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<\::> I ABSTRACT

THE STUDY OF PASSING IN FLOW SHOP

SCHEDULING PROBLEMS

BY

Jagdish Manubhai Mehta

In 1954, Johnson provided a simple algorithm to find

an Optimum solution minimizing the total make-span for a

general N job, 2 machine and a special N job, 3 machine flow

shop scheduling problem. Since then his 13—14 assumptions-

restrictions and performance criterion for minimizing the

total make-span have become popularized, being referred to as

the "classical flow shop scheduling problem." Other

researchers in the field have applied techniques such.as

combinatorial analysis, mathematical programming, heuristics,

and Monte Carlo sampling to find optimum solutions to N job,

M machine classical flow shop scheduling problems where M is

equal to or greater than three, but with limited success.

Then in 1965, almost simultaneously, Ignall and

Schrage in the United States, and Lomnicki in Great Britain

discovered the Branch and Bound technique was useful for find-

ing optimum solutions to large N job, M machine classical

flow shop scheduling problems. Others have since tried to

obtain optimum solutions to these problems, with one or more

assumptions-restrictions removed, also with limited success.
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In this dissertation, a study of the classical flow

shop scheduling problem has been undertaken with the no pass-

ing restriction removed. The no passing restriction implies

that once a job sequence has been selected for the first

machine in the flow shop, the same job sequence should be

used for all subsequent machines.

In the last 20 years, all but a few researchers have

assumed in flow sh0p scheduling problems there is no need to

change job sequences between machines. They probably thought

any change in job sequence would only delay and in no way

improve the value of the minimum total make-span. In pre-

liminary analysis for this dissertation, a hundred 4 job, 4

machine flow shop scheduling problems were solved to see the

effects of removing the no passing restriction from classical

flow shop scheduling problems. Different job sequences on

the first two machines than from the last two machines were

permitted. The results were that in ten problems, passing

was beneficial, while in the other ninety, it made no differ-

ence as far as minimizing the total make-span was concerned.

The total make—span improvement in the ten problems where

passing was permitted, was fairly small.

Conway, Maxwell, and Miller in Theory of Scheduling
 

showed that changing the job sequence between the first and

second machines, as well as between the last and second to

last, does not improve the performance criterion of minimiz—

ing the total make-span. Thus, in a 3 machine flow shop,

there is no need to change sequences between any two machines
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but in a 4 machine flow shop, changing the job sequence

between the first and last two machines could prove useful.

Taking this into account, a thousand problems each for 3 job,

4 machine; 4 job, 4 machine; and 5 job, 4 machine flow shOp

scheduling problems were constructed, using integer random

numbers from Uniform probability distribution between 0 and

100 for processing times. The experiments on these 3,000

problems was divided into two parts: Phase One where the no

passing restriction was maintained; and Phase Two where pass-

ing was permitted between the first two machines and the last

two machines. Complete enumeration of all possible sequences

in both phases was conducted for each problem, with any

decrease in the total make—span in Phase Two compared to the

minimum total make-span of Phase One noted. The number of

Optimum solutions of both phases and any correlation between

them for each problem was noted. Previously, almost all

researchers used processing times either chosen arbitrarily

or generated from Uniform probability distribution. In

research for this paper, Uniform probability distribution as

well as Beta probability distribution were used to generate

processing times for an additional 15,000 problems.- Five

sets of values for parameters of Beta probability distribu-

tion were chosen, and for each of them random numbers were

generated for a thousand 3 job, 4 machine; 4 job, 4 machine;

and 5 job, 4 machine flow Shop scheduling problems. Complete

enumeration studies of both phases for each of these problems

were conducted.
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It was determined that under the no passing restric-

tion, the range between the maximum and minimum total make-

spans is narrow. When the processing times are uniformly

distributed, the range is only 24, 31, and 37 percent of the

minimum total.make-span for 3 job, 4 job, and 5 job, 4

machine flow shop scheduling problems and, as values of AB--

parameters of Beta probability distribution--increase,

values of the range decrease significantly. It was also

found that 10.5, 13.0, and 18.5 percent of the 3 job, 4 job,

and 5 job, 4 machine flow shop scheduling problems provide

a lower value of the total make-span if passing is permitted,

than that for the minimum total make-span under a no passing

restriction when processing times are uniformly distributed.

Therefore, as the number of jobs in the flow shop scheduling

problem increase, the number of problems for which permitting

passing lowered the minimum total make—span of Phase One in

Phase Two also increases. This phenomenon was also observed

in all five sets of problems whose processing times were

Beta-distributed. The average reduction in the minimum total

make-span where passing was permitted for 3 job, 4 job, and 5

job, 4 machine flow shop scheduling problems amounts to 0.415,

0.426,and 0.519 percent, respectively, when processing times

are uniformly distributed. Although the average reduction in

the minimum total make-span is small, it increases by 21.5

percent when the size of the flow shop scheduling problem

increases by one job. Similar increases have been noted in

the average reduction when processing times are Beta-distributed.
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A most important finding in this dissertation is that as

values of the parameters of Beta distribution for processing

times increases, the number of problems for which permitting

passing lowered the minimum total make—span of Phase One,

and the average percentage of reduction in the minimum total

make-span of Phase One, decrease significantly.

In addition, this dissertation provides three differ-

ent heuristics or "search plans," each of which can provide

solutions very close to the optimum solutions obtained with

passing permitted, and with only a fraction of the effort.

For example, for the one thousand 5 job, 4 machine flow sh0p

scheduling problems, Plans One, Two, and Three provided 99.41,

80.80, and 80.13 percent of the possible reduction of the

minimum total make-span with only 8.42, 4.24, and 0.36 per-

cent of the computational efforts as compared to that

required with complete enumeration.
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CHAPTER I

INTRODUCTION

The following statement, although written in 1967

for the book Theory of Scheduling, indicates to a large

extent the present state of knowledge in the field of

scheduling.

Scheduling is a field in which there are some

intriguing problems and some interesting answers.

So far, however, the subject has not received the

attention it deserves; work on it has been frag-

mented at best . . .

In an industrial society such as ours, efficient

and effective scheduling of operations of any kind is very

important to utilize our resources of men and machines to

the fullest extent. This fact, though very simple to under-

stand and agree with, is generally not acted upon by indus-

trialists responsible for the job of scheduling production

operations. The organizational environment for them is

such that neither an efficient schedule rewards nor an

inefficient schedule punishes them. Professor W. F. Pounds

 

1Conway, Maxwell, and Miller, Preface of Theory of

Scheduling_(Reading, Mass.: Addison-Wesley, 19677:

 

 



studied the scheduling environment of our industries in

great detail and reported:

The job-shop scheduling problem is not recognized

by most factory schedulers because for them, in

most cases, no scheduling problem exists. That is,

there is no scheduling problem for them because the

organization which surrounds the schedulers reacts

to protect them from strongly interdependent

sequencing problems.

 

On the other hand, some schedulers realize the

scheduling problem, only to get frustrated by its extent and

their inability to deal with it.

In both of these situations--the lack of knowledge

of the problem and the lack of ability to handle it--people

consciously or unconsciously schedule Operations guided by

their intuition. And scheduling on the basis of mere

intuition, contrary to many people's beliefs, is not advis-

able because it does not produce good results in most cases.

Although some peOple have a better scheduling intuition than

others, most of us need some rules, guidelines and procedures

to schedule operations effectively and efficiently.

Thus, the job for researchers of the scheduling area

is two-fold. The first task is to make schedulers aware of

the nature of the scheduling problem, its characteristics,

and its effect on daily production efficiency. The second

task is to help solve the problem of inefficient production

 

2W. F. Pounds, "The Scheduling Environment," Chapter

1 of Industrial Scheduling, edited by J. F. Muth and G. L.

Thompson (Englewood Cliffs, New Jersey: Prentice-Hall,

 



scheduling by using guidelines, procedures, and rules so

that the utilization of resources can be maximized or

optimized. This does not seem particularly difficult

except for the fact that researchers themselves do not have

solutions to various scheduling problems. The situation is

especially acute in the flow shOp scheduling problem as few

useful results have been Obtained finding its solution. This

lack of achievement is highlighted and analyzed in Chapter II

where the present state of knowledge of the flow shop schedul-

ing problem will be discussed.

Brief Overview of Some Scheduling Concepts
 

To understand the area of scheduling, it is first

necessary to become familiar with some key concepts.’

SHOP, JOB, OPERATION and MACHINE are four inter-

related basic terms that are used widely. The term "SHOP"

refers to manufacturing facilities where various work func-

tions are being completed. "JOB" refers to an item or a

commodity that is being transformed in a shop from a stage

which requires some work to be done to a stage where the

required work is completed. The term "OPERATION" denotes a

partial or full transformation process that is being applied

to a job. Finally, the term "MACHINE" represents the trans-

forming agent that performs an operation on a job in a shop.

A shop can have one or more machines. The letter "M" is

generally used to denote the number of machines in a shOp.



If a shOp has only one machine, the scheduling prob—

lem is sometimes known as "THE TRAVELING SALESMAN PROBLEM."

A shop having two or more machines could be either a "FLOW

SHOP“ or a "JOB SHOP." The scheduling problem in these

respective cases would be a "FLOW SHOP PROBLEM" and a "JOB

SHOP PROBLEM." In a "FLOW SHOP" there is a natural ordering

of M machines such that all the jobs that come to the shop

to be processed go to machine 1 for their first Operation,

machine 2 for their second Operation, . . . go to machine K

for the Kth Operation, where K is less than or equal to M.

Thus a job in a "FLOW SHOP" with M machines has to go through

exactly M number of Operations, although a few of these

Operations may not be significant. In a "JOB SHOP" there is

no natural ordering of machines and jobs, depending upon

their technical nature, a job might go to any one machine for

the first operation, another machine for the second operation,

and so on. In the course of transformation, a job might not

visit some machines and perhaps visit some machines more

than once. Thus, in a "JOB SHOP" the number of Operations a

job goes through has no direct relationship with the number

of machines in a shop.

A shOp when operating usually processes many jobs

simultaneously. The letter "N" generally denotes the number

of jobs in a shop at a particular time. A shop processes

jobs in a batch style or a continuous style depending upon

how it is set up. When a shop is set up to process jobs in

batch style, all of the N jobs enter the shop simultaneously





at a time t1 and after processing, leave the shOp simul—

taneously at a time t2. Thus the shop has none of these N

jobs just before the time t or just after t but exactly

1 2'

N jobs during the time period t to t . This batch style

1 2

of operation is known as "STATIC" Operation since the

number of jobs in a shop during a particular time period

remains static. ‘

Different from this batch Operation is the case where

the shop processes jobs in a continuous style. Jobs are

allowed to enter individually at random times and to leave

individually, when their own processing is completed. Thus,

a shop has N number of jobs at any time where the value of

N is fluctuating; going up, when a new job enters, and going

down when a job which is processed leaves. Since the.number

of jobs in a shop which is Operating on a continuous style

fluctuate with time, it is known as a "DYNAMIC" operation.

In a shop each job undergoes many operations before

it leaves the shop. Each of these operations, depending upon

the job, the machine, and the amount of work involved in the

operation, will require a certain amount of time. Trans—

porting the job from one machine to another, cleaning and

setting up the job and the machine will also require a certain

amount of time. The total of the transportation, cleaning,

setting up, and operation times is known as the "PROCESSING

TIME" for the operation. The processing time generally is

different for each Operation and occasionally is dependent

on the sequence of machines a job follows. In studying





scheduling problems, these processing times may be obtained

from actual industrial situations or by sampling from

theoretical probability distributions such as the Uniform,

Normal, Lognormal, Exponential, Beta, and Gamma.

The usage of the two important terms "SCHEDULING"

and "SEQUENCING" has created problems for many researchers.

For many years some researchers used them arbitrarily as

can be seen in the following excerpts:

Sequencing Theory, when considered from an academic

standpoint, is a combination of three specific areas

within the field of operations research. The first

is Se uencin , the second is Queueing or Dispatching,

while the third is Scheduling.3
 

It seems to be becoming fairly generally accepted

that the central scheduling problem can be more

usefully described as sequencing (or dispatching

. . .).

After some controversy, many people began to realize

that no useful purpose.is served by differentiating these

'two words. Furthermore, as expressed by Elmaghraby, Conway

2121-:

In many instances the word SEQUENCING is used synon-

ymously with SCHEDULING. I would like to reserve

the latter to the exact Specification of the points

in time at which certain events take place (similar

to a train schedule). It is easy to see the reason

for the frequent use by many authors of the two

words interchangeably; a sequence also designates a

schedule if the processing time of the first job on

each facilitity is known and we are willing to

 

3A. H. Spinner, "Sequencing Theory--Development to

Date," Naval Research Logistics Quarterly, Vol. 15, NO. 2

(1968), 319-330.

4P. Mellor, "A Review of Job Shop Scheduling,"

Operation Research Quarterly, Vol. 17, No. 2 (1966),

161-171. AI

 



assume that each activity is started as early as

possible. The two words will be used interchange-

ably in this paper, but only when these two condi-

tions can be safely assumed.

We considered drawing a fine distinction between

Sequencing and Scheduling; to hold that the former

is concerned only with the ordering of operations

on a single machine, while the latter is a simul—

taneous and synchronized sequence on several

machines. However, we found that no greater clarity

resulted from such a distinction and the two terms

are used essentially as synonyms in the following

chapter.6

The American Heritage Dictionary defines scheduling
 

as a production plan allocating work to be done and Specify-

ing deadlines, whereas sequencing is a following of one thing

after another, succession.7

O'Brien, in his analysis of scheduling states that,

"Scheduling involves the arrangement, coordination, and

planning of the utilization of resources to achieve an

objective."8 O'Brien divides scheduling techniques into four

classes: Time Scheduling, Resource Scheduling, Production

Scheduling, and General Scheduling. Each of these four

classes have anywhere from two to five separate techniques.

He also gives three areas of scheduling applications, namely,

Functional Scheduling, Topical Scheduling, and Production

 

5S. E. Elmaghraby, "The.Machine Sequencing Problem--

Review and Extension," Naval Research Logistics Quarterly,
 

 

6Conway, Maxwell, and Miller, Theory of Scheduling

op; cit. u .

7The American Heritage Dictionary of the English

Language YHOughton-Mifflin Company, 1971).

8J. J. O' Brien, Scheduling Handbook (NewYork, New

York: McGraw-Hill, 1969), p. 2.

 



applications. Each of these classes of applications have

three to seven separate applications.

Thus it is clear that both terms, scheduling and

sequencing, have far reaching meanings and a wide variety

of applications.

Without putting forth any more arguments and illus-

trations, the two terms "SCHEDULING" and "SEQUENCING" will

be used interchangeably in the remainder of this paper.

The ultimate aim of operating any shop is to maximize

the profitability. Unfortunately, it is very difficult to

determine precisely what variables will affect this profit-

ability. Considering the need for customers and the avail—

ability of resources such as men, materials, and machines,

some variables are chosen which conceivably can maximize

the profitability of a shop. These variables are known as

"THE MEASURES OF PERFORMANCE" or "THE PERFORMANCE CRITERIA."

Then out of many possible alternatives of the scheduling

problem, a solution is selected which optimizes the measure

of performance. Numerous measures of performance are used

in practice and research. Some of them include:

1. Finish flmalast job in the batch as soon as

possible; that is, minimize the interval of

time from start until finish of the batch

processing. This measure is popularly known

as the total make-span.

2. Finish each job as soon as possible, that is,

minimize the sum of completion time of all



 

jobs, or minimize the mean of the completion

time of N jobs.

3. Minimize the in-process inventory costs.

4. Minimize the costs that occur due to not

meeting due dates exactly.

5. Minimize the distribution of lateness of jobs--

the length of time between the actual comple-

tion of a job and the desired completion.

It is inconceivable to assume that optimizing a

single measure of performance will optimize the profitability

of a shop. Attempts have been made to construct functions

consisting of more than one measure of performance and then

finding solutions to the scheduling problem to optimize

value of the function. These attempts have been largely

unsuccessful.

Statement of the Problem
 

The term "THEORY" implies a collection of systemati-

cally organized knowledge applicable in a relatively wide

variety of circumstances; especially, a system of assump-

tions, accepted principles, and rules of procedure devised

to analyze, predict, or otherwise explain the nature or

behavior of a specified set of phenomena. Thus the "THEORY

OF SCHEDULING" implies collection of knowledge as described

above applicable to the scheduling problem.

 

9P. Meller, "A Review of Job ShOp Scheduling," Opera-

tion Research Quarterly, Vol. 17, No. 2 (1966), 161-171.
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This dissertation will be concerned with a small

part of the scheduling theory. The problem and the reasons

for selecting it are described below.

Flow Shop and Job Shop problems are closely related

in the sense that the flow shop problem is considered a

special case of the job shop problem. Many researchers

have worked exclusively on the job shOp problem, while

others have worked on the job shop problem and applied their

findings on the flow shop problem. Also, a few researchers

have worked exclusively on the flow shop problem. Overall,

the flow shop problem has received considerably less atten-

tion than the job shop problem. Surprisingly, the flow

shop problem is not even mentioned, let alone discussed in

the otherwise complete Scheduling Handbook written by James
 

O'Brien in 1969. After my search for a suitable disserta-

tion topic, I decided to work exclusively on the flow shop

problem. It seemed clear to me then and more so now that

there are many challenges and opportunities in the area of

the flow shop scheduling problem.

After selecting the flow shop problem, I decided to

work on its static operation rather than the dynamic opera-

tion. Traditionally, many of the researchers who have

worked on the flow shop problem have chosen the static

operation. The static Operation is easier to work with,

more basic and amenable to a mathematical formulation than

a dynamic Operation. Thus it is wiser to study the static
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operation first and then utilize the knowledge gained to

understand the dynamic operation.

In 1954, S. M. Johnson provided a neat and simple

algorithm to find an optimum sequence which minimizes the

total make-span for a general N job, 2 machine and a special

N job, 3 machine flow shop scheduling problem. He used

fourteen assumptions and restrictions to define the flow

shop scheduling problem and used the minimization of the

total make-span as the performance criterion. This package

of assumptions, restrictions, performance criterion and

problem definition used by Johnson is used by many researchers;

it will be referred to henceforth as the "classical flow shop

scheduling problem."

For the research of this paper, I used all except

one of Johnson's assumptions and restrictions. In this

dissertation "Passing" is permitted in the solution of flow

shop scheduling problems. Johnson assumed that a sequence

of N jobs selected for the first machine of the flow shop

should also be the sequence of the remaining M-l machines.

In other words, all of the M machines should have the same

job sequence for processing N jobs. When a solution to a

flow shop scheduling problem is such that it has different

job sequences on different machines, then some jobs will

bypass or "pass" over other jobs. Such.a solution is not

permitted under the no passing restriction used by Johnson,

but is allowed when passing is permitted.
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For whatever reason Johnson used the no passing

restriction in his research on the classical flow shop

scheduling problem, it was an intelligent decision. Later

it was proved10 that for the N job, 2 or 3 machine flow

shop scheduling problem, the no passing restriction does

not adversely affect the minimum value of the total make—

span but effectively reduces the set of possible solutions,

and in effect reduces efforts required for the search of

an optimal solution. For example, under the no passing

restriction for an N job, M machine flow shOp problem there

are only N! possible solutions, but if passing is permitted

there are (N!)M possible solutions.

Since Johnson worked with only 2 and 3 machine flow

shop scheduling problems, using the no passing restriction

was a good choice for him. On the other hand, most of the

researchers who have since worked on larger than 3 machine

problems should not have used the no passing restriction.

During preliminary research for this paper, it was discovered

that for a 4 machine flow shop scheduling problem, removing

the no passing restriction provides a lower value of the

total make-span in some cases. On the basis of the

preliminary work and the realization that very few researchers

have attempted to remove the no passing restriction, I

decided to study various effects of permitting passing

 

loConway, Maxwell, and Miller, Theory of Scheduling,

op. cit., p. 83.
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between sequences in a flow shop scheduling problem for

this dissertation.

The performance criterion I have chosen is minimiza-

tion of the total make-span. In most of the research work

on the static flow shop problem, two criteria are predomi-

nantly used, namely minimization of the total make-span

and minimization of the mean completion time. Regarding

this, Conway gt_gl. states:

Probably the most frequently cited paper in the

field of scheduling is Johnson's solution to the

two-machine flow shop problem. He gives an

algorithm for sequencing n jobs, all simultaneously

available, in a two-machine flow shop so as to

minimize the maximum flow-time. This paper

important, not only for its own content, but also

for the influence it has had on subsequent work.

In particular, it is likely that the general

acceptance of minimizing the maximum flow-time as

a criterion for the general job-shop problem can

be attributed to Johnson's result.1

Following Johnson's lead and considering the prime

advantage of easy comparability between solutions to the

static flow shop problem, most of the researchers have used

the total make-span criterion for their research.

The scheduling problem that emerges from the preced-

ing discussion is defined as follows:

Given N jobs to be processed on M machines in

a flow shop and given processing times tij' for

jobs i=l,2,...N, and for machines j=l,3,...M, the

problem is to find the sequence of jobs on each

of the M machines, so that the total make—span is

minimized.

 

11Conway, Maxwell, and Miller, Theory of Scheduling,

OE. cit., p. 83.
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There are 14 assumptions and conditions that go with

the problem definition:

1.

3.

All n jobs are simultaneously available at the

beginning of planning period.

All jobs are of equal importance, i.e., no

job has differential degrees of priority.

A single job cannot be processed simultaneously

by more than one machine.

The processing time of each job is known and

deterministic.

Set-up time and transportation time of a job

is included in its processing time.

The processing time of a job is independent of

the job sequence on any machine.

Every job requires processing on every machine

and no job is processed more than once by any

machine. If a certain job does not require

processing on a particular machine, the corres-

ponding operation will have a zero processing

time.

There is no unexpected delay in processing. In

other words, jobs are processed as soon as

possible, subject to routing and sequencing

requirements.

There is only one of each type of machine.
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10. A11 M machines are available at the beginning

of the planning period and are ready to take

up any of the N jobs.

11. At most, only one job can be processed on a

specific machine at any given time.

12. In-process inventory is allowable.

13. Each job follows the same machine sequence,

i.e., each job goes to machine A first, then

machine B, then machine C and so on.

14. No job splitting.

Importance of the Problem

Looking at all those conditions and restrictions

imposed on the problem listed in the problem definition

section, one could assume that the way the problem is

defined has no direct resemblance to any actual practice in

the industry. Actually, the problem, even the way it is

defined, has quite a bit of applicability in actual practice.

This will be illustrated with some examples.

Example 1. A port with a nearby refinery has a
 

docking facility for only one oil tanker. The tanker which

brings crude oil to the port waits in the dock until the

crude is refined and then carries the refined products back.

The refinery tries to refine all the crude oil the tanker

brings as soon as possible because keeping the tanker waiting

for refined products and keeping the dock occupied with the

tanker are both expensive. Moreover, other ships might be

waiting to enter the dock.
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The refinery has four chemical units which are

similar to four machines in a flow shop. Crude has to be

processed by all four units in a particular sequence as

shown in Figure 1.1.

Usually a tanker delivers as few as three and as

many as five grades of crude oil. Each of these grades of

crude has to be processed separately and the processing

times of each of the four chemical units differ from any

other grade of crude. Each grade is tested in the labora-

tory first and its processing time on each.of the chemical

units is determined. When the testing of all the grades

is completed, the processing time data are given to the

scheduler. He then decides the sequence in which the grades

of crude oil are to be processed in the refinery, to mini-

mize the total make-span. The scheduler usually keeps the

sequence of different grades of oil the same on all four

chemical units, although if he wanted to, he could change

it since the refinery has plenty of storage tank space for

any in-process material.

Thus in this situation, the refinery is a flow shop

with four machines. The number of jobs could be anywhere

from three to five. The performance criterion is the mini-

mization of the total make-span.

Example 2. This example is similar to the previous
 

example. A company named Polychem makes polystyrene from

styrene- Since the chemical styrene is in short supply,

Polychem gets its limited varying daily quota at 8 a.m.
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every day. The plastic polystyrene can be made in various

grades of shape, color, strength and Opacity. The conver—

sation process from styrene to polystyrene needs processing

on four chemical units as shown in Figure 1.2. As soon as

the plant manager gets the information about the amount of

styrene available for a particular day, he checks the pile

of outstanding orders and decides which orders will be

filled from that day's availability of styrene. He then

calculates the processing time, temperature and pressure

conditions for each of the four units for each of the orders.

Since it is not advisable to store styrene overnight, it is

all processed on the same day. The sooner it is done, the

sooner all the employees can go home. Thus, in scheduling

orders the performance criterion should be minimization of

the total make-span.

Example 3. A dye company, El Chippo Dyes, has a
 

steady demand for different color dyes. To minimize various

production and storage costs the company manufactures only

red, blue, yellow, and white dyes. Whenever an order for a

particular dye arrives, the manager mixes these four basic

colors in an appropriate amount and fills the order.‘ As

soon as one of the four basic dyes reaches a specified

minimum level, production of all the basic dyes is triggered.

The amount Of production of the four dyes is decided on the

basis of present inventory and future usage expectation.

Each of the four basic dyes have to go through three vats

in a particular sequence. The processing time of each
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basic dye on each of the vats depends on the dye and the

amount to be processed.

Since all four dyes are needed before an order is

filled, the performance criterion is minimizing the total

make-span.

All three examples given above show a static flow

shop structure and present a definite need for rules, guide-

lines, and procedures to schedule jobs on machines to

minimize the total make—span.



CHAPTER II

PAST RESEARCH ON THE STATIC FLOW SHOP

SCHEDULING PROBLEM

There has been very little research work published

in the area of the flow shop scheduling problem. It seems

the widespread interest in developing the theory of the

flow shop scheduling problem and its application in the

industry has not materialized. Many experts of Management

Science and Production-Operations Management consider the

flow shop scheduling problem the stepchild of the job shOp

scheduling problem. They believe that once we have all the

knowledge of the theory and application of the Job Shop

Scheduling problem, the Flow Shop scheduling problem will

be solved automatically. Perhaps this might happen, but I

for one believe the Flow Shop scheduling problem is more

amenable to analytical and optimizing techniques than the

Job Shop scheduling problem. Pioneer research in the Flow

Shop scheduling area and efforts done in the past to apply

analytical and optimizing techniques to the Flow ShOp are

presented in this chapter.

21
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Several mathematical techniques—-combinatoria1

analysis, branch and bound technique, mathematical program-

ming, heuristics, and Monte Carlo sampling--have been

applied to solve the Static Flow shOp scheduling problem.

Combinatorial Analysis
 

The combinatorial optimization problem can be des-

cribed in general terms as follows: Given a structure which

can be arranged in a large but finite number of possible

configurations--permulation or combination and some numeri-

cal data which allows a real valued cost or profit to be

associated with each configuration, design the structure so

as to optimize the cost or profit. In the static flow shop

problem being discussed, the structure consists of N jobs,

M machines (the configurations are partial or complete

sequences of N jobs). The completion of processing time of

these sequences on M machines are the costs that should be

minimized. The solution procedure in the combinatorial

analysis of the static flow shop problem involves changing

one configuration or sequence of jobs to another by switch-

ing around jobs or choosing one job over others for a

particular position in the configuration to reduce the total

make-span, ultimately achieving the configuration that

minimized the total make-Span.

The work of Johnson (23), Dudek and Teuton (11),

and Smith and Dudek (37) are prominent examples of combina-

torial analysis applied to the classical flow shop problem.
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Johnson's work (23), published in 1954, has proved to

be a guidelight for the research done in the last twenty

years. Although the procedure Johnson presented in that

paper is applicable to finding solutions of only (i) the

N job, two machine classical flow shOp problem and (ii) the

special case of N job, three machine classical flow shOp

problems, it is widely discussed in flow shop scheduling

literature. Therefore, the procedure is described and

explained in detail in the following pages.

S. M. Johnson
 

N Job, 2 Machine Problem

Johnson gave an algorithm based on the combinatOrial

analysis to find an optimum solution to any N job, 2 machine

flow shop problem when the fourteen conditions listed on

pages 14-15 of this dissertation are applicable and when the

performance criterion is minimization of the total make-span.

The algorithm given by him does not consider any "Passing"

solution, i.e., any solution in which job sequences on dif-

ferent machines are different. Conway, Maxwell and Miller

(8) proved that in a 2 or 3 machine flow shop problem with

minimization of the total make-span as performance criterion,

any ”Passing" solution cannot be better than the best "Non-

Passing" solution.

The necessary steps in this algorithm to achieve an

optimum job sequence are listed and explained below.
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1. Construct a table of the processing times tij'

with columns for different jobs and rows for different

machines or vice versa.

2. Construct two rectangular blocks, 1 and 2, in

which you will put selected job numbers.

3. From the table of processing times, select the

smallest processing time and note its job and machine

number, e.g., tij' i and j. In case there is more than one,

choose randomly.

4. If the machine number j is 1, put the job number

i of that processing time in block 1, behind all the pre-

viously selected jobs of that block. If the machine number

j is 2, put the job number 1 in block 2, ahgag_of all the

previously selected jobs of that block.

5. Remove all processing times of the job i from

the table of processing times.

6. If some processing times are left in the table,

repeat steps 2-5.

7. If the processing time table has been exhausted,

construct the Optimum job sequence by putting the job

sequence of block 1 ahead of the job sequence of block 2

and combine them.

Example: Processing time of a 6 job, 2 machine flow

shop scheduling problem are given in Table 2.1.

In the processing time table, the smallest number is

1, corresponding to job 2, machine 1 and job 5, machine 2.
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Table 2.1

Processing Time of 6 Job, 2 Machine Problem

 

 

 

Jobs

Machines 1 2 3 4 5 6

l 7 l 2 10 9 7

2 3 9 15 6 l 4

 

Choosing randomly, job 2 goes to block 1 as the first number

and job 5 goes to block 2 as the last number behind all

future jobs.

  

Block 1 Block 2

     
 

Then the processing times of jobs 2 and 5 are removed from

 

the table.

Jobs

1 3 4

. 1 7 2 10 7

Machine 2 3 15 6 4

   

Then the smallest number, 2, as processing time for job 3,

machine 1 is selected and job number 3 is put in block 1

behind job number 2.

  

     
 

Block 1 Block 2
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Repeating the steps of the algorithm, we will even-

tually have all six job numbers in two blocks as shown

below:

  

2 3 4 6 1 5

    
  

The optimum sequence will then be "234615." The sequence

234615 is the best and optimum sequence out of the possible

6! = 720 sequences. The total make-span for it is 39 time

units.

= Machine 1 § = Machine 2

 6 S

5 Ziaagaaiaaagi 3§339

Figure 2.1. Gantt Chart for a 6 Job, 2 Machine Flow Shop

Scheduling Problem.
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Many researchers have attempted to extend the appli-

cability of Johnson's N job, 2 machine flow shop algorithm

to an N job, 3 machine or more than 3 machine flow shOp

problem. However, there has been only limited success.

Johnson himself could not successfully extend the algorithm

except for a Special N job, 3 machine flow shop problem. The

special case and the algorithm to Obtain a solution for it

are explained below.

N Job, 3 Machine Problem

The algorithm used for N job, 2 machine can be

utilized for the N job, 3 machine problem only if all the

previously-mentioned assumptions-conditions of N job, 2-

machine are satisfied and the following conditions for pro-

cessing times hold true.

)
. . . . . 2 .

Max1mum [Minimum (til), Minimum (t13)] Max1mum (t12

In other words, the largest of all the processing

times on machine 2 should be no bigger than the smallest of

all the processing times on either machine 1 or machine 2 or

both. If this condition holds for an N job, 3 machine prob-

lem, the algorithm that follows can be utilized to obtain an

Optimum solution to the problem.

1. The processing times of job 1 on machines 1 and 2 are

added and the result is denoted as the processing time

of job 1 on machine 1'. Similarly, the processing times of

job 1 on machines 2 and 3 are added and the result is denoted
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as the processing time of job 1 on machine 2'. The

conversion process of processing times of machines 1,

2, and 3 to two machines 1' and 2' for job 1 is

repeated for jobs 2, 3,. . . and N. As a result of

the conversion, a table of processing times of N jobs,

2 machines is Obtained.

' = o ' =
til ti1 + ti2 , t. t. + t.

The algorithm presented earlier for N jobs, 2 machines

is applied to the table of processing times Obtained

(in Step 1, and the Optimum sequence is computed.

The optimum sequence obtained in Step 2 is utilized

for the original N jobs, 3 machines problem and the.

total make-span is computed. S. M. Johnson proved the

above procedure provides a sequence with a minimum

total make-span as compared to any other possible

sequence for that particular flow shop problem.

Example: An N job, 3 machine flow shop problem has

processing times as shown in Table 2.2.

The condition is satisfied, so the problem is a

special case to which the Johnson's 2 machine algorithm

can be applied to compute the sequence which minimizes the

total make-span.

First, by adding the processing times of machines 1

and 2, as well as 2 and 3, the processing times shown in

Table 2.3 are obtained. Then the N job, 2 machine algorithm

is applied to the above processing times table and the optimum

sequence is determined.
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Table 2.2

Processing Time of 6 Job, 3 Machine Problem

 

 

 

 

 

 

 

 

  

      

Jobs

Machines 1 2 3 4 5 6

l 6 7 14 5 10 7 Min (til)=5

2 2 4 l 3 4 5 Max (t12)=5

3 3 10 8 7 9 2 Min (t. )=2

13

o o o 2 -

Max1mum [Min (til), Min (ti3)] Max1mum (tlz)

Maximum [ 5 , 2 ] Z 5

Table 2.3

Modified Processing Time of 6 Job, 3 Machine Problem-

Jobs

Machines 1 2 3 4 5 6

1' 8 ll 15 8 14 12

2' 5 10 9 10 13 7

4 5 2 3 6 1

Block 1 Block 2

The sequence "452361" for the original N job, 3 machine

problem gives 54 time units as the total make-span. Out of

the total 6! 720 combination, this particular sequence

”452361" gives the minimum total make-span.
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.\
\V

 

= Machine 2 \\\V = Machine 3

 
36 42 :8 g:

43 49 51 54

Figure 2.2 Gantt Chart for a 6 Job, 3 Machine Flow Shop

Scheduling Problem.

Dudek and Teuton (ll) worked on the N job, 3 machine

classical flow shop problem, publishing their findings in

1964. In that paper they presented: 1) the theoretical

development utilizing the combinatorial analysis to analyze

the N job, M machine classical flow shop problem; 2) an

algorithm to find a solution to the problem; and 3) an

example and its solution. They claimed the algorithm will

yield an optimum sequence to any N job, M machine classical

flow shop problem. In response to the claim, William Karush

(24), in a paper published in 1965, gave an example for
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which Dudek-Teuton's algorithm could not produce an optimal

solution and showed that the claim of producing at least one

Optimum sequence to every N job, M machine classical flow

shop problem by Dudek-Teuton's algorithm was not justi-

fied. Smith and Dudek (37), in a paper published in 1967,

presented a modified Dudek-Teuton algorithm and gave theore-

tical proof that the modified algorithm would produce at

least one optimum sequence to every N job, M machine classi-

cal flow shop problem. In the following pages Dudek-Teuton's

algorithm, Karush's argument against the algorithm, and

Smith-Dudek's modifications will be discussed.

Dudek and Teuton

Dudek and Teuton's algorithm states the accumulated

idle time on the last machine during the processing of N

jobs is minimized, the total make-span will automatically be

minimized. This is because:

Total make-span of N jobs on M machines = Total idle

N

time on the Mth machine + 2 t.

i=1 1“

Where tim is the processing time of ith.job on Mth

(last) machine.

Therefore, Minimization (Total make-span)

= Minimization (Total idle time on the

Mth machine)

N

+ 1:1 tim ;
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Since i§l tim is constant for a given problem.

Starting from the Objective of the minimization of

the total idle time on the Mth machine, Dudek and Teuton

obtained an algorithm and a decision rule, which are

explained below.

The set of N jobs is divided into two exclusive

subsets, namely 0 and H. The first subset 0 consists of J-l

jobs which are already scheduled for the first J-l position

respectively in the sequence of N positions. The second

subset H consists of yet unscheduled jobs. At the beginning

of the algorithm, 0 will be null and at the end H will be

null. The algorithm in general consists of three steps:

1) choosing a job from the subset H; 2) testing to see -

whether it meets the decision rule; and 3) scheduling it

for the Jth position in the sequence.

Out of all the jobs in the subset H, a job having the

smallest sum of the processing times on the machine 1 through

M-l is chosen as the prospective candidate for the position

J and is denoted by the sumbol 'A.‘ If more than one job

has the smallest sum, the job having the maximum processing

time on the Mth machine is chosen. Then the job A is removed

from the subset H, which is left with N-J jobs.

After deciding a job from the subset H as A, another

job is chosen from H and denoted by the symbol 'B.‘ The

symbol 'A' indicates the best prospective candidate or the

defender for the position J in the sequence and the symbol
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'3' indicates a challenger for the same position. One by

one, each of the N-J jobs from H, in any predetermined order

takes its place as the challenger B against the defender A.

To determine the superiority of A over B for the position J,

two sequences 8' and s" are constructed as S' = oAB and

S" = oBA. The decision rule is applied to the two sequences

8' and S" and to the processing times of the jobs in these

sequences on the machines 1 through M. The decision rule

consisting of M-l inequality equations, M being the number

of machines in the flow shop, is formulated by Dudek and

Teuton from the initial objective of the minimization of

the idle time on the last machine in the flow shop. These

M-l inequality equations would require too detailed a des-

cription to be explained here. For an accurate explanation,

the reader should refer to the original article.

If 8' gives the smaller idle time on the last machine

compared to S" or, in other words, the decision rule indi-

cates that S' is better than S", it means the job denoted by

A is better suited than the job denoted by B for the posi-

tion J in the sequence. Once this happens, a different job

from H is denoted by B and the whole procedure of applying

the decision rule on S' and S" is repeated. Now, if all

of the jobs in H as B have "challenged" the job in A and

have "lost," the job in A is assigned to the position J.

The size of the subset and the value of J both are increased

by 1, since one more job has been scheduled and a new job

from H is chosen as the best prOSpective candidate for the



34

for the next position in the sequence. Occasionally, a

particular job in B makes the sequence 8' inferior to S".

In that case, the job in B replaces the job in A as the new

prospective candidate and defender for the position J. The

remaining jobs in H will challenge the new defender one by

one. When the new A weathers the challenge from the remain-

ing jobs, it is assigned to the position J in the sequence.

Sometimes for a particular job in A and a particular job in

B, both 8' and 8“ have equal results, indicating the job in

A and the job in B are equally suitable for the position J.

In this case, two as are constructed, one 0 having the job

of defender and the other having a second job as defender.

The remaining jobs in H are that of challenger of the

defender with the end result of occasionally more than two

sequences with different jobs for the position J. If there

is more than one sequence at the end of the algorithm, the

choice of the optimal sequence is made on the basis of the

minimum total make-Span among those sequences.

Dudek and Teuton claimed that the algorithm produces

at least one Optimum sequence for the classical flow shop

‘problem.

This paper describes an algorithm that will yield

an optimum sequence for N jobs requiring processing through

M machines when no passing is allowed.1

 

1R. A. Dudek, and O. F. Teuton, "Development of

M-Stage Decision Rule for Scheduling N Jobs Through M

Machines," Operations Research, Vol. 12, NO. 3 (1964),

p. 471.
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William Karush gave a simple example of a 3 job, 3

machine classical flow shop.

Job

Machine . 1 2 3

l 3 22 20

2 22' 20 14

3 2 20 18

When the Dudek-Teuton algorithm was applied to this

problem, it gave an Optimum sequence 1 2 3 with a total

make-span of 83 time units. There are 3! = 6 possible

sequences for the 3 job, 3 machine problem. Determining the

total make-span for each of the six sequences indicates the

minimum total make-span is 82 time units for the sequence

2 3 1. Thus the sequence produced by the Dudek-Teuton

algorithm is not optimum.

The reason for this serious shortcoming of the Dudek-

Teuton algorithm is that it compares the partial sequence

GAB with GBA and concludes that if GAB is better than GBA,

the job A is more suitable in the position J irrespective of

where the job B will be. Now, if GAB is better than GBA,

then GAB H' H" will be better than GBA H' H", but GA H' B H"

may not be better than GB H' A H". The H' and H" are

exclusive subsets of the subset H. This means that although

GAB is better than GBA, A is not necessarily better suited

for the position J as compared to B. If the Dudek—Teuton
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algorithm is applied to Karush's example, the partial sequence

1 2 will be better than 2 l and the partial sequence 1 3

will be better than 3 1. Therefore, Dudek and Teuton would

conclude that job 1 is better suited for position 1 as

compared to jobs 2 and 3. The fallacy in this conclusion is

that just because 1 2 is better than 2 1, it does not mean

that 1 3 2 is better than 2 3 1. In fact, the total make-

span of the sequence 1 3 2 is 85 whereas for the sequence

2 3 1, it is only 82.

There is another disadvantage in the Dudek-Teuton

algorithm--the computational time requirement on the com-

puter. Dudek and Teuton, in the same paper, reported that

for a 3 machine, 3 job or 4 job and 5 machine, 3 job, 4-job,

or 5 job problem, their algorithm would take approximately

three times as much time as the complete enumeration would.

take on an IBM 1620 computer. Only for a 3 machine, 5 job,

6 job, 6 job or 7 job problem would their algorithm save

time as compared to the complete enumeration. Thus, it seems

clear that for a 3-5 machine problem it would be much better

to attempt complete enumeration rather than the Dudek-Teuton

algorithm.

Smith and Dudek
 

Two years after Karush pointed out the fallacy in the

Dudek-Teuton algorithm, Smith and Dudek in their paper (37)

presented an improved algorithm correcting the fallacy.

They redefined the two sequences 8' and S" as S' = GAB H' H"
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and S" = GB H'aH", where H' and H" represent any possible

exclusive subsets of H. The algorithm utilizing the decision

rule determines whether 8' is better than S" for each of the

B's from the subset H and for each of the possible permuta-

tions of H' and H". If the decision rule indicates S' is

indeed better than S", A is scheduled for the position J.

Otherwise, for any one or more B's, S' is not better than

S" and A and those B's are each scheduled for the position

J, creating that many possible sequences. The decision rule,

which involves M—l inequality equations, is too technical to

describe here.

Smith and Dudek in their algorithm demonstrated the

computational time required to do 3 or 5 machine, and up to

8 job problems is almost half as much as would be required

by the complete enumeration. Although this is quite an

improvement over the Dudek-Teuton algorithm requirement of

computational time, it is not as advanced as the computa-

tional time requirement of the Branch and Bound algorithm.

J. N. D. Gupta in his paper (18), published in 1969, indi-

cated the Branch and Bound algorithm given by McMOhan and

Burton (28), requires about 50 to 90 percent less time than

the Smith-Dudek algorithm. Thus, it seems more than 2

machine classical flow shop problems, the computational time

requirement of the algorithm of combinatorial analysis might

be too great compared to other methods.
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Branch and Bound Meth'gd

As previously discussed, the combinatorial analysis

gives an optimal solution for the N job, 3 or more machine

classical flow shop problem, but the computational time

requirement is very large. The Branch and Bound method can

give Optimal solutions to the classical flow shop problem

with a reasonable computational time requirement.

As explained by Conway, Maxwell, and Miller (8,

pp. 56) the Branch and Bound technique first used by Little,

Murty, Sweeny, and Karel is an ingenious recursive computa-

tional procedure. The procedure involves the maintenance of

a list of unsolved, closely-related problems and three pro-

cessing routines to apply to the problems on the list.

Initially, one places the original problem on the list. The

original problem is then processed (and hence, removed from

the list), by one of the routines, which will sometimes

create other problems to be placed on the list. One simply

continues applying these same routines to each problem until

there are no more on the list, at which point the solution

to the original problem has been revealed. The three rou-

tines are:

l. A solution routine, which directly solves a

problem from the list if the problem is easy

(small) enough.

2. An elimination routine, which discards a

problem from the list if it can show that
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the problem can make no contribution to the

solution of the original problem.

3. A partitioning routine which replaces a

problem too difficult to solve with several

related subproblems.

For the classical flow shop problem in the Branch

and Bound procedure, the set of all possible sequences is

progressively divided into subsets in a systematic manner by

"branching." After every division the newly-created subsets

must be mutually exclusive and exhaustive. A partial

sequence (one with less than N jobs sequences) is used to

identify the subset of all possible sequences arising from

the partial sequence. A lower bound on each subset is

determined in such a way that the total make—span for any

sequence in the subset is greater than or equal to this bound.

After every branching, the subset with the lowest bound is

chosen for further exploration. The procedure terminates

when a complete sequence is obtained for which the total

make-span is equal to or less than the lower bounds on all

unexplored subsets. The complete sequence is then Optimal.

At present, there are five published papers which

show the utilization of the Branch and Bound technique to

Obtain Optimal solutions to the classical flow shop problem.

They are: Lomnicki (27); Ignall and Schrage (22); Brown

and Lomnicki (6); McMahon and Burton (28); and Gupta (18).

Only two of these five—-that of Ignall and Schrage and one

by McMahon and Burton--are useful enough to be discussed here
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in detail. The remaining three papers combine the infor-

mation of the other two papers and thus will be mentioned

only briefly.

Ignall and Schrage

A paper published in 1965 in Ignall and Schrage (22)

was the first to clearly exemplify the applicability of the

Branch and Bound technique for the classical flow shop

problem. The Objective function they used to compute the

lower bound for each of the nodes in the tree is simple and

easy to use. The Objective function for the lower bound for

a partial or complete sequence JS is as follows:

  

Time A(JS) + Z ai + Min (bi + Ci);I

NJS NJS

LB (JS) = Max Time B(JS) + 2 bi + Min (c1);

NJS NJS

Time C(JS) + 2 Ci;

NJS  

The time A (JS), B (JS), and C (JS) are the times at which

machines A, B, and C, respectively, complete processing on

the last job of the sequence JS. The term 'NJS' indicates

the set of all jobs which are not on the sequence JS. The

terms ai, bi, and ci represent the processing times of the

ith job on machines A, B, and C respectively.

In comparison with the complete enumeration, the

Branch and Bound technique is faster. The computational
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time and effort for the Branch and Bound technique is

directly proportional to the number of nodes generated for

a problem. For an N job, M machine classical flow problem,

in the most difficult case, there will be 1 + N + N (N-l)

+ . . . + N! nodes. In the best possible case there will

be 1 + 2 + . . . + N = 1/2 N (N + 1) nodes. For a 10 job

problem solved by the Branch and Bound technique, at worst

there will be 6,235,301 nodes and at best there will be 55

nodes. Using the objective function they devised, Ignall

and Schrage worked 50 of the 10 job, 3 machine problems and

found that on an average, each problem needs generation of

only 212 nodes and 8.7 seconds on a CDC 1604 computer to

arrive at an optimum solution. Since Ignall and Schrage

did not make any comparisons of their method with other

methods it is not possible to state definitely how efficient

their method is. If a 10 job, 3 machine problem was done

using the complete enumeration, there would have been a need

for generation of 10! = 3,628,000 sequences. The generation

of each sequence and computation of its make-span would

require roughly the same amount of time as the generation

of a node and computation of its lower bound. Therefore,

the complete enumeration for one 10 job, 3 machine would

require approximately §§%%%QQ * 8.7 seconds or 41.3 hours

on CDC 1604. Although the complete enumeration would likely

generate more than one optimum sequence, compared to only

one optimum sequence by the Branch.and Bound technique, the

difference in computation times—-4l.3 hours compared to 8.7
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seconds-~is too great to consider any other factors.

Actually, there seems to be no need for more than one

optimum sequence. Thus the work of Ignall and Schrage

appears quite impressive and useful for the classical flow

shop problem.

Besides giving an objective function for the lower

bound, explaining the Branch and Bound technique and the

results for the previously published jobsets of Giglio and

Wagner (15), Ignall and Schrage discussed the concept of

dominated nodes in their work. They explained that if JS

and IS are two different sequences on two different nodes,

both containing the same set of jobs, then one of these two

sequences may be dominated by the other sequence. For

example, the sequence JS is such that the last job in it is

completed on each of the machines A, B, . . . M at the same

time or before the last of the jobs of IS on each of the

machines A through M, thus the sequence JS is dominating the

sequence IS. Any schedule which contains IS at the begin-

ning cannot be hurt by replacing IS by JS. Thus even though

the lower bound on the node with the IS as the partial

sequence might be lower than the lower bound of the node

with JS, it will not be necessary to branch from IS, and

the node with IS can easily be discarded from the list of

nodes that are under active consideration.

In the example that Ignall and Schrage used to

illustrate the Branch and Bound technique, the lower bound

of the partial sequence 1, as well as partial sequence 2,
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were both 55. [LB (1) = LB (2) 55.] Therefore, it was

necessary to branch from 1 as well as 2. The LB (12) was

equal to 55 and LB (21) was 56. However, the sequence 12

was dominated by the sequence 21, so it was not necessary

to branch from 12 so it was discarded even though LB (12)

was smaller than LB (21).

Lomnicki, Brown and Gupta
 

The paper by Limnicki (27) was published in Great

Britain at almost the same time as the paper by Ignall and

Schrage in the United States. Both of these papers pub-

lished in 1965 are based on the work of Little, Murty,

Sweeny, and Karel,2 On the traveling salesman problem,-

although Lomnicki also made use of Roy‘s Graph-theoretical

interpretation of the job shOp published in France in 1962.3

Even though the objective function to find the lower bound

used by Lomnicki is exactly the same as that of Ignall and

Schrage, it is very difficult to see any similarity between

them. The deceiving differences are caused by the use of

unusual and strange notations by Lomnicki. In his paper

Lomnicki briefly mentions a concept of a reversed order of

 

2Little, Murty, Sweeney, and Karel, "An Algorithm

for the Traveling Salesman Problem," Operations Research,

11, 972-989, (1963).

 

3B. Roy, Cheminement et connexite dans les graphes -

Applications aux problemes d'ordinnancement. Metra, serie

speciale No. l, Societe d'economie et de mathematiques

appliquees, Paris. (1962).
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machines. If the order of the M.machines A, B, C, . . . M

is reversed to M, L, J . . . A for a problem, the optimum

sequence obtained will be the exact reverse of the original

job sequence. The advantage of this concept lies in the

choice it offers the problem solver. One of these two ways

requires less effort and computation time. If the problem

solver can determine for a particular problem which of the

two orders of machines-~the original or the reverse--would

result in the smaller number of nodes generated and less

computation time, a lot of time can be saved. Lomnicki

suggested the concept but did not use it. McMahon and

Burton, whose work is discussed a little later, used it

effectively.

The paper by Brown and Lomnicki (6) published in

1966 is an extension of Lomnicki's work of the previous

year. Brown and Lomnicki gave a simple explanation of

Lomnicki's previous work, presenting the objective function

in slightly better form. The objective functions given by

Lomnicki as well as Ignall and Schrage are particularly for

3 machine classical flow shop problems only. Brown and

Lomnicki extended the objective function of Lomnicki so that

it can be useful for more than 3 machine classical flow shop

problems. The objective function given by Ignall and Schrage

is in a fairly simple form so that anyone can extend it to

cover more than a 3 machine problem. Brown and Lomnicki

also gave some experimental results and analysis of the

application of the Branch and Bound technique to some



a4.

(’1‘

r1)

.1...

)5:

(t?

v.

71

)7

((

o
—
l

‘
(
n

l
D

(
I
)

r
t
-

r
1

I
'
l
l



45

problems and gave an algorithm in a form that can be used if

the Branch and Bound technique is to be programmed into a

computer.

J. N. D. Gupta published a paper (18) giving an

algorithm to obtain an optimum to the classical flow shOp

scheduling problem. According to Gupta, the algorithm is

based on the lexicographic search concept. The American

Heritage Dictionary defines lexicography as the writing or

compilation of a dictionary. What Gupta seems to be doing

is "compiling a word from appropriate letters" or appro-

priately compiling a sequence from jobs. Actually, the

algorithm Gupta presented in 1969 is no different from the

earlier Branch and Bound technique. The objective function

of Gupta can easily be put into the following form:

LB (JS) = Time M(JS) + 2 Mi

NJS

Once in this form, it is easy to see the function is the

same as the last part of Ignall and Schrage's objective

function with M instead of C. The M is the last machine in

the flow shop. Other notations are the same as the one used

for Ignall and Schrage, as well as Brown and Lomnicki, in

the previous few pages.

Gupta compared the computation time his algorithm

required on IBM 7040 for 3 to 7 jobs and 4, 6 and 8 machines

with the computation times of Brown and Limnicki and Smith

and Dudek. His algorithm requires about 10 to 20 percent
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less time than Smith and Dudek's algorithm. Thus, if nothing

else, Gupta demonstrates Smith and Dudek's algorithm is

inefficient compared to that of Brown and Lomnicki.

McMahon and Burton
 

In a paper published in 1967, McMahon and Burton

presented some new concepts which are useful in applying the

Branch and Bound technique to classical flow shop problems.

The bounds that are obtained from the objective functions

given by Ignall and Schrage, Lomnicki and Brown, and Lomnicki,

are called "machine-based bounds" by McMahon and Burton.

Against these "machine-based bounds," their own bounds from

a different objective function are referred to as "job--

based bounds."

is as follows:

LB (.13)

 

Time A(JS) + Max

  

NJS

Time B(JS) + MaxNJS

Time C(JS) + Z NJS C

The objective function for job-based bounds

[ai + bi + ci + NKZ Min (ak, ck)];

[bi + ci + NK E Min (bk, ck)];

o

I

i

 ___J.

The LB(JS) is the lower bound for any node with a partial or

complete sequence JS. Time A (JS), Time B (JS) and Time C

(JS) are the completion times of the last job in the sequence,

JS on the machines A, B, and C, respectively. The notations

J.

A, B and C, respectively.

a., bi and ci are processing times of job i on the machines

The NJS represents a job set
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containing jobs that are not yet assigned to the sequence

JS. The term NK represents a set of jobs in the set NJS,

minus the job i. The subscripts i and k represent one job

from the jobset of NJS and NK, reSpectively. The a b
kl kl

and ck are processing times of the job K on machines A, B,

and C, respectively.

The composite bound of McMahon and Burton is the

bound equal to the greater of the machine-based bound and

the job-based bound.

Composite bound = Max [Machine-based bound, Job-based bound]

It would have been nice if McMahon and Burton had

experimented to determine the relative efficiency of

machine-based bounds versus job-based bounds. It would have

proved the superiority of one over the other. Instead,

McMahon and Burton experimented with the classical flow

shop problems of Branch and Bound technique using the

machine-based bounds of Ignall and Schrage versus their own

composite bounds. They concluded the composite bound is

far better than machine-based bounds. They solved 50

problems each for the 4 to 10 jobs, 3 machine classical

flow shop problems by the Branch and Bound technique, using

both machine-based bounds and composite bounds. The mean

number of nodes generated reduced from machine-based bounds

to composite bounds by 22 percent, 28 percent, 39 percent,

40 percent, 48 percent, 40 percent, and 37 percent, respec-

tively. The reduction in the mean computation times were

20 percent, 31 percent, 55 percent, 82 percent, 78 percent,
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75 percent and 82 percent, respectively, for the same seven

sets of 50 problems.

A significant reduction in the number of nodes

generated and the computation time should convince anyone of

the superiority of composite bounds for the Branch and

Bound technique over machine-based bounds. On the other

hand, it raises a question. If for each node generated the

calculation of the lower bound by composite bounds requires

almost double the amount of calculations required by

machine-based bounds, (for composite bounds it is necessary

to compute machine-based bounds as well as job-based bounds),

how can the percentage reduction in the computation time

from machine-based to composite bounds be greater than the

percentage reduction in the number of nodes generated? For

instance, for the 50 problems of the 10 job, 3 machine case,

the average nodes generated decreased by 37 percent from

machine-based to composite bounds. However, the computation

time went down a whole 82 percent. Common sense suggests

the percentage reduction in the total computation time should

be less than the reduction in the total number of nodes

generated, if each node generated required more computation

in composite bounds than in machine-based bounds. In six

out of seven sets of those 50 problems, the reduction in

computation time is much greater than the reduction in the

number of nodes generated. It seems McMahon and Burton

should have tried to examine and explain this obvious dis-

crepancy, but unfortunately they did not.
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In the algorithm McMahon and Burton skillfully used

the concept of reversed order. To determine which of the

two orders, the original or the reversed should be used to

solve the problem, they introduced a concept of the domi-

nant machine. Of the two machines A and C, the one which

has the greater total processing time is referred to as

the dominant machine. From experiments of 50 problems for

4 to 10 jobs, they determined that the total number of nodes

generated and the total computation time required is much.

less if the dominant machine is last compared to the number

of nodes and computation times required if the dominant

machine is first. Thus, between the two machines, A and C,

if C is dominant, then the original order of the machines,

i.e., ABC is used, but if the machine A is dominant, then

the reversed order CBA should be used. In case the reversed

order is used, the optimum sequence obtained by the Branch

and Bound technique should be reversed to obtain the optimum

sequence for the original problem.

Mathematical Programming Approach
 

During the years 1958-1965 there was great interest

among researchers in solving various scheduling problems

using many mathematical programming techniques. Techniques

like Linear Programming, Integer Programming, and Dynamic

Programming were repeatedly used for the traveling

salesman, job shop scheduling and flow shop scheduling
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problems. The work done to find a solution to the job ShOp

was mainly carried out by Wagner in 1959 (42), Bowman in

1959 (5), Manne in 1960 (29, Chapter 12) and Giffler and

Thompson in 1960 (14). Wagner in 1959 (42), Story and

Wagner in 1961 (40), Giglio and Wagner in 1964 (15) spec-

ifically worked on solving flow ShOp scheduling problems

using the integer linear prOgramming technique.

In spite of the SOphisticated techniques and inven-

tiveness of the researchers, the mathematical programming

approach did not prove a viable means of efficiently solv-
 

ing flow shop scheduling problems.

Wagner

wagner in his paper (42), derived and presented an

integer, linear programming model capable of representing

the job shop scheduling problem. In the second section of

his paper, he modified his model to specifically represent

the flow shop scheduling problem. It is interesting to

note that the model for the flow shop is capable of handling

a problem even when the restriction of the same job sequence

on different machines is removed. In other words, even

when "no passing" or "no switching" restrictions are

removed, the model for the flow shop can be used. In the

third section, Wagner simplifies the model even further so

that it can be used when there are only three machines in

the flow shop and passing or switching is not necessary.

Thus, wagner has given three levels of the integer linear
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programming model, first for the job shop, then for the flow

shop, and finally for the 3 machine classical flow shop

problem. He does not attempt to present a solution to any

problem in that paper, although some of his comments indi-

cate a difficulty of solving a problem with his models.

"The model in its present form is computationally

unwieldy except perhaps for situations with a very few

machines and a limited number of items (jobs)." Thus, we

have derived a fundamental system of the order of 4*N equa-

tions which probably can be solved for N 5 25 on high-speed

computing machinery; but it of course remains questionable

whether or not such a computational proposal for finding

an optimal solution is economically sound." (The above-

comment is in reference to the three machine classical flow

shop problem.)

Story and Wagner
 

Story and Wagner (40) reported experiments on 4 to

9 jobs, 3 machine classical flow shop problems. First,

they attempted to obtain optimum solutions to the 4 job, 3

machine classical flow shop problem by a few heuristic

techniques like: a) Pairwise exchanges; b) end around

cycling; and c) order reversal of jobs; starting from an

arbitrary sequence. None of the three heuristics helped

them to achieve the optimum solution. At this point, they

set out to experiment with.the N job, 3 machine classical

flow shop given by Wagner (42). The integer programming
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algorithm they used was based on the approach suggested by

R. Gomory,4 and the integer programming package IP03 avail-

able for the IBM 7090 computer, by IBM Corporation. They

arbitrarily constructed six problems each for 4 to 9 jobs,

3 machine classical flow shops. If they failed to obtain a

solution to any problem in less than 1,000 iterations they

terminated computations for that problem. For six 4 job,

3 machine problems, they obtained optimum solutions at an

average of 119 iterations per problem. If they would have

attempted to find optimum solutions to the 4 job, 3 machine

problems they would have to do only twenty-four permutations

per problem, instead of 119 iterations. Besides, the amount

of computations in an iteration is much more than the amount

of computation in a permutation. This fact in itself shows

how inefficient integer programming can be in solving classi-

cal flow shop problems. Because of the thousand iterations

limit on problems they could obtain Optimum solutions to

only 5, 4, 3, 2, and 1 problems out of six problems each for

the 5 job, 6 job, 7 job, 8 job and 9 job, 3 machine classi-

cal flow sh0p cases. After this dismal performance story,

wagner also attempted to solve some 4 job, 3 machine

problems by Gomory's mixed-integer programming method with

very little success.

 

4R. E. Gomory, "An All-Integer Programming Algorithm,"

Chapter 13, in the reference, 29.

5R. E. Gomory, "Mixed Integer Programming Algorithm,"

Unpublished Rand Memorandum, RM2597, 1960.
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Our conclusion is evident from the tests: We

have not yet found an integer programming method

that can be relied upon to solve most machine

sequencing problems rapidly.

Giglio and Wagner

In their paper (15) of 1964, Giglio and Wagner

tested integer linear programming,.ordinary linear program-

ming with answers rounded to integers, a heuristic algorithm

and random sampling of six of the previously-used (40) 6

job, 3 machine classical flow shop problems. The heuristic

algorithm and random sampling methods will be discussed

later on in this chapter.

Giglio and Wagner applied Gomory's all-integer

programming algorithm available as SHARE PKIP91 on IBM 7090

to the 3 machine flow shop model given by Wagner (42).6

Giglio and Wagner in their paper (15, page 310) state that

"previous experience with integer programming problems has

demonstrated that the convergence prOperties of the algorithm

are highly sensitive to the form in which the problem is

stated initially. Consequently, we examined the effect on

convergence of specifying six different input formats."

The main differences among the six input formats were few

extra constrains, or the presence of a lower bound on the

objective function. They attempted to solve all six prob-

lems using each of the six different starting input formats

 

6R. E. Gomory, "An All-Integer Integer Programming

Algorithm," Chapter 13 in the reference 29.
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and restricting the maximum number of iterations to 10,000.

They presented the actual number of iterations required

for each of the 6 x 6 problems and Conway, Maxwell, and

Miller (8, pp. 96) commented on the number of iterations

by saying:

This data does not appear very encouraging. In

many cases the number of iterations is of the

same order of magnitude as the number of possible

permutations (720) and an iteration involves more

computations than the generation of a permutation.

However, they do confirm that the exact form in

which the problem is stated has an important effect

on the efficiency of the algorithm and further work

is being directed at the development of more effi-

cient constrains and bounds. At least, at the

moment, the Branch and Bound technique appears to

have a substantial advantage over integer program-

ming as a practical computational procedure for

the problem.

In the second part of their testing Giglio and

Wagner generated a hundred 6 job, 3 machine problems. The

processing times were randomly picked from the uniform

distribution between 1 and 30, inclusively. For each of

the 100 problems, they calculated the total make-span for

each of the 6! = 720 permutations, computed the mean total

make-span and noted the minimum make-span. Then they found

the best sequences for each of those 100 problems by using

the algorithm of linear programming on the model presented

by wagner (42), removing the restriction of the integer

values only. The answers were rounded to the nearest

integers to obtain the best sequences and the total make-

span was computed for them. When Giglio and Wagner compared

the total make-span obtained by linear programming with the
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make-spans obtained by complete enumeration of each of the

100 problems, they found the linear programming make-spans

were overall only a little better than the mean make-spans.

If the minimum, mean, and maximum make—spans are given ranks

of l, 360 and 720, the best make—span obtained by linear

programming would achieve an overall rank of 206. This

result is far from satisfactory and Giglio and Wagner

reported:

In summary, we can conclude that the rounding

process tends to produce solutions that are

better than could be obtained from a single

permutation drawn at random, but the method

by no means produces optimal or nearly optimal

solutions with a high degree of success.

Heuristics
 

A heuristic is a rule of thumb which.may have

little, if any, theoretical foundation, but is found to

generate very good, although not necessarily optimum,

solutions. The advantages of a heuristic algorithm are

that it would give a very good solution with relatively

little computational time. In the classical flow shop

scheduling area many researchers have given some of the best

heuristics, Giglio and Wagner (15), Palmer (33), Campbell,

Dudek and Smith (7) and Gupta (16) are some of them.

Giglio and Wagner

In the previously mentioned paper (15) Giglio and

Wagner provide a heuristic for N job, 3 machine classical

flow shop problems. The algorithm is quite simple and gives
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reliable solutions. The steps of the algorithm are as

follows:

For any N job, 3 machine problem the processing

times of machine A and machine B for each of the N jobs are

added and the sum is referred to as the processing time of

machine A' for that particular job. Similarly, the pro-

cessing times for machine B and machine C for each of the

N jobs are added and referred to as the processing time of

machine 3' for that job. Finally, there will be two

processing times for each of the N jobs. Johnson's

algorithm for N job, 2 machine is applied over here and a

sequence is obtained which should be a very close approxi-

mation to the optimum sequence for that problem.

Giglio and Wagner applied this heuristic on 20

problems whose processing times were randomly distributed

from the uniform distribution over 1 to 30 both inclusive.

In nine of the 20 problems, an optimum solution was produced

and in eight of the remaining cases the solution produced

was only one interchange away from the optimum. The average

total make-span by heuristic was 1317 compared to the aver-

age minimum make-span of 1279. Thus, the heuristic seems

to be quite useful.

Palmer

Palmer in 1965 presented a heuristic (33) for the

N job, M machine classical flow shOp problem. Considering

the fact that this was a first attempt at devising a
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heuristic for more than a three machine flow shOp, it is

very efficient.

The algorithm is based on the principle of giving

priority to jobs whose processing times increase with the

increase in the machine number. The algorithm simply

involves calculating a quantity called the slope index for

each of the N jobs.

Slope index

for job i = Si =

_ M-l - M—3 _ M-S . . . M—3 M-1

’7‘ til “—2 ti2 T ti3 + “—2 tim-l + "“2 tim

The jobs are then sequenced in the decreasing order of the

slopes.

Palmer randomly generated 4 to 9 job, 3 machine

problems and applied his heuristic on them. His solutions

were very close to the optimum solutions. The sum of all

six minimum make-spans was 418 units whereas the sum of

the six make-spans by Palmer's heuristic was 437.

Giglio and Wagner (15) had used six problems for a

linear programming algorithm. To check the comparative

effectiveness of the heuristics of Giglio and Wagner with

the heuristics of Palmer, I applied both heuristics to the

six problems. The sum of the minimum make-spans for the

optimum solutions was 397. Palmer's heuristic gave a

make-span sum of 417 whereas Giglio and Wagner's heuristic

resulted in 418. Thus it appears that for a very small
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sample, both heuristics are almost equally efficient.

Palmer himself concluded his paper in this way:

All general results must be approximations subject

to the influence of single items or processes not

being too great; they are upset if the schedule

is dominated by one item or one process.

Campbell, Dudek and Smith
 

Campbell, Dudek and Smith in a paper (7) published

in 1970 presented a reliable heuristic which has been fairly

well received and is frequently reported by other researchers

in the classical flow shOp field. The heuristic involves

converting an N job, 2 machine size which can be solved by

using Johnson's N job, 2 machine algorithm.

The conversion of one problem of N job, M machine

size to M-l auxiliary problems of N job, 2 machine size is

very simple. The original problem has processing times in

N rows and M columns. Each of the auxiliary problems has

two columns of processing times for the two machines and N

rows for the N jobs. The first column of the processing

times of the Kth auxiliary problem is constructed by adding

row by row the processing times of the £i£§E_K machines of

the original problem. The second column of the same Kth

auxiliary problem is constructed by adding row by row the

processing times of the lEEE.K machines of the original

problem. The value of K will progressively increase from

1 to M-l for the M-1 auxiliary problems. For the first

auxiliary problem, the first and second columns will be
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the same as the first and last column of the original

problem.

For each of the M-1 auxiliary problems the optimum

sequence and the minimum make-span is computed by using

Johnson's N job, 2 machine algorithm. The lowest make-span

from the M-1 make-spans and the corresponding N job sequence

is noted. The sequence is chosen as the heuristic approxi-

mation of the optimum sequence and the make-span for the

original problem using that sequence is computed.

These three men adOpted a policy for error calcula-

tion on the basis of the percentage deviation of the make-

span of the heuristic sequence from the optimum make-span.

Heuristic make span - Optimum make span

Optimum make span

 

Error =

Then Campbell, Dudek and Smith generated integer random

numbers from a uniform distribution between 01 to 99 for

processing times of 340 problems ranging in size from 3 job,

3 machine to 8 job, 5 machines. For each of the 340 prob-

lems they computed the optimum solutions, solutions by their

heuristic, and the solutions by Palmer's heuristics. They

also calculated the percentage of errors and noted computa-

tion time required for both heuristics. The average amount

of error percentages for their heuristics were about 2

percent compared to about 4.5 percent for Palmer's heuris-

tics. The computation times for Campbell's heuristic were

anywhere from two to three times the time required for
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Palmer's heuristic. Thus it seems clear that Campbell,

Dudek and Smith's algorithm provides closer approximations

to the optimum solutions. The computation time comparison

between their heuristic and Palmer's does not give a lot

of insight except that Palmer's heuristic demands half or

one-third as much time as Campbell's heuristic. A compu-

tation time comparison of Campbell, et_al,'s heuristic,

Palmer's heuristic, and any algorithm for optimum solutions,

would have been beneficial.

Gupta

In 1971 Gupta published a paper (16) presenting a

simple heuristic for the N job, M machine classical flow

shop problem. This heuristic involves much less calculation

than either Campbell, Dudek, and Smith's or Palmer's

heuristics. In the heuristic, a function of (i) is calcu-

lated for each of the N jobs and the heuristic sequence is

obtained by arranging jobs in the increasing order of the

value of the function.

 

. A

f (1) = .
Min

< < _
l - K _ M 1 (tiK + tiK+l)

where A = +1 1f tim S‘til' where A = -l otherW1se; Gupta

used the same error function used by Campbell, Dudek, and

Smith. He generated processing times from the uniform

distribution between 0 and 999 from the 195 problems of

4 to 8 jobs, 4 to 8 machines classical flow shop problem.
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For each of these 195 problems, Gupta computed the Optimum

solution, minimum make-span, the heuristic solution, and

its make-span by his heuristic and by Palmer's heuristic.

He also calculated error and computation time required by

both his and Palmer's heuristics. The average error per-

centages of Gupta's heuristic ranged anywhere from 3 to

10.5 percent but Palmer's heuristic error percentage ranged

from seven to twenty-two. The computation time required

for Gupta's heuristic was on an average about 10 percent

less than for Palmer's heuristic. Thus Gupta's heuristic

seems to be better on both counts--closeness to optimum

and computation time. However, an important question arises

from the data presented by Gupta. Why did Campbell, Dudek

and Smith find (7) on an average only 4.5 percent error

with Palmer's heuristic, while Gupta found seven to 22

percent error with it when he used the same error function

and similar size problems as Campbell and others?

'Monte Carlo Sampling
 

In many decision-making situations the Monte Carlo

Sampling has proved to be a very useful and efficient

technique to decide between many alternatives. Although

it does not necessarily provide the best alternative, if

used properly it can provide an excellent choice. On the

other hand, if analytical methods are available to make a

decision then the Monte Carlo technique might not measure

up to the analytical methods in terms of optimality of the

solution.
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Heller in 1960 had published a paper showing some

use of the Monte Carlo Sampling technique to find a good

solution to the flow shop scheduling problem.

Heller

In 1960, Heller published a paper (19) showing the

results of his experiments with a 100 job, 10 machine and

a 20 job, 10 machine problem. From his results he made two

conclusions. (1) The total make-spans are (approximately)

normally distributed for a large number of jobs. This

characteristic, together with the cost of sampling and the

cost due to the amount of suboptimization, can be used to

determine the size of the sample. And (2) that if we were

looking for the minimum total make-span, we would sample

(only) from those schedules which have the same ordering on

all machines. These two conclusions, although erroneous,

appeared to make sense to many of the other researchers at

that time. Besides these erroneous conclusions there is

another inaccuracy in the paper.

Heller generated a total of 1000 integer processing

times distributed between 0 and 9 for the 100 job, 10

machine problem. He gave the impression that these 1000

numbers came from uniform distribution. Conway, Maxwell

and Miller stated, "He generated a set of 100 jobs with

integer processing times apparently uniformly distributed

between zero and nine.“ (8, pp. 100.) Unfortunately, the

distribution of where the numbers came from seems far from
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uniform and similar to a bell shape. This stems from the

fact that there are only 31 zeros and 62 nines in the 1000

numbers, whereas there are 191 fives. (If the distribution

were uniform, the expected number of zeros, nines, and

fives should all be 100.)

Heller, for his experiment on the 100 job, 10

machine problem did 3000 trials. For each trial he randomly

chose a permutation of 100 jobs, assumed this permutation

as the job sequence on all of the 10 machines, and computed

the total make—span. He drew a graph of make-spans versus

the probability of obtaining them. The range of make-spans

was 580 to 725 units. The shape of this graph.was bell-like

and thus he assumed that the make-spans are approximately

normally distributed for large numbers of jobs. The con-

clusion of normality is not justified for two reasons,

one of which is given by Conway, Maxwell, and Miller (8,

pp. 100).

If the distribution of schedule times (make spans)

is approximately, and/or asymptotically, normal,

the departures from normality will be most pro-

nounced in the tails of the distribution, which

is precisely the area of interest. No one is

concerned with estimating the mean of the

schedule-time distribution for a particular problem.

The second reason was that his sample size is only 3000,

whereas the population size is 100! or approximately

1.26*10.157

For the second problem, the 20 job, 10 machine one,

he used the processing times of the first 20 jobs from the

100 job problem. He examined and experimented with this
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problem in two different parts. In the first part he had

the same job sequence on all of the 10 machines whereas in

the second part he selected different job sequences on

each of the 10 machines.

In the first part of the study for each trial he

randomly generated a permutation of 20 jobs, used it as a

job sequence for all the machines, computed the total make

span and did 12,000 trials. In the second part, for each

trial he randomly generated 10 different permutations of

20 jobs for each of the 10 machines and computed the total

make-span. He repeated the procedure for 9037 trials. The

make-spans versus the probability of obtaining it were drawn

for both of the parts on the same paper using the same scale.

Graphs for both parts were bell-shaped with the mean make-

spans 169.93 and 727.82, respectively. The sample variances

were 1.24 and 32.14, respectively, for the first and second

part. Both of the graphs were far apart without a single

point in common. From this observation Heller concluded

that if the interest is in obtaining the minimum make-span,

it is worthless to sample from the population of the second

part.

The fallacy of the above conclusion is not difficult

to understand. The pOpulation size of the first part (same

job order or sequence on all machines) is 20! or approxi-

17
mately 2.43*10 and the population size of the second part

(different job order on each of the 10 machines) is (20!)10

or approximately 7.24*10173. The first part population is
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also a part of the second part population. In fact, if a

member from the second part is randomly selected there is a

probability of 10"10 that it might be a member of the first

one. With 9037 trials, there is a probability of .0000009037

that a solution could be the member that might be found in

the first as well as the second parts. Obviously the

probability is very small and Heller did not hit upon it.

Another fact is that there are some members in the second

part which are not members of the first part but still have

lower make-spans than any member of the first part. With

the total population of 7.24*10173 and sample size of only

9037 there is very little probability of finding any

unusual member. (It is a fact that very few members of the

second part might have a smaller make-span than the lowest

make-span member of the first part.) In fact, Nugent work-

ing on the Monte Carlo Sampling for job shop scheduling

examined the 20 job, 10 machine problem. Considering it as

a special case of job shop scheduling, he applied his

"probabilistic priority rules" and found a total make-span

of 144 with slightly different job sequences on different

machines. Nugent's work definitely proved that Heller's

conclusion was erroneous.

To examine how a simple heuristic would perform, I

applied Palmer's heuristic to Heller's 20 machine, 10 job

problem. In half an hour's work, without the help of any

electronic instrument, a (no passing) sequence was obtained

which gave a total make-span of 156. Adding the processing
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times of the last five machines for each of the 20 jobs,

then applying Johnson's algorithm of the N job, 2 machine

case, a sequence was obtained. This second sequence,

although quite different from the first, also resulted in

a total make-span of 156. The second trial also took

approximately thirty minutes. Heller had obtained make~

spans between 150 and 200 for the problem doing 12,000

trials. Thus it is obvious that if some analytical or even

heuristic techniques are available, the Monte Carlo Sampling

technique would not be competitive.

Non—Classical Flow Shop
 

There has been a fair amount of work done in the

non-classical flow shOp scheduling area (1, 2, 9, 19, 20,

21, 25, 26, 34). Out of these, only two, one by Heller

(19, 20, 21), and the other by Krone (25, 26) would serve

some useful purpose to launch a lengthy discussion here.

Heller's classical and non-classical work is discussed in

detail in the Monte Carlo Sampling section.

Krone and Steiglitz

Krone and Steiglitz published a paper (26) in 1974

essentially based on the doctoral dissertation work of

Krone (25) which he did in the department of electric

engineering at Princeton University in 1970.

In the flow shop scheduling area, Krone has chosen

a very difficult performance measure, the minimization of
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the mean completion time. The measure is seldom mentioned

let alone used by many researchers in the flow shop

scheduling area. The only other work done with the mean

completion time on the N job, 2 machine flow shop is by

Ignall and Schrage (22). There are two facts which show

the amount of difficulty working with the minimization of

the mean completion time. The first is that even for a

2 machine flow shop problem there is no simple algorithm

to find an optimum solution if the performance measure is

minimization of the mean completion time. Johnson's 2

machine procedure does not give an algorithm solution, nor

according to Conway, Maxwell and Miller, does it produce

good results. The second fact is that if the performanCe

measure is minimization of the mean completion time, the

2 machine case is the only one where examining different

sequences on different machines (passing) is not necessary.

For the 3 machine case, passing between the first and second

machines is not necessary, but between the second and third

machines passing might produce better results than non

passing. Thus for an N job 3 machine flow shOp problem,

the total number of permutations are (N!)2 with minimization

of the mean completion time whereas with the minimization

of the total make-span only N! permutations need be examined.

These two facts should convince anyone that the minimization

of the mean completion time is a more difficult performance

measure to work with than the minimization of the total

make-span.
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In his research, Krone finds the final solution for

an N job, M machine flow shop problem with minimization

of the mean completion time as the performance measure in

two phases. In the first phase of his algorithm, he begins

with a sequence of jobs which is the same for all M machines

and is obtained by generating a pseudorandom starting solu-

tion. He then progressively improves the sequence by apply-

ing a local transformation or switching of jobs until the

sequence can no longer be imporved. He calls this sequence

the locally optimum sequence. He calls the local transfor-

mation a ”perturbation" rule. The restriction of no passing

is maintained throughout phase 1. (However, it is released

in Phase 2.) "The program terminates when local Optimality

of the current trial solution is verified by searching its

neighborhood exhaustively."

In the second phase he starts out with the locally

optimum sequence he obtained in the first phase. The same

"perturbation" rule is used to change the sequences of

only some of the machines if the change improves the value

of the mean completion time. In other words, he attempts

to release the no passing restriction of phase one tO'

further improve the value of the performance measure. When

the "neighborhood is searched exhaustively" the algorithm

in the second phase is completed.

For experimental work, Krone generated integer

numbers uniformly distributed between 0 and 100, sufficient

for fifty problems of 10 job, 5 machine size. For each of
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these fifty problems, he executed his two-phase algorithm

twenty times. Since the final solution of his algorithm

is dependent upon the initial solution, and since everytime

he executed his algorithm he obtained a different initial

solution for phase one, he obtained twenty intermediate

solutions (solutions at the end of phase one), and twenty

final solutions (solutions at the end of phase two). For

each problem, he chose a best final solution and "normalized"

the twenty intermediate and twenty final solutions assigning

a value of 1.0 to the best final solution. By following

this procedure he Obtained 1000 intermediate and 1000 final

solutions with at least fifty of the final solutions having

a value of 1.0. He plotted a histogram for his 1000 inter-

mediate and 1000 final solutions. The values of the inter-

mediate solutions varied between 1.02 to 1.5 and the values

of the final solutions varied between 1.0 and 1.05.

From his experience with.these fifty problems and

with a few other problems, he concluded that all the mini-

mization of the mean flow time is accomplished in phase

one, with phase two of the Optimization process providing

only slight improvement in general. Overall, he found an

improvement of 0.66 percent in phase two.

From the wide range of intermediate solutions (1.02

to 1.50) Krone obtained a much narrowed (1.00 to 1.05)

range of final solutions. Based on this fact and that both

the intermediate and the final solution histograms start at

almost the same values (1.02 versus 1.00) it seems fairly
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clear that a lot of "bad" intermediate solutions improve a

great amount, but a lot of "good" intermediate solutions

do not improve significantly during phase two. One could

conclude then that if the task of finding locally optimum

solutions in phase one is accomplished successfully, the

task of improving them in phase two may not be necessary.

As mentioned earlier in the Branch and Bound sec-

tion, Ignall and Schrage's algorithm to Obtain Optimum

solutions for a 3 machine flow shop can easily be extended

in cases of more than 3 machine flow shops (no passing) if

the performance measure is minimization of the total make-

span. This extension will be useful in this dissertation

to obtain Optimum solutions in the first phase. Ignall and

Schrage also presented an algorithm to Obtain an Optimum

solution for an N job, 2 machine flow shop when the per-

formance measure is minimization Of the mean completion time.

Krone probably could have extended this algorithm (based on

the Branch and Bound technique) to Obtain solutions for

more than a 2 machine flow shOp (no passing) with the per-

formance measure of the mean completion time.

There are some important similarities between

Krone's dissertation work and this particular dissertation.

Until all the conceptual work and experimental studies were

done for this dissertation, Krone's work had not been

examined. Both dissertations are motivated by a similar

need, the critical evaluation of the effects of the removal

of no passing restrictions from the N job, M machine flow
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shop. Both dissertations have an algorithm in two phases.

The first phase solutions to flow shop under the no passing

restriction are obtained and studied. In the second phase,

the solutions of the first phase are improved upon by

removing the no passing restrictions. At this point, the

similarities end. As discussed earlier, Krone uses a more

difficult performance measure than the one used for this

dissertation. Another difference is in the quality of the

solutions obtained in the first phase. Krone obtains locally

optimum solutions whereas in this dissertation globally

optimum solutions will be obtained in the first phase. In

Krone's work, very little is achieved in the second phase.

The efforts in the second phase are wasted on improving-the

"bad" solutions of the first phase. In this paper, although

efforts in the second phase might seem greater than the

achievements Obtained, extra effort will not be useless.

These efforts will bring definite results.



CHAPTER III

RESEARCH METHODOLOGY

This dissertation will attempt to examine the

effects of removing the No Passing restriction from the

classical flow shop problems. The implication of the No

Passing restriction is that the same sequence of jobs should

be used on different machines of the flow shop. In other

words, once a job sequence is chosen for the first machine,

the same job sequence is utilized for all subsequent

machines and no job is allowed to "pass" over another job

or jobs. In the last twenty years, all except for a few

researchers have assumed that for the flow shop there is no

need to change the job sequence from one machine to another.

They must have assumed that any job "passing" could only

delay and in no way improve the total make-span. During

preliminary research with one hundred of 4 job, 4 machine

problems for this dissertation, it became clear that in

approximately 10-15 percent of the problems, the optimum

solutions obtained under the NO Passing restriction could

be improved to a small extent by removing the restriction

72
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and permitting judicious differences between job sequences

of the first two machines and the last two machines.

Conway, Maxwell and Miller provided proof that for a

flow shop with the minimization of the total make-span as

the performance measure, changing the job sequence between

the first and second machines as well as changing the job

sequence between the second to last and last machines is

not necessary, and doing it will not improve the Optimum

solution (8, p. 81). This implies that for a two machine

and a three machine flow shop, considering different job

sequences on different machines is not necessary. For a

four machine flow shop, "passing" between the first and

second as well as the third and the fourth is not necessary.

However, "passing" between the second and third machines

can prove beneficial as far as the Optimum values of the

solution is concerned. With the no passing restriction on

any size flow shop, N! permutations need be examined, but

M-Z permutations (M Z 3) shouldwith Passing permitted (N!)

be examined.

The number of permutations to be examined in a flow

shOp when passing is permitted increases very rapidly.‘ For

example, for a 4 machine flow shop with 4, 5 and 6 jobs, the

total number of permutations are 576; 14,400; and 518,400.

Thus, when the number of jobs in a 4 machine shop increases

from 4 to 6, the total number of permutations increases from

576 to half a million. No wonder many researchers who are

aware of the benefit of passing, hesitate to work with it.
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The IBM 360 computer requires roughly about six to seven

minutes to do a complete enumeration for a 6 job, 4 machine

flow shop problem with passing permitted. Taking this

tremendous computational burden into account, it was

decided to work with 3 to 5 job, 4 machine flow shop

problems for this dissertation. The various results Obtained

here will be applicable to larger flow shop problems once

some trends in results are established, going from 3 job to

5 job problems.

The procedure used to Obtain solutions for any

problem in this dissertation is divided into two phases.

In the first phase, optimum solutions are obtained under N0

Passing restrictions. In the second phase, first phase'

solutions are improved by permitting Passing between the

second and third machines of the N job, 4 machine flow shop

problem.

Phase One
 

Two different algorithms are employed for finding

Optimum solutions in the first phase. One method employs

the complete enumeration while the other uses a modified

Branch and Bound procedure.

Complete Enumeration
 

Although few other algorithms are available to obtain

Optimum solutions under the No Passing restriction, the com-

plete enumeration algorithm is used for experiments reported
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in the fourth chapter of this dissertation. There are some

advantages in using the complete enumeration for finding

solutions to classical flow shop problems. For one, it not

only gives the minimum total make-span for a problem, but

if needed, provides a maximum total make—span and the com-

plete frequency distribution of total make-spans for a

problem. The range between the minimum and maximum total

make-spans or frequency distribution of the total make-spans

can be very useful in experimentation. Another advantage Of

complete enumeration is that if there is more than one

sequence having the same minimum total make-span, complete

enumeration can provide all of them. To obtain a satisfac-

tory solution from a second phase algorithm, it is necessary

that all optimum solutions of a problem in the first phase

are known. The Branch and Bound technique normally provides

only one optimum solution although there might be more than

one present, and thus has to be modified to cause it to

produce all of the optimum solutions a problem has. One

disadvantage of the complete enumeration algorithm is that

it requires more computation time as compared to most other

algorithms. The computer problem used for the complete

enumeration algorithm in this dissertation is explained

below and listed in Appendix A.

The complete enumeration computer program consists

of a main problem and three subroutines: SCHED, FCALCI,

and FCALCZ. The input required for the main program are the

number of jobs N, the number of machines M, and the total
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N*M processing times for a problem. The main program first

determines the value of N! and then for each of the natural

positive integers between 1 and N! calls the subroutine

SCHED to generate an appropriate sequence of N jobs. For

example, for a 4 job, 4 machine flow shop, the following

table shows the number between 1 and N! and their corres-

ponding sequences. For each of the N! sequences that the

Table 3.1

Numbers in Sequences for the 4 Job, 4 Machine

Flow Shop Scheduling Problem

 

Number Sequences

 

1234

1243

1324

1342

1423

1432

2134

:
fl
O
‘
U
‘
I
I
h
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U
J
N
H

4321N a
b

 

main program has obtained from the subroutine SCHED, it calls

the subroutines FCALCl and FCALCZ to obtain the completion

times of different operations of the N jobs on the 4 machines.

The input for both the subroutines, FCALCl and FCALCZ, are

the N*4 processing times and the sequence generated by the

subroutine SCHED. The subroutine FCALCZ also needs as an

input the output of FCALCl. The subroutine FCALCl computes

the completion time of Operations of N jobs on the first two
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machines and FCALCZ computes the completion times of N jobs

on the last two machines. Although a single subroutine could

easily do the job of the two subroutines, FCALCl and FCALCZ,

in the first phase, for the sake of computational efficiency,

usage of the separate subroutines is necessary in the

second phase where the job sequences are different on the

first two machines from the last two machines. The total

make-span for the particular sequence is equal to the comple-

tion time Of the last (Nth) Operation on the fourth machine

from the subroutine FCALCZ.

Modified Branch and Bound Algorithm
 

For the first phase of experiments in Chapter V, the

Branch and Bound algorithm used is essentially the same as

the one used by Ignall and Schrage, with three important

modifications.

The first modification is the extension of Ignall

and Schrage's lower bound function of the 3 machine classical

flow shop to the lower bound function for the 4 machine

classical flow shop. Ignall and Schrage's function was

present in the second chapter of this dissertation; the

modified lower bound function is given below:



78

Time A(JS) + 2 ai + Min (bi + Ci + di);

NJS NJS

Time B(JS) + 2 bi + Min (Ci + di);

NJS NJS

LB(JS) = Max

Time C(JS) + 2 ci + Min (di);

NJS NJS

Time D(JS) + 2 di;

' NJS

J_____ __  
Where JS is the set of jobs sequences corresponding

to the node for which LB(JS) is the lower bound. Time

A(JS), Time B(JS), Time C(Js) and Time D(JS) are the comple-

tion times of the last job in thessequence JS on machines

A, B, C, and D, respectively. The terms ai, bi' ci, and di

represent the processing times of job i on machines A. B,

C, and D, respectively. The jobset NJS includes jobs which

are not sequences in JS.

The second modification can save a great amount of

computational time and effort when the Branch and Bound

technique is used for large flow shop problems. The modifi—

cation is based on the work done for the traveling salesman

problem by Dannenbring (unpublished) and reported by Starr

(39). It involves computing an upper bound to the problem

before the tree branching and nodes creation are begun. If

an upper bound to the total make-span is obtained, then any

node which has a lower bound greater than the upper bound
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can easily be disposed of without branching from it.

Various ways can be devised to obtain an upper bound.

However, the upper bound should have a fairly low value so

that it can serve some useful purpose without involving a

lot of computational effort to find it. After some experi-

mentation, a simple technique to compute an upper bound for

this dissertation was decided. The technique is an exten—

sion of Giglio and Wagner's 3 machine heuristic technique

(15) and involves part of Campbell, Dudek and Smith's

heuristic algorithm (7). This technique involves adding

the processing times of the first two machines and adding

the processing times of the third and the fourth machines

for each of the N jobs. Thus an N job, 4 machine problem

is temporarily converted to an N job, 2 machine problem.

Johnson's 2 machine algorithm can be applied to the problem

and an "optimum" sequence obtained. The "Optimum" sequence

is used with the original N job, 4 machine problem and the

total make-span computed. The sequence obtained by Johnson's

algorithm will probably not be optimum for the N job, 4

machine problem, but some experience with the technique sug-

gests that in most cases it will be quite close to the

Optimum. Thus, the total make-span obtained can serve quite

well as the upper bound for the problem.

The third modification involves obtaining all the

Optimum sequences for a problem instead of just one from the

Branch and Bound technique. While branching and computing

lower bounds for nodes, if more than one node having the same
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lower bound was found, Ignall and Schrage chose one at

random for further branching. At the termination, if any

unbranched node or nodes having the same lower bound as the

minimum total make-span were present, they were left as

they were. Instead, in the Branch and Bound technique used

in this dissertation, once an optimum sequence and its

total make-span are Obtained, all nodes having the same

lower bound as the minimum total make—span are branched

until all optimum sequences are found or until all the

unbranched nodes have a higher lower-bound than the minimum

total make-span.

The computer program for the modified Branch and

Bound algorithm consists of a main program and five sub~

routines, namely, COMPUTE, SEND, BOUND, INTRO, and DESTRO.

The Branch and Bound technique in general, and the modified

Ignall and Schrage lower bound function, in particular, are

programmed in such a way that they can be used for up to

20 job, 10 machine classical flow shOp problems. The main

program reads in the values of the number of jobs, number

of machines, and the processing times. It outputs the

minimum total make-span and all Of the Optimum sequences for

a problem under the No Passing restriction. The subroutine

COMPUTE computes an upper bound for a problem (using

Johnson's algorithm). The subroutine SEND selects the most

promising node from the list of available codes, branches

out from it and creates nodes for the branches. The sub-

routine BOUND calculates the lower bound for all the newly
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created nodes. If in the future some other function for

calculating lower bounds is to be used, it is necessary to

change only the subroutine BOUND. The subroutine INTRO

inspects all newly-computed lower bounds and compares them

to the upper bound, and the corresponding node is intro-

duced to the list of available nodes. The subroutine DESTRO

searches for any node that is fully branched and has served

its purpose, then eliminates it from the list of available

nodes. Once a complete sequence emerges from the subroutine

INTRO, the subroutine SEND reduces the value of the upper

bound to the total make-span of the complete sequence. The

complete listing of the computer prOgram is given in Appen-

dix B.

Phase Two
 

Standard of Measurement of Passing
 

After preliminary experiments, a need to define and

measure the amount of passing between two sequences of a

passing solution has emerged. The standard of measurement

is named "SHIFT" and the amount of Passing is measured as

1 shift, 2 shift, et cetera. When a job which is in the Kth

(K<N) position in the first sequence has completed its

processing on the first set of machines and is ready to be

processed on the next machine, L, (L<M), even though

machine L is also ready and available for processing the

job, both job and machine are made to wait. Then when the
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K + 1th job of the first sequence becomes available for

processing on the Lth machine, it is permitted to be pro-

cessed on it, resulting in 1 shift of Passing between the

two job sequences. Here the measure "1 shift" is an

indication of one job taken out its first sequence and made

to wait.

presence of Passing

for processing on a

jobs behind them in

The measure

machine,

"2 shifts" would indicate the

such that two of the N jobs, when ready

are made to wait until other

the first sequence finish processing

on the machine. In a four machine flow shop, the jobs will

wait for processing

thing to understand

on the third machine. The important

is that it does not matter how much or

how long a particular job is made to wait as long as it is

pushed behind in the second sequence by at least one

position.

Some examples of 1 shift of Passing between two

sequences are shown below:

First Sequence

Second Sequence

Some examples of 2 shifts are given below.

Example 1

2 l 3 4

2 3 l 4

1 Shift

Example 4

3 l 2 4

l 2 4 3

l Shift

Example 2

2 l 3 4

2 3 4 l

l Shift

Example 5

3 l 4 2

1 3 4 2

l Shift

Example 3

2 l 3 4

2 l 4 3

l Shift

The two

jobs that are made to wait, may or may not be the two

consecutive jobs in the first sequence.
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Example 1 Example 2

First Sequence 3 4 1 2 3 4 l 2

Second Sequence 1 3 4 2 l 2 3 4

Example 3 Example 4

3 4 l 2 3 4 l 2

4 2 l 3 4 3 2 1

2 Shift 2 Shift

In a Passing solution with two sequences of N jobs,

there could be a maximum of N-l Shift of Passing. Each of

the following two examples show 3 Shift Passing between

the two 4 job sequences.

Example 1 Example 2

First Sequence 1 2 3 4 1 2 3 4

Second Sequence 4 l 2 3 4 3 2 1

3 Shift 3 Shift

For a Passing solution with two N job sequences,

given the first sequence, there are N! possible permutations

for the second sequence. Out of these N! permutations, one

would be exactly the same as the first sequence, resulting

in a 0 Shift Passing between the two sequences. After a

few calculations, it was determined that there are (N—l)!

permutations or sequences out of the total N! permutations,

each of which, if placed as the second sequence, would give

1 Shift Passing. There are (N-l)! more permutations, each

when used as the second sequence, giving N-l Shift Passing.

Each of the remaining permutations N!~l—(N-l)!-(N—1)!

will give more than one but less than N-l Shift Passing if

placed as the second sequence in a two sequence Passing

solution. For example, for a given 4 job sequence "1 4 3 2,"
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there are a total 4!=24 possible permutations or sequences

which could be placed as the second sequence. One of them

will give 0 Shift Passing. 3!=6 of them will give 1 Shift

Passing, 3!=6 more sequences will give 3 Shift Passing, and

24-1-6-6- = 11 sequences will give a 2 Shift Passing if

used as the second sequence with the first sequence

"1 4 3 2."

Preliminary Observations

As stated before, during experimental work with 4

job, 4 machine problems, approximately ten to fifteen per-

cent Of the problems provided lower total make-span values

with passing allowed than with the No Passing restriction.

As the Optimum sequences Obtained under N0 Passing and the

better total make-span valued solutions under Passing were

studied in detail for those ten to fifteen percent problems,

the following phenomena were observed:

(i) For most problems there was more than one

sequence providing the same minimum total

make-span values under the NO Passing restriction.

(ii) For the most problems there was more than one

Passing solution having better values of the

total make-span than the minimum total make-

span Obtained under the NO Passing restriction.

The amount of improvement the different Passing

solutions showed over the No Passing solutions

varied to some extent.
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(iii) Each Passing solution of the 4 machine flow shop

problem consists of two different job sequences,

one being the sequence for the first two machines

and Orzother being the sequence for the last two

machines. In most of the Passing solutions that

showed improvement over the minimum total make-

span of the No Passing solutions, one of the two

sequences matched exactly with one of the optimum

No Passing sequences.

(iv) The differences betweentwo sequences of a solution

which improved the total make-span over the

minimum total make-span under No Passing were

minimal. Most of the 4 job, 4 machine Passing

solutions that improved over the No Passing solu-

tions had 1 Shift Passing only.

If the above preliminary observations are indeed

typical of the underlying phenomena, they could prove to

be more useful in Obtaining lower total make-spans than the

optimum total make-spans obtained under the No Passing

restriction, without resorting to the complete enumeration

of all the Passing permutations.

In the second phase of the experiment, complete

enumeration of all the passing solutions with a passing

amount equal to 1 through N-l Shifts for each of the flow

shop scheduling problems is undertaken. For an N job, 4

machine flow shop problem, there are (N!)*(N!-l) passing

solutions. The total make-span for each of these solutions
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is obtained and compared with the minimum total make-Span

obtained in the first phase. Any passing solution that has

a lower total make-span than the minimum total make-span of

the first phase is saved. The amount of passing is measured

for each passing solution saved and both sequences of each

passing solution are compared with the optimum sequences

obtained in the first phase of that problem. All similari—

ties in the sequences are noted.

The computer program for the complete enumeration in

the second phase is similar to the one used for the complete

enumeration in the first phase. The main program calls the

subroutine SCHED twice for each of the passing solutions to

get two sequences-~one for the first two machines and the

other for the second two machines. The subroutine FCALCl

computes the completion times of various operations on the

first two machines and the subroutine FCALCZ computes the

completion times on the last two machines. The subroutines

FCALCl and FCALCZ both use different job sequences. Then

the subroutine SHIFT computes the amountnof shift between

the two sequences of a passing solution and the main program

notes all the similarities between the passing and non-

passing Optimum sequences. The computer program is listed

in Appendix C.

Generation Of Processing Times

To determine the extent of reliability in the four

observations mentioned, extensive experimentation with 3 job,
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4 machine; 4 job, 4 machine; and 5 job, 4 machine flow

shOps was undertaken. The integer random numbers from the

uniform probability distribution between and including

0 to 100 were generated in sufficient quantity to construct

two sets of 500 problems each for the three different sizes

of flow shops. Traditionally, researchers have chosen

integer random numbers for the processing times of problems

in their experiments from either uniform probability dis-

tribution or from some arbitrary, unknown distributions.

For this dissertation, I have decided to work initially

with integer random numbers from the uniform probability

distribution. Using uniform probability distribution, it

is easy to generate random numbers from it, and it is simple

to compare these results with others; since almost all

researchers in the flow shop area have used it. Once the

results were Obtained from experiments with problems whose

processing times were generated from uniform probability

distribution, I decided to work with processing times

generated randomly from Beta probability distribution.

Although Beta probability distribution is not popular with

researchers in the scheduling area and the author has not

encountered any research utilizing Beta distribution, there

are two reasons for using it in this research. In the

first place, Beta distribution is a close-range distribution.

The normal range of random variates is from 0 to 1. Thus,

unlike normal or exponential probability distributions,

rejecting numbers beyond certain standard deviations from
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the mean values is not necessary. Since the normal range

of random variates is from 0 to 1, it is easy to get integer

random numbers distributed in the Beta fashion between 0

and 100 or any other range by simply multiplying the

variates appropriately and integerizing them. The second

reason for choosing the Beta distribution pertains to its

flexibility.

The Beta distribution curve changes its shape con?

siderably with changes in the values of its two parameters,

A and B. When the values of A and B are equal, Beta dis-

tribution curves are symmetrical around the mean value

but when A and B have different values, the curves are

skewed. The skewness increases with the increase in the

difference between the values of A and B. When A and B are

both smaller than 1, the curves are convex if Observed from

the bottom. When A and B are both equal to 1, the Beta

distribution is exactly the same as the uniform probability

distribution, thus the curve is simply a straight line.

When both A and B are greater than 1, the Beta curves are

concave from the bottom. As the values of A and B increase

from 1, the curves look more and more like a bell. For

these experiments, 28,800 random numbers distributed between

and including 0 to 100 were generated for each of the six

sets of values for A and B. Each of the sets had equal

values of A and B, which are 0.5, 1.0, 1.5, 2.0, 2.5, and

3.0. The frequency distributions of the first 20,000

numbers for each of the six sets are.shown in Table 3.2
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and in Figure 3.1 in the form of curves. The scientific

subroutine package of IBM has a program called BDTR.which

computes the ordinate of the Beta density function for a

given uniformly generated random number "X1." By using

the rejection technique on the pair of random numbers "X1"

and "x2" generated, the random variates of the Beta proba-

bility distribution are generated. The computer program

is shown in Appendix D.

The processing times chosen from either the uniform

or Beta probability distribution for this dissertation

ranges from 0 through 100. Researchers have used many

different ranges of processing times for their experiments

in the flow shOp scheduling area. Heller (19) and Palmer

(33) worked with numbers ranging from 0 to 9, whereas

McMahan and Burton (28) and Lomnicki (27) worked with num-

bers between 0 and 30. Giglio and Wagner (15) generated

processing times ranging from 1 to 30. Campbell, Dudek and

Smith (7) used numbers between 0 and 99. Gupta (16, 18)

worked with numbers that ranged from 0 to 999 whereas Krone

(25) used numbers from 0 to 1000. From studying published

work in the flow shOp scheduling area, it is clear that not

only every researcher uses his own range of integer random

numbers for processing times, but he does not present or

explain his reasons for choosing the range he used. This

makes it very difficult to choose an ideal range. From

preliminary experiments an intuitive rule emerged. When

integer random numbers are used for the processing times of
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Table 3.2

Frequency Distribution of Random Numbers Generated

Using Beta Probability Distributions

 

Parameters A and B

 

 

Range 0.5 1.0 1.5 2.0 2.5 3.0

0-5 2,592 1,052 381 144 68 23

6-10 1,276 1,068 655 423 284 142

11-15 985 1,025 829~ 611 522 362

16-20 879 986 988 867 773 644

21-25 776 982 999 1,048 1,024 931

26-30 761 979 1,135 1,114 1,252 1,205

31-35 717 1,013 1,186 1,366 1,363 1,452

36-40 719 1,001 1,275 1,429 1,574 1,672

41-45 652 976 1,301 1,476 1,573 1,762

46-50 667 1,019 1,273 1,530 1,680 1,826

51-55 671 979 1,297 1,499 1,683 1,852

56-60 685 979 1,294 1,455 1,607 1,768

61-65 651 976 1,248 1,426 1,547 1,586

66-70 714 999 1,186 1,302 1,362 1,423

71-75 739 1,025 1,107 1,132 1,218 1,239

76-80 808 1,019 1,022 1,075 960 940

81-85 864 962 985 874 713 633

86-90 1,024 1,005 797 643 513 372

91-95 1,261 964 684 432 242 146

96-100 22,559 991 358 154 42 22

fl * “ m. m— w
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a flow shop scheduling problem, the value of the range of

numbers should be fairly larger than the value Obtained by

multiplying the number of jobs times the number of machines

in the flow shop. With a maximum size of 5 job, 4 machine

flow shop problems in this experiment (N*M = 20), the

range of 0 to 100 seems to be fairly large. The range

could well have been 0 to 99, but there is one advantage to

having the range up to 100. It gives the mean value of the

distribution equal to 50 instead Of the slightly odd amount

of 49.5.

Many researchers selected ranges that were too

narrow. For example, Heller (19) for his 100 job, 20

machine flow shOp problem, used a range of 0 to 9. Giglio

and wagner (15) for their 6 to 9 job, 3 machine flow shop

problems used a range of 1 to 30. These and a few other

ranges are much too low to get satisfactory experimental

results. When the range is too narrow compared to the value

of N times M, the total number of Optimum sequences under no

passing becomes unduly large. Also, the difference between

the minimum total make-span and the maximum total make-span

becomes quite narrow. As a result, the discrimination

between good sequences and bad sequences becomes very hazy.

The decision to use a narrow range has a self—serving

advantage when a heuristic technique is used in the experi-

ments. When the range is narrow, a non-Optimum sequence

would seem to have much closer or even the same total make-

span value as the Optimum sequences would. This phenomenon
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would make the heuristic technique look much better than

what it actually might be.

Measurement Functions
 

The various experiments done on flow shop problems

in this dissertation are for one Of three different sizes

of the flow shop and have processing times randomly

generated either from the uniform probability distribution

or from one of the five Beta probability distributions.

Due to these differences in the various experiments, the

numberical results and their frequency distributions could

differ markedly. The minimum total make-span values, the

total make-span when passing is permitted, and the extent

of improvement in the total make—span by permitting passing,

all could have different and varying frequency distributions,

means and standard deviations from experiment to experiment.

Unless some common basis of measurement or some way to

place them on the same scale is utilized, the comparison

between experiments and the common conclusions from all

experiments would be very difficult.

Since this dissertation is mainly concerned with

discovering and presenting improvement in the minimum total

make-span of the classical flow shop by permitting passing

between sequences, the different measurement functions sug-

gested below are mainly centered around the measurement

of improvement.
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To put different measurement functions into formulas,

the following notations are defined:

TMSP =

MTMS

WTMS

Best total make-span when Passing is

permitted.

Minimum total make-span under the No Passing

restrictions.

Maximum total make-span under the No Passing

restriction.

The measurement function for the extent of improve-

ment could be one or more of the following four functions:

1. fl =
WTMS - TMSP

WTMS - MTMS

 

In this function the denominator is the difference

between the best and the worst total make—spans under the

no passing restriction. The denominator is the basis of

comparison with the numerator, which is the difference

between the total make-span when passing is permitted and

the worst total makeespan under the no passing restriction.

When the permission of passing does not improve the total

make-Span value, the function has the value of l but as the

improvement is greater, the function has increasingly

larger values than 1.

2. f2 =
MTMS - TMSP

WTMS - MTMS

 

This function is similar to the previous function

except that the numerator has the difference of the total

make-span under passing with the minimum total make-span
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under no passing. In the absence of any improvement, the

function has a value of zero, but as the improvement

increases, the value of the function goes up.

TMSP

3-1’3‘m

In this function, the ratio of the total make-span

under passing is compared to the minimum total make-span.

The ratio has a value of 1 if there is no improvement by

permitting passing but as the improvement increases, the

value of the ratio goes down.

MTMS - TMSP

4. f4 = MTMS
 

This function is similar to the third function, but

instead of measuring the total make—span under passing, it

measures the improvement of the total make-span under

passing over the minimum total make-span under no passing.

The value of the ratio is zero if there is no improvement

but it increases directly with the increase in the improve-

ment.

It is difficult to choose from these four functions.

The first two require the value of the worst total make-

span under the no passing restriction. If complete enumera-

tion is done on the flow shop scheduling problem in phase 1

then the WTMS would be available, but the Branch.and Bound

algorithm does not provide WTMS. Thus, the first two func-

tions have a slight disadvantage. After some trial work,

it was decided to use the fourth function.



CHAPTER IV

RESULTS OF ANALYSES WITH UNIFORMITY

DISTRIBUTED PROCESSING TIMES

All the results obtained from the experiments on the

two sets of 500 problems each for the 3 job, 4 machine; 4

job, 4 machine; and 5 job, 4 machine flow shOp scheduling

problems are presented and analyzed in this chapter. The

processing times of these 3000 problems are integer random

numbers distributed from 0 through 100 from uniform prOba-

bility distribution. The actual processing times for the

problems used in this chapter and Chapter V are not pre-

sented in this dissertation. Anyone interested in repeating

some or all of these experiments can easily obtain similar

results by generating his own random numbers for the pro-

cessing times as long as the range and the probability

distributions are the same as the ones used here. The

results for each of the three different sizes of flow shOp

scheduling problems are presented in the three corresponding

sections of this chapter.

As discussed in the third chapter, the number of

different possible solutions with passing between sequences

of different machines is tremendously high. For a 3 job,

96



97

4 machine flow shop problem, there are (3!)2 = 36 possible

solutions when passing is permitted. Out of these 36

solutions, 3! = 6 solutions have zero passing between

sequences, so that there are 36 - 6 = 30 solutions with

some amount of passing between sequences. The number of

solutions with greater than zero passing for a 4 job, 4

machine flow shop problem is (4!)2 - 4! = 552 and for a

5 job, 4 machine problem it is (5!)2 - 5! = 14,280. In

Phase Two of these experiments, searching for improvements

in the minimum total make-spans of Phase One, each of these

30, 552 or 14,280 different solutions are examined for each

3 job, 4 job or 5 job, 4 machine flow shop scheduling

problem. In addition to this complete enumeration search,

five different partial search plans are formulated for this

dissertation. These five plans involve searching through a

much smaller number of solutions than the complete enumera-

tion search thus saving a considerable amount of computa—

tional time. Since these plans do less than a complete

search, they do not produce all of the possible improvements.

The results of search by complete enumeration and prOposed

plans are analyzed in this chapter. These five different

plans of partial search are formulated from the four pre-

liminary observations made during the eXperiments presented

in the third chapter. The proposed plans are explained

below.

Plan 1: This plan calls for search in Phase Two

among solutions that have one shift of passing. Out of a
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total of 30, 552 and 14,280 possible solutions for the 3

job, 4 job and 5 job, 4 machine flow shop scheduling prob—

lems, respectively, only 18, 144 and 1200 solutions have

exactly one shift of passing. Thus, in this plan the

search for improvement of the minimum total make—span of

phase one is restricted to just 60 percent, 26.17 percent

and 8.4 percent of the possible solutions for those three

sizes Of flow shop scheduling problems. The plan is

formulated on the basis of the preliminary Observation that

most of the Optimum passing solutions found in Phase Two

have one shift of passing. And it results in 40 percent,

73.83 percent and 91.6 percent savings in computational

efforts for 3 job, 4 job and 5 job, 4 machine flow shop

scheduling problems.

Plan 2: As was mentioned in the third chapter,

during preliminary experiments, many times one of the two

sequences of passing solutions that has a lower total make-

Span in Phase Two than the minimum total make-span of

Phase One is exactly the same as one of the Optimum

sequences providing the minimum total make-span of Phase

One. Based on this observation, a "less than complete"

search plan for Phase Two computation is formulated. This

plan involves constructing "R" number of possible passing

solutions and examining each one to see whether or not it

improves the minimum total make-span of Phase One. The

plan is formulated in such a way as to make R as small as
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possible without losing a considerable amount of possible

savings in Phase Two.

During the computation of results of Phase One, all

of the optimum sequences providing a minimum total make-span

are obtained. Let us say that "T" number of optimum

sequences are obtained in Phase One. Each of the T sequences

in turn is considered one of the two sequences of the

possible passing solutions. Let us say that sequence "K"

is one of the T Optimum sequences of Phase One and is one

of the two sequences of a possible passing solution "P."

A set of all the possible sequences of N jobs minus the K

sequence is constructed. This set will have N! - 1 sequences.

Each of these N! - 1 sequences are then used one by one as

the other sequence of the possible passing solution P. Thus,

solution P is constructed from sequence K and a sequence from

the set of (N!-1) sequences. Sequence K can go as the firSt

or second sequence so there will be 2*(N!-l) possible passing

solutions constructed using the Kth sequence. Thus, for T

number of optimum sequences of Phase One there will be a

total of T*2*(N!-1) possible passing solutions. Plan Two

consists of examining these T*2*(N!-l) passing solutions and

selecting the one with the lowest total make-span over the

minimum total make-span of Phase One.

The amount of computation involved in this plan

depends upon the number of sequences providing the minimum

total make-span for a problem. For the thousand problems

of 3 job, 4 machine flow shop scheduling problems whose
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results are reported in this chapter, the average number of

optimum sequences in Phase One was 1.189 per problem. The

frequency distribution from which the average number of

optimum sequences per problem was obtained, will be pre-

sented later in this chapter. It implies that on an average

l.189*2*(3!-l) = 11.89 passing solutions should be examined

according to Plan Two. The search through 11.89 possible

passing solutions rather than 30 solutions means a savings

of (30-11.89)/30 = 60.37 percent in computational effort

over the complete enumeration search. On a similar basis,

the computation effort that can be saved by following Plan

Two is on an average 85.91 percent for a 4 job, 4 machine

problem and 95.7 percent for a 5 job, 4 machine flow shop

scheduling problem over the complete enumeration search.

Plan 3: This is simply a combination of Plans One

and Two and is based on the two Observations made during

the preliminary experiments. The first observation is that

most of the "useful" Phase Two passing solutions have one

shift Of passing. Secondly, most of the "useful" Phase Two

passing solutions have one sequence the same as one of the

Phase One optimum sequences. The possible passing solutions

formulated and searched in Plan Three have one sequence the

same as one of the Optimum sequences obtained in Phase One

and also have exactly one shift of passing between the two

sequences.

The possible passing solutions are formulated by

choosing one of the two sequences of the passing solution
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from the Optimum sequences Of Phase One and by choosing the

other sequence from the set of sequences constructed by the

permutations of N jobs such that the amount of passing
 

between the two sequences is exactly equal to one shift.
 

With any sequence of Phase One of the 3 job, 4 machine flow

shop problem, there are only three sequences any of which if

used together with the first one will have one shift of

passing. For example, if the optimum sequence from Phase'

One is 231 and if it is put as the fi£§t_of the two sequences

in a passing solution, then there can be any one of the

three sequences 213, 312, and 321 for the second sequence of

the passing solution to have one shift of passing. If the

sequence 231 is put as the second of the two sequences in a

passing solution, there can be any one of the three sequences

123, 213, and 321 for the first place to have one shift of

passing.

Possible Passing Solutions

1 2 3

First Sequence 2 3 l 2 3 l 2 3 1

Second Sequence 2 l 3 3 1 2 3 2 l

4 5 6

First Sequence 1 2 3 2 l 3 3 2 1

Second Sequence 2 3 l 2 3 l 2 3 1

Thus in this plan for the 3 job, 4 machine flow shop

scheduling problem, for each optimum sequence of Phase One,

there are 3 x 2 = 6 possible passing solutions to be searched

in Phase Two. Since on an average there are 1.189 optimum

solutions in Phase One, on an average for each 3 job, 4
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machine problem Plan Three advocates searching through

6x1.189 = 7.134 possible passing solutions in Phase Two.

This indicates Plan Three will save (30-7.134)/30 = 76.22

percent in computational effort over the complete enumera-

tion search. And for a 4 job and 5 job, 4 machine flow shop

scheduling problem, Plan Three saves 96.31 percent and 99.64

percent in computational effort over the complete enumera-

tion search.

Plans 4 and 5: These plans are minor modifications

of Plan Three. Since the total number of possible optimum

sequences for Phase One is N!, there could be as many as 6,

24 or 120 optimum sequences for a 3 job, 4 job or 5 job,

4 machine flow shop scheduling problem at the end of Phase

One. Although it is determined from the experiments on the

1,000 problems each for 3 job, 4 job and 5 job, 4 machine

flow shop scheduling problems of which on an average there

are only 1.189, 1.696 and 2.567 optimum sequences in Phase

One respectively, an individual problem could have a very

high number of Optimum sequences. (Tables 4.3, 4.10, and

4.17 show the frequency distribution of the number of

Optimum sequences per problem for the 3 job, 4 job and 5

job, 4 machine flow shop scheduling problem, and also point

out the value of the average number of Optimum sequences

per problem presented later in this chapter.) If a problem

has high number of optimum sequences, Plan Three could

ultimately advocate a search through a tremendous number of

possible passing solutions. Plans Four and Five advocate
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enforcing an artificial ceiling on the number of optimum

sequences considered at the end of Phase One. Since the

maximum number of optimum sequences of Phase One could be

only six for the 3 job, 4 machine flow shop scheduling

problem, a ceiling is not necessary and would be of little

help. From Table 4.10, it can be seen that 85.4 percent

of the total 1,000 problems have one or two optimum

sequences, and 92.3 percent of the problems have one, two,

or three Optimum sequences in Phase One. Thus ceilings of

three or two Optimum sequences for 4 job, 4 machine flow

shop scheduling problems would effectively cover most of

the problems and restrict the amount of computational

efforts, and remain fixed for the search of Plans Four and

Five respectively. From Table 4.17, it can be seen that

90.1 percent of the total 1,000 problems have five or less

Optimum sequences and 93.9 percent have six or less Optimum

sequences in Phase One for 5 job, 4 machine flow shop

scheduling problems. Thus ceilings of six or five optimum

sequences for 5 job, 4 machine flow shop scheduling problems

would effectively cover most of the problems and restrict

the amount of computational efforts, therefore they were

selected for search Plans Four and Five respectively.

Tables 4.10 and 4.17 demonstrate that Plan Four reduces the

average number of optimum sequences per problem for Phase One

from 1.696 and 2.567 to 1.544 and 2.24, respectively, for 4

job and 5 job, 4 machine problems. Plan Five further reduces

the average number of Optimum sequences in Phase One to
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1.398 and 2.141 per problem for 4 job and 5 job, 4 machine

flow shop scheduling problems.

3 Job, 4 Machine Flow Shop

Soheduling Problems

 

 

The results Obtained for each of the two replica-

tions Of 500 problems for Phases One and Two are presented

in Tables 4.1 and 4.2.

Phase One
 

The minimum total make-spans and the maximum total

make-spans are computed for each of the problems and presented

in Tables 4.1 and 4.2 in the form of frequency distributions.

Each of the 500 problems for both replications has

one or more optimal sequences in Phase One. Since Plans

Two and Three in Phase Two for the 3 job, 4 machine flow

shop scheduling problem attempts its search for the improve-

ments of the total make-span on the basis of the optimal

sequences of Phase One, it is useful to know the frequency

distribution of problems according to their number of optimal

sequences in Phase One. Table 4.3 provides such a frequency

distribution.

Thus, there are a total of 1189 Optimal sequences for

the 1000 problems, or an average of 1.189 Optimal sequences

per problem in Phase One for the 3 job, 4 machine flow shOp

scheduling problem. A total of six different permutations

or sequences can be formulated from a total of three dif-

ferent jobs. Since these 1189 optimal sequences of Phase
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Table 4.1

Frequency Distribution of 3 Job, 4 Machine

Problems According to the Minimum Total

Make-spans Under No Passing

 

 

 

 

The Range of Frequencies

Minimum Total

Make-spans Replication 1 Replication 2 Total

181-200 10

201-220 6 14

221-240 11 14 25

241-260 41 25 66

261-280 44 47 91

281-300 62 67 129

301-320 82 77 159

321-340 67 65 132

341-360 57 58 115

361-380 55 56 i 111

381-400 46 37 83

401-420 13 28 41

421-440 5 10 15

441-460 2 3 5

461-480 2 4

Total 500 500 1000

Average total

minimum

make-span 321.23 325.34 323.28

Std. dev. of

the total

minimum

make-span 50.99 52.65 51.83
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Table 4.2

Frequency Distribution of 3 Job, 4 Machine

Problems According to the Maximum Total

Make-Spans Under NO Passing

 

 

 

 

The Maximum Frequencies

Total Make-

Spans Replication 1 Replication 2 Total

Less than 260 2 l 3

261-280 8 8 16

281-300 15 11 26

301-320 18 27 45

321-340 ' 29 32 61

341-360 38 42 80

361-380 59 51 110

381-400 63 57 120

401-420 87 67 154

421-440 67 62 - 129

441-460 53 58 111

461—480 27 40 67

481-500 19 27 46

501-520 11 12 23

521-540 3 4

More than 540 l l 2

Total 500 500 1000

The average

maximum total

make-span 400.72 403.21 401.96

The std. dev.

Of maximum

total make-

span 54.92 57.74 56.35
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One are for 1000 problems of 3 job, 4 machine flow shop

type, each of them can be any one of the six possible

permutations. The frequency distributions of these 1189

sequences according to the six different permutations are

given in Table 4.4.

Table 4.4

Frequency Distribution of Optimal Sequences of

-Phase One According to the Different

Possible Permutations of 3 Jobs

 

 

  

Different Number of Sequences

Permutations or

Sequences Replication l Replication 2 Total

1 2 3 105 108 213

l 3 2 90 87 '177

2 l 3 95 90 185

2 3 1 101 103 204

3 l 2 103 113 216

3 2 1 95 99 194

Total 589 600 1189

 

Jobs 1, 2, and 3 have the same value of average

processing times and the same value of standard deviation

of processing times on all four machines. So each of them--

job 1, 2, or 3--are equally likely to be the first, second

or third in any optimal sequence. Thus, in a long run,

each of the six possible sequences should have an equivalent

number of optimal sequences attributed to it. From the
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table it appears that all six sequences are almost equally

popular. To check the above hypothesis of these six

equally popular sequences, Goodness of Fit using the Chi-

square tests was conducted on it. For the five degrees of

freedom (Number of class - 1 = 6 - 1 = 5) x2 .05 is equal

to 11.070. The computed value of Chi-square from the fre-

quency distributions of 1189 optimal sequences is 6.11.

Thus, the null hypothesis of no difference between the

popularity of the six possible sequences is accepted.

Phase Two
 

A complete enumeration of all the possible solutions

with some passing between sequences for each of the 500

problems of both replications was performed. As a result,

in 52 problems of the 500 problems in replication 1 and in

53 of the 500 problems in replication 2, the best Phase Two

total make-spans were lower than their minimum total make-

spans in Phase One. The actual amount of improvement was

anywhere from 1 to 46 time units, averaging 11.44 and 13.98

time units, respectively, for 52 and 53 problems of repli-

cations 1 and 2. Each of the 52 + 53 = 105 problems had

anywhere from one to seven solutions whose total make-Spans

in Phase Two were lower than the minimum make-span of Phase

One. The average number of solutions per problem which had

a lower total make-span than the minimum total make-span of

Phase One was 1.37 and 1.42 for the 52 and 53 problems of

replication 1 and 2, respectively. The explanation of the
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table and the tables that are presented in the following

pages provide details of these problems in replications l

and 2.

There are two tables for the two replications. The

first column of these two tables lists the natural number

of the 52 and 53 problems and the second column lists their

original numbers from the 1 to 500 problems of their

respective replications. The third column lists the minimum

total make-spans Obtained in Phase One and the fourth column

lists the number of optimal sequences obtained in Phase One.

The fifth column provides the best total make-span Obtained

in Phase Two and the sixth column lists the number of solu-

tions which provided total make-spans in Phase Two which

were lower than the minimum total make-span Of Phase One.

The seventh column lists the maximum amount Of savings

possible in the total make-span by permitting passing in the

particular problem, being simply the difference between the

third and the fifth columns. The eighth, ninth, and tenth

columns provide the amount of savings in Phase Two that can

be Obtained by searching according to Plans One, Two and

Three rather than using complete enumeration. These limited

search plans were explained earlier in this chapter.

From Tables 4.5 and 4.6 it can be seen that in 105

problems out of a total 1000 problems (10.5 percent of the

problems), the value of the best total make—span decreases

if passing is permitted. The average minimum total make-

span for the 105 problems at the end of Phase One computations
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is 336.51 units and the average total make-span after com-

plete enumeration in Phase Two is 323.79 units. This means

an average of 12.72 units (336.51 - 323.79 = 12.72) improve-

ment per problem for the 105 problems when passing is per-

mitted between sequences. In the remaining 895 problems

(1000 - 105 = 895) there was no improvement by permitting

passing. The average minimum total make-span under the no

passing condition for all 1000 problems, as presented in

Phase One results, was 323.28 units. When passing is per-

mitted the average total make-span for the 1000 problems

was 321.94 units. Thus, by permitting passing, an average

savings of 1.34 units in the total make-span (323.28 -

321.94 = 1.34) per problem for the 1000 problems is achieved.

At first consideration, this amount of savings does not seem

like a lot but if viewed in proper perspective, it can appear

worthwhile. Under the no passing restriction, the average

minimum total make—span is 323.28 units and the maximum

total make-span is 401.96 units (as presented earlier in

this chapter), or an average difference of only 78.68 units

between the worst and best total make-span. When an average

improvement of 1.34 units by permitting passing is compared

with the average difference between the best and the worst

total make-span of 78.68 units under the no passing restric-

tion, the improvement seems worthwhile. According to the

measurement function of improvement by passing discussed and

selected in Chapter III, the value of improvement is as

follows:
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MTMS - TMSP _ 323.28 a 321.94 _ 1.34

MTMS ‘ 323.28 ‘ 323.28

 

f4 =
 

.00415 or 0.415%

Table 4.7 summarizes the amount of improvement or

savings in total make-spans from Phase One to Phase Two by

complete enumeration and by the three plans.

Table 4.7

Amount of Savings in the Total Make-span and the

Amount of Search Work Involved with Passing

 

 

 

Plans

Complete

Enumeration 1 2 3

1. Amount of savings

in the total

make-spans

Replication 1 595 595 593 593

Replication 2 741 741 675 675

Total 1336 1336 1268 1268

Percent 100 100 94.9 94.9

2. Number of solutions

searched per

problem

Total 30 18.00 11.89 7.14

Percent 100 60.00 39.63 23.78

3. Benefit-cost ratio

in terms of total

savings divided by

number of solutions

searched 44.53 74.25 106.78 177.59
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As can be seen from the tables, the three plans

manage to capture most of the possible savings in total

make-spans from Phase One to Two. The total amount of

savings in Plan One is exactly the same as the savings

obtained by complete enumeration for both replications.

Although Plan One for 3 job, 4 machine flow shop scheduling

problems involves only 60 percent as much work as complete

enumeration, it captures 100 percent of the savings. Plan

Two saves 99.65 percent of the maximum amount for replica-

tion 1 and 91.09 percent for replication 2. The total

amount of work involved in Plan Two is just 39.63 percent

but for both replications it saves 94.91 percent of the

total make-span as compared to complete enumeration. Plan

Three involves only 23.78 percent or one fourth as much work

as complete enumeration but saves 94.91 percent of the

maximum possible total make—span. Thus, it seems these

three plans are quite successful in capturing almost all

the savings in total make-spans from Phase One to Phase Two

while avoiding a large volume of work searching for them in

3 job, 4 machine flow shop scheduling problems. The

benefit-cost ratio also increases steadily, and for Plan

Three is four times as large as that for the complete

enumeration.
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4 Job, 4 Machine Flow Shop

Scheduling Problems

 

 

The results obtained for the two replications of

500 problems for Phases One and Two are presented in

Tables 4.8 and 4.9.

Phase One
 

First, the frequency distributions of a number of

problems, according to minimum total make-spans and maximum

total make-spans, are presented in Tables 4.8 and 4.9.

The frequency distribution of the number of problems

according to the number of optimal sequences in Phase One is

given in Table 4.10. The total number of optimal sequences

a problem has is useful to know for Plans Two to Five in

Phase Two.

There are a total of 1691 optimal sequences for the

1000 problems, or an average of 1.691 optimal sequences per

problem. Plans Four and Five advocate a maximum of only

three and two optimal sequences respectively for 4 job,

4 machine flow ShOp scheduling problems. From Table 4,10

it seems there are a total of 77 and 146 problems having

more than three and two optimal sequences, respectively.

Using only the first three and two optimal sequences reduces

the average number of optimal sequences from 1.691 per

problem to 1.544 and 1.398 per problem, respectively. The

relative amount of savings in search work and its conse-

quent loss in improving the amount of the total make-span
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Table 4.8

Frequency Distribution of 4 Job, 4 Machine Problems

According to the Minimum Total Make-Spans

Under No Passing

 

 

 

 

The Range of Number of Problems

Minimum Total

Make-Spans Replication 1’ Replication 2 Total

Less than 220 0 l 1

221-240 4 ‘ 0 4

241-260 8 7 15

261-280 12 11 23

281-300 21 22 43

301-320 35 33 68

321-340 51 51 102

341-360 56 65 121

361-380 74 71 145

381-400 68 72 140

401-420 63 56 119

421-440 42 42 84

441-460 29 32 61

461-480 18 18 36

481-500 9 9 18

501-420 9 8 17

521—540 1 2 3

Total 500 500 1000

Average minimum

total make-Span 377.14 377.92 377.53

Std. Dev. of

the minimum total

make-span 56.49 56.12 56.30

 



122

Table 4.9

Frequency Distribution of 4 Job, 4 Machine Problems

According to the Maximum Total Make-spans

Under No Passing

 

The Range of Number of Problems

Maximum Total

 

 

Make-spans Replication 1 Replication 2 Total

321-340 3 3

341-360

361-380 6 4 10

381-400 15 20 35

401-420 23 24 47

421-440 44 35 79

441-460 39 35 74

461-480 61 54 115

481-500 62 62 124

501-520 72 70 ' 142

521-540 57 59 116

541-560 56 58 114

561-580 31 33 64

581-600 16 20 36

Above 600 11 18 .29

Total 500 500 1000

Average minimum

total make-span 494.91 498.14 496.52

Std. dev. of

minimum total

make-span 57.21 59.22 58.22
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with other plans will be discussed later in this chapter

after the results of the Phase Two experiments are pre-

sented.

Under the no passing restriction for 4 job, 4

machine flow shop scheduling problems there are a total of

4! = 24 possible sequences or permutations. Each of the

1691 optimal sequences obtained in Phase One could be any

one of the 24 different possible sequences. The frequency

distribution of the 1691 optimal sequences, according to the

24 possible sequences obtained, is presented in Table 4.11.

Since there are 1691 total optimal sequences dis-

tributed among the 24 possible sequences, each sequence

should have an average of 70.46 optimal sequences. Good-

ness of Fit was tested on the frequency distribution using

the Chi-square test. For the 23 degrees of freedom X2 .05

is equal to 35.172. The computed value of the Chi-square

from the frequency distribution of 1691 Optimal sequences

was only 24.75. The number 24.75 being much below 35.172,

it is clear each of the 24 possible sequences are equally

popular to be optimal.

Phase Two
 

For 68 and 62 problems of the 500 problems each for

replications 1 and 2, the best total make-spans in Phase

TWo were lower than the minimum total make-spans of Phase

One. The actual amount of improvement obtained by complete

enumeration for these 68 and 62 problems was anywhere from
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Table 4.11

Frequency Distribution of Optimal Sequences of

Phase One According to the Different Possible

Permutations of 4 Jobs

Sequences or

 

No. Permutations Replication 1 Replication 2 Total

1 1 2 3 4 31 30 61

2 1 2 4 3 32 26 58

3 1 3 2 4 33 40 73

4 1 3 4 2 35 43 78

5 l 4 2 3 32 30 62

6 1 4 3 2 35 31 66

7 2 1 3 4 46 31 77

8 2 l 4 3 37 31 68

9 2 3 l 4 42 32 74

10 2 3 4 1 36 32 68

11 2 4 1 3 29 38 57

12 2 4 3 1 31 34 65

13 3 1 2 4 36 23 59

14 3 1 4 2 28 38 66

15 3 2 1 4 33 28 61

16 3 2 4 1 32 45 77

17 3 4 1 2 37 44 81

18 3 4 2 1 40 32 72

19 4 1 2 3 33 34 67

20 4 1 3 2 35 41 76

21 4 2 l 3 37 35 72

22 4 2 3 l 39 41 80

23 4 3 1 2 42 47 89

24 4 3 2 1 43 41 84

Total 854 837 1691
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one to 48 units, averaging 12.07 and 12.69 units per prob-

lem, respectively, for replications l and 2. Each of these

problems had anywhere from one to 24 passing solutions

whose total make-Span values in Phase Two were lower than

the minumum total make-spans of Phase One. The average

number of passing solutions with lower make-spans than the

minimum total make-span of Phase One were 3.24 and 2.73 per

problem, respectively. Tables 4.12 and 4.13 are similar to

the tables for 3 job, 4 machine flow shop scheduling

problems, with the addition of two more columns showing the

amount of improvement in total make-spans by Plans Four and

Five, respectively.

For 4 job, 4 machine flow shop problems there are

68 + 62 = 130 problems of the total 1000 problems in which

permitting passing improves the total make-span. The

average minimum total make-span at the end of Phase One for

these 130 problems is 396.36 units and the average best total

make-Span when passing is permitted is 383.99 units. This

is an average improvement of 12.37 units per problem for the

130 problems. In the remaining 870 problems, there was

improvement in Phase Two computations. The average minimum

total make-Span for the 1000 problems in Phase One was

377.53 units and the average total make-span for the same

1000 problems in Phase Two was 375.92 units. Thus, by per-

mitting passing, an average reduction of 1.61 units of the

total make-span is achieved per problem.
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The values of the measurement function for improve-

ment by passing is as follows:

MTMS - TMSP _ 377.53 - 375.92
 
 

f4 = MTMS ' 377.53

_ 1.61 _
— m - .00427 or 0.427%

Table 4.14 summarizes the amount of improvement or

savings in total make-spans from Phase One to Phase Two by

either complete enumeration search or by search of the five

plans. It also summarizes the amount of search.work invovled

in the five plans, comparing it to the search.work of

complete enumeration, and provides benefit-cost ratios.

From Table 4.14 it appears the amount of work

involved in Plans One, Two and Three, as compared to com-

plete enumeration, decreases very rapidly, starting from

100 percent for complete enumeration to 3.69 percent for

Plan Three. However, the amount of savings in total make—

spans compared to the maximum possible savings by complete

enumeration decreases quite slowly from 100 percent to 88.74

percent. Thus, the benefits involved in Plans One, Two and

Three seem clear. Plan Three looks particularly attractive.

Plans Four and Five do not seem particularly attractive

compared to Plan Three. The reduction of search work in

Plans Four and Five does not appear significant. And com-

pared to the reduction in work, the loss of savings in total

make-spans seems little higher. The benefit cot ratio, as
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can be seen from the table, increases substantially from

complete enumeration to Plan Three. For Plans Four and

Five the increase is fairly slow. It was decided that for

the experiments of Chapter V, involving 4 job, 4 machine

flow shop scheduling problems, only Plans One, Two and

Three, together with complete enumeration, will be utilized.

5 Job, 4 Machine Flow Shop

SchedulingpProblems
 

The results obtained for the two replications of 500

problems for Phases One and Two are presented below.

Phase One
 

Frequency distributions of the number of problems

according to the minimum total make-span and the maximum

total make-span, are presented in Tables 4.15 and 4.16.

As previously discussed in the 3 job and 4 job flow

shop sections, many flow shOp scheduling problems have more

than one optimal sequence. It is certain that the average

number of Optimum sequences per problem increases as the

size of the flow shop increases. For the 3 job, 4 machine

flow shop, there were 1.189 optimal sequences per problem,

and for the 4 job, 4 machine flow shop, there were 1.691

optimal sequences per problem. For the 5 job, 4 machine

flow shop, Table 4.17 provides the frequency distribution

of the number of problems according to the number of optimal

sequences. The average number of Optimal sequences obtained
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Table 4.15

Frequency Distribution of 5 Job, 4 Machine Problems

According to Minimum Total Make Spans

 

 

 

  

The Range of Frequencies

Minimum Total

Make-spans Replication 1 Replication 2 Total

261-280 1 4

281-300 6 7

301-320 6 8 14

321-340 15 3 '18

341-360 32 30 62

361-380 40 45 85

381-400 60 59 119

401-420 76 77 153

421-440 63 69 132

441-460 73 64 137

461-480 48 45 ' 93

481-500 41 38 79

501-520 19 29 48

521-540 12 16 28

541-560 10 7 17

561-580 0 3 3

581-600 1 0 1

Total 500 500 1000

Average Total

Minimum Make-

span 426.73 428.97 427.85

Std. dev. of

the Total

Minimum Make-

span 54.33 54.84 54.58
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Table 4.16

Frequency Distribution of 4 Job, 4 Machine Problems

According to Maximum Total Make-spans

 

 

 

  

The Range of Frequencies

Maximum Total

Make-spans Replication 1 Replication 2 Total

381-400 1 2 3

401-420 2 2 4

421-440 3 3 6

441-460 4 3 7

461-480 6 12 18

481-500 15 15 30

501-520 30 28 58

521-540 47 45 92

541-560 42 56 98

561-580 59 65 124

581-600 74 59 ’ 133

601-620 70 67 137

621-640 57 49 106

641-660 43 44 87

661-680 25 27 52

681-700 16 14 30

701-720 3 8 11

721-740 2 l 3

741-760 1 0

Total 500 ‘ 500 1000

Average Maximum

Total Make-Span 587.71 585.83 586.77

Std. dev. of the

Maximum Total

Make-span 57.13 59.10 58.20
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are 2.567 per problem. This number is 51.8 percent higher

than the 1.691 optimal sequences per problem for the 4 job,

4 machine flow shop and is 116 percent higher than the 1.189

Optimal sequences per problem for the 3 job, 4 machine flow

shop scheduling problem.

A total of 2567 Optimal sequences for the 1000

problems, computes to an average of 2.567 optimal sequences

per problem in Phase One for a 5 job, 4 machine flow shOp'

scheduling problem. Each of these 2567 Optimal sequences

could be any one of the 5! = 120 different possible sequences.

After studying the collected data, it seems clear that all

120 different possible sequences are equitably represented

by the 2567 optimal sequences.

Phase Two
 

For a total of 91 and 94 problems of the 500

problems each for replications 1 and 2, the best total make-

Spans in Phase Two were lower than the minimum total make-

spans of Phase One. The actual amount of improvement

acquired for these problems varied from 1 to 57 units,

averaging 12.58 and 11.38 units per problem, respectively.

Each of these problems had anywhere from 1 to 152 passing

solutions whose best total make-span was lower than the

ndnimum total make-span of Phase One, and it amounted to an

average of 7.71 and 8.7 passing solutions per problem for

replications 1 and 2. The two tables presented in the

following pages correspond to replications 1 and 2 of the
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5 job, 4 machine flow shop scheduling problem and are

similar to earlier tables for 4 job, 4 machine flow shOp

scheduling problems.

From these tables it is easy to see the average

savings in the total make-span by complete enumeration in

Phase Two is 12.59 and 11.44 units per problem for the 91

and 94 problems of replications 1 and 2, respectively. Or

for the total 91 + 94 = 185 problems the savings in total.

make-spans in Phase Two averages 11.99 units per problem.

For the rest of 1000 - 185 = 815 problems there is no

savings in total make-spans. Thus, for these 1000 problems,

the average savings in total make-Spans amounts to 11.99 *

185/1000 = 2.219 units per problem in Phase Two. The

average minimum total make-span in Phase One was 427.85

units; thus the average minimum total make-span in Phase

Two will be 427.85 - 2.219 = 425.63 units for the 1000

problems. The value of the measurement function of passing

for the 5 job, 4 machine flow shop scheduling problem is:

MTMS - TMSP _ 427.85 - 425.63

f4 = MTMS " 427.85

 

_ 2.219 _
_ 427785‘— .00519 or 0.519%

The actual values of the measurement function

obtained for 3, 4, and 5 job, 4 machine flow shop schedul-

ing problems, will be discussed later in this chapter.
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As previously stated, the tables presented for the

Phase Two experiments provide the amount of savings obtained

in the total make-Spans by complete enumeration and by the

five search plans. Table 4.20 summarizes the relative

savings in the total make-span and the amount of search work

involved in the complete enumerations and five plans.

From Table 4.20, it seems the amount of search work

involved in finding some improvement or savings in the total

make-span reduces quickly, beginning at 100 percent for com-

plete enumeration to 0.36 percent for Plan Three. But the

amount of savings decreases very slowly starting from 100

percent for complete enumeration to 80.13 percent for Plan

Three. Thus, the progressive increase in the usefulness of

Plans One, Two and Three is established beyond doubt.

Relatively speaking, Plan Four involves 87.3 percent as muCh

work as Plan Three and provides 98.7 percent as much savings

as that plan. Therefore, Plan Four seems advantageous in

reducing the 12.7 percent of search work with.a consequent

1.3 percent reduction in savings as compared to Plan Three.

Plan Five when compared to Plan Four does not appear attrac-

tive. It amounts to 95.6 percent as much work as Plan Four,

providing 98.57 percent as much savings as Plan Four. The

reduction in the amount of work is 4.4 percent whereas the

reduction in savings in the total make-span is 1.43 percent.

Thus, although Plan Five seems adequate, it isn't as good

as Plan Four. Only Plans One, Two, Three and Four for the

5 job, 4 machine flow shop scheduling problem will be used

in Chapter V.
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From Table 4.21, few facts emerge clearly. The

total number of problems whose best total make-span in

Phase Two is lower than the minimum total make-span of

Phase One increases steadily from 105 for the 3 job shop to

130 for the 4 job shop and to 185 for the 5 job, 4 machine

flow shop. The average number of passing solutions with a

lower total make-span than the corresponding minimum total

make-span, increases from 1.39 passing solutions per problem

for the 3 job shop to 2.99 passing solutions for the 4 job

and to 8.21 passing solutions for the 5 job, 4 machine flow

shOp. The average savings in the total make-span per prob-

lem decreases slightly from 12.72 units for the 3 job to

12.37 units for the 4 job and to 11.99 units for the 5 job,

4 machine flow shop. This slight decrease in average savings

in the total make-span together with a fairly large increase

in the number of problems with lower total make-span in

Phase Two as compared to Phase One makes the average savings

in the 1000 problems increase from 1.34 units per problem

for the 3 job to 1.61 units for the 4 job and to 2.22 units

for the 5 job, 4 machine flow shop. The value of the

measurement function increases with the increase in the

size of the flow shop.

Table 4.21 also indicates the percent savings in

total make-spans compared to complete enumeration in a

particular plan decreases from 3 job to 5 job, 4 machine

flow shops. For example, in Plan Three, the savings is

94.91 percent for the complete enumeration saving for the
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Table 4.21

Results of Phases One and Two in Summary Form for

3 Job, 4 Job and 5 Job, 4 Machine Flow Shop

Scheduling Problems

 

3 Job 4 Job 5 Job

 

10.

Phase One
 

Average minimum total

make-span

Average maximum total

make-span

Number of Optimal sequences

per problem

Phase Two
 

Number of problems out of

1000, whose total make-

span improved by permit-

ting passing between

sequences

Average number of passing

solutions per problem

whose total make-spans

were lower than the

minimum total make-span

of Phase One

Average savings in the

total make-span per

problem for number of

problems of row 4

Average savings in the

total make-Span per

problem for 1000 problems

Average minimum total

make-span in Phase Two

for 1000 problems

f4 in percent

Percent Savings in Total

Hake-spans COmpared to

Complete Enumeration

 

Complete enumeration

‘323.28

401.96

1.189

105

1.39

12.72

1.34

321.94

0.415

100

377.53

496.52

1.691

130

2.99

12.37

1.61

375.92

0.427

100

427.85

586.77

2.567

185

425.63

0.519

100
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Table 4.21 continued.

 

 

 

 

 

 

 

 

 

 

 

3 Job 4 Job , 5 Job

11. Plan One 100 99.44 99.41

12. Plan Two 94.91 89.24 80.80

13. Plan Three 94.91 88.74 80.13

14. Plan Four --- 83.77 78.64

15. Plan Five --- 81.16 77.51

Number of PasSing Solutions

Searched in Phase Two

16. Complete Enumeration 30 552 14280

17. Plan One 18 144 1200

18. Plan Two 11.89 77.79 605

19. Plan Three 7.13 20.29 51.34

20. Plan Four --- 18.53 44.80

21. Plan Five --- 16.78 42.82

Percent Amount of Search

Work Compared to Complete

Enumeration

22. Complete enumeration 100 100 100

23. Plan One 60 26.09 8.42

24. Plan Two 39.63 14.09 4.24

25. Plan Three 23.78 3.69 0.36

26. Plan Four --- 3.36 0.31

27. Plan Five --- 3.04 0.30

Benefit Cost Ratio in Terms

5f_TOtal Savings Divided by

Number of Passing SolutiOns

Searched in Phase Two

28. Complete enumeration 44.53 2.91 0.16

29. Plan One 74.25 11.10 1.84

30. Plan Two 106.78 18.45 2.96

31. Plan Three 177.59 70.35 34.60

32. Plan Four --- 72.60 38.95

33. Plan Five --- 77.75 40.15
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3 job, but is only 88.74 percent in the 5 job, 4 machine

flow shop. The reason for this is that the percent of

search work done as compared to complete enumeration,

decreases significantly from the 3 job to 5 job, 4 machine

flow shop. For example, for Plan Three, 23.78 percent of

the complete enumeration solutions are examined for the 3

job shop, but only 3.69 percent solutions are examined for

the 4 job and just 0.36 percent passing solutions are

examined in the 5 job, 4 machine flow shop.

Rows 28-33 in Table 4.21 provides values for the

benefit-cost ratio. Since benefit and cost are in different

measurement units, a value of the ratio by itself does not

provide significant information, but when one value of the

ratio is compared with another value, the comparison can

provide useful information.

It is clear from the table that the values of the

benefit-cost ratio for all three sizes of the flow shop,

increases with the increase in plan numbers. These increases

indicate Plan Three for the 3 job, 4 machine flow shop and

Plan Five for 4, and 5 Job, 4 machine flow shops are most

efficient as far as the benefit-cost ratio is concerned.

For the complete enumeration and all five plans, the value

of the benefit-cost ratio decreases with the increase in

flow shop sizes. This signifies that for the same amount

of savings in the total make-span, increasing amount of

search work is necessary with any increase in the size of

the flow shOp.
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Concluding from all presentations discussions and

analysis of results in this chapter, removing the no

passing restriction is quite useful. Although with passing

permitted between sequences, the number of solutions to be

examined increases tremendously, the benefit of a lowered

total make-span could make the extra search work worthwhile.

The results presented in this chapter establish the viability

of using partial search plans rather than complete enumera-

tion. These various plans, particularly Plan Three, permit

more than 80 percent of the benefit of the removal of the

no passing restriction to be achieved at a relatively small

fraction of the search work of the complete enumeration.



CHAPTER V

RESULTS OF ANALYSES WITH BETA DISTRIBUTED

PROCESSING TIMES

The results presented in Chapter IV establish the

phenomena of the lower total make-span with the removal

of the no passing restriction. All the results in Chapter

IV were obtained from solving flow shop scheduling problems

whose processing times were generated using uniform proba-

bility distributions between 0 and 100. In this chapter the

results are obtained from solving flow shOp scheduling

problems whose processing times are generated by using Beta

probability distributions. As discussed in Chapter III,

Beta probability distribution is quite flexible with an

entirely different shape of the density function curve for

different values of its parameters A and B. For the experi-

:ments of Chapter V, different shapes of probability density

functions are obtained by choosing five sets of A and B

‘values equal to 0.5, 1.5, 2.0, 2.51and 3.0 for each of the

3 job, 4 machines; 4 job, 4 machines and the 5 job, 4

machines flow shop sizes. Two replications of 500 problems

160
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for each of the five sets of A and B values are generated.

In other words, for each of the three sizes of flow shOps,

enough random numbers are generated for a total of 5000

problems for the experiments. When the values of A and B

are equal to 1.0, the Beta probability distribution is the

same as the uniform probability distribution, which is

already covered by the experiments whose results are

reported in Chapter IV. For purposes of comparison and

filling the gap between the values of A and B from 0.5 to

1.5, some of the results of Chapter IV will be used again

in this chapter.

Explanation of Terms

Following is a list of shortened terms which will

be used in place of the longer names in this chapter:

A_§ refers to the Beta distribution parameters A

and B. (Throughout the experiments, parameters A and B

have equal values.)

Tamig is the mean minimum total make-Span value of

Phase One averaged from all the problems of replications 1

and 2. I

Tamax is the mean maximum total make-span value of

Phase One, averaged from all the problems of replications

l and 2.

Trange is Tamax-Tamin = mean value of the difference

.between.the maximum and minimum total make-span of Phase



162

One, averaged over the total problems of replications 1

and 2.

N92 is the total number of problems in both repli-

cations for which the lowest total make-span in Phase Two

was found to be lower than the minimum total make-span of

Phase One.

23295 is the mean value of the number of Optimal

sequences per problem in Phase One averaged from all the

problems of replications 1 and 2.

MTMS is the minimum total make-span under no

passing.

TMSP is the lowest (best) total make-span under

passing.

3 Job, 4 Machine Flow Shop

Scheduling Problems
 

In the following pages, three tables of results

obtained during experiments on 3 job, 4 machine flow shop

scheduling problems are presented. Table 5.1 provides

results of Phase One experiments. For each of the six sets

of A and E values, it provides the results obtained in

replications 1 and 2, the total of the two replications.

Each replication has 500 problems; Table 5.1 also shows the

value of the average minimum total make-span, the average

maximum total make-span, the range between the average

maximum and the minimum total make-span, and the average

number of optimal sequences per problem, averaged over the
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Table 5.1

Results of Phase One Experiments of 3 Job,

4 Machine Flow Shop Scheduling Problems

 

 

Average

Number of

Average Average Optimal

Minimum Maximum Sequences

A and B Repli- Total Total Per-

Values cation Make-span Make-span Range Problem

1 330.75 424.86 94.11 1.162

0.5 2 328.50 424.83 96.32 1.200

Total 329.63 424.84 95.21 1.186

1 321.23 400.72 79.49 1.178

1.0 2 325.34 403.21 77.87 1.200

Total 323.28 401.96 78.68 1.189

1 322.41 389.66 67.24 1.166

1.5 2 319.28 385.93 66.64 1.222

Total 320.84 387.79 66.94 1.194

1 315.64 377.14 61.50 1.182

2.0 2 319.66 380.60 60.95 1.208

Total 317.65 378.87 61.22 1.195

1 315.02 371.15 56.13 1.192

2.5 2 317.24 372.58 55.35 1.220

Total 316.13 371.87 55.74 1.201

1 315.04 365.72 50.68 1.220

3.0 2 318.37 368.14 49.78 1.226

Total 316.70 366.93 50.23 1.223

 

500 problems. The values in the row designated "Total"

are averaged from 1000 problems of replications l and 2.

As A and B (which will be called AB from now on)

values increase from 0.5 to 3.0, the minimum total make-

span values average from the total of replications l and 2

(which will be called Tamin from now on), decrease slowly

from 329.63 to 316.70. The decrease in Tamin is small and
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not continuous because as AB increases from 2.5 to 3.0,

there is a slight increase in its value. On the other hand,

the value of the maximum total make-span averaged over the

total of replications 1 and 2 (Tamax) decreases fairly

steadily. As a consequence, there is a larger decrease in

Tamax and a smaller decrease in Tamin. The range of the

total of replications 1 and 2 between Tamix and Tamix

(Trange) decreases quite substantially, from 95.21 to

50.53 as AB values increase from 0.5 to 3.0. On the basis

of Trange equal to 100, for AB equal to 0.5, other Trange

values for AB at 1.0, 1.5, 2.0, 2.5 and 3.0, are 82.6,

70.3, 64.2, 58.5 and 52.8, respectively. The value of

Trange indicates amount of difference between the best and

worst values of the total make-span. So as the value of

Trange decreases with.an increase in the value of AB, the

discrimination between the best and worst total make-spans

becomes less and less. The value of the average number of

Optimal sequences per problem for the total of replications

1 and 2 (Tanos) increases with the increase in AB's value.

As AB increases from 0.5 to 3.0, Tanos increases from 1.186

to 1.223, a total increase of 3.5 percent.

Table 5.2 summarizes results of Phase Two experi-

ments on 3 job, 4 machine flow shop scheduling problems.

For each replication and for the total of both replications

for each value of AB, the table provides the number of

problems (Nop) for which the best total make-span in Phase

Two was found to be lower than the minimum total make-span
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of Phase One. The table also shows the total savings in

the total make-span for all Nop. The total savings for

all Nop obtained and presented in Table 5.2 are by the

complete enumeration process and by the partial search

Plans One, Two and Three.

The most significant fact that emerges from Table

5.2 is that with the increase in AB values, the decrease

in the Nop is quite substantial. As AB values increase

from 0.5 to 3.0, the values of the Nop decreases from 141

to 23, amounting to 83.7 percent decrease. Another obser-

vation that can be made from the table is that the value

of the total savings Obtained by the complete enumeration

search, decreases steadily with the increase in the value

of AB. As AB values increase from 0.5 to 3.0, the total

savings Obtained by complete enumeration decreases from

2291 to 166 time units. On the basis of 100 units of

total savings for AB equal to 0.5, the total savings value

decreases to 7.25 time units for AB equal to 3.0.

The amount of savings by the three partial search

Plans One, Two and Three for the different values of AB are

almost as much as the savings by the complete enumeration

search. The total savings by Plan One is almost 100 percent

for all the values of AB, and the total savings by Plans

Two and Three varies from 90.57 to 98.11 percent. For the

six values of AB, overall savings by Plans One, Two and

Three are 99.92, 95.19, and 95.19 percent of the savings

by complete enumeration.
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Table 5.3 presents the average minimum total make-

span under no passing and passing. Using these two values,

the values of the measurement function f4 is computed and

shown in that table. As the value of AB goes up, the

value of f4 decreases. The decrease in f4 values as AB

increases from 0.5 to 3.0, amounts to approximately 92.5

percent.

4 Job, 4 Machine Flow Shop

Scheduling Problems

 

 

In the following pages, three tables of results

Obtained during experiments on 4 job, 4 machine scheduling

problems are presented. These tables are similar to the

ones presented earlier for 3 job, 4 machine flow shop

scheduling problems. In Table 5.4, the values Of Tamin,

Tamax, Trange, and Tanos are given for the six values of

AB. The Tamin values decrease very slowly and unsteadily

as the values of AB increase. The total amount of decrease

in Tamin is only 3.5 percent. On the other hand, Tamax

values decrease fairly steadily as AB values increase. As

a result of large and steady decreases in Tamax, and small,

unsteady decreases in Tamin, Trange decreases substantially

from 142.95 to 75.63, as AB values increase from 0.5 to

3.0. On the basis of Trange equal to 100, for AB equal to

0.5, other Trange values for AB equal to 1.0, 1.5, 2.0,

2.5 and 3.0, are 83.4, 71.0, 64.0, 58.2 and 53.0, resPec-

tively. These numbers obtained for 4 job, 4 machine
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Table 5.4

Results of Phase One Experiments of 4 Job,

4 Machine Flow Shop Scheduling Problems

 

Average

Number of

Average Average Optimal

Minimum Maximum Sequences

A and B Repli- Total Total Per

Values cation Make-span Make-span Range Problem

1 381.44 523.43 141.99 1.732

0.5 2 381.42 525.33 143.91 1.650

Total 381.43 524.38 142.95 1.691

1 377.14 494.91 117.77 1.708

1.0 2 377.92 498.14 120.22 1.674

Total 377.53 496.52 118.99 1.691

1 372.73 474.64 101.91 1.746

1.5 2 372.64 473.20 100.56 1.738

Total 372.68 473.92 101.24 1.742

1 368.52 460.31 91.80 1L664

2.0 2 370.73 461.69 90.96 1.654

Total 369.62 461.00 91.38 1.659

1 367.75 449.66 81.91 1.750

2.5 2 367.40 451.48 84.08 1.760

Total 367.57 450.57 83.00 1.755

1 368.63 443.69 75.06 1.880

3.0 2 367.09 443.30 76.21 1.714

Total 367.86 443.49 75.63 1.797

 

problems are quite similar to the 3 job, 4 machine problems

reported earlier. Thus, the discrimination between the

best and the worst total make-spans decreases substantially

as AB values increase. The values of Tanos shown in Table

5.4 for 4 job, 4 machine problems, do not follow any parti-

cular pattern, but instead fluctuate a great deal. The

only Observation that can be drawn from the Tanos values
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is that on an average, Tanos for 4 job, 4 machine problems

are 44.0 percent higher than the Tanos for 3 job, 4

machine problems.

Table 5.5 provides values of Nop and the values of

total savings for all NOps by complete enumeration and by

search Plans One, Two and Three. As experienced previously,

Nop values decrease substantially from 186 to just 28, as

values of AB go from 0.5 to 3.0. On the basis Of Nop equal

to 100 for AB equal to 0.5, 15.1 Nop are obtained for AB

equal to 3.0. The values of the total savings for all Nop

by complete enumeration decrease even faster than the

decrease in the Nop. The total savings values drop from

3192 time units to 252 time units, obtained by complete

enumeration as AB increases from 0.5 to 3.0. The drOp in

the total savings value amounts to a 92.1 percent. The

amount of savings by partial search plans are almost as much

as the savings by complete enumeration. For Plan One,

savings vary from 99.30 to 100 percent of the complete

enumeration savings, whereas savings by Plans Two and Three

vary anywhere from 85.25 to 92.06 percent of the complete

enumeration savings. Overall savings by Plans One, Two and

Three are 99.53, 89.40, and 89.07 percent of the savings by

complete enumeration.

Table 5.6 shows the average minimum total make-span

under no passing and passing, as well as using these two

values to provide the values of the measurement function

f4. With an increase in AB values, f4 values decrease
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steadily. The amount of decrease in f4 values is 91.9

percent as AB values increase from 0.5 to 3.0.

5 Joby_4 Machine Flow Shop

Scheduling PrOblems

 

 

In the following pages, three tables of results

obtained during experiments on 5 job, 4 machine flow shop

scheduling problems are presented. These tables are

similar to the tables presented earlier for 3 and 4 job,

4 machine problems. Table 5.7 provides Tamin, Tamax,

Trange and Tanos values. As AB values increase, the values

of Tamin, Trange, and Tamax decrease. The decrease in Tamin

is small amounting to only 2.88 percent, whereas the

decrease in Tamax is a little larger, resulting in 16.45

percent as AB values increase from 0.5 to 3.0. Since the

Trange values are the difference of the Tamax and Tamin

values, and since the decrease in Tamax is greater than the

Tamin, Trange values decrease steadily as AB values go from

0.5 to 3.0. The total decrease in Trange is from 191.80 to

102.07 units, amounting to a 46.75 percent decrease. It

indicates the discrimination between the best and the worst

total make-span for AB equal to 3.0 is half as much as the

discrimination for AB equal to 0.5. As can be seen from

the tables, Tanos does not follow any particular pattern of

change. Overall, it seems that the Tanos values of 5 job,

4 machine problems are 65 percent greater than the Tanos

values of the 4 job, 4 machine problems and are 137 percent
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Table 5.7

Results of Phase One Experiments of 5 Job,

4 Machine Flow Shop Scheduling Problems

 

 

Average

Number of

Average Average Optimal

Minimum Maximum Sequences

A and B Repli- Total Total Per

Values cation Make—span Make—span Range Problem

1 431.02 622.53 191.51 2.820

0.5 2 427.33 619.41 192.08 2.680

Total ‘429.17 620.97 191.80 2.750

1 426.73 587.71 160.98 2.590

1.0 2 428.97 585.83 156.86 2.544

Total 427.85 586.77 158.92 2.567

1 427.66 563.80 136.14 3.030

1.5 2 420.92 556.62 135.70 2.858

Total 424.29 556.62 135.92 2.944

1 422.22 544.68 122.46 2.880

2.0 2 423.28 544.51 121.23 3.278

Total 422.75 544.59 121.84 3.079

1 416.49 526.89 110.39 2.932

2.5 2 418.79 529.07 110.28 2.796

Total 417.64 527.98 110.34 2.864

1 416.78 520.45 103.67 2.786

3.0 2 416.84 517.31 100.47 2.882

Total 416.81 518.88 102.07 2.834

 

greater than the Tanos values of the 3 job, 4 machine

problems.

Table 5.8 provides the Nop and the total savings

for all Nop by complete enumeration search and by the

search of Plans One, Two, Three and Four. As experienced

before, Nop values drop tremendously,from 237 to 45, amount-

ing to a net 81 percent decrease as AB values increase from
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0.5 to 3.0. The amount of savings by the search plans are

not as high as compared to the complete enumeration search

as they were for the 3 and 4 job, 4 machine flow shop

scheduling problems. Overall, the savings of Plans One,

Two, Three and Four amounts to 99.0, 78.6, 77.5, and 75.3

percent of the savings by complete enumeration.

Table 5.9 provides the average minimum total make-

span under both no passing and passing. Using these two

values, the value of the measurement function f4 is computed

and shown in the table. The value of the measurement func-

tion f4 drops steadily as the values of AB increase. The

decrease in f4 values amounts to 92.7 percent as AB values

go from 0.5 to 3.0.

Summary

Table 5.10 shows a number of problems for which

permitting passing between sequences improved the minimum

total make-span of Phase One in Phase Two for the values

of AB equal to 0.5 to 3.0 and for the flow shop sizes of

3 to 5 job, 4 machine. The number of problems given in

each category are from a total of 1000 problems. It is

Obvious from the table that the number of problems increases

with the increase in the number of jobs in the flow shop

and also with the decrease in AB values. For example, in

the case of the 3 job, 4 machine flow shop and for the AB

value of 3.0, only 2.3 percent of the problems have a lower

total make-span in Phase Two than Phase One whereas 23.7
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Table 5.10

Number Of Problems Where Passing Improved

the Total Make-span (Nop)

 

Size of the Flow Shop

 

 

A and B 3 Job, 4 Job, 5 Job

Values 4 Machine 4 Machine 4 Machine

0.5 141 186 237

1.0 105 130 185

1.5 49 83 126

2.0 31 72 79

2.5 29 30 64

3.0 23 28 45

 

percent of the problems have lower total make-spans in

Phase Two compared to Phase One for the 5 job, 4 machine

flow shop and AB value of 0.5.

Figure 5.1 pictorially shows the effect of the

increases in AB values and the effect of increases in the

size of the flow shop on the number of problems in which

the lowest total make-span of Phase Two was lower than the

minimum total make-span Of Phase One. The increase in the

number of problems with the increase in the size of the

flow shop for AB values equal to 0.5, 1.0, and 1.5 is

phenomenal.

Table 5.11 presents values of the measurement func-

tion £4 for 3, 4 and 5 job, 4 machine flow shop scheduling

problems and for the AB values of 0.5 to 3.0. The values
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Figure 5.1 Number of Problems where Passing Improved the

Total Make-Span (Nop).
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Table 5.11

Value of the Measurement Function f4 in Percent

 

Size of the Flow Shop

 

 

A and B 3 Job, 4 Job, 5 Job,

Values 4 Machine 4 Machine 4 Machine

0.5 0.695 0.836 0.850

1.0 0.415 0.426 0.519

1.5 0.143 0.228 0.292

2.0 0.082 0.181 0.171

2.5 0.085 0.075 0.103

3.0 0.052 0.068 0.062

 

of f4 as given in the table varies from 0.052 to 0.850'

percent. The f4 values for each of the three flow shop

sizes, except in one instance, decrease with the increase

in AB values. Thus it can be safely assumed that the

values of f4 will decrease with the increase in AB values

for a given size of flow shop scheduling problems.

In a similar way, for a given AB value, as the size

of the flow shop scheduling problem increases, the value of

the measurement function f4 increases, except in a few

instances. Figure 5.2 shows pictorially the behavior of

the measurement function with the increase in the size of

the flow shop and with the increase in AB values. From

Table 5.11 and from Figure 5.2, it can be said that in

general the value of f4 increases with both the increase in
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the number of jobs in the flow shop and with the decrease

in the values of AB.



CHAPTER VI

SUMMARY OF FINDINGS AND RECOMMENDATIONS

FOR FURTHER.RESEARCH

Findings and Conclusions

The main purpose of this dissertation was to study

and analyze the effects of permitting passing between

sequences of solutions to flow shop scheduling problems.

The various results presented in Chapters IV and V proved

beyond a doubt that, in a large number of problems, per-

mitting passing improves the minimum total make-span

Obtained with no passing. Thus, if global Optimization of

a flow shop scheduling problem is desired, it is necessary

that complete enumeration of all possible solutions with

passing between sequences be considered. The complete

enumeration of all no passing and passing solutions for

even a small size flow shOp scheduling problem involVes a

great deal of effort. So if global optimization in a

particular situation is not necessary, then some heuristic,

if available, can provide fairly good solutions to flow shop

scheduling problems with much less computational efforts.
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Until now not even a single heuristic was available to

reduce the minimum total make-span beyond the no passing

stage for flow shop scheduling problems where passing was

permitted.

This dissertation provides three heuristics or

plans, each of which can provide solutions which are very

close to global Optimum solutions With only a small fraction

Of effort required as compared to that required by complete

enumeration. Plans Three, Two, and One gradually require

more and more computational efforts to obtain progressively

closer approximations to the global optimum solutions to

flow shop scheduling problems. For example, for the one

thousand of 5 job, 4 machine flow shop scheduling problems,

Plans Three, Two and One provided 80.13, 80.80, and 99.41

percent of the possible reduction of the total make-span

between the local optimum of no passing and global optimum

of passing with 0.36, 4.24, and 8.42 percent computational

efforts compared to 100 percent reduction and 100 percent

computational efforts by complete enumeration. These three

plans can be used only if all or most of the optimal solu-

tions under the no passing restriction are available.

To obtain all Optimal solutions under no passing,

two approaches have been suggested in this dissertation.

One is the complete enumeration of all the no passing

solutions; the other is by a modified version of Ignall and

Schrage's branch and bound technique. A user who is look-

ing for a heuristic will find three choices in this
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dissertation, and he can make his choice on the basis of

the availability of computational efforts and his needs.

Although these three plans are specifically tailored for

the smaller flow shop scheduling problems with exactly four

machines, they are simple enough so that any user can

modify them to make them applicable to larger sizes of flow

shOp scheduling problems.

The results in Chapter IV illustrate that if the

processing times are uniformly generated, then 10.5, 13.0,

and 18.5 percent of the 3 job, 4 machine; 4 job, 4 machine;

and 5 job, 4 machine flow shop scheduling problems have a

lower value of total make-span with passing compared to the

minimum total make-spans Obtained with no passing. It is

easy to see that as the number of jobs in the flow shop

scheduling problem increase, the number of problems for

which permitting passing lowered the total make-span, also

increased. Results presented in Chapter V also support

this contention. In fact, in observing the results of

Chapter V, it seems that the number of problems for which

passing was permitted lowered the minimum total make-span

increase on an average of 49.1 percent as the size of the

flow shop scheduling problem increases by one job. Such a

large increase may or may not continue as the number of

jobs in the flow shop increases beyond five. But if it

does, it is conceivable that for a relatively large size

problem such as a 10 job, 4 machine problem, in each instance
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passing can provide a lower total make-span compared to

the minimum total make-span with no passing.

It was discovered through experimentation that the

, amount of reduction in the total make-span by permitting

passing was relatively small. For example, the expected

reduction in the minimum total make-span of no passing,

by permitting passing for 3 job, 4 machine, 4 job, 4

machine, and 5 job, 4 machine flow shop scheduling problems,

was only 0.415, 0.426, and 0.519 percent, respectively,

when the processing times were generated from uniform dis-

tribution. These values are comparable to the expected

reduction in total make-span obtained by Krone (25), which

was 0.66 percent by using the heuristic technique on the

8 job, 5 machine flow shop scheduling problems with the

minimization of mean completion time as the performance

measure. Although the expected reduction in the total make-

span by permitting passing is small, it increases by 21.5

percent with every increase of one job in the flow shop.

In the last twenty years of work, almost all

researchers have used processing times either chosen arbi-

trarily or generated from the uniform probability distribu-

tion for their research on flow shop scheduling problems.

In this research, besides a uniform probability distribu-

tion, beta probability distributions were also used for

generating processing times. The beta distribution has two

parameters, A and B. For this dissertation, five sets Of

A and B values were chosen and corresponding probability
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distribution functions were used to generate five sets of

processing times. For each set of processing times, passing

and no passing studies were made and reported in Chapter V.

These results clearly indicated that as the values of A and

B increased, the number of problems for which permitting

passing reduced the minimum total make-span of no passing,

decreased significantly for each of the three different

sizes of flow shops. The expected reduction in the minimum

total make-span of no passing by permitting passing decreased

even faster as the A and B values increased. For example,

for 5 job, 4 machine scheduling problems, the expected value

of the reduction in the minimum total make-span of no pass-

ing was 0.850 percent when A and B were equal to 0.5, but

was only 0.062 percent when A and B were each 3.0.

During this investigation it was found that under no

passing the range between the maximum and minimum total

make-spans was quite narrow. When the processing times were

generated from the uniform probability distribution, on an

average the range was only 24, 31, and 37 percent of the

minimum total make-span for 3 job, 4 job, and 5 job, 4

machine flow shop scheduling problems. Also, as values Of

A.and B increased in the beta probability distribution,

‘values of the range decreased significantly. For example,

‘when A and B were equal to 3.0, the ranges were only 16,

20, and 24 percent of the minimum total make-span for 3 job,

4 job, and 5 job, 4 machine flow shop scheduling problems.
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Many researchers have presented heuristics for flow

shop scheduling problems under no passing. Few of them

have led us to believe that their heuristics are totally

reliable, because they provide solutions whose total make-

spans are "only" 5 to 15 percent away from the minimum

total make-span. In the absence of any knowledge about

the range between the maximum total make-span (worst solu-

tion) and the minimum total make-span (best solution),

their claim might seem justifiable, but if the value of the

range is known and if it is narrow compared to the minimum

total make-span, then the claim Of "good heuristics" can

be discounted.

Suggestions for Further Research
 

The most important and useful research in the area

of flow shop scheduling at this time would be the develop-

ment of the branch and bound technique to obtain global

optimum solutions under passing. Since the branch and bound

technique for no passing is available, the task of modifying

it for passing seems possible. After Spending a great deal

of time and effort working with passing in flow shop

scheduling problems, the author of this dissertation was

convinced that the task of modifying the branch and bound

techniques is feasible but will require a lot of effort and

analysis by other researchers.

Other research that could be quite useful is an

extension of the studies and analysis done herein to flow
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shop scheduling problems with more than four machines.

With N job, 4 machine flow shop scheduling problems and

minimization of the total make-span as the performance

criterion, passing need be considered only between job

sequences of the second and third machines. But with M

machines in the flow shop where M is more than four, M-3

instances of passing should be considered to Obtain a

global optimum solution. Various plans (heuristics) pre-.

sented here could be modified through further experimentation.

The biggest disadvantage of HuaprOposed extension is that

for any job larger than a 5 job, 4 machine flow shop sched-

uling problem, tremendously large computational efforts

would be required. When a complete enumeration of six '

thousand 5 job, 4 machine flow shop scheduling problems

with passing permitted was done for this dissertation, more

than 72,000 seconds of computational time were needed on

an IBM 360/75 computer. By the same token, one problem

of 5 job, 5 machine flow shop size with passing permitted

would require 1,440 seconds of computer time to do a com-

plete enumeration. Unless a much larger computer with

plenty of computation time is available, a study involving

complete enumeration to Obtain globally Optimum solutions

is not feasible.

Examination of the applicability of the various

plans presented in this dissertation for N job, 4 machine

flow shop scheduling problems where N > 5 could also be an

interesting idea for further research. These plans were
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quite successful for small flow shOp scheduling problems.

Whether they are equally useful for larger (N > 5) flow

shop scheduling problems or whether some modifications are

required could be explored in future research.

Throughout the study and analysis of permitting

passing in flow shop scheduling problems, it was assumed

that all the Optimum solutions a problem has under no

passing can be easily obtained; and in this study, were

obtained. It would be interesting to develOp heuristics

and analyze their performance when only one or a few

optimum solutions per problem were obtained. Techniques

required for obtaining only one Optimum solution under no

passing per problem will demand less computational effort

than techniques providing all the Optimum solutions a

problem has under no passing. It would be beneficial to

determine whether the initial savings in computational

effort by obtaining only one Optimum solution under no

passing per problem is worthwhile.

The list of possible topics for further research is

almost endless. Besides the above mentioned tOpics, there

are many unanswered questions in the flow shop scheduling

field under no passing which could be researched. It is

the hope of the author that this dissertation will generate

more interest in the flow shop scheduling area and that

more people will take it upon themselves to find answers to

the remaining questions in this field.
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25
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IF(nA3x.ro.n)Gn TO 10

IF(NAG.NF.0)JOVSON=IIEMP

CALL INTFD

CONTINUE

LouBCN(Le1)=1ononu

RETURN

END

SUBFCUTIBE BCUfiE

COMMON JCBSCH(720),nAIhIX(720,20),LOWJOQ(I20),FPOCTI(

120,10),TFS(20),LBNB(ZC),KT113(1U),TIME(1U),LIRT,LH1,NJOU

2,fiJOP,J0¥SON,ISTOP,HAG,JOF,1ACHIN,ITEWF,flARK

INTFGFB FFOCTI,TIM€

ITE"F=0

KTI¥E(1)=TI“T(1)+PFCC11(IE?(1),1)

DO 2 T=2,MACPTM

TP(TIMP(I).GI.KTIFE(I-1))CO T0 1

KTIHE111=KTTHP(I-1)+PROCTI(IPS(1),1)

GO T0 2

KTIME(Y)=TIN‘(T)+PPHCII(IPS(1),I)

CONTIVUR

DO 1 I=1,N1CHIN

LBND(I)=C

IF(NJCD.GT.1)GO T0 h

ILOV11=0

co ”C u

ILOVAL=1CODOO

DO u IKF=2,NJOE

LBN9(I)=IEN3(T)+ PECC1I(LFS(IKR),I)

IVAL=0

I1=I+1

IF(T1.GT.MACHIN)GO To 5

DO 5 IM=I1,RACHIN

IVAL=IVAI+ PFOCTI(IPS(IKF1,IH)

CONTINUE

IF(IICVA1.CT.IVPL)ILOVAL=IVAL

C0111NU?

ITEPOJ=K¢THV(I)*LBNC(I)+IICVAL

IF(IT?POJ.C!.JONSON)GC T0 25

IF(TTEEOJ.GT.ITEHP)IIEflP=IiEPnJ

CONTINUE

HARY=1

PETUPN

FND



201

SURVGWII 1."? I P-‘TFO

conwcn JCESCH‘720),MATE1X(720,20),LOWRO"(I2“),P“0CTT(

120,10),I?5(zn),LBNP(20),K1IME(1H1,1?HH(1U),L151,L11,uJou

2.anE,Jonsov,ISIop,NAG,J0P,M1CHLN,ITE1p,MAEK

INIRcwr EPOCTI,TT!E

LIST=LIST+1

Lowncw(LTsm)=rTsMP

an 2 T=1,J°“

IF(I.G¢.mJnn)no we 1

Hnrle(IIST,I)=MATRIX(121,1)

no "G 2

1 HAT“IX(ITST.T)=IRS(T"J”b’
2 CONTINHE

anascn(rIST1=waca+1

IF(L13?.1?.7nn)co Tn u

ST“F=2

u PWTWFN

5ND

SURSOUGIKW DFSTFC

COMIC” J‘BQC91720).11??1X(120,20),L01301(131),9?nc1£(

'2”'1”I'Tfis(°c)IIqNDIZ“)
cETIW7(1“),TIM£(1H),L1q

2,HJOF,JCASOV,ISTflP,VAC,JHI,MACHIR,TTB1“,“1?¥

INT”G?P PPOCTI,TI!1

nzrnv=n

D3 1 I=1,II¢I

I?(JPHSCL.G?.1hw1cm(1))Go TC 1

IDEMCV=TFFHHV+1

co Th 3

1 IF(IFFVCV.F0.G)GJ TC :

Lou-mo“ (I -: W MTV) =I.C‘~I’CN (T)

JOB°CH(I-TR'RHV)=JQESLt{T)

IN) 2 3:1,an

HATFIY(I-IFFWOV,J)=FAIFIX(I,J)

CONTINH?

CON”TNPF

LIST=LTSI-TFRMCV

TP(LIST.CT.")C0 T0 u

*ST“P=1

u RET"FN

END

W
M

T,LM1,NJOU
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202

suaaonwtnr cuocsa

conncn JCRSCF(720),MATPIX(720,20),LOWBON(120),PROCTT(

120,10),IFS(2”),LBND(ZU),KTIME(1U),TIHR(1U),LISI,LM1,NJOB

2,MJOD,JONSON,ISTOP,NAG,JOP,MACUIN,IT53P,MARK

INTEGER EROCTI,TIHE

"=0

ITEfiE=100000

no u 1:1 ,LI 3'!

IP111=vE-IannN(I))u,:,2

TTEHP=IOFBOV(I)

K=n

K=K+1

CONTINUE

no 5 I=1,LIST

IP(ITFMP.NF.rnaEON(I))Gn TO 5

HRITE(6,201)T,IOHBOL(I),JOUSCH(T),(AAPRLX(I,J),J=1,JUB)

WRITF(7,201)T,IOdBON(I),JOP3CH(I),(MATRIX(I,J),J=1,JUU)

LOW90N(I)=100000

CONTINUE

n=n+r

IP(1.LI.IISI)GO Tn 1

POPHAT(QIS,ZOI?)

PFTUPN

END



APPENDIX C
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DIMENSICL T(5,fl),Flt,U),A(b).B(b),JY(b),IFACT(b),

110(150),I!(150),J1€I(120),ETOT(120)

DIMENSIOL pLANqu,3),11tL(b,16),IaIFr(5ov),LB(so) .

[IMEBSICB JOP(6),JOETI(1bC,u),MIZU(1bU),HYTOT(1U),KR(8U)

DIMENSION ISMLUI11bO),NIU(1bO),15MU(150),1ELAGU(15U),

1 AVTCT(10),ISML1(500),ILhG1(b00),TOT1(500),IA(UO)

INTEGBF A,B,T,F,TS,PIPN,TIEE

DATA IPACT/1,2,b.2u,120/

DATA LB1,LR2/OC1,bUU/

DATA JY/c,2,1,1,1/

NNN=u

JRN=C

ITCT2=0

IF1=IFAC!(NNN)

1:01 n=1,11=1

PLAN(I,J)=0

CONTINUE

CONTINUE

DO ac RN=LN1,LP2

REA015,101)((711.3),J=1,4),I=1,NNL)

IShL1(HN)=1CCCCU

ILRG1(PN)=O

TOT1 (M N) =0

no 19 1:1,111

CALL SCHED(N,A,JY,1RL)

CALI ECAIC1(A,I,£,XNL)

CALL FCALCZ(A,1,E,111)

TS=F[A(NLN),N)

TOT1(NN)=TOI1(EN)+IS

IF(TS.IE.ILRG1(MN))GC To 11

ILRG11EN)=TS

IF(TS-]3PL1(EN))1V,1t,19

ISHL1(EN)=TS

N=O

N=N+1

IQ(N)=H

CONTINCE

TOT11NR)=TCT1(MN)/IP1



20

21

22

23

2Q

25

26

27

28

204

ITOT2=ITCT2+N

iRITP(b,20u)FN,N,ISNL1(1N),IOT1(5N),1L?31(MN)

.(IQ(N1).N1=1.K)

KTOT(N)=KTCT(N)+1

DO 20 N1=1,N

JTOT1IQ(L1))=JICI(IC(b1))+1

CONTINUE

DO 21 J=1,6

JOE(J)=ISML1(NN)

CONTINUE

HARK=0

N1=N

D0 28 E=1,IP1

CALL SCHED(F.A,JY,LLL)

CALL ECA 1C 1 (II/r. L, N N)

no 27 N=1,IF1

IF(!.EC.1)GO TC 27

CALL SCHLD(N,B,JY,1NL)

CALL ECAICZ(£,T,E,NNN)

lSM=F(F(NNN),u)

IF(ISM.GP.IS?L1(NN))GC TC 27

CALL SLI}I(A,B,NSHLLI,LNL)

LEITE(b,203)IS!,M,N,NSLIL7

MARK=¥AFK+1

IF(JCE(1).LF.ISV)GO IO zz

JOE(1)=I$M

IF(NSHIFT.NE.1)GO To 2;

IF(JCE(2).LE.IS¥)GC 1C 23

JOE(2)=IS!

D0 26 NS=1,N1

IF(IC(NS).PC.U)GO TO 4a

IF(IC(NS).EC.N)GC IC zu

GO TC 26

IF(JCF(3).IE.ISP)GL IL 25

JOE(3)=ASE

IP(VSHIF7.NF.1)GC 1C 20

IF(JCE(U).LE.ISM)GO in at

JOE (10:15!“-

CONTINUE

CONTINUE

CONTINUE

IF(NARK.EO.U)GC 10 at

JRN=JBK§1

HYTOZ(1)=MYTCI(1)1ISFI1(ML)

HYTOT(2)=HYTCT(2)+N1
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MYTOT(3)=HYTCT(3)¥JCE¢1)

HYTOT (u) =NYTCT (a) +1: AFK

DO 35 J=1,u

JOETT(JRL,J)=ISNL1(£h)-JOE(J)

UYT31(U+J )=M2101(uoa )+dCfTT(JRN,J )

35 CONTINUE

DO 36 K=2,u

JLU=1

IF(JOETT(JFN,K).1T.JCE1T(J1N,1))JLM=2

IF(JCETT(J5N,K).EQ.U)JL1=5 ;

PLAN(K-1,JLH)=PLAN(K-1,JLE)+1'

36 CONTINUE

NIZU(JHN)=MN

ISMLUIQJLN)=ISHL1(EN)

NIU(JRN)=N1

ISMU1JFL)=JCE(1)

IFLACU¢JFN)=!APK

no CONTINUE

Q1 CONTINUE

L0 62 IJKL=1,6

DO 51 JFL=1,JRL

JJR=JFU/25

JJU=JJP*25+1

IE(JJR.NE.JLU)CO TC 51

HRITE(€,206)

WRITE(6,207)

NRITE(6,208)

HRITE (6, 209)

URITL(6,210)

51 NRITE(&,203)JRU,MI2U(JEN),lSHLUI(JLU),N1U(JBU),ISMU(JFU),

1IFLAGU(JEU),(JCETT1JEL,J1),JI=1,u)

C0 52 I: 1, E

AVTOT(I)=FLCAT(MYTCT(I))/ILOAT(JRN)

52 CONTINUE

HRITE(6,211)(HYTOT(I),I=1,P )

HRITF(6,212)(A110111),l=1,b)

N=LU2-LN1+1

ISTAPT=1C1

INTEE=20

CALL EFF-011 $311.1 ,II‘1,N,15TI\Z<T,IZ§TU£, h?)

IA(1)=ISTRBT

IB(1)=IA(1)-1+INTE£

wRITE(e,21u)

no 55 1:1,19

WRLTF(6,215)IA(I),l§(l),Kh(I)



55

56

60

62

65

101

206

IA(I+1)=IA(I)+1NTER

IB(IO1)=IB(I)+INIEB

CONTINUE

CALL XfiSOtISMII,IE1,N,XEEAN,XSC)

NRIIL(C,212)XNLAN

HRITF(6,213)XSC

ISTAFT=2Q1

INTEP=ZC

CALL PN£O(1LLC1,LN1,N,IsTANT.INTHL,NN)

IA(1)=I$1AR1

IB(1)=IA(1)-1+INI£F

NRITE(6,21u)

D0 56 I=1,18

HEITE(6,215)IA(I),IL(I),KL(I)

1A(I+1)=IA(I)+INIEB

IB(I+1)=IB(I)+1NTER

CONTINUE

CALL XMSQ(ILPG1,LM1,N,X!EAN,XSJ)

NRITF(£,212)XMEAN

HRITE(C,213)X3C

ISTAEI=1

INTEF=1O

DO 58 I=I£1,IN2

IDIPF(I)= ILLC1(1)-15NL1(1)

CONTINCE

CALL IFPQ(IEIEF,LM1,N,lSIARI,INTLR,L?)

1A(1)=ISUART

IB(1)=IA(1)-1+IN1LR

KRITF(O,21H)

DO 60 1:1,22

HRITP(€,215)IA(I),1L(I),KF(I)

1A(I+1)=IA(I)+INIEF

IB(I+1)=1P(I)+INTEE

CONTINUE

CALL XNSO(IEIEL,LM1,N,XLEAN.XSQ)

NNIIE(e,2121xx£AN

NRITE(6,213)XSC

CONTINUE

NR1TE(6,ZO1)ITCT2

HRITF(E,205)1J1C1(I),1=1,1f1)

NRITE(6,205)(KTCT(L),L=1,IPD

DO 65 1:1,3

KRITE16,203)(FLAN(I,J),J=1,J)

CONTINUE

EORMAT(QIQ,2X,QIJ,2X,qu,2X,QIQ,ZX)
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201 FORMAT11N1,3cx,15,9x,201u1

202 TORNAT11OIS)

203 FORMAT(1H0,1Q,218,I7,1X,Jlb,ilb)

20a FONNAT(1x,3rb,§x.rt.1,11lb)

205 FORMAT11HO,5(ZQIS,//))

20c FONNA1(1H1,//)

207 FONNAT(1LO, ex,25a-------- PASSING-------- , 1x

1,2uN—----- NC PASSING ------- )

203 PORHAT(1PO,BX,ZJHPROELEH Nlenun NUMBER ,1x

1.2uN TCTAL NUMOER rAXLNUA ,183--SAV1NG ar--- 1

209 EORHAT(17X,15H TOTAL 05 OTT.,1x.11x.2NOT,1bx.uHELAN)

210 FORNAT1JZH NOrESR LUROEE NAKESPAN SEC. ,1x

1.248NAK259AN SEQ. SAVING ,14H 1 2 5)

211 FORMAT(//,bHCTCTAL,7X,Id,17,1X,JIB,JIO)

212 FORMAT(8UOAVEFAG£, :1, Fd.2,F%.2,1X.JFU.2,31b.2)

213 FORMAT(9LOSTE.ELV.,ux,2Fd.2)

21a LORHAT(1H1)

215 FORMAT(1FO,IC,'-'.13,I1U)

STOP

END

SUEECUTILE SCHED(N,JA,CY,NNN)

CIHENSICN JA(S),JY(5),K(3),IT(5)

LO 1 I=1,NNN

1 ?T(I)=I

IY=N

C0 2 I=1,NNN

K(I)=((IY-1)/JY(I))+1

K1=1

DO 3 J=1,NNN

IF (11‘ (J) .EC.U) GO TO 3

IF(K(I).EQ.K1)GC TC a

K1=K1+1

CONTINUE

JA (I)=IT (J)

IT(.1)=C

IY=IY- (K (1)-1) *JHI)

2 CONTINUE

RETUEN

END

c
w
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SUBRCUTIFE SHIFT(A,B,15H1ET,NNN)

EIHENSICL A(b),E(5),A1(0)

INTEGER fi,B,A1

NSHIFT=C

LM1=1

D0 1 LE=1,NNN

IF(A(1E).EC.E(LN1))GO To 5

IP(NSHIFT.FC.O)GC 1C 6

E0 1 NN=1,NSEITT

IF(A1(NN).EC.B{LM1))GC IO N

CONTINUE

NSHIFT=NEHIF1+1

A1(NSEITT)=A1LN)

GO TC 1

LH1=IU1I1

GO TO 2

LH1=LM1¢1

CONTINFE

NETUFN

END

SUBPOUTINE FCAIC1(A,T,E,NNN)

DINENSICN A(S),T(b,4),r(b,u)

INTFGEP A,T.E

F(A(1).1)=T(A(1).1)

to 2 I=2,NNN

2 NMI) .1)=F(MI-1) .1)+'1(MI).1)

1(At11.2)=f(1(1).1)+T(A(1).2)

c0 3 I=2,NNN

191F1A11-1).2)-f(A(I).1))5.5.“

a FLA(I),2)=F(A(I-1),2)+I(A(l),2)

GO TC 3

5 F0111) .2)=F(MI).1)+‘I 111(1) ,2)

3 CONTINUE

RETURN

END
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SUBSCUTIAE FCALCZ(E.T,1,NNN)

DIMENSION B(b),I(b,4),E(b,k)

INIEGEF E,T.E

513(11'3FHE11LZ) “115(1) :3)

I"(13(1) a“)=F(EU)oJ)+'I1II(H :4)

‘ Do 7 a=3,u

DO 8 I=2,NNN

IF(F(E(I-1),J)-P(B(I),(J-1)))9,9,1U

F1311) oJ)=F(B1I)o (J’I))*T(HI) :3)

co TC 8

“9(1)oJ)‘-‘F(3(1‘1).JHHEUNJ)

CONTINUE

CONTINUE

.RETUFR

END

SUDRCUTINE xesc(1m,1r1,N,anAN,xsc)

DINENSICN INISCU)

xu=0.n

D0 1 I=1,N

xn=xu+1s1I+LU1-1)

CONTINUE

XNLAN=xu/N

xn=o.c

DO 2 I=1,N

XH=XB+lIR(IvIH1-1)-XREAN)*‘2

CONTINUE

xso=1xr/N)**c.5

RETUFL

END



APPENDIX D
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DIMENSICN TP(16)

Ix=111111

A1=0.5

91:0.5

O1=5.O

IA=A1*2

IB=OI*2

no 1 T=1,1800

DO 2 K=1,16

CALL BAN[U(TX,IY,X1)

IX=TY

CALL RANDU(1X,IY,X2)

tx=IY

CALL BDTP(X1,A1,B1,P,E,IEP)

DUI=n/O1

TF(Y2.CT.DD1)GO TO 3

IP(K)=X1*1OOC+O.5

CONTINVE

HPITF(6,201)(TP(K),K=1,16),IA,IB,I

HRTTE(7,201)(IP(K),K=1,16),IA,IB,I

CONTINUE

FONNAT(NIu,2x,qu,2x,uru,2x,uru.3x.211,tb)

STOP

END
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