζ ′ + x′)− φ(x′)

)
dζ ′.

We work with some manipulations in order to have the desired bound. We start by assuming
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ζ ′1 = ζ ′ + } in the second integrand to decompose B4 as follows

B4 = −
∫

3|}|<|ζ′|<4|}|

∇ψ1,ε(x̄
′) · ζ ′(

|ζ ′|2 + a2
)n

2

(
φ(ζ ′ + x′)− φ(x′)

)
dζ ′

+

∫
|ζ′|>3|}|

∇ψ1,ε(x̄
′) · ζ ′(

|ζ ′|2 + a2
)n

2

(
φ(ζ ′ + x′)− φ(x′)

)
dζ ′

−
∫∣∣∣ζ′1−}∣∣∣>4|}|

∇ψ1,ε(x̄
′) · ζ ′1(∣∣ζ ′1∣∣2 + ā2
)n

2

(
φ(ζ ′1 − } + x′)− φ(x′)

)
dζ ′1

:= C1 + C2, (5.20)

where

C1 = −
∫

3|}|<|ζ′|<4|}|

∇ψ1,ε(x̄
′) · ζ ′(

|ζ ′|2 + a2
)n

2

(
φ(ζ ′ + x′)− φ(x′)

)
dζ ′

and

C2 =

∫
|ζ′|>3|}|

∇ψ1,ε(x̄
′) · ζ ′(

|ζ ′|2 + a2
)n

2

(
φ(ζ ′ + x′)− φ(x′)

)
dζ ′

−
∫∣∣∣ζ′1−}∣∣∣>4|}|

∇ψ1,ε(x̄
′) · ζ ′1(∣∣ζ ′1∣∣2 + ā2
)n

2

(
φ(ζ ′1 − } + x′)− φ(x′)

)
dζ ′1.

We easily can bound C1 by

C1 ≤
∥∥∇ψ1,ε

∥∥
α ‖φ‖α

∫
3|}|<|ζ′|<4|}|

∣∣ζ ′∣∣1−n+α
dζ ′

≤ C(ε) ‖ϕ‖α |}|
α . (5.21)
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For C2, recall that } = x′ − x̄′ then we see that

C2 =

∫
|ζ′|>3|}|

∇ψ1,ε(x̄
′) · ζ ′(

|ζ ′|2 + a2
)n

2

(
φ(ζ ′ + x′)− φ(x′)

)
dζ ′

−
∫∣∣∣ζ′1−}∣∣∣>4|}|

∇ψ1,ε(x̄
′) · ζ ′1(∣∣ζ ′1∣∣2 + ā2
)n

2

(
φ(ζ ′1 + x̄′)− φ(x′)

)
dζ ′1.

We rewrite C2 in the following form

C2 =

∫
|ζ′|>3|}|

∇ψ1,ε(x̄
′) · ζ ′(

|ζ ′|2 + a2
)n

2

(
φ(ζ ′ + x′)− φ(x′)

)
dζ ′

−
∫∣∣∣ζ′1−}∣∣∣>4|}|

∇ψ1,ε(x̄
′) · ζ ′1(∣∣ζ ′1∣∣2 + ā2
)n

2

(
φ(ζ ′1 + x′)− φ(x′)

)
dζ ′1

+

∫∣∣∣ζ′1−}∣∣∣>4|}|

∇ψ1,ε(x̄
′) · ζ ′1(∣∣ζ ′1∣∣2 + ā2
)n

2

(
φ(ζ ′1 + x′)− φ(ζ ′1 + x̄′)

)
dζ ′1

:= D1 +D2, (5.22)

where

D1 =

∫
|ζ′|>3|}|

∇ψ1,ε(x̄
′) · ζ ′(

|ζ ′|2 + a2
)n

2

(
φ(ζ ′ + x′)− φ(x′)

)
dζ ′

−
∫∣∣∣ζ′1−}∣∣∣>4|}|

∇ψ1,ε(x̄
′) · ζ ′1(∣∣ζ ′1∣∣2 + ā2
)n

2

(
φ(ζ ′1 + x′)− φ(x′)

)
dζ ′1.

and

D2 =

∫∣∣∣ζ′1−}∣∣∣>4|}|

∇ψ1,ε(x̄
′) · ζ ′1(∣∣ζ ′1∣∣2 + ā2
)n

2

(
φ(ζ ′1 + x′)− φ(ζ ′1 + x̄′)

)
dζ ′1,
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We start with the easiest term which is D2 and after utilizing that φ is compactly supported

in B′(M), clearly we can see the bounds

|D2| ≤
∫

3|}|<
∣∣∣ζ′1∣∣∣<M

∣∣∇ψ1,ε(x̄
′) · ζ ′1

∣∣(∣∣ζ ′1∣∣2 + ā2
)n

2

∣∣φ(ζ ′1 + x′)− φ(ζ ′1 + x̄′)
∣∣ dζ ′1

≤ ‖φ‖α |}|
α
∫

3|}|<
∣∣∣ζ′1∣∣∣<M

∣∣ψ1,ε(x̄
′)
∣∣ α
1+α

∣∣ζ ′1∣∣(∣∣ζ ′1∣∣2 + ā2
)n

2
dζ ′1 (by using lemma 4.2)

≤ ‖φ‖α |}|
α
∫

3|}|<
∣∣∣ζ′1∣∣∣<M

∣∣ψ1,ε(x̄
′)
∣∣ α
1+α

∣∣ζ ′1∣∣∣∣ζ ′1∣∣(1+µ)n2 ā(1−µ)n2
dζ ′1 (by using lemma 4.3)

≤ ‖φ‖α |}|
α
∫

3|}|<
∣∣∣ζ′1∣∣∣<M

∣∣ψ1,ε(x̄
′)
∣∣α(1−α)

2(1+α)
∣∣ζ ′1∣∣1−n+α

2 dζ ′1
(

by choosing µ = 1− α

n

)
≤ C(ε) ‖φ‖α |}|

α
∫

3|}|<
∣∣∣ζ′1∣∣∣<M

∣∣ζ ′1∣∣1+α
2−n dζ ′1

≤ C(ε) ‖φ‖α |}|
α .

Therefore we end with the bound

|D2| ≤ C(ε) ‖ϕ‖α |}|
α . (5.23)

To estimate D1 we rewrite ζ ′ = ζ ′1 in the first integral for D1 to get the following

D1 =

∫∣∣∣ζ′1∣∣∣>3|}|

∇ψ1,ε(x̄
′) · ζ ′1(∣∣ζ ′1∣∣2 + a2
)n

2

(
φ(ζ ′1 + x′)− φ(x′)

)
dζ ′1

−
∫∣∣∣ζ′1−}∣∣∣>4|}|

∇ψ1,ε(x̄
′) · ζ ′1(∣∣ζ ′1∣∣2 + ā2
)n

2

(
φ(ζ ′1 + x′)− φ(x′)

)
dζ ′1.
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Now we rewrite D1 in the following form

D1 =

∫∣∣∣ζ′1∣∣∣>3|}|

 ∇ψ1,ε(x̄
′) · ζ ′1(∣∣ζ ′1∣∣2 + a2
)n

2
−
∇ψ1,ε(x̄

′) · ζ ′1(∣∣ζ ′1∣∣2 + ā2
)n

2

 (
φ(ζ ′1 + x′)− φ(x′)

)
dζ ′1

+

∫∣∣∣ζ′1∣∣∣>3|}|

∇ψ1,ε(x̄
′) · ζ ′1(∣∣ζ ′1∣∣2 + ā2
)n

2

(
φ(ζ ′1 + x′)− φ(x′)

)
dζ ′1

−
∫∣∣∣ζ′1−}∣∣∣>4|}|

∇ψ1,ε(x̄
′) · ζ ′1(∣∣ζ ′1∣∣2 + ā2
)n

2

(
φ(ζ ′1 + x′)− φ(x′)

)
dζ ′1.

Let us find out the bound for the last two integrals in D1 and denote them by D1,2. That

is,

D1,2 =

∫∣∣∣ζ′1∣∣∣>3|}|

∇ψ1,ε(x̄
′) · ζ ′1(∣∣ζ ′1∣∣2 + ā2
)n

2

(
φ(ζ ′1 + x′)− φ(x′)

)
dζ ′1

−
∫∣∣∣ζ′1−}∣∣∣>4|}|

∇ψ1,ε(x̄
′) · ζ ′1(∣∣ζ ′1∣∣2 + ā2
)n

2

(
φ(ζ ′1 + x′)− φ(x′)

)
dζ ′1.

Then we easily see that

∣∣D1,2

∣∣ ≤ ∫
3|}|<

∣∣∣ζ′1∣∣∣<5|}|

∣∣∇ψ1,ε(x̄
′) · ζ ′1

∣∣(∣∣ζ ′1∣∣2 + ā2
)n

2

∣∣φ(ζ ′1 + x′)− φ(x′)
∣∣ dζ ′1

≤
∥∥∇ψ1,ε

∥∥
α ‖φ‖α

∫
3|}|<

∣∣∣ζ′1∣∣∣<5|}|

∣∣ζ ′1∣∣1+α−n
dζ ′1.

Thus we have the following bound

∣∣D1,2

∣∣ ≤ C(ε) ‖φ‖α |}|
α . (5.24)
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For the first integral in D1 we need to use the mean value theorem in order to get the desired

bound. Let us denote it by D1,1 and use ζ ′ instead of ζ ′1 to simplify the writing, that is

D1,1 =

∫
|ζ′|>3|}|

 ∇ψ1,ε(x̄
′) · ζ ′(

|ζ ′|2 + a2
)n

2
−
∇ψ1,ε(x̄

′) · ζ ′(
|ζ ′|2 + ā2

)n
2

 (
φ(ζ ′ + x′)− φ(x′)

)
dζ ′.

In a naive way, we can have the bound

∣∣D1,1

∣∣ ≤ ∥∥∇ψ1,ε

∥∥
α ‖φ‖α

∫
|ζ′|>3|}|

∣∣ζ ′∣∣1+α

∣∣∣∣(∣∣ζ ′∣∣2 + ā2
)n

2 −
(∣∣ζ ′∣∣2 + a2

)n
2
∣∣∣∣(

|ζ ′|2 + a2
)n

2
(
|ζ ′|2 + ā2

)n
2

. (5.25)

Using the mean value theorem for some z2 that lies between a2 and ā2, we have the following

∣∣D1,1

∣∣ ≤ C(n)
∥∥∇ψ1,ε

∥∥
α ‖φ‖α

∫
|ζ′|>3|}|

∣∣ζ ′∣∣1+α

(∣∣ζ ′∣∣2 + z2
)n

2−1 ∣∣a2 − ā2
∣∣(

|ζ ′|2 + a2
)n

2
(
|ζ ′|2 + ā2

)n
2
. (5.26)

Without loss of generality we may assume z2 ≤ a2 and same work will hold when z2 < ā2.

Therefore, we have the bound

∣∣D1,1

∣∣ ≤ C(n) C(ε) ‖φ‖α
∫
|ζ′|>3|}|

∣∣ζ ′∣∣1+α |a− ā| |a+ ā|(
|ζ ′|2 + a2

) (
|ζ ′|2 + ā2

)n
2
. (5.27)

Since ā2 < a2, we can easily have the inequality

|a+ ā|(
|ζ ′|2 + a2

) (
|ζ ′|2 + ā2

)n
2
≤ 1

|ζ ′|1+n
. (5.28)
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By substituting inequality (5.28) in (5.27), we have the bound

∣∣D1,1

∣∣ ≤ C(ε) ‖φ‖α
∫
|ζ′|>3|}|

∣∣ζ ′∣∣α−n |a− ā| dζ ′. (5.29)

Since a = δ + ψ2,ε(x
′) − ψ1,ε(x

′) and ā = δ + ψ2,ε(x̄
′) − ψ1,ε(x̄

′). Then we easily have the

bound

|a− ā| ≤ |}|
∥∥∇ψ2,ε

∥∥
α + |}|

∥∥∇ψ1,ε

∥∥
α

Thus we can see that

∣∣D1,1

∣∣ ≤ C(ε) ‖φ‖α |}|
∫
|ζ′|>3|}|

∣∣ζ ′∣∣α−n dζ ′

≤ C(ε) ‖φ‖α |}|
∫ ∞
r=3|}|

rα−2 dr

≤ C(ε) ‖ϕ‖α |}|
α . (5.30)

Combining (5.24) and (5.30), the bound for D1 follows, that is,

|D1| ≤ C(ε) ‖ϕ‖α |}|
α . (5.31)

While combining (5.23) and (5.31) gives the bound for C2,that is,

|C2| ≤ C(ε) ‖ϕ‖α |}|
α . (5.32)
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Therefore B4 is bounded by (5.21) and (5.32),that is,

|B4| ≤ C(ε) ‖ϕ‖α |}|
α . (5.33)

For B term we combine (5.17), (5.18), (5.19) and (5.33) to get the bound

|B| ≤ C(ε) ‖ϕ‖α |}|
α . (5.34)

Finally, to let this end we combine (5.16) and (5.34) to get

|I1ϕ(x)− I1ϕ(x̄)| ≤ C(ε) ‖ϕ‖α |x− x̄|
α . (5.35)

5.2.2 Hölder estimate for I2, δ > 0.

We follow the same idea that presented for dimension n = 2 in [1] to find the Hölder

continuity for I2. From the definition of I2 we have

I2ϕ(x) =

∫
Rn−1

a(
|ζ ′|2 + a2

)n
2
φ(ζ ′ + x′) dζ ′.

We use change of variable ζ ′ = a $ to get

I2ϕ(x) =

∫
Rn−1

1(
1 + |$|2

)n
2
φ(a $ + x′) d$.
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We form

I2ϕ(x)− I2ϕ(x̄) =

∫
Rn−1

1(
1 + |$|2

)n
2

(
φ(a $ + x′)− φ(ā $ + x̄′)

)
d$.

By using the Hölder continuity of φ, we have the following bound

|I2ϕ(x)− I2ϕ(x̄)| ≤ ‖φ‖α
∫
Rn−1

1(
1 + |$|2

)n
2

∣∣a $ + x′ − ā $ − x̄′
∣∣α d$

≤ ‖φ‖α
∫
Rn−1

1(
1 + |$|2

)n
2

∣∣x′ − x̄′∣∣α ∣∣∣∣ x′ − x̄′|x′ − x̄′|
+

(a− ā) $

|x′ − x̄′|

∣∣∣∣α d$

≤ ‖φ‖α
∣∣x′ − x̄′∣∣α ∫

Rn−1

1(
1 + |$|2

)n
2

(
1 + |$| |a− ā|

|x′ − x̄′|

)α
d$.

We bound

|a− ā|
|x′ − x̄′|

≤ C
∥∥ψ2,ε − ψ1,ε

∥∥
1,α

≤ C εν
(
‖ψ2‖1,α0

+ ‖ψ1‖1,α0

)
. (5.36)

Substituting (5.36) in the above bound for I2, it follows that

|I2ϕ(x)− I2ϕ(x̄)| ≤ ‖φ‖α
∣∣x′ − x̄′∣∣α ∫

Rn−1

1(
1 + |$|2

)n
2

(
1 + C(ε) |$|

)α
d$. (5.37)

Notice that (
1 + C(ε) |$|

)α
(

1 + |$|2
)n

2
−→ 1(

1 + |$|2
)n

2
as ε −→ 0.

144



Thus by using the dominated convergence theorem, we see that

∫
Rn−1

(
1 + C(ε) |$|

)α
(

1 + |$|2
)n

2
d$ −→

∫
Rn−1

d$(
1 + |$|2

)n
2

=
ωn
2

as ε −→ 0.

Therefore we have

|I2ϕ(x)− I2ϕ(x̄)| ≤
(ωn

2
+ C(ε)

)
‖φ‖α

∣∣x′ − x̄′∣∣α . (5.38)

Involving the bound (5.1), we get the desired Hölder bound for I2

|I2ϕ(x)− I2ϕ(x̄)| ≤ 1

2

(
ωn + C(ε)

)
(1 + ε0) ‖ϕ‖α

∣∣x′ − x̄′∣∣α . (5.39)

Combining (5.35) and (5.39), we have

∣∣∣Iε,δ2 ϕ(x′)− Iε,δ2 ϕ(x̄′)
∣∣∣ ≤ 1

2

(
ωn + C(ε)

)
(1 + ε0) ‖ϕ‖α

∣∣x′ − x̄′∣∣α . (5.40)

Thus the Hölder estimate for I
ε,δ
2 follows ,that is,

∥∥∥Iε,δ2 ϕ
∥∥∥
Cα(Γ1)

≤ 1

2

(
ωn + C(ε)

)
(1 + ε0) ‖ϕ‖α , (5.41)

and the theorem is proved when δ > 0. For the case δ = 0, it follows if we prove that for

ϕ ∈ Cα(Γ2), the following limit holds

lim
δ→0

I
ε,δ
2 ϕ(x) = I

ε,0
2 ϕ(x), x ∈ Γ1 ∩ B(R),
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and this will be the aim of the next Section.

5.3 Convergence of Iε,δ2 .

The operator I
ε,δ
2 that we deal with in this chapter is nicer than the operator J

ε,δ
2 because

it is produced from the normal derivative of the single layer potential that defined on the

constant hypersurface. Whereas the operator J
ε,δ
2 is the difference between the normal

derivative of the single layer potential that defined on the approximate surface Γ2,ε and the

operator I
ε,δ
2 . We have shown in the previous sections that I

ε,δ
2 is continuous linear operator

from Cα(Γ2) to Cα(Γ1) for any α < α0, as well as its limit operator I
ε,0
2 is again continuous

linear operator from Cα(Γ2) to Cα(Γ1) for any α < α0. Before proceeding to study the

convergence, it is appropriate to write down the definition of the operator I
ε,δ
2 in order to

visualize the singularity of its kernel function. For ϕ ∈ Cα(Γ2) and x ∈ Γ1 ∩ B(R0) we

rewrote the operator I
ε,δ
2 in the following form

I
ε,δ
2 ϕ(x) = Iε,δ2 ϕ(x)− Iε,δ1 ϕ(x),

where for δ > 0 or x 6= 0 the operators Iε,δ1 and Iε,δ1 are defined by

Iε,δ1 ϕ(x) =

∫
|ζ′|<M

∇ψ1,ε(x
′) · ζ ′(

|ζ ′|2 + a2(x′)
)n

2
φ(ζ ′ + x′) dζ ′,

Iε,δ2 ϕ(x) =

∫
Rn−1

a(x′)(
|ζ ′|2 + a2(x′)

)n
2
φ(ζ ′ + x′) dζ ′,

where

a := a(x′) = δ + ψ2,ε(x
′)− ψ1,ε(x

′).
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While for x = 0 and δ = 0, we have that

Iε,01 ϕ(0) = 0,

and

Iε,02 ϕ(0) = φ(0)
ωn
2
.

Proposition 5.3. Let ϕ ∈ Cα(Γ2). Then for any ε < ε0 we have the uniform convergence

lim
δ→0

∥∥∥ηIε,δ2 ϕ− ηIε,02 ϕ
∥∥∥
∞

= 0,

where η is the smooth cut-off function defined in (3.11) which satisfies the following properties

0 ≤ η ≤ 1, η equals to 1 in the ball B(ε0), supported in the ball B(R0) and ‖∇η‖∞ ≤ ε0.

Proof. For ϕ ∈ Cα(Γ2) and 0 6= x ∈ Γ1 ∩ B(R0), we form the following

Iε,δ1 ϕ(x)− Iε,01 ϕ(x) =

∫
|ζ′|<M

 ζ ′ · ∇ψ1,ε(x
′)(

|ζ ′|2 + a2(x′)
)n

2
−

ζ ′ · ∇ψ1,ε(x
′)(

|ζ ′|2 + a2
0(x′)

)n
2

φ(ζ ′ + x′) dζ ′.

We take advantage of the integral

∫
|ζ′|<M

 ζ ′ · ∇ψ1,ε(x
′)(

|ζ ′|2 + a2(x′)
)n

2
−

ζ ′ · ∇ψ1,ε(x
′)(

|ζ ′|2 + a2
0(x′)

)n
2

φ(x′) dζ ′ = 0,

to gain some regularity from the Hölder continuity of the function φ. That is, we form the
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following

Iε,δ1 ϕ(x)− Iε,01 ϕ(x) =

∫
|ζ′|<M

 ζ ′ · ∇ψ1,ε(x
′)(

|ζ ′|2 + a2
)n

2
−
ζ ′ · ∇ψ1,ε(x

′)(
|ζ ′|2 + a2

0

)n
2

(φ(ζ ′ + x′)− φ(x′)
)
dζ ′.

It is a worthwhile to split the domain of the integral {
∣∣ζ ′∣∣ < M} into two subdomains

{
∣∣ζ ′∣∣ < δ} and {δ <

∣∣ζ ′∣∣ < M} and then we proceed to argue the uniform convergence on

each subdomain separately. For that, we rewrite

Iε,δ1 ϕ(x)− Iε,01 ϕ(x) = Iε,δ1,1 + Iε,δ1,2,

where

Iε,δ1,1 =

∫
|ζ′|<δ

 ζ ′ · ∇ψ1,ε(x
′)(

|ζ ′|2 + a2
)n

2
−
ζ ′ · ∇ψ1,ε(x

′)(
|ζ ′|2 + a2

0

)n
2

(φ(ζ ′ + x′)− φ(x′)
)
dζ ′,

and

Iε,δ1,2 =

∫
δ<|ζ′|<M

 ζ ′ · ∇ψ1,ε(x
′)(

|ζ ′|2 + a2
)n

2
−
ζ ′ · ∇ψ1,ε(x

′)(
|ζ ′|2 + a2

0

)n
2

(φ(ζ ′ + x′)− φ(x′)
)
dζ ′.

We easily can bound Iε,δ1,1 by the following

∣∣∣Iε,δ1,1

∣∣∣ ≤ ∥∥∇ψ1,ε

∥∥
∞ ‖φ‖α

∫
|ζ′|<δ

∣∣ζ ′∣∣1+α−n
dζ ′.
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Thus we have

∣∣∣Iε,δ1,1

∣∣∣ ≤ C
∥∥∇ψ1,ε

∥∥
∞ ‖φ‖α δα. (5.42)

Therefore we clearly see the uniform convergence from the bound (5.42) over the subdomain

{
∣∣ζ ′∣∣ < δ}. Again for the second integral Iε,δ1,2 we trivially obtain the following bound

∣∣∣Iε,δ1,2

∣∣∣ ≤ ‖φ‖α ∫
δ<|ζ′|<M

∣∣∇ψ1,ε(x
′)
∣∣ ∣∣ζ ′∣∣1+α

∣∣∣∣∣∣∣
1(

|ζ ′|2 + a2
)n

2
− 1(
|ζ ′|2 + a2

0

)n
2

∣∣∣∣∣∣∣ dζ ′.

Noticing that, 0 ≤ a0(x′) < a(x′) and a(x′) − a0(x′) = δ. Then by apply the mean value

theorem for some z2 that satisfying a2
0(x′) < z2 < a2(x′), we have the following

∣∣∣Iε,δ1,2

∣∣∣ ≤ C ‖φ‖α
∫
δ<|ζ′|<M

∣∣∇ψ1,ε(x
′)
∣∣ ∣∣ζ ′∣∣α δ

∣∣ζ ′∣∣ ∣∣a(x′) + a0(x′)
∣∣(

|ζ ′|2 + a2
0(x′)

)n
2
(
|ζ ′|2 + a2(x′)

) dζ ′

since ∣∣ζ ′∣∣ ∣∣a(x′) + a0(x′)
∣∣ ≤ 2

( ∣∣ζ ′∣∣2 + a2(x′)
)
,

we conclude that

∣∣∣Iε,δ1,2

∣∣∣ ≤ C ‖φ‖α δ
∫
δ<|ζ′|<M

∣∣∇ψ1,ε(x
′)
∣∣ ∣∣ζ ′∣∣α(

|ζ ′|2 + a2
0(x′)

)n
2
dζ ′.

By using Lemma 4.2 to bound the function ∇ψ1,ε(x
′), we have

∣∣∣Iε,δ1,2

∣∣∣ ≤ C ‖φ‖α δ
∫
δ<|ζ′|<M

∣∣ψ1,ε(x
′)
∣∣ α
1+α

∣∣ζ ′∣∣α(
|ζ ′|2 +

(
ψ2,ε(x′)− ψ1,ε(x′)

)2)n2 dζ ′.
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Also by using Lemma 4.3 to bound the denominator, we get the following

∣∣∣Iε,δ1,2

∣∣∣ ≤ C δ ‖φ‖α
∫
δ<|ζ′|<M

∣∣ψ1,ε(x
′)
∣∣ α
1+α

∣∣ζ ′∣∣α
|ζ ′|

n
2 (1+µ) ∣∣ψ1,ε(x′)

∣∣n2 (1−µ)
dζ ′.

By choosing µ = 1− 2α
n(1+α)

, it follows that

∣∣∣Iε,δ1,2

∣∣∣ ≤ C ‖φ‖α δα(δ1−α)

∫
δ<|ζ′|<M

∣∣ζ ′∣∣α−n+ α
1+α dζ ′.

Then we clearly see that

∣∣∣Iε,δ1,2

∣∣∣ ≤ C ‖φ‖α δα
∫
δ<|ζ′|<M

∣∣ζ ′∣∣1−n+ α
1+α dζ ′.

Therefore we obtain the following bound

∣∣∣Iε,δ1,2

∣∣∣ ≤ C ‖φ‖α δα. (5.43)

Thus the uniform convergence follows on the subdomain {δ <
∣∣ζ ′∣∣ < M}. After finishing

the convergence of Iε,δ1 . We continue to show the uniform convergence of the operator Iε,δ2 .

For 0 6= x ∈ Γ1 ∩B(0, R0), we have

Iε,δ2 ϕ(x)− Iε,02 ϕ(x) =

∫
Rn−1

(
a(x′)φ(ζ ′ + x′)(
|ζ ′|2 + a2(x′)

)n
2
− a0(x′)φ(ζ ′ + x′)(
|ζ ′|2 + a2

0(x′)
)n

2

)
dζ ′.

For the first integrand we use the change of variables ζ ′ = a(x′)$, while for the second
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integrand we use the change of variables ζ ′ = a0(x′)$, then it follows that

Iε,δ2 ϕ(x)− Iε,02 ϕ(x) =

∫
Rn−1

1(
1 + |$|2

)n
2

(
φ(a(x′) $ + x′)− φ(a0(x′) $ + x′)

)
d$

Since φ is Hölder continuous, then we easily obtain the following bound

∣∣∣Iε,δ2 ϕ(x)− Iε,02 ϕ(x)
∣∣∣ ≤ ‖φ‖α ∫

Rn−1

δα |$|α(
1 + |$|2

)n
2
d$.

Observe that

∫
Rn−1

|$|α(
1 + |$|2

)n
2
d$ =

∫
|$|≤1

|$|α(
1 + |$|2

)n
2
d$ +

∫
|$|>1

|$|α(
1 + |$|2

)n
2
d$,

∫
|$|≤1

|$|α(
1 + |$|2

)n
2
d$ ≤

∫
Rn−1

1(
1 + |$|2

)n
2
d$ =

ωn
2
.

and

∫
|$|>1

|$|α(
1 + |$|2

)n
2
d$ ≤

∫
|$|>1

|$|α−n d$ ≤ C

1− α
.

Therefore we have

∣∣∣Iε,δ2 ϕ(x)− Iε,02 ϕ(x)
∣∣∣ ≤ C ‖φ‖α δ

α.

That is, Iε,δ2 converges uniformly to Iε,02 when x 6= 0. Finally, we show the uniform conver-
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gence when x = 0. In this case we have

I
ε,δ
2 ϕ(0)− Iε,02 ϕ(0) =

∫
Rn−1

(
δ φ(ζ ′)(
|ζ ′|2 + δ2

)n
2
− φ(0)(

1 + |ζ ′|2
)n

2

)
dζ ′.

After changing the variables we obtain the following

I
ε,δ
2 ϕ(0)− Iε,02 ϕ(0) =

∫
Rn−1

(
φ(δ $)− φ(0)

)(
|$|2 + 1

)n
2

d$

Then we clearly see the bound

∣∣∣Iε,δ2 ϕ(0)− Iε,02 ϕ(0)
∣∣∣ ≤ C ‖φ‖α δα

∫
Rn−1

|$|α(
1 + |$|2

)n
2
≤ C ‖φ‖α δα.

Therefore the theorem follows.

The following Theorem shows the convergence of I
ε,δ
2 ϕ in Cα

′
(Γ1) for any α′ < α where

ϕ ∈ Cα(Γ2) and it can be proved in the same manner as Theorem 4.6.

Theorem 5.4. [1] Fix 0 < 2ε < ε0. Then for any 0 < α′ < α < α0 and for all ϕ ∈ Cα(Γ2),

we have

ηI
ε,δ
2 ϕ

α′−→ ηI
ε,0
2 ϕ as δ −→ 0.
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Chapter 6

The convergence and the main results.

In this Chapter we will show the operators
(
T δ
)−1

exist for any 0 ≤ δ ≤ δ0 and are uniformly

bounded in the operator norm. We have shown in Section 3.1 the operators T δ are invertible

for δ > 0, but it has proven in [1] that the operators T δ do not converge in norm to their

limiting operator T 0. From elementary functional analysis we know that If the operators

T δ were to converge in norm to T 0 and if (T 0)−1 exists, then we immediately would

get the uniform boundedness for (T δ)−1 in operator norm. Therefore, according to

the absence of the norm convergence, we need to study further properties for the operators

T δ in order to have the uniform boundedness for their inverses. In [1] for the dimension

n = 2, they have used the notion of collectively compact operators to get the invertibility

of T 0 and the uniform boundedness of the operators
(
T δ
)−1

. We will mimic the idea that

presented in [1] to obtain the uniform boundedness for (T δ)−1 in any dimension n ≥ 2.

6.1 Preliminaries

Let X, Y and Z be real or complex Banach spaces and let B be the closed unit ball in X,

that is,

B = {x ∈ X : ‖x‖ ≤ 1}.
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Denote by L(X, Y ) the Banach space of bounded linear operators T : X −→ Y with the

usual operator norm,

‖T‖ = sup
x∈B
‖Tx‖ .

It is known from elementary functional analysis that a subset X ′ ⊂ X is relatively

compact iff X ′ is sequentially compact iff X ′ is totally bounded. Recall that a set is totally

bounded if for any ε > 0, there exists a finite cover by ε-balls.

In this Chapter, we will use

‖Tn − T‖ −→ 0

to denote for convergence in norm and

Tn −→ T

to denote for pointwise convergence (strong convergence), that is

Tnx −→ Tx ∀x ∈ X.

An operator K ∈ L(X, Y ) is called compact iff the set KB is relatively compact. The

concept of compact operators plays an important role in solving equations of the form

(I −K)x = y. (6.1)

In applied mathematics, equation (6.1) is known as Fredholm alternative, that is, (6.1) has
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unique solution iff the homogeneous equation

(I −K)x = 0, (6.2)

has only the trivial solution x = 0. In such a case, the Fredholm operator I −K : X −→ Y

has a bounded inverse (I −K)−1. The practical solution of equation (6.1) often depends on

the approximation operators. That is, to find a solution of (6.1), it often requires to find a

solution of the corresponding approximate equation

(I −Kn)xn = y, (6.3)

where Kn are compact operators and ‖Kn −K‖ −→ 0. Then (I −K)−1 exists iff for some

N and all n ≥ N there exist uniformly bounded (I −Kn)−1. In such a case,

∥∥∥(I −Kn)−1 − (I −K)−1
∥∥∥ −→ 0.

We notice this scheme requires convergence in norm. In some cases, convergence in norm

can not hold. Indeed, it is possible to have pointwise convergence only. Therefore, we seek

an alternative scheme that requires pointwise convergence instead of the norm convergence.

Such a scheme is indeed available: For a sequence of collectively compact operators

Kn, such that Kn −→ K (where K is a compact operator). Then, (I −K)−1

exists if and only if for some n ≥ N the operators (I −Kn)−1 exist and are

bounded uniformly, in such a case

(I −Kn)−1 −→ (I −K)−1 .
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Let us introduce the notion of collectively compact operators which is a generalization of

the notion of compact operators. Collectively compact operators are very important tools

for solving integral equations of the second kind and have been studied in several papers

[4, 5, 6]. We use [3, 5] to introduce the definition of collectively compact and some basic

results that are needed for our work.

Definition 6.1. [3] A set K ⊂ L(X, Y ) is called collectively compact if the set

KB = {Kx : K ∈ K, x ∈ B}

is relatively compact.

We notice from the definition of collectively compactness, every operator in collectively

compact set is compact.

Example 6.2. [3] Let X = `2. Define Kn ∈ L(X), n = 1, 2, · · · , by

Knx = (xn, 0, 0, · · · ).

Let K = {Kn}. Then KB is bounded and dim(KX) = 1. Thus K is collectively compact.

The following Lemma shows that pointwise limit of collectively compact operators is

compact.

Lemma 6.3. [3] Let K,Kn ∈ L(X), n = 1, 2, · · · , be such that K = {Kn, n = 1, 2, · · · } is a

collectively compact set and Kn converges pointwise to the operator K. Then K is compact.
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Proof.

KB ⊂ {Knx : n ≥ 1, x ∈ B} = {Kn}B.

Thus K is compact.

Lemma 6.4. [5] Let K ⊂ L(X, Y ) be a collectively compact set and M ⊂ L(Z,X) be a

bounded set. Then the set KM is collectively compact.

Proof. Let B be the closed unit ball in X and B′ be the closed unit ball in Z. Since M is

bounded then there exist r > 0 be such that ‖M‖ < r for all M ∈M. Thus

KMB ⊂ r KB′.

Since K is collectively compact, then KMB is compact. Therefore we see that KM is

collectively compact.

Remark 6.5. [3] A collectively compact set is a bounded set of compact operators, but the

converse is false as we will see in the following example.

Example 6.6. [3] Let X = `2 with the orthonormal basis {ϕα : α ∈ I} and let Pα be the

orthogonal projection onto the one-dimensional subspace spanned by ϕα. Then

Pαx = (x, ϕα)ϕα, ‖Pα‖ = 1,

and Pα is compact since dimPα`
2 = 1. Thus K = {Pα, α ∈ I} is a bounded set of compact
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operators in L(`2). However, K is not collectively compact because

ϕα = Pαϕα ∈ KB, ∀ α ∈ I,

and

∥∥ϕα − ϕβ∥∥ =
√

2 for α 6= β.

Therefore KB is not totally bounded.

The following Lemma is very useful and it plays a fundamental role in our work because

it just requires pointwise convergence.

Lemma 6.7. [3] Let X be a Banach space and K, Kn be bounded linear operators on X for

n = 1, 2, .... Assume that {Kn} is collectively compact and K is compact and Kn −→ K.

Then, (I −K)−1 exists if and only if for some n ≥ N the operators (I −Kn)−1 exist and

are bounded uniformly, in which case (I −Kn)−1 −→ (I −K)−1.

6.2 Collective Compactness and convergence of Kε,δ
2 .

After introducing the concept of collectively compactness in the previous Section, we use the

concept to show the set K = {Kε,δ
2 , 0 < δ < δ0} is collectively compact, where the operators

K
ε,δ
2 are defined in Section 3.3.

Theorem 6.8. Let ε be fixed with 0 < 2ε < ε0. The operators K
ε,δ
2 : Cα(Γ2) −→ Cα(Γ1),

0 < δ < δ0, form a collectively compact family of operators.

Proof. For ϕ ∈ Cα(Γ2) and x ∈ Γ1 ∩ B(R0), recall the definition of the operator K
ε,δ
2 from
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Section 3 which is

K
ε,δ
2 ϕ(x) =

−1

ωn

∫
Γ2

(x− y − δen) · ν(x)

|x− y − δen|n
ϕ(y) dσ(y)

+
1

ωn

∫
Γ2,ε

(xε − yε − δen) · νε(xε)
|xε − yε − δen|n

Eϕ ◦ P (yε) dσ(yε),

where

νε(xε) =
1√

1 +
∣∣∇ψ1,ε(x′)

∣∣2
−∇ψ1,ε(x

′)

1

 ,

P is the projection map from Γ2,ε onto Rn−1 and E is the extension operator on Cα(Γ2)

into Cα(Rn−1) that defined in (3.13). Now, when |x| < ε
2 we clearly see that for

∣∣y′∣∣ < ε the

two integrands in the above expression coincide. Thus we have the following

K
ε,δ
2 ϕ(x) =

−1

ωn

∫
{Γ2∩|y′|≥ε}

(x− y − δen) · ν(x)

|x− y − δen|n
ϕ(y) dσ(y)

+
1

ωn

∫
{Γ2,ε∩|y′|≥ε}

(xε − yε − δen) · νε(xε)
|xε − yε − δen|n

Eϕ ◦ P (yε) dσ(yε),

and more explicitly with the help of the auxiliary functions we rewrite the operator K
ε,δ
2 in

the following form

K
ε,δ
2 ϕ(x) =

−1

ωn

∫
{Γ2∩|y′|≥ε}

(x− y − δen) · ν(x)

|x− y − δen|n
ϕ(y) dσ(y) := Kε,δ2,1ϕ(x)

+
1

ωn

√
1 +

∣∣∇ψ1,ε(x′)
∣∣2
∫
|y′|≥ε

(y′ − x′) · ∇ψ1,ε(x
′) +

(
ψ1,ε(x

′)− ψ2,ε(y
′)− δ

)
(
|x′ − y′|2 + (ψ1,ε(x′)− ψ2,ε(y′)− δ)2

)n/2 φ(y′) dy′ := Kε,δ2,2ϕ(x).

Then we proceed to discuss the regularity and the compactness of each term that involved

in the above expression separately. First, let us assume that Hδ1 and Hε,δ2 be the kernel
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functions that associated with the operators Kε,δ2,1 and Kε,δ2,2 respectively. That is,

Hδ1(x, y) :=
(x− y − δen) · ν(x)

|x− y − δen|n
, (6.4)

and

Hε,δ2 (x, y) :=
1√

1 +
∣∣∇ψ1,ε(x′)

∣∣2
(y′ − x′) · ∇ψ1,ε(x

′) +
(
ψ1,ε(x

′)− ψ2,ε(y
′)− δ

)
(
|x′ − y′|2 + (ψ1,ε(x′)− ψ2,ε(y′)− δ)2

)n/2 . (6.5)

For the operators

Kε,δ2,1ϕ(x) =
−1

ωn

∫
{Γ2∩|y′|≥ε}

Hδ1(x, y)ϕ(y) dσ(y), |x| < ε

2
.

We obviously see the kernel function Hδ1(x, y) is α0−Hölder continuous for any 0 < α0 ≤

1 with respect to x and smooth with respect to y as well as Hδ1 is uniformly bounded

independently of δ. Thus the compactness of the operators Kε,δ2,1 follows. Similarly, for the

operators

Kε,δ2,2ϕ(x) =
1

ωn

∫
|y′|≥ε

Hε,δ2 (x, y)φ(y) dy′, |x| < ε

2
.

The kernel function Hε,δ2 (x, y) is α0−Hölder continuous for any 0 < α0 ≤ 1 with respect to

x and y also Hε,δ2 is uniformly bounded independently of δ. Therefore, the operators Kε,δ2,2

are compact. Thus the compactness and the regularity of the operators K
ε,δ
2 follow when

|x| < ε
2 . Then we continue to discuss the properties of the operators when |x| ≥ ε

2 . In this
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case we have

K
ε,δ
2 ϕ(x) =

−1

ωn

∫
Γ2

Hδ1(x, y) ϕ(y) dσ(y) +
1

ωn

∫
Rn−1

Hε,δ2 (x, y) φ(y′) dy′, (6.6)

where Hδ1(x, y) and Hε,δ2 (x, y) are defined in (6.4) and (6.5) respectively. Again, clearly we

see that the kernel function Hδ1(x, y) is α0−Hölder continuous for any x ∈ Γ1∩B(R0)\B( ε2)

and y ∈ Γ2 even though δ = 0 as well as Hδ1(x, y) is uniformly bounded independently

of δ. Thus the compactness and the regularity of the first integral in (6.6) follow. For

the second integral in (6.6), we see that the denominator of the kernel function Hε,δ2 (x, y)

never vanishes even though δ = 0 because the auxiliary function ψ1,ε always negative when∣∣x′∣∣ > 0 therefore the regularity of Hε,δ2 and the uniform boundedness follow. Therefore

we obtain the regularity and the uniform boundedness as well as the compactness of the

second integral in (6.6). From the above observation we conclude that the operators K
ε,δ
2

are compact operators from Cα(Γ2) into Cα0(Γ1) as well as they are uniformly bounded

independently of δ. Thus the family

F = {Kε,δ
2 , 0 < δ < δ0}

is uniformly bounded in operator norm from Cα(Γ2) into Cα0(Γ1). Since, the embedding

Cα0(Γ1) ↪→ Cα(Γ1), α < α0,

is compact, then we see that the family F is collectively compact.

As a result from the above theorem, we have the pointwise convergence of the operators
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K
ε,δ
2 . That is,

Corollary 6.9. Let 0 < α < α0, and fix 0 < 2ε < ε0. Then for all ϕ ∈ Cα(Γ2), we have

K
ε,δ
2 ϕ −→ K

ε,0
2 ϕ, in Cα(Γ1),

as δ approaches 0.

Proof. The denominators of the kernel functions associated to the operatorsK
ε,δ
2 are bounded

away from 0 even though δ = 0 as well as the kernel function has Cα regularity. Thus by

using the dominated convergence theorem we can pass the limit inside the integral sign.

6.3 Pointwise Convergence of T δ.

This Section deals with the pointwise convergence of the operator T δ that defined in Section

3.4 by the following, for δ > 0, T δ defined as an operator in L
(
Cα(Γ1) × Cα(Γ2)

)
and has

the form

T δ = Λε,δ + Cε,δ,

where

Λε,δ =


λI η

ωn

√
1+
∣∣∣∇ψ1,ε

∣∣∣2
(
J
ε,δ
2 + I

ε,δ
2

)
η

ωn

√
1+
∣∣∣∇ψ2,ε

∣∣∣2
(
J
ε,δ
1 + I

ε,δ
1

)
λI

 ,

and

Cε,δ =

−K∗1 ηK
ε,δ
2

ηK
ε,δ
1 −K∗2

+ (1− η)

 0 Lδ2

Lδ1 0

 .
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For δ = 0, T δ is defined by

T 0 = Λε,0 + Cε,0,

where

Λε,0 =


λI η

ωn

√
1+
∣∣∣∇ψ1,ε

∣∣∣2
(
J
ε,0
2 + I

ε,0
2

)
η

ωn

√
1+
∣∣∣∇ψ2,ε

∣∣∣2
(
J
ε,0
1 + I

ε,0
1

)
λI

 ,

and

Cε,0 =

−K∗1 ηK
ε,0
2

ηK
ε,0
1 −K∗2

+ (1− η)

 0 L0
2

L0
1 0

 .

As a consequence of Theorems 4.6, 5.4 and Corollary 6.9, we obtain the following,

Corollary 6.10. Fix 0 < 2ε < ε0. Then for any 0 < α′ < α and for all (ϕ1, ϕ2) ∈

Cα(Γ1)× Cα(Γ2), we have

Λε,δ

ϕ1

ϕ2

 −→ Λε,0

ϕ1

ϕ2

 , in Cα
′
(Γ1)× Cα

′
(Γ2),

Cε,δ

ϕ1

ϕ2

 −→ Cε,0

ϕ1

ϕ2

 , in Cα(Γ1)× Cα(Γ2),
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and

T δ

ϕ1

ϕ2

 −→ T 0

ϕ1

ϕ2

 , in Cα
′
(Γ1)× Cα

′
(Γ2).

Furthermore, the operators Cε,δ are uniformly bounded in L
(
Cα(Γ1)× Cα(Γ2)

)
.

Proof. By the bounded principle theorem the uniform boundedness of the operators Cε,δ

follows.

Theorem 6.11. For λ = k+1
2(k−1)

and 0 < α′ < α. There exists δ0 > 0 such that the operators

Λε,δ, 0 ≤ δ ≤ δ0, are invertible with inverses that satisfying

∀ 0 ≤ δ ≤ δ0,
∥∥∥Λ−1

ε,δ

∥∥∥ ≤ C

|λ| − 1
2

(
1 + C(ε)

)
(1 + ε0)

, (6.7)

uniformly with respect to δ in the operator norm L
(
Cα(Γ1)×Cα(Γ2)

)
and C(ε) approaches

0 as ε approaches 0. Furthermore, for any (ϕ1, ϕ2) ∈ Cα(Γ1)× Cα(Γ2), we have

Λ−1
ε,δ

ϕ1

ϕ2

 −→ Λ−1
ε,0

ϕ1

ϕ2

 in Cα
′
(Γ1)× Cα

′
(Γ2), α′ < α.

Proof. From Theorems (4.1) and (5.1), we have shown that for any 0 ≤ δ ≤ δ0 and α′ < α

the following bound holds

∥∥∥∥∥∥ η

ωn

√
1 +

∣∣∇ψ1,ε

∣∣2
(
J
ε,δ
2 + I

ε,δ
2

)∥∥∥∥∥∥
L(Cα(Γ2),Cα(Γ1))

≤ 1

2

(
1 + C(ε)

)
(1 + ε0) ,
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and in the similar manner we have the bound

∥∥∥∥∥∥ η

ωn

√
1 +

∣∣∇ψ1,ε

∣∣2
(
J
ε,δ
1 + I

ε,δ
1

)∥∥∥∥∥∥
L(Cα(Γ1),Cα(Γ2))

≤ 1

2

(
1 + C(ε)

)
(1 + ε0) .

Recall that from equation (3.10), ε0 has been chosen to satisfy the inequality

1 + ε0
2

< |λ| .

Thus we may choose ε > 0 sufficiently small such that

1

2

(
1 + C(ε)

)
(1 + ε0) < |λ| .

Therefore Λε,δ are invertible and satisfy the bound (6.7). From Corollary (6.10), it follows

that for (ϕ1, ϕ2) ∈ Cα(Γ1)× Cα(Γ2) we have the pointwise convergence

Λ−1
ε,δ

ϕ1

ϕ2

 −→ Λ−1
ε,0

ϕ1

ϕ2

 in Cα
′
(Γ1)× Cα

′
(Γ2), α′ < α.

In the following Theorem we will use the notion of collectively compact operators that

introduced in Section 6.1.

Theorem 6.12. For 0 < α < 1, the following hold

1. The operators {Cε,δ Λ−1
ε,δ } are collectively compact on Cα(Γ1)× Cα(Γ2),

2. Cε,δ Λ−1
ε,δ −→ Cε,0 Λ−1

ε,0 pointwise in L
(
Cα(Γ1)× Cα(Γ2)

)
as δ approaches 0.
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Consequently, {Cε,0 Λ−1
ε,0} is compact operator on Cα(Γ1)× Cα(Γ2).

Proof. The collectively compactness of the set {Cε,δ Λ−1
ε,δ } follows easily from the uniform

bound (6.7), Theorem 6.8, the compactness of the operators K∗i , i = 1, 2 and then Lemma

6.4.

For the pointwise convergence, let ϕ ∈ Cα(Γ1) × Cα(Γ2). Since the operators Cε,δ

are collectively compact on Cα(Γ1) × Cα(Γ2) and (Λ−1
ε,δ − Λ−1

ε,0 )ϕ are uniformly bounded

in Cα(Γ1) × Cα(Γ2), then for any subsequence Cε,δn(Λ−1
ε,δn
− Λ−1

ε,0 )ϕ there exists further

subsequence Cε,δnj
(Λ−1
ε,δnj

−Λ−1
ε,0 )ϕ which converges to some function Lε ∈ Cα(Γ1)×Cα(Γ2).

From Theorem 6.11, we have

Λ−1
ε,δϕ −→ Λ−1

ε,0ϕ in Cα
′
(Γ1)× Cα

′
(Γ2), α′ < α,

and also we have from Corollary 6.10 that Cε,δ are uniformly bounded in L (Cα(Γ2)× Cα(Γ1)).

Therefore,

Cε,δnj
(Λ−1
ε,δnj

− Λ−1
ε,0 )ϕ −→ 0 in Cα

′
(Γ1)× Cα

′
(Γ2).

By uniqueness of the limit, we obtain that Lε ≡ 0. That is,

Cε,δnj
(Λ−1
ε,δnj

− Λ−1
ε,0 )ϕ −→ 0 in Cα(Γ1)× Cα(Γ2).

Therefore the sequence Cε,δ(Λ
−1
ε,δ −Λ−1

ε,0 )ϕ converges to 0 in Cα(Γ1)×Cα(Γ2). Now, we form

the following

(
Cε,δ Λ−1

ε,δ − Cε,0 Λ−1
ε,0

)
ϕ = Cε,δ

(
Λ−1
ε,δ − Λ−1

ε,0

)
ϕ+

(
Cε,δ − Cε,0

)
Λ−1
ε,0 ϕ.
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Thus we obtain that Cε,δ Λ−1
ε,δ converges pointwise to Cε,0 Λ−1

ε,0 in Cα(Γ1)× Cα(Γ2).

Since Cε,0 is a compact operator and Λε,0 is invertible, then T 0 = Λε,0+Cε,0 is a Fredholm

operator. Thus by the help of Theorem 6.12 we have all ingredients to show the invertibility

of the limiting operator T 0.

Theorem 6.13. The operator T 0 : Cα(Γ1)× Cα(Γ2) −→ Cα(Γ1)× Cα(Γ2) is invertible.

Proof. It suffices to show T 0 is injective. Let (ϕ1, ϕ2) ∈ Cα(Γ1)× Cα(Γ2) be such that

T 0

ϕ1

ϕ2

 = 0. (6.8)

From Corollary 6.10, we have that Lδ2ϕ2 −→ L0
2ϕ2 in Cα

′
(Γ1) for α′ < α as δ approaches 0.

Therefore we obtain

∫
Γ1

L0
2ϕ2 dσ = lim

δ→0

∫
Γ1

Lδ2ϕ2 dσ

= − lim
δ→0

∫
Γ1

∂νS2ϕ2
δ(x− δen) dσ(x)

Since S2ϕ2
δ(x− δen) is harmonic in D1, then we have

∫
Γ1

L0
2ϕ2 dσ = 0.

Thus we obtain the following

∫
Γ1

(
(λI −K∗1)ϕ1 + L0

2ϕ2

)
dσ(x) =

∫
Γ1

(λI −K∗1)ϕ1 dσ(x).
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Since K∗1 is the L2 adjoint of K1, then we have the following

∫
Γ1

(λI −K∗1)ϕ1 dσ(x) =

∫
Γ1

(
λϕ1 −K1(1)ϕ1

)
dσ(x).

From Theorem 2.9, we have K1(1) = 1
2 , thus we obtain

∫
Γ1

(
(λI −K∗1)ϕ1 + L0

2ϕ2

)
dσ(x) = (λ− 1

2
)

∫
Γ1

ϕ1 dσ(x). (6.9)

A similar result hold for
(
λI −K∗2

)
ϕ2 + L0

1ϕ1 on Γ2, that is

∫
Γ2

(
(λI −K∗2)ϕ2 + L0

1ϕ1

)
dσ = (λ− 1

2
)

∫
Γ2

ϕ2 dσ. (6.10)

From the assumption (6.8), we have

(λI −K∗1)ϕ1 + L0
2ϕ2 = 0 on Γ1,

and

(λI −K∗2)ϕ2 + L0
1ϕ1 = 0 on Γ2.

Therefor by using (6.9) and (6.10), it follows that

(λ− 1

2
)

∫
Γ1

ϕ1 dσ = (λ− 1

2
)

∫
Γ2

ϕ2 dσ = 0.

Since |λ| > 1
2 , we have ∫

Γ1

ϕ1 dσ =

∫
Γ2

ϕ2 dσ = 0. (6.11)
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Now, consider the function

w = S1ϕ1 + S2ϕ2 on Rn, (6.12)

where Si is the single layer potential on Γi, i = 1, 2. that is,

Siϕi(x) =

∫
Γi

Φ(x, y)ϕi(y) dσ(y), i = 1, 2.

and Φ(x, y) is the fundamental solution to the Laplace equation. From the smoothness of

the single layer potentials, we see that w is piecewise harmonic, that is, w is harmonic inside

and outside the inclusion D1 ∪D2. By using (6.11), we easily conclude that

w(x) = O(|x|1−n) as |x| −→ ∞. (6.13)

Since w is harmonic outside D1 ∪D2, then by using (6.13) we obtain

∇w(x) = O(|x|−n) as |x| −→ ∞. (6.14)

Furthermore, from Lemma 2.18, we have the bounds

∥∥∇Sjϕj
∥∥
α′
(
Dj

) +
∥∥∇Sjϕj

∥∥
α′
(
Rn\Dj)

≤ C
∥∥ϕj∥∥α α′ < α, j = 1, 2. (6.15)

Now we show that w is locally a weak solution to


div (ak ∇w) = 0, in Rn \ {0},

ak = 1 + (k − 1)χ(D1∪D2).

(6.16)
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Let R >> 1 and observe that

∫
B(R)

ak∇w∇η dx = k

∫
D1

∇ (S1ϕ1(x) + S2ϕ2(x))∇η dx

+ k

∫
D2

∇ (S1ϕ1(x) + S2ϕ2(x))∇η dx

+

∫
B(R)\(D1∪D2)

∇ (S1ϕ1(x) + S2ϕ2(x))∇η dx.

Using the divergence theorem, it follows

∫
B(R)

ak∇w∇η dx = k

∫
Γ1

(
∂ν−S1ϕ1(x) + ∂νS2ϕ2(x)

)
η dσ(x)

+ k

∫
Γ2

(
∂νS1ϕ1(x) + ∂ν−S2ϕ2(x)

)
η dσ(x)

−
∫

Γ1

(
∂ν+S1ϕ1(x) + ∂νS2ϕ2(x)

)
η dσ(x)

−
∫

Γ2

(
∂νS1ϕ1(x) + ∂ν+S2ϕ2(x)

)
η dσ(x).

Utilizing the jump conditions for the single layer potential (2.23), we have

∫
B(R)

ak∇w∇η dx = (1− k)

∫
Γ1

(
(λI −K∗1) ϕ1(x)− ∂νS2ϕ2(x)

)
η dσ(x)

+ (1− k)

∫
Γ2

(
(λI −K∗2) ϕ2(x)− ∂νS1ϕ1(x)

)
η dσ(x).

By applying (6.8), it follows that

∫
B(R)

ak∇w∇η dx = 0.

Thus w is a local solution to (6.16). Next, we show w ≡ 0 on Rn. Let r >> 1 and η = wχ,
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where χ ∈ C∞0 (Rn) be such that χ ≡ 1 in B(r− 1) and χ ≡ 0 outside B(r). Then we have

∫
B(r)

ak∇w · ∇
(
wχ
)
dx = 0.

That is

∫
B(r)

ak |∇w|2 χ dx+

∫
B(r)\B(r−1)

ak
(
∇w · ∇χ

)
w dx = 0. (6.17)

For the second integral in the right hand side of (6.17), we use the decay conditions (6.13)

and (6.14) to obtain the following

∣∣∣∣∣
∫
B(r)\B(r−1)

ak
(
∇w · ∇χ

)
w dx

∣∣∣∣∣ ≤ C r−n+1 −→ 0 as r −→∞. (6.18)

Therefore when r approaches ∞ in (6.17), we conclude the following

∫
Rn

ak |∇w|2 dx = 0. (6.19)

Thus w is a constant in Rn. Then by using the decay condition (6.13), we have w ≡ 0

in Rn. Consequently, involving the jump conditions for the single layer potential (2.23), we

have the following

ϕi(x) =
∂

∂ν+ w − ∂

∂ν−
w = 0, x ∈ Γi \ {0}, i = 1, 2.

Then by using the continuity of ϕi at 0, it follows that ϕi ≡ 0 in Rn. Thus T 0 is injective.
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Since T 0 and Λε,0 are invertible and

T 0 =
(
I + Cε,0Λ−1

ε,0

)
Λε,0.

Then we see that

Λε,0 T
0−1

=
(
I + Cε,0Λ−1

ε,0

)−1
.

That is,
(
I + Cε,0Λ−1

ε,0

)−1
exists. From Theorem 6.12 we have

I + Cε,δΛ
−1
ε,δ −→ I + Cε,0Λ−1

ε,0 in Cα(Γ1)× Cα(Γ2).

Thus from Lemma (6.7) we have that
(
I + Cε,δΛ

−1
ε,δ

)−1
exist for δ is sufficiently small and

they are uniformly bounded with respect to δ in the operator norm. Therefore, we obtain

the pointwise convergence

(
I + Cε,δΛ

−1
ε,δ

)−1
−→

(
I + Cε,0Λ−1

ε,0

)−1
. (6.20)

Since T δ =
(
I + Cε,δΛ

−1
ε,δ

)
Λε,δ , then by using the bound (6.7) we conclude that

(T δ)−1 = Λ−1
ε,δ

(
I + Cε,δΛ

−1
ε,δ

)−1

are uniformly norm bounded and satisfy

(T δ)−1 −→ (T 0)−1 in Cα
′
(Γ1)× Cα

′
(Γ2), α′ < α,

as δ −→ 0. Thus we have proved the following Theorem.
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Theorem 6.14. For λ = k+1
2(k−1)

and α < α0. There exists δ0 > 0 such that the opera-

tors T δ, 0 ≤ δ ≤ δ0, are invertible with inverses that are bounded independently of δ in

L(Cα(Γ1)×Cα(Γ1)), α < α0. Moreover, the operators (T δ)−1 converge pointwise to (T 0)−1

as δ approaches 0 in L(Cα
′
(Γ1)× Cα′(Γ1)) for any α′ < α < α0.

6.4 The main results.

The main results are similar to the case of dimension n = 2. The solution of problem (2.5)

has the representation (2.58) in terms of the solutions
(
ϕδ1, ϕ

δ
2

)
to (2.59) and the harmonic

function Hδ from (2.49). A similar relationship holds between the solution u0 to problem

(2.4) with touching inclusions and the solutions (ϕ0
1, ϕ

0
2) to

T 0

ϕ0
1

ϕ0
2

 =

∂νH0 |Γ1

∂νH0 |Γ2

 , (6.21)

where H0 is the harmonic function from (2.48). This is the assertion of the following theorem.

Theorem 6.15. [1] The solution u0, to (2.4), may be written

u0(x) = SΓ1
ϕ0

1(x) + SΓ2
ϕ0

2(x) +H0(x), x ∈ Ω, (6.22)

where H0 is harmonic inside Ω, and defined by (2.48), and the pair(ϕ0
1, ϕ

0
2) ∈ Cα(Γ1) ×

Cα(Γ2) is the unique solution to (6.21).

Proof. Sine H0 is harmonic inside Ω, and since Γ1 and Γ2 are C1+α0 , the right-hand side

of (6.21) lies in Cα(Γ1) × Cα(Γ2) for any α ≤ α0. By using theorem (6.14), the integral

equation (6.21) therefor has a unique solution (ϕ0
1, ϕ

0
2) ∈ Cα(Γ1)×Cα(Γ2), for any α ≤ α0.
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Utilizing Lemma (2.16), we see that

∂νHδ |Γi−→ ∂νH0 |Γi , in Cα(Γi) as δ −→ 0.

So we infer from theorem (6.14) that

ϕδ1
ϕδ1

−
ϕ0

1

ϕ0
1

 =
(
T δ
)−1

∂νHδ |Γ1

∂νHδ |Γ2

− (T 0
)−1

∂νH0 |Γ1

∂νH0 |Γ2



=
(
T δ
)−1

[∂νHδ |Γ1

∂νHδ |Γ2

−
∂νH0 |Γ1

∂νH0 |Γ2

]

+

[(
T δ
)−1
−
(
T 0
)−1

]∂νH0 |Γ1

∂νH0 |Γ2


−→ 0 in Cα

′
(Γ1)× Cα

′
(Γ2), 0 < α′ < α.

This convergence of ϕδi immediately implies that

S1ϕ
δ
1(x+

δ

2
en) −→ S1ϕ

0
1(x), and S2ϕ

δ
2(x− δ

2
en) −→ S2ϕ

0
2(x), (6.23)

uniformly on compact subdomains of Ω \ (Γ1 ∪ Γ2) as δ −→ 0.

Consider now the solution to problem (2.5)

uδ(x) = S1ϕ
δ
1(x+

δ

2
en) + S2ϕ

δ
2(x− δ

2
en) +Hδ(x).

From Lemma 2.16, we know that Hδ −→ H0 uniformly on compact subdomains of Ω, and
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if we combine this with (6.23), it follows that

uδ(x) = S1ϕ
δ
1(x+

δ

2
en) + S2ϕ

δ
2(x− δ

2
en) +Hδ(x) −→ S1ϕ

0
1(x) + S2ϕ

0
2(x) +H0(x),

uniformly on compact subdomains of Ω \ Γ1 ∪ Γ2 as δ −→ 0.

Since we also know that uδ −→ u0 in H1(Ω), it follows from uniqueness of the limit that

u0 = S1ϕ
0
1 + S2ϕ

0
2 +H0, (6.24)

on compact subdomains of Ω \ Γ1 ∪ Γ2. But both sides of (6.24) are continuous functions in

Ω, we get that

u0(x) = S1ϕ
0
1(x) + S2ϕ

0
2(x) +H0(x), x ∈ Ω.

Theorem 6.16. [1] Let ε̃ > 0 and 0 < α < α0. The solution to (2.5) satisfies

‖uδ‖
C1,α(Ωε̃\Dδ1∪D

δ
2)

+ ‖uδ‖
C1,α(Dδ1)

+ ‖uδ‖
C1,α(Dδ2)

≤ C ‖g‖
L2(∂Ω)

, (6.25)

where C is independent of δ and g.

Proof. Recall that uδ has the representation

uδ(x) = S1ϕ
δ
1(x+

δ

2
en) + S2ϕ

δ
2(x− δ

2
en) +Hδ(x),

where
(
ϕδ1, ϕ

δ
2

)
solves (2.59) in Cα

′
(Γ1) × Cα′(Γ2), for any α < α′ < α0. From equation
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(2.62), we have

∥∥∥Siϕδi∥∥∥C1,α(Dδi )
+
∥∥∥Siϕδi∥∥∥C1,α(Ωε̃\Dδi )

≤ C
∥∥∥ϕδi∥∥∥Cα′(Γi) , i = 1, 2.

Due to theorem (6.14) and the fact that
(
ϕδ1, ϕ

δ
2

)
solves (2.59), we have

∥∥∥ϕδ1∥∥∥Cα′(Γ1)
+
∥∥∥ϕδ2∥∥∥Cα′(Γ2)

≤ C ‖Hδ‖C1,α′(Ωε̃)
.

Applying Lemma (2.16), we have that

‖Hδ‖C1,α′(Ωε̃)
≤ C ‖g‖

L2(∂Ω)
.
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