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ABSTRACT 
 

IDENTIFYING THE BEST LOCAL-SCALE PREDICTION MAPS FOR 
DYNAMIC LANDSCAPE PATTERNS OF AQUATIC HABITATS OF 

ANOPHELINE LARVAE IN WESTERN LOWLAND KENYA 
 

By 
 

Nicole Jean Smith 
 

The possibility of anopheline larval control and the need to understand the contribution 

of larval habitat distribution to the intensity of the malaria transmission cycle have generated 

inquiry into the relationships of anopheline larval habitats with environmental variables, 

including those variables that can be remotely-sensed across the landscape. These habitats are 

spatially predictable but their occurrence is unstable throughout time such that a map of their 

locations has a short lifespan of high accuracy. In this study, I create a dynamic environmental 

model of aquatic habitats of anopheline larvae for Asembo, a community in western Kenya, 

using topography, land-use/land-cover, and rainfall variables that have shown previous success 

in landscape models of Anopheles spp. habitats. I compare the success of the model’s prediction 

maps when confronted with new data in another year at the same site to the accuracy of nearly-

contemporaneous maps of the habitats as well as kriging-interpolated maps that exploit the 

habitat spatial clustering to increase the predictive power of the map. The dynamic 

environmental model shows the best predictive power of the three map types tested. The 

dominant input variable, the topographic position index, is further investigated, showing that 

the relationship is strongest at the 1710m scale and the predictions are moderately robust to 

elevation measurement errors. Though the prior knowledge of habitat locations does not 

accurately predict their future locations for long, I identify significant spatiotemporal 

autocorrelation in the distribution of the aquatic habitats that could be used in future prediction 

mapping to fine-tune generalized environmental models to site-specific patterns when some 

habitats have already been identified. 

  



iii 

ACKNOWLEDGEMENTS 
 
 
 

Grant #0723770 from the National Science Foundation funded work included in this 

thesis. I would like to thank my advisor, Dr. Joseph Messina, for his instruction and discussion 

contributing to my work, as well as for his generous and patient attitude over the time it took me 

to complete it. I would also like to acknowledge my committee member Dr. David Lusch for his 

feedback and my committee member Dr. Edward (Ned) Walker (co-PI with Dr. Messina for this 

project) for sharing the 2007 habitats dataset as well as his feedback. Dr. Robert McCann shared 

his 2011 habitats dataset as well as his hospitality and experience during my field work in 

Asembo. He also worked with me on the class project that piloted the creation of the custom 

digital elevation model used in this thesis. Dr. Ashton Shortridge shared useful feedback on that 

class project. Dr. Sarah Hession of MSU’s CSTAT office provided consulting regarding the 

selection of the indicator kriging method. Philip Owera, CDC/KEMRI technician with the 

Kisumu office, was most valuable in the field for the ground reference data collection. The 

cooperation of the communities of Asembo and Seme has been indispensable for the larger 

project of which my study is a part and when one of my paths to some random location crossed 

someone else’s there, I was warmly received. 

Finally, I would like to thank my friends and family for their support and for their faith 

in me while I pursued the completion of this degree. I’m especially grateful to my beloved 

partner, Bob Murphy, for his unwavering belief in me, without which I most certainly could not 

have persisted through my setbacks on the way.  



iv 

TABLE OF CONTENTS 
 
 
 

LIST OF TABLES ........................................................................................................................ vi 
 
LIST OF FIGURES .................................................................................................................... vii 
 
KEY TO ABBREVIATIONS .................................................................................................... viii 
 
CHAPTER 1 ................................................................................................................................... 1 
BACKGROUND ............................................................................................................................ 1 

1.1 Malaria overview......................................................................................................... 1 
1.1.1 Vector species in western Kenya .......................................................................... 1 

1.2 Malaria vector habitats.............................................................................................. 2 
1.2.1 Definition of terms .............................................................................................. 2 
1.2.2 Significance of habitat locations......................................................................... 4 

1.3 Landscape environmental correlates of habitats ...................................................... 6 
1.3.1 Relationship with land-use/land-cover .............................................................. 6 
1.3.2 Relationship with topography .............................................................................7 
1.3.3 Relationship with rainfall ....................................................................................7 

1.4 Predicting habitat locations ...................................................................................... 8 
1.4.1 Generality of landscape correlative models ........................................................ 8 

1.5 Study objectives ......................................................................................................... 9 
1.6 Research questions ...................................................................................................10 

 
CHAPTER 2 ................................................................................................................................. 11 
METHODS ................................................................................................................................... 11 

2.1 Study site .................................................................................................................. 11 
2.3 Aquatic habitat data ................................................................................................. 13 

2.3.1 2011 habitat census ........................................................................................... 13 
2.3.2 2007 habitat survey .......................................................................................... 13 
2.3.3 Gridded habitat observations ........................................................................... 14 

2.2 Land-use/land-cover classification ......................................................................... 14 
2.4 Topographic position index ..................................................................................... 15 

2.4.1 Custom DEM creation ....................................................................................... 15 
2.4.2 Topographic position index calculation and scale selection............................. 17 

2.5 Soils .......................................................................................................................... 17 
2.6 Rainfall time series creation .................................................................................... 18 
2.7 Logistic regression model ........................................................................................ 19 

2.7.1 Model training (2011) ........................................................................................ 19 
2.7.2 Model testing (2007) ........................................................................................ 20 
2.7.3 Error propagation mapping ............................................................................. 20 

2.8 Autocorrelation analysis ......................................................................................... 20 
2.8.1 Habitat stability analysis .................................................................................. 20 
2.8.2 Indicator kriging stability analysis ................................................................... 21 
2.8.3 Spatiotemporal variogram ............................................................................... 22 

 
CHAPTER 3 ................................................................................................................................ 23 
RESULTS .................................................................................................................................... 23 

3.1 Aquatic habitats....................................................................................................... 23 



v 

3.1.1 2011 habitats ..................................................................................................... 23 
3.1.2 2007 habitats .................................................................................................... 23 

3.2 Land-use/land-cover classification ........................................................................ 23 
3.3 Topographic position index .................................................................................... 30 

3.3.1 DEM creation ................................................................................................... 30 
3.3.2 Index calculation and scale selection ................................................................ 31 

3.4 Soils ......................................................................................................................... 34 
3.5 Rainfall .................................................................................................................... 34 
3.6 Logistic regression model ....................................................................................... 35 

3.6.1 Model training (2011) ....................................................................................... 35 
3.6.2 Model testing (2007) ....................................................................................... 40 
3.6.3 Error propagation mapping ............................................................................. 42 

3.7 Autocorrelation analysis ......................................................................................... 44 
3.7.1 Habitat stability analysis .................................................................................. 44 
3.7.2 Indicator kriging stability analysis ................................................................... 47 
3.7.3 Spatiotemporal variogram ............................................................................... 50 

 
CHAPTER 4 ................................................................................................................................. 51 
DISCUSSION .............................................................................................................................. 51 

4.1 Aquatic habitats ....................................................................................................... 51 
4.2 Land-use/land-cover classification ......................................................................... 51 
4.3 Topographic position index .................................................................................... 55 
4.4 Rainfall .................................................................................................................... 58 
4.5 Prediction comparison ............................................................................................ 59 
4.6 Spatiotemporal autocorrelation .............................................................................. 61 

 
CHAPTER 5 ................................................................................................................................ 63 
CONCLUSION............................................................................................................................ 63 
 
APPENDIX ................................................................................................................................. 66 
 
LITERATURE CITED ................................................................................................................ 77 

  
 

  



vi 

LIST OF TABLES 
 
 
 

Table 1 LULC spectral class confusion matrix. ........................................................................... 26 

Table 2 Odds ratios of best logistic regression model. ................................................................ 36 

Table 3 Comparison of performance of predictions of habitats in Visit 9. ................................. 40 

Table 4 Number of overlapping aquatic habitats with 20 m grid cells by visit pair. .................. 46 

Table 5 Percent agreement for habitat presence in pair-wise comparison between predicting 
visit and predicted visit. ................................................................................................................ 46 

Table 6 Performance of indicator kriging predictions vs. habitat observations. ........................ 48 

 
  



vii 

LIST OF FIGURES 
 
 
 

Figure 1 Site overview maps. (a) 2007 habitat survey locations. The lower-left survey grid is the 
only survey grid shared between years. (b) 2011 habitat survey locations. (c) Overview map 
showing location of Asembo on the north shore of Lake Victoria. ................................................ 12 

Figure 2 Seasonal rise and fall of habitat incidence rate throughout the 2007 study period. ... 23 

Figure 3 SPOT-4 LULC classification for Asembo, showing locations of 2011 rectangular survey 
grids. ............................................................................................................................................. 25 

Figure 4 The habitat incidence rate for each LULC spectral class. Each bubble in the chart has 
an area proportional to the geographic area of its labeled class number. .................................... 28 

Figure 5 Photographs in 4 directions at a representative Class 1 location, demonstrating a mix 
of shrubs and agricultural land use. ............................................................................................. 29 

Figure 6 The difference between the GPS height observations and SRTM elevation estimates 
(in meters). Red values indicate SRTM elevation higher than GPS elevation. ............................ 30 

Figure 7 Area under the ROC curve for logistic regression models of aquatic habitat presence 
along a gradient of TPI neighborhood sizes. ................................................................................. 31 

Figure 8 Map of TPI (1710 m scale) with 2011 aquatic habitats overlaid. .................................. 33 

Figure 9 Receiver operating characteristic for the best logistic regression model with original 
2011 training data. ........................................................................................................................ 37 

Figure 10 Map of aquatic habitat presence predicted by 2011 training data. ............................ 38 

Figure 11 Map of false positive and false negative predictions for 2011 training data. .............. 39 

Figure 12 Best logistic regression model predictions in 2007 visit 5. ......................................... 41 

Figure 13 Probability of positive habitat prediction for 2007 visit 5 (with cutoff = 0.0285) when 
the GPS-SRTM difference is drawn from its random distribution during simulated trials. ........ 43 

Figure 14 Habitat stability through 2007 study period. ............................................................. 45 

Figure 15 Habitat observation overlap/agreement as a function of relative time lag. ............... 47 

Figure 16 Maps of indicator kriging "hotspots" in a single 500 m x 500 m survey grid compared 
for two visits. The increase in the turquoise/blue area shows the growth in the area of the 
hotspot from the beginning of the study period (Visit 1) to the middle of the study period (Visit 
5). The points show the distribution of the actual habitat observations as well as the generated 
pseudo-absences. .......................................................................................................................... 49 

Figure 17 Spatiotemporal variogram for 2007 habitats. ............................................................ 50 

Figure 18 Predicted probability of habitat from the best model for Jul 2, 2007. ....................... 61 



viii 

KEY TO ABBREVIATIONS 
 
 
 

AIC    Akaike information criterion 

An. arabiensis   Anopheles arabiensis 

An. gambiae s.l.  Anopheles gambiae sensu lato 

An. gambiae s.s.  Anopheles gambiae sensu stricto 

AUC    Area under the (receiver operating characteristic) curve 

BIC    Bayesian information criterion 

DEM    Digital elevation model 

DNA    Deoxyribonucleic acid 

ENFA    Ecological Niche Factor Analysis 

EROS    Earth Resources Observation and Science 

GPS    Global Positioning System 

GSOD    Global Summary of the Day 

ILRI    International Livestock Research Institute 

ISODATA   Iterative Self-Organizing Data Analysis Technique 

LULC    Land-use/land-cover 

P. falciparum   Plasmodium falciparum 

RMSE    Root mean square error 

ROC    Receiver operating characteristic 

spp.    Species (plural) 

SPOT    Satellite Pour l’Observation de la Terre 

SRTM    Satellite Radar Topography Mission 

TPI    Topographic position index 

TWI    Topographic wetness index 

TRMM    Tropical Rainfall Measuring Mission 



ix 

USGS    United States Geological Survey



1 

CHAPTER 1 
 

BACKGROUND 
 

The deadly disease malaria is transmitted by mosquitoes that depend on aquatic habitats 

for the juvenile phases of their life cycle. The ability to predict the spatial and temporal 

distribution of these larval habitats contributes to the ability to understand, forecast, and 

control malaria incidence. The objective of this thesis is to examine and compare the roles that 

landscape environmental correlates of aquatic habitat presence and autocorrelation of the 

habitats themselves play in predicting when and where habitats occur on a local scale at a 

malarial site in western Kenya. 

1.1 Malaria overview 

About half the world's population is at risk of being infected with malaria, with an 

estimated 214 million cases occurring in 2015 and most deaths occurring in children in sub-

Saharan Africa (World Health Organization, 2016). Sub-Saharan Africa hosts the deadliest 

malaria parasite, Plasmodium falciparum, as well as the particularly effective vector species 

Anopheles gambiae sensu lato. In the last 15 years, malaria incidence fell 37%, but the decline 

has lagged in the sub-Saharan African countries most at risk. The decline is thanks in large part 

to effective use of vector control methods (predominantly those that prevent human contact 

with adult mosquitoes, indoor residual spraying and insecticide-treated bed nets), as well as 

antimalarial drugs. Unfortunately, both the disease and the vector are quick to evolve resistance 

to these means of control and there is still substantial progress to be made before malaria is 

eliminated. Any vulnerable point at which to interrupt the transmission cycle of malaria remains 

a candidate for interventions in a multifaceted control strategy. 

1.1.1 Vector species in western Kenya 

In western Kenya, three mosquito species in the Anopheles genus are responsible for the 

transmission of P. falciparum. The first two, Anopheles gambiae sensu stricto and Anopheles 

arabiensis, are species within the Anopheles gambiae s.l. complex of at least seven 
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morphologically inseparable species. Although they can only be distinguished by their DNA 

sequence, An. gambiae s.s. and An. arabiensis interbreed very little and have different habitat 

preferences and behaviors-- An. gambiae s.s. preferentially feeds on humans (anthropophilic) 

and rests indoors (endophilic) while An. arabiensis exhibits a wider variety of behaviors, feeding 

on livestock in addition to humans and resting outdoors more often (Budiansky 2002). Both 

generally use small, seasonal, sunlit, clear, shallow aquatic habitats during the immature life 

stages, though An. arabiensis may be found using a wider variety of habitats including slow-

moving water (Gimnig et al. 2001, Sinka et al. 2010). These habitats are rain-fed and usually 

directly related to topography and hydrology (the possible exception being certain man-made 

features). The third malaria vector species is Anopheles funestus, which uses larger habitats with 

emergent vegetation (Sinka et al. 2010). 

1.2 Malaria vector habitats 

1.2.1 Definition of terms 

Anopheles spp. malaria vector habitats, the focus of this thesis, are associated with a 

variety of terms in the literature. Some are used ambiguously. Here, I will use these terms: 

1) Aquatic habitat—any permanent or semi-permanent stagnant standing body of water 

presumed suitable for Anopheles spp. habitation, regardless of whether anopheline larvae 

are found within. In the context of landscape correlates, I will ignore artificial habitats as 

many other authors have. Aquatic habitats can be readily observed by a visitor to the site. 

Flowing water is categorically excluded but the distinction of flowing water and standing 

water may be judged subjectively in situ, as very slow flowing water can be considered 

stagnant enough. Lacustrine bodies of water, for example, Lake Victoria, typically host 

aquatic habitat at their margins, but are not conceived of here as a habitat themselves as a 

whole entity. These terms are also used equivalently: potential breeding site, water presence, 

larval habitat. The appearance of the term “larval habitat” requires close reading as some 

authors use it for this definition, while others use it for the following definition. 
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2) Anopheline larval habitat—an aquatic habitat (above) that hosts Anopheline larvae or 

pupae. In order to positively identify an anopheline larval habitat, one or more larvae must 

be observed by sampling using a specialized tool such as a dipper or pipette. Some 

investigators describe a subset of anopheline larval habitats occupied by a particular species, 

but many combine all habitats with any Anopheles species into a single population for study, 

as all species are malaria vectors and they can be difficult to distinguish. These terms are 

also used equivalently: anopheline-positive habitat, larval habitat, larval presence, larvae. 

The appearance of the term “larval habitat” requires close reading, as some authors use it for 

this definition, while others use it for the previous definition. 

3) Conditional anopheline larval presence—whether an aquatic habitat (above) hosts 

Anopheline larvae. A variety of descriptions of this event may appear: the occurrence of 

anopheline larvae, Anopheles presence compared to water, site with Anopheles spp. larvae, 

proportion of habitats positive for Anopheles larvae. Most authors’ descriptions have 

required a close reading to distinguish this definition from the previous one.  

Bayes’ theorem can be used to relate the probability of anopheline larval presence given 

that there is an aquatic habitat, P(A|B), to the probability of anopheline larvae presence, P(A), 

and the probability of aquatic habitat presence, P(B). 

𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

P(B|A), the probability of observing an aquatic habitat given that larvae are observed, 

can be assumed to be equal to 11, simplifying the equation: 

𝑃(𝐴|𝐵) =
𝑃(𝐴)

𝑃(𝐵)
 

                                                        
1 While larval development requires standing water, An. gambiae eggs can survive desiccation for 

at least several days and may contribute to population build-up when water returns (Beier et al. 1990, 
Minakawa et al. 2001) 
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Further, that assumption leads to the re-definition of P(A) as the probability of 

anopheline larval habitat presence. Solving for P(A) 

𝑃(𝐴) = 𝑃(𝐴|𝐵)𝑃(𝐵) 

demonstrates that measuring the probability of anopheline larval habitat presence without 

measuring at least one of the two probabilities on the right-hand side of the equation provides 

no information about their relative contributions. For example, consider a study in which 

anopheline larval habitat presence is determined to be positively associated with a given land-

use/land-cover (LULC) class and note that aquatic habitats without larvae were not also 

observed and analyzed in the study. Several possibilities remain: 

1) The LULC class is positively associated with aquatic habitat presence, but has no 

relationship to the suitability of the same habitats for Anopheles larvae. 

2) The LULC class has no relationship with aquatic habitat presence, but increases the 

suitability of the habitats for Anopheles larvae. 

3) The LULC class is weakly negatively associated with aquatic habitat presence, but is 

strongly positively associated with the suitability of the same habitats for Anopheles 

larvae. 

4) The LULC class is positively associated with both aquatic habitat presence and suitability 

of the same habitats for Anopheles larvae. 

5) And the list of possibilities continues.  

Because this thesis seeks to understand the distribution of aquatic habitats as a piece of a 

puzzle that contributes to conclusions about the distribution of anopheline larvae populations in 

the landscape and their resulting impact on malaria incidence, the relationships between the 

definitions identified here will be further considered in Chapter 4. 

1.2.2 Significance of habitat locations 

One approach that has been effective for malaria control in the past and may be 

incorporated more often into the latest control efforts is larval source management (Fillinger 
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and Lindsay 2011). Additionally, isolating the change of malaria transmission rates due only to a 

particular intervention is necessary in order to monitor success, and can only be done if the 

variability in malaria transmission due to other factors such as the heterogeneous distribution of 

such habitats throughout space and time is well understood (Rejmankova et al. 2013). 

Therefore, detecting larval habitats at the local scale presents an opportunity to quantify and 

control vector abundance and distribution at the point where it is most confined, but they are 

not always easily found—they are small, ephemeral, and often in locations that are difficult to 

access.  

Remote sensing with satellite imagery permits a synoptic view of conditions facilitating 

malaria transmission (Rogers et al. 2002). Direct detection of mosquito habitats using satellite 

imagery, even at the highest spatial resolutions currently available, is difficult owing to their 

small size (many less than 1 m2) and ephemeral nature (Mutuku et al. 2009). Curran et al. 

(2000) described the generic framework that allows remote sensing to be integrated into 

landscape epidemiology for vector-borne diseases such as malaria. Remotely sensed data are 

used to identify information about variation in the landscape, the landscape variables are related 

to vector habitat, and the spatial distribution of the vector-borne disease is defined by its 

habitat. In order for this framework to be applied successfully in the overall context of the 

disease, the landscape elements critical to the survival of the disease vector must be understood 

and these elements must be detectable using remote sensors (Beck et al. 1994). While a large 

body of literature describes the ecological characteristics of larval habitats (see Rejmankova et 

al. (2013) for a recent review), I will focus here on only those landscape variables that are 

commonly extracted from satellite imagery. 
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1.3 Landscape environmental correlates of habitats 

1.3.1 Relationship with land-use/land-cover  

The earliest studies examining the relationship between remotely-sensed data and 

malaria focused on the identification of potential mosquito habitats in a very broad sense (Hay, 

Snow, and Rogers 1998). Starting in the 1970s, vegetative communities known to harbor 

mosquito species were mapped using color-infrared aerial photography for the purpose of 

directing larval control (Wagner et al. 1979). Barnes and Cibula (1979) were the first to take 

advantage of digital multispectral imagers for this task; a few years later, data from the earliest 

spaceborne sensor platforms (Landsat 1 and 2) were used (Hayes et al. 1985). 

More recently, a number of studies including An. gambiae s.l. and An. funestus in an 

examination of LULC associations with aquatic and/or anopheline habitats have been 

conducted with An. gambiae at the focus in western Kenya. At a site in the Kakamega district in 

the western Kenya highlands, farmland is less likely to host aquatic habitats, but the habitats are 

most likely to be occupied—in a further experiment, these habitats were the only ones to 

produce An. gambiae adults under natural conditions (Minakawa et al. 2005, Munga et al. 

2006, Mushinzimana et al. 2006, Munga et al. 2009). Conversely, the streams and swamp 

categories have many aquatic habitats, but few anopheline larvae. LULC classes at the 

Kakamega site include farmland, pasture, swamp, forest, streams, shrubs, and roads. At this 

site, farmland tends to be farther away from the streams. Mutuku et al. (2009) studied the 

relationship between LULC and both aquatic habitats and anopheline-occupied habitats in 

Asembo in 2005, finding that mature maize and newly-cultivated fields foster more aquatic 

habitats than would be expected randomly, and that aquatic habitats decrease with increasing 

distance from streams. In Asembo, agricultural lands tend to be located relatively close to 

streams, suggesting that these seemingly opposing conclusions might be reconciled if one were 

to evaluate the effect of LULC on aquatic habitat presence while controlling for correlated 

variables such as distance from stream or elevation. One attempt to include both variables in a 
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multivariate model shows no significant relationship for LULC in the model for aquatic habitats, 

although there is a significant relationship for LULC in the model for anopheline larval habitats 

(Mushinzimana et al. 2006). When agricultural LULC classes enter a model controlling for 

topographic wetness index (TWI), soils, distance to stream, and rainfall, the odds of the location 

having an aquatic habitat increase by a factor of 1.33 (McCann et al. 2014), but the model’s 

Akaike information criterion (AIC) shows only a modest improvement over a model with no 

LULC included. 

1.3.2 Relationship with topography  

Topographic variables have also shown considerable promise for predicting aquatic 

habitat locations and corresponding malaria risk. In the western Kenya highlands, topographic 

variables are associated with anopheline larval habitats (Mushinzimana et al. 2006). In Zambia, 

significant portions of the landscape are able to be excluded as not having water pools present 

using several topographic variables including topographic position index (TPI), but it is difficult 

to pinpoint where An. arabiensis actually occupies these pools (Clennon et al. 2010). Nmor et al. 

(2013) has found that a variety of topographic variables performed well in the rainy season. 

Drains, foot-prints, puddles, and swamps are especially predictable and the high-risk area 

comprises half the study site but detects 80% of the habitats. McCann et al. (2014) have found a 

moderate negative relationship between TWI and aquatic habitat presence. 

1.3.3 Relationship with rainfall  

Finally, while LULC and topographic conditions can be used to describe where habitats 

and anopheline larvae are located, an understanding of rainfall patterns is crucial to describing 

when they might be found there. Water must be present at a site for a minimum of 10 days 

under ideal conditions for An. gambiae s.s. to develop from egg to adult (Budiansky 2002), 

though larval mortality is higher at the shortest development time than when the temperature is 

just a few degrees cooler (Bayoh and Lindsay 2003, 2004). 
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Gridded satellite precipitation data such as the TRMM (Tropical Rainfall Measuring 

Mission) products provide information about rainfall at a high temporal and spatial resolution. 

They are increasingly used successfully to discriminate between conditions favoring aquatic 

vector-borne diseases and those that do not (Schuster et al. 2011, Xue et al. 2011, Debien et al. 

2010). Two studies have examined TRMM datasets for use in models predicting malaria risk 

with results mixed between successful inclusion as an input variable (Kiang et al. 2006) and 

rejection as an input variable where precipitation may be too low to affect malaria risk (Adimi et 

al. 2010). Dambach et al. (2012) tried to predict larvae density (high/low) and adult density 

(high/low) using a combined remote sensing technique and found that the TRMM rainfall 

amount in the last 15 days is predictive of each in a univariate test. McCann et al. (2014) studied 

the relationship of rainfall with aquatic habitat presence and showed that the rainfall total in the 

previous 30 days is positively related to the aquatic habitat presence in a logistic regression. 

While other accumulation intervals were better related in other models, all of the rainfall 

accumulation intervals tested were correlated with each other. This study will re-examine the 

very same dataset, training a model that includes satellite precipitation estimate data before 

testing the result on data from another year. 

1.4 Predicting habitat locations 

1.4.1 Generality of landscape correlative models 

Studies discussed here so far have performed reasonably well at prediction, as measured 

by the area under the receiver operating characteristic (ROC) curve. Comparing only logistic 

regressions, aquatic habitats can be predicted with the area under the curve (AUC) statistic 

ranging from 0.73 (McCann et al. 2014, lowest of those tested) to 0.81 (Clennon et al. 2010), 

while anopheline larval habitats can be predicted with AUC scores ranging from 0.76 (Nmor et 

al. 2013, lowest of those tested) to 0.85 (Clennon et al. 2010). Li et al. (2011) tested four types of 

models for generality at a site in western Kenya—logistic regression, spatial logistic regression, 

artificial neural network, and environment niche factor analysis (ENFA). Although spatial 
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logistic regression was the only model type to incorporate spatial information, all model types 

except ENFA perform well overall and were able to predict at least 75% of the habitats 

(sensitivity) at the same site in a different year or season. Logistic regression had the greatest 

temporal generality, predicting 85% of the habitats on average. The authors write that since the 

spatial logistic regression explained the spatial structure of the training data well, the prior 

results of Li et al. (2009) give reason to believe that changing levels of spatial dependency over 

time limit the generality of this model type, as it may be overly dependent on the training data. 

The models tested here include only topographic variables, and the generality of a model 

including a dynamic variable has not been tested explicitly so far, although McCann et al. (2014) 

compared two models of similar construction and found agreement. 

Li et al. (2009) have also explored the stability and spatial structure of the same habitats 

as the 2011 publication. They found approximately 25% direct overlap using a 20 m grid to 

measure overlap in aquatic habitats at 6 time points during the dry and rainy seasons of 3 

consecutive years. Anopheline larval habitats showed slightly less overlap (15%). A nearest 

neighbor analysis showed that by starting with a rainy-season, anopheline larval habitat at one 

time point, one must search 190 m to find the first nearest anopheline larval habitat, on average, 

if visiting at another time point and that this distance varies with the reference season and year. 

They concluded that any known map of habitats should be updated frequently due to the low 

predictive power of the map in another season and year, though there is clustering to the 

habitats. 

1.5 Study objectives 

Given the comparatively strong predictive performance of even those environmental 

models with no dynamic predictor variables in the previously surveyed literature, it is 

worthwhile to investigate whether dynamic model predictions have achieved a higher utility 

than prior knowledge of the site in predicting habitat locations at other times. Another question 

that emerges is whether predictions based on the spatial autocorrelation of the habitats show 
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increased detection power over predictions made with the habitats alone. Though habitats have 

thus far been too small to be detected directly with remotely-sensed imagery, future spatial and 

temporal resolution improvements may bring the opportunity to systematically identify a 

population of remotely-sensed habitats in some proportion to the total population. In this event, 

interpolation techniques will have the potential to fine-tune environmental correlative models of 

Anopheles spp. habitats to the spatial structure of a local region of study in order to produce 

better predictions and uncertainty estimates, especially in the vicinity of remotely-sensed 

habitats. 

This study will identify the best prediction map for aquatic habitats in Asembo using the 

candidate predictors of LULC, topography, rainfall, soils, and prior knowledge of habitats at the 

site. The best-predicting model will be required to perform well at predicting new locations at 

new time points in order to be considered generalizable. This study will also quantify the 

differences in prediction power between the mapping possibilities tested. 

1.6 Research questions 

This study will answer the following questions: 

Question 1: Which is more predictive of aquatic habitat locations—predictions resulting 

from an environmental model or predictions based on prior knowledge of habitat distribution at 

the site? 

Question 2: What is the pattern of spatial and temporal autocorrelation of the aquatic 

habitats at this site? 

Question 3: What error can be expected in predictions of aquatic habitat presence 

based on error measuring the elevation and the derived topographic index? 
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CHAPTER 2 
 

METHODS 
 

2.1 Study site 

The study site encompasses the community of Asembo (0°11΄ S, 34°23΄ E) in the Nyanza 

Province of Kenya, located in a lowland region on the north shore of the Winam Gulf of Lake 

Victoria, approximately 50 km west of Kisumu. The study area is approximately 170 km2 in size 

and ranges from approximately 1100 – 1325 m in elevation (Figure 1). The region receives rain 

throughout the year with two peaks, the “long rains” from March to May, and the “short rains” 

from November to December. Total annual rainfall averages about 1400 mm per year and daily 

maximum air temperatures range from 25.5°C – 33.0°C (Phillips-Howard et al. 2003). The 

study area is rural but densely populated, and features intensive agricultural land use including 

growing cereal grains (primarily maize) and forage for livestock including cattle and goats. 

Typical residences are mud-and-stick buildings with thatched or tin roofs arranged in 

compounds. Larval habitats in the area are characterized by 6 main types: burrow pits, drainage 

channels, livestock hoof prints, rain pools, tire tracks, and pools in streambeds (Mutuku et al. 

2006). Malaria is holoendemic at this site with perennial transmission. Deployment of 

insecticide-treated bed nets and other interventions reduced the occurrence of malaria and the 

number of adult mosquitoes inside homes at the site (Lindblade et al. 2004), but the prevalence 

in children remained at about 40% in 2011 (Hamel et al. 2011). 
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Figure 1 Site overview maps. (a) 2007 habitat survey locations. The lower-left survey grid is the only survey grid shared between years. (b) 2011 habitat 
survey locations. (c) Overview map showing location of Asembo on the north shore of Lake Victoria. 
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2.3 Aquatic habitat data 

2.3.1 2011 habitat census 

These data are the same described by McCann et al. (2014). A spatially-stratified, 

random sample was used to select 31 rectangular survey grids (500 m by 500 m in size) from a 

fishnet overlay of the study site. Between May 17 and July 4, each sampling grid was completely 

surveyed within one day for aquatic habitats and the locations were recorded as georeferenced 

points with GPS (Global Positioning System). An exhaustive census of aquatic habitats was 

recorded—each absence observation is verified by direct observation. These data were used for 

model training. 

2.3.2 2007 habitat survey 

A survey of larval habitats was performed with repeated visits from the start through the 

end of the rainy season. Similar to the 2011 survey, 20 rectangular survey grids (500 m by 500 

m in size) were selected for the 2007 habitat survey from a fishnet overlay of the study site using 

a spatially-stratified sample that selected a survey grid in the vicinity of the streams from each 

stratum. The overall extent was overlapping with, but slightly smaller than that of the 2011 

survey. Only one survey grid was in the same location as a survey grid for the 2011 site—all of 

the other survey grids were exclusive to either the 2007 or 2011 survey. At approximately 2-week 

intervals, all 20 grids were surveyed for aquatic habitat presence and the habitats were recorded 

as georeferenced points with GPS. Each location was visited nine times between May 9 and 

August 31, although different survey grids were observed on different days grouped together for 

each visit and locations within the same survey grids ere sometimes visited across several days 

as well. Two survey grids were moved before the third visit—the original locations were 

disregarded for this analysis and the new locations have missing observations for the first 2 

visits. These observations were used for model testing. 

For the indicator kriging analysis only, pseudo-absence data were defined. This choice 

allowed predictions near observed habitats to be non-zero—that is, the predictions are intended 
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to reflect an underlying habitat probability that was not realized as positive observation on that 

particular day. Each habitat observation included dimensional measurements (length and 

width)—the maximum dimension plus 5 m was calculated and a buffer around each habitat was 

generated using this calculated value as the distance. Approximately 360 points, stratified by 

survey grid, were randomly generated for each visit in the region so that an approximately equal 

number of presence and pseudo-absence observations were included.  

2.3.3 Gridded habitat observations 

The point observations were overlaid with the 20 m grid originating from the satellite 

image used for the LULC classification (described below) in order to spatially align the input 

datasets in preparation for the logistic regression. Each cell (pixel) that contained at least one 

point was encoded with a “1” to indicate habitat presence and a “0” to indicate habitat absence. 

In order to assign observation dates to cells with habitat absence (which were not originally 

represented in the point data), the modal date of the habitat presence observations within the 

same survey grid was used—that is, if 90 habitats were observed on July 1, and data collection 

for that survey grid continued on July 3 with 10 additional habitats discovered, then July 1 was 

imputed for the absence cells. The imputation introduces the most potential error relative to the 

total rainfall amount when the rainfall accumulation variable has a short interval. Five survey 

grids in the 2011 data that contained no habitats at all were eliminated from the training dataset 

due to an unknown date of observation.2 

2.2 Land-use/land-cover classification 

A radiometrically-corrected SPOT-4 (Satellite Pour l’Observation de la Terre) 

multispectral image recorded May 13, 2011, with an angle of incidence of 5.61° was obtained and 

orthorectified with ground control points (RMSE = 1.4 m). SPOT-4 multispectral imagery is 

                                                        
2 Since no habitats were found, the dates these grids were surveyed were not indicated in the 

source point data and the dates have not been requested from the original data collector. There are many 
remaining absence values in the dataset with a wide range of variation of the independent variables to be 
used in the model training. 
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collected with 20 m resolution at nadir and is re-sampled to 20 m when collected off-nadir. 

ISODATA unsupervised classification was used to produce 255 spectral classes in the ENVI 

software package that were then subjected to spectral separation testing. Class pairs with a 

transformed divergence value lower than 1990 were deleted and the 32 spectral classes that 

were distinct were used in a maximum-likelihood supervised classification, encompassing all of 

the spectral variance in the image using a maximum number of distinguishable classes (Messina 

and Walsh 2001). In August 2011, 254 ground reference points were collected using GPS. Visual 

interpretation of the spectral signatures, as well as evaluation of 162 of the ground reference 

locations were used to assign LULC classes, while 92 ground reference points were held aside for 

classification accuracy assessment. 

The chi-square test statistic was calculated to measure the univariate correlation 

between LULC classes and habitat presence. For inclusion in the multivariate logistic regression, 

Class 29 was used as the reference category for odds ratios after the conversion to dummy 

variables due to its moderately large areal extent and approximately average frequency of 

habitat presence in the univariate analysis. 

2.4 Topographic position index 

2.4.1 Custom DEM creation 

A 90 m resolution DEM (digital elevation model) was created using a regression kriging 

model based on two datasets. The first, an SRTM (Shuttle Radar Topography Mission) 3-

arcsecond DEM, was downloaded from the United States Geological Survey Earth Resources 

Observation and Science (USGS EROS) Center. The SRTM 3-arcsecond DEM is a high-

resolution, high-precision dataset derived from interferometric radar flown in 2000. Over 

Africa, 90% of the errors in SRTM heights fall within 11.9 m geolocation error, 5.6 m absolute 

height error, and 9.8 m relative height error (Rodriguez, Morris, and Belz 2006). A limitation of 

this DEM is that the radar does not significantly penetrate heavy vegetation canopies, and will 
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provide an elevation measurement within the canopy rather than at the bare earth (Farr et al. 

2007). 

The second, non-gridded dataset is obtained from a demographic survey in which every 

household compound in the study community was georeferenced using differentially-corrected 

GPS (Ombok et al. 2010). Elevation was measured at 10,427 points in this dataset, with 90% of 

vertical errors below 9.3 m and 90% of horizontal errors below 5.9 m. Because households 

tended not to be located in low-lying areas, an additional 702 points were recorded in 2011 in 

the sparsely populated areas, particularly along streams, in order to improve the elevation 

estimates in these regions. 

Universal kriging with external drift was used to predict a new DEM using the 

relationship between the SRTM and GPS observations. The predictions were derived from the 

model 

 

where SRTM is the vector of the SRTM elevations at the locations also measured with GPS, 

𝒁̂(𝒔) is the vector of predicted elevations at unmeasured locations, β0 and β1 are the coefficients 

from the generalized linear regression, λ0 is a vector of kriging weights derived from a variogram 

model of the regression residuals, and GPS is a vector of the target variable (elevation) values at 

the measured locations. A map of best elevation estimates was developed using interpolation 

kriging and subsequently used in the logistic regression model for both training and testing 

(Appendix A.1). Additionally, sequential Gaussian simulation kriging was used to create 100 

conditional simulations of the elevation surface by simulating the error surface (the difference 

between the GPS elevation and the SRTM elevation) and adding it to the SRTM elevation 

surface. All predictions were performed using the R statistical language version 2.14.0 and the 

gstat library for R. The interpolated estimates were compared with the predictions from 10-fold 

cross-validation to evaluate the performance of the regression kriging model. 
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2.4.2 Topographic position index calculation and scale selection 

The resulting DEM rasters were processed using a simple high-pass convolution filter 

with a kernel size n using the ENVI/IDL software packages (Appendix A.2). The filter evaluates 

the difference between the center cell value and the mean of all cells in the neighborhood. For 

example, for n = 5 (i.e., a 5 x 5 neighborhood), the kernel took the form: 

 

 The topographic position index (TPI) value resulted at each cell, with a positive value if a 

cell was higher than its neighborhood mean, a negative value if it was lower, and a zero value if 

the cell was in the center of a flat area or on a constant-slope hillside. In order to choose a 

neighborhood size (scale) for the multivariate model, a range of neighborhood sizes from n = 1 

to n = 33, as well as the original absolute elevation values were tested in univariate logistic 

regressions with the habitat location data. The best scale was chosen by examining the AUC of 

the regression predictions with statistically significant relationships. The resulting choice was 

used as the only topographic input in the logistic regression. 

Transformations of the TPI variable were investigated to explore the linearity of the 

relationship between this variable and the habitat presence logit. The TPI was scaled after 

calculation into a z-score in order to express relationships in terms of standard deviations above 

and below the mean TPI. 

2.5 Soils 

The soils dataset was provided as a polygon shapefile by the International Livestock 

Research Institute (ILRI). It was digitized from a 1:1,000,000 map produced by the Kenya Soil 

Survey in 1982. The shapefile was converted to the raster data structure with the same grid as 

the SPOT-4 dataset. Three soil types are found in Asembo and are described here by their 
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drainage: well-drained, moderately drained, and slow draining. The moderately-drained soil 

type was used as the reference class for the odds ratios when the soil variable was converted to 

dummy variables. 

2.6 Rainfall time series creation 

The TRMM data product 3B42 Version 7 (Daily TRMM and Others Rainfall Estimate) 

was downloaded for all the months in 2007 and 2011 from the Goddard Earth Services Data and 

Information Services Center. This gridded data product results from an algorithm that merges 

TRMM radar measurements of precipitation with other satellite estimates, applies a rain gauge 

correction for a monthly estimate, and then uses the gauge correction to scale the cells in the 3-

hourly 3B42 product. According to Huffman et al. (2007), the resulting products have a spatial 

resolution of 0.25 degrees latitude by 0.25 degrees longitude and have a nearly neutral monthly 

bias compared to gauges over land, though the errors in the shorter time scale products (such as 

3B42) are large. They recommend that applications that average the data to longer time 

intervals (whatever is appropriate to the intended application) will have more success with the 

3B42 product. 

A single pixel in the TRMM dataset extends well beyond the extent of the Asembo study 

area on all sides (at this latitude, 0.25 x 0.25 degrees covers 27.62 x 27.83 km). Custom 

accumulation intervals were created by extracting this pixel from each daily image in 

chronological order and summing the daily precipitation estimates to the appropriate interval 

for a given calendar date using ArcGIS 10.1 (Appendix A.3). The rainfall variables were joined to 

the habitat data on the observation date for each presence/absence cell (and visit). 

The TRMM rainfall accumulation estimates were compared with the GSOD (Global 

Summary of the Day) rainfall measurements from the Kisumu airport, approximately 40 km to 

the east of the study site. The TRMM pixel including the Kisumu airport is the pixel immediately 

east of the Asembo pixel. This pixel was used to create the custom accumulation intervals in the 
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same fashion as before. The TRMM-Asembo estimates, TRMM-Kisumu estimates, and the 

GSOD-Kisumu estimates were all evaluated for correlation during the study period. 

2.7 Logistic regression model 

2.7.1 Model training (2011) 

The “glm” procedure in R was used to fit a multivariate logistic regression model. 

Though logistic regression does not take into account the spatial autocorrelation between 

observations in the model, it has performed well against other modelling options when tested 

for generality (Li et al. 2011). The candidate variables for the model included the 32 LULC 

classes, 3 soil classes, TRMM daily, 1-week, TRMM 4-week, GSOD 1-week, GSOD 4-week, and 

the 19 x 19 neighborhood (1710 m x 1710 m) TPI. The number of presence observations in each 

categorical combination was examined to be sure that small cells did not present a significant 

problem to using logistic regression. The collinearity between variables was also investigated.  

The final selection of variables included in the model was determined by the calculation 

of all possible combinations. The AIC and BIC (Bayesian information criterion) were consulted 

to determine which variables should be included but were not the final decision on which was 

the best model.  

The model was trained using the 2011 data. The probability cutoff producing a 90% 

sensitivity rate was selected and the corresponding specificity and accuracy were calculated. 

This cutoff was selected in order to prioritize habitat detection over the costs of false positives. 

The AUC was used as a measure of prediction power regardless of cutoff. A binary map using the 

probability cutoff to split the predictions into presence and absence indicators was created and 

the geographic area of each resulting binary prediction was calculated. The spatial 

autocorrelation of the residuals was examined and the nugget:sill ratios for both the residuals 

variogram and the habitat variogram were compared to learn whether the model accounted for 

the spatial autocorrelation of the habitats, or whether substantial spatial dependence was still 

present in the model residuals. 
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2.7.2 Model testing (2007) 

The 2007 dataset was divided so that each of the 9 visits constituted a separate trial of 

the model predictions. The predicted probabilities were calculated for each visit and the cutoff 

identified in the model training was applied to create binary prediction maps. The same metrics 

used to assess the training dataset performance were assessed for each of the 2007 visits: 

sensitivity, specificity, accuracy, AUC, and the geographic areal extent of the presence/absence 

predictions. In addition to using the cutoff selected in training, a cutoff that gave a similar 

sensitivity as the prior habitat autocorrelation predictions was tested to make comparisons 

between these two results more understandable. 

2.7.3 Error propagation mapping 

Using the best neighborhood size, the 100 simulated terrain surfaces were used as inputs 

to a Monte Carlo analysis to evaluate the propagation of the elevation measurement error 

through the TPI calculation and ultimately into the binary habitat prediction maps resulting 

from the best logistic regression model. The number of realizations out of 100 that the location 

was predicted to have a habitat was calculated (interpreted as the probability of predicting 

habitat) and mapped. Visit 5, the visit with the highest number of habitats, was chosen from the 

2007 data for the error propagation analysis after its habitat pattern was shown to be the most 

predictive of other visits in the habitat stability analysis (described below). 

2.8 Autocorrelation analysis 

2.8.1 Habitat stability analysis 

The 2007 visits were compared with each other for agreement in order to assess how 

stable habitat locations are over time. The rationale was that if the locations are stable, then 

using a map from another time point is a candidate for the best prediction map of an arbitrary 

time point. Each 2007 visit’s gridded habitat map was overlaid pair-wise with every other visit’s 

map for a total of 72 permutations. The unit used to express the time lag (t) is the difference in 

visits—e.g., the pair with visit 1 and visit 3 has t = 2—and each lag represents approximately 2 
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weeks. The number of matching habitat presence (only) observations were calculated and 

divided by the number of habitats in the second visit of the pair to calculate the proportion of 

successful presence predictions (the sensitivity) produced by the first visit. The number of 

matching habitats does not change when the pair order is reversed, but the sensitivity does. For 

each visit, two summary metrics were calculated. First, the mean sensitivity when predicting 

each other visit (8 pairs total) was calculated. Second, the mean sensitivity shown by the 8 other 

visits when predicting this visit was calculated (the predictability). In addition, for each relative 

lag, the mean sensitivity was calculated. The predictive success was compared to the predictions 

made by the environmental model for each visit. 

A sum of the 9 visits’ binary maps was calculated in order to map the habitat stability. 

Habitat stability for each 20 m cell was defined as the number of times out of 9 that a habitat 

was detected in that cell. Since each cell could have contained multiple habitats in a single visit, 

more than 9 habitats total might have been observed. Habitats were not necessarily the same 

habitats for all 9 visits, and they were not necessarily different—a single habitat persisting 

uninterrupted for 9 visits will have the same stability value per this definition as 12 distinct 

habitats of variable duration as long as at least one was present in each visit for 9 visits. 

2.8.2 Indicator kriging stability analysis 

Binary “hotspot” maps were created in order to test whether locations near a habitat at 

one time point are predictive of habitats discovered at another time point. For each visit, the 

indicator variogram was calculated using the point-based presence observations and the 

pseudo-absences. The variogram model was identified, de-emphasizing the behavior at larger 

lags due to the discontinuous nature of the collective spatial extent of the survey grids. Indicator 

kriging using the variogram model was used to predict the probability of habitat presence at 

each of the 20 m grid cells. Locations with a predicted probability of habitat presence that was 

significantly elevated above zero were encoded as “1” and the remaining locations were encoded 

as “0” in order to create the binary hotspot maps. For the test, the hotspot maps were used in 
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pair-wise, time-lagged comparisons with the actual observed habitats in a similar fashion as 

before. The resulting sensitivity and specificity values were compared to those of the actual 

habitat stability analysis and the predictions of the environmental models. 

2.8.3 Spatiotemporal variogram 

In order to investigate the autocorrelation of the aquatic habitats in both space and time, 

the spatiotemporal variogram of the 2007 habitat observations was calculated with the 

“variogramST” function in the gstat library in R. The spatiotemporal variogram evaluates a 

pseudo-cross-variogram for each spatial lag (h) and each time lag (t) and averages the resulting 

gamma values over all map pairs with the given time lag (t). The earliest survey date was used as 

the original input for each visit time value and the function forced the dates into regular 

intervals. As with the habitat stability analysis, each time lag t is approximately 2 weeks. 
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CHAPTER 3 
 

RESULTS 
 

3.1 Aquatic habitats 

3.1.1 2011 habitats 

1,673 point habitat observations were recorded. These were converted to 982 presence 

cells and 14,269 absence cells in the gridded data. 6.44% of the total surveyed area was therefore 

positive for aquatic habitats. 

3.1.2 2007 habitats 

4,997 point habitat observations were recorded over the course of the 9 site visits. These 

were converted to 3299 presence cells and 106,701 absence cells in the gridded data. On average, 

3.00% of the total surveyed area was positive for aquatic habitats in each visit. The number of 

habitats increased from the survey start in May until early July, when the number of habitats 

peaked and then decreased until the end of the survey in late August (Figure 2). 

 

Figure 2 Seasonal rise and fall of habitat incidence rate throughout the 2007 study period. 

3.2 Land-use/land-cover classification 

There were 33 classes that emerged from the spectrally separable classification. The 

“unclassified” class contained no habitats and was mostly related to open water so it was 

combined with the other class for open water (Class 0) so that 32 classes remained for the 
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statistical analysis. The LULC spectral classes were treated individually in the statistical analyses 

but were assigned nominal class names for interpretation. The interpretative classes described 

at the site were: open water, bare areas, croplands, shrubland, mixed, built-up, and grassland. 

Bare areas included highly-disturbed areas, overgrazed lands, and naturally sparsely vegetated 

areas. Grassland in this classification is grazing lands, natural grasslands, and areas vegetated 

with mixed grasses and low herbaceous plants that if ever cultivated, appeared to have been left 

fallow for some time (as opposed to lands that appeared to be seasonally fallow, which were 

classified as croplands). The 6 “Mixed” classes represent classes in which the pixels are an 

aggregate of more than one of the other class types, and the 6 classes do not represent the same 

mix. The classification accuracy was poor with many spectral classes showing considerable 

confusion (Table 1). The classification’s percent correctly classified was 35.9% and the kappa 

coefficient of agreement was only 13.8%. Only 9 of the classes showed more agreement than 

disagreement with their ground truth assessment. 
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Figure 3 SPOT-4 LULC classification for Asembo, showing locations of 2011 rectangular survey grids. 



26 

Table 1 LULC spectral class confusion matrix. 

Ground Truth Class 

Assigned 
Class # Assigned Class Bare 

Built-
up Croplands Grassland Mixed Shrubland 

Grand 
Total 

% Correct 
(Producer's 
accuracy) 

2 Bare     1 2     3 0.0% 

13 Built-up     2 1     3 0.0% 

3 Croplands     3       3 100.0% 

7 Croplands   
 

1 2   
 

3 33.3% 

10 Croplands   
 

2 
 

1 
 

3 66.7% 

12 Croplands   
 

1 1 1 
 

3 33.3% 

18 Croplands   
 

1 1   1 3 33.3% 

23 Croplands   
 

2 1   
 

3 66.7% 

28 Croplands   
 

  2 1 
 

3 0.0% 

30 Croplands   
 

1 2   
 

3 33.3% 

31 Croplands 1   1 1     3 33.3% 

16 Grassland     1 1 1   3 33.3% 

17 Grassland   
 

  1 1 1 3 33.3% 

19 Grassland   
 

1 2   
 

3 66.7% 

20 Grassland   
 

2 1   
 

3 33.3% 

22 Grassland   
 

  1 2 
 

3 33.3% 

25 Grassland   
 

1 2   
 

3 66.7% 

26 Grassland   
 

1 2   
 

3 66.7% 

27 Grassland   
 

3 
 

  
 

3 0.0% 

29 Grassland       2   1 3 66.7% 

1 Mixed 1   2       3 0.0% 

5 Mixed   
 

2 
 

1 
 

3 33.3% 

6 Mixed   
 

  1 1 1 3 33.3% 

14 Mixed   
 

  1 2 
 

3 66.7% 

21 Mixed   
 

  1 1 
 

2 50.0% 
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Table 1 (cont’d) 

24 Mixed   1 1 1     3 0.0% 

4 Shrubland     2   1   3 0.0% 

8 Shrubland   
 

1 1 1 
 

3 0.0% 

9 Shrubland   
 

  1 1 1 3 33.3% 

11 Shrubland   
 

1 
 

  2 3 66.7% 

15 Shrubland     2     1 3 33.3% 

Grand 
Total   2 1 35 31 15 8 92   

% Correct 
(User's 
accuracy)   0.0% 0.0% 34.3% 38.7% 33.3% 50.0%   35.9% 
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The univariate chi-square test for association between the LULC spectral classes and the 

2011 aquatic habitat presence was statistically significant (Χ2 = 351.9, df = 31, p < 0.001). The 

soil and LULC spectral classes were also shown to be associated when tested for a correlation 

that could interfere with the interpretation of the multivariate model (Χ2 = 7715.7, df = 62, p < 

0.001). 

 

Figure 4 The habitat incidence rate for each LULC spectral class. Each bubble in the chart has an area 
proportional to the geographic area of its labeled class number. 

Spectral Class 1 (Mixed) was by far the most likely to host a 2011 aquatic habitat (Figure 

4). Class 1 had a strong negative relationship with TPI, with a mean scaled TPI of -0.92 

compared to a mean TPI of -0.23 for cells that were not Class 1 (t = 19.4, df = 618, p < 0.001) 

This class is associated with low places and is clustered near the streams. In the ground 

reference data collected, it always contained shrubs in a mix with a variety of other LULC 

classes—3 out of 6 training sites contained shrubs mixed with cultivated land use, while another 

2 were composed of shrubs mixed with bare land or overgrazed land approaching bareness. 2 of 

the 3 sites held out for accuracy assessment also contained cultivated land. The observations I 

classified as “croplands” frequently contained shrubs as a linear hedgerow that would be 
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included in the pixel, but the “mixed” land cover contained higher proportions of shrubland 

and/or contained hedgerows along with other LULC classes in the pixel. 

 

Figure 5 Photographs in 4 directions at a representative Class 1 location, demonstrating a mix of shrubs and 
agricultural land use. 

In the multivariate model (reported further below), Class 13 (Built-up) also emerged as 

having a significantly strong positive relationship with aquatic habitats when controlling for the 

other variables in the model. Class 13 was positively related to TPI with a mean scaled TPI of -

0.08, compared to a mean scaled TPI of -0.26 for cells that were not in Class 13 (t = -3.76, df = 

663, p < 0.001). Class 27 and Class 30 were negatively related to aquatic habitats in the 

multivariate model. 
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3.3 Topographic position index 

3.3.1 DEM creation 

Elevation errors for the input to the simulation kriging ranged from -32.9 m to 25.5 m 

with a mean value of -2.52 m (positive values where GPS elevation is higher). The errors were 

not normally distributed and they were spatially auto-correlated in the landscape (Figure 6). 

Modeling the variogram of the residuals of a linear model predicting GPS from the SRTM 

elevation values (R2 = 0.98) produced a Gaussian model with nugget = 12.6, sill = 36.6, and 

range = 247.9 m. Following the modeling of the variogram, the local neighborhood for the 

kriging was set to use the 60 nearest GPS points or a 1.5 km search radius maximum. 

 

Figure 6 The difference between the GPS height observations and SRTM elevation estimates (in meters). Red 
values indicate SRTM elevation higher than GPS elevation. 
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The kriging model’s residuals were examined with 10-fold cross-validation. The root 

mean square error (RMSE) of the cross-validation residuals was 5.13 m—much smaller than the 

standard deviation of the original GPS elevation measurements, 46.2 m, indicating that 

accounting for the spatial dependence in the data explains a significant fraction of the variation 

in the difference between the GPS and SRTM data. Kriging interpolation returns an estimate of 

the model’s uncertainty at each location in addition to the actual prediction. This model was 

overly-optimistic in estimating the uncertainty on average (the variance returned with the 

interpolated estimate), with 8.1% of cross-validation predictions falling outside of an envelope 2 

z-scores from the observed value (5% are expected at this distance). The DEM resulting from the 

interpolation kriging ranged in elevation from 1132 – 1365 m in the study area.  

3.3.2 Index calculation and scale selection 

The results of the scale test showed that the 19 x 19 (or 1.7 km square) neighborhood best 

matched the scale of the topographic process determining habitat presence and absence, 

predicting habitat locations in a univariate logistic regression with AUC of 0.867, the highest of 

all the scales tested (Figure 7). 

 

Figure 7 Area under the ROC curve for logistic regression models of aquatic habitat presence along a gradient 
of TPI neighborhood sizes. 

The un-scaled TPI had a mean of 19,803 and a standard deviation of 1.08 x 106. The TPI 

z-score of 0.0182 corresponded to an un-scaled index of 0 (neutral position). From this point 
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forward, “TPI” indicates TPI z-score. The 2011 survey grids captured most of the variation of TPI 

values at the site, with both high and low extremes falling inside at least one grid (Figure 8). 

There was a strong negative relationship in a univariate test between the TPI and aquatic habitat 

presence (t = 37.1, df =1314, p < 0.001). Locations with aquatic habitats had a mean TPI of -1.07, 

while locations without aquatic habitats had a mean TPI of -0.19.
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Figure 8 Map of TPI (1710 m scale) with 2011 aquatic habitats overlaid.
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3.4 Soils 

Among the locations included in the 2011 survey, the moderately-drained soil type 

dominated, covering 60.7% of the area. The slow-draining soil type covered 19.2% of the 

southern region of the survey area and the well-drained soil type covered the remaining 20.1%. 

In a chi-square test of association, there was a relationship between soil type and aquatic habitat 

presence (Χ2 = 21.7, df = 2, p < 0.001), with the slow-drained soil type having fewer habitats 

than expected by its area, the well-drained soils having slightly more habitats than expected, and 

the moderately-drained soils having the highest proportion of additional habitats than expected 

by its area. 

3.5 Rainfall 

The TRMM daily rainfall, TRMM 1-week, TRMM 4-week, GSOD 1-week, and GSOD 4-

week rainfall variables were the candidate variables representing rainfall for the testing of all 

possible model combinations. Only one rainfall variable was desired for the model, so out of the 

models including only a single rainfall variable, the best was selected. The model including 

TRMM previous 1-week rainfall performed well, resulting in the model with the lowest BIC and 

AIC out of all the options. 

The TRMM-Asembo and TRMM-Kisumu rainfall variables were low-moderately to well-

correlated during the course of the 2011 survey, increasing from r = 0.47 for the daily rainfall 

totals to r = 0.94 for the 4-week accumulations (p <0.001 for all). However, the strength of the 

correlations between the TRMM-Kisumu rainfall and the Kisumu airport GSOD rainfall did not 

rise as steadily and was weaker for all accumulation intervals. The 1-week correlation was low (r 

= 0.30, p = 0.03), but the 4-week rainfall was not even correlated at all (r = 0.05, p = 0.73). An 

examination of the longer-term correlation trend between TRMM-Kisumu rainfall and the 

GSOD rainfall shows a larger correlation between all rainfall variables: the 1-week correlation 

rises to r = 0.49 (p < 0.001) and the 4-week correlation rises to r = 0.81 (p < 0.001). In the end, 
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the correlation between the TRMM-Asembo 1-week rainfall and the GSOD 1-week rainfall 

variable (analogous to the 6-day rainfall used in McCann et al. [2014]) was r = 0.37 (p < 0.001) 

during the longer time interval, which is low, but during the study period the correlation was 

actually negative, contrary to the expected relationship (r = -0.42, p = 0.002). 

3.6 Logistic regression model 

3.6.1 Model training (2011) 

The model with the lowest AIC included the LULC classes while the model with the 

lowest BIC included all the other variables but not LULC. The model including the LULC classes 

was selected as the best model and reduced the deviance from the null model by 1,089 on 35 

degrees of freedom (p < 0.001) with an AIC of 6,234. The most important variable in the model 

with the largest change in AIC was the TPI. Increasing the TPI by 1 standard deviation was 

associated with decrease in the odds of the location having an aquatic habitat by a factor of 0.30 

(Table 2). The previous 1-week rainfall as recorded by TRMM was associated with a 1.02 factor 

increase in the odds of the location of having a habitat per additional millimeter of rainfall. 

Spectral LULC Class 1 (Mixed) and Class 13 (Built-Up) were significantly associated with an 

increase in odds of an aquatic habitat relative to Class 29 (Grassland - a relatively neutral class), 

while Class 27 (Grassland) and Class 30 (Cropland) were significantly associated with a decrease 

in the odds of an aquatic habitat relative to Class 29. 
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Table 2 Odds ratios of best logistic regression model. 

  

Lower 
CI 

Upper 
CI 

  
Odds 
Ratio 2.50% 97.50% 

(Intercept) 0.015 0.010 0.023 

TPI (scaled) 0.300 0.269 0.332 

Soil mod.-drained: well-drained 1.191 0.955 1.488 

Soil poorly-drained: well-drained 0.746 0.558 0.997 

TRMM 1-week accumulation 1.024 1.017 1.031 

LULC class 0: class 29 0.671 0.037 3.282 

LULC class 1: class 29 2.385 1.590 3.630 

LULC class 2: class 29 1.308 0.680 2.413 

LULC class 3: class 29 1.559 1.028 2.394 

LULC class 4: class 29 1.380 0.765 2.441 

LULC class 5: class 29 0.672 0.322 1.311 

LULC class 6: class 29 1.423 0.860 2.349 

LULC class 7: class 29 0.976 0.468 1.905 

LULC class 8: class 29 0.919 0.422 1.833 

LULC class 9: class 29 1.104 0.516 2.193 

LULC class 10: class 29 0.905 0.458 1.699 

LULC class 11: class 29 0.309 0.073 0.882 

LULC class 12: class 29 0.999 0.513 1.856 

LULC class 13: class 29 2.583 1.712 3.946 

LULC class 14: class 29 1.282 0.735 2.192 

LULC class 15: class 29 0.779 0.376 1.511 

LULC class 16: class 29 1.252 0.767 2.036 

LULC class 17: class 29 1.398 0.855 2.277 

LULC class 18: class 29 0.817 0.455 1.424 

LULC class 19: class 29 0.547 0.285 0.999 

LULC class 20: class 29 0.858 0.482 1.489 

LULC class 21: class 29 0.454 0.223 0.859 

LULC class 22: class 29 0.877 0.550 1.398 

LULC class 23: class 29 0.455 0.229 0.852 

LULC class 24: class 29 0.607 0.355 1.020 

LULC class 25: class 29 0.802 0.520 1.244 

LULC class 26: class 29 0.770 0.482 1.228 

LULC class 27: class 29 0.433 0.261 0.709 

LULC class 28: class 29 0.884 0.560 1.398 

LULC class 30: class 29 0.439 0.268 0.712 

LULC class 31: class 29 0.662 0.428 1.029 
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The AUC was 0.787 with the original training data for the model (Figure 9). The cutoff 

0.0285 corresponded to a sensitivity of 90.0% and a specificity of 42.5%. The overall accuracy of 

the prediction at this cutoff was 45.6%. 

 

Figure 9 Receiver operating characteristic for the best logistic regression model with original 2011 training 
data. 

A map of the binary predictions for the model shows that 59.6% of the survey area is 

predicted positive for aquatic habitats with corresponding 90% sensitivity (Figure 10). A map of 

the false positive and false negatives shows large areas of false positives but rare and somewhat 

spatially autocorrelated areas of false negatives at this cutoff (Figure 11). Comparing the 

nugget:sill ratios of an indicator variogram on the aquatic habitat observations and an indicator 

variogram on the residuals shows a very modest decrease in the spatial dependence in the data, 

decreasing from 0.47 to 0.48. 
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Figure 10 Map of aquatic habitat presence predicted by 2011 training data. 
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Figure 11 Map of false positive and false negative predictions for 2011 training data. 
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3.6.2 Model testing (2007) 

The performance of the model was somewhat reduced with the 2007 habitats from its 

performance with the training data. The mean sensitivity for the predictions of all 9 visits 

increased to 96.8%; however, the mean specificity was 12.9%. The mean AUC was 0.65. The 

greatest sensitivity was seen with visit 7, the greatest AUC with visit 9, and the greatest 

specificity with visit 5. The most predictable visit in the autocorrelation analysis, visit 9, was 

tested again with a cutoff of 0.1277 to generate a sensitivity of 56.9% to match. The 

corresponding specificity is 75.2% (Table 6). In order to detect 95% of habitats in visit 5, 59.5% 

of the area was predicted positive for aquatic habitat presence (Figure 12). 

Table 3 Comparison of performance of predictions of habitats in Visit 9. 

Predictor Sensitivity (%) Specificity (%) 

Environmental model, cutoff = 0.0285 98.3 12.2 

Aquatic habitat presence, another time point 57.2 26.6 

Environmental model, cutoff = 0.1277 56.9 75.2 

Indicator kriging of aquatic habitats, another time point 80.3 12.3 

Environmental model, cutoff = 0.0859 79.9 45.3 
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Figure 12 Best logistic regression model predictions in 2007 visit 5.
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3.6.3 Error propagation mapping 

Three-quarters (74.%) of the area that was predicted positive for habitat presence by the 

model was more than 95% likely to be predicted positive when the DEM is drawn randomly 

from a distribution reflecting the spatial structure of the vertical error at the site (Figure 13). 

Only very limited areas of pure negative prediction (white regions inside survey grids) were 

discovered at the cutoff used.
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Figure 13 Probability of positive habitat prediction for 2007 visit 5 (with cutoff = 0.0285) when the GPS-SRTM difference is drawn from its random 
distribution during simulated trials.
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3.7 Autocorrelation analysis 

3.7.1 Habitat stability analysis 

A small proportion of aquatic habitats, 1.7%, persisted during all 9 visits of the 2007 

study period (Figure 14). Stable regions appeared to increase in the vicinity of streams. 8.5% of 

the site area was identified as habitat presence overall. 63.2% of the habitats persisted for at 

least 2 visits. 

The average number of habitat presence grid cells was 367 per visit and the average 

number of habitats matched in the pair-wise comparison was 171 (Table 4). The habitats 

observed in visit 5 were the most predictive of habitats in other time points, detecting 61.5% of 

habitats on average (Table 5) with 44% specificity. The habitats observed in visit 9 were the most 

predictable habitats—57.2% of the visit 9 habitats were detected again in another visit. The 

proportion of true positives between pairs declined linearly with each increasing time lag, with a 

mean of 54.4% at a time lag of a single visit (or about 2 weeks), decreasing to a mean of 25.8% at 

the maximum time lag, 8 visits or about 16 weeks (Figure 15).
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Figure 14 Habitat stability through 2007 study period. 
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Table 4 Number of overlapping aquatic habitats with 20 m grid cells by visit pair. 

Visit 1 2 3 4 5 6 7 8 9 Mean 

1 251 116 112 104 116 97 97 93 54 99 

2 116 416 229 224 247 185 168 159 90 177 

3 112 229 454 269 274 243 204 182 106 202 

4 104 224 269 448 294 228 197 183 97 200 

5 116 247 274 294 494 261 215 216 115 217 

6 97 185 243 228 261 398 230 190 123 195 

7 97 168 204 197 215 230 336 188 134 179 

8 93 159 182 183 216 190 188 323 100 164 

9 54 90 106 97 115 123 134 100 179 102 

Mean 99 177 202 200 217 195 179 164 102 171 
 

 

Table 5 Percent agreement for habitat presence in pair-wise comparison between predicting visit and predicted visit. 

 
Predicting visit 

Predicted 
visit 1 2 3 4 5 6 7 8 9 Mean 

1 100.0 46.2 44.6 41.4 46.2 38.6 38.6 37.1 21.5 39.3 

2 27.9 100.0 55.0 53.8 59.4 44.5 40.4 38.2 21.6 42.6 

3 24.7 50.4 100.0 59.3 60.4 53.5 44.9 40.1 23.3 44.6 

4 23.2 50.0 60.0 100.0 65.6 50.9 44.0 40.8 21.7 44.5 

5 23.5 50.0 55.5 59.5 100.0 52.8 43.5 43.7 23.3 44.0 

6 24.4 46.5 61.1 57.3 65.6 100.0 57.8 47.7 30.9 48.9 

7 28.9 50.0 60.7 58.6 64.0 68.5 100.0 56.0 39.9 53.3 

8 28.8 49.2 56.3 56.7 66.9 58.8 58.2 100.0 31.0 50.7 

9 30.2 50.3 59.2 54.2 64.2 68.7 74.9 55.9 100.0 57.2 

Mean 26.4 49.1 56.6 55.1 61.5 54.5 50.3 44.9 26.6 47.2 
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Figure 15 Habitat observation overlap/agreement as a function of relative time lag.  

3.7.2 Indicator kriging stability analysis 

Indicator kriging identified 21.6% of the site as habitat hotspots. 76.0% of the hotspot 

locations persisted for more than one visit. 2.1% of the hotspots were completely stable for the 

whole season, but it was not uncommon for a completely stable hotspot to contain no actual 

habitat observations throughout the 9 visits. No hotspot map predicted 100% of the observed 

habitat positives correctly, with each map missing just a few observed habitats (Table 6). This 

was due to pseudo-absence locations being permitted close enough to the aquatic habitats that 

both a pseudo-absence and a presence point could fall in the same cell. The growth in the area of 

the hotspots toward the middle of the study period is shown in Figure 16. The indicator kriging 

increased the sensitivity of the predictions to a mean value of 67.7%. The specificity was low, 

however, with a mean of 24.6%, indicating that a large proportion of predicted positives using 

the “hotspots” were false positives. Visit 5 was again the most predictive, and visit 9 was the 

most predictable. In visit 5, 12.5% of the site area is predicted to be habitat by the hotspots in 

order to detect 85% of the actual habitats. 
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Table 6 Performance of indicator kriging predictions vs. habitat observations. 

Sensitivity 
          

 
Kriging prediction visit 

Observed visit 1 2 3 4 5 6 7 8 9 Mean 

1 96.8 71.3 67.7 69.3 68.9 66.1 61.4 55.8 27.6 61.0 

2 40.4 99.0 80.5 79.6 82.2 77.9 65.9 59.6 26.2 64.0 

3 33.5 71.6 98.5 81.3 83.9 80.6 66.1 60.8 28.9 63.3 

4 33.3 68.3 81.9 99.6 86.2 82.1 65.0 62.3 25.7 63.1 

5 33.6 72.9 81.6 83.2 99.4 81.4 67.4 63.2 29.4 64.1 

6 34.2 71.9 85.4 82.4 88.4 99.5 78.9 69.6 37.2 68.5 

7 40.8 76.5 83.3 83.3 90.2 92.3 99.4 78.6 44.0 73.6 

8 37.8 74.0 82.0 82.0 88.9 87.9 82.0 99.7 36.5 71.4 

9 41.3 76.5 86.0 82.7 91.1 95.0 93.3 76.5 95.5 80.3 

Mean 36.8 72.9 81.1 80.5 85.0 82.9 72.5 65.8 31.9 67.7 

           Specificity  

 
Kriging prediction visit 

Observed visit 1 2 3 4 5 6 7 8 9 Mean 

1 55.4 13.4 13.1 10.6 11.0 10.7 14.8 13.9 23.6 13.9 

2 38.3 30.9 25.7 20.1 21.8 20.8 26.2 24.6 38.4 27.0 

3 34.6 24.4 34.3 22.4 24.2 23.5 28.7 27.3 46.1 28.9 

4 33.9 23.0 28.2 27.1 24.6 23.6 27.9 27.6 40.5 28.7 

5 37.8 27.0 31.0 24.9 31.2 25.8 31.9 30.9 51.1 32.5 

6 31.0 21.5 26.1 19.9 22.4 25.4 30.1 27.4 52.1 28.8 

7 31.2 19.3 21.5 17.0 19.3 19.9 32.0 26.1 52.1 25.8 

8 27.8 17.9 20.4 16.1 18.3 18.2 25.4 31.9 41.5 23.2 

9 16.9 10.3 11.8 9.0 10.4 10.9 16.0 13.6 60.2 12.3 

Mean 31.4 19.6 22.2 17.5 19.0 19.2 25.1 23.9 43.2 24.6 
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Figure 16 Maps of indicator kriging "hotspots" in a single 500 m x 500 m survey grid compared for two visits. The increase in the turquoise/blue area 
shows the growth in the area of the hotspot from the beginning of the study period (Visit 1) to the middle of the study period (Visit 5). The points show the 

distribution of the actual habitat observations as well as the generated pseudo-absences. 
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3.7.3 Spatiotemporal variogram 

The spatiotemporal variogram shows considerable cross-correlation at each relative time 

lag. The nugget effect is slight smaller for time lags 1 – 3 compared to time lags 4 – 7 but at 30 m 

spatial lag the time lags 1 – 3 are not any more correlated than the lags 4 – 7. The variogram 

shape is similar for each pooled time lag. Time lag 8 (visit 1 and visit 9 pair only) is always more 

highly cross-correlated at all spatial lags than the other time lags. About half of the overall 

variation is spatially random for all time lags. All time lags show spatiotemporal dependence, 

with minimal cross-correlation at 180 m spatial lag. Habitat presence is more highly cross-

correlated at all spatial lags in time lag 8 than in any other time lag. 

 

Figure 17 Spatiotemporal variogram for 2007 habitats. 
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CHAPTER 4 
 

DISCUSSION 
 

4.1 Aquatic habitats 

Though the habitats were measured individually when the data were collected, ultimately 

this model does not measure the existence of a singular habitat with each observation. For 

example, the model does not delineate the bounds of a single hoof print, but identifies a 

location, about 20m in size, where one or many hoof prints are likely to be found, or any other 

habitat type is likely to be found. This is a specification of the model, not necessarily a 

limitation, but a related limitation is in the definition of the dependent variable. Not only does 

the model combine habitat definitions for three anopheline species, but even the habitats of just 

one of the species are variable in type and size. They originate from multiple processes which 

may not act at the same scale; even one process, such as topography, may not be acting at only 

one scale to produce to habitat pattern seen. Only the land-use/land-cover variable here 

attempts to capture the human activities in creating the habitats. 

4.2 Land-use/land-cover classification 

The 32 spectral classes created were difficult to translate to meaningful “on-the-ground” 

classes. A semantic LULC class, for instance, maize cultivation, almost certainly participates in 

multiple spectral classes. This situation could be handled by merging spectral classes after their 

semantic class is determined. However, another challenge is that a spectral class may also be 

associated with multiple semantic classes—for instance, the strong soil signature that is 

associated with overgrazed land, residential land, or land in a transitional cultivation status. 

This complexity challenges every LULC classification; however, for three reasons it is 

particularly troublesome for my classification. 

First, the 20 m resolution of the SPOT-4 image is coarse compared to the size of the 

contiguous LULC patches seen at the site. In the residential and agricultural land use areas in 

Asembo, the pattern is highly heterogeneous. Agricultural fields are small and frequently 
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delineated by hedgerows consisting generally of medium-height woody shrubs. Even “large” 

patches specially noted during ground reference data collection were as little as 40 m by 40 m—

only 4 pixels in the SPOT image. With many mixed pixels, the shrubs of the hedgerows mixed 

with the coarse agricultural vegetation of maize and millet within a pixel was difficult to 

distinguish spectrally from the natural shrub and forbs cover during classification. 

Second, the timing of the ground reference data collection was three months after the 

collection of the SPOT imagery. Typically, evidence of the recent land use was distinguishable in 

the field—evidence of maize that had been growing in May was provided by the stalks lying on 

the ground in August. However, for lands that appeared to be fallow, certain identification was 

more ambiguous for a transient visitor to the site. Cloud cover contributed to the selection of the 

timing of the SPOT image. Field work timing for the ground reference data was instead selected 

based on logistical concerns. 

Third, the spectral separation technique used to classify the image attempts to maximize 

the amount of information extracted from the data by dividing the variation into the smallest, 

closest, but still statistically distinguishable clusters that can be detected. The results here show 

that the clusters are not always semantically distinguishable. The number of classes created with 

this method generates a high burden for the number of ground truth observations, which I was 

not able to fulfill within the available time for field work. This method may be better suited to 

regions where semantic distinctions among spectral classes are stronger, such as those with less 

heterogeneous LULC patterns or a better match between the patch size and the sensor spatial 

resolution. After difficulty producing a suitable standard of accuracy while maintaining the 32 

individual spectral classes, two grouping schemes were attempted. In the first alternate scheme, 

the classes were grouped by the interpretative classes (cropland, grassland, etc.). In the second 

alternate scheme, the classes were sorted into a binary grouping in which one final class 

contained all of those spectral classes positively associated with aquatic habitats in a univariate 

test, and the second final classes contained all those negatively associated with aquatic habitats. 
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Neither of these alternate schemes was successful, and so the spectral classes were interpreted 

individually. 

The class with the greatest odds increase of habitat presence (controlling for the effect of 

soil, rainfall, and most importantly TPI) could only be described as “Mixed” in the nominal class 

assignment. Its characteristics show that it usually contains shrubs and also another LULC class, 

typically cultivated land or overgrazed land. This class may be capturing a particular human 

disturbance pattern around on the fringe of agricultural land uses where the transition is due to 

landscape characteristics near streams (wetness, unevenness) that deter human use but 

promote ponding. That is, homogenous regions of cultivated land (primarily maize) do not lead 

to the creation of habitat, but the chaotic periphery of these areas where travel takes place or 

barriers and transitions near cultivation-suitable regions are found is by itself involved in a 

heterogeneous process generating cultivation-adjacent habitats. 

The spectral class with the second-greatest odds increase is the built-up LULC class. 

Despite a poor performance in the accuracy assessment, this second spectral class has a 

distinctive pattern when the site image is viewed in entirety, showing a clear association with the 

tarmac highway and market centers. Even with this clear association, the spectral signature of 

this class shows clear signs of vegetation, indicating that most of the built-up class participates 

in mixed pixels with the surrounding vegetation and also includes patches of vegetated, but 

overgrazed land. It is unlikely that the tarmac includes many habitats, but the other roads, built-

up areas, and disturbed or overgrazed lands contain many habitats that result from human, 

livestock, and vehicular activity. Class 27 (Grassland) and Class 30 (Cropland) are negatively 

associated with aquatic habitat presence, but neither performed well in the accuracy assessment 

or in the classification training. Both demonstrate the considerable confusion between the 

grassland and croplands LULC classes in this LULC classification.  

Others have concluded that the performance of LULC may not merit the cost and effort, 

especially compared to topographic variables when one is only identifying aquatic habitats and 
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not anopheline larval habitats (Clennon et al. 2010, McCann et al. 2014). The studies that have 

measured anopheline-positive habitats or conditional larval presence in addition to aquatic 

habitats commonly show LULC variables having no relationship with aquatic habitats, but 

coming in to the models once the larval presence is included (Clennon et al. 2010, 

Mushinzimana et al. 2006).  

Minakawa et al. (2005) note that farmland is positively associated with conditional larval 

presence but there is some additional information that can be derived from their Table 1 

regarding the aquatic habitats. This information provides a more complete interpretation when 

the relationships demonstrated with Bayes’ theorem in chapter one are applied. Farmland is 

negatively associated with aquatic habitat presence, and in fact is negatively associated with 

anopheline larval habitat presence in their univariate test. That is, the negative effect of 

farmland on the total aquatic habitats is so strong that it overpowers the positive effect of 

farmland on conditional larval presence such that the net effect is a negative relationship with 

anopheline larval habitats as well. However, since farmland is the dominant LULC class at their 

site (60%), the end result is that the largest fraction of anopheline larval habitats (39%) was 

found in farmland. That is, if you seek to answer the question, “which LULC class explains the 

anopheline characteristics of this site?” you might answer “farmland” and cite the two facts that 

farmland is the highest LULC class at the site and the aquatic habitats within it are highly 

suitable for anopheline larval presence. However, if the goal is to convert land areas to land use 

less favorable for anopheline larvae, one should actually avoid farmland, at least at that site. 

Each of the habitat definitions related to malaria vector habitats measures a phenomenon that 

has something different to contribute to the applied use of habitat predictions, including cost-

benefit analysis for control. LULC classes that contain highly suitable habitats but fewer aquatic 

habitats might be easy to manage with larval control measures despite their large areal extent, 

or an LULC class with many aquatic habitats might also have highly suitable habitats and so the 

anopheline population can be most effectively reduced by focusing on a small geographic area. 
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Some LULC classes may be associated with habitats simply by virtue of being found in 

the lower sites or other topographically favorable locations. At this site, (Mutuku et al. 2009) 

previously noted that the proportion of farmland is higher closer to the streams. Since there was 

no multivariate model in that study, it is difficult to conclude whether LULC classes or distance 

to stream better explained the aquatic habitat presence. Here, Class 1 (Mixed) is found in low 

places as well, but no collinearity problem was detected in the model. It seems that there is still a 

strong positive relationship with aquatic habitats once the TPI is controlled for. 

4.3 Topographic position index 

The results shown here are in agreement with the recent literature that shows 

topographic indices of various forms dominating the multivariate models in which they are 

tested. Where previous studies have tested the 500 m and 2 km TPI scales, here I have shown a 

systematic testing of the relationship between the scale of this topographic index and the pattern 

of habitat presence. The very local neighborhood kernel of 3 x3 (270 m square) showed a 

moderate improvement over using absolute elevation for predicting habitat presence. At the 5 x 

5 (450 m square) neighborhood size, the largest increase in the AUC occurred, suggesting a 

strong rise in correspondence with the habitat occurrence as the neighborhood width grows 

linearly near this neighborhood size. In the vicinity of the maximum correspondence at the 19 x 

19 m neighborhood selected for the rest of the analysis, the differences were not large among 

neighborhood sizes. A range of neighborhood sizes from 1350 m square to 2070 m square (or a 

similar size neighborhood of different shape) will likely be similarly predictive of aquatic habitat 

presence in a landscape similar to the one in Asembo (lowlands).  

At this neighborhood size, the TPI spatial pattern seems to correspond well with the 

structure of the stream pattern at the site, in contrast with the smallest neighborhoods which 

barely hint at any watershed structure. While some of the other topographic variables used in 

aquatic habitat models may benefit from similar scale testing, it is easy to interpret the meaning 

of the neighborhood size as the “localness” of a “local lowness” interpretation of TPI in terms of 
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how this variable may relate to the accumulation of standing water, while variables such as slope 

and aspect offer a less intuitive interpretation. 

A limitation of this study is that I did not consider the use of more than one topographic 

variable here. The neighborhood size selected shows relatively coarse scale effect of the 

topography on the probability that a location hosts a habitat. One possibility that still uses only 

the TPI variable is that if the larger scale were controlled for in the multivariate model first, then 

the very local neighborhood could explain some of the remaining variation by detecting 

depressions in areas other than streams. Other authors have shown the use of multiple 

topographic variables in models—Nmor et al. (2013) tested for correlation between topographic 

variables (elevation, slope, aspect, curvature, convergence index, TWI, and TPI) in their model 

to avoid collinearity effects. They found that only TPI (500 m neighborhood) and convergence 

index were highly correlated at that site with a Pearson’s correlation coefficient > 0.8; also, that 

of the two, TPI has a lower AIC in a model of anopheline larval habitats.  

Given the reliably strong performance of topographic variables in models for all habitat 

definitions, more work should be done to determine the independence of topographic variables 

at a variety of sites and to build out the distinctions between topographic variables that promote 

aquatic habitat presence and those that are associated with conditional larval habitat presence. 

The logical next step with the current model according to this need is to try TWI, distance to 

stream (McCann et al. 2014) and the best TPI scale seen here (1710m) in a model together to 

clarify whether each variable is independent. Figure 8 suggests that distance to stream and the 

TPI at this scale may be highly correlated. So far, the two variables that have been demonstrated 

to be significantly associated with both (and thus, also anopheline larval habitats) are slope and 

TPI (Clennon et al. 2010). Their work also suggests that TWI works to increase the number of 

anopheline larval habitats via its effect on aquatic habitat presence only. These results are 

backed up by the related literature with consistent results, including the conclusions about TPI 

in this study. 
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These results and others suggest that other variables that are more easily altered or are 

critical to understanding habitat distributions should always be given more weight when they 

are also associated with local lowness and other topographically favorable features, or 

understood well with regard to topography. For instance, more models should test interaction 

effects with favored topographic variables. This study tested an interaction effect with TPI and 

LULC which did not show any statistical significance when all classes were included in the 

interaction. Individual classes were not tested.  

The SRTM elevation values appear to be overestimating topographic features in the 

vicinity of the streams. The streams are often surrounded by shrubs due to the steeper slopes 

and less navigable terrain along their edges and the errors seen are consistent with the behavior 

of the radar wavelength (C-band; 5.6 cm) and return behavior in the canopy for SRTM data . 

These areas are truly low and the freely-available SRTM data do not measure them well. Since 

the topographic indices such as TPI are such reliable participants in correlative aquatic habitat 

models, it is important to understand how sensitive the habitat predictions are to error in the 

TPI due to error in the DEM.  

The earlier mapping of a high density of GPS observations at this site afforded a 

serendipitous opportunity to test the error propagation with regards to aquatic habitat 

prediction also performed at the site. Three-quarters of the positive predictions are stable (95% 

confidence at the cutoff that is associated with 90% sensitivity) under the conditions of error in 

measuring the elevation. These regions are either so low that they can have any amount of error 

and will still be predicted as habitat presence reliably, or they are moderately low areas with 

small errors. The remaining quarter of the positive predictions are sensitive to typical error in 

the DEM used as an input to the model. An error propagation assessment with respect to the 

relationship between TPI and conditional larval presence would be a valuable next step to 

undertake. 
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The residuals of the model are larger where the TPI is lowest. Transformations of the TPI 

variable did not have much effect on the heteroscedasticity of the residuals and so I concluded 

that the errors are not independent due to the spatial autocorrelation of the TPI and the 

habitats, rather they are larger because the relationship of this variable was non-linear with the 

logit model of the habitat presence. 

4.4 Rainfall 

The TRMM previous 1-week rainfall is modestly positively associated with increased 

habitat presence. This variable is not necessarily accounting for long-term trends in wetness, 

predicting high or low habitat years due to wet or dry years seen in the interannual rainfall 

variation. Rather, it was hoped this variable could explain why within the 4-month sampling 

window, the site shows a different realization of the habitat pattern approximately every 2 

weeks, with a mean agreement of only 54.4% between patterns after only 2 weeks has passed 

(Figure 15). As described in McCann et al. (2014), the training data were not collected to 

maximize the variation of this temporally dynamic variable, which most likely results in bias in 

the estimator. The negative correlation of the TRMM-Asembo rainfall values and the GSOD 

rainfall values during the study period seems to be an aberration given the long-term patterns. 

The TRMM-Asembo and TRMM-Kisumu comparisons show that the source of the disagreement 

is weighted more toward the TRMM error than toward the true difference in rainfall between 

the study site and the airport 40 km away. Given the sparsity of weather stations in this region, I 

expect the TRMM errors to be relatively high due to the dependency on weather station data for 

scaling adjustments. Though the study design tries to heed the suggestion by Huffman et al. 

(2007) to average the 3B42 data into longer time intervals to reduce the relative error, the 1-

week interval selected for the model is not very long and probably still contains fairly large 

errors. It may be that the relationship seen here is spurious. This study does little to reverse a 

trend of mixed success predicting not only aquatic habitats but other aspects of the malaria 

transmission cycle at the local scale using TRMM. There is a clear seasonal component to the 
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aquatic habitat occurrence that must be related to water availability somehow, with the number 

of habitats approximately doubling in the peak season compared to the May and August habitat 

observations. In order to double the habitat probability, 29.3 mm of additional weekly rainfall 

are needed according to this model. This is within the realm of possibility, but further modeling 

attempts should consider incorporating soil moisture models in addition to seeking out newer 

high-quality satellite precipitation estimates. 

4.5 Prediction comparison 

The environmental models perform better than the use of prior knowledge of the habitat 

locations. The most predictable visit, visit 9, was used to illustrate the performance comparison 

in Table 3. The logistic regression trained on 2011 data performs better in terms of prediction 

tradeoffs between sensitivity and specificity than both the direct habitat predictions and the 

indicator kriging hotspot predictions—with the sensitivity held the same, the specificity 

approximately triples when using the environmental model. The indicator kriging hotspot 

models do add detection power to the prediction, increasing the proportion of visit 9’s habitats 

that are predicted by 23.1 percentage points while decreasing the sensitivity by 14.3 percentage 

points, which is a fruitful tradeoff if detection of as many habitats as possible is a priority. If the 

areas without any positively observed habitats near a habitat at one time point are unrelated to 

the probability of habitats at another time point, I would not expect to see this large increase in 

detection power.  

In this study, the 2007 habitats were surveyed extensively but not exhaustively—these 

data suggest that even though no aquatic habitat event was observed at some point, there is an 

underlying predilection towards being a habitat that can be ascribed to the location based on its 

proximity to a confirmed habitat. The next step with this analysis would be to use regression 

kriging to see if the best model’s predictions improve further and the residuals show no further 

spatial autocorrelation. Kriging is an interpolation method that is not useful when there are no 

existing data about habitat presence. If resolution improvements of remotely-sensed imagery in 
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the future result in the ability to detect even a fraction of habitats (say, larger ones), then these 

data could be enough to seed a prediction that combines the general power of the environmental 

model with the site and season specific nature of the spatial autocorrelation. 

The late season habitats are the most easily predicted by habitat data from other time 

points as well as by the environmental model. The stability of the habitats increases as the rainy 

season dwindles into the dry season. The earliest visit is especially poor at predicting habitats in 

any other time point, but a large improvement is seen with the predictive power of visit 2. The 

earliest visit is also the most poorly predicted by the environmental model by a large margin. 

The visit just at the end of the rainy season is the most predictive of other visits, although it also 

generates the greatest number of false positives. These results suggest that data from the late 

rainy season, when habitats peak, is useful for forecasting habitats for the upcoming months. 

There also is some critical turning point, seen here between the first and second visit, when the 

forecasting potential of the existing habitats greatly increases. Since it is desirable to be able to 

predict the habitats at their peak as well as in the late season, a next step is to identify whether 

this turning point has any general characteristics or whether it is a feature of these specific data. 

These data contain a warning against using the accuracy metric as an evaluation of the 

success of the model when the modeled event is somewhat rare. Here, aquatic habitats comprise 

only 6.44% of the area in the 2011 survey grids, and even less in 2007. The accuracy is 

maximized by simply predicting no habitats everywhere (93.56% accuracy). Only an 

extraordinarily successful model will have higher accuracy at some other cutoff. I have used the 

sensitivity here and considered the models in terms of their detection power at varying cutoffs, 

but depending on the application it is equally valid to consider their specificity instead. 
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Figure 18 Predicted probability of habitat from the best model for Jul 2, 2007. 

4.6 Spatiotemporal autocorrelation 

There is a high degree of spatial and temporal autocorrelation in the repeated visits data. 

The crossover group of time lags 1 – 3 are a little more highly correlated when the spatial lag is 

zero, suggesting these lags are very effective at predicting each other directly. They are a little 

more temporally autocorrelated than the lags 4 – 7 but not any more spatially correlated. Time 

lag 0 is in the middle of the pack with respect to spatial autocorrelation. In general, habitats are 

at least as spatially autocorrelated with other habitats in other time points as they are with 

habitats in their own time point. 



62 

The variogram for time lag 8 shows a similar degree of cross-correlation between visits to 

the other time lags when the spatial lag is zero, suggesting that the habitats observed in visits 1 

and 9 show as much aspatial correlation as any other pair combination. However, there is an 

immediate separation from the pack and habitat presence is more highly cross-correlated at all 

spatial lags. This is the time lag with the least combinations—only a single visit pair, visit 1 and 

visit 9 at opposite ends of the study period have this lag. While there are fewer pairs than at 

other time lags, there are still 11,250 paired observations and this time lag fits into a general 

pattern of higher cross-correlation at longer time lags. The variogram shows that when the 

habitat counts dwindle on either end of the rainy season, they settle into locations showing a 

high degree of spatial similarity. 

The linear relationship seen in the sensitivity for each relative lag in Figure 15 must 

follow a large drop-off from the theoretical time lag 0. However, though the theoretical value 

there is 100%, I would not expect to see 100% agreement in reality if two observers visited the 

same habitats and recorded their locations as points with GPS independently. Both the GPS 

error and the random arrangement of the observer’s position on the edge of the habitat are 

sufficient to lead to the habitat being observed in a neighboring grid cell rather than the same 

cell. I would expect steep drop-off regardless were these shorter time intervals to be measured, 

but determining the amount of disagreement due to these errors, perhaps via simulating them, 

would be necessary to understanding the adjustment that should be made to the values along 

the rest of the curve. 
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CHAPTER 5 
 

CONCLUSION 
 

The pattern of stability of aquatic habitats at the local scale over the course of a full 

seasonal change contains potentially valuable information for the forecasting of future aquatic 

habitat presence, but is not sufficiently powerful to predict future habitat distributions in its 

own right better than a moderately well-performing environmental model. Operational maps of 

a site must be updated frequently and supplemented by the predictions of an environmental 

model. Here, I have demonstrated the results of a generalizable, environmental, logistic 

regression model using TPI, soil data, an LULC classification, and satellite precipitation 

estimates.  

TPI was a major contributor to the prediction power of the model, confirming results 

that low TPI is predictive of anopheline larval habitat presence because it is predictive of the 

presence of the aquatic habitats themselves. This variable is easily calculated from freely-

available data and the predictions are moderately robust to errors inherent to satellite radar-

based digital elevation models. Two possible investments are suggested by the importance of 

this variable and the current status of the available data. First, the cost of higher-resolution 

topographic data may be justified by the importance of the topographic variables. Such data 

could include, for example, airborne LIDAR data processed to extract the bare earth surface. In 

Kenya and other countries with confined regions of malaria transmission, the area that must be 

flown is relatively small and could be reduced further, if necessary, by using the freely-available 

topographic data in a “screening” program to identify local sites with both high malaria 

incidence and topography contributing to aquatic and/or anopheline larval habitats. The new 

data could be used to develop efficient larval control programs and larval habitat surveillance 

systems. 

The new data could also be used as an input into a more substantial investment. Malaria 

is a serious problem degrading not only the physical health of those communities at risk of the 
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disease, but also their economic health and growth. Well-planned landscape alteration in these 

communities has the potential to strategically eliminate larval habitats, so that further health 

and economic growth are returned by the initial investment. If the terrain could be altered 

strategically in these areas to ensure that water flows all the way into the streams or flows to 

designated reservoirs for human use that could be treated for larvae more efficiently, then adult 

mosquito production out of these regions could be reduced. 

Many topographic variables have been associated with anopheline larval habitat 

presence, but with the exception of slope and TPI, previous study designs have been unable to 

describe whether the correlation is driven by an association with the number of aquatic habitats 

or the suitability of the habitats for anopheline larvae. A similar situation exists for other 

variables appearing consistently in landscape models of habitat presence, such as LULC. This 

distinction is important for connecting the results of studies focusing on landscape predictors of 

habitats with ecological studies of anopheline habitat characteristics, as well as for making larval 

vector control decisions.  

Satellite precipitation estimates show an association strong enough to potentially 

account for seasonal swings in aquatic habitat presence, but doubt was cast on the reliability of 

the estimates when compared with local weather station data. Further testing of satellite rainfall 

estimates should consider incorporating soil moisture models to better capture the dynamic 

moisture dimension (saturation) that is likely associated with aquatic habitat presence. These 

data, though troublesome, are attractive because they present an opportunity to update a 

general model to any arbitrary date of interest. An error propagation analysis could be valuable 

to determine further whether satellite precipitation estimates as they currently exist are 

hopeless for this application, or useful in spite of their shortcomings.  

Repeated observations in a spatially-stratified sampling scheme provided an opportunity 

to examine the spatiotemporal correlation of aquatic habitats. The result shows a strong degree 

of cross-correlation in both dimensions, indicating that any prior knowledge of an aquatic 
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habitat can be used to elevate not only the estimate of future probability of another habitat at 

the same location, but also at nearby locations. The strength of association declines linearly with 

time over the 4-month time period tested, but results from the literature suggest that the decline 

may level off soon after the last observation here to persist at a low level across both years and 

seasons. In anticipation of the possibility that spaceborne sensor spatial resolutions will 

eventually yield systematic, direct observations of smaller aquatic habitats, future work could 

include collecting airborne imagery of habitats at fine resolutions and validating spatiotemporal 

kriging interpolated maps of aquatic and/or anopheline larval habitats at time intervals 

extending from several days out to at least a year. 

The habitat stability analysis shown here demonstrated that after the peak habitat 

incidence rate is reached at some point after the long rains, the habitats dwindle into locations 

that are increasingly stable. The spatiotemporal variogram shows that these locations have a 

spatial structure similar to what is seen in the earliest weeks before the peak. The habitat 

stability map shows that habitats that are stable throughout the entire 4-month period were 

common and clustered. One larval control strategy should be to focus on identifying the habitats 

in late August and investigate habitat modifications or larviciding for these stable sites 

specifically, in order to target the mosquito populations when they are the most spatially 

confined throughout the year. 
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A.1 Regression kriging and simulation kriging for DEM script  

The extensive comments included from this code are retained from a personal blog post 

written to demonstrate the code and method. Though informal, they are informative and are 

retained here mostly unchanged. 

Regression kriging and terrain simulations in R 
======================================================== 
 
For my thesis project, we wanted to see if we could use a large collection of 
differentially-corrected GPS elevation records gathered during previous 
demographic work in the region to improve upon the available digital 
elevation models (DEMs). (Though others are always involved, "we", for the 
bulk of this portion, consisted of my fellow student within the larger 
project group, Rob McCann, and our professor for our excellent spatial 
analysis class, Dr. Ashton Shortridge). The approach I’ve ended up with so 
far is to use the GPS records as secondary data in a regression kriging 
(http://spatial-analyst.net/wiki/index.php?title=Regression-kriging_guide) to 
attempt to improve upon the SRTM DEM estimates. I’ve also modeled the error 
surface, showing that height errors are spatially autocorrelated-you can see 
readily how the SRTM surface suffers from vegetation inversions, averaging 
about 6m, or the height of a typical tall shrub canopy, in the vicinity of 
the streams. I’m looking for mosquitoes and I’d prefer not to have my error 
concentrated in low regions, since that’s exactly the place I need the data 
the most. 
 
This code is written up in R Markdown using knitr. I jumped in head first 
wrestling with the knitr/LaTeX (well, Sweave, once upon a time) and while I'm 
doing more complicated knitr-ing for my thesis writing, I must say that it is 
shockingly easy to make a decent enough write-up or other "notebook"-style 
presentation using this combo. 
 
First, setup using a little GDAL grease: open the GPS points shapefile that I 
already overlaid with the SRTM heights at each point and the difference/error 
between the points, and open the SRTM DEM. Both were already in the same and 
correct projection.  
 
```{r message = FALSE} 
#load necessary libraries 
library(rgdal) 
#Change directory to what you need 
setwd("C:/Users/Nicole/Dropbox/Model") 
 
#Read GPS points shapefile 
#This file has the gps, srtm, and error values already, error: positive if 
GPS was lower than SRTM 
file.path <- "kriging_elevpts_NEWJUNE_FINAL"  
elev.pts <- readOGR(".", file.path) 
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#copy the coordinates columns into the dataframe to use later to explicitly 
check for trend surface 
elev.pts$easting <- coordinates(elev.pts)[,1] 
elev.pts$northing <- coordinates(elev.pts)[,2] 
 
#Open up the SRTM data 
srtm<-readGDAL("SRTM_5000m_from_2011_extent.tif") #comes in as 
SpatialGridDataFrame 
srtm <- as(srtm, "SpatialPixelsDataFrame") #but needs to be this instead for 
kriging 
 
#There's a lake by my site that I don't want to bother with and this is just 
a quick and dirty way to get rid of it 
lake <- 1134 
#srtm <- srtm[srtm$band1 > lake,] 
``` 
 
Quick glance at the datasets using the sp libary's plotting function--sp came 
in when we loaded rgdal. 
```{r fig.width = 7, fig.height = 6} 
spplot(elev.pts, "srtm", main = "GPS Points Dataset Preview") 
spplot(srtm, "band1", main = "SRTM Dataset Preview") 
``` 
 
Looks fine. Before doing anything fancy, we'll just take a look at the 
relationship between the GPS and SRTM data. 
 
 
```{r fig.width=7, fig.height=6} 
lmod <- lm(gps ~ srtm + northing , as.data.frame(elev.pts)) 
summary(lmod) 
cor.gps.srtm <- cor.test(elev.pts$gps, elev.pts$srtm) 
cor.gps.srtm 
 
#save the residuals to the dataset 
elev.pts$residuals <- residuals(lmod) 
writeOGR(elev.pts, dsn = "C:/Users/Nicole/Dropbox/Model", layer = "elev.pts 
with residuals new", driver = 'ESRI Shapefile') 
 
 
#Plot the linear relationship, expecting high correlation 
plot(gps ~ srtm, as.data.frame(elev.pts), main = "Elevation datasets are 
highly correlated") 
abline(lm(gps ~ srtm, as.data.frame(elev.pts))) 
``` 
 
Unsurprisingly, there is a very high correlation. The reason we move on to 
kriging, however, is that the residuals are highly spatially autocorrelated. 
Time to bring in gstat. 
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```{r fig.width = 7, fig.height = 6, message = FALSE} 
#Fit the variogram model of the residuals: 
library(gstat) 
elev.pts.vplot <- variogram(gps ~ srtm, elev.pts, cutoff=1100, width=25) 
 
plot(elev.pts.vplot, main = "Variogram of residuals") 
null.vgm <- vgm("Exp", psill = 18.0, nugget = 11.3, range=109) 
vgm <- fit.variogram(elev.pts.vplot, null.vgm) #you can use this to help with 
fitting 
plot(elev.pts.vplot, vgm, main = "Variogram model") 
vgm 
``` 
 
As an aside, I first did all this ages ago when the gstat object was a 
mystery to me, and it worked all the same, but I think I actually get the 
whole thing now. Anyway, it's just a way to package up some things we'll use 
for actual kriging, you can bring it all together at that time as well if you 
prefer. 
 
```{r} 
#next part is copied faithfully from GEO 866 Spatial Analysis class with Dr. 
Ashton Shortridge 
g <- gstat(id="elev.g", formula = gps ~ srtm, data=elev.pts, model = vgm) 
#create a gstat object with our data, formula, and variogram model 
blue0 <- predict(g, newdata = elev.pts, BLUE=TRUE, debug.level=3)   # The GLS 
trend estimates are returned 
blue0$blue.res <- elev.pts$gps - blue0$elev.g.pred    # Calculate residuals 
blue0$srtm <- elev.pts$srtm 
``` 
 
After we get the BLUE residuals, we're supposed to check that the variogram 
model doesn't change. I've never seen it change even a little. Perhaps I'm 
doing something wrong. I've read somewhere that it usually doesn't have any 
impact and this step could be skipped, but it only takes a minute to check. 
 
```{r fig.width = 7, fig.height = 6} 
elev.g.vplot <- variogram(blue.res ~ srtm, blue0) 
plot(elev.pts.vplot) 
new.vgm <- vgm #try the old model first, change if needed 
plot(elev.pts.vplot, new.vgm) 
#NO CHANGES! 
``` 
 
 
Now I just do a little bit of prep on the SRTM grid to make it work in the 
kriging. I get rid of any NA values, which will throw up an error, and though 
the SRTM surface and the GPS points do have the same projection, the proj4 
strings are apparently saved a shade differently for vectors and rasters in 
ArcGIS, so I just copy one to the other and ignore the error that comes up. 
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```{r} 
srtmgrid <- srtm 
 
#have to remove NAs for the gstat stuff to work okay. 
srtmgrid <- srtmgrid[!is.na(srtmgrid$band1),] 
 
#cleanup 
names(srtmgrid) <- "srtm" 
proj4string(srtmgrid) <- proj4string(elev.pts) #ignore error, assuming you 
know what you're doing 
``` 
 
 
I'd like the estimates to tend toward the local means, so I set a few 
parameters on the search distance and away we go with a regression kriging. 
 
```{r} 
num.max <- 60 
dist.max <- 2500 
 
rk <- krige(gps ~ srtm, elev.pts, srtmgrid, model=new.vgm, maxdist = 
dist.max, nmax = num.max) 
 
rk$stderr <- sqrt(rk$var1.var) 
 
spplot(rk, "var1.pred", col.regions = terrain.colors(20), main = "Kriging 
estimates") 
spplot(rk, "stderr", col.regions=heat.colors(20), main = "Kriging error") 
``` 
 
You are most likely going to want to save your results after you wait through 
the kriging analysis, and you'll get a lot more capabilities for further 
visualization and analysis out of a GIS, anyway. 
```{r results='markup'} 
out.name.interpolated <- "90m_FINAL_regkrige_nmax60_mdist1500_extended.img" 
writeGDAL(rk, out.name.interpolated, driver="HFA") 
``` 
 
My ultimate application for the terrain surfaces I'm making is to use them to 
find "locally low" sites. I'll be using a simple topographic index to measure 
a "textural" quality of the terrain, and therefore simulation kriging is 
appropriate if I want to predict not only the best estimates at location, but 
also come up with some idea what the error means for each location's position 
with respect to its neighbors. Simulation kriging just requires adding a few 
arguments to the krige function, the number of simulations, and a boolean 
indicating I am not performing indicator kriging. 
 
```{r fig.width =7, fig.height = 6} 
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rk.sim <- krige(gps ~ srtm, elev.pts, srtmgrid, model=vgm, maxdist = 
dist.max, nmax = num.max, nsim =100, indicators = FALSE, debug.level = -1) 
 
#plot just the first few simulated surfaces to get an idea how they all look 
spplot(rk.sim, c("sim1", "sim2", "sim3", "sim4"), col.regions = 
terrain.colors(20), main = "A few of the 100 simulations of the terrain in 
Asembo") 
 
 
out.name.simulated <- "90m_FINAL_SIMSkrige_d1500_nmax60_extended.img" 
writeGDAL(rk.sim, out.name.simulated, driver="HFA") 
``` 
 
And, finally, I won't go into any of the analytical details here, but there 
are a few diagnostics that you can look at after performing a cross 
validation of the regression kriging. 
 
```{r results='hide'} 
#cross validation kriging 
cv.rk<- krige.cv(gps ~ srtm, elev.pts, srtmgrid[srtmgrid$srtm > lake,], 
model=vgm, maxdist = 1500, nmax = 60) 
``` 
 
```{r fig.width = 7, fig.height = 6} 
 
#bubble plot of residual size 
coordinates(cv.rk) <- c("coords.x1","coords.x2") 
bubble(cv.rk, z="residual") 
 
#some basic error stats 
sd(cv.rk$residual) 
rmse.cv.rk <- sqrt(sum((cv.rk$observed-
cv.rk$var1.pred)^2)/length(cv.rk$observed)) 
 
#can compare the rmse and original sd to demonstrate how much of the 
variability the kriging "explained" 
orig.sd <- sd(elev.pts$gps) 
orig.sd 
 
#check that variogram does not show significant autocorrelations, mine 
usually shows a bit 
cv.vg<-variogram(residual~1,cv.rk, width=12, cutoff=300) 
plot(cv.vg) 
 
## Compare errors to std errors ## 
 
#check out where large errors are 
cv.rk$big <- factor(ifelse(cv.rk$zscore <= -2, 'negative', 
ifelse(cv.rk$zscore < 2, 'moderate', 'positive'))) 
spplot(cv.rk, "big") 
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#over.2z is the percent of errors that exceed two SD from the mean. Would 
expect this to be 5% in a normal distribution. If higher, model optimistic. 
If lower, model conservative. 
over.2z <- 100*length(cv.rk$zscore[(abs(cv.rk$zscore) > 
2)])/length(cv.rk$zscore) 
over.2z 
``` 
 
And that’s it. I have some confidence in my theoretical grasp of kriging and 
of course I certainly fretted over getting the details right for my project 
including which exact methods to use, but I’m no spatial analysis ninja, 
either, and if you are actually reading this trying to follow along, you 
might want to try (http://spatial-analyst.net/wiki/index.php?title=Main_Page) 
or find a copy of Applied Spatial Data Analysis with R 
(https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&ved=
0CEMQFjAC&url=http%3A%2F%2Flink.springer.com%2F978-0-387-78170-
9&ei=v95gUpHqJNKyygH_14HwDQ&usg=AFQjCNECcQtarQil4SmSaejbNGc54m98EA&sig2=jgCL5
miZDxikf4D1PyCOdw) (try your academic library's e-book access, if you have 
it) for more authoritative advice.  
 

A.2 Topographic position index calculation 

PRO locally_low_final 

 

COMPILE_OPT IDL2 

 

; This program is to open the desired DEM file and process any relevant 

elevation 

; band with the kernel size 3x3 to 66x66 (1km at 30m) and save it as a file 

CD, "/home/nicole/Dropbox/Model" 

 

; Launch ENVI if you haven't already 

ENVI 

 

PRINT, "Waiting 10 seconds for ENVI to open." 

WAIT, 5 

 

filename = ENVI_PICKFILE(TITLE='Pick a DEM file', FILTER='*.img', 

DEFAULT='/home/nicole/Dropbox/Model/') 

ENVI_OPEN_FILE, filename, r_fid=fid 

IF (fid EQ -1) THEN RETURN 

 

; Necessary to get some variables 

ENVI_FILE_QUERY, fid, dims=dims, nb=nb, data_ignore_value=d_ignore 

inherited_details = ENVI_SET_INHERITANCE(fid, dims, /FILE_TYPE, /GEO_POINTS, 

$ 

   /MAP_INFO, /PIXEL_SIZE, /SPATIAL) 

 

; Find out if this is for the simulations, can avoid some looping that way 

 

; This is all to process the right number of bands. Can only do quantity 
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; Cannot specify particular bands this way. 

;PRINT, 'Number of bands:', nb 

;READ, 'Type the number of bands to read (min:1, max:254)', input 

;PRINT, input 

;input = UINT(input) 

;HELP, input 

;input_test = input LT 254 

;HELP, input_test 

;IF input_test EQ 0 THEN BEGIN 

;  PRINT, 'Unexpected input. Program will proceed filtering all bands of 

file.' 

;  selected_bands=pos 

;ENDIF ELSE BEGIN 

;  selected_bands = LINDGEN(input) 

;  HELP, selected_bands 

;ENDELSE 

 

;;ENVI VERSION BUT ENVI CONVOLUTIONS ARE NOT WHAT I WANT 

;; This makes a separate file for each kernal size 

;CD, '../../tempnicole' 

;lli_size = [3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33] 

; FOREACH element, lli_size DO BEGIN 

;  ENVI_DOIT, 'CONV_DOIT', DIMS=dims, FID=fid, POS=selected_bands, 

/IN_MEMORY, KX=element, $ 

;  KY=element, OUT_NAME=STRING(element)+'LLIndex_'+filename, R_FID=con_fid 

;  PRINT, "Filter size ", lli_size, " complete." 

;  ENVI_FILE_MNG, con_fid, /REMOVE 

; ENDFOREACH 

 

;;IDL VERSION HAS MORE INTEGRITY AND TRANSPARENCY 

data = ENVI_GET_DATA(fid=fid, dims=dims, pos=0) 

 

 

; Change the Nan values in the lake region to a lake elevation 

;IF input LT 3 THEN lake=1129 ELSE lake=1112 

;1129 is the lowest of the 30mkriged, 1111 the lowest of the 30m simulation 

nan_index = WHERE(finite(data) EQ 0, count) 

IF count GT 0 THEN data[nan_index]=1125 ELSE data=data 

PRINT, 'Waiting for kernel processing....' 

 

;; This makes a separate file for each kernal size 

READ, "What filename should be appended?", filename 

lli_size = [3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33] 

HELP, lli_size 

 FOREACH element, lli_size DO BEGIN 

   

  ;First make the kernel 

  kern = INTARR(element, element)-1 

  kern[(element/2), (element/2)]=(element^2)-1 

  scale_fac = FLOAT(element)^(-2) 

   

  filtered = FLTARR(dims[2]+1,dims[4]+1) ; initialize array to fill 

  

  ;Then apply it to the image 

  filtered=CONVOL(data, kern, scale_fac, /EDGE_MIRROR) 

 ; and save to a new file 

  out_element = STRCOMPRESS(STRING(element), /REMOVE_ALL) 
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  PRINT, out_element 

  HELP, out_element 

  out_name=out_element+'kLLI_'+ filename 

  PRINT, out_name 

   

  ENVI_WRITE_ENVI_FILE, filtered, DESCRIP="Results from the locally low 

filter kernel size " + STRING(element), $ 

    INHERIT=inherited_details, OUT_NAME=out_name,  /NO_OPEN 

 

  ;remove the file before moving on 

  PRINT, "Filter size ", element, " complete for ", OUT_NAME 

;  ENVI_FILE_MNG, r_fid, /REMOVE 

   

 

 ENDFOREACH 

END 

 

A.3 Rainfall time series extraction 

#stack the trmm into 
 
import datetime, os 
import arcpy 
import numpy as np 
 
def get_3B42daily(workspace, extent_fc, output_csv): 
    """For a folder containing 3B42-daily NetCDFS, makes a CSV table with two 
    columns, date, and preciptation total (mm). Averages 
    the values of the TRMM cells within the extent region to produce a single 
    value per date. 
    workspace: folder with the 3B42-daily NetCDFs inside, not nested. ALL of 
                them will be included 
 
    extent_fc: study site extent or region or interest polygon. 3B42 rasters 
                will be clipped to this extent. 
 
    output_csv: the output csv table path""" 
 
    arcpy.env.workspace = workspace 
    ncs = arcpy.ListFiles('*.nc') 
    records = [','.join(['Date (MM-DD-YYYY)', 'Total Precipitation (mm)'])] 
 
    for nc in ncs: 
        print nc 
        year, month, day = nc.split('.')[1:4] 
        date_string = '-'.join([month, day, year]) 
        arcpy.MakeNetCDFRasterLayer_md(nc, 'r', 'longitude', 'latitude', 
'lyr') 
        arcpy.Clip_management('lyr', '#', 'in_memory/pcp_clip', extent_fc) 
 
        precip = arcpy.RasterToNumPyArray('in_memory/pcp_clip') 
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        records.append(','.join([date_string, str(np.mean(precip))])) 
 
        for item in['lyr', 'in_memory/pcp_clip']: 
            arcpy.Delete_management(item) 
 
    with open(output_csv, 'a') as f: 
        for line in records: 
            f.write(line + '\n') 
 
def run_2007(): 
    ws_2007 = 
'C:/Users/Nicole/Dropbox/Feb_2014_WORKFILES/subset_wizard_2006_2007/daily_200
6_2007' 
    asembo_extent = 
'C:/Users/Nicole/Dropbox/Thesis.gdb/Study_Grid_2011_5KM_buffer' 
    output_2007 = 
'C:/Users/Nicole/Dropbox/Feb_2014_WORKFILES/2006_2007_rainfall_FIX.csv' 
    get_3B42daily(ws_2007, asembo_extent, output_2007) 
 
def run_2011(): 
    ws_2011 = 
'C:/Users/Nicole/Dropbox/Feb_2014_WORKFILES/subset_wizard_2010_2011/3B42_dail
y' 
    asembo_extent = 'C:/Malaria_Data/Thesis.gdb/Study_Grid_2011_5KM_buffer' 
    output_2011 = 
'C:/Users/Nicole/Dropbox/Feb_2014_WORKFILES/2010_2011_rainfall_FIX.csv' 
    get_3B42daily(ws_2011, asembo_extent, output_2011) 
 
run_2007() 

 

A.4 Spatiotemporal variogram 

#see this url for more information and help https://cran.r-
project.org/web/packages/gstat/vignettes/st.pdf 
 
library(sp) 
library(spacetime) 
library(gstat) 
 
#data frame with all 1-9 observations for pixid 1 then all for pixid 2 etc 
 
d7 <- read.csv("C:/Users/Nicole/Dropbox/njs-
thesis/FINAL_2007_USEALL_VER2_includesNA.csv") 
d7$Visit_Date <- as.Date(d7$Visit_Date, "%Y-%m-%d") 
d7$lulc <- factor(d7$lulc, levels = 
c(29,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21, 
                                      22,23,24,25,26,27,28,30,31)) 
d7$Visit_Num <- ordered(d7$Visit_Num) 
d7$soil_clay <- factor(d7$soil_clay, levels = c("KA", "IN", "MO")) 
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d7$presence.num <- as.numeric(d7$presence) 
 
d7 <- d7[order(d7$Visit_Num, d7$pixid),] 
 
d7ST <- subset(d7, select = presence.num) 
 
#need a spatial points object of locations (each pixel as a point?) 
d7.pts <- d7[d7$Visit_Num == 3,] 
d7.pts.only <- subset(d7.pts, select = c(easting, northing)) 
row.names(d7.pts.only) <- d7.pts$pixid 
coordinates(d7.pts.only) <- ~ easting + northing 
 
#list of timepoints (visits 1-9) 
d7.nona <- d7[!is.na(d7$Visit_Date),] 
dates <- as.vector(by(d7.nona$Visit_Date, d7.nona$Visit_Num, min)) 
dates <- as.Date(dates, origin = "1970-01-01") 
 
visits <- dates 
 
habST <- STFDF(d7.pts.only, visits, d7ST) 
 
vv <- variogram(presence.num ~ 1, habST, width = 40, tlags=0:8, cutoff = 500) 
plot(vv) 
plot(vv, map = FALSE, col = heat.colors(8)) 
 
library(ggplot2) 
 
ggplot(data=vv, aes(x=dist, y=gamma, group=t, colour=t)) + 
  geom_line(size = 1) + 
  geom_point() + scale_colour_brewer(palette="Paired") + xlab("Spatial lag 
(m)") + ylab("Gamma") 
 
stplot(habST) 
 
library(lattice) 
 
 
wireplot <-plot(vv, all=T, wireframe=T, zlim=c(0,.03), 
zlab=NULL, 
xlab=list("distance (km)", rot=30), 
ylab=list("time lag (days)", rot=-35), 
scales=list(arrows=F, z = list(distance = 8))) 
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