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ABSTRACT
TWO-DIMENSIONAL POTENTIAL FLOW AND
BOUNDARY LAYER ANALYSIS ON THE AIRFOIL
OF A STOL WING PROPULSION SYSTEM
By

James Arthur Albers

The analysis considers a two-dimensional wing-fan system which
consists of an airfoil with flap; the fans which have a distributed
suction at their inlet and a jet at their exit; and a jet sheet leav-
ing the flap trailing edge. The solution provides the incompressible
potential flow for variable fan or engine mass flow coefficient, the
thrust coefficient for the propulsion system exhaust, and the wing and
flap angle of attack. This includes the approximate location of the
free exhaust jet. This potential flow solution is used as an input to
the boundary layer analysis which calculates both laminar and turbulent
incompressible boundary layer parameters. In particular, the separa-
tion point is determined on the airfoil of a blown flap wing propulsion
system at various angles of attack.

The calculated pressure distributions for a particular externally
blown flap configuration indicated that the minimum pressure point is
near the leading edge (less than 2 percent of chord) of the airfoil
with severe adverse pressure gradients at high angles of attack (near

o
207). The results of the boundary layer analysis indicated that the
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predicted turbulent separation point moved forward from the trailing

edge as the angle of attack was increased. Trailing edge separation

for the thick wing (t/c = 0.15) propulsion system combination consid-

ered was verified by experimental data.



TWO-DIMENSIONAL POTENTIAL FLOW AND
BOUNDARY LAYER ANALYSIS OF THE AIRFOIL
OF A STOL WING PROPULSION SYSTEM

(33

'y

James Arthur Albers

A THESIS
Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of
DOCTOR OF PHILOSOPHY

Department of Mechanical Engineering

1971



~ -

J/

o

g

PLEASE NOTE:

Some Pages have indistinct
print. Filmed as received.

UNIVERSITY MICROFILMS



To my Mother and Father, Theresa, and J. J.

ii



ACKNOWLEDGMENTS

The author wishes to thank his advisor, Dr. Merle C. Potter, for
his guidance and assistance throughout this study. His active par-
ticipation in the project and his willingness to discuss problems as
they arose made working with him a rewarding experience. The author
also wishes to thank the other members of his guidance committee for
their time and interest in this study: Dr. Mahlon C. Smith, Dr. James
V. Beck, and Dr. Norman L. Hills.

The author appreciates the assistance and guidance of Roger W.
Luidens of NASA Lewis Research Center for his many constructive criti-
cisms during the preparation of this dissertation. I would also like
to acknowledge Newell D. Sanders of NASA Lewis Research Center for his
continued support throughout the study.

The financial support of NASA Lewis Research Center's Training
Office made the continuation of graduate study possible. I would like
to give special thanks to Gertrude R. Collins of the NASA Training
Office for her assistance throughout the program.

Special appreciation is extended to the author's wife, Theresa

Ann, for her encouragement and understanding throughout the study.

iii



TABLE OF CONTENTS

LIST OF FIGURES . . . « v ¢ ¢ « « . + « « .
SUMMARY . . . . & v ¢ v v v o v o o &
INTRODUCTION . & + & v o v v o o o o o o
POTENTIAL FLOW ANALYSIS . . . . . . . .

Representation of Wing Propulsion System.
Basic Equations and Boundary Conditions .
Formulation of the Boundary Conditions as
Equation. . . . . ¢« .+ ¢ s o 4 . .
Solution of Integral Equation . . . .
Basic Solutions . . . . . ¢« . . o .. .
Combination Solution. . . . . . « . . . .
Location of Propulsion System Exhaust Jet
Potential Flow Computer Program . . . . .

e s e 2 v &

e o & e e ¢

an Integral

DISCUSSION AND RESULTS OF POTENTIAL FLOW ANALYSIS . .

Validity of Analysis. . .
Inlet air suction . . . . . e v e
Exhaust jet shape . . . . . . . . . . .

Example Applications. . . . . . . . . . .
Flow field. . . . ¢« « ¢« « ¢ ¢ « v « « .
Pressure distribution . . . . . . . . .
Lift coefficients . . . . . . . . . . .

BOUNDARY LAYER ANALYSIS . . . . . . . . .
Basic Equations of Motion . . . . . . . .
Transformed Equation of Motion. . . . . .

Effective Viscosity Hypothesis. . . .
Solution of the Boundary Layer Equation

iv

Page

vi

12
14
16
17
18
20

21

21
21
22

23
23
24
26

29

29
32
33
37



DISCUSSION OF RESULTS OF BOUNDARY LAYER ANALYSIS. .

Laminar Boundary Layer Growth . . . . . . . . . .

Transition. « « ¢ v ¢ ¢ ¢ 4 ¢ o o ¢ 4 4. e e

Turbulent Boundary Layer Growth and Separation. .
Boundary layer parameters . . . . .+ o & & o .
Velocity profiles . . . . . . « . « « « . .

Consequences of separation. . . . . . . . .

CONCLUDING REMARKS. . . . . . . . . . . . . . .

APPENDICES
A - SYMBOLS FOR POTENTIAL FLOW ANALYSIS, . . . .
B - VELOCITIES IN TERMS OF SOURCE DENSITIES. . . . .
C - COMPUTATION OF FLOW QUANTITIES FOR POTENTIAL FLOW
ANALYSIS . . v ¢« v v v v o v v v v o v s .
D - POTENTIAL FLOW COMPUTER PROGRAM. . . . . . . . .
E - SYMBOLS FOR BOUNDARY LAYER ANALYSIS. . . . o
F - DERIVATION OF TRANSFORMED BOUNDARY LAYER EQUATION
OF MOTION. . + v & ¢« v ¢ o v o o o o o o o o
REFERENCES. . . « v ¢ v o v v v v v v o o o o o o .

ILLUSTRATIONS ¢ . & v v v v v ¢ o v o o o o o o o &

40
40
41
43
43
44
45

48

51

54

60
62

92

95
101

106



Figure

10.

LIST OF FIGURES

Types of wing-flap systems considered .
(a) Jet flap airfoil
(b) Externally blown flap wing section

Lewis wind tunnel model of multiple-fan blown flap

wing propulsion system

()" Schematic of model

(p) Two-dimensional representation of wing propulsion
system

Representation of boundary condition on body surface
Finite element approximation to body surface

Basic solutions of potential flow .
(a) 0° uniform flow solution Vg
(b) 90° uniform flow solution, Vgq
(e) Vortex solution, V, (Ve = 0)
(d) Suction solution, VS (Vo = 0)

Basic solutions for inlet . .

(a) 0° solution with duct closed Vl

(p) 0° solution with duct open, V? -
(¢) Cross flow solution with duct open, Vg

Two-dimensional inlet configuration .

Comparisons of theoretical velocity distributions
with experimental data for two-dimensional inlet
(a) Surface velocity distributions

(b) Centerline velocity distributions

Effect of jet shapes on the upper surface pressure
distribution (flap angle,30°; wing angle of attack, 0°)
(a) Illustration of jet shapes

(b) Upper surface pressure distributions

Comparison of theoretical nondimensional jet shapes
(flap angle, 30°; thrust coefficient, 3) . . . .

vi

Page

106

107

109
110

111

112

113

114

115

116



1z2.

13.

14.

15.

1e.

17.

18.

19.

20.

21.

Flow field for externally blown flap wing propulsion
system (mass flow coefficient 0.38; thrust
coefficient, 3) . . . . . . « .« ¢« . 0 ... ..

(a) Wing angle of attack, 0°; flap angle, 30°

(b) Wing angle of attack, 20°; flap angle, 50°

(c) Wing angle of attack, 0°; flap angle, 60°

Calculated pressure distributions on upper surface
for fan-wing combination for various angles of
attack (mass flow coefficient, 0.380; thrust
coefficient, 3; flap angle, 30°) . . . . . . . .

Effect of suction and jet on pressure distribution
(flap angle, 30°; wing angle of attack, 0°) . . .

Comparison of theoretical two-dimensional 1ift
coefficient for blown flap (thrust coefficient, 3)
(a) Flap angle, 30°

(b) Flap angle, 60°

Comparison of calculated and experimental three-
dimensional 1lift coefficients for blown flap
(thrust coefficient, 3) . . .

(2) Flap angle, 30°

(b) Flap angle, 60°

Illustration of notation for boundary layer analysis
(a) Coordinate system
(b) Description of velocity profile

The turbulent effective viscosity hypothesis

Calculated velocity distributions for fan-wing com-
bination for various angles of attack (mass flow
coefficient, 0.38; jet momentum coefficient, 3; flap
angle, 30°) . . . . . . ... e e e e e e

Laminar boundary layer parameters on the airfoil of a
blown flap wing propulsion system (wing angle
of attack, 15°) . . . . . . . . .. ... .

Turbulent boundary layer parameters on the airfoil of
a blown flap wing propulsion system.. . . . . . . . .

Velocity profiles at start of turbulent boundary
layer growth . . . . . « .« .« « o o o000

Vil

117

118

. 119

. 120

1zl

122

123

124

. 125

. 126

. 127



Turbulent boundary layer velocity profiles on the air-
foil of a blown flap wing propulsmn systems at various
angles of attack . . .
(a) Angle of attack, 00

(b) Angle of attack, 15°

(c) Angle of attack, 20°

(d) Angle of attack, 25°

(e) Angle of attack, 30°

The stalling characteristics of airfoils . . . . . . . .

The stalling characteristics of blown flap wing

propulsion system . . .. .. e 8 Vet

(a) Experimental 1ift curve

(b) Location of separation point for various angles of
attack

Notation for two-dimensional potential flows . . . . . .

(a) Three-dimensional illustration

(b) Two-dimensional cross section

Element of body surface .« . « « o ¢ o o ¢ o« o o o o o

Schematic representation of computer program . . . . . . .

viii



SUMMARY

The analysis considers a two-dimensional combined wing and pro-
pulsion system which consists of a flapped zirfoil with fans located
under the wing. The exhaust jet of the fans impacts the flap and is
deflected downward.

A numerical method is used which includes the effect of suction
at the inlet of the propulsion system and treats the constant thick-
ness exhaust jet as part of the solid body. This method includes the
determination of the approximate exhaust jet location. The method
provides the potential flow solution for any fan or engine mass flow
coefficient, the thrust coefficient for the propulsion system exhaust,
the flap deflection angle, and the wing angle of attack. Validity of
the numerical solution for a case with suction (but with no jet) was
indicated by application of the program to a two-dimensional inlet;
excellent agreement was found with experimental results.

The potential flow program was used to obtain the pressure dis-
tribution, velocity field, and lift coefficient for a particular ex-
ternally blown flap, high-lift configuration. The flow field for this
configuration indicated high upwash angles (60o to 900) at the pro-
pulsion system inlet and large jet penetrations at high angles of
attack. A comparison of two-dimensional lift coefficients obtained by

the method of this report with Spence's jet flap theory indicated that



the method of this report yielded lift coefficients that were an
average of 10.5 and 12.1 percent higher in the 30° and 60° flap
angles, respectively. A comparison of three-dimensional lift coef-
ficients with experimental data for the blown flap indicated good
agreement for the 30° flap, with the predicted lift coefficient an
average of 11.4 percent higher than experimental data. Calculated
pressure distributions showed severe adverse pressure gradients over
a large portion of the wing at angles of attack of 20° or greater.
The surface velocity distribution obtained from the potential
flow solution was used to determine the boundary layer growth and
separation on the upper surface of the airfoil. The boundary layer
solution was obtained by reduction of the partial differential equa-
tions of motion to a set of ordinary differential equations at each
x-location using finite differences for the x derivatives. By an
iterative solution to the differential equations, the boundary layer
parameters for both laminar and turbulent flow were found. The re-
sults indicated that the predicted turbulent separation point moved
forward from the trailing edge as the angle of attack is increased.
Trailing edge separation for the thick wing (t/c = 0.15) propulsion

system combination considered was verified by the experimental data.



INTRODUCTION

In recent years there has been much interest in short-takeoff-
and-landing (STOL) aircraft for both civil and military applications.
A STOL airplane must have the capability for both high lift at take-
off and low drag at cruise. Past experimental work (refs. 1 to 3)
demonstrated that the jet flap concept was capable of producing high
lift. The jet flap airfoil injects high velocity air over the flap
surface from a slot located at the trailing edge of the airfoil, as
shown in Figure 1(a). (The jet flap airfoil (Fig. 1(a)) is sometimes
referred to as a "jet augmented flap" in the literature.) One way to
implement the jet flap concept is to use an externally blown flap.
This may be accomplished by using high-bypass-ratio turbofan engines
which exhaust into the wing flap system.

A STOL concept under investigation at NASA Lewis Research Center
is a multiple-fan externally blown flap (Fig. 1(b)). Important in
this design concept is passing some of the fan exhaust through the
gaps in the flaps to control the boundary layer over the wing upper
surface. Some of the aerodynamic problems associated with this con-
cept are (1) airfoil design for takeoff, cruise, and landing; (2) fan
location and orientation; (3) penetration of propulsion system exhaust
jet; (4) the slot location and amount of blowing which are necessary
for satisfactory boundary layer control. An analytical tool is needed

to do detailed design studies of these aerodynamic problems. This



tool should have the capability to handle both potential flow and
boundary layer flow.

The potential flow analysis is the first step in obtaining an
analytical tool to design STOL wing propulsion systems. By shaping
the airfoil geometry, the designer can modify the wing pressure dis-
tributions to delay separation. Fan location and orientation can be
improved by analysis of the velocity and pressure distributions and
the flow field obtained from the potential flow solution of the com-
bined wing and propulsion system. A method to handle the slot loca-
tion and the amount of blowing is discussed in reference 4. This
problem is not included in this study. From the potential flow solu-
tion, we can determine the maximum attainable lift coefficient for
the wing propulsion system. Using the surface velocity distribution
as input to a boundary layer analysis, we can determine the separation
point for a given engine-wing combination. The development of the
potential flow solution was the first phase of this study.

There are many approximate potential flow theories. Some approx-
imate methods for calculating flow over two-dimensional bodies are
discussed in references 5 to 7. Most approximate methods assume, for
simplification, that the body is slender or that the perturbation
velocities caused by the body are small. Another type of approximate
solution utilizes a distribution of singularities on or interior to
the body surface. Some of the methods, based on a distribution of
vorticity over the body surface are discussed in references 8 to 10.
The potential flow theory that is often used when considering high-

lift wing systems is that of Spence's jet flap theory as discussed



in references 11 and 12. This thin airfoil theory considers the
effect of a highly idealized jet sheet leaving the trailing edge of
the flap, and does not take into account the effect of the propul-
sion system inlet and the thickness distribution of the lifting sys-—
tem.

The most general and comprehensive two-dimensional incompress-
ible potential flow method and program is the Douglas method as re-
ported in references 13 to 15. This method utilizes a distribution
of sources and sinks on the body surface, and does not require bodies
to be slender and perturbation velocities to be small. This method
has the potential for dealing with distributed suction over part of
the surface, and hence can handle the propulsion system inlet air-
flow. However, the program cannot handle problems for which the loca-
tion of part of the boundary is unknown. For a combined wing and
propulsion system, the shape and location of the jet exhaust of the
fan or engine is not known a priori, hence, a method is developed to
determine them.

The second phase of this report includes a study of the boundary
layer growth and separation on the airfoil of the STOL wing propulsion
system. During takeoff and landing the wing operates at high-lift
coefficients with adverse pressure gradients over a large portion of
the wing. This adverse pressure gradient may cause either laminar
and/or turbulent separation. In general, the designer employs the var-
ious techniques at his disposal to avoid flow separation and to achieve
the desired wing propulsion characteristics. Separation may be delayed

by shaping the wing velocity distribution, by modification of airfoil



geometry, by engine location and orientation, and with boundary
layer control devices. By using the potential flow surface velocity
distribution as input to the governing boundary layer equations, we
may solve the boundary layer growth and separation characteristics on
the airfoil of the wing propulsion system.

Techniques for solving the boundary layer equations can be div-
ided up into two general solution methods. The first includes the
explicit-integral methods which require a procedure for solving ordi-
nary differential equations for "integral' properties of the boundary
layer. Some of the more commonly used integral methods are discussed
in references 16 and 17. A discussion of a computer program based on
the above methods is given in reference 18. These integral methods
applied to the analysis of two-dimensional airfoils are discussed in
reference 19. Integral methods are widely used at the present time
for predicting the behavior of both laminar and turbulent boundary
layers, but are not applicable for the strong adverse pressure grad-
ients that are encountered on STOL wing propulsion systems at high
angles of attack.

The second method of solution of boundary layers is the finite
difference methods which provide a procedure for solving the coupled
partial differential equations of mass, momentum and energy. One
accurate numerical procedure for solving partial differtial equations
of the diffusion type was developed by Crank and Nicolson as discussed
in reference 20. Numerical methods developed specially for hydrody-

namic phenomena are given by Fliigge-Lotz and Bradshaw et al. in
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references 21 and 22. The three finite difference boundary layer
methods more commonly used are those of (1) Spalding and Patankar,
(2) Cebeci and Smith, and (3) Mellor and Herring and are reported in
references 23 to 26. Spalding and Patankar's compressible method
obtains a finite-difference equation from the boundary layer partial
differential equation by formulating each term in the partial differ-
ential equation as an integrated average over a small control volume.
Both of the other two methods are incompressible and transform and
linearize the partial differential equations by using finite differ-
ences for the x derivatives resulting in a series of ordinary dif-
ferential equations. The ordinary differential equations are then
integrated numerically across the boundary layer at each x-location.

Numerical methods, used to solve the partial differential equa-
tions for turbulent flow, require as input an empirically based ex-
pression for the turbulent effective viscosity. The effective vis-
cosity hypothesis used by Spalding and Patankar is based upon the
mixing-length hypothesis of Prandtl and utilizes a Couette-flow re-
lationship for the region close to the wall. Reference 27 indicates
that the pressure gradient produced systematic deviations in the pre-
dicted heat-transfer rate and that the mixing-length constants should
depend on the pressure gradient. Then the mixing length should be in-
creased for adverse and reduced for favorable pressure gradients. The
method of Smith, et al., utilizes an eddy viscosity based on Prandtl's
mixing-length theory in the inner region. In the outer region a con-
stant eddy viscosity modified by an intermittency factor is used.

Mellor and Herring in formulating their effective viscosity hypothesis
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divide the boundary layer in terms of an inner layer and outer layer
and an overlap layer. The value of each region is based on experi-

mental data and is uniquely determined by values of a pressure gradi-
ent parameter and displacement thickness Reynolds number. A more de-
tailed discussion of this hypothesis is given in references 28 to 30.

The method of Mellor and Herring was chosen for the prediction
method to be used to calculate both laminar and turbulent boundary
layer growth because of its accuracy, physical soundness, and adapta-
bility to the particular application problem. Their effective vis-
cosity hypothesis should be applicable to high adverse pressure grad-
ient flows. Also an incompressible boundary layer analysis is suffi-
cient, since here, we are only interested in studying the takeoff and
landing flow characteristics of the wing-propulsion system. This cor-
responds to a free stream Mach number of 0.12 or less.

The purpose of this report is to develop an analysis to solve the
potential flow and boundary layer growth of a STOL wing propulsion sys-
tem. The potential flow solution was obtained by extending the two-
dimensional Douglas analysis and computer program to include the effect
of suction at the propulsion system inlet, and by the development of a
technique for determining the approximate location of the exhaust jet
of the propulsion system. The potential analysis was used to obtain
the flow field including the surface velocity and pressure distribu-
tions, and the lift coefficient. The surface velocity distribution
was used to obtain the boundary layer growth and separation on the

airfoil of a particular externally blown flap, high-lift configuration.



POTENTIAL FLOW ANALYSIS

Representation of the Wing Propulsion System

While the present development can be used for any two-dimensional
configuration, it is helpful in describing the analysis to consider a
particular physical system. The high-1lift wing propulsion system for
STOL applications under investigation at Lewis is a multiple-fan exter-
nally blown flap, as shown in Figure 2(a). The wind tunnel model is
semispan with a NASA 4415 airfoil section, a 66 centimeter (26 in.)
chord and a 165.1-centimeter (65-in.) span. The model has eight pro-
pulsion units spaced spanwise with the inlets under the wing and the
exhausts ahead of a double slotted flap. The 30° and 600 flap deflec-
tions in Figure 1(b) represent typical takeoff and landing configura-
tioms.

Since the proposed STOL lifting system utilizes a large number of
fans closely spaced spanwise on each wing, it is reasonable to approx-
imate the actual flow with a two-dimensional flow. This approximation
should be valid as long as there is a sufficient number of fans for
blowing to be uniformly distributed along the wing trailing edge. The
representation of the two-dimensional lifting system is shown in Fig-
ure 2(b). The equivalent body surface over which the potential flow
is calculated consists of the airfoil with flap; the fans, which have
a distributed suction at their inlet and a jet at their exit; and the

jet sheet leaving the flap trailing edge.
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The wing propulsion system combination is idealized by consider-
ing it to be one solid body with suction at the fan inlet. The jet
stream, as it exits from the propulsion system is at a higher total
pressure than the surrounding flow with free stream lines separating
this jet from the remaining potential flow. In potential flow the
total pressure is everywhere constant; hence, in this study the jet
is considered to be part of the solid body. This assumes no mixing
of the external free stream and the free jet. The equivalent two-
dimensional propulsion system dimensions and jet sheet thickness were
determined from the known mass flow rate and thrust of the Lewis pro-
pulsion system (Fig. 2(a)). The method used to determine the location
of the free jet is discussed in the section, Location of Propulsion
System Exhaust Jet.

The potential flow problem for a given wing propulsion system
combination becomes one of calculating the velocities on and external
to the body surface for any combination of the following variables:
(1) free stream velocity V_, (2) fan or engine mass flow rate m per
unit span (3) propulsion system thrust T per unit span, (4) flap
angle 0, and (5) wing angle of attack a. The first three variables
can be combined into two dimensionless parameters: the fan or engine
mass flow coefficient CQ = ﬁ:/pvmc and the thrust coefficient
Cp = T/(l/ZOV:C). The development of the theory to handle this calcu-
lation is discussed in the following sections. All symbols used for

the potential flow analysis are defined in appendix A.
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Basic Equations and Boundary Conditions
The basic potential flow equation is obtained from the incom-
pressible continuity equation together with the condition of irrota-

tionality which gives Laplace's equation

LN

P, 3

ax

2 =0 (1)
3

@

where ¢ 1is the velocity potential due to the presence of the body
only. To ensure uniqueness of the solution, the regularity condition

at infinity is specified as

|v¢]m—> 0 2)
The velocity field v can be expressed as the sum of the two veloci-
ties
>
v

> >
V=V_+

w 3)
where Vm is the free stream velocity and v is the disturbance vel-
ocity due to the presence of the body only.

A general method of solving the potential flow for an arbitrary
boundary is to use a large number of sources and sinks distributed on
the surface of the body. This is the method presented in this report.
The boundary condition, illustrated in Figure 3, specifies that the
entire normal component of velocity of the fluid at any point p on
the surface must be equal to the prescribed normal velocity on the
surface. The contribution supplied by the source-sink distribution

> > >
is v+'n and that supplied by the free stream velocity is il:;m The

prescribed normal velocity vN on the surface is due to suction or
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blowing. Thus, the boundary condition becomes
>
n

| =v %)

V~n| - N

P P

Since vem = 9¢/9n, the boundary condition on ¢ is

=4V (5)

> >
- a I N
P

¢
U
P

Equations (1), (2), and (5) form the classic Neumann problem of poten-
tial theory which is the basic problem we wish to solve. The direct
problem as just defined, can be solved exactly by conformal transform-
ation only for a limited class of boundary surfaces. By using a large
number of sources and sinks distributed on the surface of the body,

the boundary condition can be formulated into an integral equation.

Formulation of the Boundary Condition as an Integral Equation
A simple potential function which satisfies equation (1) is the
potential due to a point source. The potential at a point P due to

source at q is expressed as

a @) = L ®

where o0(q) 1is the local intensity per unit area of the source and

r(P,q) is the distance between P and gq. Since Laplace's equation
is linear, the combined potential due to a distribution of sources is
also a solution. By considering a continuous source distribution on

the surface S, the potential at point P due to the entire body

6(2) = f%%ds M

S

becomes
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The potential as thus given satisfies equations (1) and (2), but it
must also satisfy the boundary condition as given by equation (5).
Applying the boundary condition requires evaluating the derivative
9¢/9n at point p on the boundary surface. The derivative of
1/r(p,q) becomes singular at p when p and q coincide so that
the principal value of the integral must be extracted. The princi-
pal value, according to reference 31, is -2no(p). This is the con-
tribution to the normal velocity.at p from the source at p. The
contribution of the remainder of the sources to the normal velocity
is given by the derivative of the integral of equation (7) .evaluated

on the boundary. The normal derivative of ¢ becomes

e T f %[r—@l—q—)-] a(q) ds ®)
S

Applying the condition of equation (5) to equation (8) results in the
integral equation for the source-intensity distribution o(p)

210 (p) - = (r—(;l:q—)-\)o(q) ds = V3 + vy (9
S

This equation is a Fredholm integral equation of the second kind whose
solution is the central problem of the analysis.

The quantity -23/9n[l/r(p,q)] 1is called the kernel of the inte-
gral equation and depends only on the geometry of the surface. The
first term of equation (9) is the normal velocity induced at p by a
source at p. The second term is the combined effect of the sources
at other points q on the surface of the body. The specific boundary

conditions determine the right-hand side of equation (9). The first
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term on the right is the normal component of the free-stream velocity
at p. The second term on the right is the prescribed normal velocity
on the boundary surface at p. The solution of this Fredholm integral
equation then requires determining the unknown function ¢ on the

body surface.

Solution of Integral Equation

Since the boundary of the wing propulsion system is completely
arbitrary, the integration of equation (9) with respect to S should
be done numerically. The boundary is approximated by a large number
of surface elements whose characteristic lengths are small compared to
the body. It is assumed that the surface element is a flat segment as
shown in Figure 4. As the number of elements increase, the assumed
model approaches the shape of the body. The value of the source inten-
sity is assumed to be constant over each surface element. By assuming
this constant intensity over each element, the problem becomes one of
finding a finite number of values of o0, one for each of the surface
elements. This gives a number of linear equations equal to the number
of unknown values of 0. On each element a control point (the midpoint
of the element) is selected where equation (8) is required to hold.

Rewriting equation (8) in summation form yields

2 < 200 +E% [;(—pl—,;] 0(q) S (10)
P p#q

The right side of equation (10) now becomes a matrix consisting of the

normal velocities induced by a source of intemsity o at the control
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point of all elements. The normal velocity at the control point of

th

the i element due to all surface elements is denoted as
N N
gl -
I i Aiiui + Aijuj Aijcj (11)
=1 =1
J#L

Thus

] il
AL == =] 8s
ij  on [r(p,q)]

where i corresponds to p and j corresponds to q.

The source densities of all the surface elements must be deter-
mined in such a way that the normal velocity condition is satisfied at
all control points. This results in
N
Z)Aijcj = -V n + L (12)

j=1
This set of linear algebraic equations is an approximation to the in-
tegral equation (9). Both V@;\) and the prescribed normal velocity
VN’ in general, vary over the body surface. The linear equations are
solved by a procedure of successive orthogonalization, as discussed
in reference 32. Once the linear equations have been solved, flow
velocities may be calculated for points on and off the body surface
(see appendix B). The method just described is used to obtain the

basic solutions of potential flow.
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Basic Solutions

The superposition of any solutions to the integral equation (9)
is also a solution since Laplace's equation is linear. Hence, the
flow about a body may be thought of as a linear combination of four
basic flows illustrated in Figure 5:

(1) Uniform flow at zero angle of attack

(2) Uniform flow at 900 angle of attack

(3) Vortex flow

(4) Flow due to suction or blowing

The uniform flow solutions are solutions due to free stream vel-
ocity (rectilinear flow) past the body surface at 0° and 900, respec—
tively. For these basic solutions, the boundary condition of zero
normal velocity on the surface must be satisfied. Then the prescribed
velocity normal to the surface must be zero for the basic uniform flow
solutions. From equation (5) the boundary condition becomes

il
an

=V . (13)

o

P P

The solution for the body at any angle of attack may be obtained by a
linear combination of the 0° and 90° uniform flow solutions.

For a lifting body the circulation is obtained by placing a vor-
tex at any convenient location within the body. The boundary condi-
tion of zero normal velocity on the surface still applies (eq. (5))
except that now -\7‘” is replaced by the vortex velocity at any point.
IL VV represents the velocity at any point p on the body caused
by the vortex, the boundary condition for the basic vortex solution

becomes
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> >
=V +n
v

3¢

on (14)

P

The suction flow solution is obtained by specifying a prescribed
normal velocity VN at the fan face with a zero free stream velocity.
This gives the desired mass flow rate for the inlet of the propulsion
system. From equation (5) the boundary condition for the basic suc-
tion velocity solution becomes

L1 R (15)

on N
P

For each basic solution, the velocities on the body surface and
at prescribed locations in the flow field may be obtained. From the

basic solutions the total combined solution may be obtained.

Combination Solution
The total velocity tangent to the body surface can be obtained by

adding the tangential velocities of the four basic solutionms.

V =V cos o + Vt

¢ £,0 sin a + T Vt +V (16)

90 4 t,s

where o 1is the angle of attack.

The nondimensional circulation T is determined by satisfying the
Kutta condition at the trailing edge of the body. This condition stip-
ulates that the flow at the body trailing edge be smooth. Thus, the
tangential velocities above and below the trailing edge must be equal

in magnitude. If AV is defined as AV =V , the Kutta

, -V, .
upper lower

condition is satisfied if AV = 0 at the body trailing edge. Then
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from equation (16)

AV_ cos a + AVt sin o + Av:,s +T Avt,v =0 an

t,0 ,90

Solving for T yields

AV + AV + AV
= tyocos o t,QOSin -1 t,8
T =- (18)
AV
t,v

Once the combined velocities on the body surface are known, the
pressure coefficient, the lift coefficient, and the thrust coefficient
can be obtained (see appendix C).

For off-body points it is more convenient to combine the basic
source intensities rather than the basic velocities. The equation for

the combined source intensity is

0 =0y cos a+ oy sina+T o +o, (19)

Then, the x and y components of velocity are calculated from the
combined source intensities (see appendix B). This approach is the
same as that used in reference 15, with the addition of the basic suc-
tion source intensity being added to the other basic source intensi-

ties.

Location of Propulsion System Exhaust Jet
The location of the propulsion system exhaust jet is determined
by the following variables: (1) jet angle 6 at flap trailing edge,
(2) jet penetration H, (3) jet angle 91 at trailing edge of jet
and (4) total length of the free jet Ly The representation of these

variables is shown in Figure 2(b). It was assumed that the free jet
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leaves the flap trailing edge at the flap angle 6. The flap angle is
defined as the angle between the free stream direction and lower flap
surface. After the jet leaves the trailing edge, the free stream vel-
ocity turns the jet, which approaches a horizontal asymptote several
chord lengths beyond the airfoil leading edge. For typical thrust coef-
ficients CT corresponding to takeoff and landing conditions, this
occurs at approximately four chord lengths from the airfoil leading
edge (see ref. 10).

For a reasonable approximation to the jet shape, the lift coeffi-
cient is expected to depend principally on the vertical location of
the jet asymptote. The problem then becomes one of finding the jet
penetration H as shown in Figure 2(b). Initially, the penetration
was assumed and a cubic equation used to approximate the shape of the
jet sheet. (A cubic equation is the simplest expression that ade-
quately approximates the jet shapes obtained from Spence's jet flap
theory of ref. 12.) The correct distance H is that value for which
the vertical component of thrust at the flap trailing edge balances
the integrated vertical pressure forces on the free jet. Several val-
ues of H were assumed until the correct value of H was obtained.

Since the angle of the free jet is not exactly horizontal sev-
eral chord lengths beyond the wing, a small angle 91 (50 or less)
was assumed. The length of the jet LT was extended until the verti-
cal component of force on the end of the jet (last 5 percent of the

jet) was negligible for the chosen angle 6 Thus, if the jet is ex-

1
tended beyond this length, it gives no significant contribution to the

lift coefficient. Neglecting the vertical component of thrust at the
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end of the jet for an angle of 5° results in only a 3 percent varia-
tion in 1lift coefficient. Since the body was represented by the wing,
flap, and jet, it was assumed to be closed at the jet trailing edge

and the Kutta condition applied here.

Potential Flow Computer Program
A general description of the potential flow computer program along
with the imputs and outputs of the program is given in appendix D.

This appendix also includes a complete program listing.






DISCUSSION AND RESULTS OF POTENTIAL FLOW ANALYSIS

Validity of Analysis

Inlet air suction

To help ensure validity of the analysis, comparisons were made
with known existing flow solutions. One existing solution solves the
suction problem indirectly. It is also based on the Douglas method,
but has application only to inlets and ducts (see ref. 33). This
method utilizes three basic solutions, shown in Figure 6, to obtain a
combined solution of physical interest. The flow about the inlet is
obtained by considering the three basic solutions; ?1 with inlet
duct extension closed, 62 with the duct open, and 73 the crossflow
solution. With these three solutions any combination of free-stream
velocity and mass flow through the inlet can be obtained. The duct
must be extended far downstream of the region of interest to obtain
valid solutions. This method could not be used to get solutions for
a wing-engine combination since the body must be closed to consider it
a lifting body. To make a comparison between this existing flow solu-
tion and the method presented in this report a two-dimensional inlet,
shown in Figure 7, was considered. This inlet was chosen because ex-
perimental data were available. In the present analysis, mass flow
through the inlet was obtained by considering a distributed suction

VN downstream of the inlet (see Fig. 7). Comparison of the

21
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nondimensional surface velocities for the two methods are shown in
Figures 8(a) and (b). Also shown is experimental data obtained from

reference 34. The reference velocity Vre was arbitrarily selected

£
as the average velocity at an x/L of 0.89. Agreement between the
two predictions is excellent for both the surface and centerline
velocities. Comparison of experimental data with the prediction is
quite acceptable for the centerline velocities. There is a slight
variation between the experimental and predicted surface velocities.
One reason for this variation could be boundary layer effects. The
preceding discussion indicates that the combined uniform flow and
suction solution is valid.
Exhaust jet shape

For a valid solution of a wing propulsion system there must be a
reasonable approximation to the jet shape. The 1ift coefficients and
pressure distributions for a given thrust coefficient depend princi-
pally on the flap angle 6 and jet penetration H, as outlined in the
analysis section, and not on the precise local shape of the jet. This
is illustrated in Figure 9, which considers various free jet shapes
for a 30° flap. For clarity the jet thickness is not shown. The as-
sumed cubic equation is shown, along with representative upper and
lower bounds for the jet shape. For the jet shapes A and C shown,
the solution results in only a #2.5 percent variation in lift coeffi-
cient from the assumed cubic shape B. This percent variation is dis-
tributed over the entire wing surface, as illustrated by the pressure
distributions in Figure 9(b). Figure 9(b) shows only a 3 percent var-

iation in pressure distribution for the jet shapes considered. Thus,
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the lift coefficients and pressure distributions depend principally
on the flap angle and jet penetration and not on the precise local
shape of the jet for the present configuration.

As a point of interest, a comparison of the jet shape based on the
Spence's theory of reference 12 was made with the jet shape obtained
from the present method. Spence of reference 12 assumes that all flow
deflections from the free stream are not large and uses vortex distri-
butions that are placed on the x-axis rather than on the airfoil or
jet. Thus, a comparison could only be made for relatively small flap
deflections (30° or less). A comparison of the nondimensional jet
shape predicted from Spence's theory and from the method of this re-
port is shown in Figure 10 for a 30° flap deflection and a thrust coef-
ficient of 3. The basic shapes of the two cases are the same close to
the wing. The jet penetration of the present method is larger than
Spence's theory at the greater distances, as would be expected. The
present method, besides not assuming small angle approximations, in-
cludes the wing thickness and camber effect which would increase the

lift coefficient and would also result in a greater penetration.

Example Applications
Flow field
Potential flow solutions are adequate representations of the flow
around bodies if the surface boundary layers are thin and remain at-
tached. It is assumed that the final design of a high-lift wing pro-

pulsion system will be one in which boundary layer separation is
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prevented at relatively high angles of attack and flap settings. Rep-
resentative flow fields for an externally blown flap high-lift config-
uration are shown in Figures 11(a) to (c). The flow fields were ob-
tained by sketching streamlines tangent to the calculated velocity
vectors at various points in the flow. The wing propulsion system is
shown, along with the shape of the jet exhaust of the propulsion sys-
tem. For the conditions shown, the upwash angles at the propulsion
system inlet are quite large, varying from 60° to 90° depending on
flap angles and wing angles of attack. Two stagnation points occur on
the lifting body. One occurs ahead of the inlet below the leading edge
of the wing, and the other occurs downstream of the inlet on the under
surface of the fan. Both stagnation points move further aft as the
flap angle and the wing angle are increased. By observation of the
flow fields it is seen that the under surface of the wing is in a rel-
atively stagnant region. The jet penetration increases with angle of
attack (Figs. 11(a) and (b)). For a flap angle of 60° (Fig. 11(c))
the jet penetration distance is approximately three chord lengths at
five chord lengths beyond the wing leading edge. This jet penetra-
tion is also important when considering the effect of the ground on
1lift coefficient.
Pressure distribution

The predicted pressures on the surface of the airfoil are valid
only if the boundary layer is very thin and attached to the surface.
The potential flow pressure distributions can be used both to calcu-
late the boundary layer growth on the surface of the airfoil and as a

design aid for the combined wing and propulsion system. Pressure
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distributions on the wing upper surface with a 30° blown flap at vari-
ous angles of attack are presented in Figure 12. The incompressible
pressure coefficient, corresponding to the minimum pressure point,
ranges from -7.5 to -51 for the 0° and 20° angle of attack, respec-
tively. These extremely high negative pressure coefficients corres-
pond to the very high 1lift coefficients which are discussed in the
following section. The minimum pressure point for all angles of at-
tack occurs very near the leading edge of the airfoil, and severe ad-
verse pressure gradients over a large portion of the wing result at the
higher angles of attack. The stagnation point moves further under the
leading edge as angle of attack increases, resulting in high velocity
gradients about the leading edge.

To illustrate the effect of the inlet airflow of the propulsion
system and the effect of the exhaust jet a comparison was made of the pres-
sure distributions for (1) the wing alone, (2) the wing with jet but with-
out inlet air suction, and (3) the wing with inlet air suction and jet.
This comparison is presented in Figure 13 for a 30° flap. At the mini-
mum pressure point for the wing alone there exists a pressure coefficient
of -4.8 near the wing leading edge, followed by a mild adverse pressure
gradient. The wing with jet but without inlet air suction would be re-
presentative of a jet flap airfoil shown in Figure 1(a). Jet flap theory
does not include the effect of the inlet airflow of the propulsion sys-
tem. For the wing with jet (without suction) the pressure coefficient
is about -18 at the minimum pressure point, and there is a severe ad-
verse pressure gradient over a large portion of the wing upper surface.

When the effect of the suction at the propulsion system inlet is
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included, the magnitude of the pressures is reduced considerably over
the wing upper surface, resulting in a minimum pressure coefficient of
-7.6, followed by a much milder adverse pressure gradient. It may ap-
pear from the upper surface pressure distributions of Figure 13 that the
lift with the jet alone is much larger than the lift associated with the
jet with suction; but this is not the case if both upper and lower sur-
faces of the airfoil are considered. The change in pressure distribu-
tion between the zero suction case and the suction case is a result of a
shift in the stagnation point (Cp = 1.0) on the under surface of the
wing. For the wing, without suction, one stagnation point occurs just
ahead of the inlet of the propulsion system. For the wing with suction
this stagnation point moves closer to the wing leading edge and another
stagnation point occurs on the under surface of the fan (see Fig. 11(a)).
The corresponding shift in the pressure distributions on both the upper
and lower surfaces presented in Figure 13 results in less than 5 percent
decrease in lift when the effect of inlet suction is included for the
selected inlet location. The preceding discussion indicates that the
effect of suction resulting from a fan or inlet installed under the wing
affects the pressure distribution on the wing upper surface favorably,
with only a small effect on total lift coefficient.
Lift coefficients

In order to further indicate the applicability of the present
analysis a comparison (Fig. 14) was made between Spence's theory
(ref. 12) and the method of this report for two-dimensional lift coef-
ficients for the blown flap configuration (Fig. 1(b)). The lift coef-

ficients predicted by the method of this report for the 30° flap range
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from 6.5 to 13, while those for the 60° flap range from 15 to 21. The
1ift coefficients predicted by the present method generally range from
9.1 to 12 percent and from 10.6 to 13.6 percent higher than Spence's
theory for the 30° and 60° flap, respectively. This difference exists
since Spence's theory does not take into account the effects of the
thickness and camber of the wing. The suction effect decreases the
1ift by approximately 5 percent, as discussed previously. The thick-
ness and camber effect corresponds to approximately 15 percent increase
in lift coefficient.

The two-dimensional lift coefficients were used to determine
three-dimensional 1lift coefficients to compare with experimental data
of a semispan blown flap model (Fig. 2(a)). The three-dimensional lift
coefficient is

CL = fCl (20)

where f is a function of aspect ratio and thrust coefficient (assum-
ing an elliptical lift distribution) and was obtained from reference 35

as

2c
AR + —L
s

£

- (21)
AR + 2 + 0.604(Cp)1/2 + 0.87Cy

Calculated three-dimensional liit coefficients along with experimental
data obtained from the Lewis test program are presented in Figure 15.
The aspect ratio was 5 for the blown flap model. The theoretical lift
coefficients range from 4 to 7.5 and from 9 to 13 for the 30° and 60°
flap, respectively. There is good agreement between theory and exper-

iment for the 30° flap case, with theory ranging from 10.8 to 12
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percent higher than the experimental data. The lift coefficients for
the 60° flap range from 28.6 to 28.4 percent greater than the data.
The calculated lift coefficient is the maximum attainable lift coef-
ficient for each configuration corresponding to complete boundary layer
control and negligible viscous effects. This may indicate that the 60°
flap configuration did not have optimum boundary layer control and that

improvements could be made in obtaining better experimental coeffi-

cients.



BOUNDARY LAYER ANALYSIS

Basic Equations of Motion

Consider the motion of a viscous incompressible fluid along a
curved two-dimensional surface. Let x represent the distance meas-
ured along the surface of the airfoil from the stagnation point and
y represent the distance normal to the airfoil surface, as shown in
Figure 16. The time average velocity components in the x and vy
directions are designated at u and ¥, respectively. The curvature
of the surface is denoted by K, which is a continuous function of x.
(A1l symbols used for the boundary layer analysis are defined in appen-
dix E.) For steady turbulent motion, the Navier-Stokes equations may

be written (see ref. 36) as:

1 gdu, 8w, Kiv _ 1 3B, ., 1 aLGJ(aZE
1+ Ky x dy 1 + Ky p(1 + Ky) 9x e a+ Ky)z ax2 ay
oy X3, _K_3m 5w w3

A+ XX TLIFRT Y T 2T g k2 T ek

(22a)
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T+Ry "oxtV3y " T+K ooy e ) 2

(1 + Ky)~ 8x y

L = 2— - —
-_Lﬂa_".'_ K_3v _Kv - u 9K _ 2K .aﬂ] (22b)

(1+Ky)3 9x 3x ' 1+ Ky 3y (1+Ky)2 (1+Ky)3 9x (1+Ky)2 9x

where ot is the effective kinematic viscosity which includes the tur-

bulent eddy viscosity. The equation of continuity is

(3u/3x) + (3/3y)[(1 + Ky)V] = 0 (23)
These exact equations of motion are extremely difficult to solve. How-
ever, by means of an order of magnitude analysis (including curvature),
we may simplify the equations of motion. The resulting boundary layer
equation of motion for surfaces with curvature becomes

S 2— -
1, p 3 u K du KU
I ax*“e( 2t @+ xy) 3y ~ 2)
Ay (1+ Ky)

(24a)

KG2/(L + Ky) = (1/p) (35/3y) (24b)

The continuity equation remains the same as equation (23).

The curvature terms in the preceding equations of motion would
have a negligible effect on the turbulent boundary layer growth (95 per-
cent of the airfoil upper surface), since the surface curvature is small
in this region of the airfoil. However, large surface curvature exists
on the leading edge of the airfoil (5 percent of the airfoil surface),
which is in the laminar portion of the boundary layer. The effect of

large surface curvature has some effect on the laminar velocity profiles
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(see ref. 37). Neglecting the effect of curvature would result in an
error in the calculated velocity profile at transition which is used
at the start of th‘e turbulent boundary layer calculations. However,
a variation of the velocity profile in this region has a negligible
effect on the turbulent separation point, since the turbulent separa-
tion point is insensitive to the starting profile. This is illus-
trated in the section, Turbulent Boundary Layer Growth and Separation.

Thus, if one neglects the effects of surface curvature, the pre-
ceding equations reduce to the standard Navier-Stokes equations (ref.
38, p. 545). The resulting momentum and continuity equation along

the surface of the body are

9u

= = | ve ==

G, o8 du _y_[eﬁ]
TtV ay_de+ 3y (25)
JLL,&_, (26)

The equations apply to both laminar and turbulent flow if the defini-

tion of v o is taken to be:
e dy

v, 3y~ T/p (27)
and
Tp = v & - gt (28)
3y
where -u'v' 1is the Reynolds shear stress. For laminar flow bRl

The boundary conditions are

T(x,0) = 0 (29a)
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V(x,0) =V (x) (29b)
y

lim / UG - Tx,y")]dy' = Ux)6*(x) (29¢)

b aadVIY

Equation (29a) is an obvious wall boundary condition. Equation (29b)
is a general wall boundary condition on ¥ which includes the effect
of wall transpiration velocity Vw. Equation (29c) requires that
T>U as y » «, and also requires that the displacement thickness
(and the momentum thickness) be finite. This removes a lack of unique-
ness of the type encountered by Hartree (ref. 39) in his solution of

the laminar equations.

Transformed Equation of Motion
It is convenient for calculation purposes to transform the (x,y)

coordinates into (x,n) coordinates through the following equations:
2 U - ulx,y) -
£'(x,n) = X)u(xl)l(x X n - o) (30a, b)

For turbulent flows, the velocity profile can best be represented in a
defect formulation as expressed in the preceding equations. The pres-
ent method uses 6% with which to scale y so that n = y/6* need
never exceed an outside value of 10. Also, f'(x,n) is a slowly vary-
ing function of x so that relatively large increments in x are
possible. Making the preceding substitutions in equations (25) and (26),
results in the following transformed boundary layer equation for two-

dimensional, incompressible flow (see appendix F):
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(31)
where

4 s%
- (6*v) .
e T

v

*
_ 6 du/dx Like
BN and T = ToF

The term T, the nondimensional effective viscosity, is discussed in
the following section. The primes on f denote differentiation with
respect to n.

Applying the transformations of equations (30a, b) to the bound-

ary conditions (29a, b, c) result in

£'(x,0) = 1 (32a)
f(x,0) =0 (32b)
lim £(x,n) > 1 (32¢)
)

Effective Viscosity Hypothesis
Mellor and Gibson first formulated for equilibrium turbulent bound-
ary layers an eddy viscosity composed of a linear function of distance
from the wall and Clauser's (ref. 40) constant eddy viscosity for the
defect region. They later generalized their treatment for flows in
which the pressure gradient parameter 8 = (6*/rw)dp/dx varied in the
streamwise direction (see ref. 28). This method utilized a family of
curves for different values of B as a starting point. Parametric
differentiation then yielded an equation containing derivatives of the
defect function with respect to B8 at constant y/d* and dB/dx.

Mellor and Gibson refined the analysis by specifying a general
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formulation of dB/dx (ref. 29). For purposes of developing an effec-
tive viscosity \)e, which is composed of an eddy and a molecular vis-
cosity, Mellor divides the boundary layer into a wall layer, overlap
layer and a defect layer.

The hypothesis for the form of Ve has as its basis three as-
sumptions:

1. In the inner, or wall, layer, g™ depends on only three quan-
tities, v, y and g, where v is the molecular viscosity.

2. In the outer, or defect layer, A depends on only three

u * =
quantities, (G*U), y and g—;, where § = f (U—UTI.)dz is the
0

scale suggested by Clauser (40).
3. In this two layer model, there is a region where the layers
overlap and both expressions for \)e apply simultaneously.

From Prandtl's theory (ref. 38, p. 555)

T ole3y2 (28] () - =
T= pl} y (ay):l (ay) =plv,] 3y (33)
Then using the first two assumptions it follows that in the wall layer

v, must have the form

Ve <|<2 2 Bﬁ>
—=¢ _)’_\) 3y, (34a)

and in the defect layer, ve must be of the form

& K 9u
= y 4]
0 [ S 3 (34b)
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where « 1is an empirical constant. Mellor makes Prandtl's theory
more general so that both the laminar sublayer 'and logarithmic
portions of the turbulent layer are included. It follows from the

third assumption that in the overlap region Ve must have the form

(35)

Thus, in the overlap region ¢ and ¢ must be linear functions so
that

Ve _«H2wm (36)
v v dy

Mellor thus assumes that in the overlap region Prandtl's theory holds
exactly. For the hypothesis to predict correctly a viscous sublayer,
it is clear that very close to the wall ¢ -1 (because Vo= V).

An alternative functional form equivalent to equation (34) but
offering some computational advantage was given by Mellor (41); it

may be written as

v

—& = o(X), X = =L 4/T/p; in the defect layer (37a)
us us

Ve Ey_ .

To o SRS T/p; in the wall layer (37b)

As before in the overlap layer, we must have
_ T S =
v, = vb = §7U¢ = xy A T/p

Specific functions are determined by comparison of calculated profiles
with constant pressure incompressible velocity profiles and are shown

in Figure 17. The value «k = 0.41 is the von Karman constant and is
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chosen to predict correctly the experimentally observed logarithmic
law of the wall (when T = ?w). The constant 6.9 is chosen to give
a best fit to Laufer's data (42) in the viscous sublayer in the
manner demonstrated in (29). The function &(X) resembles a sug-
gestion by Clauser (40), the difference being that Clauser used the
wall value /\/—_; instead of the local value AT/p. It was found
by Mellor (29) that Clauser's interpretation could not be correctly
applied to boundary layers with strong pressure gradients.

Finally, the relations (37a, b) were proposed for the empirical
inner and outer functions for Ve+ Since the knowledge of the dif-
ferential equation for V3 is absent, a composite function using the
method of Van Dyke (43) can be formed. The composite function is ex-
pressed as the sum of the inner and outer functions minus their com-
mon asymptote. Thus, the non-dimensional effective viscosity T can

be written for turbulent flow for the whole layer as

T = ¢ + Regud (i‘ei;) S (38a)
= _1 -
T = Rogt ¢ (ReguX) + 0(X) - X (38b)
where
. us*
Rege ==y~

For laminar flow

T = l/ReG* (39)
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Solution of the Boundary Layer Equation

The first phase of the solution of the boundary layer equation (31)
which is a nonlinear partial differential equation, is the reduction
to a set of ordinary differential equations using finite differences
for the x derivatives. The x derivatives are represented by
finite differences in the x-direction according to an adaptation of
the Crank-Nicolson scheme (ref. 20). Equation (31) is written in
terms of average functions at a point halfway between the x posi-

tion of the known profile, X _qs and that of the profile to be calcu-

lated x; as follows:

' —_— _ - v, — _—— —_
T+ Es; +P)(n -9 - T"]f + BE -

UL Ty (! &* o 40
—E(l-f)(fi-fi_1)+Hf(fi-fi_l) (40)
where
s as*
X dx
Then, using the relations
T =-l-(f'+f’ ), etc
2 i i-17? :
Equation (40) can be written in terms of functions at position x; as
" g '
Z R " " '
(") Tt e (E] + £] ) + oy (E] + £] )
G P (41)

- L ' —
ealfy = fi) meglfy - f
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where

=, 1
c —(5x+P)E—z(fi+fi_

1 g 1-1
(42a)
¢y =F B (€] + 8] - z] (42b)
ey (61 + a;_l)[ -1 s f{_lﬂ Jox (420)
¢y = (BF+ 6% ) Ty el s (424)
L N (42e)
Finally, the form in which this equation is solved is
[bsf"]; = b, byEY + byl 4 b (43)
where the coefficients are
bl =iy (44a)
by =c, - cy (44b)
b3 =c (44c)
b= =Tt £ dile,ke)E b s (44d)
b= -1, (4be)

Since equations (43) is nonlinear, the solution is carried out itera-
tively for each i value. The coefficients b1 to b5 are evaluated
using the results at the previous (i-1) step. The resulting linear

equation is then solved for f' and f£". §* s adjusted so that

f(») = 1 to some specified accuracy. The parameters P and Q are
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recalculated and the effective viscosity function, T, is recalculated.
Then the cycle begins again and is continued until the desired accur-
acy is obtained at a particular step.

The second phase of the method is the solution of the ordinary
differential equations. Equation (43) is rewritten as a set of first-
order differential equations. The Runge-Kutta method is then used for
solving the equations. See Hildebrand (ref. 44) and McCracken (ref.

45) for details of this method.



DISCUSSION OF RESULTS OF BOUNDARY LAYER ANALYSIS

Laminar Boundary Layer Growth

By using the surface velocity distribution obtained from the po-
tential flow analysis as input to the boundary layer analysis, we may
obtain the boundary layer growth on the airfoil of the wing propulsion
system. Velocity distributions used for the boundary layer analysis
are shown in Figure 18. The incompressible velocity distributions are
illustrated at the start of the stagnation point to the trailing edge
of the airfoil. For high angles of attack (15O or greater) the flow
becomes compressible over a small (10 percent) portion of airfoil sur-
face from x/L of 0.05 to x/L of 0.15. For typical takeoff and
landing conditions the free stream Mach number is 0.12 or less. Since
the flow is incompressible for 90 percent of the airfoil surface, the
incompressible velocity distributions were used as inputs to the in-
compressible boundary layer analysis discussed in the previous section.
For practical applications we are concerned with angles of attack, 15°
or less.

In order to compute a boundary layer solution, it is necessary to
prescribe the velocity profile in the boundary layer at the start of
the calculation; namely, the stagnation point of the airfoil. The

velocity profile resulting from a similarity wedge flow solution for
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stagnation point flow over a circular cylinder was assumed (see
ref. 38). This and other similar profiles could also be generated
from a specialization of equation (31). This is described in refer-
ence 26.

The boundary layer is laminar in the region of velocity increase
(i.e., roughly from the stagnation point to the point of maximum vel-
ocity) and becomes turbulent in most cases from that point on and
throughout the region of velocity decrease. The velocity profiles of
Figure 18 indicate that laminar flow exists only on the first 5 per-
cent of the leading edge of the airfoil surface for an angle of attack
of 15°.

Typical parameters for the laminar portion of the flow are shown
in Figure 19. The strong accelerated flow results in a large rate of
decrease of the local skin friction coefficient (Cf = rw/pUZ/Z). The
skin friction coefficient ranged from 0.035 near the stagnation point
to 0.0025 at the point of maximum velocity. The shape factor remained
a constant value of approximately 2.2 throughout the laminar region,
as would be expected (see ref. 19). The displacement thickness Reyn-
olds number increases linearly from the stagnation point to the point

of maximum velocity.

Transition
The pressure distribution in the external flow exerts a decisive
influence on the position of the transition point. In ranges of de-
creasing pressure (accelerated flow) the boundary layer generally re-

mains laminar, whereas even a very small pressure increase always
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brings transition with it. The location of the transition point is
generally determined by experiment but may also be predicted by empir-
ical methods. From experimental data, Crabtree (ref. 46) established
a curve of momentum thickness Reynolds number and a pressure gradient
parameter at transition. When the curve obtained from predicted bound-
ary layer calculations intersect the experimental curve, the location
of transition is determined. Michel's method (ref. 47) established an

experimental curve of Re and Rex at transition. Both of these

6
methods are for smooth surfaces with low turbulence. Granville (ref.
48) predicted a method for finding the distance between instability
and transition points.

Theoretical investigations into the process of transition from
laminar to turbulent flow are based on the acceptance of Reynolds'
hypothesis that transition occurs as a consequence of an instability
developed by the laminar boundary layer. Thus, the position of the
point of maximum velocity of the potential velocity distribution
(point of minimum pressure) influences decisively the position of the
point of instability and the region of transition. Usually, the
chordwise distance over which the transition region extends is rela-
tively small. Thus, the transition region may be considered to take
place at a point. A rough guide for the location of the transition
point of airfoil shapes is given by Schlichting (ref. 38). According
to Schlighting's rule, the point of transition almost coincides with
the point of minimum pressure or maximum velocity of the potential
flow in the range of Rex from 106 to 107. At very large Rex, the

transition may be a short distance ahead of the maximum velocity. At
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small Rex, the transition may take place some distance after the max-
imum velocity. In summary, we can establish the rule that the point
of transition lies behind the point of minimum pressure but in front
of the point of laminar separation, at all except very large Reynolds
numbers. Taking into account the Reynolds number (6x106) the adverse
pressure gradient, and the turbulence intensity usually associated
with flow over STOL wing propulsion systems, transition was assumed to

take place at the point of minimum pressure.

Turbulent Boundary Layer Growth and Separation

Boundary layer parameters

It is important that the development of the turbulent boundary
layer from the transition point be accurately determined to find out
whether the turbulent boundary layer would separate and, if so, at
what point on the airfoil. The laminar velocity profile at the tran-
sition point is used for the initial turbulent boundary layer calcu-
lation. It is necessary to know the shape factor, and skin friction
coefficient which are indicative of separation. The turbulent bound-
ary layer parameters on the airfoil of a blown flap wing propulsion
system at verious angles of attack are illustrated in Figure 20. The
parameters are shown up to but just shy of the point of separation on
théairfoil. The displacement and momentum thicknesses are nondimen-
sionalized by L, the distance along the airfoil from stagnation point
to trailing edge of the airfoil. As angle of attack is increased the
displacement thickness, momentum thickness, and displacement thickness

Reynolds number increase at a faster rate. Thus, the separation point
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occurs closer to the leading edge of the airfoil as the angle of
attack is increased. .

The point of separation is determined by the condition of zero
wall shear stress which gives zero skin friction coefficient. Another
condition of the point of separation is the increase in shape factor
H as the separation point is approached. A4t zero angle of attack the
shape factor remains a relatively constant value (1.45) with a slight
increase at the trailing edge of the airfoil. The skin friction coef-
ficient decreases to a value of 0.0018 at the trailing edge. The shape
factor increases at a faster rate as the angle of attack is increased
and reaches a value of 2.0 or greater at the point of separation.
Likewise the skin friction coefficient approaches zero at a faster rate
as angle of attack is increased. The above result is caused by the in-
crease in the adverse pressure gradient as angle of attack is increased.
For angles of attack 15° and greater, the skin friction coefficient was
0.0001 or smaller just shy of separation. Hence, this point was used
as the separation point.

Velocity Profiles

The effect of the starting velocity profile on the turbulent
boundary layer separation point is now considered. Three velocity pro-
files at the start of the turbulent boundary layer growth are illustra-
ted in Figure 21. Curve B is obtained by assuming a similarity wedge
flow solution for a circular cylinder at the stagnation point. Curves
A and C are arbitrary selected profiles. Using the profiles in Fig-

ure 21 and the surface velocity distributions on the airfoil of the
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wing propulsion system resulted in a negligible effect on the turbu-
lent separation point.

The boundary layer velocity profiles on the airfoil of a wing-
propulsion system at various angles of attack are shown in Figure 22.
At zero angle of attack there exists a very mild adverse pressure
gradient’ along the surface of the airfoil (Fig. 18). This results in
a small change in the velocity profile along the surface of the air-
foil (Fig. 22(a)). For angles of attack 15° and greater, the velocity
profiles are shown up to the point near separation (Figs. 22(b) to (e)).
As the separation point is approached, the boundary layer thickens and
results in an inflection point in the velocity profile. These profiles
give approximately zero skin friction (Cf = 0.0001) and hence are in-
dicative of the profile near separation. The change in the velocity
profiles at the various locations along the surface resulted in a
cross-over of the velocity profiles in the outer portion of the bound-
ary layer. This occurred at a velocity ratio U/U of approximately
0.75. Schlichting (ref. 38, p. 630) reported this cross-over char-
acteristic in velocity profiles for convergent and divergent channels.
Consequences of separation

The separation at high angles of attack as indicated in the pre-
vious section results in a loss of lift and the airfoil stalls.. Air-
foil stall refers to the angle of attack corresponding to the maximum
lift coefficient. .Typical 1lift curves illustrating the stall charac-
teristics of airfoils in subsonic flows are shown in Figure 23 (see

refs. 49 and 50). Three main classifications of stalling behavior
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occur, depending on airfoil shape and Reynolds number: (1) trailing-
edge stall, where there is a gradual loss of lift at high lift coef-
ficient as the turbulent separation point moves forward from the
trailing edge; (2) leading-edge stall, where there is an abrupt loss
of lift, as the angle of attack for maximum lift is exceeded, with
little or no rounding over of the 1ift curves; and (3) thin-airfoil
stall, where there is a gradual loss of 1lift at low lift coefficients
as the turbulent reattachment point moves rearward. Trailing edge
stall is characteristic of most conventional thick airfoils (say
t/c > 12%) at moderate to high Reynolds numbers. Leading-edge stall
is characteristic of moderate airfoils (t/c = 9%) and is caused by an
abrupt separation of the flow near the nose without subsequent reat-
tachment, i.e., short bubble "bursting'". The process of laminar bound-
ary layer separation, transition, turbulent reattachment is referred to
as a "short bubble'". Thin-airfoil stall is characteristic of thin-
airfoil sections (t/c = 6%) and is the result of laminar separation
near the leading-edge and turbulent reattachment moving progressively
rearward with increasing incidence, i.e., a long bubble. The process
of laminar boundary layer separation just aft of the leading edge,
transition to turbulence, but reattachment not so quickly established
is referred to as a '"long bubble". The above stall characteristics
for airfoils can be used as an aid in the classification of the stall
associated with STOL wing propulsion systems.

The experimental 1lift curve of the blown flap wing propulsion

system with airfoil t/c of 15 percent (see Fig. 2(a)) is illustrated
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in Figure 24(a). The lift curve increases almost linearly to an angle
of attack of 20° and then there is a gradual loss in lift coefficient
at high angles of attack. This is typical of the trailing edge stall
of thick airfoils as shown in curve (a) of Figure 23. Having assumed
that the transition point is near the point of minimum pressure re-
sulted in the predicted turbulent separation point to move forward
from the trailing edge as angle of attack is increased. This is illus-
trated in Figure 24(b). At an angle of attack 15° the separation point
is near the trailing edge and moves slightly forward at 20°. At the
stall angle of attack of 25° (angle of maximum 1lift coefficient) the
separation point moves still further near the leading edge correspond-
ing to an x/L of 0.57. At an angle of attack of 30° the separation
point moves considerably forward as would be expected to an x/L of
0.34. The above experimental curve and indicated separation points
validate the assumption of the transition point to occur near the point
of minimum pressure for the given airfoil shape and fan location. How-
ever, boundary layer characteristics could be quite different for other

airfoil geometries and fan locations.



CONCLUDING REMARKY

A method was developed to determine the two-dimensional potential
flow solution of STOL wing propulsion systems. The Douglas potential
flow computer program was extended to include the effect of suction at
the propulsion system inlet and to provide a technique for determining
the approximate location of the exhaust jet of the propulsion system.
The effect of suction was obtained by combining a basic suction solu-
tion with the uniform flow solution for a lifting body. The jet ex-
haust was considered as part of the solid body and its location was
determined by balancing the vertical component of thrust at the flap
with the integrated vertical pressure forces of the free jet.

The applicability of the potential flow program is illustrated by
considering a multiple-fan externally blown flap under high-lift con-
ditions. The results indicated high upwash angles (60° to 90°) at the
fan inlet and large jet penetration at high angles of attack. (The
predicted two-dimensional 1lift coefficients for the 30° flap ranged
from 6.5 to 13 while for the 60° flap ranged from 15 to 21 (for angles
of attack from 0° to 200). The predicted two-dimensional lift coeffi-
cients for a 30° flap were an average of 10.5 percent higher than pre-

dicted by Spence's jet flap theory which neglects thickness effects.
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The predicted three-dimensional lift coefficients were an average 11.4
percent higher than experimental data for the 30° blown flap high-lift
configuration. The calculated pressure distributions indicated that
the minimum pressure point is near the leading edge (less than 2 per-
cent of chord) of the airfoil, with severe adverse pressure gradients
at high angles of attack. The pressure coefficient, corresponding to
the minimum pressure point, ranged from -7.5 to -51 for the 0° and 20°
angle of attack, respectively. The effect of suction due to a fan or
inlet installed under the wing decreases the magnitude of the upper
surface pressure distribution with only a small effect on total lift
coefficient (obtained by integration of pressure distribution on both
the upper and lower surfaces of the airfoil).

The surface velocity distribution obtained from the potential
flow solution was used to determine the boundary layer growth and sep-
aration on the upper surface of the airfoil. The boundary layer solu-
tion was obtained by reduction of the partial differential equations
of motion to a .set of ordinary differential equations using finite dif-
ferences for the x derivatives. By an iterative solution to the
differential equations the boundary layer parameters for both laminar
and turbulent flow were found. Near separation the shape factor was
found to be 2.0 or greater. This corresponded to a skin friction coef-
ficient of approximately 0.0001. The results indicated that the pre-
dicted turbulent separation point moved forward from.the trailing edge
as the angle of attack is increased. Trailing edge separation for a

thick wing (t/c = 0.15) propulsion system combination considered was
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verified by the experimental lift curve. However, this boundary layer
characteristic could be quite different for other wing geometries and
propulsion system locations.

The ability to predict the potential flow and boundary layer sol-
ution makes the analysis in this report extremely useful as a tool in
the design of a STOL wing propulsion system. The analysis can be used
to design the airfoil and to determine the optimum location and orien-
tation of the propulsion system. From the predicted surface velocity
distributions and boundary layer calculations one may minimize the
frictional drag for a given wing propulsion system. The potential
flow solution can be used to determine the jet penetration - an impor-
tant quantity when considering ground effect.

The analysis has application not only to wing propulsion sys-
tems, but to any lifting or nonlifting body where suction or blowing

is applied.
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Bij

APPENDIX A
SYMBOLS FOR POTENTIAL FLOW ANALYSIS
normal velocity of element i caused by a unit source at
element i

normal velocity of element i caused by a unit source at
element j

aspect ratio

tangential velocity of element i due to a unit source at
element j

chord length

two-dimensional lift coefficient
three-dimensional 1lift coefficient
pressure coefficient

mass flow coefficient

thrust coefficient

correction factor (eq. (21))

force in vertical direction

jet penetration (see Fig. 2(b))

number of elements that describe the jet
length

total length of free jet (see Fig. 2(b))

fan or engine mass flow rate per unit span
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number of elements that describe the body

a normal to the body surface

static pressure

arbitrary point in

the flow field off the surface

distance between two points

surface of body

thrust per unit span

disturbance velocity

velocity
complex velocity

complex potential

velocity in » direction at point j due to a unit source at

element I

Cartesian coordinate

Cartesian coordinate

velocity in y direction at point j due to a unit source at

element k

Cartesian coordinate

angle of attack

orientation of surface element

nondimensional circulation

variable Cartesian
turning efficiency

variable Cartesian

coordinate (see Fig. (25))
of exhaust jet

coordinate (see Fig. (25))

flap angle (see Fig. 2(b))
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o, jet angle at trailing edge of jet (see Fig. (2(b))
o surface source intensity per unit area

P density

C variable Cartesian coordinate (see Fig. (25))
) velocity potential

v stream function

Subscripts

i control point of ith element

j control point of jth element

N normal

p arbitrary point on the surface

q a surface point

ref reference

s refers to suction flow solution

t tangential

v vortex flow solution

© free stream

0 flow solution at zero angle of attack

90 flow solution at 90° angle of attack
Superscripts

— vector
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APPENDIX B

VELOCITIES IN TERMS OF SOURCE DENSITIES

Consider the body illustrated in Figure 25(a), which extends over
the range -« <z <+ ®, Any point on the body is described by
p(x,y,z) the general point being considered. The point q(£,n,z) is
the variable point for which integration is performed. The potential

¢P due to a point source at any point p in the region R bounded

1

. )
4" / d @D
R

It is evident from Figure 25(a) that if p is the plane z = 0

by z=-'=ﬂ,z=+m,s=s° and S =S is

1/2
r=(x-02+ @ -ml+dd
Hence,
s, pe
o eans » o(s)deds ®2)
P Jo [a-0f+ g -mPe )t
o

Here the upper limit for the { variable of integration signifies a
large but finite value. The normal and tangential velocities 23¢/3n
and 9¢/3s can be evaluated in terms of x and y derivatives of

the potential from equation (Bl)
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S ©
Sy ‘/ ofS) (x - £)deds
s o [~ 02+ ¢ -m2+ 2132
b .
s ©
s 2/ o(S)(y = n)dzds
s Jo lx-02+ g -m2+e2??
o

Since o0 1is independent of z or ¢, one integration can be per-

(83)

formed to give

s

(ﬁ) ] Ve - e)as

axp s (x—5)2+(y-n)2
(B4)

S
(ﬂ) =/ ' o)y - n)ds
3 s - of+ v - m?
o

The problem is reduced to one in a single plane, the plane 2z = 0. The
continuous boundary curve S is approximated by a series of segments

as shown in Figure 25(b). The front, middle, and rear points of a seg-
ment are designated by S'—l’ Sj’ and Sj+l' If the source density is

J
assumed constant over each surface element, the preceding equations

become

N Si41

iﬁ) -5 e oo

9x i 2

P 5T x-8)"+(-n
j=1 Sj_1
(BS)

N Si41

E;;) ok Eq‘ A (y = n)ds :

¥ j=1J Sr (x—5)2+(y—n)
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A transformation of the £,n variables into variables yields

S,rij
(see Fig. 25(b))

S
N 341 : "
ﬂ) = ) / [1'1:l sin aj + (S sij) cos uj]dS
ax j 2 2
Lo 1 s

5= i T3y + (S - sij)
o P +(5-s,.) sinads
%ﬁ) - E i Tij °°52°‘j i1 e
y j
T 8.1 tiy t (s - sij)

(86)
The quantities in integrals of equation (B6) are fune¢tions only of the
geometry of the body. If they are identified as xij and Yij re-

spectively, the x and y components of velocity become

N
=AY Lo
Vx 9x>1 E 3%

3=1

N
2100 ez E .

Yy 3y)1 %3%4;
j=1

where i represents an arbitrary point on the body surface. The nor-

(B7)

mal and tangential velocities can be obtained by using the directional

derivative formula

203 aa 3¢
ami axisin °1+8yic°s oy

(B8)

%) .3 3
Bsi axi¢:osai+ayisinmi



57

Then using equation (B7)

N
) . L
Bn)i = Ecj( xij sin oy + Yij cos ai)
3=1
(B9)
N
o
as)i = qu(xij cos a, + Yij sin a,)
FEs !

Letting the terms in the brackets be Aij and Bij respectively, the

normal and tangential velocities due to the source contributions become

N

) .
8n)1 2 E %5t

St

N

) _

as)i m E“j“u
3=1

The total velocities are made up of the contribution due to the source-

(B10)

sink distribution and the free stream velocity. The entire normal and

tangential velocities on the body become

v, =i€> -V, sina
i

N,i an i
(B11)
- &)
vt,i 3S + V, cos ay
b
The velocity at any point off the body can be obtained by
N
(v¢), = E (X.kji + ijj)qk (B12)

i=1
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where o is the combined source intensity of the kCh element as

k
given by equation (19) of the text, and x'kj and ij are the effects
in the x and y direction, respectively at any point p due to the
kCh element.

The terms Aij’ Bij’ ij, and Y, are called influence coeffi-

kj
cients and all represent velocities at some point that are resolved in
a particular direction. These velocities are generated by the jth

source element at point Py (on the body surface) or (off the

Pr
body surface) and resolved normal and tangent to the body surface
(Aij’ Bij) or X axis (ij, ij). In terms of complex velocities
wij and Nkj the influence coefficients for points on and off the
body surface can be expressed as

- —iai
Bij + iAij = wij e
(813)
ij + 1ka = wkj
where the bar indicates the conjugate and oy is the ith element

angular orientation.
The complex potential at 2 for a unit source located at g(S)

is expressed as
o o a
w=¢+ iy =o-an [Zk z(s)] (B14)

The complex velocity W, is the influence of element j at the point

kj
Py Since W = dw/dz the influcnce coefficient becomes

anl - i

Nkj oy az, \n(zk £(s))ds (B15)
!

)

elem
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Referring to Figure 26,
as=e Ja (B16)

Replacing dS 1in equation (B15) and evaluating the integral there

results
Lo .
-a J -ia
3 il (z - %;4)
W =E 2l - 9] dg = G w0 ——H
kj 2m dzk k 27 (z - LZj)
C]_j
(B17)
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APPENDIX C

COMPUTATION OF FLOW QUANTITIES FOR POTENTIAL FLOW ANALYSIS

Once the combined velocities on the body surface are calculated,
the pressure distribution and the lift coefficient of the body can be
found. The equation of motion for steady, incompressible, inviscid

fluid can be expressed as
* i
@n¥ = - 2w (c1)

For potential (irrotational) flow Bernoulli's equation results

% + % V2 = Constant (c2)

and is applicable everywhere. The pressure coefficient Cp is defined

as
P =P,
Cp = l_—;lz_ (c3)
2 Plw
By use of equation (C2)
2
c =1-L (c&)
L4 v
)
The two-dimensional lift coefficient is defined as
L
= — (cs)
o 2
7 pV_C
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This can be obtained by integration of the pressure distribution over

the surface of the body. Since L = p; cos oy dSi,

S
N
c = B C_ ,cos a, AS (C6)
1. ¢ P,i i & ¢
i=1
where Cp i represents the pressure coefficient at the control point
s

of the ith element. The thrust coefficient is defined as

T
Cr =1

7 oViC «n

where T 1is the exit thrust of the propulsion system. The exit thrust
is obtained from the vertical force on the jet, the jet deflection
angle, and the experimental turning efficiency n between the propul-
sion system exhaust and the trailing edge of the flap. Then

Fy

T=Tsmoe (€8

where n 1is the turning efficiency of the exhaust jet. The vertical
force is calculated by integration of the pressures on the jet

M

Fy = ) p; cos a; A4S (c9)

i=1

where oy is the angular orientation of the ith element.
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APPENDIX D
POTENTIAL FLOW COMPUTER PROGRAM

Summary

A schematic representation of the main subroutines of the com-
puter program is illustrated in Figure 27. The program is divided up
into seven parts. These are called from the main program. Part 1
performs computations with the basic data input. It calculates angu-
lar orientation of elements of the body, mid point of elements, ro-
tates the body, etc. Subroutine 22YA generates the initial shape
of the exhaust jet of the propulsion system from the input data.

Part 2 formulates the matrix including the complex velocity potential

for points on and off the body surface. Part 4 solves the above

matrix. The influence coefficients Aij’ Bij , and Y (see

» Xis k

appendix B) are determined in this subroutine. The combination solu-
tion is obtained in part 6. Part 7 determines if the jet exhaust is
properly orientated. It integrates for the mass flux into the pro-
pulsion system and calculates the forces on the exhaust jet.

Input

The inputs required by the program are as follows:
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FLGO2, FLGO3, etc.

MON

CDIM

VINF

BETA
DELT
ALF2
KKK

POSS

CHORD

THETA

BDN

X(I), X(I + 1), etc.
Y(I), Y(I + 1), etc.

NN

63

concrol flags (see comment cards main
program)

controls amount of outrput desired (see
comment cards main program)

total x distance of body including ex-
haust jet

free stream velocity

point on body at trailing edge of flap
(start of jet)

point of initial location of trailing
edge of exhaust jet

flap angle

thickness of jet

initial jet angle at trailing edge cf jet

number of elements on jet

turning efficiency of exhaust jet

chord length of airfoil

number of points on body (first time thru
DO loop)

rotation angle for airfoil

one if on body points follow

coordinates of points on the body surface

coordinates of points off the body suwrface

number of off bodvy points (second time

thru DO loop)
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THETA - rotation angle for coff body points

BDN - zero if off body points follow

X(I), X(I + 1), etc. - coordinate of points off the body surrace
Y(I), Y(I + 1), etc. - coordinate of points off the body surface
NTYPE, XP, YR - equal zero for prescribed velocity normai

to surface of body
NUF(I), NUF(I + 1), etc. - prescribed veloclty normal to surface of
body (known value for inlet of propul-
sion system, zero for rest of body}
TUF(1), TUF(I + 1), etc. - tangential velocity on surface of body,
input as zero

Output

The output consist of tangential velocities and pressure coeffi-
cients for each element on the body for the basic solutions and the
combination solution. It also includes the mass flow rate into the
propulsion system, the forces on the exhaust jet, the thrust coeffi-
cient of the propulsion system, the lift coefficient of the body, and
the basic input data. Also included are the x and y components of
velocity and angular orientation of points off the body (in the flow
field).

The complete program listing follows:
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Complete Program Listing

SMAJUND NOPRINT
S$ZERDIV
s18408 NOMAP

$IBFTC B2Vl
CDECK B2Y1

Y00040

conmu IM,HEDRyCASE yRPIyR2PIySPyCLyALPHA sF ALPHA, DALFA, CHORDy SUNDS.BZVDOHJO

XMC y YMC ,ADDYFLGO2,FLGO3,FLGO4+FLGUS5,FLGO6, FLGOT7, FLGOB,
LGL1 +FLGL2 yNDyNLF4NER s NT y NBy NCFLGy FLG15, FLG16
ION+BETA ,COI My VREF yDE LTy FLG13, FLGL 4y ITER, ALF2

FLGU9,FLG10
COMMON SUMSIG s VINF |
CCMMON /SPACER/DUMMY (10000)

CCMMON /F ORCUR/XCURV (200) 4 YCURV(200) yKKK
COMMON / NBSAVE / NBOLD

OIMENSION ND(10)y NLF(10), SUMDS(10), XMC(8), YMC(8), ADODY(8)

1, HEDR(15),CASE(2)

COMPLEX IM

INTEGER FLGO2,FLGO3,FLGO4,FLGO5+FLGO6+FLGOT
1, FLGO8, FLGO9, FLG1O0, FLGL1l, FLG12,FLGLl3,FLG14, FLG15,FLG16
DATA KORE/10000/

C #*s¥%¢ MON=C IS REGULAR OUTPUT

C *st%s  MON=1 IS MINIMUM OUTPUT

[ T FLGOl=1 ONE BOOY

C #*sss%% FLGO2=1 DOES OFF BODY PCINTS

C *%ses FLGO3=1 ALPHA IS INPUT

C *=%s%% FLGll=1l DOES SUCTION

C *ssx%s FLGl3=1 DOES THE TAIL

C #*ss%s FLG1l4=1 COMPUTES THE TAIL WITH A CUBIC

C #**x%x FLGL15=1 SKIPS INTEGRATING FOR THE MASS FLUX

C #%+%%x FLG16=1 CACULATES THE FCRCE ON THE END OF THE TAIL ONLY
NBOLD = O
ITER =0

10 CALL PART1
IF ( FI.GOE «NE. 0 ) GO TO 60
CALL PAR
CALL PA
CALL SOLVIT (DUMMY, NT, NCFLG, KORE, 1y 2, B8, 3, +100)
30 CALL PAl
60 CALL PAl
lFIFLGl3) 80-80-70
70 CALL PART 7
80 GO TO 10
END

$1BMAP 22YZ
ENTRY  oUN12.

WUN12. PZE UNIT12

WIT12 FILE 2UT1,INOUT,BIN,BLK=256 ,NOLIST
ENTRY «UN13,

«UN13. PLE UNIT13

WNIT13 FILE »UT3,INOUT,BIN,BLK=256 yNOLIST

END

B2Y O

B2Y00140
B2Y0008C
82Y00090
82Y00050
82Y00060

B2Y00160

B82YC0180
B82Y00190
82Y00200
B82Y00220
B82Y00230
B82Y00260
B2YC0270

B82Y00330
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SORIGIN ALPHA

$1BFTC B2Y2

CDECK B2YZ 82Y00340
SUBROUTINE PARTL 82Y00350

COMMON IM,HEDR yCASE yRPIR2PIySPyCLyALPHAFALPHA, DALFA, CHORD, SUMDS, B2Y 00460
XMC 4 YMC yADDY +FLGU2 yFLGO3 yFLGO4 ¢ FLGDS5+ FLGO 64 FLGOT FLGOB, B82Y00470
FLGO9+FLGLO4FLGLL yFLGL2 yND ¢NLF ¢ NER 9 NT y NBy NCFLGy FLG15,FLGL6

COMMON SUMSIG y VINF yMONy BETA yCOI My VREF yDE LT FLG13, FLGL 4 ITER,ALF2

COMMON /FORCUR/XCURV (200) ,YCURV(200) 4KKK,POSS

COMMON /NBS/ KII

COMMON/ NBSAVE / NBOLD B82Y00360
DIMENSIUN  X(300), Y(300), XMP(299), YMP(299), ALFA(299), B2Y00420
1 RSDS(299), SINA(299) , COSA(299), DELS(299), DALF(298), Z(299)s B2Y00430
2Q1(300),HEDR(15) yND(10) yNLF (10) » SUMDS (10) 4 XMC(8)sYMC(B ), B2Y00440
3ADDY(8) yCASE(2) yNUF (299) 4 TUF(299) B2Y00450
D IMENSION RADC(250)
CCMPLEX IM, Z, Q 82Y00370
REAL MX, MY, NUF B2Y00380
INTEGER BON, SUBKS, SEQl, SEQ2 B2Y00390
INTEGER FLGO2, FLGO3, FLGO4, FLGO5, FLGO6, FLGOT B2Y (00400
1, FLGO8, FLGO9y FLGL1O, FLGll, FLGL2+FLGL3,FLG14, FLG15,FLGLl6
EQUIVALENCE (NUF, X)y (TUF, Y) B2Y00490
IM = (0ey 1s) 82Y00500
N = FLGl2 82Y00510
READ (5,4) HEDR, CASE, NB, FLGO2, FLGO3, FLGO4, FLGO 5, FLGO6, B2Y00520
1 FLGO7, FLGO8y FLGO9y FLGLO, FLGLl,y FLGL2,FLGL3, FLGl4,
2 FLGL5,FLGL6,SEQLNIN
4 FORMAT( 15A44 2X, ZA&IlBlll
IF( NBOLD +EQs 0 ) ULD = NB B2Y00540
IF( NIN +EQe 0 ) NIN = B82Y00550

READ (546) HDN.CDIN.VINF'll-Vl-XZ-VZuBETA.DEL"yVREFcALFZ
READ (5,7) KKK,POSS

6 FORMAT (15,6FL04543F5.2/1F10.5)

7 FORMAT (15,F10s4)

READ (5, &) SP, CL, ALPHA, FALPHA, DALFA, CHORD, SEQ2 B2Y00570

8 FORMAT (6F10.0, 16X 14) 82Y00580
IF ( SEQ2 .GE. SEQL ) GO TC 80 82Y00590

60 WRITE ( 649 ) 82Y00600
9 FORMAT ( 50HODATA OUT OF SEQUENCE. SORT DATA ON 77-80. RELOAD. ) B2Y00610
sTopP 82Y00620

80 SEQ1 = SEQ2 B82Y00630
82 [F ( CHORD «EQe Os ) CHORD = 1. B82Y00640

WRITE (6, 12) HEDR, CASE, N8B, FLGO2, FLGO3, FLGO4, FLGO5, FLGO6, B2Y00650
1 FLGO7, FLGOB, FLGO9, FLGLO, FLGLly FLGL2,FLGL3, FLG144 FLG15) FLG16s
2 MON, VINF,
2 SPy CLy ALPHA, FALPHA, B2Y00660
2 DALFA, CHORD,s NIN B2Y00670
12 FORMAT (1H1 25X 26HDOUGLAS AIRCRAFT COMPANY / 28X 21HLONG BEACHB2Y(00680
1 DIVISION /// 6X 26HPROGRAM B2YC=- 2-D CASCADE // 11X 29H®#*#%* CAB2Y00690
2SE CONTROL DATA #%#%%,///6X,15A4 44Xy 9HCASE NO. ,2A4,//6X,9HBODIESB2YQ0700
3 =13,20X 9HFLAG 2 =13/ 6X 9HFLAG 3 =13,20X 9HFLAG 4 = [3/ 6X B2Y007ll
4 SHFLAG 5 = 13,20X 9HFLAG 6 = 13/ 6X IHFLAG 7 = 13,20X 9HFLAG 8B2Y00720
5 = 13/ 6X 9HFLAG 9 = [3,20X 9HFLAG 1) = I3/ 6X 9HFLAG 11 = I3, B2Y00730
620X 9HFLAG 12 =I13/6X 9HFLAG 13 =13,20X IHFLAG 14 =13/6X 9HFLAG 15
A =12,20X 9HFLAG 16 = 13,20X SHMON = [3,2)X 6H INF = F8.2//
11X 10H SPACING = F13.8/ 16X 5H CL = F13.8/ B2Y00740
1 13X 81 ALPHA = F13,8/ 7X 14H INLET ALPHA = F13.8/ 7x 14H DELTA ALB2Y00750
8PHA = F13.8/ 13X 84 CHORD = F13.8/13X,58HINPUT TAPE NO. FOR COORDIB2Y00760
ONATES AND NON-UNIFORM FLOW ONLY =, I5 ) B2Y00770
IF (FLGOB +EQ. 0) GO TO 119 B82Y00780



w

122
16

124
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FLG12 = N
RETURN

NT = 0

NCFLG = 2
REWIND 4
REWIND 9
REWIND 12
REWIND 13

00 120 1 =1, 10

SUMDS(I) = 0.

NLF(I) = 0

ND(I) = O

K2 = N8B

IF ( FLGO2 +NEs O ) K2 = NB + 1

DO 2000 L = 1, K2

READ (5, 15) NN, MX, MY, THETA, ADDX, ADDY(L), SEQ2
FORMAT (5X 15, 5F10.0, 16X I4 )

IF ( SEQ2 +LT. SEQL ) GO TC 60

SEQ1 = SEQ2

READ (5416) BDN,SUBKS NLFF 4XMC(L) ,YMC(L) 4ELPSTH,SEQ2
FORMAT (3(5X [5)43FL0.0,16X,14)

IF ( SEQ2 +LT. SEQL ) GO TC 60

SEQl = SEQ2

ND(L)=NN

JJ=ND(1)

11=ND(1)=KKK+1

NLF(L) = NLFF
NT = NT + NN

IF( NLFF 4EQe O <AND. BDN «NE. 0 ) NCFLG = NCFLG ¢ 1
IF ( SUBKS «EQ. 0 ) GO TO 140

IFC L «NEs K2 ) GO TC 145

NTIMES = NBOLD - NB

IF( NTIMES oLE. 0 ) GC TO 145
GO 10 145

ELPSTH = ABS(ELPSTH)
IF (ELPSTH +LE. 0.0) GO TO 139
DANGLE = 6.2831853E0 / FLOAT (M)

D0 141 I = 14N

ANGLE = ANGLE - DANGLE
X(I+1) = COS (ANGLE)

Y(I+1) = ELPSTH * SIN (ANGLE)

00 142 1 = 1iNNs6

READ (NIN,20) X(I)y X(I#1), X(I#2), X(I¢3), X(I¢4), X(145), SEQ2
FORMAT (6F10.0, 16X 14)

IF ( SEQ2 +LT. SEQL ) GO TO 60

DO 144 1 =14 NN, 6
READ (NIN,20) Y(I)y Y(I#41l), Y(I42), Y(I+3), Y(I+4), Y(I+5), SEQ2
IF ( SEQ2 «LT. SEQl ) GO TC 60

SEQ1 = SEQ2

THETA=THE TA/57.2957795E0

B2Y00790
B82Y00800
82v00810
B2Y00820
B82Y00830
B82Y00840
B2Y00850
B82Y 00860
82Y00890
82Y00900
82Y00910
B82Y00920
B2Y00930
B2Y00940
B2Y00950
B2Y00960
82Y00970
82Y00980
B2Y00990

82Y01010
82Y01020
B82Y01030

82Y01050
B2Y01060
B2vQl070
82Y01080
82Y01090
B82Y01100
82vcll10
B2yol12¢
B2Y01180
82Y01150
82Y01200
B2Y01210
B82Y01220
82Y01230
B2Y01240
B2Y0125C
B2Y01260
B82Y01270
82Y01280
B82Y01290
82Y01300
82YC1316

82Y01330
B82Y01340
B82Y01350
B82Y01360
B82Y01370
B82Y01380
82Y01390
B82Y01400
82Y01410



IF ( THETA .EQ. 0. ) GO TO 300

CSTHT = COS( THETA )

SNTHT = SIN( THETA )

DO 290 1 = 1, NN

Tl = x(1)

X(I) = T1*#CSTHT + Y(I)*SNTHT
290 Y{I) = Y(I)¥CSTHT - TL*SNTHT
300 CONTINUE
145 IF (FLGl2 «GT. 0) GO TO 150 B2Y01440

IF(FLGl4 +EQ. 0) GO TO 148

IF (BONGNE.1) GO TO 148

Tl=x1

X1=T1*COS(THE TA) + YL* SIN(THETA)

Y1=Y1*COS(THE TA) - TL* SIN(THETA)

Tz

X2=T2#COS(THETA) ¢ Y2 SIN(THETA)
¥ 2=Y2%COS(THE TA) - T2# SIN(THETA)
X2=X2+9. 72
Y2=Y2-1,32
THETA=THE TA*57,2957795E0
ALF=BETA+THETA
CALL SUBCUR(XLyYl 4X24Y24X3 Y3 ,ALF4ALF2,DELT)
MMM =KKK
NNN=1
143 DO 147 [ =NNN,MMM
X(I)=XCURV(I)
147 Y(I)=YCURV(I)
IF (NNN-I1) 146,148,148

146 NNN=II
MMM=Jy
GO 10 143
148 WRITE (13) (X(I)I=1,NN)
WRITE (13) (Y(I),I=1,NN) B2Y01460
150 IF ( BON +EQ. 0 ) GO TO 200 B2Y01470
IF (FLG12 «GT. 0) GO TO 163 B2Y01480
DO 16C I =1, M B2Y01490
XMP (L) = ( X(I+1) + X{I) ) / 2. 82Y01500
160 YMP(I) = ( Y(I+l) + Y(I) ) / 2. 82Y01510
WRITE (13) ( XMP(I), I =1, M) B2Y01520
WRITE (13) ( YMP(I),y I =1, M) B82Y01530
GO 10 200 B2Y01540
163 SUMS = 0.0 B82Y01550
DO 164 I = 1,M B2Y01560
XMP (L) = ¢ X(I+#1l)+x(I) )/2. B82Y01570
YMP(I) = ( Y(I+1)#Y(I) ) /24 B2Y01580
T1 = X(I+#1)=Xd1) B82Y01590
T2 = Y(Iel)=¥(I) B2Y01600
DELS(I) = SQRT( T1*T1+T2%T2) B2Y0l610
SUMS = SUMS + DELS(I) B2Y01620
RSDS(I) = SUMS 82Y01630
164 ALFA(IL) = ATAN2(T2,T1) B2Y01640
MM = NN-2 B82Y01650
DO 165 1 = 14 MM B82Y01660
165 DALF(I) = (ALFA(I+1)-ALFA(I))*57,2957795E0 B2Y01670
200 WRITE (6, 24) HEDRy NN, NLF(L), MX, MY, THET A, ADDX, ADDY(L), B2Y01680
1 XMC(L), YMC(L) B82Y01650
24 FORMAT (1H 25X 26HDOUGLAS AIRCRAFT COMPANY / 28X 21HLONG BEACHB2Y01700
1 OIVISIONs///5Xs15A% 4// 5X4HNN =414 14X ySHNLF =, 14y 5X, 4HMX =, 82Y01710

2 F1348, 4X 4HMY = F13,8 / 5X THTHETA = F13.8, 4X 6HADDX = F13.8, B2Y(C1720
3 2X 6HADDY = F13.8 / 7X 5HXMC = F13.8, 5X SHYMC = F13.8 ) 82Y01730
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IF (MON-1) 27,240,240

27 IF ( BON +EQs 0 ) GO TO 220 B82Y01740
IF (FLG12.LE.O) WRITE (6,25) B82Y01750
IF (FLG12.6T.0) WRITE (6. 82Y01760
25 FORMAT (1HO 4X 33HON-BODY CCORDINATES (TRANSFORMED) ) B2Y01770
26 FORMAT (1HO 4X 35HON-BODY CCORDINATES (JNTRANSFORMED) ) B82Y01780
WRITE (6,28) BON B82Y01790
28 FORMAT(9H BODY NU-l3//12llNKlBXlHVllXﬂiDELYA S 7X SHSUMDS B8X 82Y01800
THD ALPHA // B2vC1810
GD T0 230 B2YO01820
220 IF (FLGl24LE.O) WRITE (6,31) 82v01830
31 FORMAT (1HO 4X 34HOFF-BODY COORDINATES (TRANSFORMED) // 10X B2YQ01840
SHX-OFF 9X SHY=-OFF //) 82Y01850
lF (FLG12.6T.0) WRITE (6,32) 82Y01860
32 FmNAl‘ (1HO 4X 36HOFF-BODY CDCRDINATES (UNTRANSFORMED) // 10X B2Y01870
5HX-0FF 9X 5HY-OFF /7 B2Y01880
230 IF (FLG12.LE.O) GO TO 240 82Y01850
IF (BON.LE.O) GO TO 235 82Y01900
WRITE (6436) X(1)4Y(1)4XMP(L),YMP(L1),DELS(L),RSDS(1) 82Y01910
WRITE (6540) ( Iy X(I)y Y(I)y DALF(I=1)y XMP( L)y YMP(I), 82Y01920
1 DELS(I), RSOS(I), I = 2, M) B82YC1930
WRITE (6y44) NNy X(NN), Y(NN) B2Y01940
GO 10 240 82Y01950
235 WRITE (6,48) (I, X(I)y Y(I)y I = 1, NN) B82Y01960
240 IF ( MX +EQe 0. ) GO TO 260 82Y01970
D0 250 I = 14 NN 82Y01980
250 X(I) = X(I) * MX 82Y01990
XMC(L) = XMC(L) * MX 82Y02000
260G IF ( MY +EQ. 0. ) GO TO 280 82Y02010
D0 270 1 = 1, NN B2Y0202C
270 Y(L) = Y(L) * MY 82Y02030
YMC(L) = YMC(L) * MY B82Y02040
280 IF ( ADLX «EQs 0. ) GO TO 320
00 310 I =1, NN B82Y02170
310 xX(I) = X(I) + ADDX B82YC2180
XMC(L) = XMC(L) + ADDX 82Y02190
320 T1 = ADDY(L) B82Y02200
IF ( Tl +EQe O ) GO TO 340 B2Y02210
D0 230 I =1, NN B82Y02220
330 Y(I) = Y(I) + T1 82Y02230
YMC(L) = YMC(L) + T1 B82Y02240
340 [F ( CHORD +EQe le ) GO TO 360 B82Y02250
00 350 I = 1, NN 82Y02260
X(I) = X(I)/CHORD B2Y02270
350 Y(I) = Y(I)/CHORD B82Y02280
XMC(L) = XMC (L) /CHORD B2Y02290
YMC(L) = YMC(L)/CHORD B82Y02300
360 IF ( BDN +EQ. 0 ) GO TO 500 82Y02310
SUMS = 0. B82Y02320
DO 400 I =1, M B82Y02330
T1 = X(I+1) = x(I) 82Y02340
T2 = Y(I+1) - Y(I) 82Y02350
XMP (L) = (X(I+1) + X(I)) / 24 B82Y02360
YMP(I) = (Y(I+1) ¢ Y(I)) / 2. 82Y02370
TOS = SQRT ( T1*Tl + T2+72 ) 82Y02380
DELS(I) = TDS 82Y02390
SUMS = SUMS + TDS B2Y02400
REDS(I) = SUMS 82Y02410
COSA(I) = TL / TOS B82Y02420

SINACI) = T2 / TOS B2Y02430



420

1

ALFA(I) = ATANZ2 (T2, T1)
Z(1) = CMPLX ( XMP(L), YMPLI) )
QUI) = CMPLX ( X(I), Y(I

Q(NN) = CMPLX (

SUMDSI(L) = RSDS(M)

WRITE (12) ( XMP(I),
C YMP(I)

WRITE (12)

I
1

WRITE (12) ( DELS(I), I
IF (FL612.6T.0) GO TO 450

DO 4201 =1, M

DALF(I) = ( ALFA(I+1)-ALFA(I)

X(NN) » Y(NN) )

=1y, M)
=1, M)

=1, M)

IF (ABS(DALF (1))+6GT4270.)

CONTINUE

IF (MON.GE.1) GO TO 600

WRITE (6,
FORMAT (1H
M = NN -1
WRITE (6,

36) X(1)y Y1),
3H 1 2Fl4.8,
40) ( Iy X(I)y

v RSDS(I), I =2, M

40 FORMAT (1H

44

450

530
600

2000

WRITE (b4
FORMAT (1H
GO T0 600
WRITE (13)
WRITE (13)
M = NN-1

WRITE (13)
WRITE (13)
GO TO 600

IF (MONJGE.1) GO TO

IF (FLG12
FORMAT (1H
M =NN

IF (FLG12

WRITE (13)
DO 550 1 =

Y(I) s DALF(I=1)y XMP(I)s YMP(I),

70

) * 57,2957

DALF (1)=360.)

XMP(1)y YMP(L),
7 4x

4Fl4.3

13, 2F14.8, 28X Fl4.8 / 4X
X(NN) s Y(NN)

44)  NNo
13, 2Fl4.8 )

X(I) 1 =1,NN)
(Y(I) 41 =1 ,NN)

(XMP(I)

(YMP(I)

LE. 0)

1=1,M)
I=1,M

501
WRITE (6,48) (I, X(I), Y(I)y I = 1, NN)

13, 2F14.8 )

LE. 0)

1, NN

60 TO 530
WRITE (13) (X(I)y I=1,NN)
(Y(I)y [=1,NN)

Z(I) = CMPLX( X(I)y Y(I) )

WRITE (9) ( Z(I)y I =1, NN
IF ( BON «EQ. 0 ) GO TO 2000
M=NN-1

WRITE (9) ( SINACI), I =1, M)
WRITE (4) ( SINACI), I =14 M)
WRITE (9) ( COSA(I) , I =1, M
WRITE (4) ( COSACI) o I =1, M
WRITE (9) € Q(I)s I =14 NN
CONTINUE

NT = NT = N8 = ND(NB¢1)

NT = TOTAL NO. OF ELEMENTS

IF (FLG11.EQ.0) RETURN

REWIND 12

REWIND 4

M =1

N = ND(1)-1

DO 2050 J = 1, N8B

READ (12) (XMP(I) ,1=M,N)

READ (4) (SINACI),I=M,N)

READ (12)

(YMP(I) 41 =M,N)
READ (4) (COSA(I) I=M,N)

795
~ABS(DALF(1))
)

4Fl4.8 )

DELS(1), RSDS(1)

DELS( 1)

B2Y02440
B2Y02450
B2Y 02460
B2Y (02470
B82Y02480
B82Y02490
82Y02500
B82Y02510
B82Y02520
B2Y02530
B2Y02540

B2Y02560
82Y02570
B82Y02580
B82Y02590
B2Y 02600
B2Y02610
B2Y02620
B2Y02630
B82Y02640
82Y02650
B2Y 02660
B2Y02670
B2Y02680
B2Y02690
B82Y02700

B2Y02710
82Y02720

B2Y0274C
B2Y02750
B2Y02760
82Y02770
B82Y02780
B82Y02790
82Y02800

B2Y02810
B82Y02820
82Y02830
B2Y02840
B2Y02850
B2Y02860
B2Y02870
B2v02880
B82Y02890
B2Y02900
B82Y02910
B2Y02920
B2Y02930
B2Y02940
B82Y02950
B2Y02960
B82Y02970
B82Y02980



READ (12)
M o= N+l
2050 N = N#ND(J+1)-1

IF (FLGl1l.LE.8) GO TO 2100

WRITE (6,56}

56 FORMAT (1H1 5X 37HNUMBER OF NON-I UNIFURN FLOWS EXCEEDS 8 //
6X LBHPROGRAM TERMINATED

s
2100 NCFLG = NCFLG ¢ FLG11
D0 4000 K = 1, FLGLL
READ (5,64) NTYPE }XRy YRS
64 FORMAT (11, 9X 2F10.0, 46
IF (SEQ2.LT.SEQL) GO TO 6
SEQl = SEQ2

EQ2
X 14)
o

IF (NTYPE.GT.1) GO TO 2400

00 2200 I =1,

NT,
READ(NINqZOlNUF(X ) oNUF (141) yNUF(142) yNUF (143),NUF(I+4),NUF( l'5)v

SEQ2
2200 SEQl = SEQ2
2160 DO 2300 I =1,

NT,
READ(NIN.ZB)TUFII ).TUF (I41) 3 TUF(142) s TUF (143) s TUF(144),TUF(1#5),

1
2300 SEQ1 = SEQ2
2260 IF (NTYPE) 3000,3000,2800
2400 lF (NTYPE.EQ.3) GD TO 260
0 1 =

0

k83

250 1y N
ll = (XMP(I)= XRD“Z + (YMP(L)=YR) *%2

NUF(I) = (YMP(I)=YR)/T1
2500 TUF(I) = (XR=XMP(I)) /Tl
GO T0 2800
2600 DO 2700 I = 1, NT
NUF(I) = YMP(I)-YR
2700 TUF(I) = XR=-XMP(I)
2800 DO 2900 I = 1, NT
T1 = NUF(1)

NUF(I) ==TL*SINA(I)+TUF (1) *COSA(I)
2900 TUF(I) = T1*COSA(I)¢TUF(I)*SINA(I)

3000 WRITE (4) (NUF(I),I=1,NT)
WRITE (4) (TUF(I),1=1,NT)

WRITE (6468) HEDRy Ky (I NUF(L)sNUF(I41) ,NUF(142),NUF(1+3),

1 NUF(I+4) yNUF (1+5) 41 =14NT46)

68 FORMAT(1H1,6Xy15A44//7X,20HNON-UNIFORM FLOW NOey 13,/7/12Xs 2HNG,
11X 2HTG // (1X 15, 6F13.2)

8
4000 CONTINUE
RETURN

END

$IBFTC Z2YAA

SUBROUTINE SUBCUR (XL sYLsX29Y2yX34Y3,ALF, ALF2, DELT)
COMMON /FORCUR/XC URV (200) »YCURV{200) 4 KKK

COMMON /NBS/ KI

COMMON XD (50) ,YD (50)
COMMON /FNC/ 84C 40

D IMENSION XS(50), X{50),
DATA RAD/.01745329/

Y(50),

XL(50), YL(50),ND(10)

B2Y02990
82Y03000
B82Y03010
82Y03020
B82Y03030
B2Y03040
82Y03050
82Y03060

B82Y03080
82Y03090
82Y03100
82vY03110
82Y03120
82Y03130
B2Y03140
B2Y03150
82Y03160
B2YG3180

B82Y03200
B2v03210
B2Y03230

B2Y03250
B82Y03260
B2Y03270
82Y03280
82Y03290
82Y03300
B82Y03310
B82Y03320
B2Y03330
B2Y03340
B2v03350
B82Y03360
B2Y03370
B2Y(03380
82Y03390

B2Y03410
B2Y03430

B2YC3440
B2Y(03450
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DATA TOL/1l.E-6/
EXTERNAL FUNC
WRITE (6423) X2,Y24X3 Y3 ,ALF,DELT ,ALF2,X1,Y1
23 FORMAT (9F10.4)
ALF 2=ALF 2#RAD
X3=X249, 7T2#COS(ALF2)-DELT/2.0*SIN(ALF2)
Y32=Y2-DELT/2.0%COS(ALF2) -9, T2*SIN(ALF2)
ALF2=-ALF2
ALF = -ALF * RAD
X2MX1l= (X2-X1)
XZPXl= X24X1
X1Tx2= X1 * X2
Y2MYl= Y2-Y1
X1S§= X1 *Xx1
X25= X2% X2
DET = ~1.0 & (X2MXL) #%3
ALF = SIN(ALF)/COS(ALF)
ALF2=SIN(ALF2) /COS(ALF2)
A=(X2S5%(X2MX1*X1*ALF #Y1#*(3,0%X1=X2) )#X1S*(Y2#*(X1-3,0%X2) ¢ALF2*x2%
1X2Mx1)) /DET
B=(X2%(6e 0¥ XL*Y2ZMYL+ALF*(2,0%X1S=X1TX2-X2S5 ) )¢ ALF2#X1*(X 1S #X 1TX2-2.
10%X25)) /DET
C=(=3,0%Y2MYL*X2PX1+3,0%ALF#*(X2S=X1S )+ (ALF2=ALF)*(X2S +X1TX2-2.,0%X1
15))/0ET
D=(2.0#Y2MY1l-2,0%X2MX1*ALF~ (ALF2~ALF ) #X2MX1)/ DET
SC = SIMPSL(X14X2yFUNCsK)
S= SC + DSQRT( (X3-X2)*#%2 + (Y3-Y2)**2)
JJ=KKK+1
KK=KKK=1
D $=S/FLOAT(KK)
D0 1 I=1,KKK
AY = =1
XS(1)= AY *DS
XG=(X2MX1) /FLOAT(KK) X1
X(1)= x1
Y(l)= vl
00 2 I=24KK
1 =1
GNUM = XS(I) = SIMPSL(X1yXGyFUNC,K) ¢ XG * FUNCIXG)
DENOM = FUNC(XG)
XN = GNUM/DENOM
REL = ABS (( XG=XN)/XN)
XG = XN
IF (REL «GT. TOL) GO TO 3
IF(XG «GEe X2) GO TO 4
X(I)= XG
Y(I)= A + XG *(B+XG* (C+D*XG))
YP = B ¢ X(I) ¥(2.0%C+3.0% D *xX(I))
YP = =1,0/YP
THET = ATAN(YP)
IF(YP +LTe 0.0) GO TO 10
DY ==DELT * SIN(THET)
OX==DELT * COS(THET)
GO 10 11
10 DY = DELT * SIN(THET)
OX = DELT * COS(THET)
XL(I)= X(1) + DX
YL(I)= Y(I) + DY

-

w

~-
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SLOP = (Y3-Y2)/(X3-X2)

THET = ATAN(SLOP)

SLOPL= (Y3=(Y2-DELT))/(X3-Xx2)

XG = XS(I11) - SC

DY = X6 * SIN(THET)

DX = X6 * COS(THET)

X(I1) = X2 + DX

Y(Il)= Y2 + DY

IF(ALF2 +NE. 0.0) GO TO 20

YLEIl)= SLOPL * (X(I1)-X2) # (Y2 - DELT)

XL(ILl)= Xx(I1)

GO 10 21

20 DELTG = (140 - XG/(S-SC)) * DELT
SLOPL = =-1.0/ALF2
SLOPL = ATAN(SLOPL)
DYL = -DELTG * SIN(SLOPL)
DYX = ~DELTG * COS(SLOPL)
YLOIL) = Y(I1) + DYL
XLOIL) = X(ILl) + DXL

21 11 =11 + 1

IF(I1l +EQs KKK) GO TO 5

GO T0 6

X (KKK )=X3

XL(KKK)=X3

Y (KKK)=Y3

YL(KKK) =Y3

YP = =1.0/ALF

THET = ATAN(YP)

DY = -DELT * SIN(THET)

DX = =DELT * COS(THET)

XL(1)= X1 + DX

YL(1)= Y1 + DY

DO 7 I=1,KKK

J=JJ-1

XCLRV(I)= XxL(J)

YCURV(I)= YL(J)

K=KII-KKK+1

XCLRVIK) = X(I)

YCLRVIK)= Y(I)

RETURN

END

o

w

~

$IBFTC FXYZ
FUNCTION FUNC (X)
COMMON /FNC/ B4C,D
FUNC= SQRT(1.0 + (B#2.0 * C#X#3,0%D*X*X)
1%%2)
RETWRN
END

SORIGIN ALPHA

CDECK BzY2 B2Y03460
SUBROUTINE PART2 B2Y03470






T4

C *%x MATRIX FORMATION SUBROUTINE ¥ B2Y03480
CCMPLEX IMy Zy Qs Wl, W2,y TF, T2, Tl, CLOGy CSINH B82Y03490
INTEGER FLGO2y FLGO3, FLGO4, FLGO5, FLGO6, FLGOT B2Y(03500

1, FLGO8, FLGO9y FLG10, FLG1l, FLGL2 B2YC€3510
DIMENSION Z(299), Q(300), SINA(299), COSA(300), ND(10), 82Y03520
1 WNS(400 ), VTS(400 ), A(299), B(299), SUMDS(10), NLF(10) B82Y03530
DIMENSION VNST(L0),HEDR(15) yCASE(2) 4XMC(8),YMC(8),ADDY(8) B2Y03540
COMMON IM,HEDRsCASE yRPI yR2PI 4SPyCLyALPHA yFALPHA, DALFA, CHORD, SUMDS,B2Y03550
1 XMC yYMC yADDY+FLGO2yF LGO3 yFLGO4 +FLGOS5,FLGO6 FLGOT FLGOBy B2Y03560
FLGO9,FLGLOsFLGLL yFLGL2 yND ¢NLF4NER¢NT» NBy NCFLG 82Y03570
RPI = 0.31830989 0 B2Y03580
RZPI = 0.15915494E0 B2Y03590
REWIND 9 B82Y03600
REWIND 10 B82Y03610
REWIND 8
M =1 B2Y03630
N = NO(1) - 1 B2Y03640
M1 =1 B2Y03650
N1 = ND(1) B2Y03660
D0 100 L = 1, N8B B2Y03670
READ (9) (Z(I)y I = My N) B2Y (03680
READ (9) (SINA(L),y I = My N) B2Y03690
READ (9) (COSA(I), I = My N) B2Y03700
READ (9) (Q(l)‘ 1 = M1, N) B2Y03710
M=N+ 82Y03720
N =N+ ND(LOlI =1 B2Y03730
M1 = N1 B2Y03740
100 N1 = Nl 0 ND(L‘U B82Y03750
K = NB B2Y03760
00 200 l - l. K B2Y03770
VNS(I) = 0. B2Y03780
200 VIS(I) = Oo B82Y03790
ASSIGN 85G TO N50 82Y(03800
ASSIGN 1050 TO N51 82Y03810
IF (FLG11.LE«0) GO TO 400 B2Y03820
REWIND 4 B82Y03830

C

c
M1 = 2¢NB 82Y03860
DO 250 K = 1, ML B82Y03870

250 READ (4) 82Y03880
M1=NT+l
N1=2¢NT

00 300 K = 1, FLG11 82Y03910

READ (4) (VNS(I)y I = ML, N1) 82Y03920

READ(4) 82Y03930

M1 = ML + NT B2Y03940

300 N1 = N1 + NT B82Y03950

400 NPFLG " B82Y03960

= 0. B2Y03970

BZ = 0. 82Y03980

L = NT 82Y03990

500 DO 1500 J = 1, L B82Y 04000

Ml =1 B82Y04010

N1 = ND(1) - 1 B2Y04020

Jl=J4 -1 B2Y04030

Jz = 0 B82Y04040

J4 = B2Y04050

Tl = CMPLX( COSA(J)y =SINACD ) B2Y04060

00 1200 I = 1, NB B2Y04070



700
720

750

800
850

900
1000

1050

1100
1200

1250
1275

-
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1300
1500
c

1800
2000

15

N
o

3000

5

IF (sP .NE. 0s0) TF = CSINH(3.14159265E) #(Z(J)=Q(ML))/SP)

D0 1000 K = ML, N1

J2 = g2 + 1

CALL FORML ( Jy Ky J2y Zy Qy SINA, COSA, W1 )
IF ( NPFLG «NE. 0 ) GO TO 750
Tz = CONJG(WL) * T1

Al = AIMAG( T2 )

IF (J «EQe J2) Al = ABS( Al )
Bl = REAL( T2 )

GO T0 800

Al = - AIMAG( Wl )

= REAL( Wl )

GO 10 N50,(850,900)

VNS(J1) = VNS(J1) - Bl + B2
VIS(J1) = VIS(Jl) + Al - A2
AlJ2) = Al + A2

B8(J2) =Bl + B2

GO 10 N51,(1050,1100)

VNS(J1) = UNS(JL) / SUMDS(J4)

®

VIS(J1) = VIS(JL) / SUMDS(J4)
M1 = N1 + 2
N1 = N1 + ND(I+l)
VNST(1) = - SINA(J)
VNST(2) = COSA ()
IF( FLGL1 oLTe 1) GO TO 1275
KL = J -
D0 1250 I = 3, NCFLG
KL = KL + L

VNST(I) = VNS(KL)

WRITE (10) ( A(I)y I =1, NT), ( VNST(KL)y KL = 1,

WRITE (10) ( B(I)y I =1, NT

IF ( FLGOT +EQ. 0 ) GO 10 1300

WRITE (6, 5) Jy (AlL)y I =1,

FORMAT (1HO 12H AJK  ROW I4 // (6F15.8) )
WRITE (6, 10)0Jy (B(I), I =1,

FORMAT (1HO 12H BJIK ROW 14 7/ (6F15.8) )
WRITE ( 8) ( A(I),y I =1, NT

WRITE ( 8) ( B(I)y I =1, NT)

CONTINUE

M =1

N =L

DO 2000 J = 1, NB

IF ( NLF(J) «NE. 0 ) GO TO 1800

WRITE (4) (UNS(I), I = My N )

WRITE (4) (VIS(I)y I = My N

M=N+ \

N =N+

IF ( FLGOT «EQ. 0 ) GO TO 3000

N = NB

WRITE (6. l5l ( UNS(I)y I =1, N
WRITE (6y 20) ( VIS(I), I =1, N
FORMAT (1HO/10X 3HVNS /// (6F15.8) )
FORMAT (1HO / 10X 3HVTS /// (6F1548) )
IF ( FLGO2 «EQs O «ORs NPFLG «NEs O ) RETURN
NPFLG = 1

L = NDI(NB+1)

READ (9) ( Z(I)y I =1,y L)

B2Y04080
B82Y04090
B82Y04100
B2Y04110
B2Y04120
B82Y04140
B2Y04260
B2Y04270
B2Y04280
B2YC429C
82Y04300
B2Y04310
B2Y (04320
B2Y04330
B2Y 04340
B82Y04350
B2Y04360
B2Y04370
B2Y04380
B2Y 04390
B2Y(C4400
B2Y04410
B2Y 04420
B2Y04430
B2Y 04440
B2Y 04450
B2Y 04460
B2Y 04470
B82Y 04480
B2Y 04490
B2Y 04500
B2Y04510
B2Y04520
B2Y04530
B2Y 04540
B2Y04550
B2Y 04560
B2Y04570
B2Y04580

B2Y 04600

B2Y 04620
B2Y 04630
B2Y04640
B2Y (04650
B2Y 04660
B2Y 04670
82Y04680
B2Y04690
B82Y04700
B2Y04710
B2Y04720
B2Y04730
B2Y 04740
B2Y04750
B2Y04760
B2Y04770
B2Y04780
B2Y04790



K = NB * L
D0 3100 I =1, K

VN

3100
ASSIGN 850 TO N50
ASSIGN 1050 TO N51
GO T0 500
END

$IBFTC B2Y4
CDECK B2Y4

SUBROUTINE FORM1  ( Jy Ky J2y Zs Q) SINA, COSA, W )
COMPLEX IM, Z, Qy W,y CLOG

COMMON IM,HEDR yCASE yRPI,R2PI 4SPyC L, ALPHA ,F ALPHA, NERyNT, NB,NCFLG

D IMENSION 2(299), Q(300), SINA(299), COSA(299)
DIMENSION HEDR(15),CASE(2)

W= CLOG ( (Z(J)=Q(K)) /7 (Z(J)=Q(K+1D) )

W = ( COSA(J2) - IM*SINA(J2) ) * R2PI * W
RETURN

END

SORIGIN ALPHA
$IBFTC B2Y9
CDECK B2Y9

o

SUBROUTINE PART4

CCMPLEX 1M

INTEGER FLGO2, FLGO3, FLGO4y FLGOS, FLGO6, FLGO7

1, FLGOB, FLGO9y FLG1O, FLGLl, FLGl2

O IMENSION A (300 ) s R(300, 5), ND(10), NLF(10)

O IMENSION HEDR(L5) yCASE(2) 4 SUMDS (10) ¢ XMC (8) Y MC(8),ADDY(

8)
CCMMON [M,HEDR,CASE yRPI yR2PIySP,CLyALPHA, FALPHA, DALFA, CHORDy SUMDS,
1 XMC 4 YMC yADDY +F LGO24F LGO3 ,FLGO4 +FLGOS5,FLGO6, FLGOT, FLGOB8,

FLGO9,FLGLO,FLGLL 4FLGL2 4ND 4NLF 4NERyNTy NBy NCFLG
REWIND 1
REWIND 3
REWIND 4
REWIND 10
=1
N = ND(1) - 1
00 100 K = 1, N8
READ (4) ( R(I41)y I = My N
READ (4) ( R(I42)4 I = My N )
M =N+l
0N = N ¢ ND(K#1) -
PRECEDING READS IN SINESy CCSINESe ONSET FLOWS NEXT ( IF ANY).
IF ( NCFLG «LEs 2 ) GO TO 180
DO 150 J = 3, NCFLG
READ (4) ( R(I4J)y I =1, NT)
150 READ (4)
180 DO 200 J = 2, NCFLG
00 200 I = L1y NT
200 R(Ly J) = =R(I,y J)
250 DO 300 I = 1, NT
READ (10) € AL J )y J =1, NT )
READ (10)
300 anYEHl (A(J)y J=1y NT)o(R(I, J)y J=1, NCFLG)

82Y04800
B2YC4810
B82Y04820
B2Y04830
B2Y04840
B2Y04850
B2Y04860
B2Y04870

B2Y (04880
B2Y 04890
B2YC4900
B2Y04910
B2Y04920
82Y04930
B82Y04940
B2Y 04950
B2Y04960
82Y04970

B2Y06110
B82Y06120
B2Y06130
B2Y06140
B2YC6150
B2Y06160
B2Y06170
B2Y06180
B2Y06190
B2Y06200
B2Y06210
B2Y06220
B82Y06230
B2Y 06240
B2Y06250
B2Y06260
B2Y06270
B82Y06280
B82Y06290
B82Y06300
B82Y06310
B82Y06320
B82Y06330
B2Y06340
B2Y06350
82Y06360
B2Y06370
B2Y06380
B2Y06350
B2YC6400
B82YC6410
B2Y06420
B2Y06430




m

END FILE 1 B2Y 06440

REWIND 1 B2Y 06450

RETWRN B2Y06460

END B2Y06470
SORIGIN ALPHA

$IBFTC C20x9

c20x9 B2Y06480

SUBROUTINE SOLVLT (A, NDy MD, KD, NI, MM, NO, NW, *) B2Y06450

D IMENSION A ( KD ) B2Y06620

c B2Y 06630

LOGICAL LAST B2YC664C

c B82Y06650

N = ND B2Y06680

M = MD B2Y06690

KORE = KD B2Y06700

NPM = N ¢ B2Y0671C

IF (MAXO(3 * NPM, M * N) +GT. KORE) RETURN 1 B2Y06720

MT = MM B2Y06730

REWIND MT B2Y06740

NIN = NI B2Y06750

REWIND NIN B82Y06760

NOUT = NO B2Y06770

REWIND NOUT B2Y06780

MP1 =M ¢ 1 B2Y06790

NN = N B2Y(06800

NEL = NPM B2Y (06810

C B82Y06820

C = = CALCULATE THE MAXIMUM NO. OF ROWS, *K*' B2YC6830

c B2Y06840

10 K = (KORE = NEL) / NEL B2Y06850

(4 B2Y06860

C = = TEST TO SEE IF THE REST OF THE MATRIX WILL FIT IN CORE B2Y(6870

4 B2Y06880

LAST = K o4GEs NN B2Y06890

IF (LAST) K = NN B2Y06900

(4 B82Y06910

C - - READ 'K' ROWS OF THE AUGMENTED *A* MATRIX B2Y06920

c B2Y06930

30N B2YC6940

DO 40 18 = l. K B2Y06950

NS = NT + B2Y06960

NT = NT + NEL B2Y06570

40 READ (NIN) (A(IO), 1O = NSy NT) B2YC6980

c B2Y06990

C - - CPECK TO SEE IF WE WERE UNLUCKY ENOUGH TO END UP WITH ONLY ONE ROWB2Y07000

4 82Y07010

IF (K +EQ. 1) GO TO 90 82Y07020

[ B82Y07030

C = = *K' IS GREATER THAN '1* SO WE CAN START THE T RIANGULARIZAT ION B82Y07040

c B2Y07050

NELPL1 = NEL L B2Y07060

NS = = NE B82Y07070

NELP2 = NEI.Pl L B82Y07080

c 82Y07090



C - - FORM THE *TRAPEZOIDAL® ARRAY (8)
c

oo

coo

coo

coo

DO 50 IB = 2, K

NP = NELP2 - IB

NS = NS ¢ NELPL

NT = NS

D0 50 I0 = 1B, K

NT = NT + NEL

MN = NT

NB = NS

AINT) = (=A(NT)) / A(NS)
DO 50 NF = 2, NP

A(MN) = A(MN) + A(NT) * A(NB)
IF (LAST) GO TO 0

WRITE THE *TRAPEZOIDAL® MATRIX ON TAPE

NT =0

NP = NEL

NS = - NEL

DO €0 10 = 1, K

NS = NS + NELPl

NT = NT +

WRITE (HT) NP‘ (A(IB), IB = NS, NT)
NP = NP

NP = NP - M

NS = KORE - NEL + 1

READ ANOTHER ROW

D0 €0 I0 = 1,
READ (NIN) (A(lﬂ). 1B = NS, KORE)

MODIFY THIS ROW BY THE *TRAPEZOIDAL® ARRAY
NT = 1

MN = NS
DO 70 IB = 1y K
B = NT

F = MN + 1
A(MN) = (=A(MN)) / A(NT)
DO €5 NN = NF, KORE

# 1
A(NNI = A(NN) + A(MN) * A(NB)
MN =
NT = Nv + NELP1
WRITE THE MODIFIED ROW CN TAPE
WRITE (NOUT) (A(NT), NT = MN, KORE)
REWIND NOUT
REWIND NIN

SWIICH THE TAPES

NT = NIN
NIN = NOUT
NOUT = NT

B2Y07100
82Y07110
82Y07120
82Y07130
82Y07140
82Y07150
82Y07160
82Y07170
B2Y07180
82Y07190
82Y07200
82Y07210
82Y07220
B2Y07230
B2Y07240
B2Y07250
B2Y07260
82Y07270
B2Y07280
82Y07290
82Y07300
82Y07310
82Y07320
82Y07330
82Y07340
82Y07350
B2Y07360
B2Y07370
82Y07380
B2Y07390
82Y07400
82Y07410
B2Y07420
B2Y07430
B2Y07440
B2Y07450
B2Y07460
82Y07470
B2Y 07480
B2Y07490
82Y07500
82Y07510
B2Y07520
82Y07530
B2Y07540
82Y07550
82Y07560
82Y07570
82Y07580
82Y07590
B2Y07600
B2Y07610
82Y07620
82Y07630
B2Y07640
B2Y07650
82Y07660
B2Y07670
B2Y07680
82Y07690



ccoo

ocoo

NEL = NEL - K
NN = NEL = M
60 10 10

- - REWIND ALL TAPES

90 REWIND MT
REWIND NIN
REWIND NOUT

= = CONDENSE THE MATRIX

NN = NE

NL = NELP1

IF (K +EQ. 1) GO TO 105
NS =1

NT = NEL

D0 100 IB = 2, K

NS = NS + NELP1
NT = NT + NEL
00 100 [0 = NSy NT
A(NL) = ACIO)
100 NL = NL ¢ 1
105 N1 = KORE = K * M + 1

NREM = N
NEL = NPM
LAST = K +EQe N
NPASS = 0

110 KM1 = K = 1
KPLl = K + 1
NS = NL - MPL
NPASS = NPASS + 1
00 130 MN = 1, M
NF = NS + MN
A(NF) = A(NF) / A(NS)
NT = N

S
IF (KM1 .EQ. 0) GO TO 130

DO 125 1B = 1, KML
NF = NF - IB = M
NT = NT - MP1 - IB
SLM = 0.0
NP = NF

Nz = MP1 + IB

D0 120 10 = 1, IB
NN = NT + I0
NP+ N2 - I

NP [«
120 SUM = SUM + A(NN) * A(NP)

125 A(NF) = (A(NF) - SUM)
130 CONTINUE

/ A(NT)

79

= = RE-CALCULATE ROW LENGTH AND LOOP BACK

- - THERE, NOW WE CAN START THE BACK-SOLUTION
* % NOTEesTHE FIRST AVAILABLE LCCATION FOR THE SOLUTIONS IS A(N1)

- - SOLVE FOR THE ANSWERS CORRESPONDING TO ¢

B2Y07700
B2Y0771C
B2Y07720
B2Y07730
B2Y07740
B2Y07750
B2Y07760
B2Y07770
B2YO07780
B2Y07790
B2Y07800
B82Y07810
B2Y07820
B82Y07830
B2Y07840
B82Y07850
B2Y07860
B2YC7870
B2Y07880
B2Y(07890
82Y07900
B2Y07910
B2Y07920
B82Y07930
B2Y07940
B82Y07950
B2Y07960
B2Y07970
B2Y07980
B2Y07990
B2YC8000
B2Y(08010
B2Y08020
B82Y08030
B82Y 08040
B2Y (8050
B2Y(C8060
82Y08070
82Y08080
82Y 08090
B82Y08100
B2Y08110
B2Y (08120
B82Y08130
82Y08140
B82Y08150
B2Y 08160
B82Y08170
82Y08180
B2Y (08190
B82Y08200
B82Y08210
B82Y08220
82Y 08230
82Y08240
B2Y (08250
B2Y (08260
B2Y08270
B2Y(€8280
B2Y08290






oo

ocoo

L GLTL LT

ono

coo

80

= = MOVE THE SOLUTIONS TO CONTIGUOUS LOCATIONS ST ARTING AT A(N1)

135 AIN1) = A(

N1 = KORE
D0 140 NN
DO 135 MN
NL = NL -

41
=1,
=1,
1

K
M

N1l = N1 = 1

140 NL = NL -

NL)
NN

- - WRITE THE SOLUTIONS ON TAPE

NS = N1 - 1
DO 145 MN = 1, M
NT = NS ¢ MN
145 WRITE ( NIN ) (ACIO), 10 = NT, KORE, M)
= = TEST IF THIS IS THE LAST PASS
IF (LAST) 60 TO 200
- - WE MUST NOW MODIFY THE TRIANGULAR MATRIX TO REFLECT THE EFFECT OF
THE SOLUTIONS OBTAINED SC FAR (EQ 2
* % NOTE..LOCATIONS A(L) TO A(Nl-1) ARE NOW FREE TO USE
= = CALCULATE THE NEXT VALUES OF *NEL® AND * NREM*
NELOLD = NEL
KOLD = K
NEL = NEL - K
NREM = NREM - K
- - NOW APPLY THE INCREDIBLE FORMULA FOR THE NEW *K*
K = (=4 ¢« M= 1) /2 + IFIX(SORT(0.25 + FLOAT((4 * M + 2) * M +
1 2 * (KORE = NELOLD)Y))
NROW = NREM = K + 1
IF (K LT+ NREM) GO TO 150
LAST = TR
NROW = 1
K = NREM
150 NS = 1
NT = NELOLD ¢ 1
= = READ IN THE ROWS TO BE MODIFIED

WRITE (NIN) K

00 190 I8
NT
1

= 1, NREM

= NT - 1
F (IB «LE. NROW) GO TO 160
N

NS = NS + NI
NT = NT ¢ NN
160 READ ( MT
N1 -

) NN, (A(IO)y 10 = NS, NT)
1

M = KM1

KOLo

=1, M

MN

B82Y(08300
82Y08310
B2Y08320
82Y(C8330
B2Y08340
82Y08350
B2Y(C8360
82Y08370
B2Y08380
82Y08390
B2Y (8400
82Y08410
B2Y (8420
B82Y 08430
B2Y 08440
B2YC8450
B2Y (8460
B82YC8470
B82Y08480
B2Y 08490
82Y08500
B82YC8510
B2Y08520
B82Y08530
B82Y08540
B82Y08550
B82Y08560
B82Y08570
82Y08580
B2Y (8590
B82Y08600
82Y08610
82Y08620
B82Y08630
B2Y 08640
B2Y08650
B2Y08660
B82YC8670
82Y08680
B2Y (08690
82Y08700
82vy08710
B82Y08720
B82Y08730
B82Y08740
82Y08750
B2Y08760
82Y08770
82Y08780
B82Y08790
82Y08800
82Y08810
82Y08820
82Y08830
B2YC8840
82Y08850
B2Y08860
B82Y08870
B2Y08880
82Y08890



coo ooo

oo

210
220

81

1, KOLD
A(N2) * A(NA)

N2 = N2 + MN -
A(NZ) = A(N2) - SUM

WRITE THE MODIFIED ROW CN TAPE OR CONDENSE THE ROW

NL = NT = M + 1

IF (1B «GE«. NROW) GO TO 175
NF = NL = KP1

WRITE (NOUT) NN, (A(IQ)s 10 = NSy NF), (A(IO)y IO = NL, NT)
G0 T0 190

NF = NL - KOLD

D0 180 MN = NL, NT

A(NF) = A(MN)

NF = NF + 1

CCONTINUE

REWIND MT

REWIND NOUT

SWITCH THE TAPES

NT = MT
MT = NOUT
NOUT = NT

LOOP BACK THRU THE SOLUTION

NL = NF
GO 10 110

START TO WRAP IT UP

REWIND NIN

NZ = N

NOTEss AT THIS POINT ALL LOCATIONS A(l) THRU A(KORE) ARE FREE

DO 220 1B = 1, NPASS
READ (NIN) K

N1l = N2 = K¢+ 1

NS = N1

NT = N2

READ IN THE SOLUTIONS

DO 210 10 =1, M

READ (NIN) (A(NN), NN = NS, NT)
NT = NT ¢+ N

NS = NS ¢ N

N2 = N1 -1

WRITE THE SOLUTIONS ON TAPE
NT

=0
00 230 10 = 1, M
NS = NT ¢ 1

B82Y08900
82Y08910
B82Y08920
8208930
B2Y 08940
B2YC8950
B2Y (08960
82Y08970
82Y08980
82Y08990
B82Y09000
B82Y09010
82Y09020
B82Y09030
B2Y(9040
B82Y09050
B2Y09060
82Y09070
82Y09080
82Y09090
82Y09100
B2Y09110
B82Y09120
B82Y09130
B2Y09140
B2Y(09150
B82Y09160
B2Y09170
B82Y09180
B82Y09190
82Y09200
82v09210
82Y09220
B82Y09230
B82Y09240
B82Y09250
82Y09260
B2Y09270
82Y09280
B82Y09290
B82Y09300
82Y09310
B2Y09320
82Y09330
B2Y09340
B2Y09350
B2Y09360
B2Y09370
B82Y09380
B82Y09390
82Y09400
B2Y09410
B2Y09420
B2Y09430
B2Y 09440
82Y 09450
B2Y 09460
B82Y09470
B2Y09480
B2Y09490



82

T = NT +

N
230 WRITE (NW) (A(NN), NN = NS, NT)
c

RETWRN
END

SORIGIN ALPHA
$IBFTC B2YE
CDECK B2YE
SUBROUTINE PARTS
COMPLEX M

INTEGER FLGO2, FLGO3, FLGO4, FLGO5, FLGO6, FLGOT

1, FLGO8, FLGO9, FLG10, FLGll, FLGl2

DIMENSION B8(299), VT(299, 5), SIG(299, 5), T(299, 5),

1y ND(10), NLF(10), X(300), Y(300), XMP{299),

CP(299, “6)
YMP(299), CASE(2)

2y SUMDS(10), XMC(B), YMC(8), ADDY(8),HEDR(15), VELID(10),VID(2)
COMMON [M,HEDR 4CASE yRPI,R2PI,SP4CLyALPHA ,F ALPHA, DALFA, CHORD, SUMDS,B2Y 10820
XMC » YMC yADDY sFLGU2 +F LGO3 4 FLGU4 yFLGOS5,FLGD6, FLGOT, FLGUB,

FLGO9+FLGLOFLGLL 4FLGL2 #ND sNLF ,NER 4 NT 4 NB, NCFLG+ FLGL5,FLG16
COMMON SUMSIG 4 VI NF yMON,BETA ,COIM,VREF ,DE LT, FLG13, FLGL1 4, ITER, ALF2

EQUIVALENCE ( T, CP
DATA VELID / 3H VO, 4H V90, 3H V1, 3H V2,
1 2H V6, 3H V7, 3H V8 /,BLANK/LH /
REWIND 3
REWIND 4
REWIND 10
REWIND 8
REWIND 12
REWIND 13
=1
N = ND(1) = 1
00 100 K = 1, N8
READ (4) ( T(I42), 1 = My N )
READ (4) ( T(I,1), I = My, N
4 READS IN SINES AND COSINES

M=N+

100 N = N + ND(K+1) = 1
IF ( NCFLG +LEs 2 ) GO TO 200
00 150 J = 3, NCFLG

150 READ (4) ( T(I,J)y I =1, NT)
200 DO 250 J = 1, NCFLG
250 READ (3) ( SIGUI+J)y I =1, NT )
D0 400 I = 1, NT
READ (10)

READ (10) ( B(L)y L =1, NT)
DO 400 J = 1, NCFLG
PR = 0.
D0 200 L = 1, NT

300 PR = PR + B(L)*SIG(L,J)
VI(IsJd) = PR & T(I,J)

400 CP(IyJ) = 1o = VTl ,J)*%2
00 500 J =1, NCFLG

500 WRITE ( 8) ( VI(I,J)y I =1, NT )
IF (MON-1) 510,520,520

3H V3,

3H Vé,

3H V5,

82Y09500
B82Y09510
82Y09520
B2Y09580
B2Y09590

B82Y10740
82Y10750
B82Y10760
82v10770
B82Y10780
B82Y10790
B82Y10800
82Y10810

B2Y10830

B82Y10850
B82Y10860
B2v10870
B82Y10880
B82Y10890
82Y10900

82Y10920
82Y10930
B2Y10940
B82Y10950
82Y10960
B2Y10970
82Y10980
B2Y10990
82Y11000
82v11010
B82v11020
B82Y11030
B2Y11040
82Y11050
82Y11060
82Y11070
82Y11080
82Y11090
82Y11100
B2yv111l0
B2Y1112C
82Y11130
B2Y11140
B82Y11150
B82Y11160
B82Y11170



510 M = 1 B82Y11190

N = ND(1) 82Y11200

Ml =1 82v11210

N1 = ND(1) = 1 82Y11220

DO 700 J = 1, N8 B2Y11230

READ (13) ( X(I)y I = My N B2Y11240

READ (13) ( Y(I)y I = My N B82Y11250

READ (13) ( XMP(I), I = M1, N1 ) B2Y11260

READ (13) ( YMP(I)y I = ML, N1 ) B82v11270

M =N+ B2Y11280

N = N ¢ ND(J#1) B82Y11290

M1 = N1+ 1 82Y11300

700 N1 = N1 + ND(J+¢l1) - 1 B82v11310

DO 2500 L = 1, NCFLG B82Y11320

=1 B82Y11330

J =1 B2Y11340

M =1 B82Y11350

N = ND(1) B2Y11360
LCVR = 220

K = B82v11380

IF (FLGlO «LT. 2) GO TO 1000 82Y11390

1000 WRITE (6, 1100) HEDR, CASE B2Y11440

1100 FORMAT (1H1 25X 26HDOUGLAS AIRCRAFT COMPANY / 28X 21HLONG lEACNBZVllb’G

1 DIVISION //// 5Xs15A4,// 6H CASE ,2M) 2Y11460

IFC K ) ll5Dv 1300, 1500 82711470

1150 WRITE (6, 1200 B2Y11480

1200 FORMAT (1H IMSYREAHFLDI SOLUTION ) B2Y11490

GO TO 1700 82Y11500

1300 WRITE (6, 1400) 82v11510

1400 FORMAT (1H 23H90-DEGREE FLOW SOLUTION ) 82Y11520

GO 70 1700 B82Y11530

1500 WRITE (6y 1600) K B2Y11540

1600 FORMAT (1H 35HNON-UNIFORM ONSET FLOW SOLUTION NO. I3 ) B82Y11550

1700 IF (FLGL12.LE.O) WRITE (6,1800) B2Y11560

1800 FORMAT (1H 25HUNTRANSFORMED COCRDINATES 7/ ) B2Y11570

IF (FLG12.GT.0) WRITE (6,1900) B82Y11580

1900 FORMAT (1H 23HTRANSFORMED COORDINATES // ) B82Y11590

WRITE (641950) B2Y11600

1950 FORMAT (12X 1HX 13X 1HY 14X 1HV 12X 2HCP 11X SHSIGMA // ) B82v11610

2000 WRITE (6, 2100) Ly X(I)y Y(I) s XMP(J)y YMP(J)y VTLJ,L) B2Y11620

v CP(JyL)y SIGLJsL) B2Y11630

2100 FORMAT (1H 13, 2F14.8 / 4X 5F14.8 ) B2Y11640

=1 B2Y11650

J=Jel B2Y11660

IF ( I +EQe N ) GO TO 2200 B2Y11670

IF ( I +LE. LCTR) GO TO 2000 B82Y11680

LCTR = LCTR + 22 B2Y11690

GO 70 1000 B82Y11700

2200 M = M + 1 B2Y11710

N = N + ND(M) 82Y11720

WRITE (6, 2300) I, X(I),y Y(I) 82Y11730

2300 FORMAT (1H 13, 2F14.8 // ) B2Y11740

! S I 82Y11750

IF ( J «GE« NT ) GO TO 2500 B2Y11760

GO 10 2000 B2Y11770

2500 CONTINUE B82Y11780

520 RETURN B2Y11790

END B2Y11800



h
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SORIGIN ALPHA
$IBFTC B2YF
CDECK B2YF
SLBROUTINE PARTE
COMPLEX IM
INTEGER FLGO2, FLGO3, FLGO4, FLGOS, FLGO6, FLGO7
1, FLGO8, FLGO9+ FLG10, FLG1l, FLGl2
DIMENSION SIGMA (299, 4)s SUMA(300, 4), SUMB(300, 4)
D IMENSION THETV(299)
DIMENSION VC(299), X(300), Y(300), XMP(299), YMP(299), XM(299)
YM(299)s SINA(299), COSA(299), CP(299), DELS(299), ND(10)
2y NLF(10), SUMDS(10), GAM(9), XMC(8), YMC(B), HEDR(15),ADDY(8)
4y YTEMP(1500), VXL(299), VYL(299), XIJ(299), YIJ(299), OVA(9,8)
3, DVT(9,10),0V(9,9) yDELSUT(299) +SIGT (299 ), XTEMP(1500
DVX(9,10), ZTEMP(300) sVCID(2) 4VXID(2)4VYID(2)sGAMT( 8)4CASE(2)
DIHENSIUN PRES(299) y XN(299) ,YN(299)
DIMENSION XID(2), YID(2), XIDOFF(2), YIDOFF(2)

-

B2Y11810
B82Y11820
B82Y11830
B82Y11840
B2Y11850

B82Y11870
B82Y11880
B82Y1189

82Y11910
B82Y11900
B2v11920

B2Y11930

cumﬁu IM,HEDR ;CASE yRP1yR2PI¢SPyCLyALPHA y F ALPHA, DALFA, CHORD, suuns.azvuwm

XMC » YMC ,ADDY 4FLGO2 yF LGO3,FLGO4,FLGO5,FLGO6, FLGO7, FLGOB,

FLGO9yFLGLOWFLGLL 4FLGL2 ¢ND yNLF 4NER yNT y NBy NCFLG,y FLG15, FLG16

COMMON SUMSIG 4 VI NF yMON,BETA ,CDI My VREF 4DE LT, FLG13, FLG1 4, ITER, ALF2
EQUIVALENCE (GAM, DVT), (DVs DVT(10)), (DVA, D¥VT(19))
1y (VXLy XMP), (VYL, YMP), (SIGT, XM), (XIJ, SINA)s (Y 1J, COSA)
2y (ZTEMP, XTEMP(300))

DATA VCID,VXID,VYID/4H VslHC,4H V-lHqunN Vo 1HY/

DATA XID /6H XM5 41HP/,YID/6H YM ,1H

DATA XIDOFF /4H XO »3HFFB/,YIDOFF/4H VO.JD‘FEI

SPP = SP
c 1€ *S77 +EB8., 0.0) SPP = 1.0 E6
IF (FLGOB +EQ. 0 +OR. FLGOZ +EQ. 0) GO TO 40
REWIND 10
J = 2 % NT

D0 201 =1, J
30 READ (10)
C #+ LoOP SKIPS BOTH ON-BODY MATRICES

K = NCFLG - 2
REWIND 7
REWIND 3
REWIND 4
REWIND 8
REWIND 1
REWIND 13
00 50 4 =1, 10
DO 501 =1, 9
DVX(I,J) = 0.
50 DVT(IsJ) = 0.
IF ( FLGO4 oNE. O ) ALPHA = DALFA
IF ( FLGO6 +NEs O ) ALPHA = 0.
ALPHA = ALPHA / 57.2957795E0
CSALF = COS(ALPHA)
SNALF = SIN(ALPHA)
READ ( 8) ( XTEMP(I),
READ ( 8) ( YTEMP(I),
M=1

2

950

B82Y11970
B2Y11980

82Y12000
82Y12010
82Y12020
82Y12030

+ Y 04
B2Y12050

B82Y12060
82Y12070
82Y12080
82Y12090
82Y12100
82Y12110
B2Y12120
B82v12130

B2Y12140
B82Y12150

B82Y12170
82v12180
B82Y12190
B82Y12200
B2v12210
B2v12220
B2Y12240
B2Y12250
B2Y12260
B2v12270
B2v12280

B2v12310



n



100

150
160

5040

5070

5100

5125
5150
5200

5250

5210

N = ND(1)
00 100 1 =

GAM(L) = (XTEMP(M) + XTEMP(N))*CSALF
( GAM(I) + (YTEMP(M)+YTEMP(N)) *SNALF )

GAM(I) = =
M = N+l

N = N + ND
IF ( K .EQ
00 150 J =
READ ( 8)
M =1

N = ND(1)
D0 150 I =
DVA(L,J) =
OVX(I4d) =
REWIND 8
GAM(1)=(GA
READ ( 8)
SNALF = SI

VC(I) = XTEMP(L)*CSALF + YTEMP (L) *SNALF
( XTEMP(I)y I = 1, NT

ve(I) = vc
IFINLF(1).
READ(8) (X
00 £125 I=
veen=ve (1
D0 5200 I
CP(I) = 1.
M o=

N = ND(1)
M1

N1 ND(1)
00 5250 J
READ (4) (
READ (13)
READ (4) (
READ (13)

s
+ ND

N=ND(1)-1

DO 5210 I=
XN(I+1)=(X
YN(I+1)=(Y

gt
1, N8

(I+1) - 1
« 0 ) GO TO 160

1,
( ZTEMP(I)y I =1, NT )

et |

1, N8

ZTEMP (M) + ZTEMP(
DVALL,J)

M(1)=DVA(1,1)) /DVA(L,2)
)

( XTEMP(I), I =1
N( ALPHA )

C YTEMPUI) 4 I =1, NT )

=1, NT

=1, NT

(1) + XTEMP(I)
NE.O) GO TO 5150
TEMP(L) I =1,NT)
1oNT

J4XTEMP (L) *GAM(1)

=1y NT

= ve(r)sve(n

.

=1, NB

SINA(L), I = My N

€ X(I)y I = MLy NL
COSA(I)y I = My N
Y(I)y I = M1, N1
XMP(I)y I = My N
YMP(I)y I = My N

{

(

{

(

(

{ DELS!(
1

ND (J#1)
(J¢l) = 1
MoN

(I)#X(I+1)) /2.0
(1) +Y(I+1)) /2.0

PRES(I+1)=CP (1)

WRITE (T7)
WRITE (T7)
WRITE (7)
WRITE (7)

(MON-2)

(PRES(I+1) 4I=MyN)
(CP (1) 4I=MyN)
(XN(I#1),I=MyN)
(YNCI#L1) o1 =MyN)
522045230,5230

1
5220 PULNCH 5551, L,ALPHA

N)

85

B2Y12320
B82Y12330
B2Y12340
82Y12350
82Y12360
B2Y12370
82Y12380
B2Y123%0

B2Y12410
B82Y12420
B2Y12430
B2Y12440
B2Y12450

B2Y13870

B2Y13890
82Y13900

B2Y13940

B2Y13960
B2Y13970
82Y13980
B82Y13990
B2Y 14000
B2Y14010
B2Y14020
B82Y14030
B2Y 14040
B2Y14050
B2Y14060
B2Y14070
B2Y14080
B82Y14090
B2Y14100
B82Y14110
B2Y14120
B2Y14130
B2Y14140
B2Y14150







5551 FORMAT (15,F10.5)
CALL BCDUMP (XMP (M) 4 XMP(N)) 2
CALL BCDUMP (YMP (M) ,YMP(N))
CALL BCDUMP (VC (M),VC (N))

5230 IF (FLG12 0) GO TO 5252

D0 5251 I = L,NT 82Y14170
5251 DELSUT(I) = DELS(I) 82Y14180
GO T0 5301 82Y14190
5252 DO 5300 I = 1,NT B82Y14200
5300 DELSUT(I) = SQRT( (X(I+1)=X([))*¥*¥2 ¢ (Y(I¢l)=Y(1))*%2 ) 82v14210
5301 GT = 0.0 82Y14220
DO 5350 I =1, 1
5350 GT = GT + GAM(I) 82Y14240
72040
T = .5 % GT / SPP B2Y14250
IF ( FLGO5 +EQ. 0 ) FALPHA= ATAN2 (SNALF+T , CSALF) B2Y14260
ALFEX = ATANZ (SNALF - T, CSALF) B2Y14270
ALFEX = ALFEX * 57.2957795E0 82Y14280
FALPHA = FALPHA * 57.2957795E0 B2Y14290
ALPHA = ALPHA * 57.2957795E0 82Y14300
LE { FLGG4 .EQ. O') DALFA = FALPHA - ALFEX 82Y14310
VIN = SQRT ( Lo + 2.%SNALF#T ¢ T#T 82Y14320
VEX = SQRT ( Lo = 2.%SNALF*T + TaT v 82Y14330
53750 = 1 82Y14340
K1 =1 82Y14350
M=l 82Y14360
N = ND(1) - 1 82Y14370
00 5800 L = 1, N8 82Y14380
LCTR = 190
CL = 0.0 82Y14400
€D = 0.0 82Y14410
CM = 0.0 82Y14420
DO 5400 I = My N B2Y14430
T = CP(I) * DELS(I) B2Y 14440
CL = CL - T#COSA(I) 82Y14450
CD = CD + T#SINA(I) B2Y14460

540G CM = CM ¢ T#(COSA(I)*(XM(I)=XMC(L)) + SINACI)*(YM(L)=YMC(L)) ) B2Y14470
AAA=CHORD /CDIM

CL=CL*AAA
B2Y 14480
D(L) B2Y14490
5500 WRITE (6, 5550) HEDR, SP, ALPHA, DALFA, FALPHA, VIN, XMC(L), B82Y14500

ALFEX, VEX, YMC(L), CASE B2Y14510
5550 FORMAT (1H1 25X 26HDOUGLAS AIRCRAFT COMPANY / 28X 21HLONG BEACHB2Y14520
1 DIVISION /// 5X 15A4// 5X 9HSPACING = F13.8, 5X THALPHA = F13.8 B2Y14530

2, 5X 13HDELTA ALPHA = F13.8 // 14H INLET ALPHA = F13.8, 3X B2Y14540

3 SHV INLET = F13.8y 13X SHXMC = F13.8 // 2X 12HEXIT ALPHA = F13.8,B2Y14550

4 4X BHV EXIT = F13.8, 13X SHYMC = F13.8 // 6H CASE 2A4,22H COMBIB2Y14560

SNED VELOCITIES ) B2Y14570
IF (FLGLl2.LE.O) WRITE (6,5560) L B2Y14580
5560 FORMAT (10H BODY NU.I3,27H UNTRANSFORMED COORDINATES 7/ ) B2Y14590
IF (FLG124GT+0) WRITE (645570) L B2Y14600
5570 FORMAT (10H BODY NO. [3, 25H TRANSFORMED COORDINATES // ) B2Y14610
WRITE (6,5580) B2Y14620
5580 FORMAT (11X 1HX 13X LHY 13X 2HVC 12X 2HCP 10X 7HDELTA S // ) B2Y14630
5600 WRITE (69 5650) Iy X(J)y Y(J)y XMP(KL), YMP(K1), VC(K1), CP(K1) B2Y 14640
1 JDELSUT(K1) B2Y14650
5650 FORMAT (1H 13, 2Fl4.8 / 4X 5F1448 ) B2Y14660
I=1+1 B2Y14670

J=J+1 B2Y14680



5700

5750

5800
4

5830
5840
5850

6100
(4

6110

6120

6155

K1 =K1 + 1

IF ( I +EQe K2 ) GO TO 5700

IF ( I «LEs LCTR ) GO TO 5600

LCTR = LCTR + 19

GO 10 5500

WRITE (65 56500 I, X(J)y Y(J)
=g+l

WRITE (6, 5750) CL

FORMAT (1HO / 5X 4HCY = Fl3.8)

M=N+1

N =N + ND(L#1) = 1

K = NCFLG=2 = NUMBER OF GAMMAS

CL=2.%GT*AAA

IF (FLG10 «LT. 2) GO TO 5830

WRITE (6, 58400 CL

FORMAT (1HO 4X 4HCL = F13.8 )

IF (FLGO2 +EQe O +ORs FLGLO +EQs 1 oOR.

N = ND(NB+1)

K2 = K+ 2

DO 6100 J=1,K2

REAC(3) (SIGMA(I 4J) 4I1=1,NT)
CONTINUE

NOW ALL SIGMAS ARE IN CORE. ORDER = 0,9),1,2,ETCe

DO 6110 I=1,NT

SIGT(I)= SIGMA(I ,1)*CSALF + SIGMA(I,2)*SNALF +SIGMA(IL,3)

IF(K.EQs0) GO TO 6150
00 €120 J = 1,1
READ(4)

READ(4)

D0 6120 I = 1,NT

SIGT(I) = SIGT(I) ¢ SIGMA(L 4J#3)*GAM())
M

=1
M1 = N
DO 6130 J = 1.K

IF( J +LE. FLGLL ) GO TO 6122

READ(4) (XTEMP(L) 41 =M,ML)
READ(4) (YTEMP(L) [ =M ML)
GO TO 6125

D0 6123 1 = M, Ml
XTEMP(I) = 0.0

YTEMP(I) = 0.0
IF(NLF(1)«NE4O) GO TO 6125
READ (4)

READ (4)

M=l

M1 = N

READ(L3) (X(I) +I=1,N)
READ(13)(Y(I) ,I=1,N)

IF (MON-1) 6152,6155,6155
CONTINUE

WRITE ( 6,6151 ) HEDR, SP, ALPHA
FORMAT( IH1425Xy26HDOUGLAS  AIRCRAFT

00 6400 J = 1,

READ(10) lVlJ([)'lﬂ.NVI
READ(10) (XIJ(I),I=1,NT)
SUM1 =0.

1 DIVISION //7/5X915A4/ /5%y 9HSPACING =
2///39H OFF-BODY POINT COMPONENT VELOCIT IES.
4TOUT IS STREAMFLOW,90~DEGREE FLOW,NON-UNIFORM FLOW 1,
51’X'lNX.ZOXolMV.lBX.BHV)(L|11X.3NVVL.17K'3NVXL'17X.3H\IVL 22l

B2Y 14690
B2Y14700
B2Y14710
B2Y14720
B82Y14730
B2Y14740
B2Y14750

B2Y14780
B2Y14790
B2Y14800

B2Y14820
B2Y14890
B2Y14900
82Y14910
B2Y14920
82Y14930
B2Y14940
B2Y14950
B2Y14960
B2Y14970
B2Y14980

B2Y15000

B2Y15020
82Y15030
82Y15040
]

82Y15060
B2Y15070
B2Y15080
B82Y15090
B82Y15100
B2Y15110
B2Y15120
B2Y15130
B2Y15140
B2Y15150

B82Y15180
B82Y15190

COMPANY / 28X,21HLONG BEACH B2Y15210

844X, THALPHA =,F13.8 B2Y15220

ORDER OF PRINB2Y15230
/

B2Y15240
82Y15250
B2Y15260
B82Y15270
B2Y15280
B2Y15290



6210

6200

6250
6300

6305

6310

6350
6355
Crex

Crae
6360
6370

6371
6400

6420

6430

6500
6550

1
2 /71284

6600
6650

SWM2 =0.
D0 €210 l = 1.K2

SUMA (J = 0
SUHBIJ'I) = 0.0

DO 6200 I = 1,NT

T = SIGT(I)

SUM1 = SUML + T*xIJ(I)
SUM2 = SUM2 + T#YIJ(I)
IF(K.EQ.0) GO TO 6300

N1 =4

D0 €250 I = 1,1

T = GAM(I)

SUM1 = SUML + T®YTEMP(NL)
SUMZ = SUM2 + T&XTEMP(N1)

N1 = N1 #N
vxLtJ) SUML + CSALF
VYL SUM2 + SNALF

IF(MON-1) 6305,6460,6400
DO €370 I = 1,K2
DO 6310 LSD = 1,NT
T = SIGMA(LSD,I)
SUMA(J,1) = SUMA(J,sI) ¢ T*XIJ(LSD)
SUMB(J, 1) = SUMB(J,s1) + T*YIJ(LSD)
IF (I.LE+2 ) GO TO 6355
N1 =
DO 6350 LSD=1,1
IF(LSD+2.NEs1) GO TO 6350
SUMA(J,1) = SUMA(J,1) + YTEMP(NL)
SUMB(J, 1) = SUMB(J,I) ¢ XTEMP(NL)
N1 = NL ¢ N
GO T0 6370
IF ( 1.EQe2 ) GO TO 6360
* 1 MEANS AXISYMMETRIC FLOW
SUMA(J,1) = SUMA(J,1) ¢ 1.0
GO 10 6370
##%[ = 2 MEANS 90 DEGREE FLOW
SUMB(J,1) = SUMB(J,1) + 1.0
CONTINUE
WRITE( 646371 ) Jy X(J) s Y(J) s (SUMA(Js 1), SUMB(J,I), I=1,K2)
FORMAT(LH 413,6F20s8 / (44X 44F2048)
THETVIJ) =ATANZ(VYL(J) 4VXL(J)) #57,2957795
WRITE (T7) lVXI.(ll'lﬂl'Nl
WRITE (7) (VYL(I) D=1,
1F (MON-2) 6620v6k30nb430
CALL BCOUMP (X(1)4X(N))
CALL BIDUMPLY(1) 4Y(N))
CALL BCDUMP (VXL(1) 4VXLIN))
CALL BCOUMP (VYL(1)sVYL(N))
LC'IR = 45
=1
lF (FLG10 +LT. 2) GO TO 6500
WRITE (64 65500 HEDR, SP, ALPHA

B2Y15300
B82Y15310
82Y15320
B82Y15330
B2Y15340
B82Y15350
B2Y15360
B2Y15370
B82Y15380
B2Y15390

B2Y15410
B82Y15420
B2Y15430
B2Y15440
B2Y15450
B2Y15460

B2Y15470
B2Y15480
B2Y15490
B2Y15500
B2Y15510
B2Y15520
B2Y15530

B2Y15550
B82Y15560
B2Y15570
B2Y15580
B82Y15590
82Y15600
B2Y15610
B2Y15620
B82Y15630
B2Y15640
B2Y15650
B2Y15660
B2Y15670
B2Y15680

B82Y15700
B2Y15710
B2Y15720
B2Y15860

FORMAT (1HL 25X 26HDOUGLAS AIRCRAFT COMPANY / 28X 21HLONG BEACHB2Y15870
DIVISION ///5X 15A4 // 5X 9HSPACING = F13.8, 4X THALPHA = F13.8 B2Y15880

WRITE (64 6650) 1, X(Il. Y(I)y VXLEI), VYLLI) , THETV(I)
FORMAT (1H 13, 5Fl4.8

1 + 1
IF (I «GT. N) GO TO 7000

OFF-BODY POINT VELOCITIES // 11X 1HX 13X 1HY 12X 3HVXL
3 11X 34VYL 10X S5HTHETA//)

B2Y15890

B2Y15930
B2Y15940



6700

6750

6800

6900

7000
7100

IF ( I +LEs LCTR ) GO TO 6600
LCTR = LCTR + 45

IF (FLG10 +EQ. 0 +OR. FLGLO .EQ. 3) GO TO 7000
FLG1O = 3 * FLGLO - 3
F ( FLGO2 «NE. 0 ) WRITE (6, 6750)
FORMAT (32H1FLAS 10 IS NON-ZERO -- OFF-80DY /
1 30H VELOCITIES CANNGT BE COMPUTED )
FLGO2 = 0
READ (5, 6800) (XTEMP(I), I = 1, NT)
FORMAT (6F 10,0
DO 6500 I = 1, NT
VC(I) = VCUI)*XTEMP(L)
CP(I) = 1o = VC(I)®VC (D)
GO 710 5375
DO 710G I = 1,N8B
GAMT(I) = GAM(I)
RETURN
END

SORIGIN ALPHA
SIBFTC z2vp

4
C
c
4

SLBROUTINE PART 7

THIS SUBROUTINE INTEGRATES FOR THE MASS FLUX AND IS USED TO
DETERMINE IF THE JET STREAM IS PROPERLY ORIENTED

COMMON IM,HEDR 4CA SE yRPI yR2PIySPyCLyALPHA ,F ALPHA, DALFA, CHORD, SUMDS,

1 XMC o YMC yADDY ¢FLGO2 yFLGO3 »FLGO4 ,FLGOS5,FLGD 6+ FLGO7, FLGOB,
FLGO9yFLGLO,FLGLL yFLGL2 ¢NDyNLF,NERyNT, NByNCFLG,y FLG15,FLG16

COMMON SUMSIG ¢ VINF 4MON, BETA 4CDI My VREF 4 DELT 4 FLGL3, FLGL 4, ITER, ALF2

CCMMON /FORCUR/XCURV (200) 5 YCURV (200) 4KKK 4 POSS .

COMPLEX IM

INTEGER FLG15,FLGL6,FLGO2

D IMENSION  X(300), Y(300), HEDR(15),CASE(2),A0DDY(8),

2 ND(10)» NLF(10), SUMDS (10), XMC(8B), YMC(8)

1 RSDS(499), SINA(499), COSA(499), DELS(499), DALF(498), 2(499),

D IMENSION RADC(250) yPRES(250) +VXL(250)4VYL(250)4XN(250), YN(250),

1 CP(250) yDPRES (50) 4 V(50) 4 PTOT (50) yRADCCL(50 ) 4XCL(5D )4 YCL(50)

D IMENSION VSPEC(4) ,XB(500) ,YB(500)

REWIND 13

REWIND 7

M=NO(1)

READ (13) (XB(L)[=1,M

READ (13)(YB(I),1=1,M)

READ (13)

READ (13)

M=NT

M1=NT-3

N=ND(2)

KK=KKK=1

JJ=ND(1)

11=ND(1)=-KKK+1

READ (13) (X(I),I=14N)

READ (13) (Y(I),[=1,N)

B2Y15950
B2Y15960
B82Y15970
82Y15980
82Y15990
B82Y16000
B2Y16010
82Y16020
B2Y16030
B2Y16040
B82Y16050
B82Y16060
82Y16070
B2Y16080
B82Y16090
82Y16100
B82Y16110
B2Y16120
B2Y16130



w
3

100

1000

200
1004
1006

645

650
700

750

850

90

READ(T) (PRES(I+1),1=1,M)
READ (7) (CP(I)yI=1,M)

READ (7) (XN(I+1),I=1,M)
READ (7) (YN(I#1),0=1,M

READ (7) (VXL(I),I=1,N)

READ (7) (VYL(I) 4I=1,N)

DO 20 [=1,NT
PRES(1)=CP(I)*0,00119%VINF**2
TMASS=0.0

N=3€

DO 100 I=M,N
VXL(I)=(VXLCD)I+VXLII+1)) /2.0
VYLCI)=(VYL(I)+VYL(I+1)) /2.0
DELY=Y(I+1)=Y(I)

DEL (1+1)-Xx(I)
DMASS==VXL(I)*#DELY
DMASSY=DELX*VYL (1)

TMASS= TMASS+DMASS+DMASSY
VAVG=TMASS/3, 61

TMASS=TMA SS#0400238% VINF*3242/12.0%4.5

TMASS 1S THE MASS FLOW INTO THE FANS FOUND BY INTEGRAT ION

WRITE (641000) TMASS,VINF,VAVG

FORMAT (1H1/23H THE INTEGRATED MASS =,F10.4,7H LB/SEC/23H FREE ST
IREAM VELOCITY =,F10.%,4H FPS/,23H THE AVERAGE VELOCITY =, F10.4//)
IF (VINF-300.) 200,200,999

WRITE (6,1006)

FORMAT (1H ,2F104446F1548////)

FORMAT (1HL//BXLHXs9Xs1HY,8X,8HPRESSURE)

M=2

N =KKK

MM=11+2

DO 700 I=MyN

WRITE (641004) XN(I),YN(I)PRES(I-1)

IF (N-MM) 750,800,800

M=I1

N=JJ
GO 10 650
TFY=0.0

TFX=0Ga
IF (FLG164EQ.1) GO TO 840
N=1

DO SO0 I=N,M

T1=XB(I+1)-XB(I)
Tz=YB(I+1)-YB(I)
TDS=SQRT(T1#T1+T2%T2)
COSAL=T1/T0S

SINAL=T2/TDS

IF (FLG16.EQ.1) GO TO 860
DFX=PRES(I) *TDS*SINAL#4.5/12.0
DFY==PRES(I) *TDS*COSAL*4.5/12.0
GO 10 870

SLOP=-T2/T1
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AL1=ATAN(SLOP)
AL2MAL=-ALF2-ALL
CJdd= JJJ
DFY= PRES(L)*TDS*COS(AL2ZMAL)*CJJJ
TEY=TFY+DFY
GO TO 900
870 TFX=TFX+DFX
TEY=TFY+DFY
900 CONTINUE
IF (N-11) 950,975,975
950 IF (FLG1l64EQ.1) GO TO 960

960 N=ND(1)-10
M=ND(1)-1
JJd==1
GO 1O 850

S$75 WRITE(6,1008) TFX,TFY

1008 FORMAT ( 1H ,//448H THE TOTAL FORCE ON THE JET IN THE X-DIRECTION
1=,F10.4/48H THE TOTAL FORCE ON THE JET IN THE Y-DIRECTION =,F10.4)
IF (FLG164EQ.0) GO TO 980
FLGl6=0

GO TO 800

980 BETA=BE TA%*3,14159/180.
THRUST =TFY/(SIN(BETA)*POSS)
CMU=THRUST*124 /(0. 00119%4,5*COIM*VINF #+2 )
WRITE (641010) THRUST,CMU

1010 FORMAT (1H 4//49H THRUST =,Fl044,3H LB//23H CMU FOR THE JET FLAP =
11F10.4)
TPA=THRUST*12.0/ (4« 5%DELT)
PRATIO=((TPA-40s)*0s2/7600¢+140) #2116/ (21164 +.00119% INF**2)
WRITE (6,1020) PRATIO

1020 FORMAT(1H ,9H PRATIO =,F10.4)

999 RETURN
END
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APPENDIX E

SYMBOLS FOR BOUNDARY LAYER ANALYSIS

b S&%h coefficients in linearized momentum equation (43)
c airfoil chord
ey, coefficients in equation (41)

coefficient of skin friction, Tw/<% pU2>

£

CL three-dimensional lift coefficient

£y velocity defect variable, (U - W)/U

H shape factor, s*/6

K curvature

L distance along airfoil surface from stagnation point to
trailing edge

P static pressure

P parameter in equation (31)

Q parameter in equation (31)

Rex Reynolds number based on x, xU/v

Re&* Reynolds number based on 6*, s*u/v

Ree Reynolds number based on 6, 6U/v

t thickness of airfoil

T non-dimensional effective viscosity (see eq. (38))

u,v time average velocities in the x and y directionms,

respectively
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U velocity at the outer edge of the boundary layer (potential
flow velocity)

u'v Reynolds stress
Vw wall transpiration velocity
X streamwise coordinate (see Fig. (16))
y coordinate normal to wall (see Fig. (16))
a angle of attack
B the Clauser equilibrium pressure gradient, 6*(dp/dx)/rw
8 boundary layer thickness
)
&* displacement thickness, /o‘ U - D/U dy
n non-dimensional coordinate normal to wall, y/cS*
®
(] momentum thickness, [ a(u - ﬁ)/U2 dy
K von Karman constant in the effective viscosity function
(taken here to be 0.41)
v molecular kinematic viscosity
v effective kinematic viscosity
P density
G4 local shear stress
tl; non-dimensional shear stress gradient (see eq. (42))
¢, wall and defect effective kinematic viscosity functions
XX wall and defect layer variables for the effective kinematic
viscosity function
Subscripts:
i index of variable in the x direction
w evaluated at wall
X differentiation with respect to x

© evaluated at edge of the boundary layer
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Superscripts:

) used with functions of x only, denotes average value,
[y + (172

( )' differentiation with respect to n
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APPENDIX F

DERIVATION OF THE TRANSFORMED BOUNDARY LAYER EQUATION OF MOTION

The transformed boundary layer equation of motion is obtained by
making a coordinate transformation to the standard continuity and mom-
entum equations for two-dimensional, incompressible flow. The momen-

tum equation as given by equation (25) of the text is:

— 93U, —0du _ . dUu , 3 vy

u§+vW—de+ay (veay) (F1)
or

Tou,vouw_du, o (Yesdu

Toax U3y ~ax Ty \ Uy, (¥F2)

Transform variables from (x,y) to (£,n) where £ =x and n = y/6*,

and utilizing Mellor's transformation,

=1-f' or u=(1-f£f")U (F3)

alel

where f' = 3f/3n. Then

£ vy dU _ g agt

- Q- -0 (F4)
Here

£' = £'(E,M) (F5)
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Then
o) _ ag' 3E , €' an o
(Bx )y T x ks an 3x (F6)

The following conventional notation will be used:

= f"

an

It follows that

g _ 38 as*
ﬂ=_°(—yr)=—"’"‘y3x=-_ndx (F8)
ax x \g (5*)2 &*

Substituting equation (F9) into (F4) yields

% =@-£" g—g-u g_g_'+ u " : 46*/dx ity
Also
Eevga-f--uie
=-U§fn—'g—;’=-uf"%(;%) (F11)
or
= ‘%" (F12)
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The continuity equation
ou , IV

— — = . Fis:
3x+8y 0 (Fis

is used to obtain V, and 03v/9x which are inserted intc the momentum

equation. Integrating each term of the continuity equation yields:

y v(x,y) y
WL Y
ay,dy = dv'= v Ve = T dy (Fid)
0 v(x,0) 0
Let
y' = n'e* (F15a)
and
dy' = *an' (F15b)
where ' and + denote dummy variables for integration purposes, and

substitute equation (F10) into equation (Fl4) to obtain

n n n
' * )
vy U g (1-£")dn" +Us* / %— ant -y 48 £ tant
0 0

w dx dx
‘ 0
(F163
or
— % dU n n n
- v 6% == *
v._ _w_ dx T + ok of' 4+ 4 w ot +
T T T (L-£f'")dn +6§ 3E dn gl £f"n dr
0 0 0
(Fi7»
Introduce
5% g—g Ed§ (s*u)  o* %g gt
P=—, Q= 5 = 5 + ™ (F18)

U
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so that
*
dG =Q-P (Fiv:

Using the above expressions in equation (F17) yields

n
]
/ (1 - £')dn" + &% -gi- ant
(3
0 0

n
-(Q-Pp) / f"n+dn+ (F20)
0

Then, it follows that

Gl<l
c.‘lg<|

n
ant = n (r20a)
0
n n n
£'dnt = 2L 4ot - att = ¢ (F20b)
0 o o 0
n
af' +_ 3 o+ _ 3f
3 dn' = Y £'dn’ = 3¢ (F20¢)
0 0
n ‘nn n
1
Henant = ot A of dn+=nf' _ frant ang - ¢
0 0 an” 0
(F204)
Hence, equation (F20) becomes
v V@ * Bf : -
-7 - B(n-f)+8 - (Q-PB)(nf' - f) : (Fzl)
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or

% of

y-doan-n+eEs@-na-n 22)

ag!

Substituting equations (F3), (F10), (F12), and (F22) into the momentum

equation (F2) gives:

ds =
QL=-£)Y"gU0 ¥ "
-8 - ew i w0 Taue
Q-£H" - a f)UaE+ = o
* 3 yen
+Q(n - f) Uf" _ (Q -P)(A - £)nUf" § 5 Uf
gt o* o
_du .1 !
-t o (- TUE") s
where
*
T = v, /U8
Using
dU g% dU o»
Q- fv)Z dx _dx =P(l - 2f' + £'2 - 1) = P(£' - 2)f'
U U
(F24)
and
o 4
Q- —5 = @-Pa- e -

The transformed boundary layer equation of motion becomes
(TEM) '+ [Qn - £) - V_/UIE" + P(£' - D)f'

= e%1 - g1y AL L gxpn 3E
= 8*@ - £ G-+ St (F26)
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where

d ok
= (67U)
)

p o 8Mau/ax
T,

7=

te*
and x has been 8substituted for £. The independent variablés are

then x and n.
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(a) Jet flap airfoil.

ﬁjj:;Q

(b-1) 30° flap deflection.

(b-2) 60° flap deflection.

(b) Externally blown flap wing section.

Figure 1. - Types of wing flap systems considered.
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(a) Schematic of model. (Dimensions are in cm (in.).)

Figure 2. - Lewis wind tunnel model of multiple-fan, blown flap, wing propulsion system.
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(b) Two-dimensional representation of wing propulsion system.

Figure 2. - Concluded.
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Figure 3. - Representation of boundary condition on
body surface.
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Figure 4. - Finite-element approximation to body surface.
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(a) 0° uniform flow solution, Vo, (b)90° uniform flow solution, Vgg.
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(c) Vortex solution, Vy. (Veo® 0.) (d) Suction solution, Vg. (Veo=0.)
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Figure 5. - Basic solutions of potential flow.
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(a) 0° solution with duct closed, V.
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(b) 0° solution with duct open, VZ'
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(c) Crossflow solution with duct open, \-/3.

Figure 6. - Basic solutions for inlet.
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Figure 7. - Two-dimensional inlet configuration.
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L Predicted from ref, 33
——-— Predicted from this report
s Experimental data from ref. 34
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(a) Surface velocity distributions.
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Dimensionless length, XL
(b) Centerline velocity distributions.

Figure 8. - Comparison of theoretical velocity distributions with experimental data for two-dimensional
inlet
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(a) NMustration of jet shapes.
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Figure 9. - Effect of jet shapes on upper-surface pressure distribution. Flap angle, 30° wing angle of attack, o°.
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(b) Upper-surface pressure distributions.
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Method of this report—"
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Figure 10. - Comparison of theoretical nondimensional jet shapes. Flap angle, 30°; thrust
coefficient, 3,
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(a) Wing angle of attack, 0°; flap angle, 300, (b) Wing angle of attack, 20% flap angle, 50°.

-

(c) Wing angle of attack, 0°; flap angle, 60°.

Figure 11. - Flow field for externally blown flap, wing propulsion system. Mass flow coefficient, 0.38; thrust coefficient, 3.
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Figure 12. - Calculated pressure distributions on upper surface for fan-wing combination for various angles of attack.
Flap angle, 30°; mass flow coefficient, 0.38; thrust coefficient, 3.
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Wing with suction and jet
——=——Wing with jet
15 L o — Wing alone (without suction or jet)
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Figure I3, - Effect of suction and jet on pressure distribution. Flap angle, 30°; angle of
attack, 0°,
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Method of this report
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(b) Flap angle, 6.

Figure 14, - Comparison of theoretical two-dimensional
lift coefficients for blown flap. Thrust coefficient, 3.
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= —O— Experimental
Predicted

(a) Flap angle, 3P,
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5 10 15 20 5
Angle of attack, a, deg

(b) Flap angle, 6°.

Figure 15. - Comparison of calculated and experimental
three-dimensional lift coefficients for blown flap.
Thrust coefficient, 3.
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(a) Coordinate system.
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(b) Description of velocity profile.
Figure 16. - lllustration of notation for boundary layer analysis.
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Figure 17. - The turbulent effective viscosity hypothesis.
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Figure 18. - Calculated velocity distributions for fan-wing combination for various angles
of attack. Flap angle, 30°; mass flow coefficient, 0.38; thrust coefficient, 3.
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Figure 19. - Laminar boundary layer parameters on the
airfoil of a blown flap wing propulsion system. Wing
angle of attack, 15°.
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Figure 20. - Turbulent boundary layer parameters on the airfoil of a blown flap wing propulsion system at
various angles of attack.
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Figure 21. - Velocity profiles at start of turbu-
lent boundary layer growth.
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Figure 2. - Turbulent boundary layer velocity profiles on the airfoil of a blown flap wing propulsion
system at various angles of attack.
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(a) trailing edge stall

(b) leading edge stall

c) thin airfoil stall

Angle of attack, a
Figure 23. - The stalling characteristics of airfoils.
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(a) Experimental lift curve.

Stagnation point location 30
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(b) Location of separation point for various angles of attack.

Figure 24. - The stalling characteristics of a blown flap wing propulsion
system.
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(b) Two-dimensional cross section.

Figure 25. - Notation for two-dimensional potential flows.
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Figure 26. - Element of body surface.
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Subroutine - B2Y1
Main Program
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Basic data pulsion system

Subroutines - B2Y3, B2Y4
(Part 2

Matrix formation
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Subroutines - B2Y9, C20X9
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Basic solutions
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Combination solution
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Figure 27. - Schematic representation of computer program.
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