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ABSTRACT

A NUMERICAL PREDICTION MODEL FOR FOOD
FREEZING USING FINITE ELEMENT METHODS

By

Hadi Karia Purwadaria

The rate of freezing is one of the most important
factors in designing an efficient freezing process for foods
in order to achieve good product quality and to avoid
excessive energy consumption. Significant improvements
have been achieved in the area of freezing process simula-
tion, however, the phenomena of phase-change, the influence
of product thermal properties, the importance of product
geometry and the effect of freezing environment on the
freezing rate are not fully understood.

The objective of this investigation was to develop
a numerical simulation model using the finite element
method to predict freezing rate in anomalous food product
geometries while accounting for the non-linear temperature
dependent product properties and various boundary condi-
tions. To verify the model, experimental tests were con-
ducted for elliptical and trapezoidal product shapes

using ground beef as the food product. The experiments
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were conducted in a wind tunnel placed in a low temperature
room and temperature measurement was recorded for 24 node
locations within the critical cross-section of the product
during the freezing process.

The finite element computer simulation used to
predict the food product freezing rate of anomalous shape
has been developed and verified by experimental data. The
results illustrate the capability of the simulation model
to incorporate various boundary conditions and various
product geometries. Closer approximation to the experi-
mental data was obtained by using the prediction incor-
porating a boundary condition with the surface heat
transfer coefficient varying as a function of location.
More efficient freezing times are predicted by utilizing
an approach based on area average enthalpy as compared to
the conventional method based on the slowest freezing
point location. Time steps in the range from one to three
minutes do not influence the stability of the finite ele-
ment scheme. While geometric size has significant influ-
ence on the rate of freezing, the influence on initial
product temperature in the range from 14.0 to 22.0°C

interval is negligible.
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1. INTRODUCTION

Frozen food is one of the most important food
products in the United States. The total pack and sales
value of frozen foods in the United States reported by
product category in 1966 was 6,284 million kilograms and
6,244 million dollars (Tressler et al., 1968) respectively.
The design of food freezing processes is based primarily
on refrigeration requirements for freezing and rate of
product freezing. Appropriate methods to estimate the
rate of freezing is important to achieve optimum design
which results in good product quality and in an efficient
process to avoid excessive energy consumption. Even
though there have been significant improvements in the
prediction of food freezing rates, the phenomena of phase-
change, the influence of product thermal properties, the
importance of product geometry and the effect of freezing
environment on the freezing rate are not fully under-
stood.

The most recognized exact solutions to predict
the freezing time in the food freezing process are Plank's
equation and Newmann's solution (Bakal and Hayakawa, 1973)
or the solution recently developed by Golovkin et al.
(1973). All of these are limited to special boundary

1



conditions, constant product thermal properties and to
geometrically regular shapes, i.e., infinite slab,
infinite cylinder, and sphere. Numerical solutions
utilizing finite differences methods for temperature
dependent thermal properties and regular geometric shapes
have been discussed by Bonacina et al. (1973), Charm
et al. (1972), Cleland and Earle (1977), Fleming (1973),
Joshi and Tao (1974), Heldman (1974b), Heldman and Gorby
(1974b), Hsieh et al. (1977), Lescano and Heldman (1973),
and Tarnawski (1976). The finite difference approxima-
tions are acceptable, but the simulation method lacks
flexibility to incorporate more complex geometry of food
products and boundary conditions.

Comini and Bonacina (1974), De Baerdemaeker et al.
(1977), Rebellato et al. (1978) and Singh and Segerlind
(1974) suggested the implementation of finite element
methods for estimating freezing time of food to reduce
complex geometry and boundary condition problems. While
the finite element analysis has proved excellent in
accommodating linear and non-linear heat conduction in the
freezing process, no investigations have verified the
simulation results experimentally. It should be empha-
sized that previous investigations have assumed that the
product thermal properties are constant or a linear func-

tion of temperature. Numerical techniques utilized by



Heldman and Gorby (1974b), Hsieh et al. (1977) and Lescano
and Heldman (1973) to account for variation of product
thermal properties during freezing have provided accurate
predictions of freezing time.

During the freezing process when air is used as
refrigerant, convective surface heat transfer coefficients
become an important factor in prediction of freezing
rate. Most of the investigations conducted have assumed
constant surface heat transfer coefficient as the boundary
condition for a given food product. Katinas et al. (1976)
and Zdanavichyus et al. (1977) published an experimental
result suggesting that the convective heat transfer coef-
ficient varies sinusoidally along surface of a cylinder.

The primary objective of this research was to
develop a numerical solution model using finite element
methods to predict the rate of freezing of food products
with anomalous shapes. Specific objectives were as
follows:

1. To develop a computer program utilizing the
finite element method to simulate the freez-
ing process of elliptical and trapezoidal
food products subjected to various boundary
conditions.

2. To incorporate temperature dependent thermal

properties during phase-change into the



computer algorithm for both two-dimensional
and axisymmetric heat transfer problems.

To investigate the influence of various bound-
ary conditions on the freezing time: con-
stant surface heat transfer coefficient, heat
transfer coefficient as a function of location
on the surface of food product and variable
surface temperature during freezing.

To incorporate a method to estimate an optimum
freezing time based on area average enthalpy
in the finite element analysis and to compare
this estimate to a conventional method based
on the slowest freezing point location.

To conduct experimental measurement of the
freezing rate of elliptical and trapezoidal
shape food product in the laboratory, using
air-blast freezing method and ground beef for
the freezing material, in order to verify the

numerical solution.



2. LITERATURE REVIEW

2.1. Analytical Solution for
Phase-Change Problems

Most analytical solutions used to estimate the
freezing time in phase-change problems have been based
on either solving heat balance equations (Plank's equation
and Tanaka and Nishimoto's formula) or solving Fourier's
equation of unsteady-state heat conduction (Newmann's
solution, Tao's chart, and Tien's approach). All
approaches have limitations of assuming constant product
thermal properties and assuming regular geometrical
shapes, i.e., infinite slab, infinite cylinder, and sphere
(Bakal and Hayakawa, 1973; Carslaw and Jaeger, 1959).
Bakal and Hayakawa (1973) indicated further that all the
above methods used either a single temperature or a spe-
cified range of temperatures, during phase-change. Slavin
(1964) pointed out the inaccuracy of Plank's formula for
calculation of freezing times for food, and Charm and
Slavin (1962) reported 40 to 80 percent differences
between Newmann's equation and experimental data in
freezing time for cod fillets.

Cho and Sunderland (1974) attempted to improve

the exact solution bv assuming thermal conductivity to



vary linearly with temperature. The analysis applied to
both melting and solidification of semi-infinite bodies
but used the fusion temperature as a fixed temperature
while phase-change occurred and did not account for the
variability of product thermal properties other than
thermal conductivity. 1ikhailov (1976) developed an exact
solution for freezing of a humid porous body, thus solving
for moisture distribution as well as temperature distribu-
tion. The analytical method is applied to Stefan-like
problems which consider the occurrence of phase-change at
a single temperature. Riley and Duck (1977) used the
heat-balance integral method for the Stefan problems in
freezing of a three-dimensional cuboid with all thermal
properties of the product assumed constant. The authors
also mentioned the unresolved question of accuracy even
though some criteria have been established for semi-
infinite region by Langford (1973).

Golovkin et al. (1973) suggested mathematical
models for freezing of meat in two-sided slab, cylinder,
and sphere geometry. The Stefan assumptions on the phase
interface in the integral form were applied to obtain more
accurate solution than if the differential form was used.

Hayakawa and Bakal (1974) proposed formulas to
predict transient temperatures in food during freezing

and thawing. Phase changes are assumed to occur over a



range of temperatures and the geometry of food is an infin-
ite slab with insulation on one side. During freezing,

the material is observed to move through an unfrozen state,
partly frozen state and a frozen state. Freezing processes
are divided into several periods: (a) precooling,

(b) first phase-change, where a partly frozen zone moves
along the directicn of heat transfer, (c) intermediate
phase-change, where a partly frozen zone exists throughout
the body until the surface body temperature reaches the
final freezing point, (d) second phase-change, where a
frozen zone moves along the slab thickness, and (e) tem-
pering when the body is completely frozen. The experiment
conducted to verify the formula indicated that the mathe-
matical model was in good agreement for all periods of

the freezing process except intermediate phase-change.
Difficulty was also encountered in determining the final
freezing point during the intermediate phase-change.

2.2. Numerical Methods Using Finite Differ-
ences for Solving Phase-Change Problems

Many researchers have explored numerical techni-
gues in order to get more accurate solutions for phase-
change problems than obtained from analytical methods.
Bonacina and Comini (1973a) developed a numerical solu-
tion using an implicit finite difference scheme suggested

by Lees (1966) which involves three time levels.
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The scheme was unconditionally stable and convergent and
the applied boundary conditions were the first kind--pre-
scribed surface temperature, and the fourth kind--variable
surface temperature. Bonacina et al. (1973) checked the
numerical method against the analytical solution for the
one-dimensional freezing problem (Luikov, 1968) and found
the agreement to be within 3 percent. Using the same
method for two-dimensional heat transfer, Bonacina and
Comini (1973b) investigated the second and third kind of
boundary conditions which were constant heat flux and
linear heat transfer at the surface, respectively. How-
ever, the analysis and the experiment to verify the method
were conducted only for heating and cooling processes.
Cleland and Earle (1977b) discussed the above
numerical solutions thoroughly and suggested the use of
the third kind of boundary condition for food freezing.

dT

h (T, - Ts) = -k (E§) x=0

for t > 0 (2.2)



Instead of using the finite difference boundary condition
as proposed by Bonacina et al. (1973), the boundary con-
dition was derived from a heat balance over the surface
space increment which extended a distance of 0.5Ax from

the surface.

k+% dT
—x (T3 = Tg) = h(Tg = T ) + C (T ) g (2.3)

The numerical scheme for one-dimensional heat conduction
was proved to be in good agreement with experimental data
in freezing of mashed potato and minced lean beef.

Goodrich (1978) outlined a numerical procedure to
solve one-dimensional phase-change problems with a defined
moving boundary condition at a fixed temperature which
was the product freezing point. The central difference
scheme was utilized in the numerical technique and the
thermal properties of product were considered to vary
linearly with temperature.

Hashemi and Sliepcevich (1967) presented a numeri-
cal solution for one- and two-dimensional temperature
distribution in an isotropic medium where phase-change
occurred in finite temperature intervals. The procedure
utilized predictor-corrector and implicit finite differ-
ence methods in solving Neumann's solution for one-

dimensional heat transfer and incorporated the
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alternating direction method with the predictor-corrector
formula for two-dimensional heat transfer.
Shamsundar and Sparrow (1975) employed an enthalpy

model to analyze multidimensional conduction phase-change

%Efpldv = jkgradT-ﬁdA (2.4)

\Y A

The model was approximated by using the implicit finite
difference method, but no experimental work was conducted
to confirm the simulation.

Joshi and Tao (1974) utilized the finite differ-
ence method to solve the problem of axisymmetrical freez-
ing of food products. The method implemented the first
and third kind of boundary conditions and used forward-
difference for the time derivative and central-difference
for the space derivative. The product thermal properties
varied with temperature and fraction of frozen water
except for product density which was assumed constant.
The verification of the numerical method in rectangular
beef freezing experiments gave satisfactory results.

Tarnawski (1976) proposed a mathematical model to
solve one-dimensional heat and mass transfer during food
freezing using the third kind of boundary condition. The
mathematical model took into account the discontinuity

and nonlinearity of product thermal properties and was
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approximated by finite difference methods. The simulation
results did not use the mass transfer potential as
described in the model, and were not verified by experi-
mental data.

Lescano and Heldman (1973) developed a mathemati-
cal model to predict the thermal properties of a food
product based on variable composition of water and ice
within the product as temperature changed during freezing.
A numerical scheme was later outlined to solve the one-
dimensional symmetric heat transfer problem with a bound-
ary condition of the third kind using the Crank-Nicholson
formula for finite difference analyéis. The application
of the computer simulation yielded good agreement with
experimental data in freezing of slab codfish. Heldman
and Gorby (1974a) improved the prediction model for vari-
able product thermal properties by implementing the Xopel-
man equation (1966) to describe the relationship of
thermal conductivity with product composition which was
changing as temperature decreased during freezing. The
improved mathematical model along with finite difference
methods were utilized successfully to solve one-
dimensional transient heat transfer in ice cream freezing.
Numerical solutions, using finite difference method, to
simulate the freezing process for spherical geometric food

products, were developed incorporating the above
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prediction model for variable product thermal properties
(Heldman and Gorby, 1975). The finite difference equa-
tions were derived by both forward and pure implicit
methods and applied to IQF (Individual Quick Freezing) of
cherries with acceptable results. Hsieh et al. (1977)
modified the above computer simulation techniques to pre-
dict the freezing times and temperature history for dif-
ferent fruits and vegetables.

2.3. The Implementation of Finite Element
Models to Phase-Change Problems

The application of finite element methods in solv-
ing heat conduction problems has been discussed by
Zienkiewicz and Cheung (1965), Visser (1965), Wilson and
Nickell (1966), and Richardson and Shum (1969). The
analysis has included problems with steady and unsteady
state heat transfer, linear and nonlinear boundary condi-
tions and nonstationary temperature distribution.

More examples of the finite element models applied to
transient heat conduction can be found in references such
as Zienkiewicz (1971), Desai and Abel (1972), and Seger-
lind (1976). Emery and Carson (1971), and Bruch and
Zyvoloski (1974) discussed the accuracy and efficiency of
the finite element method and illustrated acceptable com-
parison to exact solution and finite difference method

for both linear and nonlinear two-dimensional heat
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conduction problems. Comini and Lewis (1976) developed a
numerical solution using finite element methods for two-
dimensional and axisymmetrical problems involving heat
and mass transfer in porous media. The simulation was in
agreement with analytical solution in drying of a geometri-
cally slab material. Singh and Segerlind (1974) applied
the finite element models to describe time-dependent
axisymmetric problems in heating of a cylindrical food
can containing homogeneous material and to simulate heat-
ing of a chicken leg composed of four different materials.
De Baerdemaeker et al. (1977) discussed the application
of finite element analysis to pear cooling and to rec-
tangular beef steak frying.

Bonnerot and Jamet (1974) introduced the imple-
mentation of the finite element method for the one-
dimensional Stefan problem to determine the position of
the free boundary of phase-change. The quadrilateral
elements were used and the temperatures were calculated
for all element nodes as well as additional nodes along
the moving boundary at each time step. The expanding
grid used to track the free boundary is only useful for
small boundary motions and for cases in which the tem-
peratures on one side of the boundary are always zero
(Wellford Jr. and Ayer, 1977). The latter authors pro-

posed a fixed grid of standard space-time finite elements
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and discontinuous interpolation to define the finite ele-
ment model on the special elements which were the quadri-
lateral elements crossed by the free boundary at any
particular step in time. Krutz (1976) developed a finite
element computer model for phase-change from solid to
liquid in determining the time-temperature history of a
welded joint. Thermal conductivity and specific heat
were considered as a linear function of temperature and
the model included radiation, convection and heat flux on
the surface.

Comini et al. (1974) applied the finite element
method to freezing analysis with nonlinear boundary con-
ditions. The physical properties were considered to vary
linearly with temperature in addition to a jump within a
small temperature interval (2AT) at the freezing point.
The nonlinear boundary condition took into account
imposed heat flux and rates of heat flow per unit area
due to convection and radiation on the surface. Simple
triangular elements were used and the three level scheme
suggested by Lees (1966), as discussed previously in Sec-
tion 2.1, was introduced for time-stepping instead of
Crank-Nicholson algorithm. The freezing simulation pro-
gram was used to predict the position of frozen boundary
in slab form and for soil freezing.

Comini and Bonacina (1974) presented the appli-

cation of the above method in food freezing to overcome
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the lack of flexibility of finite difference method in
solving the irregular geometrically shape problems. The
thermal properties were calculated based on the decreas-
ing mass fraction of water during freezing but the method
to detect the fraction of water during the freezing
process was not given. The latter method will be dis-
cussed in the next section. Bonacina et al. (1974) com-
pared results of the above finite element method with
experimental data in freezing of Tylose samples which
have been modeled after lean beef. The heat conduction
problem was selected to be one-dimensional with boundary
condition of the first kind. The error between measured
and calculated temperature at the center and surface of
the slab was found to be less than 2 percent. Rebellato
et al. (1978) used this simulation program to solve the
two-dimensional heat conduction problem utilizing a
second-order quadrilateral element grid in estimating the
freezing rate of lamb carcass and beef side. However, no
experimental data has been reported so far to verify the
results of this two-dimensional irregular geometry food
freezing problem.

2.4. Factors Influencing the Rate
of Food Freezing

The rate of food freezing is influenced by sev-

eral factors including temperature of surrounding medium,
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size and shape of frozen product, thermal properties of
the product and surface heat transfer coefficient. It
has been widely known that the lower the surrounding tem-
perature, the higher the rate of freezing. Tarnawski
(1976) and Hsieh et al. (1977) showed that the relation-
ship between freezing time and surrounding temperature
was nonlinear. Size and shape have always been important
factors to consider in the analysis of freezing as pre-
viously discussed for the analytical solution, the finite
difference method and the finite element method. Hsieh
et al. (1977) investigated the influence of product
diameter on freezing time for various fruits and vege-
tables. The freezing time increased linearly as the
product diameter became larger.

The determination of the transient temperature
field and the rate of freezing for food products using
the assumption that phase-change exists at a constant
temperature is not accurate. Several investigators have
proposed formulas to estimate product thermal properties
as freezing occurs over a temperature range or during the
whole'process. Comini et al. (1974) suggested that phase-
change could be assumed to occur at a temperature range
from Ti (initial temperature) = -1°C until a certain

value of T¢ (final temperature) where there was Tp (peak

e

temperature) - 3°C in between (Figure 2.1.). The
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Figure 2.1. The relationship of thermal properties of
food product and temperature during freezing
according to Comini et al. (1974).

Tfr T

Figure 2.2. The relationship of thermal properties of
food product and temperature during freez-
ing according to Tarnawski (1976).
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final temperature is estimated as the value that gives
the best fit between calculated results and experimental
data. The formulas to calculate thermal conductivity and
specific heat capacity above and below freezing are given

as follows

cp = mc*CPW + (1 - mc) *CPS (2.5)
kp = mc*KW + (1 - mc) *KS (2.6)
C¢ = mceCPI + (1 - mc) -CPS (2.7)
kf = mc*KI + (1 - mc) *KS (2.8)

The value of heat capacity at Tp can be obtained from
evaluating the latent heat effect which is the area of

heat capacity versus temperature as Ti’ Tp, and T_. are

f
known

A = mceA (2.9)

The disadvantages of this method are that phase-change is
assumed to occur only over a short temperature range, the
final temperature has to be chosen arbitrarily if experi-
mental data do not exist and the relationship between
thermal properties and temperature is actually nonlinear.
Tarnawski (1976) presented nonlinear function to

describe the relationship between physical parameters of
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a food product and temperature where the function was dis-
continuous and nondifferential at the freezing point
(Figure 2.2). The model to compute thermal conductivity
and specific heat is not published and the calculation for

beef are given as follows

for 248 K < T < Tp

a(T) [-11032.6509 - 261.42196 (2)

18252.4705 (Z)2 - 26.133707 (Z)3

133.87762 (2)% - 7.31961337 (2)°

9

0.11645322 (2)%] x 107 m?/n (2.10)

k(T)

I
—

-124634.1825 - 744465.0959 (2)

160251.468 (Z)2 - 17695.612 (Z)3

- 102.877816 (2)% - 29.874884 (2)°
- 0.343013138 (2)°] x 107% w/m K (2.11)
for T, < T < 303.16 K
a(T) = 0.00042 - 0.000001 (2) m?/h (2.12)
K(T) = 0.476079324 - 0.0004026324 (Z) W/m K (2.13)
where

Z =T - 273.16

Since changes in product thermal properties dur-

ing freezing are due to continuous depression of freezing
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point and thus continuous changes in unfrozen water con-
tent, the best approach is the method proposed by Held-
man (1974a), and Heldman and Gorby (1974b). The unfrozen
water content can be detected at any given time assuming
food product as a mixture consists of water (solvent A),

and ice together with food solids (solute B)

M, X
_ A “a M
mA = MB 1= XA) (2.14)
where
XA = exp [(LA-MA/Rl)(l/TIF - l/TDF)] (2.15)

Thermal conductivity is obtained from the Kopelman egua-

tion (1967)
k = kc (1 - Q)/[1 -0 (1 - M)] (2.16)
= M2 -
Q =M (1 kd/kc) (2.17)

Enthalpy and specific heat are computed from equations

(Lescano and Heldman, 1973)

H EMS.CPS (T + 40) + WC+L + WC-CPW (T + 40)

+ MI-CPI (T + 40) - UFWC-L (2.18)

Cp= AH/AT (2.19)
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The implementation of the above equations (2.14) - (2.19)
are further discussed in the next chapter. Figure 2.3
illustrates the nonlinear relationship between thermal
properties of food product with temperature as calculated
using equations (2.14) - (2.19).

The influence of surface heat transfer coefficient
on freezing time has been investigated by several research-
ers. Heldman (1974b) compared the surface heat transfer
coefficient versus freezing time curves for lean beef
obtained from various analysis, Charm (1971), Lescano and
Heldman (1973), analysis graphical method, and modified
Planck's equation (1958). The results indicated that the
freezing time decreased significantly as the heat transfer
coefficient increased to 25 W/m2 K. The same result was
confirmed by Tarnawski (1976) for beef freezing. Hsieh
et al. (1977) found that the freezing time could be
reduced significantly as the surface heat transfer
increased to 40 W/m2 K for freezing of various fruits and
vegetables.

All the previous investigations were carried out
for uniform surface heat transfer coefficient. The influ-
ence of variable local heat transfer coefficient on the
surface of food product during freezing has not been
published. Katinas et al. (1976) and Zdanavichyus et al.

(1977) presented the local heat transfer coefficient as a
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k, P, cp

Figure 2.3. The relationship of thermal properties of
food product and temperature during freez-
ing according to Heldman and Gorby (1974).
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function of location on the surface of a cylinder. The
function behaved sinusoidally because the degree of tur-
bulency of an inflowing air stream around the circular
cylinder.
2.5. The Stability of the Finite Element
Method in Comparison to the Analyti-

cal Solution and the Finite Differ-
ence Method

Emery and Carson (1971) evaluated the use of the
finite element method in the computation of temperature
for linear and nonlinear two-dimensional problems and
compared it with the finite difference method. The
finite element method applied was utilizing linear, quad-
ratic, cubic and special cubic elements. For the finite
difference method, three different kinds of time step-
ping schemes were analyzed, i.e., explicit, Crank-
Nicholson, and Lex-Wendroff (1967). The authors concluded
that the finite difference method required less core
memory invthe computer and gave faster execution time
especially for variable thermal properties problems which
needed computation at each time step. The finite ele-
ment method had the advantages of solving heat conduction
problems for arbitrary geometry and was more accurate.
Furthermore, there were advantages associated with the
ease of inputting the required data and the capability of

altering the basic accuracy of the method.
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Bruch and Zyvoloski (1974) discussed the implica-
tion of the finite element method to solve linear and non-
linear two-dimensional heat conduction problems.
Rectangular prisms in a space-time domain were used as the
finite elements and the implicit method was applied for
the time-stepping scheme. The finite element solutions
compared favorably with the results from analytical solu-
tions and finite difference methods. It was found to be
stable and convergent to the exact solution.

Yalamanchili and Chu (1973) analyzed the stability
and oscillation characteristics of the finite difference
method and the finite element method with and without use
of Galerkin's method of weighted residuals. The stability
criteria were established by utilizing the'general sta-
bility, von Neumann formulas, and Dusinberre concepts
(1961). For transient two-dimensional heat conduction in
solids, the results showed that the region of favorable
stability and oscillation characteristics were found to
be significantly larger for the finite element method than
for the finite difference method. The use of Galerkin
method improved the degree of stability and reduced the

oscillation.



3. THEORETICAL CONSIDERATIONS

3.1. Temperature Dependent Physical Properties

The change in thermal properties of a food product

during freezing is due to continuous freezing point depres-

sion caused by a reduction in unfrozen water content. The

development of mathematical equations to predict
thermal properties of food based on the freezing
depression has been described by Heldman (1974a)
Heldman and Gorby (1974a). This method has been
fully utilized to predict the thermal properties

product during freezing (Heldman, 1974b; Heldman

the
point
and
success-
of food

and

Gorby, 1974b; Heldman and Gorby, 1975; Hsieh et al., 1977).

Assumptions regarding the temperature dependent physical

properties are as follows:

1. The food product is homogeneous and iso-

tropic.

2. The thermal properties are constant above

the initial freezing point.

3. The food product consists of solids, water,

and ice during the freezing process.

While

the thermal properties of food product vary

nonlinearly according to temperature,

thermal

properties of product solids remain constant.

25
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4. Below the initial freezing point, the food
product is assumed to be an ideal binary
system with continuous and discontinuous
phases. Since the frozen food consist of
three phases, it is reduced to one binary
system during the first step and to another

system during the second step.

3.1.1. Unfrozen Water Content

The relationship between the mole fraction of
solvent and the freezing point depression in a solution
is described in equations (2.14) and (2.15). Heldman
(1974a) proposed that the unfrozen water content at a
given temperature during food freezing can be predicted
using the above equations assuming the liquid water is
the solvent and solids is the solute. The molecular
weight of product solids above freezing point is calcu-
lated assuming product solids as the solute and water as

solvent. Thus, equations (2.14) and (2.15) become

XW

exp [(LW-MW/R)(l/TIN - 1/T__)] (3.1)

IF

EMS « XW+ MW
EMW (1 - XW)

MS = (3.2)

where

EMS = 1 - IWC (3.3)
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EMW in equation (3.2) is modified taking into account the
small amount of unfreezable water content at low tempera-
ture. This approach has been thoroughly discussed by

Lescano and Heldman (1973). The effective mass of water

becomes

EMW = IWC - UFWC (3.4)

The total unfrozen water content at any given
temperature below the freezing point can be computed as

follows

XW = exp [(Lw-MW/Rl)(l/TIF - l/TDP)] (3.5)
_ EMS+XW-MW

EMW = 55T - xW) (3.6)

WC = EMW + UFWC (3.7)

3.1.2. Thermal Conductivity

Kopelman (1967) derived mathematical models to
predict thermal conductivity in food products for both
isotropic and anisotropic systems. The model for an

isotropic system in a two component product is

_ 1 -0
k = kC (l o = M)) (3.8)
Q = M2 (1 - k,/k) (3.9)
d’ “c :
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The first step in the use of the Kopelman equation
has water considered as the continuous phase for the
water-ice system. Then, the water-ice mixture is treated
as a continuous phase while the product solids is taken

as discontinuous phase for the second use of the equation.

3.1.3. Product Density

The product density decreases according to the
proportional changes of the mixture and can be expressed

in the following manner (Heldman and Gorby, 1974a)

v 1/PD = WC/DW + MI/DI + EMS/DS (3.10)

For the computer program, the density of solids before
freezing must be obtained by substituting initial product
density, initial water content and MI = 0 into equation

(3.10)

DS = 1/(1/IPD - WC/DW) (3.11)

Then, the product density at any given time is solved by
using equation (3.10) and unfrozen water content as com-
puted according to Section 3.1.1.

3.1.4. Enthalpy and Apparent
Specific Heat

The enthalpy of the food product can be obtained

based on the specific heat of product components and the
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unfreezable water content. Utilizing a reference tempera-
ture of -40°C, Lescano and Heldman (1973) expressed the

enthalpy as

H = EMS°*CPS* (T + 40) + WC*LW + WC-CPW-+ (T + 40)

+ MI.CPI-(T + 40) - UFWC-LW (3.12)

The multiplication of water content by its latent heat of
fusion, WC-LW, accounts for the heat released during
phase-change inside the food product. The specific heat

of solids can be determined by solving the equation

ICP = IWC-CPW + MS-CPS (3.13)

while CPI is obtained from Dickerson equation (Dickerson,

1969)

CPI = A + BT (3.14)
where

A = 1.9507941

B = 0.00206153 for T as absolute temperature

WC in equation (3.12) is calculated by solving equations

(3.5) - (3.7), while MI is obtained as follows

MI =1 - WC - MS (3.15)

Assuming the relationship between enthalpy with

temperature is a continuous function, the apparent specific
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heat of a food product can be expressed as differential

change in enthalpy

CPA = AH/AT (3.16)

For this study, AT = 0.003°C was used in the numerical

solution.

3.2. Governing Equations, Initial and
Boundary Conditions

In food freezing, heat transfer occurs primarily
by conduction. This research dealt with two-dimensional
heat transfer in eliptical and trapezoidal shapes. The
governing differential equation for heat conduction in
isotropic bodies is known as the Fourier heat conduction
equation (Carslaw and Jaeger, 1959). For two-dimensional
heat transfer, the equation is as follows

03T
p ot

H

oT \
3§] + 0 (3.17)

oT 2
U

c = [

]
% Kxx kyy

The body is at uniform temperature initially

T = TO at t =0 (3.18)

The boundary conditions are

thy 3T _
kKexlng! kyy[W] +h (T-T) =0 (3.19)

at the convective surface and for t > 0
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= 0 at the insulated surface and for

any given time (3.20)

Further assumptions regarding the modes of heat

transfer are listed below:

1.

Heat transfer from the freezing medium (air)
to the product occurs by convection and heat
moves by conduction within the product.
Energy transports occur only in x and y
direction.

The rate of heat transfer within the food is
uniform along the x and y direction. Thus,
kxx = kyy'

The surface heat transfer coefficient is a
function of location along the surface;
however, it remains constant at a given posi-
tion during the freezing process.

The surrounding temperature and velocity of
freezing medium are constant and uniform.
Water vapor transport from the product to the
air is negligible. Thus, mass transfer within
the product and on the product surface are

neglected.
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The governing differential equation, initial and
boundary conditions for axisymmetrical heat transfer in

trapezoidal bodies are expressed in equations (3.21) -

(3.24)
T 1 oT 9 9T 2 T
cpPTE = ¢ ¥rror ¥ 3t Krrar) * 5z [Kapaz!
+ Q' (3.21)
Initial condition
T = To at t =0 (3.22)
Boundary conditions
AT 2T _
krr[—a—r] + kZZ [-éE] + h (T - Too) - 0 (3.23)

along the convective surface and for t > 0

and == = 0 at the insulated surface for any
r=0 given time (3.24)
The assumption made for axisymmetric heat transfer are
nearly the same as for two-dimensional, except for surface
heat transfer coefficient and surface temperature:
1. Heat transfer from the freezing medium to
the product occurs by convection and by con-
duction within the product.
2. Energy transports occur only in r and z

directions.
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3. The rate of heat transfer within the food
is uniform along the r and z directions.
Thus, krr = kzz.

4. The surface temperature is a function of time
and location along the surface.

5. Velocity of freezing medium is stable and
uniform.

6. Mass transfer within the product and on

the product surface are neglected.

3.3. Finite Element Formulation

3.3.1. Development of the
Model for Two-Dimensional
Heat Transfer in Ellipti-
cal Geometry

In the finite element method for field problems
such as heat conduction, the integral of a function is
minimized using the calculus of variations (Segerlind,
1976). The governing equation for two-dimensional heat
transfer (3.17) and its boundary conditions (3.19) and

(3.20) can be formulated as follows

_ L 82 2, BT
X = fz [kxx(ax + kyy(By 20'T + 2CPDT s-t-] av

- [% (- 1)7 as (3.25)
“S

where T is ambient temperature while V denotes the total

volume of the body and s is surface area.



34

The advantage of calculation of temperature depen-
dent thermal properties using freezing point depression
as described in 3.1. is that it has taken change of
phase into account. Specific heat of product is derived
as differential change in enthalpy which is a function of
latent heat, thus the specific heat is also a function of
latent heat. Since latent heat has been incorporated into
thermal properties of product (k, cp, and p), the term for

heat generation inside the body, Q', can be eliminated.

_ |1 3T, 2 3T, 2 aT
X = j; 5 [kxx(ax + kyy (ay + 2cppT at] dav
+ Jr (T -1)% ds (3.26)
s
Defining two matrices
T _ 3T 3T
{g}" = [73; 3y (3.27)

k 0
and D] = | *% (3.28)
0 k
Yy

Equation (3.26) can be rewritten as

>
0
\““w
|+~

( {g} T [D] {ghav + jr c 0T 3T v
Vv A"

" /g (r? - 27e1_ + 12 as (3.29)
S
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Since the function for T is defined over individual sub-

regions called elements, T(e)

, equation (3.29) can be
transformed to a sum of the integrals over the total num-

ber of elements, E.

>
1
[ el 3]

f %({g(e)}T [D(e)] {g(e)})dv
1 V(e)

e

+ f cpo% av +/ hrf®ple) _ pple)qp
v(e) S(e)?
+ Ti) ds
5 (e
or X = L X (3.30)
e=1

To minimize the function which is equating the summation

of derivatives of x(e)

with respect to T with zero, it is
necessary to express the equation in terms of nodal values
of temperature {T}. Utilizing two-dimensional simplex

elements (Figure 3.1l.a), then

rle) - (&) (1 (3.31)

or T N.T. + N.T. + N T (3.32)
i71 373

k'K

where NB is a shape function, and i, j, k are denoting

nodes of each triangular element whose equations are

given by
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=1
N; = 25 (a3 + byx + ¢;¥)
1
N. = == (a. + b.x + c. 3.33
: T 3 3 Jy) ( )
N=—l—(a + b.x + c.y)
k 2A k k k
a; = xjyk - xky] bi = yj - yk C, = X - xj
aj = X Y, - XYy bj =Y - Yy cj =X, =X (3.34)
a = xly] - xjyl bk =Yy - yJ Cy = xJ - %
Lox vy
1
A=z 1 X, . 3.35
2 i Y5 ( )
1 X Yy
- —

Introducing the area coordinates L L L, (Figure 3.1.Db)

1’ 72" 73
as values indicating the area, equation (3.33) can be

expressed as follows

1
Ly = N; =37 (@ + byx +c;y)
L. = N, = = (a. + b.x + c.y) (3.36)
2 j 2A ') J J ’
L, =N, = L (a, + b,x + c,vy)
3 = Ny = 33 (8 + by K

Substituting equations (3.31) and (3.33) into eguations

(3.27) and (3.30)



az(e) an, (@) oy (&) gy (@
ax 1 k Ty
(e) ox ox ox

{g"7'} = = T,
BT(e) BN,(e) BN,(e) IN (e) Jj (3.37)

g i 3 k T

oy oy dy k
or (g®y = 8¢ (1) (3.38)

LT s Tpe)y (g(®) g7y av

>
0
]
<’\-
0
| =

+fc on(®y 7y n(®)) av B—LT—}

p
v (e
+] HoT T i) as
. (e)
-[ hr, (N ){T)as
< (e)
+[ b1 as (3.38)
(e)
s
where [B(e)] is called the gradient matrix and is defined
as
b1 bj bk
(e), _ 1
[B 1 = A (3.39)
¢ cj Cy

The minimization of x becomes
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E (e)
X _ _ I = T
FECo RN T conin [[B] (D] (B}imd av

e= v

f c o NTIN] av SET
v

h (N]TIN]{T} ds

h T [N] =0 (3.40)

Q\“‘\ m\~“‘\

Equation (3.40), in compact form, can be formulated as

follows
[c] {T} + [K] {T} = {F} (3.41)

c_p [N] dv, capacitance matrix,

h C] = L
where [C] p

T

(K] = I( (B]® [D] [B] a4v

h [N]T[N] ds), stiffness matrix,

m'\. <\ <\\

{F} = Z-/.h T, [N]T ds, force vector.
s

Evaluating the integral of the first term of

matrix [K] for a triangular element
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(e)

b b.b. b.b

i1 i3 k
kXX

In b bi bjbj b bk

Lfkbi bkbj bkbk_

. ciC; €;C: C.C]
YY

+ A C C-l Cjcj CJCk

ki k%3 xSk

J[ 88T pl&)y (p(®)} gy =
v

(3.42)

Heat loss by convection along the body surface

occurs in the second term of the stiffness matrix [K].

Using area coordinates,

jr h [N]T [N] ds =

S

1976)

_
Ly I
h J[ L,L, L,L,
e .
i,3.,k
LL3L1 L3k,

Assuming the heat loss is along side

element, it gives

it is formulated as

(Segerlind,
-
Lk
i
L,L, al (3.43)
L3Ly

ij of a triangular



T LlLl LlL2
h [N]7[N] ds = h L2Ll L2L2 a
S n.. 0 0
l‘-.lj _ 0—
2 1 0
_hp
= Z .Cij 1 2 0 (3.44)
0 0 0
r - _ 2 _ 2
where,\.ij //(xi xj) + (yi yj)
The force vector in equation (3.41) becomes
1
h T
(e}, _ T _ © 7
{f } = j[h T, [N]" ds = T i 1 (3.45)
S 0

The capacitance matrix can be expressed also in terms of

area coordinates

171 172 173
(e), _ -
[c ] = cpo fo L2Ll L,L, L2L3 d
1,3,k
L,L, LjL, L3L3_
2 1 1
Cc_pA
= —iLz— 1 2 1 (3.46)
1 1 2

Equation (3.41) must be solved for each time step. Imple-

menting a central difference rule will result in
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2 _ 2 _
([K] + = [c]) {T,,,.} = (7= [C] - [K]) {7}

t+At At

({F } o+ {Ft}) (3.47)

t+At

The thermal properties of food products are higher
order functions of temperature (Figure 2.3) and are com-
puted numerically as described in Section 3.1. An attempt
to substitute the property functions into equation (3.26)
would give complicated derivative of x with respect to T
in the minimization step. Thus, the values of k, cp and
p are computed for each element at every time step and
new capacitance and stiffness matrices are assembled.
3.2.2. Development of the
Model for Axisymmetrical

Heat Transfer in Trape-
zoidal Geometry

The development of the model for axisymmetrical
heat transfer is similar to two-dimensional heat transfer
except for coordinates changed from x and y to r and z
throughout equations (3.33) to (3.35). Figure (3.2) illus-
trates an axisymmetric triangular element. The shape
function of an axisymmetric triangular element is trans-

formed into

[N] = [Ni Nj Nk] = [Ll L (3.48)

2 L3l
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for the
vection

changed

r = [Ll L2 L3
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(3.49)

The stiffness and force matrices in equation (3.41)

axisymmetrical body, assuming heat loss by con-

along the ij side of a triangular element,

into

[k(e)

27Tk

+

21r k
] = ___rr
4A

x4

b.b. b.b. b.b
i7i i) ik
b.b. b.b. b.b
J7i 7373 Jk
bkbi bkbj bkbk

c.c c.c. c.c

i 173 i’k
c.c, cjcj C.Cp
SAH ckcj 1 Cx

(3Ri + Rj) (Ri + Rj)
(Ri + Rj) (Ri + 3Rj)

0 0

0—1

0

-

are

(3.50)
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— 1
where r =3 (Ri + Rj + Rk)

2 (3r + 2R.) (3r + R, + R,) (3r + R, +R)
(e) 2TAC_p _ * _ * J _ *
[c ] = __362_ (3r + Ri + Rj) 2(3r + 2Rj) (3r + Rj + Rk)
(3r+P\k+Ri) (3r+Pk+Rj) 2(3r+2Rk) _
(3.51)
2 1 0 R.
(e). 2mhR T *
(£ = — 13 ® 11 2 0 R (3.52)

zij SRRy (3.53)

3.4. Computer Implementation and Finite
Element Grid

Computer programs were developed from the finite
element models to solve the phase-change in food freezing
for both two-dimensional elliptical heat transfer and
axisymmetrical trapezoidal heat transfer as described
previously. The programs were modified from the computer
simulation written by Krutz and Segerlind (1978) to predict
the temperature distribution in welded joints. The modi-
fication took into account the non-linear function of
physical properties versus temperature as developed by

Heldman and Gorby (1974). Furthermore, the program
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incorporated boundary variations surrounding the surface
of the food product. Convective heat transfer coeffi-
cients were defined as a function of location for ellipti-
cal products (Appendix C), while local temperature was
varied along the surface for trapezoidal bodies (Appen-
dix D). A change from two-dimensional simplex triangular
element coordinates to axisymmetric triangular element
coordinates was incorporated for the axisymmetrical trape-
zoidal heat transfer problems. The structure of the whole
program is illustrated in Figure 3.3. The function of

subroutines are described below.

SETFL : Setting the dimension of a column vector A

containing {Tt}, {T

t+At}' {F}, [K] and [C].

SETMAT : Computing the matrices {F}, [K], and

[C] at each time step.

READ 1 : Reading and calculating the initial

physical properties of food product.

PROP 1 : Computing the physical properties of

food product at each time step.

TVAR : Performing the calculation of the
local temperature along the surface

on the trapezoidal geometry.
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HVAR : Performing the calculation of the con-
vective heat transfer coefficient at
each location along the surface on the

elliptical geometry.

2

DCMPBD T

e

Decomposing the term ([K] + (cl)

from equation (3.47) into an upper
triangle matrix using Gaussian elim-

ination

TRANSIENT : Computing T and writing the output.

t+At

MULTBD : Multiplying the matrix (f% [C]

- [K]) by {Tt} in equation (3.47)

SLVBD : Solving T in the above equation

t+At
by backward substitution.

The flow diagrams of subroutines READ 1, SETMAT,
PROP 1, TVAR, HVAR, and TRANSIENT are outlined in Figures
3.4 - 3.6. Subroutines DCMPBD, MULTBD, and SLVBD were
given in Segerlind (1976) and are available in computer
packages from the CDC 6500 at Michigan State University.
Both computer programs are fully printed in Appendix A.

A GRID program was used to generate the input data
of element node numbers and their respective coordinates.

The program, as developed by Segerlind (1976), performs
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the plot of the finite element grid designed for specific
geometry of food products and cards punched with triangu-
lar elements data related to the grid. Figures 3.7 and
3.8 1illustrate the finite element grid for elliptical and
trapezoidal geometry.

The input parameters and variables for computer
program can be divided into four categories: product
thermal properties; physical properties of water, ice,
and gas; freezing medium properties; and finite element
parameters resulted from the grid program. All required
input parameters and variables are listed in Table B.3.
The mean surface heat transfer coefficients (h) for vari-
ous air velocities were obtained from an experiment con-
ducted by Chavarria (1978) for freezing of ground beef
in the wind tunnel. Their values were 61.7, 70.6, and
142.5 W/m2 K for air velocities of 7.4, 11.3, and 15.2

m/s, respectively.
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INPUT DATA

i

CALL SETITL

o

CALL READ 1

L

for elliptical product |

CALL HVAR

WRITE ELEMENT DATA

Figure 3.3.

——nL CALL PROP 1 —
CALL DQMPED
CALL TRANSIENT 1.
——JL CALL MULTED —
——#[ CALL SLVBD ——

| CALL TVAR |
or trapezoidal product

L

Flow diagram of Main Program.
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READ
Input initial values R, LW, DW,
DI, TO, KI, CPW, IWC, TF, UFWC,
ICP, IK, MW

CALL SUBROUTINE PARAM 1
Calculate the initial parameters
necessary DS, KS, MS, CPS

DS is solved from equation (3.11)

KS is solved from equations (3.8)
and (3.9) using water-solid
system

ks = [(kw (vFs®/3-g)1/vrs?/3
0= (kW - 1K) /(vFs/3 « IK + xw
- IK)
VFS = EMS * PD/DS

MS is obtained by solving XW in
equation (3.1) and utilizing
equations (3.2) and (3.3)

CPS is calculated using equa-
tion (3.13)

CPS = (ICP - IWC °* CPW)/EMS

Calculate WC and MI

1. Solve XW from equation (3.5)
2. Solve EMW from equation (3.6)
3. Solve WC from equation (3.7)
4. Solve MI from equation (3.15)

Solve PD utilizing equation (3.10
PD = 1/ (WC/DW + MI/DI + EMS/DS)

Calculate VFD for ice-water
system
VFS = VFI/(VFI + VFW)
where VFI = MI*PD/DI,
VFS = EMS*PD/DS
VFW = 1 - (VFI + VFS)

Calculate KD for ice-water sys-
tem applying equations (3.8)
and (3.9)

KD = KW [(1 - Q)/
(1 - 9(1 - vrD1/3)))
2/3
where Q = VFD (1 - KI/KW)

Calculate K for food product
using equations (3.8) and (3.9)

KD [(1-0)/(1-0(1-vrst/3)))
2/3

K =

where Q = VFS (1-KS/KD)

RETURN TO
MAIN PROGRAM

Subroutine READ 1

Figure 3.5.

Solve CPI and H using equations
(3.14) and (3.12)
Solve CPA using equation (3.16)

RETURN TO SUBROUTINE
SETMAT

Subroutine PROP 1

Flow diagram of subroutines READ 1 and PROP 1.
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Read GDl' sz DO on the number of
nodal points on the
product surface

DO on the number of angles

Read t and x for each
nodal number

Calculate r from equation

(C.9)
Calculate T for each
nodal number using
Calculate z from equation equations in Table D.1
(C.10)

Calculate v from equation

(C.12) and V_ from equation
(C.l3) e End of DO LOOP

Substitute V_ back into Retgrn to Subroutine
equation (c.%) then into SETMAT

equations (C.14) and (C.15)
to obtain h/h

Subroutine TVAR

End of DO Loop

Compute the average of h

1
and h2

Return to
Subroutine SETHMAT

Subroutine HVAR

Figure 3.6. Flow diagram of subroutines HVAR and TVAR.
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4. EXPERIMENTAL

4.1. Equipment

An air-blast wind tunnel located in a low-
temperature room was used to freeze the food product as
illustrated in Figure 4.1. The length of the wind tunnel
was 3.8 m with circular cross section of 46 cm I.D. The
fan drew air into the tunnel using a three-phase electric
motor of 3.73 KW; 440/220 Volt. The air speed was con-
trolled by a circular opening with baffles which were recu-
lated by a lever and positioned in front of the fan. The
internal size of the freezing room was 6.7 m x 1.8 m x
2.4 m. Two evaporators provided the refrigeration effect
to reduce the temperature in the room to as low as -34.4°C
with a deviation of *1.8°C when the fan was not operating.

The food product, supported by a styrofoam plate
was placed at the center of the wind tunnel. The styro-
foam support plate had dimensions of 46 cm x 35 cm x 5 cm,
and functioned as an insulator to avoid heat losses
through the bottom and edge of the food products (Fig-
ure 4.2). The boundary conditions in equations (3.17)
and (3.21) were satisfied by the design of the plate. A

sharp leading edge was designed on the side of the

55
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styrofoam support plate facing the air flow to reduce
turbulence created by air flow over the support plate
and product.

Unsheathed fine copper-constantan thermocouple
wires (beaded by Omega Engineering, Inc.) were utilized
to sense the temperature of the product. The thermo-
couple had precision of * 0.417°C in the temperature
range from =59.444°C to 93.333°C, and the diameter of each
wire was 0.0125 cm. The wires were sheathed by teflon
tubes with 0.055 cm I.D. to avoid direct contact with
product. Copper-constantan thermocouple extension wires
(gauge 20; 0.08 cm diameter) with polyvinyl insulation
were used to connect the sensing thermocouple wire to the
temperature recording instrumentation. The precision of
the extension wires was the same as the sensing wires.

The connectors were heavy-duty copper constantan miniature
thermocouple connectors designed with fine gauge thermo-
couple wires.

Two different types of product shape were investi-
gated in this study, a two-dimensional elliptical geome-
try (Figure 4.2) and an axisymmetric trapezoidal geometry
(Figure 4.4). The nodal locations measured by the thermo-
couple junctions are illustrated in Figure 4.3 for the
elliptical shape and Figure 4.5 for the trapezoidal shape.

The teflon sheathed thermocouple wires were partially






UNIT IN CM Food 23 Thermocouple

junctions

Styrofoam
plate

! —K—1 -1 3

/
=2k 2 k— 3 —k 1.8+ K 4

(a) Overall locations

d

(b) Locations in cross-sections AA, BB and CC
(Figure 4.2)

Figure 4.3. Nodal locations of thermocouple junctions on
the cross-sectional area in elliptical
product.
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imbedded in the styrofoam plate and partially supported
by a 0.05 cm diameter copper wire structure inside the
product. Since the teflon sheathed wires and the copper
wire structure had different thermal properties from the
product, there was concern that the 24 nodal measurements
located in one cross-section might influence heat conduc-
tion within the product and produce significant error.
To eliminate this possibility, the measured locations were
installed in three different cross-sections (Figures 4.3
and 4.5) assuming that heat transfer occurred uniformly
along the length of the elliptical body and along the
circumference of the trapezoidal body. Three other
thermocouple junctions were positioned to detect the air
temperature at three locations near the product.

The temperature measurements were recorded by the
Fluke Model 2240A Data Logger with scanning speed capacity
of 2.5 channels per second or about 11 seconds for one
cycle containing 27 nodal readings. The output was
printed in degrees centigrade for each nodal location
and for each time step. The system accuracy was * 0.5°C
in the temperature range of -130°C to 0°C, and * 0.4°C in
the temperature range from 0°C to 400°C when copper-

constantan thermocouple wires were employed.
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4.2. Material for Food Product

Ground beef was used as the food product in the
freezing process experiments for two considerations:
(1) it was easily molded and shaped into the desired
geometry and (2) it responded to the assumption of product
homogeneity since its fibers and tissues had been broken
during the grinding process. Ground beef was purchased
as commercial lean ground beef from a local grocery store.
Thermal conductivity values and initial freezing
point of ground beef were obtained from literature refer-
ences. Density of ground beef was determined by weighing
the product before and after freezing. By calculating the
volume of the product shapes and dividing the weight by
the volume, the density of unfrozen and frozen meat was
established (Table B.l). Specific heat of ground beef
was calculated using Dickerson's formula (1965) and the

moisture content of meat (MC)
cp= 4.185 (0.4 + 0.006 MC) (4.1)

where cpis in J/g K and MC is in percent. Charm (1971)
suggested more elaborate equations to compute the specific

heat of a food product

cp =4.184 (0.5 X. + 0.3 XS + 1.0 Xm) (4.2)

f
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and Cp= 4.184 (0.34 Xc + 0.37 Xp + 0.4 Xf

+ 0.2 X+ 1.0 X)) (4.3)
a m

where X was the weight fraction and subscripts a, c¢, p, f,
s, and m indicated ash, carbohydrate, protein, fat, solid
and moisture content of food, respectively. However,

the comparison of the results from equations (4.1), (4.2),
and (4.3) for specific heat of beef product illustrated
only * 2 percent deviation (Heldman, 1975).

In this investigation, equation (4.1) was used
after the moisture content of lean ground beef was deter-
mined experimentally according to AOAC procedure (AOAC,
1975). Three samples of ground beef, each 2 g, from each
freezing treatments,.were placed in aluminum dishes and
dried for 4 hours in a Precision Scientific Model 625-A
oven at 125°C temperature. The dishes were covered with
lids to avoid contact with moist air when removed from
the oven and cooled inside a desiccator prior to being
weighed. The moisture content of samples for each treat-
ment are listed in Table B.1l, and other physical proper-

ties of ground beef are presented in Table B.2.

4.3. Procedures

The freezing experiments were conducted for three

magnitudes of air velocity for both elliptical and
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trapezoidal shapes. Each experiment was repeated three
times. Air velocities at the center of the wind tunnel
had been monitored by Chavarria (1978) utilizing a micro-
manometer and a Pitot tube. The air speeds used in this
investigation are presented in Table B.1l along with the
air temperatures. The air temperature fluctuated during
the freezing process due to the effect of turbulence
within the closed circuit air pattern inside the freezing
room and motor heat dissipation. The magnitude of fluctua-
tion varied from * 0.8°C to * 2.0°C for an air temperature
of -20.0°C (Table B.1l).

The data from the experiments were needed to verify
the results of computer simulation program described in
Chapter 3. The operation of each experiment included the
following steps:

1. Setting the freezing room temperature at

-20°C at least 24 hours before the experi-
ment.

2. Tempering the ground beef to a uniform ini-
tial temperature of 18°C to satisfy the
initial condition for the governing heat
transfer equations.

3. Molding the ground beef into either ellip-
tical or trapezoidal shape on the styrofoam

support plate.
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Programing the Fluke Data Logger and supplying

the input parameters, number of channels,
and scanning intervals.

Placing the styrofoam support plate and the
product at the center of the wind tunnel.
Connecting the sensing thermocouple wires
with the extension thermocouple wires by
matching the nodal number with the channel
number of the Fluke Data Logger.

Starting the electric motor and the fan to
initiate the freezing process and, at the
same time, starting the Fluke Data Logger

to monitor the temperature history.

Removing the ground beef model from the wind
tunnel and refrigerating room after freezing

process.



5. RESULTS AND DISCUSSION

5.1. Comparison of Numerical Simulation
Model with Finite Difference Method
During Food Freezing

The numerical simulation was compared with experi-
mental data and results from the finite difference analy-
sis used by Lescano (1973) to describe freezing of codfish
fillets in a flat plate geometry. Since Lescano's inves-
tigation was conducted for one-dimensional heat transfer
and the finite element program was for two-dimensional,
some modifications were made to accommodate the comparison.
A rectangular geometry of codfish fillets with a ratio of
length to thickness being 12 was used (Figure 5.1) and
insulated boundaries were applied in all sides except the
product surface. This resulted in heat conduction along
x-direction being negligible compared to the y-direction,
which was the product thickness and a one-dimensional
heat transfer problem could be assumed in the product.

Using the same product parameters, the predicted
temperature history using finite element method was com-
pared to results from Lescano's prediction and experi-
mental data in Figure 5.2. In general, the results

indicated that the finite element prediction was in good

67
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agreement with both experimental data and the finite
difference method.

The "Student t-test" (Netter and Wasserman, 1974)
was used to quantify the differences among the experimental
data, the predicted temperature by finite difference and
predicted results from the finite element simulation.

The results (Table 5.1) indicate that the finite element
method provides more favorable agreement with experimental
data than the finite difference method. The finite element
method will predict the same temperature as experimental

data at the confidence level of 95 percent.

TABLE 5.1.--The "Student t-test" for Experimental and
Predicted Temperature in Codfish Freezing

Degree of t-table*

Treatment Calculated t Freedom (a=0.05)

Experimental vs
finite element
method ' 0.48 24 2.064

Experimental vs
finite difference
method -5.25+ 24 2.064

Finite element vs
finite difference
method -2.29% 24 2.064

*t for two-tail test (Neter and Wasserman, 1974).



71

It has been observed that the finite element
method gives more accurate results than finite difference
method and converges to an exact solution in heat conduc-
tion problem (Emery and Carson, 1971; Bruch and Zyvoloski,
1974). Hence, the results predicted in this study (Fig-
ure 5.2 and Table 5.1) are similar to the previous publi-
cation.

5.2. Verification of Computer Simulation
with Experimental Data

5.2.1. Freezing of Product
with Elliptical Geometry

The results of computer simulation using the
finite element method to predict temperature history of
elliptical geometry product are presented in Figures 5.3-
5.5 at various air velocities; 7.4, 11.3, énd 15.2 m/s.
The predicted temperatures were compared to data obtained
experimentally from 3 replications at each air velocity.
Experimental data were tabulated in Table B.4. Tempera-
ture histories are illustrated at three node locations
including the center of the ellips (node 1), 4 cm above
the center (node 2) and at the surface adjacent to the
product center (node 3). The standard deviations of the
temperature measurements at one hour time step were com-
puted and presented with the experimental curves. The
results indicate that the standard deviations varied from

+ 0.1°C to * 3.5°C. Higher deviations occurred at the
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initial freezing point of food product and decreased when
the flat plateau of the freezing curve ended and the slope
began to increase.

In general, the computer prediction was in close
agreement with experimental data. By introducing variable
local surface heat transfer coefficients, a better simula-
tion was obtained than when the surface heat transfer
coefficient was constant along the surface of the product
with elliptical shape. The‘discrepancy between the simu-
lated and experimental curves can be attributed to fluc-
tuating air temperature (* 2.0°C), as indicated in Table
B.1l., and inconsistency of product density which might
have occurred during the shaping of product into the
elliptical geometry. Measured surface temﬁeratures
(node 3) were higher than predicted values due to place-
ment of thermocouple junctions on the product surface.

It is anticipated that the temperature sensors will give
higher temperature reading if their locations are not
exactly on the product surface but several millimeters
under.

A statistical test was conducted using the t-
distribution to evaluate the agreement between experimental
and predicted temperature history at the center of the
elliptical shape. The results in Table 5.2 indicate a
good agreement between the experimental data and computer

simulation. The finite element simulation predicts the
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TABLE 5.2.--The Results of "Student t-test" to Evaluate
Agreement Between Experimental and Predicted
Temperature at the Slowest Freezing Point
Location

i *
General Shape Air Speed Calculated Degree of t Table

m/s t Freedom (a=0.05)
Elliptical 7.4 -1.63 16 2.12
11.3 0.89 15 2.13
15.2 0.95 15 2.13
Trapezoidal 7.4 -3.59+ 10 2.23
11.3 -4.49+ 10 2.23
15.2 -1.44 10 2.23

*t for two-tail test (Neter and Wasserman, 1977).

same temperature as the experimental data at the confi-
dence level of 95 percent.

The isothermal fields at 2.5 hours after the
freezing process started are illustrated in Figures 5.¢€
to 5.8. The shape of the isothermal fields from the
experiment are closer to the slowest freezing point for
the portion of the product facing the cold air stream,
indicating a higher convective heat transfer on the sur-
face of the upstream portion compared to the surface of
the downstream portion of the elliptical product. Com-
parison of experimental data and the computer predicted

isothermal fields using average surface heat transfer
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coefficient and local surface heat transfer coefficient
revealed that local heat transfer coefficient was in favor
over average heat transfer coefficient. This was supported
by the result of mathematical analysis using Katinas' data
(Katinas et al., 1976) as described in Appendix C.

5.2.2. Freezing of Product
with Trapezoidal Geometry

The temperature history, during the freezing proc-
ess of trapezoidal geometry product measured in the
laboratory was compared to the computer prediction in
Figures 5.9 to 5.11. The results of the numerical model
was in close agreement with experimental; the standard
deviation varied from * 0.1°C to + 3.1°C. More favorable
results were observed from utilizing local surface tem-
perature (Appendix D) than uniform surface temperature.
This implies that the heat transfer coefficient varies as
a function of location on the product surface.

The isothermal fields presented in Figures 5.12 to
5.14 indicate that the heat transfer depends on the local
surface temperature. The numerical model incorporating
the surface temperature as a function of location and time
gave more exact results to experimental data compared to
the model using uniform surface temperature.

The t-tests for trapezoidal (Table 5.2) indicate

that the predicted temperature at the slowest freezing
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point location, for air speeds of 7.4 and 11.3 m/s, do
not give results as good as for 15.2 m/s air speed. The
discrepancies can be attributed to the method used to
average the thermal product properties of a triangular
finite element after the initial freezing point was
achieved. While this averaging method may provide insig-
nificant error for a small size triangle, the error will
increase as the size of the triangular element becomes
larger. Thus, the predicted curves tend to be decreasing
slower than the experimental curves beyond the thermal
arrest time.

5.3. Influence of Area Average Enthalpy
on Freezing Time

Freezing time can be predicted conventionally by
expressing the temperature history at the slowest freezing
point location in the product or by using the total heat
content (enthalpy) of the food product. The conventional
method for predicting freezing time represents the length
of process required to achieve a temperature equal to the
desired storage temperature at the slowest freezing point
location.

An alternate criteria involves time required for
the food product enthalpy to be reduced to an enthalpy
equivalent to the storage temperature (Gorby, 1974). When

the freezing process is stopped at this point, the product
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temperature will equilibrate uniformly to the storage
temperature with the heat content from the portion with
higher temperature transferring to the portion of the
product with lower temperature. The mass average enthalpy,

ﬁm can be expressed as follows

-j.Hdm (5.1)

m

e
I
3+

Implementing the above equation into the finite element
method, an area average enthalpy was used as a criteria

to determine the freezing time

A (5.2)

The predicted freezing times were compared for
both conventional method and area average enthalpy
(Table 5.3) at various product geometries and air speeds.
The storage temperature used for these comparisons was
-17.0°C. The average enthalpy method predicts lower
freezing times, ranging from 10.7 to 24.7 percent com-
pared to conventional method. These results may encourage
the use of the average enthalpy method to predict the
freezing time in order to achieve a more efficient

process and to reduce energy consumption.
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At time perioas after the freezing process is
stopped, the equilibration period required to achieve
storage temperature will occur at a reduced rate compared
to the freezing rate. From microbiological and food qual-
ity standpoint, this phenomena might be a matter of con-
cern. However, the temperature at the end of the freezing
process is well below -10°C and the product portion with
temperature above the storage temperature, -17.0°C, is
only about 30-35 percent of the total product as seen on

Figures 5.15 and 5.16.

5.4. Sensitivity Analysis

5.4.1. Geometric Size

Geometric size has a significant influence on the
freezing rate as illustrated in Figures 5.17 and 5.18. For
an elliptical shape the freezing time increases 173 per-
cent as the product size becomes 1.5 times larger and
decreased by 53 percent as the size is reduced by 0.5 as
compared to the size used for experimental measurements
(a =10 cm, b = 6.5 cm). These values for the trapezoidal
shape are 164 percent and 59 percent, respectively. It
is interesting to note that the flat plateau indicating
the region where a major portion of the latent heat is
removed, becomes less evident as the size becomes smaller.

The relationship between the multiplication factor

for geometric size to the freezing time could provide



*(s/w Z°ST = A)
Kd1eyjus sbeasae eoae uO paseq poOjeUTWIAD] ssadoxd burzoasay
ay3 awr3 9yl 3e 3onpoad TedTIATTTd SPTSUT SPT3TI TeWISY3IOST BYL

Do02-
Y 1eoof ajnutw T 13Y

s/wm Z2°G61 A J681

*GT°G 2anbTg

-

J

Do €T~




92

*(s/w z°6T = A) Adreyjus obeisaae eaie uo
paseq po3jeruTwIal ssodooaxd burzosay SYyjz LawWIl BY3 3e
jonpoxd Teptozadexl S9pPTSUT SPISTJ TewaaylzosT oYL

Yy TeooT ajnutw T 3V Jo0C-

s/w Z°ST & 0081

*91°S @anbtg

L
&L

Do61-

aAT¥ PTOD

<=




93

*3onpoad teot3drIre® JO

93ex Hurzasaa3y 8yl uo 2zTS TedTIjawoab JO adusnNTIUT AYJL

ajnuTw 1
s/w 7°G1
Jo0Z-
Q081

sanoy ‘auty

*LT°S 2anbTa

w

A
L
YL

€y 2a1nbr3y o3 1939y

133uU3d aaoqe IJeJINS : g7

I33uU8D anoqe wo p : gy
I93Ul0 3 ¢

92718 TeIudWUTIIANS X G° —ceeeeo
9218 (ejuaurtiadxa

92718 Tejuawtradxd x g 1 — —

og-

0z

(43

‘aznjexadwmag

Jo



94

*3onpoxd Teptozadeal 3Jo
93ex HbulzoddaJ BY3 UO BZTS TeOTIIBWO36 JO ¥dUaANTIUT Y

sanoy ‘suTy

8 L 9 S 14 € (4

*81°G 2anbtg

! L] v |

ajnutw T 3y
s/w z°ST a
J002- %1 G @2anbtg o3

Oo8T 1 19391 zoqumu TepON

9ZTS Te3UaWTIAAXD G° —cmemeeee
92Ts Tejuawtxadxd
92ZTs Tejuawraadx® G — — —

oe-

oc-

o1-

0T

(014

(013

‘aanjeaxadusy,

Do



95

useful information in the selection of optimum size and

conditions for efficient freezing time.

5.4.2. Initial Product
Temperature

A sensitivity analysis was conducted to determine
the effect of initial product temperature on the freezing
time. 1Initial temperatures of 22°C and 14°C were compared
to 18°C, which was initial temperature used to generate
the experimental results. The results, presented in
Figures 5.19 to5.22, indicate that initial product tem-
perature does not influence freezing time significantly.
The isothermal field after 2.5 hours illustrates a devia-
tion in the range of * 2.0°C for elliptical shape and
+ 1.5°C for trapezoidal shape. The results, presented in
Figures 5.19 to 5.22, indicate that the freezing time is
about the same for various initial product temperatures.
The freezing rate curves converge to 7.5 hours of freez-
ing time for elliptical product and to 4.0 hours of
freezing time for trapezoidal product. In general, it
could be concluded that initial product temperature has

small influence on freezing time.

5.4.3 Time Step

Time increment, At, has been known as an important

factor in the stability of numerical analysis. Two
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The influence of initial temperature on
the freezing rate of trapezoidal product.
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different types of time step, one minute and three minutes,
were supplied to the simulation program. Figures 5.23 to
5.26 indicate that the numerical solution remains stable,
at least in the range of At equal to one to three minutes.
The discrepancies shown are small and insignificant; 0.0
to 1.0°C for the trapezoidal shape and 0.0 to 0.5°C for
the elliptical shape.

Isothermal fields indicate that discrepancies
exist between the time step of one minute and three
minutes on the product portion facing the cold air stream
(Figure 5.26). This phenomena can be attributed to the
fact that thermal properties of product were computed at
each time step in the simuation. Large time step will
provide inaccuracy which becomes more significant for
higher temperature difference between the product and the
cold air occurred at the upstream portion than the down-
stream portion.

5.5. Application of the Numerical Model
in the Food Freezing Process

The finite element simulation model has been veri-
fied by the experimental data as described in previous
sections. The application of the model in food freezing
is not restricted to trapezoidal and elliptical geometry
but to other anomalous shapes as well. For practical

value, an observation of size parameter influence on
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Figure 5.25. The effect of time step used in numerical
scheme on the freezing rate of trapezoidal
product.
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freezing time can be conducted for any given product
shape. Then a chart illustrating the relationships among
freezing time, size and shape can be developed and a con-
venient method to select freezing times for desired prod-
uct, shape, and size would result.

Requirements that must be satisfied when using
the numerical model include:

1. The initial product thermal properties must
be available either from literature or experimental
measurements. These properties include thermal conductiv-
ity, specific heat, and product density of unfrozen prod-
uct and freezing point, water content and unfreezable
water content.

2. Average heat transfer coefficiént should be
known or measured accordingly over a range of air veloci-
ties.

3. A finite element grid should be developed for
the given product configuration. Again careful judgment
must be made since the coarseness of the grid might affect
the accuracy of the estimated freezing process. Smaller
grid will use more core memory in the computer and produce
long execution time and in turn high computer cost. For
example, the elliptical grid in this study used 360 to 390
seconds execution time and the trapezoidal grid 140 to 190

seconds for total computation at the CDC 6500 computer.
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Computer facilities must be close at hand to

run the computation.

The finite element analysis has advantages and

limitations when used to simulate the freezing process.

The advantages include:

l.

Easiness in changing the input boundary
conditions and parameters including product
properties and freezing environment.
Readiness to accommodate various product

shapes and sizes.

The limitations to applying the simulation model approach

are:

Modifications are needed for a specific
anomalous shapes and for non-homogeneous
materials.

The model is valid for food freezing
utilizing air velocities in laminar region
with Reynolds Numbers smaller than 2.1 x
10°.

Required more computer time than finite dif-
ference method, thus higher computer cost.
The method used in averaging nodal product
thermal properties for a triangular element

causes some error in the simulation scheme as

previously discussed especially in large grids.



6. CONCLUSIONS

l. A computer simulation utilizing the finite
element method to predict the freezing rate for food
products with elliptical and trapezoidal shapes has been
developed and verified by experimental data.

2. The computer simulation using the finite ele-
ment method has the ability to accommodate various bound-
ary conditions as well as the non-linearity of product
thermal properties during phase-change, and different
product geometries.

3. The utilization of local convective heat trans-
fer coefficients over the product surface as boundary
condition in the computer model provides better simula-
tion of the actual freezing process as compared to an
average surface heat transfer coefficient.

4. The predicted freezing times based on area-
average enthalpy method are 10.7 to 24.7 percent lower
than the predicted times based on the conventional method

--the slowest freezing point location.

107
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5. Geometric size affects the freezing time sig-
nificantly, while the influence of initial product tem-
perature over the range of 14.0 to 22.0°C can be considered
negligible.

6. The stability of the finite element algorithm
is not influenced by the magnitude of time step at At from

one to three minutes.



7. RECOMMENDATIONS FOR FURTHER STUDY

1. To develop a chart illustrating the relation-
ship between freezing time and various product shapes and
sizes. This chart would have practical value in selecting
the optimum size of a given product shape for an efficient
freezing process.

2. To modify the computer program in order to
accommodate the ability to simulate the freezing process
for non-homogeneous food products.

3. To determine the ratio of local to average
surface convective heat transfer coefficient for product
shape other than flat plate, circle, and ellips.

4., To utilize higher order elements and a non-
consistent capacitance matrix to investigate the possi-
bility of getting more accurate and stable results than
using a simplex triangular element and a consistent

capacitance matrix.
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APPENDIX A

COMPUTER PROGRAM TWODFR AND AXISFR

111



TWODFR FORTRAN LISTING FOR ELLIPTICAL PRODUCT
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TABLE B.2.--Physical Properties of Ground Beef

Thermal Specific  Density,bP Initial
Conductivity,a Heatb " /m3 Freezing Point,a
W/m K J/Kg K g °C
0.4 3430 1060 -1.5

4yalues obtained from literature for mince meat
(sorenfors, 1974).

bValues determined by experiment.
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TABLE B.3.--Input Parameters for Computer Program

1. Product Properties Parameters IWC2
(ground beef) UFWC = 0.01

IPD = 1060 kg/m>
ICP = 3430 J/kg K

IK = 0.4 W/m K
TIF = ~1.5°C
2. Physical Properties Parameters DI = 920 kg/m3
gzslce, Water, and DW = 1000 kg/m3
KPI = 2.32 W/m K
KPW = 0.55 W/m K
LW = 335.103J/kg
CPW = 4180 J/kg k
- o
Tur = o°cC
Rl = 8314 J/kg-mole K
3. Freezing Medium Variables v, m/s h, W/m2K
Properties 7.4 61.7
11.3 70.6
15.2 142.5
T = -14°C, -18°C,
-22°C
4. Finite Element Parametersb NP:number of nodal
Properties temperature

NE:number of element
NBW:number of bandwith
NIT:number of itera-

tions

Variable DT:time step = 1 min-
ute and 3 min-
utes

aSee Table B.1l.

bSupplied by the GRID program.
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APPENDIX C

THE TRANSFORMATION OF LOCAL SURFACE HEAT
TRANSFER COEFFICIENT FROM THE CIRCULAR
CYLINDER TO THE ELLIPTICAL CYLINDER

The local surface heat transfer coefficient was
shown to be a function of location as investigated by
Katinas et al. (1976) and Zdanavichyus et al. (1977) on a
circular cylinder and by Chavarria (1978) on a flat plate.
The computer simulation used to predict the freezing rate
of a food product with elliptical geometry in this
research incorporated the varying surface heat transfer
coefficient. Since there has been no publication of
variations in local surface heat transfer coefficient for
an elliptical cylinder, the transformation from
Zdanavichyus' data for a circular cylinder to an ellipti-
cal cylinder was obtained by implementing conformal map-
ping to the air flow around the obstacle geometries
(Spiegel, 1964).

The relationship between the ratio of local heat
transfer coefficient to average heat transfer coefficient,
h/h, and angle 6 for an air flow with Re = 1.1 x 10° is
illustrated in Figure C.3 (Zdanavichyus et al., 1976).

Using these data, mathematical equations were computed by
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least square method for n-order regression utilizing a

Wang 2200 computer.

0° < 6 < 90°

h/E = 1.129 - 1.148x10°2 6 + 1.589x10 3 g2
- 8.861x10°° 8> + 2.222x10”° §?
- 2.572x10"8 6> + 1.098x10710 ¢ (C.1)
90° < 6 < 180°
h/R = -47.42 + 1.48 6 - 1.523x10° 2 82
+ 3.441x107° 6> + 4.13x107 7 o*
- 2.838x107°7 6° + 5.226x10 12 g° (C.2)

The coefficient of correlations were 0.992 and 0.999
respectively for equations (C.l) and (C.2), and the stand-
ard error of estimate were 3.14x10_2 and 8.662x10_3.

The magnitude of complex velocity of the circular
surface which is placed as an obstacle in an air flow
(Figure C.1) is a function of 6 and laminar velocity Vo

(Spiegel, 1964)

V. =V //2 - 2 cos 8 (C.3)
c o

Thus, 6 in equations (C.l) and (C.2) can be replaced as a

function of Vc and VO by modification of equation (C.3)

6 = 0.5 arc cos (1 - vi/zvi) (C.4)
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The complex potential of fluid flow for an ellip-
tic obstacle (Figure C.2) using conformal mapping by
solving Dirichlet's problem was given as follows (Spiegel,

1964)

Q(z) = V_ [5 + (a + b)2/47]

where

- 0.5 (2 +/22 - a2 + b?) (C.5)

-
©

By algebraic manipulation, equation (C.5) can be rewritten

into

\Y%
2(2) = 2 (az - b /2% - a? 4+ p?) (C.6)

The complex velocity is a derivative of Q(z)
v = dli(z)/dz = Q' (2) (C.7)

Taking the derivative of equation (C.6)

\Y

. _ e} _ 2 _ 2 2
Q' (z) = 7——py (a (bz///z a® + b)) (C.8)
Let z = r ele, or expressed in trigonometric function as
2 =r cos 6 + r i sin 6, where r is the distance of a

given point on the stream line to the center of the ellips
and 6 is the slope. For the point on the surface of the

ellips, r becomes
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2 2 2.

r =/ a’b?/(a? sin?e + b? cos?s) (C.9)

Then, the complex expression in equation (C.8) can be

solved as

= X + Yi (C.10)
//22 - a2 + b2

By substituting equation (C.10) back into equation (C.8),

it can be further formulated as follows

(a - bX) Vo by Vo
' - 1 ———————
Q' (a) @ = b) i @ < b) (C.11)
Thus, the complex velocity is
_ (a - DbX) Vo by VO
= O = ] —
v Q'(z) 3 - B) + i 3 = 1) (C.12)
And the magnitude of the velocity on the elliptical
surface is
\Y
- o _ 2 2.2
Ve = =35 / (a - bx)2 + b2y (C.13)

Replacing VC in equation (C.4) by Ve and substituting €
back into equations (C.1) and (C.2) will provide a new
value of h/h for a given location on the elliptical sur-
face. The calculation was carried out in subroutine HVAR
which was incorporated into the main program. The result

of subroutine HVAR was presented in Figure C.3.
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Zdanavichyus' data was obtained for a degree of
stream turbulence Tu = 1.2%. It showed a lower heat
transfer coefficient at the upstream compared to down-
stream. This contradicted the experimental results which
indicated higher heat transfer coefficient at the upstream.
Katinas et al. (1976) investigated the effect of degree
of turbulence on the surface heat transfer coefficient
for circular cylinder, and found out that higher coeffi-
cient occurred at the upstream when the degree of turbu-
lence Tu = 7.8%. Using Katinas' data, equations (C.1)

and (C.2) were modified into

0° < 6 < 90°

h/F = 1.34 + 4.84 x 1072 6 - 5.21 x 10~ 2 2
+1.58 x 1072 x 65 - 2.60 x 10~/ o?
+1.91 x 1072 82 - 4.86 x 10 12 g® (C.14)
90° < 6 < 180°
- -3 .2
h/R = 20.21 - 0.59 6 + 5.23 x 107> ©
+ 8.60 x 10°°% 63 - 3.89 x 1077 ¢4
+2.15 x 1072 62 - 3.83 x 10712 §° (C.15)

The computed values for elliptical cylinder using
Katinas' data by subroutine HVAR were also presented in
Figure C.3. The latter result was used for further inves-

tigation in this study.
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Q (2)

d + i V¥

Figure C.1. The air flow pattern around a circular
obstacle.
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h/h

0 30 60 90 120 150 180

0, degrees

Katinas' data for circular cylinder
Zdanavichyus' data for a circule surface

Transformation result using conformal mapping
for an elliptical surface
----- Transformation result from Katinas' data

Figure C.3. Local surface heat transfer coefficient

for circular cylinder and elliptical
cylinder.
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APPENDIX D

THE DATA FITTING OF LOCAL SURFACE TEMPERATURE
AT TRAPEZOIDAL PRODUCT GEOMETRY USING LEATS
SQUARE REGRESSION

Since the local surface heat transfer coefficient
for trapezoidal geometry cannot be solved with conformal
mapping as in the elliptical case, another method was
applied to describe the influence of surface heat transfer
coefficient. Surface temperature of the trapezoidal
product was measured during freezing at nodal locations
illustrated in Figure D.l. for every time §tep. Mathe-
matical model to describe the local surface temperature

as a function of location, x, and time, t, was as follows

T=2axtl+Bxt+Ct+D (D.1)

The mathematical model was applied to all sides of trape-
zoidal product except the bottom side which was insulated
(Figure D.1l). Two different equations were used to
describe the local surface temperature on side 2, one was
for 0 cm < x < 11 cm and the other for 11 cm < x < 15.5 cm.
Figure D.1 shows the temperature curves as
functions of x at t = 0.5 hours and 1.0 hour for all three

sides of the trapezoid at v = 7.9 m/s. The temperature
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data were substituted into the model at various x and t
applying the least square method. The result of mathe-
matical model for each side was presented at Table D.1.
These polynomial functions were supplied to subroutine
TVAR which computed the temperature at each time step and
substituted back to subroutine SETMAT as surface tempera-

ture.
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