GRADIENT ESTIMATES FOR SOLUTIONS TO DIVERGENCE FORM ELLIPTIC
EQUATIONS WITH PIECEWISE CONSTANT COEFFICIENTS IN DIMENSION N.

By

Khaldoun Al-Yasiri

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

Mathematics - Doctor of Philosophy

2016



ABSTRACT
GRADIENT ESTIMATES FOR SOLUTIONS TO DIVERGENCE FORM
ELLIPTIC EQUATIONS WITH PIECEWISE CONSTANT COEFFICIENTS
IN DIMENSION N.
By

Khaldoun Al-Yasiri

In a bounded C1®0 domain Q € R”, 0 < o < 1, contains two simply connected and
strictly convex C120 subdomains (inclusions) Dy and Ds that satisfy D; U Dy CC Q) and

D1 N Dy = {0}, we study the following elliptic differential equation

(

div (a(z)Vu) =0 in Q,

dyu(z) =g on 99, (1)
\fasz“ =0,
where
a(x) =1+ (k- 1)X(DluD2)(l‘), 0<k<oo, k#1,
and

g € L3(89) := {g € L*(59) : /B

N 0}.
The problem arises from studying fiber re-inforced composite media with closely spaced
inclusions in dimension n = 2. For dimension n = 3, the problem also appear in the study
of steady state solutions to Maxwell’s equations.

The bound on the gradient yields the boundedness of the strain in fiber re-inforced

materials and electrical fields when the two inclusions are touching each other.

Following the ideas of [1], we assume that Dy lies in the half space z;, < 0, and Dy in



the half space x;, > 0. Then we begin by separating the inclusions by a distance § > 0, that
18, we set

5 5
DS =Dy — 5en, and DS = Dy + sen.

where ey, = (0’,1). Then we study the approximate differential equation corresponding to

the separated inclusions which is

;

div (a5(x)Vugs) =0 in Q,

 dyus(z) =g on 02, (2)
where ag5(x) = 1+(k_1)X(D5UD5) (x). The solution of the elliptic equation (2) has an integral
1772

representation in terms of potential functions defined on the boundary of each subdomain.
From the representation formula, we derive uniform piecewise C1%, 0 < o < ay, estimates
for this solution which are independent of the distance between the subdomains. That is,

we find the estimate

[[us]| sl 1053, + sl oo pg) < 9l 2290 -

cla (Qg\D(ISUD‘25> che(ng (DY)

where Qz = {z € Q : dist(z,0Q) > €} and C is independent of 6. Our result extends the
earlier result for dimension n = 2 [1], but the analysis is much more complicated. Final
estimates rely on detailed analysis near the touching point and collective compactness of

some integral operators.
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Chapter 1

Introduction

The purpose of this work is to study gradient estimates for solutions of divergence form
elliptic equations with piecewise constant coefficients in dimension n > 2. The problem
arises from studying fiber re-inforced composite media with closely spaced inclusions. A
composite medium described by a bounded domain €2 in R™ (n > 2), which includes finitely

many inclusions (subdomains) D, j = 1,--- ,m. The physical characteristics of the medium

are smooth in each inclusion D; as well as in Q\ (D1 U---U Dpy,), but they are possibly
discontinuous across their boundaries 9D, j = 1,---m.

We use the example from the introductions of [8, 30] to motivate the problem for di-
mension n = 2. The bounded domain © C R? models the cross-section of a fiber-reinforced
composite. Let Dy and Dy be two subdomains represent the cross-section of the fibers, and
Q\ (D1 U D) represent the region surrounding the fibers. Assume that the shear modulus
(modulus of rigidity) of the fibers is 1 < k < oo, and is 1 for the materials in the surround-
ing area. Using a standard model of anti-plane shear, we obtain the following differential

equation
div <<1 + (k — 1)X(D1UD2))VU) =0 in Q, (1.1)

with appropriate boundary data, for instance,

u=g¢g on 0.



The function u represents the out of plane elastic displacement and Vu represents the strain.
For dimension n = 3, the problem also appear in the study steady state solutions to
Maxwell’s equations.
Let E be the electric field and D be the electric displacement in conducting isotropic

medium Q ¢ R3. The fields E and D satisfy the differential equations

curl E=0, D=¢E, and div(D) =0 in ©Q,

where the real valued function e represents the conductivity (dielectricity) of the materials.

Therefore, there exists a potential function u (representing the voltage) such that

E(z) = —Vu(z) in Q,

where () assumed to be simply connected domain in R3. Hence,

D(z) = —€(z) Vu(z), and div(eVu) =0 in Q.

Now suppose that a conductor filling the region 2 that consists of different materials,
say, D1, Do and Q \ (D1 U D9). We assume that conductivity €(z) equals to k in D1 U Do
and €(z) equals to 1 in Q\ Dy U Da. The current flux on 0f2 is represented by the normal

derivative % Therefore, for a given Neumann boundary data g on 02, we obtain the



following differential equation

e (146 Dy ) 74) 0

dulz) =g on 0%, (1.2)

Kfan =0.

At this point, we can emphasize the aim of studying such class of divergence elliptic
equations, which is to study the behavior of the strain (electric field) Vu when the inclu-
sions approach each other (touch) as well as when the shear modulus (conductivity) of the
inclusions k degenerate (k=0 or k = 00).

E. Bonnetier and M. Vogelius [8] have shown that the solution u of problem (1.1) in
dimension n = 2 is in W1H>°(Q) for any fixed 0 < k < oo when the inclusions D; and Dy
are two disks.

Y. Y. Li and M. Vogelius [30] studied more general class of elliptic differential equations,
where € is a bounded domain in R” with a C1® boundary, 0 < « < 1, containing m
disjoint subdomains Dy, 1 < k < m, each with a cle boundary such that Q = Uznzlbk

(for precise geometric picture of the subdomains see [30]). The matrix A(x) = (a;;(z)) is

uniformly elliptic matrix and A(z) is C* in each subdomain Dy, k = 1,--- ,m (but possibly
discontinuous across the boundaries dDy,). For a vector valued function g = (g1, , gn)
that is C* in each subdomain Dy, k = 1,--- ;m (but also possibly discontinuous across the

boundaries 0D},), denote gl€ to be the function g restricted to the subdomain Dj. They

found that for h € L>®(Q), if u € H(Q) is a solution to

0; (aij (9ju) =h+ 0;g9; in €, (1.3)



then the following estimate holds

N <
ol g < € (Wollzosioy + Il ooy + oo (o] or ) (10

where C'is independent of the distance between the inclusions, Q¢ = {x € Q : dist(z, 9Q) >

e},and 0 < o < pand o < ﬁ. They also have studied special case in R? when Q is a

disk centered at the origin with radius R and it contains two unit disks D1 and D9y centered,
respectively, at (0, —1) and (0, 1). That is, the boundaries 9D and 9Dy touch at the origin.

They considered the following differential equation

i (a(x) Oju) =0 inQ,

u=g ondf),
1
where g € H2(012) and

1 ifIEQ\DlLJDQ

0<ag<oo ifxe DyUDs.

For R > 2, they found by using the conformal mapping the following bounds

| DVl < C(l) in Dy and D9, VI, |y| <1,

1DVl < Ckye)  in D3NQe, VI |y| <1,



where D3 = Q\ Dy U D».

Y.Y. Li and L. Nirenberg [29] generalized the result of [30] into systems of elliptic differ-
ential equations and they found that u satisfies the same bound in (1.4) with slightly better
regularity o/ where

a
0<a <min{y, —
o < min{u S0+ a)

}.

G. Citti and F. Ferrari [9] followed [30] with slightly different modifications and they found
the optimal regularity for the problem (1.3) when the inclusions are strictly separated. That
is, they showed that the gradient Vu is CO‘/, in each component, for o/ < min{y,a} when
the inclusions are strictly disjoint.

J. Mateu, J. Orobitg and J. Verdera [22] approached the problem (diV(AVu):O, det(A)zl)
via Beltrami equation and they used Calderon-Zygmund operators and quasiconformal map-
ping. If the inclusions D, do not touch, they showed that Vu is C’O/, for o/ < min{y,a} in
each inclusion and their C’O/ norm is independent of the distance between the inclusions.

Recently, H. Ammari, E. Bonnetier, F. Triki, M.S. Vogelius [1] have studied problem
(1.5) in dimension n = 2 and they found that Vu is piecewise uniformly bounded in oo’
norm for any o/ < a independent of the distance between the subdomains. In this work, we
will generalize the results of [1] into higher dimensions n > 2 by mimicking their ideas with
necessary modifications. Before we start outline our work, we briefly mention some results
when the conductivity k£ degenerates.

In the case of k = oo (perfect conductivity) or £ = 0 (insulated conductivity) the gradient
may blow-up as the inclusions approach each other (touch). In [12, 13] it has been shown
that the rate of the blow-up for the perfect conductivity problem is 5~1/2 for dimension

n =2, (§|lnd|)~! for dimension n = 3 and 6! for higher dimensions n > 4, where § is the
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Figure 1.1: The touching subdomains

distance between the inclusions. For the insulated conductivity problem they have found
5712 as an upper bound of the gradient.

H. Kang, M. Lim and K. Yun [20] studied problem (1.1) in dimension n = 2 when the
inclusions are two disks separated by a distance 6. They decomposed the solution u to (1.1)
as

u=g+b,

where Vg is singular function depending on the distance between the inclusions while Vb
is bounded function regardless of the distance . They found an explicit formula for the
singular part Vg that describes the behavior of the Vu which may blow-up at rate §—1/2
when £ =0 or k = oo.

H. Ammari, G. Ciraolo, H. Kang, H. Lee and K. Yun [17] generalized the results of [20]
to any strictly convex simply connected C1® subdomains Dy and D9 in R?.

For more results in dimension n = 2 when the inclusions are circles, see [16, 18, 19].

Now, we return to our problem in dimension n > 2. Let 2 C R" be a bounded smooth



domain containing the origin 0. For 0 < ag < 1, let Dy and Dy be two C1:?0 simply
connected and strictly convex subdomains (inclusions) contained in € satisfying D1 U Dy CC
Q and D1 N Dy = {0}. Furthermore, we assume that Dj lies in the half space x,, < 0, and
Dy in the half space x5, > 0. We denote by I'; to be the boundary of D;, j = 1,2. We study

the following differentail equation

(

div (a(z)Vu) =0 in Q,
u(r) =g on 0,
(1.5)
Jogu =0
\fan = 07

where

a(z) =14 (k= 1)X(pyuDy) (2)-

Clearly, Lax-Milgram theorem shows that the problem (1.5) has a unique solution u €
HY(Q) for a given g € L2(09).

Following the ideas of [1], we begin by separating the inclusions by a distance § > 0, that
18, we set

5 5
D =D — zen, and DS = Dy + sen.

where ey, = (0’,1). Then we study the approximate differential equation corresponding to

the separated inclusions which is



(

div (ag(z)Vus) =0 in Q,
Ovus(x) =g on 91,
(1.6)
Joqus =0,
\fagg =0,

where a; is the corresponding piecewise constant coefficients, that is,

as(z) =1+ (k— 1)X(D‘15UD‘25)@)'

It is well known that equation (1.6) has a unique solution us in H'() for a given Neumann
boundary data g € L2(8Q) = {g € L?(09) )t [50.9 do(x) = 0}. We prove in Theorem 2.5
the solution to (1.6), us, approaches uniformly in H1(Q) to u, the solution of equation (1.5),
as o0 approaches 0.

Now we state the main result of our work in the following theorem which coincides with

the earlier result for dimension n = 2 [1].

Theorem 1.1. Let € >0 and 0 < a < . The solution to (1.6) satisfies

||U6||C1’a(ﬂg\D(15UDg> + ||U(5”Cl O‘(Dé + || 5” 1O‘(D5) CHgHLQ COR

where Q¢ = {x € Q : dist(x,0Q) > €} and C is independent of 6.

In order to prove the main result, we define the single and double layer potentials for the



Laplacian operator, respectively, by

Spp(x) = /69 O(z,y) o(y) do(y), z € R", (1.7)
and
Dup(o)i= [ D o) dou), v R\ 00 (1)

where ®(z,y) is the fundamental solution to Laplace equation Au(x) =0 in R™.
It is known from [23], the solution of problem (1.6) can be uniquely represented (see
Theorem 2.14) as

us(z) = Hy(x) + S195(x) + Sapd(z), ze€Q, (1.9)

where S; is the single layer potential on the surface I';, j = 1,2. and Hs is a harmonic

function in €2 that has the following form
Hs(x) = =Sig(x) + Do (ugla) (), 2 €
While the potentials 90‘15 and gpg solve the following system of integral equations

()\I - Kik) 90(15(:1:) - 8,,Sggpg(x — ben) = Oy Hg(z — %en), z eI, (L.10)
1.10

—&,Slgo(ls (x + (5en) + ()x] — Ké") gog(x) = 8VH5(x + gen), x €Iy,

k+1
where in this system \ = 2(]{7—4—1)’ and K denotes the operator
1 [ =y viz)
K*5aﬁ——/ do(y), i=1,2
i %5 () on Jo Tmogr ¥ (y) do(y)



From the classic potential theory, we easily show that K%, j = 1,2. are compact operators
from C*(I'y) into C*(I'9) for any o < «.

If we define for (go‘ls, w%) € C*(I'1) x C%(I'9) the operator

) * 1) 1)
% M—-—K L ©
7 = ! 2 ' (1.11)
3 Ly M-K3) \¢
where
§ SN _ S(.
LYo5(x) = —0vSaph (z — den), x eIy, (1.12)
and
) o 1)

Then we can rewrite the system (1.10) in the following form

0
® OvHs(y1(x,
ol =" ( ) , (1.14)
o3 Oy Hy(y2(x,6))
where
)
yl(x75>: (x_§en)7 l’erl,
and

yo(z,d) = (SL’ + gen), x € I'y.

Since Hjy is harmonic function on R", then we easily prove that Hy is uniformly bounded in

10



C“0 norm on the surfaces I';, j=1,2. That is, for m = 1,2, - -, the following bounds hold

|0 Hsllcaor) < Cllgll2(p0) (1.15)

where C' is independent of 9.
From the regularity of the single layer potential (see Lemma 2.18) and the representation

formula (1.9), we have for any 0 < o < a < ag and § > 0 the following bound

@

o/(FZ-) + H9HL2(39)> 5 (1.16)

2 2
]2:;1 Jusl, ()" sl (00\0funf) < c (; |

J

where Q; = {x € Q : dist(z,09Q) > €} and C is depending on o, o/, ag, Q, k, and € but
independent of §.

We clearly observe from (1.16) the gradient Vug is C“ in each component E, D_g and
Qg\D‘f UDg if the potentials gp? are uniformly bounded in C*(I';), j = 1, 2., for any a < ay.

In other words, In order to obtain piecewise Holder continuity of Vugs, we need to show

o

2
Z; | iy = Cloli o) - ¥ a <o, (1.17)
where C' is independent of §.

By involving (1.14), the bound (1.17) follows if we prove the operator T is invertible in
C*(I'1) x C%(I'9) and its inverse is unifromly bounded on C*(I'1) x C%(T'9), for any o < «y.
From elementary potential theory when > 0, the operator T’ 9 is invertible as an operator
on C%(I'1) x C%(Ty). To be more precise, T° can be written as 79 = M\ 4+ K, where Kj

is a compact operator on C*(I'y) x C%(I'y). Then we use Fredholm theory to show the

11



invertibility of the operators 9.

Recall that, if we have a family of bounded linear operators, say, 79 defined on a Banach
space, say, X. Let us assume that 70 converges in norm to an operator TV e L(X) (the
space of all bounded linear operators on X). Notice that, if (79)~1 € £(X), then there exist
8o > 0 be such that for any § < dy there exist uniformly bounded (7°%)~! € £(X), in which
case

|t =T —o.

Naively, we conclude from this observation that we would obtain the existence of uniformly
bounded (T9)~1 € C%(T'}) x C*(T'y) if we proved the existence of (T0)~1 € C¥(I'1) x C%('y)
(we consider 79 as a limiting operator corresponding to T‘S) and 7 converges in norm into
TO. Therefore, we ask whether we can have convergence in norm for the family 79 into
their limiting operator 79, Ammari, H. and Bonnetier, E. and Triki, F. and Vogelius,M.S. [1]
have proved that such convergence in norm cannot hold. In fact, they showed for their case
in dimension n = 2 the limiting operators L?, j = 1,2. (the limiting operators corresponding
to the compact operators L?, j = 1,2.) are not compact operators on C* for any o < «y.
Thus Lg, j =1,2. cannot converge in norm to their limits. Therefore, the above observation
cannot be used to obtain the uniformly bounded operators (T(;)*l. In dimension n = 2 [1]
the authors used the notion of collectively compact operators that require just pointwise
convergence [3]. That is, For collectively compact operators K,, n = 1,2,... such
that K, — K (pointwise convergence) and (I — K)~! exists. Then for some

n > N the operators (I — Kn)_l exist and are bounded uniformly, in such a case

(I-K) ' —u-K".

12



Therefore, in order to obtain the existence of uniformly bounded operators (T‘s)_1 in C%(I'1) x
C*(I'1) x for a < g by using the notion of collectively compact operators, we need to show

two major things which are:

1. The operator T9 can be written as T° = I — As where Ag are collectively compact and

/~X(5 converges pointwise to some limiting operator AO.
2. The limiting operator TO = I — Ay is invertible.

Notice that, when ¢ approaches 0, the kernel of the operator T9 becomes singular at
x = 0 . In fact, the off-diagonal operators Lg and [flS become singular at x = 0 when §
approaches 0.

To overcome the singularity, we follow [1] and decompose the operators Lg, 7 =12. We
only show it for Lg but the decomposition of L(lS follows similarly.

Fix ¢y and let 0 < € < ¢y. We define two auxiliary functions 91  and 19 . globally on

R"~! (see Lemma 3.4) such that

wj,szjja ‘Zlf/‘ <e J=12
(1.18)

”%76”1,5;1@714 <C¢ H%’Hl,ao’ J=12

for any 8 < ag, v = ag—f, and ' = (x1,...,2,—1) € R""L. For the definition of Vv, =1,2
see the Remark 2.1.
Let 6 > 0 and ¢ € C%(I'g). For z € I'1, |z] < Ry, we set z¢ = (2/,11 ((2")) and then we

define the approximate surface

Toe={ye = (V 2.y)) |y e R*}.

13



Figure 1.2: The approximate surfaces

Let Sg £ be the single layer potential defined on the approximate surface I'y  for some

potential £ that defined on the surface I'y ¢ be such that
E=¢ on I'anNB(e).
We also define for the point z¢ = (2,91 ((2’)) € I'1 ¢ the hyper-plane

s = {y € R | g = o (a)}. (1.19)

Again, let S’z{eé’ be the single layer potential defined on the hyper-surface Fg; for the po-
tential £ (we remark here that the potential £ is also well defined on the hyper-plane Fg;
see Section 3.3).

For a cut-off function 7 defined on R” that is supported in the ball B(Ry) and identically

equals to 1 in the ball B(eg), we write the off-diagonal operator Lg in the following form

Lgp(x) = n(z)Lip(x) + (1 — n(z)) Lip(x).

14



Since the singular part of the operator Lg is nL‘s, we decompose it as follows

0 1 0 0
nga(x) = K5 %¢p(z) + 5 (JQ6 o(z) + 15 @(x)) . (1.20)
Wn\/l + ‘V@Z’Le(m/)}
For
X = T¢ — O€n,
the operators K 6’5, J;’(S and ]5’5 are defined as follows
K5%0(x) = —0vSap(x — Sen) + 0veSg £ (X), (1.21)

Bew) = (w14 [Vor. o)) (0S5 ER) — 0082, (%)),

and

Bio(a) = (wny/1+ [V o(a!)|?) 90eSE£(%),

where ve(z¢) is the normal unit vector on the approximate surface I' ¢ at the point xe, that
18,
1 _v¢1,e(x/>
%6) - )
\/1 + |V e (a)] 1

Ve ( (1.22)

Remark 1.2. Since ¢9 = 19 around the origin, then we see the operators K;’(S are not
singular in the neighborhood of the origin. Also we notice that away from the origin, the
kernel functions that are corresponding to the operators K;’(S are uniformly bounded. Then

we can easily show that the operators {K;’d} form a family of collectively compact operators

from C*(I'9) into C*(I'y).

Remark 1.3. In the definition of the operator Jg, we have involved the operator 81/68’2‘,65()2)

15



in order to take the advantage of the difference iy (x')—1b2 ((y') to get the Holder continuity

€,0
for the operator Jy.

After decomposing the off-diagonal operators L2, the operator T defined in (1.11) may

now be decomposed as follows

¥1 ¥1 ¥1

T(S = Ae,é + 06,6 ) (1-23)
¥2 ¥2 ¥2
where
€,0 €,0
A \/ ‘n (/‘2<J2 +15°)
wnAl 1+|Viq (2))
A= " Le o (1.24)
’ €,0 €,0
1 5 (70 + 1) AT
wn\/l—l-‘Vz/JQ’e(x’)‘
and
g §
— K} K3 0 L
1 2 2
Ces = 5 +(1—=n) (1.25)
nKy® —Kj Ly 0

We prove in Theorems (4.1) and (5.1) for any 0 < § < §p and o < oy the following bound

n €,0 €,0
(757 +15°) <

2
wnm L(CY(I9),C¥(I'1))

Similarly, we will get the bound

(1 + O(e)> (1+¢p).

N | —

n €,0 €,0
(57 + 1) <

2
Wn\/m L(CH(I'1),0%(T'9))

(1 + C(e)> (1+¢).

N | =
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Since

1+4+¢9
2

<Al
then we readily see the invertibility of the operators A, 5 and the uniform bound

C
- 3(1+ @)1 +e)

HA;}H < A L 0<6<dp. (1.26)

As a consequence of the uniform bound (1.26), we have the pointwise convergence

/ /
A3 — A in CY(T]) x CY(Ty), o <o

Y2 Y2

We show in Theorem 6.12 that the operators {C 5 A;g} are collectively compact on C%(I'1) x
C*(Tg), and C¢ 5 A;g — Cep A;& pointwise in E(CO‘(Fl) X C’O‘(Fg)) as 0 approaches 0.
Consequently, we obtain the compactness of the operator {C¢ o A;&} on C4(T'1) x C4(T'y).

In Theorem 6.13 we show that the operator TV is invertible. Thus, since 79 and Ae are
invertible and

70 _ (1 + cgoA;g) Aco.

Then we see that

-1 -1
Acp 70" — ([ + 0670/\;6) .

Therefore, we get the pointwise convergence
I+C A 5 — T+Ceph y in C%(Ty) x C%(Ty).

-1
Thus from Lemma (6.7) we have that (I + 0675/&6_;) exist when ¢ is sufficiently small and
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they are uniformly bounded with respect to ¢ in the operator norm. Therefore, we obtain

the pointwise convergence
! !
(1+Ceshg)  — (1+Ceohg) (1.27)
Since T9 = (I + C€75A€_§) A¢ s, then by using the bound (1.26) we obtain
T = At (14 Cnnh)
( T 0 + €048 ’
are uniformly norm bounded and satisfy

—1
(1)1 10 in ¢ (1)) x €Y' (Ty), o <a.

Therefore, the bound (1.17) has been proved and the Theorem 1.1 follows. That is, we have

proved
2
Z |U5H01a D5 ||u(5||C1 a<Q DT D5> Cllgll 290 - (1.28)
Since
us — ug in H'(), (see Theorem 2.5),
and

—1
(T 70 i ¥ (1)) x 0¥ (Ty), o <a.

18



Then we have that the solution wug, to (1.5), can be represented by

up(z) = Ho(z) + S19Y(x) + Sapy(z), = €, (1.29)

where H( is harmonic inside €2, and defined by

HO("E) = _Safzg(x) + Dy, (u0|89) (ZE), x €€, (1'30)

and the pair (gp?,gog) € CYT'y) x C*(I'g) is the unique solution to the limiting system
corresponding to (1.14).

The dissertation is organized as follows: In Chapter 2, we introduce all necessary ingre-
dients for the representation formula to the solution of equation (1.6). Chapter 3 is devoted
to the decomposition of the operators L‘S., 7 =1,2. as well as the operator 79. In Chapter

4, we prove for any 0 < § < §g and a < o the following bound holds

7 : 750 < C(e)
w1+ [V, £(CO(Ty).C(Ty)
While in Chapter 5 we prove that
! 50 < (1 + O(e)) (1+ ).

1
5 12 2
Wn\/m L(CY(Ty),C¥(I'))

Finally, in Chapter 6 we show the invertibility of the operator T and then the existence of

uniformly boundedness of the operators (79)~1.
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Chapter 2

Layer Potentials for system of two

inclusions

2.1 Notations and assumptions

Let n > 2. We denote by B(r) the open ball in R” centered at the origin of radius r and by
B'(r) the open ball in R"~1. For 2 = (21,--- ,x,) € R™, let ' = (21,--- ,x,_1) where we
often regard 2’ as a point in R”~1. Let Q ¢ R” be a bounded smooth domain containing the
origin 0. For 0 < ag < 1, let D1 and Dy be two C120 simply connected and strictly convex
domains (inclusions) contained in €2 such that Dy U Dy CC © and D1 N Dy = {0}. Recall
that we say D; is a C120 domain if each point of the dD; has a neighborhood in which 9D;
is the graph of C1:?0 function of n — 1 variables 21, ..., 5,1, j = 1,2. Furthermore, assume

that D lies in the half space x,, < 0, and D9 in the half space x,, > 0.

Remark 2.1. Since Dy and Dy are both CH*0 domains, then around the touching point
x =0, I'y and T'y would be parametrized by (m’,l/q(x/)) and (m’,@bg(m’)) respectively, where
Y are CL0 functions and I :=0Dj, j =1,2. The graph of 11 lies below the x'-hyperplane,

while the graph of 19 lies above the x'-hyperplane.

20



Let HY(Q) := W12(Q)

functions with compact support in 2. We often use the space Lg(aQ) = {p € L?(09) :

faﬁ ¢ do(x) = 0}.

2.2 Existence and Uniqueness Theorem

Let @ C R"™ be a bounded domain in R” with smooth boundary and consider a C'1:?0

bounded domain D CC .

.

\

Figure 2.1: The touching inclusions

be the usual Sobolev space and C§°(2) is the space of smooth

Let u be a solution to the Neumann problem

div(l+(k—1)xp)Vu=0 in Q,

dyu(x) =g on 012,

Joqu do(z) =0,

where g € L%(@Q) and (D) is the characteristic function of D.

Definition 2.2. We say that u € HY(Q) is a weak solution to (2.1) if Jaqu do(z) =0 and
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the following identity holds:

/ ag(z)Vu(z) Vn(x) de = / g(z) n(z) do(z), VnelC®Q). (2.2)
Q 00

The existence of the solution to (2.1) is very basic and we show it in the following theorem.
Theorem 2.3. For any g € L%(@Q), there exists a unique u € H'(Q) solves (2.1).

Proof. Let HL(Q) = {u € H'(Q) : Joq u do(z) = 0}. Then HL(Q) is a closed subspace of
HY(Q). In fact, let uy, be a sequence in H}(Q) such that u;, — u in H'(Q). Then by using

the trace theorem it follows that

’/ u do —’/ (up —u) do
o0 o0

Therefore [y u do = 0. Thus HL(Q) is a closed subspace of the Hilbert space H'(f).

< — < — .
< /8(2 lup, —u| do < C'lup “HH1(Q)

Consequently, H}(Q) is a Hilbert space.

We define a bilinear form on H!(Q) as follows
B: HNQ) x HY Q) — R.

Blu,v] = /Qak(a:) Du Dv dx for u,v € H} (),

where a, = 14 (k—1)x(D) be such that m < ||ag||foo (2) < M for some positive constants

m and M. Let ¢ be a bounded linear functional on H} defined by

((v*) = / gv*do forv* € HN(Q),
o0
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It is clear that |Blu,v]| < « Hu“Hl(Q) HUHHl(Q) for some a > 0.

We show that Blu,u] > C HUH]le(Q) for some C' > 0.

Blu, u] = /Qak]Du\2 dz > mHqu%Q(Q).

By using Poincaré’s inequality (2.7), it follows that

Blu,u) = C full? 2.3

)
By applying the Lax-Milgram Theorem, we find a unique function v € H i(Q) satisfying
Blu,v*] = £(v")

for all v* € HL().
Now we show

B[u,v]:/ gvdo for v e HY().
2)9)

Let v € HY(Q), by projection theorem on Hilbert spaces, there are unique v* € HL(Q) and
¢ € R such that v =v* +¢.

Since [5, g do = 0, then it follows that

/gv—/ gv*—l—c/ g—/ g v* = Blu,v"].
o0 o0 o0 o0

That is,

Blu,v] = Blu,v"].
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Thus there exists unique u € H}(Q) such that

Blu,v] = £(v)

for all v € H(Q). Consequently, u is the unique weak solution to (2.1). O

2.3 Approximation of differential equation.

For 0 < k < 400 and k # 1, we study the differential equation

(

div (ag(z)Vug) =0 in ,

Opug(z) =g on 09, (2.4)

faQ ug =0,
\

where

ag(z) = 1+ (k= 1)X(p,upy) (@),

X is the characteristic function of D; U Dy and g € L%(@Q). The differential equation (2.4)
has been introduced and very well studied in [1] for the dimension n = 2. We will use the
idea of [1] to study the behavior of the solution to the differential equation (2.4) near the
touching point for any dimension n > 2.

For § > 0, we set

B B
D} =D — Jen: D} = Dy + Sen:

where ep = (0/,1) and we denote by ag the corresponding piecewise constant coefficients,
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that s,

as(z) =1+ (k — 1)X(D‘1$UD‘25)<$)'

Let ug be the solution to the following modified differential equation

div (ag(z)Vus) =0 in Q,

Opug(z) =g on 0, (2.5)

We clearly see that the function ug is harmonic inside and outside the inclusions D‘S, Dg
and satisfies the jump conditions
+ —
duy Oug

ugr =uy, 5 = kﬁ on 8D?, j=12 (2.6)

Where u;; denotes the solution to (2.5) outside the inclusion D(ls U Dg, while us denotes the
solution to (2.5) inside Dis U Dg and v is the outward unit normal to D?, j=12.

Next, we show that the approximate solution ug to (2.5) converges to ug, the solution
to (2.4), in H(Q) as 6 approaches 0. For this purpose, we need the following modified

Poincaré’s inequality. The proof is similar to the usual Poincaré’s inequality [28].

Proposition 2.4. Let Q be a bounded and connected domain in R™, with a C1 boundary

0Q). Foru € HI(Q) there exists a constant C, depending on n and §2, such that

2
Hu”i2(9) <C (”VUH%Q(Q) + (/89u da) ) . (2.7)
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Figure 2.2: The separated inclusions

Proof. We argue by contradiction. If the inequality (2.7) were false, then one would find a

sequence of functions {u;} € H 1(Q) be such that

2
bl =5 (Il + () ). 2

We normalize u; by defining

Uj

wj = (=1,2). (2.9)
||uj||L2(Q)
Then (2.8) implies
2 2
[Vwillz2i) + </m w; da> <3 (j=12--). (2.10)

Clearly we see that the functions {w;} are bounded in H 1(Q). Then by Sobolev embedding
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theorem, there exists a sequence {wjk} C {w;} and a function w € L%(Q) such that

wj, —w in L*(Q). (2.11)

To show that w has weak derivative in L%(Q), let ¢ € Cy°(€2), then we use (2.10) to obtain

the following

/wV¢dx:‘lim wjkV¢dx:—.lim ijk¢dw:O.
Q

]k,%OO 9] jk*)OO 9]

Consequently w € H1 (Q), with Vw = 0. Thus w is constant because € is connected. On

the other hand, the map

2
w' —s (/ w’da) ,
o0

is continuous on H1(Q). Then (2.10) implies that w = 0; in which case Hw||L2(Q) = 0. This

contradiction proves the inequality (2.7).

Now we are ready to state and prove the convergence of ug in H'().

Theorem 2.5. The solution of (2.5) approaches to the solution of (2.4) in HY(Q) as &

approaches zero. That is

gg% Jus — UOHHl(Q) =0. (2.12)

Proof. First, we prove that a5 =1+ (k — 1)XD5UD5 — ag in LP(Q) for any p < oo.
1-72

Let Q° =uj_,Q), where Q} = D{\ (D) N D1), Q5 = D1\ (D] ND1), 04 =D3\ (DjNDy), and
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Q) =Dy \ (DjN Dy). Then

las — a0l piy = [ las —aolP dz = | |ag—aolf dx
Q) Q 0o

:/6|k;—1\p do = k=17 Q%) 0 as 60,
Q

where p is the n—dimensional Lebesgue measure. Thus a5 — ag in LP(Q2) for any p < oc.

From the definition of the weak solution we have the following

/ (a5Vus — agVug) V=0,  Vne HY(Q).
Q

Then we have

/ (ag(Vu5 — Vuo))Vn dx = — / (a5 — ag)VusVn du. (2.13)
Q Q
Choosing n = ug — ug in (2.13), we get the following
/ ag |Vus — Vug|? dz = — / (a5 — ag)Vus(Vus — Vug) dx
Q Q
< llas — aoll ey Vsl Laga) Vus = Vuoll 2 -

The last inequality makes sense if us € W1H2(Q) for some ¢ > 2. We will prove this later.
Since C7 < |lap|[poo(qy < Cp for some positive constants Cp and Cy, we obtain the

following

IVus = Vuoll 2y < Cllas —aoll ey Vsl »
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Also since |jag — CLOHLp(Q) —0 as 0 — 0, then we have
|Vus — VUOHLQ(Q) —0 as 0—0. (2.14)
By applying Poincare’ inequality (2.7) for us — ug, we have

lug — U0||12(Q) < Cl[Vus — VUOH%Q(Q) :
Thus
lug — 'LLOHLQ(Q) —0 as 0—0. (2.15)

Then (2.14) and (2.15) imply
llug — UOHHl(Q) —0 as 0—0.

Now we prove our claim that ug € Wh4(Q) for some ¢ > 2. To do this, it suffices to
prove us € WH4(V) for a subset V that satisfying D‘f U Dg cc V cc Q. Let U be a subset
so that V' CcC U C Q and ¢ be a cut-off function such that ¢ = 1 in V and supp ¢ C U.
Define @ = ¢ ug, then we see that

div(agVa) = f in U,
(2.16)
=0 on OU,
where f = div(usVe) + (VusVy) and we have used that ag = 1 on U\ V. Since

(usVy) € LY and (VugVep) € L? ¢ W14, then f € W—14(U) for some ¢ > 2. By using
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Meyer’s theorem [7], we have @ € W& (U) and

aHWOl’q(U) <C Hf”W_LCI(U) .

Consequently, us € Whe(V).

2.4 Layer Potentials

In this section we study two integral operators that called layer potentials. These operators
play an important role in the derivation of the decomposition theorem for the solution of
the transmission problem (2.4). These operators are very well studied for C?-domains in
10, 24, 25, 26, 27]. Also [11, 15, 31] gave some basic results for these operators for C'1®
domains. Invertiblity and comapctness for Lipschitz domains are given in [2, 32]. We begin
by defining the fundamental solution to the Laplace equation in dimension n. We denote by

wy, the area of unit sphere in dimension n.

Lemma 2.6. [1}] A fundamental solution to the Laplace equation Au =0 is given by

%ln|a:—y| if n=2,
B(z,y) = (2.17)

2m .
m|l’—y| n ’Lf n > 2.

We define the layer potentials for L2 density functions. Given a bounded C1¢ domain
Q in R", n > 2, we denote respectively the single layer and double layer potentials of a

function ¢ € L2(8Q) as S, and Dy, where

Soop(x) == /09 O (z,y) o(y) do(y), x € R", (2.18)



and

. OP(x,y) n
Duple) = [ Gt o) dofy). xR\ 00 (2.19)

For a function u defined on R™ \ 02, we denote

uF(z) = lim u(z+tv(z)), x € 09, (2.20)
t—0t
and
iu(yc) = lim Vu(x £tv(x))-v(x) x € 0N (2.21)
ovETT ot ’ ’ '

if the limit exists. Here v(x) is the outward unit normal to 02 at z. For simplicity, sometimes
we use Jvu(z) instead of %u(x) and v, instead of v(z).

We state the jump relations for the double and single layer potentials.

Lemma 2.7. [2] Let Q be a bounded C1® domain in R™. For ¢ € L?(9Q)

ST (x) = Spp (x) x €09, (2.22)

1
VTS op(z) = (:I:§[ + K;"Q) p(x) €0, (2.23)

1
Dowi(x) = <:|:§[ + Km) e(x) x €09, (2.24)

where K, is defined by
1 (y —z)-v(y)

Kpo(z) = — [ 22 o0 do(y), 2.25
wole) = o [ D) doty) (2.25)
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and K* is the L? adjoint of K, i.e.,

00

K p(a) = /a ) @ =9 @) 0y do(y). (2.26)

Wn |$ - y|n

The compactness of the operators K,, and K, for C?2 domains has been shown in [10, 25],

with some modifications we show the compactness for C1® domains.

Theorem 2.8. Let Q be a bounded C1 domain in R™, the operators

Koo, K¥ : CP(09) — CP(50)

o0

are compact operators for any 0 < f < a < 1.

Proof. First, we show that the operator
KX C(09) —s CP (o),
is bounded operator for any 5 < a. That is, for any ¢ € C(0f), we show

||Kz;kx290||ﬁ <C ||90||oo )

where C' is depending on 02, 3, a and n.

It is easy to show the following inequalities hold for C'® domain,

(z—y)-v(@)] < Cle—y'™ Va,y e o0, (2.27)
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and

(@) = vy)| < Cla —y|” Va,y o0, (2.28)

where C'is depending on 92, & and n. Also by using the mean value theorem, it is not difficult

to show that for any x1,x9,y € 002 with 2 |z; — x9| < |21 — y/, the following inequality holds

1 1 C -
n m| S o nf-Ql" (2.29)
71 =y 29 — Y lz1 — ¥
where C' is depending on n only.
For the uniform boundedness of the operator K,, we easily see that
1 —
Kipl@)] < Cliglog | o=yl doty)
o0
Therefore we have
[ Koup(a)] < Cllgllo
That is
HGolloo < Clllloo (2.30)

To establish Holder continuity, let us define for x € 9€2 and r > 0, the portion Sy ;- as follows

Ser={yed:|z—y|l <r} (2.31)
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By using (2.28), it follows that

v(z) - (v(z) —v(y)| < Clz —y|*.

Notice that,

v(z)-viy) =1-v(x)- (v(z) - v(y)).

Thus we can find R € (0, 1] be such that for any z,y € 09 with |z — y| < R, the following

holds

v(z)-v(y) > (2.32)

N | —

We assume R is sufficiently small be such that S, g is connected for each x € 9€2. Thus
by the help of (2.32), S, g can be bijectively projected into the tangent plane to 9 at the
point . The surface element do(y) on S, g and the surface element d&(y) on the tangent

plane are related by
do(y). (2.33)

Let x1,x9 € 0 be such that |1 — z9| < % and let r = 4 |x; — x3]. We estimate over the

portion Sy, to obtain

21—y do(y) + /

1to—
g —y| T da(y)>'
ng,?r

K, o) = K5, e2)] < C ol ( /

Zq,T
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Thus by using polar coordinates, we obtain
2r L
* * —
K3, ola) = K3, o) < Clidl [ 77 dp
That is,
K3, p#(@01) = K5, o(@2)| < Cllollo o1 — 2ol (2.34)

Now, we estimate over the portion le,R \ Szy,r. Notice that for y € S$1aR \ Szy,r and

4|z — x9| = r, we have 2 |x1 — x9| < |x1 — y| . Observe the following

(x1 —y)-v(zy) (v2—y) v(zy) (v1—y) v(ry)— (z2 —y) v(ry) N (x2 —y) - (v(z1) — v(z2))

|z —y|" 29 — y|" lz1 —y|" |z —y|"
L (w2 —y) vizg) (22 —y) vizg)
lz1 — y|" lzg — y|"

Therefore by using (2.27), (2.28), (2.29) and noticing that
1 3
w2 =yl < Jog — 2] +]e1 =yl < S ler =yl +|er —yl = Sl —yl,

we have

(1 —y)-v(z1) (z2—y)-v(x)|  Cloy —x9|® | Clog — 29

lz1 — y|" |9 — y|"

T -yt =yt

Thus after converting to the polar coordinates, we have the following

éR,r

(1 —y)-v(z1) (v2—y) v(zg)

lz1 — y|" lzg — y|"

R 1
do(y) < C'lry — fczlﬁ/ﬂ ple=I=1 qp,
1
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where SYR’T = Szy,R \ Szy,r- Thus we have

/SR,T

(1 —y) -v(z1) (22 —y) v(vg)

do(y) < Clay — x9|°.
|z —y|" lzg —y|"

That is

< C o 1 — ol

K*% x1) — K% T
K5, plon) < K5, el

) b

Similarly, estimating over the portion 92 \ ley R, We have

(1 —y)-v(r1) (12 —y) v(w)

(2.35)

lz1 —y|" |z — y["

/6(2\535 R

Therefore

(1 —y)-v(x1) (12 —y) v(w)

do(y) < Clxy — x9|”.
lz1 —y|" lzg — y|"

/aa\sx R

That is

< Cllpllog l21 — 22|

Koo, g#0) = Ko, ol
By combining (2.34), (2.35), and (2.36), we obtain

(Kho(a1) — Khe(@o)] < Cllollo 21 — 22/, V5 < a.

36

do(y) < C/ 1 - fi'a +
ONS,, g \I71 Yl

|zg — [

|21 — x9|” )da(y).

(2.36)

(2.37)



Then by combining (2.30) and (2.37), it follows that

||Ki;t290||ﬁ <C HSOHOO :

let {n} be a bounded sequence in CP(9Q). That is

For compactness of the operator K,

lenllg < C. (2.38)
Then clearly we see that
on(2)] < C, Ve,
and
en(@) —en@) < Clo =", Y,y €00,
Thus by Arzela- Ascoli Theorem, {¢,} has convergent subsequence {(pnj}. That is,

Pn; = $0 in C(092).

Thus we have
K;;z%onj — K:;ztp() in Cﬁ(aQ)

Therefore we conclude that K*

. 1s compact operator. The compactness of the operator K,

follows similarly. ]
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Theorem 2.9. [11] Let Q be a bounded C1® domain in R™, then we have K,,(1) = % That

18

1yl o1
wn Joo v —y" dotv) =5

Remark 2.10. Since K} is the L2 adjoint operator of K, then we have

1
/ Ko do(z) = / ©K(1) do(z) = —/ ¢ do(z) Vo e L*(09).
o9 09 2 Joo
Theorem 2.11. [2, 32/ Let Q be a bounded CY domain in R™, the operator
M — K CP(09) — B (09)

is invertible on for || > % and 0 < B <a <1.

The normal derivative of the double layer potential is continuous across the boundary as

we see in the following theorem.

Theorem 2.12. [15] Let Q be a bounded CL domain in R™, then OvT Dy and O~ Dy

exist. Moreover,

Wt Dyp = v Dy, Yo € C(09).

2.5 Representation formula.

Before we give the representation formula to (2.1), we show that the Harmonic functions in
an unbounded domain R” \ B(R) with decay of order |z} ™" satisfy the Green first identity

as we see in the following Lemma.
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Lemma 2.13. Let R >> 1 be large and u be a harmonic function in R™\ Bgr(0) that has

decay of order \:U]lfn in R"™\ B,(0), where p > 4R. Then the following identity holds

/ u Oyu do(x) = —/ Vul? da.
dBpR(0) R™\ Bp(0)

Proof. Since u is harmonic in the annulus B,(0) \ Br(0), then we have

/ _|Vuf da =/ u Oyu do(z),
Bo(0)\BR(0) 0(Bp(0\BR0))

that s,

/ IVul|? de = / u Oyu do(x) — / u Oyu do(x). (2.39)
Bp(0\BR(0) 9B,(0) 9B R(0)

From the assumptions, we know that u = O(p!~") on 0B,(0). Now we show that d,u =
O(p™"™) on 0B,(0). Choose xg € 0B,(0), then clearly we see that u is harmonic in Bp ().
4

Let v be a harmonic function in the ball By(xg), then by Poisson’s formula we have that
1 1— |z — x|

v(r) = —

i do(y), =€ Bylxp).
won Jom@g) T2~ v(y) do(y), =€ Bi(zo)

By differentiation, we obtain the following

1 1— |z — x|
- vl (i 1 d By (x0).
CU(I)LT—:UO n JoBy (xg) ( iz — gy |$—$0U<y) o(y), =€ Bi(wg)

Therefore,

[Vo(zo)|] < C v (2.40)

”Loo (B1 (=) -
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Assuming v(z) = u(fz) and using (2.40), it follows that

C
[Vu(zo)| < ; ||U||Loo (W) : (2.41)

From (2.41) and the decay condition of u in B, 4(x), it follows that dyu = O(p™") on

0B,(0). Then we conclude that

/ u dyu do(z) = O(pt=2m).
9B,(0)

Thus the lemma follows by letting p — oo in (2.39). O

We give a representation formula for the solution to (2.1). This formula depends on the

subdomain D and the pair (u|gq,g). The proof was given in [2, 23].

Theorem 2.14. Let () be a bounded domain with smooth boundary and let D be a subdomian
compactly embedded in Q with C10 boundary and conductivity 0 < k # 1 < co. The solution

to (2.1) can be uniquely represented as
u(z) = H(x) + Sype(x), x € Q, (2.42)
where H is a harmonic function given by
H(z) = —=Sug(z) +Duyf(z), x€Q, [:=ulgq, (2.43)
and ¢ € L%(@D) satisfies the integral equation

k+1 L\ 0H
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Proof. Consider the following problem

;

V. (ak(x) Vh) —0  in R"\ 99,
h~—ht=f on 0f),
(2.45)
0,~h—0,+h=g on 0f),
h(z) = O(l=['™") if |z| — oo,
\

where a, =1+ (k — 1)x(D).
Let

Vl(l‘) = _Sé)ilg<x) + Doszf($> + S()DQD(CC) for =z (- Rn

We begin by showing V] is a weak solution to (2.45) in the sense of the following definition:

Definition 2.15. We say v is a weak solution to (2.45) if the following identities hold:
/Qak(x) Vo Vnde =0 VneCi® ),
and
/ Vo Vijde =0 Vije CPR"\Q).
R\ Q)

Let us first verify the jump and the decay conditions for V;. By the continuity of the

single layer potential S,,g across 9€2, smoothness of S,,p on 92 and the jump condition

Dani(x) = (:F%[ + KaQ) f(x), x €9,
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it follows that

Vi (x) — V1+ (x) = f(x) for z € 0.

Similarly, by the continuity of the normal derivative of the double layer potential D,, f across
0€), smoothness of S,,¢ on 9€) and the jump relation for the normal derivative of the single

layer potential

0yiSwg@ﬁ::(ilI%aK*

S L) ale) 2 e on,

we have

0,V -0

14

+Vi=g on Of.

From the definition of single layer potential, we have

Swg(x) = /a 0 O(z,y) g(y) do(y).

Since g € L%(@Q), we get

Swg(z) = /E)Q [®(z,y) — (2, y0)] g(y) do(y),

for fixed yg € €2. Since

|®(z,y) — D(x,y0)| < Clz|'™™ when |z| = 0o and y € Q

for some constant C. Therefore

Swg(x) = O(|z[™™) as |z] — oo
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Similarly, we have

Swp(a) = O(le]'™") as |z] = cc.

Obviously from the definition of the double layer potential, we see that
Dof(z) = O(lz|'™") as || — occ.

Therefore V;(z) = O( |m|1_n) when |z] — 0.
Now we show V7 is a weak solution to (2.45) in the sense of the definition 2.15. Since V;

is harmonic in R™ \ Q, then it is clear that
/ CVAVide=0, VijeCP®R\D).
RO\
For n € C°(£2), we have
/ arp(x) VV1Vn do = / VViVn dx + k:/ VV1Vn dx.
QO O\D D
Since V7 is harmonic inside Q \ D and also is harmonic inside D, then it follows that
/ ap(x) VV1Vn de = k:/ ov—Vindo —/ ovTV4 1 do.
Q oD oD

That is,

Q oD oD
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Note that if
k(@VH(x) +0,- SaDgo(x)> — 0, H(x) + 0+ S,pp(x) forz € D, (2.46)
then we have
/Qak(x) VV1Vndx =0, Yne Cy(Q).
By substituting the jump conditions (2.23) in equation (2.46), we obtain the following

(k—=1)0vH(z)+ k (—%] + K;D) o(x) — (%I + K;D) p(x) =0 forx € 9D,

that is

[ k+1 .
OyH = (2(k’ — 1)[— K8D> ¢ on dD. (2.47)

Thus we have shown that
/ ap(x) V1Vnde =0, VYne Ci°(Q),
Q

if and only if (2.47) holds. Therefore V7 is a weak solution to (2.45).
Now, we define

u(z) if xeq,
Va(z) =
0 if zeR"\Q.

Then V5 is also a weak solution to (2.45). Therefore in order to prove the representation

formula (2.42), it suffices to show (2.45) has unique solution in Wﬁ)’f(R” \ 092). For that,
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suppose w € WII’Q(]R” \ 09) is a weak solution to (2.45) with f = g = 0. Thus we clearly

ocC

see that w is continuous on R™ and harmonic in R™\ D. Thus w is a weak solution to (2.45)

in the entire domain R". For a large R, we have

1+ k
/ IVw|? da < R (1 + (k — 1)X(D)> IVw|? dx
Bp(0) k- JBR(0)
1
_ 1k w dyw do  (by definition of weak solution)
ko JoBp(0)
1+k

—_-F IVw|? dz <0 (by Lemma (2.13)).
ko Jrm\BR0)

This inequality holds for all R and hence w is constant. Since w(x) — 0 at infinity, we
conclude that w = 0.
To prove the uniqueness of the representation formula (2.42), suppose that H' is harmonic

in Q and H + Sgpp = H + Sypy’ in Q. Then Syp(p — ) is harmonic in € and hence

0, Sople—¢') =0 +Saple —¢') ondD.

It follows from (2.23) that ¢ — ¢’ =0 on dD and then H = H'. O

By using Theorem 2.14, the harmonic parts Hy and Hg of ug and ug can be respectively
represented as

Ho(z) = =Syg(x) + Dy (uglgq) (z), =€ Q, (2.48)
Hs(z) = —Sig(x) + Dy, (uglpn) (z), =€ Q. (2.49)

The following lemma shows that Hy is uniformly bounded independently of § in any
norm as well as Hg approaches Hy when 0 approaches 0 in any compact subset of (2. It was

proved in [1] for dimension n = 2 and the proof is still valid for any dimension n > 2.
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Lemma 2.16. Let 69 > 0 and W CC €, such that D(ls U Dg C W, for all 6 < dy. Then for

allm=0,1,2,3, ... there exists C = C(n,m,k,Q,d) where d = dist(02, W) such that

|Hsllom gy < Cllgll200) ¥ 6 < b0, (2:50)

and,

lim |[Hs = Holl onyr) = O (251)

Proof. From (2.48) and (2.49), we see that

Hs — Hy = Dy (us|p0) — Do (uolon) »

where

D.s(uslon) = = [ W) vy ) do ().

Wn |$ - y|n

and

D.s (wolon) =~ [ W) vy ) do ().

Wn |x - y|n

Since W CC €, then it is clear that

15 = Holl g () = C'lles = woll 2o -

By trace theorem, we have

1Hs = Holl g (yry = € llus = woll 1) (2.52)
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From Theorem 2.5, it follows that
Jim [ Hs — HOHCm(W) =0.
Now we show the uniform bound (2.50). From the definition of Hg, we clearly see that
185l o 7y < € (1902200 + 8] 20 - (2.53)

By applying trace theorem, we get

15l con 77y < € (19120 + el g1y )- (2.54)

To prove |usl| ;1 @ is uniformly bounded by ||g]| [2(o0) We use the bilinear form inequality

(2.3) for Hg to deduce

2
U SC/ g ug do(x
H (;HHI(Q) 20 0 ( )
<C ||g||L2(8Q) ||u§||H1(Q)

L2 2
<0 (5 1012 + elll g )

Choosing C'e < 1 in the last inequality, it follows that

||u6||H1(Q) < C||g||L2(aQ) (2.55)

where C' is independent of 6. Thus by substituting (2.55) in (2.54), the uniform bound

follows. O
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2.6 Piecewise Holder continuity for the modified dif-

ferential equation.

For § > 0, we define potential functions 90‘15 and 90‘25 respectively on the boundaries of D1 and
Doy by

go(ls(x) = (c%ug — c%u(}) (z— gen) for z € T'y, (2.56)

and

_ J
gog(x) = (8Vu(‘5" — dyug ) (z+ §en) for z € I'y. (2.57)

To simplify the notation of the single layer potential on the boundaries of Dy and Ds, we

write

S16(x) = / &z — y)¢l(y) do(y),
I'y

and

Sy (x) = /F &z — y)¢b(y) doly),
2

It was given in [1] the representation formula for the approximated solution ug to (2.5) which

works for any dimension n > 2.

Theorem 2.17. The solution of problem (2.5) can be uniquely represented as
us(r) = Hy(x) + S1¢5(2) + Sapd(x), =€, (2.58)

where

Hs(r) = =Sp09(x) + Dog (uslae) (2), T €,
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and gp‘ls and cpg solve the following system of integral equations
x\ 0 0 g
<)\I - K1> ¢} (x) — 0,SapY(x — den) = 0, Hy(x — éen), z eI,
4]
— 8,/8190(15 (.CE + (5en) + (M — K3) gog(x) = 8VH5(33 + §en), x eIy,

k+1
2k — 1)’

in this system \ = and K denotes the operator

Kol = - [ @9 @) 50 doy), i=1,2.

Proof. For n € C§°(9), we have

14+ (k—1 V(H; +S;00 +8 5Vd=/
o (o Dy )t s oyt [

+ k/(D5uD5) V(Hs + Slgo(ls + Sggpg)Vn dx

(2.59)

V(H(; + Sltp(l; + Sggpg)Vn dx

_ 0 0 5 5
- /apéuapg (= 5 (Ho + S16 + Sah) + ks (Hy + 8166 + Saeh) ) dor

vt

0 0
:/511?5( (Hs +S16 + Saih) + k(%f(H5+sl¢§+SQ¢g)>nda

0 G,
+/ng< ovt (Hs +S16] + Sa5) + kay_—(H5+Sl<P(15+sto§)>nda

E+1
:<k_1)/8D ((%H(; (2 i [+K51)§01+8V82(p2 n do

(k —

E+1

+(k—1) /6D5 <8yH5 - (2( I+ K52) + 8VSlgol ndo (by (2.23)).
2

If ((p‘ls, gog) solves (2.59), then we get

0 0 _ 00
/Q (1 + (k — 1)XD‘1SUD(2$>V(H5 +S197 + SQ<,02)V77 de =0, VneCi Q).
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Therefore ug is weak solution of (2.5). O

The following Lemma is very useful and it will be used to give the piecewise Hoélder

estimate for the modified differential equation (2.5). The proof can be found in [15, 21].

Lemma 2.18. Let Q C R™ be a bounded domain and let D CC € be a C120 subdomain.

The first derivatives of a single layer potential

Sope(x) = /8D O(z,y)p(y) do(y), =z €,

with Holder density function ¢ € C*(0D), 0 < a < ag can be uniformly extended in a

Hélder continuous fashion from Q\ D into Q\ D and from D into D with limiting values
1
OuSopp|+(x) = (:|:§I + K{;kD) o(x), x€aD. (2.60)
Furthermore, we have for o/ < a the estimate

||S<’)D€0H17a/(§) + ||SOD¢||17O/(Q\D) <C ”‘P”a(ap) : (2.61)

Applying Lemma 2.18 for the potentials 30(15 and gog that solve (2.59), we immediately

have for any 0 < o/ < a < ag the following estimate

o+
‘ Lo/ (D?)

where C' is independent of . From the representation formula (2.58), Lemma (2.16) and the

]

Si@? ©;

(o) <!

Si? . i=1,2, (2.62)

a(T;)

estimate (2.62), we obtain
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Lemma 2.19. Let ug be the solution to (2.5) and let <<p‘15,gpg> be the solution to (2.59).
For any small € > 0, let Q¢ denotes the set Qz = {x € Q : dist(x,0) > €}. Then for any

0 < <a < ay we have the bound

o

a(l—‘i) + ||g||L2(8Q)> )
(2.63)

2

2
U —\ T+ ||u —\ T [ju <C ‘
sl ) 1050 (35) 1950, o) (Z

1=1

or some constant C' depending on «, o', ag, Q, k, and € but independent of J.
g 0

As a consequence of this Lemma, we obtain the desired piecewise Holder continuity for
Vug on each component of € if the right hand side of (2.63) can be shown to be uniformly

bounded independently of . That is, if we prove

ol (2.64)

2
>
=1

o(T;) <C HQHLQ((?Q) )

where C' is independent of ¢, then we obtain the desired bound for Vugs. The uniform bound
(2.64) depends on the solvability of the system (2.59) and this will be our task in the next

chapters.
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Chapter 3

Decomposition of the system of

integral equations.

Our goal is to solve the system (2.59) with bounds uniform in 6. To that end, let us define

the operator on C*(I'1) x C%(I'y) by
] 0 0
3 Ly M-Kj) \&

Ligh(x) = —0vSapy (v — den),  w €T, (3.1)

where
and

L) (x) = —9vS14](x + den),  x €Ty (3.2)

Thus the system (2.59) can be written as
é
¥ 0 H5 yl(l’,(S)
ol =" ( ) : (3.3)
3 Oy H (y2(x, 9))

d
y1($75): (x_§en)> xEFl,

where
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and

yQ(‘ra 5) = (x + gen), xr &€ FQ

From Lemma 2.16 we have that the right hand side of (3.3) is uniformly bounded in C'*0

norm on the surfaces I'j, j = 1,2. That is

”al/Hc?HCO‘O(Fj) <C HQHLQ(QQ) :

Therefore to show the uniform bound (2.64), we need to show that the operator
T° is invertible as an operator on C%(T';) x C*(T'y) and its inverse is uniformly
bounded in C*(I'1) x C*(I'y), for any a < «g. Thus the purpose of this chapter is
to study the behavior of the 79 and how to overcome the singularity of its kernel when o

approaches 0.

3.1 Behavior of 77, § > 0.

Recall that A = %, where 0 < k < oo and k # 1. That is, we conclude that |A| > %

Theorem 3.1. For § > 0, T9 is continuous linear operator on C(T'1) x CY(T9), invertible

with bounded inverse for any 0 < o < g and for any |\ > %

Proof. For § > 0, we evidently see that 79 is bounded linear operator on C¥(T'q) x CY(T9).
For
A O ~Kf L§ 5 5
A = and Kgs = , T can be written as T° = A\ + K.
0
Since K is a compact operator on C%(I'1) xC%(I'9), then 79 is Fredholm operator. Therefore
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the invertibility of 79 follows if we show that T is injective. Let ((,0({, gog) € C*Tq)xC%Ty)

2 0
be such that 79 = . That is,

3 0

(M — K7) go‘ls(x) - 8V82gog(x —den) =0, zely,

—vS19%(x + den) + (A — K3) 95(z) =0, x €Ty,

Or equivalently,

(A = KF) @3 (2 + Jen) — OvSapd(z — Sen) =0, =€ 9Dy,

~0S1¢)(z + Sen) + (A — K3) ¢9(z — §en) =0, x € dDJ.

Consider the function wg defined on R" by
ws = S1¢] + Saph.
We claim that wg is a weak solution of the following problem

div ((1 + (k — 1)X(D?UD3)>VUJ5) =0, ze€R"

ws(x) = O(|a'™"), || — o0

(3.4)

(3.6)

(3.7)

To prove the claim, let n € C§° (Bg(0)) where Br(0) DD Q. For aj, = 1+(k—1)x(D(1SUD‘25),
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we see the following

J J
/ apVwsVn de = k/ 5 \% (Sup‘ls(x + ien) + SQ<P5F2 (x — §en)) Vn dx
BR(O) D1

) )
+ k/ \V4 (Sltp(l;({E + —en) + Sggog(a: — —en)) Vn dx
Dj 2 2

) )
+ / \Y (Slcp?(x + —en) + Sggpg(x — —en)) Vn dx.
Br(0)\(DJuDY) 2 2

Using the divergence theorem, it follows

J J
/ apVwsVn de = k/ 5 <8u81g0(15(x + —en) + 8V82§D%\2 (x — —en)> n do(x)
BRr(0) oDy 2 2

) )

+ k/ ((%Slgois(x + —en) + av’Sggog(x — —en)) n do(x)
D} 2 2
+ 0 0 0 0

— Ov'S1p](x + —en) + 0vSoyps(r — —en) | 1 do(z)
oD§ 2 2

J J
- / (&/Slgo({(:v + —en) + 81/+Sgapg(x - —en)) n do(z).
D] 2 2

Utilizing the jump conditions for the single layer potential (2.23), we have

) )
/ apVwsVn de = (k — 1)/ 5 (M — KY) go(ls(m + —ep) — aVSQQDg(I — —ep) do(x)
Bp(0) oD} 2 2

J J
+ (k — 1)/ 5 (A — K3) @3(x — =en) — OvS190%(x + =ep) do(z).
oD 2 2

By applying (3.4), we obtain the following

/ apVwsVn dz = 0.
BR(0)
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In order to get the decay condition for wyg, it is enough to show the following identity

/ 4,0(15( + den) do = / gog( —dep) do =0, (3.8)
Iy I'y

since, if [p 4,035 do(y) = 0, then
J

S = /F 0 doly) = [ (Baw) - Ble0)) e dol) < Cylal' L (39)

J L'

where yg € D;. Since
1-n -
[2(z,y) — @(z,y0)| < Clz| ™" if |z| — oo and y €T}

We only show fF1 90‘15( + depn) do = 0 and same work would hold for fF2 gpg( —dep) do = 0.

Since St gog( — dep) is harmonic in Dy, therefore we get
/F 8VSggpg(x — dep) do(z) = 0.
1
Therefore by using (3.4), it follows that
0= /F (M — K7Y) ga‘ls(a: + den) — aVSQQDg(x — dep) do(x).
1
That is,

/ (AT — K7) @4 (x + den) do(z) = 0.
]
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Thus by the duality (remark 2.10), we obtain the following

1

/ (M + den) — K1(1) @ (z + den) ) do(a) = (A= 3) / & (x + den) do(x) = 0.
' I

Since |\| > %, then it follows that

/ gp(ls(x + den) do(z) = 0.
I

We show that wsg = 0 in R"”. For R >> 1, we have

1+ k
/ Vs |2 do < % (1 +(k—1)x(DSU Dg)) Vws)? da
BR(0) Br(0)
1+k
__rr wg Oywg do(x) (by definition of weak solution)
k- JoBp(0)
1+ k

=—— IVws|? dz (by lemma 2.13)
ko JRN\BR0)

<0.

Thus wg is constant in R™. Using the decay condition at infinity, it follows that ws = 0 in
R"™, that is

) )
Sl@(ls(x + §en) + 82@(25(95 - éen) =0, zeR"

Consequently, we conclude that Slt,0(1S is smooth across I'1 and Sggpg is smooth across I'p.

Therefore applying the jump conditions for the single layer potential (2.23), we have

gpfls(a:) = 81/+Slg0‘15(x) — au’Slgpcls(x) =0, zely,

gpg(x) = 8V+Sp2gog(a:) - 81/’82@‘25(:1;) =0, zels.
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Thus 79 is injective. O]

3.2 Auxiliary functions and Basic properties.

As in [1], we study the behavior of 79 and its inverse as § approaches 0 and we use the same
notations that they used in their paper. When the subdomains D(ls and Dg approach the

touching point = = 0, the kernel of the operators

—den—y) v
S0l (s — soy = [ (&= 9en 5
052757 = den) /PQ |z — den — y|”

and

5 (x—den—y)-v 4
— r
0y S1¢7(x — den) /F2 P r— ©](y) do(y), =€y,

become singular at x = 0.

For dimension n = 2 [1] the singularity was overcome by decomposing 79 as a sum
A¢ 5+ Ce 5 where, for a fixed € > 0 sufficiently small, the operator A, 5 contains the singular
part of T° (i-e, the identity plus a piece of the off-diagonal terms), and C, 5 is compact.
Their idea works for any dimension n > 2 with some necessary technical modifications. So
we are going to mimic their idea to overcome the singularity for general dimension n > 2.

We fix a small parameter 0 < g < 1 so that

1 1+4¢
=< < |A 3.10
where \ = 2(]{;:“_11) and recalling that the constant k is the conductivity in the subdomains

D1 and Ds while the constant 1 is the conductivity in Q \ (D1 N Da). Let Ry = 2(1 + %),
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r1 = diam(Dy), ro = diam(Dsg) and o = 20(1 + r1 + 79) Ry where diam(D;) is the diameter
of the subdomain D;, i = 1,2. We rescale the domain () by assuming x = px to make sure
that the surface I'y U 'y within the ball B(2Rj) meets zy-axis at 0 only.

Let 1 be a smooth cut-off function in R™ that supported in the ball B(R() be such that

;

0<n<1,

n=1, z€B(e), (3.11)

IVilloo < o
\

We also assume that ¢( is sufficiently small so that around the touching point z = 0, the

surfaces I'1 and I'y can be parametrized by

‘:p" <e —x= (2, 91(2))) €Ty,
(3.12)

| <eo—y =, 12y)) €T,

for some C1:0 parametric functions ¥; and 1.

Definition 3.2. [1] A closed and bounded surface T' C R"™ is called of regularity b if it

can be covered by a local set of charts
v w e By CR — (¢j1(x), -+ Wjn(x)) CRY,

where B}, 1 < j < m, are open balls in R"1 and Vi1 < i< n are clo (B_]) functions

with Rank(V;) = Rank(Vyy, -+, Vion) = n— 1. We say that a continuous function f
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is of reqularity CO(T) if for any of the local charts

F(ia @), yn@)) = (00 i)

2" —y'|*

<C.

f ol 0,07 = sup
} J|C Q(B]) xlvyleBij,|x/7yl|<1

The norm on CY(T') is defined by

||f”0,a = max (HfHLOO(F)v max ’f Owj‘CO,a(Bj)> .

1<j<m

Lemma 3.3. [1] Given 0 < ¢y < 1 for which (3.12) holds with (3.12) as one of local

coordinate chart, and given 0 < o < 1; there exists an operator
E: C%Ty) — CHR" 1),

such that for any ¢ € C*(I'y), we have

(

1Bl gn—1 < (1 +€0) [#llar,

/] < 319

(Es0> (V) = 90<y’,¢2(y’)>,

\ supp(Ep) C B(%)

Proof. For ¢ € C*(T'3), let ¢ be a function on R”~1 that defined by

o) oy, 02(y), i || <e,
o(y) =

sO(y*,wz(y*)), it |y| > eo,

/
where y* = ¢y v(y/)and v(y') is the normal unit vector |y—,’ We show ¢ is C% Holder

Y
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continuous on R? 1,

Let y'l,yé e R"1. Case 1: When |y'1’ < ¢p and |y'2| < €p. We trivially see that

P~ _ ot~ (o]
Y2

‘yl

Case 2: When ’9/1‘ < ¢p and !yé’ > ¢9. We have

[P(5) = BWA)| _ ewh walvD) — o (5. ¥2 (43))|
|y} —v5|" lv1 — v5|”

Since !y’l — y%“ < ‘3/11 - yé’, then we obtain

(1 Ya(m) — ¢ (v3.v2 (13))| _ o]

[P(1) = Pws)| _ |
i —wl" T v — 3" = e
Case 3: When ’9/1‘ > ¢ and ’yé‘ > €. We first show that
i — 5| < |y) — ). (3.14)

The above inequality would be trivial if the dot product 3//1 . yé < 0. Then it is enough to
show (3.14) when y] - yé > 0. Without loss of generality we may assume that ‘y§| > |y’1|

and let yo = ‘yl‘ vo(y'). We clearly see that

i —y3l = W ,‘ i — G| < [vh — Ga| < W) —vh|.

Where we naively can see that validity of last inequality if we assume after rotation that
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?/1 =(0,0,---,0, yl,n—l)- Now we form the following

o) — elwp)| _ |#(E00D) — e (u3.009))|

A . ly] — vp|”

By taking account of (3.14), we obtain

2(4}) — B(h))| . ‘s@(yf,@b(yf)) - so(y’g“,@b(yé‘))‘

< < lellq -
lv1 — w5l vt —w3]” “
Thus we have shown that
1Pl < llelly - (3.15)
Next, let p € C1(R"1) be such that 0 < p < 1 and
p(y) =1, if || < eo,
Vol < e, (3.16)

supp(p) € B(%)-

\

Define Ep(y') = p(y')@(y'). Tt is clear that | Bl < [l¢]l-
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/ !/
Now we show C*-norm for Ey. For y;,y; € R" ! we have

wp  [EEWD) —Belh)| 0 [eh)ewh) — plvh)ev))

. | I ‘04 . | I ‘a
lvi—vh|<1 Y1 — Yy |lyi—vh|<1 Y1 =Y
Y17Y5 Y17Ys

)|

< sup ol
lvf—vh|<1 |
Y1 #Ys

< llella + o llellq

< (T +eo) flelle -

Therefore ||E90||Q7Rn—l < (1+¢) ||<P||a,1“2~ -

Next we define two C'1:# auxiliary functions 11  and 99 ¢ that defined globally on R7—1

be such that ”wj,e”l gR—1 = O(€), 7 =1,2 for every f < ag and v = ag — .

Lemma 3.4. Let f < ag, v =ag — B and fix 0 < 2¢ < €y. There exist Cl’ﬂ-functions (A

and 9 ¢ defined on R" L 5o that

d)j,e = wjv }._'E/‘ S Ea ] = 1727
(3.17)

”wj’e”LB;R”_l <C¢ H%’Hl,ao’ =12
where C' s independent of €.

Proof. Recall that the functions ¢; € C Leo(p! (€0)) are defined locally to satisfy V(@) =
}V?/)j(x’)‘ = 0 only at 2’ = 0, j = 1,2 and 9 is non-negative while 1/ is non-positive. Then

for any 2’/ € B'(¢(), we have

[6;(2")] < C |2/[7F0 ||y j=12 (3.18)

Lag?
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For e < %607 let ne € CSO(R"_l) be a cut-off function that satisfying the following

;

0<n <1,
ne(z) =1, if ‘m" <,
ne(z’) =0, it |of| > 2, (3.19)

IVnelloo = O™ ),

IV2nell o = O™,

where V27 is the Hessian matrix of 7.

For any 0 < 8 < «, we define

¢276($/) = ¢2($l)776<m/) + (1 - 776(1‘/)>€1+a0 ||¢2||1,a0 ) (3.20)

V1.6 = 1@ )e(@’) = (1= me(@)) 0 il o

Clearly we see that ¢; . are globally C10 and Vje(a’) = pi(al) for 2’ € Bl(e), j = 1,2.

Then we only need to show the bound

H@Dj,eHlﬁ;Rn—l <C¢ ||¢2||17a0a VB <ag, Jj=12 (3.21)

We prove (3.21) for j = 2 and the same arguments would hold when j = 1. First, we show
the L°°—norm for 19 .. In the case |37’| < ¢, we have w27€(:v’) = 1b9(2’) and then by using

(3.18) we obtain the following

1 1
()] < €[l g #1770 < O inlly g €790 < O nlly 0 "
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That is
[0,e(@")] < Clnlly g € (322
For the case € < ‘:p" < 2¢, we have
2,e(a”) = Ya(a)ne(a’) + (1 = ne(a”)e 0 flha g 4 -
Again by using (3.18) it follows that
e (@)] < Cllally o 2770 + 2600 o]
Thus we have
o, (&)] < C&¥ il o (3.23)
For the last case }x" > 2¢, we have g ((2) = elteo ||1/)2||17a0. Then trivially we get
o, (@] < C € 1l op- (324
Combining (3.22), (3.23), and (3.24), it follows that

||¢276

o SCE [0l (3.25)
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We proceed to show the boundedness of L°—mnorm for Vg .. For that we have
Vi e(2) = Vo ()ne(a’) + o (2) Vie(a') — €740 oy o) V().
When |2/| <€, we have Vipg ((2') = Vipa(2/)ne(2') and since Vipg ((0) = 0, then we get
[Vi,e(a")]| = [Vibe(a') = Vi, e(0)] < llo2ll1 a0 210 < 12l 0 €70
Therefore
[Vipo,e(a)] < C ¢ [lally o - (3.26)
For the case € < ‘:p" < 2¢, we see the following
[Vin.la)] < [Va(e!)] + < Jia(a)] + e [l - (3.27)
Since 13 ¢(0) = |Vip2,¢(0)| = 0, then it follows that
[Vipo,e(a”)] < C e [l o - (3.28)
Finally, when |z| > 2¢, then V)9 ((z) = 0 and trivially we get the bound

[Vne(a)] < C e ([0l 0, - (3.29)
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Thus we have shown the bound

[Ve2ello < C € 10210y - (3.30)

For the 3-Holder estimate of Vg ¢, we have seven cases and we elaborate these cases as

follows:

1. If || < eand |y| < ¢, we have

(Vo c(2) = Vb ()] _ |Vipa(2') — Vb, (y)]

< |2" = /)77 ally
|m’—y’|’8 |x’—y’|6 ety

Thus we conclude that

|Vipo (') — Vipa ()]
|2/ — y/|ﬁ

< O [[9 - (3.31)

2. Ife< }m" < 2eand € < ’y'| < 2¢, we have

|Vip e (z') — Vipo ()] _ [Vea@)ne(@’) = Vba(y )ne ()] N |[2(2")Vne(z) — Yo (i) Ve ()|

! — | N ! — | ! — )P
+é+%wmm@MVm@@—Vm@M
|x’—y’|ﬁ ’

We estimate each term in the right hand side of the above inequality separately. Let

_ [ Vea(@)ne(a’) = Via(y ne(y)|

A
Al |x’—y’|ﬁ
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Then we see the following

Vipa (2" )ne(z') — Viba(y )ne(2))| N (Vo (4 )ne(z") — Vo (v )ne ()|
W—yW |f—yﬁ
_ |0 5 [Vea(a) = Vo) V()] ne(@’) —ney)]
|$ Y0 £ —ylﬁ '

4l <

<o’

Thus for some ¢’ lies on the line that joining 2’ and ¢/, and since Vg ((0) = 0, we

have
Al < C € ol ug + 1¥all1aq |70 [ = o/) 7 [Wne(€)].
Therefore
Al < Ce” |14l g - (3.32)

Similarly, let

|¢2 )Vne(x ) - ¢2(?/)Vne(y')| .

B
Bl= ! — |’

Then we have

V2@ ) Ve(a’) = o) Vne(@')| | [¥2(y))Vne(a’) = ¥2(y') Vey')|

<
oy 2 —y°

For some Si that joining 2’ and 3/, we obtain the following bound

C [taa’) = daly | o (y)] |2 — yHVQ?vefl)!
€ |x—yW ! — 4|

1Bl <
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Again for some {é that joining 2’ to v/, we obtain the following bound

CIVea(&)| ] —y]  C

< ~ /
Bl yp & el IV

1+ag ‘J}/ o yl|1—/8 .
That is

Bl < C ¢ [lall g - (3.33)

For the last term, we have for some ¢’ that joining 2’ and gy’ the following bound

€170 [9hally 0 [V1e(a”) = Vie(y)]
|2/ — y/|ﬁ

1—
< 400 gy g [+ = /|| VEe(€)

That is

€10 [[9ally . [Vr1e(a”) = Vie(y)]
|2/ — y/|ﬁ

<C ¢ 9l - (3.34)

3. For the case ‘x’{ > 2¢ and ‘y’! > 2¢, we have Vg ((2') = 0 and Vibg ((y') = 0. The

desired bound follows trivially.

4. If ‘x" <eande< ‘y/| < 2¢, we have Vg (/) = Vihg(2') and

Vi (y) = Vo (y ne(y') + 42y ) Vne(y') — €700 [ally o Viey)-
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Then we have the following bound

|Vipo e (z') — Vb e (y { (Vipa (') = Vo (¥ e ()| |o2() Ve
/B = i + B
2 — /| |93—y| 2" — /|
eltao 192[]1,0 IVne(y))]
|x’—y’\ﬂ

Since Vne(z') = 0, then we clearly see that the last two terms on the right hand side of
the above inequality satisfy the desired bound. For the first term we have ne(z') = 1

then we form the following bound

|Vipa(z) — Viba (3 )me( ’ (Vba(2)| |ne(z’) = ne(y/) \Jr{?k )| \V¢2(I/)—V¢2(yl)’.
@/ —y'| - 2/ —yrﬂ o’ —y'|

Thus for some ¢ lies on the line segment that joining 2’ and 3/, we obtain the bound

|Vipa(2') — Vb (y )me(y/)]
|2/ — ylyﬂ

<o’ = ¢/|" 7120 il g [V + |2 = o207 1l -

Therefore we obtain the bound

|Vipa(z') — Vo (y )me(y))]
|2/ — Z/,ﬁ

<O ¢ nlly oy -

5. When |2/| < e and |y/| > 2¢, we have Vg ((2) = Vipa(z') and Vipg (y') = 0. Thus

we have the bound

}v¢2,e(x/) _VQ/)Q,e(y/)’ _ ‘V@Dg(:ﬂl)‘ <
! — 3| ! — /P

P |10 [l g -
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That is

’V@Z}Q,e(xl) -

v¢2,e(y/)}

|$/_y/|ﬁ

<O ¢ ially oy -

(3.35)

6. When € < ’x’| < 2e and 2¢e < ‘y" < 3¢, we have Vipg ((y') = 0. Then we have

| [Vl nee!) + o)V

Vb e(a’) = Vb o e(a”) = €0 [nlly o) Vire(a”)
| _y|ﬁ |x’—y’|ﬂ

Since 7 (y ‘Vne ! )} = 0, then we obtain the following bound

[Vi2e(a) = Vo) _ [Veaa)ne(a’) = V(@ nely)| | [a(@)] [Vine(a') = Vine(y)
2!~y B 2~y u—yﬁ

) €0 [4ally o [Vie(@') = Viie(y)|

|x’—y’|ﬁ

Thus for some fi and fé that lie on the line segment joining 2’ and 3’ we obtain the

following bound

‘v¢2,e(x/) -

VwQ,e(y

/)| -

|2/[*0 192l |2 = /| [Vne())]

% _y/|ﬂ

C 12|70 ally o 12 = o/ | [V20e(8))]
+ +

|2/ — y’lﬂ

€0 [4ally o |2 = o] [VP0e(63))

|2/

Therefore we have the desired bound

’V¢2,e(x/) -

v¢2,e(y/)}

|x’—y’|6
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"~y

< C & lall g -

/lﬁ

(3.36)



7. Ife< }x" < 2¢ and ‘y/{ > 3¢, then ngﬁ(y/) = 0 and we have the following

[V2.eo!) = Vinel)| _ Ve | [ea@)] [Vaea)] | 0 102llaq [Vl
|x’—y’|ﬁ - |x’—y’|ﬂ |x’—y’|ﬁ |x’—y’|ﬂ '

That is

’V¢2,€(I/) - v¢2,e(y/) }

< v
SO kg (3.37)
Thus we have shown the following bound
Vb, e(a’) = Vo c(y)
sup [V e <o 1921l - (3.38)
ml7yleRn71 |1./ _ y/| y
x'#y’
Therefore the Lemma follows by combining (3.25), (3.30) and (3.38). O

The following Lemma will be needed for the decomposition of the operator Lg and it will
be used as a tool to extend the integral over the surface I's to the whole space R”~L. Tt was

stated in [1] for dimension n = 2. The proof is elementary.

Lemma 3.5. Let 0 < a < «, for ¢ € C(I'9) we define

o) = Bo(y W1+ | Vo), o eR™.
Then ¢ € C(R™1) and
61l 1 < (1 CENA + o) [elacry (3.39)

where « is the reqularity of the surface U'y, Ep is defined in Lemma 3.3 and C(€) — 0 as
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€ approaches 0.

Proof. First, we see that ¢ is well-defined on R~ ! because E¢ has compact support in

B(%) From Lemma 3.3, we have the bound

1Bl gnt < (14 c0) [l - (3.40)

Also from Lemma 3.4 we have for any a < o that H’QDZEHI o = O(€”) where v = ag — f3,

then for any z/ € R"~1 it follows that
()| < |Ee(a)] (1 +C(e)>.
That is

l6lloe < (14C(0) (1 + o) ¢l (3.41)

Next for 2,y € R"™1, we estimate

}¢({E1) . ¢(y/)| ’ESO(JJ/) \/1 + ’V¢2,e(x/)‘2 - E@(y,)\/l + |V¢2,e(?/)|2
o =y o' —y'|*
Bota") — Bots)| 1+ (TP ][V P02 )P = 1+ [P )P
< .
— ’x/_y/’a + |1./_y/|04
By using (3.40), we easily see that
Bo(z') — Eo(y)| /1 + |Vibe o (27)|?
e wﬁﬁip’ 2 (o) ar e, G
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For the second term, let

| Wl T [V (@) 2 = /14 [V ()
/) )

Iy = |Ep(y
’ ( |a:’—y’|a

Then we have

(Vi e(o) = Vi ()] (| V()] + Ve ()] )

Iy < |Ee(y)] :
2 — y|° (J L+ [V () + 1+ lwz,e<y’>|2)
That is,
, (Vb c(a')| + [ Vo (y))] [Vip,e(2') = Vipo ()]
Iy < E‘P(?J) / ] :
= e VI V@) + 14 [Vene)P 7Y

Therefore we obtain the following bound
Iy < C¢” (14 €0) 9lla [[Y2.ell1q,- (3.43)
Thus the bound (3.39) follows by combining (3.41), (3.42) and (3.43). O

3.3 Decomposition of L}

In this section we elaborate a method to decompose the operator Lg in order to overcome
the singularity when x = 0 and 6 = 0. The method was introduced in [1] for dimension

n =2 . We start with the following Lemma which will be used frequently during our work.
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Lemma 3.6. For n > 2, we have

d /
/ 1 = %, (3.44)
.
R <|z’|2 + 1)72

where wy, is the surface area of unit sphere OB(1) in R".

Proof. The surface area wy, is represented in polar coordinates by the following form

Wn = / / / (sin 1) 2...(sin ¢y, _3)? (sin ¢y, _2) dy,_1 dpp_2--- dy.
b= 0 ¢p—9=0J¢,,_1=0

Then we can see that

o = w1 /0 " (singy)"? déy, (3.45)

where w,,_1 is the surface area of unit sphere 0B(1) in R” 1. Thus by using the polar

coordinates, the left hand side of (3.44) becomes

NS

dz' e
/Rn—l W = wn—l/o m dr. (3.46)

Substituting r = tan ¢ in the right hand side of (3.46), we have

dz’' % . _ w
/ = Wn—l/ (singpy)" 2 dgpy = 7”
RrR7—1 (‘Z/|2 + 1) 2 0

]

To begin, let 6 > 0 and ¢ € C*(T'y). For z € I', 2| < Ry, we set 2 = (2/, 11 ((2")) and
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we define the approximate surface
Toe={ye = (v, ¥ne(y) | € R
The off-diagonal operator Lg is defined by
ngo(x) = —0vSap(x — den).
Let n be the cut-off function defined in (3.11). Then we decompose the operator Lg as follows
L3p(x) = n(x)Lip(x) + (1 = n(x)) Lip(x). (3.47)

Notice that the term (1 — n(m))ngo(x) has smooth kernel. Whereas the term n(x)ngo(x) is

singular when z = 0 and § = 0. To simplify the notation, we define
L3(x) = n(a)Lip(x), x €Ty, @€ C(T).
Next we decompose the operator Eg as follows:
£(x) = (cg(x) +n(2)0veSg Eyp o Pz — (5en)> — (2)0vSg. B o Plac — dey), (3.48)
where P is the projection map from I'; . onto R™L that is

P: Ty — R"L
(3.49)

P(y’, @/)2,6(9’)) =1/
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Figure 3.1: The approximate surfaces

and Sg  is the single layer potential on the approximate surface I'g ¢. From the smoothness

of Sg ¢ on I'y ¢ we have

(Ie - ye - (5611) * Ve(xe)
|ze — ye — denl|”

n(z)0veSa Ep o P(xe — den) = /F Egp o P(ye) do(ye),
2,e

(3.50)

where ve(z¢) is the normal unit vector on the approximate surface I' ¢ at the point xe, that
18,
1 —V¢176($/)
.re) — 2
V14|V )] 1

ve( (3.51)
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We rewrite dveSg ¢ for the potential £ = F¢ o P at the point X = x¢ — dep as follows

(y — ') - Vi e(2') + (¢1,e($/) —2.(y) - 5)

W) Sa %) = Ol ) [ o)) dy
o (1o = 2 + (1) — ) — 02) "
(3.52)
~ - N _ / INK ST 1
where ¢ is defined in Lemma 3.5 by ¢(y') = Eo(y )\/1 + |V (v)]” and C(2') =

wn\/l-l-‘vd’l,e(x/)‘?‘

Now, we define
n(x)K§’6go(x) = —1n(z)0vSap(z — den) + n(x)0vS2 £(X). (3.53)

We will prove later that operators in (3.53) form a family of compact operators from C*(I'y)
to C*(T"1). Also by using the definition of the function ¢ we can rewrite the operators nkK. 5’5

as follows

() = 1 / vz ten) A9 () doy)
Iy

|z —y — 5en‘n

- (y/ - x')le,e(x') + (7#1’6(1'/) - 77D2,e(3//) - 5) p p
L. o o) dy
BT (10 =y P (1,e) = ) - 0)2)

From the parameterization of the surfaces I'y and I'y9 around the origin , we have that
r = (2/,¢1(2')) € Ty for ’:L‘/| < ¢, and similarly, y = (v/,¢2(y')) € 'y when ‘y'! < e
Therefore we conclude that for ‘x’ | < € and ‘y/ ‘ < € the two integrands in the definition of

n(x)K§’5 coincide. We further define for each z¢ = (2,91 ¢(2)) € T'1 ¢ the hyper-plane
/
IS ={y e R" | yn = vo(z")}. (3.54)
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Thus we rewrite n(x)L§’5g0($) as follows

n(2)L3p(x) = n(a) K5 o(x) — n(w)0veSg £(R) + n(2)0veSE £ (%) — n(2)0veSE £ (X),
(3.55)

/ /
where 8’2‘, . is the single layer potential on the hyper-surface F“"Q”’ . and its normal derivative

for the potential £ is defined by

x ze — y(2') — den ) - ve(we)
(@) /F ( ) E(y(a") do(y(a')),  (3.56)

, ~
1n(2)0veS3 £(X) = . y
,€

where y(z) = (v, ¥2,¢(z’)). To be more explicit,

C o (o = ') Vor ) + (16(0) = doela) =6)
e)oveS5 8 = Cota) [ o) dy.
Bl = P+ () — vnee) — 0)7) 2

(3.57)

Note that we have perturbed by the operator n(x)@uesg;g (X) in order to get the Holder

continuity for the operator —n(x)dveSg £(x). That is, we will use the advantage of the

difference g ((2) — ¥2.¢(y') to get the Hélder continuity for the term
/ ~ ~
1(2)0veS3 £(X) — 1(x)IveSz £ (X).

While the term n(m)@yesg;g (x) will be easily proved is Holder continuous because it is

/
produced from the single layer potential over the hyper-plane Fg’ =
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ForT'1 2z #0o0r 0 #0 and ¢ € C%(T'9) we define the operator

n

]§,5¢(x) — / : (5 + ¢2,e(93/) - ¢1,6($l)) - V@Dl,e(l’/) : (y/ - JJ/)
(W =y P e — o) = 0)) 2

whereas for z = 0 and § = 0, we define I;’OQO(O) as follows

/
Using the change of variable 2/ = %, we have

1
I;’Ogo(O) = lim — (07 d7.

6—0 -1
TR (1P )

From the dominated convergence theorem, it follows that

5% = [ | ﬁ 6(0) ' = “25(0),

where ¢(0) = ¢(0) and wj,_1 is the surface area of unit sphere 9B(1) in R" 1,

simplify the notation, let

Jo() = —n(2)00Sg £(R) +n(z)0vSE £ ().
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(3.59)

(3.60)

(3.61)
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From (3.52) and (3.57), we have

(54 v ly) = v1ele)) = Ve (o) - (v =)
(10— o2+ (10”) = v lv) — 0)?)?
(5 vne) ) = Vihnele!) - (v — )
(10— o2+ (r@”) = vnla?) - 9)%)

Fola) = Oy nto) [

o)) dy'.

For x #£ 0 or 6 # 0 and ¢ € C%*(I'9), we define the operator

‘]676@(:)3) :/ (5 + ¢2,6(y/) - ¢1,e(x/)) - V¢1,€<x/) ’ (y/ - I/)
2 R—1 P2 "N Y %
(12" =P + (1.6@") = o () = 9)*)
- (5 + 1/;2,€(I/) - 1/}1,e($/)) - v¢1,e(x/) : (y/ _nx,) ¢(y/) dy/, (3.62)
(I =P + (1.e@) = a () = 6)°)

whereas, when z = 0 and § = 0, we set

/
J;OSO(O) _ /n_l ¢2,6(y ) - ¢(yl) dy/7 (363)
R (y% oy ¢§7€(y’)) .

where this integral is well- defined because when }y/ ‘ < €, we have }@bg,g(y/ )’ <C ‘y/ |1+a0.

Thus we write n(.iE)Lg as
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Using the above definitions, we have

0
Lyp(x) = n(x) [ K5° +

J;’(; + ]5’5 o(z)
Wn\/l + ’le,e(x/)‘Q ( >

+ (1 —n(2) Lp(). (3.65)

In a similar manner, we define operators n(x)Ki’(s, 77(x)(]16’(S and n(x)]f’(s from C%(I'y) into
C*(T'9), that help to decompose the operator L?. That is, we decompose the operator L‘lg

as follows: For 6 > 0, x € T'9, |z| < Ry and ¢ € C%(I'1) we form the following:

Lip(z) = n(z)Lip(x) + (1 — n(z))Lp(x) (3.66)

0 0 0
= n(z) Kf + (Jf —l—[f) o(x)

2

wn\/l + ’V¢2,€(I/)’

+ (1= (@) Lip(x). (3.67)

3.4 Decomposition of 7°.

After decomposing the off-diagonal operators L3 and L‘S, we may now decompose the oper-
2

ator 79 for § > 0 as follows:

s | ¥l ¥1 Y1
T = Ae,d + Ces ) (3.68)

¥2 P2 ¥2
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where

€,0 €,0
A \/ ‘n o (757 +17")
wn A/ 1+ V1 (T
Apg= ! ‘ . (3.69)
’ €,0 €,0
1 5 (70 + 1) A
wn\/1+‘V¢276(aj’)‘
and
k¥ pKS° 0 LS
1 2 2
Ces = ; +(1—7) 5 (3.70)
€,
nKS K i 0

We clearly notice that, for ¢ € C*(I'9) and = € I'y the normal derivative of the single

layer potential

8,Sap(x) = i/F ww(y) do(y)
2

wn z —y["
is ap-Holder continuous whenever |z| > €y. Therefore, it is convenient to define the limit of

the compact operator (1 — n)Lg as an operator from C%(I'y) into C%(I'1) as follows
LYy = lim, Ly in CYTin{|z| > e}) (3.71)

We highlight at this point that the operator Lg is defined as an operator from C'“(I") into
C*Ty N {|z| > €}). Furthermore, the operator Lg is compact operator because it is the
norm limit of compact operators.

Now we turn to define the limit of the operators ngp(a:), when |z| < €y by using the

operators n(x)KS’(S, n(m)Jg’(s and n(x)lg’(s that defined in the previous section. In other
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words, for ¢ € C%(T'g) and x € 'y N {|z| < €p}, we define

1
wn\/l + ‘le,e@;/)‘

K+

= (5 +15°) | e(@) (3.72)

as a limit operator of ngo(:z). Globally, we use (3.71) and (3.72) to define the limiting

operator corresponding to Lg. That is, for ¢ € C*(I'y) and z € (I'1), we define

1
Wn\/l + |V7/}1,e<x/)

+ (1= n(z))LYp(2). (3.73)

0
LYp(x) = n(z) [ KO +

|2 <J§’O + I§’0> ()

Similarly, we define the operator L?. That is, for ¢ € C¥(I'1) and z € (I'y), we define

1
wn\/l + |V e(a)]?

+ (1 —n(2))LYp(2). (3.74)

0 0 0
(@) = () | K70+ (50 + 1) | l@)

We will show later the operator Lg is a pointwise limit of Lg as an operator from C%(I'9)
into C%(I'1) and similary we will obtain that L? is a pointwise limit of L(IS as an operator

from C*(I'y) into C*(I'9). However, in [1] the authors have proven the following Theorem
Theorem 3.7. [1] The operators L(l) and Lg are not compact on C% for any 0 < a < «y.

Consequently, we conclude that the compact operators Lo .= (L‘{, Lg) do not converge

in norm to LY := (L(l), Lg)
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Now we use the operators L(l) and Lg to define the system

o) (M-t 18 ) (e
70 — ! 2 . (3.75)

©9 LY M- K3 ) \po

Also we will show later that 70 is a pointwise limit of the compact operators T9 as an
operator from C*(I'y) x C%(I'9) into C¥(I'1) x C*(I'y). By using (3.73) and (3.74), we may
decompose T as follows:

TO - Ae,O + Ce,()a

where
n €,0 €,0
. \/H\vw @[ " 1)
W 1 x
Acg = K € . (3.76)
1 5 (710 + 110 A
wn\/l—l—‘Vt/JQ’e(x’)‘
and
~KF pKS° 0 LY
Cep = . +(1—n) (3.77)
€, 0
nkKy" —K5 L7 0

As we have mentioned earlier that the operators (L‘ls,Lfls) do not converge in norm to
(L?, Lg) Thus the operators 79 do not converge in norm to TV. Consequently, even though
we show that the limiting system 70 is invertable we can’t get directly that the operators
T° are invertible and their inverses (79)~1 are uniformly bounded. Recall that, the uniform
bounded (2.64) requires uniform boundedness for (79)~1 in C*(I') x C%(T'y) for a < ay.
In the absence of norm convergence, our goal is to prove uniform boundedness for (7°)~1 in

C*(Tq) x C%(T'9) for o < oy by using the pointwise convergence.
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Chapter 4

Holder estimate for the operator J2€’5

We devote this chapter to prove the uniform Holder continuity of the operator nJS’(S where 7
is the cut-off function defined in (3.11). The work, which is in any dimension n > 2, depends
on the earlier work for dimension n = 2 [1], we use the same decomposition for the operator
J;’(S as well as we use same notations that presented in dimension n = 2 for the auxiliary

operators with some modifications that are required for the higher dimension.

Theorem 4.1. Given any 0 < € < ¢g and any 0 < § < Jg, then 77J§’5 1S a continuous linear

operator from C*(I'y) to CY(I'1) , a < ag. Moreover, we have

! Jeo <C(e), Ya<ag,

5 72
wnm L(C™(Ty),0%(T'))

where a is the reqularity of the auzilary functions ¥; ¢, ag is the reqularity of the boundaries

[, j=1,2, and C(e) converges to 0 as € converges to 0 uniformly in 0.

Before starting the proof, recall that the functions ¢); and 19 are defined in a neighbor-
hood of the origin and have regularity C1®0 for some 0 < ag < 1, whereas the auxiliary

functions 1 ¢ and 99 ¢ are defined globally on R and satisfy the bound

195ell1,0 < G 1441

1,0[07 ]: 1727
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where v = ag — a. That is,

||¢ja€||1’a S 0(6)7 .] = 1727

where C'(e) approaches 0 when e approaches 0. The operator J§’5 is defined explicitly in

(3.62) and (3.63) but it is beneficiary to write it down here in order to see the behavior of

the kernel function that corresponding to the operator near the origin. For x # 0 or  # 0

and ¢ € C%(I'y), the main operator J§’5 is defined by

JE0 () = [Rn_l <5 + oY) - ¢1,e(x’)> — V() (f _nx/)
(!x’ — P (@) = ey - 5)2> 2

(5 +1g.e(2’) - ¢1,e(x’)) — V() (f — )
<|x/ — [+ (Pre(a') — vae(a’) - 6)2> 3

o(y') dy,

and for x = 0 and 6 = 0, the operator is defined by

75%(0) = /n—l Y2y = o) dy,
K (y% o2+ wg,gyf)) :

(4.1)

(4.2)

where ¢(2') = E(p(x')\/l + |[Vipa(a!)|? has compact support in B'(Rp), ¢(0) = ¢(0) and

bounded by the norm

l6lla < (1+C(©) 1+ €0) ¢l

Furthermore, there exists a constant M > 0 such that for any x = (2’

¢" — ¢(¢" + 2') is supported in B/ (M).

(4.3)

, ) € I'1, the function

We start with some basic preliminaries that are needed for the proof of the Theorem 4.1.
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4.1 Preliminaries

In this section we present some basic but useful bounds for the auxiliary functions 9 ¢,11 ¢
and for some linear combinations of 19 . and 1)1 . with the perturbation constant . From
the definition of the operator in (4.1) and in (4.2) we see that the denominator of the kernel
function depends on the functions 11 ¢ and 19 ¢ so it is a good idea to start finding the lower

bounds of these functions.

Lemma 4.2. Suppose 0 < a < aq. Then there exists a constant C' > 0, independent of €

(where € is assumed to be sufficiently small), such that for any x’ € R 1,

(Vi) < Cla, 9illy o )!wi,Ax’)P%, i=1,2. (4.4)
0

Proof. We only focus on 9 ¢, but the same arguments hold for ¢ .. Recall the definition of

Y9 ¢ from (3.20)

U2,e(@) = P(@)ne(x) + (1= ne(@))e' 0 ]| 1,00 -

where 7, is a cut-off function defined in (3.19). For any 2/, ¢ € R"~!, we see that

La
1/’2,6(75/ + 5,) = 1/’2,6(35/) + Vw2,e(x/) ) gl + 0 Ewle(l’/ + tgl) - V¢2,e(x/> ) 5, dt,

and clearly we have the bound

1
1/’2,6(75/ + 5,) < wQ,e(x/) + V¢2,e(x,) : 5/ + /0 |V¢2,e(l" + tgl) : fl - V¢27€($,) : §/| dt.
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Using the Holder continuity of Vg ¢, it follows that

1
¢uwﬂfﬁ§¢u@U+VWAfM€+KT“WV%AMAtaﬁ

< ¢2,e(l’/) + V¢2’6<x/) .5/ 4 ‘fl‘lJrOz

el R L2 [

Assuming C' = 1% HQ/JQHLQO which is evidently independent of e (sufficiently small), we

obtain

Uo.e(x' + &) <o (¢f) + Vippe(a!) - €' + C \fllHa :

That is,

Vo e(x! + &) = o (2) — Vi () - € < C ¢

Since @/J276(a:’ +& >0, we get that
/ / 1 1+a /
_v¢2,6($ )& —=C ‘f ’ < |¢2,6($ )} . (4.5)

. / 1 ]./O[ / l—1 ANE .
Letting ¢’ = — (W) ‘v¢276($ )}0‘ Vg ((2") in (4.5), we have the following

1 1/a 1 1 (1+a) /o | lta /
(Giray) el = gar) T S ]

1+« C(l+a)

Therefore we get the desired bound

Vo e(a!)] < C |thae(a’)| TH0
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The following lemma [1] is a straightforward consequence of Young’s inequality and it has
been used frequently for finding the lower bounds for the denominator of the kernel function

that corresponding to the operator J;’(S.

Lemma 4.3. For any r,t > 0 and for any 0 < u <1 we have
r2 42 > plte =

Proof. By Young’s inequality, we have the following
1 1-—
N (—Z“)ﬂ + (—2 ”)tQ <242

]

To find appropriate uniform bounds for the kernel function, we need some basic uniform
bounds for a linear combination of the auxiliary functions 11 . and ¢  with the perturbation
constant 9. We compile the most frequently used bounds in the upcoming lemma. To simplify
the notation and because this work is generalization of the earlier work for dimension n = 2,
we use same notations for the combination of the auxiliary functions that has been given in

[1]. For any 2/, 3/ and ¢’ in R we define the following quantities

a = a(r')=06+o(a) — Pp(2), (4.6)
i = a(y) =0+1vacy) — 1Y), (4.7)
b = b2, () =0+ Uo(C" +2) =y e(ah), (4.8)
b= by, () =5+ +¢) =ty (4.9)

90



Lemma 4.4. For any ', y' and ¢’ in R"1, the following bounds hold

1 |b—al < [[Veall, |¢

, alternatively;

NS

b —al < || Veal, 1)+ |V | ¢

, alternatively;

Co

b= al < [Vaa (¢ + )| ]+ || Ve, €0

E

. ‘b — B‘ <d (vag,e o val’gna), where d = !:c’ — y’| , alternatively;

v

o + val,e

) ‘b — ZAJ‘ < d!ng,e(C' —i—y’)} + d}V¢17€(y’)| + dotl (vagje a) , alterna-

tively;

D

o= b < d|Vun (¢ + )|+ d [T @) + dH ([l + [IVenel,)
7. Ja—al < d(||Viae, +[Vorel,).

Proof. 1. From the definition of a and b, we have

b—a| = |oe(¢" +2) — o (2],

and by using the regularity of ¢ ., the desired bound follows
b—al <[Vl [C]-
2. Agian from the definition of a and b, we have

b—al = |2e(¢" +2') — (2]

Using the mean value theorem for some &’ lies on the line segment that joining 0 and
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(', it follows that
b —a| < |Vipo (e + &)
By adding and subtracting the quantity Vg ((2), we obtain
b al < [V’ +€) = Vibo o) + [Viba.e(a)] ) [¢']

Using the Holder continuity of Vg ¢, the desired bound follows
b—al < | Vaball, 11" + [V [¢'].

3. For the alternative bound. If we add and subtract the quantity ngﬁ((/ + 2') instead

of Vipg ((a'), it follows that
b—al < ([l +€) = Vo o[ +2)| + Vool + )] ) ]
Noticing that }Q’ -¢ | < |C’ ‘, The desired bound follows

b —a| < ||V, [¢]%T + Vo +2)]|¢].

4. Follows trivially from the definition of b and b.

5. For the alternative bound for |b— b/, let (') = V,e(¢" + 2’) — 1 (2!). Then by
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applying the mean value theorem for some ¢ € (0,1), we have

~

b—b=1(a) — ) = V(&) - (@ —y),

where ¢ = tz’ + (1 — t)y/. Next, we add and subtract the quantity Vi (y') to get the

following

b—b= (V&) - Vo) + Vo)) - (' — o),

equivalently,

b=b = (Vi o((+€) = Vtbo (" +y )= Vo1 (€4 VU1 (4 )+ Vb o[ +1) Vo1 () ) (2" =),

Thus by the Hélder continuity of 19 . and 91 ¢ and noticing that ’5’ —y ! < |x’ —/

Y

the desired bound follows

‘b - z;\ < AT (Vo] + 1VE1ell,) +d [Vl + )| +d|Ver ()]

6. Follows similarly.

7. Follows trivially from the definition of a and a.
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4.2 L>® —norm for J°, § >0

In this section we show the uniform boundedness for the operatorJ§’6 as an operator from

[y to Iy, that is, for p € C*(I'9), and x € I'y N B(0, Ry), we show that

0
5% 0(@)| < Ce) ¢l

where C(€) approaches 0 as € approaches 0. Let k§’5 be the kernel function corresponding

to the operator J;’(S,that 18,

(0 +92.(y) = ¥1e(@”) = Vi1 e(a') - (v — )
(1= 2 + (1) = ) - 8)7)

(0 +42.e(a”) —d1e(a’) = Vi (@) - (v = 2)
(\SU’ — ']+ (Y1,e(a") — v2.e(a) — 5)2)721 |

k(v ') =

and then in short J§’6 can be written in a simple form

1) 1)
T () = / 0 ) dy
R 1

Using the change of variables (' = 3/ — 2’ and recalling that the function ¢(- + z’) has

compact support in B'(M), it follows that

T () = /WM k(o )o(¢! + o)l
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Involving the definitions of a(z’) and b(z’, (') that defined in (4.6) and (4.8) respectively, the

kernel function k§’5 has the equivalent form

KT af) = ba’, (') = ¢ V(@) ale]) = ¢ Vi ea’) (4.10)

G A [ k

In naively way, we have the bound

C lee
< ol
i /UKM’ |m2+w<ccﬂ

—~

) a() = ¢ Vi)

| d¢
1P + a2(a)| 2

NS

We proceed to simplify the integrand by using the least common denominator. We note that

J§’590(w)’
" (¢ +a)2 b= a)+ (¢ +a?)? = (¢]" + ) )(a—d-vmﬁwﬂ)(m,
< 9lc .
] <n (¢ + ) B (I + a8
b—
I
SN (¢ +82)B

n

]Odﬁ+a%7—!dF+ﬁ2ﬂ\@—fﬂkuuﬂﬂ
+M%”/wa (12 +82)2 (I + a2)?

d¢’ = B.

For A term, we use bound (3) from Lemma 4.4 to obtain the following inequality

[Verclly <7 | [Venela + )] €]

AL ||¢HOO/|C/|<M <|C’|2 +b2>n/2 (‘</|2 +b2)n/2

! :A1+A2,

where
‘C/‘H—a

HVQ/JQ,G o
(<M <|C’]2—|—b2)n/2

dc’,

Ar = [[9ll o0
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and
(Vo (2" + )| ||

d¢’.
|¢|<M <|C’]2+b2>n/2

= [19lloo

Naively, we can bound A; by

A1 <18l || VP26

1l+a—m
0‘/|<’!<M <l |

We easily conclude the bound
A < C(M, ) [[¢]l o C(6). (4.11)

For Ag, we recall that b = § + wQ,e(g’ + ') — wLe(m') and use Lemma 4.3 to conclude the

bound

(1= 1—(14+p)R
T LN I e e A R
<M
then we use lemma (4.2) to bound Vg ((2/ + (), that is, we obtain the following bound
1- (1+u) 5
Az < C (0 2100 ) 18] /|<'| [ (o + €| Tha— (=08 =00 s
<M
Choosing 1 — <1%> % < i < 1, we clearly approach the desired bound bound, i.e, we get

—(1-p)G )
A < C(O‘ 424 O‘O) Pl oo Hw2€”1+a K /Q/’ M‘ /| (1+p) 5 ac'
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Thus we have

Ay < C(a,n, M, [¥2]l1,44 ) 9]0 Ce)- (4.12)
Finally, combining (4.11) and (4.12), we have the desired bound for A which is

A< Cla,n, M |[vally o ) 19l Cle). (4.13)

Continuing in the same fashion to bound the term B uniformly, where

(P +a®)2 = (¢ + )2 \m—cfvmf<n
¢/|<M (112 + B2) 2 (172 + a2) 2

/

= [1¢lloo

By using the mean value theorem, we have

n

n_
(P +a)8 (P B <2 (1024 2) 2 2 - a2

)

for some z2 that lies in the line segment joining a2 to b2. Without loss of generality we may

2 2

assume that a2 < 22 < b2. On other hand, same arguments would hold if b2 < 22 < 2.

Therefor we get the following bound

o= Vi) [b—alp+al
(P i) (107 +a2)?

B < Cll¢llog
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Using Schwartz inequality to bound the quantity ‘a - (- V¢176(x’)‘ b+ al, it follows that

Ib— al (\a — V@) + b+ a|2>

B<Clol | .
¢/|<M (‘C1’2+b2> <’</|2+a2>2

ac’.

Notice the following
o= V@) + b+ al? < 6(82 4+ | [ Ver % ).

So we conclude the following

b—al (0 + [ || Ve
B<Cllé)le ( >«%

'|<M <|C/|2+52) <|C/|2+a2>%

Since ) )
(2 + 1P Vel

2

then B can be bounded by

b—al
B<C(1+ ||V | / _=al e
L+ [[Verell2) ol ey 7 d¢

(12 +a2)?

Using the bound (2) form Lemma 4.4, the following bound follows

B <O+ |[Verd) lells | 7 7
|C |<M (|CI‘2 +CL2) 2 (|Cf|2 +a2) 2

98

r1+a / /
IV¥2ella [T | [Ve2el@)] ¢ i
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Thus easily we have the bound

/ /
. |C/’oz—|—1—n n |V¢2’6(1’ )| |C |

2 /
v € d Y
STy - dc

where we used Lemma 4.3 for the second integrand with the choice 1 — % (ﬁ) <p<l

Again for the second integrand we use Lemma 4.2 and the trivial inequality 13 ((2') < a to

obtain the following

BSC’(l—l—HV@bl,e o

2 o M (@™ (™2 g
2ol (COM 4 [ T )

where my = 15 — 5(1 —p) and mg = 1 — 5(1+p). Clearly my > 0 and the radial function

|¢/|'""2 is integrable in the domain |¢’| < M. Thus we have

B < O, M,n) (14991 0|12, ) 191l CCo) (4.15)

Therefore the desired uniform bound for J;’(S follows by combining (4.13) and (4.15),that is,

J5 (@) < Cle), (4.16)

where C'(€) approaches 0 as e approaches 0.
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4.3 Hélder continuity of J5°, § > 0.

For p € C%(T'9), let z,y € T1NB(0, Ry) and set d = ‘x/ — y/’. To show the Holder continuity

of the operator Jg’é, we form the following
4] 0 4] 4]
T2 p(a) — 15 oly) = /|<'! Kol ) - ol ) )
<
We use the same decomposition for the case n = 2 [1], that is, we form the following

T500(n) — I oly) = /|<,|<M k57" a) (0(¢'+ ) = 0(¢' 1)) o’
K5°(( ) =150 (¢ ) (0(¢ + ) — o) ) dd

(
" /(’|<M (k;é( hal) — k;é(C/ay/)) o(y') d¢’

The fact that we split up Rg and Rj is technical. Naively, one may try to not do the splitting
and estimate directly their sum (canceling out the factors of ¢(y)), but this won’t give the

desired estimate that we want.

We easily bound R as follows

,0
|[Bal < ||¢||a/|C,|<M\x/_y,‘a k5 ( /,m( d¢’.
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In the previous section 4.2 we have shown that

Jere

K52, 2| d¢’ < Cfe).

Thus we conclude that

|R1 < C(e) d* |9l - (4.18)

The work for the terms R9 and Rj3 are tedious so we will deal with them separately in the

next subsections.

4.3.1 Boundedness of R».

For Ry we have

€041 1 €8, 1 / ! / /
RQ=/|C,|<M(1<2 () K52 () (6 +4) — o)) dC

where
s / s /
k;’é(cl,l‘/) _ b C vwl,e(nx) o a C ths(nx )7
lor+e2]? [l +a?]?
and
50 1;_/_v€/ A_/‘Ve/
k2,5(<7y): ¢ 1/i1, (@y)_a ¢ Vi, <@y)-
[SEEREk [SEERk

We rewrite Ro as follows

Ry = S1 + S9 + S3 + 94,
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where

—

o) b= Vi)

b— Vi . L R
Sy = ’ _ dc’.
3 /d<|<,|< (o(¢"+y") —o(y)) d¢

o ve]? o)
and
L a— C/ : le,e(x/) _ a— CI : Wq,e(y’) / N / /
51 = /(i<’CI|<M [|</|2 + QQ} % [lcl|2 + &2} % (¢(< Y ) (b(y >) “

For S, we use the Holder continuity of ¢ to obtain the following

€,0

kQ (CI7 wl) dC/

151] < H¢Ha/m<d '

Then we clearly have the following bound

511 < Nl d / k50| dc'

¢ <M

Thus by using the L°°-norm for J;’d (4.16), we obtain the desired bound for Sy. That is,

1S11 < C(e) o]l d (4.19)
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Clearly, the same bound holds for S9. Thus we conclude that
1S1| + [S2] < Cle) 9]l d™. (4.20)

We still have to show the uniform boundedness for S5 and S4. For S3 we have

b—C Vi) b= ¢ V() ;o / /
S = : - : - d )
3 /d<|c’|< (o(¢"+y") —o(y)) d¢

(o e)? (o2 +iz)?

then trivially by using the least common denominator, it follows that

(b— ¢ V¢1,e($,)) {(|§/|2 n BQ)EL _ <‘C/‘2 n b2)721}
L%|:[;“*d4{ (1012 +82) ¥ (102 +2)
B (CI : V@Dl,e(y/) - C/ : Z¢1,e($/)) _ (8 —b) _ } (¢<C/ i y/) _ ¢(y/>) dCI
(IoP+82)” (IoP+2)?

Using the Holder continuity of ¢ and V¢  and the mean value theorem for some 22 that

lies on line segment of b2 and 132, we can form the following decomposition

N3

-1 A

1" o= ¢ Vo] (16 +22) " 2 -2 s

<|CI‘<M 712 2 % 712 72 % ol
(1P +82) (1P +2)

v, [ T IT

d<|< |<M (’C/‘Q + 82) 2

|&ASCWMQL

¢ d¢' = S39

bl
+CH¢HO¢/ p 7 d¢’ = 53,3
d<|<|<M (|C/‘2+62)2
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For S31 we assume b2 < 22 < b2 and again the same work holds when b2 < 22 < b2. We

obtain the following

¢

oo [ bbebesr
’ 3,1| = ||¢||a/d<|C’|<M <|CI|2+52> <|C/|2+62>%

Using the bound (4) from Lemma 4.4, it follows that

‘b+l§

b= V@]
dac’.

[3.1] < Cllollad ([[Vezelly + [ VrLell,) 7
/d<'<"<M (167 +82) (10 +72)

Since

bbb = ¢ T (@) < 302+ | [T e@)]),

we conclude the following

2 112 INEANPILE
153,1|gy|¢|\a0(e>d/d<|</’<M (v +|2<! |V¢1,e(x)|A) 1
(117 +02) (12 +2)

Thus we approach the desired bound, that is, we have

S51] < 14 Ve P )C(e) d ne=m gl
S5l < Bl O+ [Vncl)eoa f 1

That is, we have proved that

53.1| < C(n,a) ¢, (1+ val,eHio)C(e) d. (4.21)
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We easily bound S3 o as follows. We have

s1a+1
vV
S39=C1¢l, da/ T 1“’2 @ q¢’.

d<|¢|<M (|C’|2+52>7

Trivially, we have the bound

|S53.2

d<|¢’|<M

There fore we have
S50 < C(M, a) |9, C(e) d*.
For the last term S3 3 we use the bound (4) from Lemma 4.4 to get

[Sa.a] < Cllélo Cle) d | P g

d<|¢'|<M

Thus

|S33] < C(M,a) ¢, Cle)d™.

<Clllle Vol @ | et g,

(4.22)

(4.23)

Combining (4.21), (4.22) and (4.23) , the desired estimate for S3 follows, that is, we get

93] < C(n, M, a) |||, C(e) d°.

(4.24)

Observe that S4 has the same bound as S3 does because the quantities ‘b — I;’ and |a — al

have the same upper bound which is d( HV'@DZEHQ + HV’(/JZG
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above uniform bounds to end with the desired uniform bound for Ro which is

[Ro] < Cn, M, ) [|6]],, C(e) d°. (4.25)

4.3.2 Boundedness of Rj.

Even we are working in higher dimensions n > 2, we form the same decomposition that has
been presented for the dimension n = 2 [1] but we need some technical modification to deal

with the exponent 5. For the term
) 1)
Ro= [ (157¢) 157 ) ol
<t

We form the following

Ry = ol [ (b Vel ) b= Vipdd )
|¢|<M (12 +b2>% (17 +z32>%

@/)/ ( “ n>dc’:=¢<y’>T2
(' |<M <|C/|2+d2>7 <|§’|2—|—a2>7

) ¢’ = o(y') Ty

/) / (C’ Vi [+ 2) = ¢ VL) Ty~ ¢ Wl’e(y/))dd ;
|| <M

(1P +12) (1P +i2)®
W [ (c’-vwl,e@’% _ S Vidy) ) i =0,
¢ |<M (K/‘Q X a2> 2 <’<,‘2 i &2> 2

Notice that for the term Tj we have used ¢’ - Vibg (¢’ +.) instead of ¢’ - Vi (.) in order

to obtain an exact differential form as you will see later. Also notice that the last integral is
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vanishing. We start with the most technical term which is 77, that is, we begin with

- | Chfﬂvacjfy_&{ﬂvad;yvdd
'|<M <|C/|2_|_b2)? <|C/|2+32)?2

We remark here that the work for this term is depending on the dimension n. Since for the
dimension n = 2 it has already proven in [1] that |T7]| < C(e) d, so we restrict our work for

n > 3. Now let us bound 77 uniformly when n = 3. For such case we have

b—(' v . / / ZA)— v . ! / ,
ﬂ:/y ( Va4 e) B¢ ¢Z@;y0d0
N (O (12 + )

Since b = 0412 (¢’ +2') — 11 ((2'), then VC' b= Vg, where VC' means that the gradient
is taken with respect to the variable (/. By utilizing the polar coordinates (; = r cosf and

(9 = rsind, then we clearly see that r 9,.b = ¢’ - V., b. Thus it follows that
¢

/ b—¢ - Vglb /2”/ b(r,0,z") —Tarb?))rdrde
SN (R 12+ B2(r,0,47)) 2

2 —b(r,0,2")
0 12+ b2(r,0,2)

Noticing that b(0,6,2") = § + g (a) — 1 (a’) > 0, therefore we have

df + 2r. (4.26)

/ b— C/ ’ VCI b d</ o 27 —b(M, 0, .ZL'/)
C'I<M (0 9\5 0 /M2+b2(M,0,2)
(12 +2)
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Similarly we have

/ O R L (0 TN}
|C/|<M <|C/|2+62)% 0 \/M2+62(M79:yl)

Using (4.26) and (4.27), we have the following

2T
Ty < /
0

We use the mean value theorem for some &' lies on the line segment that joining 2’ to 3y to

df + 2. (4.27)

_b<M7 97‘7:/) b<M7‘97y/) A6
VM2 +2(M,0,2") /M2 +02(M,0,y)|

obtain the following

W|</% AﬂvgmMﬁf@
11 >
0

3| |7 =] a0 (4.28)
(M? +b*(M,0,¢))2

Since

Ver b(M, 0,€") = Voo, (M, 0,€') = Vi (),

thus we have

1< & [T (vl + Vel |+ - o] @0
=737 0 2,ellq Lellg) 1T — Y :

That is for dimension n = 3 we have the desired bound which is

ITy| < C(M) C(e) d®. (4.29)
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We continue to find the uniform boundedness for 77 in higher dimensions n > 3. We use

spherical coordinates in dimension n — 1 to get the following

& @ 27 M
T = N de = '(r.0)) J(n.r.0) dr O,
B PULCECE AUy A Y e COC PR

where
b—¢' Vb b(r,0,2") — 0, b(r,0,2")
) =\ 42—< n>
(IoP+e2) (10240200,
J(n,r,0) = r”_Z(sin 81)"_3...(8111 Gn_4)2 (sinf,_3),
and

©= (017 e 7077,—2)'

We use integration by parts to compute the following

M h— b n—2 M h— b n—3
/ b=rodr =, _ / (b=ro ;T L (4.30)
0 (r2+02)2 0 (r2+02)2 (r24+02) 2
Let
n—3

Ay(r) == Ay(r,0,2") = ——
(r24+02) 2

Notice that b(0,0,z") = § + ¢2 ((2") — ¢1 (') > 0 and A;(0) = 0. Thus by integration by

parts, it follows that

M (b —ra,b)r — Ay (M) b(M,©,2") M b
T A(r) dr = 9, +/ _ Y Ay dr, 431
/O (r2+52)% ) VMZ+02(M,0,2")  Jo Vr24+b? 1) (431)
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where

rn—4 7m—3 r X
Al(r) = (n—3) ( — — ( +bn81b)) (4.32)
(r? +b2)T (r2+v2) 2

We treat the last integral as follows

M M n—4 n—2 2 n—3
/ 2b 2A'1(T)dr:(n—3)/ br —_— br n_b Orbr " dr
0 Vre4b 0 (24,22 (P+0%)2 (P+12)2
—(n—3) /M bt (—r o) (B ) Orb
— n n
0 (2ep)"T (P2 )? (r2 +12)3
M (p _ n—4 _ n—2
— (n—3) / b=rob) 7 (b=rdb)rm= (4.33)
0 (r2 + b2) (r2 +62)2

Substituting (4.33) and (4.31) in (4.30), it follows that

M@—ropb)rm=2 =1\ A (M)b(M,O,2") n—3\ (M (b—rd b)rn*
b G G
(4.34)

Repeating the same process T times if n is even and 2 T times if n is odd, we see that

n—3
o ~ M(b—rob)r ) )
M (b —rd b) Tan Zj:21 Cj(n) Bj(M) + Oo(n) fo % dr if n is Odd7
I g = ( 2.4 12)2
0 (7’2 + 62)7 n—2 o b
2 — T Or ) . .
ijl Cj(n) Bj(M) + Ce(n fO W dr  if n is even,
(4.35)
where
A:(M,0,2"\bo(M, 0,2
Bj(M) := B;(M,©,2") = it il _ ), (4.36)

VM?Z+b2(M,0,1)
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Aj(r) = . —{—b2)n_(22j+1), (4.37)
1y |
Coln) = [] %327;1) (4.38)
j=1
anQ
Ce(n) = T %@1) (4.39)
j=1
and
— il n— (21
Cilm) = (n —12j) H n(3 2er 1)' (4.40)
=1

To estimate 77 it is enough to bound ‘Bj(M, 0,2') — Bj(M, 0, y’)| because the term involv-

b—1rorb
ing the integral fOM M dr is treated in the case n = 3 and also the term involving

(r2 + b2) 2

b— b
the integral fOM (27“—+8;2)
.

|B;(M,0,2) — B;(M,©,y)]

dr is treated in the case n = 2 [1]. Now we bound the term

()] = M=+ b(’) = b(y')

<M2+b2(3;/)>( 2 pEh|

(2 40207

where b(z') := b(M, O, 2’). Using the mean value theorem, it follows that

/ / n—(2ij V(¢ — 27)b2(Vb(¢! p
|B(a') = B;(y/)] < M=+ < =i - (gzn—gyi)z) I
(M2 o)) 7

/}’

(M2 4 02(&)
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for some ¢ lies on the line segment joining ' to 3. Thus we have

1B;(') = Bj(y)] < Cln,j, M) (14 83()) [Vo(&)] [+ — ¥/

< C(n,j, M) C(e) d*. (4.41)
Therefore from all above estimates, we have the desired bound for 17, that s,
Ty < C(n, M) C(e) d. (4.42)

If we proceed in the same fashion as we did for 77 and replace b by a, b by a and noticing
that @ and @ are independent of ¢/, we would bound 7% by the same bound that we found
for T7. That is,

|Ty| < C(n, M) C(e) d. (4.43)

For the last integral T3 we have

_ / <c’~w2,e<c’+x’>—c’-vwl,e@c’) c’-wg,e(c’+y’>—c’~w1,e(z/)> o
3 = n - n ¢
|¢/[<M (‘C1’2+b2>7 <K/|2+82>7

We write T3 as

T3="1T31+T392+ 133+ 134,
where

i / ¢+ (Va,e(¢! +2') = Tbn (o) = Vibg o+ 3) + Voo (o))
M Jacieenn (|c'|2 - 62>g

dc’,
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1 1
T3 =/ / ¢ (Vo (¢ +y) — V¢1,e(y’))< T - n) ¢’
d<|< ‘<M (‘C/|2 + b2) 2 (‘C/|2 + b2) 2

¢ (Vi (¢ +2) = Vb (o)),
Tya = : : ag,
33 /\g’]<d ‘

(1P +12)?

and

Ta s — / C/ : (v¢17e(y/) - V¢2,6(C’ + y/)) dC/.
|¢’]<d

| (102 + )

We can easily bound T3 1 by

T3] < d% ([|[Virell, + | VY2,

¢ /
o) /d<|<,,<M (!<’|2+b2>7‘3 dc'.

For any o < a < ag, we would have
y 0>

1 1+(a—a’)
e[ K
d<|<l|<M <|C/|2+b2>7

Thus by using polar coordinates, we obtain the following

o M T(a—o/)—i—n—l
Ty < Cd C(e)/ A
4 (242)?

Therefore we have the bound
T51] < Cla, o, M) d C(e). (4.44)

For T3 9 we use the mean value theorem for some 22 that lies on the line segment joining b2
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to b2 to obtain the following

R ~ ~
T2 < C [Vipo e (¢"+3') — Vi (y))] <’</’2+22>7 1‘b_b‘ < ‘b+b‘ dc’.
T et T (o)t (i)

Let first assume that b2 < 22 < b2. Then we clearly see that

<

b+ < 2(]¢F + %),

Therefore we have

’b—?a

Tsp|<C [ Vi +y) = Vi) ———
d<|¢'|<M (|C/‘2 + (;2> 2

Using the bound (5) from Lemma 4.4, we obtain the following

(Ive2ella + 1901l ) @+

32| < C / (Vo +9) — Vi) @ d¢’ =Tz 2.1
d<’€ |<M <,<~/|2 + 62) 2
o (Ve + )+ Vo] ) d
v [ |V o) - Vo) . &' = Tian
d<|C |<M (|<—/|2+62)2
The first integral 739 1 follows easily, that is,
7},72’1 < Cf(e) d*. (4.45)
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For the second integral 73 2 2, we have the bound

T322 <C d/
d<|¢’|<M

Vo (¢ + 9]+ |Vire)]

2
PRy ¢’
(12 +2)

Then we apply Lemma 4.3 for some 0 < ¢ < 1 to bound the denominator and Lemma 4.2

to bound the numerator, it follows that

2c 2
/ Ny N T+a
7},22§Od/ |¢2,6(C :L‘y)’ _ dC/—i-Cd/ ’wl,e(y)
B d<|¢'|<M ‘C/’(1+#)7 [;(1_U)§

n - n dC/
d<|¢!|<M |C'\(1+“)7 p=m)y
Choosing p = 1 — 2@

=% in both integrals and noticing that ’i)‘ > ’1#2’6((/ +y/)‘ as well as
)B‘ > |¢1,6(y,>

, we get the following bound

, ) a(l—a) , a(l—a)
+ I+a I+a
d<|¢'|<M ¢'] d<|¢/|l<m ||
Thus we obtain the bound
T321 < C(e) d. (4.46)

Then the desired bound for T3 o follows when b2 < 22 < b2, That is, we have proved that
T39 < C(e) a”. (4.47)

While for the case b2 < 22 < b? we need some modification for the above work in order to
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get the bound (4.47). For this case we would have that

b—b
(1P +12)?

Ta| <C [ |V 40 - Vo) ,
d<|¢!|<M

where b = 0+ 19,¢((' +2') — 1 ¢(z). We see that the function b depends on the variables ¢/
and 2/ while the functions Vg . and V1 ¢ depend on the the variables ¢’ and 3/ so we will
perturb the the functions Vo . and V)1 ¢ in order to match their variables with variables

of the function b. For that we offer the following decomposition

T3 9| < 75),2,1 + 73,2,2 + 73,2,3,

where ‘ R
) b—b
T321 = C/ [Vipo e(¢" + 2') = Vpy ()] e
d<|CI|<M <|§/|2+b2>2
- / / / / ‘b—l;
T32,2 = C/ (Vbae((+9) — Viba (¢ +2)| e
and ‘ ~
N b—i
T323="C (Vi1 e(2) = V()| ———.
d<|C/|<M <|C/’2 + b2) 2

Evidently, we can bound 7},’2,1 by C(e) d* if we use the earlier work the for 73 o because

we have the alternative bound (6) for

b— I;‘ that involving 2’ instead of (5) that involving
y'. For the integrals 7},’272 and 7~§7273 we trivially get the desired bound by using the Holder
continuity of the auxiliary functions and the bound (4) for )b — lA)‘ That is, the desired bound

(4.47) still valid when b2 < 22 < b2, After finishing T3 2, we are ready to bound the last two
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integrals T3 3 and T3 4 in the decomposition of the T3 term. If we look at

dc’,

)

_ / C, ’ (V@Z}Z,e(gl + 5(7,) - v¢1,e(x/>)
|</|<d <|<=/|2 +b2)%

and

ac’.

= / C/ ) (V¢1,e(y’) — quQ’E(C/ + y/))
|</|<d <|</|2+E2>TQL

We see that they are both in the same style. So we work to bound 73 3 only. On the other

)

hand, the bound for integral 73 4 will follow in the same manner. To begin bounding 73 3,

we add and subtract V@Dg,e(x’) and using the advantage of the integral

/ gl : (V@Dl,e(x/) - v@ﬁle(l‘,)) dC/ _0,
C/<d (‘C/|2+a2>7
to offer the beneficiary decomposition
/. \V4 . / AN \V/ . / ,
T3,3=/, ¢ (Vi ( +2') \ (') ic = Ty
|< |<d <|CI|2 +b2>7

/ 1 1 /

+/, ¢ (Vg e(a’) = Vipp (o)) ( T n) d¢’ :=="T332.

|¢'|<d <|§/|2—{—b2>2 <|§’|2+a2>2

Since Vg ¢ is Hélder continuous, we easily bound 73 3 1 by C(€) d*. For the second integral,
we use the mean value theorem for some 22 that lies on the line segment that joining a? to

b2 to obtain the following

n_4
P +22)2 p—af [p+a
|7E’>,3,2| < C// ‘C/‘ ‘V@DQ,E(ZL'/) —V¢1,6($/)| ( ) [ [
('|<d <|C/|2+b2>2 <|C’|2+a2>2
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First we assume that a2 < 22 < b2. Then by using the bound
'] Ja+b] < 2(|¢') + 7).
it follows that

/ / b_ /
Toaal <C [ (Vi) = Vo1, b=al 4.

/ n
<< <|C’|2+a2)7
using the bound (2) from Lemma 4.4, we get the bound

Vg (2 "4+ || Vips rja+1
<o [Van) - Vi) VP2 [Tl 161

7 d¢’.
|</|<d (‘C/P +a2) 2

73,32

Then we easily have the following

1
73,32 <] -

- d<’+c/ v
|¢'|<d (

< C(e) /’</‘<d (IC’\2+G2>§

INEAVY,
’cl‘<d (’C/‘Q +a2> 2

We clearly see the first integral is bounded by C(e) d*. The second and the third integral
will be treated in the same manner. To bound the second integral, we use Lemma 4.3 with
the choice p =1 — 270‘ to bound the denominator and also we use Lemma 4.2 to bound the

nominator. Then the following follows

a(l—a)

INEAVY,
/ {V@Z)Q,e(f )’ |§L’ ¢’ < C/ |C/|1+oz—n |77/127€(x/)‘71+04 dc’.
¢ <d <|C/|2 —|—a2>7 ¢'|<d
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Thus the second and the third integral are bounded by C(€) d. Therefore when b? < 22 < a?

we obtain

’T373‘ < C’(e) d®.

2

Now for the case b2 < 22 < a2 which is almost the same work but with some modification.

We clearly would have the bound

V() = Vippe()] — 2= gt

|¢'|<d <|C/|2+b2>g

using the bound (3) from Lemma 4.4, we get the bound

d¢’.

/ / / r1a+1
|T33,2| < 0/ Vib.e(2') — Vibpo(2))| [Via,e (¢ + 2N [¢] + vazel\a ¢

Clearly the term with }C ! | follows trivially. So we just need to bound the integral

~ Vi o |
T332 =/ |Vipg (2") — )| Vel 2! HC | dg.
|¢'|<d (KI|2+b2>

We perturb by adding and subtracting the function VzﬁQ’e(C’ +2') to get the following

5 \V/ € / !/
757372§// [Vipo e (¢" + 2) = Vo ((2)] Vil + ) ||C| d¢’
¢l (102 + %)

v / !/
+/ [Vipo e(¢" +2) = Vpy ()] Ve +a) HQ} ¢’
[ (|C’|2+b2>
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then the bound follows trivially. Thus the desired bound for T3 3 follows. That is
T53| < C(e) d*. (4.48)

Finally, we enclose this subsection by combining all the above bounds to get the desired

bound for Rg which is
R3] < C(n,a,a’, M) 6], Cle) d®, Va' <a<a (4.49)

Therefor, at this point, Theorem (4.1) has been proven when § > 0.
Now we show the validity of Theorem (4.1) under the case 6 = 0. That is, we need to

show

il J&0 < C(e), Ya<ayg, (4.50)

5 "2
wnm L(C™(Tp),0%(T'1))

where C'(€) approaches 0 when € approaches 0. The bound (4.50) follows if we show that for

p € C%(I'), the following limit holds
lim JS0o(x) = J50%(x), = €T1NB(R).
0—0
In fact, since J§’5 is uniformly bounded in operator norm, then it follows that

I5%(x) € C*(T'1) N B(R),
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and

<C@) el

For p € C*(I'9), 0 # z € ' N B(0, Ry) the operator J;’O is defined by

cory) —

,0 0
Ih(e) = [ 60060 d
RrRn—1
where

(V2,e(y)) — th1.e(a”)) — Vipy () - (y/—xl)
(1 =2+ (1.0 — vm0)?)?

_ Wael@) = 1,(a) = Vi e(@) - (v — ')

(1o = P+ (r@’) — da))?) 2

k5" (. a!) =

Whereas for x = 0, the operator J;’O is defined by

¢2,e(y/)

n
2
vl 2 +w§7€(y’)>

J5(0) = /Rn_l ;

o(y') dy'.

(4.51)

(4.52)

After using the change of variables ¢’ =y — 2/ in (4.51) and recalling that ¢ has compact

support in B'(M), it follows that

75 %(a) = /|<'|<M K50 2ol + ') dC,
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where ag(2') = b9 ¢ (2') — W1.(2'), bo(2', (') = ¥a.c(" +2') — ¢y ¢(2') and

bo(2, () = ¢ Ve
(SEERERS)

—~

Y aole!) = ¢ Vo)

ke,O Iy
2 (C,ZL‘) 19 5, %
(12 + a3 (a")

S

Proposition 4.5. Let o € C%(T'9). Then for any 2¢ < ¢y and x € 'y N B(Ry), we have

. ,0 ,0
lim Jy p(z) = Sy ().

Proof. For x # 0, it is clear that by(z") > 0 and ag(2’) > 0. Thus

(}g% kg,d(d’ SC/) _ b() - C : le,eéx ) ag — C : V¢1 eéx )
(leP+ed)® (1P +ap)’

Also we notice that the kernel function k& is uniformly bounded because the denominator is

bounded away from zero. Therefore by using the dominated convergence theorem, it follows

that
by — -V / v /
(%ir% Jg,é . :/l 0—¢C @Dl,egﬁ) _ ap — ¢ ¢1767g$) ¢(€/+x/) dg/.
— M 9 9
N () R (R &
That is,
. 0 ,0
gg% I3 0(x) = J5 p(x), x#0. (4.53)
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For x = 0, we have the following

€ 5 € ' 6 / /
ORI el 7| e ac
M (IR + 6+ 2e@))? (102 +02)2
Let
p ) (¢ 4]
i5(¢") = T -
(167 + (6 +voelc))®) (102 +62)
and
fO(C/) _ wQ,e(C ) . -
(1P + (w2¢))?) 2

By the mean value theorem, we clearly see that

15| < %

which is integrable on the domain {}C ! | < M}. Thus by the dominated convergence theorem

we obtain the pointwise convergence. That is,

lim J5%(0) = / ) ey ac = J5V(0).
|¢/|l<M <’</|2+w%76(</))§
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4.4  Convergence of J5°.

In this Section we study the convergence of the operator J;’(S as an operator from the Banach
space C%(T'9) to the Banach space C%(I'1) for any a < «q, where « is the regularity of
the boundaries T'; and « is the regularity of Vi; ., j = 1,2. Before we start showing the

pointwise convergence, recall the definition of the operator Jg’é, which is

TP (a) = /|<'|<M K5 a)olc! + ') dc’

where
ke,é(CI7 JZ/) _ b(C'7 :L’,) - C/ : V¢1,e(§') - a(x/> - C, : v¢1,e(7f/>’
(P +e2¢an)® (1P + @)’
b(<,7 x,> = 6 + ¢2,6(CI + $/> - 1/}1,6(‘%‘/)7
bO(<,7 x/) = ¢2,€(C/ + x/> - ¢1,e($/),
a(x/) =0+ 1/}2,6(‘7;/) - 1/’1,6(75/)7
and

ao(l’/) = ¢2,e<x/) - ¢1,6(I/)-

Theorem 4.6. [1] Fiz 0 < 2¢ < ¢y. Then for any 0 < o/ < a < ag and for all ¢ € C*(T'y),
we have

/
nJS’égo <, nJS’Ocp as & — 0,
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Oé/

/
where — means the convergence take place in C* (I'y).

Proof. For ¢ € C% and o/ < «, we argue the convergence of 77J§’6 by contradiction. If the
"
sequence 7]]5’6@ does not converge to nJg’Oap in C% (I'1). Then there is a sequence {nJg’éngo}

that satisfying

> C. (4.54)

€,0 €,0
s,

for some C > 0.
We have shown that {nJ§’5”<p} is uniformly bounded in C%(I'1) and since C*(I'7) is
€,0m,
compactly embedded in C’O‘/(Fl), then there exists a subsequence {n.J, " ¢} that converges

to J5 € CO‘/(Fl). From Lemma 4.5, we have pointwise convergence for nJg’ég@. That is
. €,0 €,0
lim nJy"e(z) =nJy"p(x), @ €T10B(Lo).

From the uniqueness of a limit, we have J5 = 17J26’O<,02 and this would contradict (4.54). Thus

/
nJg’égo — nJg’ng in C%, d <a.
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Chapter 5

Uniform Holder continuity for IS’(S.

In this chapter we demonstrate the the uniform Holder continuity of the operator 7]]5’5 in the

operator norm L(C%(T'9), C*(I'1)). We will show that the operator 77]5’5 in any dimension

n > 2 is uniformly bounded by the quantity %(1 +C (6)) (1 + €g) which is exactly the same

quantity that has been found in the earlier work for dimension n = 2 [1]. However, if the
1

bound were greater than 5 (1 + C’(e)) (1 +e€g), the invertibility of the operator A5 that

defined in (3.69) may fail. We can see that clearly from the definition of the operator

,0 ,0
A 1 5 (550 +157)
A wn\/1+‘vw176(x’)‘
€0 — )
’ €,0 €,0
1 5 (70 + 1) A
wn\/l—&-’vwze(x’)’
where \ = % and k is the conductivity in the subdomains, and ey has been chosen

to satisfy % < H;O < |A]. Thus for the operator A, 5 to be invertible, it suffices that the

off-diagonal operators be bounded by a quantity strictly less than |A|. The invertibility and
the convergence of the operator A, 5 will be fully illustrated in the next chapter. The proof
of the uniform Holder continuity of I;’(; is similar to but easier than what we have seen for

J;’(S in Chapter 4. We state and prove the main theorem of this chapter,

Theorem 5.1. Given any 0 < € < €y and any 0 < § < &g, the operator 77[5’5 is a continuous
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linear operator from C*(I'9) to C*(I'1) , a < ag. Moreover, we have

n Ie,§ <

1
2 2 2
VAR PO

where C(€) converges to 0 as € converges to 0, uniformly in ¢.

<1+C&D(L+m%

Remark 5.2. We use the definition 3.2 to show the uniform bound to the operator 15’5.

That is, for p € C*(I'y) and x,y € I'1 N B(Ry), we show that

(1+0@»<L+my

N | —

,0 0
I5%6(2) = I5 ()
12 QOH ) sup S

|z ly|<Ry jz —y|®

where

Let p € C*(I'9), z € I'1 N B(Rp). Recall the definition of [5’5

= sup ‘I;’(sap(a:)‘.
0 [2<Ry

n

@@wy_égq<6+¢%u»—¢umn>—vmﬁm>«i—f>¢w@mﬂ
<|x’ — 1P+ (0 + Vo) — ¢1.e(2")) ) i

where ¢(y') = Ep(y) \/1 + |Vibo e(¥/) ‘2 has compact support in B'(R) and bounded by the

norm

6o < (14 €)1 +e0) ¢l (5.1)

For z = (2/,2,) € T'1 N B(0, Ry), we decompose the operator 15’5 as Iy — Iy, where

Vir ) (o — )
o = 2+ (54 @) — vr())°)

o(y') dy, (5.2)

N3

Lip(x) :/Rn—l <
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and

5+ o o(a!) = v, (a)
Top(z) = /Rn—l ( : () N o(y') dy'. (5.3)
(’37, - y/’2 + (5 + ¢2,e($') - ¢1,e($')) ) .
Before we start proving the Theorem , recall from Lemma 3.6 that
d /

[ 54

e n

(1P )

We will use it frequently during the proof of the Theorem.

5.1 L*°-norm for 15’5, o > 0.

In this section we elaborate the uniform bound for [ 6’5, when § > 0. We discuss the
uniform bounds for its terms Z; and Zo separately. To begin the discussion of the uniform

boundedness, we assume that z = (', zy,) € I'1 N B(0, Ry).

5.1.1 L*-norm for Z;, § > 0.

Since ¢ has compact support in B'(R), we see that

lee(JJ/)'(y/_‘x/) / /
Typ(z) = | | pone
/R" ! <’x’ — /> + (0 + (2 — 1/’176(95/))2) i
_ Vipy e(a7) - (y — ) o(y') dy'

IS

- /B’<Ro> (

o =y (34 o 0) = d1e()°)

128



Let ¢! =4/ — 2/, then we have

\Y € - / / /
Tipls) = [ VL) € o 4oty dc,
|¢|[<M (|C/|2+a2>7

where
a = Q(I/) =0+ ¢2,6(x/) - Q/’1,6($/)-

Since

\Y € - / !
/ &)n o(2)) d¢’ =0,
|¢'|<M <|C/|2+a2>7

then clearly we see that

Tip(x) = /|<,|<MM (6(¢" +2") = ¢(a")) a’.

(12 +a2)?

Thus we have the bound

1114+a
Zrp(2)] < || Vel oo H¢Ha/ <] d¢’.

¢ |<M (\C’!2+a2>g

Since a = § + wgﬁ(x') — 1/1176(1") > 0, we obtain

|</ ‘ 14+a—n

Tio@)| < [Verdl. 6]l / ac

¢ <1

< C(M,a) Cle) |19l -

129

(5.5)



Therefore from (5.1) and (5.6), we have the bound
[Z1p(x)] < Cle) [lellq -

5.1.2 L*°-norm for Z,, 6 > 0.

From the definition of Zs, we have

2ae(o) = [ ; o ol¢ )

o n
P +a2)?

By using the change of variable ¢’ = a w, it follows that

|Zop(x)] = /nl W ¢la @ +2') dw
1+ |

IA
S
8
\
3
R
VRS
—_
3
=¥
S|
I
| &
<
8

Again from (5.1) and (5.8), we see the uniform bound

Zoe(@) < 5H(1+C0) (1 + o) el -

Finally, we combine (5.7) and (5.9) to get the desired uniform bound for

19| <51+ 00) 1+ o) ella
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5.2 Holder estimate for 126’5, 6 > 0.

For the Holder continuity, we choose = (2/,2y,) and z = (Z’,2},) € T1 N B(0, Ry). As

before we use a for the combination of the C'H¢ functions Y1,e and 19 ¢ acting at the point

2’ with the perturbation constant 8, that is,

a:=a(z) =6+ o(a)) — v (2),

and similarly for @, but at the point z’,that is,

a:=a(@) =0+ (T) —v1(2).

In order to get the desired bound for I 675, we use the same decomposition for the terms 7

and Zo that presented in dimension n = 2 [1] with some technical modification.

5.2.1 Holder estimate for Z;, § > 0.

From the definition of Z1, we have

v c AN ,
) = [, A ¢ ad
| |<M <|C/|2+a2>2
and
@ = [, A e a (5.11)
|</‘<M <|C/|2_|_—2>7

Let i =2’ — &’ and ¢! = ({ + A in (5.11), it follows that
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\4 € ') - ({3 h / _/ /
T = | L ECOMC REDI ) (5.12)
’Ci+ﬁ‘<M

(I +8[* +a2)?

Since ¢ has compact support, we have the following

N
V(') - (¢ + Z) (b(d + x’) dd (5.13)

<\§{ et 52> 2

Tip(T) = /Rn_l

Letting ¢ = (] in (5.13), it follows that

Typ(T) = /]Rnl VorE) +Z) o(¢ + ) d¢’. (5.14)

(IC’ + P+ a2> 2

Now we form the following decomposition

Tio(z) — T1p(z) = /Rn—l (Viﬁl,e((xc)/Qj;/JQl;éx ) - ¢

=1\ AN /
n /n_l V¢1,6<x) Cn B V¢1,G(I) (C + Z) d?(C' +x/) dc/
BN +a2)? (10 + 02+ a)?

=A+ B. (5.15)

For A we have

o(¢' + ") d¢’.

A= / (Vi e(a!) — Vi o(@)) - ¢’
. (|CI|2+a2>%
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Since

/ (v¢1,e(x/> - v¢1,6(_,)) ¢
RrRn—1 (|C/|2 +a2>7

then the following bound follows

!/
A 9o, e [ e
R (|C/|2 X ag) 2
K/,l—i—a
< val,e dC/

ol [,y
(% « |<—/|<M <|<—/|2+a2>§

< C(M,a) Cle) |9l 18] -
Using Hoélder estimate (5.1) for ¢, the desired bound for A follows
Al < C(e) [lgllo 11 -

We proceed to find the bound for B, where

- n ¢(C/ +

B= / V(@) - ¢ V(@) (¢ +h)
rn—1 %

(IC’|2+a2> <|C’+ﬁ\2+a2)7
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We decompose B into four terms as follows

. v¢1e( )C, ! /
v /I ¢!|<4ln| |C’|2+a )7 <¢(C te) =l )> “

O wle &R (¢ +a'y - (0
|¢!|<4ln| |C/+ﬁ|2 )

2
V e "+ _
|¢!|<4|nl !C’+ﬁ\2 g )2

/ Vi 6( ) C V¢1,6(f/) ) (C/ + h) (¢(C/ 4 x/> _ gb(l‘/)) d{l.
¢/ >4/ 3

<|C’]2+a ) (\c’+h12+a2)3

Thus we have the decomposition
B := B1+ By + B3+ By,

where B; is the corresponding integral in the above decomposition, ¢+ = 1,2,3,4. We begin

by estimating the first integral By, that is,

. V@Dl,e(fl) ) CI .
n /!<’|<4|h| (12 +a2) 2 (916" +4) = 9t ac”

Using the Holder continuity of ¢, we easily have the following bound

B1) < ||Vore] 6l /, oy T < CO el 6T
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Similarly we can get the appropriate bound for By. To show that, we have

=/ /
By = — / ViLT) (6 + Z) (cb(é’ +a') - qb(aé’)) dg’.
|¢!|<4lnl <|€/+ ﬁ|2 —|—d2>?2

Holder continuity of ¢ allow us to have the bounds

/+ﬁ
B2 < [Vl Wl | L
|¢/|<4ln] <|C’+ﬁ|2+@2>2

<@ 19l / ¢4 A g

' <4ln]

<) ol [

’Cl‘l—i_a—n dCI
|¢'|<5]n|

Using (5.1) and integrating {C”l—m_n over ‘C" < 5|hl|, we obtain the desired bound

1Bl < C(e) liglle 1A% (5.18)

For B3, we substitute ¢/ = ¢/ — A in order to write Bs in the following form

_ VoL@ ¢ e
B3 = /|C'ﬁ|<4ﬁ| (|C'|2 +a2>% <¢($) P(x )) ac'.

Since

V%,e(f’)'é‘” N '
/|<'|<;|h| —(W) o )) dc’ = 0,
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then we have

VLTV S (o) - ofe!)) !

B3 = _/ LN
{|¢/=n|<4n\[¢!|< 51} (IC’I2+(32>7

We clearly can bound Bj as follows

1Bl < |Ver ol 1t | ¢
¥l 19 {l¢'—nl<ann | <15h <l
<|v ha/ e
VLl N0la |7l = IS S

Therefore,

B3| < C(e) llllo 1 (5.19)

For the last integral By, we have

b= / Tdf) Tl L) (o' +2) = oa)) ac’
/| >4l <|</|2+a2>g <|C1+ﬁ|2 _{_a2>72L

We work with some manipulations in order to have the desired bound. We start by assuming
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C{ = C’ + h in the second integrand to decompose By as follows

V¢1 e(f/) : C/ / / / !
By=— Vih1(T7) - ¢ - ]
' /3ﬁ<|<’|<4|ﬁ| ( (W +a) - ox )) ¢

V¢1 e(i’/)'gl ! / ! !
Pt A . d
+/|<’|>3ﬁ 4 (616" + ") = o)) dc

(12 +a2)

V@Dl,e(j/) ) C, ! / / /
_ /‘qﬁ’>4|ﬁ| (\GF j a2>1% <¢(C1 —h+a')— ¢z )) ac!

=01+ Oy,
where
a-- VATV E (o +0') = o)) a!
3|nl<|¢"|<4ln] (‘C/|2 + a2)7
and

vwlﬁ(f} C/ / N o2 /
/|C’|>3|ﬁ| <— (¢<C +17) — ¢ )) d¢

— le’e(f’) Ci I N / !
/‘q_h'”'ﬁ' (I +a2)? (906 =+ = ot ]

We easily can bound C7 by

C1 < |90l ol [

‘C/‘lfn+o¢
3|n|<|¢!|<4ln|

¢’

< C(e) llell IR
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For Cy, recall that i = 2’ — ' then we see that

_ Vi (T) - ¢ . ) ,
02_/|<,|>3|ﬁ| <|C/|2+CL )% (¢(C " ) e >> @

I\
_/’a |>4in oA (ot¢t +#) = 6(a) dcf.
r_

(I +a2)®

We rewrite C9 in the following form

V¢1 e(jl) : C/ / / / /
CH = Rt A . _ d
2 /|C’|>3|ﬁ| 3 (¢<< ol >> ‘

(1% +a2)

I\
_/‘cf A[>apn el . <¢(d+x,>_¢(x/>) ¢
=

(Ig*+a2)®

le,e(j/) ' Ci /
¥ /‘q_h’>4h| L (5(¢) + ') - 0(¢) + 7)) dd

(I +a2)®

= D1+ Dy,

where
_ Virde) ¢ o
D1 _/|§/|>3|ﬁ| <|C’|12+ > <¢(C —i-x) b(x )) d¢
vd}lﬁ(fl)'gl / N, /
_ /‘q_ﬁ‘>4|h| <|C{|2 +a2)§ (¢(C1 +2') = oz )) act.
and

. Vi e( i
Dy = /‘q_h’>4|h| L (0(¢f + ) — 016 + )

(I )
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We start with the easiest term which is Do and after utilizing that ¢ is compactly supported
in B/(M), clearly we can see the bounds

|Dy| < / Vere() C}J |6(¢1 +2") — (¢ + )| dd
3|ﬁ|<‘q]<M <|Ci|2+@2)7

8]
=/ 1+ /
<[¢llq \ﬁ|a/ [1,6(x)[ T ‘7§1| d¢ (by using lemma 4.2)
3lil<|¢f|<m <\Ci’2+@2>7

. —/ ﬁ_ia !
<l It [ Y@ T [

d¢ (by using lemma 4.3)
|ﬁ|<‘CH<M M‘(lw)% -0 1

a(l—a)
<Dl 11 [ @) 7 [
3|ﬁ|<‘§1‘<M
<C(©) ol Ihl" |

3\h\<‘(ﬂ<M

@

I=n+s ¢} (by choosing u =1 — a)
1+5-

il 2" dg

< C(e) llollq 1Al

Therefore we end with the bound

Do < C(e) [[llq 171 - (5.23)

To estimate Dy we rewrite ¢/ = Ci in the first integral for D to get the following

V@Z)l,e(f/) : C{ / / / /
Dy = — d
! ‘Cﬂ>3\ﬁ\ (}CH2+G2>7§ <¢(C1+x) o )> Cl
(

_/ VZULG j/) : C{ /
’Cifﬁ‘>4|ﬁ|

139



Now we rewrite Dy in the following form

- V¢1,e(f/) : Ci _ V¢1,6(EI> ) Ci / N / /
D= /‘Ci >3|h| (|CH2 + a2)g <|C{ 2, a2)TQL (¢<Cl to)-ele )> “

Vw 76(5/) ' C/ ! / ! /
i (g nyt (077N

vy ’E(ij) ] / / / /
it (gt (A7)

Let us find out the bound for the last two integrals in D and denote them by Dj . That
18,

Then we easily see that

Dol [ WAL o) ag
3|h\<‘§1‘<5|ﬁ| (KHQJF&Q)Q

< |Vorcll, ol [ e

/
, [st dgy-
3|ﬁ|<‘(1‘<5\h|

Thus we have the following bound

| D12| < C(e) lIgll, 171 (5.24)
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For the first integral in D we need to use the mean value theorem in order to get the desired

bound. Let us denote it by Dj 1 and use ¢’ instead of Ci to simplify the writing, that is

)

_ / V¢17€(f/) ’ C/ o V1/11,e(7_5/) ’
|¢'|>3]A]

(|</|2 T az)% <|C’|2 N 62>QZ <¢(C’ + ') — ¢(x/)> dc’.

In a naive way, we can have the bound

n

(1 +a2) - (je+t)

(1P +a2)? (10 )

|D11| < ||V,

11+a
5.25
o 16l /wm| ] (5.25)

Using the mean value theorem for some 22 that lies between a2 and a2, we have the following

n_
(|C/|2+Z2>2 1 0% — a?|

1+
D1al <€) [Forelly el [, 1T A . (5.20)
|¢'|>3]A] <|C/|2 + a2>7 <|§/|2 + dz) 2
Without loss of generality we may assume 22 < a2 and same work will hold when 2% < @2.
Therefore, we have the bound
Jl4a la —a| |a+ al
D] <Cn) C(e) [1¢lla | . <l - (5.27)
|'|>3]A] <|CI|2+a2> <’<‘/‘2+d2>2
Since a2 < a2, we can easily have the inequality
a 1
ikl (5.28)

(0P =a?) (ePed)e T
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By substituting inequality (5.28) in (5.27), we have the bound

|D11| < C(e) ||¢||a/|d|>3ﬁ 1™ o —a) dc’ (5.20)

Since a = § + g (a) — 1 (a) and @ = & + o ((Z') — b1 (Z’). Then we easily have the

bound

ja—al < [A] ||V,

a + ’ﬁ’ val,e

«

Thus we can see that

il <€ llalil [ ¢ ac
>3l

IA

e -2
CO lélal [~ v
r=3|A

IA

C(e) llglla A1 (5.30)

Combining (5.24) and (5.30), the bound for D follows, that is,

1D1] < C(e) llpll IR (5.31)

While combining (5.23) and (5.31) gives the bound for Co,that is,

|Col < C(e) llepll IR (5.32)
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Therefore By is bounded by (5.21) and (5.32),that is,

[Ba| < C(e) llpllo 1R (5.33)
For B term we combine (5.17), (5.18), (5.19) and (5.33) to get the bound

1Bl < C(e) o 111 (5.34)
Finally, to let this end we combine (5.16) and (5.34) to get

Zip(x) — Tip(z)] < Cle) ol |z — 2 (5.35)

5.2.2 Holder estimate for Z,, § > 0.

We follow the same idea that presented for dimension n = 2 in [1] to find the Hélder

continuity for Zs. From the definition of Z9 we have

Tae(e) = [ ( Lol )

o n
P +a2)?

We use change of variable ¢/ = a @ to get

1
= dlaw+ 7)) dw.

Iop(x) = /Rn_l m
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We form

Typla) ~ Topla) = | | ———— (dlaw +) ~ slaw+3) de

-1
R (1 + |w|2>?2

By using the Holder continuity of ¢, we have the following bound

_ 1 _ _
Too(e) = Top()] < [6lq / v lemtrd —aw - dw
T (14 1=
1 ;a7 (a—a)w|®
< Hnga/Rn—l n }x -7 |x’—i’| |m’ _j/| dw
(1+1=1%)*
1 = «
<loll o' =" [ ——— (1412l 525 =
e _
T (14 1=P)?
We bound
|a — aj
2/ — 7| < CHwQ,ﬁ —"‘Pl,e”m
< C ¢ (Islly.aq + 11l 100 (5.36)
Substituting (5.36) in the above bound for Zy, it follows that
_ _ 1 a
Zap(o) ~ Toe@)| < ol o' =" [ (14 CO=])" b= (530
R7—1 2\ 2
(1+1=1?)
Notice that N
(1+C@=l) !
e — 7 as € — 0.
(1+1=2)? (1+1=1%)*
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Thus by using the dominated convergence theorem, we see that

Therefore we have

Wn

Zap(a) - Top(@)] < (5

+C(9) ol ' 2/ (5.38)
Involving the bound (5.1), we get the desired Holder bound for Zs

Top(e) — Top(a)| < 5 (wn + €)1+ ) lglla |2 - | (5.39)

N | —

Combining (5.35) and (5.39), we have

5 5 (- 1 _
15%6(") = I5°0(@")| < 5 (wn + C() (1 + o) lielly 2 = 7| (5.40)

Thus the Holder estimate for 15’5 follows ,that is,

|

and the theorem is proved when ¢ > 0. For the case 6 = 0, it follows if we prove that for

15°0] ey, < 5 (6 + C@) 1+ ) el (5.41)

v € C%(I'9), the following limit holds

lim I0(z) = I5(z), = €T NB(R),
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and this will be the aim of the next Section.

5.3 Convergence of I5°.

The operator 15’5 that we deal with in this chapter is nicer than the operator J§’5 because
it is produced from the normal derivative of the single layer potential that defined on the
constant hypersurface. Whereas the operator J§’6 is the difference between the normal
derivative of the single layer potential that defined on the approximate surface I'y ¢ and the
operator [5’5. We have shown in the previous sections that [;’5 is continuous linear operator
from C*(T'9) to C*(I'1) for any a < «g, as well as its limit operator I;’O is again continuous
linear operator from C*(I'y) to C%(I'1) for any o < ag. Before proceeding to study the
convergence, it is appropriate to write down the definition of the operator I;’(S in order to
visualize the singularity of its kernel function. For ¢ € C%(I'2) and = € I'y N B(Ry) we

rewrote the operator [;’5 in the following form

3 P )
Iy°¢p(x) = I3 p(x) — Iy p(x),

where for 6 > 0 or x # 0 the operators If’a and If’(s are defined by

le,E(x)'C - ¢(C1+x/) dcl,
¢ +a2(e))?

T () = /m«w (

where



While for x = 0 and § = 0, we have that
7;%(0) =0,

and

Wn

Z;"0(0) = 6(0) -

Proposition 5.3. Let p € C*(I'y). Then for any € < ¢y we have the uniform convergence

. 1) €0
lim H 199, — pI® H —0,
60—0 Mg P= i ¥ oo

where 1 is the smooth cut-off function defined in (3.11) which satisfies the following properties

0<n<1,n equals to 1 in the ball B(ey), supported in the ball B(Ry) and ||V < €o-

Proof. For p € C*('9) and 0 # = € I'1 N B(Ry), we form the following

€ € 'V € ' "V € ' ! / /
Tete) i = [, (C tee) CVOAD ey ad

P a2t (0P + ajen)?

We take advantage of the integral

7 - - | o) a¢ <o,
P +a@)? (102 +aa)?

/ C/ : V¢176($/) C/ : v¢1,e(x/)
|| <M (

to gain some regularity from the Holder continuity of the function ¢. That is, we form the
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following

~—

V)
(1P +a3)?

/ (" Vi (2
<M

(12 +a2)

It is a worthwhile to split the domain of the integral {‘C" < M} into two subdomains

N3

(6(¢"+ ") = o(a)) dc’.

{‘C’ } < d}and {J < ’C" < M} and then we proceed to argue the uniform convergence on

each subdomain separately. For that, we rewrite

R 0 R R
Iy %p(x) — Iy p(x) = Ii1 +I§,27

where

~—

6’
Il

3

5 C/ : le,e(x/)
1

(1072 +a3) ®

/ CI ’ V%,e(ﬂf/
|’ <o

(6(¢" + ") = o()) dC’,
(I + )

N3

and

~—

V)
(1P +a3)?

Ie,é _ / C/ : V¢17e($'
b2 o<l j<mr

(1P +a?)

We easily can bound If’(ls by the following

N3

(o(¢ +2") — ¢(a)) d¢’.

€,0
1,

< val,e

nl+a—n ;.
dc’.
N H¢HQ/M<6\<\ ¢
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Thus we have

lloo N1lla 8. (5.42)

Therefore we clearly see the uniform convergence from the bound (5.42) over the subdomain

{‘C ! } < 0}. Again for the second integral If’g we trivially obtain the following bound

/5 [T | N SR )
<|¢/|<M (|C’|2+a2>? (IC’|2+a%>?Z

Noticing that, 0 < ag(2’) < a(2’) and a(2’) — ag(z’) = 6. Then by apply the mean value

theorem for some 22 that satisfying a%(:v’ ) < 22 < a?(2'), we have the following

12

/ /|« 6 C + /
e Tt
(1¢" +a3<x'>) (17 + a2(2"))

since

¢/l late") +ao(a')] < 2(|¢'[ +a*(=")).

we conclude that

o[ T
(5<|< ‘<M (|</|2 ($/)> 2
By using Lemma 4.2 to bound the function Vi1 ('), we have

Wu(ﬂﬂ% <"
o<|d| <M <|</|2 + (V,e(a’) — wl,e(x’))Q)

) d¢’.

IS
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Also by using Lemma 4.3 to bound the denominator, we get the following

€,0
1y

NTra |1
< Collgll, / JW(‘”)‘ . ’Cn’ d¢’.
§<|¢!|<M |C/|?2(1+M) Wl’e(x/)rg(l—ﬂ)

By choosing u =1 — n(%—ﬁ‘ﬂ), it follows that

€,0
1y

<C |6, 55 / ] e g,
§<|¢|<M

Then we clearly see that

€,0
1y

1—n4 12~
<C ol o [ ¢! g
§<|¢!|<M
Therefore we obtain the following bound

)
775 < C |lgll, 5 (5.43)

Thus the uniform convergence follows on the subdomain {§ < |§’ { < M}. After finishing
the convergence of If’é. We continue to show the uniform convergence of the operator I;’(S.

For 0 # 2z € I'y N B(0, Ry), we have

a(@)9(¢' +a') _ agla)o(¢ + ') ) i

I o(2) — T80 (2) = ( - 7
P /R"_l (107 +a2@)?  (I¢1 +ad@n)?

For the first integrand we use the change of variables ¢/ = a(2)w, while for the second
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integrand we use the change of variables ¢’ = ag(2/)w, then it follows that

) 0 1
750 () — TS0 () = /

T A ) do

Since ¢ is Holder continuous, then we easily obtain the following bound

dwo.

’ 0 5 |l
73 o) - T % @) < ol [, ;
T (14 1=

Observe that

and

@]
_ C
/ Lndwg/ |o|*" dw < )
|w|>1 (1 + |w|2>§ |w|>1 1l -«

Therefore we have

1) 0
15 0(x) — Iy p(x)| < C'||¢]|, 6°.

That is, I;’a converges uniformly to I;’O when x # 0. Finally, we show the uniform conver-
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gence when x = 0. In this case we have

€, €, B J o(¢') ¢(0) /
1576(0) = 1576(0) = /mnl <<|§/2 + 52>% _ (1 + C’2>%) “

After changing the variables we obtain the following

150 - %0 = [ PIRIZ0D)

(1= +1)?

Then we clearly see the bound

|=|®

,0 ,0
I576(0) = 5% 0)| < Clell ° [ —F— <ol 5
R (1 + ’w|2> 2

Therefore the theorem follows. O]

The following Theorem shows the convergence of I;’égo in C’O‘/(Fl) for any o/ < a where

¢ € C*[I'y) and it can be proved in the same manner as Theorem 4.6.

Theorem 5.4. [1] Fiz 0 < 2¢ < ¢y. Then for any 0 < o/ < a < ag and for all ¢ € C*(T'),
we have

/
nlg’éga N n[§’0g0 asd — 0.
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Chapter 6

The convergence and the main results.

In this Chapter we will show the operators (T 5) 1 exist for any 0 < 0 < §g and are uniformly
bounded in the operator norm. We have shown in Section 3.1 the operators 7' 0 are invertible
for § > 0, but it has proven in [1] that the operators 79 do not converge in norm to their
limiting operator TV. From elementary functional analysis we know that If the operators
T° were to converge in norm to 70 and if (7°)~! exists, then we immediately would
get the uniform boundedness for (T‘S)_1 in operator norm. Therefore, according to
the absence of the norm convergence, we need to study further properties for the operators
T° in order to have the uniform boundedness for their inverses. In [1] for the dimension
n = 2, they have used the notion of collectively compact operators to get the invertibility
of TY and the uniform boundedness of the operators (T 5)_1. We will mimic the idea that

presented in [1] to obtain the uniform boundedness for (7°)~! in any dimension n > 2.

6.1 Preliminaries

Let X, Y and Z be real or complex Banach spaces and let B be the closed unit ball in X,

that s,

B={xe X :|z|| <1}
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Denote by £(X,Y) the Banach space of bounded linear operators 7' : X — Y with the
usual operator norm,

|T|| = sup || Tz]|.
reB

It is known from elementary functional analysis that a subset X’ C X is relatively
compact iff X’ is sequentially compact iff X’ is totally bounded. Recall that a set is totally
bounded if for any € > 0, there exists a finite cover by e-balls.

In this Chapter, we will use
[Tn = T[] — 0
to denote for convergence in norm and
T, — T
to denote for pointwise convergence (strong convergence), that is
The — Tx Vo € X.

An operator K € L(X,Y) is called compact iff the set KB is relatively compact. The

concept of compact operators plays an important role in solving equations of the form
(I —K)x=y. (6.1)

In applied mathematics, equation (6.1) is known as Fredholm alternative, that is, (6.1) has
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unique solution iff the homogeneous equation
(I — K)x=0, (6.2)

has only the trivial solution x = 0. In such a case, the Fredholm operator I — K : X —Y
has a bounded inverse (I — K)~!. The practical solution of equation (6.1) often depends on
the approximation operators. That is, to find a solution of (6.1), it often requires to find a

solution of the corresponding approximate equation
(I — Kp)zn =y, (6.3)

where K, are compact operators and || K, — K|| — 0. Then (I — K)™! exists iff for some

N and all n > N there exist uniformly bounded (I — K,)~!. In such a case,
H(I T G K)—1H 0.

We notice this scheme requires convergence in norm. In some cases, convergence in norm
can not hold. Indeed, it is possible to have pointwise convergence only. Therefore, we seek
an alternative scheme that requires pointwise convergence instead of the norm convergence.
Such a scheme is indeed available: For a sequence of collectively compact operators
Ky, such that K, — K (where K is a compact operator). Then, (I — K) !
exists if and only if for some n > N the operators (I—Kn)fl exist and are

bounded uniformly, in such a case

(I-K) ' —u-K™".
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Let us introduce the notion of collectively compact operators which is a generalization of
the notion of compact operators. Collectively compact operators are very important tools
for solving integral equations of the second kind and have been studied in several papers
[4, 5, 6]. We use [3, 5] to introduce the definition of collectively compact and some basic

results that are needed for our work.

Definition 6.1. [3] A set K C L(X,Y) is called collectively compact if the set

KB={Kz:Kek, zebB}

18 relatively compact.

We notice from the definition of collectively compactness, every operator in collectively

compact set is compact.

Example 6.2. [3] Let X = (2. Define K, € L(X),n=1,2,---, by

Knx = (xn,o,o,"'>.

Let K = {Ky}. Then KB is bounded and dim(KCX) = 1. Thus K is collectively compact.

The following Lemma shows that pointwise limit of collectively compact operators is

compact.

Lemma 6.3. [3] Let K, K, € L(X),n=1,2,---, be such that K = {Kp,n=1,2,---} is a

collectively compact set and K, converges pointwise to the operator K. Then K is compact.
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Proof.

KB C{Kpx:n>1, ze€B}={K,}B.

Thus K is compact. O]

Lemma 6.4. [5] Let K C L(X,Y) be a collectively compact set and M C L(Z,X) be a

bounded set. Then the set KM s collectively compact.

Proof. Let B be the closed unit ball in X and B’ be the closed unit ball in Z. Since M is

bounded then there exist > 0 be such that | M|| < r for all M € M. Thus

KMB crKB.

Since K is collectively compact, then KMB is compact. Therefore we see that KM is

collectively compact. O]

Remark 6.5. [3] A collectively compact set is a bounded set of compact operators, but the

converse is false as we will see in the following example.

Example 6.6. [3] Let X = (% with the orthonormal basis {pa : o € I} and let Py be the

orthogonal projection onto the one-dimensional subspace spanned by @qo. Then

POéx = (377%0a>90a7 HPOl” = 17

and P, is compact since dimPot? = 1. Thus K = {Py, a € I} is a bounded set of compact
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operators in 5(62). However, IKC is not collectively compact because

and

loa = ol = V2 for o # 8.

Therefore KB is not totally bounded.

The following Lemma is very useful and it plays a fundamental role in our work because

it just requires pointwise convergence.

Lemma 6.7. /3] Let X be a Banach space and K, Ky, be bounded linear operators on X for
n=1,2,... Assume that {Ky} is collectively compact and K is compact and K, — K.
Then, (I — K)_l exists if and only if for some n > N the operators (I — Kn)_1 exist and

are bounded uniformly, in which case (I — Kp)~ ' — (I — K)7 L.

6.2 Collective Compactness and convergence of K;‘S.

After introducing the concept of collectively compactness in the previous Section, we use the
concept to show the set K = {K ;’5, 0 < § < dp} is collectively compact, where the operators

K;’(S are defined in Section 3.3.

Theorem 6.8. Let ¢ be fixed with 0 < 2¢ < eg. The operators K§’6 : CYTg) — C¥(I'y),

0 < d < dg, form a collectively compact family of operators.

Proof. For p € C%(I'y) and x € I'; N B(Ry), recall the definition of the operator K§’5 from
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Section 3 which is

K5’ p(x) = ;—i /F 2 & |;y_; (iegir'lllfz(m) Ply) do(y)

n i (-Te — Ye — 5en) : V6($e)
Wn JT9 . ‘xe—ye_(genm

Ep o P(ye) do(ye),

where
1 _vae ('73,)

Ve(xe) =
V14|V (@) |

P is the projection map from I'g . onto R" ! and E is the extension operator on C*(T)
into C*(R™1) that defined in (3.13). Now, when |z| < § we clearly see that for |y/| < e the

two integrands in the above expression coincide. Thus we have the following

-1 (r —y —den) - v(z)
K€76 e _/ do
e wn J{ron|y/|>e} |2 —y —den|” ) do(y)
1 (:EE — Ye — (5en) . I/e(xc)
ton EFEpoP do 7
Wn {F2,em|y/|26} |5E6 — Ye — 5en]n ¥ (yE) (ye)

and more explicitly with the help of the auxiliary functions we rewrite the operator K;’(s in

the following form

€,0 _1/ (z —y —den) - v(x) €,0
Ky = — d =Ky
2 () = - (Cyrlylse To—9—denl” () do(y) = Ky (@)

1 (y —2") - Vb1 (@) + (1,e(2) — o c(y) — 0 . .
+ 2/, ( n/2> o(y) dy = /Cg’f;s@(fﬂ)-
a1+ |[Vor e I (o =y 4 (o) — ) — 6))

Then we proceed to discuss the regularity and the compactness of each term that involved

in the above expression separately. First, let us assume that 7—[‘15 and H§’6 be the kernel
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functions that associated with the operators IC;’? and IC;’(; respectively. That is,

5 . (&—y—den) v(x)
Hl(l', y) = ‘1‘ g — 5en|n s (64)
and
VAN Vi 6a,/,/ el'l— 6/_(5
1 o) | (f = ') Vi (o) + (61,6(2") = doely') =) .

VI V0L (o =P+ wrelae!) — vnelyf) - 02)"

For the operators

€

) -1 / 5
Ko = — HS (z, d , <
9 19(T) T[54 1z, n)ely) do(y), || 5

’ wn

We obviously see the kernel function H‘ls(x, y) is ag—Holder continuous for any 0 < ag <
1 with respect to z and smooth with respect to y as well as 7—[‘15 is uniformly bounded
independently of §. Thus the compactness of the operators ICS’ﬁ follows. Similarly, for the
operators

€

wn, 2

) 1 B
K%wwz——/ HEO (@, )o(y) dy, x| <
’ |

The kernel function 7—[;’5(26, y) is ag—Holder continuous for any 0 < o < 1 with respect to
x and y also H§’5 is uniformly bounded independently of §. Therefore, the operators lC;’f;
are compact. Thus the compactness and the regularity of the operators K;’(S follow when

|z| < 5. Then we continue to discuss the properties of the operators when |z > §. In this
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case we have

€ —1 1 € NP,
K5t = o [ e e do 4o [ H e 6) al 69

where H‘ls(m, y) and H;’(S(x,y) are defined in (6.4) and (6.5) respectively. Again, clearly we
see that the kernel function 7‘[‘1;(1‘, y) is ap—Holder continuous for any x € I'y NB(Ry) \ B(5)
and y € I'y even though 6 = 0 as well as H‘ls(x,y) is uniformly bounded independently
of 0. Thus the compactness and the regularity of the first integral in (6.6) follow. For
the second integral in (6.6), we see that the denominator of the kernel function H;’d(x, Y)
never vanishes even though ¢ = 0 because the auxiliary function 11 . always negative when
}x’ ‘ > 0 therefore the regularity of H§’5 and the uniform boundedness follow. Therefore
we obtain the regularity and the uniform boundedness as well as the compactness of the
second integral in (6.6). From the above observation we conclude that the operators K;’(S
are compact operators from C%*(I'y) into C*0(I'1) as well as they are uniformly bounded

independently of §. Thus the family
F={KS° 0<5<d)
is uniformly bounded in operator norm from C%(I'y) into C*0(I'1). Since, the embedding
CU() = C*(I'1), a<a,

is compact, then we see that the family F is collectively compact. O

As a result from the above theorem, we have the pointwise convergence of the operators
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K5°. That is,

Corollary 6.9. Let 0 < a < ag, and fix 0 < 2¢ < €y. Then for all p € C*(I'y), we have
€,0 €,0 . o
Ky — Ky o, in C (T'1),

as & approaches 0.

Proof. The denominators of the kernel functions associated to the operators K. 5’5 are bounded
away from 0 even though § = 0 as well as the kernel function has C'“ regularity. Thus by

using the dominated convergence theorem we can pass the limit inside the integral sign. [J

6.3 Pointwise Convergence of 77.

This Section deals with the pointwise convergence of the operator T9 that defined in Section

3.4 by the following, for § > 0, T9 defined as an operator in E(C’O‘(Fl) X C’O‘(Fg)) and has

the form
5 _
"7 = Ae,6 + Ce,éa
where
A 1 (757 +157)
\ wn\/ 1+[V9 |
6,5 - )
1 (57 + 1) A
wn\/ 1+‘v¢2 .
and
_KF pKS? 0 LS
1 9 2
06,5 = 5 + (1 - 77)
nKy® —Kj Ly 0



For 6 = 0, 79 is defined by

TO = Ae,() + Ce,()a

where
A L (550 + 15°)
\ wn\/u}wl’e‘
€0 — )
€,0 €,0
L (5 + 1) A
[ 14| Vg
and
_K¥ K 0 LI
1 1y 2
Ce,() = 0 + (1 - 77)
nKy® —Kj LY 0

As a consequence of Theorems 4.6, 5.4 and Corollary 6.9, we obtain the following,

Corollary 6.10. Fiz 0 < 2¢ < ¢y. Then for any 0 < o < « and for all (o1,902) €

C*(T'q) x C%(T9), we have

©1 ©1 / /

Aes — Ao , in C%(T'q) x C* (Iy),
¥2 Y2
¥1 ¥1

06,5 — Ce’() , in CQ<F1) X CO‘(FQ),
¥2 ¥2
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and

Furthermore, the operators Ce 5 are uniformly bounded in L(C*(I'1) x C*(Ty)).

Proof. By the bounded principle theorem the uniform boundedness of the operators C¢ s

follows. O

Theorem 6.11. For A\ = 2(]‘;“_11) and 0 < o/ < . There exists 6y > 0 such that the operators

Ae 5, 0 <0 < dg, are invertible with inverses thatl satisfying

C
51+ @)1 +e)

vo<o<d, A < (6.7)
b |A

uniformly with respect to § in the operator norm L’(CO‘(Fl) X CO‘(FQ)) and C(€) approaches

0 as € approaches 0. Furthermore, for any (o1, ¢2) € CY(T'1) x C*(T'y), we have

¥1
AT} — Ae_é in C'O/(Fl) X C’O/(Fg), o < a.

¥2 ¥2

Proof. From Theorems (4.1) and (5.1), we have shown that for any 0 < § < §y and o/ < «

the following bound holds

Ui €,0 €,0
(757 +15°) <

2
wnm L(CY(Ty),C¥(I'))

(1+C@D<y+m%

N | —
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and in the similar manner we have the bound

i (Jf’5 + ]f’(;) <

2
wnm L(CY(T'1),C%g))

Recall that from equation (3.10), €y has been chosen to satisfy the inequality

(1 + C(e)> (1+¢).

N —

1+ ¢
2

< |AJ.
Thus we may choose € > 0 sufficiently small such that
1
5 (1 + 0(6)) (1+e0) < A

Therefore A, 5 are invertible and satisfy the bound (6.7). From Corollary (6.10), it follows
that for (1, p2) € C¥(I'1) x C*('9) we have the pointwise convergence

1| %1 1
Agé __>Afﬂ

Y2 Y2

in 0(Ty) x ¢¥(Ty), o <a.

]

In the following Theorem we will use the notion of collectively compact operators that

introduced in Section 6.1.
Theorem 6.12. For 0 < a < 1, the following hold
1. The operators {C¢ s A;{%} are collectively compact on C*(I'1) x C*(T'9),

2. Ces A;; — Cep A;& pointwise in L(CY(T'1) x C*(I'3)) as & approaches 0.
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Consequently, {Ce AE_&} is compact operator on C*(I'y) x C*(I'y).

Proof. The collectively compactness of the set {C, s A;g} follows easily from the uniform
bound (6.7), Theorem 6.8, the compactness of the operators K,i = 1,2 and then Lemma
6.4.

For the pointwise convergence, let ¢ € C%(I'1) x C%(I'y). Since the operators C s

1

are collectively compact on C%(I'y) x C%(T'y) and (A 5 — A;&)go are uniformly bounded

in CYI'1) x C*(T'9), then for any subsequence Ceﬁn(A;;n — A;&)w there exists further

-1

on; —A;&)go which converges to some function £ € C*(I'1) x C%(T'g).

subsequence C 5, (A
R

From Theorem 6.11, we have
/ /
Agggp — Agp in C(T1) x C¥(Ty), o <a,

and also we have from Corollary 6.10 that C 5 are uniformly bounded in £ (C*(I'g) x C*(T'1)).
Therefore,

Cogy (AZL A} — 0 in C¥(Ty) x ¥ (Ty).

7671] 6,5nj B

By uniqueness of the limit, we obtain that £ = 0. That is,
-1 -1 .
Cg,(;nj (A€75nj — Ae’o)gp — 0 in C*(T) x C%(I'y).

Therefore the sequence C¢ 5(A ;—A;&)go converges to 0 in C4(T';) x C%(T'g). Now, we form

€,

the following

(Cea Ao} = Ceo AZ3) 9= Ces (A} = A0) 9+ (Ces = Ce) AZS &
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Thus we obtain that C, s A;g converges pointwise to C A;é in C*(I'1) x C%(y). O

Since C¢ () is a compact operator and A g is invertible, then T 0= Aep+Ce is a Fredholm
operator. Thus by the help of Theorem 6.12 we have all ingredients to show the invertibility

of the limiting operator T°.
Theorem 6.13. The operator TV : C*(I'1) x C%(I'y) — C¥(I'1) x C%('y) is invertible.

Proof. Tt suffices to show TV is injective. Let (o1, p2) € CY(T'1) x C%(T'y) be such that

= 0. (6.8)
2

From Corollary 6.10, we have that ngog — ngpg in C’O/(Fl) for o/ < o as § approaches 0.

Therefore we obtain

/ ng@ do = lim/ ngog do
Iy 0—=0.J1y

= — lim 81/8%025(3: — (5en) da(:c)
6—0 Iy

Since SQ¢25(x — dep) is harmonic in Dy, then we have

/ ngpg do = 0.
Iy

Thus we obtain the following

/F1 (()J — K7) ¢1 +L(2)<P2> do(r) = /F1 (M — K}) o1 do(z).
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Since K7 is the L? adjoint of K7, then we have the following

/Fl (A — Kik) o1 do(z) = /F1 (x\gpl — K1(1)¢1> do(z).

From Theorem 2.9, we have K7(1) = %, thus we obtain

1

/n (O =K} o1 + L¢a) do(@) = (0= 3) /pl o1 do(x).

A similar result hold for ()\I — K;) w9 + L(1)901 on ['9, that is
* 0 1
/ ((M —K3)pa + L1s01) do = (A - —)/ 2 do.
Ty 27 Jry
From the assumption (6.8), we have
(M — K}) 1+ LYpa =0 on I,

and

(M = K3) o+ L1 =0 on Ty.

Therefor by using (6.9) and (6.10), it follows that

1 1
(-3 [ erdr=0-3) [ pado=o
2 ry 2 Ty

Since |A| > %, we have

/ gpldU:/ po do = 0.
] Lo
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Now, consider the function

w = S1¢1 + Sapa on R”,

where S; is the single layer potential on I';, i = 1, 2. that is,

Sz’%’(x):/ D(z,y)pi(y) do(y), i=1,2.

i

(6.12)

and ®(z,y) is the fundamental solution to the Laplace equation. From the smoothness of

the single layer potentials, we see that w is piecewise harmonic, that is, w is harmonic inside

and outside the inclusion Dy U Ds. By using (6.11), we easily conclude that

w(z) = O(|lz|'™) as |z] — oo.

Since w is harmonic outside D1 U Dy, then by using (6.13) we obtain

Vw(z)=0(lz|™") as |z|] — oo.

Furthermore, from Lemma 2.18, we have the bounds

IVSieillar ) + IVSi¢illar @op ) < Clieilla o <o i=12

Now we show that w is locally a weak solution to

div (a Vw) =0, in R"\ {0},

ap =14 (k= 1)x(p,uDy)-
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Let R >> 1 and observe that

/ arVwVn dx = k‘/ V (S1¢1(2) + Sapa(x)) Vi dx
B(R) Dy
Tk /D V (S191(2) + Sapa(x)) Vi do
2

T / V (S191(2) + Sapa(a)) Vi da.
B(R)\(D1UD9)

Using the divergence theorem, it follows

/B(R) apVwVnde =k /1“1 ((%’Slgol(x) + 81/52g02(x)>77 do(x)
vk [ (0081010 + 0 S302(0)J do)
/ (3V+Sl<P1 + 8u82s02($)>77 do ()

/ (37/31% ) + v Sopy(x ))77 do(x).

Utilizing the jump conditions for the single layer potential (2.23), we have

[ avwnar=-n | ((M—Kf) wl(w)—avszsaz(w))nda(x)
B(R) I,

+(1— k‘)/r ((/\f — K3) pa(r) — 3Vs1s01($))77 do ().
2

By applying (6.8), it follows that

/ apVwVndr = 0.
B(R)

Thus w is a local solution to (6.16). Next, we show w =0 on R™. Let r >> 1 and n = wy,
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where x € C5°(R") be such that x =1 in B(r — 1) and x = 0 outside B(r). Then we have

/ apVw - V(Wx) dz = 0.
B(r)
That is
/ ak|Vw|2xdx—|—/ ar(Vw - Vx)w dz = 0. (6.17)
B(r) B(r)\B(r—1)

For the second integral in the right hand side of (6.17), we use the decay conditions (6.13)

and (6.14) to obtain the following

<Or ™! 50 as r— oo (6.18)

/ aj, (VW . Vx)w dx
B(r)\B(r—1)

Therefore when r approaches oo in (6.17), we conclude the following
/ ap [Vwl|? dz = 0. (6.19)
RN

Thus w is a constant in R™. Then by using the decay condition (6.13), we have w = 0
in R™. Consequently, involving the jump conditions for the single layer potential (2.23), we

have the following

0 0

Then by using the continuity of o; at 0, it follows that ¢; = 0in R”. Thus TV is injective. [
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Since T and A¢ o are invertible and
0 _ -1
70 — (1 n 06701\670) Aco.

Then we see that

—1 -1
Acp 70" — ([ + 0670/\;6) .

-1
That is, (] + CE,OAE(%) exists. From Theorem 6.12 we have
I+ 0575A6_§ — I+ OG,OAe_(% in CT1) x C%(T9).

—1
Thus from Lemma (6.7) we have that (I + 0675/&6_(%) exist for ¢ is sufficiently small and
they are uniformly bounded with respect to 0 in the operator norm. Therefore, we obtain

the pointwise convergence
1\ ! —1\ !
(1 + Ceghy] 5) N (I + Ce’OAE’O) . (6.20)
Since T° = (I + C’€75A;§) Ac s , then by using the bound (6.7) we conclude that
-1
oN—1 _ -1 -1
<T ) - Ae,(5 <] + C€75Ae,6)
are uniformly norm bounded and satisfy
(Tt — (191 in (1)) x ¢¥(Ty), o <a,

as 0 — 0. Thus we have proved the following Theorem.
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Theorem 6.14. For A = % and o < «q. There exists 69 > 0 such that the opera-
tors T(S, 0 < 6 < 0y, are invertible with inverses that are bounded independently of & in
L(C¥(1) x CYI1)), a < ag. Moreover, the operators (T°)~1 converge pointwise to (T9)~!

as 0 approaches 0 in C(CO‘/(Fl) X CO‘/(Fl)) for any o/ < a < «.

6.4 The main results.

The main results are similar to the case of dimension n = 2. The solution of problem (2.5)
has the representation (2.58) in terms of the solutions <<p‘{, gog) to (2.59) and the harmonic
function Hg from (2.49). A similar relationship holds between the solution wug to problem
(2.4) with touching inclusions and the solutions (¢}, ¢Y) to

0
¢ dvHo |r
o= (6.21)

‘Pg aVH 0 |F2
where Hy is the harmonic function from (2.48). This is the assertion of the following theorem.

Theorem 6.15. [1] The solution ug, to (2.4), may be written
up(z) = Splgp(l)(x) + Sp2g08(x) + Ho(z), z€9Q, (6.22)

where Hy is harmonic inside Q, and defined by (2.48), and the pair(¢?,¢Y) € CY(Ty) x

C*(T9) is the unique solution to (6.21).

Proof. Sine Hy is harmonic inside ©Q, and since I'; and I'y are C1120, the right-hand side
of (6.21) lies in CY(I'y) x C*(I'y) for any a < ag. By using theorem (6.14), the integral
equation (6.21) therefor has a unique solution (go(l), <p(2)) € C%T) x C%(Ty), for any a < «y.
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Utilizing Lemma (2.16), we see that

Oy Hg |Fz’—> ovHy |pi, in C*T;) as 6 — 0.

So we infer from theorem (6.14) that

90(1S B 90(1) _ <T5>_1 Oy Hg ’Fl B <TO>—1 Oy H, ’Fl
3 o dvHs Ir,, dvHy Ir,
_ <T5>1 [ 0y Hs |1“1 B dvHy |F1 ]
- aVH(S |F2 6VH0 |F2
e
dvHy Ir,,

/ /
— 0 in C%(I'1) x C* (I'y), 0<d <.
This convergence of gpg immediately implies that
5.0 0 5. 0 0
S1¢7(z + 2 en) — S1¢7(z), and SophH(r — 5 en) — Sopy (), (6.23)

uniformly on compact subdomains of Q\ (I'y UT'9) as 6 — 0.

Consider now the solution to problem (2.5)
5 d 5 d
ug(z) = S147(z + 3 en) + Sopy(z — 3 en) + Hs(x).

From Lemma 2.16, we know that Hs — H( uniformly on compact subdomains of €2, and
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if we combine this with (6.23), it follows that

o o
us(x) = S194 (2 + 5 en) + S203(x — o en) + Hs(x) — S16(x) + Saeh(z) + Ho(x),

uniformly on compact subdomains of 2\ I'y U9 as 6 — 0.

Since we also know that us — ug in H(€), it follows from uniqueness of the limit that

up = S1Y + S + Ho,

(6.24)

on compact subdomains of 2\ I'y UT'. But both sides of (6.24) are continuous functions in

Q, we get that

up(z) = S19)(x) + S9pd(x) + Ho(z), z € Q.

Theorem 6.16. [1] Let € > 0 and 0 < a < ag. The solution to (2.5) satisfies

sl Fllusll 1,058 F14ll 1,058 < €19l 2200)

ol (Qa\DJuDY) ol (g (D)

where C' is independent of § and g.

Proof. Recall that us has the representation

) )
ug(x) = Slgojs(x + 3 en) + Sngg(x b en) + Hg(x),

(6.25)

where (gp‘ls,gog) solves (2.59) in CO‘/(Fl) X CO/(FQ), for any a < o/ < agy. From equation
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(2.62), we have

Due to theorem (6.14) and the fact that ((p‘ls, gp‘%) solves (2.59), we have

Sl Sip? ) i=1,2.

cla(pg) * ‘

<
oz <

c'(r;)’

5 5
<C ||H )
HgﬁHCa/(Fl)—l—H('DQHCO/(FQ) < C sl oo o,

Applying Lemma (2.16), we have that

176



BIBLIOGRAPHY

177



[1]

[10]

[11]

[12]

[13]

BIBLIOGRAPHY

H. Ammari, E. Bonnetier, F. Triki, and M. Vogelius. Elliptic estimates in composite

media with smooth inclusions: an integral equation approach. Ann. Scient. Ec. Norm.
Sup., 48(2):453 — 495, 2015.

H. Ammari and H. Kang. Reconstraction of small inhomogeneities from boundary mea-
surement. Springer, 2004.

P. Anselone. Collectively compact operator approximation theory and applications to
inetgral eqautions. Prentice-Hall,Inc., 1971.

P. Anselone and R. Moore. Approximation solutions of integral and operator equations.
J. Math. Anal. Appl., (9):268 — 277, 1964.

P. Anselone and T. Palmer. Collectively compact sets of linear operators. Pacific J.
Math., 25(3):417 — 422, 1968.

P. Anselone and T. Palmer. Spectral analysis of collectively compact, strongly conver-
gent operator sequences. Pacific J. Math., (25):423 — 431, 1968.

A. Bensoussan. Asymptotic analysis for periodic structures. AMS Chelsea, 1978.

E. Bonnetier and M. Vogelius. An elliptic regularity result for a composite midium with
toching fibers of circular cross-section. Siam J. Math. Anal., 31(3):651-677, 2000.

G. Citti and F. Ferrari. A sharp regularity result of solutions of a transmission problem.
Ameri Math. Society, 140(2):615-620, 2012.

D. Colton and R. Kress. Integral equation method in scattering theory. Pure and Applied
Math., John Wiley & Sons, Inc., 1983.

E. DiBendetto. Partial differential equations, second edition. Birkhauser Boston, 2010.

Y. L. E. Bao and B. Yin. Gradient estimates for the perfect a conductivity problem.
Arch. Rational Mech. Anal., 193:195-226, 2009.

Y. L. E. Bao and B. Yin. Gradient estimates for the perfect and insulated conductivity
problems with multiple inclustions. Comm. Part. Diff. Eqgs., 35(35):1982-2006, 2010.

178



[14]

[15]

[16]

[17]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

D. Gilbarg and N. Trudinger. FElliptic partial differential equations of second order.
Springer, 1977.

N. Giinter. Potential theory and its applications to basic problems of mathematical
physics. Frederick Ungar, 1967.

H. K. H. Ammari and M. Lim. Gradient estimates for solutions to conductivity problem.
Math. Ann., 332(2):277 — 286, 2005.

H. K. H. L. H. Ammari, G. Ciraolo and K. Yun. Spectral analysis of the neumann-
poincare’ operator and characterization of the stress concentration in anti-plane elastic-
ity. Arch. Rational Mech. Anal., 208(1):275 — 304, 2013.

H. L. H. Ammari, H. Kang and M. Lim. Decomposition theorems and fine estimates
for electrical fields in the presence of closely located circular inclusions. J. Diff. Fqgs.,
247(11):2897 — 1912, 20009.

H. L. J. L. H. Ammari, H. Kang and M. Lim. Optimal estimates for the electric field
in two dimensions. J. Math. Pures Appl., 88(4):307 — 324, 2007.

M. L. H. Kang and K. Yun. Asymptotics and computation of the solution to the
conductivity equation in the presence of adjacent inclusions with extreme conductivities.
J. Math. Pures Appl., 99:234 — 249, 2013.

K. Hatano. Existence and holder continuity of derivatives of single layer ¢-potentials.
Hiroshima Math. J., 13:543 — 582, 1983.

J. O. J. Mateu and J. Verdera. Extra cancellation of even calderon-zygmund operators
and quasiconformal mappings. J. Math. Pures Appl., 91(4):402-431, 2009.

H. Kang and J. Seo. The layer potential technique for the inverse conductivity problem.
Inverse Problems, 12:267 — 278, 1996.

O. Kellogg. Foundation of potential theory. Dover, New York, 1953.

A. Kirsch and F. Hettlich. The mathematical theory of time-harmonic Mazwell’s equa-
tions. Applied Math. Sci. Springer, 2015.

R. Kress. Introduction to partial differential equations. Princeton Univ. Press, Princeton,

N.J, 1976.

179



[27] R. Kress. Linear Integral equations. Applied Math. Sci. 82, Springer, 1989.
[28] L.Evance. Partial differential equations: second edition. Springer, 2010.

[29] Y. Y. Li and L. Nirenberg. Estimates for elliptic systems from composite material.
Commun. Pure Appl. Math., 56(7):892-925, 2003.

[30] Y. Y. Li and M. Vogelius. Gradient estimates for solutions to divergence form elliptic
equations with discontinuous coefficients. Arch. Rational Mech. Anal., 153(2):91-151,
2000.

[31] S. Mikhlin. An Advanced course of mathematical physics. North Holland, 1970.

[32] G. Verchota. Layer potentials and regularity for dirchlet problem for laplace’s equation
in lipschitz domains. Journal of Functional Analysis, 59(3):572 — 611, 1984.

180



