
THE EVOLUTION OF DIVISION OF LABOR IN

DIGITAL ORGANISMS

By

Heather J. Goldsby

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Computer Science
Ecology Evolutionary Biology, & Behavior

2011

ABSTRACT

THE EVOLUTION OF DIVISION OF LABOR IN DIGITAL
ORGANISMS

By

Heather J. Goldsby

Division of labor is a hallmark strategy employed by a wide variety of groups ranging

in complexity from bacteria to human economies. Within these groups, some individuals,

such as worker ants, sacrifice their ability to reproduce and instead dedicate their lives to

the maintenance of the colony and success of their kin. A worker ant may spend its entire

life performing a single task, such as defending the colony or tending to the brood. The

complexity of the strategies employed by these groups, combined with their rampant success,

gives rise to questions regarding why division of labor exists. While extensive research has

been done to better understand the patterns and mechanisms of division of labor, exploring

this topic in an evolutionary context remains challenging to study due to the slow pace of

evolution and imperfect historical data.

Understanding how and why division of labor arises is pertinent not just for under-

standing biological phenomena, but also as a means to enable evolutionary computation

techniques to address complex problems using problem decomposition. The objective of

problem-decomposition approaches is to have a group of individuals cooperatively solve a

complex task by breaking it into pieces, having specialist individuals solve the pieces, and

reassembling the solution. Essentially, problem-decomposition approaches use division of

labor to enable groups to solve more challenging problems than any individual could alone.

Unfortunately, human engineers have struggled with creating effective, automated problem-

decomposition approaches.

In this dissertation, I use digital evolution (i.e., populations of self-replicating computer

programs that undergo open-ended evolution) to investigate questions related to the evolu-

tion of division of labor and to apply these insights to problem decomposition techniques.

This dissertation has three primary components: First, we provide experimental evidence

that evolutionary computation techniques can evolve groups of individuals that exhibit di-

vision of labor. Second, we explore two hypotheses for the evolution of division of labor.

Specifically, we find support for the hypothesis that temporal polyethism (i.e., where a

worker’s age is related to the task it performs within the colony) may result from the evolu-

tionary pressures of aging and risks associated with tasks. Additionally, we find support for

a hypothesis initially proposed by Adam Smith, the premier economist, that the presence

of task-switching costs results in an increase in the amount of division of labor exhibited

by groups. Third, we describe how our analyses revealed that groups of organisms evolved

as part of our task-switching work exhibit complex problem decomposition strategies that

can potentially be applied to other evolutionary computation challenges. This work both

informs biological studies of division of labor and also provides insights that can enable the

development of new mechanisms for using evolutionary computation to solve increasingly

complex engineering problems.

Copyright by
HEATHER J. GOLDSBY
2011

For Dave.
Thank you for your never-ending love, support, encouragement, and sense of adventure as
we tackle challenges together in both the virtual and physical world. It’s nice to be done

climbing Half Dome. I can’t wait to see what we decide to conquer next.

v

Acknowledgements

I am thankful for the myriad of people who have contributed directly or indirectly to

my Ph.D. studies. First, I would like to thank my family: Doug and Jill Goldsby, Kelley

and Matt Davis, Kurt and Julie Goldsby, Dave and Marcia Knoester, Brett and Alexandria

Filush, and Jenny Knoester for their support throughout this process. I especially appreciate

the effort all of them have made to understand my research.

The wisdom and advice of my committee members has made my research journey an

enjoyable process. I would like to thank Dr. Charles Ofria, my Ph.D. advisor, for his

excitement over science and research, which proved to be contagious, his dedication to finding

innovative means to address challenging questions, and his insights that greatly contributed

to this work. Additionally, I would like to thank Dr. Betty H. C. Cheng, my initial Ph.D.

advisor, for teaching me the nuts and bolts of writing, researching, and presenting. I very

much appreciate her mentorship and friendship over the years. Furthermore, I wish to

thank my other committee members for their invaluable contributions and advice: Dr. Erik

Goodman, Dr. Fred Dyer, and Dr. Philip McKinley.

Throughout my studies, I have had the distinct pleasure of being a member of the Digital

Evolution Laboratory (Devolab) and Software Engineering and Network Systems (SENS)

Laboratory. I am grateful for numerous contributions that members of these laboratories

have made to my work. I would especially like to thank Sascha Konrad for his assistance

in writing my first few papers, Sherri Goings and Jeff Clune for easing my transition into

digital evolution research, and Dave Knoester for his assistance in my fledgling software

development efforts.

vi

TABLE OF CONTENTS

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Biological Background and Motivation . 2
1.2 Evolutionary Computation Background and

Motivation . 3
1.3 Approach . 5
1.4 Thesis Statement . 6

1.4.1 Direct Selection For Division of Labor 6
1.4.2 The Evolution of Division of Labor 8
1.4.3 Applications of Division of Labor: Problem Decomposition 9

1.5 Contributions . 10

2 Methods 11
2.1 Avida . 11

2.1.1 Instructions . 13
2.1.2 Tasks and Resources . 13
2.1.3 Groups . 15
2.1.4 Genetically Heterogeneous Groups 16
2.1.5 Genetically Clonal Groups . 17
2.1.6 Experimental Configuration . 19

2.2 Measuring division of labor . 19

3 Direct Selection for Division of Labor 21
3.1 Leaders and Followers:

Frequency-Dependent Selection . 21
3.1.1 Methods . 24
3.1.2 Results . 29
3.1.3 Discussion . 33

3.2 Leaders and Followers: Multilevel Selection 34
3.2.1 Methods . 34
3.2.2 Results . 35
3.2.3 Discussion . 37

3.3 Division of Labor: Heterogeneous Groups . 39
3.3.1 Methods . 39
3.3.2 Results . 39
3.3.3 Analyses . 46
3.3.4 Discussion . 59

vii

3.4 Division of Labor: Clonal Groups . 59
3.4.1 Methods . 60
3.4.2 Results . 60
3.4.3 Discussion . 68

4 Forces Driving the Evolution of Division of Labor 70
4.1 Temporal Polyethism . 70

4.1.1 Methods . 71
4.1.2 Results . 73
4.1.3 Analyses . 80
4.1.4 Discussion . 88

4.2 Task-Switching Costs . 89
4.2.1 Methods . 89
4.2.2 Results . 91
4.2.3 Analyses . 100
4.2.4 Discussion . 104

5 Applications of Division of Labor: Problem Decomposition 107
5.1 Engineered Problem Decomposition Approach 107

5.1.1 Methods . 109
5.1.2 Results . 115
5.1.3 Conclusions . 126

5.2 Evolved Problem Decomposition Approach 127
5.2.1 Group case study 1. 127
5.2.2 Group case study 2. 129

5.3 Implications . 131

6 Conclusions 133
6.1 Contributions . 133
6.2 Future Work . 135

6.2.1 Problem Decomposition in Embodied Agents 135
6.2.2 Evolution of Division of Labor . 136
6.2.3 Major Transitions in Evolution . 138

APPENDICES 141

A Overview of Additional Research Projects 142
A.1 Avida-MDE . 143
A.2 Marple . 145
A.3 Conclusions . 148

LIST OF REFERENCES 151

BIBLIOGRAPHY 151

viii

LIST OF TABLES

2.1 Coordination instructions for this study. These instructions are in addition
to the general Avida instruction set. 13

3.1 The payoff matrix for the leader-follower game, where a is the multiplicative
benefit of leadership, b is the coordination benefit, and c is the cost of lead-
ership. In general, leaders have higher payoffs if the dyad coordinates roles,
but a lower payoff if they do not. 25

3.2 Alternative hypotheses and predictions tested in this study. 48

4.1 The four risk treatments for a two-task environment. The rows describe the
lethality risks associated with tasks not and nand. (E.g., A 25% risk means
that while performing the task, the organism has a 25% chance of being killed
prior to receiving credit for the task.) The columns describe a specific treat-
ment. 73

4.2 The eight risk treatments for a three-task environment. The rows describe
the lethality risks associated with tasks not, nand, and ornot. The columns
describe a specific treatment. 80

5.1 Additional Avida instructions that allow organisms to produce strings, donate
strings, and selectively cooperate with neighbors on the basis of reputation. 113

ix

LIST OF FIGURES

2.1 Left: An Avida population containing multiple genotypes in a spatial envi-
ronment, where different colors indicate organisms with different genotypes.
Right: The structure of an individual organism, including its genome, input,
internal registers, and output. For interpretation of the references to color in
this and all other figures, the reader is referred to the electronic version of this
dissertation. 12

2.2 Heterogeneous Group Replication Process: (1) An Avida population contain-
ing four heterogeneous groups. Group A completes a group task or wins a
group competition. (2) At this point, group B is selected to be replaced and
all its organisms are removed. (3) A perfect copy of group A is created and
is loaded into group B. 17

2.3 Clonal Group Replication Process: (1) An Avida population containing four
clonal groups. Group A completes a group task or wins a group competition.
(2) At this point, group B is selected to be replaced and all its organisms
are removed. (3) The germline of group A is used to create the germline of
the new colony. (4) One individual from the new germline is placed into the
target group. (5) The source group A is reset to its original state with one
individual. 18

2.4 A depiction of the amount of Shannon mutual information present among a
group of tasks and a group of individuals. (a) All individuals specialize on
performing the same task resulting in a low amount of division of labor. (b)
A generalist individual performs all of the tasks resulting in a low amount
of division of labor. (c) Each individual specializes on performing a different
task resulting in a high amount of division of labor. 20

3.1 A screenshot of the leader-follower game developed using NetLogo and avail-
able online. The game enables the user to configure the costs of leadership,
benefits of leadership, and the benefits of division of labor. 28

x

3.2 The game-theoretic simulation results for various combinations of costs and
benefits. The red line represents the percentage of the population that se-
lected the leader strategy and the blue line represents the percentage of the
population that selected the follower strategy. In the first treatment (a), lead-
ership benefit is 3, coordination benefit is 1, and leadership cost is 0. These
values result in many leaders. In the second treatment (b), leadership ben-
efit is 5, coordination benefit is 1, and leadership cost is 2. These values
result in an equal number of leaders and followers. These results demonstrate
that frequency-dependent selection can be used to produce various population
compositions of leaders and followers even if the payoffs per interaction are
not equal. 30

3.3 The simulation results for various combinations of probabilistic costs given
the same division of labor benefit, leadership benefit, and mean cost. The
red line represents the percentage of the population that selected the leader
strategy and the blue line represents the percentage of the population that
selected the follower strategy. 32

3.4 The mean number of leaders (a) and followers (b) when each group’s target
is one leader and 24 followers. The dashed line represents the target value
in each case. Each line represents a different treatment that has a differ-
ent multiplicative bonus value of leadership varying from 0.5 to 64. Overall,
the group-level component of the multilevel selection pressure is sufficient to
produce groups with few leaders and many followers, despite the appreciable
pressure for individuals to be leaders. 36

3.5 The mean number of leaders (a) and followers (b) when each group’s target
is 13 leaders and 12 followers. The dashed line represents the target value
in each case. Each line represents a different treatment that has a differ-
ent multiplicative bonus value of leadership varying from 0.5 to 64. Overall,
the group-level component of the multilevel selection pressure is sufficient to
produce groups with few leaders and many followers, despite the appreciable
pressure for individuals to be leaders. 37

3.6 The results of using multilevel selection to evolve groups that comprise vary-
ing numbers of roles, where each line represents a different treatment with a
different desired number of roles ranging from 2 to 20. The grand mean (a)
and mean of the maximum number of unique roles (b) over all 30 trials. In
general, the groups evolved to perform the desired number of roles. 42

xi

3.7 The results of using just individual selection to evolve groups that comprise
varying numbers of roles, where each line represents a different treatment
with a different desired number of roles ranging from 2 to 20. In these control
treatments, the group-level component of multilevel selection was removed.
Within this figure, (a) depicts the grand mean and (b) depicts the mean of
the maximum number of unique roles over all 30 trials. Without the group-
level component of the multilevel selection pressure, the groups were unable
to evolve to perform multiple roles on average and in the best case evolve to
perform 7 roles. 44

3.8 Control and experimental results of using multilevel selection pressures to
evolve groups of organisms that perform five different logic tasks with varying
rewards. The dashed line represents the best possible performance. Here, (a)
depicts the grand mean number of roles performed and (b) depicts the mean of
max roles performed across 30 trials. The two control treatments (No group;
no ind and No group; ind) each evolve to perform fewer than 3 roles; whereas,
the experimental treatment with both components of the multilevel selection
pressure evolves to perform 4 roles on average and 5 at best. These results
are evidence that multilevel selection pressure is sufficient to produce groups
that perform five logic tasks with varying rewards. 47

3.9 The average mean (a) and average maximum (b) performance of the groups
through the normal 50,000 update period and then a 10,000 update ecological
phase, where mutations are turned off. The horizontal dashed line represents
the maximum number of tasks possible and the vertical dashed line represents
the start of the ecological period. The dotted lines represent standard error.
The mean group performance increases and the maximum group performance
does not decrease from 50,000-60,000 updates, indicating that mutations are
not a key part of the group strategy. 49

3.10 The percent of genetic diversity in the dominant Logic-5 groups and control
runs. Notably, the Logic-5 groups have more genetic diversity even though
they also must maintain this diversity while performing tasks with different
associated benefits. 54

3.11 The 15 genotypes present in group 29 after an ecological period of 100 updates.
Each column is one genotype. Each column element is an instruction. The
coordination instructions are colored. There are two different ecotypes present
within this group. They are distinguishable by the different patterns of banding. 57

xii

3.12 A visual depiction of the genotype and phenotypes of the organisms that com-
prise group 29. The shading represents the task performed (phenotype). The
first number represents the genotype and the second number represents also
denotes the task performed (phenotype). The black squares are the organisms
in ecotype family 2. The remainder of the squares are in ecotype family 1. . 58

3.13 The mean and maximum number of roles performed by groups within the 25-
role environment across 30 trials. Notably, some groups approach a perfect
score (denoted by a dashed line) of 25. 62

3.14 The mean and maximum number of roles performed by groups in the logic
environment, where there are nine tasks of increasing complexity. The best
possible performance is denoted with the dotted line. Groups on average
perform four tasks and at best perform 6 tasks. 63

3.15 The mean (a) and maximum (b) number of roles performed in the 25-role
environment when different combinations of coordination instructions are re-
moved. For this environment, group performance depends upon the availabil-
ity of location information. 65

3.16 The grand mean (a) and mean of maximum (b) number of roles performed
in the logic-9 environment when different combinations of instructions are
removed. For this environment, group performance depends upon the avail-
ability of messaging capabilities. 67

3.17 The mean (a) and mean of maximum (b) number of roles performed in the
9-role environment when different combinations of instructions are removed.
For this environment, group performance depends upon the availability of
location information indicating that the type of tasks is more important than
the number of tasks. 69

4.1 The ancestor organisms for two-task temporal polyethism experiments. The
not-nand ancestor performs task not, performs task nand, and then replicates.
The nand-not ancestor performs task nand, performs task not, and then repli-
cates. Because the genomes are circular, after each organism replicates it
resumes execution at the top of its genome. 74

xiii

4.2 The results of the temporal polyethism treatments in which task not is risky.
The x-axis of both plots is evolutionary time and the y-axis is the mean age
in cycles. The blue line with circles represents the mean age at which task not
is performed. The red line with triangles represents the mean age at which
task nand is performed. In these results, the more risky task is performed
later in the lifetime of the organism, which is evidence for our hypothesis that
task riskiness may be an evolutionary pressure that gives rise to a temporal
polyethism pattern. 75

4.3 The results of the temporal polyethism treatments in which task nand is risky.
The x-axis of both plots is evolutionary time and the y-axis is the mean age
in cycles. The blue line with circles represents the mean age at which task not
is performed. The red line with triangles represents the mean age at which
task nand is performed. In these results, the more risky task is performed
later in the lifetime of the organism, which is evidence for our hypothesis that
task riskiness may be an evolutionary pressure that gives rise to a temporal
polyethism pattern. 76

4.4 Diagrams of the results of the control temporal polyethism treatments in which
neither task is risky. The x-axis of both plots is evolutionary time and the y-
axis is the mean age in cycles. The blue line with circles represents the mean
age at which task not is performed. The red line with triangles represents
the mean age at which task nand is performed. In these results, the controls
indicate that there is nothing intrinsic about the tasks that is driving the
temporal polyethism results. 78

4.5 Diagrams of the results of the control temporal polyethism treatments in which
both tasks are risky. The x-axis of both plots is evolutionary time and the y-
axis is the mean age in cycles. The blue line with circles represents the mean
age at which task not is performed. The red line with triangles represents
the mean age at which task nand is performed. In these results, the controls
indicate that there is nothing intrinsic about the tasks that is driving the
temporal polyethism results. 79

4.6 The six ancestor organisms for the three-task temporal polyethism experi-
ments. These ancestor organisms vary the order in which the three tasks are
performed. Because the genomes are circular, after each organism replicates,
it resumes execution at the top of its genome. 81

xiv

4.7 The results of the temporal polyethism experimental treatments for the not-
nand-ornot ancestor in which task not is safe. The blue line with circles
represents task not, the red line with triangles represents task nand, and the
green line with squares represents task ornot. The x-axis is evolutionary time
and the y-axis is the mean age at which the task is performed by the organisms.
At the end of the treatments, the least risky task (0%) is performed first, the
somewhat risky task (7%) is performed next, and the most risky task (15%)
is performed last. 82

4.8 The results of the temporal polyethism experimental treatments for the not-
nand-ornot ancestor in which not is moderately risky. The blue line with
circles represents task not, the red line with triangles represents task nand, and
the green line with squares represents task ornot. The x-axis is evolutionary
time and the y-axis is the mean age at which the task is performed by the
organisms. At the end of the treatments, the least risky task (0%) is performed
first, the somewhat risky task (7%) is performed next, and the most risky task
(15%) is performed last. 83

4.9 The results of the temporal polyethism experimental treatments for the not-
nand-ornot ancestor in which not is extremely risky . The blue line with
circles represents task not, the red line with triangles represents task nand, and
the green line with squares represents task ornot. The x-axis is evolutionary
time and the y-axis is the mean age at which the task is performed by the
organisms. At the end of all of the treatments, the least risky task (0%) is
performed first, the somewhat risky task (7%) is performed next, and the
most risky task (15%) is performed last. 84

4.10 The results of the two temporal polyethism control treatments for the not-
nand-ornot ancestor. The blue line with circles represents task not, the red line
with triangles represents task nand, and the green line with squares represents
task ornot. The x-axis is evolutionary time and the y-axis is the mean age at
which the task is performed by the organisms. The ages at which the tasks
are performed are not significantly different. 85

4.11 These results depict the mean age at which task not (blue line with circles),
task nand (red line with triangles) and replication (black line with stars) are
performed for the treatment where not is risky and the runs were started
with the not-nand ancestor. These results suggest that the organisms are
performing task nand one or more times, replicating, and then performing
task not. 86

xv

4.12 Diagrams of the phenotype (left) and genotype (right) of an organism whose
group exhibited temporal polyethism with two tasks. The numbered arrows
surrounding the genotype indicate the order in which instructions were exe-
cuted to produce the phenotype. In this case, the genotype is very similar to
the not-nand ancestor. The risk-based order in which the tasks were performed
depended upon control-flow instructions in the genome. 87

4.13 Diagrams of the phenotype (left) and genotype (right) of an organism whose
group exhibited temporal polyethism with three tasks. The numbered ar-
rows surrounding the genotype indicate the order in which instructions were
executed to produce the phenotype. In this case, the genotype of the not-
nand-ornot ancestor has been rearranged to facilitate temporal polyethism.
Specifically, not and nand have exchanged places and an additional not has
been introduced. The risk-based order in which the tasks were performed de-
pended upon both the genomic architecture and the control-flow instructions
in the genome. 88

4.14 Logic-9 environment results: (a) The mean Shannon mutual information be-
tween organisms and tasks performed averaged across 50 runs for groups with
varying amounts of task-switching costs. Dotted lines are used to indicate
standard error. Notably, treatments with higher task-switching costs evolve
strategies that exhibit higher levels of division of labor. (b) The mean number
of different types of tasks performed by the groups under various treatments.
The groups typically evolve to perform 5-6 tasks. 93

4.15 25-Role Environment Results: (a) The mean Shannon mutual information
between organisms and tasks performed averaged across 50 runs for groups
with varying amounts of task-switching costs within the 25-role environment.
Dotted lines are used to indicate standard error. Notably, treatments with
higher task switching costs evolve strategies that exhibit higher levels of di-
vision of labor. (b) The mean number of different types of tasks performed
by the groups under various treatments. The groups all evolve to perform
approximately 20 types of tasks. 96

4.16 Logic-9 and Role-6 Environment Results: (a) The mean Shannon mutual
information between organisms and tasks performed averaged across 50 runs
for groups with varying amounts of task-switching costs. Dotted lines are used
to indicate standard error. Notably, treatments with higher task switching
costs evolve strategies that exhibit higher levels of division of labor. (b) The
mean number of different types of tasks performed by the groups under various
treatments. The groups all evolve to perform approximately 10 types of tasks. 97

xvi

4.17 Logic-9 250 Resource Results: (a) The mean Shannon mutual information
between organisms and tasks performed averaged across 50 runs for groups
with varying amounts of task-switching costs. Dotted lines are used to indicate
standard error. Notably, treatments with higher task-switching costs evolve
strategies that exhibit higher levels of division of labor. (b) The mean number
of different types of tasks performed by the groups under various treatments.
The groups all evolve to perform 3-4 types tasks. 99

4.18 Logic-9 1000 Resource Results:(a) The mean Shannon mutual information
averaged across 50 runs for groups with varying amounts of task-switching
costs. Dotted lines are used to indicate standard error. (b) The mean number
of different types of tasks performed by the groups under various treatments.
The groups all evolve to perform 7-8 types of tasks. 101

4.19 Boxes depict how the amount of Shannon mutual information varies as dif-
ferent knockout treatments are performed for a group that exhibits division
of labor in the Logic-9 environment. Notably, knocking out location does not
significantly affect the behavior of the majority of the groups. However, knock-
ing out messaging has a tremendous effect and lowers the median amount of
division of labor. 104

4.20 Boxes depict how the amount of Shannon mutual information varies as dif-
ferent knockout treatments are performed for a group that exhibits division
of labor in the 25-role environment. Notably, knocking out messaging does
not significantly affect the behavior of the majority of the groups. However,
knocking out location has a tremendous effect and lowers the median amount
of division of labor. 105

4.21 The role-ids selected by the organisms in a successful group that performs 24
(out of 25 possible) different roles and exhibits division of labor in the 25-role
environment. All but one id (0) are rewarded. 106

4.22 An excerpt of the genome used by a successful group evolved in the 25-role
environment to perform 24 different roles. Coordination is achieved via a
location-sensitive algorithm. Specifically, organisms set their role-ids to x +
5 ∗ y . 106

5.1 The infrastructure that allows Avida organisms to produce strings, donate
strings, and cooperate using indirect reciprocity. 112

xvii

5.2 Number of organisms that produce complete sets (a) and the number of com-
plete sets produced (b) with four different treatments that vary the tagging
and reputation information available for the 16-bit variant. Populations where
organisms have both sources of information significantly outperform popula-
tions that lack either. 118

5.3 The percentage of the population of organisms producing complete sets across
the 4-bit and 8-bit string production problem variants. For simpler problems,
generalists outperform specialists; whereas, for more complex problems, spe-
cialists outperform generalists. Mixed populations tend to perform at least as
well as the isolated populations of generalists or specialists. 119

5.4 The percentage of the population of organisms producing complete sets across
the 16-bit and 24-bit production problem variants. For simpler problems, gen-
eralists outperform specialists; whereas, for more complex problems, special-
ists outperform generalists. Mixed populations tend to perform at least as
well as the isolated populations of generalists or specialists. 120

5.5 The number of complete sets produced by generalists, specialists, and mixed
populations of both generalists and specialists for the 4-bit and 8-bit string
production problem variants. For simpler problems, generalists outperform
specialists; whereas, for more complex problems, specialists outperform gen-
eralists. Mixed populations tend to perform at least as well as the isolated
populations of generalists or specialists. 121

5.6 The number of complete sets produced by generalists, specialists, and mixed
populations of both generalists and specialists for the 16-bit and 24-bit string
production problem variants. For simpler problems, generalists outperform
specialists; whereas, for more complex problems, specialists outperform gen-
eralists. Mixed populations tend to perform at least as well as the isolated
populations of generalists or specialists. 122

5.7 The population composition of mixed populations comprising both generalists
and specialists for the 4-bit and 8-bit variants of the bit string production
problem. In general, the more simple variants have a predominantly generalist
population and the more complex variants have a predominantly specialist
population. 124

5.8 The population composition of mixed populations comprising both generalists
and specialists for the 16-bit and 24-bit variants of the bit string production
problem. In general, the more simple variants have a predominantly generalist
population and the more complex variants have a predominantly specialist
population. 125

xviii

5.9 The percent of organisms that are generalists, specialists, and altruists. The
percent of altruists in the population closely tracks the number of specialists
in the population, indicating that generalists are not making donations. . . . 126

5.10 A snippet of the genome of a organism that when placed with clones of itself
in a group performs division of labor and problem decomposition. 128

6.1 Illustration of fraternal and egalitarian transitions. Circles represent individ-
uals, boxes represent groups, arrows represent steps. For a fraternal transition
(a), an organism (1), produces two daughter organisms (2), these daughters
choose to remain in a group (3), and eventually differentiate their behavior
(4). For an egalitarian transition (b), two organisms with different pheno-
types (1) are proximally near one another (2) and choose to form a group (3).
Finally, further evolution differentiates the behavior of the organisms within
the group (4). 139

xix

Chapter 1

Introduction

Division of labor, where individuals specialize on specific roles and cooperate to survive,

is hailed as a strategy central to the success of many groups, including certain species of

bacteria [16], slime molds [8, 16, 98], algae [81], multicellular organisms [111], eusocial insect,

arthropod, and mammal colonies [16, 21, 53, 55, 98, 98, 131], and humans economies [32,

108]. The genetic composition of members of these groups range from clonal (e.g., slime

molds, bacteria, and some eusocial insects) to genetically heterogeneous (e.g., the majority

of eusocial insects, humans, and other mammals). Eusocial colonies exhibit some of the most

remarkable examples of division of labor. Within nature, eusocial organisms are renowned

for exhibiting reproductive division of labor, where members of the reproductive caste (i.e.,

queens) produce offspring and members of the non-reproductive caste care for the brood and

perform other duties central to the maintenance of the eusocial colony [55]. Moreover, many

eusocial organisms, such as leaf-cutter ants [131], bumblebees [55], and aphids [92], also

exhibit task-related division of labor, where individuals specialize on performing a particular

task. For example, non-reproductive worker bumblebees specialize to perform roles that

include foraging, caring for the brood, building honeypots, guarding the hive, or cooling the

hive through fanning [55]. In this dissertation, we focus on understanding the evolution of

1

division of labor and applying these insights to the development of evolutionary computation

techniques.

1.1 Biological Background and Motivation

Task-related division of labor has been proposed as one of central reasons for the success of

eusocial insect colonies [53] and as such has been extensively studied by scientists (e.g., [8,

16, 55, 98, 131]). Among other results, scientists have identified several patterns of division

of labor, including temporal polyethism, where the individual’s age predicts which task it

specializes on [53, 102, 121]; foraging for work, where the organism’s location within the

colony predicts the task specialization of the worker [31, 53, 55, 120, 107]; and morphological

specialization, where the phenotype of the worker is correlated with the task it specializes

on [131]. Additionally, scientists have identified some of the mechanisms used by organisms

to allocate tasks, such as differences in behavioral response thresholds, hormones, and genetic

variation [6, 101, 109]. However, these studies focus primarily on the mechanisms used to

implement division of labor, rather than why division of labor strategies evolved [20].

Although exploring division of labor in an evolutionary context is challenging, several sci-

entists have performed studies that investigate potential explanations for the evolution and

maintenance of division of labor [15, 20, 53, 103]. Using natural systems, these scientists

explore whether the potential adaptive benefits for division of labor are present within mod-

ern eusocial colonies. For example, Schmid-Hemplel reviewed evidence that the structure

of castes (either temporal or physical) within a colony is adaptive [103]. He concludes that

there is insufficient evidence to demonstrate that caste structure is adaptive at an ecological

scale, but that it may be adaptive at an evolutionary scale. Dornhaus tested the “jack-of-

all trades; master of none” hypothesis that increased specialization results in more efficient

workers for Temnothorax albipennis, which is an ant species that does not have morpholog-

2

ical castes [20]. She found that the degree of specialization does not predict efficiency. In

fact, more specialized workers, in some cases, performed worse than their more generalist

relatives. Couvillon and Dornhaus explored a second possible explanation for the adaptive

significance of division of labor when they explored whether morphological differences in

bumblebees (Bombus impatiens) could enable colony-level robustness to starvation [15]. In

this case, they found that smaller workers, which are generally less efficient at all tasks com-

pared to their larger sisters, are better able to survive a nectar shortage and thus help to

ensure the survival of the colony.

However, studies that examine the current adaptive benefits of division of labor may not

necessarily reveal the historical reasons for which division of labor was originally selected.

Questions regarding the evolutionary conditions that initially give rise to division of labor

are challenging, if not impossible, to study using natural systems due to imperfections in the

historical data and long generation times. As the late evolutionary biologist John Maynard

Smith [110] made the case: “So far, we have been able to study only one evolving system

and we cannot wait for interstellar flight to provide us with a second. If we want to discover

generalizations about evolving systems, we will have to look at artificial ones.”

1.2 Evolutionary Computation Background and

Motivation

Evolutionary insights into how and why division of labor arises are pertinent not just for

understanding biological phenomena, but also for enabling evolutionary algorithms (EAs)

to address complex problems, such as developing ultra large-scale software systems [82] or

teams of robots [7, 29, 62, 126, 134]. Traditionally, EAs contain a single population in

which each individual encodes a complete solution to a problem. EAs work well for prob-

lems with a search space that can be reasonably well-explored, given the computational

3

resources available to the population. For example, in previous work, we used a more tradi-

tional EA to evolve software models, where each model was composed of a set of interacting

state diagrams [37, 38, 40, 79]. However, as the complexity of the problems addressed us-

ing EAs increases, the size of the search space and the amount of time required to search

for a satisfactory solution grows rapidly. For example, as we begin to expand the scope

of the type of software we would like to evolve models for to include ultra large-scale sys-

tems [82], such as health-care systems and traffic-control system, which comprise multiple

heterogeneous software components, the complexity may become too great for a single indi-

vidual to encode. Problem decomposition has been proposed to address this limitation [94].

Problem-decomposition EAs decompose a problem into simpler subproblems, individuals

produce subcomponents (where each subcomponent is a solution to a subproblem), and then

the subcomponents are combined to obtain a solution to the overall problem [94]. Essen-

tially, problem-decomposition EAs use division of labor, where individuals specialize on one

aspect of the problem and cooperate to develop the overall solution, to solve more chal-

lenging problems than any individual could alone. One of the overarching challenges of

problem-decomposition EAs is to have the population automatically and dynamically both

decompose the problem (if necessary) and assemble a complete solution.

Numerous techniques have been proposed to automate the evolution of problem decom-

position [14, 35, 75, 94, 117, 134]. In general, these techniques evolve specialists that produce

subcomponents. The overall solution is considered to be a group of specialists comprising

either one representative member of each species (e.g., [35, 94, 134]) or an EA-selected team

(e.g., [14, 75, 117]).

Several approaches assemble the subcomponents as part of the fitness function [94, 134].

Specifically, the cooperative coevolution architecture [94] evolves two or more species in com-

pletely isolated populations. Cooperation between these species occurs at the time of fitness

evaluation, when individuals from one species are evaluated with representatives from each

4

of the other species. The nature of these collaborations is determined by the user, as is

the choice of representatives from each species, but the number of species is determined by

the algorithm automatically. Additionally, Yong and Miikkulainen [134] apply the coopera-

tive coevolution architecture to evolve coordinated predator behavior in a prey-capture task.

Three Enforced SubPopulations [47] are created, each of which evolves an artificial neural

network that represents the behavior for one predator [134]. During the fitness evaluation,

a representative neural network from each subpopulation is placed in a simulated environ-

ment and the reward for captured prey is split equally among all representatives present.

Unfortunately, these approaches are only applicable in problems where the general form of

between-species collaborations is known a priori.

Other approaches enable the EA itself to dynamically assemble the subcomponents.

These approaches are typically based on a market economy. For example, some learning

classifier systems form teams of individuals that bid for their subcomponents to be used

as part of the solution to the classification problem [75, 117]. Additionally, Cornforth and

Kirley [14] propose a non-rule based approach to problem decomposition using a market-

based model, where agents group together in a hierarchical fashion to form complex problem

solutions. One limitation of this approach is that individuals do not dynamically evolve

subcomponents of the problem, but rather innately represent preformed subcomponents.

1.3 Approach

Our research uses digital evolution to address both understanding the evolution of division

of labor and also applying these insights to problem decomposition EAs. Specifically, we

use Avida [87], a digital-evolution platform previously used within biology to study topics

including the origin of complex features [72], evolutionary design of modularity [84], and the

evolution of altruism [13, 34]. Avida has also been used within computer science to study

5

topics including evolving distributed behaviors [63, 64, 65, 66], energy conservation [5], and

artifacts for self-adaptive systems [37, 38, 40]. Within an Avida experiment, a population of

self-replicating computer programs exists in a user-defined computational environment and is

subject to mutations and natural selection. These “digital organisms” execute their genome

to perform tasks that metabolize resources in the environment, interact with neighboring or-

ganisms, and self-replicate. Avida satisfies Dennett’s three requirements for an evolutionary

system (replication, variation [mutation], and differential fitness [competition]) [18], while

enabling rapid open-ended evolution, precise experimental control, and data collection that

does not influence the course of evolution.

1.4 Thesis Statement

Digital evolution studies provide insight into the evolution of division of labor and

provide the basis for the development of problem-decomposition evolutionary

algorithms.

1.4.1 Direct Selection For Division of Labor

Our early work addressed the foundational question of whether we could use evolutionary

computation techniques to evolve groups of individuals that exhibit division of labor. Specif-

ically, we addressed the following topics:

In collaboration with psychologists, we used game theory to explore potential mechanisms

that could give rise to leader-follower systems that represent a two-role form of division of

labor in which a leader receives a higher payoff than a follower. From an evolutionary

perspective, this behavior is puzzling if the individuals are not related, since it may put

a follower’s genes at an evolutionary disadvantage for survival. We discovered that this

behavior could arise using frequency-dependent selection [46].

6

Within our game theoretic approach, individuals could only select to be leaders or follow-

ers. To better understand how groups evolved to exhibit division of labor, we implemented

a leader-follower system in Avida. Within Avida, organisms had to evolve to perform tasks

to denote their role and to coordinate with other members of their group. Leaders received

a higher payoff than followers; however, groups were rewarded on the basis of how few lead-

ers they elected with the twist that they were required to have at least one leader. In these

studies, groups evolved division of labor strategies despite highly disparate reward structures

in which leaders were rewarded up to 64 times as much as followers [43, 45].

We expanded on the results of our leader-follower study to see whether multilevel selec-

tion could give rise to genetically heterogeneous [43, 45] groups that perform more complex

versions of division of labor that include both more roles and more challenging tasks. In

these studies, an individual was required to be a specialist and was under pressure to perform

the most highly-rewarded task(s). The group, however, required a diversity of specialists.

Our initial questions focused on understanding how groups of organisms could coordinate

roles, especially roles with disparate benefits. Within this system, we observed groups of

individuals evolve heritable strategies for performing division of labor. We then examined

an evolved strategy and demonstrated that a combination of genetic heterogeneity, ecological

factors, and coordination mechanisms (such as physical condition and communication) were

used to coordinate roles.

Next, to more thoroughly isolate questions of how groups perform division of labor,

we turned our attention to genetically-clonal groups. We focused on understanding the

mechanisms that groups of organisms used to coordinate roles (i.e., location awareness or

communication) and how these mechanisms may be environmentally dependent [44]. We

discovered that the mechanism varied according to the type of roles being performed.

These studies provided us with confidence that groups of organisms within Avida can

indeed evolve to perform division of labor with complex tasks and unequal rewards.

7

1.4.2 The Evolution of Division of Labor

Given evolutionary computation can be used to produce groups that exhibit division of labor,

our later work focused on understanding the conditions under which division of labor evolves

as a strategy. For these studies, instead of directly rewarding for division of labor, we instead

reward for group efficiency and observe when and how division of labor evolves. Specifically,

we addressed the following topics:

Temporal polyethism, where a worker’s occupation changes with age, is one of the most

common forms of division of labor [31, 53, 102, 107, 119, 120, 121]. An ongoing discussion

within communities of division of labor researchers is why this pattern exists. One theory

is that this behavior can be explained by the risks of aging and the relative risks of the

tasks [53]. Specifically, more risky tasks are performed when the organism is older and closer

to death. In this study, we used Avida to explore whether the risks associated with aging

and different tasks are sufficient for evolving colonies that exhibit temporal polyethism. We

test this hypothesis in both two-task and three-task scenarios and discover evidence that

suggests aging and task riskiness are able to result in the evolution of a temporal polyethism

pattern of division of labor.

Three advantages for human economic division of labor suggested by Adam Smith [108]

and later proposed by Dornhaus [20] as viable explanations for division of labor within

eusocial colonies are: (1) the efficiency with which an individual performs a task improves

with repeated performances, (2) specialization can decrease task-switching costs, and (3)

the creation of machines can assist organisms performing specialized tasks more efficiently.

In these studies, we examine how task-switching costs (the second proposed benefit) affect

whether or not division of labor evolves as a strategy [41, 44]. We discovered that the

application of task-switching costs is sufficient to increase the amount of division of labor

present within colonies of organisms. We then performed additional experiments to assess the

generality of these results and found that they were robust to environmental perturbations

8

in terms of the criteria for successful colonies and the type of task within the environment.

We also encountered support for the idea that efficiency gains through parallel processing

may favor the evolution of division of labor strategies. While this was not the hypothesis we

were testing, efficiency through parallel processing has previously been proposed as a benefit

of division of labor [53, 88].

Within these studies, division of labor evolved as an efficient means to solve group prob-

lems. These studies address biological questions that are infeasible to experimentally study

using natural systems.

1.4.3 Applications of Division of Labor: Problem Decomposition

The last aspect of our research focuses on whether these division of labor insights could

be applied to problem decomposition approaches for EAs. Specifically, we addressed the

following topics:

Prior to our division of labor studies, we engineered a problem decomposition EA that

evolves specialists that produce subcomponents and then dynamically assemble the subcom-

ponents to form a complete solution [42]. Unfortunately, our early technique relied upon

developers to specify how the problem was to be decomposed and reassembled.

Analyses of the groups that evolved to perform division of labor as the result of task-

switching costs revealed that they accomplished this feat using an advanced form of problem

decomposition akin to strategies observed in nature, but not directly rewarded by our exper-

iments [41, 44]. Specifically, (1) group members broke complex logic tasks into constituent

simpler tasks, (2) individuals computed the results for those simpler tasks, (3) individuals

then shared the task results, and (4) other neighboring individuals assembled the solutions

to produce the results for more complex tasks. These studies form the basis for future work

that will apply evolutionary pressures that result in division of labor to other problems that

could benefit from problem decomposition including those in software engineering and the

9

design of robot-control algorithms.

1.5 Contributions

In summary, there are four main contributions of our research: (1) evidence that evolution-

ary computation techniques can evolve groups of individuals that exhibit division of labor,

(2) support for the hypothesis that temporal polyethism may result from the evolutionary

pressures of aging and risks associated with tasks, (3) support for the hypothesis that task-

switching costs result in an increase in the amount of division of labor exhibited by groups,

and (4) an example of how the evolutionary pressures that favor the evolution of division of

labor may result in groups exhibiting problem decomposition.

In the following, we provide background information on the methods used for this research

(Chapter 2). Next, we describe the results from the foundational studies (Chapter 3), elab-

orate on our studies of the evolution of division of labor (Chapter 4), and present our work

on problem decomposition (Chapter 5). We conclude with the impact and future potential

for this line of research (Chapter 6).

10

Chapter 2

Methods

In this chapter, we introduce Avida focusing on the portion of the infrastructure used for our

experiments. Because this research addresses division of labor, we are especially interested

in the interplay among individual organisms and their group. Additionally, we describe how

we measure division of labor within groups.

2.1 Avida

For the majority of the work presented in this dissertation, we used the Avida digital evolu-

tion platform [87]. Figure 2.1 depicts an Avida population and the structure of an individual

digital organism. An Avida population is composed of a number of cells, where each cell is

a compartment in which an organism can live. A cell can contain at most one organism,

and the total number of cells (and thus the size of an Avida population) is fixed. Cells are

connected to each other via a configurable topology, generally a grid or torus, that defines

the neighborhood of each cell. An organism’s neighbors are the organisms that live in the

cells adjoining its own cell. Additionally, each organism has a facing, which is one connection

to a neighboring cell. Organisms are able to change their facing by rotating.

11

...

...

...

...

...

...

...

...

...

...
...
......

...

Y = 10000100...

01101101...
 EQU!

X = 00010110...

IN

OUT

BX: 11010011...

AX: 01101101...

CX: 10110110...

nand
nop−B

h−copy

...

IO
nop−A

...

nop−A

...

...

Figure 2.1: Left: An Avida population containing multiple genotypes in a spatial envi-
ronment, where different colors indicate organisms with different genotypes. Right: The
structure of an individual organism, including its genome, input, internal registers, and out-
put. For interpretation of the references to color in this and all other figures, the reader is
referred to the electronic version of this dissertation.

Each digital organism is defined by a circular list of instructions (its “genome”), a virtual

CPU, and its position in a common virtual environment. The virtual CPU architecture

comprises three general-purpose registers {AX, BX,CX} and two stacks {GS, LS}. In

Figure 2.1, each color within the population represents a different genotype. An organism

systematically executes the instructions in its genome. These instructions determine the

organism’s behavior, including its ability to sense and change properties of its environment.

Organisms are self-replicating meaning that the genome itself must contain the sequence

of instructions to create an offspring. When an organism replicates, a target cell for the

offspring is selected from the environment at random, and any previous inhabitant of the

target cell is replaced (killed and overwritten) by the offspring. In general, each population

starts with one or more organisms that are capable only of self-replication, and new genomes

are produced through random mutations introduced during replication. Mutation types

include substitutions, insertions, and deletions.

12

2.1.1 Instructions

The Avida instruction set includes commands to perform basic computational tasks (addi-

tion, subtraction, and bit-shifts), control execution flow, engage in communication or other

environmental interaction, and replicate. The standard Avida instruction set is Turing com-

plete and is designed so that random mutations will always yield a syntactically correct pro-

gram, albeit one that may not perform any meaningful computation [85]. These instructions

are described in detail in [87]. We included additional instructions to enable coordination

among organisms. These instructions are summarized in Table 2.1.

Instruction Description
send-msg Sends a message to the neighbor currently faced by the caller.
retrieve-msg Loads the contents of a received message into the caller’s vir-

tual CPU.
rotate-left-one Rotate this organism counter-clockwise one step.
rotate-right-one Rotate this organism clockwise one step.
get-role-id Sets register BX to the value of the caller’s role-id register.
set-role-id Sets the caller’s role-id register to the value in register BX.
bcast1 Sends a message to all neighboring organisms.
get-cell-xy Sets register BX and CX to the (x, y) coordinates of the caller.
collect-cell-data Sets register BX to the value of the cell data where the caller

lives.
donate-resources-to-group Donates the resources the organism has accumulated to the

group.

Table 2.1: Coordination instructions for this study. These instructions are in addition to the
general Avida instruction set.

2.1.2 Tasks and Resources

Organisms in Avida can perform tasks, which enable them to metabolize resources from

their environment to gain additional virtual CPU cycles. For many of the division of labor

experiments described in this dissertation, we created tasks for each possible role. An organ-

ism fulfills a role by performing its associated task. For some of our experiments, we used

13

role-ids, a mechanism whereby an organism sets a special-purpose virtual CPU register to

an integer value, to indicate the role that the organism performs. For other experiments,

we required the organisms to perform bitwise Boolean logic operations on 32-bit integers.

(Lenski et al. provide detailed examples of these operations [72].) There are nine possible

logic tasks: not, nand, and, ornot, or, andnot, nor, xor, equals.

Tasks consume resources. Generally, metabolizing these resources affects the merit of an

organism, which determines the rate at which its virtual CPU will execute relative to the

other organisms in the population. For example, an organism with a merit of 10 will, on

average, execute twice as many instructions as an organism with a merit of 5. Since organisms

self-replicate and compete for space, an organism with a higher merit will out-compete

other organisms to dominate the population, if all else is equal (execution length, impact of

mutations, etc.). However, in some experiments, we configure all organisms to have the same

merit and thus run at the same speed. This configuration results in competition primarily

occurring at the group level. In these experiments, tasks still consume resources. However,

these resources are donated to the group using the donate-resources-to-group instruction.

The amount of of resources consumed by an organism for performing a task can be either a

statically defined quantity (that results from an unlimited resource) or a dynamically chang-

ing amount (that results from a limited resource). In most Avida experiments, resources

are unlimited such that the maximum amount the organism can use is always available. In

this case, the amount of merit that an organism gains for completing a task depends on

a user-defined constant called the task’s bonus value. When an organism performs a task,

the organism’s merit is multiplied by the task’s bonus value. For example, if an organism

performs a task with a bonus value of 2, its merit is doubled. However, resources may also

be limited, such that the amount consumed is dependent on the amount of the associated

resource that is currently available. These limited resources are typically set up as the com-

putational equivalent of a chemostat, where each resource flows into the environment at a

14

constant rate, while at the same time a small percentage (typically 1%) of the available re-

source flows out, limiting total accumulation. An organism is able to consume a percentage

of the resources available (typically 5%). Thus, when many organisms execute a task asso-

ciated with a limited resource, the amount of resource available decreases until additional

organisms would receive a larger amount of resources by completing a task associated with a

different resource. Within our experiments, limited resources are used to reward organisms

for performing different types of tasks.

2.1.3 Groups

To study group behavior with Avida, we divide the population of digital organisms into

distinct subpopulations and link their long-term fates. Groups1 can comprise a set of

genetically-clonal or genetically-heterogeneous organisms. Further detail regarding the dif-

ferences in behavior will be explained subsequently. As with individual organisms, entire

groups replicate and compete for space, but at a much greater time-scale. When a group

replicates, another group from the population is selected as its target. The organisms in

the target group are all removed, and a subset of the organisms from the source are placed

into the target. Figures 2.2 and 2.3 depict a heterogeneous and clonal group replicating,

respectively. In both cases, group A (or a derivative thereof) replaces group B.

In these studies, we make use of two different forms of group competition. Both types

of group competition result in group replication. First, for some experiments, we use tour-

nament selection in which groups compete every 100 updates2 based on a fitness function,

where a group’s success is determined by the behavior of its constituent organisms. Each

tournament contains a set of groups selected at random, and the group with greatest fitness

1Within other Avida papers, we will sometimes refer to these groups as demes or colonies.
2An update is the unit of experimental time in Avida corresponding to approximately 30

instructions per organism.

15

is replicated (ties are broken randomly). Second, some of our experiments use task-based

group competition, where a group replication event is triggered by the collective behavior of

individuals within a group. For example, a group could be set to replicate once its constituent

organisms have consumed a certain amount of resources.

2.1.4 Genetically Heterogeneous Groups

Some of our studies investigate the effects of multilevel selection, where the group-level (i.e.,

colony-level) pressure [111] selects for division of labor and the individual-level pressure re-

wards different roles unequally. The theory of multilevel selection, originally called group

selection was proposed in 1962 by the biologist V. C. Wynne-Edwards [132], and later for-

malized into multilevel selection theory by D. S. Wilson and E. Sober [112, 130]. At a high

level, multilevel selection theory states that groups of individuals may be vehicles for selec-

tion, similar to how a single individual is a vehicle for the selection of its components. In

other words, multilevel selection posits that the survival of the individual is linked to the

survival of the group. There are many different ways that these groups may be defined. For

example, a group may be defined by a common trait (a trait-group), shared ancestry (clade

selection), membership in the same species (species selection), or the interactions between

related individuals (kin selection). Multilevel selection has been used in biology to explain

the evolution of altruism, where an individual will sacrifice fitness for the benefit of the

group, and the evolution of social behavior, particularly in populations of eusocial insects,

such as ant and bee colonies [9, 23, 53, 97, 105, 111].

To implement multilevel selection, when a group is replaced during replication, all or-

ganisms from the source group are copied into the target group, overwriting its previous

inhabitants. We refer to this replication method as full group replication. Within each

group, organisms are still able to self-replicate. This setup enables groups to potentially

maintain genetic heterogeneity, since all organisms are copied when the group replicates.

16

t

the target. Its organisms
are removed.

(1) Group A completes
a group task.

(3) Group A is copied to the
former position of group B.

DC

A B

DC

A B

DC

A A

(2) Group B is selected as

Figure 2.2: Heterogeneous Group Replication Process: (1) An Avida population containing
four heterogeneous groups. Group A completes a group task or wins a group competition.
(2) At this point, group B is selected to be replaced and all its organisms are removed. (3)
A perfect copy of group A is created and is loaded into group B.

Thus, an individual’s survival is dependent not only on its ability to out-compete its neigh-

bors for the limited space available in its group, but also on the collective behavior of the

group. Figure 2.2 depicts a world comprising four heterogeneous groups (A, B, C, and D).

During a replication event, group A replaces B and thus the overall population contains two

identical copies of group A.

2.1.5 Genetically Clonal Groups

Some of our other studies examine the evolution of genetically homogeneous groups. To

enable these clonal groups, we attached a germline, or heritable lineage, to each group in

the Avida population [65]. In most multicellular organisms, genetic material is transferred

from parent to offspring along the germline [24]. Germ cells are distinct from somatic cells,

which form the body of an organism. Mutations to an organism’s germline are passed on

to its offspring, while mutations to an organism’s somatic cells will typically only affect the

organism itself. This reproductive division of labor is similar to that exhibited by eusocial

colonies where only the queen’s genetic material affects subsequent colonies. Within our

studies of clonal groups, we do not introduce mutations during the process of individuals

replicating within a group. Thus, except under specific circumstances where an individual

intentionally creates an offspring that is different than itself, all organisms have identical

17

genomes. Figure 2.3 illustrates the germline replication process: (1) a colony completes a

group task; (2) another colony from the population is selected as the target of the replication

and the organisms within the target colony are removed; (3) the germline from the source

colony is used to produce the germline of the new colony possibly with mutations; (4) one

individual from the new germline is placed into the target colony; (5) the original colony is

reset to one organism.

A’

group task. the target. Its organisms
are removed.

(2) Group B is selected as (3) The germline from group
A is used to create the germline
for the new group (A’).

the target group with one
(4) Germline A’ is used to seed

organism.

(5) The source group (A) is
reset to one organism.

C

A

D

A’

C

A A’

D

A

D

B

C

A

C D

B

t

A

(1) Group A completes

Figure 2.3: Clonal Group Replication Process: (1) An Avida population containing four
clonal groups. Group A completes a group task or wins a group competition. (2) At this
point, group B is selected to be replaced and all its organisms are removed. (3) The germline
of group A is used to create the germline of the new colony. (4) One individual from the
new germline is placed into the target group. (5) The source group A is reset to its original
state with one individual.

These studies of genetically clonal groups differ from the genetically heterogeneous studies

in three key ways: First, for clonal groups, mutations occur along the germline, rather than

when an individual organism replicates within a group. Second, for clonal groups, the target

group is seeded with one organism from the germline, rather than copies of all organisms in

the group when it replicates. Third, because the organisms within a group are identical, for

clonal studies, we applied only the group-level component of multilevel selection pressure and

18

thus do not apply individual task pressures. Specifically, we set the merit of all individuals

to be the same thus ensuring they all run at the same speed.

2.1.6 Experimental Configuration

For each treatment, in all of the studies, we ran 20-50 replicate runs to account for the

stochastic nature of the evolutionary process. When we used groups, the default group

topology is 400 groups that each contained up to 25 organisms on a 5 × 5 toroidal grid.

Further experimental details will be provided for each experiment.

2.2 Measuring division of labor

To measure the amount of division of labor present within a colony, we use Shannon mutual

information as proposed by Gorelick et al. [48]. The formula for Shannon mutual information

is:

I =

m,n∑
i=1,j=1

pij ln(
pij

pi pj
) (2.1)

where pi is the probability of an individual, pj is the probability of a task, and pij is

the joint probability of a given individual i performing task j. For this study, we treat the

probability of all individuals (pi) as equal. The probability of a task (pj) is given by the

number of times that type of task was performed divided by the number of individuals.

Intuitively, Shannon mutual information captures two reciprocal pieces of information:

(1) given an individual, how much information do we have about the type task it performs,

and (2) given a type of task, how much information do we have about the individual that

performed it. Figure 2.4 depicts how Shannon mutual information varies with different

relationships among individuals and tasks. If all the individuals specialize on performing

19

the same task, then Shannon mutual information (and division of labor) are low (e.g., Fig-

ure 2.4(a)). If an individual performs many different types of tasks (e.g., a generalist strat-

egy), then Shannon mutual information will also be low (e.g., Figure 2.4(b)). In contrast,

information will be high when an individual performs only one type task and when a type

task is performed by only one individual (Figure 2.4(c)).

low amount of
division of labor

Individuals Tasks Individuals Tasks

low amount of
division of labor

Individuals Tasks

high amount of
division of labor

(a) (b) (c)

Figure 2.4: A depiction of the amount of Shannon mutual information present among a
group of tasks and a group of individuals. (a) All individuals specialize on performing the
same task resulting in a low amount of division of labor. (b) A generalist individual performs
all of the tasks resulting in a low amount of division of labor. (c) Each individual specializes
on performing a different task resulting in a high amount of division of labor.

20

Chapter 3

Direct Selection for Division of Labor

In this chapter, we explore whether game theory and Avida can be used to evolve groups

of organisms that exhibit division of labor when we directly select for it. For these studies,

we start with the simplest possible form of division of labor where there are two possible

roles (leader and follower). From there, we expand the number of roles and the complexity

of roles. We then study whether division of labor will evolve, despite these complications, in

genetically heterogeneous and clonal groups.

3.1 Leaders and Followers:

Frequency-Dependent Selection

In nature, division of labor enables a group of collaborating individuals to collectively achieve

better outcomes than if each individual acted as a generalist in isolation [25, 51, 113]. Such

labor specialization can produce greater net benefits for the group as a whole, and may be

a key factor in economic growth and stability [32, 108]. However, observations of collective

action in humans and other animals reveal patterns of resource inequity, where individuals

in certain labor roles appear to end up with more benefits than others, which may have

21

destabilizing effects for groups and societies [17, 91]. For example, leadership is a common

role found within multiple species, where the benefits of leadership are significantly greater

than that of a follower. In human societies, the salary of leaders of organizations commonly is

many times greater than the salary of the average worker [125]. Typically, those in dominant

roles are seen to reap greater benefits than those in subordinate roles in many dyadic or group

interactions [19, 52]. Thus, although group members can achieve better outcomes if the group

successfully coordinates labor specialists, each individual is also under pressure to perform

the labor role within the group that yields the greatest individual benefit. These inequities

result in the question: if it is the case that dominant leader roles in group interactions pay

so much better than subordinate follower roles, then why would anyone select to perform a

follower position?

From a game-theoretic perspective, resource inequity raises important questions relevant

to the understanding of the evolution of division of labor strategies, and how coordination

and collective action problems are interrelated. Specifically, individuals must coordinate

their labor roles in order to achieve the collective action objective when separate roles may

yield short-term differences in payoffs. In this study, we propose a game-theoretic model

that examines division of labor within dyads, where there are two roles: “risky” leaders and

“safe” followers — each role with different payout yields after each interaction. The general

idea behind our model is reminiscent of a simple “hawk/dove” game concept, but is adapted

to simulate an intuition about how costs, benefits, stochastic and risk-management processes

that affect “real world” leader-follower dynamics might be relevant to the outcomes.

Our model begins with a familiar intuition about social groups: there two types of agents

in interacting dyads. The first type of agent initiates an interaction and assumes greater risk

(the leader), but receives a larger share of the collective action prize. Likewise, the agent

adopting a “you first” strategy (the follower) takes less risk and receives a smaller share of the

collective action prize. As is typically assumed to be the case in most economic transactions,

22

both agents in a dyad receive a division of labor benefit if they successfully coordinate an

interaction where one individual is a leader and the other is a follower. Dyads of two leaders

or two followers do not receive a benefit. We specify this model analytically and then confirm

the results using computer simulations. Our model reveals that the proportion of labor roles

can reach a stable equilibrium, where each role has a similar average net payoff over the long

run, even when individuals playing a certain strategy (e.g., “follower”) always have a lower

payoff than the other strategy (e.g., “leader”) in any given interaction that contains one of

each. In the analysis of our model that yields this result, we shed light on the questions

of (a) why leaders are less numerous than followers, and (b) why some people may choose

lower paying follower roles rather than “higher-paying” leadership roles. In doing so, we

also explore the notion of how leader-follower interdependent strategies that can give rise

to the emergence of leaders who incur greater costs than followers in transactions, yet are

still maintained in a population because of frequency-dependent selection. Specifically, we

demonstrate that by varying the relationship among the benefits and costs of coordination

for the two roles, we are able to produce populations that exhibit these characteristics.

Our model is designed to reflect the tradeoffs, risk, and chance events characteristic of

leaders and followers in the real world. Specifically, groups can benefit from transactions

involving division of labor, but the costs and benefits may be distributed unevenly. Since

moving first to initiate a transaction is often riskier than receiving an overture to interact,

the individual with the riskier strategy should expect to receive a larger fraction of the group

benefit. For example, in a hunting party, a leader may charge the prey into a trap set by the

follower. If the prey mounts a defensive attack, then the leader is likely to bear the brunt of

the counter-attack, and is thus incurring greater risk of injury or death. In order to offset the

cost of this increased risk, the leader may also receive a disproportionately large share of the

meat. This situation is roughly analogous to the risk-management strategies behind “hazard

pay” in employment economics. Crucial to the outcomes may be the consideration by each

23

player as to how much one stands to gain from dyadic transactions, how much one can lose,

the probability of failure (e.g., likelihood of death), and whether information transmission

errors are common. These may be important parameters in any meaningful description of

the evolution and dynamics of leadership and followership. In the following section, we first

describe our leader-follower model in “top down” fashion, and then show empirical results

from computer simulations in order to illustrate the effects of modifying key parameters

within the model.

3.1.1 Methods

Our model assumes two possible roles: leader and follower with the former incurring greater

risk of failure than the latter. This added risk comes in the form of a leadership cost that

solely afflicts the player in the leader role, but which can be offset by the coordination

benefits that both players receive, and can be further offset by a multiplicative benefit for

taking the leader role. Table 3.1 depicts our payoff structure for a dyad. The payoffs for

each interaction are determined by: c, the cost of taking the leadership role (which can be

potentially large, as in the case when one is killed, but may translate into a small cost if the

risk is marginal); b, the benefit for a successful division of labor transaction (shared equally

between players); and a, the leadership bonus of being a leader when a successful transaction

is coordinated (indicated in our model as a multiple of the shared benefit).

In a dyadic transaction, if both individuals opt for the leadership role, then they both

incur cost c without benefits a or b (e.g., as if both charge the animal and thus incur the risk

of being gored, but neither set the trap to capture the prey). If both opt to be followers, then

they incur no cost (e.g., there is no risk of injury or death by not charging the prey), but

neither do they earn a benefit (e.g., there is no fitness benefit to gaze at peacefully grazing

prey animals while starving). If one is a leader and the other is a follower, then the dyad

has successfully coordinated and a successful division of labor transaction occurs (e.g., they

24

successfully hunt). In these successful transactions, followers and leaders each earn a division

of labor benefit (b), but the leader also is awarded a leadership bonus (a) net a leadership

cost (c). Thus, in successful transactions, leaders may receive greater rewards than followers,

but at a price.

Leader Follower
Leader −c,−c b ∗ a− c, b
Follower b, b ∗ a− c 0,0

Table 3.1: The payoff matrix for the leader-follower game, where a is the multiplicative
benefit of leadership, b is the coordination benefit, and c is the cost of leadership. In general,
leaders have higher payoffs if the dyad coordinates roles, but a lower payoff if they do not.

Formal Model

The formal model describes how a sufficiently large population will behave at equilibrium.

The composition of the population at equilibrium is determined by the values selected for

the leadership cost, multiplicative benefit of leadership, and division of labor benefit. We

derive the frequency of leaders at equilibrium, p, from the payoff matrix. Let w(L) and w(F)

be the payoff of leaders and followers, respectively:

w(L) = −cp + (1− p)(ba− c) (3.1)

w(F) = bp (3.2)

The payoff of leaders (w(L)) is derived by summing the payoff of leader-leader dyads

multiplied by the frequency of this dyad composition occurrence within the population and

the payoff of leader-follower dyads multiplied by the frequency of this dyad composition

occurrence within the population. Specifically, the first term is the payoff of leader-leader

dyads multiplied by the probability of this occurrence, which is the frequency of leaders in

the population (p); provided cost is greater than 0, this term is negative. The second term is

25

the payoff of leader-follower dyads multiplied by the frequency of followers in the population

(1-p).

For the payoff of followers (w(F)), the sole term is the probability of a leader-follower

dyad multiplied by the division of labor benefit. (Recall that a follower-follower dyad neither

incurs cost nor accrues a coordination benefit.)

At equilibrium, the benefits of leadership and followership are equal. Using this observa-

tion, we derive an equation representing the frequency of leadership using basic substitution

as follows:

w(F) = w(L) (3.3)

bp = −cp + (1− p)(ba− c) (3.4)

bp = −cp + ba− bpa + cp− c (3.5)

p∗ = (ba− c)/[b(1 + a)] (3.6)

The last expression(Equation 3.6) describes how the frequency of leaders in the population

(p∗) is expected to vary as a function of net leader benefit (numerator) scaled to the aggregate

benefit of the leaders and followers combined (denominator).

Simulation

To better understand the temporal behavior of populations as they reach equilibrium,

we developed a simulation, which is available online at https://www.msu.edu/∼hjg/

Leader-Follower-PD-EA.html. Figure 3.1 depicts a screenshot of the game. Prior to the

start of the game, the parameters of simulation are entered. Similar to the formal model,

configuring the parameters includes specifying the leadership cost, division of labor benefit,

and leadership benefit. Within the simulation, the average leadership cost from the formal

model is divided into two elements: a per interaction probability of a leader incurring the

26

leadership cost (probability of leadership cost) and the leadership cost (leadership cost). While

these parameters would not affect a sufficiently large population at equilibrium, they may

affect smaller populations and/or the temporal behavior of populations. In addition to the

parameters present in the formal model, the population size and initial population compo-

sition can also be specified. The initial population composition determines the number of

individuals that will start as either leaders and followers.

Each of the simulations presented begin with a population size of 1,000, where all mem-

bers of the population are initially followers. We run the simulation for 100 generations,

where each generation comprises 5,000 games. (We selected 5,000 so that, on average, each

individual participates in 10 games per generation.) In a given game, two individuals are

selected from the population at random to form a dyad and play the leader-follower game.

Their payoffs are determined using the payoff matrices. An individual’s net payoff for a

generation is the sum of the payoffs received in each game it has participated in. An in-

dividual’s strategy remains constant during a generation. At the end of a generation, the

next generation of individuals is selected, where an individual that has a higher net payoff

is more likely to be selected to produce individuals in the next generation. Specifically,

we use fitness proportional selection (roulette-wheel selection) [4] to select individuals from

the current generation to produce individuals in the next generation. As a result of this

selection process, a strategy that has yielded higher net payoffs is more likely to proliferate.

Conversely, a strategy that has yielded lower net payoffs is less likely to proliferate. Addition-

ally, 1% of the population mutates by switching strategies. For example, if a leader mutates,

then it becomes a follower. Mutation prevents a strategy from going extinct. The results of

the simulation are presented in terms of the population composition (the percentage of the

population that are leaders and followers) over time. While the formal model describes the

ideal behavior of an infinite population at equilibrium, the simulation describes the behav-

ior of a finite population playing a limited number of games over time. These simulation

27

Figure 3.1: A screenshot of the leader-follower game developed using NetLogo and available
online. The game enables the user to configure the costs of leadership, benefits of leadership,
and the benefits of division of labor.

28

constraints in conjunction with randomness present within the simulation may result in the

simulation results deviating from the formal model. However, these deviations are useful for

understanding the behavior of human populations, which are subject to many of the same

constraints.

3.1.2 Results

In this section, we demonstrate that the leader-follower game-theoretic model produces

frequency-dependent selection that can result in populations of various compositions of lead-

ers and followers, including compositions in which leaders greatly outnumber followers.

We use the formal analytic model to identify cost benefit combinations that result in

populations where the vast majority of individuals (> 75%) are leaders. When there is

no cost for leadership (c = 0), then a leadership benefit (a) of greater than or equal to

three times the division of labor benefit (b) produces a population that is primarily leaders.

However, even adding a slight cost of 1 causes the benefit of leadership (a) to need to rise

to 7 times the division of labor benefit (b) to produce a primarily leader population. Costs

of greater than 2 do not reach this population composition even with leadership benefits of

up to 10-fold.

Figure 3.2(a) depicts the simulation results for one configuration in which leaders outnum-

ber followers. Here, we set the benefit of division of labor (b) to 1, the benefit of leadership

(a) to 3, and cost (c) to 0. Although, at equilibrium, the net payoff for both strategies

is equal, for a dyad that exhibits division of labor, the leader payoff is 3 and the follower

payoff is 1. The simulation data show the population converging on a 75% leader popula-

tion composition. The stochastic nature of the dyad pairings, roulette-wheel selection, and

mutation cause the simulation data to vary slightly from the formal model. Specifically, the

simulation takes a period of time to reach equilibrium, and, even once equilibrium is reached,

experiences some minimal fluctuations.

29

(a) Leaders greatly outnumber followers.

!

(b) The number of followers and leaders is almost equal.

!

Figure 3.2: The game-theoretic simulation results for various combinations of costs and
benefits. The red line represents the percentage of the population that selected the leader
strategy and the blue line represents the percentage of the population that selected the
follower strategy. In the first treatment (a), leadership benefit is 3, coordination benefit is
1, and leadership cost is 0. These values result in many leaders. In the second treatment
(b), leadership benefit is 5, coordination benefit is 1, and leadership cost is 2. These values
result in an equal number of leaders and followers. These results demonstrate that frequency-
dependent selection can be used to produce various population compositions of leaders and
followers even if the payoffs per interaction are not equal.

There are several possible configurations that result in the frequency of leaders and

followers being approximately equal. When cost (c) is equal to 0 and the benefits of division

of labor (b) and benefits of leadership (a) are 1, then the population composition is evenly

split. With higher costs, increasingly large leadership benefits (a) are required to achieve

this population split. For example, when cost is equal to 2, then a leadership benefit of 5 is

30

required. For these values, if a dyad exhibits division of labor, then the leader has a payoff

of 3 and a follower has a payoff of 1. However, when the dyad comprises two leaders, then

both have a payoff of -2.

Figure 3.2(b) depicts simulation results for one such configuration. Here, we set the

benefit of division of labor (b) to 1, the benefit of leadership (a) to 5, and cost (c) to 2.

Additionally, in this case, we also varied the initial population composition. In general, we

start with a population comprised entirely of followers. In this case, the simulation started

with a population entirely of leaders. Here, the starting configuration affected the time

necessary to converge, but did not affect the equilibrium population composition.

Next, we examine how the results of the simulation, which uses a finite population and

probabilistic cost, may differ from the formal model. We examine the role of probabilistic

cost by keeping the same mean cost (cost * probability), but varying the specific probability

and cost values. Specifically, we used the same leaders parameter values (Figure 3.2 (b)),

where the mean cost is 2, the division of labor benefit is 1 and the leadership benefit is 5,

as a baseline. Thus, for the probabilistic cost treatments we used: (a) a cost of 2.67 with a

probability of 75%, (b) a cost of 4 with a probability of 50%, and (c) a cost of 8 with 25%.

Figure 3.3 depicts the results of the probabilistic cost treatments. In general, the re-

sults of the simulation agree with the formal model and there is a balance of leaders and

followers. However, as the probability of the cost is reduced, the volatility of the results

increases. For example, in Figure 3.3(c), the population temporarily fixes on leaders, and

then followers, before settling in around equilibrium. Also, as the probability is reduced, the

number of leaders increases slightly. This results from the dynamics of the simulation in a

fixed population and with randomness.

31

(a) Few leaders: division of labor benefit = 1; leadership benefit = 5; cost = 2.22;
probability of cost = 75%

(b) Few leaders: division of labor benefit = 1; leadership benefit = 5; cost = 4; probability
of cost = 50%

(c) Few leaders: division of labor benefit = 1; leadership benefit = 5; cost = 8; probability
of cost = 25%

Figure 3.3: The simulation results for various combinations of probabilistic costs given the
same division of labor benefit, leadership benefit, and mean cost. The red line represents the
percentage of the population that selected the leader strategy and the blue line represents
the percentage of the population that selected the follower strategy.

32

3.1.3 Discussion

Our analysis of the interdependent roles of leaders and followers in coordinated action yields

the implication that leaders who bear a cost can emerge, even if their net payoff in each

coordinated transaction is lower than that for followers. Similarly, followers who bear a cost

can also emerge.

In the same way that a leader glut reduces the coordination benefits of leadership, a

follower glut poses the same problem for followers. The key idea, is that there are benefits

to encountering other like-types with complementary division-of-labor strategies. Thus the

payoffs can be lower for leaders than for followers on coordinated transactions, yet leaders

can still evolve if they are rare enough to exploit the follower glut. As such, leaders can

make up for lower net payoffs on each outcome by having a greater number of payoffs than

followers. This situation is possible if (1) the benefit exceeds zero, and (2) leaders are more

rare than followers. Thus, situations where there are more followers than leaders can evolve,

and vice-versa. Since in human social contexts, the former more commonly emerges, it is

possible that the net benefits of leadership in most human groups may actually be very low.

The widely touted statistic is that Fortune 500 CEOs are compensated at 200 times the

average workers (20,000% higher) is likely to be an expression of the extreme tail end of a

distribution of a horde of others struggling to keep stride or who have met complete ruin.

Potential extensions of this work could include using coordination models to address a

range of problems that require collective action where one agent is at greater risk of injury or

failure, and so is compensated at some greater rate than are others. Other examples might

include defensive or aggressive attacks against a predator, criminals, or out-group combat-

ants. For a richer account, leader characteristics related to trait-related assortment dynamics

(where individuals actively seek out complementary types) or self-appraised abilities to be a

better leader or follower are necessary. The basic enterprise may be extended to group action

problems such as those involving venture capital; income disparity; intergroup conflict and

33

aggression; and patriotism and warfare.

3.2 Leaders and Followers: Multilevel Selection

A second possible explanation for why leaders and follower coexist within groups is multilevel

selection [125]. In this section, we use Avida to explore whether multilevel selection could be

used to evolve a genetically heterogeneous group that has one leader and many followers [43,

45]. Similar to our game-theoretic work, this setup is designed to reflect a leader-follower

situation, where it is desirable for the group to have one leader, and yet the rewards for the

leader may be significantly different than those of a follower. This hypothesis serves as an

alternative explanation to pure frequency-dependent selection.

3.2.1 Methods

In this set of experiments, we investigate whether groups of genetically-heterogeneous or-

ganisms can evolve to coordinate roles, even when these roles have unequal rewards. The

different rewards associated with roles provides a pressure for individuals to specialize on the

most rewarded role, even if this behavior is detrimental to the performance of the group. To

test a group’s ability to support less-rewarded roles, we designed a leader-followers situation,

where it is desirable for the group to have one leader, and yet the rewards for the leader may

be significantly different than those of the followers. At the individual level, we rewarded

organisms who set their role-id register to 1 (the leader role), while no rewards were granted

for selecting other role-ids. We then specified a group-level pressure to limit the leader role

to only a single organism. Specifically, the group fitness function that we used here was:

F =

 1 + n if n < 25

(1 + n− (o− d)2) if n = 25
(3.7)

34

where F is the fitness of a group, n is the number of organisms that have set any role-id,

d is the target number of organisms that should perform the leader role (1 in this case),

and o is the actual number of organisms that perform the leader role. Thus, this fitness

function rewards groups whose constituent organisms set their role-id register, and then

further rewards for coordinating roles such that only a single organism assumes the role of

leader.

For these experiments, we used the default group topology with genetically-heterogeneous

organisms. These groups competed every 100 updates in tournament selection; fit groups

propagate using full group replication. We ran 30 trials of each experiment.

3.2.2 Results

Figure 3.4 depicts the results of varying the multiplicative benefit of the leader role from

0.5 (a penalty) to 64 (a large reward) across 30 trials. Specifically, Figure 3.4(a) depicts

the mean number of leaders for the different trials and Figure 3.4(b) depicts the mean

number of followers. The dashed lines in both plots denote the ideal configuration – one

leader and 24 followers. In general, by 50,000 updates, the average group had reached an

equilibrium between leaders and followers, where the number of leaders was fewer than five

in all treatments. Unsurprisingly, because the group was assigned a fitness of 0 if it did not

have a leader, the groups maintained more than one leader for redundancy. The larger the

benefit of leadership, the slower the population was to reach equilibrium and the larger the

number of leaders. These results demonstrate that Avida is capable of evolving groups that

exhibit leader-follower division of labor even when the rewards are greatly disparate.

We next performed several additional experiments that varied key parameters to better

understand the factors underpinning division of labor in this environment. First, to assess

the generality of these results, we ran leader-follower experiments where we set the desired

number of leaders to be 13 (approximately half of the group) using the group fitness function

35

0 1 2 3 4 5
x 104

0

5

10

15

20

25

Update

Nu
m

be
r o

f o
rg

an
ism

s

(a) Number of leaders

0 1 2 3 4 5
x 104

0

5

10

15

20

25

Update

Nu
m

be
r o

f o
rg

an
ism

s

0.5
1
2
8
64

(b) Number of followers

Figure 3.4: The mean number of leaders (a) and followers (b) when each group’s target
is one leader and 24 followers. The dashed line represents the target value in each case.
Each line represents a different treatment that has a different multiplicative bonus value
of leadership varying from 0.5 to 64. Overall, the group-level component of the multilevel
selection pressure is sufficient to produce groups with few leaders and many followers, despite
the appreciable pressure for individuals to be leaders.

described by Equation 3.7. Figure 3.5 depicts the results of this experiment. We see that the

population reached equilibrium by 15,000 updates and was nearly evenly divided between

leaders and followers. Similar to the previous experiments, as the reward for leadership

increased, so did the number of leaders.

36

0 0.5 1 1.5 2
x 104

0

5

10

15

20

25

Update

Nu
m

be
r o

f o
rg

an
ism

s

(a) Number of leaders

0 0.5 1 1.5 2
x 104

0

5

10

15

20

25

Update

Nu
m

be
r o

f o
rg

an
ism

s

0.5 1 2 8 64

(b) Number of followers

Figure 3.5: The mean number of leaders (a) and followers (b) when each group’s target
is 13 leaders and 12 followers. The dashed line represents the target value in each case.
Each line represents a different treatment that has a different multiplicative bonus value
of leadership varying from 0.5 to 64. Overall, the group-level component of the multilevel
selection pressure is sufficient to produce groups with few leaders and many followers, despite
the appreciable pressure for individuals to be leaders.

3.2.3 Discussion

Division of labor when roles are rewarded unequally can be recast into a discussion of al-

truism. Altruism occurs when an individual sacrifices fitness for the benefit of another

37

individual. Altruistic acts are further divided into those that are strongly altruistic, where

the individual sacrifices all of its fitness, and those that are weakly altruistic, where an in-

dividual sacrifices fitness relative to the rest of the group, but altruistic groups out-perform

non-altruistic groups [129]. In this study, we used multilevel selection to evolve groups that

exhibit division of labor within a leader-follower system, where an organism that selects a

less-rewarded task is performing a weakly altruistic act – the organism receives less fitness

than others in its group that perform better rewarded tasks, but the group, and thus its

altruists, out-competes non-altruistic groups. It is often the case that explanations from a

multilevel selection perspective can also be interpreted from a kin selection perspective, and

both are equally valid yet provide different intuitions [30]. For this study, interpreting the

results from a multilevel selection perspective provides the most intuitive explanations.

Numerous evolutionary computation approaches have been used to study the behavior

of cooperative groups comprising heterogeneous members [35, 90, 94, 126, 134]. Two key

differentiating characteristics for these approaches are the level of selection used (i.e., indi-

vidual or group) and whether or not division of labor occurs. Ecological approaches [35] use

individual-level selection in concert with limited resources to promote the evolution of spe-

cialists. Some coevolutionary approaches [94, 134] evolve cooperative groups using individual

selection, where different species are isolated in distinct subpopulations. Cooperation among

these species occurs only at the time of fitness evaluation, when individuals from one species

are evaluated with representatives from each of the other species. Perez-Uribe et al. [90] and

Waibel et al. [126] overview work performed in this area, and also describe the effects of vary-

ing the levels of selection and population composition (i.e., heterogeneous or homogeneous

populations) [126]. However, these prior studies do not address multilevel selection, where

organisms experience individual-level competition to survive and also group-level pressure

to cooperate.

In this preliminary study, we investigated whether leaders and followers, which represent

38

roles with different rewards, could be maintained within a group through application of mul-

tilevel selection. We found that the group-level fitness component was a sufficient pressure

to maintain both roles. Next, we expand upon this result to capture more complex division

of labor arrangements in which organisms can select from more than two roles.

3.3 Division of Labor: Heterogeneous Groups

In this section, we extend our leader-follower approach to evolve more complex forms of

division of labor that include both additional roles for the organisms to perform and more

challenging tasks associated with the roles. For these studies, we directly reward for division

of labor and observe whether groups are able to evolve to coordinate roles and, if so, what

mechanisms they use to do so. In the following, we describe our experiments that examined

whether multilevel selection can be used to evolve groups of heterogeneous organisms that

exhibit division of labor [43, 45].

3.3.1 Methods

For these experiments, we used the default group topology (i.e., the Avida world comprises

400 groups) with genetically-heterogeneous organisms. These groups compete every 100

updates in a tournament, where fit groups reproduce using full group replication. Organisms

perform division of labor roles by completing tasks. The nature of these tasks varies among

experiments. We ran 30 trials of each experiment.

3.3.2 Results

For this study, we organized our experiments to address a series of increasingly difficult

challenges. First, we tested the coordination capabilities of the organisms by assessing how

many roles they were capable of performing. Second, rather than having an organism select

39

a role, we conducted experiments in which a role was associated with a labor task that the

organism had to perform. Third, we analyzed the groups that successfully performed all of

the labor roles to determine their strategy.

Can groups evolve to coordinate roles?

We designed our first experiment to test the most basic question: If the benefits associated

with each task are equal, then can groups of organisms evolve to coordinate their roles? If

groups of organisms cannot maintain role diversity for this simple group task, then more

complex forms of division of labor within heterogeneous groups are most likely not possible.

However, if groups of organisms can perform this task, then we have a foundation to pose

more complex questions regarding challenging roles with unequal rewards.

To test this question, we used a set of individual-level tasks that reward organisms for

assuming roles. Specifically, we considered an organism to have assumed a given role if it

sets its role-id register to an element of Rn, the set of valid role identifiers. We define Rn

as the set of consecutive integers {1, . . . , n}; for example, R5 = {1, 2, 3, 4, 5}. We consider

any organism that sets its role-id register to a value in Rn and then self-replicates as having

completed a task; thus, we double its merit. If an organism sets its role-id to a value that

is not in Rn and then self-replicates, its merit remains unchanged. Prior to self-replication,

organisms may set their role-id registers to different numbers. Only the value of the role-id

register at the time of replication affects merit.

Additionally, we impose a group-level pressure for both the number and the diversity of

the role-ids. Specifically, we define the group fitness function as:

Fgroup =

 1 + n if n < 25

1 + n + r if n = 25
(3.8)

where Fgroup is the fitness of a group, n is the number of organisms that have set any role-

40

id, and r is the number of unique rewarded role-ids set by organisms in the group. This

fitness function includes n to encourage organisms to select roles, even if they are not fully

coordinated in their approach. Thus, a group whose constituent organisms do not select any

role will be out-competed by a group whose organisms all select the same role, which will in

turn be out-competed by a group whose organisms all select different roles. Group fitness

was evaluated during the selection tournaments that occurred every 100 updates.

Figure 3.6 depicts the grand mean (mean of mean) and mean of maximum number of

unique roles1 within each group across 30 trials for different values of Rn ranging from R2

to R20. Each curve represents a different Rn. In general, the highest-performing group from

each run achieves the desired number of roles within 5,000 to 15,000 updates. An analysis of

the behavior of the groups indicates that they exploited location awareness (using the get-cell-

xy instruction) to determine which role to perform. Specifically, an organism’s x and y cell

coordinates within its environment were used to calculate its role. In general, we found the

number of roles performed across treatments to be statistically significantly different from

each other at the p < 0.05 level (Kruskal-Wallis multiple comparison). However, “near”

treatment pairs (e.g., 2-3, 3-4, etc.) were only found to be statistically significantly different

from each other when compared independently (Wilcoxon rank sum test, p < 0.001 for all

near-pairs). Thus, we conclude that multilevel selection is capable of producing division of

labor among equally rewarded roles.

To verify that individual selection pressures alone would not explain this division of

labor, we performed a control experiment in which we removed the group-level selection

pressure. Specifically, we maintained the individual-level reward for selecting a role, however

the winner of each group tournament was selected randomly without regard to the diversity

of the group (i.e., Fgroup from Equation 3.8 was set to 1 in all cases). Figure 3.7 depicts the

mean and maximum number of unique roles within each group across 30 trials for different

1In subsequent plots, we refer to these as the mean and maximum number of roles.

41

0 1 2 3 4 5
x 104

0

5

10

15

20

25

Update

Nu
m

be
r o

f R
ol

es

2
3
4
5
10
20

(a) Grand mean number of roles performed

0 1 2 3 4 5
x 104

0

5

10

15

20

25

Update

Nu
m

be
r o

f R
ol

es

(b) Mean of max number of roles performed

Figure 3.6: The results of using multilevel selection to evolve groups that comprise varying
numbers of roles, where each line represents a different treatment with a different desired
number of roles ranging from 2 to 20. The grand mean (a) and mean of the maximum
number of unique roles (b) over all 30 trials. In general, the groups evolved to perform the
desired number of roles.

Rn under this control treatment. As can be seen here, the mean number of roles for all

treatments is zero (Figure 3.7(a)), indicating that the groups did not satisfy the first part

of the fitness function, where we require that all organisms within a group select a role.

For 2-4 roles, the maximum performance of the 30 groups is the desired number of roles

42

(Figure 3.7(b)).

However, for 5 or more roles, even the best groups were unable to perform division of la-

bor. We found no statistically significant differences among these treatments at the p < 0.05

level (Kruskal-Wallis multiple comparison). Thus, it is clear that within this environment

the group-level selection pressure is necessary to encourage diversity of roles. These two

experiments have shown that this configuration of individual and group-level pressures are

sufficient to evolve a simple form of division of labor, where all roles are rewarded equally.

We now turn to more complex scenarios, where roles are rewarded unequally.

We conducted treatments where we set the desired number of role-ids to be five (R5) and

varied the distribution of the benefits among roles. Specifically, we conducted experiments:

(1) where the benefits increased (multiplicative merit rewards of: 2, 3, 4, 5, and 6); (2)

where one role was rewarded significantly greater than the others (rewards of: 2, 2, 8, 2, 2);

and (3), where the majority of task bonus values were penalties (rewards of: 1, 0.75, 0.5,

0.75, 1). We again used the group fitness function described by Equation 3.8. In all cases,

the most fit evolved group performed all five roles with the average group performing three

or more roles. These results confirm that multilevel selection is able to produce groups in

which individuals coordinate to perform different roles, even when the group and individual

selection pressures are in conflict.

Can groups evolve to perform division of labor with complex roles?

For the last set of experiments, we studied whether this multilevel selection technique was

sufficient to evolve division of labor when the complexity of the corresponding tasks varied.

In our previous Avida experiments, an organism assumed a role by setting its role-id to a

specific value. For these next experiments, we required the organism to perform a bit-wise

logic operation on 32-bit integers. We used five mutually-exclusive logic operations: not,

nand, and, orn, or. Specifically, an organism was rewarded once for performing one task

43

0 1 2 3 4 5
x 104

0

5

10

15

20

25

Update

Nu
m

be
r o

f R
ol

es

2
3
4
5
10
20

(a) Grand mean number of roles performed

0 1 2 3 4 5
x 104

0

5

10

15

20

25

Update

Nu
m

be
r o

f R
ol

es

(b) Mean of max number of roles performed

Figure 3.7: The results of using just individual selection to evolve groups that comprise
varying numbers of roles, where each line represents a different treatment with a different
desired number of roles ranging from 2 to 20. In these control treatments, the group-level
component of multilevel selection was removed. Within this figure, (a) depicts the grand
mean and (b) depicts the mean of the maximum number of unique roles over all 30 trials.
Without the group-level component of the multilevel selection pressure, the groups were
unable to evolve to perform multiple roles on average and in the best case evolve to perform
7 roles.

during its lifetime. If an organism performed multiple tasks, it was rewarded only for the

first task it performed. In this way, we required organisms to be specialists. The challenge

presented by this environment is that organisms must coordinate their roles in order to

44

specialize on different tasks. For the group competition, we evaluated the diversity of tasks

performed by the current organisms in the group.

To examine whether division of labor occurred when the tasks were complex and their

rewards were unequal, we rewarded the tasks in order of increasing complexity, which is

calculated by the number of nand operations necessary to perform the logic task. Tasks

not and nand (the simplest tasks) were assigned a bonus multiple of 2, tasks and, orn were

assigned a bonus multiple of 3, and or (the most complex task) was assigned a bonus multiple

of 4. The group’s fitness was simply the number of unique tasks performed by organisms

within the group. Thus, similar to the other experiments, organisms have a pressure to

perform the most highly-rewarded task, whereas the group has a pressure to perform all of

the tasks. This treatment increases the difficulty of the division of labor problem because

organisms must both evolve to perform logic operations and coordinate roles with different

benefits. We refer to this treatment as the Logic-5 Environment.

Figure 3.8 depicts the results of the Logic-5 experiment. Here, Figure 3.8(a) shows the

grand mean of the number of unique roles, while Figure 3.8(b) displays the mean of maximum

number of unique roles. In addition to the experimental treatment, the results of two control

treatments are shown. For the experimental treatment (Logic-5), both the individual and

group-level selection components of the pressure were present. On average, groups performed

over 4 tasks; the best performing group performed all 5 tasks. These results indicate that

the multilevel selection pressure is sufficient to produce division of labor, where, within a

given group, organisms evolve to coordinate the performance of complex disparate roles.

The control treatments depicted within Figure 3.8 demonstrate the effects of removing

various selection pressures. For the first control treatment, only the individual-level pressure

is present (Ind, no group). The average group performed less than one task; the best groups

performed an average of under three tasks. The second control treatment (No group; no ind)

has no selection pressures – we removed both the group and the individual-level selection.

45

The average group performed zero tasks; the best groups performed an average of 1 task.

(We did not perform a control with just group selection pressure, since this simplifies the

division of labor task and was done in Section 3.3.2.) These controls demonstrate that the

group-level component is, as expected, a critical force in maintaining division of labor.

3.3.3 Analyses

We have demonstrated that multilevel selection can produce groups where the organisms

specialize to perform different roles, even if these roles are rewarded unequally and vary in

complexity. Next, we examine how division of labor arose within these groups. The first

question addressed by our analysis is whether the groups evolved a heritable strategy for di-

vision of labor. The second question is if the groups evolve to perform division of labor, then

how do they maintain the coexistence of organisms that have different associated fitnesses?

In other words, what prevents the organism(s) with the greatest fitness from sweeping the

group? We address both these questions within the Logic-5 environment (described in Sec-

tion 3.3.2). Finally, we conduct a detailed analysis of one group that performed all five

tasks.

Do groups evolve a heritable strategy for performing division of labor?

A central concern is whether or not the performance of the groups indicates that they evolved

a heritable strategy for division of labor, or whether what we perceive to be a strategy is

simply an artifact of the experimental design and the performance monitoring technique used.

To begin our investigation, we identified two alternative hypotheses that are summarized in

Table 3.2. These hypotheses explain why the observed behavior could have been something

other than an evolved division of labor strategy.

46

0 1 2 3 4 5
x 104

0

2

4

6

Update

N
um

be
r o

f R
ol

es

Logic−5
No group; no ind
No group; ind

(a) Grand mean number of roles performed

0 1 2 3 4 5
x 104

0

2

4

6

Update

Nu
m

be
r o

f R
ol

es

(b) Mean of max number of roles performed

Figure 3.8: Control and experimental results of using multilevel selection pressures to evolve
groups of organisms that perform five different logic tasks with varying rewards. The dashed
line represents the best possible performance. Here, (a) depicts the grand mean number of
roles performed and (b) depicts the mean of max roles performed across 30 trials. The two
control treatments (No group; no ind and No group; ind) each evolve to perform fewer than 3
roles; whereas, the experimental treatment with both components of the multilevel selection
pressure evolves to perform 4 roles on average and 5 at best. These results are evidence that
multilevel selection pressure is sufficient to produce groups that perform five logic tasks with
varying rewards.

Alternative Hypothesis 1: Division of labor can be explained by mutations. Our

first hypothesis (Table 3.2) is that division of labor is a result of mutation-selection balance,

47

Hypothesis Predictions tested
1. Apparent division of labor is actually
a result of mutations occurring within
groups re-creating the observed diversity.

Removing mutations will result in a de-
crease of division of labor in an evolved
group.

2. Performance of diverse tasks is proba-
bilistic and evidence of division of labor is
an artifact of group-level selection contin-
uously selecting the most diverse groups.

Removing group selection pressures
will result in an immediate loss of di-
vision of labor in an evolved group.

Table 3.2: Alternative hypotheses and predictions tested in this study.

where organisms are attempting to perform the most highly-rewarded task and perform

other less-rewarded tasks as a result deleterious mutations. This dynamic is possible in the

Logic-5 environment because the tasks are building blocks for one another [72]: complex

tasks frequently evolve using pieces of the simpler tasks. Thus, a deleterious mutation to a

complex task may result in an offspring organism performing a simpler, less-rewarded task.

If this hypothesis is correct, then when mutations are turned off, the organisms performing

the most highly-rewarded tasks should sweep the group. Because organisms performing the

less-rewarded tasks will not exist, there will be an overall decrease in division of labor.

To test this hypothesis, we extended the original experiment with a 10,000 update ecologi-

cal phase. In Avida, an ecological phase is a period following the completion of an experiment

during which no further random mutations can occur. Ecological phases eliminate spurious

genotypes that occur as the result of deleterious mutations that are not able to fix in the

population. In this case, we use the ecological phase to ensure that the strategy adopted by a

group is able to perform division of labor without random mutations. During the ecological

phase, we performed group competitions and recorded the diversity of tasks performed by

the group using the same methods as the original experiment.

Figure 3.9 depicts the grand mean and maximum performance of the groups over time,

including the ecological period; all data are averaged across 30 trials. Mean performance

improves during the ecological period, indicating that groups are more consistently able to

48

achieve division of labor in the absence of mutations. Moreover, the maximum performance

of the groups remains constant from 50,000 updates to 60,000 updates, indicating that

mutations are not required for division of labor to be maintained.

0 1 2 3 4 5 6
x 104

0

2

4

6

Update

Nu
m

be
r o

f t
as

ks

(a) Grand mean number of roles performed

0 1 2 3 4 5 6
x 104

0

2

4

6

Update

N
um

be
r o

f t
as

ks

Logic−5

(b) Mean of max number of roles performed

Figure 3.9: The average mean (a) and average maximum (b) performance of the groups
through the normal 50,000 update period and then a 10,000 update ecological phase, where
mutations are turned off. The horizontal dashed line represents the maximum number of
tasks possible and the vertical dashed line represents the start of the ecological period.
The dotted lines represent standard error. The mean group performance increases and the
maximum group performance does not decrease from 50,000-60,000 updates, indicating that
mutations are not a key part of the group strategy.

49

Additionally, we further analyzed the performance of the 29 dominant groups. To identify

the dominant groups, we selected one of the best-performing groups from each of the 29 trials

that finished. In run 2, all the groups died prior to the completion of the run, thus all of its

values are zero and we do not include it in our reports of the analysis results. Each of these

29 groups performed all 5 tasks during the last 100 update period of the original experiment.

To confirm that mutations were not affecting the strategy of the dominant groups, we ran

each dominant group in isolation 30 times for an ecological period of 100 updates, with

different random number seeds, and tracked their average performance (a total of 870 tests).

Each group was tested multiple times to account for potentially stochastic strategies. The

groups, on average, maintained 4.44 tasks after the ecological period (se±0.08). This serves

as further confirmation that division of labor cannot be explained by mutations alone.

Intriguingly, while examining the data to better understand how mutations were used as

part of a division of labor strategy, we uncovered an unusual result: At the end of the ecolog-

ical period, on average, 10% of offspring differed from their parents. Given that the mutation

rate was set to 0 during the ecological phase, some organisms evolved unstable genotypes,

where their replication cycle produced offspring with a different genome. Furthermore, dur-

ing our analysis, we discovered that several of the dominant groups had evolved unstable

genotype strains that could potentially help them reinforce diversity to achieve division of

labor. For example, in one interesting case a parent with an unstable genotype sliced its

genome in half and inverted the two parts to produce a progeny that performed a different

task. Of course, the organism’s inverted offspring is unlikely to be able to replicate, but it

would aid in the overall task-diversity of the group. This is akin to sterile workers within

eusocial colonies that assist in the completion of group tasks, but do not create offspring.

Thus, although the groups do not rely on external mutations to perform division of labor,

unstable genotypes may be part of evolved and inherited strategies.

50

Alternative Hypothesis 2: Division of labor can be explained by group-level

selection. Our second alternative hypothesis (Table 3.2) is that the groups did not evolve

heritable strategies for division of labor, but rather diversity is unstable and is continually

being propped up by group-level selection. For example, a group that uses an unstable

strategy might have five different genotypes, each of which performs a different task, where

individual selection would typically cause one of the genotypes to eliminate the other four.

Considering that all organisms start each competition period with equivalent merit (and

thus execute virtual CPU instructions at the same rate), this most-fit genotype may fail to

sweep before the groups compete again. Thus, the group would maintain diversity, but this

diversity would occur as a failure to sweep rather than intentional maintenance of organisms

that perform lesser rewarded tasks. Groups that happen to maintain diversity in this manner

would then get selected for giving the incorrect impression that diversity is stably maintained.

If this hypothesis is correct, then, as a result of stochastic performance differences, a

given group would not consistently perform the same number of tasks. To assess whether

group performance was consistent, we ran each dominant group (selected in the same manner

as in Alternative Hypothesis 1) in isolation 30 times for 100 updates, with different random

number seeds, and tracked their average performance (a total of 870 tests). On average,

the groups performed 4.44 tasks (se±0.07), indicating that the performance of the groups is

consistent and is not obscured by group-level selection pressures. Thus, the performance of

division of labor cannot be accounted for by group-level mutation selection balance.

Because both hypotheses regarding potential mechanisms for the groups to exhibit several

tasks and yet not perform division of labor have been refuted, there are indications that the

groups have instead evolved a heritable strategy for coordinating and performing the various

logic tasks.

51

How do groups perform division of labor?

Given that the groups appear to evolve a heritable strategy for performing division of labor,

we next examine the components of their strategy. Specifically, how do the groups coordinate

their roles and manage to maintain organisms that perform the less-rewarded roles? Two

potential components of their strategy are: (1) explicit coordination resulting from the

integration of instructions we provided and (2) the maintenance of genetic diversity within

groups through a carefully regulated replication process. Here we explore whether these two

mechanisms are used.

Do the groups use instructions to coordinate roles? For our division of labor ex-

periments, we provided instructions that enabled explicit coordination using messaging and

location-awareness. A group could use these instructions to coordinate roles. For exam-

ple, organisms could select a task based on their location or could send messages alerting

other organisms of their selected task. To better understand how the behavior of a group

is influenced by the instructions within its constituent genomes, we conducted knockout ex-

periments, where we replaced one or more instructions in all of the genomes in a group with

a neutral instruction (called nop-X). We then subjected the group to an ecological period

and monitored its behavior. If the group’s ability to perform division of labor was impaired

following a knockout, then we can conclude that the knocked-out instruction contributed to

its behavior.

To explore whether groups are using explicit coordination as part of their strategy, we ran

a series of knockout experiments on the dominant groups. We performed three different sets

of knockout experiments: (1) Knockouts of location sensing capabilities (i.e., the get-cell-xy

and collect-cell-data instructions). (2) Knockouts of messaging capabilities (i.e., the send-

msg and retrieve-msg instructions). (3) Combined knockouts of both types of coordination

capabilities.

52

Group division of labor performance was impacted by the knockout experiments for

communication and/or location awareness. Without location sensing capabilities, the groups

performed an average of 3.12 tasks (se±0.07); without messaging capabilities, the groups

performed an average of 3.10 tasks (se±0.08); without coordination capabilities of any kind,

the organisms performed an average of 3.14 tasks (se±0.10). All of these are appreciably

lower than the 4.44 tasks performed on average after the ecological period. However, the

groups are still performing the majority of the tasks. Overall, based on the behavior of the

dominant groups in the knockout experiments, we conclude that the coordination instructions

were used in a limited capacity to maintain division of labor. We turn our attention to

exploring other mechanisms the evolved strategies could have used to preserve their ability

to perform a diversity of tasks without the coordination instructions.

Do the groups use genetic diversity to coordinate roles? Because group replication

events copy all organisms into the new group, it is possible that the groups could contain

multiple co-existing species, where each species is responsible for performing a different role.

However, if this is the case, how are organisms that perform the lesser rewarded task(s)

maintained within the group? In contrast, if the organisms within a group were genetically

identical or clonal, then performing a low-rewarded role would not affect the ability of the

organism’s genetic material to survive, but they would need an additional coordination

mechanism. Here we examine whether genetic diversity was present within the groups, and

if so, how it was maintained.

As a basis for understanding the genetic diversity present within the trials, we compare

the genetic diversity of the dominant groups (i.e., the best performing groups from each of

the trials) to the genetic diversity of the dominant groups from the control runs (described

in Section 3.3.2), where the groups had varying individual-level pressures, but no group-

level pressure. To directly measure the genetic similarity within a group, we calculated the

53

Logic−5 Control
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Va
lu
es

Figure 3.10: The percent of genetic diversity in the dominant Logic-5 groups and control
runs. Notably, the Logic-5 groups have more genetic diversity even though they also must
maintain this diversity while performing tasks with different associated benefits.

average Levenshtein distance, which is the number of insertions, deletions, and substitutions

necessary to convert one genome into another [74], normalized by genome length, for all

pairs of organisms in a group. Figure 3.10 depicts the results for the dominant groups from

the Logic-5 and control runs. As can be seen here, in the Logic-5 environment, each pair of

organisms within a group differed by, on average, slightly more than 25%. For the control

groups, each pair of organisms within a group differed by, on average, slightly more 15%.

Notably, the genetic diversity in the Logic-5 groups was statistically significantly greater than

the genetic diversity in the control groups (Mann-Whitney U Test p < 0.05). This result

indicates that genetic diversity is present and thus may be an aspect of the group-level

strategy for preserving division of labor.

These data enable us to conclude that genetic diversity is present within the groups. What

we do not know is whether this diversity is intentionally maintained and how it may affect

54

division of labor. One possible mechanism for organisms to maintain genetic diversity within

the group is to modify their rate of replication so that all the lineages are maintained. There

are two components to an organism’s replication rate: (1) its merit, which is determined by

the first task it performs, and (2) its gestation period. While an organism’s merit is dependent

upon the first task it performs, its gestation period is dependent upon the efficiency of the

organism’s replication loop, the number of instructions in its genome, and its execution

flow. Given different organisms may have different gestation periods, it is possible for the

organisms within a group to evolve such that more highly rewarded tasks also have a longer

gestation period: although they may run faster, they also perform more instructions prior to

replicating. To stably maintain genetic diversity, it is possible that organisms within groups

have adjusted their gestation cycles to produce offspring at the same rate. To study the

role of genetic diversity within these experiments we focus on the behavior of one successful

group in the subsequent case study.

Case Study

Here we perform a detailed analysis of one group. We selected group 29 for additional

analysis because it is the highest scoring group after the ecological period, it contains unstable

genotypes, and its performance is affected when communication and location instructions

are knocked out.

After one ecological period (with a seed selected at random), this group performed all 5

tasks. It included 15 different genotypes, where 10 genotypes were present in the original

group and 5 were produced as a result of unstable genotypes. Figure 3.11 depicts the geno-

types present at the end of the ecological period, where the shaded instructions represent the

coordination instructions. We clustered these genotypes into two ecotype families based on

genetic similarity, which is visible by the different banding patterns created by the coordina-

tion instructions. Although the members of each ecotype were quite similar, representative

55

members from each of the two families differed significantly enough to easily identify them

by visual inspection.

To identify the specific roles performed by each ecotype, we analyzed each genotype in

isolation. Specifically, we filled a group with each genotype and subjected it to 30 ecological

periods of 100 updates. This process revealed that the members of one ecotype family were

capable of performing only the highest rewarded task (i.e., orn). The members of the other

ecotype family were capable of performing all four lower rewarded tasks (i.e., not, nand,

and, orn, or). Moreover, this second ecotype family comprised the unstable genotypes. By

comparing organisms to their mutated offspring we were able to determine the nature of

these implicit mutations. In this case, the unstable genotypes removed an instruction from

the start of the genome. Within Figure 3.11 the second cluster of genotypes are members

of the unstable genotype ecotype. We have organized the genotypes to make the pattern

of implicit mutations more clear. As the genotypes within this family are read from left to

right, instructions are missing from the start of the genome resulting in the appearance of

the banded coordination instructions ‘moving up’ the genome. These missing instructions

do not appreciably change the behavior of the organisms.

Overall, the two ecotypes present in the group fill mutualistic ecological niches. Each

ecotype performed one or more tasks that the other did not perform. Together they were

able to perform all 5 tasks. One interesting aspect of these individual runs is that they

supported our hypothesis that the groups were using their replication cycle to facilitate

diversity. Almost all of the different genotypes had between 2 and 3 generations within

the 100 update ecological period. Thus, despite the differently rewarded tasks, no genotype

reproduced so rapidly that it swept the population, destroying members of the other ecotype.

Next, to understand the behavior of the group as a whole, we analyzed one ecological

period to identify which genotypes were present and which tasks they performed. Figure 3.12

depicts the genotypes and the task they performed during the ecological period. The shading

56

4 6 1 3 2 9 5 7 10 14 13 8 11 15 12

id 12 20 2 9 5 25 17 21 31 41 39 22 35 42 37

task performed 5 5 3 none, 2, 3, 4 3 3 1 1 3 4 1 2 2 1 3,4

solo score 60 60 90 105 112 71 90 90 89 71 90 135 136 138 120

2 2 3 3.5 3.733333333 2.366666667 3 3 2.966666667 2.366666667 3 4.5 4.533333333 4.6 4

solo tasks or or ? Fitness/task =0 nand, and, orn nand, and, orn and, ornot ? ? not, and nand, ornot not, and not, nand, and, ornot and, nand, not, ornot not, nand, and, ornot nand, not, ornot

mutator no no no yes no yes no no yes yes yes yes yes yes yes

generations 2 2 2 0 0 2 2 3 2 2 2 3

genome get-cell-xy get-cell-xy bcast1 bcast1 bcast1 retrieve-msg nop-A nop-A nop-A nop-A push nop-A nop-A if-label get-head

shift-l shift-l bcast1 bcast1 dec bcast1 push push push push nop-A if-label if-label swap nop-B

bcast1 bcast1 dec dec nop-A nop-A nop-A nop-A nop-A nop-A if-label swap swap get-head set-opinion

bcast1 h-divide nop-A nop-A push push if-label if-label if-label if-label swap get-head get-head nop-B add

collect-cell-data collect-cell-data push push nop-A nop-A swap swap swap swap get-head nop-B nop-B if-less h-search

collect-cell-data collect-cell-data nop-A nop-A pop if-label get-head get-head get-head get-head nop-B if-less if-less add pop

jmp-head jmp-head pop pop swap swap nop-B nop-B nop-B nop-B if-less add add h-search nop-A

rotate-right-one rotate-right-one swap swap get-head get-head if-less if-less if-less if-less add h-search h-search pop if-less

h-alloc h-alloc swap-stk swap-stk nop-B nop-B add add add add h-search pop pop nop-A h-copy

add add nop-B rotate-left-one if-less if-less h-search h-search h-search dec pop nop-A nop-A if-less get-cell-xy

nop-B nop-B if-less if-less shift-r add pop pop pop pop nop-A if-less if-less h-copy send-msg

IO IO shift-r shift-r nop-A dec nop-A nop-A nop-A nop-A if-less h-copy h-copy get-cell-xy h-divide

rotate-right-one rotate-right-one nop-A nop-A pop pop if-less if-less if-less if-less h-copy get-cell-xy get-cell-xy send-msg get-head

swap swap pop pop nop-A nop-A h-copy h-copy h-copy h-copy get-cell-xy send-msg send-msg h-divide retrieve-msg

h-search h-search nop-A nop-A if-less if-less get-cell-xy get-cell-xy get-cell-xy get-cell-xy send-msg h-divide h-divide get-head nop-C

h-alloc h-alloc if-less if-less h-copy h-copy send-msg send-msg send-msg send-msg h-divide get-head get-head retrieve-msg push

set-flow set-flow h-copy h-copy get-cell-xy get-cell-xy h-divide h-divide h-divide nop-A get-head retrieve-msg retrieve-msg nop-C push

nop-A nop-A get-cell-xy get-cell-xy send-msg send-msg get-head get-head get-head get-head retrieve-msg nop-C nop-C push nop-A

nand nand send-msg send-msg h-divide nop-A retrieve-msg retrieve-msg retrieve-msg retrieve-msg nop-C push push push swap-stk

nop-C nop-C h-divide h-divide h-divide get-head nop-C nop-C nop-C nop-C push push push nop-A set-opinion

rotate-left-one rotate-left-one h-divide h-divide retrieve-msg retrieve-msg push push push push push nop-A nop-A jmp-head collect-cell-data

send-msg send-msg retrieve-msg retrieve-msg swap-stk nop-C push push push push nop-A jmp-head jmp-head set-opinion IO

rotate-right-one rotate-right-one swap-stk h-divide push push nop-A nop-A nop-A nop-A swap-stk set-opinion set-opinion collect-cell-data set-opinion

IO IO push push shift-l push swap-stk swap-stk swap-stk swap-stk set-opinion collect-cell-data collect-cell-data IO if-n-equ

swap swap shift-l shift-l nop-A nop-A set-opinion set-opinion set-opinion set-opinion collect-cell-data IO IO set-opinion set-flow

mov-head mov-head nop-A nop-A if-n-equ swap-stk collect-cell-data collect-cell-data collect-cell-data collect-cell-data IO set-opinion set-opinion if-n-equ if-less

nop-C nop-C if-n-equ if-n-equ add set-opinion IO IO IO IO set-opinion if-n-equ if-n-equ set-flow add

if-label if-label set-opinion set-opinion collect-cell-data collect-cell-data set-opinion set-opinion set-opinion set-opinion if-n-equ set-flow set-flow if-less nand

send-msg send-msg collect-cell-data collect-cell-data IO IO if-n-equ if-n-equ if-n-equ if-n-equ set-flow if-less if-less add get-head

h-divide h-divide IO IO shift-l set-opinion set-flow set-flow set-flow set-flow if-less add add nand get-opinion

rotate-right-one rotate-right-one shift-l shift-l if-n-equ if-n-equ if-less if-less if-less if-less add nand nand get-head retrieve-msg

nand nand if-n-equ if-n-equ set-flow set-flow add add add add nand get-head get-head get-opinion send-msg

if-n-equ if-n-equ set-flow set-flow nop-A if-less nand nand nand nand get-head get-opinion get-opinion retrieve-msg if-n-equ

nop-C nop-C nop-A nop-A add add get-head get-head get-head get-head get-opinion retrieve-msg retrieve-msg h-divide inc

if-n-equ if-n-equ add add get-head nand get-opinion get-opinion get-opinion get-opinion retrieve-msg h-divide send-msg if-n-equ IO

push push get-head get-head get-head get-head retrieve-msg retrieve-msg retrieve-msg retrieve-msg send-msg if-n-equ if-n-equ inc send-msg

push push get-head get-head get-opinion get-opinion send-msg send-msg send-msg if-label if-n-equ inc inc IO get-cell-xy

if-n-equ if-n-equ get-opinion get-opinion retrieve-msg retrieve-msg if-n-equ if-n-equ if-n-equ if-n-equ inc IO IO send-msg swap

collect-cell-data collect-cell-data retrieve-msg retrieve-msg send-msg if-label inc inc inc inc IO send-msg send-msg get-cell-xy dec

retrieve-msg retrieve-msg send-msg send-msg push if-n-equ IO IO IO IO send-msg get-cell-xy get-cell-xy swap add

swap swap push push inc inc send-msg send-msg send-msg send-msg get-cell-xy swap swap dec if-label

h-search h-search inc inc IO IO get-cell-xy get-cell-xy get-cell-xy get-cell-xy swap dec dec add dec

rotate-left-one rotate-left-one IO IO send-msg send-msg swap swap swap swap dec add add if-label add

h-search h-search send-msg send-msg swap-stk get-cell-xy dec dec dec dec add if-label if-label h-divide push

rotate-left-one rotate-left-one get-cell-xy get-cell-xy swap swap add add add add if-label h-divide h-divide add collect-cell-data

add add swap swap dec dec if-label if-label if-label if-label h-divide add add push nop-C

add add dec dec push add h-divide h-divide h-divide h-divide add push push collect-cell-data swap

get-cell-xy get-cell-xy add add add if-label add add add add push collect-cell-data collect-cell-data nop-C nand

swap swap add add h-divide h-divide push push push push collect-cell-data nop-C nop-C swap retrieve-msg

set-opinion set-opinion h-divide h-divide add add collect-cell-data collect-cell-data collect-cell-data collect-cell-data nop-C swap swap nand swap-stk

h-copy h-copy add add push push nop-C nop-C nop-C nop-C swap nand nand rotate-left-one shift-l

get-cell-xy get-cell-xy push push collect-cell-data collect-cell-data swap swap swap swap nand rotate-left-one rotate-left-one swap-stk get-head

h-copy h-copy collect-cell-data collect-cell-data nop-B nop-C nand nand nand nand retrieve-msg swap-stk swap-stk shift-l swap-stk

inc inc nop-C nop-C swap swap retrieve-msg retrieve-msg retrieve-msg retrieve-msg swap-stk shift-l shift-l get-head set-opinion

get-cell-xy get-cell-xy swap swap nand nand swap-stk swap-stk swap-stk h-divide shift-l get-head get-head swap-stk bcast1

set-flow set-flow nand nand retrieve-msg retrieve-msg shift-l shift-l shift-l shift-l get-head swap-stk swap-stk set-opinion h-search

IO IO retrieve-msg retrieve-msg swap-stk h-divide get-head get-head get-head get-head swap-stk set-opinion set-opinion bcast1 jmp-head

send-msg send-msg swap-stk swap-stk get-head shift-l swap-stk swap-stk swap-stk swap-stk set-opinion bcast1 bcast1 h-search swap

dec dec get-head get-head swap-stk get-head set-opinion set-opinion set-opinion set-opinion bcast1 h-search h-search jmp-head rotate-left-one

get-head get-head swap-stk swap-stk set-opinion swap-stk bcast1 bcast1 bcast1 bcast1 h-search jmp-head jmp-head swap if-n-equ

collect-cell-data collect-cell-data set-opinion set-opinion bcast1 set-opinion h-search h-search h-search h-search jmp-head swap swap rotate-left-one swap-stk

shift-l shift-l bcast1 bcast1 h-search bcast1 jmp-head jmp-head jmp-head jmp-head swap rotate-left-one rotate-left-one if-n-equ nop-C

inc inc h-search h-search jmp-head h-search swap swap swap swap rotate-left-one if-n-equ if-n-equ swap-stk pop

add add jmp-head jmp-head collect-cell-data jmp-head rotate-left-one rotate-left-one rotate-left-one rotate-left-one if-n-equ swap-stk swap-stk nop-C if-less

nop-A nop-A collect-cell-data collect-cell-data collect-cell-data swap if-n-equ if-n-equ if-n-equ if-n-equ swap-stk nop-C nop-C pop get-head

if-less if-less collect-cell-data collect-cell-data if-n-equ rotate-left-one swap-stk swap-stk swap-stk swap-stk nop-C pop pop if-less rotate-right-one

sub rotate-right-one if-n-equ if-n-equ swap-stk if-n-equ nop-C nop-C nop-C nop-C pop if-less if-less get-head set-opinion

bcast1 bcast1 swap-stk swap-stk nop-C swap-stk pop pop pop pop if-less get-head get-head rotate-right-one rotate-left-one

get-head get-head inc inc pop nop-C if-less if-less if-less get-head get-head rotate-right-one rotate-right-one set-opinion swap

pop pop pop pop if-less pop get-head get-head get-head nop-B rotate-right-one set-opinion set-opinion rotate-left-one swap

nop-C nop-C if-less if-less get-head get-head rotate-right-one rotate-right-one rotate-right-one set-opinion set-opinion rotate-left-one rotate-left-one swap nop-A

sub sub get-head get-head nand nop-B set-opinion set-opinion set-opinion rotate-left-one rotate-left-one swap swap swap rotate-left-one

pop pop nand nand set-opinion set-opinion rotate-left-one rotate-left-one rotate-left-one swap swap swap swap nop-A collect-cell-data

h-alloc h-alloc set-opinion set-opinion rotate-left-one rotate-left-one swap swap swap swap swap nop-A nop-A rotate-left-one nand

rotate-right-one rotate-right-one rotate-left-one rotate-left-one swap swap swap swap swap nop-A nop-A rotate-left-one rotate-left-one collect-cell-data set-flow

add add swap swap swap swap nop-A nop-A nop-A rotate-left-one rotate-left-one collect-cell-data collect-cell-data nand shift-r

bcast1 bcast1 swap swap nop-A nop-A rotate-left-one rotate-left-one rotate-left-one collect-cell-data collect-cell-data nand nand set-flow if-label

IO IO nop-A nop-A rotate-left-one rotate-left-one collect-cell-data collect-cell-data collect-cell-data nand nand set-flow set-flow shift-r send-msg

nand nand rotate-left-one rotate-left-one collect-cell-data collect-cell-data nand nand nand nop-A set-flow shift-r shift-r if-label if-less

swap swap collect-cell-data collect-cell-data nand nand set-flow set-flow set-flow swap shift-r if-label if-label send-msg h-search

send-msg send-msg nand nand nop-A nop-A shift-r shift-r shift-r if-label if-label send-msg send-msg if-less h-search

nop-C nop-C nop-A nop-A shift-r swap if-label if-label if-label send-msg send-msg if-less if-less h-search if-label

nand nand shift-r shift-r if-label if-label send-msg send-msg send-msg if-less if-less h-search h-search h-search rotate-right-one

set-opinion set-opinion retrieve-msg if-label collect-cell-data send-msg if-less if-less if-less h-search IO h-search h-search if-label set-flow

IO IO collect-cell-data collect-cell-data if-less if-less IO IO IO h-search h-search if-label if-label rotate-right-one get-head

nop-B nop-B if-less if-less h-search h-search h-search h-search h-search if-label if-label rotate-right-one rotate-right-one set-flow shift-l

if-n-equ if-n-equ h-search h-search h-search h-search if-label if-label if-label rotate-right-one rotate-right-one set-flow set-flow get-head pop

get-opinion inc h-search h-search swap-stk if-label rotate-right-one rotate-right-one rotate-right-one get-head set-flow get-head get-head shift-l h-divide

send-msg send-msg swap-stk swap-stk if-label rotate-right-one set-flow set-flow set-flow get-head get-head shift-l shift-l pop shift-r

get-opinion get-opinion if-label if-label set-flow get-head get-head get-head get-head shift-l shift-l pop pop h-divide inc

dec dec set-flow set-flow get-head get-head shift-l shift-l shift-l rotate-left-one pop h-divide h-divide shift-r set-flow

set-flow set-flow get-head get-head pop shift-l pop pop pop if-less h-divide shift-r shift-r inc set-flow

set-opinion set-opinion pop pop pop rotate-left-one h-divide h-divide h-divide push shift-r inc inc set-flow rotate-left-one

if-label if-label pop pop if-less if-less shift-r shift-r shift-r inc inc set-flow set-flow set-flow nop-A

shift-l shift-l if-less if-less shift-r push inc inc inc set-flow set-flow set-flow set-flow rotate-left-one h-alloc

set-opinion set-opinion shift-r shift-r add inc set-flow set-flow set-flow set-flow set-flow rotate-left-one rotate-left-one nop-A h-alloc

h-alloc h-alloc add add set-flow set-flow set-flow set-flow set-flow rotate-left-one rotate-left-one nop-A nop-A h-alloc if-less

shift-l shift-l set-flow set-flow set-flow set-flow rotate-left-one rotate-left-one rotate-left-one nop-A nop-A h-alloc h-alloc h-alloc set-flow

if-n-equ if-n-equ set-flow set-flow rotate-left-one rotate-left-one nop-A nop-A nop-A h-alloc h-alloc h-alloc h-alloc set-flow nop-A

dec dec rotate-left-one rotate-left-one nop-A nop-A h-alloc h-alloc h-alloc h-alloc h-alloc set-flow set-flow nop-A dec

if-label if-label nop-A nop-A get-cell-xy h-alloc h-alloc h-alloc h-alloc set-flow set-flow nop-A nop-A dec IO

set-opinion set-opinion get-cell-xy get-cell-xy h-alloc h-alloc set-flow pop set-flow nop-A nop-A dec dec IO nop-C

rotate-left-one rotate-left-one h-alloc h-alloc set-flow set-flow nop-A nop-A nop-A dec dec IO IO nop-C IO

get-cell-xy get-cell-xy set-flow set-flow nop-A nop-A dec dec dec IO IO nop-C nop-C IO bcast1

set-opinion set-opinion nop-A nop-A dec dec IO IO IO nop-C nop-C IO IO bcast1 push

retrieve-msg retrieve-msg dec dec IO IO nop-C nop-C nop-C IO IO bcast1 bcast1 push mov-head

get-head get-head IO IO nop-C nop-C IO IO IO bcast1 bcast1 push push mov-head nop-C

swap swap nop-C nop-C IO IO bcast1 bcast1 bcast1 push push mov-head mov-head nop-C h-copy

shift-l shift-l IO IO bcast1 bcast1 push push push mov-head mov-head nop-C nop-C h-copy bcast1

h-search h-search bcast1 bcast1 push push mov-head mov-head mov-head nop-C nop-C h-copy h-copy bcast1 if-less

add add push push mov-head mov-head nop-C nop-C nop-C if-label h-copy bcast1 bcast1 if-less nand

if-n-equ if-n-equ mov-head mov-head nop-C nop-C h-copy h-copy h-copy bcast1 bcast1 if-less if-less nand mov-head

nop-C nop-C nop-C nop-C h-copy if-label bcast1 bcast1 bcast1 if-less if-less nand nand mov-head nop-C

swap swap h-copy h-copy bcast1 bcast1 if-less if-less if-less nand nand mov-head mov-head nop-C set-opinion

h-copy h-copy bcast1 bcast1 if-less if-less nand nand nand bcast1 mov-head nop-C nop-C set-opinion push

if-label if-label if-less if-less nand nand mov-head mov-head mov-head nop-C nop-C set-opinion set-opinion push inc

nop-C nop-C nand nand bcast1 bcast1 nop-C nop-C nop-C set-opinion set-opinion push push inc dec

nop-A nop-A bcast1 bcast1 nop-C nop-C set-opinion set-opinion set-opinion push push inc inc dec nop-A

h-divide h-divide nop-C nop-C set-opinion set-opinion push push push inc inc dec dec nop-A send-msg

mov-head mov-head set-opinion set-opinion push push inc inc inc dec dec nop-A nop-A send-msg h-alloc

dec dec push push sub inc dec dec dec nop-A nop-A send-msg send-msg h-alloc get-head

dec dec send-msg send-msg nop-A dec nop-A shift-r nop-A send-msg send-msg h-alloc h-alloc get-head h-copy

if-n-equ if-n-equ nop-A nop-A nop-A nop-A send-msg send-msg send-msg h-alloc h-alloc get-head get-head h-copy collect-cell-data

add add nop-A nop-A send-msg send-msg inc h-alloc h-alloc get-head get-head h-copy h-copy collect-cell-data add

if-less if-less send-msg send-msg if-n-equ h-alloc get-head get-head get-head h-copy h-copy collect-cell-data collect-cell-data add dec

h-divide h-divide if-n-equ if-n-equ get-head get-head h-copy h-copy h-copy shift-r collect-cell-data add add dec nop-B

rotate-left-one rotate-left-one get-head get-head h-copy h-copy collect-cell-data collect-cell-data collect-cell-data add add dec dec nop-B if-label

mov-head mov-head h-copy h-copy collect-cell-data shift-r add add add dec dec nop-B nop-B if-label inc

swap swap collect-cell-data collect-cell-data rotate-left-one add dec dec dec nop-B nop-B if-label if-label inc nop-C

if-n-equ retrieve-msg rotate-left-one rotate-left-one dec dec nop-B nop-B nop-B if-label if-label inc inc nop-C nop-C

h-search h-search dec dec get-head nop-B if-label if-label if-label inc inc nop-C nop-C nop-C get-cell-xy

bcast1 bcast1 get-head get-head if-label if-label inc inc inc nop-C nop-C nop-C nop-C get-cell-xy rotate-right-one

collect-cell-data collect-cell-data if-label if-label inc inc nop-C nop-C nop-C nop-C nop-C get-cell-xy get-cell-xy rotate-right-one set-opinion

nop-A nop-A inc inc nop-C nop-C nop-C nop-C nop-C rotate-right-one get-cell-xy rotate-right-one rotate-right-one set-opinion nop-A

send-msg send-msg nop-C nop-C nop-C nop-C get-cell-xy get-cell-xy get-cell-xy set-opinion rotate-right-one set-opinion set-opinion nop-A if-less

if-less if-less nop-C nop-C get-cell-xy rotate-right-one rotate-right-one rotate-right-one rotate-right-one nop-A set-opinion nop-A nop-A swap set-flow

h-copy h-copy get-cell-xy get-cell-xy rotate-right-one set-opinion set-opinion set-opinion set-opinion if-less nop-A swap swap bcast1 nop-B

nop-A nop-A rotate-right-one rotate-right-one set-opinion nop-A nop-A nop-A nop-A bcast1 if-less bcast1 bcast1 nop-B sub

pop pop get-cell-xy get-cell-xy nop-A if-less if-less if-less if-less nop-B bcast1 nop-B nop-B sub set-opinion

pop pop nop-A nop-A if-less bcast1 bcast1 bcast1 bcast1 sub nop-B sub sub set-flow shift-l

mov-head mov-head if-less if-less inc nop-B nop-B nop-B nop-B set-flow sub set-flow set-flow shift-l nop-A

IO IO inc inc dec sub sub sub sub shift-l set-flow shift-l shift-l nop-A if-n-equ

add add dec dec sub set-flow set-flow set-flow set-flow nop-A shift-l nop-A nop-A if-n-equ retrieve-msg

add add sub sub set-flow shift-l shift-l shift-l shift-l if-n-equ nop-A if-n-equ if-n-equ retrieve-msg get-opinion

rotate-left-one rotate-left-one set-flow set-flow shift-l nop-A nop-A nop-A nop-A retrieve-msg if-n-equ retrieve-msg retrieve-msg get-opinion nop-B

nand nand shift-l shift-l nop-A if-n-equ if-n-equ if-n-equ if-n-equ get-opinion retrieve-msg get-opinion get-opinion nop-B nop-B

sub sub nop-A nop-A if-n-equ retrieve-msg retrieve-msg retrieve-msg retrieve-msg nop-B get-opinion nop-B nop-B nop-B nand

if-label if-label if-n-equ if-n-equ retrieve-msg get-opinion get-opinion get-opinion get-opinion nop-B nop-B nop-B nop-B nand pop

mov-head mov-head retrieve-msg retrieve-msg get-opinion nop-B nop-B nop-B nop-B nand nop-B nand nand pop nop-C

shift-r shift-r get-opinion get-opinion nop-B nop-B nop-B nop-B nop-B pop nand pop pop nop-C nand

sub sub nop-B nop-B nop-B nand nand nand nand nop-C pop nop-C nop-C nand swap-stk

get-opinion get-opinion nop-B nop-B nand pop pop pop pop nand nop-C nand nand swap-stk nop-A

h-alloc h-alloc nand nand pop nop-C nop-C nop-C nop-C swap-stk nand swap-stk swap-stk nop-A IO

nop-C nop-C pop pop nop-C nand nand nand nand nop-A swap-stk nop-A nop-A IO IO

IO IO nop-C nop-C nand swap-stk swap-stk swap-stk swap-stk IO nop-A IO IO IO nand

add nop-A nand nand swap-stk nop-A set-opinion nop-A nop-A IO IO IO IO nand inc

jmp-head jmp-head swap-stk swap-stk send-msg IO IO IO IO nand IO nand nand inc nop-C

if-label if-label send-msg send-msg IO IO IO IO IO inc nand inc inc nop-C set-flow

IO IO IO IO IO nand nand nand nand nop-C inc nop-C nop-C set-flow IO

rotate-left-one rotate-left-one IO IO nand inc inc inc inc set-flow if-label set-flow set-flow IO get-head

get-cell-xy get-cell-xy nand nand inc nop-C if-label if-label if-label IO set-flow IO IO get-head shift-l

shift-l shift-l inc inc nop-C set-flow set-flow set-flow set-flow get-head IO get-head get-head shift-l rotate-right-one

get-head get-head nop-C nop-C set-flow IO IO IO IO shift-l get-head shift-l shift-l rotate-right-one sub

h-copy h-copy set-flow set-flow IO get-head get-head get-head get-head rotate-right-one shift-l rotate-right-one rotate-right-one sub add

jmp-head jmp-head IO IO get-head shift-l shift-l shift-l shift-l sub rotate-right-one sub sub add h-alloc

send-msg send-msg jmp-head get-head shift-l rotate-right-one rotate-right-one rotate-right-one rotate-right-one add sub add add h-alloc set-opinion

h-search h-search shift-l shift-l rotate-right-one sub sub sub sub h-alloc add h-alloc h-alloc set-opinion h-alloc

push push rotate-right-one rotate-right-one swap-stk add add add add set-opinion h-alloc set-opinion set-opinion h-alloc rotate-left-one

set-flow set-flow swap-stk swap-stk add h-alloc h-alloc h-alloc h-alloc h-alloc set-opinion h-alloc h-alloc rotate-left-one get-cell-xy

sub sub add add h-alloc set-opinion set-opinion set-opinion set-opinion rotate-left-one h-alloc rotate-left-one rotate-left-one get-cell-xy h-divide

jmp-head jmp-head h-alloc h-alloc h-alloc h-alloc h-alloc h-alloc h-alloc swap rotate-left-one get-cell-xy get-cell-xy h-divide get-head

set-flow set-flow h-alloc h-alloc set-flow rotate-left-one rotate-left-one rotate-left-one rotate-left-one h-divide get-cell-xy h-divide h-divide get-head h-alloc

h-divide h-divide set-flow h-copy set-opinion swap get-cell-xy get-cell-xy get-cell-xy get-head h-divide get-head get-head h-alloc send-msg

send-msg send-msg h-divide h-divide get-cell-xy h-divide h-divide h-divide h-divide h-alloc get-head h-alloc h-alloc send-msg h-alloc

nop-A nop-A get-cell-xy get-cell-xy h-divide get-head jmp-head get-head get-head send-msg h-alloc send-msg send-msg h-alloc if-less

send-msg send-msg h-divide h-divide get-head h-alloc h-alloc h-alloc h-alloc h-alloc send-msg h-alloc h-alloc if-less set-opinion

nop-A nop-A get-head get-head if-less send-msg send-msg send-msg send-msg if-less h-alloc if-less if-less set-opinion h-search

nop-B nop-B if-less if-less send-msg h-alloc h-alloc h-alloc h-alloc set-flow if-less set-opinion set-opinion h-search shift-r

send-msg send-msg h-alloc if-less if-less if-less if-less h-search set-opinion h-search h-search shift-r bcast1

h-alloc h-alloc if-less set-flow set-opinion set-opinion set-opinion shift-r h-search shift-r shift-r bcast1 sub

if-less if-less set-opinion h-search h-search h-search h-search bcast1 shift-r bcast1 bcast1 sub set-flow

set-opinion set-opinion sub shift-r shift-r shift-r shift-r sub bcast1 sub sub set-flow shift-r

sub sub shift-r bcast1 bcast1 bcast1 bcast1 set-flow sub set-flow set-flow shift-r h-alloc

shift-r shift-r bcast1 sub sub sub sub shift-r set-flow shift-r shift-r h-alloc get-opinion

bcast1 bcast1 sub set-flow set-flow set-flow set-flow h-alloc shift-r h-alloc h-alloc get-opinion push

sub sub set-flow shift-r shift-r shift-r shift-r get-opinion h-alloc get-opinion get-opinion dec h-copy

set-flow set-flow shift-r h-alloc h-alloc h-alloc h-alloc dec get-opinion dec dec pop push

shift-r shift-r h-alloc get-opinion get-opinion get-opinion get-opinion h-copy dec pop h-copy push add

h-alloc h-alloc get-opinion dec dec dec dec dec h-copy push push add h-alloc

get-opinion get-opinion h-alloc h-copy h-copy h-copy h-copy add push add add dec h-search

h-alloc h-alloc h-copy dec push push push add add dec h-alloc h-search swap-stk

h-copy h-copy push add add add add h-search h-alloc h-search h-search swap-stk h-copy

push push add add h-alloc h-alloc h-alloc swap-stk h-search swap-stk swap-stk h-copy if-label

add add h-alloc h-search h-search h-search h-search h-copy swap-stk h-copy h-copy if-label nop-C

h-alloc h-alloc h-search swap-stk swap-stk swap-stk swap-stk if-label h-copy if-label if-label nop-C nop-A

h-search h-search swap-stk h-copy h-copy h-copy h-copy nop-C if-label nop-C nop-C nop-A if-less

swap-stk swap-stk h-copy if-label h-copy if-label if-label nop-A nop-C nop-A nop-A if-less mov-head

h-copy h-copy if-label nop-C nop-C nop-C nop-C if-less nop-A if-less if-less mov-head nop-A

if-label if-label nop-C nop-A nop-A nop-A nop-A mov-head if-less mov-head mov-head nop-A nop-B

nop-C nop-C nop-A if-less if-less if-less if-less nop-A mov-head nop-A nop-A nop-B

nop-A nop-A if-less mov-head mov-head mov-head mov-head nop-B nop-A nop-B nop-B

if-less if-less mov-head nop-A nop-A nop-A nop-A bcast1 nop-B

mov-head mov-head nop-A nop-B nop-B nop-B nop-B

nop-A nop-A nop-B

nop-B nop-B bcast1

rotate-left-one rotate-left-one

Figure 3.11: The 15 genotypes present in group 29 after an ecological period of 100 updates.
Each column is one genotype. Each column element is an instruction. The coordination
instructions are colored. There are two different ecotypes present within this group. They
are distinguishable by the different patterns of banding.

57

20 (5)

37 (4)

2 (3)

12 (5)

12 (5)

17 (1)

22 (2)

12 (5)

12 (5)

35 (2)

37 (3) orn

41 (4)

5 (3) 25 (3)

9 (2)9 (−)

9 (−)

9 (4)9 (4)

or

and

nand

not

none

9 (3)

42 (1)

39 (1)9 (−)

31 (3)

21 (1)

Figure 3.12: A visual depiction of the genotype and phenotypes of the organisms that com-
prise group 29. The shading represents the task performed (phenotype). The first number
represents the genotype and the second number represents also denotes the task performed
(phenotype). The black squares are the organisms in ecotype family 2. The remainder of
the squares are in ecotype family 1.

is used to indicate the task performed and the label specifies the genotype and the task

performed in parentheses. A dash indicates that the organism did not perform a task.

During this period, all 5 tasks were performed. Specifically, not was performed 4 times,

nand was performed 3 times, and was performed 6 times, orn was performed 4 times, and

or was performed 5 times. The first ecotype comprises genomes 12 and 20. The second

comprises the rest of the genotypes. Notably, several genotypes from the second family

exhibit phenotypic plasticity. For example, genotype 9 performs no tasks, task 3 (and), and

task 4 (orn). Genotype 37 performs task 3 (and) and task 4 (orn). Based on this analysis,

group 29 uses genetic diversity in concert with careful replication rate timing to ensure all

five tasks are performed by organisms from two different ecotypes.

58

3.3.4 Discussion

In this study, we demonstrated that multilevel selection pressures can be used to evolve

cooperative, genetically heterogeneous groups, where individual roles have varying fitness

benefits. We examined the strategies of groups that successfully evolved to perform division

of labor. The key components of their strategy were genetic diversity sustained through

ecological niching and the use of coordination instructions.

This work ties into our larger objective of using digital evolution as a platform for re-

searching the evolution of division of labor. Here, we examined how organisms coordinated

their roles, and whether division of labor could evolve within heterogeneous groups. Next,

we examine the pressures that result in the evolution of division of labor within genetically

homogeneous (clonal) groups.

3.4 Division of Labor: Clonal Groups

Thus far, we have focused on genetically-heterogeneous groups. One reason for this focus is

that our early studies were motivated by evolutionary psychology and human groups, such

as business organizations, that frequently comprise members that are not genetically re-

lated. However, human behavior, especially the evolution of human behavior, is exceedingly

complex and challenging to study. Thus, for the subsequent studies we focus on genetically

clonal groups. Clonal groups, such as some slime molds [8, 16, 98] and some colonies of

aphids [92], can be found within nature and also can be useful as a model for understanding

the behavior of other eusocial organisms. The main advantage of clonal groups is that they

focus on questions central to division of labor and complications, such as the coexistence

of species and altruism. However, one complicated aspect of division of labor studies with

clonal groups is that for them to exhibit division of labor they must use the same genotype

to produce several different phenotypes.

59

3.4.1 Methods

For these experiments, we use the default group topology, where the groups could contain

up to 25 clonal organisms. Specifically, to ensure genetic homogeneity, when an organism

replicates within a group its genome is not mutated. These groups competed every 100

updates in tournament selection, where fit groups reproduce using germ-line replication. For

these experiments, we continue to use mutually exclusive tasks and make use of the 25-role

environment and logic environment, which were previously described. We ran 30 trials for

each experiment.

3.4.2 Results

Our preliminary studies address two questions related to the evolution of division of la-

bor [44]: First, if we require the organisms to be specialists that perform only one task each,

then can clonal groups evolve to engage in division of labor? We examine this question

in two different environments that vary the number and difficulty of the tasks. Second, is

there a relationship between the mechanism used to perform division of labor and the type

of environment? We examine what mechanisms the groups evolved to perform division of

labor in both environments.

Can clonal groups perform division of labor?

To assess whether clonal groups are able to evolve to perform division of labor if specializa-

tion is required, we repeat versions of the role and logic experiments that we performed for

genetically-heterogeneous groups [43, 45] described in Section 3.3. To enable genetic homo-

geneity within groups, we used germlines (described in Section 2.1.5) to construct each of

the groups. Additionally, because the groups are clonal, we subject them only to group-level

pressure, rather than multilevel selection.

60

First, we assess if organisms in groups are able to evolve an extreme form of division

of labor, where each organism is required to perform a single distinct role. These tasks

and the group fitness function are the same as those used for the genetically heterogeneous

groups described in Section 3.3. Specifically, the target role-ids are 1 through 25 and groups

are rewarded for performing a diversity of roles. Because an organism has only one role-

id register, it must specialize on just one role at a time. Selection operates based on the

diversity of role-ids present during the group competition period, creating an explicit pressure

for division of labor. Specifically, the group fitness function we used here is described by

equation 3.8.

Figure 3.13 depicts the maximum (blue line with circles) and mean (red line with tri-

angles) number of tasks performed by the groups averaged across 30 runs. On average, the

mean group performance was approximately 14.86 (standard error ±0.67) tasks. However,

the organisms within the best groups specialized to perform 23.63 (se±0.33) different tasks.

These results indicate that groups of organisms are able to evolve effective strategies for both

specializing to perform roles and also coordinating the distribution of roles among members

of the group.

Our second set of experiments assess whether organisms in groups are able to evolve

division of labor if the roles require more complex computation. For these experiments, we

use a variation of the standard Avida logic environment. Each role is a task that requires the

organism to perform a bitwise logic operation on 32-bit integers. In this case, we used the nine

logic operations found in the default Avida environment [87]: not, nand, and, orn, or, andn,

nor, xor, and equ. We made these tasks mutually exclusive – once an organism performed

one task, it would no longer receive credit for performing others. Differing from our last

environment, these tasks are more challenging to evolve, but also require less coordination,

since there are nine tasks and 25 organisms in a group. The group fitness function we used

61

0 1 2 3 4 5
x 104

0

5

10

15

20

25

Update

Nu
m

be
r o

f R
ol

es

Maximum
Mean

Figure 3.13: The mean and maximum number of roles performed by groups within the 25-
role environment across 30 trials. Notably, some groups approach a perfect score (denoted
by a dashed line) of 25.

here was simply:

F = 1 + r (3.9)

where F is the fitness of a group, and r is the number of unique tasks performed by the

organisms within the group at the end of the competition period.

Figure 3.14 depicts the maximum and mean number of tasks performed by the groups

averaged across 30 runs. On average, the best group performed 6.17 (se±0.16) tasks and

the average group performed 4.27 (se±0.10) tasks. These values indicate that the problem

is challenging, but that the groups are still able to evolve to perform division of labor with

complex tasks. We note that when the group competition pressure is removed, no tasks

were performed in any group, indicating that genetic drift alone is not sufficient to produce

division of labor (data not shown).

What mechanisms do clonal groups use to perform division of labor?

Given that clonal groups of organisms were able to evolve to perform division of labor, we

next investigated the mechanisms they use to assign roles and whether these mechanisms

62

0 1 2 3 4 5
x 104

0

2

4

6

8

10

Update

Nu
m

be
r o

f r
ol

es

Maximum
Mean

Figure 3.14: The mean and maximum number of roles performed by groups in the logic envi-
ronment, where there are nine tasks of increasing complexity. The best possible performance
is denoted with the dotted line. Groups on average perform four tasks and at best perform
6 tasks.

change based on environmental context. For the original experiments, we provided the or-

ganisms with two different types of mechanisms that we expected them to use to differentiate:

message-based communication and location information. Specifically, we provided instruc-

tions that, if evolved into a genome and executed by an organism, enabled the organism to

send messages to the organism it was facing (send-msg) or broadcast a message to all neigh-

boring organisms (bcast1). For location sensing, we provided organisms with instructions

that enabled them to access their x and y coordinates within the group (get-cell-xy) and

to access cell data, a random 32-bit integer associated with their location (collect-cell-data).

These mechanisms are similar to those used by groups within nature. For example, cells

within multicellular organisms use chemical gradients, which are an abstract representation

of location, to determine their fate. Insects within eusocial colonies exchange messages to

notify others of which tasks need to be performed [53].

To better understand how the mechanisms we provided to the organisms enabled them

to evolve division of labor in different environments, we performed additional experimental

treatments that removed one or more coordination capabilities. For each environment, we

63

performed three additional treatments: (1) The organisms had location information, but no

messaging capabilities (location only). (2) The organisms had messaging capabilities, but

no location information (messaging only). (3) The organisms were deprived of messaging

capabilities and location information (none). Comparing the performance of these three

treatments to the original treatment that included both messaging capabilities and location

information (location & messaging) illuminates which mechanisms are key to the success of

the organisms.

First, we examined how the organisms performed division of labor in the 25-role envi-

ronment. Figure 3.15 depicts the mean (a) and maximum (b) performance of the groups for

the coordination mechanism treatments averaged across 30 trials. In general, the location

only treatment performs almost identically to the original location & messaging treatment.

Likewise, the messaging only treatment performs comparably to the treatment without any

coordination capabilities (none). These performance data suggest that the groups are ig-

noring messaging and instead are using their x and y coordinates to perform division of

labor.

Next, we examined how the groups performed division of labor in the logic environment.

We performed the same three additional experimental treatments. In this case, the perfor-

mance of the various treatments were not qualitatively different (data not shown). These

ambiguous data led us to uncover a third possible mechanism for assigning roles: using

random information to evolve a stochastic strategy. The organisms could acquire random

information using either their cell data or the inputs to their logic operations. This stochastic

strategy is clever and also biologically realistic – many cells within multicellular organisms

take advantage of random processes to select their cell fate. However, for the purposes of

this study, we were more interested in which mechanism they would use if there was less

randomness within their environment. Thus, in an attempt to compel the organisms to

evolve a non-stochastic strategy, we deprived them of two of the obvious sources of random

64

0 1 2 3 4 5
x 104

0

5

10

15

20

25

Update

Nu
m

be
r o

f R
ol

es

(a) Grand mean number of roles performed

0 1 2 3 4 5
x 104

0

5

10

15

20

25

Update

Nu
m

be
r o

f R
ol

es

none
location only
messaging only
location & messaging

(b) Mean of max number of roles performed

Figure 3.15: The mean (a) and maximum (b) number of roles performed in the 25-role
environment when different combinations of coordination instructions are removed. For this
environment, group performance depends upon the availability of location information.

information (i.e., random inputs and random cell data) and repeated all four treatments.

Figure 3.16 depicts the mean (a) and maximum (b) performance of the groups for these

treatments that exclude random information averaged across 30 runs. In these plots, the

location & messaging treatment differs from the original 9-logic treatment (depicted in Fig-

ure 3.14) in that random information has been removed. Interestingly, the location & messag-

ing treatment that does not include random information significantly outperforms the original

65

treatment that does. The mean and maximum group performance are 5.44 (se±0.10) and

8.27 (se±0.14) tasks for the location & messaging treatment, as compared to 4.27 (se±0.10)

and 6.17 (se±0.16) tasks for the original treatment. This disparity indicates that random

information presented a division of labor mechanism that was easier to evolve, but pro-

duced inferior results overall. Additionally, based on these treatments, we can see that when

deprived of random information, the organisms use messaging, rather than location informa-

tion to perform division of labor. The messaging only treatment matches the performance of

the location & messaging treatment, both of which exceeded the performance of the location

only treatment. These results differ from those of the 25-role environment in which organ-

isms made use of location information rather than messaging capabilities. Next, we analyze

potential reasons for this difference.

We performed several additional experiments to assess the generality of our results. First,

we performed versions of the 25-role treatments in which we deprived the organisms of ran-

dom information to verify that this factor was not critical to the evolution of their strategy.

The results were qualitatively similar; the organisms preferred to use location information,

rather than their messaging capabilities. Second, we conducted additional treatments de-

signed to assess if we were biasing our results by providing only three mechanisms for spe-

cialization. These new treatments enabled the organisms to perform temporal specialization

by providing instructions that access the number of cycles the organism had executed (i.e.,

age of the organism) or the number of updates since the last group replication event (i.e.,

age of the group). However, including these instructions did not improve the performance of

the groups (data not shown). These results indicate that the groups prefer to use messaging

capabilities and location information to perform division of labor.

One open question is why the mechanism used by the groups differed between environ-

ments. We identified two possible hypotheses for why organisms evolved to use messaging

capabilities in the logic environment and location information in the 25-role environment.

66

0 1 2 3 4 5
x 104

0

2

4

6

8

10

Update

Nu
m

be
r o

f r
ol

es

(a) Grand mean number of roles performed

0 1 2 3 4 5
x 104

0

2

4

6

8

10

Update

Nu
m

be
r o

f r
ol

es

none
location only
messaging only
location & messaging

(b) Mean of max number of roles performed

Figure 3.16: The grand mean (a) and mean of maximum (b) number of roles performed in
the logic-9 environment when different combinations of instructions are removed. For this
environment, group performance depends upon the availability of messaging capabilities.

The first hypothesis is that the type of task influences which coordination mechanism is

preferred. The second hypothesis is that the number of tasks influences which coordination

mechanism is preferred. Because the two experiments differ both in terms of number and

type of task, we needed to perform an additional experiment to identify which hypothesis

might explain the variation.

To test these hypotheses, we created a variation of the 25-role environment that had only

67

nine different roles. Organisms could fill these roles by setting their role-ids to the numbers

1-9. This environment used the same type of tasks as the 25-role environment, but had the

same number of tasks as the logic environment. If the groups evolved to use messaging, it

would falsify our hypothesis that the type of task affected the mechanism of division of labor.

Conversely, if the groups evolved to use location information, this outcome would falsify our

hypothesis that the number of tasks is the key factor in selecting a mechanism for division

of labor. Figure 3.17 depicts the mean (a) and maximum (b) performance of the groups for

these treatments. The mean performance of the treatments indicates that the organisms are

using location information, rather than their messaging capabilities. This result provides

evidence that it is the type of task, rather than the number of tasks, that was the key factor

in selecting which mechanism to use.

3.4.3 Discussion

In these preliminary studies, we demonstrated that groups of digital organisms were able

to evolve to engage in division of labor in a variety of environments. The mechanism that

organisms used to select a role to perform varied by the type of environment. In the 25-role

and 9-role environments, the organisms used location information. In the logic environment,

the organisms used messaging. These studies demonstrate that Avida is able to evolve groups

that exhibit division of labor.

68

0 1 2 3 4 5
x 104

0

2

4

6

8

10

Update

Nu
m

be
r o

f R
ol

es

(a) Grand mean number of roles performed

0 1 2 3 4 5
x 104

0

2

4

6

8

10

Update

Nu
m

be
r o

f R
ol

es

none
location only
messaging only
location & messaging

(b) Mean of max number of roles performed

Figure 3.17: The mean (a) and mean of maximum (b) number of roles performed in the 9-role
environment when different combinations of instructions are removed. For this environment,
group performance depends upon the availability of location information indicating that the
type of tasks is more important than the number of tasks.

69

Chapter 4

Forces Driving the Evolution of

Division of Labor

In this chapter, we leverage the results of our previous studies to explore the conditions

under which division of labor evolves when it is not directly selected for. We address two

central questions: (1) Do organisms specialize in different tasks at different points in their life

(temporal polyethism) due to the risk factors associated with those tasks? (2) Do increased

task-switching costs result in an increase in division of labor?

4.1 Temporal Polyethism

Many eusocial insects exhibit temporal polyethism, where a worker’s age is correlated with

the type of task it performs [31, 53, 102, 107, 119, 120, 121]. For example, within honeybee

colonies, worker bees progress sequentially through four castes: cell cleaning caste, broodnest

caste, food storage caste, and forager caste [106]. Within ant colonies, a shift is similarly

performed from activities within the nest, such as brood care, to foraging activities outside

the nest [53]. Researchers are still actively exploring the causes of this division of labor

70

pattern. Two theories have been proposed. The first theory, is that an individual’s age is

causally linked to the task that it performs [53, 102, 121]. This causal relationship is thought

to result from an internal development program that was selected for as a result of the relative

risks associated with tasks and aging. Specifically, more risky tasks are performed when the

organism is older and closer to death. For example, foraging, which is the most risky task and

is responsible for the loss of 1% to 10% of the colony population per day [53], is performed

when the organism is likely to die of natural causes and thus is more expendable. In this

way, the colony optimizes the use of its organisms [119]. The second theory, called foraging

for work, is that the temporal polyethism pattern, while correlated with age, results from

the organization of colony nests [31, 53, 107, 120]. As organisms are born, they perform

tasks closest to them and proceed to perform tasks further and further from the center of

the nest [107, 120]. The available evidence regarding the behavior of eusocial insects makes

it difficult to decide between the two theories [31, 53, 102, 121]. Additionally, while studies

can observe the mechanisms used by modern colonies, they cannot explore the evolutionary

conditions that may give rise to the temporal polyethism pattern. In this study, we use

Avida to test whether the causes proposed by the first theory, age polyethism, are sufficient

for evolving colonies that exhibit temporal polyethism.

4.1.1 Methods

To use Avida to study the evolution of temporal polyethism, we created a world consisting of

competing groups that represent colonies. These groups comprise a set of clonal organisms

that are rewarded for completing a group task. Specifically, the group must perform a set

of tasks a number of times each in order to perform germ-line replication. For example, in

our initial experiments, a group had to perform task not 250 times and task nand 250 times.

A natural analog is that colonies of eusocial insects must both forage for food and tend to

the brood. In addition, because each colony starts with only one organism, organisms must

71

also replicate to produce other organisms that can assist them in the performance of tasks

to achieve the overall group objective.

To address our central question regarding the evolution of temporal polyethism, we ex-

tended Avida to support task riskiness. Specifically, we added the capability for each task to

be associated with a lethality risk that specifies the probability of the organism dying while

completing the task. Non-risky (or safe) tasks have a lethality risk of 0. Our most risky

tasks have a lethality risk of 25%.

Additionally, we configured Avida to make use of existing aging configuration options.

First, to ensure an organism could perform each task multiple times within its life, we

modified a configuration parameter to extend the age of an organism from approximately

600 cycles to approximately 1200 cycles. Second, once Avida organisms replicate, they are

generally reset to their initial starting configuration (i.e., the organism’s registers are reset,

its age is set to 0, and it resumes execution at the beginning of its genome). This feature is

designed to emulate the behavior of bacteria that divide into two daughter cells when they

replicate. However, since age and internal state could play a key role in these experiments,

we modified the organisms so that they do not reset after replication, but rather just continue

running.

At the outset of these experiments, we seed the groups with an ancestor organism that

performs all the types of tasks necessary for completion of the group task. For example, for

our initial experiment, an ancestor organism performs task not and task nand once. Each

experiment comprises several different treatments that randomize the order in which the

tasks appear in the ancestor organisms’ genomes, as well as the riskiness associated with

the tasks. We will describe the specific configurations in greater detail when we introduce

the experiments. For each experiment, we conducted 30 trials to account for the stochastic

nature of evolution. Within each trial, we used the default group topology, where groups

comprise clonal organisms and replicate as a result of group competition.

72

4.1.2 Results

Our studies address whether temporal polyethism results from the risks associated with aging

and various tasks in a two-task and three-task environment.

Can temporal polyethism result from risks associated with tasks?

The primary topic of this study is whether the risks associated with aging and tasks are

sufficient to evolve groups of organisms that exhibit temporal polyethism. For our initial

study, we created a two-task environment in which colonies had to perform task not 250

times and task nand 250 times in order for the group to replicate. We created four risk

treatments (described in Table 4.1) that vary the lethality risks associated with the tasks.

Specifically, the treatments are: (1) task not is risky, (2) task nand is risky, (3) neither task

is risky, and (4) both task not and task nand are risky.

Task Risk Treatments
not risky nand risky Control: no risk Control: both risky

not 25% 0% 0% 25%
nand 0% 25% 0% 25%

Table 4.1: The four risk treatments for a two-task environment. The rows describe the
lethality risks associated with tasks not and nand. (E.g., A 25% risk means that while
performing the task, the organism has a 25% chance of being killed prior to receiving credit
for the task.) The columns describe a specific treatment.

Additionally, we created two possible ancestor organisms (depicted in Figure 4.1). Both

ancestors complete each task and self-replicate. However, ancestor not-nand performs the

not task first and ancestor nand-not performs the nand task first. By varying the ancestor

organism, we are able to verify that any patterns of temporal polyethism result from the

riskiness associated with the tasks, not the initial genomic structure of the organisms. For

each ancestor, we performed all four risk treatments. If our hypothesis is correct and task

riskiness is a sufficient pressure to result in temporal polyethism, then we should see that

73

organisms perform the less risky task first and the more risky task second, regardless of which

task is more risky or the order in which the tasks are performed by the ancestor organism.

nand−not ancestor

replication replication

nand

not nand

not

blahnot−nand ancestor

Figure 4.1: The ancestor organisms for two-task temporal polyethism experiments. The
not-nand ancestor performs task not, performs task nand, and then replicates. The nand-not
ancestor performs task nand, performs task not, and then replicates. Because the genomes
are circular, after each organism replicates it resumes execution at the top of its genome.

Figures 4.2 and 4.3 depict the results of the experimental treatments. Within Figure 4.2,

task not is risky. In both treatments, the mean age at which not is performed is significantly

greater than the mean age at which nand is performed. For example, for the not-nand

ancestor, not is performed at the mean age of 750.3773±27.4510 cycles and nand is performed

at the mean age of 453.4314±29.1226 cycles. This behavior is especially interesting for the

treatment that was seeded with the not-nand ancestor, since it required the organisms to

reverse the order in which the tasks were performed. In Figure 4.3, task nand is risky. For

both treatments, the mean age at which nand is performed is significantly greater than the

mean age at which not is performed. These treatments support our hypothesis that task

riskiness can result in temporal polyethism in which the more risky task is performed later

in the lifetime of the organisms.

Figures 4.4 and 4.5 depict the results of our controls, which are designed to verify that,

given the same level of risk, there is nothing inherent in the tasks that results in one being

performed earlier or later in the organisms’ lifetimes. Figure 4.4 depicts the results of the

74

0 2 4 6 8 10
x 104

0

200

400

600

800

1000

Time (in updates)

Ag
e

(in
 c

yc
le

s)

(a) Ancestor: not-nand; Treatment: not is risky

0 2 4 6 8 10
x 104

0

200

400

600

800

1000

Time (in updates)

Ag
e

(in
 c

yc
le

s)

(b) Ancestor: nand-not; Treatment: not is risky

Figure 4.2: The results of the temporal polyethism treatments in which task not is risky.
The x-axis of both plots is evolutionary time and the y-axis is the mean age in cycles. The
blue line with circles represents the mean age at which task not is performed. The red line
with triangles represents the mean age at which task nand is performed. In these results, the
more risky task is performed later in the lifetime of the organism, which is evidence for our
hypothesis that task riskiness may be an evolutionary pressure that gives rise to a temporal
polyethism pattern.

control in which neither task is risky. For this control, the average age at which organisms

perform tasks increases over the duration of the experiment. This change results from in-

dividual organisms evolving to perform the same task multiple times within their lifetime

75

0 2 4 6 8 10
x 104

0

200

400

600

800

1000

Time (in updates)

Ag
e

(in
 c

yc
le

s)

(a) Ancestor: not-nand; Treatment: nand is risky

0 2 4 6 8 10
x 104

0

200

400

600

800

1000

Time (in updates)

Ag
e

(in
 c

yc
le

s)

(b) Ancestor: nand-not; Treatment: nand is risky

Figure 4.3: The results of the temporal polyethism treatments in which task nand is risky.
The x-axis of both plots is evolutionary time and the y-axis is the mean age in cycles. The
blue line with circles represents the mean age at which task not is performed. The red line
with triangles represents the mean age at which task nand is performed. In these results, the
more risky task is performed later in the lifetime of the organism, which is evidence for our
hypothesis that task riskiness may be an evolutionary pressure that gives rise to a temporal
polyethism pattern.

resulting in the average age of task performance increasing over the duration of the exper-

iment. However, the mean age at which task not is performed is not significantly different

than the mean age at which task nand is performed. Figure 4.5 depicts the results of the

76

control in which both tasks are risky. For both treatments, the mean age at which the or-

ganisms perform the tasks reflects their order in the genome. One thing to note about this

control is that the high level of risk associated with both tasks decreases the rate of group

replication. In fact, many groups lost the ability to replicate altogether and survived merely

because other groups within their trial were also unable to replicate. Thus, these colonies

are not actually evolving. However, the data provided by the controls indicate that there is

nothing inherent in the not or nand tasks that implies an ordering. Taken together, these

treatments indicate more risky tasks are, on average, performed later within the lifetime of

the organisms.

Can more complex forms of temporal polyethism result from risks associated

with tasks?

In our initial temporal polyethism experiments, we created an environment in which groups

were required to perform two tasks. For our next set of experiments, we created a three-task

environment, in which colonies have to perform task not 250 times, task nand 250 times, and

task ornot 250 times in order to replicate. There are three risk levels associated with the

tasks – 0% lethality, 7% lethality, and 15% lethality. These risk levels add up to 22%, which

is reasonably close to the 25% risk used for the previous experiment. We experimented with

higher risks, however, the organisms and thus groups were prone to dying prior to replication,

which resulted in the trials finishing prematurely. Using these risk levels, we created eight

treatments (described in Table 4.2) that vary the riskiness associated with the tasks. The

last two treatments (g and h) are controls in which either none of or all of the tasks are risky.

Additionally, we created six ancestor organisms (depicted in Figure 4.6) that all com-

pleted each task and self-replicated. These ancestor organisms were used to seed the initial

colonies. Again, by varying the ancestor organism, we are able to verify that any patterns

of temporal polyethism result from the riskiness associated with the tasks, not the initial

77

0 2 4 6 8 10
x 104

0

200

400

600

800

1000

Time (in updates)

Ag
e

(in
 c

yc
le

s)

(a) Ancestor: not-nand; Treatment: No risk

0 2 4 6 8 10
x 104

0

200

400

600

800

1000

Time (in updates)

Ag
e

(in
 c

yc
le

s)

(b) Ancestor: nand-not; Treatment: No risk

Figure 4.4: Diagrams of the results of the control temporal polyethism treatments in which
neither task is risky. The x-axis of both plots is evolutionary time and the y-axis is the
mean age in cycles. The blue line with circles represents the mean age at which task not
is performed. The red line with triangles represents the mean age at which task nand is
performed. In these results, the controls indicate that there is nothing intrinsic about the
tasks that is driving the temporal polyethism results.

genomic structure of the organisms. For each ancestor, we performed all eight treatments

(described in Table 4.2) that vary the risk associated with the three tasks. As a result,

we performed 1,440 trials. Our hypothesis for these experiments remains the same: task

riskiness is a sufficient pressure to result in temporal polyethism regardless of which of the

78

0 2 4 6 8 10
x 104

0

200

400

600

800

1000

Time (in updates)

Ag
e

(in
 c

yc
le

s)

(a) Ancestor: not-nand; Treatment: All risky

0 2 4 6 8 10
x 104

0

200

400

600

800

1000

Time (in updates)

Ag
e

(in
 c

yc
le

s)

(b) Ancestor: nand-not; Treatment: All risky

Figure 4.5: Diagrams of the results of the control temporal polyethism treatments in which
both tasks are risky. The x-axis of both plots is evolutionary time and the y-axis is the
mean age in cycles. The blue line with circles represents the mean age at which task not
is performed. The red line with triangles represents the mean age at which task nand is
performed. In these results, the controls indicate that there is nothing intrinsic about the
tasks that is driving the temporal polyethism results.

tasks is more risky or the ancestor organism. However, we expect that evolving groups that

exhibit temporal polyethism should be more challenging in this environment because the

differences between the risk levels of the tasks is smaller and thus selection may be weaker.

Figures 4.7-4.10 depict the results of the treatments for the not-nand-ornot ancestor. The

79

Task Risk Treatments
a b c d e f g h

not 0% 0% 7% 7% 15% 15% 0% 7%
nand 7% 15% 0% 15% 0% 7% 0% 7%
ornot 15% 7% 15% 0% 7% 0% 0% 7%

Table 4.2: The eight risk treatments for a three-task environment. The rows describe the
lethality risks associated with tasks not, nand, and ornot. The columns describe a specific
treatment.

results from the other experiments that use different ancestors were qualitatively similar and

thus the results are not displayed. For the treatments in which the risk associated with the

tasks varied (Figures 4.7-4.9), the ordering of the tasks at the end of the treatment supports

our hypothesis regarding temporal polyethism. In other words, the tasks are performed in

order from least to most risky. For example, in treatment Figures 4.7 b, task not is the

least risky and is performed first, task ornot is associated with a moderate degree of risk

(7%) and is performed second, and task nand is the most risky (15%) and is performed last.

While some of these results are statistically significant, others are not. This reduction in

significance may be the result of a decrease in variance in risk among tasks that, in turn,

weakens selection. In general, however, these treatments indicate that the division of labor

pattern of task polyethism can result from the differences in risks associated with performing

tasks.

4.1.3 Analyses

We have demonstrated that groups evolve to perform more risky tasks, on average, later

within their lifetime than safe tasks. Next, we examine how this behavior interacts with

reproduction and then conduct two detailed analyses of groups that exhibit this behavior.

Within these experiments, organisms have a pressure not just to perform tasks, but also

to replicate and produce clones capable of performing these same tasks. One question we

were interested in exploring is when did the organisms replicate? To address this question,

80

ancestor
nand−not−ornot

ancestor
not−nand−ornot

ancestor
not−ornot−nand

nand−ornot−not
ancestor

ornot−not−nand
ancestor

ornot−nand−not
ancestor

a

a

not

replication

not

ornot

nand

replication

ornot

nand

not

replication

not

ornot

nand

replication

not

ornot

nand

replication

ornot

nand

replication

ornot

nand

not

Figure 4.6: The six ancestor organisms for the three-task temporal polyethism experiments.
These ancestor organisms vary the order in which the three tasks are performed. Because
the genomes are circular, after each organism replicates, it resumes execution at the top of
its genome.

we examined a treatment from our original two-task experiment that begins with the not-

nand ancestor and in which task not is risky. Figure 4.11 depicts the mean age at which the

tasks were performed and at which the organisms replicated. Intriguingly, the organisms

performed the less risky task (nand), replicated, and then much later in their life performed

the more risky task (not). This result suggests that the organisms have evolved a strategy

that balances their need to perform tasks, the risk associated with these tasks, and their

need to replicate.

81

0 2 4 6 8 10
x 104

0

200

400

600

800

1000

Time (in updates)

Ag
e

(in
 c

yc
le

s)

(a) Lethality Risk: not 0%, nand 7%, ornot 15%

0 2 4 6 8 10
x 104

0

200

400

600

800

1000

Time (in updates)

Ag
e

(in
 c

yc
le

s)

(b) Lethality Risk: not 0%, nand 15%, ornot 7%

Figure 4.7: The results of the temporal polyethism experimental treatments for the not-
nand-ornot ancestor in which task not is safe. The blue line with circles represents task not,
the red line with triangles represents task nand, and the green line with squares represents
task ornot. The x-axis is evolutionary time and the y-axis is the mean age at which the task
is performed by the organisms. At the end of the treatments, the least risky task (0%) is
performed first, the somewhat risky task (7%) is performed next, and the most risky task
(15%) is performed last.

Two-Task Group Analysis

Next, we examined the behavior of a successful group from our original two-task experiment

that begins with the not-nand ancestor and in which task not is risky to ascertain how it

82

0 2 4 6 8 10
x 104

0

200

400

600

800

1000

Time (in updates)

Ag
e

(in
 c

yc
le

s)

(a) Lethality Risk: not 7%, nand 0%, ornot 15%

0 2 4 6 8 10
x 104

0

200

400

600

800

1000

Time (in updates)

Ag
e

(in
 c

yc
le

s)

(b) Lethality Risk: not 7%, nand 15%, ornot 0%

Figure 4.8: The results of the temporal polyethism experimental treatments for the not-
nand-ornot ancestor in which not is moderately risky. The blue line with circles represents
task not, the red line with triangles represents task nand, and the green line with squares
represents task ornot. The x-axis is evolutionary time and the y-axis is the mean age at
which the task is performed by the organisms. At the end of the treatments, the least risky
task (0%) is performed first, the somewhat risky task (7%) is performed next, and the most
risky task (15%) is performed last.

managed task performance and replication. The organisms within this group executed a

precise behavioral plan that is depicted in the phenotype portion of Figure 4.12. They

performed task nand, replicated, performed task nand again, replicated again, and then

83

0 2 4 6 8 10
x 104

0

200

400

600

800

1000

Time (in updates)

Ag
e

(in
 c

yc
le

s)

(a) Lethality Risk: not 15%, nand 0%, ornot 7%

0 2 4 6 8 10
x 104

0

200

400

600

800

1000

Time (in updates)

Ag
e

(in
 c

yc
le

s)

(b) Lethality Risk: not 15%, nand 7%, ornot 0%

Figure 4.9: The results of the temporal polyethism experimental treatments for the not-
nand-ornot ancestor in which not is extremely risky . The blue line with circles represents
task not, the red line with triangles represents task nand, and the green line with squares
represents task ornot. The x-axis is evolutionary time and the y-axis is the mean age at
which the task is performed by the organisms. At the end of all of the treatments, the least
risky task (0%) is performed first, the somewhat risky task (7%) is performed next, and the
most risky task (15%) is performed last.

repeatedly performed task not (the risky task) until it killed them. The organisms clearly

exhibit the temporal polyethism pattern of performing the risky task after their other duties

had been completed.

84

0 2 4 6 8 10
x 104

0

200

400

600

800

1000

Time (in updates)

Ag
e

(in
 c

yc
le

s)

(a) Lethality Risk: not 0%, nand 0%, ornot 0%

0 2 4 6 8 10
x 104

0

200

400

600

800

1000

Time (in updates)

Ag
e

(in
 c

yc
le

s)

(b) Lethality Risk: not 7%, nand 7%, ornot 7%

Figure 4.10: The results of the two temporal polyethism control treatments for the not-nand-
ornot ancestor. The blue line with circles represents task not, the red line with triangles
represents task nand, and the green line with squares represents task ornot. The x-axis is
evolutionary time and the y-axis is the mean age at which the task is performed by the
organisms. The ages at which the tasks are performed are not significantly different.

A second topic we are interested in exploring is how the genome was modified to support

this behavior. For example, organisms may have rearranged their genome to support task

ordering (i.e., by moving the more risky task to the end of their genome) or organisms

may have evolved to use control-flow instructions that enable them to skip over portions

85

0 2 4 6 8 10

x 10
4

0

200

400

600

800

1000

Time (in updates)

A
g

e
 (

in
 c

y
c
le

s
)

Figure 4.11: These results depict the mean age at which task not (blue line with circles), task
nand (red line with triangles) and replication (black line with stars) are performed for the
treatment where not is risky and the runs were started with the not-nand ancestor. These
results suggest that the organisms are performing task nand one or more times, replicating,
and then performing task not.

of their genome. In this case, the organisms evolved to use the control-flow instructions.

The architecture of the genome, which is depicted in the genotype portion of Figure 4.12, is

extremely similar to the ancestor organism: task not is encoded first, then task nand, and

lastly replication. However, the organisms evolved in both jump instructions (to skip task

not until the remainder of the genome had been executed twice) and a loop to continue

to perform task not until death. Organisms set and used the value of a register that was

preserved during replication to track which genome iteration they were on and to modify

their behavior accordingly. The numbered arrows in Figure 4.12 depict the order in which

the elements of the genome were executed.

Three-Task Group Analysis

Next, we examined the behavior of a group that appears to exhibit temporal polyethism

within the three-task environment. Specifically, we examined the behavior of a group that

86

nand

replication

nand

replication

not

not

not

phenotype genotype

1

2

3

4

5

6

7

8...

replication

nand

not

Figure 4.12: Diagrams of the phenotype (left) and genotype (right) of an organism whose
group exhibited temporal polyethism with two tasks. The numbered arrows surrounding the
genotype indicate the order in which instructions were executed to produce the phenotype.
In this case, the genotype is very similar to the not-nand ancestor. The risk-based order in
which the tasks were performed depended upon control-flow instructions in the genome.

evolved from the not-nand-ornot ancestor and that evolved under risk treatment c (Table 4.2

and Figure 4.8), where nand was safe, not incurred moderate (7%) risk, and ornot incurred a

high degree of risk (15%). We seeded a test group with the genotype of the group and

monitored it to better understand the organisms’ behavior. The organisms within this

group executed a complicated behavioral plan that is depicted in the phenotype portion

of Figure 4.13. When an organism finished executing this pattern, it started again. These

organisms exhibit almost perfect age-based castes; task nand is performed first, then task

not, and lastly task ornot.

When we examined the genotype of the organisms we noted that their genetic struc-

ture differed from the ancestor organism from which they evolved. The ancestor organism

performed task not, then nand, and lastly ornot order. In contrast, the evolved organism re-

87

arranged its genome (depicted in Figure 4.13) to encode task nand, task not, task not again,

and then task ornot. In addition to the genomic modifications, the genotype also made use

of control-flow instructions to achieve temporal polyethism.

genotype

1

3

4

5

8

6,9

7 2, 10...

phenotype

nand

not

nand

ornot

nand

ornot

not

replication

not
not

ornot

nand

replication

replication

replication

Figure 4.13: Diagrams of the phenotype (left) and genotype (right) of an organism whose
group exhibited temporal polyethism with three tasks. The numbered arrows surrounding
the genotype indicate the order in which instructions were executed to produce the phe-
notype. In this case, the genotype of the not-nand-ornot ancestor has been rearranged to
facilitate temporal polyethism. Specifically, not and nand have exchanged places and an
additional not has been introduced. The risk-based order in which the tasks were per-
formed depended upon both the genomic architecture and the control-flow instructions in
the genome.

4.1.4 Discussion

In this section, we described how we have used Avida to explore one hypothesis for the

origin of temporal polyethism division of labor. Specifically, we found support for the age

polyethism hypothesis, where the age of an individual predicts the task it specializes on. This

88

age polyethism structure enables the group to be more efficient at gathering resources. In

our analyses, we found further evidence that organisms made use of control flow instructions

and genomic architecture modifications to achieve this behavior.

4.2 Task-Switching Costs

As previously mentioned, three advantages for human economic division of labor suggested

by Adam Smith [108] and later proposed by Dornhaus [20] as possible reasons for division

of labor within eusocial colonies are: (1) the efficiency with which an individual performs

a task improves with repeated performances, (2) specialization can decrease task-switching

costs, and (3) the creation of machines can assist organisms performing specialized tasks

more efficiently. In this study, we examine how task-switching costs (the second proposed

benefit) affect whether or not division of labor evolves as a strategy [41, 44]. Within natural

systems, task-switching costs can have many separate components including the physical

time necessary to move between the locations for different tasks, the cognitive overhead in

changing tasks, and morphological overhead in changing roles. For example, if a forager hon-

eybee changes to become a nurse honeybee, then it must move from the dance floor located

at the bottom of the hive to the top of the hive where the brood live and make morphological

gland adjustments to be able to feed the brood. These various task-switching costs present

within nature are difficult to identify and challenging to experimentally manipulate. In this

study, we use Avida to address whether task-switching costs present in the environment

affect whether division of labor strategies evolve within colonies.

4.2.1 Methods

To use Avida to study the evolution of division of labor, we created a world consisting of

competing groups that represent colonies. These groups comprise clonal organisms that are

89

rewarded for their overall group performance. Once the group as a whole collects a number

of resources, then the group is rewarded by reproducing using germ-line replication. The

speed at which a group is able to collect resources, and thus the overall performance of the

group, is improved if the individuals within the group perform a variety of different types

of tasks. This dynamic is analogous to bee colonies whose performance is improved if they

collect both nectar and pollen [89]. For our initial experiments, we configured nine limited

resources – one for each of the logic tasks. Each resource had 100 initial units with an inflow

rate of 1 unit per update and an outflow rate of 1% of the total resource per update. When

an organism performs a task, it amasses up to 5% of the available resources associated with

that type of task.

A group replicates when it has amassed 500 units of resources. Given these parameters,

the most efficient way for a group to replicate is to perform each type of task. By contrast, if

a group performs only a single type of task, it takes approximately 600 updates to replicate.

Notably, organisms within the groups can accomplish this objective either as generalists or as

specialists. A generalist organism may perform each type of task once; whereas, a specialist

organism may perform a single type of task many times relying on the other organisms in

the group to perform the other types of tasks. To start these experiments, we seeded all

groups with one organism that performs one logic task (not). Mutations occur during group

replication, potentially enabling a group to perform an additional type of task. Over time,

groups may evolve to perform a diversity of types of tasks and potentially even strategies

that include coordinating their task performance and thus performing division of labor.

To address our central question of the effect of task-switching costs on the evolution of

division of labor, we extended Avida to support a performance penalty that was applied each

time an organism changed the type of task it was performing. We then created three separate

treatments: (1) a control in which task-switching costs were not present, (2) a moderate

task-switching-cost environment in which a small performance penalty was incurred each

90

time an organism changed the type of task it performed, and (3) a high task-switching-

cost environment in which a large performance penalty was incurred each time an organism

changed the type of task it performed. We use Shannon mutual information as proposed by

Gorelick et al. [48] to measure the amount of division of labor present within the groups.

For each experiment, we conducted 50 trials to account for the stochastic nature of

evolution. Within each trial, we used the default group topology with genetically-clonal

digital organisms. All germlines are fixed at a length of 100 instructions. Mutations occur

to the germline when the group replicates; the mutation rate is set at 1.0 genomic. The

trials last for 201,000 updates. After the first 200,000 updates, the groups go through a 1000

update ecological period, where the mutation rate is set to 0. The ecological period prunes

spurious mutations and enables us to better analyze and assess the behavior of the groups.

4.2.2 Results

We examine the effects of task-switching costs on division of labor by addressing the following

three questions:

• Do task-switching costs result in an increase in the evolution of division of labor?

• Does the type of tasks that organisms must perform affect the adoption of division of

labor as a strategy?

• Does the amount of resources required for a group to replicate affect the adoption of

division of labor as a strategy?

Do task-switching costs result in an increase in the evolution of division of labor?

The central question we are investigating is whether division of labor will arise more fre-

quently as a strategy when groups are rewarded for overall performance and there is a cost

to switching tasks. As part of this experiment, we vary task-switching costs (measured in

91

terms of extra cycles) while holding other other experimental parameters constant. Specifi-

cally, we experiment with costs of 0 (a control), 25, and 50 cycles. In all cases, a group that

performs multiple types of tasks will outcompete a group the performs only a single task.

The question is whether these tasks are performed by generalist or specialist organisms.

Without task-switching penalties, a successful group could comprise generalist individuals

that each perform each type of task once. However, with task-switching penalties, a more

efficient group would comprise specialist organisms that perform just one type of task.

Figure 4.14(a) depicts how the Shannon mutual information between individuals and

tasks (our measurement of division of labor) changes over the course of evolutionary time for

the three task-switching-cost treatments. The blue line with circles is the control; the green

line with triangles is the 25-cost treatment; the red line with upside-down triangles is the

50-cost treatment. These data support our hypothesis that as task-switching costs increase,

there is an increase in division of labor, which is indicated by a rise in Shannon mutual

information between organisms and tasks performed (0-cost, 0.494 ± 0.043; 25-cost, 0.788

± 0.039; 50-cost, 1.086 ± 0.041). All three treatments are significantly different from one

another (50-cost compared to 0-cost: p=1.5849e-13, 25-cost compared to 0-cost: p=4.6288e-

06, and 50-cost compared to 25-cost: p=4.6288e-06; all p-values presented in this section

were computed using Wilcoxon rank sum test).

Figure 4.14(b) depicts the number of different types of tasks performed by the successful

groups at replication for the three task-switching cost treatments. These data indicate that

all of the groups for this environment are performing approximately 5-6 types of tasks and

that the number of types of tasks performed does not vary with the task-switching cost

applied. Thus, differences in the amount of division of labor present within the groups

reflects the underlying level of specialization of members of the groups and is not a side-

effect of the number of types of tasks performed. Additionally, these data explain the initial

increase in the amount of Shannon mutual information for the 0-cost treatment: as the

92

0 0.5 1 1.5 2
x 105

0

0.5

1

1.5

2

Update

Sh
an

no
n

M
ut

ua
l I

nf
or

m
at

io
n

(a) Mean Shannon Mutual Information

0 0.5 1 1.5 2
x 105

0

2

4

6

8

10

Update

Ta
sk

 D
ive

rs
ity

0 cost
25 cost
50 cost

(b) Mean Number of Unique Tasks Performed by Repli-
cating Groups

Figure 4.14: Logic-9 environment results: (a) The mean Shannon mutual information be-
tween organisms and tasks performed averaged across 50 runs for groups with varying
amounts of task-switching costs. Dotted lines are used to indicate standard error. No-
tably, treatments with higher task-switching costs evolve strategies that exhibit higher levels
of division of labor. (b) The mean number of different types of tasks performed by the groups
under various treatments. The groups typically evolve to perform 5-6 tasks.

organisms evolved to perform more types of tasks, their phenotypes differed as a result of

the timing of death and replication and thus Shannon mutual information rose.

These results indicate that an environment that imposes task-switching costs is a sufficient

93

pressure to give rise to groups that employ division of labor strategies. Additionally, this

increase can be attributed to organisms within the groups becoming increasingly specialized

as task-switching costs increase. Our next two sets of experiments test the robustness of

these results by varying different aspects of the environment.

Do the tasks in the environment affect the adoption of division of labor as a

strategy?

Our central experiment suggested that task-switching costs can lead to the evolution of

strategies that employ division of labor. Next, we explore whether the type of task present

in the environment affects whether or not division of labor evolves. To study this question,

we returned to the 25 role-selecting tasks. We associate each role-selecting task with a

limited resource that has an initial amount of 100 resources, an inflow of 0.25 resources

per update, and an outflow of 1% per update. When an organism performs a task, it can

consume up to 5% of the available resources associated with that type of task. Because

the groups have more resources at their disposal, we also increase the amount of resources

required for replication to 1000 resources. We ran 50 replicates of each cost treatment (i.e.,

0-cost, 25-cost, and 50-cost). All groups were seeded with an individual that set its role-id

to one.

Figure 4.15 (a) depicts the results of the various treatments in the 25-role environment.

At the final time point in the treatment, the mean amount of Shannon mutual information

between organisms and tasks performed is: 0-cost: 1.8467±0.1163; 25-cost: 2.503±0.0638;

50-cost: 2.6145±0.0494. In this case, for all treatments, the groups are performing approx-

imately 20 different roles (Figure 4.15(b)). As a result, we can conclude that differences in

division of labor result solely from organisms choosing to be generalists and specialists. For

this experiment, we see more division of labor is present in runs with task-switching costs,

than the control runs (50-cost to 0-cost: p=9.6939e-08; 25-cost to 0-cost: p=7.5509e-06),

94

which supports our hypothesis that task-switching costs increase the amount of division of

labor present in evolved strategies. However, the 50-cost treatment is not significantly differ-

ent than the 25-cost treatment (p=0.1777). This result may be due to the 25-cost treatments

already achieving near perfect division of labor scores.

To further explore this question, we created an environment that combined the logic

tasks and the role-selecting tasks. Specifically, we included all nine logic tasks and six of the

role-selecting tasks (i.e., roles 1-6) for a total of 15 tasks rewarded in the environment. Each

task has an associated limited resource with an initial amount of 100 resources, an inflow of

0.6 resources per update, and an outflow of 1% per update. When an organism performs a

task, it can consume up to 5% of the available resources associated with that type of task.

Because the groups have more resources at their disposal, we set the amount of resources

required for replication to 1000 resources. We ran 50 replicates of each cost treatment (i.e.,

0-cost, 25-cost, and 50-cost). All groups were seeded with an individual that set its role-id

to one.

Figure 4.16 (a) depicts the results of the various treatments in the new logic-9-role-6 en-

vironment. At the final time point in the treatment, the mean Shannon mutual information

between organisms and tasks performed is: 0-cost: 1.3876 ±0.0352; 25-cost:1.6596±0.0220;

50-cost: 1.7158±0.0148. In this case, for all treatments, the groups are performing approx-

imately approximately eight to eleven different types of tasks (Figure 4.16(b)). However,

these differences are not statistically significant. As a result, we can again conclude that

differences in division of labor result solely from organisms choosing to be generalists and

specialists. For this experiment, we see more division of labor is present in runs with task-

switching costs, than the control runs (50-cost to 0-cost: p=9.4320e-13; 25-cost to 0-cost:

p=3.8440e-09), which supports our hypothesis that task-switching costs increase the amount

of division of labor present in evolved strategies. However, the 50-cost treatment is not sig-

nificantly different than the 25-cost treatment (p=0.1845).

95

0 0.5 1 1.5 2
x 105

0

1

2

3

Update

Sh
an

no
n

M
ut

ua
l I

nf
or

m
at

io
n

(a) Mean Shannon Mutual Information

0 0.5 1 1.5 2
x 105

0

5

10

15

20

25

Update

Ta
sk

 D
ive

rs
ity

0 cost
25 cost
50 cost

(b) Mean Number of Unique Tasks Performed by Repli-
cating Groups

Figure 4.15: 25-Role Environment Results: (a) The mean Shannon mutual information
between organisms and tasks performed averaged across 50 runs for groups with varying
amounts of task-switching costs within the 25-role environment. Dotted lines are used to
indicate standard error. Notably, treatments with higher task switching costs evolve strate-
gies that exhibit higher levels of division of labor. (b) The mean number of different types of
tasks performed by the groups under various treatments. The groups all evolve to perform
approximately 20 types of tasks.

In general, these results support our central hypothesis that task-switching costs promote

the evolution of division of labor. Next, we return to the logic-9 environment and test a

different environmental parameter.

96

0 0.5 1 1.5 2
x 105

0

0.5

1

1.5

2

Update

Sh
an

no
n

M
ut

ua
l I

nf
or

m
at

io
n

(a) Mean Shannon Mutual Information

0 0.5 1 1.5 2
x 105

0

5

10

15

Update

Ta
sk

 D
ive

rs
ity

0 cost
25 cost
50 cost

(b) Mean Number of Unique Tasks Performed by Repli-
cating Groups

Figure 4.16: Logic-9 and Role-6 Environment Results: (a) The mean Shannon mutual in-
formation between organisms and tasks performed averaged across 50 runs for groups with
varying amounts of task-switching costs. Dotted lines are used to indicate standard error.
Notably, treatments with higher task switching costs evolve strategies that exhibit higher
levels of division of labor. (b) The mean number of different types of tasks performed by the
groups under various treatments. The groups all evolve to perform approximately 10 types
of tasks.

Does the amount of resources required to replicate affect the adoption of division

of labor as a strategy?

In our previous experiments, we demonstrated that task-switching costs increased the

amount of division of labor present in the evolved groups for two different types of environ-
97

mental tasks. To ensure that these results are not an artifact of the specific environmental

parameters selected, we performed additional sets of experiments in which we varied the

amount of resources required for the group to replicate. Specifically, the original experiment

required the groups to amass 500 resources. Our two additional experiments required groups

to amass 250 (half the original amount) and 1000 resources (double the original amount)

prior to replicating. For each experiment, we ran all three task-switching cost treatments.

Figure 4.17 depicts the results of the task-switching-cost treatments under the 250 re-

source requirement. For this experiment, we see that as task-switching costs increase, there

is an increase in division of labor indicated by an increase in Shannon mutual information

between organisms and tasks performed. At the final time point in the treatment, the mean

Shannon mutual information is: 0-cost: 0.074 ±0.018; 25-cost: 0.2913 ± 0.0380; 50-cost:

0.737±0.0385. All three of these treatments are statistically significantly different from one

another (50-cost to 0-cost: p=8.1570e-16; 25-cost to 0-cost: p=2.2937e-07; 50-cost to 25-cost:

p=3.6761e-10). Additionally, with this lower resource requirement, the variety of types of

tasks performed by the groups decreases (Figure 4.17(b)). For these treatments, the control

(i.e., 0-cost) groups performed an average of 4 types of tasks and the higher task-switching

cost treatments (i.e., 25-cost and 50-cost) performed an average of 3 types of tasks. This

difference in the number of types of tasks performed could potentially bias the results in

favor of higher division of labor scores for the 0-cost treatment, since a greater variety of

tasks has the potential to increase division of labor scores. Since this bias is in the opposite

direction of our prediction, we are not concerned with the performance difference.

For the 1000 resource treatments, the results of which are depicted in Figure 4.18, it is

challenging to visually ascertain if there is a significant increase in division of labor resulting

from the application of task-switching costs. At the final time point in the treatment, the

mean amount of Shannon mutual information between organisms and tasks performed is:

0-cost: 0.7553 ± 0.0442; 25-cost: 0.8698 ± 0.0459; 50-cost: 0.9089 ± 0.0519. For these

98

0 0.5 1 1.5 2
x 105

0

0.5

1

1.5

2

Update

Sh
an

no
n

M
ut

ua
l I

nf
or

m
at

io
n

(a) Mean Shannon Mutual Information

0 0.5 1 1.5 2
x 105

0

2

4

6

8

10

Update

Ta
sk

 D
ive

rs
ity

0 cost
25 cost
50 cost

(b) Mean Number of Unique Tasks Performed by Repli-
cating Groups

Figure 4.17: Logic-9 250 Resource Results: (a) The mean Shannon mutual information
between organisms and tasks performed averaged across 50 runs for groups with varying
amounts of task-switching costs. Dotted lines are used to indicate standard error. Notably,
treatments with higher task-switching costs evolve strategies that exhibit higher levels of
division of labor. (b) The mean number of different types of tasks performed by the groups
under various treatments. The groups all evolve to perform 3-4 types tasks.

treatments, the amount of Shannon mutual information present in the 50-cost treatment is

significantly greater than the 0-cost treatment (p=0.0396), but not significantly greater than

the 25-cost treatment (p=0.7433); nor is the 25-cost treatment significantly different from

99

the 0-cost treatment (p=0.0652). With the increased resource requirement, the variety of

types of tasks performed by the all of the treatments increases to 7-8 tasks (Figure 4.18(b).

One intriguing aspect of these data is that the lack of significance results from an in-

crease in division of labor exhibited by the 0-cost treatment. The treatment mean increased

from 0.074 ±0.018 in the 250-resource experiment to 0.7553 ± 0.0442 in the 1000-resource

experiment. To understand this phenomena, we must more closely examine the effects of

increasing the resources required for a group to replicate. In both the 250 and 500 resource

experiments, amassing the amount of resources present at the start of the experiment (100

per task type for a total of 900 resource units) was sufficient for a group to replicate. How-

ever, in the 1000 resource experiment, there were not enough resources present in the initial

environment and thus groups needed to wait for resources to flow into the environment in

order to replicate. This resource dynamic resulted in a pressure for groups to amass resources

as quickly as possible and thus to perform all tasks at each time point. As a result, 0-cost

treatment groups used division of labor to increase their overall efficiency through parallel

processing. While this was not the hypothesis we were testing for the evolution of division

of labor, efficiency through parallel processing has previously been proposed as a benefit of

division of labor [53, 88]. Thus, within this experiment, we have uncovered evidence for both

the role of task-switching costs and efficiency through parallel processing in the evolution of

division of labor.

4.2.3 Analyses

We have demonstrated that groups employ a larger amount of division of labor when they

evolve in the presence of task-switching costs. Next, we examine what mechanisms the groups

use to perform division of labor and then study the strategy of one group in particular.

100

0 0.5 1 1.5 2
x 105

0

0.5

1

1.5

2

Update

Sh
an

no
n

M
ut

ua
l I

nf
or

m
at

io
n

(a) Mean Shannon Mutual Information

0 0.5 1 1.5 2
x 105

0

2

4

6

8

10

Update

Ta
sk

 D
ive

rs
ity

0 cost
25 cost
50 cost

(b) Mean Number of Unique Tasks Performed by Repli-
cating Groups

Figure 4.18: Logic-9 1000 Resource Results:(a) The mean Shannon mutual information
averaged across 50 runs for groups with varying amounts of task-switching costs. Dotted
lines are used to indicate standard error. (b) The mean number of different types of tasks
performed by the groups under various treatments. The groups all evolve to perform 7-8
types of tasks.

Mechanisms used to perform division of labor.

For our experiments, we provided organisms with instructions that enable explicit coordi-

nation using messaging and location-awareness. A group could evolve a genome that uses

these instructions to coordinate roles. For example, organisms could select a type of task to

101

perform based on their location or could send messages alerting other organisms of their se-

lected task type. To better understand whether the successful groups used these instructions

to coordinate the tasks performed by their constituent organisms, we explored the behavior

of groups that successfully exhibited division of labor in the 25-role and logic-9 environment.

Based on our preliminary results, we suspect that the type of task will influence the mecha-

nism used by the group. For these analyses, we selected the best performing group from each

of the 50 trials for the 50-cost treatment for both the logic-9 and the 25-role environment.

We then conducted knockout experiments, where we replaced one or more instructions in the

germline of a group with a neutral instruction (called nop-X). We reran each group stopping

either when the group replicated or at 5000 updates. If the group’s ability to perform divi-

sion of labor was impaired following a knockout, then we can conclude that the knocked-out

instruction contributed to the collective behavior of the group. We performed two sets of

knockout experiments: (1) knockouts of location sensing capabilities (i.e., the get-cell-xy and

collect-cell-data instructions), (2) knockouts of messaging capabilities (i.e., the send-msg and

retrieve-msg instructions).

Figures 4.19 and 4.20 contain box plots that describe how the amount of division of labor

was influenced by the various knockout treatments for the logic-9 and 25-role environments,

respectively. Within both of these plots, the individual boxes depict how the amount of

Shannon mutual information changes as we knockout instructions. The first boxes (control)

are the baseline performance of the group without any loss of information. The second

boxes (ko-location) are the performance of the groups after knocking out the location-sensing

instructions. The third boxes are the performance of the groups after knocking out the

messaging instructions (ko-messaging).

These data suggest that the logic-9 groups evolved division of labor strategies that in-

cluded coordinating with neighboring organisms through the use of messaging. For the

control and location knockout analyses, the logic-9 groups achieved median Shannon mutual

102

information scores of 1.0534 and 1.07072, respectively. However, for the messaging knockout

treatment, the same groups achieved a median Shannon mutual information score of 0. Con-

versely, the 25-role groups appear to have evolved division of labor strategies that included

coordinating roles using location. For the control and messaging knockout analyses, the

25-role groups achieved median Shannon mutual information scores of 2.38828 and 2.59492,

respectively. However, for the location knockout treatment, the same groups achieved a

median Shannon mutual information score of 0. Examining the data, it was evident that

division of labor scores plunged to 0 in both cases because their coordination capabilities

played such an integral role in the strategy of the group that organisms were unable to suc-

cessfully amass the necessary resources within 5000 updates and thus many of the groups

were unable to replicate. These results confirm our previous results that groups are evolving

strategies to coordinate their roles and, moreover, these strategies are dependent on the type

of task they must perform.

Analysis of a group strategy for achieving division of labor.

To better understand the behavior of a specific group, we examined a group from the 50-cost

treatment that successfully performed division of labor in the 25-role environment. This

group performed 24 of 25 role-selecting tasks. Each organism within the group performed

one type of task multiple times. Figure 4.21 depicts the role-id selected by each member of

the group.

To understand how organisms selected these roles, we examined the genome of the group.

Figure 4.22 depicts an excerpt of the genome. This genome loads the x and y coordinate

of the organism into the AX and BX registers. It then adds the contents of the BX register

to the AX register five times and then sets the role-id of the organism to be the contents of

the AX register. Essentially, this algorithm sets the role-id of the organism to be the sum of

the column-id and five times the row-id. For example, an organism at position (3, 2), would

103

 control ko-location ko-messaging

0
.0

0
.5

1
.0

1
.5

2
.0

Knockout Treatment

S
h
a
n
n
o
n
 M

u
tu

a
l
In

fo
rm

a
ti
o
n

Figure 4.19: Boxes depict how the amount of Shannon mutual information varies as different
knockout treatments are performed for a group that exhibits division of labor in the Logic-9
environment. Notably, knocking out location does not significantly affect the behavior of
the majority of the groups. However, knocking out messaging has a tremendous effect and
lowers the median amount of division of labor.

perform the operation 3 + 5 ∗ 2 = 13 and would then set its role-id to 17. This is a clever

algorithm for making use of location information to perform division of labor.

4.2.4 Discussion

In this section, we described how we have used Avida, a digital evolution platform, to explore

one hypothesis for the origin of division of labor. Specifically, we have found that the applica-

tion of task-switching costs is sufficient to increase the amount of specialization and division

of labor present within groups of organisms. We then performed additional experiments to

assess the generality of these results and found that they were robust to environmental per-

turbations in terms of the criteria for successful groups and the type of tasks present within

104

 control ko-location ko-messaging

0
1

2
3

4

Knockout Treatment

S
h
a
n
n
o
n
 M

u
tu

a
l
In

fo
rm

a
ti
o
n

Figure 4.20: Boxes depict how the amount of Shannon mutual information varies as different
knockout treatments are performed for a group that exhibits division of labor in the 25-role
environment. Notably, knocking out messaging does not significantly affect the behavior of
the majority of the groups. However, knocking out location has a tremendous effect and
lowers the median amount of division of labor.

the environment. We also discovered support for the idea that efficiency gains through

parallel processing may also favor the evolution of division of labor strategies. Lastly, we

analyzed the behavior of the successful groups and determined they were coordinating their

roles using message passing and location awareness depending on the environment. These

results shed light on how task-switching costs present in the environment may give rise to

division of labor strategies.

105

40 1 2 3

6 7 85 9

10 11 12 13 14

1918ro
w

−
id

s
 (

y
)

1615

20 21 22 2423

0 1 2 3 4

0

1

2

3

4

column−ids (x)

17

Figure 4.21: The role-ids selected by the organisms in a successful group that performs 24
(out of 25 possible) different roles and exhibits division of labor in the 25-role environment.
All but one id (0) are rewarded.

...

get-cell-xy # loads the x and y coordinates into

the AX and BX registers, respectively

add # AX += BX

add # AX += BX

add # AX += BX

h-copy

add # AX += BX

add # AX += BX

set-role-id # set role-id to the contents of the AX register

...

Figure 4.22: An excerpt of the genome used by a successful group evolved in the 25-role
environment to perform 24 different roles. Coordination is achieved via a location-sensitive
algorithm. Specifically, organisms set their role-ids to x + 5 ∗ y

106

Chapter 5

Applications of Division of Labor:

Problem Decomposition

Our previous studies shed light on the evolutionary conditions that give rise to division of

labor strategies. In this chapter, we first describe a technique that we developed for problem

decomposition [42] prior to our division of labor studies. However, in a fascinating twist,

some of the groups that exhibit division of labor did so using an advanced form of problem

decomposition that supersedes the abilities of our engineered effort. In the second part of this

chapter, we describe the evolved strategies and the implications for research in evolutionary

algorithms.

5.1 Engineered Problem Decomposition Approach

In this section, we describe an engineered technique for problem decomposition. Specifically,

our technique evolves specialists that produce subcomponents and cooperate with other

neighboring specialists to collect all of the subcomponents necessary to form a complete

solution. Because an individual organism collects all of the subcomponents required for

107

the complete solution, this approach has the potential to be used to address problems that

require more complex assembly procedures, which can also be evolved.

For this study, we provide instructions and infrastructure to allow organisms to coop-

erate in order to obtain subcomponents produced by neighboring organisms using indirect

reciprocity [83]. Whereas direct reciprocity involves the exchange of altruistic donations dur-

ing repeated interactions between the same two individuals, indirect reciprocity involves the

exchange of donations for reputation, where future donations are directed toward individu-

als with a high reputation [83, 116]. In this study, an organism’s reputation is an accurate

reflection of its behavior that is automatically updated. Specifically, an organism can do-

nate a subcomponent to a neighboring organism. As a result of this donation, the donor

organism’s reputation automatically increases. This improved reputation, in turn, increases

the probability that the donor organism will subsequently receive donations of subcompo-

nents from others. Thus, an organism can assemble a complete solution by combining the

subcomponent(s) that it produced itself with those it has received from others.

We demonstrate the potential for this approach using a variant of the binary string cover

problem presented in [94]. Whereas the original binary string cover problem considers a set

of individuals to be a solution, we explicitly require anindividual to cooperate with other

neighboring individuals to assemble a complete solution. In this case, assembling a solution

simply requires an organism to collect all of the subcomponents. First, to test whether this

approach can evolve cooperation, we force individuals to be specialists that produce only

one subcomponent and cooperate to solve the complete problem. Next we compare the per-

formance of a population of generalists that each attempt to solve the entire problem to the

performance of a population of specialists. On simpler problems, the population of gener-

alists outcompete the population of specialists. However, as the complexity of the problem

increases, the population of specialists outperforms the population of generalists. Lastly,

we demonstrate that when allowed to be either generalists or specialists, the population

108

composition automatically changes to solve the problem most efficiently.

5.1.1 Methods

Here we provide an overview of the binary string production problem that we use to illustrate

our technique, discuss the modifications to Avida that were necessary to allow specialists to

cooperate, and provide the standard configurations used for our experiments.

The original binary string cover problem, which we are using a variation of, considers each

individual in a population to represent a binary string x. The objective of each individual

is to match as strongly as possible a set V of N binary vectors called strings, where each

string vi in V is of length l. Let x be a match value, where bi is the number of bits exactly

matched (value and placement) between x and vi. Formally, x is defined as follows:

S(x, vi) =


0 if bi <

l

2

(
2bi
l
− 1)2 if bi ≥

l

2

(5.1)

Unless the strings in set V are identical, no single value of x will be able to perfectly

optimize all objectives, and thus trade-offs must occur. The EA’s solution to the binary

string cover problem is a set of individuals in the final population [35, 94]. If individuals

within the population specialize, then they are able to produce a better overall solution.

Goings and Ofria have previously demonstrated the ability of Avida to develop specialists

that cover multiple niches in this problem [35].

Whereas the original binary string cover problem statically composes subcomponents

by considering a set of individuals (one from each species) to represent the solution, this

variation increases the difficulty of the original problem by requiring each individual to

produce or acquire all of the strings and assemble the complete solution. We refer to this

variation as the binary string production problem. Thus, the objective of the individual is,

109

given a set V of binary strings, to produce multiple exact copies of V . We refer to a perfect

copy of V as a complete set.

For our experiments, we use several variants of the binary string production problem,

where each variant differs in complexity. Specifically, we define 4-bit, 8-bit, 16-bit, and 24-bit

variants. Each variant has two strings that constitute V : the first string is all zeros and the

second string is all ones. For example, the 4-bit variant uses strings 0000 and 1111 and the

complete set is {0000, 1111}.

To enable organisms to specialize and cooperate to produce complete solutions, we ex-

tended the organism infrastructure, defined instructions to allow organisms to produce com-

plete sets, and defined tasks that described the desired outputs. At a high level, an organism

creates a string in its buffer and then produces copies of the string. The copies can be do-

nated to increase its reputation or used as parts of a complete set. Tasks are associated

with the quality of strings produced, quantity of strings produced, and also the quantity of

complete sets produced.

Figure 5.1 (a) depicts the four key elements of an Avida organism that are used to produce

solutions to the binary string production problem. First, an organism has a buffer in which

it is able to construct strings. The buffer is initially empty and is exactly the length of a

string. A pointer into the buffer determines where insertion will occur. The pointer starts at

the first element, and moves one position each time a bit is inserted into the buffer. After the

last element has been written, the pointer returns to the first element and future insertions

overwrite existing bits. For example, Figure 5.1 (a) depicts a buffer of length 4 (for the 4-bit

variant of the string production problem). Second, an organism has two counters that track

the number of copies of each string that the organism has at its disposal, where a copy could

be either produced by the organism or received as a donation. For example, Figure 5.1 (a)

depicts the two counters (c0000 and c1111). The number of copies of a string is limited to a

user-defined amount. For these experiments, the limit is 10 copies per string. A copy can be

110

used as part of a complete set or as a donation. Third, an organism has a tag that identifies

which vector it is best at producing. An organism initially inherits the tag of its parent. As

the organism replicates, its tag and the tag of its offspring are updated to reflect the vector

it is best at producing. Lastly, an organism has a reputation that is automatically updated

as a result of the organism’s cooperative actions. An organism’s reputation is determined

using a variant of a standing strategy [116] as follows 1:

• reputation = 0: An organism has neither donated a string nor received a string. All

organisms are born in this state.

• reputation = -1: An organism has not donated a string, but has received a string.

• reputation = 1 An organism has donated a string and may or may not have received

a string.

Table 5.1 depicts the instructions we added to the standard Avida instruction set [85].

Instructions insert-0 and insert-1 insert a 0 or a 1 into the organism’s buffer. Figure 5.1 (b)

depicts an organism after it executed insert-0. Instruction prod-string reads an organism’s

buffer. If the string in the buffer perfectly matches one of the vectors in V , the organism’s

counter for this vector is incremented by 1; otherwise, the instruction has no effect. For

example, Figure 5.1 (c) depicts the buffer of an organism that has constructed string 0000

and then executed prod-string. The counter for the string 0000, c0000, is incremented. The

buffer remains the same after the prod-string instruction is executed. Thus, an organism

may consecutively execute the instruction several times to create multiple copies of the same

string.

The remainder of the new instructions allow organisms to cooperate through indirect

reciprocity. To donate a string, an organism executes the instruction donate-string, which

decrements the organism’s counter for the string and increments the corresponding counter

1We also experimented with reputation strategies in which an organism’s reputation in-
creased with each subsequent donation. These strategies did not qualitatively change our
results.

111

 after inserting 0.

(c) An organism’s
 internal state
 after executing
 prod−string.

(a) An organism’s
 initial state.

buffer

pointer

buffer

0 0 0 0

pointer

reputation: 0
tag: 0000

buffer

0

pointer

reputation: 0
tag: 0000

reputation: 0
tag: 0000

0000
1111

0000c : 0

1111c : 0

c : 1
c : 0

c : 0
c : 0

0000
1111

(b) An organism’s
 internal state

Figure 5.1: The infrastructure that allows Avida organisms to produce strings, donate
strings, and cooperate using indirect reciprocity.

of the neighbor. An organism’s tag determines which string it donates. For example, if an

organism’s tag is 0000, then the organism donates string 0000. Donations between organisms

of the same tag would not assist organisms in constructing a complete set and thus are not

allowed. Additionally, if an organism does not have any copies of the string it donates

(e.g., c0000 = 0), then the donation does not occur and the counters and reputations of the

organism and its neighbor remain unchanged.

Organisms are able to sense their own reputation and the reputation of their facing neigh-

bor using the get-reputation and get-neighbors-reputation instructions, respectively. When

these instructions are executed, the reputation value is placed in one of the organism’s reg-

isters. Lastly, the rotate-to-rep-tag instruction rotates an organism to face the neighbor with

the highest reputation of the opposite tag. If the organism does not have a neighbor of

the opposite tag, then its facing remains unchanged. If multiple neighboring organisms of

112

equally high reputation all have the opposite tag, then the organism is rotated to face a

random organism from this set.

Instruction Description
insert-0 Insert 0 into the buffer
insert-1 Insert 1 into the buffer
prod-string If the string in the buffer is a vector vi, increment the counter

of vi
donate-string Donate a copy of a string to the facing neighbor
get-reputation Get the organism’s reputation
get-neighbors-reputation Get the neighbor’s reputation
rotate-to-rep-tag Rotate to the neighbor with a different tag and the highest rep-

utation

Table 5.1: Additional Avida instructions that allow organisms to produce strings, donate
strings, and selectively cooperate with neighbors on the basis of reputation.

We defined two types of tasks associated with resources that reward organisms for the

binary string production problem. The first task, MatchString, is associated with a limited

resource and is used to ensure that the population maintains the ability to produce both

strings. The performance of an organism on MatchString is proportional to the quality of

the string in its buffer when the organism replicates. A MatchString task is defined for both

strings in V (e.g., MatchString0000 and MatchString1111) and the value of the task is defined

using the same formula as the original bit string cover problem. Additionally, if the organism

has produced the string that perfectly matches the vector itself, then it receives a score of

1. The formula is:

MatchString(org, vi) =



0 if bi <
l

2

(
2bi
l
− 1)2 if bi ≥

l

2

1 if cvi ≥ 1

(5.2)

113

The MatchString task also labels the organism with a tag that corresponds to the vector

it is best at producing. Specifically, an organism’s tag corresponds to the vector whose

MatchString task had the highest quality.

The second type of task, CompleteSet, is associated with an unlimited resource that

rewards organisms for producing complete sets. Specifically, the task quality is equal to four

times the number of complete sets plus the number of additional copies of either string. Task

quality is partially defined based on strings that cannot be used as part of a complete set to

reward organisms for production quantity. Formally, let clow be the counter with the lowest

balance, ballow. Let chigh be the counter with the higher balance, balhigh. The formula for

computing the reward of the CompleteSet function is:

CompleteSet(org) = (4 ballow) + (balhigh − ballow) (5.3)

Our experiments all used a common set of configurations. Each experiment comprised

20 replicate runs to account for the stochastic nature of the evolutionary process. Each

run had 3,600 cells (and thus a maximum population size of 3,600 organisms) arranged in a

toroidal topology. Each run started with two untagged asexual self-replicating organisms that

constructed a string of the appropriate length for the variant of the problem being attempted.

One organism constructed a random string and the other constructed the complement of the

random string. Seeding the organisms with strings assists the organisms in solving the bit

string production problem because, to receive the resources associated with completing a

MatchString task, an organism must construct a string that has over 50% of the bits correct.

The starting length of the organisms was 100 instructions. When an organism replicated,

each instruction had a 0.0075 probability of mutating as it was copied. Additionally, each

genome had a 0.05 probability of an insertion mutation and a 0.05 probability of a deletion

mutation. The offspring of an organism was placed in a random location in the torus. This

114

mass action replacement strategy ensures that neighboring organisms are unrelated and thus

cooperation would not be simply because of kin selection [13, 34]. The runs lasted for 50,000

updates.

5.1.2 Results

In the remainder of this section, we demonstrate our problem decomposition technique on

the bit string production problem. First, to ensure that organisms are able to dynamically

cooperate to solve the problem, we require all organisms to be specialists and exploit the

information produced by other organisms to cooperate. Because the specialist strategy incurs

the overhead of cooperation, a generalist strategy may outperform the specialist strategy on

simple problems. To test this hypothesis, we compare the performance of a population of

specialists and a population of generalists on the bit string production problem. We then

enable organisms to be generalists or specialists and demonstrate that Avida varies the

population composition in response to the complexity of the problem.

Can specialists perform problem decomposition?

Our first set of experiments test whether Avida can evolve a population of specialists that

cooperate to solve binary string production problems of varying complexity (i.e., 4-bit, 8-

bit, 16-bit, and 24-bit strings). We force all organisms to be strict specialists, meaning

that they produce strings that match at most one string and therefore must cooperate to

create complete sets. To ensure all organisms are strict specialists, we modified the prod-

string instruction so that an organism can produce copies only of the string with which it is

tagged. Thus, if an organism is tagged with string 0000, then it can only produce copies of

string 0000 and must receive string 1111 as a donation.

Although we provide the instructions necessary for the organisms to cooperate using

indirect reciprocity, the population must evolve an algorithm that effectively uses these

115

instructions to produce complete sets. It is possible that a population could cooperate using

a different technique. To isolate the critical information necessary to enable cooperation

among unrelated specialists, we ran four treatments that varied the ability of the organisms

to sense tags and reputations. Specifically, the four treatments are:

• Organisms do not have the ability to sense either tags or reputation. (no rep, no tags)

• Organisms have the ability to sense tags, but not the ability to sense reputation. (no

rep, tags)

• Organisms have the ability to sense reputation, but not the ability to sense tags. (rep,

no tags)

• Organisms have the ability to sense both reputation and tags. (rep, tags)

We ran 20 replicates for each variant of the binary string production problem and eval-

uated the results according to the number of complete sets produced and the number of

organisms that produced complete sets. The relative ranking of the treatments was the

same for all variants. Figure 5.2 depicts the results of varying the ability of the organisms

to sense tags and reputations for the 16-bit variant. Each treatment produced significantly

different results (p < 0.05, Mann-Whitney U test). Specifically, Figure 5.2 (a) depicts the

number of organisms that produced complete sets and Figure 5.2 (b) depicts the number

of complete sets produced by the organisms. The solid lines are the mean of 20 treatments

and the dotted lines are one standard error of the mean. Overall, organisms without either

tag or reputation information (green line with triangles) performed poorly; whereas, organ-

isms with both tag and reputation information (blue line with circles) achieved both the

largest number of organisms producing complete sets(∼2,000) and also the largest number

of complete sets produced (∼10,000).

Counterintuitively, organisms with reputation information, but not tag information

(black line with upside down triangles) produced fewer complete sets than organisms without

any information. We performed further investigations and found out that, although these

116

organisms are producing fewer complete sets, their average fitness exceeds that of organisms

without any information. Essentially, their fitness is greater because they are producing

more copies of a single string. Additionally, organisms with tag information, but not repu-

tation information (red line with squares) performed slightly better than organisms with no

information, but not nearly as well as organisms with both reputation and tag information

(p < 0.05, Mann-Whitney U test).

Based on these experiments, we conclude that the specialist strategy is affected by the

organism’s ability to sense both tags and reputation. For the remainder of the experiments,

organisms can sense both reputation and tag information.

How do specialists compare to generalists on performing problem decomposition?

The primary motivation for using a problem decomposition approach is to address problems

of increased complexity that are difficult for a standard EA to address. Next, we compare

the performance of strict specialists to strict generalists, where strict generalists do not have

a donate-string instruction and thus are unable to cooperate. To create a complete set, a

strict generalist must first create one string (e.g., 0000) in its buffer, produce copies of the

string, create the other string in its buffer (e.g., 1111), and then produce copies of it.

Our dual hypotheses for these experiments are that:

1. If a problem is simple, then a population of generalists will outperform a population

of specialists, since it is easier to produce both strings than to cooperate. Thus, for

simpler variants of the problem, the generalists treatments should both have more

organisms that produce complete sets and have more complete sets produced than the

specialist experiments.

2. If the problem is complex, then the specialists will outperform the generalists, since it

is easier to cooperate than to produce both strings. Thus, the specialist experiments

should both have more organisms that produce complete sets and have more complete

117

0 1 2 3 4 5
x 104

0

500

1000

1500

2000

2500

Update

O
rg

an
ism

s
cr

ea
tin

g
co

m
pl

et
e

se
ts

No rep, no tags
No rep, tags
Rep, no tags
Rep, tags

(a) Number of organisms that produce complete sets

0 1 2 3 4 5
x 104

0

20

40

60

80

100

120

Update

Co
m

pl
et

e
Se

ts
 (i

n
hu

nd
re

ds
)

(b) Number of complete sets produced

Figure 5.2: Number of organisms that produce complete sets (a) and the number of com-
plete sets produced (b) with four different treatments that vary the tagging and reputation
information available for the 16-bit variant. Populations where organisms have both sources
of information significantly outperform populations that lack either.

sets produced than the generalist experiments for the more complex variants of the bit

string production problem.

We tested these hypotheses by running 20 replicates of strict generalists and 20 replicates

of strict specialists for each of the four variants of the bit string production problem. The

118

0 1 2 3 4 5
x 104

0

20

40

60

80

100

Update

Pe
rc

en
t o

f P
op

ul
at

io
n

(a) 4-bit strings

0 1 2 3 4 5
x 104

0

20

40

60

80

100

Update

Pe
rc

en
t o

f P
op

ul
at

io
n

Generalists Specialists Mixed

(b) 8-bit strings

Figure 5.3: The percentage of the population of organisms producing complete sets across
the 4-bit and 8-bit string production problem variants. For simpler problems, generalists
outperform specialists; whereas, for more complex problems, specialists outperform gener-
alists. Mixed populations tend to perform at least as well as the isolated populations of
generalists or specialists.

results of the experiments are depicted in Figures 5.3-5.6, where the red lines with squares

represent the generalists and the blue lines with circles represent the specialists. For the

simpler 4-bit and 8-bit variants, the generalists outperform the specialists both in terms of

the number of organisms producing complete sets and also in terms of the number of com-

plete sets produced (p < 0.05, Mann-Whitney U test). However, for the more complex 16-bit

119

0 1 2 3 4 5
x 104

0

20

40

60

80

100

Update

Pe
rc

en
t o

f P
op

ul
at

io
n

(a) 16-bit strings

0 1 2 3 4 5
x 104

0

20

40

60

80

100

Update

Pe
rc

en
t o

f P
op

ul
at

io
n

Generalists Specialists Mixed

(b) 24-bit strings

Figure 5.4: The percentage of the population of organisms producing complete sets across the
16-bit and 24-bit production problem variants. For simpler problems, generalists outperform
specialists; whereas, for more complex problems, specialists outperform generalists. Mixed
populations tend to perform at least as well as the isolated populations of generalists or
specialists.

and 24-bit variants, the specialists outperform the generalists (p < 0.05, Mann-Whitney U

test). The performance of the specialists slightly increases with the complexity of the prob-

lem. Specifically, approximately the same number of specialist organisms (∼2000) produced

approximately the same number of complete sets (∼10,000) for the 8-bit, 16-bit, and 24-bit

treatments. In contrast, the success of the generalists was dependent upon the complexity

120

0 1 2 3 4 5
x 104

0

0.5

1

1.5

2

2.5 x 104

Update

Co
m

pl
et

e
Se

ts

(a) 4-bit strings

0 1 2 3 4 5
x 104

0

0.5

1

1.5

2

2.5 x 104

Update

Co
m

pl
et

e
Se

ts

Generalists Specialists Mixed

(b) 8-bit strings

Figure 5.5: The number of complete sets produced by generalists, specialists, and mixed
populations of both generalists and specialists for the 4-bit and 8-bit string production
problem variants. For simpler problems, generalists outperform specialists; whereas, for more
complex problems, specialists outperform generalists. Mixed populations tend to perform at
least as well as the isolated populations of generalists or specialists.

of the problem. For the 4-bit and 8-bit treatments, ∼2,400 generalist organisms produced

∼20,000 complete sets, but for the 16-bit and 24-bit treatments, ∼400 generalists produced

∼4,000 complete sets. These results support our hypotheses that complex problems favor

specialists, whereas simpler problems favor generalists.

121

0 1 2 3 4 5
x 104

0

0.5

1

1.5

2

2.5 x 104

Update

Co
m

pl
et

e
Se

ts

(a) 16-bit strings

0 1 2 3 4 5
x 104

0

0.5

1

1.5

2

2.5 x 104

Update

Co
m

pl
et

e
Se

ts

Generalists Specialists Mixed

(b) 24-bit strings

Figure 5.6: The number of complete sets produced by generalists, specialists, and mixed
populations of both generalists and specialists for the 16-bit and 24-bit string production
problem variants. For simpler problems, generalists outperform specialists; whereas, for more
complex problems, specialists outperform generalists. Mixed populations tend to perform at
least as well as the isolated populations of generalists or specialists.

When does specialization occur?

Ideally, a problem decomposition approach would evolve generalists or specialists depending

on the complexity of the problem. To test the ability of our technique to automatically vary

122

population composition, we enable both types of organisms to coexist within a population.

Our hypothesis for the next set of experiments is: Given a population in which organisms

could be either generalists or specialists, the composition of the population will change

depending on the complexity of the problem. Specifically, if the problem is simpler, then

the generalists should dominate; if the problem is more complex, then the specialists should

dominate. However, enabling organisms to be either generalists or specialists should not

negatively affect the ability of the population to solve the problem.

To test this hypothesis, we ran 20 replicates for each of the bit string production problem

variants in which organisms could be either generalists or specialists. Specifically, we both

enabled the organisms to donate and did not limit them to producing one string. For these

results, we consider an organism to be a specialist if it produces only one string and to be a

generalist if it produces both.

The green line with triangles in Figures 5.3-5.5 depict the results of a mixed population

of generalists or specialists. In general, the performance of the mixed population toward the

end of the run is equivalent to that of the isolated treatment (either generalist or specialist)

that performs the best. Additionally, the number of complete sets produced by the mixed

populations for the 16-bit and 24-bit variants is higher than that of the isolated populations

of both specialists and generalists (p < 0.05, Mann-Whitney U test). Therefore, we conclude

that the mixed population does not negatively affect Avida’s ability to solve the problem.

The average population compositions from the four variants are depicted in Figures 5.7

and 5.8, where the red lines with squares represent the percent of organisms that are gener-

alists and the blue lines with circles represent the percent of organisms that are specialists.

As the complexity of the problem increases, so does the prevalence of specialists. Specifi-

cally, in the 4-bit and 8-bit variants, generalists tend to dominate the population (p < 0.05,

Mann-Whitney U test). However, in the 16-bit and 24-bit variants, the specialists tend to

dominate the population (p < 0.05, Mann-Whitney U test).

123

0 1 2 3 4 5
x 104

0

20

40

60

80

100

Update

Pe
rc

en
t o

f p
op

ul
at

io
n

(a) 4-bit strings

0 1 2 3 4 5
x 104

0

20

40

60

80

100

Update

Pe
rc

en
t o

f p
op

ul
at

io
n

Generalists Specialists

(b) 8-bit strings

Figure 5.7: The population composition of mixed populations comprising both generalists
and specialists for the 4-bit and 8-bit variants of the bit string production problem. In
general, the more simple variants have a predominantly generalist population and the more
complex variants have a predominantly specialist population.

Although the average population compositions make it appear as if the number of gen-

eralists in a population gradually increases, for the individual replicates, once a generalist

strategy for producing complete sets is found, it quickly sweeps the population. Thus, in

many cases, a specialist strategy tended to thrive early on, probably because it is simpler to

evolve, but was quickly replaced when a generalist strategy evolved. Three possible factors

124

0 1 2 3 4 5
x 104

0

20

40

60

80

100

Update

Pe
rc

en
t o

f p
op

ul
at

io
n

(a) 16-bit strings

0 1 2 3 4 5
x 104

0

20

40

60

80

100

Update

Pe
rc

en
t o

f p
op

ul
at

io
n

Generalists Specialists

(b) 24-bit strings

Figure 5.8: The population composition of mixed populations comprising both generalists
and specialists for the 16-bit and 24-bit variants of the bit string production problem. In
general, the more simple variants have a predominantly generalist population and the more
complex variants have a predominantly specialist population.

that could influence the ability of generalist strategy to sweep the population are: First,

because generalists do not rely on others for donations of subcomponents, they are a more

robust strategy. Second, generalist organisms are, most likely, stingy in the sense that they

do not donate. Figure 5.9 depicts the percent of altruists (organisms that donate a string) in

the population, the percent of specialists, and the percent of generalists for the 16-bit vari-

125

ant with a mixed population. The percent of altruists almost perfectly tracks the percent of

specialists, but appears unrelated to the percent of generalists. Because generalists do not

donate, as the number of generalists increases, it becomes increasingly challenging for the

specialists to find neighboring organisms with which to cooperate. Third, generalists likely

benefit from some donations from specialists, since a generalist is indistinguishable from a

specialist that has not yet donated in that both have a reputation of 0.

0 1 2 3 4 5
x 104

0

20

40

60

80

100

Update

Pe
rc

en
t o

f p
op

ul
at

io
n

Generalists Specialists Altruists

Figure 5.9: The percent of organisms that are generalists, specialists, and altruists. The per-
cent of altruists in the population closely tracks the number of specialists in the population,
indicating that generalists are not making donations.

5.1.3 Conclusions

In this section, we have presented a digital-evolution based approach to problem decomposi-

tion. Our approach enables individuals to be either generalists that independently solve the

problem or specialists that each contribute a portion of the overall solution. We have demon-

strated the feasibility of this technique using several variants of the binary string production

problem. As the complexity of the problem increases, the population composition automat-

ically changes from predominantly generalists to predominately specialists. However, once

a generalist strategy evolves within the population, it quickly dominates. Some limitations

126

of this approach are that it relies upon human guidance to decompose the problem and to

specify how the solution should be formed from the problem components.

5.2 Evolved Problem Decomposition Approach

While studying how task-switching costs influence the evolution of division of labor, we an-

alyzed two groups that exhibited high degrees of division of labor. Both groups exhibited

problem decomposition strategies, even though problem decomposition was not directly re-

warded by either of our experiments. Here, we present our analyses of the groups and then

describe the implications for evolutionary algorithms.

5.2.1 Group case study 1.

As part of our preliminary study for the role of task-switching costs in the evolution of divi-

sion of labor, we uncovered an example of emergent problem decomposition. This preliminary

study [44] differs from later work presented as a part of this dissertation in Section 4.2 in

that the organisms used a simpler form of self replication, the limited resources did not have

an outflow, there were only five possible logic tasks that the organisms could perform, and

the resource requirement for group replication was set to 350 resources. The group that we

analyzed resulted from the 50-cost treatment. This group performed 4 (out of 5 possible)

different types of tasks.

The first step in our analysis was to identify which mechanism was being used to perform

division of labor. To identify the mechanism used, we conducted knockout experiments for

each possible coordination instruction, including messaging capabilities, location informa-

tion, age of the organism, and age of the group. In each knockout experiment, all instances

of the target instruction were replaced with a placeholder instruction that performs no useful

function. We then seeded a group with the knockout version of the genotype and assessed its

127

...
nop-A
get-role-id # BX <- latest role-id
set-flow
push
retrieve-msg # (CX,AX) <- (label,data)
nop-C
rotate-right-one
rotate-left-one
nand # CX <- BX nand CX ~(role-id & label)
nop-C
if-label # always true
if-less # if BX < CX ~(role-id & nand value)
dec # --BX
bcast1 # bcast BX,CX
IO # IO CX
nop-C
...

Figure 5.10: A snippet of the genome of a organism that when placed with clones of itself
in a group performs division of labor and problem decomposition.

performance. The group’s performance was not affected by the removal of location informa-

tion, age of the organism, nor age of the group. However, if the group’s messaging capability

was disabled, the group was no longer able to perform any tasks, and was thus unable to

consume any resources or replicate. By performing additional knockouts that removed only

the send-msg instruction, we further confirmed that the contents of the message were an

integral part of the group’s strategy.

Second, we isolated how messaging was being used by the group. Figure 5.10 provides

the relevant fragment of the genome. Essentially, an organism uses three pieces of informa-

tion to compute the results of a task: its role-id register (which serves as a place to store

information), the label of a message it receives, and the contents of a message it receives. At

a high level, an organism nands together information it receives from another organism with

information it stores in its role-id register to perform a task.

One fascinating element of this strategy is that the organisms are using messaging, not

128

just as a mechanism for regulating task assignment, but also as a means to cooperatively

develop solutions for more complex tasks: Organisms perform the more complex tasks when

they receive messages containing the solutions to the simpler tasks. These organisms were co-

operatively solving the problem. Organisms performed higher level tasks using the solutions

computed by organisms for the lower-level tasks.

5.2.2 Group case study 2.

Our second case study resulted from an analysis of a group evolved as part of the task-

switching experiments described in Section 4.2. The environment in which this group evolved

differed from the previous case study in that organisms could perform up to nine logic tasks,

limited resources were configured with an outflow, and the resource requirement for group

replication was set to 500 resources. Additionally, in our earlier experiment, organisms

replicated by executing a repro instruction. In this experiment, organisms were required to

include the instructions to copy each instruction of their genome to an offspring organism,

which is a much more complex process. The group that we analyzed resulted from the 50-

cost treatment. This group performed 7 (out of 9 possible) different types of tasks in the

control analyses, but was not able to replicate when its messaging capabilities were knocked

out.

We focused on isolating how messaging was being used by the group. To start, we exam-

ined what messages organisms were sending. Messages consist of two numbers designated by

the organisms. Initially, when we equipped the organisms with message sending capabilities,

we envisioned them using the messages as semaphores to coordinate which organism was

performing which task. However, in this case, the organisms instead sent messages con-

taining either the solution to a task, or a number slightly off from the result of the task

(i.e., a result obtained by adding or subtracting a number less than three). Specifically, the

messages sent by the organisms contained the solution to all seven of the tasks performed

129

by the organisms.

A preliminary study of the genotype for this group indicated that it was significantly

more challenging to decipher than the genotype used for the original case study. As a result,

we needed to proceed more methodically to figure out how it functioned. There are several

possible ways that the organisms could use messages containing task results: (1) organisms

did not use the contents of the messages, but rather just the presence of them to coordinate

behavior, (2) organisms received a result and then performed the task, (3) organisms used

the result as part of a calculation for a more complex task – the logic tasks are building blocks

for one another. To assess whether organisms were using the contents of the messages, we

randomized the numbers upon which they performed logic tasks, which had the effect of

making task results organism specific. This modification ensured that messages could still

be sent and received, but that contents were unable to contribute to the task performance

of receiving organisms. With this modification, the group was unable to perform any tasks,

thus ruling out the first possibility. To distinguish between the second and third options we

examined whether organisms performed a task they received the result of; they did not. We

studied the third possibility in greater detail by tracing the behavior of every group member,

including their messaging interactions. We discovered that organisms sent task results, which

were then used as building blocks by the receiving organisms for computing more advanced

tasks. For example, in the early part of the group life when there are only two organisms,

the offspring organism sends the parent organism the results of performing task not. Using

this result, the parent organism performs some additional calculations to perform tasks ornot

and andnot, sending out the results. Thus, organisms are using the task results they receive

in messages as building blocks for computing the solutions to more complex tasks.

While our study focused on assessing whether division of labor arose more frequently in

the presence of higher task-switching costs, the behavior of the group indicates a far more

complex strategy than we had anticipated. In this instance, group members perform problem

130

decomposition by breaking complex logic tasks into their constituent simpler tasks, comput-

ing the results for simpler tasks, sharing the task results, and assembling the solutions to

produce the results for more complex tasks. This strategy is far more complex and coordi-

nated than a simple approach in which different group members specialize on performing a

single task in isolation. Intriguingly, this strategy also reflects how some natural organisms

perform division of labor. For example, leafcutter ants (Atta vollenweideri) decompose the

task of tending to fungi into majors that cut leaves, mediae that move leaves from the tree

to the colony, and minims that tend to the fungal gardens [53]. Both the strategy evolved

by the colony in this study and the strategy evolved by the leafcutter ants exhibit problem

decomposition and assembly line processing of task material. This result suggests that the

efficiency advantages afforded by problem decomposition may favor the evolution of division

of labor.

5.3 Implications

While problem decomposition has been speculated to enable EAs to address more challenging

problems than any one individual can solve, it a challenging behavior to evolve. Ideally, we

would like for EAs to automatically decompose the problem, solve the subproblems, and

assemble the sub-solutions to form the overall solution. Our engineered approach relied

upon developer guidance to: (1) specify how the problem should be decomposed (i.e., which

strings should be created), (2) how organisms could cooperate to exchange information (i.e.,

donating strings), and (3) how the problem was to be reassembled (i.e., a complete set was

formed by having both strings). In contrast, the groups evolved as part of our task-switching

studies automatically: (1) decomposed the problem with minimal guidance (i.e., while we did

specify all the logic functions, the organisms figured out that complex tasks could be broken

down into simpler tasks), (2) solved the subproblems (i.e., performed the math necessary

131

for the lower-order logic functions), and (3) stitched together the overall solution (i.e., they

used messaging to send the results of less complex tasks and evolved algorithms that made

use of these messages for assembling more complex tasks).

Notably, these results were achieved even though we were not directly rewarding for

division of labor or problem decomposition – we simply allowed for it and these mechanisms

were the most effective ways organisms found to solve the group task. Another result from

these studies is that when there was a more direct method to solve the problem, such as was

the case for the 25-role studies, the organisms did not evolve to use problem decomposition.

Additionally, these results underscore the importance of providing organisms with flexible

mechanisms, such as messaging, that enable communication. One unintended strength of

the messaging system used for these studies was that it did not prescribe what the contents

of the messages should be, nor how organisms should process the incoming messages. These

case studies suggest that imposing evolutionary conditions that facilitate division of labor

may also result in individuals finding the means to exhibit problem decomposition when it

is an effective method for solving the overall challenge.

132

Chapter 6

Conclusions

Division of labor, where individuals specialize on specific roles and cooperate to survive, is a

hallmark strategy of a diverse set of groups within nature, including bacteria, slime molds,

multicellular organisms, eusocial insects, eusocial mammals, and human economies [8, 16,

21, 32, 53, 55, 81, 98, 108, 111, 131]. As such an intriguing biological phenomena, scientists

have labored to explain the mechanisms used to implement division of labor, as well as

the reasons for its success. While researchers are able to experiment with modern groups

that exhibit division of labor in order to understand the modern adaptive benefits of such a

strategy, exploring the evolutionary conditions that give rise to division of labor remains a

challenge because of the long generation times and lack of historical data for natural systems.

In this dissertation, we have used Avida to explore evolutionary hypotheses for the division

of labor. Additionally, we have demonstrated that these studies may enable the development

of evolutionary algorithms that can address more complex problems.

6.1 Contributions

In summary, there are four main contributions of my research:

133

1. In preliminary studies that we conducted using a game theoretic approach [46] and

Avida [43, 44, 45] we found evidence that evolutionary computation techniques can

be used to evolve groups of organisms that exhibit division of labor. Our studies

with genetically heterogeneous groups revealed that multilevel selection is a sufficient

pressure to result in division of labor, even when the individual rewards for tasks

are greatly disparate. Our studies with clonal groups revealed that the mechanisms

used to achieve division of labor were environmentally dependent, but reflect strategies

commonly observed in nature. This work provided the foundation for our studies of

the evolutionary conditions under which division of labor is favored.

2. Next, we addressed a controversial hypothesis within biology: the temporal polyethism

pattern exhibited by a wide range of eusocial insects can result from the risks associated

with aging and certain types of tasks. We explored this question in the context of two

and three tasks with different risks associated with them. In these studies, individuals

performed the more risky task later in their lifetime, thus lending support to the

hypothesis.

3. Subsequently, we examined the role of task-switching costs in the evolution of division

of labor. The reduction of task-switching costs as a result of increased specialization has

been proposed as a potential efficiency benefit provided by division of labor strategies.

While this hypothesis is difficult to test in natural systems, since task-switching costs

may include the time it takes to travel between tasks, morphological changes that

must be made, and psychological changes that occur, we were able to address it more

explicitly using digital evolution. We created an environment in which the cost of

switching tasks was configurable. We found support for the hypothesis that as task-

switching costs increased, groups of organisms exhibited increasingly greater amounts

of division of labor. Additionally, this study resulted in support for another division of

134

labor hypothesis: that parallel processing may be an advantage provided by division

of labor [41, 44].

4. Lastly, in analyzing the groups that exhibited division of labor as the result of the

application of task-switching costs, we discovered that groups were employing a prob-

lem decomposition strategy. Problem decomposition strategies have been proposed as

an approach to enabling evolutionary algorithms to address more complex challenges.

Thus, our studies shed light on how to apply evolutionary pressures to produce groups

that exhibit problem decomposition to address group-level tasks [41, 44]. This ap-

proach may provide the basis for a new type of genetic algorithm that is explicitly

targeted at more complex problems.

6.2 Future Work

There are many possible future directions for division of labor research. In this section,

I briefly discuss several intriguing directions for future work that include exploring how

division of labor insights can be applied to evolutionary algorithms and expanding the scope

of evolutionary questions that we explore.

6.2.1 Problem Decomposition in Embodied Agents

As part of my post-graduation plans, I intend to apply the pressures we used to evolve a

group of organisms that perform problem decomposition to other problems including the

design of robot-control algorithms.

For example, we are interested in applying our division of labor insights to evolve robot

controllers that exhibit problem decomposition. The first project we plan to address is

evolving groups of robots that must specialize and coordinate their behavior to collect two

different types of resources. Specifically, the robots will be placed into an environment in

135

which there are two light beacons, where one beacon emits a green light and the other emits

a red light. These beacons represent different resources present in the environment that can

be collected by the robots if they flash their own corresponding red or green light within a

certain radius surrounding the beacon. The objective of the group of robots is to collect 25

red resources and 25 green resources as quickly as possible. To confirm the results of our

task-switching work, namely that increased task-switching costs promote division of labor

strategies, we can run three different treatments. In the first treatment, the red and green

beacons will be positioned close together enabling the robots to be generalists that may emit

alternating flashes. In the second and third treatments, the beacons will be positioned a

medium and significant distance apart, respectively. Our hypothesis is that as the beacons

move further apart the robots will increasingly evolve division of labor strategies.

For this study, we can leverage an existing framework for developing controllers that

makes use of the NEAT [115] and HyperNEAT [114] algorithms for evolving neural networks

that control robots. In previous work, we used simulated robot controllers evolved using

NEAT and HyperNEAT to manipulate groups of robots that spread out to cover an area [62].

During the evolutionary process, the solutions will be evaluated in simulation. We will then

load the best evolved solutions into e-puck robots for testing. This project will extend that

work by focusing on division of labor strategies and by including the step of loading robot

controllers onto physical robots for additional testing. Future work will use these robots to

perform complex tasks that require problem decomposition.

6.2.2 Evolution of Division of Labor

Building upon our current results, we can also test several other aspects of the evolution

of division of labor. The first aspect we plan to investigate is the effect of the behavior of

the ancestor organism. Currently, our experiments begin with a genome that gives rise to a

specialist organism in that it only performs one task. Mutations to the genome during group

136

replication give rise to organisms that perform multiple tasks and in some cases exhibit a

division of labor strategy where the organisms coordinate the roles they perform. However,

there is good reason to believe that the ancestor organism of eusocial colonies was a generalist

that performed all tasks necessary for survival, rather than a specialist [53]. To test this

aspect of the evolution of division of labor, we could evolve several generalist organisms that

perform all nine logic function in the standard Avida environment and then use them as

the ancestor organisms for our runs. Because historical contingency regarding the genetic

structure of the ancestor organism is likely to play a role in the evolution of division of labor,

we would need to start with several different evolved generalist organisms. It is unlikely that

using a generalist ancestor would invalidate our results, since this modification simplifies the

problem – to exhibit division of labor, the organisms would need to evolve only coordination

capabilities, rather than task capabilities and coordination capabilities.

One area of investigation in division of labor studies is the role of genetic variability [53,

109]. While genetic variability can be seen as a source of potential conflict within the

colonies for the reproductive role, it also may be used as a method for selecting tasks [109].

There is evidence that certain genetic lines within a colony are more prone to perform a

specific task than others [109]. Within our studies exploring the pressures that give rise to

division of labor strategies, we have focused on clonal colonies and thus have eliminated all

sources of genetic variability. However, we have the ability to experiment with the amount

of genetic variability present within a colony and observe its effects. We would expect that

large amounts of genetic variability could be harmful to a group’s ability to cooperate on

a group task, although, in small amounts, genetic variability may enhance division of labor

strategies.

Broadening the scope of our investigations, a third area we intend to investigate is one

of the other potential benefits of division of labor: increased efficiency via learning [20, 108].

Our current approach has examined the role of task-switching costs. However, we could

137

adopt a similar approach to studying the role of learning. Specifically, the simplest approach

would be to apply a large penalty the first time an organism performs a new type of task.

This penalty would be reduced each time the organism performs the task, implementing

efficiency gains through learning. A more advanced approach could include increasing the

penalty if the organism has not performed the task recently, which would be analogous to

forgetting infrequently performed actions.

6.2.3 Major Transitions in Evolution

While we have focused on the role division of labor has played as a strategy within biological

groups, division of labor also has a principal role in the major transitions in evolution [111].

These major transitions in evolution occur when formerly distinct individuals join together

in a higher-level unit that functions as a single reproductive entity [33, 60, 99, 100, 111].

These transitions can be fraternal (Figure 6.1 (a)1), where genetically similar individuals

(i.e., close kin) create a super-organism and then differentiate to perform various tasks, or

egalitarian (Figure 6.1(b)) in which formerly distinct organisms create a super-organism

that replicates all of its genetic material [95, 96]. For example, fraternal transitions include

single cells transitioning into multicellular organisms and distinct insects transitioning into

eusocial colonies; egalitarian transitions include the “eukaryotic alliance between a host cell

and its mitochondria” [95]. These transitions raise evolutionary questions regarding why

formerly distinct individuals would choose to cooperate with others and, once they did, how

this arrangement persisted.

While biologists have discovered evidence of these transitions, there is still a great deal

of mystery regarding the evolutionary forces that favor these transitions. Why would in-

dividuals give up their ability to reproduce independently? One hypothesis regarding an

explanation for fraternal transitions is that transitioning between reproduction and other

1Figure inspired by [60].

138

(a) Fraternal

T
im

e

1

2

3

4

(b) Egalitarian

Figure 6.1: Illustration of fraternal and egalitarian transitions. Circles represent individuals,
boxes represent groups, arrows represent steps. For a fraternal transition (a), an organism
(1), produces two daughter organisms (2), these daughters choose to remain in a group
(3), and eventually differentiate their behavior (4). For an egalitarian transition (b), two
organisms with different phenotypes (1) are proximally near one another (2) and choose to
form a group (3). Finally, further evolution differentiates the behavior of the organisms
within the group (4).

tasks may be time consuming, if not impossible. For example, single cells of Volvox algae

use their flagella to explore their medium and absorb resources; however, they are not able

to reproduce while flagellated. Thus, some species have undergone a fraternal transition to

form groups in which some flagellated individuals move the group, while other non-flagellated

individuals reproduce [81]. To study this topic, we can expand on our task-switching work

to make the cost of transitioning between other tasks and reproducing variable. Our hy-

pothesis is that as this cost rises, groups will increasingly evolve to exhibit reproductive

division of labor. One potential outcome of this study is support for Queller’s hypothesis

that reproductive division of labor can result from conditionally expressed instructions that

are dependent on location or the behavior of nearby individuals [96].

139

Egalitarian transitions in evolution occur when genetically distinct individuals cease to

replicate separately and instead begin to replicate as a group, where the genetic material

of both formerly independent individuals is copied together to the new group [95]. One

fascinating example of an egalitarian transition occurred in a colony of amoeba that when

infected with a harmful bacteria eventually evolved to not only neutralize the effect of the

bacteria, but also to depend upon the bacteria for survival [57]. These transitions give rise

to the question of under which conditions would formerly independent individuals choose to

form a group that replicates as a single entity [60]? Examples in nature suggest that one

or more of the participants in an egalitarian transition become more efficient as a result of

a close physical association with another individual and, in order to strengthen the fidelity

of their bond, evolve to replicate as a group. To explore questions surrounding egalitarian

transitions, we can relax two of the constraints imposed by my other division of labor studies.

First, whereas my other experiments forcibly place organisms into groups, in these experi-

ments organisms may choose to form or dissolve bonds with other organisms that result in

groups. Second, whereas my other experiments automate part of the group life cycle, these

experiments seek to understand how organisms may evolve their own group life cycle.

140

APPENDICES

141

Appendix A

Overview of Additional Research

Projects

Over the course of my Ph.D. studies, I have had the opportunity to work on a variety of

interesting projects that are not a part of, but rather inspired my dissertation research. I

started as a software engineer, began using evolutionary computation to address challenges

within software engineering, and then became fascinated with evolutionary computation

itself. In this appendix, I provide an overview of some of my other research projects and

contributions.

Software engineers are faced with developing and detecting errors in high assurance sys-

tems. The stakes of such development efforts are high, not only because of the substantial

costs of error correction, but also because failures may lead to injury, and, in the worst case,

loss of life [77]. To address some of the challenges present in developing these systems we

turned to evolutionary computation approaches.

142

A.1 Avida-MDE

Increasingly, high-assurance applications rely on autonomic systems to react and respond

to changing environmental concerns; examples include critical infrastructure protection and

transportation systems. As such, it is essential that the corresponding autonomic reactions

do not put the system into an inconsistent state or deliver unacceptable behavior. In an

effort to promote separation of concerns, we consider an autonomic system to comprise a

collection of (non-adaptive) target systems and a set of adaptations that realize transitions

among target systems in response to environmental changes. A key challenge with devel-

oping autonomic systems is to identify robust and resilient target systems that handle the

various, sometimes adverse, environmental conditions [59]. A second challenge is to develop

more abstract representations of these systems as a means to manage the complex functional

and adaptation requirements and the corresponding implementations [59]. Model-driven de-

velopment (MDD) technology [104] supports the systematic transformation of such abstract

representations (graphical models) into more detailed models or formal specifications, and

eventual generation of the corresponding code. While MDD offers an attractive develop-

ment approach, the efforts required to create or revise models in order to start the MDD

process (i.e., initial requirements-level or early design models) can be error prone and difficult

to automate. To address both challenges, we proposed a biologically-inspired approach to

automatically generate requirements-level behavioral models for target systems, where the

models support user-defined scenarios and satisfy formally specified safety-critical proper-

ties [37, 38, 40, 79].

Several approaches have been developed to model target systems, including: architecture

description languages [2, 10], goal models [27, 70], and state machines [70, 135]. Additionally,

significant progress has been achieved in synthesizing behavioral models from scenarios [3,

50, 69, 122, 124, 128] and from formally specified properties [58, 93, 122]. Scenarios and

143

properties form the lower and upper bounds on the possible behavior of the system [122],

respectively; that is, a scenario depicts what at least one path of behavior through a model

must satisfy, and properties indicate what all paths through a model must satisfy. However,

there are many behavioral models that exist in the solution space between these boundaries.

One drawback of existing approaches is that they limit the exploration of the solution space

for target systems to those envisioned by the developer who hand-crafted the model or

designed the synthesis algorithm. Since autonomic systems are reacting to a large number of

environmental and internal conditions, whose combined effect may not be fully understood

at development time, we need target systems that can deliver the essential services in a more

robust and resilient fashion than human developers might envision [59].

In this work, we described an approach to generating behavioral models for target systems

that leverages a technique used by living organisms to adapt to changing environmental

conditions: evolution. Our approach is based on digital evolution [87]. Whereas genetic

algorithms and genetic programs evaluate each individual in the population and explicitly

select individuals to move to the next generation, the evolution of digital organisms is more

open-ended and thus more likely to discover novel and previously unknown solutions. Until

recently, digital evolution has been used primarily by biologists to address questions that are

difficult or impossible to study with organic life forms [72, 86]. However, digital evolution also

provides a means to harness the power of evolution and apply it to problems in science and

engineering [36, 64, 79, 86], sometimes discovering strikingly clever and innovative solutions

to complex problems.

Our approach uses digital evolution to generate behavioral models of target systems. Each

digital organism is treated as a generator of UML state diagrams that depict system behavior:

when the organism executes, it constructs an in-memory representation of a behavioral model

that comprises one or more state diagrams. An organism’s ability to compete for resources

is directly related to whether the generated behavioral model meets the criteria specified

144

by the developer. Mutations introduced during replication produce organisms with varying

abilities to compete, while competition for resources gives rise to a population of organisms

that produce increasingly better solutions. To implement this method, we extended the

Avida digital evolution platform [87] in three key ways. First, we enabled each organism

to have instinctual knowledge, namely, information embedded in the organism at birth. In

this study, the instinctual knowledge comprises information about the UML class diagram

elements (that describe the structural elements) and an optional set of seed state diagrams

(that is, UML state diagrams specifying the behavior of the existing system). Second, we

enhanced the Avida instruction set to include instructions that enable an organism to use

its instinctual knowledge to construct transitions in one or more state diagrams. Third,

we enabled Avida to use third-party software to assess the behavioral models generated by

organisms. For example, we make use of the Spin model checker [54] to check the Avida-

generated state diagrams for adherence to safety-critical properties.

The primary contribution of this work is a digital evolution technique for automatically

generating behavioral models for an autonomic system. In contrast to other manual and

synthesis techniques, this technique generates an array of possible solutions that are unbiased

by human preconceptions. We illustrated this technique on the evolution of target systems

for an autonomic robot navigation system [61].

A.2 Marple

Model-driven engineering, which successively refines models from analysis to design and

then automatically generates code [104], can accidentally propagate errors in the analysis

model constructed early in the development process to code. Formally analyzing a model

for adherence to its requirements can detect errors in the sanctioned behavior, the known,

acceptable, and possibly required behavior of the model. This analysis, however, does not

145

detect errors in latent behavior, the unspecified and potentially unwanted behavior of the

model; these errors could then be propagated to the implementation and even deployed.

One approach to ensuring that models used for model-driven development provide the

desired behavior is to analyze them for adherence to system requirements [76, 80, 118]. This

analysis, however, does not detect errors in latent behavior, the unspecified and potentially

unwanted behavior of the model; these errors could then be propagated to the implementa-

tion and even deployed. Uchitel et. al have proposed an approach for detecting one form

of latent behavior called implied scenarios as part of the process of synthesizing a model

from scenarios [123]. However, preexisting UML models cannot make use of this technique.

Three broad categories of approaches have been developed to produce properties that could

be used for analysis: Requirements discovery approaches (e.g., [78]) examine testing and

deployment artifacts to detect missing or erroneous properties; process improvements have

been proposed as part of these approaches. Refinement-based approaches (e.g., [73]) infer

properties from formally specified goals or requirements. Lastly, specification generation

techniques (e.g., [1, 11, 12, 26, 28, 49, 56, 127, 133]) infer properties from a representation

of a system (e.g., a model or code) or a derivative of the system (e.g., execution traces).

Several previously developed specification generation approaches are able to infer temporal

logic properties from a model [11, 49], code [127], or execution traces [12, 133]. For these

approaches, the developer identifies a part of the system behavior to explore, either by re-

stricting the exploration to a portion of the code [127], or by explicitly selecting the states,

events, and variables that are of interest [11, 12, 49, 133]. One ramification of having the

developer guide the exploration is that the unexplored portions of the system may still con-

ceal latent unwanted behavior. Ideally, developers would like to maximize both automation

of property discovery and coverage, while minimizing the number of properties that must be

examined.

To address this challenge, we proposed an evolutionary-computation approach called

146

Marple1 to automatically generate properties that specify the latent behavior of UML

models comprising an instance (class) diagram and multiple state diagrams [39]. Evolu-

tionary computation methods, such as genetic algorithms and genetic programming, have

achieved considerable success, in some cases producing human-competitive designs [68]. Each

evolutionary algorithm experiment comprises a population of individuals. Over the course

of many generations, where each generation is subjected to natural selection, mutation, and

crossover, the evolutionary algorithm seeks to optimize according to a fitness function that

describes one or more objectives. For this approach, we use a recently developed technique

called novelty search, where the objective is not to find one optimal solution, but rather to

find a suite of sufficiently different solutions [71]. We use novelty search to enable Marple

to produce properties that maximize coverage of the model’s behavior, while minimizing

human effort.

Marple uses novelty search to discover a set of properties that describe a UML model,

where these properties describe behavior not explicitly stated in the requirements and may,

in fact, be unacceptable latent behavior. Specifically, each individual within Marple rep-

resents a property created by instantiating one of the five most commonly occurring speci-

fication patterns [22] in the form of Linear Temporal Logic (LTL). Instantiating a pattern

involves replacing the placeholders with evolved boolean propositions, where a proposition is

created using attribute and operation information from a UML instance diagram of the sys-

tem. Because the propositions can include conjunctives and disjunctives, the set of possible

propositions is unlimited and too large for brute force search methods to explore. During the

evolutionary process, mutations and crossover produce different LTL properties that may be

satisfied by the UML model. The novelty of a property is assessed using the Spin model

checker [54]. Specifically, the state space of the shortest witness trace (i.e., path that sup-

1Marple is named after Miss Marple, Agatha Christie’s detective who was famous for
detecting latent human behavior.

147

ports the property) through the Spin representation of the model is compared to the state

spaces of other properties. 2 If a novel region of the model state space is discovered (i.e.,

a region of the state space that has not been explored by previously evaluated properties),

then the property is assigned a higher fitness value and Marple searches the new region

more thoroughly. However, if a property explores a previously explored region of the state

space, then it is assigned a low fitness value and Marple does not search the region as thor-

oughly. In this way, Marple discovers properties that cumulatively describe the behavior of

the model. For readability purposes, the properties generated by Marple are presented to

the developer in natural language [67] for assessment. The generated properties can be used

by the developer to refine the requirements specifications (to explicitly sanction the latent

behavior) or to modify the UML model (to remove unwanted latent behavior).

Overall, our approach enables developers to automatically explore UML models for prop-

erties representing potentially unwanted latent behavior. We illustrated our approach by

using Marple to discover the unwanted latent behavior of models for an automobile door

locking system obtained from one of our industrial collaborators. To further validate our

approach, we have also applied it to a robot navigation system [61] and sought feedback from

our industrial collaborators. Industrial collaborators, including researchers at Ford Motor

company, provided feedback that Marple was a much needed means for detecting unwanted

behavior in models of high assurance systems.

A.3 Conclusions

The challenges we faced in addressing software engineering challenges led to my interest in

the development and improvement of evolutionary computation techniques in general. These

challenges motivated my interest in understanding how division of labor insights could be

2Spin provides configuration options for generating the shortest path, which is how we
produce the shortest witness trace.

148

applied to evolutionary computation techniques and in creating new problem decomposition

approaches.

149

BIBLIOGRAPHY

150

BIBLIOGRAPHY

[1] Mithun Acharya, Tao Xie, Jian Pei, and Jun Xu. Mining API patterns as partial
orders from source code: from usage scenarios to specifications. In ESEC-FSE ’07,
pages 25–34, New York, NY, USA, 2007. ACM.

[2] Robert Allen, Rémi Douence, and David Garlan. Specifying and analyzing dynamic
software architectures. Lecture Notes in Computer Science, 1382, 1998.

[3] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Inference of message sequence
charts. IEEE Trans. Softw. Eng., 29(7):623–633, 2003.

[4] Thomas Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University
Press, 1996.

[5] Benjamin E. Beckmann, Philip K. McKinley, David B. Knoester, and Charles Ofria.
Evolution of cooperative information gathering in self-replicating digital organisms.
In Proceedings of the First IEEE International Conference on Self-Adaptive and Self-
Organizing Systems (SASO), pages 65–76, 2007.

[6] Eric Bonabeau, Guy Theraulaz, and Jean-Louis Deneubourg. Fixed response thresh-
olds and the regulation of division of labor in insect societies. Bulletin of Mathematical
Biology, 60:753–807, 1998.

[7] Josh C. Bongard. The legion system: A novel approach to evolving hetrogeneity for
collective problem solving. In Proceedings of the European Conference on Genetic
Programming, pages 16–28, London, UK, 2000. Springer-Verlag.

[8] John Tyler Bonner and Kenneth B. Raper. A theory of the control of differentiation
in the cellular slime molds. The Quarterly Review of Biology, 51(50th Anniversary
Special Issue, 1926-1976):296–312, 1976.

[9] Andrew F. G. Bourke and Nigel R. Franks. Social Evolution in Ants. Princeton
University Press, 1995.

[10] Carlos Canal, Ernesto Pimentel, and José M. Troya. Specification and refinement
of dynamic software architectures. In Proceedings of the TC2 First Working IFIP
Conference on Software Architecture (WICSA1), WICSA1, pages 107–126, Deventer,
The Netherlands, The Netherlands, 1999. Kluwer, B.V.

[11] William Chan. Temporal-logic queries. In CAV ’00: Proceedings of the 12th Interna-
tional Conference on Computer Aided Verification, pages 450–463, London, UK, 2000.
Springer-Verlag.

151

[12] Richard M. Chang, George S. Avrunin, and Lori A. Clarke. Property inference from
program executions. Technical Report UM-CS-2006-26, University of Massachusetts,
2006.

[13] Jeff Clune, Heather J. Goldsby, Charles Ofria, and Robert T. Pennock. Selective
pressures for accurate altruism targeting: Evidence from digital evolution for difficult-
to-test aspects of inclusive fitness theory. Royal Society, 2010.

[14] David Cornforth and Michael Kirley. Cooperative problem solving using an agent-
based market. In Genetic and evolutionary computation conference (GECCO), pages
60–71, Seattle, Washington, 2004.

[15] Margaret J. Couvillon and Anna Dornhaus. Small worker bumble bees (Bombus impa-
tiens) are hardier against starvation than their larger sisters. Insectes Sociaux, pages
1–5, 2010.

[16] Bernard J. Crespi. The evolution of social behavior in microorganisms. Trends in
Ecology & Evolution, 16(4):178–183, April 2001.

[17] Robert Dahl. On Political Equality. Yale Univerisity Press, New Haven, CT, USA,
2006.

[18] Daniel C. Dennett. The new replicators. In Mark Pagel, editor, The Encyclopedia of
Evolution, volume 1, pages E83–E92. Oxford University Press, 2002.

[19] Francis D. DeWaal. Chimpanzee Politics: Power and Sex Among Apes. Johns Hopkins
University Press, May 2000.

[20] Anna Dornhaus. Specialization does not predict individual efficiency in an ant. PLoS
Biol, 6(11):e285, 11 2008.

[21] J. Emmett Duffy. The ecology and evolution of eusociality in sponge-dwelling shrimp.
In Genes, Behaviors and Evolution of Social Insects. Hokkaido University Press, 2003.

[22] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in prop-
erty specifications for finite-state verification. In Proceedings of the 21st International
Conference on Software Engineering, pages 411–420. IEEE Computer Society Press,
1999.

[23] Mary Jane West Eberhard. The evolution of social behavior by kin selection. The
Quarterly Review of Biology, 50(1):1–33, March 1975.

[24] E.M. Eddy. The germ line and development. Developmental Genetics, 19:287–289,
1996.

[25] Émile Durkheim. The Division of Labor in Society. Free Press, New York, NY, USA,
1893.

152

[26] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically
discovering likely program invariants to support program evolution. IEEE Transactions
on Software Engineering, 27(2):99–123, 2001.

[27] Martin S. Feather, Stephen Fickas, Axel Van Lamsweerde, and Christophe Ponsard.
Reconciling system requirements and runtime behavior. In IWSSD ’98: Proceedings
of the 9th International Workshop on Software Specification and Design, 1998.

[28] Cormac Flanagan and K. Rustan M. Leino. Houdini, an annotation assistant for
ESC/Java. In FME ’01: Proceedings of the International Symposium of Formal Meth-
ods Europe on Formal Methods for Increasing Software Productivity, pages 500–517,
London, UK, 2001. Springer-Verlag.

[29] Dario Floreano, Sara Mitri, Stphane Magnenat, and Laurent Keller. Evolutionary
Conditions for the Emergence of Communication in Robots. Current Biology, 17:514–
519, 2007.

[30] Kevin R. Foster, Tom Wenseleers, Francis L.W. Ratnieks, and David C. Queller. There
is nothing wrong with inclusive fitness. Trends in Ecology and Evolution, 21:599–600,
2006.

[31] N. R. Franks, C. Tofts, and A. B. Sendova-Franks. Studies of the division of labour:
neither physics nor stamp collecting. Animal Behaviour, 53(1):219 – 224, 1997.

[32] Herbert Gintis, Samuel Bowles, Robert Boyd, and Ernst Fehr. Moral Sentiments and
Material Interests: On the Foundations of Cooperation in Economic Life. MIT Press,
Cambridge, MA, USA, 2005.

[33] Peter Godfrey-Smith and Benjamin Kerr. Gestalt-switching and the evolutionary tran-
sitions. The British Journal for the Philosophy of Science, 2011. Accepted.

[34] Sherri Goings, Jeff Clune, Charles Ofria, and Robert T. Pennock. Kin-selection: The
rise and fall of kin-cheaters. In Ninth International Conference on Artificial Life, pages
303–308, Boston, MA, 2004.

[35] Sherri Goings and Charles Ofria. Ecological approaches to diversity maintenance in
evolutionary algorithms. In IEEE Symposium on Artificial Life, Nashville, TN, 2009.

[36] H. J. Goldsby, D. B. Knoester, B.H.C. Cheng, P. K. McKinley, and C. A. Ofria.
Digitally evolving models for dynamically adaptive systems. In Proceedings of the
ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), Minneapolis, Minnesota, May 2007.

[37] Heather J. Goldsby and Betty H. C. Cheng. Automatically generating behavioral
models of adaptive systems to address uncertainty. In Proceedings of ACM/IEEE
11th International Conference on Model Driven Engineering Languages and Systems
(MODELS), Toulouse, France, September 2008.

153

[38] Heather J. Goldsby and Betty H. C. Cheng. Avida-MDE: A digital evolution approach
to generating models of adaptive system behavior. In proceedings of Genetic and
Evolutionary Computation Conference (GECCO 2008), Atlanta, Georgia, July 2008.

[39] Heather J. Goldsby and Betty H. C. Cheng. Automatically discovering properties that
specify the latent behavior of uml models. In Proceedings of ACM/IEEE 13th Interna-
tional Conference on Model Driven Engineering Languages and Systems (MODELS),
Oslo, Norway, September 2010.

[40] Heather J. Goldsby, Betty H. C. Cheng, Philip K. McKinley, David B. Knoester,
and Charles A. Ofria. Digital evolution of behavioral models for autonomic systems.
In Proceedings of the 5th International Conference on Autonomic Computing (ICAC
2008), Chicago, Illinois, June 2008.

[41] Heather J. Goldsby, Anna Dornhaus, and Charles Ofria. The evolution of division of
labor in digital organisms. In preparation, 2011.

[42] Heather J. Goldsby, Sherri Goings, Jeff Clune, and Charles Ofria. Problem decompo-
sition using indirect reciprocity in evolved populations. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO), Atlanta, Georgia, July 2009.

[43] Heather J. Goldsby, David B. Knoester, Jeff Clune, Philip K. McKinley, and Charles
Ofria. The evolution of division of labor. In Proceedings of the European Conference
on Artificial Life (ECAL), Budapest, Hungry, September 2009.

[44] Heather J. Goldsby, David B. Knoester, and Charles Ofria. Evolution of division of la-
bor in genetically homogeneous groups. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), Portland, Oregon, July 2010.

[45] Heather J. Goldsby, David B. Knoester, and Charles Ofria. Specialization in hetero-
geneous groups. In preparation, 2010.

[46] Heather J. Goldsby, Karthik Panchanathan, and C. David Navarrete. Brave leaders
and opportunistic followers: A division of labor model. In preparation, 2010.

[47] Faustino J. Gomez and Risto Miikkulainen. Solving non-markovian control tasks with
neuroevolution. In In Proceedings of the 16th International Joint Conference on Arti-
ficial Intelligence, pages 1356–1361, 1999.

[48] Root Gorelick and Susan M. Bertram. Quantifying division of labor: borrowing tools
from sociology, sociobiology, information theory, landscape ecology, and biogeography.
Insectes Sociaux, 54(2):105–112, 2007.

[49] Arie Gurfinkel, Marsha Chechik, and Benet Devereux. Temporal logic query checking:
A tool for model exploration. IEEE Transactions on Software Engineering, 29(10):898–
914, 2003.

154

[50] David Harel, Hillel Kugler, and Amir Pnueli. Synthesis revisited: Generating statechart
models from scenario-based requirements. In Formal Methods in Software and Systems
Modeling, 2005.

[51] Friedrich A. Hayek. Individualism and Economic Order. Routledge and Kegan Paul,
London, UK, 1948.

[52] Fatemeh Heidary, Mohammad Reza Vaeze Mahdavi, Farshad Momeni, Bagher Mi-
naii, Mehrdad Rogani, Nader Fallah, Roghayeh Heidary, and Reza Gharebaghi. Food
inequality negatively impacts cardiac health in rabbits. PLoS ONE, 3(11):e3705, 2008.

[53] Bert Hölldobler and Edward O. Wilson. The superorganism: the beauty, elegance, and
strangeness of insect societies. WW Norton & Company, 2009.

[54] Gerard J. Holzmann. The Spin Model Checker, Primer and Reference Manual.
Addison-Wesley, 2004.

[55] Jennifer M. Jandt and Anna Dorhaus. Spatial organization and division of labour in
the bumblebee bombus impatiens. Animal Behavior, 77:641–651, 2009.

[56] Ralph Jeffords and Constance Heitmeyer. Automatic generation of state invariants
from requirements specifications. SIGSOFT Softw. Eng. Notes, 23(6):56–69, 1998.

[57] Kwang W. Jeon. Development of cellular dependence on infective organisms: Micrur-
gical studies in amoebas. Science, 9(4039):1122–1123, 1972.

[58] Barbara Jobstmann and Roderick Bloem. Optimizations for LTL synthesis. In FMCAD
’06: Proceedings of the Formal Methods in Computer Aided Design, 2006.

[59] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. Com-
puter, 36(1):41–50, 2003.

[60] Benjamin Kerr and Joshua Nahum. Setting the stage for an egalitarian major transi-
tion: The evolution of restraint. 2011. In Press.

[61] Minseong Kim, Suntae Kim, Sooyong Park, Mun-Taek Choi, Munsang Kim, and Has-
san Gomaa. UML-based service robot software development: a case study. In ICSE
’06: Proceeding of the 28th international conference on Software engineering, pages
534–543, 2006.

[62] David B. Knoester, Heather J. Goldsby, and Philip K. McKinley. Neuroevolution of
mobile ad hoc networks. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO), Portland, Oregon, July 2010.

[63] David B. Knoester, Philip K. McKinley, Benjamin Beckmann, and Charles Ofria. Di-
rected evolution of communication and cooperation in digital organisms. In Proceedings
of the European Conference on Artificial Life (ECAL), Lisbon, Portugal, September
2007.

155

[64] David B. Knoester, Philip K. McKinley, and Charles Ofria. Using group selection to
evolve leadership in populations of self-replicating digital organisms. In Proceedings
of the International Genetic and Evolutionary Computation Conference (GECCO),
London, UK, July 2007.

[65] David B. Knoester, Philip K. McKinley, and Charles Ofria. Cooperative network
construction using digital germlines. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), 2008.

[66] David B. Knoester, Andres J. Ramirez, Philip K. McKinley, and Betty H. C. Cheng.
Evolution of robust data distribution among digital organisms. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO), 2009.

[67] Sascha Konrad and Betty H. C. Cheng. Real-time specification patterns. In Proceedings
of the International Conference on Software Engineering (ICSE05), St Louis, MO,
USA, May 2005.

[68] John R. Koza, Martin A. Keane, Matthew J. Streeter, William Mydlowec, Jessen Yu,
and Guido Lanza. Genetic Programming IV: Routine Human-Competitive Machine
Intelligence. Springer, 2003.

[69] Ingolf Kruger, Radu Grosu, Peter Scholz, and Manfred Broy. From MSCs to state-
charts. In DIPES’98. Kluwer., 1999.

[70] Alexei Lapouchnian, Sotirios Liaskos, John Mylopoulos, and Yijun Yu. Towards
requirements-driven autonomic systems design. In DEAS ’05: Proceedings of the 2005
Workshop on Design and Evolution of Autonomic Application Software, pages 1–7, St.
Louis, MO, USA, 2005.

[71] Joel Lehman and Kenneth Stanley. Exploiting open-endedness to solve problems
through the search for novelty. In S. Bullock, J. Noble, R. Watson, and M. A. Bedau,
editors, Artificial Life XI: Proceedings of the Eleventh International Conference on the
Simulation and Synthesis of Living Systems, pages 329–336. MIT Press, Cambridge,
MA, 2008.

[72] Richard E. Lenski, Charles Ofria, Robert T. Pennock, and Christoph Adami. The
evolutionary origin of complex features. Nature, 423:139–144, 2003.

[73] Emmanuel Letier. Reasoning about Agents in Goal-Oriented Requirements Engineering.
PhD thesis, Louvain-la-Neuve, Belgium, 2001.

[74] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady, 10, 1966.

[75] Peter Lichodzijewski and Malcolm I. Heywood. Managing team-based problem solving
with symbiotic bid-based genetic programming. In Genetic and evolutionary compu-
tation conference (GECCO), pages 363–370, Atlanta, Georgia, 2008.

156

[76] Johan Lilius and Ivan Porres Paltor. vUML: A tool for verifying UML models. In
Proceedings of the 14th IEEE International Conference on Automated Software Engi-
neering, page 255, Washington, DC, USA, 1999. IEEE Computer Society.

[77] Robyn R. Lutz. Targeting safety-related errors during software requirements analysis.
In SIGSOFT’93 Symposium on the Foundations of Software Engineering, 1993.

[78] Robyn R. Lutz and Inés Carmen Mikulski. Requirements discovery during the testing of
safety-critical software. In ICSE ’03: Proceedings of the 25th International Conference
on Software Engineering, 2003.

[79] Philip McKinley, Betty H.C. Cheng, Charles Ofria, David Knoester, Benjamin Beck-
mann, and Heather Goldsby. Harnessing digital evolution. IEEE Computer, 41(1):54–
63, 2008.

[80] William E. McUmber and Betty H. C. Cheng. A general framework for formalizing
UML with formal languages. In Proceedings of the IEEE International Conference on
Software Engineering (ICSE01), Toronto, Canada, May 2001.

[81] Richard E. Michod. The group covariance effect and fitness trade-offs during evolu-
tionary transitions in individuality. Proceedings of the National Academy of Sciences,
103(24):9113–9117, 2006.

[82] Linda Northrop, Peter Feiler, Richard P. Gabriel, John Goodenough, Rick Linger,
Tom Longstaff, Rick Kazman, Mark Klein, Douglas Schmidt, Kevin Sullivan, and
Kurt Wallnau. Ultra-Large-Scale Systems - The Software Challenge of the Future.
Technical report, Software Engineering Institute, Carnegie Mellon, June 2006.

[83] Martin A. Nowak. Five rules for the evolution of cooperation. Science, 314(5805):1560–
1563, December 2006.

[84] Charles Ofria and Christoph Adami. Evolution of genetic organization in digital or-
ganisms. In Proc. of DIMACS workshop Evolution as Computation, pages 167–175,
Princeton, NJ, 1999.

[85] Charles Ofria, Christoph Adami, and Travis C. Collier. Design of evolvable computer
languages. IEEE Transactions in Evolutionary Computation, 6:420–424, 2002.

[86] Charles Ofria, Christoph Adami, and Travis C. Collier. Selective pressures on genomes
in molecular evolution. J. Theor. Biology, 222:477–483, 2003.

[87] Charles Ofria and Claus O. Wilke. Avida: A software platform for research in compu-
tational evolutionary biology. Journal of Artificial Life, 10:191–229, 2004.

[88] George F. Oster and Edward O. Wilson. Caste and ecology in the social insects.
Princeton Univ Pr, 1979.

157

[89] Richard E. Page Jr. and Joachim Erber. Levels of behavioral organization and the
evolution of division of labor. Naturwissenschaften, 89(3):91–106, 2002.

[90] Andres Perez-Uribe, Dario Floreano, and Laurent Keller. Effects of group composition
and levels of selection in the evolution of cooperation in artificial ants. In European
Conference on Artificial Life (ECAL), pages 128–137, 2003.

[91] Torsten Persson and Guido Tabellini. Is Inequality Harmful for Growth? Theory and
Evidence. American Economic Review, 1994.

[92] Nathan Pike and William A. Foster. Ecology of Social Evolution. Springer Berlin
Heidelberg, 2008.

[93] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1) designs. In In
Conference on Verification, Model Checking, and Abstract Interpretation, pages 364–
380, 2006.

[94] Mitchell A. Potter and Kenneth A. DeJong. Cooperative coevolution: An architecture
for evolving coadapted subcomponents. Evol. Comput., 8(1):1–29, 2000.

[95] David C. Queller. Cooperators since life began. Quarterly Review of Biology, pages
184–188, 1997.

[96] David C. Queller. Relatedness and the fraternal major transitions. Philosophical
Transactions of the Royal Society B: Biological Sciences, 355(1403):1647, 2000.

[97] David C. Queller and Joan E. Strassmann. Kin selection and social insects. BioScience,
48(3):165–175, March 1998.

[98] David C. Queller and Joan E. Strassmann. Eusociality. Current Biology, 13(22):R861–
863, 2003.

[99] Paul Rainey and Benjamin Kerr. Cheats as first propagules: a new hypothesis for
the evolution of individuality during the transition from single cells to multicellularity.
Bioessays, 32:872–880, 2010.

[100] Paul Rainey and Benjamin Kerr. Conflicts among levels of selection as fuel for the
evolution of individuality. 2011. In Press.

[101] Gene Robinson. Regulation of division of labor in insect societies. Annual Review of
Entomology, 37:637–665, 1992.

[102] Simon K. Robson and Samuel N. Beshers. Division of labour and ‘foraging for work’:
simulating reality versus the reality of simulations. Animal Behaviour, 53(1):214–218,
1997.

[103] Paul Schmid-Hempel. Worker castes and adaptive demography. Journal of Evolution-
ary Biology, 5(1):1–12, 1992.

158

[104] Douglas C. Schmidt. Model-Driven Engineering. IEEE Computer, 39(2), 2006.

[105] Thomas D. Seeley. Honey bee colonies are group-level adaptive units. The American
Naturalist, 150:S22–S41, July 1997.

[106] Thomas D. Seely. Adaptive significance of the age polyethism schedule in honeybee
colonies. Behavioral Ecology and Sociobiology, 11(4):287–293, 1982.

[107] Ana Sendova-Franks and Nigel R. Franks. Task allocation in ant colonies within vari-
able environments (a study of temporal polyethism: experimental). Bulletin of Math-
ematical Biology, 55(1):75–96, 1993.

[108] Adam Smith and Alan B. Krueger. The Wealth of Nations. 1776.

[109] Chris R. Smith, Amy L. Toth, Andrew V. Suarez, and Gene E. Robinson. Genetic and
genomic analyses of the division of labour in insect societies. Nature Reviews Genetics,
9(10):735–748, 2008.

[110] John Maynard Smith. Byte-sized evolution. Nature, 355(6363):772–773, 1992.

[111] John Maynard Smith and E. Szathmary. The major transitions in evolution. Oxford
University Press, New York, NY, USA, 1997.

[112] Elliot Sober and David Sloan Wilson. Unto Others: The Evolution and Psychology of
Unselfish Behavior. Harvard University Press, 1998.

[113] Herbert Spencer. The Principles of Sociology. Appleton, New York, NY, USA, 1896.

[114] Kenneth O. Stanley, David D’Ambrosio, and Jason Gauci. A hypercube-based indirect
encoding for evolving large-scale neural networks. Artificial Life, 2009.

[115] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through aug-
menting topologies. Evolutionary Computation, 10(2):99–127, 2002.

[116] Robert Sugden. The economics of rights, co-operation and welfare. Oxford: Basil
Blackwell, 1986.

[117] Ron Sun and Dehu Qi. Marlbs: Team cooperation through bidding. In International
Journal of Computational Intelligence Research, 2005.

[118] Meyer C. Tanuan. Automated Analysis of Unifed Modeling Language (UML) Specifi-
cations. Master’s thesis, University of Waterloo, Canada, 2001.

[119] Adam Tofilski. Influence of age polyethism on longevity of workers in social insects.
Behavioral Ecology and Sociobiology, 51:234–237, 2002. 10.1007/s00265-001-0429-z.

[120] Chris Tofts. Algorithms for task allocation in ants.(A study of temporal polyethism:
theory). Bulletin of Mathematical Biology, 55(5):891–918, 1993.

159

[121] James F.A. Traniello and Rebeca B. Rosengaus. Ecology, evolution and division of
labour in social insects. Animal Behaviour, 53(1):209–213, 1997.

[122] Sebastian Uchitel, Greg Brunet, and Marsha Chechik. Behaviour model synthesis
from properties and scenarios. In ICSE ’07: Proceedings of the 29th International
Conference on Software Engineering, pages 34–43, 2007.

[123] Sebastian Uchitel, Jeff Kramer, and Jeff Magee. Detecting implied scenarios in message
sequence chart specifications. SIGSOFT Softw. Eng. Notes, 26(5):74–82, 2001.

[124] Sebastian Uchitel, Jeff Kramer, and Jeff Magee. Synthesis of behavioral models from
scenarios. IEEE Trans. Softw. Eng., 29(2):99–115, 2003.

[125] Mark VanVugt, Robert Hogan, and Robert B. Kaiser. Leadership, followership, and
evolution: Some lessons from the past. American Psychologist, 63:182–196, 2008.

[126] Markus Waibel, Laurent Keller, and Dario Floreano. Genetic team composition and
level of selection in the evolution of cooperation. IEEE Transactions on Evolutionary
Compuation, 2009 (To appear).

[127] Westley Weimer and George C. Necula. Mining temporal specifications for error detec-
tion. In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pages 461–476, 2005.

[128] Jon Whittle and Praveen K. Jayaraman. Generating hierarchical state machines from
use case charts. In 14th IEEE International Requirements Engineering Conference
(RE’06), pages 16–25, Washington, DC, USA, 2006.

[129] David Sloan Wilson. Weak altruism, strong group selection. Oikos, 59(1):135–140,
1990.

[130] David Sloan Wilson. Altruism and organism: Disentangling the themes of multilevel
selection theory. The American Naturalist, 150:S122–S134, July 1997.

[131] Edward O. Wilson. Caste and division of labor in leaf-cutter ants (hymenoptera:
Formicidae: Atta): I. the overall pattern in a. sexdens. Behavioral Ecology and Socio-
biology, 7(2):143–156, 1980.

[132] V.C. Wynne-Edwards. Animal Dispersion in Relation to Social Behavior. Oliver &
Boyd, London, 1962.

[133] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir Das.
Perracotta: mining temporal API rules from imperfect traces. In ICSE ’06: Proceedings
of the 28th international conference on Software engineering, pages 282–291, New York,
NY, USA, 2006. ACM.

160

[134] Chern H. Yong and Risto Miikkulainen. Cooperative coevolution of multi-agent sys-
tems. Technical report, University of Texas at Austin, 2001.

[135] Ji Zhang and Betty H. C. Cheng. Model-based development of dynamically adaptive
software. In ICSE ’06: Proceeding of the 28th international conference on Software
engineering, pages 371–380, New York, NY, USA, 2006. ACM Press.

161

