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ABSTRACT

MATHEMATICAL MODELING AND COMPUTATION OF MOLECULAR
SOLVATION AND BINDING

By

Bao Wang

This dissertation contains a couple of results on biophysics modeling and computation, rang-

ing from solvated molecular conformation modeling to molecular solvation and binding mod-

eling in the solvent environment.

• We study the solvent excluded surface in Eulerian representation, provide the sur-

face area and enclosed volume calculation, the molecular topological analysis is also

addressed. We further analyze the electrostatic for the solvated molecules with the

Eulerian solvent excluded surface. We show that our surface is analytical without any

numerical approximation.

• We study the coarse grid Poisson Boltzmann solver. Our software enables extremely

accurate numerical solution to the Poisson Boltzmann equation even at very large grid

spacing. As a consequence, our software provides a reliable electrostatic calculation

for the solvation and protein ligand binding related problem.

• We study the blind solvation free energy prediction problem. A hybrid of physical and

statistical protocol is proposed for highly accurate solvation free energy prediction.

Furthermore, to mediate the force field parametrization influence on the solvation free

energy prediction, we propose a learning to rank based solvation free energy prediction

paradigm.

• We explore the protein ligand binding free energy prediction and docking scoring via



the learning to rank approach. In which a learn to rank based scoring function is

proposed for accurate protein ligand binding scoring.
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Chapter 1

Introduction

In numerous physical, chemical, and biological applications, we encounter the solvation prob-

lem, in which the solvation effects play a crucial role in the whole process. These includes

chemical reactions, ion channel permeations, protein ligand binding, electron transfer, sig-

nal transduction, DNA specification, transcription, post-transcription modification, gene

expression, protein synthesis, etc. [228, 60, 204, 228, 60, 140, 204, 228, 62, 266]. There has

been a long history of efforts paid to study the solvation effects. Many successful models

have been developed for addressing the solvation effects in different applications. Naturally,

based on the physical modeling of the solvent, these models are broadly classified into three

categories. Molecular mechanics modeling of the solvent yields the explicit solvent models

[36, 69, 188]; statistical mechanics description leads to the integral equation solvent models

[91, 119, 113, 67, 110, 203]; continuum mechanics description gives the implicit solvent mod-

els [233, 232, 199, 221, 94, 296, 219]. Lately, more and more attention has been drawn for

studying the solvation effects, especially for the biological and pharmaceutical sciences.

From the application point of view, one of our ultimate goals is to have a better under-

standing of the solvation problems and the related issues, e.g., the protein ligand binding

phenomena. More importantly, the models and numerical methods developed should meet

the experiments, such as the methodologies developed are capable to provide accurate molec-

ular solvation free energy and protein ligand binding free energy prediction. This in turn can

give some guidance to the experiments and is applicable to the industry. For these reasons,
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there are two major requirements on the models and numerical methods. First, the model of

the solvation should not be heavily dependent on the force fields parametrization [37, 257].

Second, the numerical method should be accurate enough for capturing the physical mean-

ingful results provided by the models. For instance, in the Cartesian mesh based numerical

methods, the grid size influence should not affect the results too much [107, 24]. These two

themes, developing force field parametrization independent models and grid size independent

numerical schemes, are carried throughout this dissertation.

In chapter 2, we briefly review the classical three families of the solvation models. The

pros and cons of different solvation models are shortly discussed. We provide relatively de-

tailed discussion and mathematical description of the implicit solvation and integral equation

based solvation models, both of which are more mathematically interesting in my point of

view. The solvation models presented in this chapter will be the outline of the whole dis-

sertation, and in the later chapters we will handle some detailed issues that appear in the

solvation models.

In chapter 3, we present the recently proposed differential geometry based implicit solva-

tion model. This model couples the polar and nonpolar solvation effects in a self-consistent

manner. The total variation theory is employed for describing the solvent solute interface.

In this model, the solvent solute interface and solute electrostatics are optimized simultane-

ously. It is different from the classical solvation models with a separated molecular surface

modeling. We provide a systematic parameters optimization strategy in this dissertation.

Chapter 4 presents the Eulerian solvent excluded surface (ESES), which is the solvent

excluded surface embedded in the Cartesian mesh, designed for the finite difference based

numerical methods. Compared to the existing solvent excluded surface software, our surface

is density totally independent, analytical without any approximation. The molecular surface
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area, volume, and molecular electrostatic analysis indicate that the state-of-the-art software

MSMS [212] converges to our ESES software both qualitatively and quantitatively. Besides

the surface generation, we also study the biomolecular topological structures in this chapter

via the homology theory, which shows great success for understanding the topological struc-

tures of the molecules. Level set method in companion with the persistent homology theory

are used for studying the persistence of the topological features associated with the ESES.

This is the joint work with Beibei Liu et al.

In chapter 5, we present the numerical method for the coarse grid Poisson Boltzmann

solver. Compared to all the existing Poisson Boltzmann software, we provide the most

accurate and grid spacing independent reaction field energy calculation, thus meeting the

basic theme of this dissertation. The solver is constructed by the following four instruments:

The solvated molecular conformation modeling; Treatment of the singular charges arise from

the solute molecular parametrization; Treatment of the complex geometry of the interface

in the discretization of the Poisson Boltamzann equation; The evaluation of the reaction

field energy, in which the coarse grid atomic central electrostatic potential evaluation is

addressed. A large amount of tests, ranging from analytical tests to more than one thousand

biomolecular tests, indicate our software can provide less than 0.4 % error for the electrostatic

calculation for studying the solvation effects, even at the grid size 1.1 Å. A further study of

the electrostatic binding free energy by our software demonstrates the accuracy for studying

the protein ligand binding. This work is provided as a free online sever for the electrostatic

analysis of the small molecule and biomolecules.

The blind solvation free energy prediction problem is considered in both chapters 6 and

7. In chapter 6, we proposed a hybrid physical and statistical model for the solvation free

energy prediction, in which the solvation free energy is modeled as the summation of two
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isolated components, polar and nonpolar energies. The Poisson model and its polarizable

version are utilized for modeling the polar solvation free energy. The statistical model is

adopted for the nonpolar solvation free energy modeling, in which we assume the same class

of molecules admit the same set of parameters in the nonpolar solvation free energy function.

Motivated by the work in chapter 6, we propose a unified and force field parametrization

less sensitive approach for the solvation free energy prediction in chapter 7, learning to rank

based solvation prediction. Instead, the solvation free energy itself is regarded as a unity

entry. The basic assumption now is that similar molecules take close solvation free energies,

which is assumed to be a function of the molecular descriptors. To this end, we first employ

the learning to rank method for finding the neighbor molecules to the target molecule, then

utilize the neighbor information for training a linear function, and further to predict the

solvation free energy of the target molecule.

In chapter 8, we extend the learning to rank based solvation prediction to a protein ligand

binding free energy prediction. We propose a learning to rank based scoring function for

accurate protein ligand binding affinity prediction. Our scoring function can be regarded as

a hybrid force field and knowledge method. A large amount of numerical results demonstrate

the accuracy of the proposed scoring approach.

Finally, we summarize the contribution of this dissertation in chapter 9.
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Chapter 2

Solvation Models

Solvent models are a variety of methods to account for the behavior of solvated condensed

phases, which allows simulation of chemical reactions and biological processes that take place

in the solvated phases [222]. Such solvation incorporated simulations allow better predictions

and improved understanding of the physical processes. The various solvation models can be

generally classified based on the physical description of the solvent molecules: Explicit solvent

models model the solvent molecule at the atomic level [36, 69, 188]; implicit solvent models

model the solvent simply as a dielectric continuum [233, 232, 199, 221, 94, 296, 219]; the inte-

gral equation based solvation models model the solvent distribution based on the statistical

mechanics theory [91, 119, 113, 67, 110, 203]. Implicit models are generally computationally

efficient and can provide a reasonable description of the solvent behavior, but fail to account

for the local fluctuations in solvent density around a solute molecule. The density fluctuation

behavior is due to solvent ordering around a solute and is particularly prevalent when water

is considered as the solvent. Explicit models are often less computationally economical, but

can provide a physical spatially resolved description of the solvent. However, many of these

explicit models are computationally demanding and can fail to reproduce some experimental

results, often due to certain fitting methods and parametrization. Integral equation based

solvation models mediate the pros and cons of both implicit and explicit solvent models. In

this chapter we will provides a brief review of the different level of solvation models, with

emphasis on the implicit solvent models and integral equation based solvation models.
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2.1 Explicit Solvent Models

Explicit solvent models treat explicitly, i.e., the coordinates, and usually at least some of

the solvent molecular degrees of freedom, are included in the solvent model. This model

provides the most realistic modeling of the solvent solute interaction among different levels

of solvation models, especially when the long range electrostatics interaction are dealt with

the Ewald summation or Fast Multipole Method (FMM). These models generally occur in

the application of molecular mechanics (MM), molecular dynamics (MD), and Monte Carlo

(MC) simulations. These simulations often employ molecular mechanics force fields which

are generally empirical, the force fields are usually parameterized based on a higher level

theory or experimental data [55, 125].

The explicit solvent model gives the most detailed description of the solvent, and in turn

it is extremely computationally expensive.

2.2 Implicit Solvent Models

2.2.1 Introduction

Water has many chemically and biologically necessary properties, one of which is a dielectric.

As a dielectric, water screens (lessens) electrostatic interactions between charged particles.

Water can therefore be crudely modeled as a dielectric continuum. In this manner, the

electrostatic forces of a biological system can be expressed as a system of differential equations

which can be solved for the electric field caused by a collection of charges. Implicit solvent

models are a class of important solvation models, implicit due to the continuum description

of the solvent. It is generally believed to be the best compromise between accuracy and
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efficiency.

2.2.2 Poisson Boltzmann (PB) Model

The Poisson Boltzmann equation (PBE), which can be formulated as

−∇ · (ε(r)∇φ(r)) = ρm(r) +
∑
i

ciqi · exp

[
−qiφ(r)

kBT

]
(2.2.1)

is a nonlinear equation which solves for the electrostatic field, φ(r), based on the position

dependent permittivity function ε(r), the solute charge distribution ρm(r), and the bulk

charge density ci of ion qi. This equation exactly solves for the electrostatic field of a charge

distribution in a dielectric. Mathematically speaking, PBE is an elliptic interface problem

with complex interface geometry and singular source. The complex interface comes from

the complex shape of molecules in the solvent, and the singular source is due to the solute

charge distribution [76].

The application of the PB model varies in many different scientific fields. It is also

known in electrochemistry as Gouy Chapman theory; in solution chemistry as Debye Hückel

theory; in colloid chemistry as Derjaguin Landau Verwey Overbeek (DLVO) theory. Only

minor modifications are necessary to apply the PBE to various interfacial models, making it

a highly useful tool in determining electrostatic potential at surfaces [29].

2.2.3 Generalized Born (GB) Model

Even though the PB model calculates the electrostatic in the solvent medium exactly, it

is very computationally expensive. The Generalized Born (GB) equation provides an ap-

proximation of the PBE, and offers a fast calculation of the electrostatic field in the solvent
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environment. The GB model models atoms as charged spheres whose internal dielectric is

lower than that of the environment. The screening which each atom, i, experiences is deter-

mined by the local environment: the more atom i is surrounded by other atoms, the less it’s

electrostatics will be screened since it is more surrounded by low dielectric; this property is

called one atom descreening another. Different GB models calculate atomic descreening in

different approaches. Descreening is used to calculate the Born radius, αi, of each atom. The

Born radius of an atom measures the degree of descreening. A large Born radius represents

small screening (strong electric field) as if the atom were in vacuum. A small Born radius

represents large screening (weak electric field) as if the atom were in bulk water. We will

give a short review of the basic ideas behind the GB model, more detailed theory can be

found in the works [268, 191].

2.2.3.1 Generalized Born Equations

In a GB simulation, the total electrostatic force on an atom i, is the difference between the

net Coulombic force and GB force in the atom i, where the GB force is contributed from the

nearby atoms:

Fi = FCoulomb
i − FGB

i ,

where the electrostatic forces are contributed by other nearby atoms within a cutoff.

The GB force on atom i is the derivative of the total GB energy with respect to relative
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atom distance rij , i.e.,

FGB
i = −

∑
j

[
dEGB

T

drij

]
r̂ij (2.2.2)

= −
∑[∑

k

∂EGBT
∂αk

dαk
drij

+
∂EGBij
∂rij

]
r̂ij

= −
∑
j

[
∂EGBT
∂αi

dαi
drij

+
∂EGBT
∂αj

dαj
drij

+
∂EGBij
∂rij

]
r̂ij ,

where the partial derivative are included since the Born radius, α, is a function of all relative

atom distances.

The total GB energy of the system is

EGBT =
∑
i

∑
j>i

EGBij +
∑
i

EGBii , (2.2.3)

where EGBii is the Born radius dependent self energy of atom i, and the GB energy between

atoms i and j is given by

EGBij = −keDij
qiqj
fij

,

the dielectric term Dij is given by

Dij =

(
1

εm
−

exp(−κfij)
εs

)
,

and the GB function is given by

fij =

√√√√rij + αiαj exp

(
−r2

ij

4αiαj

)
.
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The constants referred in the above equations are listed below

• ke = 332.063711 kcal Å/e2 is the Coulomb constant.

• εs, dielectric constant of solvent.

• εm, dielectric constant of solute.

• ε0, dielectric constant of the vacuum.

• κ, the Debye screening length, calculated from ion concentration based on κ−1 =√
ε0εpkT

2NAe
2T

.

2.2.4 Polarizable Continuum Model

Polarizable Continuum Model (PCM) is another class of implicit solvent models, the key

components of this class of models are the Ab Initio charge calculation through different

level of quantum mechanics theories, and the incorporation of the solvent solute polarization

effects through a self consistent coupling of the electron density and electrostatic equations

[238, 239, 71].

Consider the solute molecule M in the solvent, in the electrostatic solvent-solute interac-

tion where the charge distribution ρM of the solute inside the cavity polarizes the dielectric

continuum, which in turn, polarizes the solute charge distribution. The PCM model nests

the classical electrostatic problem into a quantum mechanical framework to study polar-

ization effects. Let HM be the Hamiltonian of the solute M in solvent, which depends on

the coordinates of the Nel electrons: q = {q1,q2, · · · ,qNel
}, and on the coordinates of the

Nnuc nuclei: Q = {Q1,Q2, · · · ,QNnuc}, and let H0
M be the corresponding Hamiltonian with

Born-Oppenhemier approximation in vacuum which has the same dependence. In the PCM
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model, we have

HM(q,Q) = H0
M(q,Q) + Vint, (2.2.4)

where Vint is the solute solvent interaction potential.

The related Schrodinger equation is

HM(q,Q)Ψf (q,Q) = Ef (Q)Ψf (q,Q), (2.2.5)

here the superscripts f indicates the solution was obtained iteratively. All the relevant

information about the solvent effects on the solute M is contained in the eigenvalue Ef and

in the wave function Ψf .

The charge of the solute molecule is the sum of a discrete nuclear charge distribution and

the electron density function

ρM(q,Q) = ρnuc(q,Q) + ρel(q,Q), (2.2.6)

where the nuclei and electron charge are given, respectively, by

ρnuc(q,Q) =
∑
α

Zαδ(r−Qα), (2.2.7)

ρel(q,Q) = −
∫
|Ψf (q,Q)|2dq1 · · · dqNel

, (2.2.8)

where Zα is a nuclear charge and the index α runs over all the nuclei of M.

In Eq. (2.2.4), the interaction between the solute and solvent Vint, which depends on q,
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Q, and a thermally averaged distribution function of the solvent molecules, gS, is given by

Vint = Vint(q,Q, gS), (2.2.9)

in the basic continuum model, the interaction term is reduced to its classical electrostatic

component

Vint := Vσ(q,Q, ρM) =
∑
α

ZαΦσ(Qα)−
∑
i

Φσ(qi), (2.2.10)

where Φσ(r) is the value of the electrostatic potential field generated by the polarized di-

electric at the position r.

The solvent solute interaction contribution to the total energy Ef is given by

WMS =

∫
ΨfVσΨfdq1 · · · dqNel

=

∫
ρM(r)Φσ(r)dr3, (2.2.11)

where the integration takes over the whole solute solvent space.

2.2.4.1 Quantum Mechanical Problem

To obtain the nuclear and electron charges distribution in the PCM framework, we should

solve the following Schrodinger equation with the inclusion of the solute solvent interaction

HeffΨ = EΨ, (2.2.12)

where the effective Hamiltonian Heff is given by

Heff = H0
M + Vint. (2.2.13)
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2.2.4.2 Electrostatic Problem

The solute-solvent interaction is obtained via solving the classical electrostatic problem.

Consider the Poisson equation

−∇ · (ε(r)∇Φ(r)) = 4πρM(r), (2.2.14)

where the permittivity function is given by

ε(r) =


1, r ∈ Ωs

ε, r ∈ Ωm
(2.2.15)

where Ωs and Ωm represent the solvent and solute domains, respectively. ε is the dielectric

constant in medium.

Due to the solvent effects, the electrostatic potential Φ can be decomposed as

Φ(r) = ΦM(r) + Φσ(r), (2.2.16)

where

• ΦM(r) is the electrostatic potential generated by the charge distribution ρM, which has

the analytical expression as the convolution of the Green’s function with the charge

distribution ρM.

• Φσ(r) is the reaction field potential generated by the polarization of the dielectric

medium.
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The Poisson equation Eq. (2.2.14) subjects to the following far field boundary conditions

lim
r→∞

rΦ(r) = α, lim
r→∞

r2Φ(r) = β, (2.2.17)

with finite values for α and β.

At the solute solvent contact part, the following interface conditions constraints should

be added to Eq. (2.2.14)

[Φ] = Φin − Φout = 0, [ε(r)Φn] =

(
ε(r)

∂Φ

∂n

)
in
−
(
ε(r)

∂Φ

∂n

)
out

, (2.2.18)

where n is the normal direction pointing outward the solute domain, and the subscripts ”in”

and ”out” represent for the limit from the inside solute domain and outside one.

2.2.4.3 Dielectric Polarizable Continuum Model (DPCM)

There are various versions of the PCM, for instance, Dielectric PCM (DPCM) [238], Conductor-

like PCM (C-PCM) [54], Integral Equation Formalism PCM (IEFPCM) [71], wavelet PCM

[242] et al. It is very difficult to review all these PCM models here. In this part, we

specifically give a short review of the DPCM model, the basic idea is called the Apparent

Surface Charge (ASC) similar to the induced surface charge approach for solving the Poisson

Boltzmann equation [154, 94, 209].

For systems composed by regions at constant isotropic permittivity, the polarization

vector is given by the gradient of the total potential

Pi(r) = −ε− 1

4π
∇Φ(r), (2.2.19)
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where ε is the dielectric constant of the solute region, and we assume the solvent dielectric

constant to be 1.

At the boundary of two regions i and j, there is an apparent surface charge distribution

given by

σij = −(Pj −Pi) · nij , (2.2.20)

where nij is the unit vector at the boundary surface pointing from medium i to medium j.

Thus the surface charge for the PCM model is given by

σ = −P · n =
ε− 1

4π
∇Φout · n =

ε− 1

4πε
∇Φin · n, (2.2.21)

Since Φ = ΦM + ΦS, thus the surface charge can be further expressed as

σ =
ε− 1

4πε

∂(ΦM,in − ΦS,in)

∂n
,

therefore, the reaction field potential due to the solvent polarization can be expressed as

Φσ(r) =

∫
Γ

σ(s)

|r− s|
ds2, (2.2.22)

where Γ is the surface of the solute molecule.

2.3 Integral Equation Based Solvation Models

Compare to the explicit solvent theory, the continuum simplifies the description of the sol-

vent, and reduces the complexity of the solvation model dramatically. Such implicit solvent

models are often useful, but have a variety of limitations: they drastically average the re-
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sponse of water dipoles and ions to the fields created by solutes, miss most effects of atomic

and molecular sizes, collapse all ion effects into a single ionic strength parameter, and fail

to account for non-electrostatic aspects of solvation. In many situations these mean field

approximation may be too severe [222]. There is a long-studied alternative approach to

understand the equilibrium properties of water and ions, based on the integral equation

approach of Ornstein and Zernike. These ideas were originally applied to atomic liquids,

and have been extended to molecular solvents such as water by a variety of methods, most

notably via the Reference Interaction Site Model (RISM) [91, 119, 113, 67, 110, 203].

2.3.1 Ornstein-Zernike Equation

In homogeneous fluids, the spatial number density distribution, ρ(r), is uniform and provides

little information. In contrast, the number density of a particle, 2, relative to a fixed particle,

1, contains a wealth of information and, in the grand canonical ensemble, is given by

ρ(2)(1,2) =
1

Ξ

∞∑
N=2

ZN

(N − 2)!

∫
exp[−βVN ]drN−2, (2.3.1)

where the position and orientation of molecular species are denoted by boldface numbers,

e.g., 1 := (r1,Ω1), β = 1
kBT

with kB be the Boltzmann constant and T the absolute

temperature, Ξ is the grand partition function, ZN and VN are the N -particle partition

function and potential.

For homogeneous fluids, the 2-particle density distribution is related to the Pair Distri-

bution Function (PDF), g(1,2), through the equation

ρ(2)(1,2) = ρ1ρ2g(1,2), (2.3.2)
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where ρ1 and ρ2 are the bulk number densities of particles 1 and 2, respectively. When the

orientational dependence is averaged out, g(r) is known as the Radial Distribution Function

(RDF). Alternatively, the PDF is also related to the potential of mean force, w(1,2)

h(1,2) + 1 = g(1,2) = exp[−βw(1,2)], (2.3.3)

where h(1,2) is the Total Correlation Function (TCF).

For homogeneous, multi-component, molecular liquids, the OZ integral equation is given

by

hij(1,2) = cij(1,2) +
∑
k

ρk

∫
cik(1,3)hkj(3,2)d3, (2.3.4)

where we denote the molecular species by i, j and k, c(1,2) is the Direct Correlation Function

(DCF) and the integration is performed over all space. Physically, we can interpret the TCF

as the sum of contributions from the direct interaction of the two particles (DCF) plus the

interactions mediated by the surrounding particles (the right hand convolution).

As both h and c are unknown functions, a second, closure equation is required to find a

solution.

2.3.2 Closures

The most general case for the closure equation is

gαγ = exp{−βuαγ + hαγ − cαγ + bαγ}, (2.3.5)

where b is the bridge function and we have dropped the functional arguments for brevity

and generality.
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In the Hyper-Netted Chain (HNC) approximation, the bridge function is set to zero,

which yields the following HNC closure

gαγ = exp{−βuαγ + hαγ − cαγ}, (2.3.6)

this has been found to produce very good results for ionic and polar systems. It also has

an exact, closed form expression for the chemical potential when coupled with RISM theory.

However, it does have drawbacks, including thermodynamic inconsistencies, poor results

for neutral systems, difficulties with particle size asymmetries and difficulties converging

solutions [216].

To address the issue of convergence, Kovalenko and Hirata developed a partially linearized

closure. Regions of enhanced density were linearized, avoiding the exponential density re-

sponse for strong potential interactions. This linearization was later generalized to a Taylor

series

gαγ =


exp{t∗αγ}, for t∗αγ < 0∑n
i=0

(t∗αγ)i

i! , for t∗αγ ≥ 0,

(2.3.7)

where

t∗αγ = −βuαγ + hαγ − cαγ .

2.3.3 1D-RISM

Most modern biomolecular force fields use interaction site models in which a molecule is

composed of a number of sites, typically atoms, that interact in a pair-wise fashion. Such

models offer a very effective way to deal with nonspherical molecules but require a practical
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method to apply model in Eq. (2.3.4) to molecular species with multiple sites. One approach

(which, in practice, is restricted to molecules with a small number of sites) is to treat the

molecules as rigid body, and site-site orientationally average the correlation functions for each

site, reducing the equations to one dimension, i.e., orientational averaging is done about each

site rather than, for example, averaging about the molecular center-of-mass.

In the RISM approach this is achieved by first treating the DCF as decomposable into

the sum of site-site direct correlation functions

c(1,2) =
∑
α1,γ2

cα1γ2(|rα1 − rγ2 |), (2.3.8)

where c(1,2) is the DCF between molecules 1 and 2, as well as α and γ are interaction sites

on molecules 1 and 2, respectively.

Molecules are assumed to be rigid, and their shape enters the theory through the in-

tramolecular correlation matrix, represented in Fourier space,

ω̂αγ(k) = δαγ + (1− δαγ)
sin(klαγ)

klαγ
, (2.3.9)

where δ is the Kronecker δ-function and lαγ is the distance between sites in the same type

of molecule. For the same site, α = γ, lαα = 0 and ω̂αα(k) = 1, while for the sites belong to

different types of molecule ŵαγ(k) = 0.

With the definition of the intramolecular correlation function, we can now express the

molecular OZ integral equation Eq. (2.3.4) in terms of interaction sites rather than molecules.
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The multi-components 1D-RISM equation can be written explicitly for molecules 1 and 2 as

ραhαγ(r)ργ =

Nsite∑
λ

Nsite∑
β

ωαλ(r) ∗ cλβ(r) ∗ ωβγ(r) +

Nsite∑
λ

Nsite∑
β

ωαλ(r) ∗ cλβ(r) ∗ ρβhβγ(r)ργ ,

where ∗ is the convolution operator and Nsite is the total number sites from all molecular

species. The above equation can be concisely written into the following compact matrix form

ρhρ = ω ∗ c ∗ ω + ω ∗ c ∗ ρhρ, (2.3.10)

with ρ being a diagonal matrix of scalar values, ω and c are matrices of radially dependent

functions and all matrices are of size Nsite ×Nsite.

2.3.4 3D-RISM

For macromolecular ions, which are composed of more than a few sites, the approximation of

spherically symmetric distribution functions begins to break down. One approach is to use

a full 3D description of the macromolecular solute, U , while using orientationally averaged

distributions for the solvent V . If the solute is at infinite dilution, Eq. (2.3.4) can be

rewritten as

hV Vij (i, j) = cV Vij (i, j) +
∑
k

ρVk

∫
Ω
cV Vik (i,k)hV Vkj (k, j)dk, (2.3.11)

hV Vi (1, i) = cUVi (1, i) +
∑
k

ρVk

∫
Ω
cUVk (1,k)hV Vki (k, j)dk. (2.3.12)

In the 3D-RISM model, Eq. (2.3.11) gives the TCF of the bulk solvent, which is then

used in Eq. (2.3.12) to obtain the distribution of the solvent about the solute.
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2.4 Conclusion

In this chapter, we provides a short review of the three classes of the solvation models. The

remaining of this dissertation focuses on solving some problems that come from the above

solvation models and enrich the family of solvation models. The application of the continuum

solvation models for studying the solvation and binding phenomena is also a main theme of

this dissertation.
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Chapter 3

Self Consistent Coupling of Polar and

Nonpolar Solvation Free Energy

The general idea of implicit solvent models is to treat the solvent as a dielectric continuum

and describe the solute with atomistic detail [62, 219, 112, 211, 126]. The total solvation

free energy is decomposed into nonpolar and polar parts. There is a wide variety of ways to

carry out this decomposition. For example, nonpolar energy contributions can be modeled

in two stages: the work of displacing solvent when adding a rigid solute to the solvent and

the dispersive nonpolar interactions between the solute atoms and surrounding solvent. The

polar part is due to the electrostatic interactions and can be approximated by Generalized

Born (GB) [64, 11, 241, 191, 84, 296, 138, 236, 178, 38, 99], Polarizable Continuum Model

(PCM) [237]and Poisson-Boltzmann (PB) models [145, 76, 219, 62, 293, 6, 295]. Among

them, GB models are heuristic approaches to polar solvation energy analysis. PCMs resort

to quantum mechanical calculations of induced solute charges. PB methods can be formally

derived from Maxwell equations and statistical mechanics for electrolyte solutions [19, 182,

111] and therefore offer the promise of handling large biomolecules with sufficient accuracy

and robustness [61, 190, 11].

Conceptually, the separation between continuum solvent and the discrete (atomistic)

solute introduces an interface definition. This definition may take the form of analytical
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functions [100, 98, 99] or nonsmooth boundaries dividing the solute-solvent domains. The

van der Waals surface, solvent accessible surface [147], and Molecular Surface (MS) [206]

are devised for this purpose and have found their success in biophysical calculations [225,

161, 58, 142, 20, 68, 120, 155]. It has been noticed that the performance of implicit solvent

models is very sensitive to the interface definition [65, 66, 186, 231]. This comes as no surprise

because many of these popular interface definitions are ad hoc divisions of the solute and

solvent domains based on rigid molecular geometry and neglecting solute-solvent energetic

interactions. Additionally, geometric singularities [51, 212] associated with these surface

definitions incur enormous computational instability [295, 278, 279] and lead to conceptual

difficulty in interpreting the sharp interface [45].

The Differential Geometry (DG) theory of surfaces [275] and associated geometric Partial

Differential Equations (PDEs) provide a natural description of the solvent-solute interface.

In 2005, Wei and his collaborators introduced curvature-controlled PDEs for generating

molecular surfaces for solvation analysis [271]. The first variational solvent-solute interface,

namely, the Minimal Molecular Surface (MMS), was constructed in 2006 by Wei and cowork-

ers based on the DG theory of surfaces [13, 14, 15]. MMSs are constructed by solving the

mean curvature flow, or the Laplace-Beltrami flow, and have been applied to the calculation

of electrostatic potentials and solvation free energies [46, 15]. This approach was general-

ized to potential-driven geometric flows, which admits physical interactions, for the surface

generation of biomolecules in solution [12]. While our approaches were employed and/or

modified by many others [47, 281, 284, 285] for molecular surface and solvation analysis, our

geometric PDE [271] and variational surface models [13, 15, 12] are, to our knowledge, the

first of their kind for solvent-solute interface and solvation modeling.

Since the surface area minimization is equivalent to the minimization of surface free
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energies, due to a constant surface tension, this approach can be easily incorporated into

the variational formulation of the PB theory [218, 92] to result in DG-based full solvation

models [43, 269], following a similar approach by Dzubiella et al [70, 291]. The DG-based

solvation models have been implemented in the Eulerian formulation, where the solvent-

solute interface is embedded in the three-dimensional (3D) Euclidean space and behaves like a

smooth characteristic function [43]. The resulting interface and associated dielectric function

vary smoothly from their values in the solute domain to those in the solvent domain and are

computationally robust. An alternative implementation is the Lagrangian formulation [44]

in which the solvent-solute boundary is extracted as a sharp surface at a given isovalue and

subsequently used in the solvation analysis, including nonpolar and polar modeling.

One major advantage of the DG based solvation model is that it enables the synergistic

coupling between the solute and solvent domains via the variation procedure. As a result,

the DG based solvation model is able to significantly reduce the number of free parame-

ters that users must “fit” or adjust in applications to real-world systems [235]. It has been

demonstrated that physical parameters, i.e., pressure and surface tension obtained from ex-

perimental data, can be directly employed in the DG-based solvation models for accurate

solvation energy prediction [59]. Another advantage of the DG based solvation model is that

it avoids the use of ad hoc surface definitions and its interfaces, particularly ones generated

from the Eulerian formulation [43], are free of troublesome geometric singularities that com-

monly occur in conventional solvent-accessible and solvent-excluded surfaces [52, 212]. As a

result, the DG based solvation model bypasses the sophisticated interface techniques required

for solving the PB equation [278, 279, 90]. In particular, the smooth solvent-solute inter-

face obtained from the Eulerian formulation [43] can be directly interpreted as the physical

solvent-solute boundary profile. Additionally, the resulting smooth dielectric boundary can
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also have a straightforward physical interpretation. The other advantage of the DG based

solvation model is that it is natural and easy to incorporate the Density Functional Theory

(DFT) in its variational formulation. Consequently, it is able to reevaluate and reassign the

solute charge induced by solvent polarization effect during the solvation process [45]. The

resulting total energy optimization process recreates or resembles the solvent-solute interac-

tions, i.e., polarization, dispersion, and polar and nonpolar coupling in a realistic solvation

process. Recently, DG based solvation model has been extended to DG based multiscale

models for non-equilibrium processes in biomolecular systems [269, 273, 272, 40, 41]. These

models recover the DG based solvation model at the equilibrium [273].

Recently, we have demonstrated [46] that the DG based nonpolar solvation model is able

to outperform many other methods [82, 246, 202] in solvation energy predictions for a large

number nonpolar molecules. The Root Mean Square Error (RMSE) of our predictions was

below 0.4 kcal/mol, which clearly indicates the potential power of the DG based solvation

formulation. However, the DG based full solvation model has not shown a similar superiority

in accuracy, although it works very well [43, 44]. Having so many aforementioned advantages,

the DG based solvation models ought to outperform other methods with a similar level of

approximations. One obstacle that hinders the performance of our DG based full solvation

model is the numerical instability in solving two strongly coupled and highly nonlinear

PDEs, namely, the Generalized Laplace-Beltrami (GLB) equation and the generalized PB

(GPB) equation. To avoid such instability, a strong parameter constraint was applied to

the nonpolar part in our earlier work [43, 44], which results in the reduction of our model

accuracy.

The objective of the present work is to explore a better parameter optimization of the

DG based solvation models. A pair of conditions is prescribed to ensure the physical solution
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of the GLB equation, which leads to the well-posedness of the GPB equation. Such a well-

posedness in turn renders the stability of solving the GLB equation. The stable solution

of the coupled GLB and GPB equation enables us to optimize the model parameters and

produce the highly accurate prediction of solvation free energies. Some of the best results

are obtained in the solvation free energy prediction of more than a hundred molecules of

both polar and nonpolar types.

The rest of this chapter is organized as the follows. To establish the notation and facilitate

further development, we present a brief review of the DG based solvation models in Section

3.1. By using the variational principle, we derive the coupled GLB and GPB equations.

Necessary boundary conditions and initial values are prescribed to make this coupled system

well-posed. Section 3.2 is devoted to parameter learning algorithms. We develop a protocol to

stabilize the iterative solution process of coupled nonlinear PDEs. We introduce perturbation

and convex optimization methods to ensure stability of the numerical solution of the GLB

equation in coupling with the GPB equation. The newly achieved stability in solving the

coupled PDEs leads to an appropriate optimization of solvation free energies with respect to

our model parameters. In Section 3.3, we show that for more than a hundred of compounds

of various types, including both polar and nonpolar molecules, the present DG solvation

model offers some of the most accurate solvation free energy prediction with the overall

RMSE of 0.5 kcal/mol.
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3.1 The DG based solvation model

The free energy functional for the DG based full solvation model can be expressed as [270,

43, 44]

G[S,Φ] =

∫ {
γ|∇S|+ pS + (1− S)U + S

[
−εm

2
|∇Φ|2 + Φ ρm

]
+(1− S)

[
−εs

2
|∇Φ|2 − kBT

∑
α

ρα0

(
e
− qαΦ
kBT − 1

)]}
dr, r ∈ R3

(3.1.1)

where γ is the surface tension, p is the hydrodynamic pressure difference between solvent

and solute, and U denotes the solvent-solute non-electrostatic interactions represented by

the semi-discrete and semi-continuum Lennard-Jones potentials in the present work. Here

0 ≤ S ≤ 1 is a hypersurface or simply surface function that characterizes the solute domain

and embeds the 2D surface in R3, whereas 1− S characterizes the solvent domain [43]. One

may consider S as the position-dependent volume fraction of the solute. Additionally, Φ

is the electrostatic potential and εs and εm are the dielectric constants of the solvent and

solute, respectively. Here kB is the Boltzmann constant, T is the temperature, ρα0 denotes

the reference bulk concentration of the αth solvent species, and qα denotes the charge valence

of the αth solvent species, which is zero for an uncharged solvent component. We use ρm to

represent the charge density of the solute. The charge density is often modeled by a point

charge approximation

ρm =

Nm∑
j

Qjδ(r− rj),

where Qj denoting the partial charge of the jth atom in the solute. Alternatively, the charge

density computed from the DFT, which changes during the iteration or energy optimization,

can be directly employed as well [45].
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In Eq. (3.1.1), the first three terms consist of the so called nonpolar solvation free energy

functional while the last two terms form the polar one. After the variation with respect to

S, we obtain an elliptic equation for the surface function S

∇ ·
(
γ
∇S
|∇S|

)
+ V = 0, (3.1.2)

where the potential driven term is given by

V = −p+ U +
εm
2
|∇Φ|2 − Φ ρm −

εs
2
|∇Φ|2 − kBT

∑
α

ρα0

(
e
− qαΦ
kBT − 1

)
.

It is a standard procedure to seek the solution of Eq. (3.1.2) by converting it into a

parabolic equation [12]. As such, we construct the following Generalized Laplace-Beltrami

(GLB) equation [43, 44].

∂S

∂t
= |∇S|

[
∇ ·
(
γ
∇S
|∇S|

)
+ V

]
. (3.1.3)

here we utilized the method proposed by Marquina and Osher to tame the direct steepest

descent marching 3.1.2[166].

As in the nonpolar case, solving the generalized Laplace-Beltrami equation (3.1.3) gen-

erates the solvent-solute interface through the surface function S.

Additionally, variation with respect to Φ gives rise to the generalized Poisson-Boltzmann

(GPB) equation:

−∇ · (ε(S)∇Φ) = Sρm + (1− S)
∑
α

qαρα0e
− qαΦ
kBT , (3.1.4)
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where ε(S) = (1 − S)εs + Sεm is the generalized permittivity function. As shown in our

earlier work [270, 43], ε(S) is a smooth dielectric function gradually varying from εm to

εs. Thus, the solution procedure of the GPB equation avoids many numerical difficulties

of solving elliptic equations with discontinuous coefficients [286, 295, 294, 280, 279] in the

standard PB equation.

The GLB (3.1.3) and GBP (3.1.4) equations form a highly nonlinear system, in which

the GLB equation is solved for the interface profile S of the solute and solvent. The interface

profile determines the dielectric function ε(S) in the GPB equation. The GPB equation is

solved for the electrostatics potential Φ that behaves as an external potential in the GLB

equation. The strongly coupled system should be solved in self-consistent iterations.

For GLB equation (3.1.3), the computational domain is Ω/ΩvdW
m , where ΩvdW

m is the

solute van der Waals domain given by ΩvdW
m =

⋃
iB(rvdW

i ). Here B(rvdW
i ) is the ith ball in

the solute centered at ri with van der Waals radius rvdW
i . We apply the following Dirichlet

boundary condition to S(r, t)

S(r, t) =


0, ∀r ∈ ∂Ω

1, ∀r ∈ ∂ΩvdW
m .

(3.1.5)

The initial value of S(r, t) is given by

S(r, 0) =


1, ∀r ∈ ∂Ωext

m ,

0, otherwise,

(3.1.6)

where ∂Ωext
m is the boundary of the extended solute domain constructed by Ωext

m =
⋃
iB(rvdW

i +

rprobe). Here B(rvdW
i + rprobe) has an extended radius of rvdW

i + rprobe with rprobe being
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the probe radius, which is set to 1.4 Å in the present work.

For GPB equation (3.1.4), the computational domain is Ω. We set the Dirichlet boundary

condition via the Debye-Hückel expression,

Φ(r) =

Nm∑
i=1

Qi
εs|r− ri|

e−κ̄|r−ri|, ∀r ∈ ∂Ω, (3.1.7)

where κ̄ is the modified Debye-Hückel screening function [44], which is zero if there is no salt

molecule in the solvent. Note that no interface condition [278] is needed as S and ε(S) are

smooth functions in general for t > 0. Consequently, the resulting GBP (3.1.4) equation is

easy to solve.

To compare with experimental solvation data, one needs to compute the total solvation

free energy, which, in our DG based solvation model, is obtained as

∆G = ∆GP +GNP, (3.1.8)

where ∆GP is the electrostatic solvation free energy,

∆GP =
1

2

Nm∑
i=1

Qi [Φ(ri)− Φh(ri)] (3.1.9)

where Φh is the solution of the above the GPB model in a homogenous system, obtained by

setting a constant permittivity function ε(r) = εm in the whole domain Ω. The nonpolar

energy GNP is computed by

GNP =

∫
[γ|∇S|+ pS + (1− S)U ] dr. (3.1.10)
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The DG based solvation model is formulated as a coupled GLB and GPB equation system,

in which the GLB equation provides the solvent solute boundary for solving the GPB, while

the GPB equation produces the external potential in the GLB equation for the evolution of

the surface function S. The solution procedure for this coupled system has been discussed in

our earlier work [43, 44]. Essentially, for the GLB equation, an Alternating Direction Implicit

(ADI) scheme was utilized for the time integral, in conjugation with the second order finite

difference method for the spatial discretization. The GPB equation was discretized by a

standard second order finite difference scheme and the resulting algebraic equation system

was solved by using a standard Krylov subspace method based solver [43, 44].

3.2 Parametrization methods and algorithms

To solve the above coupled equation system, a set of parameters that appeared in the GLB

equation, namely, surface tension γ, hydrodynamic pressure difference p, and the product of

solvent density and well depth parameter of the jth atom ε̃jα
.
= ραεj , should be predeter-

mined. Unfortunately, this coupled system is unstable at the certain choices of parameters.

Specifically, for certain V , one may have S > 1 or S < 0, which leads to unphysical ε(S)

and unphysical solution of GPB equation (3.1.4) and thus gives rise to a divergent S. This

instability can seriously reduce the model accuracy [43, 44].

For a concise description of our algorithm, we assume that there is only one solvent

component (water) and denote the parameter set as:

P = {γ, p, ε̃1, ε̃2, · · · , ε̃NT } (3.2.1)
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where NT is the number of types of atoms in the solute molecule.

As mentioned in the previous part, the parameter set P used in solving the coupled

PDEs should meet two requirements, namely, the stability of solving the coupled PDEs and

the optimal prediction of the solvation free energy (or fitting the experimental solvation free

energy in the best approach). Based on these two criteria we introduce a two-stage numerical

procedure to optimize the parameter set and solve the coupled PDEs:

• Explore the stability conditions of the coupled PDEs by introducing an auxiliary system

via a small perturbation;

• Optimize the parameter set by an iteratively scheme satisfying the stability constraint.

3.2.1 Stability conditions

In this part we investigate the stability conditions for the numerical solution to the coupled

PDEs (3.1.3) and (3.1.4). The basic idea is to utilize a small perturbation method. It is

known that omitting the external potential in the GLB equation yields the Laplace-Beltrami

(LB) equation:

∂S

∂t
= |∇S|∇ ·

(
γ
∇S
|∇S|

)
(3.2.2)

This equation is of diffusion type and is well posed with the Dirichlet type of boundary

conditions provided γ > 0. Numerically it is easy to solve Eq. (3.2.2) to yield the profile of

the solvent solute boundary.

After solving the LB equation (3.2.2), we use the generated smooth profile of the solvent

solute boundary to determine the permittivity function in the GPB equation. For simplicity,
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we consider a pure water solvent,

−∇ · (ε(S)∇Φ) = Sρm. (3.2.3)

Without the external potential the system of Eqs. (3.2.2)-(3.2.3) can be solved stably by

first solving the LB equation and then the GPB equation.

Motivated by the above observation, if the external potential is dominated by the mean

curvature term, the stability of coupled GPB and GLB equations can be preserved. Based

on numerical experiments, the Lennard-Jones interaction between the solvent and solute

is usually small since this term is constrained by the nonpolar free energy in our model.

In our method, we enforce the following constraint conditions to make the coupled system

well-posed in the numerical sense

γ > γ0 > 0, (3.2.4)

and

|p| ≤ βγ, (3.2.5)

where γ0 and β are some appropriate positive constants.

In summary, the original problem is transformed into optimizing parameters in the fol-

lowing system to attain the best solvation free energy fitting with experimental results:



∂S
∂t = |∇S|

[
∇ ·
(
γ ∇S|∇S|

)
− p+ U + 1

2εm|∇Φ|2 − 1
2εs|∇Φ|2

]
,

−∇ · (ε(S)∇Φ) = Sρm,

γ > γ0 > 0,

|p| ≤ βγ.

(3.2.6)

33



Note that the potential ρmΦ is omitted in the GLB equation (3.2.6), because we have already

enforced the Dirichlet boundary condition in the GLB equation, while ρm is inside the van

der Waals surface.

Remark 3.2.1. Based on large amount of numerical tests, it is found that there is no need to

enforce the constraint conditions on the parameters that appear in the Lennard-Jones term.

When this term is used to fit the solvation energy with experimental results, the parameters

can be bounded in a small neighborhood of 0 automatically during the fitting procedure. These

parameters essentially do not affect the numerical stability.

3.2.2 Self-consistent approach for solving the coupled PDEs

In this part, we propose a self-consistent approach to solve the coupled GLB and GPB

equations for a given set of parameters. Basically, the coupled system is solved iteratively

until both the electrostatic solvation free energy ∆GP given in Eq. (3.1.9) and the surface

function S are both converged. Here the surface function is said to be converged provided

that the surface area and enclosed volume are both converged.

We present an algorithm for solving the following coupled systems:

−∇ · (ε(S)∇Φ) = Sρm, (3.2.7)

and

∂S

∂t
= |∇S|

[
∇ ·
(
γ
∇S
|∇S|

)
+ Ve

]
, (3.2.8)

where Ve is the external potential which is defined as:

• Auxiliary system: Ve = 1
2(εm − εs)|∇Φ|2,
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• Full system: Ve = −p+ U + 1
2(εm − εs)|∇Φ|2.

Dirichlet boundary conditions are employed for both GPB (3.2.7) and GLB (3.2.8) equa-

tions with auxiliary and full external potentials, giving rise to a well-posed coupled system.

The smooth profile of the solvent-solute boundary enables the direct use of the second order

central finite difference scheme to achieve the second order convergence in discretizing the

GPB equation. The biconjugate gradient scheme is used to solve the resulting algebraic

equation system. The GLB equation of both the auxiliary and full systems can be solved by

the central finite difference discretization of the spatial domain and the forward Euler time

integrator for the time domain discretization.

Remark 3.2.2. For the sake of simplicity, in the current work, we employed the central

finite difference scheme for spatial domain discretization in both GPB and GLB equations,

and forward Euler integrator for the time domain discretization of GLB equation. For sta-

bility consideration, in the discretization of the GLB equation, the discretization step size of

temporal and spatial domain satisfies the Courant-Friedrichs-Lewy condition. To accelerate

the numerical integration, a multigrid solver can be employed for GBP equation, and an

alternating direction implicit scheme [43], which is unconditionally stable, can be utilized for

the temporal integration. However, detail discussion of these accelerated schemes is beyond

the scope of the present work.

The coupled GLB and GPB equations is solved in a self-consistent manner. A dynamical

coupling is needed two solve the coupled system.

Remark 3.2.3. In solving the GLB equation, during each updating, to ensure the stability,

instead of the fully update, we update it partially, i.e., the updated solution is the weighted

sum of the new solution of the current GLB solution Snew and the old solution of the GLB
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equation in the previous step Sold:

S = a1Snew + (1− a1)Sold, (3.2.9)

where a1 is a constant and set to 0.5 in the present work.

3.2.3 Convex optimization for parameter learning

In this part, we present the parameter optimization scheme. In our approach, parameters

start from an initial guess and then are updated sequentially until reaching the convergence.

Here the convergence is measured by the RMSE between the fitted and experimental solva-

tion free energies for a given set of molecules.

Consider the parameter optimization for a given group of molecules, {T1, T2, · · · , Tn}.

As discussed above the parameter set is P. To optimize the parameter set P, we start from

GPB equation (3.2.7) and the auxiliary system of GLB equation (3.2.8) with γ = 0.05. After

solving the initial coupled system by using Algorithm ??, we obtain the following quantities

for each molecule in the training set:

∆GP
j ,Areaj,Volj,

Nm∑
i=1

δ1
i

∫
Ωs

[(
σs + σ1

||r− ri||

)12

− 2

(
σs + σ1

||r− ri||

)6
]
dr


j

, (3.2.10)

· · · , (3.2.11)Nm∑
i=1

δ
NT
i

∫
Ωs

[(
σs + σNT
||r− ri||

)12

− 2

(
σs + σNT
||r− ri||

)6
]
dr


j

 (3.2.12)

where j = 1, 2, · · · , n. Here Nm and NT denote the number of atoms and types of atoms in

a specific molecule. The last few terms involve semi-discrete and semi-continuum Lennard-
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Jones potentials [43]. Additionally,

δ
j
i =


1, if atom i belongs to type j,

0, otherwise.

where i = 1, 2, · · · , Nm; j = 1, 2, · · ·NT ; σi, i = 1, 2, · · · , NT is the atomic radius of the ith

type of atoms. Therefore, atoms of the same type have a common atomic radius and fitting

parameter ε̃.

The predicted solvation free energy for molecule j can be represented as:

∆Gj = ∆GP
j + ε̃1

Nm∑
i=1

δ1
i

∫
Ωs

[(
σs + σ1

||r− ri||

)12

− 2

(
σs + σ1

||r− ri||

)6
]
dr


j

(3.2.13)

+ · · ·+ ε̃NT

Nm∑
i=1

δ
NT
i

∫
Ωs

[(
σs + σNT
||r− ri||

)12

− 2

(
σs + σNT
||r− ri||

)6
]
dr


j

(3.2.14)

+γAreaj + pVolj (3.2.15)

We denote the predicted solvation free energy for the given set of molecules as ∆G(P)
.
=

{∆G1,∆G2, · · · ,∆Gn}, which is a function of the parameter set P, and denote the corre-

sponding experimental solvation free energy as ∆GExp .
=
{

∆GExp1,∆GExp2, · · · ,∆GExpn
}

.

Then the parameter optimization problem in the coupled PDEs given by Eqs. (3.2.6)

can be transformed into the following regularized and constrained optimization problem:

min
P

(
||∆G(P)−∆GExp||2 + λ||P||2

)
, (3.2.16)

37



subject to

γ ≥ γ0, (3.2.17)

and

|p| ≤ βγ, (3.2.18)

where || ∗ ||2 is the L2 norm of the quantity ∗ and λ is the regularization parameter chosen

to be 10 in the present work to ensure the dominance of the first term and avoid over-fitting.

Here γ0 and β are set respectively to 0.05 and 0.1 in the present implementation, which

guarantees the stability of the coupled system according to a large amount of numerical

tests.

It is obvious that the objective function (3.2.16) in the optimization is a convex function,

meanwhile the solution domain restricted by constraints (3.2.17)-(3.2.18) forms a convex

domain. Therefore the optimization problem given by Eqs. (3.2.16)-(3.2.18) is a convex

optimization problem, which was studied by Grant and Boyd [103, 102].

After solving the above convex optimization problem, parameter set P is updated and

used again in solving the coupled GLB and GPB system, i.e., Eqs. (3.2.8) and (3.2.7).

Repeating the above procedure, a new group of predicted solvation free energies together

with a new group of parameters is obtained. This procedure is repeated until the RMSE

between the predicted and experimental solvation free energies in two sequential iterations

is within a given threshold.
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3.2.4 Algorithm for parameter optimization and solution of the

coupled PDEs

Based on the preparation made in the previous two subsections, namely, the self-consistent

approach for solving the coupled GLB and GPB system and the parameter optimization,

we provide the combined algorithm for the parameter optimization and solving the coupled

system for a given set of molecules.

Numerically, to resolve the coupled PDEs and parameter optimization. A self consistent

iteration is employed two solve the parameter optimization and coupled PDEs. In which the

parameters optimization problem is solved in the outer iteration, while the coupled PDEs

are solved in the inner iteration.

3.3 Numerical results

In this section we present the numerical study of the DG based solvation model using the

proposed parameter optimization algorithms. We first explore the optimal solvent radius

used in the van der Waals interactions. Due to the high nonlinearity, the solvent radius can-

not be automatically optimized and its optimal value is obtained via searching the parameter

domain. We show that for a group of molecules, there is a local minimum in the RMSE when

the solvent radius is varied. The corresponding optimal solvent radius is adopted for other

molecules. Additionally, we consider a large number of molecules with known experimen-

tal solvation free energies to test the proposed parameter optimization algorithms. These

molecules are of both polar and nonpolar types and are divided into six groups: the SAMPL0

test set [185], the alkane, alkene, ether, alcohol and phenol types [175]. It is found that our

DG based solvation model works really well for these molecules. Finally, to demonstrate
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the predictive power of the present DG based solvation model, we perform a five-fold cross

validation [108] for alkane, alkene, ether, alcohol and phenol types of molecules. It is found

that training and validation errors are of the same level, which confirms the ability of our

model for the solvation free energy prediction.

The SAMPL0 molecule structural conformations are adopted from the literature with

ZAP 9 radii and the OpenEye-AM1-BCC v1 charges [185]. For other molecules, structural

conformations are obtained from FreeSolv [175]. Amber GAFF force field is utilized for the

charge assignment [35]. The van der Waals radii as well as the atomic radii of Hydrogen,

Carbon and Oxygen atoms are set to 1.2, 1.7 and 1.5 Å, respectively. The grid spacing is

set to 0.25 Å in all of our calculations (discretization and integration). The computational

domain is set to the bounding box of the solute molecule with an extra buffer length of 6.0

Å.

Table 3.1: The solvation free energy prediction for the SAMPL0 set. Energy is in the unit
of kcal/mol.

Name ∆GP GNP ∆G ∆GExp[185] Error
Glycerol triacetate -10.60 2.53 -8.07 -8.84 -0.77

Benzyl bromide -4.31 1.93 -2.38 -2.38 0.00
Benzyl chloride -4.45 1.18 -3.27 -1.93 1.34

m-Bis (trifluoromethyl) benzene -2.62 3.70 1.08 1.07 -0.01
N,N-Dimethyl-p-methoxybenzamide -8.35 -2.22 -10.57 -11.01 -0.45

N,N-4-Trimethylbenzamide -6.93 -3.09 -10.03 -9.76 0.27
bis-2-Chloroethyl ether -3.73 -0.14 -3.59 -4.23 -0.64

1,1-Diacetoxyethane -7.07 2.00 -5.07 -4.97 0.10
1,1-Diethoxyethane -3.58 0.43 -3.15 -3.28 -0.13

1,4-Dioxane -5.36 -0.38 -5.74 -5.05 0.69
Diethyl propanedioate -7.07 1.40 -5.67 -6.00 -0.33

Dimethoxymethane -4.09 1.19 -2.90 -2.93 -0.03
Ethylene glycol diacetate -7.66 1.90 -5.76 -6.34 -0.58

1,2-Diethoxyethane -3.64 0.45 -4.09 -3.54 0.55
Diethyl sulfide -2.21 0.76 -1.47 -1.43 0.04

Phenyl formate -7.10 2.08 -5.02 -4.08 0.94
Imidazole -11.54 2.71 -8.83 -9.81 -0.98

RMSE 0.60
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: The relations between the solvent radii and the RMSEs. (a) SAMPL0 test set;
(b) Alkane set; (c) Alkene set; (d) Ether set; (e) Alcohol; (f) Phenol set. Notably, there is a
common local minimum at the solvent radii 3.0 Å for all test sets except for the alkene set.
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3.3.1 Solvent radius

In the present semi-discrete and semi-continuum Lennard-Jones potential,

ε̃k

∫
Ωs

[(
σs + σi
||r− ri||

)12

− 2

(
σs + σi
||r− ri||

)6
]
dr,

the positions ri, (i = 1, 2, · · · , Nm) are the coordinates of solute atoms, while r is not the

position of a regular solvent atom or molecule. Since the solvent is treated as a continuum,

r varies, in principle, continuously over the whole solvent domain. The distance ||r− ri|| is

scaled by the sum of solvent radius σs and solute radii σi. Because of the explicit represen-

tation of solute atoms, solute atomic radii σi are set to their van der Waals radii, the radii

that define the van der Waals surface, which is used for setting up the boundary condition

for the GLB equation. However, the continuum treatment of the solvent prevents us to

simply associate σs with the radius of the solvent molecule. Unlike the the fully discrete

Lennard-Jones potential in explicit solvent models, the semi-discrete and semi-continuum

Lennard-Jones potential in our DG based solvation model describes the “interaction” of a

solute atom with an arbitrary position in the solvent domain. In numerical approximation,

the arbitrary position is represented by a grid mesh. Therefore, one cannot simply take the

solvent radius in the present model as the radius of individual (discrete) solvent molecules.

Additionally, it is noted that the solvent radius in the present work and solvent probe radius

in the Poisson-Boltzmann theory are two different concepts. In the present work, solvent

radius σs is considered as an optimization parameter. Note that due to the nonlinear nature,

this optimization cannot be carried out together or mixed with the parameter optimization

discussed in the earlier section.

We utilize a brute force approach for the solvent radius selection or optimization. Six

42



Figure 3.2: The predicted and experimental solvation free energy for the 17 molecules in the
SAMPL0 test set.

sets of test examples are utilized to explore appropriate solvent radius. The SAMPL0 test

set [185] is a benchmark having 17 molecules. Additionally, we consider 38 alkane, 22 alkene,

17 ether, 25 alcohol, and 18 phenol molecules. The solvent radius is varied from 0.5 Å to 5.5

Å away from van der Waals surface. Due to the fast decay property of the Lennard-Jones

interactions, the above setting enables the full inclusion of the Lennard-Jones interactions in

our model. Figure 3.1 depicts the RMSEs of six test sets at different solvent radii calculated

from the present DG based solvation model. In Figure 3.1 (a), the result clearly demonstrates

that with the increase of the solvent radius, the RMSE decreases dramatically initially. The

minimum appears at 3.0 Å. The further increase of the solvent radius leads to a rapid jump

in the RMSE before it stabilizes around 1.54 kcal/mol. It is noted that 3.0 Å is much larger

than the commonly used solvent probe radius of 1.4 Å in Poisson-Boltzmann theory based

implicit solvent models. For other five test sets, although the behavior of the RMSE differs

in each case, essentially all the RMSEs have a local minimum at the solvent radius of 3 Å.

Therefore, in all the following computations, the solvent radius is set to 3.0 Å.
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Figure 3.3: The predicted and experimental solvation free energies for 38 alkane molecules.

Figure 3.4: The predicted and experimental solvation free energies for 22 alkene molecules.

3.3.2 Optimization results

In this section, we illustrate the performance of our parameter optimization algorithms.

First, we provide the regression results of the SAMPL0 test set [185]. Figure 3.2 shows the

predicted and experimental solvation free energies based on the present model and optimiza-

tion method. It is obvious that predicted solvation free energies are highly consistent with

the experimental ones. The RMSE is 0.60 kcal/mol.

Table 3.1 shows the breakup of polar, non-polar and total predicted solvation free ener-

gies. The experimental values and errors are also provided [185].
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Table 3.2: The solvation free energy prediction for the alkane set. All energies are in the
unit of kcal/mol.

Name ∆GP GNP ∆G ∆GExp[175] Error
octane -0.13 2.89 2.76 2.88 0.12
ethane -0.04 1.70 1.66 1.83 0.17

propane -0.05 1.83 1.78 2.00 0.22
cyclopropane -0.08 2.43 2.35 0.75 -1.60

isobutane -0.07 2.09 2.02 2.30 0.28
2,2-dimethylbutane -0.07 2.34 2.27 2.51 0.24

isopentane -0.07 2.19 2.12 2.38 0.26
2,3-dimethylbutane -0.07 2.41 2.34 2.34 0.00

3-methylpentane -0.08 2.43 2.35 2.51 0.16
methylcyclopentane -0.10 1.76 1.66 1.59 -0.07

n-butane -0.07 2.03 1.96 2.10 0.14
isohexane -0.09 2.49 2.40 2.51 0.11

2,4-dimethylpentane -0.09 2.57 2.48 2.83 0.35
methylcyclohexane -0.10 1.68 1.58 1.70 0.12

n-pentane -0.08 2.25 2.17 2.30 0.13
hexane -0.09 2.51 2.42 2.48 0.06

cyclohexane -0.10 1.40 1.30 1.23 -0.07
nonane -0.14 3.11 2.97 3.13 0.16

heptane -0.11 2.73 2.62 2.67 0.05
cyclopentane -0.10 1.54 1.44 1.20 -0.24
cycloheptane -0.11 1.56 1.45 0.80 -0.65
cyclooctane -0.12 1.69 1.57 0.86 -0.71
neopentane -0.06 2.13 2.07 2.51 0.44

2,2,4-trimethylpentane -0.08 2.74 2.66 2.89 0.23
3,3-dimethylpentane -0.07 2.58 2.51 2.56 0.05
2,3-dimethylpentane -0.08 2.72 2.64 2.52 -0.12

2,3,4-trimethylpentane -0.08 2.96 2.88 2.56 -0.32
1,2-dimethylcyclohexane -0.10 2.02 1.92 1.58 -0.34

3-methylhexane -0.09 2.74 2.65 2.71 0.06
3-methylheptane -0.11 2.94 2.83 2.97 0.14

1,4-dimethylcyclohexane -0.11 2.02 1.91 2.11 0.20
2,2-dimethylpentane -0.08 2.64 2.56 2.88 0.32

2-methylhexane -0.10 2.73 2.63 2.93 0.30
decane -0.16 3.37 3.21 3.16 -0.06

propylcyclopentane -0.12 2.21 2.09 2.13 0.03
cis-1,2-Dimethylcyclohexane -0.09 1.95 1.86 1.58 -0.28

2,2,5-trimethylhexane -0.09 3.15 3.06 2.93 -0.13
pentylcyclopentane -0.15 2.73 2.58 2.55 -0.04

RMSE 0.36
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Compared to our earlier prediction [43] in which the same model is employed but the

parameters were not optimized in the present manner, the RMSE decreases dramatically

from previous 1.76 kcal/mol to 0.60 kcal/mol for the same test set. Note that the present

RMSE (0.60 kcal/mol) is also significantly smaller than that of the explicit solvent approach

(1.71 ± 0.05 kcal/mol) and that obtained by the PB based prediction (1.87 kcal/mol) under

the same structure, charge and radius setting [185]. The present results confirm the efficiency

of the proposed new parameter optimization algorithms and demonstrate the accuracy and

power of our DG based solvation models.

Table 3.3: The solvation free energy prediction for the alkene set. All energies are in the
unit of kcal/mol.

Name ∆GP GNP ∆G ∆GExp[175] Error
ethylene -0.27 0.96 0.69 1.28 0.59
isoprene -0.62 1.97 1.35 0.68 -0.67

but-1-ene -0.29 1.17 0.88 1.38 0.50
butadiene -0.56 1.75 1.19 0.56 -0.63
pent-1-ene -0.30 1.57 1.27 1.68 0.41
prop-1-ene -0.32 1.03 0.71 1.32 0.61

2-methylprop-1-ene -0.37 1.26 0.89 1.16 0.27
cyclopentene -0.37 1.17 0.79 0.56 -0.23

2-methylbut-2-ene -0.40 1.28 0.87 1.31 0.44
2,3-dimethylbuta-1,3-diene -0.65 2.01 1.36 0.40 -0.95

3-methylbut-1-ene -0.27 1.45 1.18 1.83 0.65
1-methylcyclohexene -0.38 1.50 1.11 0.67 -0.45

penta-1,4-diene -0.53 1.91 1.38 0.93 -0.45
hex-1-ene -0.30 1.81 1.50 1.58 0.08

hexa-1,5-diene -0.51 1.88 1.37 1.01 -0.36
hept-1-ene -0.33 2.17 1.84 1.66 -0.18
hept-2-ene -0.34 1.96 1.62 1.68 0.06

4-Methyl-1-pentene -0.26 1.71 1.45 1.91 0.46
2-methylpent-1-ene -0.33 1.75 1.42 1.47 0.05

non-1-ene -0.36 2.81 2.45 2.06 -0.39
trans-2-Heptene -0.34 1.90 1.56 1.66 0.10
trans-2-Pentene -0.30 1.26 0.96 1.34 0.38

RMSE 0.46

Additionally, we investigate the solvation free energies prediction of two families of non-
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polar molecules, alkane and alkene, which were studied previous by using the DG based

nonpolar solvation model [46]. In the following, we demonstrate that the present DG based

full solvation model can provide the same level of accuracy in the solvation free energy

prediction for alkane and alkene molecules.

Figures 3.3 and 3.4 depict the predicted and experimental solvation free energies for 38

alkane and 22 alkene molecules, respectively. Tables 3.2 and 3.3 list the polar, nonpolar, total

and experimental solvation free energies for both families of solute molecules, respectively.

Except for one alkane molecule, namely, cycloprotane, whose predicted error is 1.60 kcal/mol,

the errors for all other molecules are within 1 kcal/mol. The RMSEs of these two families are

0.36 and 0.46 kcal/mol, respectively. This level of accuracy is similar to our earlier results

obtained by using our DG based nonpolar solvation model [46], which does not involve the

electrostatic (polar) model and is computationally easier to optimize.

Figure 3.5: The predicted and experimental solvation free energy for the 17 ether molecules.

It is interesting to note that for both alkane and alkene molecules, the polar solvation free

energy contribution is very small and the nonpolar part dominates the solvation free energy

contribution, which explains why the DG based nonpolar solvation model works extremely

well for the solvation free energy prediction of alkane and alkene molecules [46]. Further,
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Figure 3.6: The predicted and experimental solvation free energy for the 25 alcohol molecules.

Figure 3.7: The predicted and experimental solvation free energy for the 18 phenol molecules.

note that for almost all the alkane molecules, the polar solvation free energies ∆GP are of

magnitude 0.01 kcal/mol, while alkene molecules have slightly larger magnitude polar free

energies, which further verifies that alkene molecules has a stronger polarity than alkane

molecules in general.

Finally, we analyze three classes of polar solute molecules, namely, ether, alcohol, and

phenol molecules. Figures 3.5, 3.6 and 3.7 illustrate the predicted and experimental solvation

free energies for 17 ether, 25 alcohol, and 18 phenol molecules, respectively. Tables 3.4,

3.5 and 3.6 list the polar, nonpolar, total and experimental solvation free energies for the
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Table 3.4: The solvation free energy prediction for the ether set. All energies are in the unit
of kcal/mol.

Name ∆GP GNP ∆G ∆GExp[175] Error
ethoxyethane -4.08 2.33 -1.75 -1.59 0.16

2-methyltetrahydrofuran -4.10 1.43 -2.67 -3.30 -0.63
tetrahydrofuran -4.36 1.36 -3.00 -3.47 -0.47

1-propoxypropane -3.75 2.29 -1.46 -1.16 0.30
methoxymethane -4.55 2.26 -2.29 -1.91 0.36
tetrahydropyran -4.17 1.09 -3.07 -3.12 -0.05
1-butoxybutane -3.88 2.33 -1.55 -0.83 0.72

trimethoxymethane -7.57 3.51 -4.06 -4.42 -0.36
methoxyethane -4.35 2.29 -2.06 -2.10 -0.04

1-methoxypropane -4.08 2.24 -1.84 -1.66 0.18
2-methoxypropane -4.12 2.20 -1.92 -2.01 -0.09

1-Ethoxypropane -4.26 2.32 -1.94 -1.81 0.13
1,3-Dioxolane -6.09 1.81 -4.28 -4.10 0.18

2,5-dimethyltetrahydrofuran -3.86 1.42 -2.44 -2.92 -0.48
1,1,1-trimethoxyethane -7.58 3.46 -4.12 -4.42 -0.30

2-methoxy-2-methyl-propane -3.88 1.97 -1.91 -2.21 -0.30
1,4-dioxane -7.09 1.66 -5.44 -5.06 0.38

RMSE 0.36

corresponding families of solute molecules. The RMSEs of these three families are 0.36, 0.33,

and 0.76 kcal/mol, respectively.

From the results listed in Tables 3.4, 3.5 and 3.6 we note that for ether molecules, all

the nonpolar energies are positive which neutralizes some polar contributions to the total

solvation free energies. For the alcohol molecules, the nonpolar energies are all negative,

which enhance the contributions of the polar contributions to the total solvation free energies.

Since the surface part is always positive and the volume part is mostly positive, the attractive

van der Waals interactions between alcohol molecules and water solvent must be very strong.

Physically, there are strong solvent-solute hydrogen bonds that make alcohol molecules easily

solvated. These solvent-solute interaction are described by the strong attractive van der

Waals interactions in the present model. As for the phenol molecules, there is a mixed
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Table 3.5: The solvation free energy prediction for the alcohol set. All energies are in the
unit of kcal/mol.

Name ∆GP GNP ∆G ∆GExp[175] Error
ethylene glycol -6.98 -1.76 -8.73 -9.30 -0.57

butan-1-ol -3.33 -1.51 -4.84 -4.72 0.12
ethanol -3.49 -1.47 -4.96 -5.00 -0.04

methanol -3.69 -1.41 -5.10 -5.10 0.00
propan-1-ol -3.34 -1.48 -4.82 -4.85 -0.03
propan-2-ol -3.26 -1.36 -4.62 -4.74 -0.12
pentan-1-ol -3.36 -1.61 -4.97 -4.57 0.40

2-methylpropan-2-ol -3.10 -1.27 -4.37 -4.47 -0.10
2-methylbutan-2-ol -2.95 -1.17 -4.12 -4.43 -0.31

2-methylpropan-1-ol -3.20 -1.50 -4.70 -4.50 0.20
butan-2-ol -3.09 -1.32 -4.40 -4.62 -0.22

cyclopentanol -3.20 -1.68 -4.88 -5.49 -0.61
4-methylpentan-2-ol -2.65 -1.05 -3.69 -3.73 -0.04

cyclohexanol -3.21 -1.92 -5.13 -5.46 -0.33
hexan-1-ol -3.43 -1.53 -4.96 -4.40 0.56

heptan-1-ol -3.48 -1.62 -5.09 -4.21 0.88
2-methylbutan-1-ol -3.27 -1.29 -4.56 -4.42 0.14

cycloheptanol -3.07 -1.89 -4.96 -5.48 -0.52
2-methylpentan-3-ol -2.86 -0.93 -3.78 -3.88 -0.10

pentan-3-ol -3.01 -1.08 -4.10 -4.35 -0.25
4-Heptanol -2.90 -1.10 -3.99 -4.01 -0.02

2-methylpentan-2-ol -2.93 -1.08 -4.00 -3.92 0.08
2,3-Dimethyl-2-butanol -2.89 -0.93 -3.82 -3.91 -0.09

hexan-3-ol -3.04 -1.27 -4.31 -4.06 0.25
pentan-2-ol -3.10 -1.23 -4.33 -4.39 -0.06

RMSE 0.33

pattern for the nonpolar contributions.

The above study of a large variety of molecules indicates that the DG based solvation

model together with the proposed parameter optimization algorithms can provide very ac-

curate predictions of solvation free energies for both polar and nonpolar solute molecules.
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Table 3.6: The solvation free energy prediction for the phenol set. All energies are in the
unit of kcal/mol.

Name ∆GP GNP ∆G ∆GExp[175] Error
3-hydroxybenzaldehyde -9.17 0.39 -8.78 -9.52 -0.74
4-hydroxybenzaldehyde -9.60 0.19 -9.41 -8.83 0.58

o-cresol -5.32 -1.04 -6.36 -5.90 0.46
m-cresol -5.71 -0.86 -6.57 -5.49 1.08

phenol -5.81 -0.14 -6.95 -6.61 0.34
p-cresol -5.80 -1.05 -6.85 -6.13 0.72

naphthalen-1-ol -5.50 -0.75 -6.25 -7.67 -1.42
3,4-dimethylphenol -5.72 -0.49 -6.21 -6.50 -0.29
2,5-dimethylphenol -5.34 -0.48 -5.82 -5.91 -0.09
4-tert-butylphenol -5.55 0.86 -4.69 -5.91 -1.22

2,4-dimethylphenol -5.55 -1.03 -6.58 -6.01 0.57
3,5-dimethylphenol -5.69 -0.41 -6.10 -6.27 -0.17

naphthalen-2-ol -5.85 -0.72 -6.57 -8.11 -1.54
2,3-dimethylphenol -5.47 -1.13 -6.60 -6.16 0.44
2,6-dimethylphenol -5.07 -1.07 -6.14 -5.26 0.88

3-ethylphenol -5.67 -0.37 -6.04 -6.25 -0.21
4-propylphenol -5.79 -0.05 -5.84 -5.21 0.63

4-ethylphenol -5.76 -0.48 -6.24 -6.13 0.11
RMSE 0.76

Table 3.7: The partition of the molecules into sub-groups.

Molecule Group 1 Group 2 Group 3 Group 4 Group 5
Alkane 8 8 8 7 7
Alkene 5 5 5 4 4
Ether 4 4 3 3 3
Alcohol 5 5 5 5 5
Phenol 4 4 4 3 3

3.3.3 Five-fold cross validation

Having verified that the DG based solvation model with the optimized parameters provides

very good regression results, we perform a five-fold cross validation to further illustrates

the predictive power of the present method for independent data sets. Specifically, the

parameters learned from a group of molecules can be employed for the blind prediction of

other molecules.
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Figure 3.8: The bar plot of the training and validation errors of alkanes.

Figure 3.9: The bar plot of the training and validation errors of alkenes.

Figure 3.10: The bar plot of the training and validation errors of the ethers.
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Figure 3.11: The bar plot of the training and validation errors of alcohols.

Figure 3.12: The bar plot of the training and validation errors of phenols.

To perform the five-fold cross validation, each type of molecules is subdivided into five

sub-groups as uniformly as possible, Table 3.7 lists the number of molecules in each sub-

group for each type of molecules. In our parameters optimization, we leave out one sub-group

of molecules and use the rest of molecules to establish our DG based solvation model. The

optimized parameters are then employed for the blind prediction of solvation free energies

of the left out sub-group of molecules.

Figures 3.8, 3.9,3.10, 3.11, and 3.12 demonstrate the cross validation results of the alkane,

alkene, ether, alcohol, and phenol molecules, respectively. It is seen that training and vali-
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dation errors are similar to each other, which verifies the ability of our model in the blind

prediction of solvation free energies.

In the real prediction of the solvation free energy for a given molecule of unknown cate-

gory, we can first assign it to a given group, and then employ the DG based solvation model

with the optimal parameters learned for this specific group for a blind prediction.

3.4 Conclusion

Differential geometry (DG) based solvation models have had a considerable success in sol-

vation analysis [269, 43, 44, 45]. Particularly, the DG based nonpolar solvation model was

shown to offer some of the most accurate solvation energy predictions of various nonpolar

molecules [46]. However, the DG based full solvation model is subject to numerical instabil-

ity in solving the generalized Laplace-Beltrami (GLB) equation, due to its coupling with the

GPB equation. To stabilize the coupled GLB and GPB equations, a strong constraint on

the van der Waals interaction was applied in our earlier work [43, 44, 45], which hinders the

parameter optimization of our DG based solvation model. In the present work, we resolve

this problem by introducing new parameter optimization algorithms, namely perturbation

method and convex optimization, for the DG based solvation model. New stability condi-

tions are explicitly imposed to the parameter selection, which guarantees the stability and

robustness of solving the GLB equation and leads to constrained optimization of the DG

based solvation model. The new optimization algorithms are intensively validated by using

a large number of test molecules, including the SAMPL0 test set [185], alkane, alkene, ether,

alcohol and phenol types of solutes. Regression results based on our new algorithms are

consistent extremely well with experimental data. Additionally, a five-fold cross validation
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technique is employed to explore the ability of the DG based solvation models for the blind

prediction of the solvation free energies for a variety of solute molecules. It is found that the

same level of errors is found in the training and validation sets, which confirms our model’s

predictive power in solvation free energy analysis. The present DG based full solvation model

provides a unified framework for analyzing both polar and nonploar molecules.

Nevertheless, the capability of the DG based solvation model for blind solvation free

energy prediction for general molecules is still quite limited. The blind solvation free energy

prediction by some other models will be further discussed in the following chapters.
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Chapter 4

Molecular Conformation in Solvent

4.1 Introduction

In the previous chapters, we briefly presented several solvation models. The molecular con-

formation modeling is one of the most fundamental issues that we need to resolve, especially

for the implicit solvation models. In the differential geometry based solvation model, the

molecular conformation is modeled based on the variational principle. However, for general

solvation models this modeling is inappropriate. In this chapter we present the models for

the molecular conformation modeling in solvent. The solvated molecular is usually charac-

terized as the cavity enclosed by the molecular surface , and among the literature there are

mainly three categories of surface definitions:

• van der Waals surface [53], it is the surface defined as the surface created when each

atom is represented by a sphere with a radius equal to the van der Waals radius of

that atom. The VDW surface for a molecule is the union of all the individual van der

Waals spheres.

• Solvent Accessible Surface (SAS) [147, 206], it is defined as the trace of the probe

center, when a probe is used to roll along the atoms’ van der Waals spheres.

• Solvent Excluded Surface (SES) [51, 52], it is defined as the surface traced by the

inward-facing surface of the probe, when a probe is used to roll along the atom spheres.
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It is composed of two parts: contact surface, is the part of the van der Waals surface

that can be touched by the probe; reentrant surface, is formed by the inward-facing

part of the probe when it is in contact with more than one atom.

The SES is generally accepted to be the most accurate molecular conformation model

in the implicit solvent model community[209, 94, 259]. Geometrically, SES is relatively

smooth compared to the other two popular surface definitions, nevertheless, it still takes

some geometric singularities, such as tips and cusps.

Many efforts have been paid in the past decades for developing the analytical, robust,

and efficient SES software. The pioneer work is due to Connolly [32, 51, 52], he formulated

the mathematical representation of the SES for arbitrary biomolecules in terms of convex

surfaces, saddle surfaces, and concave surfaces. State-of-the-art triangulated SES software,

MSMS, is developed by Sanner et al. [212], the MSMS software provides very fast SES

generation and triangulation. Many works have also been done for the development of

approximated SES, for instance, the Smoothed Numerical Surface (SNS) which is used in

the Delphi software [209] for the biomolecular electrostatics modeling; GEPOL which is the

widely used approximation of SES in the polarizable continuum model [238].

Besides the above three surface definitions, for the computational convenience, many

other surface definitions are also introduced. Especially, the Gaussian surface which is in-

troduced to relieve the geometric singularity problem [159]. Many variants of the Gaussian

surface have been proposed for different purposes [21].

In this chapter, we will present our work on the development of the Eulerian representa-

tion of SES, which is convenient for the Cartesian mesh based numerical methods. Further-

more, it provides a paradigm for surface area, molecular volume, and molecular topological

analysis.
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This chapter is structured as following. Section 4.2 introduces the algorithm for Eulerian

solvent excluded surface (ESES) generation, which contains two parts, SES generation and

embedding the SES to the Cartesian mesh. Section 4.3 discusses the area and volume

calculation for the ESES. Section 4.4 addresses some topological structure issues on the

ESES. The electrostatics of the solvated molecule analysis will be discussed in Section 4.5.

This chapter ends up with a conclusion.

4.2 Eulerian Solvent Excluded Surface (ESES)

Our algorithm is designed to develop an analytical Eulerian representation of SES, this

amounts to classify the Cartesian grid points with respect to the analytical SES, accurately

compute the locations of intersection points between the interface and Cartesian mesh lines,

and calculate the associated outer normal directions. There are mainly three steps in this

framework. First, an analytical SES is built. Second, all the Cartesian mesh grids are

classified as either inside or outside the surface. Third, the intersections points and associated

outer normal directions are computed for each edge with one points inside and the other one

outside. We will discuss these three steps in detail in the following subsections.

4.2.1 Construction of Solvent Excluded Surface

In the first step, an analytical SES is constructed mainly based on the algorithm proposed

by Connolly [32, 51]. In the algorithm, the SES is divided into three types of patches,

namely, convex patches, saddle patches, and concave patches. As shown in Fig. 4.1, where

three different patches are rendered by different colors. The convex patches (red) are the

accessible atomic surface by a spherical probe rolling around; saddle patches (green) are the
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Figure 4.1: Three types of patches for SES: convex patches (red), saddle patches (green) and
concave patches (blue).

trace of the probe inward-facing surface touching with two atoms at the same time; concave

patches (blue) are the spherical triangle faces of the probe touching three or more atoms

simultaneously.

The boundary curves of the convex patches are marked as convex edges, and the boundary

curves of the concave patches are concave edges. Corresponding concave edges and convex

edges compose the saddle patches. When a sadle/torous patch is free, its boundary convex

edges are the complete contact circles. If there are no associated concave edges generated

for the non-free torus, this torus is marked as blocked. Connolly [32, 51] provides the

algorithm to compute the centers, radii, and boundary planes/edges/points of all the possible

patches, where we perform torus construction, probe placement, and saddle face construction

processes in order.

Note that when an atom is detected as an interior atom (i.e., completely buried by

other atoms), it will not be considered for the torus construction. Additionally, to make

the algorithm compatible with the case when the probe touches more than three atoms at

the same time, a special treatment of the concave edges is needed after probe placement.
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For a pair of the concave edges that are opposite to each other, these two concave edges

are eliminated and their corresponding concave patches are tagged as belonging to the same

probe sphere. For the concave edges that are the same, only one concave edge is kept and

their corresponding concave faces are also tagged as a subset of the same probe sphere.

4.2.2 Classification of Cartesian Grid Points

In the second step, we classify Cartesian grid points in the computational domain as either

inside or outside the SES. Apparently, Cartesian grid points that are outside the collection

of the augmented atomic spheres can be safely labeled as outside points, where the radius of

the augmented atom is expanded by rp with rp being the radius of the probe. Thus we only

need to pay extra attention to the Cartesian grid points that are included by the augmented

atoms. Upon careful observation, a Cartesian grid point can be classified as inside of the

molecular surface if it satisfies

Inside Atom | [(InsideVS | InsideVT) & !(Inside Saddle Probe) & !(Inside Concave Probe)]

(4.2.1)

Each component in the expression given by Eq.(4.2.1) will be discussed below in details.

Note that the above equation is only a sufficient condition, further ray-tracing techniques is

adapted for determining the status of the remaining grid points.
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4.2.2.1 Inside Atom

Let an atom centered at Ci = (Ci,x, Ci,y, Ci,z) with radius Ri, for a given Cartesian grid

point P = (Px, Py, Pz). Inside Atom is true if:

|Ci −P|2 −R2
i ≤ 0. (4.2.2)

Otherwise, the grid point P is outside the atom, i.e., Inside Atom is false.

4.2.2.2 InsideVS and Inside Saddle Probe

InsideVS is an abbreviation for inside the visibility sphere of the saddle patch, which is

proposed in Krone’s work [141]. The center and the radius of the visibility sphere can be

computed by Eq. (4.2.3) and Eq. (4.2.4), respectively.

Cvs =
|Cp −Ci|

|Cp −Ci|+ |Cp −Cj |
Cj +

|Cp −Cj |
|Cp −Ci|+ |Cp −Cj |

Ci, (4.2.3)

Rvs = | Ri
|Cp −Ci|

(Cp −Ci) + Ci −Cvs|, (4.2.4)

where Cvs and Rvs stand for the center and radius of the visibility sphere, respectively.

Ci, Cj , and Cp denote the center of i-th, j-th atom, and the probe, respectively. | ∗ | means

the magnitude of the vector ∗. Ri is the radius of the i-th atom. As illustrated in Fig. 4.2.

From Fig. 4.2 we can see that InsideVS includes some possible interior points introduced

by the saddle patches. Inside Saddle Probe eliminates the points that are accessible to

the probe (the purple area). Note that when the current saddle patch is not free, we only

check the part of the visibility sphere that is located within the range of saddle faces.
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Figure 4.2: Figure for InsideVS. Solid lines are the outline of a simple SES composed of two
atoms (red) and one saddle patch (green). Black circle is the outline of the corresponding
visibility sphere when the probe touches atom i and atom j simultaneously. InsideVS is
tagged as true when the point is detected as inside the visibility sphere.

Figure 4.3: Flowchart for InsideVS.

Figures 4.3 and 4.4 depict the flowchart for determining the conditions InsideVS and

Inside Saddle Probe, respectively. The equations involved in the above two flowcharts are
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Figure 4.4: Flowchart for InsideTorus.

listed below:

f1(P, Tj) = |P−CTj,V S
|2 −R2

Tj,V S

f2(P, Tj) = P̃2
z − r2

p + (
√

P̃2
x + P̃2

y +RTj )
2

f3(P, Tj) =
√

P̃2
x + P̃2

y − rp +RTj

fquartic(P, Tj) = 4R2
Tj

(P̃2
z − r2

p) + (r2
p +R2

Tj
− P̃2

x − P̃2
y − P̃2

z)
2

IsInLemon = (RTj
≤ rp) & f2 ≤ 0 & f3 ≤ 0

IsTorusCovered = Tj is free | covered by saddle faces

where CV S and RV S are the center and radius of the visibility sphere. Tj represents the

j-th generated torus when the probe touches two atoms at the same time. P̃ is the location

of the point projected on the torus parametrization domain.
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4.2.2.3 InsideVS and Inside Concave Probe

InsideVT is short for inside the visibility tetrahedron of the probe, which is composed of

the centers of the three touching atoms and the probe as shown in Fig. 4.5. When the

Cartesian points is detected as inside the probe sphere with a fixed position, i.e., touching

three or more atoms simultaneously, then its Inside Concave Probe tag is set to be true.

We can see that Inside Concave Probe helps to exclude the points accessible to the probe

in the tetrahedron.

Figure 4.5: Figure for InsideVT. A probe (red) centered at Cp is in contact with three atoms
(blue) centered at C1,C2 and C3 respectively. InsideVT is tagged as true when the point is
detected as inside the tetrahedron CpC1C2C3.
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4.2.2.4 Ray Tracing

Since Eq.(4.2.1) only provides a sufficient condition for tagging inside Cartesian grid points,

there may exist unlabeled inside Cartesian grid points because of the interior ”tunnel” struc-

ture of SES, as depicted in Fig. 4.6. These points can be correctly tagged by counting the

number of intersection points with SES. For a Cartesian edge with one Cartesian grid point

P1 labeled and the other point P2 unlabeled. Point P2 shares the same Boolean label with

P1 if there are even numbers of points of intersections between SES and the mesh. Otherwise

P2 is tagged with the opposite label of P1. To compute the correct number of intersection

points analytically, a validation for the intersection points is needed:

• Validation for intersections with the convex patch (Fig. 4.7)

1. Not inside of the nearby atoms, by checking the distance to the neighboring atom

centers

2. Not covered by its associated saddle patches, by checking the boundary normal

directions

• Validation for intersections with the saddle patch (Fig. 4.8)

1. Associated IsInLemon is false

2. Inside of its associated visibility sphere

• Validation for intersections with the concave patch

1. Located in the scope area constrained by the three triangle faces C1C2Cp, C2C3Cp,

C1CpC3 of the tetrahedron CpC1C2C3, where C1,C2,C3 are the centers of the

three touching atoms (Fig. 4.5).
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Figure 4.6: Figure for an unlabeled Cartesian grid point. The subfigures from left to right
highlight part of the 1A2E model with different patches respectively, where we can see the
Cartesian point(yellow) should be tagged as inside the SES. However, it does not satisfy the
sufficient conditions proposed in Eq. (4.2.1). From left to right are: visualization with atom
only, Visualization with atoms and saddle patches only, and Visualization for overall SES,
respectively.

2. Outside of the nearby probe spheres with fixed locations

Computing the analytical intersection with convex patches and concave patches is a simple

quadratic equation while for saddle patches it is a quartic equation. Here we adopt Jenkins-

Traub algorithm [109] to solve the quartic equation for better numerical stability.

4.2.2.5 Computation of the Intersection Coordinates

After labeling the Cartesian grid points, we only need to compute the intersection coordinates

and corresponding normals for Cartesian edges with one Cartesian point inside SES and the

other outside. Note that the same validation rules discussed above are used for determining

the intersection coordinates with nearby patches.

4.2.3 Surface Morphology

In this part, we will present a surface morphology comparison with that generated by the

MSMS software [212]. MSMS short for the Micheal Sanner molecular surface, is based on the
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Figure 4.7: Validation for intersection with convex patches. Solid lines illustrate the outline
of a simple SES composed of three atoms (red) and two saddle patches (green). P1P2 and
P3P4 are the Cartesian edges. Note here we only mark the possible intersections with convex
patches. Edge P1P2 seems to have two intersections Q1 and Q2 with convex patches, where
Q1 is actually an invalid intersection since it is inside of atom 2. Similarly, the intersection
point Q3 for edge P3P4 is not valid, since it is included by saddle patch 2.

so called reduced surface. It is the first program that can handle the geometric singularities.

The MSMS algorithm consists the following four major steps for the SES generation and

triangulation:

• First, compute the reduced surface a molecule.

• Second, build an analytical representation of the SES from the reduced surface.

• Third, remove all the self-intersecting parts from the analytic SES built above.

• Fourth, produce a triangulation of the reduced surface based on the SES.

Due to the efficiency and robustness of the MSMS software, it has been incorporated into

several molecular modeling software suites, e.g., the Visual Molecular Dynamics software

(VMD) [118], the UCSF Chimera [196] et al.
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Figure 4.8: Validation for intersection with saddle patches. Solid lines illustrate the outline
of a simple SES composed of two atoms (red) and two saddle patches (green), where two
separate saddle patches belong to the same torus. The black dashed circle is the outline
of the corresponding visibility sphere. Singularities are generated in this case and they
are appropriately handled implicitly with our designed conditions. P1P2 and P3P4 are the
Cartesian edges. Note here we only mark the possible intersections with saddle patches.
There are two intersections Q1 and Q2 for edge P1P2 with saddle patches, where Q1 is
invalid since its associated Boolean tag IsInLemon is true. The intersection point Q3 for
edge P3P4 with saddle patches is not valid either, since it is outside of the corresponding
visibility sphere.

The MSMS surface generation depends on an additional parameter besides the intrinsic

parameters for describing the SES, namely, the surface density, which is the approximated

number of triangles on per unit Å2 area. Usually, the larger the surface density is, the closer

of MSMS to the analytical SES, provided the surface can be generated successfully.

Despite the great success of of the MSMS, it should be point out some problems that we

encountered during the usage of MSMS. On the one hand, the MSMS surface may change

the atomic radius of the molecule automatically. On the other hand, MSMS may fail to

generate SES at high density. As depicted in Fig. 4.9, MSMS generates the SES for the

molecular (PDB ID: 1dqz) successfully at density 5, 10, and 25, while fails at density 50.
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Figure 4.9: The MSMS surfaces for the biomolecule (PDB ID: 1dqz). Charts from top left
to bottom right are the MSMS surfaces with the densities 5, 10, 25 and 50, respectively. The
MSMS fails to generate correct surface at density 50, while it works well other densities.
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For a comparison, we depicts the SES for molecular 1dqz generated by ESES software in

Fig. 4.10. It is easy to see that, the surfaces generated by MSMS at density 5, 10, 25 are

consistent with that by ESES. With the increasing of the surface density, MSMS converges

to the ESES.

Figure 4.10: The ESES surface for protein 1DQZ.

4.3 ESES: Area, Volume Calculation

The molecular surface area and enclosed volume are widely used in modeling the nonpolar

solvation free energy in biophysics, the accurate calculation of the area and volume is of

fundamental importance in the solvation and binding analysis [56]. The ESES embeds SES

in the Cartesian mesh, which is represented by two sets of grid points J1 and J2, represent

the grids inside and outside the SES Γ, respectively. Together with the intersection of the

Cartesian mesh with the SES and the associated outer normal direction. We denote the

irregular grid points set as JIrr where a grid point is said to be irregular if at least one of its
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six neighbor grids located in the different side of the SES.

The area of the SES Γ can be approximated by the following formula:

Area =

∫
Γ
dS ≈

∑
(i,j,k)∈I

(
|nx|+ |ny|+ |nz|

)
h2, (4.3.1)

where h is the grid size, I is the set of irregular grid points that is either inside or on

the surface Γ. |nx| is the magnitude of the first component of the outer normal direction

at the (x0, yj , zk), which is the intersection of Γ with the x-mesh line that passes through

(xi, yj , zk), |ny| and |nz| are defined analogously.

The volume enclosed by the molecular surface Γ is similarly evaluated by:

Volume =

∫
Ωm

dr ≈ 1

2

 ∑
(i,j,k)∈J1

+
∑

(i,j,k)∈J1
⋃
JIrrin

h3, (4.3.2)

where JIrrin is the set of irregular grid points that inside the surface Γ.

Smereka originally proposed the similar scheme for evaluating the surface integration and

did the convergence analysis in the work [223]. Similar scheme is also used for calculating the

dielectric boundary force in the PB based implicit solvent molecular dynamics simulation by

Geng et al [89].

Table 4.1 gives the grid refinement analysis of the numerical scheme given by Eqs. (4.3.1)

and (4.3.2) on the sphere with radius 2, obviously the numerical scheme for area calculations

is roughly of second order convergence, while that for the calculation of surface enclosed

volume is approximated of third order convergence.

To test the accuracy of the numerical scheme for surface area and volume calculation

to the real biomolecules, we perform the calculation on the Amber PBSA test set, which
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Table 4.1: The grid refinement analysis of the area and volume calculation for the sphere
with radius 2.

Grid size Area Error Order Volume Error Order
1.0 43.755 6.51 47.00 13.490
0.5 48.824 1.44 2.18 35.28 1.865 2.85
0.25 49.839 0.43 1.76 33.80 0.287 2.70
0.125 50.193 0.07 2.56 33.57 0.058 2.30
0.0625 50.243 0.02 1.71 33.52 0.007 3.05
Exact Value 50.28 33.52

contains two parts, the protein and nucleic acid molecules. There are 937 molecules in total

in this test set, the number of atoms of which range from several hundreds to approximate

ten thousands. The data set is downloaded from the web http://rayl0.bio.uci.edu/rayl/.

Figure. 4.11 depicts the relative convergence of the numerical scheme for the surface area

and volume calculation, where the relative error for the area calculation is defined as:

RelativeErrorh :=
|Areah − Area0.2|

Area0.2
,

where RelativeErrorh stands for the relative error at the grid size h, Areah and Area0.2 are

the numerical surface area at grid size h and 0.2 Å, respectively. The relative error for the

volume calculation is defined in the same way.

To further verify the accuracy of the area and volume calculation in the ESES software.

We compare that by both ESES and MSMS software, to ensure the accuracy of the MSMS

calculation, we use the density 100 for MSMS surface generation. Due to the robustness

problem, only 740 molecular surfaces are generated successfully at density 100, the failure

of others are either due to the failure of surface generation or the change of radius in the

surface generation. The details about this comparison can be found in [157]. The results

depicted in Fig. 4.12 demonstrate the excellent consistency between the area and volume
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(a) (b)

Figure 4.11: Convergence test of the surface area and enclosed volume for the PBSA test
set compared to the results obtained at grid size 0.2 Å. (a) Area; (b) Volume.

calculation by two software.

4.3.1 Atomic Area

In the implicit solvent modeling, the whole surface area usually employed for a crude model

of the area contribution in nonpolar solvation free energy, where the nonpolar energy is

modeled by GNP
1 = γArea, with γ being the surface tension. A more accurate area model

for modeling the nonpolar solvation effects is based on the atomic surface areas, in which

different type of atoms admit different surface tensions. As such, one can model the nonpolar

solvation free energy by:

GNP
2 =

∑
j

γjAreaj , (4.3.3)

where γj and Areaj are atomic surface tension and surface area of j-th type of atoms,

respectively. Therefore, in addition to the surface area calculation, the ESES software also

provides the atomic surface area calculation. In the ESES formulation, each piece of patch is
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(a) (b)

Figure 4.12: The consistence of the area and volume calculation between the MSMS and
ESES software packages for part of the PBSA test set that MSMS can generate the surface
successful without change of atomic radius at the density 100 (here 740 biomolecules used)
for volume calculation and analytic surface area by MSMS software. The ESES results are
generated at grid size 0.2 Å. (a) For the area consistence, the correlation is 0.9999, the best
fitting line is y = 0.9934x+14.3307; (b) For the volume consistence, the correlation is 0.9999,
the best fitting line is y = 1.0040x− 23.9577.
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represented by some intersecting points with the Cartesian mesh line, due to the definition of

the SES, the contact surface is contributed from one atom; the toric is generated due to the

contacting of probe with two atoms simultaneously; and the concave patch is associated with

three atoms. This fact is inherited to the surface area partitioning. Note that in our area

formula Eq. (4.3.1), the whole area is the cumulative contribution from each intersection.

In the atomic area partitioning, we distribute the area comes from each intersecting point

to the associated atom. For a given intersection point with coordinate r and the associated

area is A0, the partitioning of the area is based on the following criteria:

• If the intersection is associated with only one atom, the whole area A0 is assigned to

the corresponding atom.

• If the intersection is associated with two atoms indexed by i and j, whose centers are

ri and rj , the radius are ri and rj , respectively. Then we calculated the weighted

distance from the intersection r to two centers, they are given by:

di = ||r− ri|| − ri,

and

dj = ||r− rj || − rj ,

respectively, where || ∗ || denotes for the Euclidean distance between two points. And

the whole area is partitioned to the closer atom under the weighted distance measure.

• If the intersection is associated with three atoms, we distribute the area based on the

same manner as that in two atoms case, and the whole area is attributed to the closest

atom.
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The above partitioning is based on the basic idea of the weighted Voronoi diagram [5].

4.4 ESES: Topological Analysis

Loops and cavities are omnipresent in SESs. Usually these loops or cavities are related to

the binding pockets or binding sites. Accurate and efficient algorithms for detecting the

loops and cavities together with measuring the size of these topological features play an

important role in the practical applications, including computer aided drug design. In this

section, we provide an accurate and efficient numerical algorithm based on the homology

theory [133, 73] for the loop and cavity detection. Furthermore, we propose a level set

method based filtration to generate persistent bar codes which characterize the size of loops

and cavities.

Homology group theory, provides an effective theoretical framework for computing the

loops and cavities on the manifold. The homology group constructed based on the cubical

complex provides a practical methodology for computing the loops and cavities for the SES

embedded in the Euclidean space, i.e., ESES, for detail theory about the homology on cubical

complex setting, readers are refer to [133]. Furthermore, the persistent homology theory [72]

provides a measure to measure the size of loops and cavities on the manifold.

4.4.1 Loops and Cavities Detections

In this part, a brief introduction of the homology theory in cubical complex setting which

gives the general framework for computing the loops and cavities in the Eulerian representa-

tion of the manifold will be provided, for detail the readers are refer to [133]. In the cubical

complex setting, the homology theory is built up from geometric and algebraic building
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block. In the following, we will first briefly review these concepts and then turn to discuss

the application of these tools for loops and cavities detection on ESES.

4.4.1.1 Geometric Building Block

In the Eulerian representation, the cubes are the basic geometric building blocks of the

homology theory, first we need the following basic concepts of the cubes:

• An elementary non-degenerate interval is a closed interval I ⊂ R of the form I =

[m,m + 1] (or I = [m] for simplicity) for some integer m. An elementary degenerate

interval is a point I = [m,m].

• An elementary cube Q or d cube is a d-product if elementary intervals, i.e.,

Q = I1 × I2 × · · · × Id ⊂ Rd,

where each Ii, i = 1, 2, · · · d is an elementary interval of non-degenerated or degenerated

type, and d is called the embedding number of Q, denoted as embQ = d. The dimension

of Q, denoted as dimQ, is defined to be the number of non-degenerated components

in Q, and Kk denotes the set of all k dimensional elementary cubes. Let K .
=
⋃∞
d=1Kd

be the set of all elementary cubes, and Kd be the set of all elementary cubes in Rd.

• The set of k-dim cubes with embedding number d is Kdk
.
= Kk

⋂
Kd. Obviously, if

Q ∈ Kdk and P ∈ Kd′
k′ , then Q× P ∈ Kd+d′

k+k′ .

A set X ⊂ Rd is said to be cubical provided it can be written as a finite union of

elementary cubes. For a given cubical set X ⊂ Rd, we define the cubical set K(X) and
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k-cube set Kk(X) by:

K(X)
.
= {Q ∈ K|Q ⊂ X},

Kk(X)
.
= {Q ∈ K(X)|dimQ = k},

the elements of Kk(X) are called the k-cubes of X.

4.4.1.2 Algebraic Operations

To study the topological properties of the molecular surface in the Eulerian representation,

the basic operations on the aforementioned geometric building blocks will be presented in this

part. Each elementary k-cube Q ∈ Kdk is associated with an algebraic object Q̂ which is called

the elementary k-chain of Rd, the set of all elementary k-chains of Rd is K̂dk
.
= {Q̂|Q ∈ Kdk},

and the set of all elementary chains of Rd is: K̂d .
=
⋃∞
k=0 K̂dk.

The first algebraic operation to be defined on the cubical complex is the addition opera-

tion. First, we define the k-chains as the linear combination of k-chain:

c = a1Q̂1 + a2Q̂2 + · · ·+ âmQ̂m, ai ∈ Z, i = 1, 2, · · · ,m,

the set of all the above k-chains is denotes by Cdk .

The addition of two k-chains is defined by:

∑
aiQ̂i +

∑
biQ̂i =

∑
(ai + bi)Q̂i.

It is obviously that under the addition operation, Cdk is an Abelian group.

Before defining the homology group on the cubical complex, we need to define the bound-

78



ary operations on the cubical complex. To define the boundary operator, we need the fol-

lowing defined scalar and cubical products.

Definition 4.4.1. Scalar product: Let c1, c2 ∈ Cdk , where c1 =
∑m
i=1 aiQ̂i and c2 =∑m

i=1 biQ̂i. The scalar product of chains c1 and c2 is defined as:

< c1, c2 >
.
=

m∑
i=1

aibi.

Definition 4.4.2. Cubical product: For ∀ elementary cubes P ∈ Kdk and Q ∈ Kd′
k′, the

cubical product between P and Q is defined to be:

P̂ ∗ Q̂ .
= P̂ ×Q.

Furthermore, for ∀ c1 ∈ Cdk and c2 ∈ Cd
′
k′ , the cubical product is:

c1 ∗ c2 =
∑

P∈Kk,Q∈Kk′

< c1, P̂ >< c2, Q̂ > P̂ ×Q,

and c1 ∗ c2 ∈ Cd+d′
k+k′ .

For the cubical product, the following factorization property holds:

Lemma 4.4.3. For ∀Q̂ ∈ K̂d with d > 1, there exists unique elementary cubical chains Î

and P̂ with embI = 1 and embP = d− 1, s.t., Q̂ = Î ∗ P̂ .

With the previous preparation, the boundary operation can be defined in the following

inductive manner.
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Definition 4.4.4. Boundary operator: For k ∈ Z, the cubical boundary operator:

∂k : Cnk → Cnk−1,

is a homomorphism of Abelian groups, defined for an elementary chain Q̂ ∈ K̂nk by induction

on the embedding number n as follows:

• For n = 1, Q is an elementary interval, i.e., Q = [m] or Q = [m,m + 1] for some

m ∈ Z, and one defines:

∂kQ̂ =


0, if Q = [m],

̂[m+ 1]− ˆ[m], if Q = [m,m+ 1].

• For n > 1, let I1(Q) and P = I2(Q)× · · ·× In(Q) so that Q̂ = Î ∗ P̂ , then one defines:

∂kQ̂ = ∂dimÎ ∗ P̂ + (−1)dimÎ ∗ ∂dimP̂ .

By linearity, the boundary operator can be extended to chains, i.e., if c =
∑p
i=1 aiQ̂i,

then ∂kc =
∑p
i=1 ai∂kQ̂i.

It is easy to show that the boundary operator satisfies ∂k ◦ ∂k−1 = 0,∀k > 1 in the

cubical complex setting.

Now for a given manifold X embedded in the Euclidean space Rd and X is represented as

a cubical set, let K̂k(X)
.
= {Q̂|Q ∈ Kk(X)} and let Ck(X) be the subgroup of Cdk generated

by the elements of K̂k(X), which is called the set of k-chains of X. The boundary operator

maps Ck(X) to a subset of Ck−1(X), thus one can restrict the boundary operator to the

cubical set X. The boundary operator for the cubical set X: ∂Xk : Ck(X) → Ck−1(X) can
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be defined by restricting ∂k : Cdk → Cdk−1 to Ck(X), The cubical chain complex for the

cubical set X ⊂ Rd is defined as C(X)
.
= {Ck(X), ∂Xk }k∈Z, where Ck(X) are the groups of

cubical k-chains generated by Kk(X) and ∂Xk is the cubical boundary operator restricted to

X.

For a given cubical set X, the corresponding k-chains group Ck(X) is defined, it is

straightforward to introduce two subgroups of Ck(X):

• k-cycle group Zk(X)
.
= Ck(X)

⋂
ker∂k ⊂ Ck(X).

• k-boundary group Bk(X)
.
= im∂Xk+1 = ∂k+1(Ck+1(X)) ⊂ Ck(X).

∂k◦∂k−1 = 0,∀k > 1 implies that Bk(X) ⊂ Zk(X), therefore, we can define the following

homology group.

Definition 4.4.5. Homology group: The k-th homology group of the cubical set X is

defined as the quotient group:

Hk(X)
.
= Zk(X)/Bk(X).

The k-th Betti number is defined as the rank of the k-th homology group, βk = rankHk.

Remark 4.4.6. Hk(X) describes k-dimensional holes of X, e.g., H0(X) measures connected

components, H1(X) measures loops, and H2(X) measures voids. In other words. β0 is the

number of connected components, β1 is the number of loops, β2 is the number of voids, and

so on.
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4.4.1.3 Homology on ESES

In this part, we will discuss the computation of the homology on the manifold enclosed by

ESES. Note that during the ESES generation, all the grid points are classified as inside or

outside the SES, the inside grids can be used to construct the cubical complex that represents

the manifold enclosed by SES.

In this work the cubical homology computation will be carried out by the Perseus per-

sistent homology software [181], which is an efficient persistent homology program that can

handle both the simplicial and cubical complex represented manifolds [172]. The SES gen-

erated by the present ESES software provides suitable input data for the Perseus software.

We consider a benchmark test example, the C60 molecule, to illustrate the ESES perfor-

mance in loop and cavity generation [251]. Figure 4.13 depicts C60 generated at the atomic

radius of 0.8 Å for all the Carbon atoms with the probe radius of 0.1 Å. It has 32 rings.

Figure 4.14 provides the number of loops generated by ESES at different grid sizes. When

the grid size used for the surface generation is coarser than 0.6 Å, the numerical method

cannot capture all the small loops, which are about 0.5 Å in diameter, in the C60 molecule.

However, when the grid size is finer than 0.6 Å, all the loops can be resolved. Note that

homology computation reports only 31 loops because one of the 32 loop can be expressed as

a linear combination of all other loops.

Figure 4.15 shows the solvent excluded surfaces generated with probe radius 1.4 Å for

some molecules from the PBSA test set. Their corresponding numbers of loops and cavities

are also presented and calculated at the grid resolution of 0.3Å.
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Figure 4.13: The SES for the C60 molecule with probe radius 0.1 Å, and the van der Waals
radius of the Carbon atom is set to be 0.8 Å.

Figure 4.14: The number of loops calculated at different grid sizes for the above C60 solvent
excluded surface.

4.4.2 Persistence

The method for detecting the loops and cavities of the manifold formed by the molecular

surface has been provided in the previous part. Nevertheless, ability to detecting the number

of loops and cavities usually not very useful in practice. The size of the loops and cavities

also needs an effective way to characterize.

Persistent homology theory provides a way to measure the size of the loops and cavities.

83



(a) (b)

(c) (d)

Figure 4.15: The solvent excluded surfaces and their topology of two biomolecules. (a) The
ESES result for protein 2AVH with 3 loops and 1 cavity. (b) A cross section of protein 2AVH
showing the loops. (c) The ESES result for protein 1af8 with 2 loops and 2 cavities. (d) A
cross section of protein 1af8 showing the loops and cavities.
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The measure is called persistence in the filtration. We have introduced a time propagation

approach for generating the persistent homology filtration in our recent work [251]. In the

present work, we replace the geometric flow propagation by constant velocity propagation

so as to uniformly measure the sizes of different loops or cavities.

To define the persistent homology, we need a filtration, i.e., a complex K together with

nested sequence of sub-complexes {Ki}0≤i≤n, such that:

∅ = K0 ⊂ K1 ⊂ · · · ⊂ Kn = K,

each sub-complex Ki in the filtration has an associated chain group Cik, cycle group Zik and

boundary group Bik, for ∀i ≥ 1, and thus one has the following definition.

Definition 4.4.7. The p-persistent of kth homology group Ki is:

H
i,p
k = Zik/

(
B
i+p
k

⋂
Zik

)
,

here H
i,p
k captures the topological features of the filtrated complex that persists for at least p

steps in the filtration.

To measure the size of loops and cavities of the manifold formed by the SES, a slightly

modification is needed in the previous defined filtration, the modified filtrated sequence of

complexes is defined as:

Ωm = K0 ⊂ K1 ⊂ · · · ⊂ Kn = K,

where K0, or Ωm, is the manifold formed by the SES. K is the manifold that the loops and

cavities of K0 are filled.

The remaining thing for building the theoretical framework of persistence measuring is
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filtration construction. The level set method provides a general theoretical framework and

and effective numerical method for the surface propagation with constant velocity.

For the molecular surface Γ, we can give it a level set representation ψ(r), such that:

ψ(r)


> 0, r ∈ Ωs outside the molecular surface,

= 0, r ∈ Γ on molcular surface,

< 0, r ∈ Ωm inside the molecular surface.

(4.4.1)

ψ(r) can be chosen as the signed distant function to the molecular surface Γ.

To propagate the surface with a given velocity along the outer normal direction of the

SES in the Eulerian representation, we introduce the time variable t to the level set function,

i.e., let ψ(r) = ψ(r, t). By taking the derivative with respect to t of the SES level set function

ψ(r, t) = 0, one has

∂ψ

∂t
+∇ψ · ∂r

∂t
= 0.

Note that ∂r∂t is exactly the surface propagation velocity, denoted as ~v. Projecting the velocity

on to the outer normal direction of the surface ∇ψ
|∇ψ| , one has the projected velocity along

the normal direction vN
.
= ~v · ∇ψ|∇ψ| .

Finally, the level set equation for describing the surface propagation along the outer

normal direction can be written as:

∂ψ

∂t
+ vN |∇ψ| = 0, (4.4.2)

which is a Hamilton-Jacobi equation. The level set Eq. (4.4.2) is solved by a simple upwind

scheme with periodic boundary condition. For detail description and numerical implemen-
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tation of the level set method, readers are referred to [194, 217].

First, we consider the benchmark test example, the SES of C60 generated by the same

parameters as mentioned before. The loops on the SES can be classified into two cate-

gories, the pentagon and hexagon loops, these two types of loops are of different sizes. In

the following, we solve the level set equation at grid resolution 0.1 Å in spatial domain

discretization with the velocity 0.1 Å per unit time along the outer normal direction. To

ensure the CFL condition, the grid resolution 0.002 is employed in the time discretization.

Figure 4.16 depicts some frames of the evolution procedure of the C60 SES under the driven

of the level set equation, different frames show that the SES is propagate along the outer

normal direction with a constant velocity, and after some time, both type of loops will be

closed. The persistent time of these two types of loops reflects the size of the loops, which

actually should be proportional to the size of loops since the surface grows with a constant

velocity.

After the above validation on the C60 molecular surface, we apply the above level set

based persistent homology theory to biomolecules to investigate the size of loops and cavities

of the corresponding manifold enclosed by the SESs. All the implementations are carried out

at the grid resolution of 0.3 Å in spatial discretization and 0.01 at the temporal discretization

which guarantees the stability of the numerical integrator. The surface is propagated with

a constant velocity 0.2 Å per unit time along the outer normal direction.

First we study the persistence of the loops and cavities of the protein 1clh, the previous

homology theory predicts that the SES generated with probe radius 1.4 Å with the Amber

force field has 5 loops and 5 cavities.

Figure 4.17 shows the frames of the growing surfaces at time 0, 25, 50, and 100, respec-

tively. Intuitively, during the surface propagation, the molecule should become fatter, the

87



(a) (b)

(c) (d)

Figure 4.16: The level set representation of the SES for the C60 molecule. (a) the level set
representation of the SES; (b), (c), and (d) represent the frame of the evolution at time 20,
40, and 60, respectively.
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(a) (b)

(c) (d)

Figure 4.17: The level set representation of the SES for protein 1clh. (a) The level set
representation of the original SES; (b), (c), and (d) Frames of propagated surfaces at time
25, 50, and 100, respectively.
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(a) (b)

Figure 4.18: The persistence diagrams of the loops (Left chart) and cavities (Right chart) in
the SES of protein 1clh, respectively.

numerical results is consistent with this intuition.

The left and right charts of Fig. 4.18 show the persistence of the loops and cavities on

the molecular surface of the protein molecule 1clh, respectively. The persistence barcode of

the loops shows that there are two quite short lived loops, i.e., two tiny loops on the surface,

and one middle sized loops, together with two long persistent loops. The largest loop has

persistent length of 73, which corresponds to a diameter of 14.6 Å. The cavity persistence

barcode demonstrates that there is no short lived cavity in the SES manifold. Five cavities

all have a relatively long persistence. The largest cavity has persistence length around 93,

which corresponds to a cavity length of 18.6 Å.

4.5 ESES: Electrostatics Analysis

To further validate the present ESES software, we consider electrostatic solvation free energy

calculations using both the ESES and MSMS surfaces. Here the electrostatic solvation

free energies are computed based on the PB model introduced in the previous chapter, the
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(a) (b) (c)

(d) (e) (f)

Figure 4.19: The convergence of the electrostatics solvation free energies calculated by using
MSMS surfaces to those obtained by using the ESES surfaces. (a), (b) and (c) are for nucleic
peptide molecules with PDB IDs 1A2E, 1BNA and 1L4J, respectively. (d), (e) and (f) are
for protein molecules with PDB IDs 1a93, 1aca and 1b8w, respectively. All the energies are
obtained by solving the PB equation with the MIBPB software at grid size 0.5 Å.

numerical method will be presented in the next chapter. For the sake of simplicity, we

consider the pure water solvent with the solvent dielectric constant set to be 80 while 1 for

the solute.

Obviously, for a given molecule with the same force field assignment and the same PB

solver, when the SESs generated by different software packages are consistent with each other,

the calculated electrostatics solvation free energies should be the same. In the following, we

demonstrate that with the increasing of the density of the MSMS surface, the MSMS surface

based electrostatics solvation free energies converge to those based on the ESES surface.

Figure 4.19 shows the convergence of the electrostatics solvation free energies calculated

by using the MSMS surfaces to the ESES surfaces. All the calculations are carried out by
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the highly accurate PB solver MIBPB software [90, 278, 280, 293, 253], in which the PB

equation is solved on a Cartesian mesh. It is shown the highly accurate and robust property

of the MIBPB solver in calculating the electrostatics solvation free energies [253]. We will

discuss this PB solver in the next chapter. The MSMS surface is generated with densities

varying from 10 to 100. Since the MSMS surface is given by the Lagrangian representation,

i.e., the triangulation of the molecular surface, a Lagrangian to Cartesian transformation is

employed to embed the MSMS surface to the Cartesian mesh [292].

4.6 Conclusion

Solvent excluded surface (SES) is the most popular surface definition in computational bio-

physics and molecular biology for biomolecular modeling and simulation. Existing SES

software packages, such as MSMS [212], typically provide SESs in the Lagrangian represen-

tation. For applications in implicit solvent models, one needs to convert the triangular SES

into the Eulerian representation, i.e., the Cartesian domain. Additionally, quality of MSMS

depends on the density selected and the method might not work well at all required densi-

ties for certain molecules. Therefore, it is desirable to generate analytical SESs directly on

the Cartesian mesh. This work offers a software package, called Eulerian solvent excluded

surface (ESES), for the construction of SESs on the Cartesian mesh.

We generate analytical SESs based on Connolly’s algorithm [51], which divides a SES

into three patches: convex patches, saddle patches and concave patches. The mathemati-

cal representation, computing algorithm, and data structures for each individual patch are

formulated. We immerse the analytical SES into the Euclidean space R3 and describe the

surface or interface by its intersecting coordinates with the Cartesian mesh lines and associ-
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ated normal directions at all the intersecting points.

The proposed ESES software is validated by a large number of benchmark tests, including

morphological visualization, solvation analysis, surface area and enclosed volume calculation,

and topological feature analysis and characterization. We utilize the Amber PBSA test set

in our validation. The MSMS software is employed for comparison. In the morphological

visualization, it is shown that ESES successfully generate correct morphology while MSMS

does not always work for the Amber test set at all densities. ESES also provides second

order accurate estimates for biomolecular surface area and enclosed volume. It is found that

electrostatic solvation free energies computed using the ESES are in close consistence with

those calculated based on MSMS. A special feature of the present software is that it provides

atomic surface areas calculation, which can be used for atomic modeling of nonpolar solvation

free energies. Finally, we introduce homology theory to accurately detect topological features,

namely, loops and cavities on/in SESs. A novel level set based filtration is proposed to

measure the sizes of loops and cavities.

The present ESES software will be improved on a few aspects. First, a better method

for rendering the surface need to be implemented for the surface visualization. Second,

compared to the MSMS software, ESES is analytical but slower. Therefore, acceleration

via multi-thread computational techniques will be further investigated to make the ESES

software more efficient. Third, a robust triangulation to the ESES is durable for the further

work.
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Chapter 5

Coarse Grid Poisson Boltzmann

Solver

5.1 Introduction

Poisson Boltzmann (PB) model is a multiscale model which models the electrostatics of

the solvated molecules especially for the biological system, through sophisticated physical

modeling of the focusing part, e.g., solvated biomolecules modeled with atomistic detail, the

ions in the solvent is modeled as a density distribution, and the solvent is modeled as a

dielectric continuum. The PB model is one of the most important implicit solvent models,

especially for the study of the biological systems.

There are mainly two challenges in numerical solution to the PB model: One is the

description of the solvated molecular conformation structure; the other one is development

of the accurate and convergent numerical solution to the PB equation (PBE). The first issue

is addressed in the previous chapter, the second issue will be discussed in this chapter.

With proper force field parametrization of the solute molecule, mathematical challenges

in terms of the numerical approximation to the PBE can be summarized as: (i) efficient

construction of the molecular surface of the solvated solute molecule; (ii) treatment of the

singular charges of the solute molecule, which is represented by the singular δ-function; (iii)

treatment of the complex interface geometry in the elliptic interface problem of the PBE;
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(iv) accurate evaluation of the electrostatic solvation free energy after resolving the PBE.

There are extensive PB software available, and the numerical method to solve the PB

model can be classified into three categories: finite difference method (FDM), finite element

method (FEM), and boundary element method (BEM). Here we give a short review of the

current existing popular PB software, the critical advantages of each PB software will be

briefly discussed.

• AFMPB [162]: Adaptive Fast Multipole Poisson-Boltzmann (AFMPB) solver is a nu-

merical simulation package for solving the linearized Poisson-Boltzmann (LPB) equa-

tion which models electrostatic interaction in biomolecule systems. In this package, a

boundary integral equation approach is applied to discretize the LPB equation.

• APBS [7]: The adaptive Poisson-Boltzmann Software (APBS), together with the

PDB2PQR are software packages designed to help the users analyze the solvation

properties of small and macro-molecules such as proteins, nucleic acids, and other

complex systems. The multigrid algorithm is employed for the discretization of the PB

equation, it is one of the most popular and widely used PB software.

• Delphi [209]: The Delphi software is a very accurate and efficient PB software. In

which the solvated molecular conformation is described by the smoothed numerical

surface. The induced surface charge method is employed for accurate and efficient PB

calculation. It is tested that the grid size influence on the PB calculation is very small.

• Amber PBSA [259]: Amber PBSA is the PB software in the Amber software, which

solves both linear and nonlinear forms of PBE. Various algorithms are implemented to

solve the linear PBE, such as, conjugate gradient, modified incomplete Cholesky con-

jugate gradient (ICCG), geometric multigrid, and successive over-relaxation methods
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(SOR); and to solve nonlinear PBE, as the inexact Newton method in conjunction with

modified ICCG or geometric multigrid, conjugate gradient, SOR, and other complex

systems.

• PBEQ-Charmm [127]: The PBEQ module within Charmm MD distribution allows the

setting up and the numerical solution of the PBE on a discretized grid for a solute

molecule.

• MIBPB [39]: Matched Interface and Boundary Based Poisson-Boltzmann (MIBPB)

Solver is a software package for evaluating electrostatic properties of biomolecules via

the solution of the PBE, an established two-scale model in biomolecular simulations.

It distinguishes itself from other PBE solvers by rigorously enforcing the interface flux

continuity condition. This chapter is focused on improving the accuracy and robustness

of the previous MIBPB software.

• ZAP [101]: The ZAP software produces PB electrostatic potentials and, from them,

biologically interesting properties including solvent transfer energies, binding energies,

pKa shifts, solvent forces, electrostatic descriptors, surface potentials and effective di-

electric constants. ZAP TK works well for small molecules, proteins and macromolec-

ular ensembles. Unique to ZAP TK is a dielectric function based on atom-centered

Gaussians, which avoids the pitfalls of discrete dielectric constants [276].

This chapter is organized as follows: In section 5.2 we will formulate the PB model as an

elliptic interface problem, the interface and boundary conditions will be presented. We will

present the numerical methods for solving the four mathematical issues listed above in section

5.3, in which both MSMS and ESES surface [157, 212] are utilized for characterizing the solute

molecular conformation structure. The Green’s function [49, 90] technique is adopted for
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removing singular source in the PBE, the matched interface and boundary method (MIB)

[278, 90] is used for handling the complex interface geometry, and the numerical method

for evaluating the reaction field energy will also be discussed. The numerical results for

the electrostatics solvation free energy and binding free energy calculation are presented in

sections 5.4 and 5.5, respectively. This chapter ends up with a conclusion.

5.2 Poisson Boltzmann model

In this section, we will present a review for the PB model in the variational principle point

of view. Consider an open domain Ω ∈ R3 = Ωm⋃Γ
⋃

Ωs, where Ωm is the solute domain

that enclosed by the surface formed by the biomolecule, and Ωs is the solvent domain. Γ is

the molecular surface, for instance, the SES, that separates the solute and solvent domains.

First the charge distribution in the solute and solvent domains are modeled at the fol-

lowing different scales:

• Consider the atomistic modeling of the solute domain, in which the charge distribution

ρm(r) is given by:

ρm := ρm(r) =

Nm∑
i=1

Qiδ(r− ri),

where Qi is the partial charge of the i-th atom, and Nm is the number of charged

atoms.

• The solvent domain is modeled as a dielectric continuum medium, in which the charge

distribution is modeled by the Boltzmann distribution, mathematically formulated as:

ρs := ρs(r) =
N∑
j=1

qjcje
qjφ/kBT ,
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where N is the number of ionic species, cj ’s are the bulk concentration of each ionic

species, and qj ’s are charges of each ionic species, kB is the Boltzmann constant, T is

the absolute temperature.

Furthermore, the permittivity ε(r) are both assumed to be constants in solute and solvent

domain:

ε(r) =


εs, if r ∈ Ωs

εm, if r ∈ Ωm,

in the PB model, εs and εm are usually set to be 80 and 1, respectively. This specially

selected constants will be adapted for all the numerical results in this chapter.

The electrostatic solvation free energy of the whole solvation system can be expressed as:

Gelec =

∫
Ω

χmρmφ− χm
εm
2
|∇φ|2 − χs

εs
2
|∇φ|2 + χskBT

N∑
j=1

[cj(e
−qjφ/kBT − 1)]

 dr.

(5.2.1)

where we have introduced the characteristic function χm and χs for the solute and solvent

domain, respectively.

Taking the variational derivative of Gelec with respect to φ, i.e., set δGelec

δφ = 0, yields

the following PB equation:

−∇ · (ε(r)∇φ(r)) = ρm + ρs. (5.2.2)

The Eq. (5.2.2) derived from the variational principle is consistent with the one introduced

in chapter 2.

In the following context of this chapter, for the sake of simplicity, we only consider the

simple case that ionic strength in the solvent is 0, i.e., pure water solvent. The ionic solvent
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case can be treated in the same manner.

The PBE is well posed by subjected to the following interface and boundary conditions

constraint:

• The far field boundary condition:

φ(∞) = 0.

In practical computation, the following Debye-Hückel boundary condition are enforced:

φ(r) =

Nm∑
i=1

Qi
4πεs|r− ri|

(5.2.3)

• Across the interface Γ, the continuity of the electrostatics potential and flux are en-

forced:

– Continuity of electrostatics potential:

[φ] = φs(r)− φm(r) = 0. (5.2.4)

– Continuity of electrostatics flux:

[ε(r)φn] = εs∇φs(r) · n− εm∇φm(r) · n = 0, (5.2.5)

where n = (nx, ny, nz) is the outer normal direction of the interface Γ which

pointing from the solute domain to the solvent domain.
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5.3 Numerical Method

In this section, we will present the numerical method for solving the PBE, the numerical

method is highly accurate, and make coarse grid PB solver without loss of accuracy possible.

The numerical method mainly contains three parts: The construction of the solvent solute

boundary, we choose SES in this context. Treatment of the singular charges that represented

by the δ-function for describing the solute charge distribution, which will be treated by the

Green’s function technique. Treatment of the complex solvent solute boundary geometry, we

adopt the Matched Interface and Boundary method (MIB) for treating the versatile geometry.

Furthermore, we will present the new electrostatic solvation free energy calculation scheme.

5.3.1 Solvent Solute Boundary

In the PB model, the solvent and solute domains are separated by the molecular surface

and each part is modeled as a dielectric medium with a given dielectric constant, the SES is

the most widely used surface definition, detail description has already been presented in the

previous chapter. In our numerical coarse grid PB solver, we implements both ESES and

MSMS, ESES is suit for extremely accurate calculation, while MSMS is objected for fast

calculation with a slightly accuracy reduction.

5.3.1.1 MSMS Surface

The MSMS surface is the reduced surface of the original SES, which is the first software

that can handle the geometric singularities that arise from the self-intersecting surfaces. For

detail about the MSMS surface, the readers are referred to Sanner et al’s work [212].

In our interface method based PB solver, we have to transform the Lagrangian repre-
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sented surface, i.e., the triangulation of the SES, into the Eulerian representation. This

transformation needs to embed the triangulated surface into a bounding box in the three

dimensional Euclidean space R3. The embedding contains the following three major steps:

• Classification inside and outside grid points.

• Find the intersections of the triangulated reduced SES with the Cartesian mesh line.

• Find the out normal direction at the intersection points.

The classification of the grid points can be done via a ray tracing technique, which is based

on the discrete Jordan curve lemma. The intersections and out normal vectors computation

can be simply done via some basic Euclidean geometric knowledge. The detailed steps

are presented in the work [292]. Compare to the embedding of the analytical SES into

the Euclidean space, this embedding is much simpler, since MSMS is represented by the

simplicial complexes, all the equations associated to the transformation are linear.

5.3.1.2 ESES surface

ESES surface, as presented in the previous chapter, is a direct Eulerian represented SES de-

signed for the finite difference type of method based PB solvers. During the ESES generation

and further processing, no numerical error is introduced for the grid points classification, in-

tersections detection, and outer normal vectors calculation. All these three instruments are

accurate without any numerical error, this provides the foundation for the highly accurate

PB solver.
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5.3.2 Solving the Poisson Boltzmann equation

The numerical method for solving the PB model contains two parts, treatment of the singular

charges and treatment of the complex geometry of the interface. Classical approach for

handling this singular charges is the direct projection of these charges to the Cartesian grid

points. The deficient of this approach is that when the coarse grid is applied, the solute charge

may be projected to the grid points in the solvent domain. This unreasonable projection

may leads to unacceptable error when the large difference of the dielectric constants exists

between solvent and solute domains. Another treatment of these singular charges is based

on the Green’s function of the singular charges, and in terms of accuracy, Green’s function

formalism is superior to the classical direct projection method [90].

To handle the complex geometry of the interface in the PB model, or a more general

class of elliptic interface problems. We need to note the fact in Lemma 5.3.1, which helps to

the development of the numerical scheme for the elliptic interface problems.

Lemma 5.3.1. If the interface Γ is locally Lipschitz, and a given function φ defined in

both Ωm and Ωs are continuous and the first order partial derivatives are well defined. At

any point of the interface, the derivatives of function are continuous along the tangential

directions, provided the function is continuous across the interface.

Proof. (Sketch of the proof.) Let us denote the function φ to be φm and φs in Ωm and Ωs,

respectively. And let f
.
= φm − φs, it is obviously that f |Γ = 0.

For ∀(x0, y0, z0) ∈ Γ, there is a tangential plane Π defined at (x0, y0, z0) to the interface

Γ, ∀τ ∈ Π we have:

∂φm

∂τ
− ∂φs

∂τ
=
∂f

∂τ
= ∇f · τ.

Further, note that f |Γ = 0, which means Γ ⊂ {(x, y, z)|f(x, y, z) = 0}, i.e., the interface
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Γ can be represented by the implicit function f(x, y, z) = 0.

Obviously, ∇f = n, which is the direction normal to n at (x0, y0, z0). Hence

∂φm

∂τ
− ∂φs

∂τ
= ∇f · τ = n · τ = 0.

By the arbitrary of τ , the conclusion obtained.

Based on the above lemma, we can introduce two more interface conditions on the tan-

gential directions, thus a group of four interface conditions will be available for designing

numerical scheme for solving PBE. This is tested to be enough for designing second or-

der convergent numerical scheme for discretizing the PBE. One state-of-the-art accurate

scheme MIB method utilized the above fact without proof[278, 295]. Many other prestigious

schemes also exist for solving the elliptic interface problem. The global second convergence

of the elliptic interface numerical scheme is proved in the work [17], which provides a general

framework for proving the convergence of the general finite difference based elliptic interface

scheme, Mayo’s method [170, 168] and Immersed Interface Method (IIM) scheme [115, 149]

is utilized for the illustrations.

5.3.3 Electrostatic Solvation Free Energy Calculation

One major application of the PB model is for evaluating the electrostatic solvation free

energy, which also provides a good criteria for measuring the accuracy of the PB solver. In

this section, we will provide the numerical method for calculating the electrostatics solvation

free energies.
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5.3.4 Reaction field potential representation of the solvation free

energy

In the conventional implicit solvent theory, the reaction field potential is defined as the

difference between the electrostatic potential in solvent and in vacuum, that is,

φrec(r) = φdielec(r)− φvac(r), (5.3.1)

where φrec, φdielec and φvac are the reaction field potential, electrostatic potential in solvent

and vacuum, respectively. The vacuum electrostatic potential is calculated through setting

the solvent dielectric constant the same as that in the solute domain.

The electrostatics solvation free energy, or reaction field energy, is defined by:

∆GRF =
1

2

Nm∑
i=1

Q(ri)φrec(ri), (5.3.2)

where Q(ri) are the charge at the position ri.

5.3.5 Approximate the atomic center reaction field potential

According to the equation for evaluating the electrostatics solvation free energy, Eq. (5.3.2),

the electrostatics potential at the atomic centers are needed. Whereas, according to our

numerical scheme, only the electrostatic potential on the grid of the Cartesian mesh grids

is obtained, we need to approximate the electrostatic potential at the atomic centers by

that at the grid points. In this work, the trilinear interpolation scheme will be utilized for

interpolating the electrostatics potential at the atomic centers.

For ∀ri
.
= (x0, y0, z0), suppose the closest grid to ri inside the solute domain is indexed
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by (i, j, k). The following 27 grids will be utilized for the further interpolation:

{(i+m, j + n, k + p)|m = −1, 0, 1;n = −1, 0, 1; p = −1, 0, 1}. (5.3.3)

The trilinear interpolation scheme is given in the following steps:

• Interpolate the values at the following 9 points:

{(x0, j + n, k + p)|n = −1, 0, 1; p = −1, 0, 1},

by the above 27 grids {(i + m, j + n, k + p)|m = −1, 0, 1;n = −1, 0, 1; p = −1, 0, 1},

due to the utilization of the uniform Cartesian mesh, we have:

φrec|(x0,j+n,k+p) = wx,−1φrec|(i−1,j+n,k+p)+wx,0φrec|(i,j+n,k+p)+wx,1φrec|(i+1,j+n,k+p),

for n = −1, 0, 1; p = −1, 0, 1, where wx,−1, wx,0 and wx,1 are the Lagrangian interpo-

lation coefficients, it is easy to be obtained via Fornberg’s method [77].

• Interpolate the values at the following 3 points:

{(x0, y0, k + p)|p = −1, 0, 1},

by the nine points {(x0, j + n, k + p)|n = −1, 0, 1; p = −1, 0, 1}, similar to the above

scheme, we have:

φrec|(x0,y0,k+p) = wy,−1φrec|(x0,j−1,k+p) + wy,0φrec|(x0,j,k+p) + wy,1φrec|(x0,j+1,k+p),
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for p = −1, 0, 1, here wy,−1, wy,0 and wy,1 are the interpolation coefficients.

• Interpolate the value at the atom center (x0, y0, z0) by the 3 points {(x0, y0, k+p)|p =

−1, 0, 1}, which is given by:

φrec|(x0,y0,z0) = wz,−1φrec|(x0,y0,k−1) + wz,0φrec|(x0,y0,k) + wz,1φrec|(x0,y0,k+1),

wz,−1, wz,0 and wz,1 are the interpolation coefficients.

In sum, the approximation of the reaction field potential at the atomic center ri is given

by:

φrec|(x0,y0,z0) =
1∑

m=−1

1∑
n=−1

1∑
p=−1

wx,mwy,nwz,pφrec|(i+m,j+n,k+p). (5.3.4)

5.3.5.1 The extension of the reaction field potential

In the Eq.(5.3.4), for the atomic centers that close to the boundary when the coarse grid

employed, it is possible that some of this grids may in the solvent domain, if we directly use

the reaction field potential computed from the previous PB solver, the accuracy in evaluating

the solvation free energy will be reduced. Therefore, we need to extend the reaction field

potential in the solute domain to the outside grids that referred in interpolating the reaction

field potential at the atomic centers.

For a given grid (i1, j1, k1) belongs to the above 27 grids, the schemes that used for ex-

tension of the reaction field potential at (i1, j1, k1), φrec(i1, j1, k1), are listed in the following

according to its priority, the scheme employed should have as top priority as possible.

• Top priority: Use the sum of fictitious value and the extended solution of the bound-

ary value problem (specifically for the Green’s function treatment of the singular charge

case) at the grid point (i1, j1, k1) as the extended reaction field potential at (i1, j1, k1).
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• Middle priority: Choose three consecutive grid points next to (i1, j1, k1) along a

given direction in the solute domain to extrapolate the reaction field potential at

(i1, j1, k1).

• Low priority: Select two inside grids neighbor to (i1, j1, k1) , say, (i2, j2, k2) and

(i3, j3, k3) and approximate the reaction field potential at (i1, j1, k1) by:

φrec(i1, j1, k1) = φrec(i2, j2, k2) + φrec(i3, j3, k3)− φrec(i, j, k).

5.3.6 Electrostatic Binding Free Energy Calculation

Another important application of the PB model is the calculation of the electrostatic binding

free energy, which is a crucial part of the binding energy between different molecules, it is of

great importance for the computer aided drug discovery.

Consider the binding of two molecules A and B, where the complex after the binding of

two molecules is denoted by C, by a simple thermodynamic cycle analysis, the electrostatics

binding free energy of this process is given by:

∆∆Gel = (∆GRF)C − (∆GRF)A − (∆GRF)B + (∆∆Gel)coulomb, (5.3.5)

where (∆GRF)C is the electrostatic solvation free energy of the bounded complex, (∆GRF)A

and (∆GRF)B are the electrostatic solvation free energies of the unbounded components, and

(∆∆Gel)coulomb is the electrostatics binding free energy of the two components in vacuum,
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Figure 5.1: Left chart: binding of DNA-drug complex (PDB ID: 121D). Right chart: binding
of barnbase-barstar complex (PDB ID: 1b3s).

which is computed by the formula:

(∆∆Gel)coulomb =
∑
i,j

qiqj
εmrij

, (5.3.6)

where the summation is taken over all those pairs of atoms which have one member in each

component of the complex, qi, qj are the corresponding charges of the given interacted pair

atoms, and rij is the distance between this pairs, εm is the dielectric constant of the solute

domain as defined before.

Figure 5.1 illustrates two binding examples, the left chart is binding of the DNA-drug

complex, the right chart is binding of the barnbase-barstar complex.
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5.4 Numerical Results-Solvation Free Energy

In this section, a large amount of numerical results that used to verify the grid spacing

independent properties of the current PB solvers will be presented, the consistent with

different PB solvers will also be addressed. The robustness of the PB solver is directly

verified by the huge amount of the test examples. Our previous results shown that with the

increasing of the surface triangulate density [157], the solvation free energy on MSMS surface

will converge to our ESES analytical solvent excluded surface, also the ESES is much more

robust than the MSMS surface according to the test on the Amber test set.

5.4.1 Analytical Tests

In this subsection, the PB solver will be tested by the benchmark tests with exact solution,

says, the dielectric sphere with a single center distributed charge and multiple charges, the

analytical solution to the previous one is given by the dielectric Born theory, while Kirkwood

theory [136] gives the analytical solution to the later case.

5.4.1.1 Single center-distributed dielectric sphere

First, consider the dielectric sphere with single central distributed unit charge with different

radius. Born theory states that, for a dielectric sphere with radius R and center charge

q placed in a solvent with dielectric constant ε and 1 for the dielectric sphere itself, the

electrostatic solvation free energy is

∆GRF = − q
2

2R

(
1− 1

ε

)
. (5.4.1)

Table 5.1 shows the electrostatic solvation free energy for the dielectric sphere with a
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central distributed unit positive charge, calculated from grid size 0.1 to 1.1 Å and the exact

value. Different radius of the dielectric spheres are tested, where the radius are the typical

atomic radii in the Amber force field.

Table 5.1: Electrostatic solvation free energies of the dielectric spheres with the central
located unit positive charge equipped with different radius.

GridSize
Atomradius

1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Exact

1.1 -143.63 -116.22 -148.63 -145.9 -146.03 -148.84 -149.00 -148.98 -149.01 -149.04 -149.05 -149.05
1.3 -125.75 -118.24 -126.03 -123.07 -125.75 -125.99 -126.03 -126.07 -126.10 -126.11 -126.12 -126.12
1.359 -120.36 -117.25 -120.61 -119.68 -120.21 -120.54 -120.59 -120.61 -120.63 -120.64 -120.65 -120.65
1.4 -116.88 -103.73 -117.10 -116.89 -116.97 -117.03 -117.07 -117.08 -117.10 -117.11 -117.11 -117.11
1.5 -109.17 -103.43 -109.18 -109.17 -109.22 -109.25 -109.28 -109.29 -109.29 -109.30 -109.31 -109.13
1.55 -105.68 -101.74 -105.61 -105.68 -105.70 -105.72 -105.74 -105.76 -105.77 105.78 -105.78 -105.78
1.7 -94.44 -95.80 -96.34 -96.40 -96.39 -96.40 -96.42 -96.43 -96.44 -96.44 -96.45 -96.45
1.8 -90.96 -90.96 -91.02 -91.01 -91.04 -91.05 -91.07 -91.07 -91.08 -91.09 -91.09 -91.09
1.85 -88.52 -88.52 -88.57 -88.57 -88.58 -88.59 -88.61 -88.62 -88.62 -88.62 -88.63 -88.63
2.0 -81.86 -81.95 -81.90 -81.92 -81.95 -81.96 -81.98 -81.97 -81.98 -81.98 -81.98 -81.98

According to the above results, the electrostatic solvation free energies calculated by

the current PB solver converge very fast to the exact value. Furthermore, it should be

pointed out that the proposed method can provide very reliable calculation even with very

low grid resolution. For instance, when the dielectric sphere with radius 1.1 Å, the calculated

reaction field energy is -143.63 kcal/mol at grid spacing 1.1 Å(that is, only one grid inside

the dielectric sphere), the exact value of which is -149.05 kcal/mol.

5.4.1.2 Multiple charge dielectric sphere

To further test the accuracy of the PB solver, especially the Green’s function treatment of

the singular charges, in this part, we further test on the dielectric sphere, while now there

are multiple charges distributed in the dielectric sphere. The analytical solution to these

cases is due to Kirkwood’s work [136].

We consider the following five different distributions of point charges but their radii are

all set to be 2Å.

• Case 1. Two positive unit charges symmetrically placed at (1, 0, 0) and (−1, 0, 0).
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• Case 2. Two positive unit charges symmetrically placed at (1, 0, 0) and (−1, 0, 0), and

two negative unit charges symmetrically placed at (0, 1, 0) and (0,−1, 0).

• Case 3. Two positive unit charges symmetrically placed at (1.2, 0, 0) and (−1.2, 0, 0),

and two negative unit charges symmetrically placed at (0, 1.2, 0) and (0,−1.2, 0).

• Case 4. Six Positive unit charges placed at (0.4, 0.0, 0.0), (0.0, 0.8, 0.0), (0.0, 0.0, 1.2),

(0.0, 0.0, -0.4), (-0.8, 0.0, 0.0) and (0.0, -1.2, 0.0).

• Case 5. Six Positive unit charges placed at (0.2, 0.2, 0.2), (0.5, 0.5, 0.5), (0.8, 0.8, 0.8),

(−0.2, 0.2,−0.2), (0.5,−0.5, 0.5) and (−0.8,−0.8,−0.8).

The first three cases were employed by Li to compare Delphi and Amber PB performance [3].

The last two cases were used in our earlier work in 2007 [90], which also contains many test

examples similar to the first three cases. These benchmark tests are more difficult than the

Born model. We highly recommend PB methodology developers to consider these test cases

before they try to make any bold statement about the PB model and/or their methods.

Table 5.2 lists electrostatic solvation free energies of the MIBPB method for the above

multiple charge tests on a set of mesh sizes range from 1.1 to 0.1Å. For Case 1, all MIBPB

relative errors are less than 1%. For Case 2, MIBPB is smaller than 5% on all grid sizes.

Case 3 is relatively difficult because charges are located more close to the interface. For the

last two cases, errors are bound by 1.5% on all grid sizes.

5.4.2 Robust on different SES

In this part, we employ 25 biomolecules and data set used in Li’s work [3] as the test set

for comparing the performance of the Delphi [209] and Amber PBSA [259] PB software,
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Table 5.2: Electrostatic solvation free energies (kcal/mol) of Kirkwood dielectric sphere
with multiple charges calculated by MIBPB, where RE is the relative error compare to the
analytical electrostatic solvation free energy.

Case 1 Case 2 Case 3 Case 4 Case 5
Grid ∆GRF RE ∆GRF RE ∆GRF RE ∆GRF RE ∆GRF RE

1.1 -351.12 0.39% -63.61 1.27% -135.41 0.00% -2974.59 0.49% -3079.70 1.43%

1.0 -352.54 0.80% -65.66 4.53% -152.32 12.45% -2952.83 1.22% -3138.85 0.47%

0.9 -348.84 0.25% -60.70 3.36% -131.88 2.59% -2993.72 0.15% -3099.03 1.80%

0.8 -351.20 0.42% -64.13 2.10% -137.33 1.42% -2996.27 0.23% -3110.38 0.44%

0.7 -350.56 0.24% -63.24 0.68% -135.17 0.16% -2995.02 0.19% -3103.84 0.65%

0.6 -350.68 0.27% -63.77 1.52% -137.34 1.43% -2994.73 0.18% -3118.62 0.18%

0.5 -350.39 0.19% -63.50 1.09% -136.64 0.92% -2986.62 0.09% -3124.43 0.00%

0.4 -350.02 0.08% -63.10 0.46% -136.27 0.64% -2991.70 0.08% -3119.22 0.15%

0.3 -349.81 0.02% -61.95 1.36% -136.20 0.59% -2991.01 0.06% -3120.24 0.13%

0.2 -349.72 0.00% -62.90 0.14% -135.79 0.29% -2989.89 0.02% -3122.89 0.04%

0.1 -349.64 0.02% -62.81 0.00% -135.40 0.00% -2989.54 0.00% -3123.90 0.01%

Exact -349.73 -62.81 -135.40 -2989.30 -3124.30

the data was originally downloaded from the protein data bank. All the HETATM records

in PDB files are removed by using MMTSB toolset, and the AMBER99SB force field was

employed for the PDB file parametrization. The structures were further optimized by the

AMBER software with the same protocol used by the work [3]. The PDB IDs for this set of

proteins are: 1ajj, 1ptq, 1vjw, 1bor, 1fxd, 1sh1, 1hpt, 1fca, 1bpi, 1r69, 1bbl, 1vii, 2erl, 451c,

2pde, 1cbn, 1frd, 1uxc, 1mbg, 1neq, 1a2s, 1svr, 1o7b, 1a63, and 1a7m.

Table 5.3 shows the electrostatic solvation free energies (kcal/mol) calculated by using

the MIBPB method with SESs generated by the MSMS software at density 10. Similarly,

Table 5.4 shows the the electrostatic solvation free energies (kcal/mol) calculated by the

MIBPB software with SESs generated by the ESES software. First, there are some minor

discrepancies (less than 1%) between the electrostatic solvation free energies computed by

two SESs. MSMS accuracy depends on its triangular mesh density and its results converge

to those ESES at a very high triangular mesh density, say 100 triangles per Å2. Additionally,

for a given surface, MIBPB is able to deliver very consistent results. The results listed in the
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Table 5.3: Electrostatic solvation free energies (kcal/mol) calculated via the MIBPB software
with MSMS surface at different grid sizes.

Grid size (Å)
ID 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2
1ajj -986.26 -984.17 -986.38 -986.89 -985.82 -986.68 -986.64 -986.85 -987.09 -987.15

1ptq -723.95 -722.99 -724.50 -725.34 -724.54 -725.51 -725.18 -725.49 -725.64 -725.68

1vjw -1120.64 -1117.29 -1119.03 -1119.37 -1120.61 -1121.60 -1121.98 -1121.52 -1121.95 -1122.12

1bor -773.51 -774.38 -777.01 -776.91 -778.85 -778.04 -778.33 -778.65 -778.66 -778.7

1fxd -2424.97 -2433.53 -2432.13 -2433.24 -2434.06 -2435.02 -2434.64 -2435.11 -2435.14 -2435.38

1sh1 -568.12 -570.69 -570.74 -571.80 -573.34 -573.98 -573.48 -573.88 -574.05 -574.32

1hpt -662.19 -666.16 -664.79 -666.10 -667.18 -666.89 -667.57 -668.17 -668.25 -668.45

1fca -1175.78 -1181.58 -1181.77 -1180.31 -1181.93 -1181.71 -1181.72 -1182.04 -1182.10 -1182.11

1bpi -1150.37 -1148.62 -1149.68 -1150.61 -1151.08 -1151.53 -1152.48 -1152.38 -1152.63 -1152.82

1r69 -945.34 -938.93 -940.63 -940.05 -942.28 -942.08 -941.88 -941.98 -942.15 -942.23

1bbl -846.48 -846.80 -847.00 -846.90 -846.64 -847.33 -847.45 -847.08 -847.14 -847.10

1vii -683.20 -677.26 -679.27 -680.61 -679.94 -680.31 -681.19 -681.28 -681.40 -681.55

2erl -919.91 -915.41 -918.49 -918.92 -919.00 -919.68 -919.84 -920.21 -920.33 -920.57

451c -848.53 -843.01 -849.20 -847.92 -847.92 -847.63 -847.85 -848.21 -848.03 -848.07

2pde -798.26 -799.19 -798.87 -799.86 -800.03 -798.81 -799.39 -799.44 -799.22 -799.26

1cbn -298.67 -301.97 -303.85 -303.68 -304.11 -304.46 -304.41 -304.79 -304.81 -304.92

1frd -2561.35 -2556.63 -2557.71 -2558.70 -2557.06 -2559.33 -2560.09 -2560.74 -2561.27 -2561.72

1uxc -917.39 -914.88 -918.19 -919.73 -920.18 -921.01 -921.32 -921.66 -921.75 -922.02

1mbg -1286.82 -1281.16 -1283.11 -1285.37 -1285.74 -1285.61 -1285.67 -1286.08 -1286.23 -1286.45

1neq -1474.17 -1471.80 -1470.82 -1472.88 -1473.94 -1474.13 -1474.74 -1475.49 -1475.62 -1475.63

1a2s -1846.33 -1842.61 -1849.40 -1847.77 -1848.00 -1847.38 -1848.25 -1848.48 -1848.86 -1849.09

1svr -1319.62 -1320.81 -1320.06 -1323.10 -1322.45 -1323.89 -1324.12 -1324.76 -1324.68 -1324.99

1o7b -1738.56 -1747.28 -1743.36 -1743.60 -1743.93 -1745.48 -1746.05 -1746.18 -1746.77 -1747.12

1a63 -1940.89 -1940.05 -1936.96 -1939.81 -1941.67 -1942.27 -1942.61 -1943.36 -1944.14 -1944.55

1a7m -2028.72 -2033.44 -2032.74 -2029.40 -2031.87 -2033.64 -2033.31 -2033.66 -2034.26 -2034.32

tables 5.3 and 5.4 confirm the grid-size independence property of the MIBPB software, also

the numerical solution to the PB does not heavily depend on the solvent excluded surface

generation.

Figure 5.4 depicts the relative errors of the electrostatic solvation free energies calcu-

lation by MIBPB software on surfaces generated by both ESES and MSMS. These results

demonstrate that MIBPB software on both surfaces are of the same level the accuracy. Their

relative errors are remarkably less than 0.4% when the mesh size is refined from 1.1Å to

0.2Å. Therefore, if one’s goal is 1% relative error, one can just use a mesh size as coarse as

1.1Å in MIBPB based solvation analysis.
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Table 5.4: Electrostatic solvation free energies (kcal/mol) calculated via the MIBPB with
ESES surface at different grid sizes.

Grid size (Å)
ID 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2
1ajj -996.11 -995.63 -993.17 -993.03 -991.34 -988.16 -987.20 -986.99 -987.12 -987.03

1ptq -720.68 -719.62 -720.68 -720.76 -721.48 -721.63 -721.71 -722.04 -721.95 -721.97

1vjw -1122.67 -1123.35 -1124.63 -1127.13 -1124.10 -1125.55 -1125.15 -1125.20 -1125.06 -1125.22

1bor -771.50 -773.85 -774.17 -772.50 -774.31 -773.74 -774.04 -774.37 -774.44 -774.45

1fxd -2420.46 -2425.07 -2423.90 -2426.91 -2427.53 -2427.33 -2428.19 -2428.53 -2428.50 -2429.05

1sh1 -564.58 -564.16 -569.12 -569.23 -569.74 -569.50 -570.31 -570.59 -571.01 -571.20

1hpt -661.72 -656.56 -661.03 -661.16 -663.54 -663.66 -664.00 -663.96 -664.10 -664.15

1fca -1190.83 -1193.85 -1191.26 -1190.80 -1191.67 -1187.04 -1188.83 -1188.04 -1187.68 -1187.26

1bpi -1139.46 -1145.12 -1147.15 -1145.35 -1146.96 -1147.57 -1147.99 -1148.14 -1148.28 -1148.36

1r69 -932.98 -937.44 -934.49 -936.89 -937.27 -937.32 -937.10 -937.44 -937.59 -937.66

1bbl -838.68 -839.89 -841.26 -842.17 -843.02 -842.79 -842.00 -842.80 -842.73 -842.65

1vii -672.12 -674.33 -674.94 -677.13 -676.71 -677.78 -677.69 -678.05 -678.42 -678.64

2erl -914.31 -919.35 -918.70 -918.65 -917.98 -917.68 -918.68 -918.60 -918.79 -918.87

451c -839.89 -838.39 -842.24 -841.94 -842.56 -842.44 -842.56 -843.26 -843.78 -843.96

2pde -809.06 -814.63 -812.91 -810.62 -814.13 -813.32 -812.27 -813.04 -813.59 -813.42

1cbn -300.65 -299.73 -301.79 -302.88 -301.94 -302.24 -302.37 -302.50 -302.60 -302.67

1frd -2546.19 -2549.42 -2551.50 -2553.10 -2554.68 -2555.89 -2556.43 -2557.30 -2557.69 -2558.10

1uxc -909.77 -908.98 -912.19 -915.23 -914.40 -916.34 -916.68 -916.93 -917.18 -917.44

1mbg -1277.10 -1278.07 -1277.80 -1278.14 -1280.52 -1281.24 -1281.42 -1281.74 -1281.86 -1282.06

1neq -1459.44 -1464.56 -1467.13 -1467.57 -1468.99 -1469.33 -1469.55 -1469.64 -1470.11 -1470.12

1a2s -1834.76 -1838.39 -1841.63 -1842.01 -1841.72 -1842.06 -1842.67 -1843.19 -1843.19 -1843.61

1svr -1309.47 -1310.67 -1314.35 -1316.24 -1317.25 -1317.10 -1317.75 -1317.89 -1318.42 -1318.37

1o7b -1734.47 -1726.36 -1739.98 -1741.12 -1739.71 -1740.59 -1742.22 -1742.57 -1743.25 -1743.39

1a63 -1937.29 -1942.42 -1940.78 -1943.18 -1941.26 -1942.13 -1941.64 -1942.12 -1942.27 -1942.67

1a7m -2038.64 -2032.48 -2034.48 -2034.91 -2038.38 -2040.39 -2037.91 -2038.62 -2038.73 -2038.26

5.4.3 Comparison between Different PB Solvers

In this part we will compare the performance of our PB solver with the Amber PBSA and

Delphi PB solvers, the comparisons reflects the consistency of the three solvers, and the grid

independent essence of the MIBPB solver. Figure 5.3 depicts the electrostatic solvation free

energies for the 25 protein molecules calculated by the three different PB solvers at the grid

size from 0.2 to 1.1 Å. The results demonstrates that not only the grid almost independent

properties of the MIBPB solver in computing the electrostatic solvation free energy, but also

the consistence of the three PB solver. In general, the solvation free energies calculated by

the Amber PBSA converge decrease to that of the MIBPB, whereas that by Delphi converges
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Figure 5.2: The relative errors of the electrostatic solvation free energies compared to the
results calculated at 0.2Å computed by the MIBPB method on surfaces generated by ESES
and MSMS averaged over 25 proteins.

increase to that of the MIBPB. MIBPB software are grid size independent for both MSMS

and solvent excluded surfaces.

To measure the accuracy of the PB solver, since there is no analytical solution for the

electrostatics solvation free energy on the biomolecules, the grid dependence of the energies

are examined. Errors are estimated either with respect to the analytical solution if it is

available or the result at the finest grid if there is no analytical result.

Relative error
.
=
|∆Gh −∆Gfinest grid|
|∆Gfinest grid|

, (5.4.2)

where ∆Gh and ∆Gfinest grid are the electrostatics solvation free energies calculated at the

grid size h and the finest grid used.

Figure 5.4 depicts the relative deviation of the three PB solvers, where MIBPB utilized

two different surfaces, at each grid compare to the results at the grid size 0.2 Å, obvious the

115



Figure 5.3: Performance of different PB solvers, and the MIBPB solver on both MSMS and
solvent excluded surfaces. From left to right, up to bottom, the 25 sub-figures represents the
molecule with PDB ID: 1a2s, 1a63, 1a7m, 1ajj, 1bbl, 1bor, 1bpi, 1cbn, 1fca, 1frd, 1fxd, 1hpt,
1mbg, 1neq, 1o7b, 1ptq, 1r69, 1sh1, 1svr, 1uxc, 1vii, 1vjw, 2erl, 2pde, 451c, respectively.
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MIBPB solvers are much stabler than both Amber and Delphi, and the grid size independent

properties of MIBPB solver is surface independent.

Figure 5.4: The relative deviation of the electrostatics solvation free energies by different PB
solvers and MIBPB on different surfaces compare to the results at the smallest grid.

However, there is no free lunch. The stable of our PB solver in computing the electrostat-

ics solvation free energy is build on more CPU cost at a given grid spacing. At a given grid

size, both AMBER PBSA and Delphi are several times faster than our PB solvers. Different

PB solvers have their own pons and cons. Our PB solver makes the coarse grid calculating

possible which also leads to the speeds up the PB solver through the coarse grid electrostatic

calculation.

Figure 5.5 illustrates the average cpu cost of the different PB solvers and the MIBPB

solver on both MSMS and solvent excluded surfaces. All the test are carried out on the same

Intel 14 computing node on the high performance computing center of the Michigan state

university.

The test on the above 25 biomolecules shows that the electrostatics solvation free energies
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Figure 5.5: The average cpu cost of the 25 biomolecules of the different PB solvers and
MIBPB on different surfaces.

calculated by three different PB solvers are consistent with each other, MIBPB solver is

more stabler than both Amber and Delphi the results by MIBPB solver are almost grid size

independent for both MSMS and solvent excluded surfaces. At the same grid size, both

Amber and Delphi are several times faster than our PB solver.

5.4.4 Convergence Test on PBSA Test Set

To further test the grid size independent property of the current PB solver, in this part we

adopt our PB solver to a much larger test test, the Amber PBSA test set, as already used

as the benchmark test for the ESES surface generation in the previous chapter.

Figure 5.6 shows the relative deviation of the electrostatics solvation free energy with

respect to that at grid size 0.3 Å for the 937 biomolecules. The deviation converges to 0

monotonically with the refinement of the grid size, and the error level is consistent with the

above 25 test set. Also note that even at the grid size 1.1 Å the relative error is less than
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0.4%, which further confirms that the grid size independent properties of the current PB

solver.

Figure 5.6: The relative deviation of the electrostatics solvation free energy with respect to
that at grid size 0.3 Å for the 937 biomolecules.

5.5 Numerical Results-Binding Free Energy

After the study of the accuracy of the electrostatic solvation free energy, in this part, we

turn to study the electrostatic binding free energy. The accurate electrostatic binding free

energy calculation essentially depends on the accuracy of the electrostatic solvation free

energy calculation. However, the accurate electrostatic binding free energy calculation is

much more challenging, here the accuracy are measured in two ways, first is the qualitative

ranking the molecules based on the energy, second is the quantitative result of the energy

value. Due to the fact that the magnitude of electrostatic binding free energy itself is usually

much less than that of solvation free energy, the numerical error may lead to unacceptable

error, which may yields the different ranking results on the molecules provided different grid
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spacing used for the numerical solution of the PB equation [107, 24]. Recently, it has been

shown that the widely used grid spacing of 0.5 Å produces unacceptable errors in ∆∆Gel

[107].

5.5.1 Data Sets

In the present work, we adopt three sets of biomolecular complexes employed in the literature

[107] for solvation free energy and binding free energy estimations. Specifically, the first set,

Data Set 1, is a collection of DNA-minor groove drug complexes having a narrow range of

∆∆Gel. The Protein Data Bank (PDB) IDs (PDBIDs) for this set are as follows: 102d,

109d, 121d, 127d, 129d, 166d, 195d, 1d30, 1d63, 1d64, 1d86, 1dne, 1eel, 1fmq, 1fms, 1jtl,

1lex, 1prp, 227d, 261d, 164d, 289d, 298d, 2dbe, 302d, 311d, 328d, and 360d. The second set,

Data Set 2, includes various wild-type and mutant barnase-barstar complexes. Its PDBIDs

are as follows: 1b27, 1b2s, 1b2u, 1b3s, 2aza4, 1x1w, 1x1y, 1x1u, and 1x1x. In the last

set, Data Set 3, we investigate RNA-peptide complexes with following PDBIDs: 1a1t, 1a4t,

1biv, 1exy, 1g70, 1hji, 1i9f, 1mnb, 1nyb, 1qfq, 1ull, 1zbn, 2a9x, and 484d. The detail of the

structural prepossessing can be found in Ref. Harris et al.

5.5.2 Results and Discussion

As described above, we consider three sets of binding complexes, namely, drug-DNA, barnase-

barstar and RNA-peptide systems. In the rest of this section, we explore the influence of

grid spacing in PBE solvation and binding free energy estimations using our MIBPB solver.

Motivated by well-converged estimations of electrostatic solvation free energies at very

coarse grid spacings as previously discussed, we are interested in predicting the binding free
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energies for all RNA-drug, barnase-barstar, and RNA-peptide complexes using our MIBPB

package.

We correlate the binding free energy calculated at the finest grid spacing, h=0.2 Å,

and ones estimated at coarser mesh sizes, h=0.3 Å, · · · , 1.1 Å. Figure 5.7 illustrates these

relationships with the regression lines whose parameters are revealed in Table 5.5. Indeed,

the PB binding energy estimation behaves the same as the PB solvation calculation in our

MIBPB technique. Specifically, R2 is always 1 at the fine mesh, h = 0.3 Å. Moreover,

these values are still satisfactory at relatively coarser mesh sizes. For example, at the grid

spacing of h = 1.1, the R2 and slope of the regression line for DNA-drug, barnase-barstar,

and RNApeptide complexes are, respectively, (0.9747,1.0081), (0.9965,0.9974), and (0.9999,

0.9974). In contrast, the R-squared values reported in Ref. [107] computed between 0.3Åand

1.0 Åare unacceptable for SESs, and usually less than 0.62. Our statistical measures strongly

support the reliable binding energy prediction of our solver at coarse grid sizes.

The trend of binding free energy at different grid spacings can be seen clearly in Figs.

5.8-5.10 which plots ∆∆Gel against grid size varying between 0.2 Å and 1.1 Å for DNA-

drug, barnase-barstar, and RNA-peptide complexes, respectively. Based on these figures,

our solver can rank the binding free energy for DNA-drug complexes at grid spacing of

0.6 Å barnase-barstar complexes at grid spacing of 0.8 Å and RNA-peptide complexes at

significantly coarse grid spacing of 1.1 Å. Therefore, we can draw a conclusion that the

common use of grid size being 0.5 Å is still adequate for predicting the binding energy free

without producing a misleading result.
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Figure 5.7: Electrostatic binding free energy, for all complexes with different grid sizes plotted
against the one computed with a finest grid size of h = 0.2 Å(a) DNA-drug with pair (0.2
Å, 0.3 Å); (b) DNA-drug with pair (0.2 Å, 0.7 Å); (c) DNA-drug with pair (0.2 Å, 1.1 Å);
(d) Barnase-barstar with pair (0.2 Å, 0.3 Å); (e) Barnase-barstar with pair (0.2 Å, 0.7 Å);
(f) Barnase-barstar with pair (0.2 Å, 1.1 Å); (g) RNA-peptide with pair (0.2 Å, 0.3 Å); (h)
RNApeptide with pair (0.2 Å, 0.7 Å); (i) RNA-peptide with pair (0.2 Å, 1.1 Å).
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Table 5.5: R2 values and best fitting lines of electrostatic binding free energies with different
grid sizes.

Grid sizes (pair) R2 Best fitting line
DNA-drug (0.2, 0.3) 1.0000 y=0.9993x+0.0194

(0.2, 0.4) 0.9999 y=0.9987x+0.0273
(0.2, 0.5) 0.9998 y=1.0028x+0.0164
(0.2, 0.6) 0.9991 y=1.0047x+0.2256
(0.2, 0.7) 0.9982 y=1.0074x+0.1394
(0.2, 0.8) 0.9966 y=1.0110x+0.1484
(0.2, 0.9) 0.9906 y=0.9655x+1.2385
(0.2, 1.0) 0.9875 y=0.9827x+0.5894
(0.2, 1.1) 0.9747 y=1.0081x+0.0709

Barnase-barstar (0.2, 0.3) 0.9999 y=0.9974x+0.2035
(0.2, 0.4) 0.9999 y=0.9997x-0.0492
(0.2, 0.5) 0.9995 y=1.0318x-2.7755
(0.2, 0.6) 0.9946 y=0.9878x+1.5525
(0.2, 0.7) 0.9932 y=1.0090x+0.1819
(0.2, 0.8) 0.9883 y=0.9976x+3.7333
(0.2, 0.9) 0.9493 y=0.9382x+5.3970
(0.2, 1.0) 0.9384 y=1.0912x-3.8377
(0.2, 1.1) 0.8002 y=0.9974x+18.2837

RNA-peptide (0.2, 0.3) 1.0000 y=0.9997x-0.0655
(0.2, 0.4) 1.0000 y=1.0001x-0.1106
(0.2, 0.5) 1.0000 y=1.0012x-0.2755
(0.2, 0.6) 1.0000 y=0.9999x+0.2021
(0.2, 0.7) 0.9999 y=1.0037x-0.3756
(0.2, 0.8) 1.0000 y=1.0004x+0.6673
(0.2, 0.9) 0.9999 y=0.9927x+1.9755
(0.2, 1.0) 0.9997 y=0.9923x+2.8775
(0.2, 1.1) 0.9998 y=0.9937x+1.7992

5.6 Conclusion

Poisson-Boltzmann (PB) theory is an established model for biomolecular electrostatic analy-

sis and has been widely used in electrostatic solvation and binding energy estimation. In this

chapter, we present a grid size almost independent PB solver, i.e., MIBPB software, it makes

the accurate and coarse grid PB software possible. The main theme of the MIBPB solver
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Figure 5.8: Binding electrostatic energy for DNA-drug complexes with grid sizes from 0.2
Å to 1.1 Å. The markers and PDBIDs are as follows yellow circle : 102d, magenta circle
: 109d, cyan circle : 121d, green circle : 127d, red circle : 129d, blue circle : 166d, black
circle : 195d, yellow diamond : 1d30, magenta diamond : 1d63, cyan diamond : 1d64, green
diamond : 1d86, red diamond : 1dne, blue diamond : 1eel, black diamond : 1fmq, yellow
square : 1fms, magenta square : 1jtl, cyan square : 1lex, green square : 1prp, red square
: 227d, blue square : 261d, black square : 264d, yellow triangle: 289d, magenta triangle:
298d, cyan triangle: 2dbe, green triangle: 302d, red triangle: 311d, blue triangle: 328d,
black triangle: 360d.

is rigorously treating four details that referred in the PB equation. First, the molecular

surface definition, SES, is analytically implemented in the Cartesian grid for the purpose of

the discretization of the PB equation, which is different from the molecular surface used in

most of the current existing PB solvers, most of which utilized the approximated SES instead

of the exact SES. Second, the singular charges are treated by the Green’s function instead

of conventional method that project the singular charges to the closest eight grid points,

the projection methods usually yields the charges be projected to the grid in the solvent

domain when the coarse grid is employed, the Green’s function treatment makes the coarse

grid treating of the singular charges possible. Third, the interface conditions arise in the PB

equation are treated rigorously through the interface conditions matching, in the literature,
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Figure 5.9: Binding electrostatic energy for barnase-barstar complexes with grid sizes from
0.2 Å to 1.1 Å. The markers and PDBIDs are as follows yellow circle : 1b27, magenta circle
: 1b2s, cyan circle : 1b2u, green circle : 1b3s, red circle : 1x1u, blue circle : 1x1w, black
circle : 1x1x, yellow diamond: 1x1y, magenta diamond: 2za4.

Figure 5.10: Binding electrostatic energy for RNA-peptide complexes with grid sizes from
0.2 Å to 1.1 Å. The markers and PDBIDs are as follows yellow circle : 1a1t, magenta circle :
1a4t, cyan circle : 1biv, green circle : 1exy, red circle : 1g70, blue circle : 1hji, black circle :
1i9f, yellow diamond : 1mnb, magenta diamond : 1nyb, cyan diamond : 1qfq, red diamond
: 1ull, green diamond : 1zbn, blue diamond : 2a9x, black diamond : 484d.
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there are some other methods that can treat these conditions with simple geometry while

our method can handle geometry with arbitrary complex geometry. Fourth, the reaction

field potential extension utilized for the evaluation of the reaction field energy, this posterior

treatment avoids the accuracy reduction due to the usage of the reaction field potential in

solvent.

Due to the mathematical rigorously treatment and the utilization of second order con-

vergence scheme, the MIBPB solver converge very fast. Which leads to the grid size almost

independent property of the PB solver, this property was verified by a large amount of test

cases includes both analytic tests and the real biomolecule tests, all the tests demonstrate

that the current PB solver is grid size independent. Through the test of the stability with

respect to different surfaces, the reduced molecular surface (MSMS surface) and the ana-

lytical Eulerian solvent exclusive surface (ESES), the current PB solver’s grid independent

property is shown to be independent from the molecular surface used. Furthermore, the

present paper solves two problems proposed in Robert C. Harris et als paper [107] namely,

qualitative ranking the biomolecular complexes by their electrostatic binding free energies

at different grid spacings, and the convergence calculation of the binding free energies on the

solvent excluded surface. Highly accurate and highly stable calculation of the binding free

energy plays a critical role in computational chemistry, also has lots of important pharma-

ceutical applications. With a better estimation of the binding free energies will helps a lot on

the drug design and some other industries. The current MIBPB solvers perform extremely

accurate and stable for both the electrostatic solvation and binding energies calculation. The

current results show that the widely used grid size 0.5 Å can give accurate enough results

for both qualitatively ranking the biomolecular complexes and the quantitatively evaluating

the electrostatic binding free energies, actually when the grid size is less than 0.7 Å the
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results is already suitable for the ranking of the complexes, and the binding free energies

calculated at the coarser grid is highly consistent and correlated with that at finer grid, the

binding energies also converge to the benchmark results. In sum, this work developed a grid

size independent PB solver, which makes the coarse grid PB solver becomes possible and

indirectly speed up the PB solver.
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Chapter 6

Hybrid Physical and Statistical

Models for Solvation Free Energy

Prediction

6.1 Introduction

Solvation in which separated solvent and solute molecules are combined to form a solution,

is an elementary physical process in nature that provides a foundation for more complicated

chemical and biological processes, such as ion channel permeations, protein ligand binding,

electron transfer, signal transduction, DNA specification, transcription, post-transcription

modification, gene expression, protein synthesis, etc. Therefore, the understanding of sol-

vation is a prerequisite for the quantitative study of other more complex chemical and

biological processes and is of paramount importance to chemistry, physics and biology

[228, 60, 204, 228]. The most basic and reliable experimental observation of solvation is

the solvation free energy, which measures the free energy change in the solvation process.

As a result, one of the most important tasks in the solvation modeling and computation

is the prediction of solvation free energies, which has recently drawn much attention in

computational biophysics and chemistry [60, 140, 204, 228, 62, 266].
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A large variety of solvation models have been developed in the past few decades for

solvation analysis and solvation free energy prediction. In general, these models can be

classified into either knowledge-based models or physical-based models. Knowledge-based

models usually utilize a large amount of available data of solvation free energies to train

statistical models for the solvation free energy prediction. One example of this type of

model makes use of solvent accessible surface areas, solvent excluded surface areas or cal-

ibrated atomic surface areas for solvation free energy predictions [260]. Knowledge-based

models can provide relatively accurate predictions provided that enough experimental data

are available. On the other hand, physical-based solvation models are based on fundamental

laws of physics. These models can be further classified into three major classes. One of them

is explicit solvent models in which both solvent and solute molecules are described at the

atomic or electronic level. This class of models are accurate in general, but usually com-

putationally expensive [214, 156, 138]. Another class of models are integral equation based

solvation theories [110, 203, 200], in which the solute molecule is still modeled at the atomic

level, while the solvent is modeled by statistical mechanics, such as liquid density functional

theory, Ornstein-Zernike equation with hypernetted-chain, Percus-Yevick equation or other

specified closure. Integral equation based solvation models reduce the number of degrees of

freedom dramatically compared to the explicit solvent models. A major feature of integral

equation approaches is that these methods are able to provide a good approximation of sol-

vent microstructures near the solvent-solute interface [91]. The other class of the physical

based solvation models is implicit solvent models [192, 56, 211, 199, 83, 6, 90, 270, 43], in

which the solute molecule can be modeled at either the atomic or the quantum mechanical

level, while the solvent is described as a dielectric continuum.

Compared to other methods, implicit solvent models have advantages of involving a small
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number of degrees of freedom, highly accurate modeling of strong and long-range electro-

static interactions that often dominate solvation phenomena, and convenient treatments of

solvent-solute electronic polarization effects [56]. In implicit solvent models, the solvation

free energy is typically divided into polar and nonpolar components. The polar solvation

free energy is due to electrostatic interactions and can be modeled by a number of ap-

proaches, including Born dielectric sphere model, Kirkwood model [136], Generalized Born

(GB) model [124, 99, 95, 75, 64, 11], Polarizable Continuum Model (PCM) [121, 239, 71]

and Poisson-Boltzmann (PB) theory [195, 218, 208, 112]. Among these approaches, Born

dielectric sphere model treats the solute molecule as the dielectric sphere with a centrally

located atomic charge is the simplest one. The Kirkwood model gives analytical expressions

for electrostatic potentials in a spherical solute-solvent system with multiple charges inside

the solute molecule [136]. The Generalized Born (GB) model [124, 99, 95, 75, 64, 11] is able

to deal with arbitrarily shaped molecules and accounts for the impact of each point charge

by its effective distance (i.e., the Born radius) from the solvent-solute interface [234, 57].

The GB model is relatively fast, while depends on other methods, such as the PB theory,

for its parametrization. The PCM describes solute electrons by using quantum mechanics

so that solvation induced polarizations can be accounted through an iterative procedure.

A few different versions of PCMs have been reported, including dielectric PCM, integral

equation formalism version PCM, and the variational PCM models [121, 239, 71]. PCM is

relatively computationally expensive due to its quantum mechanical charge calculation while

its accuracy is bounded by the PB type of treatment of electrostatic potential as well as the

quality of solvent-solute interfaces. The PB theory can be derived from more fundamental

Maxwell’s equations [195, 218, 208, 112, 90]. It is more accurate than the GB model and

computationally more efficient than the PCM. The PB can be easily coupled with quantum
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mechanics for a more accurate description of the solute charge density [262, 263, 45]. It has

become one of the most popular solvation models due to its relatively low computational

cost and high modeling accuracy for biomolecules.

The nonpolar solvation component has been modeled by a number of terms. A popular

approach, based on the Scaled-Particle Theory (SPT) for nonpolar solutes in aqueous solu-

tions [226, 197], is to use a solvent-accessible surface area (SASA) term [230, 167]. It was

shown that a Solvent-Accessible Volume (SAV) term is relevant in large length scale regimes

[163, 114]. Recent studies indicate that SASA based solvation models may not describe van

der Waals interactions near solvent-solute interfacial region [84, 83, 50, 246]. A combination

of surface area, surface enclosed volume, and van der Waals potential has been shown to

provide accurate nonpolar solvation predictions [46, 248].

The polar and nonpolar components are typically decoupled in traditional implicit solvent

models. Recently, new efforts have been made to couple polar and nonpolar components

[70, 270, 43]. Differential geometry based solvation models make use of the differential

geometry theory of surfaces to dynamically couple polar and nonploar models by surface

evolution, which is driven by free energy optimization [270, 45, 43, 44]. Coupled with an

optimization procedure, this model was shown to deliver some of the best nonpolar solvent

free energy prediction [46]. By applying constrained optimization to nonpolar parameter

selection, this model provides state-of-the-art solvation free energy fitting and cross validation

results for a large number of solute molecules [248].

It is important to validate solvation models by experimental data. SAMPLx blind sol-

vation prediction project, aimed at testing protein ligand binding models, also provides

benchmark tests of the performance of the solvation models. Many different solvation ap-

proaches have been tested by the SAMPLx challenging molecules [183, 177, 106, 205, 176,
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173, 207, 174, 81, 105, 86, 87]. Implicit solvent models are among the most competitive

approaches in SAMPLx tests.

The objective of the present work is to develop a protocol that hybrids physical and

knowledge (or statistical) models for the blind solvation free energy prediction. In our ap-

proach, physical models are used for modeling the polar solvation free energy. Specifically,

we utilize PB theory for computing electrostatic solvation free energies. Both a point charge

based PB model and a KSDFT based polarizable PB model are developed in the present

work. For the KSDFT based PB model, an iterative process is developed to take care of the

solvent polarization and solute response [45]. In our statistical models, the nonpolar solva-

tion free energy is predicted based on the similarity analysis of solute molecules. Essentially,

we assume that similar molecules admit the same set of nonpolar parameters. In this work,

we examine two statistical models. One of them is based on a functional group scoring, and

the other is based on a nearest neighbor approach. Both statistical models utilize machine

learning methods to optimize parameters. A database contains the solvation free energies in

aqueous solvent for 668 solute molecules is collected from the literature [31, 175] to validate

the proposed solvation protocol. It is found that the present approach provides some of the

best blind predictions of solvation free energies.

The rest of this chapter is organized as follows. In section 6.2, we present the polar

solvation models, in which both the classical Poisson model and the polarizable Poisson model

will be discussed. Section 6.3 presents two nonpolar solvation models, namely, functional

group scoring and nearest neighbor approaches. An algorithm for unified blind solvation

free energy prediction is developed in Section 6.3.3. The leave-one-out test of 668 molecules

is employed to validate the proposed protocol. Finally, the accuracy and robustness of the

proposed protocol is demonstrated by five SAMPL test sets.
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6.2 Polar Solvation Models

In this section, we will derive the polarizable Poisson (Boltzmann) model based on the

variational principle. We will start from reviewing the Poisson (Boltzmann) model from the

energetic variational approach point of view, then we will introduce the energy functional

for the polarizable Poisson (Boltzmann) model. There are two main advantages of the

polarizable Poisson (Boltzmann) model:

• Ab Initio calculation of the solute molecule charge distribution, instead of the force

field parametrization.

• Solvent solute polarization effects are incorporated into the solvation model.

6.2.1 Free Energy Functional

Consider the solution domain Ω formed by the solute and solvent molecules, which take

the domains Ωm and Ωs, respectively. Consider the following multiscale descriptions of the

solution system.

• Continuum description of the solvent domain, which models the solvent as dielectric

continuum; and the atomic modeling of the solute domain, where the solute molecule is

modeled as atoms equipped with partial charges at the atomic centers. The separation

of the solute and solvent domain is described by the molecular surface of the solute

molecules.

• Continuum description of the solvent domain, while the solute domain is modeled at

the electronic level. The molecular surface of the solute molecule is employed as the

separation of the two domains.
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In the following we will formulate the polar free energy functional of the two multiscale

models.

• For the first multiscale model, that is, continuum modeling of solvent domain and

atomic modeling of the solute domain. The polar free energy functional can be written

as:

G
p
1 =

∫
Ω

{
χ

[
ρtotalφ−

1

2
εm|∇φ|2

]
+ (1− χ)

[
−1

2
εs|∇φ|2

]}
dr, (6.2.1)

where χ and 1− χ are the characteristic functions of the solute and solvent domains,

respectively. ρtotal =
∑Nm
i=1 qiδ(r−ri) is the partial charges inside the solute molecule,

with qi be the amount of partial charge located at the ith atom center ri, Nm be

the number of atoms of the solute molecules, δ(r − ri) is the delta function at the

position ri. εm and εs are the dielectric constants of the solute and solvent domains,

respectively. φ
.
= φ(r) is the electrostatic potential field in the solution.

• For the second multiscale model, in which electronic modeling of the solute molecule is

used to replace the atomic modeling in the first model, more specifically, we consider the

Kohn-Sham Density Functional Theory (KSDFT) modeling of the electronic structure.

The polar free energy functional now can be formulated as:

G
p
2 =

∫
Ω
χ

[
ρ̂totalφ−

1

2
εm|∇φ|2

]
+ (6.2.2)

(1− χ)

[
−1

2
εs|∇φ|2

]
+ χ

[∑
i

~2

2m
|∇ψi|2 + EXC [n]

]
dr,

where ρ̂total = qn(r)−qnn(r) is the charge distribution in the solute domain, with q be

the unit charge of an electron, n(r) be the electron density, nn(r) =
∑
I ZIδ(r −RI)

is the nucleus density, in which ZI and RI are the atomic number and position vector
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of nucleus I, respectively. {ψi} are the Kohn Sham orbitals. m
.
= m(r) is the position

dependent electron mass, ~ = h
2π with h be the planck constant. The meanings of the

same notations are inherited from the previous energy functional G
p
1 . EXC [n] is the

exchange-correlation energy which is a function of the electron density that used to

describe the many particles interactions in KSDFT scenario.

Remark 6.2.1. The Kohn Sham orbital {ψi} subject to the following orthonormal

constraint

< ψi|ψj >=

∫
ψ∗i (r)ψj(r)dr =


1, i = j

0, i 6= j

(6.2.3)

where ψ∗i (r) is the conjugate of ψi(r)

Remark 6.2.2. The following relation between Kohn Sham orbital and electron density

holds:

n(r) =
∑
i

|ψi|2. (6.2.4)

Remark 6.2.3.
∫

Ω χ [ρ̂totalφ] dr describes the electron-electron, electron-nucleus two

body Columbic interactions. To avoid double counting, we neglect the two body Columbic

interaction energy in the above energy functional that describes the KSDFT energy

functional.

So far, we have already formulated the polar energy functional for both multiscale models

of the electrostatics interaction in the solute-solvent system. In the following parts, we will

derive the governing equations of the two models by the variational principle.
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6.2.2 Poisson model

In this subsection, we will derive the governing equation for the model with atomic model-

ing of the solute molecule and continuum modeling of the solvent model. Euler-Lagrange

equation indicates that by taking
δG

p
1

δφ = 0 yields the following Poisson equation:

χ [ρtotal +∇ · (εm∇φ)] + (1− χ) [∇ · (εs∇φ)] = 0, (6.2.5)

which can be written as:

−∇ · (ε(r)φ((r))) = ρtotal, (6.2.6)

where the dielectric function ε(r) has the following form:

ε(r) =


εm, r ∈ Ωm

εs, r ∈ Ωs
(6.2.7)

The above Poisson equation describes the electrostatics potential distribution in the solute-

solvent system, in general, the solute and solvent domains take different dielectric constants,

i.e., εs 6= εm.

6.2.3 Polarizable Poisson model

A more accurate physical description of the solute molecule is to model the solute molecule

at the electronic level, in which the charge distribution of the solute molecule is calculated in

an Ab Initio approach. In the water solvent environment, especially for the polar molecules,

the interaction between solvent and solute molecules cannot be neglected, which can change

the charge distribution of the solute molecule dramatically compare to that at the vacuum
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environment. The second model presented above can be used to include the solvent effects to

the solute molecule charge distribution. In this part, we will derive the governing equations

for the second model.

When taking the variational derivative of the polar free energy functional G
p
2 with respect

to the electrostatics potential φ(r), i.e.,
δG

p
2

δφ = 0, gives the following Poisson equation for

describing electrostatics potential:

−∇ · (ε(r)∇φ(r)) = ρ̂total. (6.2.8)

Due to the Ab Initio calculation of the charge distribution, the equation for describing

the electronic structure is required, to obtain this, we take the variational derivative of the

polar free energy functional G
p
2 with respective to the Kohn Sham orbital subject to the

orthonormal constraints of the orbital, gives

δ
[
∆G

p
2 +

∑
i,j(δij− < ψi|ψj >)

]
δψi

= 0,

which leads to

χ [2qφ]ψ − χ
[
2
~2

2m
∇ · (∇ψi)

]
+ χ

[
δEXC[n]

δψi

]
− χ

2
∑
j

ψjλji

 = 0,

which can be written as

[
− ~2

2m
∆ + qφ+ VXC[n]

]
ψi =

∑
j

ψjλji, (6.2.9)

where VXC
.
=

δEXC[n]
2δψi

.
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Since

λij =< ψi|Λ|ψj >=< ψj |−
~2

2m
∆+qφ+VXC[n]|ψi >=< ψi|−

~2

2m
∆+qφ+VXC[n]|ψj >∗= λ∗ji,

that is, Λ
.
=
(
λij
)

is Hermitian, hence there exist a unitary matrix U , such that

U∗ΛU = diag(E1, E2, · · · ),

consider the change of basis {ψ̂i} = {ψi}U , then Eq.(6.2.9) becomes

(
− ~2

2m
∆ + qφ+ VXC[n]

)∑
j

ψ̂j (U∗)ji =
∑
j,k

ψ̂k (U∗)kj λji,

multiply both sides by Uil and contract over index i, yields

(
− ~2

2m
∆ + qφ+ VXC[n]

)∑
i,j

ψ̂j (U∗)ji Uil =
∑
i,j,k

ψ̂k (U∗)kj λjiUil,

which can be simplified to

(
− ~2

2m
∆ + qφ+ VXC[n]

)
ψ̂l = Elψ̂l.

Note the unitary transformation does not change the energy of basis, for the sake of simplicity,

we do not distinguish between two basis set, then we ends up with the following generalized

Kohn Sham equation for the description of the Kohn Sham orbital:

(
− ~2

2m
∇2 + qφ+ VXC [n]

)
ψi = Eiψi, (6.2.10)
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where VXC [n]
.
=

δEXC [n]
2ψiδψi

=
dEXC [n]

dn .

The above generalized Kohn Sham equation can be further written as:

(
− ~2

2m
∇2 + qφRF + U0

eff

)
ψi = Eiψi, (6.2.11)

where φRF = φ− φ0 is the reaction field potential of the solute in the solvent environment,

in which φ and φ0 are the electrostatic potential generated by the solute in the solvent and

solute environments, respectively. And U0
eff is the effective Kohn Sham potential in the

vacuum environment.

By denoting Ueff
.
= qφRF + U0

eff as the effective potential of the generalized Kohn Sham

equation, the generalized Kohn Sham equation Eq.(6.2.11) can be simplified as:

(
− ~2

2m
∇2 + Ueff

)
ψi = Eiψi. (6.2.12)

Remark 6.2.4. Compared to the KSDFT in vacuum, in generalized KSDFT, the reaction

field energy in the solute-solvent system is added into the the Hamiltonian of KSDFT.

6.2.4 Boundary and interface conditions

To make the aforementioned two models well-posed, both the boundary and interface con-

ditions need to be specified.

In terms of the boundary condition, generally the following far field boundary condition

is enforced for the equation of electrostatics potential:

φ(∞) = 0. (6.2.13)
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However, in the practical numerical implementation of the Poisson equation, the finite size

solute-solvent domain Ω is required, in this case, the following Deybe-Hückel boundary

conditions are enforced, respectively, for the electrostatics equation in two models.

• For the model with atomic modeling of solute molecule, we use the following boundary

condition:

φ(r) =

Nm∑
i=1

qi
4πεs|r− ri|

, ∀r ∈ ∂Ω. (6.2.14)

• For the model with quantum mechanics modeling of solute molecule, we use the fol-

lowing boundary condition:

φ(r) =

∫
Ω

ρ̂total(r̃)

4πεs|r− r̃|
dr̃ ∀r ∈ ∂Ω. (6.2.15)

Due to the fact that the solute and solvent domains admit different dielectric constants,

there is an interface Γ, which is described by the molecular surface of the solute molecule,

between two domains. Across this interface, the following conditions on the continuity of

the electrostatics potential and electrostatics flux are enforced.

[φ]|Γ = φs(r)− φm(r) = 0, ∀r ∈ Γ, (6.2.16)

[εφn] = εsφs(r) · n− εmφm(r) · n = 0, ∀r ∈ Γ, (6.2.17)

where [∗] denotes the jump of the quantity ∗ across the interface Γ. φs and φm denote for

the electrostatic potential limits at the interface point pointing from the solvent and solute

domain, respectively. n is the outer normal direction on the interface pointing from solute
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domain to solvent domain.

6.2.5 Numerical Method

Mathematically, the polarizable Poisson model is formed by the following elliptic interface

problem 

−∇ · (ε(r)φ(r)) = ρ̃total, ∀r ∈ Ω

φs(r)− φm(r) = 0, ∀r ∈ Γ

εs∇φs(r) · n− εm∇φm(r) · n = 0, ∀r ∈ Γ

φ(r) =
∫

Ω
ρ̂total

4πεs|r−r̃|dr̃, ∀r ∈ ∂Ω.

(6.2.18)

coupled with the following generalized KSDFT equation

(
− ~2

2m
∇2 + Ueff

)
ψi = Eiψi. (6.2.19)

The elliptic interface problem is solved similar to the above without the Green’s func-

tion treatment of the singular charge procedure, instead the charge is locally projected to

the nearest eight grid points in the discretized computational solute solvent domain. The

generalized KSDFT is solved by the SIESTA software with the reaction field energy added

into the Kohn Sham effective potential. Due to the coupling of the Poisson model and the

KSDFT, in which the electron density calculated by KSDFT is used for the charge source in

the Poisson model, in turn, the electrostatic potential calculated from the Poisson model is

further used by generalized KSDFT for updating the electronic structure. The coupled mod-

els need to be solved in an self-consistent approach, the pseudo-code for the self-consistent

algorithm is demonstrated in Algorithm ??. During the communication of the two solvers,

the total charge conservation scheme is utilized, the scheme contains two steps:
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• Project the charge density located on each mesh grid of SIESTA solver to the nearest

8 grids of the Poisson solver.

• Assemble the projected charges on the mesh grids of the Poisson solver.

Pseudopotential is used to eliminate the complicated effects of core electrons in SIESTA

solver [224], for all calculations, the default double-ζ plus single polarization (DZP) basis

are used. The MeshCutOff is set as 125 Rydberg and local density approximation (LDA) is

used to approximate the exchange correlation potential. The solution method is set to be

”diagon”.

6.2.6 Reaction Field Energy Calculation

In this part, we will formulate the polar free energy, which is also called the reaction field

energy referred in the previous parts. Due to the different numerical methods in two polar

solvation models, the polar solvation free energy is calculated by different formulas.

• In the Poisson model, the reaction field potential can be written as φRF(r) = φ0(r) +

φ̃(r), in turn, the polar free energy can be written as:

∆G
p
1 =

Nm∑
i=1

q(ri)φRF(ri). (6.2.20)

• In the polarizable Poisson model, the reaction field potential can be written as φRF(r) =

φinhomo(r) − φhomo(r), where φinhomo(r) is solved from the Poisson model with the
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following dielectric function:

ε(r) =


εs, r ∈ Ωs

εm, r ∈ Ωm

and the φhomo(r) is solved with the homogeneous permittivity function ε(r) = εs, ∀r ∈

Ω.

In the charge density formalism, the polar free energy can be written as:

∆G
p
2 =

∫
Ωm

q(r)φRF(r)dr. (6.2.21)

For the sake of abbreviation, without ambiguity, we do not distinguish between ∆G
p
1 and

∆G
p
2 , and denote them unified as ∆Gp.

6.3 Nonpolar solvation models

In our earlier work, the nonpolar solvation free energy was modeled by [270, 45, 43, 44]

GNP = γA+ pV + +ρ0

∫
Ωs
UvdWdr, (6.3.1)

where γ and A are, respectively, surface tension and area of the solute molecule. Additionally,

p and V are, respectively surface enclosed volume and hydrodynamic pressure difference.

Finally, ρ0 is the solvent bulk density, and UvdW is the van der Waals interaction potential,

i.e., the Lennard-Jones potential. The integration is over solvent domain Ωs. This nonpolar

solvation free energy model was shown to offer excellent predictions of experimental data for
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various nonpolar molecules [46]. In our recent work, we have demonstrated superb results

for a large number of polar and nonpolar molecules when the nonpolar model in Eq. (6.3.1)

is combined with a PB model for the polar solvation component [248].

The Lennard Jones potential offers a physical model for dealing with vdW interactions

near the solvent-solute interface. However, a drawback of this nonpolar term is that the

probe radius in the Lennard Jones potential is nonlinear and cannot be optimized together

with other nonpolar parameters. Mathematically, for a small probe radius, the vdW term

for a given atom is proportional to the atomic surface area. Therefore, atomic surface area

approach used by Kollman and co-workers [260] should have a similar modeling effect as

that of the Lennard Jones potential. Based on this observation, we propose the following

nonpolar solvation energy model

∆GNP =
N∑
α=1

γαAreaα + pVol =
N∑
α=1

∑
i∈α

γαAreaαi + pVol, (6.3.2)

where N is the total number of atomic types in a given solute molecule. Here, γα and Areaα

are the surface tension and surface area of the αth type of atoms, respectively, and Areaαi

is the surface area of the ith atom in the α type of atoms. In this nonpolar solvation free

energy model, the parameters γα and p need to be learned from a training set. Both the

Lennard Jones and the atomic-surface-area based nonpolar solvation models are validated

in the present work.
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6.3.1 Modeling of nonpolar solvation free energy-scoring func-

tional groups

6.3.1.1 Functional group modeling

In our nonpolar solvation model, we assume that each functional group of molecules admits

the same set of optimal parameters. Similar approach has been successfully used in the

literature [220], including ours [46, 248]. In this work, we further incorporate machine

learning type of methods for the nonpolar solvation free energy prediction. To this end, the

whole data set, which contains 668 molecules, is partitioned into training sets and testing

sets. In the leave one out test case, each step we only leave one molecule out as the test

set, all the other molecules are regarded as the training set. In a specific leave-SAMPLx-out

study, all the SAMPLx molecules are left as the testing set, while the remaining molecules are

treated as the training set. Furthermore, the training set in this scenario is also divided into

two parts: i) the mono-functional group molecules, in which molecules of a specific functional

group is used to train a set of parameters for all similar molecules; and ii) the poly-functional

groups molecules in which scoring weights are used to weight the contributions of parameters

of various involved functional groups.

Table 6.1 lists twenty functional groups used in the training set. We denote {T1, T2, · · · , Tn}

a given set of n molecules with a specific functional group from the above 20 groups. For a

molecule indexed j, the solvation free energy calculated from the polar solvation free energy

model, atomic surface areas and molecular volume are listed as:

{
∆G

p
j ,Area1

j ,Area2
j , · · · ,AreaNj ,Vol

}
, (6.3.3)
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Table 6.1: Functional groups and corresponding number of molecules used in the classifica-
tion.

Group Number Group Number
alkynyl 8 alkenyl 38
aldehyde group 11 nitrile group 5
carboxyl 7 ester group 34
ketone 23 amino 35
nitro 9 alcoholic hydroxy 33
phenolic hydroxyl 16 ether 22
alkane 38 aromatics 33
nitrogen heterocyclic 19 chlorinated hydrocarbon 53
Nitrate 5 amid 7
thiol 4 thioether 5

where j = 1, 2, · · · , n.

In our approach, the solvation free energy is modeled as the sum of the polar and nonpolar

parts, thus for the jth molecule, the corresponding modeled solvation free energy can be

expressed as:

∆Gj = ∆GP
j +

N∑
α=1

γαAreaα + pVol
.
= Gj(P), (6.3.4)

where P
.
= {γ1, γ2, · · · , γN , p} is the set of parameters to be optimized.

For a given set of molecules with the same mono-functional group, we denoted ∆G(P)
.
=

{G1(P), G2(P), · · · , Gn(P)}, and the associated experimental solvation free energy is de-

noted as ∆GExp .
=
{

∆G
Exp
1 ,∆G

Exp
2 , · · · ,∆GExp

n

}
. Then the optimal parameter set can be

obtained by solving the following Tikhonov regularized least square problem (also known as

ridge regression) which has a closed form solution:

argminP

{
||∆G(P)−∆GExp||2 + λ||P||2

}
, (6.3.5)

where || ∗ ||2 is the L2 norm of the quantity ∗. Here λ is the regularization parameter chosen

to be a large number, such as 100, in the present work to ensure the dominance of the first
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term and avoid over-fitting through controlling the magnitude of ||P||2..

6.3.1.2 Scoring the functional groups

Most molecules in the SAMPL blind test sets involve poly-functional groups. In this case, we

further employ the poly-functional group molecules in the training set for training the optimal

relative scoring weights between different functional groups. According to the relative scoring

weights, the scoring weights between all the functional groups can be obtained through a

simple normalization procedure. We denote
{
T̃1, T̃2, · · · , T̃n′

}
a given set of poly-functional

group molecules that has the same functional groups in the training set. The associated

optimized parameter sets are P1,P2, · · · ,Pm, where m is the number of functional groups

in this set, each Pi, i = 1, 2, · · · ,m is learned through solving the regularized optimization

problem given by Eq. (6.3.5). For the jth molecule in this poly-functional group set, we

model its solvation free energy as:

∆Ḡj(ω) =
m∑
i=1

ωi∆Gj(Pi), (6.3.6)

where ||ω||1
.
=
∑m
i=1 ωi = 1, with ωi being the scoring weight of ith functional group.

The relative scoring weights for the m functional groups associated to this set of poly-

functional groups molecules can be learned via solving the following constraint optimization

problem,

argminω||∆G̃(ω)−∆G̃Exp||2, (6.3.7)

subject to

||ω||1 = 1, (6.3.8)
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and

ωi ≥ 0, ∀i = 1, 2, · · · ,m, (6.3.9)

where ∆G̃(ω) and ∆G̃Exp represent, respectively, the predicted and experimental solvation

free energies for this group of poly-functional group molecules. Since both the optimization

object given by Eq.(6.3.7) and the constraint conditions in Eqs. (6.3.8-6.3.9) are convex with

respect to the scoring weights ω. The above constrained optimization can be easily solved

via a convex optimization solver in the CVX software package [103, 102].

In the rest of this section, we provide an example to illustrate the procedure of functional

group based approach for solvation free energy prediction. As shown in Fig. 6.1, the target

molecule 2-Chlorosyringaldehyde (Pubchem ID: 53479) contains four different functional

groups. We need to find scoring weights for these functional groups. Note that in the above

molecular searching scheme, pairwisely, the relative weights for each two functional groups

can be determined by solving the constrained optimization problem in Eqs. (6.3.7)-(6.3.8)

for molecules in the two corresponding functional groups. According to the pairwise relative

weights, the functional group scoring in the target molecule can be achieved.

6.3.2 Modeling of nonpolar solvation free energy - nearest neigh-

bor approach

The above functional group based model is tested to be able to provide very accurate sol-

vation free energy prediction provided that for each test molecule, parameters for all of the

involved mono-functional groups can be determined, and a set of molecules with the same

ploy-functional groups can be found in the training set as well. However, for some complex

molecules that contain functional groups beyond those listed in Table 6.1, this method fails.
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Figure 6.1: An illustration of the functional group scoring method for the prediction of
the solvation free energy for molecule 2-Chlorosyringaldehyde (Pubchem ID: 53479), which
contains four functional groups: aldehyde group, phenolic hydroxyl, ether and chlorinated
hydrocarbon. We first compute relative weights between phenolic hydroxyl and chlorinated
hydrocarbon; phenolic hydroxyl and ether; phenolic hydroxyl and ester group; and ester
group and aldehyde group. Then relative weights are combined to generate the full set of
weights ω1, ω2, ω3 and ω4 for solvation free energy prediction.

149



Figure 6.2: Thifensulfuron (Pubchem ID: 91729).

For instance, considering a SAMPL1 test molecule, thifensulfuron, as shown in Fig. 6.2, it

has a very complex structure and contains functional groups cannot be found in Table 6.1.

We therefore propose the following ranking algorithm for nearest neighbor searching.

6.3.2.1 Atomic feature based molecular ranking

To deal with general and complex molecules, we propose another approach to rank molecules,

and develop a nearest neighbor approach for nonpolar solvation free energy prediction. Our

molecular ranking is based on atomic features. Our basic assumption is that if two solute

molecules have similar atomic features, their chemical properties are also similar. Therefore,

these molecules should share the same parameter set for the nonpolar solvation free energy

model. This approach is further described below.

Our method is based on the ansatz that molecules chemical properties are mainly de-

termined by atomic features, including structural features and atomic electrostatic features.

Among them, atomic structural features include atomic type, atom hybridization state and

bonding information. Atomic electrostatic features include atomic charge, atomic dipole,

atomic quadrupole and atomic electrostatic solvation free energy. Atomic features are se-

lected based the criteria that a given atomic feature is retained if it can effectively discrimi-

nate the previously mentioned mono-functional groups listed in Table 6.1. Table 7.1 lists all
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the atomic features that are used for molecule ranking.

Table 6.2: Atomic features used for ranking molecules.

Feature name
Number of atoms
Number of heavy atoms
Number of hydrogen atoms
Number of single bonds
Number of double bonds
Number of triple bonds
Number of aromatic bonds
Number of each type of atoms

Number of sp1 carbon atoms

Number of sp2 carbon atoms

Number of sp3 carbon atoms

Number of sp1 nitrogen atoms

Number of sp2 nitrogen atoms

Number of sp3 nitrogen atoms

Number of sp2 oxygen atoms

Number of sp3 oxygen atoms

Number of sp2 sulfur atoms

Number of sp3 sulfur atoms
Maximum of atomic reaction field energy
Minimum of atomic reaction field energy
Maximum reaction field energy of each type of atoms
Minimum reaction field energy of each type of atoms
Maximum of atomic reaction field energy
Average reaction field energy of each type of atoms
Total absolute charge
Total charge of each type of atoms
Total absolute charge of each type of atoms
Maximum charge of each type of atoms
Minimum charge of each type of atoms
The variation of each type of atomic charges
Maximum of atomic dipole
Maximum of each atomic dipole
Minimum of each atomic dipole
Variation of atomic dipole
Maximum quadrupole
Maximum quadrupole of each type of atoms
Variation of atomic quadrupole
Variation of each type of atom’s quadrupole
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We also construct atomic features by using the statistics variables, i.e., average, maxi-

mum, minimum, and variation of quantities in Table 7.1. Finally, we rule out redundant

features, where redundancy is due to the fact that some atomic features are 100 % correlated

with each other. In this case, only one of these highly correlated features is retained.

Atomic features are calculated by following methods.

• Molecular structural information is parsed by the Open Babel software [169].

• Atomic charge, atomic dipole and atomic quadrupole are obtained via the Distributed

Multipole Analysis (DMA) method [227], in which the charge density is originally

computed by the density function theory with B3LYP and 6-31G basis in the Gaussian

quantum chemistry software [80, 18, 148].

• Atomic electrostatic solavtion energy is calculated by our in-house MIBPB software

[253, 39, 90].

With the above selected atomic features, intuitively, we measure the similarity of molecules

by the Pearson correlation coefficient of atomic feature vectors. Specifically, we denote the

features of two molecules as vector X
.
= {x1, x2, · · · , xk} and vector Y

.
= {y1, y2, · · · , yk},

then their similarity is measured by

CXY =
|
∑k
i=1(xi − x̄)(yi − ȳ)|√∑k

i=1(xi − x̄)2
√∑k

i=1(yi − ȳ)2
,

where x̄
.
= 1

k

∑k
i=1 xi and ȳ

.
= 1

k

∑k
i=1 yi, and k is the dimension of the feature space.

The higher the correlation between two atomic feature vectors indicates the more similarity

between molecules.
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6.3.2.2 Nearest neighbor solvation free energy prediction

By using the above nearest neighbor based nearest molecule searching procedure, for a given

molecule, we obtain the similarity ranking of the remaining molecules with this specified

one, as well as correlations between molecules. In the nearest neighbor prediction of the

nonpolar solvation free energy, we learn the parameters in the nonpolar solvation free energy

expression, Eq. (6.3.2), by a given number of nearest molecules found in the training set.

The number of the nearest molecules used is based on the following principles

• All the molecules whose correlation with a given molecule is greater than 0.99 are used

for the parameter learning for this given molecule;

• If the above criterion yields less than 5 molecules, we use 5 nearest molecules for the

parameter learning. Here the 5-molecule nearest neighbor method is found to provide

the best leave-one-out prediction.

6.3.3 Unified protocol for blind solvation free energy predictions

We utilize a unified protocol for the prediction of solvation free energy. First, for the polar

solvation free energy ∆Gp, we select either the Poisson model with a given point charge force

field or the polarizable Poisson model. Second, for the calculation of the nonpolar solvation

free energy we note that in general, the functional group scoring approach can deliver better

blind predictions than the nearest neighbor approach. Therefore, in our nonpolar energy

prediction step, the functional group scoring method is used whenever it works. Otherwise,

we utilize the nearest neighbor approach.
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6.4 Results and discussions

6.4.1 Date processing and model validation

6.4.1.1 Data sets and force fields

We consider a total of 668 molecules, the structures of these molecules are downloaded from

the Pubchem project. The experimental solvation free energies of these molecules are col-

lected from the literature. This dataset contains molecules from the SAMPL blind solvation

prediction projects, ranging from SAMPL0 to SAMPL4 [184, 105, 86, 87, 106]; and the

remaining molecules in our data set are collected from the literature [30, 261, 153]. Coinci-

dentally, there is a considerable overlap of our database with Mobley’s solvation database,

which is available from http://mobleylab.org/resources.html. More precisely, 589 molecules

in our database are already covered by Mobley’s. The detail information of our dataset is

provided in the supporting material.

For both the standard Poisson model and the KSDFT based polarizable Poisson model,

we consider four types of atomic radii, namely, Amber 6, Amber bondi, Amber mbondi2

[35] and ZAP9 [183] parametrizations. Additionally, for the standard Poisson model, three

sets of charge assignments, namely, OpenEye-AM1-BCC v1 parameters [123], Gasteiger

[85], and Mulliken [35], are tested. Our MIBPB solver [253, 39, 90] is utilized to solve

the Poisson interface problem to obtain electrostatic solvation energies. The probe radius is

set to 1.4Å for the ESES surface generation in all PB calculations.

For the KSDFT based polarizable Poisson model, the Poisson interface problem is coupled

with the generalized KSDFT in a self-consistent approach. The charge density used by

Poisson interface problem is calculated in Ab Initio approach by the generalized KSDFT,
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Table 6.3: Molecules in SAMPLx sets involving bromine and/or iodine atoms.

Test set Molecule
SAMPL0 benzyl bromide
SAMPL1 bromacil

SAMPL2
5-bromouracil
5-iodouracil

SAMPL3 None
SAMPL4 None

here generalization due to the additional solute-solvent reaction field energy is included in

the effective KS potential. The Poisson interface problem is employed for calculating the

reaction field energy. This approach is modified from our earlier differential geometry based

polarizable PB model [45]. We iteratively couple the SIESTA [224] and the MIBPB solver

[253, 39, 90], in which a sharp solvent-solute interface is employed. The SIESTA software

with additional reaction field energy is used for charge density calculation, and our in-house

software is used for reaction field energy calculation. A uniform mesh size of 0.25 Å is

used for solving the Poisson equation in both the standard Poisson and Polarizable Poisson

model. In the polarizable Poisson model, the computed change densities are mapped to the

uniform mesh with the conservation of the total charge.

For the molecules containing iodine atoms, the current level of DFT method used in this

work, including the Gaussian software, cannot handle this element appropriately. Therefore,

for a uniform comparison, we ignore molecules containing iodine atoms. There is a similar

situation for bromine atoms — there is no appropriate pseudo-potential for this atom in

the SIESTA software. Therefore, molecules involving bromine atoms are excluded in our

KSDFT based polarizable PB calculations. Table 6.3 lists four molecules in SAMPLx that

are not considered in some of our predictions.
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6.4.1.2 Atomic surface area and molecular volume calculation

In our nonpolar solvation free energy model, both atomic areas and surface enclosed volume

are required. In a recently developed Eulerian solvent excluded surface (ESES) package,

a second-order accurate numerical scheme for surface area calculations and a third-order

accurate numerical scheme for volume estimations have been developed [157]. A weighted

Voronoi diagram algorithm is implemented to partition a molecular surface area into atomic

surface areas. These schemes have been intensively validated by a large number of test

examples. In this work, both atomic areas and molecular volume are calculated directly by

using our ESES software package [157].

6.4.1.3 Validation of atomic surface area based nonpolar model

In this work, instead of using the classical nonpolar model that includes the van der Waals

interaction between the solvent and solute nonpolar interaction [248] as shwon in Eq. (6.3.1),

we utilize the atomic surface area model given in Eq. (6.3.2) for the corresponding effects.

In this part, we consider a set of numerical test to verify the validity of this treatment. Our

numerical results indicate that the atomic surface area model provides results as good as

those obtained by the van der Waals based nonpolar model.

The van der Waals interaction Eq. (6.3.1) is modeled as a semi-continuous and semi-

atomic potential. More specifically, we consider the 6-12 Lennard potential for modeling

the van der Waals interaction between the continuum solvent and atomistic solute molecules

[248]. The solvent radii in the Lennaed potential is set to be 1.4 Å, which is the same as

that used in all other calculations. Table 6.4 lists the RMSEs with four types of atomic

radii and four charge parametrization methods for the prediction of SAMPL0’s solvation

free energies. From these results, it is seen that for a given force field parametrization, the
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Table 6.4: The RMSEs of the solvation free energy prediction with atomic surface area and
van der Waals interaction models of nonpolar solvation free energy for SAMPL0 test set.
The molecule in the SAMPL0 set that contains Br atom is excluded from this comparison.
All results are in unit kcal/mol

Nonpolar model Radius BCC Mulliken Gasteiger SIESTA

Atomic surface area

Amber 6 1.30 1.27 1.23 0.99
Amber Bondi 1.40 1.30 1.30 0.93
Amber Mbondi2 1.41 1.34 1.33 1.10
ZAP9 1.33 1.39 1.37 1.08

van der Waals

Amber 6 1.42 1.31 1.34 0.93
Amber Bondi 1.44 1.30 1.30 1.05
Amber Mbondi2 1.45 1.38 1.30 1.18
ZAP9 1.44 1.39 1.32 1.32

Table 6.5: The RMSEs of the leave-one-out test of the solvation free energy prediction with
different methods, all with unit kcal/mol

Radius BCC Mulliken Gasteiger SIESTA
Amber 6 1.47 1.49 1.65 1.65
Amber Bondi 1.34 1.48 1.66 1.40
Amber Mbondi2 1.33 1.49 1.68 1.42
ZAP9 1.33 1.39 1.70 1.53

atomic surface area approach provides slightly more accurate nonpolar solvation free energy

prediction. As shown in our earlier work [248], the performance of the semi-continuous and

semi-atomic Lennard Jones potential is sensitive to the choice of the probe radius, due to its

nonlinear dependence on the radius, whereas the SES based atomic surface area approach is

less sensitive to the probe radius. We conclude that in general the atomic surface area based

nonpolar model is at least as good as the Lennard Jones potential based one for modeling

the nonpolar solvation free energy. Therefore, the atomic surface area based nonpolar model

is employed in the rest of this chapter.
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Figure 6.3: The leave-one-out error of the whole training set with 16 different charge and
radius parametrizations. The nearest neighbor approach is employed for solvation free energy
prediction.

6.4.2 Solvation predictions

6.4.2.1 Leave-one-out prediction

We first examine the proposed nearest neighbor approach by the leave-one-out test of 668

molecules. In this examination, we select one molecule at a time and use all other molecules

as the training set to predict the selected one’s solvation free energy. This process is applied

systematically to all the molecules in the whole dataset of 668 molecules. Four different

atomic radius sets are considered, together with four different charge force fields. Our results

are illustrated in Fig. 6.3, the associated values are listed in Table 7.4. In general, all

radius sets and charge force fields perform similarly well. The maximum RMSE is below

1.7 kcal/mol for all methods over all molecules. More specifically, Bondi and Mbondi radii

offer the best overall results. For charge force field AM1-BBC charges appear to provide

the best predictions and their RMSEs are less than 1.5kcal/mol for all the four radius sets.
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Figure 6.4: The plot of optimal leave one out test results, where the optimal prediction
achieves when BCC charge is used in conjunction with either the Amber MBondi2 or the
ZAP9 radius. In both these cases, the prediction with RMSE 1.33 kcal/mol. The correlation
between prediction and experimental solvation free energies are 0.956 and 0.955, respectively,
for the Amber MBondi2 and ZAP9 force fields. The corresponding R2 are 0.913 and 0.911,
respectively.

The optimal result obtained with AM1-BBC charges and ZAP9 radii has an RMSE of 1.33

kcal/mol. Figure 6.4 plots the optimal results on the leave one out test.

For a set of 643 molecules, which largely overlaps with present dataset, Mobley and

Guthrie reported an RMSE of 1.51 kcal/mol [175]. Our results indicate that the present

nearest neighbor approach can achieve highly accurate predictions for the solvation free

energies for all the atomic radius and charge force fields.

6.4.2.2 SAMPLx blind predictions

In this section, we present results of the blind solvation free energy predictions based on

the proposed protocol. All the SAMPL0-SAMPL4 challenges for solvation free energies are

considered. We predict the solvation free energies with a leave-SAMPLx-out approach, in

which the SAMPLx molecules and their experimental solvation free energies are regarded
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Figure 6.5: The prediction results for the SAMPL0 blind test set, the left chart shows the
RMSEs between the experimental and prediction solvation free energies. The right chart
shows the optimal predictions of the solvation free energies for the SAMPL0 test set.

Figure 6.6: The prediction results for the SAMPL1 blind test set, the left chart shows the
RMSEs between the experimental and prediction solvation free energies. The right chart
shows the optimal predictions of the solvation free energies for the SAMPL1 test set.
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Figure 6.7: The prediction results for the SAMPL2 blind test set, the left chart shows the
RMSEs between the experimental and prediction solvation free energies. The right chart
shows the optimal predictions of the solvation free energies for the SAMPL2 test set.

Figure 6.8: The prediction results for the SAMPL3 blind test set, the left chart shows the
RMSEs between the experimental and prediction solvation free energies. The right chart
shows the optimal predictions of the solvation free energies for the SAMPL3 test set.
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Figure 6.9: The prediction results for the SAMPL4 blind test set, the left chart shows the
RMSEs between the experimental and prediction solvation free energies. The right chart
shows the optimal predictions of the solvation free energies for the SAMPL4 test set.

as unknown while information of other molecules is utilized to predict selected SAMPL test

set, based on molecular formulas.

We first consider SAMPL0 test set, in which molcules are diverse. One molecule in this

test set contains Br atom, for which our polarizable PB model does not an appropriate

pseudo-potential. The structures of the SAMPL0 molecules can be found in the literature

[183]. The left chart of Fig. 6.5 shows the plot of RMSEs for each charge and atomic radius

combination. It is clear that the change in atomic radii has a minor influence on the accuracy

of predictions, while the change in charge force fields has a much more significant influence.

In other words, the solvation free energy prediction for this test set is more sensitive to the

charge parametrization than the atomic radii parametrization. In general, our KSDFT based

polarizable Poisson model provides better predictions than those of other charge force fields.

It is noted that the SIASTA based polarizable Poisson model with Amber Bondi radius

parameters delivers the best solvation free energy prediction. This result is depicted in the

right chart of Fig. 6.5. The associated RMSE (0.93 kcal/mol) appears to be better than

that in the literature [183] (i.e., 1.71 kcal/mol for the full SAMPL0 test set of 17 molecules).
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Table 6.6: The RMSEs of the solvation free energy prediction with different methods. The
RMSEs inside and outside the parenthesis denote for the prediction errors include and ex-
clude the molecules contains Br atom. All with unit kcal/mol

Test set Radius BCC Mulliken Gasteiger SIESTA

SAMPL0

Amber 6 1.30 (1.26) 1.27 (1.25) 1.23 (1.20) 0.99 (NA)
Amber Bondi 1.40 (1.37) 1.30 (1.27) 1.30 (1.27) 0.93 (NA)
Amber Mbondi2 1.41 (1.37) 1.34 (1.32) 1.33 (1.29) 1.10 (NA)
ZAP9 1.33 (1.29) 1.39 (1.37) 1.37 (1.33) 1.08 (NA)

SAMPL1

Amber 6 3.26 (3.27) 4.74 (4.77) 4.92 (4.96) 2.92 (NA)
Amber Bondi 3.06 (3.07) 4.65 (4.68) 5.52 (5.55) 2.89 (NA)
Amber Mbondi2 3.29 (3.30) 5.39 (5.41) 4.76 (4.82) 2.82 (NA)
ZAP9 4.26 (4.35) 6.16 (6.16) 5.33 (5.45) 3.76 (NA)

SAMPL2

Amber 6 2.09 (2.11) 3.51 (3.59) 4.78 (4.86) 3.46 (NA)
Amber Bondi 1.95 (1.97) 3.38 (3.47) 4.62 (4.72) 1.90 (NA)
Amber Mbondi2 1.90 (1.96) 3.55 (3.66) 4.65 (4.76) 2.35 (NA)
ZAP9 2.05 (2.03) 3.19 (3.15) 4.56 (4.51) 1.93 (NA)

SAMPL3

Amber 6 1.28 1.42 0.97 1.08
Amber Bondi 1.47 1.58 0.82 1.16
Amber Mbondi2 1.47 1.58 0.82 1.16
ZAP9 1.55 1.28 0.78 1.33

SAMPL4

Amber 6 1.28 1.20 1.08 1.41
Amber Bondi 1.12 1.41 1.10 1.07
Amber Mbondi2 1.09 1.33 1.03 1.04
ZAP9 1.12 1.12 1.09 1.32

The best prediction in the literature has an RMSE of 1.34 kcal/mol [134]. Even though

for the SIESTA based Ab Initio charge calculation, the molecule contains the Br atom is

neglected, based on the general pattern that when any other force field used, the prediction

for that omitted molecules is very well. We believe with proper pseudopotential for Br

atom, our polarizable Poisson model can deliver an accurate prediction for this molecule

also. Moreover, for this test set, all the other three charge parametrizations can provide a

similar level of solvation free energy prediction.

We next consider the SAMPL1 challenge set for solvation predictions [105]. This set

contains not only a largest number of 63 molecules, which is the largest among all the

SAMPL test sets, but also many molecules with extremely complicated structures. The
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detail description of this set is given in the literature [105]. Most molecules in this set are

druggable and very complex. The difficulty of this test set comes from two aspects: on

the one hand, the structures of molecules in this set are very complicated. On the other

hand, the knowledge in the training set that can be used for predicting the solvation free

energies of these molecules is rare or insufficient. In addition to the molecular complexity,

the reported experimental solvation free energies also admit large uncertainty [105]. Most

earlier computational predictions report RMSEs of 3 to 4 kcal/mol when some extremely

complex molecules are excluded. Some best prediction for the whole set has an RMSE of

2.45 kcal/mol [134]. The best performance was shown to give an RMSE of 2.4 kcal/mol on

a subset of the SAMPL1 test set that contains only 56 molecules [165].

Figure 6.6 plots the present blind predictions. One molecule (bromacil) that contains a

Br atom is considered by all the charge models except for the polarizable Poisson method. It

is noted that two of present approaches, namely, the AM1-BCC semi-empirical charges and

the Ab Initio charge provide relatively accurate predictions for this test set. When Amber

Mbondi2 atomic radii together with the SIESTA charge calculation applied, the optimal

solvation free energy prediction is achieved with RMSE 2.82 kcal/mol. When BCC charges

and the Amber Bondi radii are used, the prediction for the whole SAMPL1 set without a

molecule that contains Br atom has an RMSE of 3.06 kcal/mol, the RMSE is 3.07 kcal/mol

for the same test with all molecules involved. For this test set, the large prediction RMSE

mainly due to the extremely large error in predicting solvation free energies for some complex

molecules, for which the RMSE can be as large as 15 kcal/mol. This unreasonable prediction

is due to the fact that inappropriate molecule force field parametrization yields unreasonable

electrostatic solvation free energies, which in turn leads to erroneous solvation free energy

prediction. Similar to the SAMPL0 test set, the prediction is more sensitive to the charge
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parametrization. Nevertheless, the atomic radius parametrization also plays an critical role

in the prediction accuracy for this test set.

SAMPL2 is another difficult test set with almost the same level of difficulty as the

SAMPL1 test set [137]. Compared with SAMPL1 test set it contains a few complex molecules,

and most molecules in this test set are drug like ones as well. Contrary to molecules in

SAMPL1 test set, this set has less uncertainty in the experimental solvation free energies.

The experimental solvation free energies of this test set distribute over a wide range. Using

all-atom molecular dynamics simulations and multiple starting conformations for blind pre-

diction, Klimovich and Mobley reported an RMSE of 2.82 kcal/mol over the whole set and

1.86 kcal/mol over all the molecules except several hydroxyl-rich compounds [137]. Some

best prediction has an RMSE of 1.59 kcal/mol [134]. In the present work, the molecule con-

taining an I atom (5-iodouracil) is excluded in all calculations. Additionally, 5-bromouracil

has a Br atom is excluded in the polarizable Poisson model. The RMSEs from various radius

and charge force fields are given Fig. 6.7. Apparently, this test set has a strong force field

dependence as well. The RMSEs vary very much from one charge force field to another.

However, the performance of these predictions has a weak radius dependence. The best

prediction, obtained from a combination of Amber MBondi2 radius parameters and BCC

charge force field, or Amber Bondi radius together with modified SIESTA charge, both have

the RMSE of 1.90 kcal/mol when the molecule with a Br atom is excluded in the predic-

tion. When all molecules are included, the combination of Amber MBondi2 radius and BCC

charge parametrization gives the optimal prediction of RMSE 1.96 kcal/mol as depicted in

the right chart of Fig. 6.7. Compared to the prediction of SAMPL1 test set, these pre-

dictions are more accurate, due to two reasons. First, the molecules in this set are slightly

simpler and experimental uncertainly is less severe for the deterministic prediction. Second,
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in our knowledge based models for the nonpolar solvation free energy prediction, we have

more similar molecules in training set, which enables us to obtain better nonpolar solvation

free energy parameters in the nearest neighbor based approach. In contrast, in the SAMPL1

prediction, when the nearest neighbor approach is applied, the nearest molecules selected

from the training set differ much from SAMPL1 molecules.

SAMPL3 test set is a relatively easy one with 36 solute molecules [87]. Its molecular

structures are less versatile than the earlier test sets. Additionally, in this test set, there is

no molecule that involves Br or I atom. One of difficulties in the prediction of this set is

the lack of similar molecules in our database when all the SAMPL3 molecules are left out.

The best prediction in the literature offers an RMSE of 1.29 kcal/mol [134]. The RMSEs

of our blind predictions for the SAMPL3 test set are plotted in Fig. 6.8. In this case, the

accuracy of predictions also depends strongly on charge force fields and weakly on radius

parameters. In general, Gasteiger charges are superb for this test set and their RMSEs

are always smaller than 1 kcal/mol. Our best prediction, obtained from the combination of

ZAP9 radius parameters and Gasteiger charge force field, has a small RMSE of 0.78 kcal/mol

and is depicted in the right chart of Fig. 6.8. In general Gasteiger charge performs very poor

in the solvation free energy prediction for previous tests on complex molecules, while we see

that this charge parametrization method is superior for chlorinated hydrocarbon molecules

in the present test set. Unfortunately, there is no uniformly optimal parametrization for all

the molecules. This fact motivates us to seek a solvation free energy prediction that does

not heavily depends on the force fields parametrization.

SAMPL4 test set is studied by using the proposed methods as well. A key feature of

this test set is that its molecules are diversified. This test set also involves a wide range of

solvation free energies. However, the structures of these molecules are not as complex as those
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in both SAMPL1 and SAMPL2 test sets, which indicates a slightly easier task for solvation

free energy prediction. This test set was studied by a number of researchers in the literature

and the best prediction in the literature has the RMSE of 1.2 kcal/mol [177]. Figure 6.9

illustrates the RMSEs of our predictions for a total of 16 charge and radius combinations.

Compared with those in the literature, all of our predictions are of high quality. Our best

result has the RMSE of 1.03 kcal/mol and the corresponding results are given in the right

chart of Fig. 6.9.

Table 6.6 lists the RMSEs of our blind predictions of solvation free energies for all five

test sets using a total of 16 charge and radius implementations. Some comments are in

order. First, all predictions are quite sensitive to charge force fields and relatively less

dependent on radius parameter selection. Additionally, it is difficult to identify a clear

winner over all the test sets — some approaches perform better in one or two test sets, but

do not do well in the rest test sets. This phenomenon highlights the difficulty of designing

optimal models for solvation analysis. Moreover, the KSDFT based polarizable Poisson

model is more often to provide better predictions over most charge force fields and radius

parameters. This indicates a potential to develop better physical models by improving the

quantum charge density calculation. Finally, we point out that the blind prediction results

presented in the present work are the state-of-the-art compared to those in the literature

[183, 177, 106, 205, 176, 173, 207, 174, 81, 105, 86, 87, 134].

6.5 Concluding Remarks

In this work, we proposed a hybrid physical and knowledge based protocol for the blind

prediction of solvation free energies. The proposed protocol predicts nonpolar solvation free
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energies by statistical based models while utilizing either the Poisson model or a Density

Functional Theory (DFT) based polarizable Poisson model for polar solvation free energy

calculations. For the knowledge based modeling of nonpolar solvation free energies, we

first utilized the assumption that molecules with the same functional group admit the same

parametrization of the nonpolar solvation energy functional. For complex poly-functional-

group molecules, we develop a scoring procedure to determine the optimal relative weight

of each functional group. For extremely complex molecules that fail the functional group

scoring method, we further develop a molecule ranking algorithm to select an optimal set

of nearest neighbor molecules for parameter training. We construct atomic features for the

molecule ranking. Finally, we systematically integrate the above mentioned models and

methods into a robust protocol for blind solvation free energy prediction.

In the present work, we considered an experimental database of 668 solvation molecules,

the largest database ever constructed for solvation, to validate our approach. Among them,

SAMPL0 to SAMPL4 test sets are paid special attention. For the Poisson model or DFT

based polarizable Poisson model, four sets of atomic radius parameters (i.e., Amber 6, Amber

bondi, Amber mbondi and ZAP9 radii) are combined with four sets of charge force fields

(i.e., AM1-BCC, Mulliken, Gasteiger and SIESTA DFT) to arrive at a total of 16 different

implementations. The resulting polar solvation free energies are utilized in our statistical

approaches for blind predictions. We first carry out the leave-one-out validation of the whole

database. The AM1-BCC charge force field delivers a low RMSE of 1.33 kcal/mol, which

is the lowest for such a large test database, to our best knowledge. We further conduct

a series of leave-SAMPLx-out blind tests. On average, the BCC parametrization in the

Poisson model and DFT based polarizable Poisson model performs better than other charge

force fields, especially for predicting the solvation free energies of the complex molecules.
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We obtain some of best known results. The optimal RMSEs for SAMPL0-SAMPL4 are

respectively, 0.93, 2.82, 1.90, 0.78, and 1.03 kcal/mol, which again, are some of the best to

our best knowledge.

From the solvation free energy predictions, particularly on SAMPL1 and SAMPL2 test

sets, we conclude that atomic charge parametrization is extremely important for the present

physical models, namely, the Poisson model or the KSDFT based polarizable Poisson model.

Without an appropriate charge parametrization, the prediction errors can be amplified for

molecules with complex structures. In general, for four charge parametrization methods,

both the semi-empirical BCC charge and the Ab Initio charge calculation from the generalized

KSDFT can provide relatively reliable charge assignments. For this reason, a solvation free

energy prediction method that does not heavily depend on the molecule parametrization is

under our consideration. The essential idea is that if one does not partition the solvation free

energy into two isolated parts, the prediction errors in the polar solvation free energy will not

be propagated to the nonpolar solvation free energy prediction. Alternative, our differential

geometry based solvation model that dynamically couple polar and nonpolar models [270, 43]

might also provide a less sensitive approach.

This work can be improved in a number of ways. First, the classification of the database

into functional groups is not unique. Future studies will explore optimal molecules parti-

tioning. Additionally, the selection and computation of atomic features need to be further

investigated. It is possible to construct an optimal set of atomic features for solvation anal-

ysis and prediction. Further, in the current work, molecular ranking for nearest neighbor

searching is not optimal yet. More sophisticated machine learning and/or deep learning

algorithms can be developed for this purpose. Finally, a more versatile DFT solvers can be

utilized to further improve our in-house polarizable Poisson model.
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Chapter 7

Learning to Rank for Solvation

Prediction

7.1 Introduction

Last chapter, we briefly reviewed many physical based solvation models. Besides the physical

solvation models, the knowledge based models which are based on the combination of the

statistical learning theory with the chemical and biological intuition. Many knowledge based

models have been presented in the literatures for solvation free energy prediction. For in-

stance, the solvation free energy modeled by the atomic solvent accessible surface area [260];

another typical model is the movable type model in which the solvation free energy itself is

decomposed into the contribution from atomic solvation free energy. A partition function

is trained through the whole molecule database for atomic solvation free energy modeling

[290]. There are many other interesting knowledge based solvation models that exist, the

comprehensive reviewing of these models is beyond the scope of this work.

In our previous work [256], we proposed a hybrid physical and statistical model for solva-

tion free energy prediction. In which we follow the classical polar and nonpolar decomposition

of the whole solvation free energy. For the polar solvation free energy prediction, we applied

the Poisson model or the polarizable Poisson model with different atomic parametrization,

especially the charge models ranging from semi-empirical to Ab Initio calculation. In terms
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of the nonpolar solvation free energy prediction, we modeled it by the molecular solvent

excluded atomic surface area and volume enclosed by the molecular surface. We follow the

classical assumption, that in the nonpolar model, molecules of different functional groups

have different sets of parameters. However, this approach only works for simple monofunc-

tional group molecules, for polyfunctional group molecules, the molecule shares the same

functional groups is insufficient for accurate solvation free energy prediction. To make the

method applicable to arbitrary complex molecules, we further introduced the nearest neigh-

bor searching algorithm to detect the closest set of molecules to a given target molecule,

where the similarity of the molecule is measured by the cosine similarity between the atomic

features of the molecules. To make the nearest neighbor searching effective, we elaborately

selected the atomic features that can distinguish molecules with different functional groups.

The proposed nearest neighbor searching method is consistent with the classical functional

group approach due to the fact that the nearest molecules for monofunctional group molecule

found have the same functional group as the target molecule. Besides this basic consistency

in terms of the chemical property, i.e., the nearest neighbors have the same functional group

to their central molecule, we further noticed that the nearest neighbors possess quite close

solvation free energy to its central molecule. The proposed protocol can provide accurate sol-

vation free energy prediction provided the molecules are properly parameterized. However,

when the molecular charge assignment is inappropriate, the error can be extremely large. In

other words, the prediction by the previous model is sensitive to the molecular force field

assignment. This motivates us to seek a method that is insensitive, or at least much less

sensitive to the molecule parametrization. By an analysis of the model, we found that the

main issue on the large prediction error comes from the decoupling of the polar and nonpolar

solvation free energies. In this approach, once the molecule is not properly parametrized, the
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Poisson model or its polarizable model will lead to huge error in the electrostatic calculation,

which will be further propagated to the nonpolar solvation prediction.

Motivated by our previous work, we propose a new solvation free energy modeling

paradigm. In this model, instead of treating the solvation free energy as two separated

parts, i.e., polar and nonpolar parts, we consider the solvation free energy as a unity. The

solvation free energy itself is modeled as a function of the molecular descriptors, where these

descriptors describe the molecule at the atomic level instead of at the molecular level; the

finer scale enables more accurate description, more importantly, the molecular physical prop-

erties will be captured by these descriptors. Based on the above assumption, we introduced

a local solvation free energy learning framework. The procedure can be divided into two

stages. First, applying Learning To Rank (LTR) theory for nearest neighbor searching; sec-

ond, local hyperplane approximation for solvation free energy function, where the hyperplane

is learned by a regularized least square fitting based on the nearest neighbors information to

a given target molecule.

This chapter is structured as follows: Section 7.2 is devoted to methods and algorithms.

We provide a brief review of our previous nearest neighbor searching algorithm in Section

8.2.1, followed by the basic ansatz for building the solvation model in this work. The LTR

based nearest neighbor searching method is described in Section 7.2.2, which is divided

into three parts: i) query construction which incorporates the previous nearest neighbor

searching results; ii) feature selection; and iii) LTR for molecular neighbor detection. The

nearest neighbor information based algorithm for solvation free energy prediction is presented

in Section 7.2.3. Section 7.3 presents numerical results and discussions. After describing the

datasets and force fields in Section 7.3.1 , we offer the leave-one-out validation of the proposed

model in Section 7.3.2. We demonstrate that the present model is not very sensitive to atomic
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Figure 7.1: The plot of solvation free energies of the central and its neighbor molecules, the
left chart for the first nearest neighbor, the right chart for the second nearest neighbor. In
both cases, the horizontal axis represent the solvation free energy for the central molecule,
the vertical axis stands for that of the nearest neighbor molecule.

force field parametrization. SAMPLx blind challenges are presented in Section 7.3.3. Some

of the best results in solvation free energy prediction are obtained.

7.2 Methods and algorithms

7.2.1 Basic assumptions

As mentioned above, our earlier HPK model suffers from its sensitivity to charge and radius

parametrizations. A major goal of the present work to develop a model that is less or

not sensitive to feature parametrizations. We have observed that the solvation free energy

of a target molecule is quite close to that of its nearest neighbors. Figure 7.1 depicts the

correlation between experimental solvation free energy from a molecule and that of its nearest

neighbors. The RMSE of solvation free energies between molecules and their first and second

nearest neighbors are 1.44 and 1.77 kcal/mol, respectively.
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Motivated by the above observation, we assume that there exists a feature vector to

uniquely characterize and distinguish each solute molecule. Moreover, we assume that the

solvation free energy of a given molecule is a functional of its atomic feature vector.

∆GA = f(xA) (7.2.1)

where ∆GA is the solvation free energy of solute A, f is a unknown functional for modeling

the relationship between solvation free energy and molecular descriptors, or atomic features,

and xA is the feature vector of the given solute molecule. Finally, we assume that similar

molecules have similar solvation free energies.

It is well known that for a given function with suitable regularity, its first order Tay-

lor polynomial provides a very good approximation of the function, locally. For the sol-

vation free energy function ∆GA = f(xA), it can be locally approximated by ∆GA ≈

∇f(xA0)(xA−xA0) + ∆GA0 around the molecular atomic feature vector xA0 and solvation

free energy ∆GA0. For a given molecule, we can predict its solvation free energy in the

following featuring, learning-to-rank and learning-to-predict protocol:

• construct feature vectors for all molecules, including the target one;

• find nearest neighbor molecules to the target molecule in the database with the known

solvation free energies by using a learning-to-rank algorithm;

• learn the linear functional relation between the solvation free energy and features ac-

cording to a group of nearest neighbor molecules, and then predict the solvation free

energy for the target molecule by the linear functional.

The fundamental important ansatz in this work is that similar molecules have close solvation
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free energies, which in contrast to the ansatz used in our HPK model: similar molecules share

the same set of parameters in the nonpolar solvation modeling. Therefore, the solvation free

energy is no longer modeled by decoupled polar and nonpolar parts. As a result, the present

method is not very sensitive to charge and radius parametrization.

In the following sections, we provide detailed descriptions on feature selection, nearest

neighbor searching algorithm based on LTR and solvation free energy prediction.

7.2.2 Learning-to-rank algorithm

In this section, we introduce the LTR method. The listwise LTR algorithm is employed to

rank molecules. In the training procedure of the LTR model, the solvation free energy of

molecule is used as the molecular label, which is consistent with our basic ansatz. A scoring

function is learned in the listwise LTR method on the set of training molecules and is utilized

for ranking the molecules in the set of testing molecules. The nearest neighbor searching can

be regarded as a top-N recommendation problem, which is mathematically the same as the

item searching in the world-wide-web.

7.2.2.1 Query construction

In our LTR model, the use of solvation free energy as a label, based on our ansatz that similar

molecules have similar solvation free energies, automatically implies that similar solvation

free energies indicate similar molecules. This, however, is not reasonable in general. To

circumvent this deficiency in our LTR model for nearest neighbor searching, we need to

partition the whole dataset (which contains a total 668 molecules as described later) into a

number of subsets, where each subset is regarded as a query in the LTR terminology. The

basic requirement on the query construction is that molecules in each query should have
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some chemical similarity. Additionally, we require that each query is invariant to the nearest

molecule detection based on the cosine similarity of the atomic features proposed in our

earlier work [256]. To achieve this, the most straight forward approach is that each query of

molecules contains the same functional group. However, the complexity of the molecules in

the dataset makes this partition impractical. A direct relaxation is that each query of the

molecules have the same element types, which will be used for query construction in this

work.

We first construct six groups of molecules, they are formed by the molecules with element

type: i) H, C; ii) H, C, O; iii) H, C, N/H, C, N, O; iv) H, C, Cl; v) H, C, O, Cl; and vi)

H, S, respectively. The third group contains molecules either with H, C, and N elements

or with H, C, N, and O. This classification is due to the fact that based on the cosine

similarity, molecules in these two categories may have their nearest neighbors overlapped.

For the remaining molecules we iteratively add them into the above six groups based on their

nearest neighbor’s class label. The molecules that cannot be classified into any of the above

category are regarded as a new query. Let label molecules in the dataset from 1 to 668.

Figure 7.2 shows that the queries constructed based on the above procedure are invariant to

the nearest neighbor searching based on the measure proposed in our earlier work [256], where

each block denotes a query of molecules. It is easy to see that molecules’ nearest neighbors

are localized into each block. This invariance indicates that our query construction preserves

the molecular chemical similarity, i.e., each query of molecules is of same similarity in the

physical sense. Based on the above query construction, we can approximately regard that

close solvation free energies indicate similar molecules in each query, which makes the LTR

based nearest neighbor searching physically sound. We list all the queries in Supplementary

material.
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Figure 7.2: Localization of nearest neighbor molecules. The horizontal axis stands for the
index of a target molecule and the vertical axis denotes the index of the nearest neighbor of
the target molecule. Each block contains a query of molecules.

Since our partition of the dataset is based on similarity with chemical constrains, we

discuss the similarity measure, atomic feature selection based on chemical and physical

properties that facilitate the measure and LTR algorithm for ranking the molecules. For

nearest neighbor searching in each query, we emphasize that the nearest neighbor is measured

based on the closeness of the solvation free energies, instead of the similarity measure used

before.

7.2.2.2 Feature selection

A fundamental assumption of our approach is that there exists a feature vector that can

uniquely characterize and distinguish one molecule from another. Obvious, finding such as

feature vector is one of most important tasks. In our previous work [256], the goal of the

feature selection is to find the closest molecule to a given target molecule in the sense of

functional group similarity, so we selected the features that can distinguish molecules with
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different functional groups, and designate molecules having the same functional groups as

similar. Nevertheless, this may not be suitable to the fundamental assumption in this work,

namely, similar molecules having similar solvation free energies. The desired features should

reflect the similarity in solvation free energy. To this end, we select those features that their

Pearson correlations to solvation free energies are larger than 0.65 or less than -0.65. Based

on this criterion, we select the following features, as listed in Table 7.1.

Table 7.1: Atomic features used for LTR nearest neighbor searching.

Feature Name
Sum of atomic reaction field energy
Sum of absolute value of atomic reaction field energy
Sum of H atomic reaction field energy
Sum of absolute value of H atomic reaction field energy
Sum of O atomic reaction field energy
Sum of absolute value of O atomic reaction field energy
Minimum value of atomic reaction field energy
Maximum of the absolute value of reaction field energy
Minimum value of H atomic reaction field energy
Maximum of the absolute value of H atomic reaction field energy
Average value of atomic reaction field energy
Average of absolute value of atomic reaction field energy
Variation of atomic reaction field energy
Variation of the absolute value of reaction field energy
Variation of H atomic reaction field energy
Variation of absolute value of H atomic reaction field energy
Sum of absolute value of atomic charge
Sum of H atomic charge
Sum of absolute value of H atomic charge
Sum of O atomic charge
Sum of absolute value of O atomic charge
Minimum of atomic charge
Maximum of absolute value of atomic charge
Maximum of H atomic charge
Maximum of absolute value of H atomic charge
Average of absolute value of atomic charge
Variation of the atomic charge
Variation of the absolute value of atomic charge
Variation of the absolute value of H atomic charge
Variation of H atomic dipole
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Mathematically, for a given molecule A, the sum of atomic reaction field energy is defined

as

∆Grf =

Nm∑
i=1

∆Grf,i,

which is the same as the electrostatic solvation free energy of the solute molecule A, where

Nm is the number of atoms in solute M, ∆Grf,i is the reaction field energy contributed from

the ith atom.

The sum of the absolute value of atomic reaction field energy is

∆Gabs
rf =

Nm∑
i=1

|∆Gel,i|.

The other features can be defined mathematically in the same manner.

The above atomic features are calculated by the following methods.

• Atomic charges and dipoles can be computed by using quantum mechanical theory.

• Atomic reaction field energies can be computed by using PB theory.

• The calculations of maximum, minimum, sum, mean, and variance are based on

straightforward statistical theory.

Figure 7.3 plots some representative features compared to experimental solvation free

energies. From left to right, three charts are the correlations of experimental solvation free

energies with total reaction field energies, the absolute value of the mean reaction field

energies of all atoms, and the absolute value of the total reaction field energy of hydrogen

atoms, respectively. Their Pearson correlations are 0.87, -0.76, and -0.80, respectively.

In many physical based solvation models, the nonpolar solvation free energy is usually

modeled by the solvent excluded surface area, volume enclosed by the molecular surface,
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Figure 7.3: Correlations between features and experimental solvation free energies. The
horizontal axes represent for the experimental solvation free energies. From left to right,
three charts in the vertical axes represent total reaction field energies, the absolute value of
the mean reaction field energies of all atoms, and the absolute value of the total reaction
field energy of hydrogen atoms, respectively.

and the van der Waals interaction. This terms usually highly correlated with the nonpolar

solvent solute interaction. However, here we note that it is not highly correlated to the

total solvation free energy, some typical terms are depicted in Fig. 7.4, here the van der

Waals interaction of the H and C atoms are calculated in the same way with exactly the

same parameters used in [256], however the surface tension parameters are ignored, which

do not matter in terms of the correlation measure. The correlations between the solvation

free energy and these four features are -0.27, -0.26, 0.02, and -0.60, respectively. Here even

the van der Waals interaction between the solvent and H atoms of solute molecule is slightly

high, but we tested that add this to our LTR ranking feature set do not affect the ranking

results. Here we should emphasis again, we have not adopt nonpolar solvation free energy

related features for LTR do not mean these features are irrelevant to the solvation free energy,

only in terms of LTR, they are not good molecular descriptors.

Remark 7.2.1. The high correlation of reaction field energy calculated by the PB model

with the solvation free energy indicates that the PB is an effective approach for modeling

the solvation effects, the reaction field energy calculated by the PB is consistent with the
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Figure 7.4: Correlations between features and experimental solvation free energies. The
horizontal axises represent for the experimental solvation free energies. From left to right
and up to down four sub-figures, the vertical axes represent solvent excluded surface area,
volume enclosed by the solvent excluded surface, the van der Waals interaction of H and O
atoms, respectively.
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experimental solvation free energy.

7.2.2.3 LambdaMART for ranking

In general, LTR algorithms can be classified into three categories, i.e., pointwise, pairwise,

and listwise approaches. Among them, listwise LTR algorithms are commonly regarded

as the most advanced ones. In our model, each query of molecules forms a list, and thus

with the accurate listwise LTR algorithm, the nearest neighbor for a given target molecule

can be found accurately. In this work, we specifically select the state of the art listwise

ranking algorithm, LambdaMART for ranking molecules in different queries. In this part,

we provide a brief introduction to the LambdaMART algorithm. We also discuss how to

apply the LambdaMART algorithm to our solvation modeling.

7.2.2.3.1 Information retrieval measures LambdaMART is the boosted tree version

of the LambdaRank algorithm, where lambda is the physical gradient which makes the

gradient descent applicable to the solution of the LTR problem. MART (multiple additive

regression tree, also named Gradient Boosted Regression Tree (GBDT)) is a boosted tree

for fitting the ranking score of the training set. In this part, we give a short review of the

LambdaMART method. For more detail about this algorithm, the reader is referred to the

literature [26, 78, 27, 25].

First, let us introduce the measure that is used in information retrieval research. There

are several ranking quality measures used in this field, such as, Mean Reciprocal Rank

(MRR), Mean Average Precision (MAP), Expected Reciprocal Rank (ERR), and Normalized

Discounted Cumulative Gain (NDCG). Among them, NDCG and ERR have the advantage in

handling multiple levels of relevance, while MAP and MRR are suitable for binary relevance
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levels. The frequently used ranking measure for the LambdaMART algorithm is NDCG. To

define NDCG, we first give the definition of the discounted cumulative gain (DCG) for a

given set of search results:

DCG@T :=
T∑
i=1

2li − 1

log(1 + i)
(7.2.2)

where T is the truncation level, and li is the label of the ith listed molecule. We typically

use five levels of relevance: li ∈ {0, 1, 2, 3, 4}.

The NDCG is the normalized version of DCG

NDCG@T :=
DCG@T

max DCG@T
(7.2.3)

where the denominator is the maximum DCG@T attainable for the query, so that NDCG@T ∈

[0, 1].

7.2.2.3.2 LambdaRank The main drawback of the above mentioned ranking quality

measure is that, the gradient of them is everywhere either zero or not defined. This deficiency

makes gradient descent type of optimization techniques failed for direct solving ranking

problems. The key idea of LambdaRank is to introduce a physical gradient λ which directly

optimizes the ranking objective function. In this part, we will briefly introduce the principle

of the LambdaRank algorithm.

Consider two arbitrary molecules Mi and Mj in a given query. Let xi and xj be feature

vectors, and yi and yj be the corresponding solvation free energies, respectively. For the

sake of notation simplicity, let si := F (xi) and sj := F (xj) be model learned solvation free

energies for ith and jth molecules, respectively. Further, we define the learned probability
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that Mi should have larger solvation free energy than Mj to be

Pij := P (Mi �Mj) :=
1

1 + e
−(si−sj)

:=
1

1 + e
−σij

(7.2.4)

which models the probability by a simple sigmoid function. The associated known probability

that Mi should be larger than that of Mj is

P̄ij :=
1 + Sij

2
(7.2.5)

where

Sij :=


0, for yi = yj

1, for yi > yj

−1, for yi < yj .

In the LambdaRank, the objective function to maximize is chosen to be

Cij := |∆Zij |
[
−P̄ij log(Pij)− (1− P̄ij) log(1− Pij)

]
(7.2.6)

= |∆Zij |
[

1

2
(1− Sij)σij + log(1 + e

−σij )
]

(7.2.7)

=


|∆Zij | log(1 + e

−σij ), for Sij = 1

|∆Zij | log(1 + e
−σji), for Sij = −1

(7.2.8)

where ∆Zij is the change of NDCG@T by swapping the rank positions of Mi and Mj . It

should be pointed out that the above target function incorporates both a ranking quality

measure and a cross entropy cost function.

From now on, we assume all (i, j) ∈ I. Here I := {(i, j)|Sij = 1}: the set of pairs of

indices (i, j), for which desired Mi have a larger solvation free energy than Mj . Thus, the
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expression of Cij can be simplified as

Cij := |∆Zij | log(1 + e
−σij ). (7.2.9)

By treating ∆Zij as a constant, we have

∂Cij
∂si

=
∂Cij
∂σij

= −
|∆Zij |

1 + e
σij

:= −|∆Zij |ρij = −
∂Cij
∂σji

= −
∂Cij
∂sj

.

We define the following λ-gradient

λij := −
∂Cij
∂σij

=
|∆Zij |

1 + e
σij

= |∆Zij |ρij . (7.2.10)

Then we have

∂Cij
∂si

= −λij

and the second gradient is

∂2Cij

∂s2
i

= −
∂λij
∂si

=
|∆Zij |e

σij

(1 + e
σij )2

= |∆Z|ρij(1− ρij). (7.2.11)

For a given query, assembling the pairwise cost yields the total cost function

C =
∑
i

∑
j:(i,j)∈I

Cij +
∑
i

∑
j:(j,i)∈I

Cji =
∑
i

∑
j:(i,j)∈I

|∆Zij | log(1 + e
−σij ) + (7.2.12)

∑
i

∑
j:(j,i)∈I

|∆Zji| log(1 + e
−σji)
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The first order gradient of C is

∂C

∂si
=

∑
j:(i,j)∈I

∂Cij
∂si

+ =
∑

j:(j,i)∈I

∂Cji
∂si

= (7.2.13)

∑
j:(i,j)∈I

(−|∆Zij |ρij) +
∑

j:(j,i)∈I
(−|∆Zji|ρji) =

∑
j:(i,j)∈I

(−λij) +
∑

j:(j,i)∈I
(λji)

Thus, we define the λ-gradient for a given molecule Mi in the query

λi :=
∑

j:(i,j)∈I
λij +

∑
j:(j,i)∈I

λij =
∑

j:(i,j)∈I
λij −

∑
j:(j,i)∈I

λji. (7.2.14)

Hence, we simply have

∂C

∂si
= −λi. (7.2.15)

Furthermore, it is easy to verify the following second order gradient expression

∂2C

∂s2
i

= −∂λi
∂si

. (7.2.16)

7.2.2.3.3 Gradient boosting Before introducing the MART, we first present the prin-

ciple of the gradient boosting. We consider the loss function L = L(y, F ) of input score y

and model function F = F (x). The goal of the gradient boosting is to minimize the loss

function

min
F

L(y, F ). (7.2.17)

Borrowing the idea from the classical gradient descent, the gradient boosting iteratively

updates the model function F in a given functional space

Fn+1 = Fn + ρfn(x) (7.2.18)
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where fn(x) is a model from a given functional space, i.e., regression tree for the MART,

that fits the residual {ỹ}i

ỹi = −∂L(yi, F )

∂F
|F=Fn . (7.2.19)

The shrinkage parameter is obtained by solving the following optimization problem

ρ = arg min
ρ
L(y, Fn + ρfn(x)), (7.2.20)

via a simple line searching algorithm.

7.2.2.3.4 Gradient boosted regression trees In the aforementioned gradient boost-

ing algorithm, if we select the functional space to be the regression tree, this results in a

GBDT algorithm. Mathematically, the regression tree is formulated as

f(x) = f(x, {γj , Rj}Ji ) =
J∑
j=1

γj1(x ∈ Rj), (7.2.21)

where J is the number of leaves, and {Rj}Ji are disjoint regions that cover all feature space,

with each of them being covered in one leaf. Here {γj} are the values in the corresponding

leaf.

In this case, we first construct {Rj}Ji to fit {xi, yi} by a least square algorithm. According

to Eq. (7.2.18), we have

Fn+1 = Fn +
J∑
j=1

γj1(x ∈ Rj).
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Additionally, Eq. (7.2.20) indicates that

γj = arg min
γ

∑
i:xi∈Rj

L(yi, Fn(xi) + γ) := arg min
γ

∑
i:xi∈Rj

g (7.2.22)

where g = g(yi, Fn(xi)) = L(yi, Fn(xi) + γ). When there is no closed form solution to Eq.

(7.2.22), we can approximate it by a single Newton step

γj = −

∑
i:xi∈Rj

∂g
∂Fn∑

i:xi∈Rj
∂2g

∂F2
n

. (7.2.23)

7.2.2.3.5 LambdaMART The goal of the LambdaMART is to maximize

max
F

C (7.2.24)

where C is the total cost function defined by Eq. (7.2.12), and F is a MART.

7.2.2.3.6 LambdaMART for molecules ranking Now let us turn to the application

of LambdaMART to the solvation prediction. In each query of the molecules, the solvation

free energies themselves are regarded as the labels of molecules, and the corresponding fea-

tures are discussed in the next part. Our method can be summarized as ranking the nearest

neighbors of a target molecule based on their solvation free energies and then, learning a

relation between features and solavtion free energies for predicting the solvation free energy

of the target molecule.
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7.2.3 Functional estimation for solvation free energy prediction

We discuss the solvation free energy prediction for a given target molecule in this section.

Based on our assumption that solute solvation free energy is a functional of the feature

vector, solvation free energy prediction is actually to construct a energy functional around

the target molecule. This functional will be utilized for solvation free energy prediction for

the target molecule.

Consider the solvation free energy for a target molecule A characterized by its feature

vector xA = (xA1,xA2, · · · ,xAn), where n is the dimension of the feature space, i.e., the

space of all feature vectors. Here, we simply use the features that utilized in the LTR

procedure for training the local solvation function, since these features in some sense also

reflects the order of the solvation free energy. However, we believe that optimal selection of

the features for training this function can leads to better prediction, since we note that in

our features selection the nonpolar features were not used. For global solvation free energy

function training, neglecting nonpolar features may leads to tremendous error, but in our

LTR model, we are restricted our learning in the local sense. From the LTR framework,

we find m feature vectors of the nearest neighbors and corresponding known solvation free

energies (x1,∆G1), (x2,∆G2), · · · , (xm,∆Gm). Note that in general, the number of nearest

neighbors found is far less than the dimension of the feature space, i.e., m� n.

In this work, we assume the functional relation between features and solvation free ener-

gies for target molecule A has the form

∆GA = b+
n∑
i=1

wixAi, (7.2.25)

where wi is the weight for feature xAi and b can be intuitively understood as the height of
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hyperplane embedded in the Euclidean space. Equation (8.2.21) can be regarded as a first

order Taylor polynomial approximation of the solvation free energy ∆GA = f(xA).

Since the fact that m� n, the directly regression based on the least square approach may

leads to over-fitting. To avoid over-fitting there are generally two strategies for determining

{wi} and b:

• sparse solution via a compressed sensing approach;

• Tikhonov regularization based least square fitting.

In this work, we use the second strategy for training the local regression model for

solvation free energy prediction. The local regression problem is equivalent to solve the

linear system in Eq. (7.2.26) in the L2 sense



∆G1

∆G2

...

∆Gm


=



x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
...

xm1 xm2 · · · xmn





w1

w2

...

wn


+



b

b

...

b


. (7.2.26)

Equation (8.2.15) can be written as

∆G = xw + b1, (7.2.27)

where ∆G = (∆G1,∆G2, · · · ,∆Gm)T , w = (w1, w2, · · · , wn)T , 1 is a m-dimensional col-
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umn vector with all elements equal 1, and matrix x is given by

x =



x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
...

xm1 xm2 · · · xmn


.

To avoid overfitting, we add the L2 penalty to the weight vector w, and thus Eq. (8.2.16)

can be solved by the following optimization problem

min
w,b
||∆G− xw − b1||22 + λ||w||22 := min

w,b
F, (7.2.28)

where λ is the regularization parameter, which is set to 100 in this work, || ∗ ||2 denotes the

L2 norm of the quantity ∗.

By solving ∂F
∂w = 0, we have

w =
(
xTx + λI

)−1 (
xT∆G− xT (b1)

)
, (7.2.29)

where I is m×m identity matrix.

To find the value b that solves the optimization problem Eq. (8.2.17), we relax b1 to

arbitrary vector b = (b1, b2, · · · , bm)T , by solving ∂F
∂b = 0, we have

b = ∆G− xw. (7.2.30)
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Therefore, we obtain the unbiased estimation of b as

b =

∑m
i=1(∆G− xw)i

m
, (7.2.31)

where (∆G− xw)i is the ith component of the vector ∆G− xw.

We can solve the optimization problem Eq. (7.2.28) by alternating iterations between Eq.

(7.2.29) and Eq. (7.2.31), which is essentially an expectation-Maximization (EM) algorithm.

After obtaining optimized parameters w and b, the solvation free energy of target molecule

A, is predicted by Eq. (7.2.25).

7.3 Numerical results and discussions

7.3.1 Dataset and feature parametrization

7.3.1.1 Dataset

In order to assess the performance of the present method, we consider the same dateset that

has been constructed in our earlier work [256]. With a total of 668 molecules, this dataset is

the largest to date, to our knowledge, and contains both monofunctional group and polyfunc-

tional group molecules. Experimental solvation free energies are collected from the literature

[30, 261, 153]. The main part of our dataset, i.e., 589 molecules, overlaps with Mobley’s sol-

vation database (http://mobleylab.org/resources.html). All the structures of this dataset are

downloaded from the Pubchem project (https://pubchem.ncbi.nlm.nih.gov/). More detailed

description of the dataset can be found in our earlier work [256].
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7.3.1.2 Atomic feature parametrization

In atomic feature generation, atomic charges and atomic dipoles are calculated via the dis-

tributed multipole analysis (DMA) method [227], in which the charge density is originally

computed by the density function theory with B3LYP and 6-31G basis selection in Gaussian

quantum chemistry software [80, 18, 148]. Atomic reaction field energies (i.e., atomic electro-

static solvation energies) are calculated by our in-house MIBPB software [253, 39, 90] with

a probe radius of 1.4 Å and dielectric constants being 1 and 80, respectively for the solute

and solvent domains. A uniform grid size of 0.25 Å is used in all atomic reaction field energy

calculations. To examine the sensitivity of the present approach to charge force fields, which

was a major issue in our earlier HPK model, we utilize three types of atomic radii, namely,

Amber 6, Amber bondi, and Amber mbondi2 [35]. Additionally, we consider three type of

charge assignments, namely, OpenEye-AM1-BCC v1 parameters [123], Gasteiger [85], and

Mulliken [35]. The combination of radius sets and charge sets gives rise to a total of nine

different parametrizations, which have already been utilized in our earlier work [256] to offer

some of the best solvation prediction results. For the regularized least square hyperplane

fitting, the regularization parameter λ is set to 100.

7.3.2 Leave-one-out prediction

First, we consider the leave-one-out test on the whole dataset of 668 molecules. In this

test, we regard the solvation free energy of one molecule as unknown, and use the remaining

molecules to predict the solvation free energy for the target molecule. The purpose of the

leave-one-out test is two twofold. First, it helps for the parameter selection, i.e., the number

of nearest neighbors to be used for the prediction of the target molecule’s solvation free energy
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and the parameters used in training the LambdaMART. Second, the leave-one-out test can

demonstrate the performance of the proposed model for solvation free energy prediction. The

performance of leave-one-out test is measured by both the root mean square error (RMSE)

and mean error (ME), respectively defined by

RMSE =

√√√√∑N
i=1

(
∆GPred

i −∆G
Expl
i

)2

N
(7.3.1)

and

ME =

∑N
i=1

(
∆GPred

i −∆G
Expl
i

)
N

(7.3.2)

where N is the total number of molecules in our dataset, ∆G
Expl
i and ∆GPred

i stand for the

experimental and predicted solvation free energies for the ith molecule, respectively.

The RMSE measures the accuracy of the prediction. A small RMSE indicates the pre-

dictions for the whole dataset are uniformly accurate. ME is used to determine whether

the prediction is biased or not. If the ME is close to zero, it means that the prediction is

unbiased.

7.3.2.1 Number of neighbors involved

In applying our model, one has to determine how many nearest neighbors to be involved

for the solvation free energy prediction. In general, this number depends on the training

dataset and parametrization. Numerically, one can use either leave-one-out or five-fold cross

validation to determine the optimal number of nearest neighbors. Table 7.2 lists RMSE and

ME of our leave-one-out prediction using a total of 9 different combinations of atomic radii

and charge force fields. The use of different numbers of nearest neighbors is examined as
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Table 7.2: The RMSE and ME of the solvation free energy prediction with different
parametrization on the molecules, the errors are calculated by the proposed solvation models
with different number of nearest neighbors involved. All with unit kcal/mol.

Parametrization Error 1 2 3 4 5 6 7 8

BCC+Amber6
RMSE 1.059 1.068 1.079 1.086 1.111 1.133 1.128 1.109
ME 0.030 0.043 0.037 0.029 0.037 0.035 0.050 0.045

BCC+Bondi
RMSE 1.010 1.071 1.078 1.093 1.010 1.084 1.086 1.095
ME 0.036 0.058 0.061 0.051 0.070 0.073 0.071 0.078

BCC+MBondi2
RMSE 1.099 1.106 1.136 1.139 1.177 1.177 1.175 1.148
ME 0.040 0.022 0.017 0.029 0.030 0.047 0.047 0.469

GAS+Amber6
RMSE 1.331 1.294 1.267 1.278 1.268 1.284 1.321 1.336
ME 0.002 -0.005 -0.008 -0.003 0.019 -0.003 0.019 0.038

GAS+Bondi
RMSE 1.203 1.193 1.227 1.249 1.276 1.302 1.311 1.340
ME -0.011 -0.004 0.012 0.028 0.042 0.054 0.055 0.065

GAS+MBondi2
RMSE 1.165 1.200 1.179 1.163 1.175 1.192 1.207 1.220
ME -0.018 -0.037 -0.031 -0.018 0.003 0.017 0.024 0.036

MUL+Amber6
RMSE 1.356 1.328 1.313 1.341 1.332 1.338 1.347 1.368
ME 0.025 0.037 0.036 0.037 0.037 0.057 0.071 0.076

MUL+Bondi
RMSE 1.281 1.252 1.229 1.238 1.227 1.250 1.280 1.305
ME 0.030 0.027 0.031 0.033 0.038 0.045 0.053 0.070

MUL+MBondi2
RMSE 1.264 1.286 1.277 1.261 1.275 1.285 1.316 1.326
ME -0.012 -0.022 -0.020 -0.010 0.013 0.012 0.028 0.032
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well. We note that judged by RMSEs, our method is not sensitive to the number of nearest

neighbors. All of the top ten recommendations have the same level of accuracy. However,

when MEs are also taken into consideration, it is found that a large number of nearest

neighbors typically contributes to a large EM. We propose to select the number of nearest

neighbors based on the following criteria:

• The RMSE should be as small as possible to give an accurate prediction.

• The ME should be as close to zero as possible to give an unbiased prediction.

• At the same level of RMSE and ME, it is preferred to involve more molecules, which

makes it easy to determine solvation free energy functional.

Usually, there is a trade off among the aforementioned criteria in selecting the number of

molecules for solvation prediction.

Based on the above criteria, the final choice of the number of nearest neighbors that is

utilized for each force field parametrization for solvation free energy prediction is listed in

Table 7.3. We emphasize that the proposed method is quite robust with respect to different

choices.

Table 7.3: The number of nearest neighbor involved for the solvation free energy prediction
for different force field parametrization.

Charge Radius Number of Nearest Neighbors

BCC
Amber6 4
Amber Bondi 4
Amber MBondi2 3

GAS
Amber6 4
Amber Bondi 2
Amber MBondi2 4

MUL
Amber6 3
Amber Bondi 3
Amber MBondi2 4
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Table 7.4: The RMSE and ME of the leave-one-out test of the solvation free energy prediction
with different methods. For a comparison, the numbers in the parenthesis is calculated by
the method proposed in the work [256]. All with unit kcal/mol

Radius Charge BCC Mulliken Gasteiger

Amber 6
RMSE 1.08 (1.47) 1.27 (1.49) 1.31 (1.65)
ME 0.03 (-0.13) -0.00 (-0.20) 0.03 (-0.19)

Amber Bondi
RMSE 1.09 (1.34) 1.19 (1.48) 1.22 (1.66)
ME 0.05 (-0.14) -0.00 (-0.21) 0.03 (-0.13)

Amber MBondi2
RMSE 1.10 (1.33) 1.16 (1.49) 1.26 (1.68)
ME 0.02 (-0.14) -0.02 (-0.22) -0.01 (-0.22)

7.3.2.2 Accuracy and sensitivity analysis

In this part, we compare the present leave-one-out predictions with those of our earlier HPK

model [256] under the same radius and charge parametrizations.

Table 7.4 lists the RMSEs and MEs of the current model predictions. For a comparison,

corresponding RMSEs obtained by our previous HPK model is also listed in parentheses.

From Table 7.4, we can conclude the follows:

• The LTR solvation model is in much more accurate than our previous HPK model.

The best prediction by the present model has an RMSE of 1.08 kcal/mol, compared

to the lowest RMSE of 1.33 kcal/mol achieved by the previous model. The the worst

RMSE of the present prediction is 1.31 kcal/mol, which is still better than the best

result obtained by the previous model. Note that worst earlier result has an RMSE of

1.68kcal/mol [256].

• The LTR solvation model provides unbiased solvation predictions, as indicated from

ME results. The predictions with different molecular parametrizations all achieve near

zero MEs. The MEs of the previous model are almost ten times larger than those of

the LTR solvation model. Additionally, we note that no matter with what type of

molecular parametrization, the previous predictions are biased toward one direction,
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whereas the present model has MEs of both signs.

• The LTR solvation model is less sensitive to the atomic feature parametrization com-

pared to the HPK solvation model. The ranges of the RMSEs for LTR and HPK models

due to 9 different parametrizations are 1.08-1.31 and 1.33-1.68 kcal/mol, respectively.

Obviously, larger range in prediction RMSEs indicates that the HPK model is more

sensitive to atomic feature parametrization.

7.3.3 Blind prediction of SAMPLx challenges

In this part, we consider the blind prediction of solvation free energy for the SAMPLx

challenge sets. Our LTR solvation model is applied to all of five SAMPL test sets, i.e.,

SAMPL0-SAMPL4. We adopt the same protocol used in our previous leave-SAMPLx-out

prediction [256]. Specifically, in each SAMPL test prediction, we exclude all the molecules in

the given SAMPL in our LTR process, and use the remaining molecules as our training set to

find a set of the nearest neighbors to each each molecule in the SAMPL test set. Both RMSE

and ME measures are evaluated to assess the performance of the proposed LTR model. The

same 9 sets of charge and radius paramerizations are implemented in leave-SAMPLx-out

tests.

First, let us consider the solvation free energy prediction for the SAMPL0 test set, which

contains a total of 17 molecules. All structures of this test set are relatively simple. However,

the molecule species of this set is quite diverse. Many researchers have reported their sol-

vation free energy predictions for this challenge set [183, 134]. In our earlier work [256], we

have shown that when Gasteiger charge and Amber 6 radius are used for parametrization,

our HPK model gives a blind prediction RMSE of 1.20 kcal/mol for the whole set. When one
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molecule that contains a Br atom was excluded, by using Amber Bondi radii and the DFT

based polarizable Poisson model for electrostatic calculation, our optimal prediction has an

RMSE of 0.93 kcal/mol. Prior to our earlier work, the optimal prediction to this test set has

an RMSE of 1.34 kcal/mol for the whole set [134]. Figure 7.5 depicts the present LTR re-

sults for a total of 9 charge and radius combinations. When BCC charge is used, the RMSEs

of our predictions with three radius parametrizations are all less than 0.90 kcal/mol. Our

optimal prediction has an RMSE of 0.76 kcal/mol, obtained from both Amber 6 and Amber

Mbondi2 radius parametrizations in conjugation with the BCC charge assignment. Apart

from delivering the same RMSE, these two parametrizations also offer quite close MEs. For

a comparison with our earlier work, we have also plot the RMSEs from our previous HPK

model in Fig. 7.5. Obviously, except for Mulliken charge and Amber 6 or Amber Bondi

radius, the present predictions are more accuracy than those of our previous HPK model.

Figure 7.5: Illustration of prediction RMSEs obtained with different molecular parametriza-
tions by the LTR and HPK models for SAMPL 0 test set.

Having demonstrated the superiority of the proposed LTR model for the blind prediction
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of the SAMPL0 challenge set, we further consider the SAMPL1 test set, which is generally

believed to be the most difficulty one, due to the following two reasons. First, the molecular

structures of this test set are extremely complex compared to other molecules with known

experimental solvation free energies. Second, the uncertainty of SAMPL1 experimental data

is very large. For some molecules the uncertainty is as large as 2.0 kcal/mol [105]. Never-

theless, it is extremely desirable to develop an accurate modeling paradigm for this test set

because most molecules in this test set are druggable. The best prediction for the whole set

has an RMSE of 2.45 kcal/mol [134]. On a subset of the SAMPL1 test set that contains

only 56 molecules, the best performance was shown to give an RMSE of 2.4 kcal/mol. Our

previous HPK model can provide best prediction for this set with RMSE 2.82 kcal/mol when

the DFT is used for the charge assignment. However, this result has a prerequisite that one

molecule that contains a Br element was ignored due to the lack of a proper Br pesudopo-

tential for the DFT software. The optimal prediction for the whole test set has an RMSE

of 3.07 kcal/mol based on the AM1-BCC charge and Amber Bondi radius parametrization

[256]. Additionally, our previous HPK model is very sensitive to the force field assignment.

Our earlier RMSEs for 16 charge and radius combinations vary from 3.07 to 6.16 kcal/mol.

Figure 7.7 illustrates the comparison of the LTR and HPK predictions on the whole SAMPL1

test set. It is easy to see that the LTR model is much more accurate. The optimal prediction

has an RMSE as small as 2.14 kcal/mol, which is the best to our knowledge. Additionally,

the present LTR model is very robust with respect to the change in force fields. The maxi-

mum and minimum prediction RMSEs over 9 sets of charge and radius parametrizations are

2.14 and 2.81 kcal/mol, respectively. The difference between the maximum and minimum is

0.67 kcal/mol, which is much smaller than experimental uncertainty of 2 kcal/mol.

Another difficult test set is SAMPL2, which contains a total of 30 molecules [137]. The
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Figure 7.6: Illustration of prediction RMSEs obtained with different molecular parametriza-
tions by the LTR and HPK models for SAMPL1 test set.

experimental uncertainty on these molecules is much less than that of the SAMPL1 test

set. Nevertheless, accurate solvation prediction for this set is rare. Using all-atom molecular

dynamics simulations and multiple starting conformations for blind prediction, Klimovich

and Mobley reported an RMSE of 2.82 kcal/mol over the whole set and 1.86 kcal/mol over

all the molecules except several hydroxyl-rich compounds [137]. Some best prediction has

an RMSE of 1.59 kcal/mol [134]. In our previous test, the molecule containing an I atom

(5-iodouracil) is excluded in all calculations due to the lack of appropriate charge force field.

In this work, we also ignore this molecule for the same reason. The HPK model gives an

optimal prediction with RMSE 1.96 kcal/mol. However, the RMSEs of the prediction vary

over a large range, from 1.96 to 4.86 kcal/mol, when different charge and radius force fields

are applied. In the present work, an optimal LTR prediction has an RMSE of 1.90 kcal/mol,

offering a slight improvement over our earlier prediction. However, the variation of RMSEs

under different charge and radius parametrizations is only 1.2 kcal/mol (i.e., from 1.90 to
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3.10 kcal/mol), which indicates the robustness of the present LTR model compared to the

earlier HPK model. A comparison of HPK and LTR predictions is given in Fig. 7.7.

Figure 7.7: Illustration of prediction RMSEs obtained with different molecular parametriza-
tions by the LTR and HPK models for SAMPL2 test set.

The SAMPL3 test set, which contains 36 molecules, is relatively ease for blind prediction.

The structures of SAMPL3 molecules are relatively simple, and most molecules in this set

are chlorinated hydrocarbon molecules [87]. The best prediction in the literature offers an

RMSE of 1.29 kcal/mol [134]. Our earlier HPK model achieved the most accurate solva-

tion free energy prediction for the whole set, especially when Gasteiger charge is used for

parametrization. It is found that Gasteiger charges do give a good charge description for

the chlorinated hydrocarbon molecules. Figure 7.8 depicts the RMSEs of the predictions by

LTR and HPK models. It is easy to see that two methods give almost the same optimal

prediction: the LTR prediction has an optimal RMSE of 0.87 kcal/mol, while the HPK pre-

diction has optimal RMSE of 0.82 kcal/mol. The RMSEs of LTR predictions from different

parametrizations vary over a small range of 0.61 kcal/mol (i.e., from 0.87 to 1.48 kcal/mol),
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which further verifies the robustness of the LTR solvation model.

Figure 7.8: Illustration of prediction RMSEs obtained with different molecular parametriza-
tions by the LTR and HPK models for SAMPL3 test set.

Finally, we consider the SAMPL4 test set, which is a very popular one. Many explicit,

implicit, integral equation and quantum approaches have been applied to this set [177]. Our

previous test using the HPK model shows an extremely accurate and robust prediction with

the optimal RMSE of 1.03 kcal/mol. The optimal prediction of the LTR model has an

RMSE of 1.01 kcal/mol. The variation in prediction RMSEs is as small as 0.24 kcal/mol

(i.e., from 1.01 to 1.35 kcal/mol) over 9 different parametrizations. For a comparison, we

depict the prediction RMSEs of both the LTR and HPK models in Fig. 7.9. It is seen that

for SAMPL4, both models give the same level of accuracy and robustness in the solvation

free energy prediction.

Table 7.5 provides a summary of the LRT RMSEs and MEs for all SAMPL0-SAMPL4 test

sets. These results indicate that overall, the LTR framework is more accurate in solvation

predictions than our earlier HPK model for SAMPL test sets. This is especially true for
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Table 7.5: The RMSEs and MEs of the solvation free energy predictions with different
parametrizations. The numbers inside and outside parentheses are the results calculated by
the HPK and LTR models, respectively. All errors are with unit kcal/mol.

Test set Radius Error BCC Mulliken Gasteiger

SAMPL0
Amber 6

RMSE 0.76 (1.26) 1.17 (1.25) 1.25 (1.20)
ME 0.30 (0.76) 0.46 (-0.12) 0.10 (-0.13)

Amber Bondi
RMSE 0.86 (1.37) 1.15 (1.27) 1.38 (1.27)
ME 0.15 (0.86) 0.29 (-0.20) -0.07 (-0.24)

Amber MBondi2
RMSE 0.76 (1.37) 1.05 (1.32) 1.19 (1.29)
ME 0.29 (0.88) 0.42 (0.21) 0.34 (-0.25)

SAMPL1
Amber 6

RMSE 2.81 (3.27) 2.69 (4.77) 2.70 (4.96)
ME -1.28 (0.88) -0.43 (-2.28) -0.33 (-1.12)

Amber Bondi
RMSE 2.14 (3.07) 2.26 (4.68) 2.27 (5.55)
ME -0.97 (0.99) -0.42 (-2.28) -0.12 (-1.26)

Amber MBondi2
RMSE 2.38 (3.30) 2.20 (5.41) 2.74 (4.82)
ME -1.15 (1.22) -0.42 (-2.39) -0.37 (-0.67)

SAMPL2
Amber 6

RMSE 1.90 (2.11) 2.04 (3.59) 2.39 (4.86)
ME 0.71 (-0.65) 1.64 (1.65) 1.40 (2.65)

Amber Bondi
RMSE 2.48 (1.97) 2.09 (3.47) 2.52 (4.72)
ME 1.10 (-0.26) 1.41 (1.69) 1.53 (2.61)

Amber MBondi2
RMSE 2.21 (1.96) 1.92 (3.66) 3.10 (4.76)
ME 1.14 (-0.46) 1.31 (2.62) 2.19 (1.79)

SAMPL3
Amber 6

RMSE 1.04 (1.28) 1.34 (1.42) 1.30 (0.97)
ME 0.04 (0.38) -0.24 (0.72) -0.15 (-0.16)

Amber Bondi
RMSE 1.09 (1.47) 0.87 (1.58) 1.12 (0.82)
ME 0.12 (-0.56) -0.05 (0.85) 0.04 (-0.09)

Amber MBondi2
RMSE 1.18 (1.47) 1.34 (1.58) 1.48 (0.82)
ME 0.09 (-0.56) 0.24 (0.85) 0.00 (-0.09)

SAMPL4
Amber 6

RMSE 1.06 (1.28) 1.30 (1.20) 1.22 (1.08)
ME 0.27 (-0.14) 0.23 (0.11) 0.34 (0.18)

Amber Bondi
RMSE 1.01 (1.12) 1.35 (1.41) 1.28 (1.10)
ME 0.02 (0.06) -0.03 (0.31) 0.08 (0.33)

Amber MBondi2
RMSE 1.10 (1.09) 1.21 (1.33) 1.10 (1.03)
ME 0.16 (0.15) 0.23 (0.14) 0.37 (-0.08)
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Figure 7.9: Illustration of prediction RMSEs obtained with different molecular parametriza-
tions by the LTR and HPK models for SAMPL4 test set.

complex and challenging molecules in SAMPL1 and SAMPL2 test sets. Furthermore, the

present LTR solvation prediction model is much less sensitive to different charge and radius

parametrizations. Nevertheless, contrary to the small MAEs found in the leave-one-out

tests, these errors amplify a lot in the blind prediction of SAMPLx test sets, particularly

for SAMPL1 and SAMPL2 test sets. Possible explanations for this phenomenon are the

complexity of molecules and the lack of physically and chemically similar molecules in our

database. We also point out that in the LTR predictions, large RMSEs and MEs occur

simultaneously, which indicates that large RMSEs might come from biased predictions. This

phenomenon is under our further investigation.

7.4 Concluding Remarks

This work proposed a Learning-To-Rank (LTR) model for solvation free energy prediction.

More precisely, this approach combines an LTR based nearest neighbor searching method-
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ology with a local hyperplane learning procedure for solvation free energy prediction. The

proposed model is inspired by our previous Hybrid Physical and Knowledge (HPK) model

[256] on the nearest neighbor parametrization for solvation free energy prediction, in which

the nearest neighbor was detected according to the simple cosine similarity between the

molecular atomic features. Our previous attempt on the nearest neighbor approach moti-

vates a basic assumption utilized in this work, i.e., similar molecules have similar solvation

free energies. In machine learning terminology, our previous nearest neighbor search method

can be regarded as an unsupervised learned method. With the similar molecules having

similar solvation free energies, the nearest neighbor searching problem can be cast into a

supervised learning problem. As a result, the nearest neighbor quality can be improved

dramatically, which further improves the accuracy of solvation free energy prediction. The

present LTR method can be considered as an enhanced nearest neighbor searching method.

To implement our new supervised LTR model, we first partition molecules into several

groups according to their chemical compositions. Each group is regarded as a query in the

LTR terminology. The query construction is of fundamental importance to make our model

practical, since during the molecular ranking, we utilize the assumption that close solvation

free energies imply similar molecules, which is generally not true without a proper query

construction. Another fundamental assumption of this method is that there exists a feature

vector that can uniquely characterize and distinguish one molecule from another. Obviously,

the construction of the feature vector is of crucial importance to the performance of the

present model. We utilize atomic features, such as atomic charge, dipole, reaction field

energy, etc., evaluated by quantum mechanics, polarization theory and Poisson-Boltzmann

theory. A state-of-the-art listwise LTR algorithm, LambdaMART, is adopted for training the

LTR model. By using this algorithm, the quality of the nearest neighbor search improves
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significantly, which is supported from the fact that the difference between the solvation

free energies of a target molecule and its neighbors decreased dramatically. Furthermore, we

assume that molecular solvation free energy is a function of molecular features. Based on this

assumption, we develop a regularized least square based local hyperplane learning algorithm

for solvation free energy prediction. Highly accurate solvation free energy prediction is

confirmed by both the leave-one-out test over 668 solvation molecules and blind prediction

of five SAMPL test sets, namely, SAMPL0, SAMPL1, SAMPL2, SAMPL3 and SAMPL4.

A part from providing the state-of-the-art solvation free energy predictions, the proposed

LTR model is much less parametrization dependent. That is, the LTR model is less sensitive

to the parametrization of charges and radii in the solvation free energy prediction. This

robust property is especially evident from the accurate and robust solvation free energy

prediction of complex molecules, for which our previous HPK predictions can differ as large as

10 kcal/mol with different charges and radius parameterizations. A major reason leads to this

robust in LTR based solvation free energy prediction is that in our basic assumption, solvation

free energy is modeled as a unity, instead of isolated polar and nonpolar components. This

treatment makes the present model robust to the molecule parametrization, and avoids the

error propagation from polar modeling to nonpolar modeling. In our earlier HPK model,

inappropriate atomic charge or radii assignments can lead to a huge electrostatic error, which

propagates to the nonpolar solvation free energy prediction.

This work is our first attempt in developing an advanced machine learning based model

for solvation free energy prediction. This model can be improved in a number of ways. One

improvement is about query construction based on molecular element types. We believe

that a more sophisticated query construction can further improve the accuracy of the near-

est neighbor searching. Another potential improvement is a better feature selection. For
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example, one can select features according to their local correlations with the solvation free

energies in a given query. The other improvement can be achieved through better feature de-

sign and more accurate feature evaluations. Many atomic features were computed via DFT

in the present work. We believe that some other advanced quantum methodologies for atomic

charge, dipole, and quadrupole calculations will significantly improve our prediction. The

advantage of the DFT based polarable Poisson model has been noticed in our previous work

[256]. Therefore, some improvements in the reaction field energy can be valuable as well.

Overall, we believe that with a better set of molecule descriptors, molecular parametriza-

tion, and molecular partition, the proposed LTR based solvation free energy prediction can

be further improved. The application of the proposed approach to protein-ligand binding is

under our consideration.
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Chapter 8

Protein Ligand Binding Free Energy

Modeling

8.1 Introduction

Designing efficient drugs for curing diseases is of essential importance for the new century’s

life science. Indeed, one of the ultimate goals of molecular biology is to understand the

molecular mechanism of human diseases and to develop efficient side-effect-free drugs for

disease curing. Nevertheless, the drug discovery procedure is extremely complicated, and

involves many scientific disciplines and technologies. As a brief summary, the drug discover-

ing contains the following seven major steps [22], namely, i) Disease identification; ii) Target

hypothesis, i.e., the activation or inhibition of drug targets (usually proteins within the cell)

is thought to alter the disease state; iii) Screening potential principle compounds that will

bind to the target; iv) Optimizing the identified compounds with respect to their structural

characteristics in the context of the target binding site; v) Preclinical test, both in vitro

and in vivo tests will be performed; vi) Clinical trials to determine their bioavailability and

therapeutic potential; and vii) Optimizing chemical’s efficacy, toxicity, and pharmacokinetics

properties. Typically, the whole cost of a new drug development is estimated to be more

than one billion dollars with more than ten years’ group efforts [283]. This large amount of

cost mostly comes from unsuitable chemical compounds that are used in the preclinical and
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clinical testing [2]. In terms of economical drug design, sophisticated and accurate computer

aided compound screening methods become extremely important. Virtual screening (VS)

methodologies focus on detecting a small set of highly promising candidates for further exper-

imental testing [215]. Docking is one of the most important VS methodologies and is widely

used in the Computer Aided Drug Design (CADD). It is a two-stage protocol [10]. The first

step is sampling the ligand binding conformations, which determines the pose, orientation,

and conformation of a molecule as docked to the target’s binding site [28]. The second stage

is protein-ligand binding affinity scoring. With the development of Molecular Dynamics

(MD), Monte Carlo (MC), and Genetic Algorithm (GA) for pose generation, the sampling

problem is relatively well resolved [265, 146, 187]. A major remaining challenge in achieving

accurate docking is the development of accurate scoring functions for diverse protein ligand

complexes. One of the most important open problems in computational bioscience is the

accurate prediction of the binding affinities of a large set of diverse protein-ligand complexes

[10]. A desirable goal is to achieve less than 1 kcal/mol Root Mean Square Error (RMSE)

in the prediction.

Since the pioneer work in the 1980s and 1990s, the study of the scoring function and

sampling techniques has been blooming in the CADD community [143, 63, 97, 131]. In a

recent review paper, Liu and Wang classify the existing popular scoring functions into four

categories [158], namely, i) Force-field based or physical based scoring functions; ii) Empirical

or regression based scoring functions; iii) Potential of the Mean Force (PMF) or knowledge

based scoring functions; and iv) Machine learning based scoring functions. Physics based

scoring functions provide some of the most accurate and detailed description of the pro-

tein and ligand molecules in the solvent environment. Typical models that belong to this

category are Molecular Mechanics Poisson-Boltzmann Surface Area (MM PBSA) and Molec-
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ular Mechanics Generalized-Born Surface Area (MM GBSA) [139, 93] with a given force field

parametrization of both solvent and solute molecules, like AMBER or CHARMM force fields

[258, 164, 274]. In this framework, the binding free energy is modeled as a superposition

of four parts: van der Waals (vdW), electrostatics interactions between protein and ligand,

the hydrogen bonding, and solvation effects. In addition to MM PBSA and MM GBSA,

several other prestigious scoring functions also belong to this group, including COMBINE

[193] and MedusaScore [277]. Physical based scoring functions are a class of dynamically

improved methods, the VS can become more accurate with the further development of more

advanced and comprehensive molecular mechanics force fields. Plenty of improvements has

already been done for improving the accuracy of these scoring functions, such as QM/MM

multiscale coupling [229] and polarizable force fields [198]. Empirical or regression based

scoring functions, usually also called Multiple Linear Regression (MLR) scoring functions,

typically model the protein-ligand binding affinity contributed from vdW interaction, hydro-

gen bonding, desolvation, and metal chelation [287]. Several parameters are introduced in

each of the above term, the scoring function is obtained by using the existing protein-ligand

binding information to train these parameters in the given binding affinity function. Many

other existing scoring functions also belong to this category, e.g., PLP [245], ChemScore [74],

and X-Score [264], etc.

A recent study on a congeneric series of thrombin inhibitors concludes that free energy

contributions to protein-ligand binding are non-additive, showing some theoretical deficien-

cies of the MLR based scoring functions [16]. Machine learning algorithms do not explicitly

require a given form of the binding affinity to its related items, and thus do not require the

additive assumption of energetic terms. Many machine learning based scoring functions are

proposed in the past few decades. These methods apply Quantitative Structure-Activity
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Relation (QSAR) principles to the prediction of the protein-ligand binding affinity. Repre-

sentative work along this line is the Random Forest (RF) based scoring function, RF-Score

[152]. In RF-Score, the random forest is selected as the basic regressor instead of the classical

MLR which is restricted to the pre-defined linear form of the binding affinity function. By

utilization of the features calculated from the existing scoring functions, it achieves highly

accurate five-fold cross validation results on the PDBBind v2013 refined set. Prediction

results on the PDBBind v2007 core set further confirms the accuracy of the RF-Score [152].

Many other machine learning tools are utilized as the main skeletons of the scoring functions,

like Support Vector Regression (SVR) [135], multivariate adaptive regression (MARS), k-

Nearest Neighbors (kNN), Boosted Regression Trees (BRT), etc [4]. The blooming of the big

data approaches and more accurate descriptors characterization of the protein-ligand bind-

ing effects have made machine learning type of scoring function full of vitality in CADD.

Machine learning based scoring functions can make continuous improvement through both

advance in physical protein-ligand binding descriptors and discovery of new machine learning

techniques.

Another important class of scoring functions is PMF based. This category of scoring

functions is based on the simplified statistical mechanics theory in which the protein lig-

and binding affinity is modeled as the sum of pairwise statistical potentials between protein

and ligand atoms. The major merit of the PMF type of scoring functions is their sim-

plicity in both concept and computation. This simplified physical model captures major

physical principles behind the protein ligand binding. In Knowledge-based and Empirical

Combined Scoring Algorithm (KECSA), the binding affinity between protein and ligand are

modeled by 49 pairwise modified Lennard-Jones types of potentials between different types

of atoms [288]. Through a large number of training instances, the functional form of all
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these pairwise interaction potentials can be determined. Effective ligand binding confor-

mation sampling procedure can also be incorporated into this theoretical framework [289].

There are many other interesting developments in the PMF based scoring functions, e.g.,

PMF [180], DrugScore [243], and IT-Score [116].

Essentially, the major purpose of the scoring function is to find the relative order of

binding affinities of candidate chemicals to the target binding site. These ranked results

are further used for the preclinical test in real drug design procedure. From this point of

view, the scoring function development turns out to be the development of ranking methods.

Many existing scoring functions are also developed from this perspective. For example,

Learning To Rank (LTR) algorithms have been used to develop various scoring functions,

including PTRank, RankNet, RankNet, RankBoost, ListNet, and AdaRank [283, 267, 2,

247]. Compared to other machine learning or simple MLR based scoring functions, the

advantages of ranking based scoring functions are two-fold. First, they are applicable to

identifying compounds on novel protein binding sites where no sufficient data available for

other machine learning algorithms. Second, they are suitable for the case that binding

affinities are measured in different platforms since ranking can be more focused on relative

order [283].

In this work, we propose a Feature Functional Theory-Binding Predictor (FFT-BP) for

the blind prediction of binding affinity. The FFT-BP is constructed based on three as-

sumptions, i.e., i) representability assumption: there exists a microscopic feature vector that

can uniquely characterize and distinguish one molecular complex from another; ii) feature-

function relationship assumption: the macroscopic features, including binding free energy,

of a molecule or complex is a functional of microscopic feature vectors; and iii) similarity

assumption: molecules with similar microscopic features have similar macroscopic features,
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such as binding free energies. FFT-BP has three distinguishing traits. A major trait of

the proposed FFT-BP is its use of microscopic features derived from physical models, in-

cluding Poisson Boltzmann (PB) theory [218, 219, 208, 112, 92, 43, 248], nonpolar solvation

models [226, 84, 83, 50, 246, 270, 46], and components in MM PBSA [139]. As such, elec-

trostatic solvation free energy, electrostatic binding affinity, atomic reaction field energies,

and Coulombic interactions are utilized to represent the electrostatic effects of protein-ligand

binding. Atomic pairwise van der Waals interactions are employed to model the dispersion

interactions between the protein and ligand. We also make use of atomic surface areas

and molecular volume in our FFT-BP to describe hydrophobic and entropy effects of the

protein-ligand binding process. Another trait of the present FFT-BP is its feature-function

relationship assumption, which avoids the use of additive modeling of the total binding

affinity by the direct sum of various energy components. The machine learning algorithm

automatically rank the relative importance of each feature to the binding affinity. By uti-

lizing the boosted regression tree type of algorithms for the ranking, our model can capture

the nonlinear dependence of the binding affinity to each feature. The other trait of FFT-BP

is its use of advanced LTR algorithm, the multiple additive regression tree (MART), for

ranking the nearest neighbors via microscopic features. This approach allows us to further

improve our method by incorporating the state-of-the-art machine learning techniques.

This chapter is structured as follows. In Section 8.2, we present the theoretical back-

ground of FFT-BP, which consists of four parts, basic assumptions, microscopic feature

selection, MART algorithm and binding affinity function. In Section 8.3, we verify the ac-

curacy and robustness of our FFT-BP by a validation set, a training set and three standard

test sets involving a variety of diverse protein-ligand complexes. We show that FFT-BP

delivers some of the best binding affinity predictions.
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8.2 Theory and algorithm

In this section, we present FFT for binding free energy prediction. First, we discuss the basic

FFT assumptions. Additionally, feature selections are based on physical models. Moreover,

protein-ligand complexes are ranked from a machine learning algorithms, i.e., the MART

ranking algorithm. Finally, we describe a linear regression algorithm for approximating the

binding free energy based on features from nearest neighbors ranked by the MART algorithm.

8.2.1 Basic assumptions

Our FFT is based on three assumptions, including representability, feature-functional rela-

tionship and similarity. These assumptions are described below.

8.2.1.1 Representability assumption

Without lost of generality, we consider a total of N molecules or complexes {Mi}Ni=1 with

known names and geometric structures from related databases. One of FFT basic as-

sumptions is that there exists an n-dimensional microscopic feature vector, denoted as

xi = (xi1,xi1, · · · ,xin) to uniquely characterize and distinguish the ith molecule or complex.

Here the vector components include various microscopic features, such as atomic types and

numbers, atomic charges, atomic dipoles, atomic quadrupole, atomic reaction field energies,

electrostatic solvation or electrostatic binding free energies, atomic surface areas, pairwise

atomic van der Waals interactions, etc.

For ith molecule or complex, apart from its nmicroscopic features, there are l macroscopic

features, or physical observable oi = (oi1,oi1, · · · ,oil), such as density, pressure, boiling

point, enthalpy of formation, heat of combustion, solvation free energy, pKa, pH, viscosity,
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permittivity, electrical conductivity, binding free energy, etc. We combine the microscopic

and macroscopic feature vectors to construct an extended feature vector vi = (xi,oi) for the

ith molecule.

Extended feature vectors {vi}Ni=1 span a vector space V , which satisfies commonly re-

quired eight axioms for addition and multiplication, such as associativity, commutativity,

identity element, and inverse elements of addition, compatibility of scalar multiplication

with field multiplication, etc. Unlike the usual Lp space, the extended feature space does

not have the notion of nearness, angles or distances. We therefore need additional tech-

niques, namely, machine learning algorithms to study the nearness and distance between

feature vectors. The selection of microscopic features depends on what physical or chemical

prediction is interested. In our approach, we utilize microscopic features form related physi-

cal models. For example, for solvation and binding free energy prediction, we select features

that are derived from implicit solvent models and quantum mechanics.

Based on our assumption, microscopic features along are able to characterize and dis-

tinguish molecules. In contrast, macroscopic features are used as the label in learning and

ranking molecules for a given purpose. Therefore, for a given task, say binding free energy

prediction, we do not include all the macroscopic features in the feature vector oi. We only

select oi = (oi1) = ∆Gi,∀i = 1, · · · , N , where {∆Gi} are known binding free energies from

databases. The resulting extended vector is used for the binding free energy prediction.

8.2.1.2 Feature-function relationship assumption

In FFT, a general feature-function relationship is assumed for the jth physical observable

oj of target molecule A

oAj = fj(xA,v1,v2, · · · ,vN ), (8.2.1)
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where fj is an unknown function modeling the jth physical observable of molecule A and

xA is the microscopic feature vector of the target molecule A. This relation applies to the

prediction of various physical and chemical properties. In the present application, we are

interested in the prediction of binding free energies for a set of diverse protein-ligand com-

plexes. We construct a feature space for the training set and the binding free energy of target

molecular complex AB can be given as a functional of extended feature vectors

∆GAB = fbinding(xAB,v1,v2, · · · ,vN ) (8.2.2)

where ∆GAB is the binding free energy of molecular complex AB, and fbinding is an unknown

functional for modeling the relationship between binding free energy and extended features.

Obviously, the determination of fbinding is a major task of the present work.

8.2.1.3 Similarity assumption

In the FFT, we assume that molecules with similar microscopic features have similar macro-

scopic features, or physical observable. In the present application, we assume that protein

complexes with similar microscopic features will have similar binding free energies. This

assumption provides the basis for utilizing supervised machine learning algorithms to rank

protein-ligand complexes.

In our earlier HPK model, we assume that molecules with similar features having the

same set of parameters in a physical model. As a result, solvation or binding free energies

are still computed based on a physical model, while a machine learning algorithm is used to

find out the nearest neighbors for modeling the physical parameters. In the present FFT, the

binding free energy is not modeled by a physical model directly. However, the microscopic
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features are constructed from physical models.

8.2.2 Microscopic features

In physical models, such as MM PBSA and MM GBSA, the protein ligand binding affinity is

given by the combination of molecular mechanics energy, solvation free energy, and entropy

term

∆G = ∆EMM + ∆Gsolv − T∆S, (8.2.3)

where ∆EMM, ∆Gsolv, and T∆S are the molecular mechanics energy, solvation free energy,

and entropy terms, respectively. Further, the molecular mechanics energy can be decomposed

as ECovalent, which is the sum of bond, angle, and torsion energy terms, and ENoncovalent,

which includes the van der Waals term and a Coulombic term ECoul [104]. Equation (8.2.3)

is used as a guidance for the feature selection in our FFT-Score model.

8.2.2.1 Reaction field features

Molecular electrostatics is of fundamental importance in the protein solvation and binding

processes [219, 112, 92]. In this work, we use a classical implicit solvent model, the PB

theory, for modeling the molecular electrostatics in the solvent environment. This model

is used for two purposes. On the one hand, the solvation effects during the protein ligand

binding will be modeled via this theory. On the other hand, the electrostatic contribution

to the protein ligand binding affinity is computed based on this model, as well.

For simplicity, we consider the linearized PB model in the pure water solvent, which

is formulated as the following elliptic interface problem in mathematical terminology. The
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governing equation is given by

−∇ · (ε(r)∇φ(r)) =

Nm∑
i=1

Qiδ(r− ri), (8.2.4)

with the interface conditions

[φ]|Γ = 0, (8.2.5)

and

[εφn]|Γ = 0, (8.2.6)

where φ is the electrostatics potential over the whole solvent solute domain, Qi is the partial

charge located at ri and δ(r−ri) is the delta function at point ri. The permittivity function

ε(r) is given by

ε(r) =


εm = 1, r ∈ Ωm

εs = 80, r ∈ Ωs
(8.2.7)

where Ωm and Ωs are solute and solvent domains, respectively. The two domains are sepa-

rated by the molecular surface Γ.

The following Debye-Hückel type of boundary condition is imposed to make the PB model

well posed

φ(r) =

Nm∑
i=1

Qi
4πεs|r− ri|

, if r ∈ ∂Ω, (8.2.8)

where Ω = Ωm⋃Ωs.

Molecular reaction field energy is computed by the following formula

∆GRF =

Nm∑
i=1

∆GRFi (8.2.9)
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where the ith atomic reaction field energy ∆GRFi is given by

∆GRFi =
1

2
Qi(φ(ri)− φhome(ri)) (8.2.10)

where φhome is obtained through solving the PB model with ε(r) = 1 in the whole compu-

tational domain Ω. Note that atomic reaction field energies ∆GRFi are used as features in

our FFT based solvation model.

Here the reaction field energy gives a good description of the solvation free energy. In our

earlier study on the solvation model, we found that reaction field energy related molecular

descriptor provides a very accurate characterization of the solvation effects. The study of a

large amount of small solute molecules demonstrates that by using these microscopic features

in the solvation model, the predicted solvation free energy is in an excellent agreement with

the experimental solvation free energy. For example, the RMSE of our leave-one-out test for

a large database of 668 molecules is around 1 kcal/mol [250].

Note that in Eq. (8.2.9), the whole reaction field energy is regarded as the sum of atomic

reaction field energies. In the PB calculation, the solute molecule is usually assumed to be

a homogeneous dielectric continuum with a uniform dielectric constant, which is an inap-

propriate assumption, since atoms in different environments should have different dielectric

properties [265]. For this reason, we select the atomic reaction field energy as a micro-

scopic feature and let the machine learning algorithm to automatically take care the possible

difference in dielectric constants.
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8.2.2.2 Electrostatic binding features

By using the PB model, we can further obtain the electrostatics contribution to the protein-

ligand binding affinity. The electrostatics binding free energy is calculated by

∆Gel = (∆GRF)Com − (∆GRF)Pro − (∆GRF)Lig + ∆GCoul, (8.2.11)

where ∆Gel is the electrostatics binding free energy between protein and ligand, (∆GRF)Pro

and (∆GRF)Lig are the reaction field energies of the protein and ligand, respectively. Here

∆GCoul is the Coulombic interaction between the two parts in the vacuum environment,

which is computed as

∆GCoul =
∑
i,j

QiQj
rij

, (8.2.12)

where rij is the distance between two specific charges, and indexes i and j run over all the

atoms in the protein and ligand molecules, respectively. The PB model is solved by our

in-house software, MIBPB [295, 278, 90, 39], which is shown to be grid size independent.

Its relative ranking orders of reaction field energy and binding free energy calculated with

different grid sizes are consistent [252]. This numerical accuracy guarantees the preserving of

relative ranking orders, which in turn avoids the influence on the prediction from numerical

errors.

8.2.2.3 Atomic Coulombic interaction

Coulombic energy plays an important role in the molecular mechanics energy [167, 139,

104]. Coulombic energy calculation also depends on the dielectric medium. To this end, we

considered the atomic Coulombic interactions in vacuum environment. Specifically, for the
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ith atom in the protein molecule, we select the microscopic feature from atomic Coulombic

energy as

(∆GCoul)i =
∑
j

QiQj
rij

, (8.2.13)

where the summation index j runs over all the atoms in the ligand molecule. The Coulombic

energy associated with the atoms in the ligand molecules can be defined analogously.

8.2.2.4 Atomic van der Waals interaction

It was shown that van der Waals interactions play an important role in solvation analysis

[83, 50, 246, 46, 248]. We expect that van der Waals interactions are essential to binding

process as well. In this work, we consider the 6-12 Lennard Jones (LJ) interaction potential

for modeling the van der Waals interactions

uij(ri, rj) = εij

[(
ri + rj
||ri − rj ||

)12

− 2

(
ri + rj
||ri − rj ||

)6
]
, (8.2.14)

where ri and rj are atomic radii of the ith and jth atoms, respectively. εij measures the

depth of the attractive well at ||ri− rj || = ri + rj . For features related to the van der Waals

interactions, we select pairwise particles interactions as microscopic features for describing

the van der Waals interactions between the protein and ligand. In these features, each atom

type is collected together, well-depth parameters εij are left as training parameters in the

subsequent machine learning algorithm.

8.2.2.5 Atomic solvent excluded surface area and molecular volume

Molecular surface area and surface enclosed volume are usually employed in scaled-particle

theory (SPT) to model the nonpolar solvation free energy [226, 197, 163] and/or entropy
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contribution to the protein ligand binding affinity. In our FFT-BP, the solvent excluded

surface is employed for conformation modeling of the solvated molecule. The molecular

surface area associated with each atom type and molecular volume are used as microscopic

features. These features are also computed by our in-house software, ESES [157], in which

a second order convergent scheme based on the level set theory and third order volume

schemes are implemented. In ESES, the molecular surface area is partitioned into atomic

surface areas based on the power diagram theory.

8.2.2.6 Summary of microscopic features

We consider microscopic features of a protein-ligand complex. For the protein molecule,

microscopic features are selected from following types of atoms, i.e., C, N, O, and S. For the

ligand molecule, atomic features are collected from C, N, O, S, P, F, Cl, Br, and I. Here we

drop features from hydrogen atoms (H) since the positions of these atoms are not typically

given in original X-ray crystallography data, their information itself may not be accurate.

Coincidentally, this selection of representative effective atoms is consistent with that of some

other existing scoring functions, e.g., Cyscore [33], AutoDock Vina [240], and RF-Score [9].

In our model, we collect atomic reaction field energies, molecular reaction field energy, atomic

van der Waals and Coulombic interactions, atomic surface areas, and molecular volume as

the building block of feature space. Due to the fact that binding is a dynamical process, the

change of the atomic reaction field energies, atomic surface areas, and molecular volumes

between the bounded and unbounded states are selected as microscopic features as well.
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8.2.3 MART ranking algorithm

In this subsection, we briefly introduce the MART algorithm, and describe the application

of this algorithm to protein ligand binding affinity scoring. MART is a list-wise LTR algo-

rithm, for a given training set with feature vectors and associated ranking order (here we

simply using the protein-ligand binding affinity as this label value), it trains a function that

optimally simulates the relation between features and labels. When applied to a protein-

ligand complex in the test set, this trained function acts on the corresponding features and

gives a predicted value. The predicted value reflects the binding affinity of the complex

in the test set. In the web-search community, LambdaMART is one of the state-of-the-art

LTR algorithms, here LambdaMART is a coupling of Lambda and MART. Compared to

the classical MLR model for training functions that link features and labels, MART can

capture the nonlinear relationship. Furthermore, compared to most neuron network based

algorithms, it is more efficient. MART also named GBDT (gradient boosting decision tree)

is a very efficient ensemble method for regression. Meanwhile, due to the boosting of the

weaker learners (usually quite simple models like decision tree), the over-fitting problem can

be avoided effectively. The principles of the GBDT are summarized as following:

• For the training set, GBDT successively learns the weak learners, and each weak learner

is a regression tree with quite a few levels for fitting the residual of the previous forest

compared to the training set. This procedure starts from a regression tree for fitting

the training set, and the regression tree is added into the forest gradually. Each succeed

regression tree is used for fitting the residual of the previous forest.

• Instead of counting the whole contribution from each regression tree, shrinkage is

adopted, which is a weight of the regression tree. This weight is obtained through
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solving an optimization problem via the simple line searching algorithm.

• Weighted contributions from the whole regression trees are presented in the final scoring

function, which is the boosting of simple regression trees. Due to the simplicity of each

regression tree, the over-fitting problem can be bypassed efficiently.

In summary, the MART itself learns a function between features and the binding free

energy through the training set. In the testing step, this function assigns a predicted binding

affinity to each sample in the testing set, and the ranking position of a given sample is

determined through the obtained score. This ranking method is significantly different from

the classical pairwise approaches, e.g., RankSVM [128, 129, 144], where ranking is based on

the pairwise comparison between all sample pairs in the training set. The major drawback

of these approaches is that they assumes the same penalty for all pairs. In contrast, we

only care about a few top ranking results for a given query in most applications. For

more comprehensive and mathematical description of the MART, reader is referred to the

literature [26, 78]. Many other LTR algorithms can be used in our framework as well, like

LambdaMART [26, 78], ListNet [34], etc.

8.2.4 Method for binding affinity prediction

In this subsection, we discuss the FFT prediction of the binding free energy of a given target

protein-ligand complex AB. Based on our assumption that binding free energy is a functional

of feature vectors, we construct a feature function around the target molecular complex and

use it to predict the binding free energy. Even though the exact form of the function between

feature and binding affinity is unknown, locally it can be approximated by a linear function.

In other words, locally we assume the binding affinity is a linear function of the microscopic

225



feature vector.

The importance of various features can be ranked automatically during the machine

learning procedure, and thus the number of influential features (n) can be reduced by se-

lecting features of top importance to represent the binding affinity. We assume that target

molecular complex AB is characterized by its feature vector xAB = (xAB1,xAB2, · · · ,xABn),

where n is the dimension of the microscopic feature space, i.e., the space of all microscopic

feature vectors. We also assume that by using the LTR algorithm, we can find top m nearest

neighbors from the training set. The extended feature vectors of these nearest neighbor

complexes are given by {vi = (xi,∆Gi)}mi=1. In general, the dimension of the feature space

is much larger than the number of nearest neighbors used, i.e., m� n. Therefore, the direct

least square approach may lead to over-fitting. To avoid over-fitting, we utilize a Tikhonov

regularization based least square algorithm for training the binding affinity function. From

the extended feature vectors, we can set up the following set of equations



∆G1

∆G2

...

∆Gm


=



x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
...

xm1 xm2 · · · xmn





w1

w2

...

wn


+



b

b

...

b


, (8.2.15)

where wi = wi(v1,v2, · · ·vm) and b = b(v1,v2, · · ·vm) define the function for ∆Gi. By the

similarity assumption, the same functional form can be used for target complex AB. For

further derivation, we rewrite Eq. (8.2.15) as

∆G = xw + b1, (8.2.16)
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where ∆G = (∆G1,∆G2, · · · ,∆Gm)T , w = (w1, w2, · · · , wn)T , 1 is an m-dimensional

column vector with all elements equaling 1, and matrix x is given by

x =



x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
...

xm1 xm2 · · · xmn


.

To avoid over-fitting, we add an L2 penalty to the weight vector w, and solve Eq. (8.2.16)

as an optimization problem

min
w,b
||∆G− xw − b1||22 + λ||w||22 := min

w,b
F, (8.2.17)

where λ is a regularization parameter and is set to 10 in this work, and || ∗ ||2 denotes the

L2 norm of the quantity ∗.

By solving ∂F
∂w = 0, we have

w =
(
xTx + λI

)−1 (
xT∆G− xT (b1)

)
, (8.2.18)

where I is an m×m identity matrix.

To determine b from Eq. (8.2.17), we relax b1 to an arbitrary vector such that b =

(b1, b2, · · · , bm)T . By solving ∂F
∂b = 0, we have

b = ∆G− xw. (8.2.19)
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An unbiased estimation of b is given by

b =

∑m
i=1(∆G− xw)i

m
, (8.2.20)

where (∆G− xw)i is the ith component of the vector ∆G− xw.

The optimization problem in Eq. (8.2.17) is solved by alternately iterating Eqs. (8.2.18)

and (8.2.20), which is essentially an Expectation - Maximization (EM) algorithm.

After obtaining optimized weights w for the feature vector x and hyperplane height b,

the binding free energy of target molecular complex AB can be predicted as

∆GAB = b+
n∑
i=1

wixABi. (8.2.21)

Equation (8.2.21) can be regarded as a linear approximation of the binding free energy

functional ∆GAB = f(xAB,v1,v2, · · ·vm).

Alternatively, we can also directly obtain the binding affinity of the target complex AB

from the LTR ranking value if the ranking algorithm attempts to fit the target value. For

general LTR algorithms, especially pairwise ranking algorithms, the direct use of the ranking

score as a predicted binding affinity is not appropriate. However, the proposed protocol also

applies to this scenario. These two approaches are compared in this present work.

8.3 Numerical results

In this section, we explore the validity, demonstrate the performance, and examine the

limitation of the proposed FFT-BP. First, we describe datasets used in this work. Then,

we examine whether FFT-BP’s performance depends on protein clusters, where each cluster
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contains one specific protein and tens or hundreds of ligands. Our test on a validation

set of 1322 protein-ligand complexes from 7 clusters indicates that the performance of the

proposed FFT-BP does not depend on protein clusters. By using the same test set, we also

study the impact of cut-off distance to FFT-BP prediction. Here cut-off distance refers to

protein feature evaluation truncation distance. Protein atoms within the cut-off distance are

allowed to contribute the atomic feature selection and calculation. To further benchmark

the accuracy of the present FFT-BP, we carry out a five-fold cross validation on training set

(N = 3589), which is derived from the PDBBind v2015 refined set [160]. Finally, we provide

blind predictions on a benchmark set of 100 protein-ligand complexes [265], the PDBBind

v2007 core set (N = 195) [9], and the PDBBind v2015 core set (N = 195) [160].

8.3.1 Dataset perparation

All data sets used in the present work are obtained from the PDBBind database [160], in

which the PDBBind v2015 refined set of 3,706 entries was selected from a general set of 14,620

protein-ligand complexes with good quality, filtered over binding data, crystal structures, as

well as the nature of the complexes [160]. Due to the feacture extraction, a pre-processing

of data is required in the present method.

8.3.1.1 Datasets

This work utilizes one validation set (N = 1322), one training set (N = 3589), and three

test sets (N = 195, N = 195 and N = 100).

8.3.1.1.1 Validation set (N = 1322) To explore the cluster dependence or indepen-

dence and the optimal cut-off distance of the present FFT-BP, we select a subset of the
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PDBBind v2015 refined set with 1322 complexes in 7 different clusters. Each cluster con-

tains one protein and a large number, ranging from 93 to 333, of small ligand molecules.

8.3.1.1.2 Training set (N = 3589) We carry our FFT microscopic feature extraction of

the PDBBind v2015 refined set via appropriate force field parametrization described below,

which leads to a parametrized set of 3589 protein-ligand complexes. Whenever a test set is

employed, its entries are carefully excluded from the training set of 3589 complexes.

8.3.1.1.3 Test sets Three test sets are standard ones described in the literature. PDB

IDs of the training set and the validation set are given in the Supporting material.

The PDBBind v2015 core set of 195 benchmark-quality complexes is employed as a test.

According to the literature, the PDBBind v2015 core set was selected with an emphasis on

the diversity in structures and binding data. It contains 65 representative clusters from the

refined set. For each cluster, it must have at least five protein-ligand complexes and three

complexes, one with the highest binding constant, another with the lowest binding constant,

and the other with a medium binding constant were selected for the PDBBind v2015 core

set [160].

We also consider two additional test sets, the PDBBind v2007 core set of 195 complexes

[48] and the benchmark set of 100 complexes [265] to benchmark the proposed FFT-BP

against a large number of scoring functions.

When the training set (N = 3589) is applied to a test set, we first exclude all the

overlapping entries between the training and the given test and re-train the training set for

the specific test.
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8.3.1.2 Data pre-processing

FFT-BP utilizes microscopic features, which requires appropriate feature extraction from the

data set. Before the feature generation, structure optimization and force field assignment

are carried out. Protein structures with corresponding ligand are prepared with the protein

preparation wizard utility of the Schrödinger 2015-2 Suite [79, 213] with default parameters

except filling the missing side chains. The protonation states for ligands are generated using

Epik state penalties and the H-bond networks for the complex are further optimized using

PROPKA at pH 7.0 [210, 189]. The restrained minimization on heavy atoms for the complex

structures are finally performed with OPLS 2005 force field [132]. The atomic radii and

charges for the complexes are parameterized by Amber tool14 [35]. For ligand molecules,

charges are calculated by the antechamber module with AM1-BCC semi-empirical charge

method and the atomic radii are assigned by using the mbondi2 radii set [122]. For protein

molecules, radii and charges of each atom are parameterized by the Amber ff14SB general

force field with tleap module [35].

Protein features are extracted with a cut-off distance. Specifically, we first find a tight

bounding box containing the ligand, then extend feature generation domain along all direc-

tions around the box to a cut-off distance. We provide all the data involved in this work in the

Supporting material, in which some protein-ligand structures that needs specific treatments

are emphasized.

In the PDBBind database, the protein ligand binding affinity is provided in term of pKd.

We convert all the energy unit in the PDBBind database to kcal/mol. To derive the unit

convert formula, one notes that

∆G = RT ln kd = −RT lnKeq,
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where ∆G is the Gibbs free energy, kd is the disassociation constant, and R is the gas

constant. Since pKd = − log10Kd, then at the room temperature, T = 298.15K, one has

the following relation between these two units

∆G = −1.3633 pKd. (8.3.1)

8.3.2 Validation

In this section, we explore the properties of FFT-BP and validate its performance. The

following two important issues are examined in several existing scoring functions. The first

issue is related to the protein-ligand binding affinity prediction of diverse multiple clusters,

especially clusters with limited experimental data. Another issue is that a scoring method

should be optimized with a cut-off distance in the feature extraction to maintain sufficient

accuracy and avoid unnecessary feature calculations. In the existing work, the LTR based

scoring functions can predict cross-cluster binding affinity well [283]. For the random forest

and some other machine learning algorithms, one typically selects a cut-off distance of 12 Å,

in the protein feature calculation [10].

In this work, we demonstrate the capability of the FFT-BP for the accurate cross-cluster

binding affinity prediction. Additionally, we explore the optimal cut-off distance for FFT-BP

feature extraction. Finally, since the accuracy of the FFT-BP predictions depends on the

numbers of the nearest neighbors and top features, we investigate robustness of the proposed

FFT-BP with respect to choice of the nearest neighbors and top features.

Two sets of protein-ligand complexes, i.e., the validation set (N = 1322) and the training

set (N = 3589), are employed in this validation study.
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8.3.2.1 Validation on the validation set (N = 1322)

Table 8.1: The RMSEs (kcal/mol) for the five-fold validation on the 7 clusters of the vali-
dation set and on the whole validation set (N = 1322) with 10 different cut-off distances in
the feature extraction.

Test set Group 5 Å 10 Å 15 Å 20 Å 25 Å 30 Å 35 Å 40 Å

Cluster 1

Group1 1.90 1.86 1.76 1.73 1.81 1.90 1.81 1.82

Group2 2.07 2.15 2.38 2.23 2.35 2.25 2.21 2.24

Group3 2.31 1.98 2.04 1.95 1.85 1.87 1.87 1.89

Group4 1.89 1.75 1.58 1.63 1.63 1.67 1.62 1.66

Group5 2.35 2.22 2.09 2.05 2.14 1.67 2.10 2.12

Average 2.11 2.01 1.99 1.93 1.97 2.13 1.93 1.96

Cluster 2

Group1 1.39 1.33 1.31 1.32 1.39 1.43 1.46 1.42

Group2 1.66 1.24 1.31 1.23 1.19 1.14 1.15 1.19

Group3 1.39 1.28 1.14 1.21 1.28 1.31 1.37 1.37

Group4 1.44 1.33 1.35 1.36 1.37 1.38 1.35 1.40

Group5 1.53 1.44 1.38 1.49 1.36 1.37 1.38 1.33

Average 1.49 1.33 1.34 1.32 1.32 1.33 1.34 1.35

Cluster 3

Group1 2.56 2.40 2.65 2.41 2.53 2.62 2.61 2.60

Group2 2.07 2.13 2.08 2.10 2.11 2.11 2.11 2.09

Group3 1.54 1.53 1.52 1.57 1.55 1.51 1.52 1.50

Group4 1.82 1.75 1.70 1.71 1.64 1.68 1.70 1.72

Group5 2.14 2.23 2.20 2.15 2.18 2.26 2.26 2.27

Average 2.05 2.03 2.07 2.01 2.03 2.08 2.08 2.08

233



Table 8.1 (cont’d)

Test set Group 5 Å 10 Å 15 Å 20 Å 25 Å 30 Å 35 Å 40 Å

Cluster 4

Group1 1.59 1.78 1.80 1.88 1.76 1.68 1.72 1.72

Group2 1.41 1.47 1.53 1.25 1.34 1.39 1.37 1.34

Group3 1.58 1.46 1.50 1.59 1.56 1.52 1.55 1.55

Group4 1.91 1.76 1.76 1.87 1.83 1.84 1.80 1.78

Group5 1.57 1.54 1.61 1.73 1.81 1.84 1.74 1.67

Average 1.62 1.61 1.64 1.68 1.67 1.67 1.65 1.62

Cluster 5

Group1 2.01 2.43 1.83 1.64 1.60 1.65 1.67 1.69

Group2 2.15 2.08 1.89 1.88 1.92 1.86 1.94 1.88

Group3 2.52 2.26 2.54 2.42 2.41 2.37 2.39 2.40

Group4 1.65 1.70 1.30 1.37 1.25 1.33 1.35 1.36

Group5 3.18 2.87 2.89 2.49 2.59 2.54 2.56 2.67

Average 2.39 2.31 2.18 2.03 2.03 2.02 2.05 2.07

Cluster 6

Group1 3.17 2.99 3.03 2.95 3.00 3.02 2.90 2.92

Group2 2.09 1.83 1.83 1.82 1.91 1.83 1.88 1.86

Group3 1.68 1.71 1.55 1.65 1.69 1.55 1.63 1.58

Group4 1.73 1.69 1.55 1.60 1.60 1.51 1.58 1.58

Group5 2.30 1.97 2.04 2.13 2.03 2.06 2.05 2.05

Average 2.26 2.09 2.08 2.09 2.10 2.07 2.06 2.06

Cluster 7

Group1 1.83 1.97 2.16 1.93 1.68 1.66 2.01 1.90

Group2 1.92 1.99 1.97 1.97 2.00 1.93 2.09 2.06

Group3 1.68 1.69 1.45 1.39 1.35 1.39 1.44 1.51
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Table 8.1 (cont’d)

Test set Group 5 Å 10 Å 15 Å 20 Å 25 Å 30 Å 35 Å 40 Å

Group4 2.27 2.11 2.13 1.91 2.14 2.14 2.39 2.36

Group5 1.76 1.40 1.29 1.32 1.41 1.35 1.38 1.39

Average 1.90 1.83 1.81 1.71 1.73 1.71 1.88 1.86

Average 1.90 1.88 1.87 1.83 1.84 1.84 1.85 1.85

Whole set

Group1 1.81 1.55 1.62 1.57 1.67 1.69 1.66 1.55

Group2 1.63 1.76 1.62 1.69 1.64 1.67 1.55 1.71

Group3 1.71 1.58 1.65 1.65 1.65 1.55 1.55 1.63

Group4 1.73 1.62 1.65 1.57 1.56 1.53 1.78 1.57

Group5 1.64 1.65 1.59 1.64 1.65 1.68 1.60 1.63

Average 1.70 1.63 1.63 1.63 1.64 1.63 1.64 1.63

We validate the proposed FFT-BP on the validation set of 1322 complexes. We utilize the

five-fold cross validation strategy to test the model and determine optimal cut-off distance. In

this strategy, the validation set of 1322 complexes is randomly partitioned into five essentially

equal sized subsets. Of the five subsets, a single subset is retained as the test set for testing

the FFT-BP, and the remaining four subsets are used as training data. First, we run a coarse

test with cut-off distance from 5 to 50 Å using 5 Å as the step size, which helps to determine

the rough optimal cut-off distance. Second, we carry a refined search for the optimal the

cut-off distance based on coarse test results with a step of size 1 Å. At a given cut-off size, we

do the five-fold cross validation on the validation set of 1322 complexes, together with the
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Table 8.2: The RMSEs (kcal/mol) for the five-fold test on the validation set (N = 1322)
with FFT-BP calculated at different cut off distances.

Group
Cut-off distance

5 Å 6 Å 7 Å 8 Å 9 Å 10 Å 11 Å 12 Å 13 Å 14 Å 15 Å
Group1 1.81 1.68 1.80 1.58 1.61 1.55 1.49 1.62 1.50 1.60 1.62
Group2 1.63 1.67 1.61 1.79 1.67 1.76 1.63 1.65 1.76 1.72 1.62
Group3 1.71 1.68 1.57 1.65 1.61 1.58 1.80 1.62 1.56 1.71 1.65
Group4 1.73 1.56 1.46 1.58 1.64 1.62 1.74 1.58 1.55 1.70 1.65
Group5 1.64 1.57 1.82 1.57 1.60 1.65 1.46 1.56 1.59 1.59 1.59
Average 1.70 1.64 1.66 1.64 1.63 1.63 1.63 1.60 1.60 1.66 1.63

five-fold cross validation on each of 7 clusters. Table 8.1 lists the RMSEs on all the five-fold

cross validation with cut-off distance 5 to 50 Å and step size 5 Å.

Figure 8.1: The prediction RMSE vs the cut-off distance.

Results in Table 8.1 indicate that: 1) Overall, prediction over the whole set of 1322

complexes gives better results than predictions on individual clusters. Therefore, the pro-

posed method favors blind cross-cluster predictions. 2) According the results from the whole

validation set tests, feature cuf-off distance at 10 Å is has reached its optimal value. This

distance is actually consistent with the explicit solvent modeling in which a 10 Å cut-off

distance is designed to account for long range electrostatic interactions. To better estimate

the optimal cut-off distance, we carry out a more accurate searching in the range of 5 to 15

Å distance with a step size of 1 Å. Table 8.2 lists the RMSEs of the five-fold cross validation
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Table 8.3: The RMSEs (kcal/mol) for the validation set (N = 1322) with different numbers
of nearest neighbors and top features.

Number of Number of top features
nearest neighbors 5 10 15 20 25 30 35 40 45 50

1 1.60 1.60 1.60 1.61 1.61 1.61 1.61 1.61 1.61 1.62
2 1.60 1.60 1.61 1.61 1.61 1.61 1.61 1.62 1.62 1.62
3 1.60 1.59 1.60 1.70 1.66 1.68 1.71 1.70 1.69 1.70
4 1.61 1.57 1.62 1.71 1.70 1.72 1.73 1.70 1.85 1.83
5 1.61 1.60 1.67 1.74 1.75 1.74 1.75 1.73 1.78 1.77
6 1.62 1.61 1.68 1.79 1.80 1.81 1.81 1.88 1.85 1.85
7 1.61 1.61 1.65 1.78 1.77 1.78 1.78 1.81 1.82 1.82
8 1.62 1.62 1.65 1.74 1.76 1.76 1.77 1.78 1.80 1.81
9 1.62 1.61 1.65 1.74 1.75 1.76 1.76 1.76 1.78 1.77
10 1.62 1.62 1.73 1.74 1.79 1.80 1.82 1.82 1.88 1.90

on the whole validation set of 1322 complexes. These results show that 12 Å is the optimal

cut-off distance in the searched solution space, which is consistent with that used in the

RF-Score [10]. We plot the relation between the cut-off distance and prediction error in Fig.

8.1. In the rest of this work, the cut-off distance of 12 Å is utilized.

Finally, all the above predictions are based on the LTR ranking results. Alternatively, we

can also carry out the prediction by using nearest neighbors and their associated features.

We are interested to see the difference between these two approaches. To this end, we

compute the binding affinities of five-fold results with different numbers of nearest neighbors

and top features involved. Here top features are ranked by the LTR algorithm automatically

according to their importance during the complex ranking. We list the top 50 important

features to the protein ligand binding for the validation set in the Supporting material.

We noted that the most important five features are the volume change, atomic Coulombic

interaction of S atoms, area change of the C atoms in the protein and complex parts, and

electrostatic binding free energy.

The RMSEs of the tests with different numbers of top features and nearest neighbors
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Figure 8.2: Five-fold cross validation on the validation set (N = 1322). Left chart: correla-
tion between experimental binding affinities and FFT-BP predictions. Right chart: RMSEs
for five groups. Here, RMSEs are 1.55, 1.58, 1.55, 1.56, and 1.59 kcal/mol for five groups,
respectively. Overall Pearson correlation to the experimental binding affinities is 0.80.

involved are presented in Table 8.3. The optimal result is obtained when four nearest neigh-

bor and 10 top features are utilized, with RMSE 1.57 kcal/mol. It is seen that when less

than or equal to 10 top features are employed the prediction is quite accurate. However,

with more features and more neighbors involved, the prediction become slightly worse. One

possible reason is the reduced quality of the nearest neighbors involved for the prediction.

Indeed, the neighbors that are not very close to the target molecule complex may make a

large difference to the prediction of the target complex. This problem also motivates us to

seek a better set of features for protein-ligand binding analysis.

Figure 8.2 depicts the optimal prediction results (Left chart) and RMSEs for each group

(Right chart). It is seen that the RMSEs for all groups are almost the same, indicating the

unbiased nature of five-fold cross-validation. The success of proposed FFT-BP is implied by

the small RMSEs (1.55 ∼ 1.59 kcal/mol) and the high overall Pearson correlation of 0.80.
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Table 8.4: The RMSEs (kcal/mol) for the five-fold cross validation on the training set (N =
3589) with different number of nearest neighbors and top features.

Number of Number of top features
nearest neighbors 5 10 15 20 25 30 35 40 45 50

1 2.00 1.99 2.00 2.00 2.00 2.01 2.01 2.01 2.01 2.02
2 2.00 1.99 2.00 1.99 2.00 2.01 2.01 2.01 2.01 2.01
3 2.01 2.00 2.00 2.00 2.00 2.00 2.02 2.01 2.01 2.01
4 2.00 2.01 2.00 1.99 2.00 2.01 2.01 2.01 2.02 2.01
5 2.01 2.00 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.02
6 2.00 1.99 1.99 2.00 2.00 2.01 2.01 2.01 2.01 2.01
7 2.00 2.00 2.00 2.00 2.01 2.01 2.02 2.02 2.02 2.02
8 2.00 1.99 1.98 1.99 1.99 2.00 2.00 2.00 2.01 2.00
9 2.00 2.00 2.00 2.01 2.02 2.05 2.05 2.05 2.05 2.04
10 1.99 2.00 2.00 2.03 2.04 2.07 2.08 2.08 2.08 2.08

8.3.2.2 Validation on the training set (N = 3589)

We also consider the five-fold cross validation on our training set of 3589 complexes. We

randomly divide this data set into five groups with 717, 718, 718, 718, and 718 complexes,

respectively. In the five-fold cross validation, each time we regard one group of molecules as

the test set without binding affinity data, and using the remaining four groups to predict

the binding affinities of the selected test set.

Directly using the ranking score as the predicted binding affinity leads to RMSE 2.00

kcal/mol. Alternatively, we can predict binding affinities using the nearest neighbors and

top features.

Table 8.4 shows the RMSEs for the five-fold cross validation test on the training set

(N = 3589). The number of nearest neighbors is varied from 1 to 10 and the number of

to features is changed from 5 to 50. The most important 50 features indicated from the

LTR algorithm are provided in the Supporting material. Five top important features are

volume change, electrostatics binding free energy, and van der Waals interactions between

C-S, C-O and C-N pairs, respectively. The optimal prediction is achieved when 8 nearest
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Figure 8.3: Five-fold cross validation on the training set (3589 complexes). Left chart:
correlation between experimental binding affinities and FFT-BP predictions. Right chart:
RMSEs for five groups. Here, RMSEs are 2.01, 1.96, 1.97, 1.98, and 2.00 kcal/mol for five
groups, respectively. Overall Pearson correlation to the experimental is 0.70.

neighbors and top 10 features are used for binding affinity prediction, with the RMSE being

1.98 kcal/mol. Different numbers of nearest neighbors and top features basically give very

consistent predictions. Compared to the five-fold test on the 1322 protein ligand complexes,

the prediction errors on this set are much larger, which is partially due to the fact that

structures in this test set is more complexes. For example, binding-site metal effects are

presented without an appropriate treatment. We believe a better treatment of metal effects

and a classification of ligand molecules would improve the FFT-BP prediction.

Figure 8.3 depicts the optimal prediction results (Left chart) and RMSEs for each group

(Right chart). These tests demonstrate the following two facts. First, five-fold cross vali-

dation prediction is unbiased. The prediction results do not depends on the data itself and

the RMSEs for all groups are almost at the same level. Second, when the protein-ligand

complexes become diverse, the prediction becomes slightly worse due to the lack of similar

complexes for certain clusters.
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Table 8.5: The RMSEs (kcal/mol) of the FFT-BP for the benchmark test set (N = 100)
with different numbers of nearest neighbors and top features.

Number of Number of top features
nearest neighbors 5 10 15 20 25 30 35 40 45 50

1 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
2 2.01 2.01 1.99 1.99 2.01 2.00 2.01 2.01 2.01 2.01
3 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.01 2.01 2.01
4 2.01 2.01 2.01 2.00 2.00 2.00 2.01 2.01 2.01 2.01
5 2.01 2.01 2.01 2.01 2.01 2.01 2.00 2.01 2.01 2.01
6 2.02 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01
7 2.02 2.02 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01
8 2.01 2.01 2.01 2.01 2.01 2.01 2.02 2.02 2.02 2.02
9 2.01 2.01 2.01 2.01 2.01 2.01 2.02 2.01 2.01 2.01
10 2.01 2.01 2.01 2.02 2.01 2.02 2.01 2.02 2.02 2.02

8.3.3 Blind predictions on three test sets

To further verify the accuracy of the FFT-BP, we perform the blind prediction on three

benchmark test sets. The training set (N = 3589) that is processed from the PDBBind v2015

refined set is utilized for the training in all blind predictions. Due to the LTR algorithm

used in our FFT-BP, the RMSE and correlation of our FFT-BP prediction would be around

0 kcal/mol and 1, respectively, had we include all the test set complexes in our training set.

Therefore, in each blind prediction, we carefully exclude the overlapping test set complexes

from the training set and re-train the training set with a reduced number of complexes.

8.3.3.1 Prediction on the benchmark set (N = 100)

First of all, we consider a popular benchmark set originally used by Wang et al [265]. This

set contains 100 protein ligand complexes which involves a large variety of protein receptors.

Originally this test set was used to test the performance of a large amount of well-known

scoring functions and docking algorithms [265]. Recently, Zheng et al have utilized this test

set to demonstrate the superb performance of their KECSA method [288]. In this work, we
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examine the accuracy and robustness of our FFT-BP on this benchmark test set.

Figure 8.4: The correlation between experimental binding feree energies and FFT-BP pre-
dictions on the benchmark test set (N = 100) with the RMSE of 1.99 kcal/mol and the
Pearson correlation of 0.75.

Directly using the ranking score as the predicted binding affinity leads to the RMSE of

2.01 kcal/mol and Pearson correlation coefficient of 0.75. Alternatively, we examine FFT-BP

predictions using different numbers nearest neighbors and top features. Table 8.5 lists the

predicted RMSEs for the benchmark set (N = 100). The numbers of nearest neighbors and

tops features vary from 1 to 10 and 5 to 50, respectively. The most important 50 features

indicated by the LTR algorithm are provided in the Supporting material. Five top important

features are volume change, electrostatics binding free energy, van der Waals interaction be-

tween C-S and C-C pairs, and the complex’s area change. The optimal prediction is reached

when 2 nearest neighbors and top 15 or 20 features are used for binding prediction. The cor-

responding RMSEs and correlations for both cases are 1.99 kcal/mol and 0.75, respectively.

Different numbers of nearest neighbors and top features basically give rise to very consistent

predictions. We also note that the prediction errors for this 100 test set are very similar to

those of the five-fold cross validation tests on our training set (N = 3589). This consistency

indicates the robustness of the proposed FFT-BP in binding affinity predictions.
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Figure 8.5: Performance comparison between different scoring functions on the bench-
mark test set (N = 100). The binding affinity comparisons was done for FFT-BP, and
19 well-known scoring functions, namely LISA, KECSA, LISA+ [288, 287], ITScore/SE
[117], ITScore [116], X-Score [264], DFIRE [282], DrugScoreCSD [244], DrugScorePDB
[96], Cerius2/PLP [88], SYBYL/G-Score [130], SYBYL/D-Score [171], SYBYL [74],
Cerius2/PMF [180], DOCK/FF [171], Cerius2/LUDI [23], Cerius2[1], SYBYL/F-Score [201],
and AutoDock [179].

Figure 8.4 illustrates the optimal prediction results compared to the experimental data.

The RMSE and Pearson correlation coefficient are 1.99 kcal/mol and 0.75, respectively.

This test set is a critical test set with diverse protein-ligand complexes and a wide range of

experimental binding free energies. In our prediction, most predictions are quite appealing

with less than 2 kcal/mol RMSE compared to experimental results.

Many outstanding scoring functions have been tested on this test set as summarized by
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Table 8.6: The RMSEs (kcal/mol) of the FFT-BP for the PDBBind Core 2007 test set
(N = 195) with different numbers of nearest neighbors and top features.

Number of Number of top features
nearest neighbors 5 10 15 20 25 30 35 40 45 50

1 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10
2 2.09 2.09 2.09 2.09 2.09 2.09 2.10 2.10 2.10 2.10
3 2.10 2.10 2.10 2.09 2.09 2.09 2.09 2.10 2.09 2.09
4 2.09 2.09 2.09 2.09 2.09 2.10 2.09 2.09 2.09 2.10
5 2.09 2.10 2.09 2.10 2.11 2.10 2.11 2.11 2.11 2.10
6 2.10 2.08 2.09 2.08 2.09 2.08 2.10 2.09 2.10 2.10
7 2.09 2.09 2.10 2.10 2.11 2.12 2.12 2.12 2.12 2.12
8 2.10 2.10 2.11 2.10 2.10 2.10 2.10 2.10 2.10 2.10
9 2.09 2.10 2.10 2.10 2.10 2.10 2.11 2.11 2.11 2.11
10 2.10 2.10 2.09 2.10 2.10 2.10 2.11 2.11 2.11 2.11

Zheng etr al [288]. Here we also add our prediction to this list. As shown in Fig. 8.5, the

performance of our FFT-BP is highlighted with red color. The performance of other 19

scoring functions are due to the courtesy of Ref. [288].

8.3.3.2 Prediction on the PDBBind v2007 core set (N = 195)

PDBBind v2007 core set (N = 195) which contains high quality data mainly aims for testing

the performance of scoring functions [160]. It has been employed to study and compare many

excellent scoring functions [151, 9, 150, 8, 48]. Here we also examine our FFT-BP test set. If

we regard the ranking score itself as the predicted binding affinity, the RMSE is 2.09 kcal/mol

for this test set, which is slightly larger than that of the five-fold test on the training set

(N = 3589) and that of the benchmark test set (N = 100).

Table 8.6 shows the prediction RMSEs for PDBBind v2007 core set. We have varied the

numbers of nearest neighbors and tops features from 1 to 10 and 5 to 50, respectively. The

most important 50 features indicated by the LTR algorithm are provided in the Supporting

material. The top five important features are volume change, electrostatics binding free
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energy, van der Waals interaction between C-O, the complex’s area change, and van der

Waals interaction between C-C. These features are basically consistent with those of all the

previous test cases. The optimal FFT-BP prediction is found when 6 nearest neighbors and

top 15 or 30 features are used for binding prediction, with RMSEs for both cases being 2.08

kcal/mol. Pearson correlation coefficient of 0.76 is consistent with the earlier finding from

the test set of 100 complexes. It is found that for this test set, the predictions based on

different numbers of nearest neighbors and top features do not differ much from each other.

Figure 8.6: The correlation of between experimental binding feree energies and FFT-BP
predictions on the PDBBind core 2007 (N = 195). The RMSE and Pearson correlation
coefficient are 2.08 kcal/mol and 0.76, respectively.

Figure 8.6 illustrates the correlation between experimental binding free energies and the

best predictions obtained by the FFT-BP. Obviously, there is a bias in the predicted binding

affinities, which will be addressed in our future work.

Li et al have given a comparison of tests on the PDBBind v2007 core set (N = 195) using

many outstanding scoring functions [151]. In this content, we also plot the performance of

our FFT-BP in terms of Pearson correlation coefficient in Fig. 8.7. The FFT-BP correlation

coeffiicent of 0.76 is highlighted with red color.
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Figure 8.7: Performance comparison between different scoring functions on the PDBBind
v2007 core set (N = 195). The performances of the other scoring function are adopted from
the literature [151, 9, 150, 8, 48].

.

8.3.3.3 Prediction on the PDBBind v2015 core set (N = 195)

Finally, we perform a test on the PDBBind v2015 core set (N = 195), which contains

high quality experimental data. This test set is also quite challenging due its diversity of

65 protein-ligand clusters and a wide binding affinity range. In a similar routine, we first

consider the FFT-BP prediction with different numbers of neighbors and top features. Table

8.7 shows the RMSEs of FFT-BP for PDBBind v2015 core set (N = 195). The top 50

features are also listed in the Supporting material. The most important features are similar
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Table 8.7: The prediction RMSEs (kcal/mol) for the PDBBind v2015 core set (N = 195)
with different numbers of nearest neighbors and top features.

Number of Number of top features
nearest neighbors 5 10 15 20 25 30 35 40 45 50

1 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95
2 1.95 1.94 1.95 1.95 1.95 1.95 1.95 1.95 1.96 1.96
3 1.94 1.94 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95
4 1.94 1.94 1.93 1.93 1.94 1.94 1.94 1.95 1.95 1.95
5 1.95 1.95 1.92 1.94 1.95 1.95 1.96 1.95 1.95 1.95
6 1.95 1.95 1.95 1.95 1.96 1.96 1.95 1.96 1.95 1.94
7 1.95 1.93 1.93 1.94 1.95 1.97 1.95 1.95 1.95 1.95
8 1.95 1.95 1.95 1.96 1.96 1.97 1.97 1.96 1.95 1.95
9 1.94 1.94 1.94 1.94 1.94 1.95 1.95 1.94 1.94 1.94
10 1.95 1.95 1.95 1.95 1.95 1.94 1.94 1.94 1.94 1.94

Figure 8.8: The correlation between experimental binding free energies and FFT-BP pre-
dictions on the PDBBind v2015 core set (N = 195). The RMSE and Pearson correlation
coefficient are 1.92 kcal/mol and 0.78, respectively.

to those in previous tests, which indicates that the volume change, electrostatic binding free

energy and van der Waals interactions are of fundamental importance to the protein-ligand

binding. It is worth noting that the RMSEs of FFT-BP predictions are lower than those from

earlier test sets. A possible reason is this data set is consistent with the training set as both

obtained from the PDBBind 2015 refined set. Additionally, a better data quality might also

contribute our better predictions. Our optimal prediction has the RMSE of 1.92 kcal/mol

and Pearson correlation coefficient of 0.78, when 5 nearest neighbors and 15 features are
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used for the prediction.

Figure 8.8 plots the correlation between experimental binding free energies and FFT-BP

predictions on the PDBBind v2015 core set (N = 195). Compared to the earlier two blind

predictions, the prediction on this set is more accurate. However, similar to the behavior in

two other test sets, the present prediction is biased. This issue will be studied in our future

work.

8.4 Concluding remarks

In this work, we propose a new scoring function, feature functional theory - binding pre-

dictor (FFT-BP). FFT-BP is constructed based on three fundamental assumptions, namely,

representability, feature-function relationship, and similarity assumptions. A validation set

of 1322 complexes, a training set of 3589 complexes, and three test sets with 100, 195 and

195 complexes are considered in the present work to validate the proposed method, explore

its utility, demonstrate its performance and reveal its deficiency. Extensive numerical ex-

periments indicate that FFT-BP delivers some of the most accurate blind predictions in the

field with the root-mean-square error around 2 kcal/mol and Pearson correlation coefficient

around 0.76.

A major advantage of FFT-BP is that it extracts microscopic features from conventional

implicit solvent models so that the validity of these physical models for binding analysis and

prediction can be systematically examined. Consequently, the proposed FFT-BP can be

improved via the improvement of our understanding on physical models. Another advantage

of FFT-BP is that it provides a framework to systematically incorporates and continuously

absorb advanced machine learning algorithms to improve its predictive power. The other
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advantage of FFT-BP is that it becomes more and more accurate as the existing binding

database becomes larger and larger.

This work is our first attempt in exploring the mathematical modeling of the protein-

ligand binding affinity. Our model can be further improved in several aspects. First, we

have employed a very crude force filed parameterized of the Poisson model. More accurate

Poisson-Boltzmann (PB) modeling, such as polarizable PB model, and feature extraction

from more accurate quantum mechanics/molecular mechanics (QM/MM) models will im-

prove the present FFT-BP. Additionally, we employ the MART algorithm for the molecules

ranking. More sophisticated machine learning algorithms, such as deep learning, can po-

tentially improve FFT-BP prediction, and eliminate the current prediction bias in test sets.

Finally, a deficiency of the current model is that it neglects the metal effect on protein-ligand

binding affinity. The incorporation of this effect into our model is under our investigation.
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Chapter 9

Dissertation Contribution

In this chapter, we will summarize the contribution of this dissertation.

• In chapter 3, we proposed a novel parametrization method for the differential geometry

based implicit solvent model, this work was published in [248]. The original solvation

model was proposed by Wei[270], and first implemented by Chen et al [43]. In the work

[43], parameters selection was considered. Nevertheless, the parametrization cannot

give optimal prediction for polar molecule. I proposed a systematic parametrization

scheme which incorporates the PDE analysis and convex optimization techniques. I

implemented the parametrization scheme to their framework.

• In chapter 4, we presented an Eulerian solvent excluded surface. This is a collaborative

work with Liu et al [157]. In this work, I focused on the surface validation.

• In chapter 5, we proposed an electrostatics potential interpolation scheme and im-

plemented the Eulerian solvent excluded surface to the MIBPB Poisson Boltzmann

software which is contributed from many people [39]. The software is shown to be of

second order convergence in the numerical solution to the Poisson Boltzmann model.

However, there are some deficiencies on this software in terms of robustness and highly

accurate reaction field energy calculation. My work makes this software more robust

and provides grid spacing almost independent reaction field energy calculation.

• In chapter 6, we developed a hybrid physical and knowledge based solvation prediction

250



paradigm. This work can also be found in [255]. One major part is the polarizable

Poisson model, in which I coupled the Poisson dielectric model with the Kohn Sham

density functional theory. This coupling has been investigated by several work [262, 42],

however, the solvent solute interface conditions have not been explicitly implemented.

I incorporated the interface of the SIESTA software used by Chen et al [45] to the

MIBPB software, and developed several schemes for the communication between this

two software. This coupling can be regarded as the interface method based polarizable

continuum model. Another contribution of this chapter is developing a framework for

solvation free energy prediction. Furthermore, we introduced the distributed multipole

analysis [227] for characterizing the solute molecules.

• In chapter 7, we delivered a protocol that couples the learning to rank method and the

implicit solvent model for solvation prediction. Compared to some classical multiscale

methods, where the microscopic models provide parametrization for macroscopic mod-

els. The new coupling provides an implicit parametrization strategy, which is demon-

strated by treating the atomic reaction field energy through the big data approach.

Large amount of numerical results show state-of-the-art accuracy and robustness for

blind solvation free energy prediction. This work can also be found in [249].

• In chapter 8, we studied the protein ligand docking problem. More specifically, we

proposed a novel protein ligand binding scoring function. This scoring function can

be regarded as an extension of our learning to rank based solvation model to protein

ligand binding scenario. The testing on the several benchmark test sets verify the

accuracy of the proposed scoring function. This work can also be found in [254].
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