TWO-DIMEISIONAL POTENTIA FLOW AND BOLNDARY LAYER ANAESSS OF THE ARFOIE OF A STOL WIG PROPULSOR SYSIEM

Thesis for the Degree of Ph.D. MICHICN STATE UNVERSTY
JAMES ARTHIR ABEERS

1971

This is to certify that the
thesis entitled

TWO-DIMENSIONAL POTENTIAL FLOW AND BOUNDARY LAYER ANALYSIS OF THE AIRFOIL OF A STOL WING PROPULSION SYSTEM presented by

JAMES ARTHUR ALBERS
has been accepted towards fulfillment of the requirements for

Thame

ABSTRACT
TWO-DIMENSIONAL POTENTIAL FLOW AND BOUNDARY LAYER ANALYSIS ON THE AIRFOIL OF A STOL WING PROPULSION SYSTEM
By
James Arthur Albers

The analysis considers a two-dimensional wing-fan system which consists of an airfoil with flap; the fans which have a distributed suction at their inlet and a jet at their exit; and a jet sheet leaving the flap trailing edge. The solution provides the incompressible potential flow for variable fan or engine mass flow coefficient, the thrust coefficient for the propulsion system exhaust, and the wing and flap angle of attack. This includes the approximate location of the free exhaust jet. This potential flow solution is used as an input to the boundary layer analysis which calculates both laminar and turbulent incompressible boundary layer parameters. In particular, the separation point is determined on the airfoil of a blown flap wing propulsion system at various angles of attack.

The calculated pressure distributions for a particular externally blown flap configuration indicated that the minimum pressure point is near the leading edge (less than 2 percent of chord) of the airfoil with severe adverse pressure gradients at high angles of attack (near 20°). The results of the boundary layer analysis indicated that the
predicted turbulent separation point moved forward from the trailing edge as the angle of attack was increased. Trailing edge separation for the thick wing ($t / \mathrm{c}=0.15$) propulsion system combination considered was verified by experimental data.

TWO-DIMENSIONAL POTENTIAL FLOW AND BOUNDARY LAYER ANALYSIS OF THE AIRFOIL OF A STOL WING PROPULSION SYSTEM
$8 y$
James Arthur Albers

A THESIS
Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of
DOCTOR OF PHILOSOPHY
Department of Mechanical Engineering
1971

PLEASE NOTE:

Some Pages have indistinct
print. Filmed as received.
UNIVERSITY MICROFILMS

To my Mother and Father, Theresa, and J. J.

ACKNOWLEDGMENTS

```
The author wishes to thank his advisor, Dr. Merle C. Potter, for his guidance and assistance throughout this study. His active participation in the project and his willingness to discuss problems as they arose made working with him a rewarding experience. The author also wishes to thank the other members of his guidance committee for their time and interest in this study: Dr. Mahlon C. Smith, Dr. James V. Beck, and Dr. Norman L. Hills.
The author appreciates the assistance and guidance of Roger W. Luidens of NASA Lewis Research Center for his many constructive criticisms during the preparation of this dissertation. I would also like to acknowledge Newell D. Sanders of NASA Lewis Research Center for his continued support throughout the study.
The financial support of NASA Lewis Research Center's Training Office made the continuation of graduate study possible. I would like to give special thanks to Gertrude R. Collins of the NASA Training Office for her assistance throughout the program.
Special appreciation is extended to the author's wife, Theresa Ann, for her encouragement and understanding throughout the study.
```


TABLE OF CONTENTS

Page
LIST OF FIGURES vi
SUMMARY 1
INTRODUCTION 3
POTENTIAL FLOW ANALYSIS 9
Representation of Wing Propulsion System 9
Basic Equations and Boundary Conditions 11
Formulation of the Boundary Conditions as an Integral Equation. 12
Solution of Integral Equation 14
Basic Solutions 16
Combination Solution. 17
Location of Propulsion System Exhaust Jet 18
Potential Flow Computer Program 20
DISCUSSION AND RESULTS OF POTENTIAL FLOW ANALYSIS 21
Validity of Analysis 21
Inlet air suction 21
Exhaust jet shape 22
Example Applications 23
Flow field. 23
Pressure distribution 24
Lift coefficients 26
BOUNDARY LAYER ANALYSIS 29
Basic Equations of Motion 29
Transformed Equation of Motion 32
Effective Viscosity Hypothesis 33
Solution of the Boundary Layer Equation 37
DISCUSSION OF RESULTS OF BOUNDARY LAYER ANALYSIS. 40
Laminar Boundary Layer Growth 40
Transition. 41
Turbulent Boundary Layer Growth and Separation. 43
Boundary layer parameters 43
Velocity profiles 44
Consequences of separation 45
CONCLUDING REMARKS. 48
APPENDICES
A - SYMBOLS FOR POTENTIAL FLOW ANALYSIS 51
B - VELOCITIES IN TERMS OF SOURCE DENSITIES 54
C - COMPUTATION OF FLOW QUANTITIES FOR POTENTIAL FLOW ANALYSIS 60
D - POTENTIAL FLOW COMPUTER PROGRAM. 62
E - SYMBOLS FOR BOUNDARY LAYER ANALYSIS 92
F - DERIVATION OF TRANSFORMED BOUNDARY LAYER EQUATION OF MOTION. 95
REFERENCES 101
ILLUSTRATIONS 106

LIST OF FIGURES

 P. Page Figure1. Types of wing-flap systems considered 106(a) Jet flap airfoil(b) Externally blown flap wing section
2. Lewis wind tunnel model of multiple-fan blown flap wing propulsion system 107
(a) Schematic of model(b) Iwo-dimensional representation of wing propulsionsystem
3. Representation of boundary condition on body surface 109
4. Finite element approximation to body surface 110
5. Basic solutions of potential flow 111
(a) 0° uniform flow solution V_{0}
(b) 90° uniform flow solution, V_{90}(c) Vortex solution, $V_{V}\left(V_{\infty}=0\right)$(d) Suction solution, $V_{S}\left(V_{\infty}=0\right)$
6. Basic solutions for inlet 112
(a) 0^{0} solution with duct closed, $\overrightarrow{\mathrm{V}}_{1}$(b) 0° solution with duct open, $\overrightarrow{\mathrm{V}}_{2}$(c) Cross flow solution with duct open, \vec{v}_{3}
7. Two-dimensional inlet configuration 113
8. Comparisons of theoretical velocity distributions with experimental data for two-dimensional inlet 114
(a) Surface velocity distributions
(b) Centerline velocity distributions
9. Effect of jet shapes on the upper surface pressure distribution (flap angle, 30°; wing angle of attack, 0°) . . 115
(a) Illustration of jet shapes
(b) Upper surface pressure distributions
10. Comparison of theoretical nondimensional jet shapes (flap angle, 30°; thrust coefficient, 3) 116
11. Flow field for externally blown flap wing propulsion system (mass flow coefficient 0.38; thrust coefficient, 3)117
(a) Wing angle of attack, 0°; flap angle, 30°
(b) Wing angle of attack, 20°; flap angle, 50°
(c) Wing angle of attack, 0°; flap angle, 60°
12. Calculated pressure distributions on upper surface for fan-wing combination for various angles of attack (mass flow coefficient, 0.38°; thrust coefficient, 3; flap angle, 30°) 118
13. Effect of suction and jet on pressure distribution (flap angle, 30°; wing angle of attack, 0°) 119
14. Comparison of theoretical two-dimensional lift coefficient for blown flap (thrust coefficient, 3) 120 (a) Flap angle, 30° (b) Flap angle, 60°
15. Comparison of calculated and experimental three-
dimensional lift coefficients for blown flap
(thrust coefficient, 3) $12 l$
(a) Flap angle, 30°
(b) Flap angle, 60°
16. Illustration of notation for boundary layer analysis . . . 122
(a) Coordinate system
(b) Description of velocity profile
17. The turbulent effective viscosity hypothesis 123
18. Calculated velocity distributions for fan-wing combination for various angles of attack (mass flow coefficient, 0.38 ; jet momentum coefficient, 3; flap angle, 30°) . 124
19. Laminar boundary layer parameters on the airfoil of a
blown flap wing propulsion system (wing angle
of attack, 15°) 125
20. Turbulent boundary layer parameters on the airfoil of a blown flap wing propulsion system. 126
21. Velocity profiles at start of turbulent boundary
layer growth . 127
22. Turbulent boundary layer velocity profiles on the air- foil of a blown flap wing propulsion systems at various angles of attack . . Angle of attack, 0°

(b) Angle of attack, 15°

(c) Angle of attack, 20°

(d) Angle of attack, 25°

(e) Angle of attack, 30°
23. The stalling characteristics of airfoils 129
24. The stalling characteristics of blown flap wing
propulsion system130
(a) Experimental lift curve(b) Location of separation point for various angles ofattack
25. Notation for two-dimensional potential flows 131
(a) Three-dimensional illustration
(b) Two-dimensional cross section
26. Element of body surface 133
27. Schematic representation of computer program 133

SUMMARY

Abstract

The analysis considers a two-dimensional combined wing and propulsion system which consists of a flapped airfoil with fans located under the wing. The exhaust jet of the fans impacts the flap and is deflected downward.

A numerical method is used which includes the effect of suction at the inlet of the propulsion system and treats the constant thickness exhaust jet as part of the solid body. This method includes the determination of the approximate exhaust jet location. The method provides the potential flow solution for any fan or engine mass flow coefficient, the thrust coefficient for the propulsion system exhaust, the flap deflection angle, and the wing angle of attack. Validity of the numerical solution for a case with suction (but with no jet) was indicated by application of the program to a two-dimensional inlet; excellent agreement was found with experimental results.

The potential flow program was used to obtain the pressure distribution, velocity field, and lift coefficient for a particular externally blown flap, high-lift configuration. The flow field for this configuration indicated high upwash angles $\left(60^{\circ}\right.$ to $\left.90^{\circ}\right)$ at the propulsion system inlet and large jet penetrations at high angles of attack. A comparison of two-dimensional lift coefficients obtained by the method of this report with Spence's jet flap theory indicated that

the method of this report yielded lift coefficients that were an average of 10.5 and 12.1 percent higher in the 30° and 60° flap angles, respectively. A comparison of three-dimensional lift coefficients with experimental data for the blown flap indicated good agreement for the 30° flap, with the predicted lift coefficient an average of 11.4 percent higher than experimental data. Calculated pressure distributions showed severe adverse pressure gradients over a large portion of the wing at angles of attack of 20° or greater. The surface velocity distribution obtained from the potential flow solution was used to determine the boundary layer growth and separation on the upper surface of the airfoil. The boundary layer solution was obtained by reduction of the partial differential equations of motion to a set of ordinary differential equations at each x -location using finite differences for the x derivatives. By an iterative solution to the differential equations, the boundary layer parameters for both laminar and turbulent flow were found. The results indicated that the predicted turbulent separation point moved forward from the trailing edge as the angle of attack is increased. Trailing edge separation for the thick wing ($t / c=0.15$) propulsion system combination considered was verified by the experimental data.

INTRODUCTION

In recent years there has been much interest in short-takeoff-and-1anding (STOL) aircraft for both civil and military applications. A STOL airplane must have the capability for both high lift at takeoff and low drag at cruise. Past experimental work (refs. 1 to 3) demonstrated that the jet flap concept was capable of producing high lift. The jet flap airfoil injects high velocity air over the flap surface from a slot located at the trailing edge of the airfoil, as shown in Figure 1(a). (The jet flap airfoil (Fig. 1(a)) is sometimes referred to as a "jet augmented flap" in the literature.) One way to implement the jet flap concept is to use an externally blown flap. This may be accomplished by using high-bypass-ratio turbofan engines which exhaust into the wing flap system.

A STOL concept under investigation at NASA Lewis Research Center is a multiple-fan externally blown flap (Fig. 1(b)). Important in this design concept is passing some of the fan exhaust through the gaps in the flaps to control the boundary layer over the wing upper surface. Some of the aerodynamic problems associated with this concept are (1) airfoil design for takeoff, cruise, and landing; (2) fan location and orientation; (3) penetration of propulsion system exhaust jet; (4) the slot location and amount of blowing which are necessary for satisfactory boundary layer control. An analytical tool is needed to do detailed design studies of these aerodynamic problems. This
tool should have the capability to handle both potential flow and boundary layer flow.

The potential flow analysis is the first step in obtaining an analytical tool to design STOL wing propulsion systems. By shaping the airfoil geometry, the designer can modify the wing pressure distributions to delay separation. Fan location and orientation can be improved by analysis of the velocity and pressure distributions and the flow field obtained from the potential flow solution of the combined wing and propulsion system. A method to handle the slot location and the amount of blowing is discussed in reference 4. This problem is not included in this study. From the potential flow solution, we can determine the maximum attainable lift coefficient for the wing propulsion system. Using the surface velocity distribution as input to a boundary layer analysis, we can determine the separation point for a given engine-wing combination. The development of the potential flow solution was the first phase of this study.

There are many approximate potential flow theories. Some approximate methods for calculating flow over two-dimensional bodies are discussed in references 5 to 7. Most approximate methods assume, for simplification, that the body is slender or that the perturbation velocities caused by the body are small. Another type of approximate solution utilizes a distribution of singularities on or interior to the body surface. Some of the methods, based on a distribution of vorticity over the body surface are discussed in references 8 to 10 . The potential flow theory that is often used when considering highlift wing systems is that of Spence's jet flap theory as discussed
in references 11 and 12. This thin airfoil theory considers the effect of a highly idealized jet sheet leaving the trailing edge of the flap, and does not take into account the effect of the propulsion system inlet and the thickness distribution of the lifting system.

The most general and comprehensive two-dimensional incompressible potential flow method and program is the Douglas method as reported in references 13 to 15 . This method utilizes a distribution of sources and sinks on the body surface, and does not require bodies to be slender and perturbation velocities to be small. This method has the potential for dealing with distributed suction over part of the surface, and hence can handle the propulsion system inlet airflow. However, the program cannot handle problems for which the location of part of the boundary is unknown. For a combined wing and propulsion system, the shape and location of the jet exhaust of the fan or engine is not known a priori, hence, a method is developed to determine them.

The second phase of this report includes a study of the boundary layer growth and separation on the airfoil of the STOL wing propulsion system. During takeoff and landing the wing operates at high-lift coefficients with adverse pressure gradients over a large portion of the wing. This adverse pressure gradient may cause either laminar and/or turbulent separation. In general, the designer employs the various techniques at his disposal to avoid flow separation and to achieve the desired wing propulsion characteristics. Separation may be delayed by shaping the wing velocity distribution, by modification of airfoil
geometry, by engine location and orientation, and with boundary layer control devices. By using the potential flow surface velocity distribution as input to the governing boundary layer equations, we may solve the boundary layer growth and separation characteristics on the airfoil of the wing propulsion system.

Techniques for solving the boundary layer equations can be divided up into two general solution methods. The first includes the explicit-integral methods which require a procedure for solving ordinary differential equations for "integral" properties of the boundary layer. Some of the more commonly used integral methods are discussed in references 16 and 17. A discussion of a computer program based on the above methods is given in reference 18. These integral methods applied to the analysis of two-dimensional airfoils are discussed in reference 19. Integral methods are widely used at the present time for predicting the behavior of both laminar and turbulent boundary layers, but are not applicable for the strong adverse pressure gradients that are encountered on STOL wing propulsion systems at high angles of attack.

The second method of solution of boundary layers is the finite difference methods which provide a procedure for solving the coupled partial differential equations of mass, momentum and energy. One accurate numerical procedure for solving partial differtial equations of the diffusion type was developed by Crank and Nicolson as discussed in reference 20. Numerical methods developed specially for hydrodynamic phenomena are given by Flïgge-Lotz and Bradshaw et al. in
references 21 and 22. The three finite difference boundary layer methods more commonly used are those of (1) Spalding and Patankar, (2) Cebeci and Smith, and (3) Mellor and Herring and are reported in references 23 to 26. Spalding and Patankar's compressible method obtains a finite-difference equation from the boundary layer partial differential equation by formulating each term in the partial differential equation as an integrated average over a small control volume. Both of the other two methods are incompressible and transform and linearize the partial differential equations by using finite differences for the \mathbf{x} derivatives resulting in a series of ordinary differential equations. The ordinary differential equations are then integrated numerically across the boundary layer at each x-location. Numerical methods, used to solve the partial differential equations for turbulent flow, require as input an empirically based expression for the turbulent effective viscosity. The effective viscosity hypothesis used by Spalding and Patankar is based upon the mixing-1ength hypothesis of Prandtl and utilizes a Couette-flow relationship for the region close to the wall. Reference 27 indicates that the pressure gradient produced systematic deviations in the predicted heat-transfer rate and that the mixing-length constants should depend on the pressure gradient. Then the mixing length should be increased for adverse and reduced for favorable pressure gradients. The method of Smith, et al., utilizes an eddy viscosity based on Prandtl's mixing-length theory in the inner region. In the outer region a constant eddy viscosity modified by an intermittency factor is used. Mellor and Herring in formulating their effective viscosity hypothesis
divide the boundary layer in terms of an inner layer and outer layer and an overlap layer. The value of each region is based on experimental data and is uniquely determined by values of a pressure gradient parameter and displacement thickness Reynolds number. A more detailed discussion of this hypothesis is given in references 28 to 30 .

The method of Mellor and Herring was chosen for the prediction method to be used to calculate both laminar and turbulent boundary layer growth because of its accuracy, physical soundness, and adaptability to the particular application problem. Their effective viscosity hypothesis should be applicable to high adverse pressure gradient flows. Also an incompressible boundary layer analysis is sufficient, since here, we are only interested in studying the takeoff and landing flow characteristics of the wing-propulsion system. This corresponds to a free stream Mach number of 0.12 or less.

The purpose of this report is to develop an analysis to solve the potential flow and boundary layer growth of a STOL wing propulsion system. The potential flow solution was obtained by extending the twodimensional Douglas analysis and computer program to include the effect of suction at the propulsion system inlet, and by the development of a technique for determining the approximate location of the exhaust jet of the propulsion system. The potential analysis was used to obtain the flow field including the surface velocity and pressure distributions, and the lift coefficient. The surface velocity distribution was used to obtain the boundary layer growth and separation on the airfoil of a particular externally blown flap, high-lift configuration.

POTENTIAL FLOW ANALYSIS

Representation of the Wing Propulsion System

While the present development can be used for any two-dimensional configuration, it is helpful in describing the analysis to consider a particular physical system. The high-lift wing propulsion system for STOL applications under investigation at Lewis is a multiple-fan externally blown flap, as shown in Figure 2(a). The wind tunnel model is semispan with a NASA 4415 airfoil section, a 66 centimeter (26 in.) chord and a 165.1 -centimeter ($65-i n$.$) span. The model has eight pro-$ pulsion units spaced spanwise with the inlets under the wing and the exhausts ahead of a double slotted flap. The 30° and 60° flap deflections in Figure $1(\mathrm{~b})$ represent typical takeoff and landing configurations.

Since the proposed STOL lifting system utilizes a large number of fans closely spaced spanwise on each wing, it is reasonable to approximate the actual flow with a two-dimensional flow. This approximation should be valid as long as there is a sufficient number of fans for blowing to be uniformly distributed along the wing trailing edge. The representation of the two-dimensional lifting system is shown in Figure 2(b). The equivalent body surface over which the potential flow is calculated consists of the airfoil with flap; the fans, which have a distributed suction at their inlet and a jet at their exit; and the jet sheet leaving the flap trailing edge.

The wing propulsion system combination is idealized by considering it to be one solid body with suction at the fan inlet. The jet stream, as it exits from the propulsion system is at a higher total pressure than the surrounding flow with free stream lines separating this jet from the remaining potential flow. In potential flow the total pressure is everywhere constant; hence, in this study the jet is considered to be part of the solid body. This assumes no mixing of the external free stream and the free jet. The equivalent twodimensional propulsion system dimensions and jet sheet thickness were determined from the known mass flow rate and thrust of the Lewis propulsion system (Fig. 2(a)). The method used to determine the location of the free jet is discussed in the section, Location of Propulsion System Exhaust Jet.

The potential flow problem for a given wing propulsion system combination becomes one of calculating the velocities on and external to the body surface for any combination of the following variables: (1) free stream velocity V_{∞}, (2) fan or engine mass flow rate \dot{m} per unit span (3) propulsion system thrust T per unit span, (4) flap angle θ, and (5) wing angle of attack α. The first three variables can be combined into two dimensionless parameters: the fan or engine mass flow coefficient $C_{Q}=\dot{m} / \rho V_{\infty} C$ and the thrust coefficient $C_{T}=T /\left(1 / 2 \rho V_{\infty}^{2} C\right)$. The development of the theory to handle this calculation is discussed in the following sections. All symbols used for the potential flow analysis are defined in appendix A.

Basic Equations and Boundary Conditions
The basic potential flow equation is obtained from the incompressible continuity equation together with the condition of irrotationality which gives Laplace's equation

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0 \tag{1}
\end{equation*}
$$

where ϕ is the velocity potential due to the presence of the body only. To ensure uniqueness of the solution, the regularity condition at infinity is specified as

$$
\begin{equation*}
|\nabla \phi|_{\infty} \rightarrow 0 \tag{2}
\end{equation*}
$$

The velocity field \vec{V} can be expressed as the sum of the two velocities

$$
\begin{equation*}
\vec{V}=\vec{V}_{\infty}+\vec{v} \tag{3}
\end{equation*}
$$

where $\overrightarrow{\mathrm{V}}_{\infty}$ is the free stream velocity and $\overrightarrow{\mathrm{v}}$ is the disturbance velocity due to the presence of the body only.

A general method of solving the potential flow for an arbitrary boundary is to use a large number of sources and sinks distributed on the surface of the body. This is the method presented in this report. The boundary condition, illustrated in Figure 3, specifies that the entire normal component of velocity of the fluid at any point p on the surface must be equal to the prescribed normal velocity on the surface. The contribution supplied by the source-sink distribution is $\vec{v} \cdot \vec{n}$ and that supplied by the free stream velocity is $\vec{V}_{\infty} \cdot \vec{n}$. The prescribed normal velocity V_{N} on the surface is due to suction or
blowing. Thus, the boundary condition becomes

$$
\begin{equation*}
\left.\vec{V}_{\infty} \cdot \vec{n}\right|_{p}-\left.\vec{v} \cdot \vec{n}\right|_{p}=V_{N} \tag{4}
\end{equation*}
$$

Since $\vec{v} \cdot \vec{n}=\partial \phi / \partial n$, the boundary condition on ϕ is

$$
\begin{equation*}
\left.\frac{\partial \phi}{\partial \mathrm{n}}\right|_{\mathrm{p}}=\left.\overrightarrow{\mathrm{V}}_{\infty} \cdot \overrightarrow{\mathrm{n}}\right|_{\mathrm{p}}-\mathrm{V}_{\mathrm{N}} \tag{5}
\end{equation*}
$$

Equations (1), (2), and (5) form the classic Neumann problem of potential theory which is the basic problem we wish to solve. The direct problem as just defined, can be solved exactly by conformal transformation only for a limited class of boundary surfaces. By using a large number of sources and sinks distributed on the surface of the body, the boundary condition can be formulated into an integral equation.

Formulation of the Boundary Condition as an Integral Equation
A simple potential function which satisfies equation (1) is the potential due to a point source. The potential at a point P due to source at q is expressed as

$$
\begin{equation*}
\mathrm{d} \phi(\mathrm{P})=\frac{\sigma(\mathrm{q}) \mathrm{dS}}{\mathrm{r}(\mathrm{P}, \mathrm{q})} \tag{6}
\end{equation*}
$$

where $\sigma(q)$ is the local intensity per unit area of the source and $r(P, q)$ is the distance between P and q. Since Laplace's equation is linear, the combined potential due to a distribution of sources is also a solution. By considering a continuous source distribution on the surface S, the potential at point P due to the entire body becomes

$$
\begin{equation*}
\phi(P)=\int_{S} \frac{\sigma(q)}{r(P, q)} d S \tag{7}
\end{equation*}
$$

The potential as thus given satisfies equations (1) and (2), but it must also satisfy the boundary condition as given by equation (5). Applying the boundary condition requires evaluating the derivative $\partial \phi / \partial n$ at point p on the boundary surface. The derivative of $1 / r(p, q)$ becomes singular at p when p and q coincide so that the principal value of the integral must be extracted. The principal value, according to reference 31 , is $-2 \pi \sigma(p)$. This is the contribution to the normal velocity at p from the source at p. The contribution of the remainder of the sources to the normal velocity is given by the derivative of the integral of equation (7) evaluated on the boundary. The normal derivative of ϕ becomes

$$
\begin{equation*}
\left.\frac{\partial \phi}{\partial n}\right|_{p}=-2 \pi \sigma(p)+\int_{S} \frac{\partial}{\partial n}\left[\frac{1}{r(p, q)}\right] \sigma(q) d S \tag{8}
\end{equation*}
$$

Applying the condition of equation (5) to equation (8) results in the integral equation for the source-intensity distribution $\sigma(p)$

$$
\begin{equation*}
2 \pi \sigma(p)-\int_{S} \frac{\partial}{\partial n}\left(\frac{1}{r(p, q)}\right) \sigma(q) d S=-\vec{v}_{\infty} \cdot \vec{n}+V_{N} \tag{9}
\end{equation*}
$$

This equation is a Fredholm integral equation of the second kind whose solution is the central problem of the analysis.

The quantity $-\partial / \partial n[1 / r(p, q)]$ is called the kernel of the integral equation and depends only on the geometry of the surface. The first term of equation (9) is the normal velocity induced at p by a source at p. The second term is the combined effect of the sources at other points q on the surface of the body. The specific boundary conditions determine the right-hand side of equation (9). The first
term on the right is the normal component of the free-stream velocity at p. The second term on the right is the prescribed normal velocity on the boundary surface at p. The solution of this Fredholm integral equation then requires determining the unknown function σ on the body surface.

Solution of Integral Equation

Since the boundary of the wing propulsion system is completely arbitrary, the integration of equation (9) with respect to S should be done numerically. The boundary is approximated by a large number of surface elements whose characteristic lengths are small compared to the body. It is assumed that the surface element is a flat segment as shown in Figure 4. As the number of elements increase, the assumed model approaches the shape of the body. The value of the source intensity is assumed to be constant over each surface element. By assuming this constant intensity over each element, the problem becomes one of finding a finite number of values of σ, one for each of the surface elements. This gives a number of linear equations equal to the number of unknown values of σ. On each element a control point (the midpoint of the element) is selected where equation (8) is required to hold. Rewriting equation (8) in summation form yields

$$
\begin{equation*}
\left.\frac{\partial \phi}{\partial n}\right|_{p}=-2 \pi \sigma(p)+\sum_{p \neq q} \frac{\partial}{\partial n}\left[\frac{1}{r(p, q)}\right] \sigma(q) \Delta S \tag{10}
\end{equation*}
$$

The right side of equation (10) now becomes a matrix consisting of the normal velocities induced by a source of intensity σ at the control
point of all elements. The normal velocity at the control point of the $i^{\text {th }}$ element due to all surface elements is denoted as

$$
\begin{equation*}
\left.\frac{\partial \phi}{\partial n}\right|_{i}=A_{i i} \sigma_{i}+\sum_{\substack{j=1 \\ j \neq i}}^{N} A_{i j} \sigma_{j}=\sum_{j=1}^{N} A_{i j} \sigma_{j} \tag{11}
\end{equation*}
$$

Thus

$$
A_{i j}=\frac{\partial}{\partial n}\left[\frac{1}{r(p, q)}\right] \Delta S
$$

where i corresponds to p and j corresponds to q.
The source densities of all the surface elements must be determined in such a way that the normal velocity condition is satisfied at all control points. This results in

$$
\begin{equation*}
\sum_{j=1}^{N} A_{i j}{ }_{j}=-\vec{v}_{\infty} \cdot \vec{n}_{i}+v_{N, i} \tag{12}
\end{equation*}
$$

This set of linear algebraic equations is an approximation to the integral equation (9). Both $\overrightarrow{\mathrm{V}}_{\infty} \cdot \overrightarrow{\mathrm{n}}$ and the prescribed normal velocity V_{N}, in general, vary over the body surface. The linear equations are solved by a procedure of successive orthogonalization, as discussed in reference 32 . Once the linear equations have been solved, flow velocities may be calculated for points on and off the body surface (see appendix B). The method just described is used to obtain the basic solutions of potential flow.

Basic Solutions

The superposition of any solutions to the integral equation (9) is also a solution since Laplace's equation is linear. Hence, the flow about a body may be thought of as a linear combination of four basic flows illustrated in Figure 5:
(1) Uniform flow at zero angle of attack
(2) Uniform flow at 90° angle of attack
(3) Vortex flow
(4) Flow due to suction or blowing

The uniform flow solutions are solutions due to free stream velocity (rectilinear flow) past the body surface at 0° and 90°, respectively. For these basic solutions, the boundary condition of zero normal velocity on the surface must be satisfied. Then the prescribed velocity normal to the surface must be zero for the basic uniform flow solutions. From equation (5) the boundary condition becomes

$$
\begin{equation*}
\left.\frac{\partial \phi}{\partial \mathrm{n}}\right|_{p}=\left.\overrightarrow{\mathrm{V}}_{\infty} \cdot \overrightarrow{\mathrm{n}}\right|_{p} \tag{13}
\end{equation*}
$$

The solution for the body at any angle of attack may be obtained by a linear combination of the 0° and 90° uniform flow solutions.

For a lifting body the circulation is obtained by placing a vortex at any convenient location within the body. The boundary condition of zero normal velocity on the surface still applies (eq. (5)) except that now $\overrightarrow{\mathrm{V}}_{\infty}$ is replaced by the vortex velocity at any point. If \vec{V}_{v} represents the velocity at any point p on the body caused by the vortex, the boundary condition for the basic vortex solution becomes

$$
\begin{equation*}
\left.\frac{\partial \phi}{\partial \mathrm{n}}\right|_{\mathrm{p}}=\left.\overrightarrow{\mathrm{v}}_{\mathrm{v}} \cdot \overrightarrow{\mathrm{n}}\right|_{\mathrm{p}} \tag{14}
\end{equation*}
$$

The suction flow solution is obtained by specifying a prescribed normal velocity V_{N} at the fan face with a zero free stream velocity. This gives the desired mass flow rate for the inlet of the propulsion system. From equation (5) the boundary condition for the basic suction velocity solution becomes

$$
\begin{equation*}
\left.\frac{\partial \phi}{\partial n}\right|_{p}=-v_{N} \tag{15}
\end{equation*}
$$

For each basic solution, the velocities on the body surface and at prescribed locations in the flow field may be obtained. From the basic solutions the total combined solution may be obtained.

Combination Solution

The total velocity tangent to the body surface can be obtained by adding the tangential velocities of the four basic solutions.

$$
\begin{equation*}
v_{t}=v_{t, 0} \cos \alpha+v_{t, 90} \sin \alpha+\Gamma v_{t, v}+v_{t, s} \tag{16}
\end{equation*}
$$

where α is the angle of attack.
The nondimensional circulation Γ is determined by satisfying the Kutta condition at the trailing edge of the body. This condition stipulates that the flow at the body trailing edge be smooth. Thus, the tangential velocities above and below the trailing edge must be equal in magnitude. If ΔV is defined as $\Delta V=V_{\text {upper }}-V_{\text {lower }}$, the Kutta condition is satisfied if $\Delta V=0$ at the body trailing edge. Then
from equation (16)

$$
\begin{equation*}
\Delta \mathrm{v}_{\mathrm{t}, 0} \cos \alpha+\Delta \mathrm{v}_{\mathrm{t}, 90} \sin \alpha+\Delta \mathrm{v}_{\mathrm{t}, \mathrm{~s}}+\Gamma \Delta \mathrm{v}_{\mathrm{t}, \mathrm{v}}=0 \tag{17}
\end{equation*}
$$

Solving for Γ yields

$$
\begin{equation*}
\Gamma=-\frac{\Delta V_{t, 0} \cos \alpha+\Delta V_{t, 90} \sin \alpha+\Delta V_{t, s}}{\Delta V_{t, v}} \tag{18}
\end{equation*}
$$

Once the combined velocities on the body surface are known, the pressure coefficient, the lift coefficient, and the thrust coefficient can be obtained (see appendix C).

For off-body points it is more convenient to combine the basic source intensities rather than the basic velocities. The equation for the combined source intensity is

$$
\begin{equation*}
\sigma=\sigma_{0} \cos \alpha+\sigma_{90} \sin \alpha+\Gamma \sigma_{v}+\sigma_{s} \tag{19}
\end{equation*}
$$

Then, the x and y components of velocity are calculated from the combined source intensities (see appendix B). This approach is the same as that used in reference 15 , with the addition of the basic suction source intensity being added to the other basic source intensities.

Location of Propulsion System Exhaust Jet

The location of the propulsion system exhaust jet is determined by the following variables: (1) jet angle θ at flap trailing edge, (2) jet penetration H, (3) jet angle θ_{1} at trailing edge of jet and (4) total length of the free jet L_{T}. The representation of these variables is shown in Figure 2(b). It was assumed that the free jet
leaves the flap trailing edge at the flap angle θ. The flap angle is defined as the angle between the free stream direction and lower flap surface. After the jet leaves the trailing edge, the free stream velocity turns the jet, which approaches a horizontal asymptote several chord lengths beyond the airfoil leading edge. For typical thrust coefficients C_{T} corresponding to takeoff and landing conditions, this occurs at approximately four chord lengths from the airfoil leading edge (see ref. 10).

For a reasonable approximation to the jet shape, the lift coefficient is expected to depend principally on the vertical location of the jet asymptote. The problem then becomes one of finding the jet penetration H as shown in Figure 2(b). Initially, the penetration was assumed and a cubic equation used to approximate the shape of the jet sheet. (A cubic equation is the simplest expression that adequately approximates the jet shapes obtained from Spence's jet flap theory of ref. 12.) The correct distance H is that value for which the vertical component of thrust at the flap trailing edge balances the integrated vertical pressure forces on the free jet. Several values of H were assumed until the correct value of H was obtained.

Since the angle of the free jet is not exactly horizontal several chord lengths beyond the wing, a small angle θ_{1} (5° or less) was assumed. The length of the jet L_{T} was extended until the vertical component of force on the end of the jet (last 5 percent of the jet) was negligible for the chosen angle θ_{1}. Thus, if the jet is extended beyond this length, it gives no significant contribution to the lift coefficient. Neglecting the vertical component of thrust at the
end of the jet for an angle of 5° results in only a 3 percent variation in lift coefficient. Since the body was represented by the wing, flap, and jet, it was assumed to be closed at the jet trailing edge and the Kutta condition applied here.

Potential Flow Computer Program

A general description of the potential flow computer program along with the imputs and outputs of the program is given in appendix D. This appendix also includes a complete program listing.

DISCUSSION AND RESULTS OF POTENTIAL FLOW ANALYSIS

Validity of Analysis

Abstract

Inlet air suction To help ensure validity of the analysis, comparisons were made with known existing flow solutions. One existing solution solves the suction problem indirectly. It is also based on the Douglas method, but has application only to inlets and ducts (see ref. 33). This method utilizes three basic solutions, shown in Figure 6, to obtain a combined solution of physical interest. The flow about the inlet is obtained by considering the three basic solutions; \vec{V}_{1} with inlet duct extension closed, \vec{V}_{2} with the duct open, and \vec{V}_{3} the crossflow solution. With these three solutions any combination of free-stream velocity and mass flow through the inlet can be obtained. The duct must be extended far downstream of the region of interest to obtain valid solutions. This method could not be used to get solutions for a wing-engine combination since the body must be closed to consider it a lifting body. To make a comparison between this existing flow solution and the method presented in this report a two-dimensional inlet, shown in Figure 7, was considered. This inlet was chosen because experimental data were available. In the present analysis, mass flow through the inlet was obtained by considering a distributed suction V_{N} downstream of the inlet (see Fig. 7). Comparison of the

nondimensional surface velocities for the two methods are shown in Figures 8(a) and (b). Also shown is experimental data obtained from reference 34. The reference velocity $V_{\text {ref }}$ was arbitrarily selected as the average velocity at an x / L of 0.89 . Agreement between the two predictions is excellent for both the surface and centerline velocities. Comparison of experimental data with the prediction is quite acceptable for the centerline velocities. There is a slight variation between the experimental and predicted surface velocities. One reason for this variation could be boundary layer effects. The preceding discussion indicates that the combined uniform flow and suction solution is valid.

Exhaust jet shape

For a valid solution of a wing propulsion system there must be a reasonable approximation to the jet shape. The lift coefficients and pressure distributions for a given thrust coefficient depend principally on the flap angle θ and jet penetration H, as outlined in the analysis section, and not on the precise local shape of the jet. This is illustrated in Figure 9, which considers various free jet shapes for a 30° flap. For clarity the jet thickness is not shown. The assumed cubic equation is shown, along with representative upper and lower bounds for the jet shape. For the jet shapes. A and C shown, the solution results in only a ± 2.5 percent variation in lift coefficient from the assumed cubic shape B. This percent variation is distributed over the entire wing surface, as illustrated by the pressure distributions in Figure 9(b). Figure 9(b) shows only a 3 percent variation in pressure distribution for the jet shapes considered. Thus,
the lift coefficients and pressure distributions depend principally on the flap angle and jet penetration and not on the precise local shape of the jet for the present configuration.

As a point of interest, a comparison of the jet shape based on the Spence's theory of reference 12 was made with the jet shape obtained from the present method. Spence of reference 12 assumes that all flow deflections from the free stream are not large and uses vortex distributions that are placed on the x-axis rather than on the airfoil or jet. Thus, a comparison could only be made for relatively small flap deflections (30° or less). A comparison of the nondimensional jet shape predicted from Spence's theory and from the method of this report is shown in Figure 10 for a 30° flap deflection and a thrust coefficient of 3. The basic shapes of the two cases are the same close to the wing. The jet penetration of the present method is larger than Spence's theory at the greater distances, as would be expected. The present method, besides not assuming small angle approximations, includes the wing thickness and camber effect which would increase the lift coefficient and would also result in a greater penetration.

Example Applications

Flow field

Potential flow solutions are adequate representations of the flow around bodies if the surface boundary layers are thin and remain attached. It is assumed that the final design of a high-lift wing propulsion system will be one in which boundary layer separation is
prevented at relatively high angles of attack and flap settings. Representative flow fields for an externally blown flap high-lift configuration are shown in Figures 11 (a) to (c). The flow fields were obtained by sketching streamlines tangent to the calculated velocity vectors at various points in the flow. The wing propulsion system is shown, along with the shape of the jet exhaust of the propulsion system. For the conditions shown, the upwash angles at the propulsion system inlet are quite large, varying from 60° to 90° depending on flap angles and wing angles of attack. Two stagnation points occur on the lifting body. One occurs ahead of the inlet below the leading edge of the wing, and the other occurs downstream of the inlet on the under surface of the fan. Both stagnation points move further aft as the flap angle and the wing angle are increased. By observation of the flow fields it is seen that the under surface of the wing is in a relatively stagnant region. The jet penetration increases with angle of attack (Figs. 11(a) and (b)). For a flap angle of 60° (Fig. 11(c)) the jet penetration distance is approximately three chord lengths at five chord lengths beyond the wing leading edge. This jet penetration is also important when considering the effect of the ground on lift coefficient. Pressure distribution

The predicted pressures on the surface of the airfoil are valid only if the boundary layer is very thin and attached to the surface. The potential flow pressure distributions can be used both to calculate the boundary layer growth on the surface of the airfoil and as a design aid for the combined wing and propulsion system. Pressure
distributions on the wing upper surface with a 30° blown flap at various angles of attack are presented in Figure 12. The incompressible pressure coefficient, corresponding to the minimum pressure point, ranges from -7.5 to -51 for the 0° and 20° angle of attack, respectively. These extremely high negative pressure coefficients correspond to the very high lift coefficients which are discussed in the following section. The minimum pressure point for all angles of attack occurs very near the leading edge of the airfoil, and severe adverse pressure gradients over a large portion of the wing result at the higher angles of attack. The stagnation point moves further under the leading edge as angle of attack increases, resulting in high velocity gradients about the leading edge.

To illustrate the effect of the inlet airflow of the propulsion system and the effect of the exhaust jet a comparison was made of the pressure distributions for (1) the wing alone, (2) the wing with jet but without inlet air suction, and (3) the wing with inlet air suction and jet. This comparison is presented in Figure 13 for a 30° flap. At the minimum pressure point for the wing alone there exists a pressure coefficient of -4.8 near the wing leading edge, followed by a mild adverse pressure gradient. The wing with jet but without inlet air suction would be representative of a jet flap airfoil shown in Figure l(a). Jet flap theory does not include the effect of the inlet airflow of the propulsion system. For the wing with jet (without suction) the pressure coefficient is about -18 at the minimum pressure point, and there is a severe adverse pressure gradient over a large portion of the wing upper surface. When the effect of the suction at the propulsion system inlet is
included, the magnitude of the pressures is reduced considerably over the wing upper surface, resulting in a minimum pressure coefficient of -7.6, followed by a much milder adverse pressure gradient. It may appear from the upper surface pressure distributions of Figure 13 that the lift with the jet alone is much larger than the lift associated with the jet with suction; but this is not the case if both upper and lower surfaces of the airfoil are considered. The change in pressure distribution between the zero suction case and the suction case is a result of a shift in the stagnation point $\left(C_{p}=1.0\right)$ on the under surface of the wing. For the wing, without suction, one stagnation point occurs just ahead of the inlet of the propulsion system. For the wing with suction this stagnation point moves closer to the wing leading edge and another stagnation point occurs on the under surface of the fan (see Fig. 11(a)). The corresponding shift in the pressure distributions on both the upper and lower surfaces presented in Figure 13 results in less than 5 percent decrease in lift when the effect of inlet suction is included for the selected inlet location. The preceding discussion indicates that the effect of suction resulting from a fan or inlet installed under the wing affects the pressure distribution on the wing upper surface favorably, with only a small effect on total lift coefficient.

Lift coefficients

In order to further indicate the applicability of the present analysis a comparison (Fig. 14) was made between Spence's theory (ref. 12) and the method of this report for two-dimensional lift coefficients for the blown flap configuration (Fig. 1(b)). The lift coefficients predicted by the method of this report for the 30° flap range
from 6.5 to 13 , while those for the 60° flap range from 15 to 21 . The lift coefficients predicted by the present method generally range from 9.1 to 12 percent and from 10.6 to 13.6 percent higher than Spence's theory for the 30° and 60° flap, respectively. This difference exists since Spence's theory does not take into account the effects of the thickness and camber of the wing. The suction effect decreases the lift by approximately 5 percent, as discussed previously. The thick= ness and camber effect corresponds to approximately 15 percent increase in lift coefficient.

The two-dimensional lift coefficients were used to determine three-dimensional lift coefficients to compare with experimental data of a semispan blown flap model (Fig. 2(a)). The three-dimensional lift coefficient is

$$
\begin{equation*}
C_{L}=f C_{l} \tag{20}
\end{equation*}
$$

where f is a function of aspect ratio and thrust coefficient (assuming an elliptical lift distribution) and was obtained from reference 35 as

$$
\begin{equation*}
\mathrm{f}=\frac{\mathrm{AR}+\frac{2 \mathrm{C}_{\mathrm{T}}}{\pi}}{\mathrm{AR}+2+0.604\left(\mathrm{C}_{\mathrm{T}}\right)^{1 / 2}+0.87 \mathrm{C}_{\mathrm{T}}} \tag{21}
\end{equation*}
$$

Calculated three-dimensional liit coefficients along with experimental data obtained from the Lewis test program are presented in Figure 15. The aspect ratio was 5 for the blown flap model. The theoretical lift coefficients range from 4 to 7.5 and from 9 to 13 for the 30° and 60° flap, respectively. There is good agreement between theory and experiment for the 30° flap case, with theory ranging from 10.8 to 12
percent higher than the experimental data. The lift coefficients for the 60° flap range from 28.6 to 28.4 percent greater than the data. The calculated lift coefficient is the maximum attainable lift coefficient for each configuration corresponding to complete boundary layer control and negligible viscous effects. This may indicate that the 60° flap configuration did not have optimum boundary layer control and that improvements could be made in obtaining better experimental coefficients.

BOUNDARY LAYER ANALYSIS

Basic Equations of Motion

Consider the motion of a viscous incompressible fluid along a curved two-dimensional surface. Let x represent the distance measured along the surface of the airfoil from the stagnation point and y represent the distance normal to the airfoil surface, as shown in Figure 16. The time average velocity components in the x and y directions are designated at \bar{u} and \bar{v}, respectively. The curvature of the surface is denoted by K, which is a continuous function of x. (All symbols used for the boundary layer analysis are defined in appendix E.) For steady turbulent motion, the Navier-Stokes equations may be written (see ref. 36) as:

$$
\begin{aligned}
& \frac{1}{1+K y} \bar{u} \frac{\partial \bar{u}}{\partial x}+\bar{v} \frac{\partial \bar{u}}{\partial y}+\frac{K \bar{u} \bar{v}}{1+K y}=-\frac{1}{\rho(1+K y)} \frac{\partial \bar{p}}{\partial x}+v_{e}\left[\frac{1}{(1+K y)^{2}} \frac{\partial^{2} \bar{u}}{\partial x^{2}}+\frac{\partial^{2} \bar{u}}{\partial y^{2}}\right. \\
& \left.-\frac{y}{(1+K y)^{3}} \frac{\partial K}{\partial x} \frac{\partial \bar{u}}{\partial x}+\frac{K}{1+K y} \frac{\partial \bar{u}}{\partial y}-\frac{K^{2} \bar{u}}{(1+K y)^{2}}+\frac{2 K}{(1+K y)^{2}} \frac{\partial \bar{v}}{\partial x}+\frac{\bar{v}}{(1+K y)^{3}} \frac{\partial K}{\partial x}\right]
\end{aligned}
$$

$$
\begin{align*}
& \frac{1}{1+K y} \bar{u} \frac{\partial \bar{v}}{\partial x}+\bar{v} \frac{\partial \bar{v}}{\partial y}-\frac{K \bar{u}^{2}}{1+K y}=-\frac{1}{\rho} \frac{\partial \bar{p}}{\partial y}+v_{e}\left[\frac{1}{(1+K y)^{2}} \frac{\partial^{2} \bar{v}}{\partial x^{2}}+\frac{\partial^{2} \bar{v}}{\partial y^{2}}\right. \\
& \left.-\frac{y}{(1+K y)^{3}} \frac{\partial K}{\partial x} \frac{\partial \bar{v}}{\partial x}+\frac{K}{1+K y} \frac{\partial \bar{v}}{\partial y}-\frac{K^{2} \bar{v}}{(1+K y)^{2}}-\frac{\bar{u}}{(1+K y)^{3}} \frac{\partial K}{\partial x}-\frac{2 K}{(1+K y)^{2}} \frac{\partial \bar{u}}{\partial x}\right] \tag{22b}
\end{align*}
$$

where ν_{e} is the effective kinematic viscosity which includes the turbulent eddy viscosity. The equation of continuity is

$$
\begin{equation*}
(\partial \bar{u} / \partial x)+(\partial / \partial y)[(1+K y) \bar{v}]=0 \tag{23}
\end{equation*}
$$

These exact equations of motion are extremely difficult to solve. However, by means of an order of magnitude analysis (including curvature), we may simplify the equations of motion. The resulting boundary layer equation of motion for surfaces with curvature becomes
$\frac{1}{1+K y} \bar{u} \frac{\partial \bar{u}}{\partial x}+\bar{v} \frac{\partial \bar{u}}{\partial y}+\frac{K \bar{u} \bar{v}}{1+K y}=-\frac{1}{\rho(1+K y)} \frac{\partial \bar{p}}{\partial x}+\nu_{e}\left(\frac{\partial^{2} \bar{u}}{\partial y^{2}}+\frac{K}{(1+K y)} \frac{\partial \bar{u}}{\partial y}-\frac{K^{2} u}{(1+K y)^{2}}\right)$

$$
K \bar{u}^{2} /(1+K y)=(1 / \rho)(\partial \bar{p} / \partial y)
$$

The continuity equation remains the same as equation (23).
The curvature terms in the preceding equations of motion would have a negligible effect on the turbulent boundary layer growth (95 percent of the airfoil upper surface), since the surface curvature is small in this region of the airfoil. However, large surface curvature exists on the leading edge of the airfoil (5 percent of the airfoil surface), which is in the laminar portion of the boundary layer. The effect of large surface curvature has some effect on the laminar velocity profiles
(see ref. 37). Neglecting the effect of curvature would result in an error in the calculated velocity profile at transition which is used at the start of the turbulent boundary layer calculations. However, a variation of the velocity profile in this region has a negligible effect on the turbulent separation point, since the turbulent separation point is insensitive to the starting profile. This is illustrated in the section, Turbulent Boundary Layer Growth and Separation. Thus, if one neglects the effects of surface curvature, the preceding equations reduce to the standard Navier-Stokes equations (ref. 38, p. 545). The resulting momentum and continuity equation along the surface of the body are

$$
\begin{align*}
& \bar{u} \frac{\partial \bar{u}}{\partial x}+\bar{v} \frac{\partial \bar{u}}{\partial y}=U \frac{d U}{d x}+\frac{\partial\left[v_{e} \frac{\partial \bar{u}}{\partial y}\right]}{\partial y} \tag{25}\\
& \frac{\partial \bar{u}}{\partial x}+\frac{\partial \bar{v}}{\partial y}=0 \tag{26}
\end{align*}
$$

The equations apply to both laminar and turbulent flow if the definition of $\nu_{e} \frac{\partial \bar{u}}{\partial y}$ is taken to be:

$$
\begin{equation*}
\nu_{e} \frac{\partial \bar{u}}{\partial y}=\bar{\tau} / \rho \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\tau} / \rho=v \frac{\partial \bar{u}}{\partial \mathrm{y}}-\overline{u^{\prime} v^{\prime}} \tag{28}
\end{equation*}
$$

where $-\overline{u^{\prime} v^{\prime}}$ is the Reynolds shear stress. For laminar flow $v_{e}=v$. The boundary conditions are

$$
\begin{equation*}
\bar{u}(x, 0)=0 \tag{29a}
\end{equation*}
$$

$$
\begin{align*}
& \overline{\mathrm{v}}(\mathrm{x}, 0)=\overline{\mathrm{v}}_{\mathrm{w}}(\mathrm{x}) \tag{29b}\\
& \lim _{y \rightarrow \infty} \int_{0}^{y}\left[U(x)-\bar{u}\left(x, y^{\prime}\right)\right] d y^{\prime}=U(x) \delta^{*}(x) \tag{29c}
\end{align*}
$$

Equation (29a) is an obvious wall boundary condition. Equation (29b) is a general wall boundary condition on $\overline{\mathrm{V}}$ which includes the effect of wall transpiration velocity $\overline{\mathrm{v}}_{\mathrm{w}}$. Equation (29c) requires that $\bar{u} \rightarrow \mathrm{U}$ as $\mathrm{y} \rightarrow \infty$, and also requires that the displacement thickness (and the momentum thickness) be finite. This removes a lack of uniqueness of the type encountered by Hartree (ref. 39) in his solution of the laminar equations.

Transformed Equation of Motion

It is convenient for calculation purposes to transform the (x, y) coordinates into (x, n) coordinates through the following equations:

$$
\begin{equation*}
f^{\prime}(x, \eta)=\frac{U(x)-\bar{u}(x, y)}{U(x)} ; n=\frac{y}{\delta^{\star}(x)} \tag{30a,b}
\end{equation*}
$$

For turbulent flows, the velocity profile can best be represented in a defect formulation as expressed in the preceding equations. The present method uses δ^{*} with which to scale y so that $n=y / \delta^{*}$ need never exceed an outside value of 10 . Also, $f^{\prime}(x, n)$ is a slowly varying function of x so that relatively large increments in x are possible. Making the preceding substitutions in equations (25) and (26), results in the following transformed boundary layer equation for twodimensional, incompressible flow (see appendix F):
$\left(T f^{\prime \prime}\right)^{\prime}+\left[Q(\eta-f)-\bar{v}_{w} / U\right] f^{\prime \prime}+P\left(f^{\prime}-2\right) f^{\prime}=\delta^{*}\left(1-f^{\prime}\right) \frac{\partial f^{\prime}}{\partial x}=\delta^{*} f^{\prime \prime} \frac{\partial f}{\partial x}$
where

$$
Q=\frac{\frac{d}{d x}\left(\delta^{*} U\right)}{U}, P=\frac{\delta^{*} d U / d x}{U} \text {, and } T=\frac{\nu_{e}}{U \delta^{*}}
$$

The term T, the nondimensional effective viscosity, is discussed in the following section. The primes on f denote differentiation with respect to n.

Applying the transformations of equations (30a, b) to the boundary conditions (29a, b, c) result in
$f^{\prime}(x, 0)=1$
$f(x, 0)=0$
$\lim f(x, n) \rightarrow 1$

Effective Viscosity Hypothesis

Mellor and Gibson first formulated for equilibrium turbulent boundary layers an eddy viscosity composed of a linear function of distance from the wall and Clauser's (ref. 40) constant eddy viscosity for the defect region. They later generalized their treatment for flows in which the pressure gradient parameter $\beta=\left(\delta^{*} / \tau_{w}\right) d p / d x$ varied in the streamwise direction (see ref. 28). This method utilized a family of curves for different values of β as a starting point. Parametric differentiation then yielded an equation containing derivatives of the defect function with respect to β at constant y / δ^{*} and $d \beta / d x$. Mellor and Gibson refined the analysis by specifying a general
formulation of $d \beta / d x$ (ref. 29). For purposes of developing an effective viscosity v_{e}, which is composed of an eddy and a molecular viscosity, Mellor divides the boundary layer into a wall layer, overlap layer and a defect layer.

The hypothesis for the form of ν_{e} has as its basis three assumptions:

1. In the inner, or wall, layer, ν_{e} depends on only three quantities, v, y and $\frac{\partial \bar{u}}{\partial y}$, where ν is the molecular viscosity.
2. In the outer, or defect layer, ν_{e} depends on only three quantities, $\left(\delta^{*} U\right), y$ and $\frac{\partial \bar{u}}{\partial y}$, where $\delta^{*} \equiv \int_{0}^{\infty} \frac{(U-\bar{u}) d y}{U}$ is the scale suggested by Clauser (40).
3. In this two layer model, there is a region where the layers overlap and both expressions for ν_{e} apply simultaneously.

From Prandtl's theory (ref. 38, p. 555)

$$
\begin{equation*}
\bar{\tau}=\rho\left[\kappa^{2} y^{2}\left(\frac{\partial \bar{u}}{\partial y}\right)\right]\left(\frac{\partial \bar{u}}{\partial y}\right)=\rho\left[\nu_{e}\right] \frac{\partial \bar{u}}{\partial y} \tag{33}
\end{equation*}
$$

Then using the first two assumptions it follows that in the wall layer ν_{e} must have the form

$$
\begin{equation*}
\frac{\nu_{e}}{v}=\phi\left(\frac{\kappa^{2} y^{2}}{v} \frac{\partial \bar{u}}{\partial y}\right) \tag{34a}
\end{equation*}
$$

and in the defect layer, ν_{e} must be of the form

$$
\begin{equation*}
\frac{v_{e}}{\delta^{*} U}=\Phi\left(\frac{\kappa^{2} y^{2}}{\delta^{*} U} \frac{\partial \bar{u}}{\partial y}\right) \tag{34b}
\end{equation*}
$$

where κ is an empirical constant. Mellor makes Prandtl's theory more general so that both the laminar sublayer and logarithmic portions of the turbulent layer are included. It follows from the third assumption that in the overlap region ν_{e} must have the form

$$
\begin{equation*}
\frac{\nu_{e}}{\nu}=\phi=\frac{\delta^{*} U}{\nu} \Phi \tag{35}
\end{equation*}
$$

Thus, in the overlap region ϕ and Φ must be linear functions so that

$$
\begin{equation*}
\frac{v_{e}}{\nu}=\frac{\kappa^{2} y^{2}}{v} \frac{\partial \bar{u}}{\partial y} \tag{36}
\end{equation*}
$$

Mellor thus assumes that in the overlap region Prandtl's theory holds exactly. For the hypothesis to predict correctly a viscous sublayer, it is clear that very close to the wall $\phi \rightarrow 1$ (because $\nu_{e}=v$).

An alternative functional form equivalent to equation (34) but offering some computational advantage was given by Mellor (41); it may be written as

$$
\begin{align*}
& \frac{v_{e}}{U \delta^{*}}=\Phi(X), X=\frac{K y}{U \delta^{*}} \sqrt{\bar{\tau} / \rho} ; \text { in the defect layer } \tag{37a}\\
& \frac{\nu_{e}}{\nu}=\phi(x), x=\frac{k y}{\nu} \sqrt{\bar{\tau} / \rho} ; \text { in the wall layer } \tag{37b}
\end{align*}
$$

As before in the overlap layer, we must have

$$
v_{e}=v \phi=\delta^{*} U \Phi=k y \sqrt{\bar{\tau} / \rho}
$$

Specific functions are determined by comparison of calculated profiles with constant pressure incompressible velocity profiles and are shown in Figure 17. The value $k=0.41$ is the von Karman constant and is
chosen to predict correctly the experimentally observed logarithmic law of the wall (when $\bar{\tau} \simeq \bar{\tau}_{\mathrm{w}}$). The constant 6.9 is chosen to give a best fit to Laufer's data (42) in the viscous sublayer in the manner demonstrated in (29). The function $\Phi(X)$ resembles a suggestion by Clauser (40), the difference being that Clauser used the wall value $\sqrt{\bar{\tau}_{w} / \rho}$ instead of the local value $\sqrt{\bar{\tau} / \rho}$. It was found by Mellor (29) that Clauser's interpretation could not be correctly applied to boundary layers with strong pressure gradients.

Finally, the relations (37a, b) were proposed for the empirical inner and outer functions for ν_{e}. Since the knowledge of the differential equation for ν_{e} is absent, a composite function using the method of Van Dyke (43) can be formed. The composite function is expressed as the sum of the inner and outer functions minus their common asymptote. Thus, the non-dimensional effective viscosity T can be written for turbulent flow for the whole layer as

$$
\begin{align*}
& T=\phi(\chi)+\operatorname{Re}_{\delta^{*}} \Phi\left(\frac{\chi}{\operatorname{Re}_{\delta^{*}}}\right)-\chi \tag{38a}\\
& T=\frac{1}{\operatorname{Re}_{\delta^{*}}} \phi\left(\operatorname{Re}_{\delta^{*}} X\right)+\Phi(X)-X \tag{38b}
\end{align*}
$$

where

$$
\operatorname{Re}_{\delta^{*}}=\frac{U \delta^{*}}{v}
$$

For laminar flow

$$
\begin{equation*}
\mathrm{T}=1 / \operatorname{Re}_{\delta *} \tag{39}
\end{equation*}
$$

Solution of the Boundary Layer Equation

The first phase of the solution of the boundary layer equation (31) which is a nonlinear partial differential equation, is the reduction to a set of ordinary differential equations using finite differences for the x derivatives. The x derivatives are represented by finite differences in the x-direction according to an adaptation of the Crank-Nicolson scheme (ref. 20). Equation (31) is written in terms of average functions at a point halfway between the x position of the known profile, x_{i-1}, and that of the profile to be calculated x_{i} as follows:

$$
\begin{align*}
& {\left[\overline{T f^{\prime \prime}}\right]^{\prime}+\left[\left(\overline{\delta^{*}}+\bar{P}\right)(\eta-\bar{f})-\frac{\bar{v}_{w}}{U}\right] \bar{f}^{\prime \prime}+\left[\bar{P}\left(\bar{f}^{\prime}-2\right)\right] \bar{f}^{\prime}} \\
& =\frac{\overline{\delta^{*}}}{\Delta x}\left(1-\bar{f}^{\prime}\right)\left(f_{i}^{\prime}-f_{i-1}\right)+\frac{\overline{\delta^{*}}}{\Delta x} \bar{f}^{\prime \prime}\left(f_{i}-f_{i-1}\right) \tag{40}
\end{align*}
$$

where

$$
\delta_{x}^{*}=\frac{\mathrm{d} \delta^{*}}{\mathrm{dx}}
$$

Then, using the relations

$$
\bar{f}^{\prime}=\frac{1}{2}\left(f_{i}^{\prime}+f_{i-1}^{\prime}\right) \text {, etc. }
$$

Equation (40) can be written in terms of functions at position x_{i} as

$$
\begin{align*}
& -\left(T f^{\prime \prime}\right)_{i}^{\prime}=-\tau_{b}^{\prime}+c_{1}\left(f_{i}^{\prime \prime}+f_{i-1}^{\prime \prime}\right)+c_{2}\left(f_{i}^{\prime}+f_{i-1}^{\prime}\right) \\
& -c_{3}\left(f_{i}^{\prime}-f_{i-1}^{\prime}\right)-c_{4}\left(f_{i}-f_{i-1}\right) \tag{41}
\end{align*}
$$

where

$$
\begin{align*}
& c_{1}=\left(\delta_{x}^{*}+\bar{P}\right)\left[\eta-\frac{1}{2}\left(f_{i}+f_{i-1}\right)\right]-\left(v_{w_{i}}+v_{w_{i-1}}\right) /\left(U_{i}+U_{i-1}\right) \tag{42a}\\
& c_{2}=\bar{P}\left[\frac{1}{2}\left(f_{i}^{\prime}+f_{i-1}^{\prime}\right)-2\right] \tag{42b}\\
& c_{3}=\left(\delta_{i}^{*}+\delta_{i-1}^{*}\right)\left[1-\frac{1}{2}\left(f_{i}^{\prime}+f_{i-1}^{\prime}\right)\right] / \Delta x \tag{42c}\\
& c_{4}=\left(\delta_{i}^{*}+\delta_{i-1}^{*}\right) \frac{1}{2}\left(f_{i}^{\prime \prime}+f_{i-1}^{\prime \prime}\right) / \Delta x \tag{42d}\\
& \tau_{b}^{\prime}=-\left[T f^{\prime \prime}\right]_{i-1}^{\prime} \tag{42e}
\end{align*}
$$

Finally, the form in which this equation is solved is

$$
\begin{equation*}
\left[b_{5} f^{\prime \prime}\right]_{i}^{\prime}=b_{4}+b_{3} f_{i}^{\prime \prime}+b_{2} f_{i}^{\prime}+b_{1} f_{i} \tag{43}
\end{equation*}
$$

where the coefficients are

$$
\begin{align*}
& b_{1}=-c_{4} \tag{44a}\\
& b_{2}=c_{2}-c_{3} \tag{44b}\\
& b_{3}=c_{1} \tag{44c}\\
& b_{4}=-\tau_{b}^{\prime}+c_{1} f_{i-1}^{\prime \prime}+\left(c_{2}+c_{3}\right) f_{i-1}^{\prime}+c_{4} f_{i-1} \tag{44d}\\
& b_{5}=-T_{i} \tag{44e}
\end{align*}
$$

Since equations (43) is nonlinear, the solution is carried out iteratively for each i value. The coefficients b_{1} to b_{5} are evaluated using the results at the previous (i-1) step. The resulting linear equation is then solved for f^{\prime} and $f^{\prime \prime}$. δ^{*} is adjusted so that $f(\infty)=1$ to some specified accuracy. The parameters P and Q are
recalculated and the effective viscosity function, T, is recalculated. Then the cycle begins again and is continued until the desired accuracy is obtained at a particular step.

The second phase of the method is the solution of the ordinary differential equations. Equation (43) is rewritten as a set of firstorder differential equations. The Runge-Kutta method is then used for solving the equations. See Hildebrand (ref. 44) and McCracken (ref. 45) for details of this method.

DISCUSSION OF RESULTS OF BOUNDARY LAYER ANALYSIS

Laminar Boundary Layer Growth

By using the surface velocity distribution obtained from the potential flow analysis as input to the boundary layer analysis, we may obtain the boundary layer growth on the airfoil of the wing propulsion system. Velocity distributions used for the boundary layer analysis are shown in Figure 18. The incompressible velocity distributions are illustrated at the start of the stagnation point to the trailing edge of the airfoil. For high angles of attack (15° or greater) the flow becomes compressible over a small (10 percent) portion of airfoil surface from x / L of 0.05 to x / L of 0.15 . For typical takeoff and landing conditions the free stream Mach number is 0.12 or less. Since the flow is incompressible for 90 percent of the airfoil surface, the incompressible velocity distributions were used as inputs to the incompressible boundary layer analysis discussed in the previous section. For practical applications we are concerned with angles of attack, 15° or less.

In order to compute a boundary layer solution, it is necessary to prescribe the velocity profile in the boundary layer at the start of the calculation; namely, the stagnation point of the airfoil. The velocity profile resulting from a similarity wedge flow solution for
stagnation point flow over a circular cylinder was assumed (see ref. 38). This and other similar profiles could also be generated from a specialization of equation (31). This is described in reference 26 .

The boundary layer is laminar in the region of velocity increase (i.e., roughly from the stagnation point to the point of maximum velocity) and becomes turbulent in most cases from that point on and throughout the region of velocity decrease. The velocity profiles of Figure 18 indicate that laminar flow exists only on the first 5 percent of the leading edge of the airfoil surface for an angle of attack of 15°.

Typical parameters for the laminar portion of the flow are shown in Figure 19. The strong accelerated flow results in a large rate of decrease of the local skin friction coefficient ($C_{f}=\tau_{w} / \rho U^{2} / 2$). The skin friction coefficient ranged from 0.035 near the stagnation point to 0.0025 at the point of maximum velocity. The shape factor remained a constant value of approximately 2.2 throughout the laminar region, as would be expected (see ref. 19). The displacement thickness Reynolds number increases linearly from the stagnation point to the point of maximum velocity.

Transition

The pressure distribution in the external flow exerts a decisive influence on the position of the transition point. In ranges of decreasing pressure (accelerated flow) the boundary layer generally remains laminar, whereas even a very small pressure increase always
brings transition with it. The location of the transition point is generally determined by experiment but may also be predicted by empirical methods. From experimental data, Crabtree (ref. 46) established a curve of momentum thickness Reynolds number and a pressure gradient parameter at transition. When the curve obtained from predicted boundary layer calculations intersect the experimental curve, the location of transition is determined. Michel's method (ref. 47) established an experimental curve of $\operatorname{Re}_{\theta}$ and Re_{x} at transition. Both of these methods are for smooth surfaces with low turbulence. Granville (ref. 48) predicted a method for finding the distance between instability and transition points.

Theoretical investigations into the process of transition from laminar to turbulent flow are based on the acceptance of Reynolds' hypothesis that transition occurs as a consequence of an instability developed by the laminar boundary layer. Thus, the position of the point of maximum velocity of the potential velocity distribution (point of minimum pressure) influences decisively the position of the point of instability and the region of transition. Usually, the chordwise distance over which the transition region extends is relatively small. Thus, the transition region may be considered to take place at a point. A rough guide for the location of the transition point of airfoil shapes is given by Schlichting (ref. 38). According to Schlighting's rule, the point of transition almost coincides with the point of minimum pressure or maximum velocity of the potential flow in the range of Re_{x} from 10^{6} to 10^{7}. At very large Re_{x}, the transition may be a short distance ahead of the maximum velocity. At
small Re_{x}, the transition may take place some distance after the maximum velocity. In summary, we can establish the rule that the point of transition lies behind the point of minimum pressure but in front of the point of laminar separation, at all except very large Reynolds numbers. Taking into account the Reynolds number $\left(6 \times 10^{6}\right)$ the adverse pressure gradient, and the turbulence intensity usually associated with flow over STOL wing propulsion systems, transition was assumed to take place at the point of minimum pressure.

Turbulent Boundary Layer Growth and Separation

Boundary layer parameters

It is important that the development of the turbulent boundary layer from the transition point be accurately determined to find out whether the turbulent boundary layer would separate and, if so, at what point on the airfoil. The laminar velocity profile at the transition point is used for the initial turbulent boundary layer calculation. It is necessary to know the shape factor, and skin friction coefficient which are indicative of separation. The turbulent boundary layer parameters on the airfoil of a blown flap wing propulsion system at verious angles of attack are illustrated in Figure 20. The parameters are shown up to but just shy of the point of separation on the airfoil. The displacement and momentum thicknesses are nondimensionalized by L, the distance along the airfoil from stagnation point to trailing edge of the airfoil. As angle of attack is increased the displacement thickness, momentum thickness, and displacement thickness Reynolds number increase at a faster rate. Thus, the separation point
occurs closer to the leading edge of the airfoil as the angle of attack is increased.

The point of separation is determined by the condition of zero wall shear stress which gives zero skin friction coefficient. Another condition of the point of separation is the increase in shape factor H as the separation point is approached. At zero angle of attack the shape factor remains a relatively constant value (1.45) with a slight increase at the trailing edge of the airfoil. The skin friction coefficient decreases to a value of 0.0018 at the trailing edge. The shape factor increases at a faster rate as the angle of attack is increased and reaches a value of 2.0 or greater at the point of separation. Likewise the skin friction coefficient approaches zero at a faster rate as angle of attack is increased. The above result is caused by the increase in the adverse pressure gradient as angle of attack is increased. For angles of attack 15° and greater, the skin friction coefficient was 0.0001 or smaller just shy of separation. Hence, this point was used as the separation point.

Velocity Profiles

The effect of the starting velocity profile on the turbulent boundary layer separation point is now considered. Three velocity profiles at the start of the turbulent boundary layer growth are illustrated in Figure 21. Curve B is obtained by assuming a similarity wedge flow solution for a circular cylinder at the stagnation point. Curves A and C are arbitrary selected profiles. Using the profiles in Figure 21 and the surface velocity distributions on the airfoil of the
wing propulsion system resulted in a negligible effect on the turbulent separation point.

The boundary layer velocity profiles on the airfoil of a wingpropulsion system at various angles of attack are shown in Figure 22. At zero angle of attack there exists a very mild adverse pressure gradient along the surface of the airfoil (Fig. 18). This results in a small change in the velocity profile along the surface of the airfoil (Fig. 22(a)). For angles of attack 15° and greater, the velocity profiles are shown up to the point near separation (Figs. 22(b) to (e)). As the separation point is approached, the boundary layer thickens and results in an inflection point in the velocity profile. These profiles give approximately zero skin friction $\left(C_{f}=0.0001\right)$ and hence are indicative of the profile near separation. The change in the velocity profiles at the various locations along the surface resulted in a cross-over of the velocity profiles in the outer portion of the boundary layer. This occurred at a velocity ratio \bar{u} / U of approximately 0.75. Schlichting (ref. 38, p. 630) reported this cross-over characteristic in velocity profiles for convergent and divergent channels. Consequences of separation

The separation at high angles of attack as indicated in the previous section results in a loss of lift and the airfoil stalls. Airfoil stall refers to the angle of attack corresponding to the maximum lift coefficient. Typical lift curves illustrating the stall characteristics of airfoils in subsonic flows are shown in Figure 23 (see refs. 49 and 50). Three main classifications of stalling behavior
occur, depending on airfoil shape and Reynolds number: (1) trailingedge stall, where there is a gradual loss of lift at high lift coefficient as the turbulent separation point moves forward from the trailing edge; (2) leading-edge stall, where there is an abrupt loss of lift, as the angle of attack for maximum lift is exceeded, with little or no rounding over of the lift curves; and (3) thin-airfoil stall, where there is a gradual loss of lift at low lift coefficients as the turbulent reattachment point moves rearward. Trailing edge stall is characteristic of most conventional thick airfoils (say t/c $>12 \%$) at moderate to high Reynolds numbers. Leading-edge stall is characteristic of moderate airfoils ($t / c \simeq 9 \%$) and is caused by an abrupt separation of the flow near the nose without subsequent reattachment, i.e., short bubble "bursting". The process of laminar boundary layer separation, transition, turbulent reattachment is referred to as a "short bubble". Thin-airfoil stall is characteristic of thinairfoil sections $(t / c \simeq 6 \%)$ and is the result of laminar separation near the leading-edge and turbulent reattachment moving progressively rearward with increasing incidence, i.e., a long bubble. The process of laminar boundary layer separation just aft of the leading edge, transition to turbulence, but reattachment not so quickly established is referred to as a "long bubble". The above stall characteristics for airfoils can be used as an aid in the classification of the stall associated with STOL wing propulsion systems.

The experimental lift curve of the blown flap wing propulsion system with airfoil t / c of 15 percent (see Fig. 2(a)) is illustrated
in Figure $24(\mathrm{a})$. The lift curve increases almost linearly to an angle of attack of 20° and then there is a gradual loss in lift coefficient at high angles of attack. This is typical of the trailing edge stall of thick airfoils as shown in curve (a) of Figure 23. Having assumed that the transition point is near the point of minimum pressure resulted in the predicted turbulent separarion point to move forward from the trailing edge as angle of attack is increased. This is illustrated in Figure $24(\mathrm{~b})$. At an angle of attack 15° the separation point is near the trailing edge and moves slightly forward at 20°. At the stall angle of attack of 25° (angle of maximum lift coefficient) the separation point moves still further near the leading edge corresponding to an x / L of 0.57 . At an angle of attack of 30° the separation point moves considerably forward as would be expected to an x / L of 0.34. The above experimental curve and indicated separation points validate the assumption of the transition point to occur near the point of minimum pressure for the given airfoil shape and fan location. However, boundary layer characteristics could be quite different for other airfoil geometries and fan locations.

CONCLUDING REMARKS

A method was developed to determine the two-dimensional potential flow solution of STOL wing propulsion systems. The Douglas potential flow computer program was extended to include the effect of suction at the propulsion system inlet and to provide a teclinique for determining the approximate location of the exhaust jet of the propulsion system. The effect of suction was obtained by combining a basic suction solution with the uniform flow solution for a lifting body. The jet exhaust was considered as part of the solid body and its location was determined by balancing the vertical component of thrust at the flap with the integrated vertical pressure forces of the free jet.

The applicability of the potential flow program is illustrated by considering a multiple-fan externally blown flap under high-lift conditions. The results indicated high upwash angles $\left(60^{\circ}\right.$ to $\left.90^{\circ}\right)$ at the fan inlet and large jet penetration at high angles of attack. (The predicted two-dimensional lift coefficients for the 30° flap ranged from 6.5 to 13 while for the 60° flap ranged from 15 to 21 (for angles of attack from 0° to 20°). The predicted two-dimensional lift coefficients for a 30° flap were an average of 10.5 percent higher than predicted by Spence's jet flap theory which neglects thickness effects.

The predicted three-dimensional lift coefficients were an average 11.4 percent higher than experimental data for the 30° blown flap high-lift configuration. The calculated pressure distributions indicated that the minimum pressure point is near the leading edge (less than 2 percent of chord) of the airfoil, with severe adverse pressure gradients at high angles of attack. The pressure coefficient, corresponding to the minimum pressure point, ranged from -7.5 to -51 for the 0° and 20° angle of attack, respectively. The effect of suction due to a fan or inlet installed under the wing decreases the magnitude of the upper surface pressure distribution with only a small effect on total lift coefficient (obtained by integration of pressure distribution on both the upper and lower surfaces of the airfoil).

The surface velocity distribution obtained from the potential flow solution was used to determine the boundary layer growth and separation on the upper surface of the airfoil. The boundary layer solution was obtained by reduction of the partial differential equations of motion to a set of ordinary differential equations using finite differences for the x derivatives. By an iterative solution to the differential equations the boundary layer parameters for both laminar and turbulent flow were found. Near separation the shape factor was found to be 2.0 or greater. This corresponded to a skin friction coefficient of approximately 0.0001 . The results indicated that the predicted turbulent separation point moved forward from the trailing edge as the angle of attack is increased. Trailing edge separation for a thick wing ($t / \mathrm{c}=0.15$) propulsion system combination considered was
verified by the experimental lift curve. However, this boundary layer characteristic could be quite different for other wing geometries and propulsion system locations.

The ability to predict the potential flow and boundary layer solution makes the analysis in this report extremely useful as a tool in the design of a STOL wing propulsion system. The analysis can be used to design the airfoil and to determine the optimum location and orientation of the propulsion system. From the predicted surface velocity distributions and boundary layer calculations one may minimize the frictional drag for a given wing propulsion system. The potential flow solution can be used to determine the jet penetration - an important quantity when considering ground effect.

The analysis has application not only to wing propulsion systems, but to any lifting or nonlifting body where suction or blowing is applied.

APPENDIX A

SYMBOLS FOR POTENTIAL FLOW ANALYSIS

APPENDIX A
 SYMBOLS FOR POTENTIAL FLOW ANALYSIS

$A_{i i}$	normal velocity of element i caused by a unit source at element i
$A_{i j}$	normal velocity of element i caused by a unit source at element j
AR	aspect ratio
$B_{i j}$	tangential velocity of element i due to a unit source at element j
C	chord length
C_{1}	two-dimensional lift coefficient
C_{L}	three-dimensional lift coefficient
C_{p}	pressure coefficient
C_{Q}	mass flow coefficient
C_{T}	thrust coefficient
f	correction factor (eq. (21))
F_{y}	force in vertical direction
H	jet penetration (see Fig. 2(b))
M	number of elements that describe the jet
L	length
L_{T}	total length of free jet (see Fig. 2(b))
¢	fan or engine mass flow rate per unit span

T thrust per unit span
v disturbance velocity
V velocity
W}\mp@subsup{\textrm{kj}}{}{\prime}\mathrm{ complex velocity
W complex potential
X vk velocity in }\textrm{x}\mathrm{ (direction at point }\textrm{j}\mathrm{ due to a unit source at
element E
Cartesian coordinate
Cartesian coordinate
velocity in y direction at point j due to a unit source at
Cartesian coordinate
ancle of attack
orientation of surface element
nondimensional circulation
variable Cartesian coordinate (see Fig. (25))
turning efficiency of exhaust jet
variable Cartesian coordinate (see Fig. (25))
flap angle (see Fig. 2(b))

```
\begin{tabular}{|c|c|}
\hline \({ }^{1} 1\) & jet angle at trailing edge of jet (see Fig. ( \\
\hline \(\sigma\) & surface source intensity per unit area \\
\hline \(\rho\) & density \\
\hline \(\zeta\) & variable Cartesian coordinate (see Fig. (25)) \\
\hline \(\phi\) & velocity potential \\
\hline \(\psi\) & stream function \\
\hline Subs & ts \\
\hline i & control point of \(i^{\text {th }}\) element \\
\hline j & control point of \(j^{\text {th }}\) element \\
\hline N & normal \\
\hline P & arbitrary point on the surface \\
\hline q & a surface point \\
\hline ref & reference \\
\hline s & refers to suction flow solution \\
\hline t & tangential \\
\hline v & vortex flow solution \\
\hline \(\infty\) & free stream \\
\hline 0 & flow solution at zero angle of attack \\
\hline 90 & flow solution at \(90^{\circ}\) angle of attack \\
\hline \multicolumn{2}{|l|}{Superscripts} \\
\hline \(\rightarrow\) & vector \\
\hline
\end{tabular}

\section*{APPENDIX B}

VELOCITIES IN TERMS OF SOURCE DENSITIES

\section*{APPENDIX B}

\section*{VELOCITIES IN TERMS OF SOURCE DENSITIES}

Consider the body illustrated in Figure \(25(\mathrm{a})\), which extends over the range \(-\infty \leq z \leq+\infty\). Any point on the body is described by \(p(x, y, z)\) the general point being considered. The point \(q(\xi, \eta, \zeta)\) is the variable point for which integration is performed. The potential \(\phi_{p}\) due to a point source at any point \(p\) in the region \(R\) bounded by \(z=-\infty, z=+\infty, S=S_{0}\) and \(S=S_{1}\) is
\[
\begin{equation*}
\phi_{p}=\int_{R} \frac{\sigma d R}{r} . \tag{B1}
\end{equation*}
\]

It is evident from Figure 25 (a) that if \(p\) is the plane \(z=0\)
\[
r=\left[(x-\xi)^{2}+(y-n)^{2}+\zeta^{2}\right]^{1 / 2}
\]

Hence,
\[
\begin{equation*}
\phi_{p}=2 \int_{S_{0}}^{S_{1}} \int_{0}^{\infty} \frac{\sigma(S) d \zeta d S}{\left[(x-\xi)^{2}+(y-\eta)^{2}+\zeta^{2}\right]^{1 / 2}} \tag{B2}
\end{equation*}
\]

Here the upper limit for the \(\zeta\) variable of integration signifies a large but finite value. The normal and tangential velocities \(\partial \phi / \partial n\) and \(\partial \phi / \partial s\) can be evaluated in terms of \(x\) and \(y\) derivatives of the potential from equation (B1)
\[
\begin{align*}
& \left(\frac{\partial \phi}{\partial x}\right)_{p}=-2 \int_{S_{0}}^{S} \int_{0}^{\infty} \frac{\sigma(S)(x-\xi) \mathrm{d} \zeta \mathrm{~d} S}{\left[(x-\xi)^{2}+(y-\eta)^{2}+\zeta^{2}\right]^{3 / 2}} \\
& \left(\frac{\partial \phi}{\partial y}\right)_{p}=-2 \int_{S_{0}}^{S} \int_{0}^{\infty} \frac{\sigma(S)(y-\eta) \mathrm{d} \zeta \mathrm{~d} S}{\left[(x-\xi)^{2}+(y-\eta)^{2}+\zeta^{2}\right]^{3 / 2}} \tag{B3}
\end{align*}
\]

Since \(\sigma\) is independent of \(z\) or \(\zeta\), one integration can be performed to give
\[
\begin{align*}
& \left(\frac{\partial \phi}{\partial x}\right)_{p}=\int_{S_{0}}^{S_{1}} \frac{\sigma(S)(x-\xi) d S}{(x-\xi)^{2}+(y-\eta)^{2}} \\
& \left(\frac{\partial \phi}{\partial y}\right)_{p}=\int_{S_{0}}^{S_{1}} \frac{\sigma(S)(y-\eta) d S}{(x-\xi)^{2}+(y-\eta)^{2}} \tag{B4}
\end{align*}
\]

The problem is reduced to one in a single plane, the plane \(z=0\). The continuous boundary curve \(S\) is approximated by a series of segments as shown in Figure 25(b). The front, middle, and rear points of a segment are designated by \(S_{j-1}, S_{j}\), and \(S_{j+1}\). If the source density is assumed constant over each surface element, the preceding equations become
\[
\begin{align*}
& \left.\frac{\partial \phi}{\partial x}\right)_{p}=\sum_{j=1}^{N} \sigma_{j} \int_{S_{j-1}}^{S_{j+1}} \frac{(x-\xi) d S}{(x-\xi)^{2}+(y-n)^{2}} \\
& \left.\frac{\partial \phi}{\partial y}\right)_{p}=\sum_{j=1}^{N} \sigma_{j} \quad \int_{S_{j-1}}^{S_{j+1}} \frac{(y-\eta) d S}{(x-\xi)^{2}+(y-n)^{2}} \tag{B5}
\end{align*}
\]

A transformation of the \(\xi, \eta\) variables into \(S, r_{i j}\) variables yields (see Fig. \(25(\mathrm{~b})\) )
\[
\begin{align*}
& \left.\frac{\partial \phi}{\partial x}\right)_{p}=\sum_{j=1}^{N} \sigma_{j} \int_{S_{j-1}}^{S_{j+1}} \frac{\left[r_{i j} \sin \alpha_{j}+\left(S-s_{i j}\right) \cos \alpha_{j}\right] d S}{r_{i j}^{2}+\left(S-s_{i j}\right)^{2}} \\
& \left.\frac{\partial \phi}{\partial y}\right)_{p}=\sum_{j=1}^{N} \sigma_{j} \int_{S_{j-1}}^{S} \frac{\left[-r_{i j} \cos \alpha_{j}+\left(S-s_{i j}\right) \sin \alpha_{j}\right] d S}{r_{i j}^{2}+\left(S-s_{i j}\right)^{2}} \tag{B6}
\end{align*}
\]

The quantities in integrals of equation (B6) are functions only of the geometry of the body. If they are identified as \(X_{i j}\) and \(Y_{i j} r e-\) spectively, the \(x\) and \(y\) components of velocity become
\[
\begin{align*}
& \left.V_{x}=\frac{\partial \phi}{\partial x}\right)_{i}=\sum_{j=1}^{N} \sigma_{j} X_{i j}  \tag{B7}\\
& \left.V_{y}=\frac{\partial \phi}{\partial y}\right)_{i}=\sum_{j=1}^{N} \sigma_{j} Y_{i j}
\end{align*}
\]
where \(i\) represents an arbitrary point on the body surface. The normal and tangential velocities can be obtained by using the directional derivative formula
\[
\begin{align*}
& \left.\left.\left.\frac{\partial \phi}{\partial n}\right)_{i}=-\frac{\partial \phi}{\partial x}\right)_{i} \sin \alpha_{i}+\frac{\partial \phi}{\partial y}\right)_{i} \cos \alpha_{i} \\
& \left.\left.\left.\frac{\partial \phi}{\partial s}\right)_{i}=\frac{\partial \phi}{\partial x}\right)_{i} \cos \alpha_{i}+\frac{\partial \phi}{\partial y}\right)_{i} \sin \alpha_{i} \tag{B8}
\end{align*}
\]

Then using equation (B7)
\[
\begin{align*}
& \left.\frac{\partial \phi}{\partial n}\right)_{i}=\sum_{j=1}^{N} \sigma_{j}\left(-x_{i j} \sin \alpha_{i}+Y_{i j} \cos \alpha_{i}\right) \\
& \left.\frac{\partial \phi}{\partial s}\right)_{i}=\sum_{j-1}^{N} \sigma_{j}\left(X_{i j} \cos \alpha_{i}+Y_{i j} \sin \alpha_{i}\right) \tag{B9}
\end{align*}
\]

Letting the terms in the brackets be \(A_{i j}\) and \(B_{i j}\) respectively, the normal and tangential velocities due to the source contributions become
\[
\begin{align*}
& \left.\frac{\partial \phi}{\partial n}\right)_{i}=\sum_{j=1}^{N} \sigma_{j} A_{i j} \\
& \left.\frac{\partial \phi}{\partial s}\right)_{i}=\sum_{j=1}^{N} \sigma_{j} B_{i j} \tag{B10}
\end{align*}
\]

The total velocities are made up of the contribution due to the sourcesink distribution and the free stream velocity. The entire normal and tangential velocities on the body become
\[
\begin{align*}
& \left.\mathrm{V}_{\mathrm{N}, i}=\frac{\partial \phi}{\partial \mathrm{n}}\right)_{i}-\mathrm{V}_{\infty} \sin \alpha_{i} \\
& \left.\mathrm{~V}_{\mathrm{t}, \mathrm{i}}=\frac{\partial \phi}{\partial S}\right)_{i}+\mathrm{V}_{\infty} \cos \alpha_{i} \tag{B11}
\end{align*}
\]

The velocity at any point off the body can be obtained by
\[
\begin{equation*}
(\nabla \phi)_{k}=\sum_{i=1}^{N}\left(x_{k j} \hat{i}+Y_{k j} \hat{j}\right) \sigma_{k} \tag{B12}
\end{equation*}
\]
where \(\sigma_{k}\) is the combined source intensity of the \(k^{\text {th }}\) element as given by equation (19) of the text, and \(X_{k j}\) and \(Y_{k j}\) are the effects in the \(x\) and \(y\) direction, respectively at any point \(p\) due to the \(k^{\text {th }}\) element.

The terms \(A_{i j}, B_{i j}, X_{k j}\), and \(Y_{k j}\) are called influence coefficients and all represent velocities at some point that are resolved in a particular direction. These velocities are generated by the \(j^{\text {th }}\) source element at point \(p_{i}\) (on the body surface) or \(p_{k}\) (off the body surface) and resolved normal and tangent to the body surface \(\left(A_{i j}, B_{i j}\right)\) or \(x\) axis ( \(X_{k j}, Y_{k j}\) ). In terms of complex velocities \(W_{i j}\) and \(W_{k j}\) the influence coefficients for points on and off the body surface can be expressed as
\[
\begin{align*}
& B_{i j}+i A_{i j}=\bar{W}_{i j} e^{-i \alpha_{i}}  \tag{B13}\\
& x_{k j}+i J_{k j}=\bar{W}_{k j}
\end{align*}
\]
where the bar indicates the conjugate and \(\alpha_{i}\) is the \(i^{\text {th }}\) element angular orientation.

The complex potential at \(z_{k}\) for a unit source located at \(\zeta(\mathrm{S})\) is expressed as
\[
\begin{equation*}
\mathrm{w}=\phi+\mathrm{i} \psi=\frac{1}{2 \pi} \ln \left[z_{k}-\zeta(\mathrm{S})\right] \tag{B14}
\end{equation*}
\]

The complex velocity \(W_{k j}\) is the influence of element \(j\) at the point \(p_{k}\). Since \(W=d w / d z\) the influence coefficient becomes
\[
\begin{equation*}
W_{k j}=\frac{1}{2 \pi} \int_{j_{\text {elem }}} \frac{d}{d z_{k}} \ln \left(z_{k}-\zeta(S)\right) d S \tag{B15}
\end{equation*}
\]

Referring to Figure 26,
\[
\begin{equation*}
\mathrm{dS}=\mathrm{e}^{-i \alpha_{j}} \mathrm{~d} \zeta \tag{B16}
\end{equation*}
\]

Replacing \(d S\) in equation (B15) and evaluating the integral there results
\[
W_{k j}=\frac{e^{-\alpha}}{2 \pi} \int_{\zeta_{1 j}}^{\zeta_{2 j}} \frac{d}{d z_{k}} \ln \left[z_{k}-\zeta(S)\right] d \zeta=\frac{e^{-i \alpha_{j}}}{2 \pi} \ln \frac{\left(z_{k}-\zeta_{1 j}\right)}{\left(z_{k}-\zeta_{2 j}\right)}
\]

\section*{APPENDIX C}

COMPUTATION OF FLOW QUANTITIES FOR POTENTIAL FLOW ANALYSIS
\[
1
\]

\section*{APPENDIX C}

COMPUTATION OF FLOW QUANTITIES FOR POTENTIAL FLOW ANALYSIS

Once the combined velocities on the body surface are calculated, the pressure distribution and the lift coefficient of the body can be found. The equation of motion for steady, incompressible, inviscid fluid can be expressed as
\[
\begin{equation*}
(\vec{V} \cdot \nabla) \vec{V}=-\frac{1}{\rho} \nabla p \tag{C1}
\end{equation*}
\]

For potential (irrotational) flow Bernoulli's equation results
\[
\begin{equation*}
\frac{p}{\rho}+\frac{1}{2} v^{2}=\text { Constant } \tag{C2}
\end{equation*}
\]
and is applicable everywhere. The pressure coefficient \(C_{p}\) is defined as
\[
\begin{equation*}
C_{p}=\frac{p-p_{\infty}}{\frac{1}{2} \rho V_{\infty}^{2}} \tag{C3}
\end{equation*}
\]

By use of equation (C2)
\[
\begin{equation*}
c_{p}=1-\frac{v^{2}}{v_{\infty}^{2}} \tag{C4}
\end{equation*}
\]

The two-dimensional lift coefficient is defined as
\[
\begin{equation*}
C_{2}=\frac{L}{\frac{1}{2} \rho V_{\infty}^{2} C} \tag{C5}
\end{equation*}
\]

This can be obtained by integration of the pressure distribution over the surface of the body. Since \(L=\int_{S} p_{i} \cos \alpha_{i} d S_{i}\),
\[
\begin{equation*}
c_{i}=\frac{1}{C} \sum_{i=1}^{N} C_{p, i} \cos \alpha_{i} \Delta S_{i} \tag{C6}
\end{equation*}
\]
where \(C_{p, i}\) represents the pressure coefficient at the control point of the \(i^{\text {th }}\) element. The thrust coefficient is defined as
\[
\begin{equation*}
\mathrm{C}_{\mathrm{T}}=\frac{\mathrm{T}}{\frac{1}{2} \rho \mathrm{~V}_{\infty}^{2} \mathrm{C}} \tag{C7}
\end{equation*}
\]
where \(T\) is the exit thrust of the propulsion system. The exit thrust is obtained from the vertical force on the jet, the jet deflection angle, and the experimental turning efficiency \(n\) between the propulsion system exhaust and the trailing edge of the flap. Then
\[
\begin{equation*}
T=\frac{F_{y}}{\eta \sin \theta} \tag{C8}
\end{equation*}
\]
where \(n\) is the turning efficiency of the exhaust jet. The vertical force is calculated by integration of the pressures on the jet
\[
\begin{equation*}
F_{y}=\sum_{i=1}^{M} p_{i} \cos \alpha_{i} \Delta S_{i} \tag{C9}
\end{equation*}
\]
where \(\alpha_{i}\) is the angular orientation of the \(i^{\text {th }}\) element.

APPENDIX D

POTENTIAL FLOW COMPUTER PROGRAM

\section*{APPENDIX D}

POTENTIAL ELOW COMPUTER PROGRAM

Summary

A schematic representation of the main subroutines of the computer program is illustrated in Figure 27 . The program is divided up into seven parts. These are called from the main program. Part 1 performs computations with the basic data input. It calculates angular orientation of elements of the body, mid point of elements, rotates the body, etc. Subroutine 22 YA generates the initial shape of the exhaust jet of the propulsion system from the input data. Part 2 formulates the matrix including the complex velocity potential for points on and off the body surface. Part 4 solves the above matrix. The influence coefficients \(A_{i j}, B_{i j}, X_{k j}\), and \(Y_{k j}\) (see appendix B) are determined in this subroutine. The combination solution is obtained in part 6. Part 7 determines if the jet exhaust is properly orientated. It integrates for the mass flux into the propulsion system and calculates the forces on the exhaust jet.

Input

The inputs required by the program are as follows:
\begin{tabular}{|c|c|}
\hline FLG02, FLG03, etc. & ```
- control flags (see comment cards main
    program)
``` \\
\hline MON & - controls amount of output desired (see \\
\hline & comment cards main program) \\
\hline CDIM & - rotal \(x\) distance of body including ex- \\
\hline & haust jet \\
\hline VINF & - free stream velocity \\
\hline \(\mathrm{X}_{1}, \mathrm{Y}_{1}\) & - point on body at trailing edge of flap \\
\hline & (start of jer) \\
\hline \(\mathrm{X}_{2}, \mathrm{Y}_{2}\) & - point of initial location of trailing \\
\hline & edge of exhaust jet \\
\hline BETA & - flap angle \\
\hline DELT & - thickness of jet \\
\hline ALF2 & - initial jet angle at trailing edge eff jet \\
\hline KKK & - number of elements on jet \\
\hline POSS & - turning efficiency of exhaust jet \\
\hline CHORD & - chord length of airfoil \\
\hline NN & - number of points on body (first time thru \\
\hline & D0 100p) \\
\hline THETA & - rotation angle for airfoil \\
\hline BDN & - one if on body points follow \\
\hline \(X(I), X(I+1), ~ e t c\). & - coordinates of points on the body surlace \\
\hline \(Y(I), Y(I+1)\), etc. & - courdimates of points off the body euriacs \\
\hline NN & - number of ofit body polnts (second time \\
\hline & thirs DO loop) \\
\hline
\end{tabular}
\[
1
\]
- rotarion angle for off body pointe

BDN
\(X(I), X(I+1)\), etc.
\(Y(I), Y(I+1)\), etc.

NTYPE, XP, YR
- zero if off body points follow
- coordinate of points off the body suriret
- coordinate of points off che body surtace
- equal zero for prescribed velocity norman
tJ surfiace of body
NUF (I), NUF (I + 1), etc. - prescribed velocity normal to surface af body (known value for inlet of propul sion system, zero fur rest of body

TUF (I), TUF (I + 1), etc. - tangential velocity on surface of body, input as zero

Output

The output consist of tangential velocities and pressure coefficients for each element on the body for the basic solutions and the combination solution. It also includes the mass flow rate into the propulsion system, the forces on the exhaust jet, the thrust coefficient of the propulsion system, the lift coefficient of the body, and the basic input data. Also included are the \(x\) and \(y\) components of velocity and angular orientation of points off the body (in the flow field).

The complete program listing follows:

\section*{Complete Program Listing}


```

    IF I THETA .EQ. O. ) GO TO 300
    CSTHT = COS( THETA
    SNTHT = SIN( THETA
    DO 290 I = 1, NN
    T1 = X(I)
    X(I) = T1*CSTHT + Y(I)*SNTHT
    290 Y(I) = Y(I)*CSTHT - TI*SNTHT
300 CONTINUE
145 IF (FLG12 .GT. O) GO TO 150 B2Y01440
IF(FLG14 .EQ. O) GO TO 148
IF (BDN.NE.1) GO TO }14
Tl=X1
X1= T1*COS(THETA) + Y1*SIN(THETA)
Y1=Y1*COS(THETA) - T1* SIN(THETA)
T2=X2
X2=T2*COS(THETA) + Y2*SIN(THETA)
Y2=Y2*COS(THE TA) - T2*SIN(THETA)
X2=X2+9.72
Y 2=Y2-1. 32
THETA =THE TA* 57.2957795E0
ALF =BETA + THE TA
CALL SUBCUR (X1,Y1,X2,Y2,X3,Y3,ALF,ALF2,DELT)
MMM =KKK
NNN=1
143 DO 147 I =NNN,MMM
X(I)= XC UR V(I)
147 Y(I)=YCURV(I)
IF (NNN-II) 146,148,148
146 NNN=I I
MMM=JJ
GO TO 143
148 WRITE (13)
150 IF (BDN .EQ. O ) GO TO 200
IF (FLG12 .GT. O) GO TO }16
DO 16C I = 1,M
XMP(I) = (X(I+1) + X(I) ) / 2.
160YMP(I)=(Y(I+1)+Y(I) ) 2. B2Y01510
WRITE (13) (XMP(I),I = 1,M ) B2Y01520
WRITE (13) (YMP(I),I =1,M ) B2Y01530
GO TO 200
163 SUMS = 0.0
DO 164 I = 1,M
XMP(I)=(X(I+I)+X(I) )/2.
YMP(I)=(Y(I+I)+Y(I) )/2.
T1 = X(I+1)-X(I)
T2 = Y(I+1)-Y(I)
DELS(I) = SQRT(T1*T1+T2*T2)
SUMS = SUMS + DELS(I)
RSDS(I) = SUMS
164 ALFA(I) = ATAN2(T2,T1)
MM = NN-2
DO 165 I = 1,MM
165 DALF(I) = (ALFA(I+1)-ALFA(I))*57.2957795EO
200 WRITE (6, 24) HEDR, NN, NLF(L), MX, MY, THET A, ADDX, ADDY(L), B2Y01680
1 XMC(L), YMC(L)
B2Y01680
B2Y01690
24 FORMAT (1H 25X 26HDOUGLAS AIRCRAFT COMPANY / 28X 21HLONG BEACHB2YO1700
1 DIVISION,///5X,15A4,// 5X,4HNN =,I4,4X,5HNLF =, I4,5X,4HMX = , B2Y01710
2 F13.8, 4X 4HMY = F13.8 / 5X 7HTHETA = F13.8, 4X 6HADDX = F13.8, B2YC1720
3 2X 6HADDY = F13.8 / 7X 5HXMC = F13.8, 5X 5HYMC = F13.8 ), B2Y01730

```
```

    IF (MON-1) 27,240,240
    27 IF (BDN .EU. O), GO TO 220
    IF (FLG12.LE.0) WRITE (6,25)
    IF (FLG12.GT.0) WRITE (6,26)
    25 FORMAT (1HO 4X 33HON-BODY CCORDINATES (TRANSFORMED))
26 FORMAT (1HO 4X 35HON-BOOY CCORDINATES (JNTRANS FORMED) )
WRITE (6,28) BDN
28 FORMAT(9H BODY NO.I3//12X1HX13X1HY11X7HDELTA S 7X 5HSUMOS 8X
1 7HD ALPHA //1
GO TO 230
220 IF (FLG12.LE.0) WRITE (6,31)
31 FORMAT (1HO 4X 34HOFF-BODY COORDINATES (TRANS FORMED) // 10X
1 5HX-OFF 9X 5HY-OFF //1
IF (FLG12.GT.0) WRITE (6,32)
32 FORMAT (1HO 4X 3 GHOFF-BODY COCRDINATES (UNTRANSFORMED) // 10X
1 5HX-OFF 9X 5HY-OFF // )
230 IF (FLG12.LE.O) GO TO 240
IF (BDN.LE.O) GO TO 235
WRITE (6,36) X(1),Y(1),XMP(1),YMP(1),OELS(1),RSDS(1)
WRITE (6,40) (I,X(I), Y(I), DALF(I-1), XMP(I), YMP(I),
1 DELS(I), RSDS(I),I = 2, M )
WRITE (6,44) NN, X(NN), Y(NN)
GO TO 240
235 WRITE (6,48) (I, X(I), Y(I), I = 1, NN)
240 IF ( MX .EQ. O. ) GO TO 260
DO 250 I = 1, NN
250 X(I) = X(I) * MX
XMC (L) = XMC (L) * MX
260 IF ( MY.EQ. O. ) GO TO 280
OO 270 I = 1, NN
270 Y(I) = Y(I) * MY
YMC(L) = YMC(L) * MY
280 IF ( ADUX .EQ. O. I GO TO 320
DO 310 I = 1, NN
310 X(I) = X(I) + ADDX
XMC(L)=XMC (L) + ADDX
320
T1 = ADOY(L) , % , GO TO 340
DO 330 I = 1,NN
330Y(I)=Y(I) + T1
YMC(L) = YMC(L) +T1
340 IF ( CHORD .EQ. 1.) GO TO 360
00 350 I = 1, NN
X(I) = X(I)/CHORD
350
XMC(L) = XMC(L)/CHORD
YMC(L) = YMC(L)/CHORD
360 IF ( BDN .EQ. O ) GO TO 500
SUMS = 0.
00 400 I = 1,M
T1 = X(I+1) - X(I)
T2 = Y(I+1) - Y(I)
XMP(I)}=(X(I+1)+X(I)) /2.
YMP(I) = (Y(I+1) +Y(I)) / 2.
TOS = SQRT (T1*T1 + T2*T2 )
OELS(I) = TOS
SUMS = SUMS + TOS
RSDS(I) = SUMS
COSA(I) = T1 / TDS
COSA(II) = T1 / TDS

```
```

    ALFA(I) = ATAN2 (T2, T1) B2Y02440
    L(I) = CMPLX (XMP(I), YMP(I) )
    B2Y02450
B2Y02450
Q(I)=CMPLX (X(I),Y(I)
SUMDS(L) = RSDS(M)
WRITE (12) (XMP(I),I = 1,M )
WRITE (12) ( YMP(I), I = 1,M ;
WRITE (12) (DELS(I), I = 1,M )
IF (FLG12.GT.O) GO TO 450
M = NN - 2
DO 420 I = 1,M
DALF(I) = (ALFA(I+1)-ALFA(I) ) * 57.2957795
IF (ABS(DALF(I)).GT.270.) DALF(I)=360.)-ABS(DALF(I))
420 CONIINUE
IF (MON.GE.1) GO TO 600
WRITE (6, 36) X(1), Y(1), XMP(1), YMP(1), DELS(1), RSDS(1) B2Y02560
36 FORMAT (1H 3H 1 2F14.8, / 4X 4F14.3 ) B2Y02570
M = NN - 1
WRITE (6, 40) (I, X(I), Y(I), DALF(I-1), XMP(I), YMP(I), DELS(I) B2Y02590
1 , RSDS(I),I = 2,M)
40 FORMAT (1H, I3, 2F14.8, 28X F14.8, 4X 4F14.8 )
WRITE (O,44) NN, X(NN), Y(NN) B2Y02620
44 FORMAT (1H 13, 2F14.8)
GO TO }60
450 WRITE (13) (X(I),I=1,NN)
WRITE (13) (Y(I),I=1,NN)
M=NN-1
WRITE (13) (XMP(I), I=1,M)
WRITE (13) (YMP(I), I=2,M)
GO TO 600
500 IF (MON.GE.1) GO TO 501
IF (FLG12 .LE. 0) WRITE (6,48) (I, X(I),Y(I),I =1,NN) B2Y02710
4 FORMAT (1H I3, 2F14.8)
501 M =NN
IF (FLG12 .LE. O) GO TO }53
WRITE (13) (X(I), I=1,NN)
WRITE (13) (Y(I),I=1,NN)
5 3 0 ~ D O ~ 5 5 0 ~ I ~ = ~ 1 , ~ N N N
550 Z(I) = CMPLX( X(I), Y(I) )
600 WRITE (9) ( L(I), I = 1, NN )
IF ( BDN .EQ. O ) GO TO 2000
M=NN-1
WRIIE (9) (SINA(I),I = 1,M )
WRITE (4) ( SINA(I), I = 1,M )
WRITE (9) (COSA(I),I = 1,M)
WRITE (4) ( COSA(I) , I = 1,M)
WRITE (9) (Q(I), I = 1, NN )
2000 CONTINUE
NT = NT - NB - ND (NB+1)
NT = TOTAL NO. OF ELEMENTS
IF (FLGI1.EQ.O) RETURN
REWIND 12
REWIND }
M =1
N=ND(1)-1
DO 2050 J = 1,NB
READ (12) (XMP(I),I =M,N)
READ (4) (SINA(I),I =M,N)
READ (12) (YMP(I),I =M,N)
READ (4) (COSA(I),I =M,N)
B2Y02750
750
B2Y02760
B2Y02770
B2Y02780
B2Y02790
B2Y02800
B2Y02810
B2Y02820
B2Y02830
B2Y02840
B2Y02850
B2Y02860
B2Y02870
B2Y02880
B2Y02890
B2Y02900
B2Y02910
B2Y02920
B2Y02930
B2Y02940
B2Y02950
B2Y02960
B2Y02970

```
```

    READ (12)
    B2Y02990
    M=N+1 82Y03000
    2050N=N+ND(J+1)-1
IF (FLG11.LE.8) GO TO 2100
WRITE (6,56)
56 FORMAT (1HL 5X 37HNUMBER OF NON-UNIFORM FLOWS EXCEEDS 8 //
1 6X 18HPROGRAM TERMINATED I
STOP
2100 NCFLG = NCFLG + FLG11
DO 4000 K=1, FLG11
READ (5,64) NTYPE ,XR,YR,SEQ2
64 FORMAT (I1, 9X 2F10.0, 46X I4)
IF (SEQ2.LT. SEQ1) GO TO 60
SEQ1 = SEQ2
IF (NTYPE.GT.1) GO TO 2400
DO 2200 I = 1, NT, 6
READ(NIN,20) NUF (I),NUF (I+1),NUF (I +2),NUF (I+3),NUF(I+4),NUF(I+5),
1
SEQ2
2200 SEQ1 = SEQ2
2160 0O 2300 I = 1, NT , 6
REAC(NIN, 20)TUF(I),TUF (I+1),TUF (I+2),TUF(I+3I,TUF(I+4),TUF(I+5),
I SEQ2
2300 SEQ1 = SEQ2
2260 IF (NTYPE) 3000,3000,2800
2400 IF (NTYPE.EQ.3) GO TO 2600 B2Y03250
DO 2500 I = 1,NT
T1 = (XMP(I)-XR)**2 + (YMP(I)-YR) **2
NUF(I) = (YMP(I)-YR)/TI
2500 TLF(I) = (XR-XMP(I) )/T1
GO 10 2800
2600 DO 2700 I = 1,NT
NUF(I)= YMP(I)-YR
2700 TUF(I) = XR-XMP(I)
2800 DO 2900 I = 1,NT
T1 = NUF (I)
NUF(I)=-T1*SINA(I)+TUF(I) \#COSA(I)
2900 TUF(I)=T1*COSA(I) +TUF(I)*SINA(I)
3000 WRITE (4) (NUF(I),I=1,NT)
WRITE (4) (TUF (I), I=1,NT)
WRITE (6,68) HEDR, K, (I ,NUF(I),NUF(I+1),NUF(I+2),NUF(I+3),
1 NUF(I+4),NUF(I+5),I=1,NT,6)
68 FORMAT(1H1,6X,15A4,//7X,2OHNON-UNIFORM FLOW NO., 13,//12X,2HNG, B2Y03410
1 11X 2HTG // (1X 15,6F13.2) )
4000 CONTINUE B2Y03430
RETURN B2YC3440
END
B2Y03450

```
\$IBFTC 22YAA
 SUBROUTINE SUBCUR (X1,Y1,X2,Y2,X3,Y3,ALF, ALF2, DELT)
 COMMON /F ORCUR/XCURV(200), YCURV(200), KKK
 COMMON /NBS/ KII
 COMMON XD (50), YD (50)
 COMMON /FNC/ B,C,D
 DIMENSION XS(50), X(50), Y(50), XL(50), YL(50),NO(10)
 DATA RAD/. \(01745329 /\)
```

    OATA TOL/1.E-6/
    EXIERNAL FUNC
    WRITE (6,23) X2,Y2,X3,Y3,ALF,DELT ,ALF2,X1,Y1
    2 3
FORMAT (9F10.4)
ALF 2 =ALF 2*RAD
x 3=x2+9.72*COS(ALF2)-DELT/2.0*SIN(ALF2)
Y3=Y2-DELT/2.0*COS(ALF2)-9.72*SIN(ALF2)
ALF 2=-ALF2
ALF = -ALF * RAD
x2M\times1 = ( X2- X1)
x2P\times1= x2+x1
X1Tx2= X1 * X2
Y2MY1= Y2-Y1
X15= X1 * X1
x2S= X2**2
DET = -1.0 * (X2MX1) **3
ALF = SIN(ALF)/COS(ALF)
ALF2=SIN(ALF2)/COS(ALF2)
A =(X2S*(X2MX1*X1*ALF +Y1*(3.0*X1-X2))+X1S*(Y2*(X1-3.0 *X 2) +ALF2*X2*
1X2M\times1/I/DET
B=(X2*(6.0*X1*Y2MY1 +ALF*(2.0*X1S-X1TX2-X2S))+ALF2*X1*(X1S +X 1TX2-2.
10*X2S11/DE T
C=(-3.0*Y2MY1*X2PX1+3.0*ALF*(X2S-X1S) +(ALF2-ALF)*(X2S +X 1TX2-2.0*X1
1S|IDET
D=(2.0*Y2MY1-2.0**2MX1*ALF-(ALF2-ALF)*X2 MX1)/ DET
SC = SIMPS1(X1,X2,FUNC,K)
S= SC + DSQRT( (X3-X2)**2 + (Y3-Y2)**2)
JJ=KKK+1
KK=KKK-1
D S=S/FLOAT(KK)
DO 1 I=1,KKK
AY = I-1
1 XS(I)=AY *DS
XG=(X2MX1)/FLOAT(KK) + X1
x(1)= X1
Y(1)= Y1
00 2 I=2,KK
11 = I
3 GNUM = XS(I) - SIMPSI (XI,XG,FUNC,K) + XG * FUNC(XG)
OENOM = FUNC(XG)
XN = GNUM/DENOM
REL = ABS (( XG-XN)/XN)
XG = XN
IF (REL .GT. TOL) GO TO 3
IF(XG .GE. X2) GO TO 4
X(I)= XG
Y(I)=A + XG * (B+XG*(C+D*XG))
YP = B + X(I) *(2.0*C+3.0* D *X(I))
YP = -1.0/YP
THE1 = ATAN(YP)
IF(YP .LT. O.O) GO TO 10
DY =-DELT * SINITHETI
OX=-DELT * COS(THET)
GO 10 11
10 DY = DELT * SIN(THET)
DX = DELT * COS(THET)
11 XL(I) = X(I) + DX
2YL(I)= Y(I) + DY
G0 10 5
4 IK= 11

```
```

            SLOP = (Y3-Y2)/(X3-X2)
            THET = ATAN(SLOP)
            SLOPL = (Y3-(Y2-DELT))/(X3-X2)
    6 XG = XS(II) - SC
            DY = XG * SIN(THET)
            DX = XG * COS(THET)
            X(II) = X2 +DX
            Y(II) = Y2 +DY
            IF(ALF2 .NE. O.0) GO TO 20
            YL(I1)=SLOPL* (X(I1)-X2) + (Y2 - DELT)
            XL(I1)= X(II)
            GO TO 21
    20 DELTG = (1.0 - XG/(S-SC)) & DELT
            SLOPL = -1.0/ALF2
            SLOPL = ATAN(SLOPL)
            DYL = -DELTG * SIN(SLOPL)
            OYX = -DELTG * COS(SLOPL)
            YL(II) = Y(I1) +DYL
            XL(II) = X(II) + OXL
    2111=I1 + 1
IF(Il .EQ. KKKI GO TO 5
GO TO 6
5 X(KKK)=X3
XL(KKK) = X3
Y(KKK) =Y3
YL(KKK) = Y 3
YP = -1.0/ALF
THET = ATAN(YP)
DY = -DELT * SIN(THET)
DX = -DELT * COS(THET)
XL(1)=X1 +DX
YL(1)= Y1 + DY
DO }7\textrm{I}=1,\textrm{KKK
J=JJ-I
XCLRV(I)= XL(J)
YCURV(I)= YL(J)
K=KII-KKK+I
XCLRV(K)= X(I)
7 YCLRV(K)= Y(I)
RETURN
END
\$IBFTC FXYZ
FUNCTION FUNC (X)
COMMON /FNC/ B,C,D
FUNC=SQRT(1.0 + (B+2.0 * C*x+3.0 *D*X*X)
1**2)
RETURN
END
\$ORIGIN ALPHA
\$IBFTC B2Y3
CDECK B 2Y3 PART2 BLBROUTINE B2Y03460
SLBROUTINE PART2
B2Y03470

```
```

C ** MATRIX FORMATION SUBROUTINE ** B2Y03480
CCMPLEX IM, L, Q, W1, W2, TF, T2, T1, CLOG, CSINH B2Y03490
INTEGER FLGO2, FLGO3, FLGO4, FLGO5, FLGO6, FLGO7 B2YO3500
1, FLG08, FLG09, FLG10, FLG11, FLG12
DIMENSION Z(299), Q(300), SINA(299), COSA(300), ND(10),
1 VNS(400 ), VTS(400 ), A(299), B(299), SUMDS(10), NLF(10)
OIMENSION VNST(10),HEDR(15),CASE(2),XMC(8),YMC(8),ADDY(8)
COMMON IM,HEDR,CA SE,RPI, R2PI , SP, CL, ALPHA ,FALPHA, DALFA, CHORD, SUMDS, B 2YO3550
1 XMC , YMC, ADOY,FLG02,FLGO3 ,FLGO4,FLGO5,FLGO6, FLGO7, FLGO8,
2 \mp@code { F L G 0 9 , F L G 1 O , F L G 1 1 , F L G 1 2 , N D , N L F , N E R , N T , N B , N C F L G }
RPI =0.31830989E0
R2PI =0.15915494E0
REWIND }
REWIND 10
REWIND }
M = 1
N = NO(1)-1
M1 = 1
N1 = ND(1)
DO 100 L = 1, NB
READ (9) (Z(I), I = M,N)
READ (9) (SINA(I), I = M, N)
READ (9) (COSA(I), I = M,N)
READ (9) (Q(I), I = M1, N1)
M=N+1
N=N+ND(L+1)-1
M1 = N1 +1
100 N1 = N1 + ND(L+1)
K = NB * NT
DO 200 I = 1,K
VNS(I) = 0.
200 VTS(I) = 0.
ASSIGN 850 TO N50
ASSIGN 1050 TO NSI
IF (FLG1L.LE.O) GO TO 400
REWIND }
C

```

```

    M1 =2*NB 
    250 READ (4) 82Y03880
M1=NT+1
N1=2*NT
OO 300 K=1,FLGI1 B2Y03910
READ (4) (VNS(I),I=M1,N1) B2Y03920
READ(4) B2Y03930
M1 = M1 +NT B2Y03940
300 N1 = N1 +NT B2Y03950
400 NPFLG=0
400 NPFLG=0 % O. B2Y03960
B2 = 0.
L}=N
500 DO 1500 J=1, L
M1 = 1
N1=ND(1)-1
J1=J-L
J2=0
J4=0
T1 = CMPLX( COSA(J), -SINA(J) )
DO 1200I=1,NB
400 NPFLG=0 0.
400 NPFLG=0 % O.
B2Y03980
B2Y03990
B2Y04000
B2Y04010
B2Y04020
B 2Y04030
M, B2Y04060

```
```

    J1=J1+L
    IF (SP.NE. O.0) TF = CSINH(3.14159265E)*(Z(J)-Q(M1))/SP)
    DO 1000 K = M1, N1
    J2 = J2 + 1
    CALL FORM1 (J,K, J2, Z,Q,SINA, COSA, W1)
    700 IF (NPFLG.NE. 0) GO TO 750
    720 T2 = CONJG(W1) * T1
        A1 = AIMAG( T2)
        IF (J.EQ. J2) Al = ABS(A1)
        B1 = REAL( T2 )
        GO TO 800
    750 A1 = - AIMAG( W1 I
    B1= REAL(WI)
    800 GO TO N 50, (850,900)
    850 VNS(J1) = VNS(JL) - B1 + B2
    VTS(J1)=VTS(J1) +AL - A2
    900 A(J2) = A1 + A2
    1000 B(J2)=B1 + B2
GO TO N51,(1050,1100)
1050 VNS(J1) = VNS(J1) / SUMDS(J4)
VIS(J1) = VTS(Jl) / SUMDS(J4)
1100M1 = NL + 2
1200 N1 = Nl + ND(I +1)
VNST(1) = - SINA(J)
VNST(2) = COSA(J)
IF( FLG11 .LT. 1 ) GO TO }127
KL=J-L
DO 1250 I = 3, NCFLG
KL}=KL+
1250 VNST(I) = VNS(KL)
1275 WRITE (10) ( A(I), I=1,NT), (VNST(KL), KL=1, NCFLG )
WRITE (10) ( B(I), I = L, NT )
IF (FLGO7 .EQ. O ) GO TO 1300
WRITE (6, 5) J, (A(I), I = 1, NT)
5 FORMAT (1HO 12H AJK ROW I4// (6F15.8) )
WRITE (6, 10)J, (B(I), I = 1, NT)
10 FORMAT (1HO 12H BJK ROW 14// (6F15.8))
1300 WRITE ( 8) (A(I), I=1, NT )
WRITE ( 8) ( B(I), I = 1,NT)
1500 CONTINUE
C
M=1
M=1
DO 2000 J = 1,NB
IF (NLF(J).NE. O ) GO TO 1800
WRITE (4) (VNS(I), I =M,N )
WRITE (4) (VTS(I), I = M,N )
1800M=N+1
2000N=N+L
IF (FLGO7 .EQ. O ) GO TO 3000
N = NB * L
WRIIE (6, 15) ( VNS(I), I = 1, N )
WRITE (6, 20) (VTSII), I = 1,N )
MWRITE (6, 20) ( VTS(I), I = 1,NN),
20 FORMAT (1HO / 10X 3HVTS /// (6F15.8) )
3000 IF (FLGO2.EQ. O .OR. NPFLG.NE. O) RETURN
NPFLG = 1
L=ND(NB+1)
READ (9) (ZII),I = 1,L L B2Y04790
B2Y04080
B2Y04090
C
B2Y04100
B2Y04100
B2Y04110
B2Y04120
B2Y04140
B2Y04260
B2Y04270
B2Y04280
B2Y04290
B2Y04300
B2Y04310
B2Y04320
B 2Y 04330
B2Y04340
B2Y04350
B2Y04360
B2Y04370
B2Y04380
B2Y04390
B2YC4400
B2Y04410
B2Y04420
B2Y04430
B2Y04440
B2Y04450
B2Y04460
B2Y04470
B2Y04480
B2Y04490
B2Y04500
B2Y04510
B2Y04520
B2Y04530
B2Y04540
B2Y04550
B 2Y04560
B2Y04570
B2Y04580
B2Y04600
B2Y04620
B2Y04630
B2Y04640
B2Y04650
B2Y04660
B2Y04670
B2Y04680
B2Y04690
B2Y04700
B2Y04710
B2Y04720
B2Y04730
B2Y04740
B2Y04750
B2Y04760
B2Y04770
B2Y04780

```
82Y 04880 B2Y04890
```

```
 K=NB*L.
```

    K=NB*L. 
    K=NB*L. 
    K=NB*L. 
    K=NB*L. 
    K=NB*L. 
    3100VIS(I) = 0.
3100VIS(I) = 0.
K=NB=L
K=NB=L
K=NB=L
K=NB=L
K=NB*L.
K=NB*L.
K=NB*L.
K=NB*L.
K=NB*L

```
 K=NB*L
```






```
 K=NB*L.
```

    K=NB*L. 
    K=NB*L. 
    K=NB*L. 
    \$IBFTC B2Y4
\$IBFTC B2Y4
CDECK B2Y4

```
CDECK B2Y4
```




```
 COMMON IM,HEDR,CASE,RPI,R2PI,SP,CL,ALPHA,FALPHA,NER,NT,NB,NCFLG B2Y04910
```

    COMMON IM,HEDR,CASE,RPI,R2PI,SP,CL,ALPHA,FALPHA,NER,NT,NB,NCFLG B2Y04910
    B2Y04910
    B2Y04910
    DIMENSION HEDR(15),CASE(2)
    DIMENSION HEDR(15),CASE(2)
    W=CLOG ( (Z(J)-Q(K)) /(Z(J)-Q(KK+1)) '
    W=CLOG ( (Z(J)-Q(K)) /(Z(J)-Q(KK+1)) '
    W=CLOG ( (Z(J)-Q(K)) (IZ(J)-Q(K+1))',
    W=CLOG ( (Z(J)-Q(K)) (IZ(J)-Q(K+1))',
    RETURN
    RETURN
    END
    END
    B2Y04920
B2Y04920
B2Y04930
B2Y04930
B2Y04940
B2Y04940
B2Y04940
B2Y04940
B2Y04950
B2Y04950
B2Y04960
B2Y04960
82Y04970
82Y04970
SORIGIN ALPHA
SORIGIN ALPHA
SORIGIN ALPHA
SORIGIN ALPHA
\$IBFTC B2Y9
\$IBFTC B2Y9
\$IBFTC B2Y9
\$IBFTC B2Y9
CDECK B2Yg
CDECK B2Yg
CDECK B2Yg
CDECK B2Yg
SLBROUTINE PART4
SLBROUTINE PART4
SLBROUTINE PART4
SLBROUTINE PART4
COMPLEX IM
COMPLEX IM
COMPLEX IM
COMPLEX IM
INTEGER FLGO2, FLG03, FLG04, FLGO5, FLGO6, FLGO7
1, FLG08, FLG09, FLG10, FLG11, FLG12
DIMENSION A(300 ), R(300,5), ND(10), NLF(10)
OIMENSION HEDR(15),CASE(2),SUMOS(10),XMC (8),YMC(8), ADDY(8)
OIMENSION HEDR(15),CASE(2),SUMOS(10),XMC (8),YMC(8), ADDY(8)
OIMENSION HEDR(15),CASE(2),SUMOS(10),XMC (8),YMC(8), ADDY(8)
OIMENSION HEDR(15),CASE(2),SUMOS(10),XMC (8),YMC(8), ADDY(8)
CCMMON IM,HEDR,CA SE, RPI, R2PI , SP, CL, ALPHA, FALPHA, DALFA, CHORD, SUMDS, B 2Y }0618
CCMMON IM,HEDR,CA SE, RPI, R2PI , SP, CL, ALPHA, FALPHA, DALFA, CHORD, SUMDS, B 2Y }0618
CCMMON IM,HEDR,CA SE, RPI, R2PI , SP, CL, ALPHA, FALPHA, DALFA, CHORD, SUMDS, B 2Y }0618
CCMMON IM,HEDR,CA SE, RPI, R2PI , SP, CL, ALPHA, FALPHA, DALFA, CHORD, SUMDS, B 2Y }0618
1 XMC, YMC,AODY,FLGO2,FLGO3,FLGO4,FLGO5,FLGO6,FLGO7, FLGO8, B2Y06190
2 FLGO9,FLG1O,FLG11,FLGL2,ND,NLF,NER,NT, NB,NCFLG B2Y06200

```
 2 FLGO9,FLG1O,FLG11,FLGL2,ND,NLF,NER,NT, NB,NCFLG B2Y06200
```

        2 FLGO9,FLG1O,FLG11,FLGL2,ND,NLF,NER,NT, NB,NCFLG B2Y06200
    ```
 2 FLGO9,FLG1O,FLG11,FLGL2,ND,NLF,NER,NT, NB,NCFLG B2Y06200
```






```
 REWIND 3
```

            REWIND 3
    ```
 REWIND 3
```

            REWIND 3
            REWIND }
            REWIND }
            REWIND }
            REWIND }
            REWIND }1
            REWIND }1
            REWIND }1
            REWIND }1
            M = 1
            M = 1
            M = 1
            M = 1
            N=ND(1)-1
            N=ND(1)-1
            N=ND(1)-1
            N=ND(1)-1
            OO 100 K = 1, NB
            READ (4) ( R(I,1), I = M,N )
            READ (4) (R(I,2),I= M,N)
            READ (4) (R(I,2),I= M,N)
            READ (4) (R(I,2),I= M,N)
            READ (4) (R(I,2),I= M,N)
            M=N+1
            M=N+1
            M=N+1
            M=N+1
    100N=N + ND(K+1)-1
    100N=N + ND(K+1)-1
    100N=N + ND(K+1)-1
    100N=N + ND(K+1)-1
    C PRECEDING READS IN SINES, CCSINES. ONSET FLONS NEXT (IF ANY).
C PRECEDING READS IN SINES, CCSINES. ONSET FLONS NEXT (IF ANY).
C PRECEDING READS IN SINES, CCSINES. ONSET FLONS NEXT (IF ANY).
C PRECEDING READS IN SINES, CCSINES. ONSET FLONS NEXT (IF ANY).
IF ( NCFLG .LE. 2 ) GO TO 180
IF ( NCFLG .LE. 2 ) GO TO 180
IF ( NCFLG .LE. 2 ) GO TO 180
IF ( NCFLG .LE. 2 ) GO TO 180
DO 150 J = 3, NCFLG
READ (4) ( R(I,J), I = 1, NT )
READ (4) ( R(I,J), I = 1, NT )
READ (4) ( R(I,J), I = 1, NT )
READ (4) ( R(I,J), I = 1, NT )
150 READ (4)
150 READ (4)
150 READ (4)
150 READ (4)
18000 200 J = 2, NCFLG
00200 I = 1, NT
200R(I, J)=-R(I, J)
200R(I, J)=-R(I, J)
200R(I, J)=-R(I, J)
200R(I, J)=-R(I, J)
250 DO 300 I = 1. NT
READ (10) (A( J ), J=1,NT )
READ (10)
READ (10)
READ (10)
READ (10)
300 WRITE(1) (A(J), J=1,NT),(R(I, J), J=1, NCFLG)
B2Y06110
B2Y06110
B2Y06110
B2Y06110
B2Y06120
B2Y06120
B2Y06120
B2Y06120
B2Y06130
B2Y06130
B2Y06130
B2Y06130
B2Y06140
B2Y06140
B2Y06140
B2Y06140
B2YC6150
B2YC6150
B2YC6150
B2YC6150
B2YC6150
B2YC6150
B2YC6150
B2YC6150
B2Y06160
B2Y06160
B2Y06160
B2Y06160
B2Y06170
B2Y06170
B2Y06170
B2Y06170
\$IBFTC B2YG
\$IBFTC B2YG
\$IBFTC B2YG
\$IBFTC B2YG
B 2Y06220
B 2Y06220
B 2Y06220
B 2Y06220
B2Y06230
B2Y06230
B2Y06230
B2Y06230
B2Y06240
B2Y06240
B2Y06240
B2Y06240
B 2Y06250
B 2Y06250
B 2Y06250
B 2Y06250
B2Y06260
B2Y06260
B2Y06260
B2Y06260
B2Y06270
B2Y06270
B2Y06270
B2Y06270
B2Y06270
B2Y06270
B2Y06270
B2Y06270
B2Y06280
B2Y06280
B2Y06280
B2Y06280
B2Y06280
B2Y06280
B2Y06280
B2Y06280
B2Y06290
B2Y06290
B2Y06290
B2Y06290
B 2Y06310
B 2Y06310
B 2Y06310
B 2Y06310
B2Y06320
B2Y06320
B2Y06320
B2Y06320
B 2Y06330
B 2Y06330
B 2Y06330
B 2Y06330
B 2Y06340
B 2Y06340
B 2Y06340
B 2Y06340
B2Y06350
B2Y06350
B2Y06350
B2Y06350
DIMENSION Z(299),Q(300), SINA(299), COSA(299)

```
 DIMENSION Z(299),Q(300), SINA(299), COSA(299)
```






```
 K=NB*L.
```

    K=NB*L. 
    K=NB*L. 
    ```
 K=NB*L.
```

| END FILE 1 | B2Y 06440 |
| :--- | :--- |
| REWIND 1 | B2Y 06450 |
| RETURN | B2Y 06460 |
| END | B2Y 06470 |

```
$ORIGIN ALPHA
$IBFTC C20X9
C20X9 B2Y06480
 SLBROUTINE SOLVIT (A,ND, MD, KD,NI, MM, NO, NW,*) B2Y06490
 DIMENSION A (KD) B2Y06620
C B2Y06630
LOGICAL LAST
C
 N = ND
 M = MD
 KORE = KD
 NPM = N +M B2Y0671C
 IF (MAXOI 3 NPM, M N * GT. KORE) RETJRN 1 B2Y06720
 MT =MM
 REWIND MT
 NIN = NI
 REWIND NIN
 NOUT = NO
 REWIND NOUT
 MP1 = M + 1
 NN=N
 NEL=NPM
C - - CALCULATE THE MAXIMUM NO. OF ROWS, 'K'
 10 K = (KORE - NEL) / NEL
C
C - - TEST TO SEE IF THE REST OF THE MATRIX WILL FIT IN CORE
 LASI = K.GE. NN
 IF (LAST) K=NN
C
C - - READ 'K' ROWS OF THE AUGMENTED 'A" MATRIX
 30 NT =0
 DO 40 IB = 1, K
 NS =NT + 1
 NT = NT + NEL
 40 READ (NIN) (AIIO), IO = NS,NT)
C
C B2Y06990
C - - CIECK TO SEE IF WE WERE UNLUCKY ENOUGH TO END UP WITH ONLY ONE ROWB2YO7000
C
 IF (K .EQ. 1) GO TO 90
B2Y07010
 B2Y07020
C B2Y07030
C - - 'K' IS GREATER THAN '1' SO LE CAN START THE TRIANGULARIZATION B2YO7040
C
 NELP1 = NEL + 1
 NS = NEL B2Y07070
 NELP2 = NELP1 + 1 B2Y07080
C
B2Y07050
B2Y07050
B2Y07080
```

```
C - - FORM THE 'TRAPEZOIDAL' ARRAY (8)
C
 DO 50 IB = 2, K
 NP = NELP2 - IB
 NS = NS + NELPI
 NT = NS
 DO 50 10 = IB, K
 NT = NT + NEL
 MN = NT
 NB = NS
 A(NT) = (-A(NT)) / A(NS)
 DO 50 NF = 2, NP
 MN = MN +1
 NB=NB+1
 50 A(MN) = A(MN) + A(NT)*A(NB)
 IF (LAST) GO TO 90
c
C - - hrite the -trape zoidal. matrix on tape
C
 NT = O
 NP = NEL
 NS = - NEL
 DO 6O IO = 1, K
 NS = NS + NELP1
 NT = NT + NEL
 WRITE (MT) NP, (A(IB), IB = NS, NT)
 60 NP = NP - 1
 NP = NP - M
 NS = KORE - NEL + 1
C
C - - read another row
 OO 80 IO = 1, NP
 READ (NIN) (A(IB), IB = NS, KORE)
C
C - - modify this row by the - trapezoidal' array
C
 NT=1
 MN = NS
 DO 70 18 = 1, K
 NB = NT
 NF=MN + 1
 A(MN) = (-A(MN)) / A(NT)
 OO 65 NN = NF, KORE
 NB = NB + 1
 65A(NN) = A(NN) + A(MN) * A(NB)
 MN = NF
 7CNT = NT + NELPI
C C- - write the modified row on tape
 8O WRITE (NOUT) (A(NT), NT = MN, KORE)
 REWIND NOUT
 REWINO NIN
C - - Shitich the tapes
C
 NT = NIN
 NIN = NOUT
 NOUT = NT
```

B2Y07100
B2Y07110 B2Y07120 B2Y07130 B2Y07140 B2Y07150 B2Y07160 B2Y07170 B2Y07180 B2Y07190 B2Y07200 B2Y07210 B2Y07220 B 2 Y 07230 B2Y07240 B2Y07250 B 2 Y 07260 B2Y07270 B 2 Y 07280 B2Y07290 B2Y07300 B 2 Y 07310 B2Y07320 B2Y07330 B2Y07340 B2Y07350 B 2 Y 07360 B2Y07370 B2Y07380 B 2 Y 07390 B2Y07400 B2Y 07410 B2Y07420 B2Y07430 B2Y07440 B2Y07450 B2Y07460 B2Y07470 B2Y07480 B2Y07490 B2Y07500 B2Y07510 B2Y07520 B2Y07530 B2Y07540 B 2 Y07550 B 2 Y 07560 B2Y07570 B2Y07580 B2Y07590 B2Y07600 B2Y07610 B2Y07620 B2Y07630 B2Y07640 B2Y07650 B2Y07660 B 2 Y 07670 B2Y07680 B2Y07690

```
C B2Y07700
C - - RE-CALCULATE ROW LENGTH AND LOOP BACK
 NEL = NEL - K
 NN = NEL - M
 GO TO 10
C
C - - REWINO ALL TAPES
 90 RELIND MT
 REWIND NIN
 REWIND NOUT
C
C - - CONDENSE THE MATRIX
C
 NN = NEL
 NL = NELPI
 IF (K .EQ. 1) GO TO 105
 NS = 1
 NT = NEL
 DO 100 IB = 2,K
 NS = NS + NELPI
 NT = NT + NEL
 OO 100 IO = NS, NT
 A(NL)=A(IO)
 100 NL = NL +1
 105 N1 = KORE - K*M*1
C
C - - THERE, NOW WE CAN START THE BACK-SOLUTION
C * * NOTE..THE FIRST AVAILABLE LCCATION FOR THE SOLUTIONS IS AINII
C
 NREM = N
 NEL = NPM
 LAST = K .EQ. N
 NPASS = 0
C
C - - SOLVE FOR THE ANSWERS CORRESPONDING TO'K' ROWS
 110KM1 =K-1
 KP1 = K + 1
 NS = NL - MPI
 NPASS = NPASS +1
 OO 130 MN = 1, M
 NF=NS + MN
 A(NF)=A(NF)/A(NS)
 NT = NS
 IF (KMI .EQ. O) GO TO 130
 OO 125 IB = 1, KM1
 NF=NF-IB-M
 NT =NT - MP1-IB
 SLM = 0.0
 NP=NF
 N2 = MP1 + IB
 DO 120 IO = 1, IB
 NN=NT + IO
 NP = NP + N2 - IO
 120 SUM = SUM & A(NN) * A(NP)
 125 A(NF) = (A(NF) - SUM) / A(NT)
 130 CONTINUE
C
82Y07710
B2Y07720
82Y07730
B2Y07740
82Y07750
B2Y07760
82Y07770
B2Y07780
B2Y07790
B2Y07800
82Y07810
B2Y07820
B2Y07830
B2Y07830
82Y07850
B2Y07860
B2YC7870
B2Y07880
B2Y07890
B2Y07900
82Y07910
B2Y07910
82Y07930
B2Y07940
B2Y07950
B2Y07960
B2Y07960
B2Y07970
B2Y07980
B2Y07990
B2Y C8000
B2YC8010
B2Y 080 20
B2Y08030
B2Y08040
B2Y08040
B2YC8050
B2YC8060
B2Y08070
B2Y08080
B2Y08090
B2Y08100
B2Y08110
B2Y08120
82Y08120
82Y08130
B2Y08140
B2Y08150
B2Y08160
B2Y08170
B2Y08180
B2Y08180
B2Y08190
B2Y08200
B2Y08210
82Y08220
B2Y08230
82Y08240
B2Y08250
B2Y08260
B2Y08270
B 2YC8280
B2Y08290
```

```
C - - MOVE THE SOLUTIONS TO CONTIGUOUS LOCATIONS STARTING AT A(NI) B2YO8300
C }\quad\begin{array}{l}{N1=KORE + 1}\\{OO 140 NN =1 }
 NO
 NO
 NL=NL-1
 NL=N1-1
 135A(N1)=A(NL)
140 NL = NL - NN
C
C
 WRITE (NIN) K
 NS = N1 - 1
 DO 145MN = 1, M
 NT =NS + MN
 145 WRITE (NIN) (A(IO), IO =NT, KORE,M)
C C - TEST IF THIS IS THE LAST PASS
 IF (LAST) GO TO 200
C - - WE MUST NOW MODIFY THE TRIANGULAR MATRIX TO REFLECT THE EFFECT OF
C - - WE MUST NOW MODIFY THE TRIANGULAR MATRIX TO REFLECT THE EFFECT OF
C * * NOTE..LOCATIONS A(I) TO A(N1-II ARE NOW FREE TO USE
C - - CALCuLATE THE NEXT VALUES DF 'NEL* AND 'NREM*
C
 NELOLD = NEL
 KOLD =K
 NEL=NEL - K
 NREM = NREM - K
C
```



```
 K=(-4*M-1) /2 + IFIXISORT(0.25 + FLOAT (14*M + 2)*M + B2YO8650
 12 * (KORE - NELOLOI)))
 NROW = NREM - K + 1
 IF (K.LT. NREM) GO TO 150 B2Y08680
 LAST =. TRUE. B2YC8690
 NROh = 1
 K = NREM
 150 NS = 1
 NT = NELOLD + 1
C
C
 DO 190 IB =1, NREM
```



```
 IF (IB.LE. NROW) GO TO }16
 NS = NS + NN
 NT = NT + NN
 160 READ (MT) NN, (A(IO), IO = NS,NT)
 NP=N1-1
 NP=N1-1
 NN=NN-KOLD
 NN=NN- KOLD
 N2 = NF
 N2=NF
 NB=NA
 B 2Y08310
 B2YC8320
 B2YC8330
 B2Y08340
 BYO
 B2Y08350
B2YC8360
B2Y08370
B2Y08380
B2Y08390
C
B2YC8400
B2Y08410
 B2YC8420
B 2Y }0843
 B2Y08440
B2YC8450
B2YC8460
B2YC8470
B2Y08480
B2Y08490
B2YC8500
B 2Y08510
* NOTE..LOCATIONS A(I) TO A(NI-1I ARE NOW FREE TO USE B2Y08540
C _ _ CALCULATE THE NEXT VALUES OF 'NEL. AND NREME B2Y08550
C - - CALCULATE THE NEXT VALUES OF 'NEL' AND 'NREM' B2YO8560
```



```
B2Y08570
B2Y08580
B2YC8590
OYM0600
B2Y08600
B2Y08610 B \(2 Y 08620\)
C K
B2YO8650
 B2YC8670
 NROL=1
B2Y08680
B2YC8690
B2Y08700
B2Y08710
 NS =1 NTOLD +1 B2Y08720
B2Y08730
B2Y08740
B2Y08750
B2Y08760
```



```
B2Y08780
B2Y08790
B2Y08800
 B2Y08810
 NP=N1 - 1 NN: NT
B2Y08820
 B2YO8830
B2YC8840
B2Y08850
B2Y08860
B2Y08870
B2Y08880
B2Y08890
```

```
 SUM =0.0 B2Y08900
 DO 165IO =1, KOLO
 SLM. = SUM + A(N2) * A(NA)
 N2 = N2 +1
 165NA}=N\mp@code{NA+M
```



```
 170A(N2)=A(N2)-SUM
C
C - - WRITE THE MODIFIED ROW ON TAPE OR CONDENSE THE ROW
 NL = NT - M + 1
 IF (IB .GE. NROWI GO TO 175
 NF=NL - KPI
 WRITE (NOUT) NN, (A(IOI, IO = NS, NF), (A(IO), IO = NL, NT)
 GO TO }19
 175 NF = NL - KOLD B M O9050
 DO 180 MN = NL, NT B2Y09060
```



```
 180 NF = NF + 1
 190 CONTINUE
REWIND MT
 REWIND NOUT
C - - SWIICH THE TAPES
C
 NT=MT
 MT = NOUT
 NOUT = NT
C
C - - LOOP BACK THRU THE SOLUTION
 NL = NF
 GO TO 110
C S SIART TO
C - - SIART TO WRAP IT UP
C
 200 REWIND NIN
 N2 = N
C** NOTE.. AT THIS POINT ALL LOCATIONS A(I) THRU A(KORE) ARE FREE
C
 DO 220 IB = 1, NPASS
 READ (NIN) K
 N1 =N2 - K+1
 NS = NL
 NT = N2
C
C - - READ IN THE SOLUTIONS
 DO 210 IO = 1, M
 READ (NIN) (A (NN), NN = NS, NT)
 NT =NT + N
 210NS = NS +N
 220 N2 = N1 - 1
C
CNON
C - - WRITE THE SOLUTIONS ON TAPE
 NT=0
 DO 230 IO = 1,M
 NS=NT+1
B2Y08910
B2Y08930
B2Y08940
B2YC8950
B2Y08960
B2Y08970
B2Y08980
B2Y08990
B2Y09000
B2Y09010
B2Y09020
B2Y09030
B2Y09040
B2Y09060
B2Y09070
B2Y09080
B2Y09090
B2Y09100
B2Y09110
B2Y09120
B2Y09130
B2Y09140
82Y09150
B2Y09160
B2Y09170
B2Y09180
B2Y09190
B2Y09200
B2Y09210
B2Y09220
B 2Y 09230
B 2Y09240
B2Y09250
B2Y09260
B 2Y09270
B 2Y09280
B2Y09290
B2Y09300
B2Y09310
B2Y09320
B2Y09320
B2Y09340
B 2Y09350
B2Y09360
B 2Y09370
B 2Y09380
B2Y09390
B2Y09400
B2Y09410
B2Y09420
B2Y09430
B2Y09440
B2Y09450
B2Y09460
B2Y09470
8VY09480
B2Y09480
B2Y09490
```

```
 NT = NT + N B2Y09500
 230 WRITE (NW) (A(NN), NN = NS, NT)
 B2Y09510
 c
 REILRN
 END
B2Y09520
B2Y09590
```

```
SORIGIN ALPHA
```

SORIGIN ALPHA
SIBFTC B2YE
SIBFTC B2YE
CDECK B2YE B2Y10740
CDECK B2YE B2Y10740
SLBROUTINE PART5
SLBROUTINE PART5
COMPLEX IM
COMPLEX IM
INTEGER FLGO2, FLGO3, FLGO4, FLGO5, FLGO6, FLGO7 B2Y10760
INTEGER FLGO2, FLGO3, FLGO4, FLGO5, FLGO6, FLGO7 B2Y10760
1, FLG08, FLG09, FLG10, FLG11, FLG12 BLGO6, FLGOT, B2Y10780
1, FLG08, FLG09, FLG10, FLG11, FLG12 BLGO6, FLGOT, B2Y10780
DIMENSION B(299), VT(299, 5), SIG(299, 5), T(299, 5), CP(299,`6) B2Y10790     DIMENSION B(299), VT(299, 5), SIG(299, 5), T(299, 5), CP(299,`6) B2Y10790
1, ND(10), NLF(10), X(300), Y(300), XMP(299), YMP(299),CASE(2) B2Y10800
1, ND(10), NLF(10), X(300), Y(300), XMP(299), YMP(299),CASE(2) B2Y10800
2, SUMDS(10), XMC(8), YMC (8), ADDY(8),HEDR(15), VELID(10),VID(2) B2Y10810
2, SUMDS(10), XMC(8), YMC (8), ADDY(8),HEDR(15), VELID(10),VID(2) B2Y10810
COMMON IM,HEDR,CA SE, RPI,R2PI,SP,CL,ALPHA,FALPHA, DALFA, CHORD, SUMDS, B 2Y 10820
COMMON IM,HEDR,CA SE, RPI,R2PI,SP,CL,ALPHA,FALPHA, DALFA, CHORD, SUMDS, B 2Y 10820
1
1
2 FLG09,FLG10,FLG11,FLG12,ND,NLF,NER,NT,NB,NCFLG,FLG15,FLG16
2 FLG09,FLG10,FLG11,FLG12,ND,NLF,NER,NT,NB,NCFLG,FLG15,FLG16
COMMON SUMSIG,VINF,MON, BETA,CDIM,VREF,OELT,FLG13,FLG14, ITER,ALF2
COMMON SUMSIG,VINF,MON, BETA,CDIM,VREF,OELT,FLG13,FLG14, ITER,ALF2
EQUIVALENCE ( T, CP )
EQUIVALENCE ( T, CP )
B2Y10850
B2Y10850
OATA VELID / 3H V0, 4H V90, 3H V1, 3H V2, 3H V3, 3H V4, 3H V5, B2Y10860
OATA VELID / 3H V0, 4H V90, 3H V1, 3H V2, 3H V3, 3H V4, 3H V5, B2Y10860
1 3H V6, 3H V7, 3H V8 /,BLANK/1H /
1 3H V6, 3H V7, 3H V8 /,BLANK/1H /
REWIND 3
REWIND 3
REWIND 4 82Y10890
REWIND 4 82Y10890
REWIND 10 B2Y10900
REWIND 10 B2Y10900
REWIND 8
REWIND 8
REWIND 12 B2Y10920
REWIND 12 B2Y10920
REWIND }1
REWIND }1
M = 1
M = 1
N = ND(1) - 1
N = ND(1) - 1
DO 100 K = 1, NB
DO 100 K = 1, NB
READ (4) ( T(I,2), I = M, N )
READ (4) ( T(I,2), I = M, N )
READ (4) ( T(I,1), I = M, N )
READ (4) ( T(I,1), I = M, N )
READS IN SINES aND COSINES
READS IN SINES aND COSINES
M=N+1
M=N+1
100 N = N + ND(K+1) - 1
100 N = N + ND(K+1) - 1
IF (NCFLG .LE. 2 ) GO TO 200
IF (NCFLG .LE. 2 ) GO TO 200
0O 150 J = 3, NCFLG
0O 150 J = 3, NCFLG
READ (4)
READ (4)
150 READ (4) ( T(I,J), I = 1, NT )
150 READ (4) ( T(I,J), I = 1, NT )
200 00 250 J = 1, NCFLG
200 00 250 J = 1, NCFLG
250 READ (3) ( SIG(I,J), I = 1, NT )
250 READ (3) ( SIG(I,J), I = 1, NT )
00 400 I = 1, NT
00 400 I = 1, NT
READ (10)
READ (10)
READ (10) ( B (L), L=1, NT )
READ (10) ( B (L), L=1, NT )
00 400 J = 1, NCFLG
00 400 J = 1, NCFLG
PR=0.
PR=0.
DO 300 L = 1, NT
DO 300 L = 1, NT
300 PR = PR + B(L)*SIG(L,J)
300 PR = PR + B(L)*SIG(L,J)
VT(I,J)=PR +T(I,J)
VT(I,J)=PR +T(I,J)
400CP(I,J)=1.-VT(I,J)**2
400CP(I,J)=1.-VT(I,J)**2
00 500 J = 1, NCFLG
00 500 J = 1, NCFLG
500 WRITE ( 8) ( VT(I,J), I = 1, NT )
500 WRITE ( 8) ( VT(I,J), I = 1, NT )
IF (MON-1) 510,520,520

```
 IF (MON-1) 510,520,520
```

```
510M=1
 B2Y11190
 N = ND(1) B2Y11200
 M1 = 1
 N1 = ND(1) - 1
 DO 700 J = 1, NB
 READ (13) (X(I), I=M,N)
 READ (13) (Y(I), I = M,N)
 READ (13) (XMP(I), I =M1, N1)
 READ (13) (YMP(I), I = M1, N1)
 M=N+1
 N=N+ND(J+1)
 M1 = N1 + 1
700N1=N1+NO(J+1)-1 B2Y11310
 DO 2500 L = 1, NCFLG B 2Y11320
 I=1
 J=1
 M = 1
 N=ND(1)
 LCTR=220
 K=L-2 B2Y11380
 IF (FLG10 -LT. 2) GO TO 1000 82Y11390
1000 WRITE (6, 1100) HEDR, CASE B2Y11440
1100 FORMAT (1H1 25X 26HDOUGLAS AIRCRAFT COMPANY / 28X 21HLONG BEACHB2Y 11450
1100 FORMAT (1H1 25X 26HDOUGLAS AIRCRAFT COMPANY / 28X 21HLONG BEACHB 2Y 11450
 IF(K) 1150, 1300, 1500 B2Y11470
1150 WRITE (6, 1200) B2Y11480
1200 FORMAT (1H 19HSTREAMFLOW SOLUTION) B 2Y11490
 GO TO 1700
1300 WRITE (6, 1400) B2Y11510
1400 FORMAT (1H 23H90-DEGREE FLOW SOLUTION)
 GO IO 1700
1500 WRITE (6, 1600) K
1600 FORMAT (1H 35HNON-UNIFORM ONSET FLOW SOLUTION NO. I3) B2Y11550
1700 IF (FLG12.LE.O) WRITE (6,1800) B2Y11560
1800 FORMAT (1H 25HUNTRANSFORMEO COORDINATES //) B % 11570
 IF (FLG12.GT.0) WRITE (6,1900)
1900 FORMAT (1H 23HTRANSFORMED COORDINATES //) B2Y11590
 WRITE (6,1950)
1950 FORMAT (12X 1HX 13X 1HY 14X 1HV 12X 2HCP 11X 5HSIGMA //)
2000 WRITE (6, 2100) I, X(I), Y(I), XMP(J), YMP(J), VT(J,L)
 1, CP(J,L), SIG(J,L)
2100 FORMAT (1H I3, 2F14.8 / 4X 5F14.8)
 I = I + I
 J=J+1
 IF (I .EQ. N) GO TO 2200
 IF (I .LE. LCTR) GO TO 2000
 LCTR = LCTR + 22
 GO TO 1000
2200M=M+1
 N=N+ND(M)
 WRITE (6, 2300) I, X(I), Y(I)
2300 FORMAT (iH I3, 2F14.8/|), B2Y11740
 I=I + 1
 IF (J.GE. NT) GO TO }250
 GO TO 2000
2500 CONTINUE
520 RETURN
 RETURN 年 B2Y11790
B2Y11210
B2Y11220
B2Y11230
B2Y11240
B2Y11250
B2Y11260
B2Y11270
B2Y11280
B2Y11280
B2Y11300
B2Y11310
B2Y11320
B2Y11330
B 2Y11340
B2Y11350
1400 FORMAT (1H 23H90-DEGREE FLOW SOLUTION) 82Y11520
 N-N-O-NO
B2Y11570
B2Y11580
B2Y11590
B2Y11600
B2Y11610
B2Y11620
B2Y11630
B2Y11640
B2Y11650
B 2Y11660
B2Y11670
B2Y11680
B2Y11690
B2Y11700
B2Y11710
B2Y11720
B2Y11730
B2Y11740
B2Y11750
B2Y11750
B 2Y11780
B2Y11800
```



```
 N=NO(1) - 1 B2Y12320
 00 100 I = 1, NB
B 2Y }1233
 GAM(I)=(XTEMP(M) + XTEMP(N))*CSALF B2Y12340
 GAM(I) = - (GAM(I) + (YTEMP(M) +YTEMP(N)) *SNALF)
 M=N+1
100N=N+ND(I+1)-1
 IF (K.EQ. O GO TO }16
 OO 150 J = 1, K
 READ (8) (LTEMP(I), I = 1, NT)
 M = 1
 N = ND(1) - 1
 DO 150 I = 1, NB
 DVA(I,J)=ZTEMP(M) + ZTEMP(N)
150 OVX(I,J) = DVA(I,J)
160 REhIND }
 GAM(1)=(GAM(1)-DVA(1, 1)) /OVA(1,2)
5040 READ (8) (XTEMP(I), I = 1,NT)
 SNALF = SIN(ALPHA)
 READ (8) (YTEMP(I), I = 1,NT)
 M, 82Y13890
5070VC(I)=XTEMP(I)*CSALF + YTEMP(I)*SNALF B2Y13900
 READ (8) (XTEMP(I), I = 1, NT)
 DO 5100 I = 1,NT
B2Y13940
5100 VC(I) = VC(I) + XTEMP(I)
 IF(NLF(1).NE.0) GO TO 5150
 READ(8) (XTEMP(I),I=1,NT)
 DO 5125 I =1,NT
5125VC(I)=VC(I)+XTEMP(I)*GAM(1)
5150 DO 5200 I = 1,NT
5200 CP(I) = 1. - VC(I)*VC(I)
 M=1
 N = ND(1) - 1
 M1 = 1
 N1 = NO(1)
 DO 5250 J = 1, NB
 READ (4) (SINA(I), I = M, N)
 READ (13) (X(I), I = M1, N1)
 READ (4) (COSA(I), I = M,N)
 READ (13) (Y(I), I = M1, N1)
 READ (13) (XMP(I), I =M,N)
 READ (13) (YMP(I), I = M,N)
 READ (12) (XM(I), I = M,N)
 READ (12) (YM(I), I = M,N)
 READ (12) (DELS(I), I = M,N)
 M1=NL+1
 N1 = N1 + ND(J+1)
 M = N + 1
5250N=N+ND(J+1)-1
 M=1
 N=NO(1)-1
 DO 5210 I =M,N
 XN(I+1)=(X(I)+X(I+1))/2.0
 YN(I+1)=(Y(I)+Y(I+1))/2.0
5210 PRES(I+1)=CP(I)
 WRITE (7) (PRES(I+1),I=M,N)
 WRITE (7) (CP (I),I=M,N)
 WRITE (7) (XN(I+1),I=M,N)
 WRITE (7) (YN(I+1),I =M,N)
 IF (MON-2) 5220,5230,5230
5220 PLNCH 5551, L,ALPHA
```

```
5551 FORMAT (15,F10.5)
 CALL BCDUMP (XMP (M), XMP(N))
 CALL BCDUMP (YMP(M),YMP(N))
 CALL BCDUMP (VC (M),VC (N))
5230 IF (FLG12 .LE. O) GO TO 5252
DO 5251II = 1,NT
DO 5251 I = 1,NT
 GO TO 5301
525200 5300 I = 1,NT B2Y14200
5300 DELSUT(I)= SQRT((X(I+1)-X(I))**2+(Y(I+1)-Y(I))**2) B2Y14210
5301 GT =0.0
 DO 5350 I = 1, 1
5350 GT = GT + GAM(I)
 T=0.0
C T=.5*GT / SPP B 2Y14250
 IF (FLGO5.EQ. O) FALPHA= ATAN2 (SNALF+T, CSALF) B2Y14260
 ALFEX = ATAN2 (SNALF - T, CSALF) B 2Y14270
 ALFEX = ALFEX * 57.2957795EO
 FALPHA = FALPHA * 57.2957795EO
 ALPHA = ALPHA * 57.2957795EO
 IF (FLGO4.EQ. 0) DALFA = FALPHA - ALFEX B 2Y14310
```



```
 VEX = SQRT (1. - 2.*SNALF*T + T*T) B2Y14330
5375 J = =1
5375 J = = 1
 M = 1
 N=ND(1)-1
 OO 5800 L = 1, NB
 LCTR=190
 CL=0.0 B B % 14400
 CD=0.0
 CD =0.0
 DO 5400 I = M,N
 T=CP(I) DELS(I) B B Y 14440
 CL = CL - T*COSA(I)
 CD = CD + T*SINA(I)
DO 5251II = 1,NT
 B2Y 14180
 B2Y14210
 B2Y14300
 B 2Y 14340
 B2Y14350
 B2Y14360
 B 2Y14370
 B2Y14380
 5400 I = M, N B 2Y14430
5400CM=CM+T*(COSAII)*(XM(I)-XMC(L)) +SINA(I)*(YM(I)-YMC(L))) B2Y14470
 AAA =CHORD/CDIM
 CL=CL*AAA
 I=1 B 2Y14480
 K2 = ND(L) B2Y14490
5500 WRITE (6, 5550) HEDR, SP, ALPHA, DALFA, FALPHA, VIN, XMCILI, B2Y14500
 1 ALFEX, VEX, YMC (L) , CASE B2Y14510
5550 FORMAT I1H1 25X 26HDOUGLAS AIRCRAFT COMPANY / 28X 21HLONG BEACHB2Y14520
 1 DIVISION /// 5X 15A4// 5X 9HSPACING = F13.8,5X 7HALPHA = F13.8 B2Y14530
 2. 5X 13HDELTA ALPHA = F13.8 // 14H INLET ALPHA = F13.8, 3X B 2Y 14540
 3 SHV INLET = F13.8, 13X 5HXMC = F13.8 // 2X 12HEXIT ALPHA = F13.8,B2Y14550
 4 4X 8HV EXIT = F13.8, 13X 5HYMC = F13.8 // 6H CASE 2A4, 22H COMB IB2Y14560
 5NED VELOCITIES
 IF (FLG12.LE.0) WRITE (6,5560) L B2Y14580
5560 FORMAT (1OH BODY NU. 13,27H UNTRANSFORMEO COORDINATES //) B2Y14590
 IF (FLG12.GT.0) WRITE (6.5570) L
 FORMAT (1OH BODY NO. I3, 25H TRANSFORMED COORDINATES //)
 WRITE (6,5580)
B2Y14630
5600 WRITE (6,5650) I, X(J), Y(J), XMP(K1), YMP(K1), VC(K1), CP(K1) B2Y14640
 1 ,DELSUT(K1)
5650 FORMAT (1H I 3, 2F14.8/4\times5F14.8)
 I=I+1/13,2F14.8,4\times5F14.8)
 B2Y14660
 I=I+1
 J=J+1
B2Y14670
B2Y14680
```

```
 K1=K1 +1 B2Y14690
 IF (I .EQ. K2) GO TO 5700
 IF (I .LE. LCTR) GO TO }560
 LCTR = LCTR + 19
 GO TO 5500
 5700 WRITE (6, 5650) I, X(J), Y(J)
 J=J +1
 WRITE (6, 5750) CL
 5750 FORMAT (1HO / 5X 4HCY = F13.8)
 M=N+1
 B2Y14780
 5800N=N+ND(L+1)-1 B2Y14790
C K = NCFLG-2 = NUMBER OF GAMNAS
 CL=2**GT*AAA
 IF (FLG1O.LT. 2) GO TO 5830
 5830 WRITE IG, 5840) CL
 FORMAT (1HO 4X 4H
 5850 IF (FLGO2 .EQ. O .OR. FLG1O.EQ. 1 .OR. FLG1O .EQ. 2) GO TO 6700 B2Y14910
 N=ND(NB+1)
 K2 = K + 2
 DO 6100 J=1,K2
 READ(3) (SIGMA(I,J),I=1,NT)
 6100 CONTINUE
C NOW ALL SIGMAS ARE IN CORE. ORDER = 0,9),1,2,ETC.
 0O 6110 I=1,NT
6110 SIGI(I)=SIGMA(I,1)*CSALF + SIGMA(I,2)*SNALF +SIGMA(I, 3)
 IF(K.EQ.O) GO TO 6150
 DO \epsilon120 J = 1,1
 REAO(4) B2Y15020
 READ(4)
 00 6120 I = 1,NT
6120SIGI(I)=SIGT(I) + SIGMA(I, J+3)*GAM(J)
 M=1
 M1 = N
 DO 6130 J = 1,K
 IFI J.LE. FLG11) GO TO }612
 READ(4) (XTEMP(I) ,I =M,MI)
 READ(4) (YTEMP(I),I =M,MI)
 GO TO 6125
 6122 DO 6123 I =M, M1
 XTEMP(I) = 0.0
6123 YTEMP(I) = 0.0
 IF(NLF(1).NE.O) GO TO 6125
 READ (4)
 READ (4)
6125 M = 1
6130 M1 = N
6150 READ(13)(X(I),I=1,N) B2Y15180
 READ(13)(Y(I),I=1,N)
 IF (MON-1) 6152,6155,6155
 6152 CONTINUE
 WRITE (6,6151) HEDR, SP, ALPHA
```



```
 1 DIVISION ///5X,15A4//5X,9HSPACING = F13.8,4X,7HALPHA =,F13.8 B2Y15220
 2///39H OFF-BODY POINT COMPONENT VELOCITIES. / 75H ORDER OF PRINB2Y15230
 4TOUT IS STREAMFLOW,90-DEGREE FLCW,NON-UNIFORM FLOW 1, ETC. // B2Y15240
 513X,1HX, 20X,1HY, 18X,3HVXL,17X,3HVYL,17X,3HVXL,17X,3HVYL //) B2Y 15250
615500 6400 J = 1,N
READ(10) (YIJII),I=1,NT)
 READ(10) (XIJII),I =1,NT)
 SUM1 =0.
B 2Y15260
B2Y15270
B 2Y15280
B2Y15290
```

```
 SLM2 =0. B F 15300
 DO 6210 I = 1,K2
 B2Y15310
 SUMA(J,I) = 0.0
 B2Y15320
6210 SUMB(J,I)=0.0
 B2Y15330
 DO 6200 I = 1,NT
 B2Y15340
 T= SIGT(I)
 SUM1 = SUM1 + T*XIJII)
6200 SUM2 = SUM2 + T* YIJ(I)
B 2Y15350
 B2Y15360
6200 SUM2 = SUM2 + + T*YIJ(I
 N1 = J
 NO E250 I = 1,1
 r = GAM(I)
 B B 2Y15430
 B2Y15440
6250 N1 = N1 +N
B2Y15440
6 3 0 0 V X L (J) = S U M 1 ~ + ~ C S A L F ~
 VYL(J) = SUM2 + SNALF
B2Y15450
 IF(MON-1) 6305,64C0,6400
6305 DO 6370 I = 1,K2 % BY15470
630500 6370 I = 1,K2 % BY15470
 DO 6310 LSD = 1,NT
 B2Y15480
 T = SIGMA(LSD,I)
 B2Y15490
 SUMA(J,I) = SUMA(J,I) + T*XIJ(LSD)
B2Y15500
B2Y15510
 IF (I.LE. 2) GO TO 6355
 N1 = J
B2Y15520
B2Y15530
 DO 6350 LSD=1,1
 IF(LSO+2.NE.I) GO TO 6350
 B2Y15550
 SLMA(J,I) = SUMA(J,I) & YTEMP(N1)
 B2Y15560
 SUMA(J,I)=SUMA(J,I) + YTEMP(N1)
6350 N1 = N1 + N
B2Y15580
 GO TO 6370
B 2Y15590
```



```
C市舟 ***I = 1 MEANS AXISYMMETRIC FLOW
B 2Y15610
 SUMA(J,I)=SUMA(J,I) +1.0
 GO TO 6370
B2Y15620
```



```
 B2Y15630
6360 SUMB(J,I)=SUMB (J,I) +1.0
6370 CONTINUE
WRITE(6,6371) J, X(J),Y(J), (SUMA(J,I),SUMB(J,I),I=1,K2)
B 2Y15650
B 2Y15660
6371 FORMA T(1H ,I 3,6F20.8 ((44X,4F20.8))
B2Y15670
B2Y15680
6400 THETV(J)=A TAN2 (VYL(J),VXL(J))
 WRITE (7) (VXL(I),I=1,N)
 WRITE (7) (VYL(I),I=1,N)
 IF (MON-2) 6420,6430,6430
6420 CALL BCDUMP (X(1),X(N)
 CALL B=D UMP(Y(1),Y(N))
 CALL BCDUMP (VXL(1),VXL(N))
 CALL BCOUMP (VYL(1),VYL(N))
6430 LCTR = 45
B 2Y 15700
 LCTR = 45
B2Y15700
 IF (FLG10 .LT. 2) GO TO }650
B2Y15720
6500 WRRITE (6,6550) HEDR, SP, ALPHA % COM COMPANY, 28X 21HLONG BEACHB2YY15870
6500 WRRITE (6,6550) HEDR, SP, ALPHA % COM COMPANY, 28X 21HLONG BEACHB2YY15870
6550 FORMAT (1H1 25X 2GHDOUGLAS AIRCRAFT COMPANY / 28X 21HLONG BEACHB2Y15870
 1 DIVISION ///5X 15A4 // 5X 9HSPACING = F13.8, 4x 7HALPHA = F13.8 82Y15880
 2 ///28H OFF-BODY POINT VELOCITIES // 11X 1HX 13X 1HY 12X 3HVXL B2Y15890
 3 11X 3HVYL 10X 5HTHETA///
6600 WRITE (6, 6650) I, X(I), Y(I), VXL(I), VYL(I) , THETV(I)
6650 FORMAT (1H I3, 5F14.8)
 I =I + 1 N OY15930
 IF (I .GT. N) GO TO 7000 B2Y15940
```

```
 IF (I LE. LCTR) GO TO 6600 B2Y15950
 LCTR = LCTR + 45 B 2Y15960
 GO TO 6500 B2Y15970
6700 IF (FLG1O .EQ. O .OR. FLG1O .EQ. 3) GO TO 7000 82Y15980
 FLG10 = 3* FLG1O - 3 B2Y15990
 IF (FLGO2 .NE. O) WRITE (6, 6750) B2Y16000
6 7 5 0 \text { FORMAT (32H1FLAG 10 I S NON- ZERD -- OFF-BODY /}
 1 3OH VELOCITIES CANNCT BE COMPUTED I
 FLGO2 = O
 READ (5, 6800) (XTEMP(I), I = 1. NT)
6800 FORMAT (GF 10.0)
 DO 6900 I = 1, NT
 VC(I)=VC(I)*XTEMP(I)
6900 CP(I) = 1. - VC(I)*VC(I)
 GO 1O 5375
7000 00 7100 I = 1,NB B2Y16100
7100 GAMT(I) = GAM(I)
 RETURN
SORIGIN ALPHA
$IBFIC 22YP
 SLBROUTINE PART 7
C
C THIS SLBROUTINE INTEGRATES FOR THE MASS FLUX AND IS USED TO
 DETERMINE IF THE JET STREAM IS PROPERLY ORIENTED
 COMMON IM,HEOR,CA SE, RPI, R2PI,SP,CL, ALPHA,FALPHA, DALFA, CHORD, SUMDS,
 1 XMC , YMC, AJDY,FLGO2,FLG03, FLGO4,FLGO5,FLGO6, FLGO7, FLGO8,
 2 \mp@code { F L G O 9 , F L G 1 O , F L G 1 1 , F L G 1 2 , N D , N L F , N E R , N T , ~ N B , ~ N C F L G , ~ F L G 1 5 , ~ F L G 1 6 }
 COMMON SUMSIG, VINF,MON, BETA,CDIN,VREF, OELT, FLG13, FLG14, ITER, ALF2
 CCMMON /FORCUR/XCURV(200), YCURV(200),KKK, POSS
 COMPLEX IM
 INTEGER FLG15,FLG16,FLGO2
 DIMENSION X(300), Y(300), HEDR(15),CASE(2),ADDY(8),
 2 ND(10), NLF(10), SUMOS (10), XMC(8), YMC(8)
C 1 RSDS(499), SINA(499), COSA(499), DELS(499), DALF(498), 2(499),
 OIMENSION RADC(250),PRES(250),VXL(250),VYL(250),XN(250), YN(250),
 l CP(250),DPRES(50),V(50),PTOT (50),RADCCL(50),XCL(5)),YCL(50)
 OIMENSION VSPEC(4),X8(500),Y8(500)
 REWIND }1
 REWIND 7
 M=ND(1)
 READ (13) (XB(I),I =1,M)
 READ (13)(YB(I),I=1,M)
 READ (13)
 READ (13)
 M =N T
 M1=NT-3
 N=ND(2)
 KK=KKK
 JJ=ND (1)
 I I=ND (1)-KKK+1
 READ (13) (X(I),I=1,N)
 READ (13) (Y(I),I=1,N)
```

```
 READ(7) (PRES(I+1),I=1,M)
 READ (7) (CP(I),I =1,M)
 READ (7) (XN(I+1),I =1,M)
 READ (7) (YN(I+1),I=1,M)
 READ (7) (VXL(I),I=1,N)
 READ (7) (VYL(I),I=1,N)
 DO 30 I=1,NT
 30 PRES(I)=CP(I)*0.00119*VINF**2
 TMA SS =0.0
 M=1
 N=36
 DO 100 I =M,N
 VXL(I)=(VXL(I)+VXL(I+1))/2.0
 VYL(I)=(VYL(I)+VYL(I+1))/2.0
 DELY=Y(I+1)-Y(I)
 DEL X=X(I+1)-X(I)
 DMASS=-VXL(I)*DELY
 DMA S SY=0ELX* VYL(I)
 100 TMASS= TMASS+DMASS+DMASSY
 VAVG=TMA SS/3.61
 TMA SS=TMA SS*0.00238*VINF*32.2/12.0*4.5
C
 IMASS IS THE MASS FLOW INTO THE FANS FOUND BY INTEGRATION
 WRITE (6,1000) TMASS,VINF,VAVG
 1000 FORMAT (1H1/23H THE INTEGRATED MASS =,F10.4,7H LB/SEC/23H FREE ST
 IREAM VELOCITY =,F10.4,4H FPS/,23H THE AVERAGE VELOCITY =,F10.4//1
 IF (VINF- 300.) 200,200,999
 200 WRITE (6,1006)
1004 FORMAT (1H ,2F10.4,6F15.8////)
1006 FORMAT (LHL//8X1HX,9X,1HY, 8X,8HPRESSURE)
 645 M=2
 N=KKK
 MM=II +2
 650 DO 700 I =M,N
 700 WRITE (6,1004) XN(I),YN(I),PRES(I-1)
 IF (N-MM) 750,800,800
 750 M = I I
 N=JJ
 GO TO 650
 800 TFY=0.0
 TFX=0.0
 IF (FLG16.EQ.1) GO TO }84
 N=1
 M=KK
 GO 10 850
 840 N=1
 M=10
 JJJ=1
 850 DO SOO I=N,M
 TI=XB(I+1)-XB(I)
 T\hat{2}=YB(I+1)-YB(I)
 TDS=SQRT(T1*T1*T2*T2)
 COSAL=T1/TDS
 SINAL=T2/TDS
 IF (FLG16.EQ.1) GO TO 860
 DFX=PRES(I) *TDS*SINAL*4.5/12.0
 DFY=-PRES(I) *TD S*COSAL*4.5/12.0
 GO IO 870
 860 SLOP = - T2/T1
```

```
 ALI=A TAN(SLOP)
 AL2MAL=-ALF2-AL1
 CJJJ= JJJ
 DFY= PRES(I)*TOS*COS(AL2MAL)*CJJJ
 TFY =TFY+DFY
 GO TO 900
870 TFX=TFX+DFX
 TFY=TFY+DFY
900 CONTINUE
 IF (N-II) 950,975,975
950 IF (FLG16.EQ.1) GO TO 960
 N=III
 M=JJ-1
 GO TO 850
960 N=ND(1)-10
 M=ND(1)-1
 JJJ=-1
 GO TO 850
 975 WRITE (6,1008) TFX,TFY
1008 FORMAT I 1H,//, 48H THE TOTAL FORCE ON THE JET IN THE X-DIRECTION
 1=,F10.4/48H THE TOTAL FORCE ON THE JET IN THE Y-DIRECTION =,F10.4)
 IF (FLG16.EQ.O) GO TO }98
 FLG16=0
 GO TO 800
 980 BETA=BE TA* 3.14159/180.
 THRUST =TFY/(SIN(BETA)*POSS)
 CMU=THRUST*12./(0.00119*4.5*CDIM*VINF**2)
 WRITE (6,1010) THRUST,CMU
1010 FORMAT (1H ,///9H THRUST =,F10.4,3H LB//23H CMU FOR THE JET FLAP =
 1,F10.4)
 TPA = THRUST*12.0/(4.5*DELT)
 PRATIO=((TPA-40.)*0.2/760.+1.0)*2116./(2116.*.00119** INF**2)
 WRITE (6,1020) PRATIO
1020 FORMAT(1H ,9H PRATIO =,F10.41
 9 9 9 ~ R E T U R N
 END
```


## APPENDIX E

APPENDIX E

## SYMBOLS FOR BOUNDARY LAYER ANALYSIS

| $b_{1} \cdots b_{5}$ | coefficients in linearized momentum equation (43) |
| :---: | :---: |
| c | airfoil chord |
| $c_{1} \cdots \cdots c_{4}$ | coefficients in equation (41) |
| $\mathrm{C}_{\mathrm{f}}$ | coefficient of skin friction, $\tau_{w} /\left(\frac{1}{2} \rho \mathrm{U}^{2}\right)$ |
| $\mathrm{C}_{\mathrm{L}}$ | three-dimensional lift coefficient |
| $\mathrm{f}^{\prime}$ | velocity defect variable, (U- $\bar{u}) / \mathrm{U}$ |
| H | shape factor, $\delta^{*} / \theta$ |
| K | curvature |
| L | distance along airfoil surface from stagnation point to trailing edge |
| p | static pressure |
| P | parameter in equation (31) |
| Q | parameter in equation (31) |
| $\mathrm{Re}_{\mathrm{x}}$ | Reynolds number based on $x, x \mathrm{U} / \nu$ |
| $\operatorname{Re}_{\delta}{ }^{*}$ | Reynolds number based on $\delta^{*}, \delta^{*} \mathrm{U} / \nu$ |
| $\mathrm{Re}_{\theta}$ | Reynolds number based on $\theta, \theta \mathrm{U} / \nu$ |
| t | thickness of airfoil |
| T | non-dimensional effective viscosity (see eq. (38)) |
| $\overline{\mathrm{u}}, \overline{\mathrm{v}}$ | time average velocities in the $x$ and $y$ directions, respectively |

velocity at the outer edge of the boundary layer (potential flow velocity)

| $\overline{u^{\prime} v^{\prime}}$ | Reynolds stress |
| :---: | :---: |
| $\overline{\mathrm{v}}_{\mathrm{w}}$ | wall transpiration velocity |
| x | streamwise coordinate (see Fig. (16)) |
| y | coordinate normal to wall (see Fig. (16)) |
| $\alpha$ | angle of attack |
| $\beta$ | the Clauser equilibrium pressure gradient, $\delta^{*}(\mathrm{dp} / \mathrm{dx}) / \tau_{\mathrm{w}}$ |
| $\delta$ | boundary layer thickness |
| ס* | displacement thickness, $\int_{0}^{\infty}(U-\bar{u}) / U d y$ |
| $n$ | non-dimensional coordinate normal to wall, $\mathrm{y} / \delta^{*}$ |
| $\theta$ | momentum thickness, $\int_{0}^{\infty} \bar{u}(U-\bar{u}) / U^{2} d y$ |
| k | von Karman constant in the effective viscosity function (taken here to be 0.41) |
| $v$ | molecular kinematic viscosity |
| $v_{e}$ | effective kinematic viscosity |
| $\rho$ | density |
| $\bar{\tau}$ | local shear stress |
| $\tau_{b}^{\prime}$ | non-dimensional shear stress gradient (see eq. (42)) |
| $\phi, \Phi$ | wall and defect effective kinematic viscosity functions |
| $x, \mathrm{x}$ | wall and defect layer variables for the effective kinematic viscosity function |

Subscripts:
$i \quad$ index of variable in the $x$ direction
w evaluated at wall
$x$ differentiation with respect to $x$
$\infty \quad$ evaluated at edge of the boundary layer

$$
1
$$

## Superscripts:

( ) used with functions of $x$ only, denotes average value, $\left[()_{i+1}+()_{i}\right] / 2$
( ) differentiation with respect to $n$

## AFPENDIX F

DERIVATION OF THE TRANSFORMED BOUNDARY LAYER EQUATION OF MOTION

## APPENDIX F

DERIVATION OF THE TRANSFORMED BOUNDARY LAYER EQUATION OF MOTION

The transformed boundary layer equation of motion is obtained by making a coordinate transformation to the standard continuity and momentum equations for two-dimensional, incompressible flow. The momentum equation as given by equation (25) of the text is:

$$
\begin{equation*}
\bar{u} \frac{\partial \bar{u}}{\partial x}+\bar{v} \frac{\partial \bar{u}}{\partial y}=u \frac{d U}{d x}+\frac{\partial}{\partial y}\left(v_{e} \frac{\partial \bar{u}}{\partial y}\right) \tag{F1}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\bar{u}}{U} \frac{\partial \bar{u}}{\partial x}+\frac{\bar{v}}{U} \frac{\partial \bar{u}}{\partial y}=\frac{d U}{d x}+\frac{\partial}{\partial y}\left(\frac{{ }_{e}}{U} \frac{\partial \bar{u}}{\partial y}\right) \tag{F2}
\end{equation*}
$$

Transform variables from $(x, y)$ to $(\xi, \eta)$ where $\xi=x$ and $\eta=y / \delta^{*}$, and utilizing Mellor's transformation,

$$
\begin{equation*}
\frac{\bar{u}}{U}=1-f^{\prime} \quad \text { or } \quad \bar{u}=\left(1-f^{\prime}\right) U \tag{F3}
\end{equation*}
$$

where $f^{\prime}=\partial f / \partial \eta$. Then

$$
\begin{equation*}
\frac{\partial \bar{u}}{\partial x}=\left(1-f^{\prime}\right) \frac{d U}{d x}-U \frac{\partial f^{\prime}}{\partial x} \tag{F4}
\end{equation*}
$$

Here

$$
\begin{equation*}
f^{\prime}=f^{\prime}(\xi, \eta) \tag{F5}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left(\frac{\partial f^{\prime}}{\partial x}\right)_{y}=\frac{\partial f^{\prime}}{\partial \xi} \frac{\partial \xi}{\partial x}+\frac{\partial f^{\prime}}{\partial \eta} \frac{\partial \eta}{\partial x} \tag{F6}
\end{equation*}
$$

The following conventional notation will be used:

$$
\begin{equation*}
\frac{\partial f^{\prime}}{\partial \eta}=f^{\prime \prime} \tag{F7}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\frac{\partial \eta}{\partial x}=\frac{\partial}{\partial x}\left(\frac{y}{\delta^{*}}\right)=\frac{\delta^{*} \frac{\partial y}{\partial x}=y \frac{\partial \delta^{*}}{\partial x}}{\left(\delta^{*}\right)^{2}}=-\frac{\eta \frac{d \delta^{*}}{d x}}{\delta^{*}} \tag{F8}
\end{equation*}
$$

Hence, using equation (F7) and (F8), equation (F6) becomes

$$
\begin{equation*}
\left(\frac{\partial f^{\prime}}{\partial x}\right)_{y}=\frac{\partial f^{\prime}}{\partial \xi}-\frac{f^{\prime \prime} \eta \frac{d \delta^{*}}{d x}}{\delta^{*}} \tag{F9}
\end{equation*}
$$

Substituting equation (F9) into (F4) yields

$$
\begin{equation*}
\frac{\partial \bar{u}}{\partial x}=\left(1-f^{\prime}\right) \frac{d U}{d x}-U \frac{\partial f^{\prime}}{\partial \xi}+\frac{U f^{\prime \prime} \eta \mathrm{d} \delta^{*} / \mathrm{dx}}{\delta^{*}} \tag{F10}
\end{equation*}
$$

Also

$$
\begin{align*}
\frac{\partial \bar{u}}{\partial y}=U \frac{\partial}{\partial y}\left(1-f^{\prime}\right) & =-U \frac{\partial f^{\prime}}{\partial y} \\
& =-U \frac{\partial f^{\prime}}{\partial \eta} \frac{\partial \eta}{\partial y}=-U f^{\prime \prime} \frac{\partial}{\partial y}\left(\frac{y}{\delta^{*}}\right) \tag{F11}
\end{align*}
$$

or

$$
\begin{equation*}
\frac{\partial \stackrel{\rightharpoonup}{u}}{\partial y}=-\frac{U f^{\prime \prime}}{\delta} \tag{F12}
\end{equation*}
$$

The continuity equation

$$
\frac{\partial \bar{u}}{\partial x}+\frac{\partial \bar{v}}{\partial y}=0
$$

(Fi)
is used to obtain $\bar{v}$, and $\partial \bar{v} / \partial x$ which are inserted intc the moment $\Delta \pi$ equation. Integrating each term of the continuity equation yieids:

$$
\int_{0}^{y} \frac{\partial \bar{v}}{\partial y^{\prime}},^{\prime} y^{\prime}=\int_{\bar{v}(x, 0)}^{\bar{v}(x, y)} d \bar{v}^{\prime}=\bar{v}-\bar{v}_{w}=-\int_{0}^{y} \frac{\partial \bar{u}}{\partial x} d y^{\prime} \quad(F i \leftarrow)
$$

Let

$$
\begin{equation*}
y^{\prime}=\eta^{+} \delta^{*} \tag{F15a}
\end{equation*}
$$

and

$$
\begin{equation*}
d y^{\prime}=\delta^{*} d \eta^{+} \tag{F1弓b}
\end{equation*}
$$

where ' and + denote dummy variables for integration purposes, and substitute equation (F10) into equation (F14) to obtain
$\bar{v}=\bar{v}_{W}-\frac{d U}{d x} \delta^{*} \int_{0}^{\eta}\left(1-f^{\prime}\right) d \eta^{+}+U \delta^{*} \int_{0}^{\eta} \frac{\partial f^{\prime}}{\partial \xi} d \eta^{+}-U \frac{d \delta^{*}}{d x} \int_{0}^{\eta} f^{\prime \prime} r_{i}{ }^{+} d v_{i}{ }^{+}$
or
$\frac{\bar{v}}{U}=\frac{\bar{v}_{w}}{U}-\frac{\delta^{*} \frac{d U}{d x}}{U} \int_{0}^{n}\left(1-f^{\prime}\right) d \eta^{+}+\delta^{*} \int_{0}^{n} \frac{\partial f^{\prime}}{\partial \xi} d \eta^{+}-\frac{d \delta^{*}}{d x} \int_{0}^{n} f^{\prime \prime} n^{+}{ }^{n} r^{+}{ }^{+}$

Introduce

$$
\begin{equation*}
P=\frac{\delta^{*} \frac{d U}{d x}}{U}, Q=\frac{\frac{d}{d x}\left(\delta^{*} U\right)}{U}=\frac{\delta^{*} \frac{d U}{d x}}{U}+\frac{d \delta^{*}}{d x} \tag{F}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{d \delta^{*}}{d x}=Q-P \tag{FL}
\end{equation*}
$$

Using the above expressions in equation (F17) yields

$$
\begin{align*}
\frac{\bar{v}}{U}= & \frac{\bar{v}_{w}}{U}-P \int_{0}^{n}\left(1-f^{\prime}\right) d \eta^{+}+\delta^{*} \int_{0}^{n} \frac{\partial f^{\prime}}{\partial \xi} d \eta^{+} \\
& -(Q-P) \int_{0}^{n} f^{\prime \prime n^{+}} d \eta^{+} \tag{F<0}
\end{align*}
$$

Then, it follows that

$$
\begin{align*}
& \int_{0}^{\eta} \mathrm{d} \eta^{+}=\eta  \tag{F20a}\\
& \int_{0}^{\eta} f^{\prime} d \eta^{+}=\int_{0}^{\eta} \frac{\partial f}{\partial \eta^{+}} d \eta^{+}=\int_{0}^{\eta} d f^{+}=f  \tag{E20b}\\
& \int_{0}^{\eta} \frac{\partial f^{\prime}}{\partial \xi} d \eta^{+}=\frac{\partial}{\partial \xi} \int_{0}^{\eta} f^{\prime} d \eta^{+}=\frac{\partial f}{\partial \xi}  \tag{F20c}\\
& \int_{0}^{n} n^{+} f^{\prime \prime} d \eta^{+}=\int_{0}^{n} \eta^{+} \frac{\partial f^{\prime}}{\partial \eta^{+}} d \eta^{+}=\eta f^{\prime}-\int_{0}^{n} f^{\prime} d \eta^{+}=\eta f^{\prime}-f
\end{align*}
$$

Hence, equation (F20) becomes

$$
\begin{equation*}
\frac{\bar{v}}{U}=\frac{\bar{v}_{w}}{U}-P(\eta-f)+\delta^{*} \frac{\partial f}{\partial \xi}-(Q-P)\left(n f^{\prime}-f\right) \tag{F21}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\bar{v}}{U}=\frac{\bar{v}_{w}}{U}-Q(\eta-f)+\delta^{*} \frac{\partial f}{\partial \xi}+(Q-P)\left(1-f^{\prime}\right) \eta \tag{F22}
\end{equation*}
$$

Substituting equations (F3), (F10), (F12), and (F22) into the momentum equation (F2) gives:

$$
\begin{align*}
& \left(1-f^{\prime}\right)^{2} \frac{d U}{d x}-\left(1-f^{\prime}\right) U \frac{\partial f^{\prime}}{\partial \xi}+\frac{\left(1-f^{\prime}\right) f^{\prime \prime} n \frac{d \delta}{d x} U}{\delta^{*}}-\frac{\bar{v}_{w}}{U} \frac{U f^{\prime \prime}}{\delta^{*}} \\
& +Q(\eta-f) \frac{U f^{\prime \prime}}{\delta^{*}}-\frac{(Q-P)\left(1-f^{\prime}\right) n U f^{\prime \prime}}{\delta^{*}}-\frac{\delta^{*} \frac{\partial f}{\partial \xi} U f^{\prime \prime}}{\delta^{*}} \\
& =\frac{d U}{d x}+\frac{1}{\delta^{*}}\left(-T U f^{\prime \prime}\right)^{\prime} \tag{F23}
\end{align*}
$$

where

$$
T=v_{e} / U \delta^{*}
$$

Using

$$
\begin{equation*}
\left(1-f^{\prime}\right)^{2} \frac{\frac{d U}{d x} \delta^{*}}{U}-\frac{\frac{d U}{d x} \delta^{*}}{U}=P\left(1-2 f^{\prime}+f^{\prime 2}-1\right)=P\left(f^{\prime}-2\right) f^{\prime} \tag{F24}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(1-f^{\prime}\right) \frac{f^{\prime \prime} n U \frac{d \delta^{*}}{d x}}{U}=(Q-P)\left(1-f^{\prime}\right) f^{\prime \prime} \eta \tag{F25}
\end{equation*}
$$

The transformed boundary layer equation of motion becomes

$$
\begin{gather*}
\left(T f^{\prime \prime}\right)^{\prime}+\left[Q\left(\eta-f^{\prime}\right)-\bar{v}_{w} / U\right] f^{\prime \prime}+P\left(f^{\prime}-2\right) f^{\prime} \\
=\delta^{*}\left(1-f^{\prime}\right) \frac{\partial f^{\prime}}{\partial x}+\delta^{*} f^{\prime \prime} \frac{\partial f}{\partial x} \tag{F26}
\end{gather*}
$$

where

$$
Q=\frac{\frac{d}{d x}\left(\delta^{*} U\right)}{U}, P=\frac{\delta^{*} d U / d x}{U}, T=\frac{v_{e}}{U \delta^{*}}
$$

and x has been substituted for $\xi$. The independent variables are then $\mathbf{x}$ and $n$.

REFERENCES

## REFERENCES

1. Koenig, David G.; Corsiglia, Victor R.; and Morelli, Joseph P.: Aerodynamic Characteristics of a Large-Scale Model with an Unswept Wing and Augmented Jet Flap. NASA TN D-4610, 1968.
2. Campbell, John P.; and Johnson, Joseph L., Jr.: Wind Tunnel Investigation of an External-Flow Jet Augmented Slotted Flap Suitable for Application to Airplanes with Pod-Mounted Jet Engines. NACA TN 3898. 1956.
3. Parlett, Lysle P.; and Freeman, Delma C., Jr.; and Smith, Charles C., Jr.: Wind Tunnel Investigation of a Jet Transport Airplane Configuration with High Thrust-Weight Ratio and an ExternalFlow Jet Flap. NASA TN D-6058, 1970.
4. Gartshore, I. S.: Prediction of the Blowing Required to Suppress Separation from High-Lift Aerofoils. Paper no. 70-872, AIAA, July 1970.
5. Thwaites, Bryan, ed.: Incompressible Aerodynamics. Clarendon Press, Oxford, 1960.
6. Weber, J.: The Calculation of the Pressure Distribution over the Surface of Two-Dimensional and Swept Wings with Symmetrical Aerofoil Sections. Rep. R \& M 2918, Aeronautical Research Council, Gt. Britain, 1956.
7. Goldstein, S.: Approximate Two-Dimensional Airfoil Theory. Parts I-VI. Aeronautical Research Council, Gt. Britain, Reps. CP-68 to $\mathrm{CP}-73,1952$.
8. Anon: A Direct Iteration Method for the Calculation of the Velocity Distribution of Bodies of Revolution and Symmetrical Profiles. Rep. ARL/RI/G/HY/12/2, Admiralty Research Laboratory, Gt. Britain, August 1951.
9. Jacob, K.: Some Programs for Incompressible Aerodynamic Flow Calculations. Tech. Rep. 122, Calif. Inst. Technology Computing Center, 1960.
10. Davenport, F. J.: Singularity Solutions to General PotentialFlow Airfoil Problems. Rep. D6-7202, Rev., Boeing Co., 1963.
11. Spence, D. A.: The Lift Coefficient of a Thin, Jet-Flapped Wing. Proc. Roy Soc. (London), Ser. A, vol. 238, December 4, 1956, pp. 46-68.
12. Spence, D. A.: The Lift on a Thin Aerofoil with a Jet-Augmented Flap. Aeron. Quart., vol. 9, August 1958, pp. 287-299.
13. Smith, A. M. O.; and Pierce, J.: Exact Solution of the Neumann Problem. Calculation of Noncirculatory Plane and Axially Symmetric Flows about or Within Arbitrary Boundaries. Rep. ES-26988-V, Douglas Aircraft, Apr. 25, 1968.
14. Giesing, Joseph P.: Extension of the Doublas Neumann Program to Problems of Lifting Infinite Cascades. Rep. LB-31653, Douglas Aircraft Co., July 2, 1964. (Available from DDC as AD-605207.)
15. Giesing, Joseph P.: Potential Flow About Two-Dimensional Airfoils. Part I: A Summary of Two-Dimensional Airfoil Methods. Part II: Solution of the Flow Field About One or More Airfoils of Arbitrary Share in Uniform or Non-uniform Flows by the Douglas Neumann Method. Rep. LB-31946, Douglas Aircraft Co., Dec. 1, 1965.
16. Cohen, Clarence B.; and Reshotko, Eli: The Compressible Laminar Boundary Layer with Heat Transfer and Arbitrary Pressure Gradient. NACA TR 1294, 1956.
17. Sasman, Philip K.; and Cresci, Robert J.: Compressible Turbulent Boundary Layer with Pressure Gradient and Heat Transfer. AIAA J., vol. 4, no. 1, Jan. 1966, pp. 19-25.
18. McNally, William D.: Fortran Program for Calculating Compressible Laminar and Turbulent Boundary Layers in Arbitrary Pressure Gradients. NASA TN D-5681, May 1970.
19. Bennett, J. A.; and Goradia, S. H.: Methods for Analysis of TwoDimensional Airfoils with Subsonic and Transonic Applications. Rep. ER-8591, Lockheed-Georgia Co., July 1966.
20. Crank, J.; and Nicolson, P.: A Practical Method for Numerical Evaluation of Solutions of Partial Differential Equations of the Heat-Conduction Type. Proc. Cambridge Phil. Soc., vol. 43, 1947, pp. 50-67.
21. Flügge-Lotz, I.: The Computation of the Laminar Compressible Boundary Layer. Dept. Mech. Eng., Stanford Univ., Rep. R-352-30-7, 1954, or Office of Scientific Research, Tech. Note 54-144, 1954.
22. Bradshaw, P.; Ferriss, D. H.; and Atwell, N. P.: Calculation of Boundary Layer Development Using the Turbulent Energy Equation. J. Fluid Mech., Vol. 28, pt. 3, 1967, pp. 953-616.
23. Patankar, S. V.; Spalding, D. B.; and $\mathrm{Ng}, \mathrm{K} . \mathrm{H} .: ~ T h e ~ H y d r o d y n a m i c ~$ Turbulent Bound Difference Method. Proc. Conf. on Computation of Turbulent Boundary Layer Prediction, Stanford University, 1968, pp. 356-365.
24. Cebeci, T.; and Smith, A. M. O.: A Finite-Difference Solution of the Incompressible Turbulent Boundary Layer Equations by an EddyViscosity Concept. Proc. Conf. on Computation of Turbulent Boundary Layer Prediction, Stanford University, 1968, pp. 346-355.
25. Smith, A. M. O.; and Cebeci, T.: Numerical Solution of the Turbulent Boundary Layer Equations. Rep. DAG 33725, Douglas Aircraft Co., 1967.
26. Herring, H. J.; and Mellor, G. L.: Computer Program to Calculate Incompressible Laminar and Turbulent Boundary Layer Development. NASA CR-1564, 1970.
27. Patankar, S. V.; and Spalding, D. B.: Heat and Mass Transfer in Boundary Layers. C. R. C. Press, 1968.
28. Mellor, G. L.; and Gibson, D. M.: Equilibrium Turbulent Boundary Layers. J. Fluid Mec., v. 24, pt. 1, 1966, pp. 225-253.
29. Mellor, G. L.: The Effects of Pressure Gradients on Turbulent Flow Near a Smooth Wall. J. Fluid Mech., v. 24, pt. 2, 1966, pp. 254274.
30. Mellor, G. L.; and Herring, H. J.: Two Methods of Calculating Turbulent Boundary Layer Behavior Based on Numerical Solutions of the Equations of Motion. Proc. Conf. on Computation of Turbulent Boundary Layer Prediction, Stanford University, 1968, pp. 331-345.
31. Kellogg, Oliver D.: Foundations of Potential Theory. Dover Publi., Inc., 1953.
32. Purcell, E. W.: The Vector Method of Solving Simultaneous Linear Equations. Math. Phys., vol. 32, 1953, pp. 180-183.
33. Stockman, Norbert 0.: Potential Flow Solutions for Inlets of VTOL Lift Fans and Engines. Analytic Methods in Aircraft Aerodynamics, NASA SP-228, 1970, pp. 659-681.
34. Emslie, K.: Wind Tunnel Test on Models of V. T. O. Aircraft. Aircraft Eng., vol. 38, no. 6, June 1966, pp. 8-13.
35. Williams, J.; Butler, F. J.; and Wood, M. N.: The Aerodynamics of Jet Flaps. Rep. R \& M 3304, Aeronautical Research Council, Gt. Britain, 1963.
36. Goldstein, S.: Modern Developments in Fluids Dynamics, vol. 1, Dover Pub., 1965, p. 119.
37. Massey, B. S.; and Clayton, B. R.: Some Properties of Laminar Boundary Layers on Curved Surfaces. Journal of Basic Engineering, June 1968, pp. 301-312.
38. Schlichting, H.: Boundary Layer Theory. McGraw Hill Book Co., 1968.
39. Hartree, D. R.; and Womersley, J. R.: A Method for the Numerical or Mechanical Solution of Certain Types of Partial Differential Equations. Proc. Roy. So. (London), Series A, vol. 161, no. 906, Aug. 1937, p. 353-366.
40. Clauser, F. H.: The Turbulent Boundary Layer. Advances in Applied Mechanics, vol. IV, Academic Press, Inc., 1956, pp. 2-51.
41. Mellor, G. L.: Turbulent Boundary Layers with Arbitrary Pressure Gradients on Convergent Cross Flows. AIAA Journal, 1967, pp. 1570-1578.
42. Laufer, J.: The Structure of Turbulence in Fully Developed Pipe Flow. NACA TR 1174, 1954.
43. Van Dyke, M.: Perturbation Methods in Fluid Mechanics. Academic Press, New York, 1964.
44. Hildebrand, F. B.: Advanced Calculus for Engineers. PrenticeHall, 1958.
45. McCracken, D. D.; and Dorn, W. S.: Numerical Methods and Fortran Programming. John Wiley and Sons, Inc., 1965.
46. Crabtree, L. F.: Prediction of Transition in the Boundary Layer on an Aerofoil. Royal Aircraft Establishment, London, Technical Note Aero. 2491, Jan. 1957.
47. Michel, R.: Determination of Transition Point and Calculation of Drag of Airfoils in Incompressible Flow. Publication no. 58, O. N. E. R. A. (France), 1952.
48. Granville, Paul S.: The Calculation of Viscous Drag of Bodies of Revolution Navy Department. Rep. no. 849, David Taylor Model Basin, 1953.
49. Hancock, G. J.: Problems of Aircraft Behavior at High Angles of Attack. AGARD 136, April 1969.
50. Chappell, P. D.: Flow Separation and Stall Characteristics of Plane, Constant-Section Wings in Subcritical Flow. The Aeronautical Journal of the Royal Aeronautical Society. Vol. 72, Jan. 1968, pp. 82-90.

## ILLUSTRATIONS


(b) Externally blown flap wing section.

Figure 1. - Types of wing flap systems considered.


Figure 2. - Lewis wind tunnel model of multiple-fan, blown flap, wing propulsion system.

(b) Two-dimensional representation of wing propulsion system.

Figure 2. - Concluded.


Figure 3. - Representation of boundary condition on body surface.


Figure 4. - Finite-element approximation to body surface.


Figure 5. - Basic solutions of potential flow.


## Ягшшшшшшшшшш



Figure 6. - Basic solutions for inlet.


Figure 7. - Two-dimensional inlet configuration.

(b) Centerline velocity distributions.

Figure 8. - Comparison of theoretical velocity distributions with experimental data for two-dimensional inlet.


Figure 9. - Effect of jet shapes on upper-surface pressure distribution. Flap angle, $30^{\circ}$; wing angle of attack, $0^{\circ}$.


Figure 10. - Comparison of theoretical nondimensional jet shapes. Flap angle, $30^{\circ}$; thrust coefficient, 3.

(a) Wing angle of attack, $0^{\circ}$; flap angle, $30^{\circ}$.

(b) Wing angle of attack, $20^{\circ}$; flap angle, $50^{\circ}$.

(c) Wing angle of attack, $0^{\circ}$; flap angle, $60^{\circ}$.

Figure 11. - Flow field for externally blown flap, wing propulsion system. Mass flow coefficient, 0.38 ; thrust coefficient, 3.


Figure 12. - Calculated pressure distributions on upper surface for fan-wing combination for various angles of attack. Flap angle, $30^{\circ}$; mass flow coefficient, 0.38 ; thrust coefficient, 3.


Figure 13. - Effect of suction and jet on pressure distribution. Flap angle, $30^{\circ}$; angle of attack, $0^{\circ}$.


Figure 14. - Comparison of theoretical two-dimensional lift coefficients for blown flap. Thrust coefficient, 3.


Figure 15. - Comparison of calculated and experimental three-dimensional lift coeff icients for blown flap. Thrust coefficient, 3.


Figure 16. - Illustration of notation for boundary layer analysis.


Figure 17. - The turbulent effective viscosity hypothesis.


Figure 18. - Calculated velocity distributions for fan-wing combination for various angles of attack. Flap angle, $30^{\circ}$; mass flow coefficient, 0.38 ; thrust coefficient, 3.


Figure 19. - Laminar boundary layer parameters on the airfoil of a blown flap wing propulsion system. Wing angle of attack, $15^{\circ}$.




Figure 20. - Turbulent boundary layer parameters on the airfoil of a blown flap wing propulsion system at various angles of attack.


Figure 21. - Velocity profiles at start of turbulent boundary layer growth.

(c) Angle of attack, $20^{\circ}$.
(d) Angle of attack, $25^{\circ}$.

(e) Angle of attack, $30^{\circ}$.

Figure 22. - Turbulent boundary layer velocity profiles on the airfoil of a blown flap wing propulsion system at various angles of attack.


Figure 23. - The stalling characteristics of airfoils.

(a) Experimental lift curve.

(b) Location of separation point for various angles of attack.

Figure 24. - The stalling characteristics of a blown flap wing propulsion system.

(a) Three-dimensional illustration.

(b) Two-dimensional cross section.

Figure 25. - Notation for two-dimensional potential flows.


Figure 26. - Element of body surface.


Figure 27. - Schematic representation of computer program.

