

This is to certify that the thesis entitled

A NUMERICAL PREDICTION MODEL FOR FOOD FREEZING USING FINITE ELEMENT METHODS
presented by

Hadi Karia Purwadaria
has been accepted towards fulfillment of the requirements for

Ph.D._degree in Agricultural
Engineering

Date \qquad
0.7639

A NUMERICAL PREDICTION MODEL FOR FOOD FREEZING USING FINITE ELEMENT METHODS

By

Hadi Karia Purwadaria

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Agricultural Engineering

ABSTRACT

A NUMERICAL PREDICTION MODEL FOR FOOD FREEZING USING FINITE ELEMENT METHODS

By

Hadi Karia Purwadaria

The rate of freezing is one of the most important factors in designing an efficient freezing process for foods in order to achieve good product quality and to avoid excessive energy consumption. Significant improvements have been achieved in the area of freezing process simulation, however, the phenomena of phase-change, the influence of product thermal properties, the importance of product geometry and the effect of freezing environment on the freezing rate are not fully understood.

The objective of this investigation was to develop a numerical simulation model using the finite element method to predict freezing rate in anomalous food product geometries while accounting for the non-linear temperature dependent product properties and various boundary conditions. To verify the model, experimental tests were conducted for elliptical and trapezoidal product shapes using ground beef as the food product. The experiments
were conducted in a wind tunnel placed in a low temperature room and temperature measurement was recorded for 24 node locations within the critical cross-section of the product during the freezing process.

The finite element computer simulation used to predict the food product freezing rate of anomalous shape has been developed and verified by experimental data. The results illustrate the capability of the simulation model to incorporate various boundary conditions and various product geometries. Closer approximation to the experimental data was obtained by using the prediction incorporating a boundary condition with the surface heat transfer coefficient varying as a function of location. More efficient freezing times are predicted by utilizing an approach based on area average enthalpy as compared to the conventional method based on the slowest freezing point location. Time steps in the range from one to three minutes do not influence the stability of the finite alement scheme. While geometric size has significant influence on the rate of freezing, the influence on initial product temperature in the range from 14.0 to $22.0^{\circ} \mathrm{C}$ interval is negligible.

Approved

Approved

The author is deeply indebted to Dr. Dennis R. Heldman, Professor of the Agricultural Engineering Department and Department of Food Science and Nutrition, for suggestion of the research topic and his continuous support, interest, and patient guidance throughout the course of this study.

Sincere appreciation is extended to the guidance committee members: Dr. Larry J. Segerlind, Agricultural Engineering Department; Dr. K. Jayaraman, Chemical Engineering Department; and Dr. Lawrence E. Dawson, Department of Food Science and Nutrition; and to the external examiner, Dr. James F. Steffe, Agricultural Engineering Department. Their review and suggestions to the manuscript have been the most helpful. Special thanks go to Dr. Haruhiko Murase, Research Associate in Agricultural Engineering Department, for his helpful suggestions in the laboratory experiments.

The author also wishes to express his gratitude to Dr. Andi Hakim Nasoetion, President of Bogor Agricultural University, for his encouraging support and to the Government of Indonesia which provided the opportunity for the author to continue his study.
The contribution from Dr. Merle L. Esmay in laboratory equipment and the supportive cooperation of all fellow students, especially Rong-ching Hsieh and Fred W. Hall are fully appreciated.

TABLE OF CONTENTS

Page

LIST OF TABLES vi
LIST OF FIGURES vii
LIST OF APPENDICES xi
LIST OF SYMBOLS xii

1. INTRODUCTION 1
2. LITERATURE REVIEW 5
2.1. Analytical Solution for Phase-Change Problems 5
2.2. Numerical Methods Using Finite Differ- ences for Solving Phase-Change Problems 7
2.3. The Implementation of Finite Element Models to Phase-Change Problems 12
2.4. Factors Influencing the Rate of Food Freezing 15
2.5. The Stability of the Finite Element Method in Comparison to the Analytical Solution and the Finite Difference Method 23
3. THEORETICAL CONSIDERATIONS 25
3.1. Temperature Dependent Physical Prop- erties 25
3.1.1. Unfrozen Water Content 26
3.1.2. Thermal Conductivity 27
3.1.3. Product Density 28
3.1.4. Enthalpy and Apparent Specific Heat 28
3.2. Governing Equations, Initial and Bound- ary Conditions 30
3.3. Finite Element Formulation 33
3.3.1. Development of the Model for Two- Dimensional Heat Transfer in Elliptical Geometry 33
3.2.2. Development of the Model for Axi- symmetrical Heat Transfer in Trapezoidal Geometry 42
3.4. Computer Implementation and Finite Element Grid 45
4. EXPERIMENTAL 55
4.1. Equipment 55
4.2. Material for Food Product 63
4.3. Procedures 64
5. RESULTS AND DISCUSSION 67
5.1. Comparison of Numerical Simulation Model with Finite Difference Method During Food Freezing 67
5.2. Verification of Computer Simulation with Experimental Data 71
5.2.1. Freezing of Product with Ellipti- cal Geometry 71
5.2.2. Freezing of Product with Trape- zoidal Geometry 80
5.3. Influence of Area Average Enthalpy on Freezing Time 87
5.4. Sensitivity Analysis 90
5.4.1. Geometric Size 90
5.4.2. Initial Product Temperature 95
5.4.3. Time Step 96
5.5. Application of the Numerical Model in the Food Freezing Process 100
6. CONCLUSIONS 107
7. RECOMMENDATIONS FOR FURTHER STUDY 109
APPENDICES 110
BIBLIOGRAPHY 144

LIST OF TABLES

TABLEPage
5.l. The "Student t-test" for Experimental and Predicted Temperature in Codfish Freezing 70
5.2. The Results of "Student t-test" to Evaluate Agreement Between Experimental and Pre- dicted Temperature at the Slowest Freezing Point Location 76
5.3. Experimental and Predicted Freezing Time for Various Shapes and Air Speeds 89
B.l. Moisture Content and Density of Ground Beef at Various Experimental Treatments 126
B.2. Physical Properties of Ground Beef 127
B.3. Input Parameters for Computer Program 128
B.4. Recorded Temperature Data (${ }^{\circ} \mathrm{C}$) at One-Hour Time Increments During Freezing Process 129
D.l. Mathematical Models Describing Surface Temperature as a Function of Time and Location at $v=7.9 \mathrm{~m} / \mathrm{s}$ 143

LIST OF FIGURES

Figure
Page
2.1. The relationship of thermal properties of food product and temperature during freezing according to Comini et al. (1974)17
2.2. The relationship of thermal properties of food product and temperature during freez- ing according to Tarnawski (1976) 17
2.3. The relationship of thermal properties of food product and temperature during freez- ing according to Heldman and Gorby (1974). 22
3.1. Simplex two-dimensional element and area coordinates 36
3.2. Simplex triangular axisymmetric element 43
3.3. Flow diagram of Main Program 49
3.4. Flow diagram of subroutines SETMAT and TRANSIENT 50
3.5. Flow diagram of subroutines READ 1 and PROP 1 51
3.6. Flow diagram of subroutines HVAR and TVAR 52
3.7. The two-dimensional elliptical finite ele- ment grid with simplex triangular elements 53
3.8. The axisymmetrical trapezoidal finite ele- ment grid with simplex triangular elements 54
4.1. Schematic diagram of the experimental set- ups for freezing process (top view) 56
4.2. Elliptical geometric product with thermo- couple junctions and wire structure 57
4.3. Nodal locations of thermocouple junctions on the cross-sectional area in elliptical product 59
4.4. Trapezoidal geometric product with thermo- couple junctions and wire structure 60
4.5. Nodal locations of thermocouple junctions on the cross-sectional area in trapezoidal product 61
5.1. The two-dimensional finite element grid for slab geometry with simplex triangular elements 68
5.2. Temperature history of codfish fillets during freezing 69
5.3. The time-temperature history of elliptical product during freezing at air speed $7.4 \mathrm{~m} / \mathrm{s}$ 72
5.4. The time-temperature history of elliptical product during freezing at air speed $11.3 \mathrm{~m} / \mathrm{s}$. 73
5.5. The time-temperature history of elliptical product during freezing at air speed $15.2 \mathrm{~m} / \mathrm{s}$. 74
5.6. The isothermal fields inside elliptical geometry product after 2.5 freezing hours at air speed $11.3 \mathrm{~m} / \mathrm{s}$ 77
5.7. The isothermal fields inside elliptical geometry product after 2.5 freezing hours at air speed $7.4 \mathrm{~m} / \mathrm{s}$. 78
5.8. The isothermal fields inside elliptical geometry product after 2.5 hours freezing at air speed $15.2 \mathrm{~m} / \mathrm{s}$ 79
5.9. The time-temperature history of trapezoidal product during freezing at air speed $7.4 \mathrm{~m} / \mathrm{s}$ 81
5.10. The time-temperature history of trapezoi- dal product during freezing at air speed $11.3 \mathrm{~m} / \mathrm{s}$ 82
5.11. The time-temperature history of trapezoi- dal product during freezing at air speed $15.2 \mathrm{~m} / \mathrm{s}$ 83
5.12. The isothermal fields inside trapezoidal product after 1.0 freezing hour at air speed $11.3 \mathrm{~m} / \mathrm{s}$ 84
5.13. The isothermal fields inside trapezoidal product after 1.0 freezing hour at air speed $7.4 \mathrm{~m} / \mathrm{s}$ 85
5.14. The isothermal fields inside trapezoidal product after 1.0 freezing hour at air speed $15.2 \mathrm{~m} / \mathrm{s}$ 86
5.15. The isothermal fields inside elliptical product at the time the freezing process terminated based on area average enthalpy (v = $15.2 \mathrm{~m} / \mathrm{s}$) 91
5.16. The isothermal fields inside trapezoidal product at the time the freezing process terminated based on area average enthalpy ($\mathrm{v}=15.2 \mathrm{~m} / \mathrm{s}$) 92
5.17. The influence of geometrical size on the freezing rate of elliptical product 93
5.18. The influence of geometrical size on the freezing rate of trapezoidal product 94
5.19. The influence of initial temperature on the freezing rate of elliptical product 96
5.20. The isothermal fields for various initial temperatures in the elliptical product after 2.5 freezing hours 97
5.21. The influence of initial temperature on the freezing rate of trapezoidal product 98
5.22. The isothermal fields for various initial temperatures in the trapezoidal product after 1.0 freezing hour 99
5.23. The effect of time step used in numerical scheme on the freezing rate of elliptical product 101
5.24. The isothermal fields for two different time steps in the elliptical product after 2.5 freezing hours 102
5.25. The effect of time step used in numerical scheme on the freezing rate of trapezoidal product 103
5.26. The isothermal fields for two different time steps in the trapezoidal product after 1.0 freezing hour 104
C.l. The air flow pattern around a circular obstacle 136
C.2. The air flow pattern around an elliptical obstacle 137
C.3. Local surface heat transfer coefficient for circular cylinder and elliptical cylinder 138
D.1. The surface temperature on trapezoidal ground beef during air-blast freezing at $\mathrm{v}=7.9 \mathrm{~m} / \mathrm{s}$ 142

LIST OF APPENDICES

Appendix Page
A. Computer Program TWODFR and AXISFR 111
B. Physical Properties of Ground Beef, Com- puter Input Parameters and Variables, and Experimental Data 125
C. The Transformation of Local Surface Heat
Transfer Coefficient from the Circular Cylinder to the Elliptical Cylinder 130
D. The Data Fitting of Local Surface Tempera- ture at Trapezoidal Product Geometry Using Least Square Regression 139

A	Area of a triangular finite element, m^{2}
$a(T)$	Coefficient of temperature balance at temperature $T, \mathrm{~m}^{2} / \mathrm{h}$
a, b, c	Parameters defined in equation (3.34), a in m^{2} and $b \& c$ in m
[B]	Gradient matrix defined in equation (3.39)
[C]	Capacitance matrix defined in equation (3.41)
C	Volumetric specific heat capacity, $\mathrm{J} / \mathrm{m}^{3} \mathrm{~K}$
CPA	Apparent specific heat of product, J/kg K
CPI	Specific heat of ice, $\mathrm{J} / \mathrm{kg} \mathrm{K}$
CPS	Specific heat of solid, J/kg K
CPW	Specific heat of water, J/kg K
c_{p}	Specific heat of product, J/kg K
[D]	Matrix defined in equation (3.28)
DI	Density of ice, $\mathrm{kg} / \mathrm{m}^{3}$
DS	Density of solid, $\mathrm{kg} / \mathrm{m}^{3}$
DW	Density of water, $\mathrm{kg} / \mathrm{m}^{3}$
EMS	Effective mass of solids, kg solids/kg product
EMW	Effective mass of water, $k g$ water/kg product
\{F\}	Force vector defined in equation (3.41)
\{g\}	Matrix defined in equation (3.27)

k

Enthalpy, J/kg
Local surface heat transfer coefficient, $W / m^{2} K$ Average surface heat transfer coefficient, $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$
Specific enthalpy, $\mathrm{J} / \mathrm{m}^{3}$
Initial thermal conductivity, w/m K
Initial specific heat of product, $J / \mathrm{kg} \mathrm{K}$
Initial water content, kg water $/ \mathrm{kg}$ product Stiffness matrix defined in equation (3.41) Thermal conductivity of ice, $\mathrm{W} / \mathrm{m} \mathrm{K}$ Thermal conductivity of solids, $\mathrm{W} / \mathrm{m} \mathrm{K}$ Thermal conductivity of water, $\mathrm{W} / \mathrm{m} \mathrm{K}$ Thermal conductivity of product, $\mathrm{w} / \mathrm{m} \mathrm{K}$ Thermal conductivity of product at temperature T, W/m K

Thermal conductivity of continuous phase, $\mathrm{W} / \mathrm{m} \mathrm{K}$ Thermal conductivity of discontinuous phase, $\mathrm{W} / \mathrm{m} \mathrm{K}$

Thermal conductivity in x direction, $W / m \mathrm{~K}$ Thermal conductivity in y direction, $W / m \mathrm{~K}$ Thermal conductivity in z direction, $W / m \mathrm{~K}$ Area coordinates of a triangular element defined in equation (3.36)

Latent heat of fusion of solvent $A, J / \mathrm{kg}$ Latent heat of fusion of water, J / kg

L_{1}	Latent heat of fusion of product, J/kg
M_{A}	Molecular weight of solvent $\mathrm{A}, \mathrm{kg} / \mathrm{kg}$-mole
M_{B}	Molecular weight of solvent $\mathrm{B}, \mathrm{kg} / \mathrm{kg}$-mole
MS	Molecular weight of solids, $\mathrm{kg} / \mathrm{kg}$-mole
MW	Molecular weight of water, $\mathrm{kg} / \mathrm{kg}$-mole
M^{3}	Volume fraction of discontinuous phase, dimensionless
m_{A}	Effective mass of solvent $A, \mathrm{~kg} / \mathrm{kg}$ product
m_{B}	Effective mass of solvent $\mathrm{B}, \mathrm{kg} / \mathrm{kg}$ product
mc	Mass fraction of water in the product, kg water/ kg product
N	Shape function defined in equation (3.33)
$\hat{\mathrm{n}}$	Number of nodal volume
PD	Product density, $\mathrm{kg} / \mathrm{m}^{3}$
Q	Parameter defined in equation (3.9)
Q'	Heat generation inside the body
R_{1}	Gas constant, $8314 \mathrm{~J} / \mathrm{kg}$-mole K
R, Z	Coordinates of triangular nodes for axisymmetric element, m
s	Surface area, m ${ }^{2}$
T	Temperature, ${ }^{\circ} \mathrm{C}$
T_{DF}	Depressed freezing point, K
T_{F}	Freezing point temperature, K
$\mathrm{T}_{\text {IF }}$	Initial freezing point, K
$\mathrm{T}_{\text {IN }}$	Initial product temperature, K

T_{s}	Product surface temperature, ${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {se }}$	Temperature at the half thickness of the slab, ${ }^{\circ} \mathrm{C}$
T_{1}	Temperature at the first nodal point from the product surface, ${ }^{\circ} \mathrm{C}$
T_{∞}	Ambient temperature, ${ }^{\circ} \mathrm{C}$
t	Time, second
Δt	Time step, second
UFWC	Unfreezable water content, kg water/kg product
V	Volume, m^{3}
VFD	Volume fraction of discontinuous phase, dimensionless
VFI	Volume fraction of ice, dimensionless
VFS	Volume fraction of solids, dimensionless
VFW	Volume fraction of water, dimensionless
v	Air speed, m/s
$\overline{\mathrm{v}}$	Specific volume, $\mathrm{m}^{3} / \mathrm{kg}$
WC	Unfrozen water content, kg water/kg product
X_{A}	Mole fraction of solvent A, dimensionless
X_{W}	Mole fraction of water, dimensionless
x, y	Coordinates of triangular nodes for twodimensional element, m
$\Delta \mathrm{x}$	Space increment in finite difference scheme, m
ρ	Density, kg/m ${ }^{3}$
λ	Latent heat effect, $\mathrm{J} / \mathrm{m}^{3}$

```
\lambda w Heat fraction of water, J/m
X Chi function
Subscripts
f Condition after freezing
i, j, k Nodes of a triangular finite element
p Condition before freezing
u
Define nodal point in finite difference scheme,
    x = u \Delta x
```


Superscripts

m
Define time level in finite difference scheme
e
A triangular finite element

1. INTRODUCTION

Frozen food is one of the most important food products in the United States. The total pack and sales value of frozen foods in the United States reported by product category in 1966 was 6,284 million kilograms and 6,244 million dollars (Tressler et al., 1968) respectively. The design of food freezing processes is based primarily on refrigeration requirements for freezing and rate of product freezing. Appropriate methods to estimate the rate of freezing is important to achieve optimum design which results in good product quality and in an efficient process to avoid excessive energy consumption. Even though there have been significant improvements in the prediction of food freezing rates, the phenomena of phasechange, the influence of product thermal properties, the importance of product geometry and the effect of freezing environment on the freezing rate are not fully understood.

The most recognized exact solutions to predict the freezing time in the food freezing process are Plank's equation and Newmann's solution (Bakal and Hayakawa, 1973) or the solution recently developed by Golovkin et al. (1973). All of these are limited to special boundary
conditions, constant product thermal properties and to geometrically regular shapes, i.e., infinite slab, infinite cylinder, and sphere. Numerical solutions utilizing finite differences methods for temperature dependent thermal properties and regular geometric shapes have been discussed by Bonacina et al. (1973), Charm et al. (1972), Cleland and Earle (1977), Fleming (1973), Joshi and Tao (1974), Heldman (1974b), Heldman and Gorby (1974b), Hsieh et al. (1977), Lescano and Heldman (1973), and Tarnawski (1976). The finite difference approximations are acceptable, but the simulation method lacks flexibility to incorporate more complex geometry of food products and boundary conditions.

Comini and Bonacina (1974), De Baerdemaeker et al. (1977), Rebellato et al. (1978) and Singh and Segerlind (1974) suggested the implementation of finite element methods for estimating freezing time of food to reduce complex geometry and boundary condition problems. While the finite element analysis has proved excellent in accommodating linear and non-linear heat conduction in the freezing process, no investigations have verified the simulation results experimentally. It should be emphasized that previous investigations have assumed that the product thermal properties are constant or a linear function of temperature. Numerical techniques utilized by

Heldman and Gorby (1974b), Hsieh et al. (1977) and Lescano and Heldman (1973) to account for variation of product thermal properties during freezing have provided accurate predictions of freezing time.

During the freezing process when air is used as refrigerant, convective surface heat transfer coefficients become an important factor in prediction of freezing rate. Most of the investigations conducted have assumed constant surface heat transfer coefficient as the boundary condition for a given food product. Katinas et al. (1976) and Zdanavichyus et al. (1977) published an experimental result suggesting that the convective heat transfer coefficient varies sinusoidally along surface of a cylinder. The primary objective of this research was to develop a numerical solution model using finite element methods to predict the rate of freezing of food products with anomalous shapes. Specific objectives were as follows:

1. To develop a computer program utilizing the finite element method to simulate the freezing process of elliptical and trapezoidal food products subjected to various boundary conditions.
2. To incorporate temperature dependent thermal properties during phase-change into the
computer algorithm for both two-dimensional and axisymmetric heat transfer problems.
3. To investigate the influence of various boundary conditions on the freezing time: constant surface heat transfer coefficient, heat transfer coefficient as a function of location on the surface of food product and variable surface temperature during freezing.
4. To incorporate a method to estimate an optimum freezing time based on area average enthalpy in the finite element analysis and to compare this estimate to a conventional method based on the slowest freezing point location.
5. To conduct experimental measurement of the freezing rate of elliptical and trapezoidal shape food product in the laboratory, using air-blast freezing method and ground beef for the freezing material, in order to verify the numerical solution.

2. LITERATURE REVIEW

2.1. Analytical Solution for Phase-Change Problems

Most analytical solutions used to estimate the freezing time in phase-change problems have been based on either solving heat balance equations (Plank's equation and Tanaka and Nishimoto's formula) or solving Fourier's equation of unsteady-state heat conduction (Newmann's solution, Tao's chart, and Tien's approach). All approaches have limitations of assuming constant product thermal properties and assuming regular geometrical shapes, i.e., infinite slab, infinite cylinder, and sphere (Bakal and Hayakawa, 1973; Carslaw and Jaeger, 1959). Bakal and Hayakawa (1973) indicated further that all the above methods used either a single temperature or a specified range of temperatures, during phase-change. Slavin (1964) pointed out the inaccuracy of Plank's formula for calculation of freezing times for food, and Charm and Slavin (1962) reported 40 to 80 percent differences between Newmann's equation and experimental data in freezing time for cod fillets.

Cho and Sunderland (1974) attempted to improve the exact solution by assuming thermal conductivity to
vary linearly with temperature. The analysis applied to both melting and solidification of semi-infinite bodies but used the fusion temperature as a fixed temperature while phase-change occurred and did not account for the variability of product thermal properties other than thermal conductivity. Mikhailov (1976) developed an exact solution for freezing of a humid porous body, thus solving for moisture distribution as well as temperature distribution. The analytical method is applied to Stefan-like problems which consider the occurrence of phase-change at a single temperature. Riley and Duck (1977) used the heat-balance integral method for the Stefan problems in freezing of a three-dimensional cuboid with all thermal properties of the product assumed constant. The authors also mentioned the unresolved question of accuracy even though some criteria have been established for semiinfinite region by Langford (1973).

Golovkin et al. (1973) suggested mathematical models for freezing of meat in two-sided slab, cylinder, and sphere geometry. The Stefan assumptions on the phase interface in the integral form were applied to obtain more accurate solution than if the differential form was used. Hayakawa and Bakal (1974) proposed formulas to predict transient temperatures in food during freezing and thawing. Phase changes are assumed to occur over a
range of temperatures and the geometry of food is an infinite slab with insulation on one side. During freezing, the material is observed to move through an unfrozen state, partly frozen state and a frozen state. Freezing processes are divided into several periods: (a) precooling, (b) first phase-change, where a partly frozen zone moves along the direction of heat transfer, (c) intermediate phase-change, where a partly frozen zone exists throughout the body until the surface body temperature reaches the final freezing point, (d) second phase-change, where a frozen zone moves along the slab thickness, and (e) tempering when the body is completely frozen. The experiment conducted to verify the formula indicated that the mathematical model was in good agreement for all periods of the freezing process except intermediate phase-change. Difficulty was also encountered in determining the final freezing point during the intermediate phase-change.
> 2.2. Numerical Methods Using Finite Differences for Solving Phase-Change Problems

Many researchers have explored numerical techniques in order to get more accurate solutions for phasechange problems than obtained from analytical methods. Bonacina and Comini (1973a) developed a numerical solution using an implicit finite difference scheme suggested by Lees (1966) which involves three time levels.

$$
\begin{align*}
& -\frac{2}{3} \frac{(\Delta X)^{2}}{\Delta t} k_{i+\frac{1}{2}}^{m} \cdot T_{i+1}^{m+1}+\left[C_{i}^{m}+\frac{2}{3} \frac{(\Delta X)^{2}}{\Delta t}\right. \\
& \left.\left(k_{i+\frac{1}{2}}^{m}+k_{i-\frac{1}{2}}^{m}\right)\right] T_{i}^{m+1}-\frac{2}{3} \frac{(\Delta X)^{2}}{\Delta t} k_{i-\frac{1}{2}}^{m} \cdot T_{i-1}^{m+1} \\
& =\frac{2}{3} \frac{(\Delta X)^{2}}{\Delta t}\left[k_{i+\frac{1}{2}}^{m}\left(T_{i+1}^{m}-T_{i}^{m}+T_{i+1}^{m-1}-T_{i}^{m-1}\right)\right. \\
& \left.-k_{i-\frac{1}{2}}^{m}\left(T_{i}^{m}-T_{i-1}^{m}+T_{i}^{m-1}-T_{i-1}^{m-1}\right)\right]+C_{i}^{m} T_{i}^{m-1} \tag{2.1}
\end{align*}
$$

The scheme was unconditionally stable and convergent and the applied boundary conditions were the first kind--prescribed surface temperature, and the fourth kind--variable surface temperature. Bonacina et al. (1973) checked the numerical method against the analytical solution for the one-dimensional freezing problem (Luikov, 1968) and found the agreement to be within 3 percent. Using the same method for two-dimensional heat transfer, Bonacina and Comini (1973b) investigated the second and third kind of boundary conditions which were constant heat flux and linear heat transfer at the surface, respectively. However, the analysis and the experiment to verify the method were conducted only for heating and cooling processes. Cleland and Earle (1977b) discussed the above numerical solutions thoroughly and suggested the use of the third kind of boundary condition for food freezing.

$$
\begin{equation*}
h\left(T_{\infty}-T_{s}\right)=-k\left(\frac{d T}{d x}\right) \quad x=0 \text { for } t>0 \tag{2.2}
\end{equation*}
$$

Instead of using the finite difference boundary condition as proposed by Bonacina et al. (1973), the boundary condition was derived from a heat balance over the surface space increment which extended a distance of $0.5 \Delta x$ from the surface.

$$
\begin{equation*}
\frac{k_{+} \frac{1}{2}}{\Delta x}\left(T_{1}-T_{s}\right)=h\left(T_{s}-T_{\infty}\right)+C\left(T_{s}\right) \frac{d T_{s}}{d t} \tag{2.3}
\end{equation*}
$$

The numerical scheme for one-dimensional heat conduction was proved to be in good agreement with experimental data in freezing of mashed potato and minced lean beef.

Goodrich (1978) outlined a numerical procedure to solve one-dimensional phase-change problems with a defined moving boundary condition at a fixed temperature which was the product freezing point. The central difference scheme was utilized in the numerical technique and the thermal properties of product were considered to vary linearly with temperature.

Hashemi and Sliepcevich (1967) presented a numerical solution for one- and two-dimensional temperature distribution in an isotropic medium where phase-change occurred in finite temperature intervals. The procedure utilized predictor-corrector and implicit finite difference methods in solving Neumann's solution for onedimensional heat transfer and incorporated the
alternating direction method with the predictor-corrector formula for two-dimensional heat transfer.

Shamsundar and Sparrow (1975) employed an enthalpy model to analyze multidimensional conduction phase-change

$$
\begin{equation*}
\frac{d}{d t} \int_{V} \rho I d V=\int_{A} k \operatorname{grad} T \cdot \hat{n} d A \tag{2.4}
\end{equation*}
$$

The model was approximated by using the implicit finite difference method, but no experimental work was conducted to confirm the simulation.

Joshi and Tao (1974) utilized the finite difference method to solve the problem of axisymmetrical freezing of food products. The method implemented the first and third kind of boundary conditions and used forwarddifference for the time derivative and central-difference for the space derivative. The product thermal properties varied with temperature and fraction of frozen water except for product density which was assumed constant. The verification of the numerical method in rectangular beef freezing experiments gave satisfactory results.

Tarnawski (1976) proposed a mathematical model to solve one-dimensional heat and mass transfer during food freezing using the third kind of boundary condition. The mathematical model took into account the discontinuity and nonlinearity of product thermal properties and was
approximated by finite difference methods. The simulation results did not use the mass transfer potential as described in the model, and were not verified by experimental data.

Lescano and Heldman (1973) developed a mathematical model to predict the thermal properties of a food product based on variable composition of water and ice within the product as temperature changed during freezing. A numerical scheme was later outlined to solve the onedimensional symmetric heat transfer problem with a boundary condition of the third kind using the Crank-Nicholson formula for finite difference analysis. The application of the computer simulation yielded good agreement with experimental data in freezing of slab codfish. Heldman and Gorby (1974a) improved the prediction model for variable product thermal properties by implementing the Kopelman equation (1966) to describe the relationship of thermal conductivity with product composition which was changing as temperature decreased during freezing. The improved mathematical model along with finite difference methods were utilized successfully to solve onedimensional transient heat transfer in ice cream freezing. Numerical solutions, using finite difference method, to simulate the freezing process for spherical geometric food products, were developed incorporating the above
prediction model for variable product thermal properties (Heldman and Gorby, 1975). The finite difference equations were derived by both forward and pure implicit methods and applied to IQF (Individual Quick Freezing) of cherries with acceptable results. Hsieh et al. (1977) modified the above computer simulation techniques to predict the freezing times and temperature history for different fruits and vegetables.

2.3. The Implementation of Finite Element Models to Phase-Change Problems

The application of finite element methods in solving heat conduction problems has been discussed by Zienkiewicz and Cheung (1965), Visser (1965), Wilson and Nickell (1966), and Richardson and Shum (1969). The analysis has included problems with steady and unsteady state heat transfer, linear and nonlinear boundary conditions and nonstationary temperature distribution. More examples of the finite element models applied to transient heat conduction can be found in references such as Zienkiewicz (1971), Desai and Abel (1972), and Segerlind (1976). Emery and Carson (1971), and Bruch and Zyvoloski (1974) discussed the accuracy and efficiency of the finite element method and illustrated acceptable comparison to exact solution and finite difference method for both linear and nonlinear two-dimensional heat
conduction problems. Comini and Lewis (1976) developed a numerical solution using finite element methods for twodimensional and axisymmetrical problems involving heat and mass transfer in porous media. The simulation was in agreement with analytical solution in drying of a geometrically slab material. Singh and Segerlind (1974) applied the finite element models to describe time-dependent axisymmetric problems in heating of a cylindrical food can containing homogeneous material and to simulate heating of a chicken leg composed of four different materials. De Baerdemaeker et al. (1977) discussed the application of finite element analysis to pear cooling and to rectangular beef steak frying.

Bonnerot and Jamet (1974) introduced the implementation of the finite element method for the onedimensional Stefan problem to determine the position of the free boundary of phase-change. The quadrilateral elements were used and the temperatures were calculated for all element nodes as well as additional nodes along the moving boundary at each time step. The expanding grid used to track the free boundary is only useful for small boundary motions and for cases in which the temperatures on one side of the boundary are always zero (Wellford Jr. and Ayer, 1977). The latter authors proposed a fixed grid of standard space-time finite elements
and discontinuous interpolation to define the finite element model on the special elements which were the quadrilateral elements crossed by the free boundary at any particular step in time. Krutz (1976) developed a finite element computer model for phase-change from solid to liquid in determining the time-temperature history of a welded joint. Thermal conductivity and specific heat were considered as a linear function of temperature and the model included radiation, convection and heat flux on the surface.

Comini et al. (1974) applied the finite element method to freezing analysis with nonlinear boundary conditions. The physical properties were considered to vary linearly with temperature in addition to a jump within a small temperature interval $(2 \Delta T)$ at the freezing point. The nonlinear boundary condition took into account imposed heat flux and rates of heat flow per unit area due to convection and radiation on the surface. Simple triangular elements were used and the three level scheme suggested by Lees (1966), as discussed previously in Section 2.1, was introduced for time-stepping instead of Crank-Nicholson algorithm. The freezing simulation program was used to predict the position of frozen boundary in slab form and for soil freezing.

Comini and Bonacina (1974) presented the application of the above method in food freezing to overcome
the lack of flexibility of finite difference method in solving the irregular geometrically shape problems. The thermal properties were calculated based on the decreasing mass fraction of water during freezing but the method to detect the fraction of water during the freezing process was not given. The latter method will be discussed in the next section. Bonacina et al. (1974) compared results of the above finite element method with experimental data in freezing of Tylose samples which have been modeled after lean beef. The heat conduction problem was selected to be one-dimensional with boundary condition of the first kind. The error between measured and calculated temperature at the center and surface of the slab was found to be less than 2 percent. Rebellato et al. (1978) used this simulation program to solve the two-dimensional heat conduction problem utilizing a second-order quadrilateral element grid in estimating the freezing rate of lamb carcass and beef side. However, no experimental data has been reported so far to verify the results of this two-dimensional irregular geometry food freezing problem.

2.4. Factors Influencing the Rate of Food Freezing

The rate of food freezing is influenced by several factors including temperature of surrounding medium,
size and shape of frozen product, thermal properties of the product and surface heat transfer coefficient. It has been widely known that the lower the surrounding temperature, the higher the rate of freezing. Tarnawski (1976) and Hsieh et al. (1977) showed that the relationship between freezing time and surrounding temperature was nonlinear. Size and shape have always been important factors to consider in the analysis of freezing as previously discussed for the analytical solution, the finite difference method and the finite element method. Hsieh et al. (1977) investigated the influence of product diameter on freezing time for various fruits and vegetables. The freezing time increased linearly as the product diameter became larger. The determination of the transient temperature field and the rate of freezing for food products using the assumption that phase-change exists at a constant temperature is not accurate. Several investigators have proposed formulas to estimate product thermal properties as freezing occurs over a temperature range or during the whole process. Comini et al. (1974) suggested that phasechange could be assumed to occur at a temperature range from $T_{i}\left(\right.$ initial temperature) $\cong-1^{\circ} \mathrm{C}$ until a certain value of T_{f} (final temperature) where there was T_{p} (peak temperature) $\check{=}-3^{\circ} \mathrm{C}$ in between (Figure 2.1.). The

Figure 2.l. The relationship of thermal properties of food product and temperature during freezing according to Comini et al. (1974).

Figure 2.2. The relationship of thermal properties of food product and temperature during freezing according to Tarnawski (1976).
final temperature is estimated as the value that gives the best fit between calculated results and experimental data. The formulas to calculate thermal conductivity and specific heat capacity above and below freezing are given as follows

$$
\begin{align*}
& c_{p}=m c \cdot C P W+(1-m c) \cdot C P S \tag{2.5}\\
& k_{p}=m c \cdot K W+(1-m c) \cdot K S \tag{2.6}\\
& c_{f}=m c \cdot C P I+(1-m c) \cdot C P S \tag{2.7}\\
& k_{f}=m c \cdot K I+(1-m c) \cdot K S \tag{2.8}
\end{align*}
$$

The value of heat capacity at T_{p} can be obtained from evaluating the latent heat effect which is the area of heat capacity versus temperature as T_{i}, T_{p}, and T_{f} are known

$$
\begin{equation*}
\lambda=\mathrm{mc} \cdot \lambda_{\mathrm{w}} \tag{2.9}
\end{equation*}
$$

The disadvantages of this method are that phase-change is assumed to occur only over a short temperature range, the final temperature has to be chosen arbitrarily if experimental data do not exist and the relationship between thermal properties and temperature is actually nonlinear.

Tarnawski (1976) presented nonlinear function to describe the relationship between physical parameters of
a food product and temperature where the function was discontinuous and nondifferential at the freezing point (Figure 2.2). The model to compute thermal conductivity and specific heat is not published and the calculation for beef are given as follows
for $248 \mathrm{~K} \leq \mathrm{T} \leq \mathrm{T}_{\mathrm{F}}$

$$
\begin{align*}
a(T)= & {[-11032.6509-261.42196(Z)} \\
& -18252.4705(Z)^{2}-26.133707(Z)^{3} \\
& -133.87762(Z)^{4}-7.31961337(Z)^{5} \\
& \left.-0.11645322(Z)^{6}\right] \times 10^{-9} \mathrm{~m}^{2} / \mathrm{h} \tag{2.10}
\end{align*}
$$

$$
\begin{align*}
k(T)= & {[-124634.1825-744465.0959(Z)} \\
& -160251.468(Z)^{2}-17695.612(Z)^{3} \\
& -102.877816(Z)^{4}-29.874884(Z)^{5} \\
& \left.-0.343013138(Z)^{6}\right] \times 10^{-6} \mathrm{~W} / \mathrm{m} \mathrm{~K} \tag{2.11}
\end{align*}
$$

```
for \(T_{f} \leq T \leq 303.16 \mathrm{~K}\)
    \(a(T)=0.00042-0.000001(Z) \quad \mathrm{m}^{2} / \mathrm{h}\)
    \(k(T)=0.476079324-0.0004026324(Z) W / m ~ K\)
where
\[
Z=T-273.16
\]

Since changes in product thermal properties during freezing are due to continuous depression of freezing
point and thus continuous changes in unfrozen water content, the best approach is the method proposed by Heldman (1974a), and Heldman and Gorby (1974b). The unfrozen water content can be detected at any given time assuming food product as a mixture consists of water (solvent A), and ice together with food solids (solute B)
\[
\begin{equation*}
m_{A}=\frac{M_{A} x_{A} m_{B}}{M_{B}\left(1-x_{A}\right)} \tag{2.14}
\end{equation*}
\]
where
\[
\begin{equation*}
x_{A}=\exp \left[\left(L_{A} \cdot M_{A} / R_{1}\right)\left(1 / T_{I F}-1 / T_{D F}\right)\right] \tag{2.15}
\end{equation*}
\]

Thermal conductivity is obtained from the Kopelman equation (1967)
\[
\begin{align*}
& \mathrm{k}=\mathrm{k}_{\mathrm{c}}(1-Q) /[1-Q(1-M)]  \tag{2.16}\\
& Q=M^{2}\left(1-k_{d} / k_{c}\right) \tag{2.17}
\end{align*}
\]

Enthalpy and specific heat are computed from equations (Lescano and Heldman, 1973)
\[
\begin{align*}
H= & E M S \cdot C P S(T+40)+W C \cdot L+W C \cdot C P W(T+40) \\
& +M I \cdot C P I(T+40)-U F W C \cdot L \tag{2.18}
\end{align*}
\]
\[
\begin{equation*}
c_{p}=\Delta H / \Delta T \tag{2.19}
\end{equation*}
\]

The implementation of the above equations (2.14) - (2.19) are further discussed in the next chapter. Figure 2.3 illustrates the nonlinear relationship between thermal properties of food product with temperature as calculated using equations (2.14) - (2.19).

The influence of surface heat transfer coefficient on freezing time has been investigated by several researchers. Heldman (1974b) compared the surface heat transfer coefficient versus freezing time curves for lean beef obtained from various analysis, Charm (1971), Lescano and Heldman (1973), analysis graphical method, and modified Planck's equation (1958). The results indicated that the freezing time decreased significantly as the heat transfer coefficient increased to \(25 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}\). The same result was confirmed by Tarnawski (1976) for beef freezing. Hsieh et al. (1977) found that the freezing time could be reduced significantly as the surface heat transfer increased to \(40 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}\) for freezing of various fruits and vegetables.

All the previous investigations were carried out for uniform surface heat transfer coefficient. The influence of variable local heat transfer coefficient on the surface of food product during freezing has not been published. Katinas et al. (1976) and Zdanavichyus et al. (1977) presented the local heat transfer coefficient as a


Figure 2.3. The relationship of thermal properties of food product and temperature during freezing according to Heldman and Gorby (1974).
function of location on the surface of a cylinder. The function behaved sinusoidally because the degree of turbulency of an inflowing air stream around the circular cylinder.
\[
\frac{\text { 2.5. The Stability of the Finite Element }}{\frac{\text { Method in Comparison to the Analyti- }}{\text { cal Solution and the Finite Differ- }}}
\]

Emery and Carson (1971) evaluated the use of the finite element method in the computation of temperature for linear and nonlinear two-dimensional problems and compared it with the finite difference method. The finite element method applied was utilizing linear, quadratic, cubic and special cubic elements. For the finite difference method, three different kinds of time stepping schemes were analyzed, i.e., explicit, CrankNicholson, and Lex-Wendroff (1967). The authors concluded that the finite difference method required less core memory in the computer and gave faster execution time especially for variable thermal properties problems which needed computation at each time step. The finite element method had the advantages of solving heat conduction problems for arbitrary geometry and was more accurate. Furthermore, there were advantages associated with the ease of inputting the required data and the capability of altering the basic accuracy of the method.

Bruch and Zyvoloski (1974) discussed the implication of the finite element method to solve linear and nonlinear two-dinensional heat conduction problems. Rectangular prisms in a space-time domain were used as the finite elements and the implicit method was applied for the time-stepping scheme. The finite element solutions compared favorably with the results from analytical solutions and finite difference methods. It was found to be stable and convergent to the exact solution.

Yalamanchili and Chu (1973) analyzed the stability and oscillation characteristics of the finite difference method and the finite element method with and without use of Galerkin's method of weighted residuals. The stability criteria were established by utilizing the general stability, von Neumann formulas, and Dusinberre concepts (1961). For transient two-dimensional heat conduction in solids, the results showed that the region of favorable stability and oscillation characteristics were found to be significantly larger for the finite element method than for the finite difference method. The use of Galerkin method improved the degree of stability and reduced the oscillation.

\section*{3. THEORETICAL CONSIDERATIONS}

\subsection*{3.1. Temperature Dependent Physical Properties}

The change in thermal properties of a food product during freezing is due to continuous freezing point depression caused by a reduction in unfrozen water content. The development of mathematical equations to predict the thermal properties of food based on the freezing point depression has been described by Heldman (1974a) and Heldman and Gorby (1974a). This method has been successfully utilized to predict the thermal properties of food product during freezing (Heldman, 1974b; Heldman and Gorby, 1974b; Heldman and Gorby, 1975; Hsieh et al., 1977). Assumptions regarding the temperature dependent physical properties are as follows:
1. The food product is homogeneous and isotropic.
2. The thermal properties are constant above the initial freezing point.
3. The food product consists of solids, water, and ice during the freezing process. While the thermal properties of food product vary nonlinearly according to temperature, thermal properties of product solids remain constant.
4. Below the initial freezing point, the food product is assumed to be an ideal binary system with continuous and discontinuous phases. Since the frozen food consist of three phases, it is reduced to one binary system during the first step and to another system during the second step.

\subsection*{3.1.1. Unfrozen Water Content}

The relationship between the mole fraction of solvent and the freezing point depression in a solution is described in equations (2.14) and (2.15). Heldman (1974a) proposed that the unfrozen water content at a given temperature during food freezing can be predicted using the above equations assuming the liquid water is the solvent and solids is the solute. The molecular weight of product solids above freezing point is calculated assuming product solids as the solute and water as solvent. Thus, equations (2.14) and (2.15) become
\[
\begin{align*}
& \mathrm{XW}=\exp \left[(L W \cdot M W / R)\left(1 / T_{I N}-1 / T_{I F}\right)\right]  \tag{3.1}\\
& M S=\frac{\mathrm{EMS} \cdot \mathrm{XW} \cdot \mathrm{MW}}{\mathrm{EMW}(1-\mathrm{XW})} \tag{3.2}
\end{align*}
\]
where
\[
\begin{equation*}
\text { EMS }=1-\text { ITNC } \tag{3.3}
\end{equation*}
\]

EMW in equation (3.2) is modified taking into account the small amount of unfreezable water content at low temperature. This approach has been thoroughly discussed by Lescano and Heldman (1973). The effective mass of water becomes
EMW = IWC - UFWC

The total unfrozen water content at any given temperature below the freezing point can be computed as follows
\[
\begin{align*}
& \mathrm{XW}=\exp \left[\left(\mathrm{LW} \cdot \mathrm{MW} / \mathrm{R}_{1}\right)\left(1 / \mathrm{T}_{\mathrm{IF}}-1 / \mathrm{T}_{\mathrm{DP}}\right)\right]  \tag{3.5}\\
& \mathrm{EMW}=\frac{\mathrm{EMS} \cdot \mathrm{XW} \cdot \mathrm{MW}}{\mathrm{MS}(1-\mathrm{XW})}  \tag{3.6}\\
& W C=\mathrm{EMW}+\mathrm{UFWC} \tag{3.7}
\end{align*}
\]
3.1.2. Thermal Conductivity

Kopelman (1967) derived mathematical models to predict thermal conductivity in food products for both isotropic and anisotropic systems. The model for an isotropic system in a two component product is
\[
\begin{align*}
& k=k_{c}\left(\frac{1-Q}{1-Q(1-M)}\right)  \tag{3.8}\\
& Q=\mathrm{mi}^{2}\left(1-k_{d} / k_{c}\right) \tag{3.9}
\end{align*}
\]

The first step in the use of the Kopelman equation has water considered as the continuous phase for the water-ice system. Then, the water-ice mixture is treated as a continuous phase while the product solids is taken as discontinuous phase for the second use of the equation.

\subsection*{3.1.3. Product Density}

The product density decreases according to the proportional changes of the mixture and can be expressed in the following manner (Heldman and Gorby, 1974a)
\[
\begin{equation*}
\bar{V}=1 / P D=W C / D W+M I / D I+E M S / D S \tag{3.10}
\end{equation*}
\]

For the computer program, the density of solids before freezing must be obtained by substituting initial product density, initial water content and \(M I=0\) into equation (3.10)
\[
\begin{equation*}
D S=1 /(1 / I P D-W C / D W) \tag{3.11}
\end{equation*}
\]

Then, the product density at any given time is solved by using equation (3.10) and unfrozen water content as computed according to Section 3.1.1.

\subsection*{3.1.4. Enthalpy and Apparent Specific Heat}

The enthalpy of the food product can be obtained based on the specific heat of product components and the
unfreezable water content. Utilizing a reference temperature of \(-40^{\circ} \mathrm{C}\), Lescano and Heldman (1973) expressed the enthalpy as
\[
\begin{align*}
\mathrm{H}= & \mathrm{EMS} \cdot \mathrm{CPS} \cdot(\mathrm{~T}+40)+\mathrm{WC} \cdot \mathrm{LW}+\mathrm{WC} \cdot \mathrm{CPW} \cdot(\mathrm{~T}+40) \\
& +\mathrm{MI} \cdot \mathrm{CPI} \cdot(\mathrm{~T}+40)-\mathrm{UFWC} \cdot \mathrm{LW} \tag{3.12}
\end{align*}
\]

The multiplication of water content by its latent heat of fusion, WC•LW, accounts for the heat released during phase-change inside the food product. The specific heat of solids can be determined by solving the equation
\[
\begin{equation*}
I C P=I W C \cdot C P W+M S \cdot C P S \tag{3.13}
\end{equation*}
\]
while CPI is obtained from Dickerson equation (Dickerson, 1969)
\[
\begin{equation*}
C P I=A+B \cdot T \tag{3.14}
\end{equation*}
\]
where
\[
\begin{aligned}
& A=1.9507941 \\
& B=0.00206153 \text { for } T \text { as absolute temperature }
\end{aligned}
\]

WC in equation (3.12) is calculated by solving equations (3.5) - (3.7), while MI is obtained as follows
\[
\begin{equation*}
M I=1-W C-M S \tag{3.15}
\end{equation*}
\]

Assuming the relationship between enthalpy with temperature is a continuous function, the apparent specific
heat of a food product can be expressed as differential change in enthalpy
\[
\begin{equation*}
C P A=\Delta H / \Delta T \tag{3.16}
\end{equation*}
\]

For this study, \(\Delta T=0.003^{\circ} \mathrm{C}\) was used in the numerical solution.

\subsection*{3.2. Governing Equations, Initial and Boundary Conditions}

In food freezing, heat transfer occurs primarily by conduction. This research dealt with two-dimensional heat transfer in eliptical and trapezoidal shapes. The governing differential equation for heat conduction in isotropic bodies is known as the Fourier heat conduction equation (Carslaw and Jaeger, 1959). For two-dimensional heat transfer, the equation is as follows
\[
\begin{equation*}
c_{p} \rho \frac{\partial T}{\partial t}=\frac{\partial}{\partial x}\left[k_{x x} \frac{\partial T}{\partial x}\right]+\frac{\partial}{\partial y}\left[k_{y Y} \frac{\partial T}{\partial y}\right]+Q^{\prime} \tag{3.17}
\end{equation*}
\]

The body is at uniform temperature initially
\[
\begin{equation*}
T=T_{0} \text { at } t=0 \tag{3.18}
\end{equation*}
\]

The boundary conditions are
\[
\begin{equation*}
k_{x x}\left[\frac{\partial T}{\partial x}\right]+k_{Y y}\left[\frac{\partial T}{\partial y}\right]+h\left(T-T_{\infty}\right)=0 \tag{3.19}
\end{equation*}
\]
at the convective surface and for \(t>0\)
and
\[
\begin{align*}
\left.\frac{\partial T}{\partial y}\right|_{y=0}=0 & \text { at the insulated surface and for } \\
& \text { any given time } \tag{3.20}
\end{align*}
\]

Further assumptions regarding the modes of heat transfer are listed below:
1. Heat transfer from the freezing medium (air) to the product occurs by convection and heat moves by conduction within the product.
2. Energy transports occur only in \(x\) and \(y\) direction.
3. The rate of heat transfer within the food is uniform along the \(x\) and \(y\) direction. Thus, \(k_{x x}=k_{y y}\).
4. The surface heat transfer coefficient is a function of location along the surface; however, it remains constant at a given position during the freezing process.
5. The surrounding temperature and velocity of freezing medium are constant and uniform.
6. Water vapor transport from the product to the air is negligible. Thus, mass transfer within the product and on the product surface are neglected.

The governing differential equation, initial and boundary conditions for axisymmetrical heat transfer in trapezoidal bodies are expressed in equations (3.21) (3.24)
\[
\begin{align*}
c_{p} \rho \frac{\partial T}{\partial t}= & \frac{1}{r} k_{r r} \frac{\partial T}{\partial r}+\frac{\partial}{\partial r}\left[k_{r r} \frac{\partial T}{\partial r}\right]+\frac{\partial}{\partial z}\left[k_{z z} \frac{\partial T}{\partial z}\right] \\
& +Q^{\prime} \tag{3.21}
\end{align*}
\]

Initial condition
\[
\begin{equation*}
T=T_{0} \text { at } t=0 \tag{3.22}
\end{equation*}
\]

Boundary conditions
\[
\begin{equation*}
k_{r r}\left[\frac{\partial T}{\partial r}\right]+k_{z Z}\left[\frac{\partial T}{\partial z}\right]+h\left(T-T_{\infty}\right)=0 \tag{3.23}
\end{equation*}
\]
along the convective surface and for \(t>0\)
and \(\left.\quad \frac{\partial T}{\partial r}\right|_{r=0}=\underset{\text { given time }}{0 \text { at the insulated surface for any }}\)

The assumption made for axisymmetric heat transfer are nearly the same as for two-dimensional, except for surface heat transfer coefficient and surface temperature:
1. Heat transfer from the freezing medium to the product occurs by convection and by conduction within the product.
2. Energy transports occur only in \(r\) and \(z\) directions.
3. The rate of heat transfer within the food is uniform along the \(r\) and \(z\) directions. Thus, \(k_{r r}=k_{z z}\).
4. The surface temperature is a function of time and location along the surface.
5. Velocity of freezing medium is stable and uniform.
6. Mass transfer within the product and on the product surface are neglected.

\subsection*{3.3. Finite Element Formulation}
3.3.1. Development of the Model for Two-Dimensional Heat Transfer in Elliptical Geometry

In the finite element method for field problems such as heat conduction, the integral of a function is minimized using the calculus of variations (Segerlind, 1976). The governing equation for two-dimensional heat transfer (3.17) and its boundary conditions (3.19) and (3.20) can be formulated as follows
\[
\begin{align*}
X= & \int_{V} \frac{1}{2}\left[k_{x x}\left(\frac{\partial T}{\partial x}\right)^{2}+k_{y y}\left(\frac{\partial T}{\partial y}\right)^{2}-2 Q^{\prime} T+2 c_{p} \rho T \frac{\partial T}{\partial t}\right] d V \\
& +\int_{-S} \frac{h}{2}\left(T-T_{\infty}\right)^{2} d s \tag{3.25}
\end{align*}
\]
where \(T_{\infty}\) is ambient temperature while \(V\) denotes the total volume of the body and \(s\) is surface area.

The advantage of calculation of temperature dependent thermal properties using freezing point depression as described in 3.1. is that it has taken change of phase into account. Specific heat of product is derived as differential change in enthalpy which is a function of latent heat, thus the specific heat is also a function of latent heat. Since latent heat has been incorporated into thermal properties of product \(\left(k, c_{p}\right.\), and \(\left.\rho\right)\), the term for heat generation inside the body, \(Q^{\prime}\), can be eliminated.
\[
\begin{align*}
x= & \int_{V} \frac{1}{2}\left[k_{x x}\left(\frac{\partial T}{\partial x}\right)^{2}+k_{y y}\left(\frac{\partial T}{\partial y}\right)^{2}+2 c_{p} \rho T \frac{\partial T}{\partial t}\right] d V \\
& +\int_{s} \frac{h}{2}\left(T-T_{\infty}\right)^{2} d s \tag{3.26}
\end{align*}
\]

Defining two matrices
\[
\{g\}^{T}=\left[\begin{array}{ll}
\frac{\partial T}{\partial x} & \frac{\partial T}{\partial y} \tag{3.27}
\end{array}\right]
\]
and
\[
[D]=\left[\begin{array}{ll}
k_{x x} & 0  \tag{3.28}\\
0 & k_{y y}
\end{array}\right]
\]

Equation (3.26) can be rewritten as
\[
\begin{align*}
x= & \int_{V} \frac{1}{2}(\{g\} T[D]\{g\}) d V+\int_{V} c_{p} \rho T \frac{\partial T}{\partial t} d V \\
& +\int_{s} \frac{h}{2}\left[T^{2}-2 T \cdot T_{\infty}+T_{\infty}^{2}\right] d s \tag{3.29}
\end{align*}
\]

Since the function for \(T\) is defined over individual subregions called elements, \(T^{(e)}\), equation (3.29) can be transformed to a sum of the integrals over the total number of elements, E.
\[
\begin{array}{rl}
x= & \left.\sum_{e=1}^{E} \int_{V}(e)^{\frac{1}{2}\left(\left\{g^{(e)}\right\}^{T}\right.}\left[D^{(e)}\right]\left\{g^{(e)}\right\}\right) d V \\
& +\int_{V}(e)^{c} p^{\rho} \rho T \\
\partial t & d V+\int_{S}(e)^{\frac{h}{2}\left(T^{(e)} T^{(e)}-2 T^{(e)} T_{\infty}\right.} \\
& \left.+T_{\infty}^{2}\right) d s
\end{array}
\]
\[
\begin{equation*}
\text { or } \quad x=\sum_{e=1}^{E} x^{(e)} \tag{3.30}
\end{equation*}
\]

To minimize the function which is equating the summation of derivatives of \(\chi^{(e)}\) with respect to \(T\) with zero, it is necessary to express the equation in terms of nodal values of temperature \{T\}. Utilizing two-dimensional simplex elements (Figure 3.l.a), then
\[
\begin{align*}
T^{(e)} & =\left[N^{(e)}\right]\{T\}  \tag{3.31}\\
\text { or } \quad T^{(e)} & =N_{i} T_{i}+N_{j} T_{j}+N_{k} T_{K} \tag{3.32}
\end{align*}
\]
where \(N_{B}\) is a shape function, and \(i, j, k\) are denoting nodes of each triangular element whose equations are given by

\[
\begin{align*}
& N_{i}=\frac{l}{2 A}\left(a_{i}+b_{i} x+c_{i} y\right) \\
& N_{j}=\frac{1}{2 A}\left(a_{j}+b_{j} x+c_{j} y\right)  \tag{3.33}\\
& N_{k}=\frac{1}{2 A}\left(a_{k}+b_{k} x+c_{k} y\right) \\
& a_{i}=x_{j} y_{k}-x_{k} y_{j} \quad b_{i}=y_{j}-y_{k} \quad c_{i}=x_{k}-x_{j} \\
& a_{j}=x_{k} y_{i}-x_{i} y_{k} \quad b_{j}=y_{k}-y_{i} \quad c_{j}=x_{i}-x_{k}  \tag{3.34}\\
& a_{k}=x_{i} y_{j}-x_{j} y_{i} \quad b_{k}=y_{i}-y_{j} c_{k}=x_{j}-x_{i} \\
& A=\frac{1}{2}\left[\begin{array}{lll}
1 & x_{i} & y_{i} \\
1 & x_{j} & y_{j} \\
1 & x_{k} & y_{k}
\end{array}\right] \tag{3.35}
\end{align*}
\]

Introducing the area coordinates \(L_{1}, L_{2}, L_{3}\) (Figure 3.1.b) as values indicating the area, equation (3.33) can be expressed as follows
\[
\begin{align*}
& L_{1}=N_{i}=\frac{1}{2 A}\left(a_{i}+b_{i} x+c_{i} y\right) \\
& L_{2}=N_{j}=\frac{1}{2 A}\left(a_{j}+b_{j} x+c_{j} y\right)  \tag{3.36}\\
& L_{3}=N_{k}=\frac{1}{2 A}\left(a_{k}+b_{k} x+c_{k} y\right)
\end{align*}
\]

Substituting equations (3.31) and (3.33) into equations (3.27) and (3.30)
\[
\left\{g^{(e)}\right\}=\left\{\begin{array}{l}
\frac{\partial T}{\partial x}^{(e)}  \tag{3.37}\\
\frac{\partial T}{\partial y}
\end{array}\right\}=\left[\begin{array}{lll}
\frac{\partial N_{i}}{}(e) & \frac{\partial N_{j}}{(e)} & \frac{\partial N_{k}}{\partial x} \\
\frac{\partial^{\prime}}{\partial x} & \frac{(e)}{\partial x} \\
\frac{\partial N_{i}}{\partial y} & \frac{\partial N_{j}}{(e)} & \frac{\partial N_{k}}{\partial y} \\
\frac{(e)}{\partial y}
\end{array}\right]\left\{\begin{array}{c}
T_{i} \\
T_{j} \\
T_{k}
\end{array}\right\}
\]
or
\[
\begin{align*}
\left\{g^{(e)}\right\}= & {\left[B^{(e)}\right]\{T\} }  \tag{3.38}\\
X^{(e)}= & \int_{V}(e)^{\frac{1}{2}\{T\}^{T}\left[B^{(e)}\right]^{T}\left[D^{(e)}\right]\left[B^{(e)}\right]\{T\} d V} \\
& +\int_{V} c_{p} \rho\left[N^{(e)}\right]\{T\}\left[N^{(e)}\right] d V \frac{\partial\{T\}}{t} \\
& +\int_{S}(e)^{\frac{h}{2}\{T\}^{T}\left[N^{(e)}\right]^{T}\left[N^{(e)}\right]\{T\} d s} \\
& -\int_{S}^{(e)^{h} T_{\infty}[N(e)]\{T\} d s} \\
& +\int_{S}(e)^{\frac{h}{2} T_{\infty}^{2} d s}
\end{align*}
\]
where \(\left[B^{(e)}\right]\) is called the gradient matrix and is defined as
\[
\left[B^{(e)}\right]=\frac{1}{2 A}\left[\begin{array}{lll}
b_{i} & b_{j} & b_{k}  \tag{3.39}\\
c_{i} & c_{j} & c_{k}
\end{array}\right]
\]

The minimization of \(x\) becomes
\[
\begin{align*}
\frac{\partial \chi}{\partial\{T\}}= & \sum_{e=1}^{E} \frac{\partial \chi^{(e)}}{\partial\{T\}}=\int_{V}[B]^{T}[D] \quad[B]\{T\} d V \\
& +\int_{V} C_{p} \rho[N]^{T}[N] d V \frac{\partial\{T\}}{\partial t} \\
& +\int_{S} h[N]^{T}[N]\{T\} d s \\
& -\int_{S} h T_{\infty}[N]^{T} d s=0 \tag{3.40}
\end{align*}
\]

Equation (3.40), in compact form, can be formulated as follows
\[
\begin{equation*}
[\mathrm{C}]\{\dot{\mathrm{T}}\}+[\mathrm{K}]\{\mathrm{T}\}=\{\mathrm{F}\} \tag{3.41}
\end{equation*}
\]
where \([C]=\Sigma \int_{V} c_{p}[[N] d v\), capacitance matrix,
\([K]=\Sigma\left(\int_{V}[B]^{T}[D][B] d V\right.\) \(+\int_{S} h[N]^{T}[N]\) ds), stiffness matrix, \(\{F\}=\Sigma \int_{S} h T_{\infty}[N]^{T} d s\), force vector.

Evaluating the integral of the first term of matrix \([K]\) for a triangular element
\[
\begin{align*}
& \int_{V}\left[B^{(e)}\right]^{T}\left[D^{(e)}\right]\left[B^{(e)}\right] d V= \\
& \frac{k_{x x}}{4 A}\left[\begin{array}{lll}
b_{i} b_{i} & b_{i} b_{j} & b_{j} b_{k} \\
b_{j} b_{i} & b_{j} b_{j} & b_{j} b_{k} \\
b_{k} b_{i} & b_{k} b_{j} & b_{k} b_{k}
\end{array}\right] \\
& +\frac{k}{\frac{y y}{4 A}}\left[\begin{array}{lll}
c_{i} c_{i} & c_{i} c_{j} & c_{i} c_{k} \\
c_{j} c_{i} & c_{j} c_{j} & c_{j} c_{k} \\
c_{k} c_{i} & c_{k} c_{j} & c_{k} c_{k}
\end{array}\right] \tag{3.42}
\end{align*}
\]

Heat loss by convection along the body surface occurs in the second term of the stiffness matrix [K]. Using area coordinates, it is formulated as (Segerlind, 1976)
\[
\begin{align*}
\int_{s} h[N]^{T}[N] d s & = \\
& h \int_{\mathscr{L}_{i, j, k}}\left[\begin{array}{lll}
L_{1} L_{1} & L_{1} L_{2} & L_{1} L_{3} \\
L_{2} L_{1} & L_{2} L_{2} & L_{2} L_{3} \\
L_{3} L_{1} & L_{3} L_{2} & L_{3} L_{3}
\end{array}\right] d \mathscr{L} \tag{3.43}
\end{align*}
\]

Assuming the heat loss is along side ij of a triangular element, it gives
\[
\begin{align*}
\int_{s} h[N]^{T}[N] d s & =h \int_{i j}\left[\begin{array}{ccc}
L_{1} L_{1} & L_{1} L_{2} & 0 \\
L_{2} L_{1} & L_{2} L_{2} & 0 \\
0 & 0 & 0
\end{array}\right] \\
& =\frac{h}{6} \mathscr{L}_{i j}\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right] \tag{3.44}
\end{align*}
\]
where \(\AA_{i j}=\sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}\)

The force vector in equation (3.41) becomes
\[
\left\{f^{(e)}\right\}=\int_{S}^{h} T_{\infty}[N]^{T} d s=\frac{h T_{\infty}}{2}{ }^{\rho} i j\left\{\begin{array}{l}
1  \tag{3.45}\\
1 \\
0
\end{array}\right\}
\]

The capacitance matrix can be expressed also in terms of area coordinates
\[
\begin{align*}
{\left[c^{(e)}\right] } & =c_{p} \rho \partial_{i, j, k}\left[\begin{array}{lll}
L_{1} L_{1} & L_{1} L_{2} & L_{1} L_{3} \\
L_{2} L_{1} & L_{2} L_{2} & L_{2} L_{3} \\
L_{3} L_{1} & L_{3} L_{2} & L_{3} L_{3}
\end{array}\right] d \\
& =\frac{c_{p} \rho A}{12}\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right] \tag{3.46}
\end{align*}
\]

Equation (3.41) must be solved for each time step. Implementing a central difference rule will result in
\[
\begin{align*}
([K]+ & \left.\frac{2}{\Delta t}[C]\right)\left\{T_{t+\Delta t}\right\}=\left(\frac{2}{\Delta t}[C]-[K]\right)\left\{T_{t}\right\} \\
& -\left(\left\{F_{t+\Delta t}\right\}+\left\{F_{t}\right\}\right) \tag{3.47}
\end{align*}
\]

The thermal properties of food products are higher order functions of temperature (Figure 2.3) and are computed numerically as described in Section 3.1. An attempt to substitute the property functions into equation (3.26) would give complicated derivative of \(X\) with respect to \(T\) in the minimization step. Thus, the values of \(k, c_{p}\) and \(\rho\) are computed for each element at every time step and new capacitance and stiffness matrices are assembled.
```

3.2.2. Development of the
Model for Axisymmetrical
Heat Transfer in Trape-
zoidal Geometry

```

The development of the model for axisymmetrical
heat transfer is similar to two-dimensional heat transfer except for coordinates changed from \(x\) and \(y\) to \(r\) and \(z\) throughout equations (3.33) to (3.35). Figure (3.2) illustrates an axisymmetric triangular element. The shape function of an axisymmetric triangular element is transformed into
\[
[\mathrm{N}]=\left[\begin{array}{llll}
\mathrm{N}_{\mathrm{i}} & \mathrm{~N}_{\mathrm{j}} & \mathrm{~N}_{\mathrm{k}}
\end{array}\right]=\left[\begin{array}{lll}
\mathrm{L}_{1} & \mathrm{~L}_{2} & \mathrm{~L}_{3} \tag{3.48}
\end{array}\right]
\]

where \(r=\left[\begin{array}{lll}L_{1} & L_{2} & L_{3}\end{array}\right]\left\{\begin{array}{l}R_{i} \\ R_{j} \\ R_{k}\end{array}\right\}\)

The stiffness and force matrices in equation (3.41) for the axisymmetrical body, assuming heat loss by convection along the ij side of a triangular element, are changed into
\[
\begin{align*}
{[k(e)] } & =\frac{2 \pi \bar{r} k_{r r}}{4 A}\left[\begin{array}{lll}
b_{i} b_{i} & b_{i} b_{j} & b_{i} b_{k} \\
b_{j} b_{i} & b_{j} b_{j} & b_{j} b_{k} \\
b_{k} b_{i} & b_{k} b_{j} & b_{k} b_{k}
\end{array}\right] \\
& +\frac{2 \pi \overline{r k} z_{z 2}}{4 A}\left[\begin{array}{lll}
c_{i} c_{i} & c_{i} c_{j} & c_{i} c_{k} \\
c_{j} c_{i} & c_{j} c_{j} & c_{j} c_{k} \\
c_{k} c_{i} & c_{k} c_{j} & c_{k} c_{k}
\end{array}\right] \\
& +\frac{2 \pi h \mathcal{S}_{i j}}{12}\left[\begin{array}{llll}
\left(3 R_{i}+R_{j}\right) & \left(R_{i}+R_{j}\right) & 0 \\
\left(R_{i}+R_{j}\right) & \left(R_{i}+3 R_{j}\right) & 0 \\
0 & 0 & 0
\end{array}\right] \tag{3.50}
\end{align*}
\]
where \(\quad \bar{r}=\frac{1}{3}\left(R_{i}+R_{j}+R_{k}\right)\)
\[
\left.\begin{array}{l}
{\left[c^{(e)}\right]=\frac{2 \pi A c_{p} \rho}{60}\left[\begin{array}{lll}
2\left(3 \bar{r}+2 R_{i}\right) & \left(3 \bar{r}+R_{i}+R_{j}\right) & \left(3 \bar{r}+R_{i}+R_{k}\right) \\
\left(3 \bar{r}+R_{i}+R_{j}\right) & 2\left(3 \bar{r}+2 R_{j}\right) & \left(3 \bar{r}+R_{j}+R_{k}\right) \\
\left(3 \bar{r}+R_{k}+R_{i}\right) & \left(3 \bar{r}+R_{k}+R_{j}\right) & 2\left(3 \bar{r}+2 R_{k}\right)
\end{array}\right]}  \tag{3.51}\\
(3.51)
\end{array}\right] \begin{aligned}
& \left\{f^{(e)}\right\}=\frac{2 \pi h \mathcal{L}_{i j} T_{\infty}}{6}\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]\left\{\begin{array}{l}
R_{i} \\
R_{j} \\
R_{k}
\end{array}\right\}
\end{aligned}
\]

For a horizontal triangle as seen in Figure 3.2.b
\[
\begin{equation*}
\mathcal{L}_{i j}=R_{j}-R_{i} \tag{3.53}
\end{equation*}
\]

\subsection*{3.4. Computer Implementation and Finite Element Grid}

Computer programs were developed from the finite element models to solve the phase-change in food freezing for both two-dimensional elliptical heat transfer and axisymmetrical trapezoidal heat transfer as described previously. The programs were modified from the computer simulation written by Krutz and Segerlind (1978) to predict the temperature distribution in welded joints. The modification took into account the non-linear function of physical properties versus temperature as developed by Heldman and Gorby (1974). Furthermore, the program
incorporated boundary variations surrounding the surface of the food product. Convective heat transfer coefficients were defined as a function of location for elliptical products (Appendix C), while local temperature was varied along the surface for trapezoidal bodies (Appendix D). A change from two-dimensional simplex triangular element coordinates to axisymmetric triangular element coordinates was incorporated for the axisymmetrical trapezoidal heat transfer problems. The structure of the whole program is illustrated in Figure 3.3. The function of subroutines are described below.

SETFL : Setting the dimension of a column vector \(A\) containing \(\left\{T_{t}\right\},\left\{T_{t+\Delta t}\right\},\{F\},[K]\) and \([C]\).

SETMAT : Computing the matrices \{F\}, [K], and [C] at each time step.

READ 1 : Reading and calculating the initial physical properties of food product.

PROP 1 : Computing the physical properties of food product at each time step.

TVAR : Performing the calculation of the local temperature along the surface on the trapezoidal geometry.

the plot of the finite element grid designed for specific geometry of food products and cards punched with triangular elements data related to the grid. Figures 3.7 and 3.8 illustrate the finite element grid for elliptical and trapezoidal geometry.

The input parameters and variables for computer program can be divided into four categories: product thermal properties; physical properties of water, ice, and gas; freezing medium properties; and finite element parameters resulted from the grid program. All required input parameters and variables are listed in Table B.3. The mean surface heat transfer coefficients (h) for various air velocities were obtained from an experiment conducted by Chavarria (1978) for freezing of ground beef in the wind tunnel. Their values were 61.7, 70.6, and \(142.5 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}\) for air velocities of \(7.4,11.3\), and 15.2 m/s, respectively.


Figure 3.3. Flow diagram of Main Program.


Figure 3.4. Flow diagram of subroutines SETMAT and TRANSIENT.


Figure 3.5. Flow diagram of subroutines READ 1 and PROP 1.


Subroutine TVAR

Subroutine HVAR

Figure 3.6. Flow diagram of subroutines HVAR and TVAR.


Figure 3.7. The two-dimensional elliptical finite element grid with


\section*{4. EXPERIMENTAL}

\begin{abstract}
4.1. Equipment

An air-blast wind tunnel located in a lowtemperature room was used to freeze the food product as illustrated in Figure 4.1. The length of the wind tunnel was 3.8 m with circular cross section of 46 cm I.D. The fan drew air into the tunnel using a three-phase electric motor of \(3.73 \mathrm{KW} ; 440 / 220\) Volt. The air speed was controlled by a circular opening with baffles which were reculated by a lever and positioned in front of the fan. The internal size of the freezing room was \(6.7 \mathrm{~m} \times 1.8 \mathrm{~m} x\) 2.4 m . Two evaporators provided the refrigeration effect to reduce the temperature in the room to as low as \(-34.4^{\circ} \mathrm{C}\) with a deviation of \(\pm 1.8^{\circ} \mathrm{C}\) when the fan was not operating.

The food product, supported by a styrofoam plate was placed at the center of the wind tunnel. The styrofoam support plate had dimensions of \(46 \mathrm{~cm} \times 35 \mathrm{~cm} \times 5 \mathrm{~cm}\), and functioned as an insulator to avoid heat losses through the bottom and edge of the food products (Figure 4.2). The boundary conditions in equations (3.17) and (3.2l) were satisfied by the design of the plate. A sharp leading edge was designed on the side of the
\end{abstract}


Figure 4.1. \(\begin{aligned} & \text { Schematic diagram of the experimental setups for freezing process } \\ & \text { (top view). }\end{aligned}\)

styrofoam support plate facing the air flow to reduce turbulence created by air flow over the support plate and product.

Unsheathed fine copper-constantan thermocouple wires (beaded by Omega Engineering, Inc.) were utilized to sense the temperature of the product. The thermocouple had precision of \(\pm 0.417^{\circ} \mathrm{C}\) in the temperature range from \(-59.444^{\circ} \mathrm{C}\) to \(93.333^{\circ} \mathrm{C}\), and the diameter of each wire was 0.0125 cm . The wires were sheathed by teflon tubes with 0.055 cm I.D. to avoid direct contact with product. Copper-constantan thermocouple extension wires (gauge 20; 0.08 cm diameter) with polyvinyl insulation were used to connect the sensing thermocouple wire to the temperature recording instrumentation. The precision of the extension wires was the same as the sensing wires. The connectors were heavy-duty copper constantan miniature thermocouple connectors designed with fine gauge thermocouple wires.

Two different types of product shape were investigated in this study, a two-dimensional elliptical geometry (Figure 4.2) and an axisymmetric trapezoidal geometry (Figure 4.4). The nodal locations measured by the thermocouple junctions are illustrated in Figure 4.3 for the elliptical shape and Figure 4.5 for the trapezoidal shape. The teflon sheathed thermocouple wires were partially

(a) Overall locations


Figure 4.3. Nodal locations of thermocouple junctions on the cross-sectional area in elliptical product.
\[
r^{5}-4
\]


(b) Locations in cross-sections
Figure 4.5. Nodal locations of thermocouple junctions on the cross-
\(1-3 \rightarrow 3 \rightarrow 2.25 * 2.25 *-2.25 * 2.25 *\)
Styrofoam Plate
(a) Overall locations
UNIT INCM
\(1-2.5 \rightarrow 2.5 \rightarrow\)
imbedded in the styrofoam plate and partially supported by a 0.05 cm diameter copper wire structure inside the product. Since the teflon sheathed wires and the copper wire structure had different thermal properties from the product, there was concern that the 24 nodal measurements located in one cross-section might influence heat conduction within the product and produce significant error. To eliminate this possibility, the measured locations were installed in three different cross-sections (Figures 4.3 and 4.5) assuming that heat transfer occurred uniformly along the length of the elliptical body and along the circumference of the trapezoidal body. Three other thermocouple junctions were positioned to detect the air temperature at three locations near the product.

The temperature measurements were recorded by the Fluke Model 2240 A Data Logger with scanning speed capacity of 2.5 channels per second or about 11 seconds for one cycle containing 27 nodal readings. The output was printed in degrees centigrade for each nodal location and for each time step. The system accuracy was \(\pm 0.5^{\circ} \mathrm{C}\) in the temperature range of \(-130^{\circ} \mathrm{C}\) to \(0^{\circ} \mathrm{C}\), and \(\pm 0.4^{\circ} \mathrm{C}\) in the temperature range from \(0^{\circ} \mathrm{C}\) to \(400^{\circ} \mathrm{C}\) when copperconstantan thermocouple wires were employed.

\subsection*{4.2. Material for Food Product}

Ground beef was used as the food product in the freezing process experiments for two considerations: (1) it was easily molded and shaped into the desired geometry and (2) it responded to the assumption of product homogeneity since its fibers and tissues had been broken during the grinding process. Ground beef was purchased as commercial lean ground beef from a local grocery store.

Thermal conductivity values and initial freezing point of ground beef were obtained from literature references. Density of ground beef was determined by weighing the product before and after freezing. By calculating the volume of the product shapes and dividing the weight by the volume, the density of unfrozen and frozen meat was established (Table B.l). Specific heat of ground beef was calculated using Dickerson's formula (1965) and the moisture content of meat (MC)
\[
\begin{equation*}
c_{p}=4.185(0.4+0.006 \mathrm{MC}) \tag{4.1}
\end{equation*}
\]
where \(C_{p}\) is in \(J / g K\) and \(M C\) is in percent. Charm (1971) suggested more elaborate equations to compute the specific heat of a food product
\[
\begin{equation*}
c_{p}=4.184\left(0.5 x_{f}+0.3 x_{s}+1.0 x_{m}\right) \tag{4.2}
\end{equation*}
\]
and
\[
\begin{align*}
c_{p}= & 4.184\left(0.34 x_{c}+0.37 x_{p}+0.4 x_{f}\right. \\
& \left.+0.2 x_{a}+1.0 x_{m}\right) \tag{4.3}
\end{align*}
\]
where \(X\) was the weight fraction and subscripts \(a, c, p, f\), \(s\), and \(m\) indicated ash, carbohydrate, protein, fat, solid and moisture content of food, respectively. However, the comparison of the results from equations (4.1), (4.2), and (4.3) for specific heat of beef product illustrated only \(\pm 2\) percent deviation (Heldman, 1975).

In this investigation, equation (4.1) was used after the moisture content of lean ground beef was determined experimentally according to AOAC procedure (AOAC, 1975). Three samples of ground beef, each 2 g , from each freezing treatments, were placed in aluminum dishes and dried for 4 hours in a Precision Scientific Model 625-A oven at \(125^{\circ} \mathrm{C}\) temperature. The dishes were covered with lids to avoid contact with moist air when removed from the oven and cooled inside a desiccator prior to being weighed. The moisture content of samples for each treatment are listed in Table B.l, and other physical properties of ground beef are presented in Table B. 2.

\subsection*{4.3. Procedures}

The freezing experiments were conducted for three magnitudes of air velocity for both elliptical and
trapezoidal shapes. Each experiment was repeated three times. Air velocities at the center of the wind tunnel had been monitored by Chavarria (1978) utilizing a micromanometer and a Pitot tube. The air speeds used in this investigation are presented in Table B.l along with the air temperatures. The air temperature fluctuated during the freezing process due to the effect of turbulence within the closed circuit air pattern inside the freezing room and motor heat dissipation. The magnitude of fluctuation varied from \(\pm 0.8^{\circ} \mathrm{C}\) to \(\pm 2.0^{\circ} \mathrm{C}\) for an air temperature of \(-20.0^{\circ} \mathrm{C}\) (Table B.l).

The data from the experiments were needed to verify the results of computer simulation program described in Chapter 3. The operation of each experiment included the following steps:
1. Setting the freezing room temperature at \(-20^{\circ} \mathrm{C}\) at least 24 hours before the experiment.
2. Tempering the ground beef to a uniform initial temperature of \(18^{\circ} \mathrm{C}\) to satisfy the initial condition for the governing heat transfer equations.
3. Molding the ground beef into either elliptical or trapezoidal shape on the styrofoam support plate.
4. Programing the Fluke Data Logger and supplying the input parameters, number of channels, and scanning intervals.
5. Placing the styrofoam support plate and the product at the center of the wind tunnel.
6. Connecting the sensing thermocouple wires with the extension thermocouple wires by matching the nodal number with the channel number of the Fluke Data Logger.
7. Starting the electric motor and the fan to initiate the freezing process and, at the same time, starting the Fluke Data Logger to monitor the temperature history.
8. Removing the ground beef model from the wind tunnel and refrigerating room after freezing process.

\subsection*{5.1. Comparison of Numerical Simulation Model with Finite Difference Method During Food Freezing}

The numerical simulation was compared with experimental data and results from the finite difference analysis used by Lescano (1973) to describe freezing of codfish fillets in a flat plate geometry. Since Lescano's investigation was conducted for one-dimensional heat transfer and the finite element program was for two-dimensional, some modifications were made to accommodate the comparison. A rectangular geometry of codfish fillets with a ratio of length to thickness being 12 was used (Figure 5.1) and insulated boundaries were applied in all sides except the product surface. This resulted in heat conduction along \(x\)-direction being negligible compared to the \(y\)-direction, which was the product thickness and a one-dimensional heat transfer problem could be assumed in the product.

Using the same product parameters, the predicted temperature history using finite element method was compared to results from Lescano's prediction and experimental data in Figure 5.2. In general, the results indicated that the finite element prediction was in good


agreement with both experimental data and the finite difference method.

The "Student t-test" (Netter and Wasserman, 1974) was used to quantify the differences among the experimental data, the predicted temperature by finite difference and predicted results from the finite element simulation. The results (Table 5.l) indicate that the finite element method provides more favorable agreement with experimental data than the finite difference method. The finite element method will predict the same temperature as experimental data at the confidence level of 95 percent.

TABLE 5.l.--The "Student t-test" for Experimental and Predicted Temperature in Codfish Freezing
\begin{tabular}{lll} 
Treatment & Calculated \(t\) & \begin{tabular}{l} 
Degree of \\
Freedom
\end{tabular}
\end{tabular} \begin{tabular}{l}
\(t-t a b l e^{*}\) \\
\((\alpha=0.05)\)
\end{tabular}
\begin{tabular}{llll}
\begin{tabular}{l} 
Experimental vs \\
finite element \\
method
\end{tabular} & 0.48 & 24 & 2.064 \\
\begin{tabular}{l} 
Experimental vs \\
finite difference \\
method
\end{tabular} & \(-5.25+\) & 24 & 2.064 \\
\begin{tabular}{l} 
Finite element vs \\
finite difference \\
method
\end{tabular} & \(-2.29^{+}\) & 24 & 2.064
\end{tabular}

\footnotetext{
*t for two-tail test (Neter and Wasserman, 1974).
}

It has been observed that the finite element method gives more accurate results than finite difference method and converges to an exact solution in heat conduction problem (Emery and Carson, 1971; Bruch and Zyvoloski, 1974). Hence, the results predicted in this study (Figure 5.2 and Table 5.1) are similar to the previous publication.

\subsection*{5.2. Verification of Computer Simulation with Experimental Data}

\subsection*{5.2.1. Freezing of Product with Elliptical Geometry}

The results of computer simulation using the finite element method to predict temperature history of elliptical geometry product are presented in Figures 5.35.5 at various air velocities; \(7.4,11.3\), and \(15.2 \mathrm{~m} / \mathrm{s}\). The predicted temperatures were compared to data obtained experimentally from 3 replications at each air velocity. Experimental data were tabulated in Table B.4. Temperature histories are illustrated at three node locations including the center of the ellips (node l), 4 cm above the center (node 2) and at the surface adjacent to the product center (node 3). The standard deviations of the temperature measurements at one hour time step were computed and presented with the experimental curves. The results indicate that the standard deviations varied from \(\pm 0.1^{\circ} \mathrm{C}\) to \(\pm 3.5^{\circ} \mathrm{C}\). Higher deviations occurred at the



initial freezing point of food product and decreased when the flat plateau of the freezing curve ended and the slope began to increase.

In general, the computer prediction was in close agreement with experimental data. By introducing variable local surface heat transfer coefficients, a better simulation was obtained than when the surface heat transfer coefficient was constant along the surface of the product with elliptical shape. The discrepancy between the simulated and experimental curves can be attributed to fluctuating air temperature \(\left( \pm 2.0^{\circ} \mathrm{C}\right)\), as indicated in Table B.l., and inconsistency of product density which might have occurred during the shaping of product into the elliptical geometry. Measured surface temperatures (node 3) were higher than predicted values due to placement of thermocouple junctions on the product surface. It is anticipated that the temperature sensors will give higher temperature reading if their locations are not exactly on the product surface but several millimeters under.

A statistical test was conducted using the \(t-\) distribution to evaluate the agreement between experimental and predicted temperature history at the center of the elliptical shape. The results in Table 5.2 indicate a good agreement between the experimental data and computer simulation. The finite element simulation predicts the

TABLE 5.2.--The Results of "Student t-test" to Evaluate Agreement Between Experimental and Predicted Temperature at the Slowest Freezing Point Location
\begin{tabular}{lcccc}
\hline General Shape & \begin{tabular}{c} 
Air Speed \\
\(\mathrm{m} / \mathrm{s}\)
\end{tabular} & \begin{tabular}{c} 
Calculated \\
t
\end{tabular} & \begin{tabular}{c} 
Degree of \\
Freedom
\end{tabular} & \begin{tabular}{c}
t Table* \\
\((\alpha=0.05)\)
\end{tabular} \\
\hline Elliptical & 7.4 & -1.63 & 16 & 2.12 \\
& 11.3 & 0.89 & 15 & 2.13 \\
Trapezoidal & 15.2 & 0.95 & 15 & 2.13 \\
& 7.4 & \(-3.59+\) & 10 & 2.23 \\
& 11.3 & \(-4.49+\) & 10 & 2.23 \\
& & -1.44 & 10 & 2.23 \\
\hline *t for two-tail test (Neter and Wasserman, 1977\().\)
\end{tabular}
same temperature as the experimental data at the confidence level of 95 percent.

The isothermal fields at 2.5 hours after the freezing process started are illustrated in Figures 5.6 to 5.8. The shape of the isothermal fields from the experiment are closer to the slowest freezing point for the portion of the product facing the cold air stream, indicating a higher convective heat transfer on the surface of the upstream portion compared to the surface of the downstream portion of the elliptical product. Comparison of experimental data and the computer predicted isothermal fields using average surface heat transfer

Figure 5.6. The isothermal fields inside elliptical geometry product after 2.5 freezing hours at air speed \(11.3 \mathrm{~m} / \mathrm{s}\).

Figure 5.7. The isothermal fields inside elliptical geometry product after 2.5 freezing hours at air speed \(7.4 \mathrm{~m} / \mathrm{s}\).

Figure 5.8.--The isothermal fields inside elliptical geometry product after
2.5 hours freezing at air speed \(15.2 \mathrm{~m} / \mathrm{s}\).
coefficient and local surface heat transfer coefficient revealed that local heat transfer coefficient was in favor over average heat transfer coefficient. This was supported by the result of mathematical analysis using Katinas' data (Katinas et al., 1976) as described in Appendix C.

\subsection*{5.2.2. Freezing of Product with Trapezoidal Geometry}

The temperature history, during the freezing process of trapezoidal geometry product measured in the laboratory was compared to the computer prediction in Figures 5.9 to 5.11. The results of the numerical model was in close agreement with experimental; the standard deviation varied from \(\pm 0.1^{\circ} \mathrm{C}\) to \(\pm 3.1^{\circ} \mathrm{C}\). More favorable results were observed from utilizing local surface temperature (Appendix D) than uniform surface temperature. This implies that the heat transfer coefficient varies as a function of location on the product surface.

The isothermal fields presented in Figures 5.12 to 5.14 indicate that the heat transfer depends on the local surface temperature. The numerical model incorporating the surface temperature as a function of location and time gave more exact results to experimental data compared to the model using uniform surface temperature.

The t-tests for trapezoidal (Table 5.2) indicate that the predicted temperature at the slowest freezing

Figure 5.9. The time-temperature history of trapezoidal product during freezing at air speed \(7.4 \mathrm{~m} / \mathrm{s}\).

Figure 5.10. The time-temperature history of trapezoidal product during

Figure 5.ll. The time-temperaturn history of trapezoidal product during

\(\left\{\begin{array}{l}\text { H } \\ \overrightarrow{4} \\ 0 \\ 0 \\ 0\end{array}\right.\)
Figure 5.12. The isothermal fields inside trapezoidal product after 1.0 freezing hour at air speed \(11.3 \mathrm{~m} / \mathrm{s}\).

Figure 5.13. The isothermal fields inside trapezoidal product after 1.0 freezing hour at air speed \(7.4 \mathrm{~m} / \mathrm{s}\).


0 童
Figure 5.14. The isothermal fields inside trapezoidal product after 1.0 freezing hour at air speed \(15.2 \mathrm{~m} / \mathrm{s}\).
point location, for air speeds of 7.4 and \(11.3 \mathrm{~m} / \mathrm{s}\), do not give results as good as for \(15.2 \mathrm{~m} / \mathrm{s}\) air speed. The discrepancies can be attributed to the method used to average the thermal product properties of a triangular finite element after the initial freezing point was achieved. While this averaging method may provide insignificant error for a small size triangle, the error will increase as the size of the triangular element becomes larger. Thus, the predicted curves tend to be decreasing slower than the experimental curves beyond the thermal arrest time.

\subsection*{5.3. Influence of Area Average Enthalpy on Freezing Time}

Freezing time can be predicted conventionally by expressing the temperature history at the slowest freezing point location in the product or by using the total heat content (enthalpy) of the food product. The conventional method for predicting freezing time represents the length of process required to achieve a temperature equal to the desired storage temperature at the slowest freezing point location.

An alternate criteria involves time required for the food product enthalpy to be reduced to an enthalpy equivalent to the storage temperature (Gorby, 1974). When the freezing process is stopped at this point, the product
temperature will equilibrate uniformly to the storage temperature with the heat content from the portion with higher temperature transferring to the portion of the product with lower temperature. The mass average enthalpy, \(\bar{H}_{\mathrm{m}}\) can be expressed as follows
\[
\begin{equation*}
H_{m}=\frac{1}{m} \int_{m} H d m \tag{5.1}
\end{equation*}
\]

Implementing the above equation into the finite element method, an area average enthalpy was used as a criteria to determine the freezing time
\[
\begin{equation*}
\bar{H}_{A}=\frac{1}{\sum_{e=1}^{E} A(e)} \sum_{e=1}^{E} H(e)_{A}(e) \tag{5.2}
\end{equation*}
\]

The predicted freezing times were compared for both conventional method and area average enthalpy (Table 5.3) at various product geometries and air speeds. The storage temperature used for these comparisons was \(-17.0^{\circ} \mathrm{C}\). The average enthalpy method predicts lower freezing times, ranging from 10.7 to 24.7 percent compared to conventional method. These results may encourage the use of the average enthalpy method to predict the freezing time in order to achieve a more efficient process and to reduce energy consumption.
TABLE 5.3.--Experimental and Predicted Freezing Time for Various Shapes and Air Speeds*
\begin{tabular}{lccc} 
& \begin{tabular}{c} 
Air Speed \\
\(\mathrm{m} / \mathrm{s}\)
\end{tabular} & \begin{tabular}{c} 
Predicted Freezing Time, Hours
\end{tabular} \\
\cline { 3 - 4 } General Shape & \begin{tabular}{c} 
Based onventional \\
Method
\end{tabular} & \begin{tabular}{c} 
Based on Area Average \\
Enthalpy Method
\end{tabular} \\
\hline Elliptical & 7.4 & 8.1 & 6.25 \\
Trapezoidal & 11.3 & 7.6 & 5.72 \\
& 7.4 & 7.3 & 5.50 \\
& 11.3 & 5.0 & 4.25 \\
& 15.2 & 4.3 & 4.78 \\
\hline
\end{tabular}
*Storage temperature \(-17^{\circ} \mathrm{C}\).

At time periocis after the freezing process is stopped, the equilibration period required to achieve storage temperature will occur at a reduced rate compared to the freezing rate. From microbiological and food quality standpoint, this phenomena might be a matter of concern. However, the temperature at the end of the freezing process is well below \(-10^{\circ} \mathrm{C}\) and the product portion with temperature above the storage temperature, \(-17.0^{\circ} \mathrm{C}\), is only about 30-35 percent of the total product as seen on Figures 5.15 and 5.16.

\subsection*{5.4. Sensitivity Analysis}
5.4.1. Geometric Size

Geometric size has a significant influence on the freezing rate as illustrated in Figures 5.17 and 5.18. For an elliptical shape the freezing time increases 173 percent as the product size becomes 1.5 times larger and decreased by 53 percent as the size is reduced by 0.5 as compared to the size used for experimental measurements ( \(\mathrm{a}=10 \mathrm{~cm}, \mathrm{~b}=6.5 \mathrm{~cm}\) ). These values for the trapezoidal shape are 164 percent and 59 percent, respectively. It is interesting to note that the flat plateau indicating the region where a major portion of the latent heat is removed, becomes less evident as the size becomes smaller.

The relationship between the multiplication factor for geometric size to the freezing time could provide

Figure 5.15. The isothermal fields inside elliptical product at the time the
freezing process terminated based on area average enthalpy
\((v=15.2 \mathrm{~m} / \mathrm{s})\).


介童

Figure 5.17. The influence of geometrical size on the freezing rate of elliptical product.

useful information in the selection of optimum size and conditions for efficient freezing time.

\subsection*{5.4.2. Initial Product Temperature}

A sensitivity analysis was conducted to determine the effect of initial product temperature on the freezing time. Initial temperatures of \(22^{\circ} \mathrm{C}\) and \(14^{\circ} \mathrm{C}\) were compared to \(18^{\circ} \mathrm{C}\), which was initial temperature used to generate the experimental results. The results, presented in Figures 5.19 to 5.22 , indicate that initial product temperature does not influence freezing time significantly. The isothermal field after 2.5 hours illustrates a deviation in the range of \(\pm 2.0^{\circ} \mathrm{C}\) for elliptical shape and \(\pm 1.5^{\circ} \mathrm{C}\) for trapezoidal shape. The results, presented in Figures 5.19 to 5.22 , indicate that the freezing time is about the same for various initial product temperatures. The freezing rate curves converge to 7.5 hours of freezing time for elliptical product and to 4.0 hours of freezing time for trapezoidal product. In general, it could be concluded that initial product temperature has small influence on freezing time.
5.4.3 Time Step

Time increment, \(\Delta t\), has been known as an important factor in the stability of numerical analysis. Two



Figure 5.20. The isothermal fields for various initial temperatures in the


Figure 5.21. The influence of initial temperature on the freezing rate of trapezoidal product.

different types of time step, one minute and three minutes, were supplied to the simulation program. Figures 5.23 to 5.26 indicate that the numerical solution remains stable, at least in the range of \(\Delta t\) equal to one to three minutes. The discrepancies shown are small and insignificant; 0.0 to \(1.0^{\circ} \mathrm{C}\) for the trapezoidal shape and 0.0 to \(0.5^{\circ} \mathrm{C}\) for the elliptical shape.

Isothermal fields indicate that discrepancies exist between the time step of one minute and three minutes on the product portion facing the cold air stream (Figure 5.26). This phenomena can be attributed to the fact that thermal properties of product were computed at each time step in the simuation. Large time step will provide inaccuracy which becomes more significant for higher temperature difference between the product and the cold air occurred at the upstream portion than the downstream portion.

\subsection*{5.5. Application of the Numerical Model in the Food Freezing Process}

The finite element simulation model has been verified by the experimental data as described in previous sections. The application of the model in food freezing is not restricted to trapezoidal and elliptical geometry but to other anomalous shapes as well. For practical value, an observation of size parameter influence on

Figure 5.24. The isothermal fields for two different time steps in


Figure 5.25. The effect of time step used in numerical scheme on the freezing rate of trapezoidal product.

freezing time can be conducted for any given product shape. Then a chart illustrating the relationships among freezing time, size and shape can be developed and a convenient method to select freezing times for desired product, shape, and size would result.

Requirements that must be satisfied when using the numerical model include:
1. The initial product thermal properties must be available either from literature or experimental measurements. These properties include thermal conductivity, specific heat, and product density of unfrozen product and freezing point, water content and unfreezable water content.
2. Average heat transfer coefficient should be known or measured accordingly over a range of air velocities.
3. A finite element grid should be developed for the given product configuration. Again careful judgment must be made since the coarseness of the grid might affect the accuracy of the estimated freezing process. Smaller grid will use more core memory in the computer and produce long execution time and in turn high computer cost. For example, the elliptical grid in this study used 360 to 390 seconds execution time and the trapezoidal grid 140 to 190 seconds for total computation at the CDC 6500 computer.
4. Computer facilities must be close at hand to run the computation.

The finite element analysis has advantages and limitations when used to simulate the freezing process. The advantages include:
1. Easiness in changing the input boundary conditions and parameters including product properties and freezing environment.
2. Readiness to accommodate various product shapes and sizes.

The limitations to applying the simulation model approach are:
1. Modifications are needed for a specific anomalous shapes and for non-homogeneous materials.
2. The model is valid for food freezing utilizing air velocities in laminar region with Reynolds Numbers smaller than 2.1 x \(10^{5}\).
3. Required more computer time than finite difference method, thus higher computer cost.
4. The method used in averaging nodal product thermal properties for a triangular element causes some error in the simulation scheme as previously discussed especially in large grids.

\section*{6. CONCLUSIONS}
1. A computer simulation utilizing the finite element method to predict the freezing rate for food products with elliptical and trapezoidal shapes has been developed and verified by experimental data.
2. The computer simulation using the finite element method has the ability to accommodate various boundary conditions as well as the non-linearity of product thermal properties during phase-change, and different product geometries.
3. The utilization of local convective heat transfer coefficients over the product surface as boundary condition in the computer model provides better simulation of the actual freezing process as compared to an average surface heat transfer coefficient.
4. The predicted freezing times based on areaaverage enthalpy method are 10.7 to 24.7 percent lower than the predicted times based on the conventional method --the slowest freezing point location.
5. Geometric size affects the freezing time significantly, while the influence of initial product temperature over the range of 14.0 to \(22.0^{\circ} \mathrm{C}\) can be considered negligible.
6. The stability of the finite element algorithm is not influenced by the magnitude of time step at \(\Delta t\) from one to three minutes.

\section*{7. RECOMMENDATIONS FOR FURTHER STUDY}
1. To develop a chart illustrating the relationship between freezing time and various product shapes and sizes. This chart would have practical value in selecting the optimum size of a given product shape for an efficient freezing process.
2. To modify the computer program in order to accommodate the ability to simulate the freezing process for non-homogeneous food products.
3. To determine the ratio of local to average surface convective heat transfer coefficient for product shape other than flat plate, circle, and ellips.
4. To utilize higher order elements and a nonconsistent capacitance matrix to investigate the possibility of getting more accurate and stable results than using a simplex triangular element and a consistent capacitance matrix.

APPENDICES

\section*{APPENDIX A}

COMPUTER PROGRAM TWODFR AND AXISFR

```

 M,
 CCMMUN
    ```

```

 % KK,&こD:EFC
 ひここしょ
 LEFOHoT:
    ```


```

GGKVE = INEIINL TEN

```


```

 LC
    ```


```

 SO!:yp
 HZM=JGF+MF
    ```

```

 lom
    ```


```

 #cuipli of i&TLE ANJ DATAM NEACIN;S
    ```




```

~u.:NJUT AVO
ROM:NCK

```

```

 F(%)
 3UG2 FGRy:I (4%)
    ```

```

 CNL. MVGE.
    ```

```

 M,
 Sicb
    ```





            \(k n 2=j 6\)
\(S H i=j\)
            \(S H 1=j\)
\(S M=j\).
                SKENIND 2


    510 Cuniticl





                                TVGL (JEC)
            \(=X(3) / 30: 24\)
\(=Y(1), 3.0 .24\)
\(=Y(2), 3 C: 24\)
\(=Y(3) / 30: 24\)


    -
    NE \(1=v S(2)\)
\(N E 2=15\)
NE \(3=15(1)\)



            IEiJ(N) (íUi.32:) UC TC 300 ?
            CALGPRJP1 (i, LPA, \(A K, P J, 71)\)
            KJ(V) = Al

            \(311 t_{6}^{+1}(v)=511\)




        SHI=SHI+GH:\& GPal!

    1003
        CUI!:NUE
            \(U L E=1,3\)
\(Q L J=1,3\)
            \(K=1\)
\(\dot{E} F\left(i \cdot t Q_{0} J\right) \quad T K=2\).











    \(10 \operatorname{ESM}(M, J)=E=M(N, M)+H L O\).

    - \(L_{I}{ }^{\prime}=Y i=1,3\)


        DU1 \(7=\vee 5=1 J^{3}\)
        JJx Jjo

        ジロ \(\quad A J=z!\) MATE: \(x\)


        17 CLNTHALK


        112 if \((\langle K-210) 711,712,7: 2\)




        Cîfjen



```

 IKMMCN,P!O
    ```

```

 M,MN
 {u=i
 KXK,KYY
 \xiLi=0.0
 XF(I)={1: := N,NP
 0001
 W.jFC(EI,6j TIT-
    ```


```

 {{17, ©:Ex, 3,3x,:17.5))
 LuNOTEN&;j+4
 9 0
 {({) N=1,23
 GCA_CULATION Or PH.(:*1) FRON PNA(ほ)
    ```

```

 UC*
 GEOSAdING DF PKESCH.İE: BOUNDARY VALUES IN BCYOH:
 IF(KN.E(\alpha.O) 60:T):5
 \,
 14
 CLi,T禹UET
 {允举=1,MUNGL(GHN,X!,TK,MF,NOW,NCL)
 9{r.({,1}=TK(:, 1)+2.0r(:, 1)
    ```

```

 Cal. S_VbD(GLM,T:,gXI,AF,NGNDNCL,IO)
    ```

```

 ZF(KN.EQ.O) 60Tこ21
    ```

```

 20}20\times(
 M
    ```

```

 #"CUTPLT JF IML RLSU:IJ
 1F (((KK,INTK)*iNTK).NE.KK) - 0 TU 6011
    ```

```

 M,
 j611
 CCl!沙年年
 K
 A!I=O.i
 ECSET TME NENMEEEMETT MAT...USS FC,
 また。
 C\dot{LLL}
    ```

```

 \
 -30
 LCi=3010%+1
 LC2=3=1H+1
 UC 431 =5=1,1,G
    ```

```

 G(F!: 6 %:)
 +32
 C
 RLiffiN
 E:v
    ```

51
52
SLIERJJTANE HVAR
DEMENS OA METMD（1S），IVAN（1－）


\(\begin{aligned} & \mathrm{N}_{1}=1 \\ & \mathrm{~T}\end{aligned}=\mathrm{F}\) HETA1 \(\left(1 \|_{j}\right)\)


53 1F（NN－15）57，55，5j
\(\mathrm{KK}=4 \mathrm{H}-1\)
\(K K=Y Y-1\)
\(L=\)
\(=\)
び．CA．CULATION OF HiH GVErimue

\(7 \frac{7}{7}\)
GK＝TオETHA（1，N）



54 GL THE \(180^{5 t} 0 . T M_{i}\)

56
55 と匕N斤思


SUERJJT＝AE Z ZVETH（TH，THZ）
CUMP E E
\(V L=11\).
\(A \dot{A}=10\).
\(A A_{i}=10^{\circ}\)
\(E_{L}=5 \cdot\)
\(P=3=1 \div-9\)








\(\begin{array}{ll}62 \\ 0 & 1\end{array}\)


        Kif
```

\therefore-\&EF

```

NF－NUR：GER OONTH：UL 2 ARANETEKESURES，NE－NUMAEE OF
 CKROESFEEFFGL HEMTEDETSSTY





REん）（I2，3） \(\boldsymbol{3}\) ：

2 F～nMAT（5：3，6f 10.4 ）
REMINO




JTN＝YF


じの－SEFi（a（JLV：））
3 A \(1.13!=1,3[1.0\)
EOUTPUT JF TITLE ATID DATA mEADINJS





U．INDN：AND ELHL PKENi CF ELENENT CAT．



77 Cしifi NUE





```

 DL1OI=1{2
    ```
    DL1OI=1{2
    IF(J.EQG3) M=1
    IF(J.EQG3) M=1
    G=SJR{i(X(M)=x(J))**2+(Y(M)-Y(J))*:2)
    G=SJR{i(X(M)=x(J))**2+(Y(M)-Y(J))*:2)
    EF(J)=LF(J)&HL:T
    EF(J)=LF(J)&HL:T
    LFM(J,J)=L_M(J,J)&(3,&X(J)+x(M)j:ML/12,
    LFM(J,J)=L_M(J,J)&(3,&X(J)+x(M)j:ML/12,
    EM(J,J)={-M(J,J)+(3.*x(J)+x(M))&HLN
    EM(J,J)={-M(J,J)+(3.*x(J)+x(M))&HLN
    E=M(M;M)={E-M(M,M)+(X(J)+3.*X(M))*HL/\I2.
```

 E=M(M;M)={E-M(M,M)+(X(J)+3.*X(M))*HL/\I2.
    ```


```

 * Uu_T I I=1,3
    ```
```

 * Uu_T I I=1,3
    ```


```

 J=\forallう(!?!
    ```
```

 J=\forallう(!?!
    ```


```

 ここC AJ:=& MiIF.-x
    ```
    ここC AJ:=& MiIF.-x
    `ここく
```

 `ここく
    ```


```

 A(JJ)=A(J5)+LCM(%,J):(LT/20):ESM(I;J)
    ```
        A(JJ)=A(J5)+LCM(%,J):(LT/20):ESM(I;J)
        17 CUNTINUE
        17 CUNTINUE
    GOCGGLGAGIONAGA.EYOUTPUT UF ARE:
    GOCGGLGAGIONAGA.EYOUTPUT UF ARE:
    -12:F (KK-135) 711,712,712
```

 -12:F (KK-135) 711,712,712
    ```




```

 Eここ OLHOEJ EELLMFOSES & EMITO UPPER TRIANGLE MAT::EX
    ```
    Eここ OLHOEJ EELLMFOSES & EMITO UPPER TRIANGLE MAT::EX
        CMこうこN゙4FEこ(ん(JOJM+1),ND,NOW)
        CMこうこN゙4FEこ(ん(JOJM+1),ND,NOW)
        F&:
```

 F&:
    ```


CUMACN，T－E，TETLE！2O）

CUKJVZVVI，VV（12）

LiMEYSEUN \(\lambda_{X}(4,2) ; N(4, i)\)

REAし
\(S_{2}=1=0\)



6001 \(\left.\left.\begin{array}{ll}x \\ x & ! \\ 0\end{array}\right)=1\right)=64\)



\(L J J N T=: P 75+\)
\(D \cup J O N=1,23\)
\(90 \dot{d}^{2}\left(y_{1}=0\right)=0\)

\section*{ECA．CUGATION OF PH＿（．＋1）FRIJR FMI（i）}



ご 22 IF（KA．EQ．O）レOTJ：5
CDition：K
14 Bulpn：（f） 15 （ \(15(J, 1)\)






\(0_{j=2}^{2} 201=1,1 \times 1\).



KK N

510 しLけİNU


555 ，

0011 CUIJINC．


j01 CLOJIN：
ETSET TME MENEE－EME：TT MAT－：CES FCZ



430

C \(C 1\)
\(L C 2\)
06

\section*{GC}

432
431
13 Ut
 NEA：

C2＝－5：
CLIJN
CLIJN
ENJN


```

 SUBZJUT,NE D:MPR (IUSM,MP,NEN)
 DEMEYSOUNG.SM(NP,NBW)
 IL=O1
 NF1=VP-1, NFM
 M
 NK=V的
 MK(INP-S+1).LT.NUN) |KK=NP-I*1
 NL=O
 MK=4K-1
 N= NJ. 1, NK
    ```


```

 CNMFNK
 SUC4=0.0
 M=20; M
 L= J?OJ=2,NEW
 IF(4.GT.NF) GOTO27
 275 SUY: SUP+(SS14,:, J) FGE (M,KK)
    ```

```

 K=K-1
 27\epsilon CH,TJNUE
 27% (%)
 K
 SLORJUTINE SLVEJ (GSN,GE,X,AP,NBN,NCL,:ON)
 CMYONOT,EET:TLE(2C)
 C=E1
 NFノ=YP-1
 LC2EEKK=1,M
 JM=KK
 LG`うUI=1,NF;
 MJ=i*NUN-1
 i=\=i +i
 いご L=

```

```

\#. D=2jOJEirJ,MJ
250GF(J,KKK)=GF(J,K<)-GSM(:,.)OGF(1,KK)/OSM(1,1)

```


```

 Qu2j}kK=1, \.ry
 M=,0.K
    ```

```

 Scre=cjo d,mJ
 N=:J-1
    ```

```

 2E=2 X(.,KK)={GF(-; KK)-SU(4),JSN(I, 1)
    ```

```

 IF(IJ.EQ.1) 60:J20S
    ```


```

 2652NELTINNUE
 EMO
    ```

```

SUREUTME READI
S
ご.

```


    PNA,


    \(10.1^{2}\)


    - SUORJUT.NE Pr.OPI (T,GFA,K,PD,H1)












        KEIJJNC-
        SUERJUT:AE FAF.AM!





        1030


    kLiJRN


```

Efu

```
SUSマJUTENL VUIJL=D,IHC, JJ, MA, DI, VFS, VFI, VFWI


Ll.u




SUDVOUT:NE THREE? (VF,KD,KC,K)



El:

REERJT:NE

FEiJ: V





```

HL=EMW+y!

```

```

+ETJう
El

```

\section*{APPENDIX B}

\title{
PHYSICAL PROPERTIES OF GROUND BEEF, COMPUTER INPUT PARAMETERS AND VARIABLES, AND EXPERIMENTAL DATA
}
TABLE B.l.--Moisture Content and Density of Ground Beef at Various Experimental
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Treatment} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Air } \\
\text { Velocity } \\
\mathrm{m} / \mathrm{s}
\end{gathered}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Air \\
Temperature, \({ }^{\circ} \mathrm{C}\)
\end{tabular}} & \multirow[t]{2}{*}{Moisture Content, \(\%\)} & \multicolumn{2}{|l|}{Meat Weight, g} & \multicolumn{2}{|l|}{Density \({ }^{\text {b }} \mathrm{g} / \mathrm{cm}^{3}\)} \\
\hline & & & & Unfrozen & Frozen & Unfrozen & Frozen \\
\hline \multicolumn{8}{|l|}{Elliptical} \\
\hline EV1 & 7.4 & \(-20.0 \pm 2.0\) & 70.30 & 2963.5 & 2853.4 & 1.048 & 1.008 \\
\hline EV2 & 11.3 & \(-20.0 \pm 2.0\) & 69.55 & 2865.2 & 2782.1 & 1.014 & 0.984 \\
\hline EV3 & 15.2 & \(-20.0 \pm 1.5\) & 69.28 & 3008.9 & 2925.7 & 1.064 & 1.030 \\
\hline \multicolumn{8}{|l|}{Trapezoidal} \\
\hline TV1 & 7.4 & \(-20.0 \pm 1.5\) & 70.71 & 1179.7 & 1160.5 & 1.074 & 1.057 \\
\hline TV2 & 11.3 & \(-20.0 \pm 1.0\) & 69.09 & 1172.5 & 1152.9 & 1.067 & 1.050 \\
\hline TV3 & 15.2 & \(-20.0 \pm 0.8\) & 70.90 & 1198.3 & 1186.9 & 1.092 & 1.081 \\
\hline
\end{tabular}

\footnotetext{
atment.
volume.
\(=1 / 6\left(\pi h\left(a^{2}+a b+b^{2}\right)\right)\)
\(=1097.59 \mathrm{~cm}^{3}\)
a Average from three replications per each
b


"


-

都

}

TABLE B.2.--Physical Properties of Ground Beef
\begin{tabular}{cccc}
\hline \begin{tabular}{c} 
Thermal \\
Conductivity, \\
\(\mathrm{W} / \mathrm{m} \mathrm{K}\)
\end{tabular} & \begin{tabular}{c} 
Specific \\
Heat \\
\(\mathrm{J} / \mathrm{Kg} \mathrm{K}\)
\end{tabular} & \begin{tabular}{c} 
Density, b \\
\(\mathrm{kg} / \mathrm{m}^{3}\)
\end{tabular} & \begin{tabular}{c} 
Initial \\
Freezing Point, \\
\({ }^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline 0.4 & 3430 & 1060 & -1.5
\end{tabular}
a Values obtained from literature for mince meat (Sörenfors, 1974).
b Values determined by experiment.

TABLE B.3.--Input Parameters for Computer Program
\begin{tabular}{|c|c|c|c|}
\hline 1. & Product Properties (ground beef) & Parameters & \[
\begin{aligned}
& \text { IWC }^{\mathrm{a}} \\
& \mathrm{UFWC}=0.01 \\
& \text { IPD }=1060 \mathrm{~kg} / \mathrm{m}^{3} \\
& \text { ICP }=3430 \mathrm{~J} / \mathrm{kg} \mathrm{~K} \\
& \text { IK }=0.4 \mathrm{~W} / \mathrm{m} \mathrm{~K} \\
& \mathrm{TIF}=-1.5^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline 2. & Physical Properties of Ice, Water, and Gas & Parameters & \[
\begin{aligned}
\mathrm{DI} & =920 \mathrm{~kg} / \mathrm{m}^{3} \\
\mathrm{DW} & =1000 \mathrm{~kg} / \mathrm{m}^{3} \\
\mathrm{KPI} & =2.32 \mathrm{~W} / \mathrm{m} \mathrm{~K}^{2} \\
\mathrm{KPW} & =0.55 \mathrm{~W} / \mathrm{m} \mathrm{~K} \\
\mathrm{LW} & =335.10^{3} \mathrm{~J} / \mathrm{kg} \\
\mathrm{CPW} & =4180 \mathrm{~J} / \mathrm{kg} \mathrm{k} \\
\mathrm{~T}_{\mathrm{WF}} & =0^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline & & & \[
\mathrm{R}_{1}=8314 \mathrm{~J} / \mathrm{kg}-\text { mole } \mathrm{K}
\] \\
\hline \multirow[t]{2}{*}{3.} & Freezing Medium Properties & Variables & \[
\begin{array}{cc}
\frac{\mathrm{v}, \mathrm{~m} / \mathrm{s}}{7.4} & \\
\cline { 1 - 1 }, \mathrm{~h}, \mathrm{w} / \mathrm{m}^{2} \mathrm{~K} \\
11.3 & \\
15.2 & \\
70.7 \\
142.5
\end{array}
\] \\
\hline & - & & \[
\begin{aligned}
\mathrm{T}= & -14^{\circ} \mathrm{C},-18^{\circ} \mathrm{C}, \\
& -22^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{4.} & Finite Element Properties & Parameters \({ }^{\text {b }}\) & \begin{tabular}{l}
NP: number of nodal temperature \\
NE: number of element NBW: number of bandwith NIT: number of iterations
\end{tabular} \\
\hline & & Variable & DT:time step \(=1\) minute and 3 minutes \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\text {a }}\) See Table B.l.
\({ }^{\mathrm{b}}\) Supplied by the GRID program.
}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Product Geometry} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Treatment } \\
\text { v, m/s }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Nodalal } \\
& \text { Number }
\end{aligned}
\]} & \multicolumn{18}{|l|}{Time, \(\mathrm{Hr}^{\text {c }}\)} \\
\hline & & & \multicolumn{2}{|l|}{1} & \multicolumn{2}{|l|}{2} & \multicolumn{2}{|l|}{3} & \multicolumn{2}{|l|}{4} & \multicolumn{2}{|l|}{'} & \multicolumn{2}{|l|}{6} & \multicolumn{2}{|l|}{7} & \multicolumn{2}{|l|}{H} & \multicolumn{2}{|l|}{9} \\
\hline \multirow[t]{9}{*}{Elliptical} & 7.4 & 3 & 16.1 & 1.7 & 7.8 & 2.2 & 0.3 & 2.5 & - 1.2 & 2.7 & -4.0 & 3.1 & \(-11.5\) & 1. A & -16. 3 & 0.6 & \(-19.7\) & 0.1 & -19.8 & 0.0 \\
\hline & & 18 & 3.6 & 2.2 & \(-2.0\) & 2.4 & \(-7.2\) & 2.5 & -11.5 & 2.5 & \(-14.8\) & 1.7 & -16.0 & 0.2 & \(-19.2\) & 0.0 & \(-19.6\) & 0.0 & \(-19.9\) & 0.0 \\
\hline & & 23 & -15.0 & 2.6 & -17.4 & 1.6 & \(-18.3\) & 0.1 & \(-19.0\) & 0.0 & \(-19.3\) & 0.0 & \(-19.5\) & 0.0 & \(-19.7\) & 0.0 & \(-19.9\) & 0.0 & -20.0 & 0.0 \\
\hline & 11.3 & 3 & 13.8 & 2.4 & 4.0 & 2.4 & - 0.8 & 2.5 & - 1.5 & 3.1 & \(-10.0\) & 2.7 & -13.6 & 2.0 & -16.8 & 1.1 & \(-19.9\) & 0.1 & & \\
\hline & & 18 & 2.0 & 2.5 & \(-5.4\) & 2.4 & - 9.2 & 1.9 & -12.1 & 2.0 & \(-15.3\) & 0.8 & -18.5 & 0.2 & -19.6 & 0.0 & \(-19.9\) & 0.0 & & \\
\hline & & 23 & -13.4 & 2.1 & -17.9 & 2.0 & -19.1 & 2.5 & -19.6 & 0.3 & \(-19.8\) & 0.0 & \(-19.9\) & 0.0 & \(-19.9\) & 0.0 & -20.0 & 0.0 & & \\
\hline & 15.2 & 3 & 13.6 & 1.0 & 3.9 & 1.5 & \(-1.3\) & 2.1 & - 2.4 & 3.1 & \(-9.1\) & 2.6 & -15.5 & 1.6 & \(-18.7\) & 0.0 & \(-19.8\) & 0.0 & & \\
\hline & & 18 & 1.5 & 2.5 & \(-5.3\) & 2.5 & \(-10.0\) & 2.4 & \(-13.7\) & 2.6 & -17.6 & 0.6 & -18.7 & 0.0 & \(-19.2\) & 0.0 & \(-19.8\) & 0.0 & & \\
\hline & & 23 & \(-16.0\) & 2.6 & \(-17.5\) & 2.4 & \(-18.9\) & 1.2 & -19.2 & 0.5 & -19.6 & 0.0 & -19.8 & 0.0 & \(-19.9\) & 0.0 & \(-19.9\) & 0.0 & & \\
\hline \multirow[t]{10}{*}{Trapezoidal} & 7.4 & 4 & 14.2 & 1.6 & 1.8 & 2.4 & \(-1.0\) & 2.8 & \(-14.0\) & 1.5 & -18.9 & 0.1 & -19.8 & 0.0 & & & & & & \\
\hline & & 19 & \(-2.8\) & 1.6 & -11.4 & 1.8 & \(-15.8\) & 1.2 & \(-18.9\) & 0.8 & -19.9 & 0.0 & -20.0 & 0.0 & & & & & & \\
\hline & & 15 & \(-19.2\) & 1.4 & -19.9 & 0.7 & -20.0 & 0.0 & -20.0 & 0.0 & -20.0 & 0.0 & -20.0 & 0.0 & & & & & & \\
\hline & 11.3 & 4 & 13.9 & 1.5 & 2.0 & 2.4 & - 1.1 & 3.0 & \(-14.2\) & 1.3 & -19.9 & 0.0 & & & & & & & & \\
\hline & & 13 & - 0.8 & 1.6 & -9.4 & 2.7 & \(-15.7\) & 1.3 & -19.0 & 1.1 & -20.0 & 0.0 & & & & & & & & \\
\hline & & 15 & -18.6 & 1.2 & -19.8 & 0.5 & -20.0 & 0.0 & -20.0 & 0.0 & -20.0 & 0.0 & & & & & & & & \\
\hline & 15.2 & 4 & 13.5 & 2.1 & 1.2 & 2.5 & - 1.5 & 3.1 & -14.6 & 1.2 & -20.0 & 0.0 & & & & & & & & \\
\hline & & 14 & \(-1.3\) & 2.3 & -11.5 & 1.6 & -16.9 & 1.6 & \(-18.9\) & 0.9 & -20.0 & 0.0 & & & & & & & & \\
\hline & & 15 & -19.8 & 0.8 & -20.0 & 0.0 & \(-20.0\) & 0.0 & -20.0 & 0.0 & -20.0 & 0.0 & & & & & & & & \\
\hline & & & M & \(\leqslant\) & M & : & M & S & M & S & M & S & M & S & M & S & M & S & M & S \\
\hline
\end{tabular}
a Avoraife from thron roplications prer eath treatment
befer to fiqure 4.3 for \(\cdot 11\) iptiral and Fiqure 4.'s for trapezoidal.
\({ }^{C}\) Initial product temperatur. \(1 \mathrm{H}^{\circ} \mathrm{C}\).
\({ }^{\prime}{ }_{M}\) : Average value of trmperaturn; \(S\) : standard inviation (1).

\section*{APPENDIX C}

\section*{THE TRANSFORMATION OF LOCAL SURFACE HEAT TRANSFER COEFFICIENT FROM THE CIRCULAR CYLINDER TO THE ELLIPTICAL CYLINDER}

\section*{APPENDIX C}

> THE TRANSFORMATION OF LOCAL SURFACE HEAT TRANSFER COEFFICIENT FROM THE CIRCULAR CYLINDER TO THE ELLIPTICAL CYLINDER

The local surface heat transfer coefficient was shown to be a function of location as investigated by Katinas et al. (1976) and Zdanavichyus et al. (1977) on a circular cylinder and by Chavarria (1978) on a flat plate. The computer simulation used to predict the freezing rate of a food product with elliptical geometry in this research incorporated the varying surface heat transfer coefficient. Since there has been no publication of variations in local surface heat transfer coefficient for an elliptical cylinder, the transformation from Zdanavichyus' data for a circular cylinder to an elliptical cylinder was obtained by implementing conformal mapping to the air flow around the obstacle geometries (Spiegel, 1964).

The relationship between the ratio of local heat transfer coefficient to average heat transfer coefficient, \(h / \bar{h}\), and angle \(\theta\) for an air flow with \(\operatorname{Re}=1.1 \times 10^{5}\) is illustrated in Figure C. 3 (Zdanavichyus et al., 1976). Using these data, mathematical equations were computed by
least square method for \(n\)-order regression utilizing a Wang 2200 computer.
\[
\begin{align*}
& 0^{\circ} \leq \theta \leq 90^{\circ} \\
& \mathrm{h} / \mathrm{h}= 1.129-1.148 \times 10^{-2} \theta+1.589 \times 10^{-3} \theta^{2} \\
&-8.861 \times 10^{-5} \theta^{3}+2.222 \times 10^{-6} \theta^{4} \\
&-2.572 \times 10^{-8} \theta^{5}+1.098 \times 10^{-10} \theta^{6}  \tag{C.1}\\
& 90^{\circ}<\theta \leq 180^{\circ} \\
& \mathrm{h} / \overline{\mathrm{h}}=-47.42+1.48 \theta-1.523 \times 10^{-2} \theta^{2} \\
&+3.441 \times 10^{-5} \theta^{3}+4.13 \times 10^{-7} \theta^{4} \\
&-2.838 \times 10^{-9} \theta^{5}+5.226 \times 10^{-12} \theta^{6} \tag{C.2}
\end{align*}
\]

The coefficient of correlations were 0.992 and 0.999 respectively for equations (C.1) and (C.2), and the standard error of estimate were \(3.14 \times 10^{-2}\) and \(8.662 \times 10^{-3}\). The magnitude of complex velocity of the circular surface which is placed as an obstacle in an air flow (Figure C.l) is a function of \(\theta\) and laminar velocity \(V_{o}\) (Spiegel, 1964)
\[
\begin{equation*}
\mathrm{v}_{\mathrm{c}}=\mathrm{v}_{\mathrm{o}} \sqrt{2-2 \cos \theta} \tag{C.3}
\end{equation*}
\]

Thus, \(\theta\) in equations (C.l) and (C.2) can be replaced as a function of \(V_{c}\) and \(V_{o}\) by modification of equation (C.3)
\[
\begin{equation*}
\theta=0.5 \operatorname{arc} \cos \left(1-\mathrm{v}_{\mathrm{c}}^{2} / 2 \mathrm{v}_{\mathrm{o}}^{2}\right) \tag{C.4}
\end{equation*}
\]

The complex potential of fluid flow for an elliptic obstacle (Figure C.2) using conformal mapping by solving Dirichlet's problem was given as follows (Spiegel, 1964)
\[
\Omega(z)=V_{0}\left[b+(a+b)^{2} / 4 \gamma\right]
\]
where
\[
\begin{equation*}
\zeta=0.5\left(z+\sqrt{\left.z^{2}-a^{2}+b^{2}\right)}\right. \tag{C.5}
\end{equation*}
\]

By algebraic manipulation, equation (C.5) can be rewritten into
\[
\begin{equation*}
\Omega(z)=\frac{V_{0}}{(a-b)}\left(a z-b \sqrt{z^{2}-a^{2}+b^{2}}\right) \tag{C.6}
\end{equation*}
\]

The complex velocity is a derivative of \(\bar{\Omega}(z)\)
\[
\begin{equation*}
v=d \bar{\Omega}(z) / d z=\bar{\Omega}^{\prime}(z) \tag{C.7}
\end{equation*}
\]

Taking the derivative of equation (C.6)
\[
\begin{equation*}
\Omega^{\prime}(z)=\frac{V_{0}}{(a-b)}\left[a-\left(b z / \sqrt{z^{2}-a^{2}+b^{2}}\right)\right] \tag{C.8}
\end{equation*}
\]

Let \(z=r e^{i \theta}\), or expressed in trigonometric function as \(z=r \cos \theta+r i \sin \theta\), where \(r\) is the distance of \(a\) given point on the stream line to the center of the ellips and \(\theta\) is the slope. For the point on the surface of the ellips, r becomes
\[
\begin{equation*}
r=\sqrt{a^{2} b^{2} /\left(a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta\right)} \tag{C.9}
\end{equation*}
\]

Then, the complex expression in equation (C.8) can be solved as
\[
\begin{equation*}
\frac{z}{\sqrt{z^{2}-a^{2}+b^{2}}}=X+Y i \tag{C.10}
\end{equation*}
\]

By substituting equation (C.10) back into equation (C.8), it can be further formulated as follows
\[
\begin{equation*}
\Omega^{\prime}(a)=\frac{(a-b X) V_{o}}{(a-b)}-i \frac{b Y V_{o}}{(a-b)} \tag{C.11}
\end{equation*}
\]

Thus, the complex velocity is
\[
\begin{equation*}
v=\bar{\Omega}^{\prime}(z)=\frac{(a-b X) V_{o}}{(a-b)}+i \frac{b Y V_{o}}{(a-b)} \tag{C.12}
\end{equation*}
\]

And the magnitude of the velocity on the elliptical surface is
\[
\begin{equation*}
v_{e}=\frac{v_{0}}{(a-b)} \sqrt{(a-b x)^{2}+b^{2} y^{2}} \tag{C.13}
\end{equation*}
\]

Replacing \(V_{c}\) in equation (C.4) by \(V_{e}\) and substituting \(e\) back into equations (C.1) and (C.2) will provide a new value of \(h / \bar{h}\) for a given location on the elliptical surface. The calculation was carried out in subroutine HVAR which was incorporated into the main program. The result of subroutine HVAR was presented in Figure C.3.

Zdanavichyus' data was obtained for a degree of stream turbulence \(\mathrm{Tu}=1.2 \%\). It showed a lower heat transfer coefficient at the upstream compared to downstream. This contradicted the experimental results which indicated higher heat transfer coefficient at the upstream. Katinas et al. (1976) investigated the effect of degree of turbulence on the surface heat transfer coefficient for circular cylinder, and found out that higher coefficient occurred at the upstream when the degree of turbulence \(T u=7.8 \%\). Using Katinas' data, equations (C.1) and (C.2) were modified into
\[
\begin{align*}
0^{\circ} \leq & \theta \leq 90^{\circ} \\
\mathrm{h} / \overline{\mathrm{h}}= & 1.34+4.84 \times 10^{-3} \theta-5.21 \times 10^{-4} \theta^{2} \\
& +1.58 \times 10^{-5} \times \theta^{3}-2.60 \times 10^{-7} \theta^{4} \\
& +1.91 \times 10^{-9} \theta^{5}-4.86 \times 10^{-12} \theta^{6}  \tag{C.14}\\
90^{\circ} \leq & \theta \leq 180^{\circ} \\
\mathrm{h} / \overline{\mathrm{h}}= & 20.21-0.59 \theta+5.23 \times 10^{-3} \theta^{2} \\
& +8.60 \times 10^{-6} \theta^{3}-3.89 \times 10^{-7} \theta^{4} \\
& +2.15 \times 10^{-9} \theta^{5}-3.83 \times 10^{-12} \theta^{6} \tag{c.15}
\end{align*}
\]

The computed values for elliptical cylinder using Katinas' data by subroutine HVAR were also presented in Figure C.3. The latter result was used for further investigation in this study.


Figure C.l. The air flow pattern around a circular obstacle.


Figure C.2. The air flow pattern around an elliptical obstacle.


Katinas' data for circular cylinder Zdanavichyus' data for a circule surface
__ Transformation result using conformal mapping for an elliptical surface
----- Transformation result from Katinas' data
Figure C.3. Local surface heat transfer coefficient for circular cylinder and elliptical cylinder.

\section*{APPENDIX D}

\section*{THE DATA FITTING OF LOCAL SURFACE TEMPERATURE AT TRAPEZOIDAL PRODUCT GEOMETRY USING LEAST SQUARE REGRESSION}

\section*{APPENDIX D}

\section*{THE DATA FITTING OF LOCAL SURFACE TEMPERATURE AT TRAPEZOIDAL PRODUCT GEOMETRY USING LEATS SQUARE REGRESSION}

Since the local surface heat transfer coefficient for trapezoidal geometry cannot be solved with conformal mapping as in the elliptical case, another method was applied to describe the influence of surface heat transfer coefficient. Surface temperature of the trapezoidal product was measured during freezing at nodal locations illustrated in Figure D.l. for every time step. Mathematical model to describe the local surface temperature as a function of location, \(x\), and time, \(t\), was as follows
\[
\begin{equation*}
T=A x t^{2}+B x t+C t+D \tag{D.l}
\end{equation*}
\]

The mathematical model was applied to all sides of trapezoidal product except the bottom side which was insulated (Figure D.l). Two different equations were used to describe the local surface temperature on side 2 , one was for \(0 \mathrm{~cm} \leq \mathrm{x} \leq 11 \mathrm{~cm}\) and the other for \(11 \mathrm{~cm} \leq \mathrm{x} \leq 15.5 \mathrm{~cm}\).

Figure D.l shows the temperature curves as functions of \(x\) at \(t=0.5\) hours and 1.0 hour for all three sides of the trapezoid at \(v=7.9 \mathrm{~m} / \mathrm{s}\). The temperature
data were substituted into the model at various \(x\) and \(t\) applying the least square method. The result of mathematical model for each side was presented at Table D.l. These polynomial functions were supplied to subroutine TVAR which computed the temperature at each time step and substituted back to subroutine SETMAT as surface temperature.
(
TABLE D.l.--Mathematical Models Describing Surface Temperature as a Function of Time and Location at \(v=7.9 \mathrm{~m} / \mathrm{s}\)
\begin{tabular}{|c|c|c|}
\hline Time, hr & \(\mathrm{x}, \mathrm{cm}\) & Temperature, \({ }^{\circ} \mathrm{C}\) \\
\hline \(t=0\) & For all sides and x & \(\mathrm{T}=18\) \\
\hline \(t>0\) & For nodal 15 & \(\mathrm{T}_{15}=-20\) \\
\hline \multirow[t]{4}{*}{\(0<t<1.5\)} & Side 1 & \(\mathrm{T}=3.95 \times \mathrm{t}^{2}-4.98 \times \mathrm{t}-5.97 \mathrm{t}-8.95\) \\
\hline & Side 2: \(0<x<11\) & \(\mathrm{T}=1.76 \times \mathrm{t}^{2}-0.38 \mathrm{xt}-26.16 \mathrm{t}-3.19\) \\
\hline & \(11<x<15.5\) & \(T=1.51 \times t^{2}-2.76 \times t+0.20 t+0.04\) \\
\hline & Side 3 & \(\mathrm{T}=2.90 \times \mathrm{t}^{2}-1.47 \times t-24.4 t+0.61\) \\
\hline \(t>1.5\) & For all sides and x & \(\mathrm{T}=-\mathrm{t}-16.5\) \\
\hline \(t \geq 3.5\) & For all sides and x & \(\mathrm{T}=-20\) \\
\hline
\end{tabular}

BIBLIOGRAPHY

\section*{BIBLIOGRAPHY}

AOAC. 1965. Official Methods of Analysis of the Association of Official Agricultural Chemists. Tenth Edition. Assoc. Offic. Chem., Washington, D.C.

Bakal, A. and K. Hayakawa. 1973. Heat transfer during freezing and thawing of foods. Advances in Food Res. 20: 217.

Bonacina, C. and G. Comini. 1973a. On a numerical method for the solution of the unsteady state heat conduction equation with temperature dependent parameters. Proceedings of the XIII Int. Congress of Refr. 2: 329.

Bonacina, C. and G. Comini. 1973b. On the solution of the non-linear heat conduction equations by numerical methods. Int. J. Heat Mass Transfer 16: 581.

Bonacina, C., G. Comini, A. Fasano, and M. Primicerio. 1973. Numerical solution of phase change problems. Int. J. Heat Mass Transfer, 16: 1825.

Bonacina, C., G. Comini, A. Fasano, and M. Primicerio. 1974. On the estimation of thermophysical properties in non-linear heat-conduction problems. Int. J. Heat Mass Transfer, 17: 861.

Bonnerot, R. and P. Jamet. 1974. A second order finite element method for the one-dimensional Stefan problem. Int. J. Numerical Methods in Engr., 8: 811.

Bruch Jr., J. C. and G. Zyvoloski. 1974. Transient twodimensional heat conduction problems solved by the finite element method. Int. J. Numerical Methods in Engr., 8: 481.

Carslaw, H. S. and J. C. Jaeger. 1959. Conduction of Heat in Solids. Claredon Press, Oxford, England.

Charm, S. E. 1971. The Fundamentals of Food Engineering. 2nd edition. The AVI Pub. Co., Inc., Westport, CT.

Charm, S. E., D. H. Brand, and D. W. Baker. 1972. A simple method for estimating freezing and thawing times of cylinders and slabs. ASHRAE J. 14 (ll): 39.

Charm, S. E. and J. Slavin. 1962. A method for calculating freezing time of rectangular packages of food. Int. Institute of Refr. Meeting Commissions 2, 3, 4, and 6A, Washington, D.C. Bulletin, Annexe: 567.

Chavarria, V. M. 1978. Experimental determination of the surface heat transfer coefficient under food freezing conditions. M.S. Thesis. Department of Agricultural Engineering. Michigan State University, East Lansing, MI.

Cho, S. H. and J. E. Sunderland. 1974. Phase change problems with temperature-dependent thermal conductivity. J. Heat Transfer 95: 214.

Cleland, A. C. and R. L. Earle. 1977a. A comparison of analytical and numerical methods of predicting the freezing times of foods. J. Food Science, 42: 1390.

Cleland, A. C. and R. L. Earle. 1977b. The third kind of boundary condition in numerical freezing calculations. Int. J. Heat Mass Transfer, 20: 1029.

Comini, G. and C. Bonacina. 1974. Application of computer codes to phase-change problems in food engineering. Int. Institute of Refr. Meeting of Commissions Bl, Cl, and C2, Bressanone, Italy. Bulletin, Annexe: 15.

Comini, G., C. Bonacina and S. Barina. 1974. Thermal properties of foodstuffs. Int. Institute of Refr. Meeting of Commissions \(\mathrm{Bl}, \mathrm{Cl}\), and C 2. Bressanone, Italy. Bulletin Annexe: 163.

Comini, G. and R. W. Lewis. 1976. A numerical solution of two-dimensional problems involving heat and mass transfer. Int. J. Heat Mass Transfer, 19: 1387.

Comini, G., S. Del Giudice, M. Strada and L. Rebellato. 1978. The finite element method in refrigeration engineering. Int. J. Refr., l: 113.

De Baerdemaeker, J., R. P. Singh, and L. J. Segerlind. 1977. Modelling heat transfer in foods using the finite element method. J. Food Process Engr., l: 37.

Desai, C. S. and J. F. Abel. 1972. Introduction to the Finite Element Method. Van Nostrand, Reinhold, New York, N.Y.

Dickerson Jr., R. W. 1969. Thermal properties of food. In: D. K. Tressler. 1969. The Freezing Preservation of Foods. 4 th ed. Vol. II. The AVI Pub. Co., Inc., Westport, Ct.

Emery, A. F. and W. W. Carson. 1971. An evaluation of the use of the finite element method in the computation of temperature. J. Heat Transfer, 92: 136.

Fleming, A. K. 1973. The numerical calculation of freezing processes. Proceedings of the XIII Int. Congress of Refr., 2: 303.

Golovkin, N. A., R. G. Geinz, G. V. Maslova, and I. R. Nozdrunkova. 1973. Studies on meat subfreezing process and its application for cold storage of animal products. Proceedings of the XIII Int. Congress of Refr., 4: 221.

Goodrich, L. E. 1978. Efficient numerical technique for one-dimensional thermal problems with phase change. Int. J. Heat Mass Transfer, 21: 615.

Hayakawa, K. and A. Bakal. 1974. Formulas for predicting transient temperatures in food during freezing or thawing. AICHE Symposium Series, 69 (132): 14.

Hashemi, H. T. and C. M. Sliepcevich. 1967. A numerical method for solving two-dimensional problems of heat conduction with change of phase. AICHE Symposium Series, 63 (79): 34.

Heldman, D. R. 1974a. Predicting the relationship between unfrozen water fraction and temperature during food freezing using freezing point depression. Trans. ASAE, 17: 63.

Heldman, D. R. 1974b. Computer simulation of food freezing processes. Proceedings of the VI Int. Congress of Food Science and Technology, IV: 397.

Heldman, D. R. 1975. Food Process Engineering. The AVI Pub. Co., Inc., Westport, CT.

Heldman, D. R. and D. P. Gorby. 1974a. Predictions of thermal conductivity in frozen food. ASAE Paper No. 74-6017.

Heldman, D. R. and D. P. Gorby. 1974b. Computer simulation of ice cream freezing. Int. Institute of Refr. Meeting of Commissions \(\mathrm{Bl}, \mathrm{Cl}\), and C 2. , Bressanone, Italy. Bulletin Annexe: 29.

Heldman, D. R. and D. P. Gorby. 1975. Computer simulation of individual-quick-freezing of foods. ASAE Paper No. 75-6016.

Hsieh, R. C., L. E. Lerew, and D. R. Heldman. 1977. Prediction of freezing times for foods as influenced by product properties. J. Food Proc. Engr., l: 183.

Joshi, C. and L. C. Tao. 1974. A numerical method of simulating the axisymmetrical freezing of food systems. J. Food Science, 39: 623.

Katinas, V. I., I. I. Zhyugzhda, A. A. Zhukauskas, and S. A. Shvegzhda. 1976. The effect of the turbulence of an approaching stream of viscous fluid on local heat transfer from a circular cylinder. Int. Chem. Engr., 16: 283.

Kopelman, I. J. 1966. Transient heat transfer and thermal properties in food systems. Ph.D. Thesis. Department of Food Science and Human Nutrition. Michigan State University, East Lansing, MI.

Krutz, G. W. 1976. A Thermo-metallurgical model predicting the strength of welded joints using the finite element method. Ph.D. Thesis. Deparment of Agricultural Engineering. Michigan State University, East Lansing, MI.

Langford, D. 1973. The heat balance integral method. Int. J. Heat Mass Transfer, 15: 2424.

Lees, M. 1966. A linear three-level difference scheme for quasilinear parabolic equations. Math. Comput. 20: 516.

Lescano, C. E. and D. R. Heldman. 1973. Freezing rates in codfish muscle. ASAE Paper No. 73-367.

Luikov, A. V. 1968. Analytical Heat Diffusion Theory. Academic Press Book, New York, N. Y.

Mikhailov, M. D. 1976. Exact solution for freezing of humid porous half-space. Int. J. Heat Mass Transfer, 19: 651.

Neter, J. and W. Wasserman. 1974. Applied Linear Statistical Models. Richard D. Irwin, Inc., Homewood, Ill.

Rebellato, L., S. Del Giudice, and G. Comini. 1978. Finite element analysis of freezing processes in foodstuffs. J. Food Science, 43: 239.

Richardson, P. D. and Y. M. Shum. 1969. Use of finite element methods in solution of transient heat conduction problems. ASME Winter Annual Meeting. Paper No. WA/HT-36.

Riley, D. S. and P. W. Duck. 1977. Application of the heat-balance integral method to the freezing of a cuboid. Int. J. Heat Mass Transfer, 20: 294.

Segerlind, L. J. 1976. Applied Finite Element Analysis. John Wiley and Sons, Inc., New York, N. Y.

Shamsundar, N. and E. M. Sparrow. 1975. Analysis of multidimensional conduction phase change via the enthalpy model. J. Heat Transfer, 96: 333.

Singh, R. P. and L. J. Segerlind. 1974. The finite element method in food engineering. ASAE Paper No. 74-6015.

Slavin, J. W. 1964. Freezing seafood--now and in the future. ASHRAE J. \(\underline{6}\) (5): 43.

Sörenfors, P. 1974. Determination of the thermal conductivity of minced meat. Cited from: V. M. Chavarria. 1978. Experimental determination of the surface heat transfer coefficient under food freezing conditions. M.S. Thesis. Department of Agricultural Engineering. Michigan State University, East Lansing, MI.

Spiegel, M. R. 1964. Complex Variables. Schaum's Outline Series. McGraw-Hill Book Co., New York, N. Y.

Tarnawski, W. 1976. Mathematical model of frozen consumption products. Int. J. Heat Mass Transfer, 19: 15.

Tressler, D. K., W. B. Van Arsdel, M. J. Copley, and W. R. Woolrich. Editors. 1968. The Freezing Preservation of Foods. The AVI Pub. Co., Inc., Westport, CT.

Visser, W. 1965. A finite element method for the determination of non-stationary temperature distribution and thermal deformations. Proceedings Conference on Matrix Methods in Structural Mechanics. Cited from: L. J. Segerlind. 1976. Applied Finite Element Analysis. John Wiley and Sons, Inc., New York, N.Y.

Wellford Jr., L. C. and R. M. Ayer. 1977. A finite element free boundary formulation for the problem of multiphase heat conduction. Int. J. Numerical Methods in Engr., ll: 933.

Wilson, E. L. and R. E. Nickell. 1966. Application of the finite element method to heat conduction analysis. Nuclear Engr. and Design, 4: 276.

Yalamanchili, R. V. S. and S. C. Chu. 1973. Stability and oscillation characteristics of finite element, finite difference, and weighted-residuals methods for transient two-dimensional heat conduction in solids. J. Heat Transfer, 94: 235.

Zdanavichyus, G. B., V. Y. Survila, and A. A. Zhukauskas. 1977. Influence of the degree of turbulence of an inflowing air stream on local heat transfer on a circular cylinder in the critical flow regime. Int. Chem. Engr., 17: 115.

Zienkiewicz, O.C. 1971. The Finite Element Method in Engineering Science. McGraw-Hill Book Co., London, Great Britain.

Zienkiewicz, O. C. and Y. K. Cheung. 1965. Finite elements in the solution of field problems. The Engineer, 220: 507.
```

