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ABSTRACT

A NUMERICAL PREDICTION MODEL FOR FOOD

FREEZING USING FINITE ELEMENT METHODS

BY

Hadi Karia Purwadaria

The rate of freezing is one of the most important

factors in designing an efficient freezing process for foods

in order to achieve good product quality and to avoid

excessive energy consumption. Significant improvements

have been achieved in the area of freezing process simula-

tion, however, the phenomena of phase—change, the influence

of product thermal properties, the importance of product

geometry and the effect of freezing environment on the

freezing rate are not fully understood.

The objective of this investigation was to develop

a numerical simulation model using the finite element

method to predict freezing rate in anomalous food product

geometries while accounting for the non-linear temperature

dependent product properties and various boundary condi-

tions. To verify the model, experimental tests were con-

ducted for elliptical and trapezoidal product shapes

using ground beef as the food product. The experiments
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were conducted in a wind tunnel placed in a low temperature

room and temperature measurement was recorded for 24 node

locations within the critical cross-section of the product

during the freezing process.

The finite element computer simulation used to

predict the food product freezing rate of anomalous shape

has been developed and verified by experimental data. The

results illustrate the capability of the simulation model

to incorporate various boundary conditions and various

product geometries. Closer approximation to the experi-

mental data was obtained by using the prediction incor-

porating a boundary condition with the surface heat

transfer coefficient varying as a function of location.

More efficient freezing times are predicted by utilizing

an approach based on area average enthalpy as compared to

the conventional method based on the slowest freezing

point location. Time steps in the range from one to three

minutes do not influence the stability of the finite ele-

ment scheme. While geometric size has significant influ-

ence on the rate of freezing, the influence on initial

product temperature in the range from 14.0 to 22.0°C

interval is negligible.
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l . INTRODUCTION

Frozen food is one of the most important food

products in the United States. The total pack and sales

value of frozen foods in the United States reported by

product category in 1966 was 6,284 million kilograms and

6,244 million dollars (Tressler et al., 1968) respectively.

The design of food freezing processes is based primarily

on refrigeration requirements for freezing and rate of

product freezing. Appropriate methods to estimate the

rate of freezing is important to achieve optimum design

which results in good product quality and in an efficient

process to avoid excessive energy consumption. Even

though there have been significant improvements in the

prediction of food freezing rates, the phenomena of phase-

change, the influence of product thermal properties, the

importance of product geometry and the effect of freezing

environment on the freezing rate are not fully under-

stood.

The most recognized exact solutions to predict

the freezing time in the food freezing process are Plank's

equation and Newmann's solution (Bakal and Hayakawa, 1973)

or the solution recently developed by Golovkin et a1.

(1973). All of these are limited to special boundary

1



conditions, constant product thermal properties and to

geometrically regular shapes, i.e., infinite slab,

infinite cylinder, and sphere. Numerical solutions

utilizing finite differences methods for temperature

dependent thermal properties and regular geometric shapes

have been discussed by Bonacina et a1. (1973), Charm

et a1. (1972), Cleland and Earle (1977), Fleming (1973),

Joshi and Tao (1974), Heldman (1974b), Heldman and Gorby

(1974b), Hsieh et a1. (1977), Lescano and Heldman (1973),

and Tarnawski (1976). The finite difference approxima-

tions are acceptable, but the simulation method lacks

flexibility to incorporate more complex geometry of food

products and boundary conditions.

Comini and Bonacina (1974), De Baerdemaeker et a1.

(1977), Rebellato et a1. (1978) and Singh and Segerlind

(1974) suggested Unaimplementation of finite element

methods for estimating freezing time of food to reduce

complex geometry and boundary condition problems. While

the finite element analysis has proved excellent in

accommodating linear and non-linear heat conduction in the

freezing process, no investigations have verified the

simulation results experimentally. It should be empha-

sized that previous investigations have assumed that the

product thermal properties are constant or a linear func-

tion of temperature. Numerical techniques utilized by



Heldman and Gorby (1974b), Hsieh et a1. (1977) and Lescano

and Heldman (1973) to account for variation of product

thermal properties during freezing have provided accurate

predictions of freezing time.

During the freezing process when air is used as

refrigerant, convective surface heat transfer coefficients

become an important factor in prediction of freezing

rate. Most of the investigations conducted have assumed

constant surface heat transfer coefficient as the boundary

condition for a given food product. Katinas et a1. (1976)

and Zdanavichyus et a1. (1977) published an experimental

result suggesting that the convective heat transfer coef-

ficient varies sinusoidally along surface of a cylinder.

The primary objective of this research was to

develop a numerical solution model using finite element

methods to predict the rate of freezing of food products

with anomalous shapes. Specific objectives were as

follows:

1. To develop a computer program utilizing the

finite element method to simulate the freez-

ing process of elliptical and trapezoidal

food products subjected to various boundary

conditions.

2. To incorporate temperature dependent thermal

properties during phase-change into the



computer algorithm for both two-dimensional

and axisymmetric heat transfer problems.

To investigate the influence of various bound-

ary conditions on the freezing time: con-

stant surface heat transfer coefficient, heat

transfer coefficient as a function of location

on the surface of food product and variable

surface temperature during freezing.

To incorporate a method to estimate an optimum

freezing time based on area average enthalpy

in the finite element analysis and to compare

this estimate to a conventional method based

on the slowest freezing point location.

To conduct experimental measurement of the

freezing rate of elliptical and trapezoidal

shape food product in the laboratory, using

air-blast freezing method and ground beef for

the freezing material, in order to verify the

numerical solution.



2 . LITERATURE REVIEW

2.1. Analytical Solution for

Phase-Change Problems

 

 

Most analytical solutions used to estimate the

freezing time in phase-change problems have been based

on either solving heat balance equations (Plank's equation

and Tanaka and Nishimoto's formula) or solving Fourier's

equation of unsteady-state heat conduction (Newmann's

solution, Tao's chart, and Tien's approach). All

approaches have limitations of assuming constant product

thermal properties and assuming regular geometrical

shapes, i.e., infinite slab, infinite cylinder, and sphere

(Bakal and Hayakawa, 1973; Carslaw and Jaeger, 1959).

Bakal and Hayakawa (1973) indicated further that all the

above methods used either a single temperature or a spe-

cified range of temperatures, during phase-change. Slavin

(1964) pointed out the inaccuracy of Plank's formula for

calculation of freezing times for food, and Charm and

Slavin (1962) reported 40 to 80 percent differences

between Newmann's equation and experimental data in

freezing time for cod fillets.

Cho and Sunderland (1974) attempted to improve

the exact solution by assuming thermal conductivity to



vary linearly with temperature. The analysis applied to

both melting and solidification of semi—infinite bodies

but used the fusion temperature as a fixed temperature

while phase-change occurred and did not account for the

variability of product thermal properties other than

thermal conductivity. likhailov (1976) developed an exact

solution for freezing of a humid porous body, thus solving

for moisture distribution as well as temperature distribu-

tion. The analytical method is applied to Stefan-like

problems which consider the occurrence of phase-change at

a single temperature. Riley and Duck (1977) used the

heat-balance integral method for the Stefan problems in

freezing of a three-dimensional cuboid with all thermal

properties of the product assumed constant. The authors

also mentioned the unresolved question of accuracy even

though some criteria have been established for semi-

infinite region by Langford (1973).

Golovkin et a1. (1973) suggested mathematical

models for freezing of meat in two-sided slab, cylinder,

and sphere geometry. The Stefan assumptions on the phase

interface in the integral form were applied to obtain more

accurate solution than if the differential form was used.

Hayakawa and Bakal (1974) proposed formulas to

predict transient temperatures in food during freezing

and thawing. Phase changes are assumed to occur over a



range of temperatures and the geometry of food is an infin-

ite slab with insulation on one side. During freezing,

the material is observed to move through an unfrozen state,

partly frozen state and a frozen state. Freezing processes

are divided into several periods: (a) precooling,

(b)first phase-change, where a partly frozen zone moves

along the direction of heat transfer, (c) intermediate

phase-change, where a partly frozen zone exists throughout

the body until the surface body temperature reaches the

final freezing point, (d) second phase-change, where a

frozen zone moves along the slab thickness, and (e) tem-

pering when the body is completely frozen. The experiment

conducted to verify the formula indicated that the mathe-

matical model was in good agreement for all periods of

the freezing process except intermediate phase—change.

Difficulty was also encountered in determining the final

freezing point during the intermediate phase-change.

2.2. Numerical Methods Using Finite Differ-

ences for Solving Phase-Change Problems

 

 

Many researchers have explored numerical techni-

ques in order to get more accurate solutions for phase—

change problems than obtained from analytical methods.

Bonacina and Comini (1973a) developed a numerical solu-

tion using an implicit finite difference scheme suggested

by Lees (1966) which involves three time levels.
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3 ‘23:” [ #1.; mix. - T? + T1; - T11>

- k?_% (T? - T?_l + T?-1 - TT:i)] + c? T?—1 (2.1)

The scheme was unconditionally stable and convergent and

the applied boundary conditions were the first kind--pre-

scribed surface temperature, and the fourth kind--variable

surface temperature. Bonacina et a1. (1973) checked the

numerical method against the analytical solution for the

one-dimensional freezing problem (Luikov, 1968) and found

the agreement to be within 3 percent. Using the same

method for two-dimensional heat transfer, Bonacina and

Comini (1973b) investigated the second and third kind of

boundary conditions which were constant heat flux and

linear heat transfer at the surface, respectively. How-

ever, the analysis and the experiment to verify the method

were conducted only for heating and cooling processes.

Cleland and Earle (1977b) discussed the above

numerical solutions thoroughly and suggested the use of

the third kind of boundary condition for food freezing.

_ _ 91h (Too - TS) — k (dX for t > o (2.2)
x=0



Instead of using the finite difference boundary condition

as proposed by Bonacina et a1. (1973), the boundary con-

dition was derived from a heat balance over the surface

space increment which extended a distance of 0.5Ax from

the surface.

+— dT

_ _ __§
T1? (T1 - Ts) — hm?S Tm) + C (Ts)dt (2.3)

k l

2

The numerical scheme for one-dimensional heat conduction

was proved to be in good agreement with experimental data

in freezing of mashed potato and minced lean beef.

Goodrich (1978) outlined a numerical procedure to

solve one-dimensional phase-change problems with a defined

moving boundary condition at a fixed temperature which

was the product freezing point. The central difference

scheme was utilized in the numerical technique and the

thermal properties of product were considered to vary

linearly with temperature.

Hashemi and Sliepcevich (1967) presented a numeri-

cal solution for one- and two-dimensional temperature

distribution in an isotropic medium where phase-change

occurred in finite temperature intervals. The procedure

utilized predictor-cOrrector and implicit finite differ-

ence methods in solving Neumann's solution for one-

dimensional heat transfer and incorporated the
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alternating direction method with the predictor-corrector

formula for two-dimensional heat transfer.

Shamsundar and Sparrow (1975) employed an enthalpy

model to analyze multidimensional conduction phase-change

g? pI dV = Jr k grad T - 8 dA (2.4)

V A

The model was approximated by using the implicit finite

difference method, but no experimental work was conducted

to confirm the simulation.

Joshi and Tao (1974) utilized the finite differ-

ence method to solve the problem of axisymmetrical freez-

ing of food products. The method implemented the first

and third kind of boundary conditions and used forward-

difference for the time derivative and central-difference

for the space derivative. The product thermal properties

varied with temperature and fraction of frozen water

except for product density which was assumed constant.

The verification of the numerical method in rectangular

beef freezing experiments gave satisfactory results.

Tarnawski (1976) proposed a mathematical model to

solve one-dimensional heat and mass transfer during food

freezing using the third kind of boundary condition. The

mathematical model took into account the discontinuity

and nonlinearity of product thermal properties and was
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approximated by finite difference methods. The simulation

results did not use the mass transfer potential as

described in the model, and were not verified by experi-

mental data.

Lescano and Heldman (1973) developed a mathemati-

cal model to predict the thermal properties of a food

product based on variable composition of water and ice

within the product as temperature changed during freezing.

A numerical scheme was later outlined to solve the one-

dimensional symmetric heat transfer problem with a bound-

ary condition of the third kind using the Crank-Nicholson

formula for finite difference analysis. The application

of the computer simulation yielded good agreement with

experimental data in freezing of slab codfish. Heldman

and Gorby (1974a).improved the prediction model for vari-

able product thermal properties by implementing the Kopel-

man equation (1966) to describe the relationship of

thermal conductivity with product composition which was

changing as temperature decreased during freezing. The

improved mathematical model along with finite difference

methods were utilized successfully to solve one-

dimensional transient heat transfer in ice cream freezing.

Numerical solutions, using finite difference method, to

simulate the freezing process for spherical geometric food

products, were developed incorporating the above
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prediction model for variable product thermal properties

(Heldman and Gorby, 1975). The finite difference equa-

tions were derived by both forward and pure implicit

methods and applied to IQF (Individual Quick Freezing) of

cherries with acceptable results. Hsieh et a1. (1977)

modified the above computer simulation techniques to pre-

dict the freezing times and temperature history for dif—

ferent fruits and vegetables.

2.3. The Implementation of Finite Element

Models to Phase-Change Problems

 

 

The application of finite element methods in solv-

ing heat conduction problems has been discussed by

Zienkiewicz and Cheung (1965), Visser (1965), Wilson and

Nickell (1966), and Richardson and Shum (1969). The

analysis has included problems with steady and unsteady

state heat transfer, linear and nonlinear boundary condi—

tions and nonstationary temperature distribution.

More examples of the finite element models applied to

transient heat conduction can be found in references such

as Zienkiewicz (1971), Desai and Abel (1972), and Seger-

lind (1976). Emery and Carson (1971), and Bruch and

Zyvoloski (1974) discussed the accuracy and efficiency of

the finite element method and illustrated acceptable com—

parison to exact solution and finite difference method

for both linear and nonlinear two-dimensional heat
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conduction problems. Comini and Lewis (1976) developed a

numerical solution using finite element methods for two—

dimensional and axisymmetrical problems involving heat

and mass transfer in porous media. The simulation was in

agreement with analytical solution in drying of a geometri-

cally slab material. Singh and Segerlind (1974) applied

the finite element models to describe time-dependent

axisymmetric problems in heating of a cylindrical food

can containing homogeneous material and to simulate heat-

ing of a chicken leg composed of four different materials.

De Baerdemaeker et a1. (1977) discussed the application

of finite element analysis to pear cooling and to rec-

tangular beef steak frying.

Bonnerot and Jamet (1974) introduced the imple-

mentation of the finite element method for the one-

dimensional Stefan problem to determine the position of

the free boundary of phase-change. The quadrilateral

elements were used and the temperatures were calculated

for all element nodes as well as additional nodes along

the moving boundary at each time step. The expanding

grid used to track the free boundary is only useful for

small boundary motions and for cases in which the tem-

peratures on one side of the boundary are always zero

(Wellford Jr. and Ayer, 1977). The latter authors pro-

posed a fixed grid of standard space-time finite elements
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and discontinuous interpolation to define the finite ele-

ment model on the special elements which were the quadri-

lateral elements crossed by the free boundary at any

particular step in time. Krutz (1976) developed a finite

element computer model for phase-change from solid to

liquid in determining the time-temperature history of a

welded joint. Thermal conductivity and specific heat

were considered as a linear function of temperature and

the model included radiation, convection and heat flux on

the surface.

Comini et a1. (1974) applied the finite element

method to freezing analysis with nonlinear boundary con-

ditions. The physical properties were considered to vary

linearly with temperature in addition to a jump within a

small temperature interval (2AT) at the freezing point.

The nonlinear boundary condition took into account

imposed heat flux and rates of heat flow per unit area

due to convection and radiation on the surface. Simple

triangular elements were used and the three level scheme

suggested by Lees (1966), as discussed previously in Sec-

tion 2.1, was introduced for time-stepping instead of

Crank-Nicholson algorithm. The freezing simulation pro-

gram was used to predict the position of frozen boundary

in slab form and for soil freezing.

Comini and Bonacina (1974) presented the appli—

cation of the above method in food freezing to overcome
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the lack of flexibility of finite difference method in

solving the irregular geometrically shape problems. The

thermal properties were calculated based on the decreas-

ing mass fraction of water during freezing but the method

to detect the fraction of water during the freezing

process was not given. The latter method will be dis-

cussed in the next section. Bonacina et a1. (1974) com-

pared results of the above finite element method with

experimental data in freezing of Tylose samples which

have been modeled after lean beef. The heat conduction

problem was selected to be one-dimensional with boundary

condition of the first kind. The error between measured

and calculated temperature at the center and surface of

the slab was found to be less than 2 percent. Rebellato

et al. (1978) used this simulation program to solve the

two-dimensional heat conduction problem utilizing a

second-order quadrilateral element grid in estimating the

freezing rate of lamb carcass and beef side. However, no

experimental data has been reported so far to verify the

results of this two-dimensional irregular geometry food

freezing problem.

2.4. Factors Influencing the Rate

of Food Freezing

 

 

The rate of food freezing is influenced by sev-

eral factors including temperature of surrounding medium,
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size and shape of frozen product, thermal properties of

the product and surface heat transfer coefficient. It

has been widely known that the lower the surrounding tem-

perature, the higher the rate of freezing. Tarnawski

(1976) and Hsieh et a1. (1977) showed that the relation-

ship between freezing time and surrounding temperature

was nonlinear. Size and shape have always been important

factors to consider in the analysis of freezing as pre-

viously discussed for the analytical solution, the finite

difference method and the finite element method. Hsieh

et a1. (1977) investigated the influence of product

diameter on freezing time for various fruits and vege-

tables. The freezing time increased linearly as the

product diameter became larger.

The determination of the transient temperature

field and the rate of freezing for food products using

the assumption that phase-change exists at a constant

temperature is not accurate. Several investigators have

proposed formulas to estimate product thermal properties

as freezing occurs over a temperature range or during the

whole process. Comini et a1. (1974) suggested that phase-

change could be assumed to occur at a temperature range

from T1 (initial temperature) ;-1°C until a certain

value of Tf (final temperature) where there was Tp (peak

N

temperature) = - 3°C in between (Figure 2.1.). The
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Figure 2.1. The relationship of thermal properties of

food product and temperature during freezing

according to Comini et a1. (1974).
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Figure 2.2. The relationship of thermal properties of

food product and temperature during freez-

ing according to Tarnawski (1976).
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final temperature is estimated as the value that gives

the best fit between calculated results and experimental

data. The formulas to calculate thermal conductivity and

specific heat capacity above and below freezing are given

as follows

cp = mc-CPW + (1 - mc)-CPS (2.5)

kp = mc-{W + (l - mc)-KS (2.6)

cf = mC°CPI + (l - mc)-CPS (2.7)

kf = mcoKI + (l - mc)-KS (2.8)

The value of heat capacity at Tp can be obtained from

evaluating the latent heat effect which is the area of

heat capacity versus temperature as Ti’ Tp, and T are

f

known

A = mC°A (2.9)

The disadvantages of this method are that phase-change is

assumed to occur only over a short temperature range, the

final temperature has to be chosen arbitrarily if experi-

mental data do not exist and the relationship between

thermal properties and temperature is actually nonlinear.

Tarnawski (1976) presented nonlinear function to

describe the relationship between physical parameters of
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a food product and temperature where the function was dis—

continuous and nondifferential at the freezing point

(Figure 2.2). The model to compute thermal conductivity

and specific heat is not published and the calculation for

beef are given as follows

for 248 K i T i TF

a(T) [-11032.6509 - 261.42196 (Z)

- 18252.4705 (2)2 - 26.133707 (2)3

- 133.87762 (z)4 - 7.31961337 (2)5

9
- 0.11645322 (2)6] x 10' mz/h (2.10)

k(T) [~124634.1825 - 744465.0959 (Z)

— 160251.468 (2)2 - 17695.612 (2)3

- 102.877816 (2)4 - 29.874884 (2)5

- 0.343013138 (2)6] x 10‘6 W/m K (2.11)

for Tf 3 T 3 303.16 K

a(T) = 0.00042 - 0.000001 (2) m2/h (2.12)

k(T) = 0.476079324 - 0.0004026324 (Z) W/m K (2.13)

where

Z = T - 273.16

Since changes in product thermal prOperties dur-

ing freezing are due to continuous depression of freezing
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point and thus continuous changes in unfrozen water con-

tent, the best approach is the method proposed by Held-

man (1974a), and Heldman and Gorby (1974b). The unfrozen

water content can be detected at any given time assuming

food product as a mixture consists of water (solvent A),

and ice together with food solids (solute B)

 

M X

_ A A mB

mA 7 MB (1 - xA) (2'14)

where

XA = exp [(LA-MA/R1)(1/TIF - l/TDF)] (2.15)

Thermal conductivity is obtained from the Kopelman equa-

tion (1967)

k = kc (l - Q)/[l - Q (l - M)] (2.16)

_ 2 _
Q — M (l kd/kc) (2.17)

Enthalpy and specific heat are computed from equations

(Lescano and Heldman, 1973)

H = EMS-CPS (T + 40) + wc-L + wc-CPW (T + 40)

+ MI-CPI (T + 40) - UFWC°L (2.18)

c = AH/AT (2.19)

P
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The implementation of the above equations (2.14) - (2.19)

are further discussed in the next chapter. Figure 2.3

illustrates the nonlinear relationship between thermal

properties of food product with temperature as calculated

using equations (2.14) - (2.19).

The influence of surface heat transfer coefficient

on freezing time has been investigated by several research—

ers. Heldman (1974b) compared the surface heat transfer

coefficient versus freezing time curves for lean beef

obtained from various analysis, Charm (1971), Lescano and

Heldman (1973), analysis graphical method, and modified

Planck's equation (1958). The results indicated that the

freezing time decreased significantly as the heat transfer

coefficient increased to 25 W/m2 K. The same result was

confirmed by Tarnawski (1976) for beef freezing. Hsieh

et a1. (1977) found that the freezing time could be

reduced significantly as the surface heat transfer

increased to 40 W/m2 K for freezing of various fruits and

vegetables.

All the previous investigations were carried out

for uniform surface heat transfer coefficient. The influ-

ence of variable local heat transfer coefficient on the

surface of food product during freezing has not been

published. Katinas et a1. (1976) and Zdanavichyus et a1.

(1977) presented the local heat transfer coefficient as a
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Figure 2.3. The relationship of thermal properties of

food product and temperature during freez-

ing according to Heldman and Gorby (1974).
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function of location on the surface of a cylinder. The

function behaved sinusoidally because the degree of tur-

bulency of an inflowing air stream around the circular

cylinder.

2.5. The Stability of the Finite Element

Method in Comparison to the Analyti-

cal Solution and the Finite Differ-

ence Method

 

 

 

 

Emery and Carson (1971) evaluated the use of the

finite element method in the computation of temperature

for linear and nonlinear two—dimensional problems and

compared it with the finite difference method. The

finite element method applied was utilizing linear, quad-

ratic, cubic and special cubic elements. For the finite

difference method, three different kinds of time step-

ping schemes were analyzed, i.e., explicit, Crank-

Nicholson, and Lex-Wendroff (1967). The authors concluded

that the finite difference method required less core

memory in the computer and gave faster execution time

especially for variable thermal properties problems which

needed computation at each time step. The finite ele-

ment method had the advantages of solving heat conduction

problems for arbitrary geometry and was more accurate.

Furthermore, there were advantages associated with the

ease of inputting the required data and the capability of

altering the basic accuracy of the method.
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Bruch and Zyvoloski (1974) discussed the implica-

tion of the finite element method to solve linear and non-

linear two-dimensional heat conduction problems.

Rectangular prisms inaaspace-time domain were used as the

finite elements and the implicit method was applied for

the time-stepping scheme. The finite element solutions

compared favorably with the results from analytical solu-

tions and finite difference methods. It was found to be

stable and convergent to the exact solution.

Yalamanchili and Chu (1973) analyzed the stability

and oscillation characteristics of the finite difference

method and the finite element method with and without use

of Galerkin's method of weighted residuals. The stability

criteria were established by utilizing the‘general sta-

bility, von Neumann formulas, and Dusinberre concepts

(1961). For transient two-dimensional heat conduction in

solids, the results showed that the region of favorable

stability and oscillation characteristics were found to

be significantly larger for the finite element method than

for the finite difference method. The use of Galerkin

method improved the degree of stability and reduced the

oscillation.



3. THEORETICAL CONSIDERATIONS

3.1. Temperature Dependent Physical Properties
 

The change in thermal prOperties of a food product

during freezing is due to continuous freezing point depres-

sion caused by a reduction in unfrozen water content. The

development of mathematical equations to predict the

thermal properties of food based on the freezing point

depression has been described by Heldman (1974a) and

Heldman and Gorby (1974a). This method has been success-

fully utilized to predict the thermal properties of food

product during freezing (Heldman, 1974b; Heldman and

Gorby, 1974b; Heldman and Gorby, 1975; Hsieh et al., 1977).

Assumptions regarding the temperature dependent physical

properties are as follows:

1. The food product is homogeneous and iso-

tropic.

2. The thermal properties are constant above

the initial freezing point.

3. The food product consists of solids, water,

and ice during the freezing process. While

the thermal properties of food product vary

nonlinearly according to temperature, thermal

properties of product solids remain constant.

25
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4. Below the initial freezing point, the food

product is assumed to be an ideal binary

system with continuous and discontinuous

phases. Since the frozen food consist of

three phases, it is reduced to one binary

system during the first step and to another

system during the second step.

3.1.1. Unfrozen Water Content
 

The relationship between the mole fraction of

solvent and the freezing point depression in a solution

is described in equations (2.14) and (2.15). Heldman

(1974a) proposed that the unfrozen water content at a

given temperature during food freezing can be predicted

using the above equations assuming the liquid water is

the solvent and solids is the solute. The molecular

weight of product solids above freezing point is calcu-

lated assuming product solids as the solute and water as

solvent. Thus, equations (2.14) and (2.15) become

 

xw = exp [(LW-MW/R)(1/TIN - l/TIF)] (3.1)

_ EMS-XW°MW

MS ’ BMW (1 - XW) (3'2)

where

EMS = 1 - Iwc (3.3)
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BMW in equation (3.2) is modified taking into account the

small amount of unfreezable water content at low tempera-

ture. This approach has been thoroughly discussed by

Lescano and Heldman (1973). The effective mass of water

becomes

BMW = IWC - UFWC (3.4)

The total unfrozen water content at any given

temperature below the freezing point can be computed as

follows

 

XW = exp [(Lw-MW/Rlxl/TIF - l/TDP)] (3.5)

_ BMs-xw-Mw
EMW — Ms (1 _ xw) (3.6)

WC = BMW + UFWC (3.7)

3.1.2. Thermal Conductivity
 

Kopelman (1967) derived mathematical models to

predict thermal conductivity in food products for both

isotropic and anisotropic systems. The model for an

isotropic system in a two component product is

 _ 1 - Q
k _ kc (l _ Q<1 _ M)) (3.8)

M2 (1 - kd/kc) (3.9)1
0 ll
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The first step in the use of the Kopelman equation

has water considered as the continuous phase for the

water-ice system. Then, the water-ice mixture is treated

as a continuous phase while the product solids is taken

as discontinuous phase for the second use of the equation.

3.1.3. Product Density
 

The product density decreases according to the

prOportional changes of the mixture and can be expressed

in the following manner (Heldman and Gorby, 1974a)

V = l/PD = WC/DW + MI/DI + EMS/DS (3.10)

For the computer program, the density of solids before

freezing must be obtained by substituting initial product

density, initial water content and MI = 0 into equation

(3.10)

DS = l/(l/IPD - WC/DW) (3.11)

Then, the product density at any given time is solved by

using equation (3.10) and unfrozen water content as com-

puted according to Section 3.1.1.

3.1.4. Enthalpy and Apparent

Specific Heat

 

 

The enthalpy of the food product can be obtained

based on the specific heat of product components and the



29

unfreezable water content. Utilizing a reference tempera-

ture of -40°C, Lescano and Heldman (1973) expressed the

enthalpy as

H = BMs-CPs-(T + 40) + wc-LW + WC°CPW-(T + 40)

+ MI'CPI'(T + 40) - UFWC°LW (3.12)

The multiplication of water content by its latent heat of

fusion, WC-LW, accounts for the heat released during

phase-change inside the food product. The specific heat

of solids can be determined by solving the equation

ICP = IWC'CPW + MS°CPS (3.13)

while CPI is obtained from Dickerson equation (Dickerson,

1969)

CPI = A + B°T (3.14)

where

A = 1.9507941

E
D ll 0.00206153 for T as absolute temperature

WC in equation (3.12) is calculated by solving equations

(3.5) - (3.7), while MI is obtained as follows

MI = 1 - WC - MS (3.15)

Assuming the relationship between enthalpy with

temperature is a continuous function, the apparent specific
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heat of a food product can be expressed as differential

change in enthalpy

CPA = AH/AT (3.16)

For this study, AT = 0.003°C was used in the numerical

solution.

3.2. Governing Equations, Initial and

Boundary7Conditions

 

 

In food freezing, heat transfer occurs primarily

by conduction. This research dealt with two—dimensional

heat transfer in eliptical and trapezoidal shapes. The

governing differential equation for heat conduction in

isotropic bodies is known as the Fourier heat conduction

equation (Carslaw and Jaeger, 1959). For two-dimensional

heat transfer, the equation is as follows

1
-
3

8 = 21[ 8T] + 4: [k :2] + Q' (3.17)
9p08t: 8x xx 8x 8y yy 8y

 

The body is at uniform temperature initially

T = T0 at t = 0 (3.18)

The boundary conditions are

3T 8T _

kxx[F§] + kyy[§§] + h (T - Tm) — 0 (3.19)

at the convective surface and for t > 0
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= 0 at the insulated surface and for

y=0

any given time (3.20)

Further assumptions regarding the modes of heat

transfer are listed below:

1. Heat transfer from the freezing medium (air)

to the product occurs by convection and heat

moves by conduction within the product.

Energy transports occur only in x and y

direction.

The rate of heat transfer within the food is

uniform along the x and y direction. Thus,

kxx = kyy’

The surface heat transfer coefficient is a

function of location along the surface;

however, it remains constant at a given posi-

tion during the freezing process.

The surrounding temperature and velocity of

freezing medium are constant and uniform.

Water vapor transport from the product to the

air is negligible. Thus, mass transfer within

the product and on the product surface are

neglected.
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The governing differential equation, initial and

boundary conditions for axisymmetrical heat transfer in

trapezoidal bodies are expressed in equations (3.21) -

(3.24)

Cppg—E— = 11:- krrgg + 831? [kn-‘3"; + 3% [kzzg—E]

+ Q' (3.21)

Initial condition

T = T0 at t = 0 (3.22)

Boundary conditions

krr[-:—:] + kzz [35%] + h (T - Too) = o (3.23)

along the convective surface and for t > 0

and g; = 0.at the insulated surface for any

r=0 given time (3.24)

The assumption made for axisymmetric heattransfer are

nearly the same as for two-dimensional, except for surface

heat transfer coefficient and surface temperature:

1. Heat transfer from the freezing medium to

the product occurs by convection and by con-

duction within the product.

2. Energy transports occur only in r and 2

directions.
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3. The rate of heat transfer within the food

is uniform along the r and 2 directions.

Thus, k = k .
rr 22

4. The surface temperature is a function of time

and location along the surface.

5. Velocity of freezing medium is stable and

uniform.

6. Mass transfer within the product and on

the product surface are neglected.

3.3. Finite Element Formulation
 

3.3.1. Development of the

Model for Two-Dimensional

Heat Transfer in Ellipti-

cal Geometry

 

 

 

 

In the finite element method for field problems

such as heat conduction, the integral of a function is

minimized using the calculus of variations (Segerlind,

1976). The governing equation for two-dimensional heat

transfer (3.17) and its boundary conditions (3.19) and

(3.20) can be formulated as follows

_1 312 312 . 3T
'X - J[; [kXX(8X + kyy(8y) 2Q T + 2cppT 5E) dv

+ {—121 (T-Toc)2ds (3-25)

where T0° is ambient temperature while V denotes the total

volume of the body and s is surface area.
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The advantage of calculation of temperature depen-

dent thermal properties using freezing point depression

as described in 3.1. is that it has taken change of

phase into account. Specific heat of product is derived

as differential change in enthalpy which is a function of

latent heat, thus the specific heat is also a function of

latent heat. Since latent heat has been incorporated into

thermal properties of product (k, cp, and p), the term for

heat generation inside the body, Q', can be eliminated.

_ _1_ 312 M2 31-:
X - .1; 2 [kXX(ax + kyy (8y + 2cppT at] dV

+- Jr g-(T - Tw)2 ds (3.26)

S

Defining two matrices

{911‘ = {—33 93'-8X 3y (3.27)

k 0

and [0] = XX (3.28)

0 k

yy

Equation (3.26) can be rewritten as

X

ll

N
I

l
-
'

( {g} T [D] {g})dv + jf CppT 33 dV

v

+ [g [T2 — 261200 + T3,) «is (3.29)

S
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Since the function for T is defined over individual sub-

(e)
regions called elements, T , equation (3.29) can be

transformed to a sum of the integrals over the total num—

ber of elements, E.

B

X = Z jr %({g(e)}T [D(e)] {9(9)})dv

=1 V(e)

+ c 6—3-2 dV + 2(T(e)T(e) - 2T(e)T

V e S(e)

+ Ti) ds

B

or x = z x(e) (3.30)

e=l

To minimize the function which is equating the summation

(e)
of derivatives of x with respect to T with zero, it is

necessary to express the equation in terms of nodal values

of temperature {T}. Utilizing two—dimensional simplex

elements (Figure 3.1.a), then

T(e) = [N(e)] {T} (3.31)

(e)
or T N.T. + N.T. + N T (3.32)

11 j] k K

where N8 is a shape function, and i, j, k are denoting

nodes of each triangular element whose equations are

given by
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_ 1
Ni — 2A (a + bix + ciy)

l
N. = —— a. + b.x + c. 3.333 2A” 3 3y) ( )

N = ;L (a + b x + c y)
k 2A k k k

a1 = xjyk - xkyj bl = y3 - yk C1 = xk - X3

aj = Xkyi - x yk bj = yk - yl C3 = xi - xk (3.34)

ak = xlyj - ijl bk = y1 - y] Ck = X] - X1

F— —H

1 X1 Y1

l
A = — 1 x. . 3.352 3 Y3 < )

l xk yk

L _   

Introducing the area coordinates L L L (Figure 3.1.b)

1' 2' 3

as values indicating the area, equation (3.33) can be

expressed as follows

_ _ 1

L1 — Ni — 2A (ai + bix + ciy)

L=N=—l-(a+bx+cy) (336)
2 3 2A3 3' j '

L = N = 1L (a + b x + c y)
3 k 2A k k k

Substituting equations (3.31) and (3.33) into equations

(3.27) and (3.30)



  

33(9) 7311“?) 80(9) BN (9’

8X 1 —l ---2(- T1
{ (e)} 8x 3x 8x

9 — = T. .
Em) 8Ni(e) 631%) 3Nk(e) 3 (3.37)

By a? a, 3;— T).

Or {g(e)} = [3(9)] {T} (3.38)

X(E) = j %{T}T [B(e)]T[D(e)] [B(e)]{T} dV

V(e)

+fcp0[N(e)] {T} [N(e)] dV 2.191}

V(e)

+f aim}T [N(e)]T [N(e)]{T} ds

(e)
S

—f h "I. [N(e)]{T}ds

(e)
S

+/ 3T: ds (3.38)

(e)
S

where [B(e)] is called the gradient matrix and is defined

as

bl bj bk

(e) _ l
[B 1 - 2A (3.39)

f1 03' Ck-  

The minimization of x becomes
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E (e)
a _ 3x _ T3%- _ 87—10—— fua] [D] [B]{T} dV

e-l

v

T a(T}
+jf cpo [N] [N] dV at

v

T
+ h [N] [N]{T} ds

h Too [N]T = 0 (3.40)

J
\
_
‘
F
‘
m
\
“
‘
fi

Equation (3.40), in compact form, can be formulated as

follows

[C] {T} + [K] {T} = {F} (3.41)

where [C] = 2 p [N] dV, capacitance matrix,

fvcp

[K] = z<f[13]T [D] [B] dV

v

h [NJTlN] ds), stiffness matrix,

m
k
-
F
3

{F} = ij'h Too [N]T ds, force vector.

S

Evaluating the integral of the first term of

matrix [K] for a triangular element



  

 

V(e)

”B b.b. b b
1 1 1 j k

kxx
ZA— b bi bjbJ b bk

Lbkbl bkbj bka‘

r}. c c. c.c'_
k 1 1 1 j 1 k

_XX+ 4A c cl Cjcj cjck

_fkcl Ckc Ckck) 

(3.42)

Heat loss by convection along the body surface

occurs in the second term of the stiffness matrix [K].

Using area coordinates, it is formulated as (Segerlind,

1976)

jf h [N]T [N] ds =

S

 

L1L1 L1L2

1) )f 1211 1212

£2 .
1,3,k

LL3L1 L3L2

Assuming the heat loss is along side

element, it gives

L L 62’ (3.43)

 

ij of a triangular



T LlLl Lle o

h [N] [N] ds = h Lle L2L2 0 afi

S 0 0 0

  

 

 

ij _ 0..

r2 1 0‘

= gfiij 1 2 0 (3.44)

1) o 0.)

wherefgij = / (xi - xj)2 + (yi - yj)2

The force vector in equation (3.41) becomes

1

{f(e)} = th Tco [NlT ds = hsz.?ij 1 (3.45)

S o

The capacitance matrix can be expressed also in terms of

area coordinates

  

LlLl Lle L1L§1

(e) _ -
[c ] — cpp JfO L2Ll L2L2 L2L3 d

”1,j,k

_f3L1 L3L2 L3L3_

’2 1 1‘1

c pA

z p
12 1 2 1 (3.46)

112.  

Equation (3.41) must be solved for each time step. Imple-

menting a central difference rule will result in
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2

([K] + A? [C]) {T } = (—2— [c1 - [Kn {rt}
t+At At

((1? } + {Ft}) (3.47)
t+At

The thermal pr0perties of food products are higher

order functions of temperature (Figure 2.3) and are com-

puted numerically as described in Section 3.1. An attempt

to substitute the property functions into equation (3.26)

would give complicated derivative of x with respect to T

in the minimization step. Thus, the values of k, cp and

p are computed for each element at every time step and

new capacitance and stiffness matrices are assembled.

3.2.2. Development of the

Model for Axisymmetrical

Heat Transfer in Trape—

zoidal Geometry

 

 

 

 

The development of the model for axisymmetrical

heat transfer is similar to two—dimensional heat transfer

except for coordinates changed from x and y to r and 2

throughout equations (3.33) to (3.35). Figure (3.2) illus-

trates an axisymmetric triangular element. The shape

function of an axisymmetric triangular element is trans-

formed into

[N] = [N1 Nj Nk] = [Ll L (3.48)
2 L3]



k
(
R
k

B
k
)

 

i
(
R
u

5
.
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j
(
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8
.
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1
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j
j
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where

for the

vection

changed
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r:

(3.49)

The stiffness and force matrices in equation (3.41)

  

  

are

(3.50)

axisymmetrical body, assuming heat loss by con—

along the ij side of a triangular element,

into

_ Toibi bib bib]:

[k(e)]=31::££bb bb bb

4A j i j j j k

b b. b b. b b
L_k 1 k j k k“

”E c c.c. c c"
_ 1 1 1 j 1 k

21Trkzz c c c c c c

+ “—z§—— l j j J k

_fkci ckcj cch_

73R. + R.) (R. + R.) 07
1 j 1 j

2Nhfli.

+ ——112 (Ri + Rj) (Ri + 3Rj) 0

__ 0 O 04  
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— 1

where r - 3 (Ri + Rj + Rk)

’2 (3? + 2R.) (3? + R. + R.) (3? + R. + RkI‘

ZWAc p l l 3 l

(e) _ p - - —
[c ] — 60 (3r + Ri + Rj) 2(3r + 2Rj) (3r + R3. + Rk)

L__(3r + Rk + Ri) (3r + Rk + Rj) 2(3r + 2Rk)

(3.51)

F2 1 0‘ R.

(e) 21012.31;o l

{f }= g3 1 2 0 R. (3.52)
3

L9 0 Q. Rk

For a horizontal triangle as seen in Figure 3.2.b

£.. =R -R. (3.53)
l] j l

3.4. Computer Implementation and Finite

Element Grid

 

 

Computer programs were developed from the finite

element models to solve the phase—change in food freezing

for both two-dimensional elliptical heat transfer and

axisymmetrical trapezoidal heat transfer as described

previously. The programs were modified from the computer

simulation written by Krutz and Segerlind (1978) to predict

the temperature distribution in welded joints. The modi-

fication took into account the non-linear function of

physical properties versus temperature as developed by

Heldman and Gorby (1974). Furthermore, the program
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incorporated boundary variations surrounding the surface

of the food product. Convective heat transfer coeffi-

cients were defined as a function of location for ellipti-

cal products (Appendix C), while local temperature was

varied along the surface for trapezoidal bodies (Appen-

dix D). A change from two-dimensional simplex triangular

element coordinates to axisymmetric triangular element

coordinates was incorporated for the axisymmetrical trape-

zoidal heat transfer problems. The structure of the whole

program is illustrated in Figure 3.3. The function of

subroutines are described below.

SETFL : Setting the dimension of a column vector A

containing {Tt}, {Tt+At}' {F}. [K] and [C].

SETMAT Computing the matrices {F}, [K], and

[C] at each time step.

READ l : Reading and calculating the initial

physical properties of food product.

PROP 1 : Computing the physical properties of

food product at each time step.

TVAR Performing the calculation of the

local temperature along the surface

on the trapezoidal geometry.
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HVAR : Performing the calculation of the con-

vective heat transfer coefficient at

each location along the surface on the

elliptical geometry.

2
DCMPBD : Decomposing the term ([K] + KT [C])

from equation (3.47) into an upper

triangle matrix using Gaussian elim-

ination

TRANSIENT : Computing Tt+At and writing the output.

MULTBD : Multiplying the matrix (i% [C]

— [K]) by [Tt} in equation (3.47)

SLVBD : Solv1ng Tt+At 1n the above equation

by backward substitution.

The flow diagrams of subroutines READ 1, SETMAT,

PROP 1, TVAR, HVAR, and TRANSIENT are outlined in Figures

3.4 - 3.6. Subroutines DCMPBD, MULTBD, and SLVBD were

given in Segerlind (1976) and are available in computer

packages from the CDC 6500 at Michigan State University.

Both computer programs are fully printed in Appendix A.

A GRID program was used to generate the input data

of element node numbers and their respective coordinates.

The program, as developed by Segerlind (1976), performs
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the plot of the finite element grid designed for specific

geometry of food products and cards punched with triangu-

lar elements data related to the grid. Figures 3.7 and

3.8 illustrate the finite element grid for elliptical and

trapezoidal geometry.

The input parameters and variables for computer

program can be divided into four categories: product

thermal properties; physical properties of water, ice,

and gas; freezing medium properties; and finite element

parameters resulted from the grid program. All required

input parameters and variables are listed in Table B.3.

The mean surface heat transfer coefficients (h) for vari-

ous air velocities were obtained from an experiment con-

ducted by Chavarria (1978) for freezing of ground beef

in the wind tunnel. Their values were 61.7, 70.6, and

142.5 W/m2 K for air velocities of 7.4, 11.3, and 15.2

m/s, respectively.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

   

 

 

 

  
 

  . CALL TVAR 1

or trapezoidal producth

e1 m... 1
 

  
 ”—1 (meme TIL

Figure 3.3. Flow diagram of Main Program.
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READ

Input initial values R, LW, Dw,

DI, TO, KI, CPW, IWC, TF, UFWC,

ICP, IK, MW

   
  

CALL SUBROUTINE PARAM 1

Calculate the initial parameters

necessary DS, KS, MS, CPS

 
 

  

DS is solved from equation (3.11)

 

  

KS is solved from equations (3.8)

and (3.9) using water-solid

system

Ks = [KW (VFSZ/3-Q)]/VFSZ/3

Q = (Kw - IK)/(vrsl/3 - IK + KW

- IK)

VFS = EMS ° PD/DS   
  

MS is obtained by solving XW in

equation (3.1) and utilizing

equations (3.2) and (3.3)

   

  

CPS is calculated using equa-

tion (3.13)

CPS = (ICP - IWC ' CPW)/EMS

   

  

RETURN TO

MAIN PROGRAM

  

Subroutine READ 1

Figure 3.5.

 

 

Calculate WC and MI

1. Solve XW from equation (3.5)

2. Solve EMW from equation (3.6)

3. Solve WC from equation (3.7)

4. Solve MI from equation (3.15)

 

  

 

Solve PD utilizing equation(3.10

PD = l/(WC/DWi-MI/DIi-EMS/DS)

 

  

 

Calculate VFD for ice-water

system

VFS = VFI/(VFI + VFW)

where VFI = MI°PD/DI,

VFS = EMS'PD/DS

VFW = 1 - (VFI + VFS)

 

  

 

Calculate KD for ice-water sys-

tem applying equations (3.8)

and (3.9)

KW [(1 - Q)/

(1 - Q(l - VFDl/3))]

2/3(1

KD:

where Q = VFD - KI/KW)

 

  

 
Calculate K for food product

using equations (3.8) and (3.9)

K = KD [(1-Q)/(l-Q(l-VFSl/3))]

2/3

where Q = VFS (l-KS/KD)

 

  

 

Solve CPI and H using equations

(3.14) and (3.12)

Solve CPA using equation (3.16)

 

  

RETURN TO SUBROUTINE

SETMAT

   

Subroutine PROP 1

Flow diagram of subroutines READ 1 and PROP 1.
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Read 01 , C7.“ 2

 

 

DO on the number of

 

 

  

 

 

DO on the number of angles

 
 

 
 

 
Calculate r from equation

(C.9)  
 

  

 

Calculate z from equation

(C.10)

Calculate v from equation

(C.12) and V8 from equation

(C.13)

nodal points on the

product surface

 
 

  

Read t and x for each

nodal number

   

 
 

Calculate T for each

nodal number using

equations in TableELl

  
 

 
     End of DO Loop

  
 

 
 
 

 

 

Substitute V back into

equation (C.S) then into

equations (C134) and (C.15)

to obtain h/h

Return to Subroutine

SETMAT

   

 
 

    
 

End of DO Loop

 
 

  

 

Compute the average of h

and h2

l

 
 

  

 

Return to

Subroutine SETMAT

 
 

Subroutine HVAR

Subroutine TVAR

Figure 3.6. Flow diagram of subroutines HVAR and TVAR.
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4 . EXPERIMENTAL

4.1. Equipment
 

An air-blast wind tunnel located in a low—

temperature room was used to freeze the food product as

illustrated in Figure 4.1. The length of the wind tunnel

was 3.8 m with circular cross section of 46 cm I.D. The

fan drew air into the tunnel using a three-phase electric

motor of 3.73 KW; 440/220 Volt. The air speed was con-

trolled by a circular opening with baffles which were regu-

lated by a lever and positioned in front of the fan. The

internal size of the freezing room was 6.7 m x 1.8 m x

2.4 m. Two evaporators provided the refrigeration effect

to reduce the temperatureixithe room to as low as -34.4°C

with a deviation of :1.8°C when the fan was not operating.

The food product, supported by a styrofoam plate

was placed at the Center of the wind tunnel. The styro-

foam support plate had dimensions of 46 cm x 35 cm x 5 cm,

and functioned as an insulator to avoid heat losses

through the bottom and edge of the food products (Fig-

ure 4.2). The boundary conditions in equations (3.17)

and (3.21) were satisfied by the design of the plate. A

sharp leading edge was designed on the side of the
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styrofoam support plate facing the air flow to reduce

turbulence created by air flow over the support plate

and product.

Unsheathed fine copper-constantan thermocouple

wires (beaded by Omega Engineering, Inc.) were utilized

to sense the temperature of the product. The thermo—

couple had precision of i 0.417°C in the temperature

range from -59.444°C to 93.333°C, and the diameter of each

wire was 0.0125 cm. The wires were sheathed by teflon

tubes with 0.055 cm I.D. to avoid direct contact with

product. Copper-constantan thermocouple extension wires

(gauge 20; 0.08 cm diameter) with polyvinyl insulation

were used to connect the sensing thermocouple wire to the

temperature recording instrumentation. The precision of

the extension wires was the same as the sensing wires.

The connectors were heavy-duty copper constantan miniature

thermocouple connectors designed with fine gauge thermo-

couple wires.

Two different types of product shape were investi-

gated in this study, a two-dimensional elliptical geome—

try (Figure 4.2) and an axisymmetric trapezoidal geometry

(Figure 4.4). The nodal locations measured by the thermo-

couple junctions are illustrated in Figure 4.3 for the

elliptical shape and Figure 4.5 for the trapezoidal shape.

The teflon sheathed thermocouple wires were partially
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(Figure 4.2)

Figure 4.3. Nodal locations of thermocouple junctions on

the cross-sectional area in elliptical

product.
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imbedded in the styrofoam plate and partially supported

by a 0.05 cm diameter copper wire structure inside the

product. Since the teflon sheathed wires and the c0pper

wire structure had different thermal properties from the

product, there was concern that the 24 nodal measurements

located in one cross-section might influence heat conduc-

tion within the product and produce significant error.

To eliminate this possibility, the measured locations were

installed in three different cross-sections (Figures 4.3

and 4.5) assuming that heat transfer occurred uniformly

along the length of the elliptical body and along the

circumference of the trapezoidal body. Three other

thermocouple junctions were positioned to detect the air

temperature at three locations near the product.

The temperature measurements were recorded by the

Fluke Model 2240A Data Logger with scanning speed capacity

of 2.5 channels per second or about 11 seconds for one

cycle containing 27 nodal readings. The output was

printed in degrees centigrade for each nodal location

and for each time step. The system accuracy was i 0.5°C

in the temperature range of -130°C to 0°C, and i 0.4°C in

the temperature range from 0°C to 400°C when copper-

constantan thermocouple wires were employed.
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4.2. Material for Food Product
 

Ground beef was used as the food product in the

freezing process experiments for two considerations:

(1) it was easily molded and shaped into the desired

geometry and (2) it responded to the assumption of product

homogeneity since its fibers and tissues had been broken

during the grinding process. Ground beef was purchased

as commercial lean ground beef from a local grocery store.

Thermal conductivity values and initial freezing

point of ground beef were obtained from literature refer-

ences. Density of ground beef was determined by weighing

the product before and after freezing. By calculating the

volume of the product shapes and dividing the weight by

the volume, the density of unfrozen and frozen meat was

established (Table B.l). Specific heat of ground beef

was calculated using Dickerson's formula (1965) and the

moisture content of meat (MC)

cp= 4.185 (0.4 + 0.006 MC) (4.1)

wherecfi?is .in J/g K and MC is .in percent. Charm (1971)

suggested more elaborate equations to compute the specific

heat of a food product

Cp =4.184 (0.5 X + 0.3 XS + 1.0 Xm) (4.2)
f
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and c: = 4.184 (0.34 X + 0.37 X + 0.4 X

P c p f

+ 0.2 x + 1.0 X) (4.3)
a m

where X was the weight fraction and subscripts a, c, p, f,

s, and m indicated ash, carbohydrate, protein, fat, solid

and moisture content of food, respectively. However,

the comparison of the results from equations (4.1), (4.2),

and (4.3) for specific heat of beef product illustrated

only i 2 percent deviation (Heldman, 1975).

In this investigation, equation (4.1) was used

after the moisture content of lean ground beef was deter-

mined experimentally according to AOAC procedure (AOAC,

1975). Three samples of ground beef, each 2 g, from each

freezing treatments, were placed in aluminum dishes and

dried for 4 hours in a Precision Scientific Model 625-A

oven at 125°C temperature. The dishes were covered with

lids to avoid contact with moist air when removed from

the oven and cooled inside a desiccator prior to being

weighed. The moisture content of samples for each treat-

ment are listed in Table 3.1, and other physical proper-

ties of ground beef are presented in Table B.2.

4.3. Procedures
 

The freezing experiments were conducted for three

magnitudes of air velocity for both elliptical and
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trapezoidal shapes. Each experiment was repeated three

times. Air velocities at the center of the wind tunnel

had been monitored by Chavarria (1978) utilizing a micro-

manometer and a Pitot tube. The air speeds used in this

investigation are presented in Table B.1 along with the

air temperatures. The air temperature fluctuated during

the freezing process due to the effect of turbulence

within the closed circuit air pattern inside the freezing

room and motor heat dissipation. The magnitude of fluctua-

tion varied from : 0.8°C to i 2.0°C for an air temperature

of -20.0°C (Table 3.1).

The data from the experiments were needed to verify

the results of computer simulation program described in

Chapter 3. The operation of each experiment included the

following steps:

1. Setting the freezing room temperature at

-20°C at least 24 hours before the experi-

ment.

2. Tempering the ground beef to a uniform ini—

tial temperature of 18°C to satisfy the

initial condition for the governing heat

transfer equations.

3. Molding the ground beef into either ellip-

tical or trapezoidal shape on the styrofoam

support plate.
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Programing the Fluke Data Logger and supplying

the input parameters, number of channels,

and scanning intervals.

Placing the styrofoam support plate and the

product at the center of the wind tunnel.

Connecting the sensing thermocouple wires

with the extension thermocouple wires by

matching the nodal number with the channel

number of the Fluke Data Logger.

Starting the electric motor and the fan to

initiate the freezing process and, at the

same time, starting the Fluke Data Logger

to monitor the temperature history.

Removing the ground beef model from the wind

tunnel and refrigerating room after freezing

process.



5. RESULTS AND DISCUSSION

5.1. Comparison of Numerical Simulation

Model with Finite Difference Method

During Food Freezing

 

 

 

The numerical simulation was compared with experi-

mental data and results from the finite difference analy-

sis used by Lescano (1973) to describe freezing of codfish

fillets in a flat plate geometry. Since Lescano's inves—

tigation was conducted for one-dimensional heat transfer

and the finite element program was for two-dimensional,

some modifications were made to accommodate the comparison.

A rectangular geometry of codfish fillets with a ratio of

length to thickness being 12 was used (Figure 5.1) and

insulated boundaries were applied in all sides except the

product surface. This resulted in heat conduction along

x-direction being negligible compared to the y-direction,

which was the product thickness and a one-dimensional

heat transfer problem could be assumed in the product.

Using the same product parameters, the predicted

temperature history using finite element method was com-

pared to results from Lescano's prediction and experi-

mental data in Figure 5.2. In general, the results

indicated that the finite element prediction was in good
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agreement with both experimental data and the finite

difference method.

The "Student t-test" (Netter and Wasserman, 1974)

was used to quantify the differences among the experimental

data, the predicted temperature by finite difference and

predicted results from the finite element simulation.

The results (Table 5.1) indicate that the finite element

method provides more favorable agreement with experimental

data than the finite difference method. The finite element

method will predict the same temperature as experimental

data at the confidence level of 95 percent.

TABLE 5.1.--The "Student t-test" for Experimental and

Predicted Temperature in Codfish Freezing

 

Degree of t-tab1e*
Treatment Calculated t Freedom (0:0.05)

 

Experimental vs

finite element

method ' 0.48 24 2.064

Experimental vs

finite difference

method -5.25+ 24 2.064

Finite element vs

finite difference

method -2.29+ 24 2.064

 

*t for two-tail test (Neter and Wasserman, 1974).
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It has been observed that the finite element

method gives more accurate results than finite difference

method and converges to an exact solution in heat conduc-

tion problem (Emery and Carson, 1971; Bruch and Zyvoloski,

1974). Hence, the results predicted in this study (Fig-

ure 5.2 and Table 5.1) are similar to the previous publi-

cation.

5.2. Verification of Computer Simulation

with Experimental Data

 

 

5.2.1. Freezing of Product

with Elliptical Geometry

 

 

The results of computer simulation using the

finite element method to predict temperature history of

elliptical geometry product are presented in Figures 5.3-

5.5 at various air velocities; 7.4, 11.3, and 15.2 m/s.

The predicted temperatures were compared to data obtained

experimentally from 3 replications at each air velocity.

Experimental data were tabulated in Table B.4. Tempera-

ture histories are illustrated at three node locations

including the center of the ellips (node 1), 4 cm above

the center (node 2) and at the surface adjacent to the

product center (node 3). The standard deviations of the

temperature measurements at one hour time step were com—

puted and presented with the experimental curves. The

results indicate that the standard deviations varied from

i 0.1°C to i 3.5°C. Higher deviations occurred at the
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initial freezing point of food product and decreased when

the flat plateau of the freezing curve ended and the slope

began to increase.

In general, the computer prediction was in close

agreement with experimental data. By introducing variable

local surface heat transfer coefficients, a better simula-

tion was obtained than when the surface heat transfer

coefficient was constant along the surface of the product

with elliptical shape. The discrepancy between the simu-

lated and experimental curves can be attributed to fluc-

tuating air temperature (1 2.0°C), as indicated in Table

B.l., and inconsistency of product density which might

have occurred during the shaping of product into the

elliptical geometry. Measured surface temperatures

(node 3) were higher than predicted values due to place-

ment of thermocouple junctions on the product surface.

It is anticipated that the temperature sensors will give

higher temperature reading if their locations are not

exactly on the product surface but several millimeters

under.

A statistical test was conducted using the t-

distribution to evaluate the agreement between experimental

and predicted temperature history at the center of the

elliptical shape. The results in Table 5.2 indicate a

good agreement between the experimental data and computer

simulation. The finite element simulation predicts the
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TABLE 5.2.-~The Results of"Student t-test" to Evaluate

Agreement Between Experimental and Predicted

Temperature at the Slowest Freezing Point

Location

 

'
*

General Shape A1r Speed Calculated Degree of t Table

 

m/s t Freedom (0:0.05)

Elliptical 7.4 -1.63 16 2.12

11.3 0.89 15 2.13

15.2 0.95 15 2.13

Trapezoidal 7.4 -3.59+ 10 2.23

11.3 -4.49+ 10 2.23

15.2 -1.44 10 2.23

 

*t for two-tail test (Neter and Wasserman, 1977).

same temperature as the experimental data at the confi-

dence level of 95 percent.

The isothermal fields at 2.5 hours after the

freezing process started are illustrated in Figures 5.6

to 5.8. The shape of the isothermal fields from the

experiment are closer to the slowest freezing point for

the portion of the product facing the cold air stream,

indicating a higher convective heat transfer on the sur-

face of the upstream portion compared to the surface of

the downstream portion of the elliptical product. Com-

parison of experimental data and the computer predicted

isothermal fields using average surface heat transfer
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coefficient and local surface heat transfer coefficient

revealed that local heat transfer coefficient was in favor

over average heat transfer coefficient. This was supported

by the result of mathematical analysis using Katinas' data

(Katinas et al., 1976) as described in Appendix C.

5.2.2. Freezing of Product

with Trapezaidal Geometgy

 

 

The temperature history, during the freezing proc-

ess of trapezoidal geometry product measured in the

laboratory was compared to the computer prediction in

Figures 5.9 to 5.11. The results of the numerical model

was in close agreement with experimental; the standard

deviation varied from i 0.1°C to i 3.1°C. More favorable

results were observed from utilizing local surface tem-

perature (Appendix D) than uniform surface temperature.

This implies that the heat transfer coefficient varies as

a function of location on the product surface.

The isothermal fields presented in Figures 5.12 to

5.14 indicate that the heat transfer depends on the local

surface temperature. The numerical model incorporating

the surface temperature as a function of location and time

gave more exact results to experimental data compared to

the model using uniform surface temperature.

The t-tests for trapezoidal (Table 5.2) indicate

that the predicted temperature at the slowest freezing



3
O

2
0

1
0

36

O

'aaneladmal

o

7 -
2
0

-
3
0

F
i
g
u
r
e

5
.
9
.

   

E
x
p
e
r
i
m
e
n
t
a
l

d
a
t
a

C
o
m
p
u
t
e
r

p
r
e
d
i
c
t
i
o
n
,

T
s
=
=
f
(
x
,

t
)

C
o
m
p
u
t
e
r

p
r
e
d
i
c
t
i
o
n
,

T
s

u
n
i
f
o
r
m

S
t
a
n
d
a
r
d

D
e
v
i
a
t
i
o
n

o
f

e
x
p
e
r
i
m
e
n
t
a
l

d
a
t
a

F
o
r

n
o
d
a
l

n
u
m
b
e
r

r
e
f
e
r

T
-

1
8
°
C

1

t
o

F
i
g
u
r
e

4
.
5

T
0
°

-
2
0
°
C

V
7
.
4

m
/
s

A
t

1
m
i
n
u
t
e

 
 

T
i
m
e
,

h
o
u
r
s

T
h
e

t
i
m
e
—
t
e
m
p
e
r
a
t
u
r
e

h
i
s
t
o
r
y

o
f

t
r
a
p
e
z
o
i
d
a
l

p
r
o
d
u
c
t

d
u
r
i
n
g

f
r
e
e
z
i
n
g

a
t

a
i
r

s
p
e
e
d

7
.
4

m
/
s
.

81



 
3
O

2
0

 

36 'eznaciadmal

~
2
0

 
-
3
0 

 

E
x
p
e
r
i
m
e
n
t
a
l

d
a
t
a

—
—
‘
-

C
o
m
p
u
t
e
r

p
r
e
d
i
c
t
i
o
n
,

T

-
-
-
-
-

C
o
m
p
u
t
e
r

p
r
e
d
i
c
t
i
o
n

T
S

I
S
t
a
n
d
a
r
d

d
e
v
i
a
t
i
o
n

o
f

e
x
p
e
r
i
m
e
n
t
a
l

d
a
t
a

,
1
,

F
o
r

n
o
d
a
l

n
u
m
b
e
r

T
-

\
r
e
f
e
r

t
o

F
i
g
u
r
e

4
.
5

T
m

  

3
:

f
(
x
,

u
n
i
f
o
r
m

1
8
°
C

-
2
0
°
C

1
1
.
3

m
/
s

1
m
i
n
u
t
e

 

N
o
d
e

1
5

t
)

 
 

F
i
g
u
r
e

5
.
1
0
.

T
i
m
e
,

h
o
u
r
s

T
h
e

t
i
m
e
-
t
e
m
p
e
r
a
t
u
r
e

h
i
s
t
o
r
y

o
f

t
r
a
p
e
z
o
i
d
a
l

p
r
o
d
u
c
t

d
u
r
i
n
g

f
r
e
e
z
i
n
g

a
t

a
i
r

s
p
e
e
d

1
1
.
3

m
/
s
.

82



 

3
0

E
x
p
e
r
i
m
e
n
t
a
l

d
a
t
a

-
—
—
-
—
-

C
o
m
p
u
t
e
r

p
r
e
d
i
c
t
i
o
n
,

T
S

=
f
(
x
,

t
)

-
-
-
-
-
-

C
o
m
p
u
t
e
r

p
r
e
d
i
c
t
i
o
n
,

T
s

u
n
i
f
o
r
m

L
I

S
t
a
n
d
a
r
d

d
e
v
i
a
t
i
o
n

o
f

e
x
p
e
r
i
m
e
n
t
a
l

d
a
t
a

2
0

F
o
r

n
o
d
a
l

n
u
m
b
e
r
s

T
i

1
8
°
C

r
e
f
e
r

t
o

F
i
g
u
r
e

4
.
5

T
m

-
2
0
°
C

v
1
5
.
2

m
/
s

A
t

1
m
i
n
u
t
e

 
 
 
 
 
 
 

1
0

Do 'OJRJFJBJmal

-
1
0

-
2
O
 

 
 

1
1

1
1

l
L
 

-
3
0

O
l

2
3

4
5

6
7

T
i
m
e
,

h
o
u
r
s

F
i
g
u
r
e

5
.
1
1
.

T
h
e

t
i
m
e
-
t
e
m
p
e
r
a
t
u
r
e

h
i
s
t
o
r
y

o
f

t
r
a
p
e
z
o
i
d
a
l

p
r
o
d
u
c
t

d
u
r
i
n
g

f
r
e
e
z
i
n
g

a
t

a
i
r

s
p
e
e
d

1
5
.
2

m
/
s
.

83



84

 
2
1
>

C
o
l
d

A
i
r

 
 

l
 

1
8
°
C

m
-
2
0
°
c

1
1
.
3

m
/
s

7
0
.
6

W
/
m
2

K

E
x
p
e
r
i
m
e
n
t
a
l

d
a
t
a

-
—
-
-

C
o
m
p
u
t
e
r

p
r
e
d
i
c
t
i
o
n

T
5

=
f

(
X
I

t
)

-
-
-
-
-

C
o
m
p
u
t
e
r

p
r
e
d
i
c
t
i
o
n
,

T
S

u
n
i
f
o
r
m

9e«>L:

F
i
g
u
r
e

5
.
1
2
.

T
h
e

i
s
o
t
h
e
r
m
a
l

f
i
e
l
d
s

i
n
s
i
d
e

t
r
a
p
e
z
o
i
d
a
l

p
r
o
d
u
c
t

a
f
t
e
r

1
.
0

f
r
e
e
z
i
n
g

h
o
u
r

a
t

a
i
r

s
p
e
e
d

1
1
.
3

m
/
s
.



 

I

:
(
>

I V

C
o
l
d

A
i
r

 

 
 
 

-
—
—
—
—
-
E
x
p
e
r
i
m
e
n
t
a
l

D
a
t
a

T
i

1
8
°
C

v
7
.
4

m
/
s

-
—
-
—

C
o
m
p
u
t
e
r

p
r
e
d
i
c
t
i
o
n
,

T
=

f
(
x
,
t
)

T
m

-
2
0
°
C

A
t

1
3
m
i
D
U
t
e

F
i
g
u
r
e

5
.
1
3
.

T
h
e

i
s
o
t
h
e
r
m
a
l

f
i
e
l
d
s

i
n
s
i
d
e

t
r
a
p
e
z
o
i
d
a
l

p
r
o
d
u
c
t

a
f
t
e
r

1
.
0

f
r
e
e
z
i
n
g

h
o
u
r

a
t

a
i
r

s
p
e
e
d

7
.
4

m
/
s
.

85



 

 
 

  
 

T
i

1
8
°
C

v
1
5
.
2

m
/
s

-
—
—
-
—
-
C
b
m
p
u
t
e
r

p
r
e
d
i
c
t
i
o
n
,

T
S
=

f
(
x
,

t
)

T
m

-
2
0
°
C

A
t

1
m
i
n
u
t
e

F
i
g
u
r
e

5
.
1
4
.

T
h
e

i
s
o
t
h
e
r
m
a
l

f
i
e
l
d
s

i
n
s
i
d
e

t
r
a
p
e
z
o
i
d
a
l

p
r
o
d
u
c
t

a
f
t
e
r

1
.
0

f
r
e
e
z
i
n
g

h
o
u
r

a
t

a
i
r

s
p
e
e
d

1
5
.
2

m
/
s
.

86



87

point location, for air Speeds of 7.4 and 11.3 m/s, do

not give results as good as for 15.2 m/s air speed. The

discrepancies can be attributed to the method used to

average the thermal product properties of a triangular

finite element after the initial freezing point was

achieved. While this averaging method may provide insig-

nificant error for a small size triangle, the error will

increase as the size of the triangular element becomes

larger. Thus, the predicted curves tend to be decreasing

slower than the experimental curves beyond the thermal

arrest time.

5.3. Influence of Area Average Enthalpy

on Freezing Time

 

 

Freezing time can be predicted conventionally by

expressing the temperature history at the slowest freezing

point location in the product or by using the total heat

content (enthalpy) of the food product. The conventional

method for predicting freezing time represents the length

of process required to achieve a temperature equal to the

desired storage temperature at the slowest freezing point

location.

An alternate criteria involves time required for

the food product enthalpy to be reduced to an enthalpy

equivalent to the storage temperature (Gorby, 1974). When

the freezing process is stopped at this point, the product
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temperature will equilibrate uniformly to the storage

temperature with the heat content from the portion with

higher temperature transferring to the portion of the

product with lower temperature. The mass average enthalpy,

E can be expressed as follows
m

Jf Hdm (5.1)

m

m n

B
l
H

Implementing the above equation into the finite element

method, an area average enthalpy was used as a criteria

to determine the freezing time

(e) (5.2)

The predicted freezing times were compared for

both conventional method and area average enthalpy

(Table 5.3) at various product geometries and air speeds.

The storage temperature used for these comparisons was

-l7.0°C. The average enthalpy method predicts lower

freezing times, ranging from 10.7 to 24.7 percent com-

pared to conventional method. These results may encourage

the use of the average enthalpy method to predict the

freezing time in order to achieve a more efficient

process and to reduce energy consumption.
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At time periods after the freezing process is

stopped, the equilibration period required to achieve

storage temperature will occur at a reduced rate compared

to the freezing rate. From microbiological and food qual-

ity standpoint, this phenomena might be a matter of con-

cern. However, the temperature at the end of the freezing

process is well below -10°C and the product portion with

temperature above the storage temperature, -l7.0°C, is

only about 30-35 percent of the total product as seen on

Figures 5.15 and 5.16.

5.4. Sensitivity Analysis
 

5.4.1. Geometric Size
 

Geometric size has a significant influence on the

freezing rate as illustrated in Figures 5.17and 5.18. For

an elliptical shape the freezing time increases 173 per-

cent as the product size becomes 1.5 times larger and

decreased by 53 percent as the size is reduced by 0.5 as

compared to the size used for experimental measurements

(a = 10 cm, b = 6.5 cm). These values for the trapezoidal

shape are 164 percent and 59 percent, respectively. It

is interesting to note that the flat plateau indicating

the region where a major portion of the latent heat is

removed, becomes less evident as the size becomes smaller.

The relationship between the multiplication factor

for geometric size to the freezing time could provide
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useful information in the selection of optimum size and

conditions for efficient freezing time.

5.4.2. Initial Product

Temperature

 

 

A sensitivity analysis was conducted to determine

the effect of initial product temperature on the freezing

time. Initial temperatures of 22°C and 14°C were compared

to 18°C, which was initial temperature used to generate

the experimental results. The results, presented in

Figures 5.19 uD5.22, indicate that initial product tem-

perature does not influence freezing time significantly.

The isothermal field after 2.5 hours illustrates a devia-

tion in the range of : 2.0°C for elliptical shape and

: 1.5°C for trapezoidal shape. The results, presented in

Figures 5.19 u:5.22, indicate that the freezing time is

about the same for various initial product temperatures.

The freezing rate curves converge to 7.5 hours of freez-

ing time for elliptical product and to 4.0 hours of

freezing time for trapezoidal product. In general, it

could be concluded that initial product temperature has

small influence on freezing time.

5.4.3 Time Step
 

Time increment, At, has been known as an important

factor in the stability of numerical analysis. Two
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different types of time step, one minute and three minutes,

were supplied to the simulation program. Figures 5.23 to

5.26 indicate that the numerical solution remains stable,

at least in the range of At equal to one to three minutes.

The discrepancies shown are small and insignificant; 0.0

to l.0°C for the trapezoidal shape and 0.0 to 0.5°C for

the elliptical shape.

Isothermal fields indicate that discrepancies

exist between the time step of one minute and three

minutes on the product portion facing the cold air stream

(Figure 5.26). This phenomena can be attributed to the

fact that thermal properties of product were computed at

each time step in the simuation. Large time step will

provide inaccuracy which becomes more significant for

higher temperature difference between the product and the

cold air occurred at the upstream portion than the down-

stream portion.

5.5. Application of the Numerical Model

in the Food Freezing Process

 

 

The finite element simulation model has been veri-

fied by the experimental data as described in previous

sections. The application of the model in food freezing

is not restricted to trapezoidal and elliptical geometry

but to other anomalous shapes as well. For practical

value, an observation of size parameter influence on
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freezing time can be conducted for any given product

shape. Then a chart illustrating the relationships among

freezing time, size and shape can be developed and a con-

venient method to select freezing times for desired prod-

uct, shape, and size would result.

Requirements that must be satisfied when using

the numerical model include:

1. The initial product thermal properties must

be available either from literature or experimental

measurements. These properties include thermal conductiv-

ity, specific heat, and product density of unfrozen prod-

uct and freezing point, water content and unfreezable

water content.

2. Average heat transfer coefficient should be

known or measured accordingly over a range of air veloci-

ties.

3. A finite element grid should be developed for

the given product configuration. Again careful judgment

must be made since the coarseness of the grid might affect

the accuracy of the estimated freezing process. Smaller

grid will use more core memory in the computer and produce

long execution time and in turn high computer cost. For

example, the elliptical grid in this study used 360 to 390

seconds execution time and the trapezoidal grid 140 to 190

seconds for total computation at the CDC 6500 computer.



4.
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Computer facilities must be close at hand to

run the computation.

The finite element analysis has advantages and

limitations when used to simulate the freezing process.

The advantages include:

1. Easiness in changing the input boundary

conditions and parameters including product

properties and freezing environment.

Readiness to accommodate various product

shapes and sizes.

The limitations to applying the simulation model approach

are:

Modifications are needed for a specific

anomalous shapes and for non-homogeneous

materials.

The model is valid for food freezing

utilizing air velocities in laminar region

with Reynolds Numbers smaller than 2.1 x

105.

Required more computer time than finite dif-

ference method, thus higher computer cost.

The method used in averaging nodal product

thermal properties for a triangular element

causes some error in the simulation scheme as

previously discussed especially in large grids.



6. CONCLUSIONS

1. A computer simulation utilizing the finite

element method to predict the freezing rate for food

products with elliptical and trapezoidal shapes has been

developed and verified by experimental data.

2. The computer simulation using the finite ele-

ment method has the ability to accommodate various bound-

ary conditions as well as the non—linearity of product

thermal properties during phase-change, and different

product geometries.

3. The utilization of local convective heat trans-

fer coefficients over the product surface as boundary

condition in the computer model provides better simula-

tion of the actual freezing process as compared to an

average surface heat transfer coefficient.

4. The predicted freezing times based on area-

average enthalpy method are 10.7 to 24.7 percent lower

than the predicted times based on the conventional method

--the slowest freezing point location.
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5. Geometric size affects the freezing time sig-

nificantly, while the influence of initial product tem-

perature over the range of 14.0 to 22.0°C can be considered

negligible.

6. The stability of the finite element algorithm

is not influenced by the magnitude of time step at At from

one to three minutes.



7. RECOMMENDATIONS FOR FURTHER STUDY

1. To develop a chart illustrating the relation-

ship between freezing time and various product shapes and

sizes. This chart would have practical value in selecting

the optimum size of a given product shape for an efficient

freezing process.

2. To modify the computer program in order to

accommodate the ability to simulate the freezing process

for non-homogeneous food products.

3. To determine the ratio of local to average

surface convective heat transfer coefficient for product

shape other than flat plate, circle, and ellips.

4. To utilize higher order elements and a non—

consistent capacitance matrix to investigate the possi-

bility of getting more accurate and stable results than

using a simplex triangular element and a consistent

capacitance matrix.
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TABLE B.2.--Physical Properties of Ground Beef

 

 

Thermal Specific Density,b Initial

Conductivity,a Heatb k /m3 Freezing Point,a

W/m K J/Kg K 9 °c

0.4 3430 1060 -l.5

 

aValues obtained from literature for mince meat

(Sérenfors, 1974).

bValues determined by experiment.
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TABLE B.3.--Input Parameters for Computer Program

 

1. Product Properties Parameters IWCa

(ground beef)

UFWC = 0.01

IPD = 1060 kg/m3

ICP = 3430 J/kg K

IK = 0.4 W/m K

TIF = -l.5°C

2. Physical Properties Parameters DI = 920 kg/m3

gislce, Water, and DW = 1000 kg/m3

KPI = 2.32 W/m K

KPW = 0.55 W/m K

Lw = 335.103J/kg

CPW = 4180 J/kg k

TWF = 0°C

R1 = 8314 J/kg-mole K

3. Freezing Medium Variables v, m/s 3, W/mzK

Properties 7.4 61.7

11.3 70.6

15.2 142.5

T = -l4°C, —18°C,

-22°C

4. Finite Element Parametersb NP:number of nodal

Properties temperature

NE:number of element

NBW:number of bandwith

NIT:number of itera-

tions

Variable Dthime step = l min—

ute and 3 min-

utes

 

aSee Table B.1.

bSupplied by the GRID program.
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APPENDIX C

THE TRANSFORMATION OF LOCAL SURFACE HEAT

TRANSFER COEFFICIENT FROM THE CIRCULAR

CYLINDER TO THE ELLIPTICAL CYLINDER
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APPENDIX C

THE TRANSFORMATION OF LOCAL SURFACE HEAT

TRANSFER COEFFICIENT FROM THE CIRCULAR

CYLINDER TO THE ELLIPTICAL CYLINDER

The local surface heat transfer coefficient was

shown to be a function of location as investigated by

Katinas et a1. (1976) and Zdanavichyus et a1. (1977) on a

circular cylinder and by Chavarria (1978) on a flat plate.

The computer simulation used to predict the freezing rate

of a food product with elliptical geometry in this

research incorporated the varying surface heat transfer

coefficient. Since there has been no publication of

variations in local surface heat transfer coefficient for

an elliptical cylinder, the transformation from

Zdanavichyus' data for a circular cylinder to an ellipti-

cal cylinder was obtained by implementing conformal map-

ping to the air flow around the obstacle geometries

(Spiegel, 1964).

The relationship between the ratio of local heat

transfer coefficient to average heat transfer coefficient,

h/h, and angle 0 for an air flow with Re = 1.1 x 105 is

illustrated in Figure C.3 (Zdanavichyus et al., 1976).

Using these data, mathematical equations were computed by
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least square method for n-order regression utilizing a

Wang 2200 computer.

0° < 0 < 90°

h/H = 1.129 - 1.148x10‘2 e + 1.589x10'3 92

- 8.861x10'5 e3 + 2.222x10‘6 e4

- 2.572x10’8 05 + 1.098x10"10 e6 (c.1)

90° < e : 180°

h/h = -47.42 + 1.48 e - 1.523x10'2 92

+ 3.441x10’5 e3 + 4.13x10‘7 64

- 2.838x10’9 95 + 5.226x1o’12 e6 (c.2)

The coefficient of correlations were 0.992 and 0.999

respectively for equations (c.1) and (C.2),and the stand-

ard error of estimate were 3.141110-2 and 8.662x10-3.

The magnitude of complex velocity of the circular

surface which is placed as an obstacle in an air flow

(Figure C.l) is a function of 0 and laminar velocity VO

(Spiegel, 1964)

 

V = V /’2 - 2 cos 0 (C.3)
c 0

Thus, 0 in equations (C.l) and(CL2) can be replaced as a

function of VC and V0 by modification of equation (C.3)

e = 0.5 arc cos (1 - vi/zvg) (c.4)
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The complex potential of fluid flow for an ellip-

tic obstacle (Figure C.2) using conformal mapping by

solving Dirichlet's problem was given as follows (Spiegel,

1964)

9(2) = vo [; + (a + b)2/4:]

where

 

= 0.5 (z-+/£§ - a2 + b2) (c.5)
7.

‘9

By algebraic manipulation, equation (C.5) can be rewritten

 

 

into

0(2) = ——ZQ—— (az - b //22 - a2 + b2 ) (C 6)

(a-b) °

The complex velocity is a derivative of 0(2)

v = d§(z)/dz = §'(z) (C.7)

Taking the derivative of equation (C.6)

Q'(z) - __Z<_3__ [a - (bz/1/z2 - a2 + b2)] (C 8)

— (a-b) '

Let z = r e16, or expressed in trigonometric function as

2 = r cos 0 + r i sin 0, where r is the distance of a

given point on the stream line to the center of the ellips

and 0 is the lepe. For the point on the surface of the

ellips, r becomes
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r = a2b2/(a2 sinze + b2 c0526) (C.9)

Then,the complex expression in equation (C.8) can be

solved as

 

= X + Yi (C.10) 

By substituting equation (C.10) back into equation (C.8),

it can be further formulated as follows

 

 

 

(a - bX) VO bY VO

Q (a) (a _ b) ’ l m) (C.11)

Thus, the complex velocity is

_ (a - bX) VO bY V0

: 0' = ' __.__.._v a (z) (a _ b) -+ l (a _ b) (C.12)

And the magnitude of the velocity on the elliptical

surface is

V

= O _ 2 2,2
ve (a_b) /(a bX) + b 1 (c.13)

Replacing VC in equation (c.4) by Ve and substituting 9

back into equations (C.l) and (C.2) will provide a new

value of h/h for a given location on the elliptical sur-

face. The calculation was carried out in subroutine HVAR

which was incorporated into the main program. The result

of subroutine HVAR was presented in Figure C.3.
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Zdanavichyus' data was obtained for a degree of

stream turbulence Tu = 1.2%. It showed a lower heat

transfer coefficient at the upstream compared to down-

stream. This contradicted the experimental results which

indicated higher heat transfer coefficient at the upstream.

Katinas et a1. (1976) investigated the effect of degree

of turbulence on the surface heat transfer coefficient

for circular cylinder, and found out that higher coeffi-

cient occurred at the upstream when the degree of turbu-

lence Tu = 7.8%. Using Katinas' data,equations (C.1)

and (C.2) were modified into

0° : 8 : 90°

h/H = 1.34 + 4.84 x 10'3 e - 5.21 x 10'4 02

+ 1.58 x 10"5 x 83 - 2.60 x 10'7 04

+ 1.91 x 10'9 85 - 4.86 x 10'12 06 (0.14)

90° : e : 180°

— -3 2
h/h = 20.21 - 0.59 9 + 5.23 x 10 8

+ 8.60 x 10'6 83 - 3.89 x 10'7 04

+ 2.15 x 10’9 05 - 3.83 x 10'12 e6 (0.15)

The computed values for elliptical cylinder using

Katinas' data by subroutine HVAR were also presented in

Figure C.3. The latter result was used for further inves-

tigation in this study.
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Figure C.l. The air flow pattern around a circular

obstacle.
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obstacle.
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h/H

    
O 30 6O 90 120 150 180

0, degrees

Katinas' data for circular cylinder

Zdanavichyus' data for a circule surface

—-——- Transformation result using conformal mapping

for an elliptical surface

----- Transformation result from Katinas' data

Figure C.3. Local surface heat transfer coefficient

for circular cylinder and elliptical

cylinder.
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APPENDIX D

THE DATA FITTING OF LOCAL SURFACE TEMPERATURE

AT TRAPEZOIDAL PRODUCT GEOMETRY USING LEATS

SQUARE REGRESSION

Since the local surface heat transfer coefficient

for trapezoidal geometry cannot be solved with conformal

mapping as in the elliptical case, another method was

applied to describe the influence of surface heat transfer

coefficient. Surface temperature of the trapezoidal

product was measured during freezing at nodal locations

illustrated in Figure D.1. for every time step. Mathe-

maticalmodel to describe the local surface temperature

as a function of location, x, and time, t, was as follows

T = A X t2 + B X t + C t + D (D.1)

The mathematical model was applied to all sides of trape-

zoidal product except the bottom side which was insulated

(Figure D.1). Two different equations were used to

describe the local surface temperature on side 2, one was

for 0 cm i x i 11 cm and the other for 11 cm 5 x i 15.5 cm.

Figure D.1 shows the temperature curves as

functions of><at t = 0.5 hours and 1.0 hour for all three

sides of the trapezoid at v = 7.9 m/s. The temperature
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data were substituted into the model at various x and t

applying the least square method. The result of mathe-

matical model for each side was presented at Table D.1.

These polynomial functions were supplied to subroutine

TVAR which computed the temperature at each time step and

substituted back to subroutine SETMAT as surface tempera-

ture.
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