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ABSTRACT

THE EFFECT OF HEAT TRANSFER ON THE LAMINAR
BOUNDARY LAYER AND LAMINAR SEPARATION
OF WATER FLOWING PAST A FLAT PLATE
AND A SPHERE

By

Surinder Kapur

The effect of heating a body, which is in a uniform
flow of water, is investigated numerically and experi-
mentally. Primary interest is in the effect of heat
transfer on the laminar boundary layer separation. Since
the variation of viscosity with temperature is large for
water, the velocity and temperature fields interact. This
necessitates the simultaneous solution of the momentum and
energy equations. Numerical results for various flow con-
figurations are presented. Experimental results are pre-
sented for the flow of water past a three-inch sphere in
a ten-inch square horizontal test section. Flow visuali-
zation techniques, hydrogen bubble, and the shadowgraph
methods, were used to locate the separation point experi-
mentally.

Numerical results indicate that heating does sub-

stantially shift the separation point backward for the



Surinder Kapur

linearly retarded flow past a heated flat plate. The
effect of heating on the position of the separation point,
for flow past a sphere, is small. Experimental results
tend to confirm the small influence of heating on the
position of the separation point on the heated sphere.
Numerical results also include the effect of heat-
ing on the various boundary layer parameters such as
displacement thickness, thermal boundary layer thickness,

and wall shear.
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CHAPTER 1

INTRODUCTION

The concept of flow separation is as old as that of
boundary layer theory. Ludwig Prandtl, the originator of
the boundary layer theory was concerned about flow sepa-
ration before he formulated his ideas on the boundary
layer. As a young engineer Prandtl found that the com-
puted pressure recovery could not be achieved in actual
diffusors [l]. He spent considerable time, prior to his
presentation of the boundary layer theory, attempting to
understand flow separation and the pressure losses in the
diffusor. In 1904 Prandtl [2] presented his new theo-
retical concept of the boundary layer in a paper entitled
"Fluid Motion with Very Small Friction." 1In this paper he
discussed flows over objects for which the Reynolds number
was large. For such flows he made the following obser-
vations:

1. Frictional effects are confined to a very thin

layer, called the boundary layer, near the

surface of the object.



2. The flow external to the boundary layer can be
considered frictionless.

3. The pressure variation from the mainstream is
"impressed" upon the boundary layer, i.e.,

ap/dy = 0.

Because flow separation is caused by viscous effects
confined in the boundary layer, it is often expressed as
"boundary layer separation." Prandtl [3] states clearly
that the necessary condition for separation from the wall
is the increasing pressure in the direction of flow, i.e.,
positive (or adverse) pressure gradient along the flow
path. The statement holds for compressible flow as well
as incompressible flow.

Within the boundary layer, the effect of viscosity
is such that the velocity parallel to the wall changes
along the distance perpendicular to the surface, i.e., the
velocity gradient 3u/3y exists (u is the streamwise
velocity and y is the distance normal to the surface).
Since the flow velocity at the wall is zero u increases
and finally reaches Ugor the inviscid flow velocity at the
outer edge of the boundary layer. The momentum of flow
near the wall is small and the ability of the fluid to
move forward against the pressure rise is also limited.
Downstream, this small amount of momentum along the body
surface is used up to overcome the pressure rise, and,

finally, the fluid particles are brought to rest at the



"separation point." The point, at which the velocity
gradient du/dy at the wall is zero, is defined as the
separation point. At a point downstream of separation,
because of the existing adverse pressure gradient, reverse
flow occurs as shown in Fig. 1, and, owing to this reverse
flow, the flow in the boundary layer is forced away from
the wall. At the point of separation, the flows begin to
leave the surface at a small angle, maintaining the
adverse pressure gradient.

It has been demonstrated [1l] that a laminar boundary
layer can support only a very small adverse pressure
gradient without the occurrence of separation. 1In the
case where the boundary layer is turbulent, the danger of
separation is intrinsically reduced, compared with laminar
flow, because the turbulent flow boundary layer contains
much more momentum and hence is able to resist the adverse
pressure gradient for a greater distance than the laminar
flow boundary layer. Typical velocity profiles of laminar
and turbulent boundary layers are shown in Fig. 2.

It is this transition from laminar to turbulent
boundary layer flow around the sphere which explains the
abrupt change in the drag coefficient around a Reynolds
Number of 3 x 105 in Fig. 3. It is well known that for
Reynolds Number less than 3 x 105, the boundary layer flow
around the sphere is laminar until 84° where it separates

and that for Reynolds Number above 3 x 105, the boundary



layer flow undergoes transition to turbulence and the

flow does not separate until it reaches 110°. This sudden
backward shift in the separation point reduces the size of
the wake which accomplishes the decreased drag coefficient.
Thus by changing the shape of the velocity profile in the
boundary layer (from a laminar to a turbulent one, see

Fig. 2) a delay in the separation point is achieved.

There are in existence several methods which have
been developed for the purpose of artificially controlling
the behavior of boundary layers, i.e., to delay or elimi-
nate separation. Of the most popular ones are:

1. Blowing--acceleration of the boundary layer by

injecting fast moving fluid parallel to the wall.

2. Suction--removal of slow moving layer of fluid

in the boundary layer near the wall.

2. Reduction in Viscosity of Fluid Near the Wall--

by heating the wall for liquids and cooling the

wall for gases.

It is obvious that the first method would give the
fluid particles in the boundary layer the momentum they
need to overcome the adverse pressure gradient, while in
the second method the slow moving fluid in the boundary
layer is removed which again increases the boundary layer
momemtum thus delaying separation.

It is the third method, that of controlling the

fluid viscosity near the wall by heating the wall, that



is the subject of the present investigation. Only liquids
will be considered.

There has been some interest in the last twenty years
in the effect of heat transfer on laminar separation par-
ticularly in flows involving gases. Work with liquids has
been very limited.

A number of general qualitative conclusions on
laminar separation with heat transfer in gases (4], which
have been established (more or less independently) by
various investigators are:

1. Cooling the wall tends to lessen the direct¥*

effect of the pressure gradient.

2. Cooling the wall tends to delay separation.

3. Cooling the wall tends to diminish the skin

friction for a favorable pressure gradient but
tends to increase it for an unfavorable pressure

gradient.

All of the above conclusions were reached by
Morduchow and Galorion [5] on the basis of a Karman-
Pohlhausen type of analysis with a fourth degree velocity
profile and were subsequently confirmed by the use of
higher degree profiles by Morduchow and Grape [6]. More-

over, these conclusions have also been reached on the basis

*By "direct" effect is meant here the influence of
the gradient term proportional to dUg/dx. The influence
of a pressure gradient, however, appears "indirectly"
also, mainly, through the dependence of Ug and Tg on x
(cf., e.g., Refs. 5 and 6).



of similarity solutions by Cohen and Reshotko [7] and Li
and Nagamatsu [8], through the use of the Illingworth-
Stewartson transformation [9], and by the analysis of
Illingworth [10], Luxton and Yonug [l11l] and Low [1]].

By far, most of the solutions on the laminar bound-
ary layer with heat transfer in gases which have been
considered are the similarity solutions [7, 13] in which
Ug ~ xm, and adverse pressure gradients are represented
by negative values of m,

In connection with the effect of heat transfer on
separation, the results of the similar solutions of pri-
mary interest are the value of m, as a function of wall
temperature, required for a zero-skin-friction boundary
layer. These are shown in Table 1. It is noted that,
as the wall is cooled, a larger negative m, corresponding
to a larger adverse pressure gradient, is required for
separation.* This may be considered to illustrate the
tendency of cooling to delay or prevent separation in
gases.

The case where the external velocity may be repre-

sented by

§]
e 3 -
U—— =1 X

o

*A comparison between entries Ty,/Tw = .2 and .25
slightly contradict this trend, but this seems to be due to
use of Pr = 1 in Ref. 7 and Pr = .7 in Ref. 13.



may almost be regarded as the prototype of an adverse
pressure gradient. It has probably been the most fre-
quently studied case of an adverse pressure gradient. A
number of investigators: Illingworth [10]; Morduchow and
Grape [6]; Gadd [14]); Curle [15]; and Poots [16], have
investigated the effect of heat transfer on the separation
point for such a flow of gas on a flat plate. Table 2
shows their results and confirms the result that "cooling
the wall tends to delay separation."

In addition to the similarity solutions and the
various solutions for the case of U_ /U, = 1 - x, there
have been a few other cases for which the effect of heat
transfer on laminar separation has been calculated. Poots
[16] considered the case Ue/Um =1 - % and calculated the
case of zero heat transfer (Tw/Tm = 1) and of a heated
wall (Tw/T°° = 2). The results showed, that for low Mach
Number, an upstream movement of the separation point when
the wall is heated. Morduchow and Grape [6] have con-
sidered the case in which a stagnation flow is followed
by an adverse pressure gradient and have calculated the
adverse pressure requirement for "immediate" separation
as a function of wall temperature. Gadd [14] gives
corresponding results if the initial region is one of
zero pressure gradient, instead of stagnation flow.
Baxter and Fligge-Lotz [17] have calculated somewhat

similar cases, in which a zero pressure gradient is



followed by either a step pressure gradient or a ramp
pressure gradient and found in each case that separation
would occur sooner with a hotter wall. Fannelop and
Flugge-Lotz [18] have calculated the boundary layer over
a flat-plate leading edge section followed by a semi-
infinite wavy wall and found that separation occurred
earlier for a heated wall than for an adiabatic wall,
whereas cooling considerably delayed separation.
Illingworth [10] presented an approximate analytical
solution to show the effect of uniformly heating and cool-
ing a circular cylinder, uniformly in motion in a gas.
The results are presented in Table 3 where the position

of laminar separation is y and A is defined as

h (x)
A=1- Y

e

h and He being specific static and specific total enthalphy
respectively.

From Table 3, it is evident that there would be no
appreciable difference in the position of separation be-
tween the two cases (1) the temperature of the cylinder
0°C (A = .0521) and (2) 100°C (A = -,2951). Chang [1]
explains this result of Illingworth by noting "that with
the cylinder the effect of heat transfer on separation is
small, due to the fact that the flow over the first 90%
of the unseparated boundary layer is accelerated; conse-

quently the deceleration region is short. Furthermore,



the skin friction has taken time (see Table 4, Ref. 10)
to reach a considerably larger value at the minimum pres-
sure than for the unheated case. Thickening subsequently
takes place more rapidly with a heated wall than with an
unheated cylinder, but not enough to cause much change in
the position of separation."

One should also note that viscosity for a gas is
quite insensitive to small changes in temperature, an
increase of 100°C produces only a 30% change in the
viscosity.

Because the viscosity in liquids decreases with
increasing temperature, the influence of viscosity vari-
ation on the velocity profile is opposite to that for
gases. Consequently, heating should delay separation and
lessen the "direct" effect of pressure gradient, while
cooling should do the reverse.

Surprisingly few solutions for liquids with vari-
able viscosity have been presented. Schuh [19], Hanna
[20], and Seban [21] solved the flat plate case (simi-
larity solution, m = 0) with an inverse power law for
the viscosity-temperature relationship, holding other
fluid properties constant. Schuh calculated by successive
approximation two flows having high Prandtl Number; one
representing cooling and the other heating. Hanna pre-
sented an approximate solution achieved by integral

methods in which polynomical profiles were used for the
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velocity and temperature. Hanna presented results where
the Prandtl Number ranged from 0.25 to 1000. Seban ex-
tended Schuh's results for a wide range of wall Prandtl
Number.

The three works reveal the effect of heating and
cooling the wall in that they show that the skin friction
decreases when the wall is heated and increases when the
wall is cooled,

Poots and Raggett [22], using experimental values
(in the range of 0-100°C) for the viscosity, conductivity,
specific heat and density, solved two different laminar
boundary layer configurations. First the case of the
heated flat plate and secondly the heat transfer effect
on an infinite rotating disk is analyzed. Their results
confirm the effect of heating and cooling on the skin
friction and also indicate that heating tends to increase
the heat transfer rate. Poots and Raggett have also pre-
sented an analytical expression for the local heat trans-
fer at the wall.

The only other theoretical work that appears in the
literature where the effect of heat transfer in liquids
is treated is that of Kaups and Smith [23]. They have
extended the method of Smith and Clutter [24], which
solves the boundary layer equations, for calculating the
laminar boundary layer in liquids having variable fluid

properties, including viscosity. Kaups and Smith have,
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like the previous researchers, presented numerical results
for the flat plate case. They also present results of a
flow past a semi-infinite body of revolution and indicate
that by heating the body, the flow is stabilized, i.e.,
heating eliminates the inflection point from the velocity
profile. They state: "In adverse pressure gradients, a
heated wall appears to delay separation." However, they
present no results which indicate the relationship between
heating and the delay of separation.

It should be noted that in the cases where the
temperature difference brings about a difference in the
density of the fluid, it becomes necessary to consider
buoyancy effects also. Even though the density differ-
ences in liquids are relatively small, see Fig. 5, the
buoyancy effects are often considerable. Of the five
references just cited [19 through 23] where the investi-
gators have studied the effect of heating a body in
liquids, only Kaups and Smith [23] have considered the
effect of buoyancy. They present the cases of a heated
vertical plate for both positive and negative buoyancy
forces. The negative buoyancy—force appears to have an
effect similar to that of an adverse pressure gradient,
while the positive buoyancy force has an opposite effect.
This implies that the buoyancy force in the direction of

fluid motion (positive buoyancy) tends to delay separation.
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While there has been experimental work done on flows
around spheres in air to determine the effect of heating
the sphere, there exist only three papers cited in litera-
ture on the experimental results of flows around spheres
in water; Kramers [25], Vliet and Leppert [26], and Brown
[27].

Kramers measured the heat transfer from an induction
heated steel sphere to water and to oil in forced con-
vection. The Reynolds Number ranged from 0.4 to 2100,
These experiments were conducted with small sphere to
water temperature differences.

Vliet and Leppert measured heat transfer coefficients
from an induction heated copper sphere transfering heat to
water in the Reynolds Number range of 103 to 6 x 104 with
substantial temperature differences (up to 130°F measured
experimentally).

Whereas Kramers [25] and Vliet and Leppert [26] have
made measurements on a heated sphere that has a constant
temperature surface, Brown [27] has measured the heat
transfer coefficients for a uniformly heated sphere.

Brown has presented results indicating the relationship
between Nusselt Number and Reynolds Number for flow around
a uniformly heated sphere. From his data on heat transfer
and shadowgraph pictures, Brown points out that, for
laminar flow around a uniformly heated sphere the sepa-

ration point occurs at 90° (note: as mentioned earlier,
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the separation point for unheated sphere for laminar flow
is 84°). Thus Brown's work shows a backward shift of the
separation point.

In the experimental papers just cited above [25, 26,
27] the heated spheres were suspended in vertical test
sections with upward fluid motion, which means that the
buoyancy forces were positive,

In the present investigation a computer program is
used to show numerically the effect of heating on the
separation point and the various boundary layer parameters
for various flow configurations. This is done by treating
the viscosity as a temperature dependent variable.
Buoyancy effects are included also. Flow of water about

a heated sphere also is studied experimentally.



CHAPTER 2

MATHEMATICAL FORMULATION

Formulation of the incompressible laminar boundary
layer problem with heat transfer in liquids is complicated
by the strong dependence of viscosity on temperature. The
equations necessary to describe such a flow are those of
continuity, momentum, and energy. Also, the relations
describing the dependence of viscosity and density of the
fluid on temperature are needed. Axisymmetric, steady
flow about a body of revolution will be considered. The
simpler problem of plane two-dimensional flow is included
in the equations by letting r, the body radius, be a con-
stant.*

The basic notation and coordinate system is shown
in Fig. 4. U_ is the reference velocity and Ue(x) is the
velocity of the main flow just outside the "velocity"
boundary layer. T_ is the reference temperature and Te(x)

is the temperature of the main flow field just outside the

*This will be illustrated later.

14
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"thermal" boundary layer.* 9 is the gravitational
acceleration in the free stream direction.

In the curvilinear coordinate system x is the dis-
tance along the surface of the body, measured from the
forward stagnation point and the dimension y is measured
perpendicular to x. The velocity components are u and v,
u being parallel to x and positive when moving in the
direction of increasing x. The velocity component v bears
similar relation to the y-direction. The body radius r,
is as shown and it may vary with x.

The boundary layer equations for the axisymmetric
case in the above coordinate system were first developed
by Boltz [28] and Millikan [29]. They are listed as

follows: **

Continuity:

1,3 9 _ .
T a—x-(ru) + a—i(rv)] =0 ; (2.1)
Momentum:

ou ou, _ _ dp 9 ,.%u
plu s TV a_y'] = -3gx t P9, t ay(“ay)

(2,2)

+
Ric
[+ 5] N9)
<[5
[oB] Ke%]
<|c

*In all the numerical examples to be presented in the
subsequent chapters, Tg(x) is considered constant and equal
to T .

**One can observe that if r = const the equations are
identical to the boundary layer flow for plane 2 - D flow.
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Energy:
cfw T 4y 2 oy 22T,k orar (2.3)
Peptt 3x 3y 27 r 3y 3y ° '

In the above equations Cp and k are considered to
be constant. Also the viscous dissipation and the com-
pression effects are neglected, Egs. (2.2) and (2.3)
differ from the equations obtained for plane flow when the
Prandtl boundary layer approximations are made in that they
contain the transverse curvature terms (u/r) (9r/dy)
(du/9y) in eq. (2.2) and (k/r) 9r/dy 3T/dy in (2.3).

The transverse curvature terms are important when
the boundary layer thickness is of the same order of magni-
tude as the radius of the contour of the body (i.e.,

§ ~ ro), which would be the case for any long, slender
body as indicated by Schlichting [30]. If &§ << r, every-
where, then the transverse curvature terms could be neg-
lected.

This investigation will be limited to various flows
over a flat plate plus the axisymmetric flow around a
sphere. Tomotika [31] has shown that for the case of the
sphere § << r, and thus the transverse curvature terms
may be neglected. The condition that § is very small
compared with r, is not necessarily satisfied at the nose.
It was proved by Millikan [29] for a blunt-nosed body of

revolution, that the transverse curvature terms may be
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legitimately neglected even in the neighborhood of the
forward stagnation point at the nose where r, > 0.

Thus if G/ro << 1 (as in the case of a sphere), then
the transverse curvature terms can be neglected in both
the momentum and energy equations, so that they assume the
two-dimensional form. This is equivalent to replacing
r(x,y) by ro(x) in the continuity equation.

Thus the equations to be treated in this investi-

gation take the forms:

;‘i (rgu r, 9-;; =0 (2.4)
bu , %y _ _dp 3, 2

C_[u aT + v aTy - k azT (2.6)

PEptY 3% oy ay? :

Using the subscript w, to denote the wall, the

boundary conditions are

at y =0 u, = 0 l
v =20
w
Tw = given

| (2.7)
at the edge of the boundary layer

u Ue(x)

T =T

oo * J
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Egs. (2.4) and (2.5) may be combined into a single
third order equation in terms of the stream function ¥ by

use of the relation

_ 1 39 _ ox
u—aﬁ (Wro) -W (2.8)
or
S - - _ Vv o
v = T % (Wro) = % T, % (2.9)

From the definition of y, the continuity equation
is automatically satisfied, thus, the momemtum equation,
using eq. (2.8) and (2.9) becomes

péiﬂW_PW+LE%ﬁi
dy 0xdy 0x = r_ ox 2

O

_ _a 2 [, 2°v
R () 2o
or
ap 2%y oy 2% v T 8%y
PolBy BRIy T Fx 52 T E 90X 5.2
du 2
= p U, __e _ 3 é_i]
© Fx * PPy (T - To) * s;[“ ..
(2.11)

In eq. (2.11) use has been made of Euler's equation

which is given by
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du
1l d e dz _
= R+u, g =0 (2.12)

P dx
where the density gradient dp_/dx is neglected. The re-

lationship

P = p Ml - B(T = T))]

is used and certain terms in eq. (2.11]) are neglected
because B is very small.

Eg. (2.11) is transformed to a more convenient
coordinate system by stretching the y-coordinate. The
transformation from the (x,y) coordinate system to the
(£,y) coordinate system is a modified Howarth-Dorotnitsyn

transformation as used in reference [23] given by

& = x/L
U p_1I% U p_|%
_ e" _ e"w
N [umx] Y= [ungJ Y (2.13)

where L is the characteristic length (for the sphere
L = radius).

Furthermore, it is convenient to introduce a
dimensionless stream function f, such that

of

— = ' = .
' f (2.14)

u
Ye
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The relation between f and ¥y is

Ueumx L
y = 5 £(€,n) (2.15)

In order to transform the boundary layer equation
above from the (x,y) coordinate system to the (£,n)

coordinate system, the following relations are used:
2 - 238 @8
ox X 3¢ © 3x 9In

) 1
®-L3 " 2mEammt 30 a In (2.16)

8 _9& ., 93 L, 93n 3
oy y 9§ y an
U_P.l%
2 = ( e =3 (2.17)
ay u EL) 3y

After transformations the momentum equation becomes

g%(cf") + P[1 - £'2] + E%l ¥ R}ff"
EL _ JOE'  _,Of
+ E—y g, B(T - T,) E[. e ~ f ag] (2.18)
e

where the primes denote differentiation with respect to n,

and
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= B

c n_
£ du

P = ==~ —— = Pressure Parameter
Ue d§
£ dro

R = == —— = Radius Parameter.
ro dg

The boundary conditions now become

= ] - - =
n=2=0 f w - 0 ; fw 0

for large n, £f' > 1

The energy equation is rewritten here

3T 2

dy

T

aT _
pCp[uﬁ + v ] =k

9
oy
Define g(x,y) as
T
g:T—

Then eq. (2.21) becomes

ORI LI
PEp Y 3% ay. ay2 )

To transform the above equation from the (x,y)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

coordinate system to the (£,n) one, use is made of the

same transformations, egs. (2.13) to (2.17).

Thus the

energy equation along with the boundary conditions now

become
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P+1 3 of
I (5= + R)fg"' = E[f's2 - g'SF] (2.24)
Pr_an (g') + 2 9E €

Pr, = —F (2.25)

The boundary conditions necessary for the energy

equation are

n=20 9y = Tw/Tm

for large n g - 1. (2,.26)

Equations (2.13) through (2.26) have been previously
given by Smith and Clutter [24].

In this investigation, the only property of water
that is assumed to be a function of temperature is vis-
cosity, thus limiting the application to moderate pres-
sures. The temperature range used in this study varies
from 32°F to 212°F, a range in which viscosity decreases
monotonically with increasing temperatures.

The fluid property data (eq. 2.27 and 2.28) was
taken from [23]. The data is nondimensionalized by divid-
ing through by values at 32°F. The viscosity and density

variation are given by



23

_ 2
/M eg = 1./[35,16 - 106.98(T/T__.) + 107.77(T/T_ )
- 40.6(T/T__)> + s5.64(T/T__) 7
' ref : ref
- _ 2
p/pref = 0,.8039 + 0'4615(T/Tref) 0.2869(T/Tref)
3
+ 0'0235(T/Tref) (2.27)
The Prandtl Number at infinity is needed in the
calculations and is calculated by using the following
expression (again taken from [23]):
_ 2
Pr/Pr_ = 1/[73.38 - 208‘75(T/Tref) + 197.76(T/Tref)
3 4
- 68.86(T/Tref) + 7.48(T/Tref) ] (2.28)

In (2.27) and (2.28) T is expressed in degrees Rankin so

= °
that Tref 491.69°F.

Fig. 5 shows the graph of these equations and the

reference values are also given in the figure.



CHAPTER 3

NUMERICAL SOLUTIONS

3.1 Introduction

The momentum and energy equations, which must be

solved simultaneously, are summarized here for convenience:

(CE")' + P[1 - £'°] + [5-;1 + R]ff" + L. 9,8(T - T,)
Ue
[ ]
- g[f'a—éf- f"af] (3.1)
1 0 P+1 . ag 0 f
A [ [l 03] o
The boundary conditions are:
= o ' = = =
atn =20 : fw fw 0 and Iy Tw/Tw
for large n: f' =1 and g =1 (3.3)

The momentum equation (3.1) is a third order, non-
linear equation. Once the momentum equation is solved,
the energy equation becomes linear. Solution of these
equations is also made difficult by the fact that one of
the boundary conditions lies at "large n," a rather poorly

defined boundary condition.

24
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The fundamental idea for the method of solution used
in the present investigation was advanced by Hartree and
Womersley [32]. They proposed replacing the §{-derivatives,
which here are only of first order, by finite difference
approximations. The remainder of the equations is left
unchanged and as a consequence the equations are converted
to ordinary differential-difference equations. A far more
common procedure is to approximate the derivatives in both
directions by finite difference formulas, thereby obtain-
ing the usual network of elements. The present procedure
combines both procedures as will be examined in more
detail later.

To eliminate the problem of the boundary condition
that lies at "large n," the present procedure changes this
two-point boundary value problem to an initial value
problem, where another boundary condition at the wall is
arbitrarily chosen, i.e., f; for eq. (3.1) and g& for eq.
(3.2). It is then necessary to search through the
possible values of f; and g& to find the ones that satisfy
the outer boundary conditions.

Later in this chapter this method of solution, which
was initially advanced by Hartree and Womersley [32] and
since has been used by Clutter and Smith [24], will be
developed but first it is felt that some explanation
should be given for the preference of this method over

the other available techniques for solving the equations.
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To justify the preference of the so-called "Hartree-
Womersley Method," two essential aspects must be discussed.
The first is the form of the boundary layer equations to
be solved; the second is the question of the method to be
used in solving the particular equations.

Consider the form of the equations. 1In the original
equations of continuity, momentum, and energy, u, v, and
T are functions of the independent variables x and y. Not
all the methods of solution retain the independent vari-
ables x and y. In certain methods the variable x and vy,
are stretched by certain rules, while there are other
methods which involve transformations such that x and y
are no longer the independent variables. The most popular
of these latter type transformations is that by Crocco
[33], where x and u are the independent variables and T,
the shear stress is the dependent variable in the momentum
equation. Crocco's form of equation receives a great deal
of attention because the variable in the y-direction is
replaced by u and is therefore bounded. These equations
become attractive for the network method because the
location of the secondary boundary is known. 1In the
majority of problems T is a smooth regular, single valued
function of u, but on occasion T can be double valued, as
in the case of accelerating flow past a hot wall. While
techniques may be found to handle this problem it presents

a real difficulty when using Crocco's method.
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Methods of solution fall into two classes. In one
class some simplifying approximation is made in the origi-
nal equations in the interest of obtaining a more con-
venient solution. When this is done, even if the solution
of the resulting equation is exact, the answer is usually
in substantial error because the equation itself is
approximate. In the second class, the equation is solved
by some numerical finite difference technique. Even
though the equation is not compromised, the answers are
not exact because of the use of finite increments instead
of infinitesimals. In the finite difference class itself
there are two procedures, the explicit and the implicit.
In the explicit method, a finite difference formula is so
written that the results at a downstream point are given
in terms of certain small number of known upstream values.
In the implicit method, the results entirely across the
boundary layer are found simultaneously by solving a
system of algebraic equations for the full set of values
at all the y-stations involved.

Table 4, which was arranged by'Smith and Clutter
[24], presents a summary of the principal methods for
solving the laminar boundary layer equations. It is pre-
sented without comment except for certain points which
merit emphasis.

Numbers 1 and 2 are definitely approximate pro-

cedures, in the sense that the original equation has been
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compromised. Though they are rapid and convenient,
accuracy is only good for certain particular external
velocity distributions (wedge flows).

Method 3 is exact in the limit, that is, for an
infinite number of terms. For incompressible flows it has
the advantage that certain universal solutions can be
found once and for all, and when they are available,
calculations of a particular boundary layer flow becomes
trivial. It is not so attractive for variable properties
because of difficulties in obtaining these universal
solutions.

The next three methods, 4, 5, and 6 are various
applications of classical finite difference procedures.
Conceptually, the Hartree-Womersley Method (7) is differ-
ent because it divides the region of the boundary layer
into vertical strips, whereas methods 4, 5, and 6 divide
it into rectangular elements.

Finally, it is worth noting certain important proper-
ties of the momentum equation (3.1), which is the diffi-
cult equation to solve because of its non-linearity. If

m

the edge velocity is of the form Ue = Cl€ (wedge flows),

the pressure parameter (E/Ue)(due/dg) is identically m,
1f r, = ngn, the radius parameter (E/ro)(dro/dg) is
equal to n. If m and n are constant and if buoyancy
forces can be neglected, it is known [30] that the
equation is independent of £ and provides the so-called

similar solutions. The equation takes the form:
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3 (cf") + P[1 - £'2] + [P—;i + R]ff" =0 (3.4)
an

Equation (3.1) has another very important property. Most
other forms of the equations are singular at £ = 0 and thus
require that an initial profile be specified, but at & = 0,
eq. (3.1) becomes eq. (3.4), if buoyancy forces are absent,
and the solution can be started with a similar flow.

Hence, Clutter and Smith [24] refer to the £-derivative
terms in the bracket in eq. (3.1), as the "non-similarity"
terms.

The addition of the buoyancy term does not present
any difficulty at £ = 0. For the flat plate case the
buoyancy term is identically equal to zero at £ = 0. For
the case of the uniform stream flowing past the sphere,
where the direction of uniform stream and buoyancy force
are the same, the term representing the buoyancy force
becomes gB(T - T_ ). Thus this term is added on to the
right-hand side of eq. (3.4) and is solved numefically.

3.2 Procedure for Solving the
Boundary Layer Equations

The Hartree-Womersley Method [32], as modified by
Clutter and Smith [24], will be used to solve the boundary
layer equations; this will be discussed in the following
sections. 1In this section only a brief outline of the
procedure for solving the equations simultaneously will
be given. The major steps employed in the solution are

as follows:
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1. 1Initially the viscosity variation across the
boundary layer, which exists because of tempera-
ture variation, is assumed. At the first
station, a linear form is used. At the stations
that follow, the solution of the fluid flow
properties from the previous station is used.
(Since u = pu(T), the temperature profile is used
from the previous station to solve the momentum

equation at the station of interest.)

2. Using ¢ from Step 1, a first solution of the

momentum equation is obtained.

3. The energy equation, which now is linear because

of the solution from Step 2, is solved.

4. Using the solution of the energy equation, i.e.,
the temperature profile, corrected values of u

are calculated.
5. The momentum equation is again solved.

6. Steps 3 to 5 are repeated until convergency of
both the momentum and energy equation is
obtained.

3.3 Method for Solving the
Momentum Equation

The momentum and energy equations will be solved
simultaneously by the method of Hartree-Womersley [24] as

modified. The {-derivative in the momentum and energy
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equations are replaced by finite differences, so that the
partial differential equations are approximated by ordi-
nary differential-difference equations at each &-station.
The region of solution is thus divided in stations in the
£-direction as shown in Fig. 6. Each equation must be
solved step-by-step as the calculation proceeds in the
£-direction.

Consider the momentum equation for the boundary

layer:
3 (cf") + P[l - £'2] + [ﬂ + R]ff“
n 2
EL = laf' - ug_f_
+Ujng(T"Tw) “Elf‘a_g— fag (3.5)
e

In the studies conducted by Clutter and Smith [24], it was
found that round-off errors in the computation were re-

duced by making the following substitution in the momentum

equation
\
¢ =£ -n
o' = £' - 1
¢II = fll ?
¢Ill= flll (3.6)
/

The same substitution is made here. Introduction of

eq. (3.6) into (3.5) gives
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a L] -— ] 2 - - g+._l_ "
gﬁ(c¢ ) = P[(d"' + 1) 1] [ 5t R](¢ +n)¢

g8 - T, + e[+ DY - o 3]

]
c
® klg

(3.7)

with boundary conditions

n=0 0, =0 i ol =-1

for large n' >0

The momentum equation is of third order and non-
linear. Solution is made difficult by both the non-
linearity and the boundary that lies at very large n., To
solve eq. (3.7) an initial value problem is created using
arbitrary values of ¢; as the third boundary condition.
Thus it becomes necessary to search through possible
values of ¢; until one is found that satisfies the outer
boundary condition ¢' = 0 at large n. Thus the boundary

conditions now become

n=20 ' ¢w

for large n ¢' + 0 (3.8)

0, ¢ = -1, ¢2 = arbitrary

The procedure for performing the search is described
below, but first consider the solution of the momentum
equation as an initial value problem. We must first

determine

n
9
cd" =S =— (co")dn + c " (3.9)
o an \TARY
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where 9/9n(c¢") is given by the right-hand side of

(3.7). c. is known and ¢; is "searched" for. The

of integration used in eq. (3.9) will be described

Section 3.6. Other quantities needed in eq. (3.7)

no- S0
¢ = C
n
' =/ ¢"dn -1
o
n
¢ =S ¢'dn
o

eq.
method
in

are

(3.10)

(3.11)

(3.12)

The steps in the procedure for searching for the

correct value of ¢; are:

1. Initially, ¢" = (¢;) input, where the latter is

w

an input into the program for the first station

£ = 0; for the following stations, it is the

value of ¢& from the previous station.

Integrate

outwards and determine if the trial solution

exceeds ¢' = 0 or not.

2. If ¢' exceeds zero, it implies that the trial

value of ¢; that was used in Step 1 is high and

a second solution is used to integrate out,

using a lower ¢;. The procedure is continued

until both a high and a low value of ¢; are

obtained.
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3. Once a (¢&) high and a (¢;) low are known, a
new value of q;is obtained by splitting the
difference between the high and low value of

¢; and the procedure is continued.

4. This "splitting" is continued until three
solutions are obtained such that ¢' at Nnax = Ne
is between the bounds of -k < ¢'(n_) < k where
k << 1. (Both k and n_ are inputs.) At least
one of the solutions is a high one and one a
low one. A three-point interpolation procedure

is used to determine the value of ¢& that

satisfies the outer boundary condition.

Once the interpolated value of ¢; has been deter-
mined, it is now used to provide the correct solution to
eq. (3.7), from which the velocity profile and its deriva-
tives can be determined.

A similarity solution exists at the first station

(&

0), so the correct value of ¢; at £ = 0 is known
a priori also, since ¢; is a relatively smooth function of
£, the searching procedure does not take long because the
value of ¢; does not change radically from one station to
the next.

The interpolation procedure is now described. Con-
sider the three solutions which have been obtained by the

searching procedure to be ¢l’ ¢2, ¢3. The interpolated
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value of ¢; obtained by three-point Langrangian inter-
polation which meets the outer boundary condition

¢'(n,) =0 is

¢ = B10](n=0) + A,05(n=0) + A;635(n=0) (3.13)

where the coefficients are given by

A, = T ¢:i¢§
¢19 2
A, = 13 (3.14)

2 T 65 - 81085 = 93]

A - v3%2
37 185 - 61005 - 651

All values in eq. (3.14) of ¢' are evaluated at n_.

3.4 Method for Solving the
Energy Equation

Before solving the energy equation, it is convenient
to use the function ¢, introduced in the preceding section,

and to introduce the function 6, defined as

8 =g -1 (3.15)

for the same reason that ¢ was introduced in the momentum
equation. Substitutions of the functions in eq. (3.2)

gives
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o" = prml:P—;-l- + R] (¢4n)6 "' + E[(¢'+1)3—§- - G'M (3.16)

The boundary conditions are

n=20 ew =9, " 1l (constant wall temperature)
or 8& = g& (constant heat flux)
for large n 6 > 0

6' » 0. (3.17)

The method of solution of eq. (3.16) is similar to
that of the momentum equation. The region is divided into
E-wise stations as shown in Fig. 6. Again the §{-deriva-
tives are replaced by finite differences, these will be
defined in the next section. When solving eq. (3.16), the
previous solution of the momentum equation is known. Thus
in eq. (3.16) the only unknown is 6. The equation is
linear.

The solution of equation (3.16) is as follows:

n
' =/ 6"dn + 6 (3.18)
o w

The right-hand side of eq. (3.16) gives the value of 6".

ew is known from the prescribed wall temperature. In this

case 6& is arbitrarily chosen and

n
8 =/ 6'dn + ew (3.19)

o
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The method of integration to be used for egs. (3.18)
and (3.19) is the same as for the momentum equation and is
described in Section 3.6. Since eq. (3.16) is linear, its
solutions may be linearly combined. Thus eq. (3.16) is
solved twice, and the two solutions combined to meet the
outer boundary conditions. The exact procedure is de-
pendent upon whether g, °F g& is known. Consider both
cases:

Case 1l: 9y, is known. Both solutions begin with
the same given value of ew’ the one imposed by the bound-

ary condition

Equation (3.16) is solved using a trial value of 8& = g&.
Let this solution be denoted by 6, (n).

If el(nm) is greater than zero, a lower value of
6& is chosen, if it is less, a higher value of 6&. The
second solution is denoted by 6,(n). The two solutions
are added to produce the general solution which can be

made to meet the boundary conditions. The general solution

is
6(n) = Ael(n) + Bez(n) (3.20)

The boundary conditions are
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6(n,) = Aab,(n,) + BO,(n_)
t - * ]
6'(n,) = a87(n,) + BO,(n)
and ew = Aelw + Bezw (3.21)

But, the solutions were started using

A+ B=1 or B=1-A.

Thus boundary conditions (3.21) gives

-6,(n,)
A= A ORI O (3.22)

Thus, the correct solution becomes:

6 (n) Ael(n) + (1 - A)Bz(n)

8'(n) = ABj(n) + (1 - A)65(n) (3.23)

Case 2: g& is known. The procedure is similar to
that of Case 1, but now the energy equation is solved
using two trial values of I instead of g&. Again the two
trial values are denoted as 6,(n) and 6,(n). Relations

(3.22) and (3.23) then gives the correct solution.
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3.5 Finite-Difference Representation
of t-Derivatives

The fundamental idea for the method of solution,
that of replacing the & -derivatives by finite differences
to approximate the partial differential equation by an
ordinary differential-difference equation, was advanced by
Hartree and Womersley [32]). Note that all the £-deriva-
tives that appear in the momentum and energy equations
are only of first order,

The notation for the finite-difference representation
is presented in Fig. 7. The space is divided into a number
of rectangular strips of variable thickness Af{, The cor-
ners of the strips are located at "€n+l’ Ear &n-17 &p-27
En_3." The momentum and energy equations, being "para-
bolic" are solved by proceeding in the direction of posi-
tive £. It is assumed that the solution has been obtained
at all previous stations up to and including gn-l' which
of course means that ¢ (n) and 6(n) and their derivatives
are fully known at these stations. The problem is to find
¢(n) and 6(n) at the new station Ene

In solving the boundary layer equations the calcu-
lations must start at £ = 0. For the £ = 0 station the
terms with the £-derivatives in both momentum and energy
equations disappear. At the second station the two-point
form of finite difference is used, but, at all stations

farther downstream the three-point form is used.
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For two points:

aon _ ®n " %n-1

= - (3.24)
9§ &n = &pe1
AE 329
The error in this expression is of order > SEE .
For three points:
adn - 1 + 1 ¢
95 (En - En—l) (En - En_;T n
[ (€, = E,_p) '¢
(En - En—IS(En—l - En_z{_ n-1
(& =& _.) ]
+ n__n-l ®n-2 (3.25)
[}En - bn-2) 6py - 5;42[
ag)? a3

The error here is of order

3 3e3 °

Because of the errors being if order A for two
point and (AE)2 for three point, the first step must be
suitably reduced in order to have the same accuracy in
the solution at all stations.

The other £-derivatives 9¢'/9£ and 096/9f¢ are re-

placed by similar expressions as (3.24) and (3.25).

All of the above relations are given in Ref. [24].

3.6 Method of Integration

The method of solution of both the momentum and
energy equations is outlined in Sections 3.3 and 3.4.
The problem of solution is one of integration. There

are several methods of performing the integrations that
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are available in computer libraries for example, Milne's
fourth-order predictor corrector method; but, because of
their generality, they require long computing time to
solve the present problem, In the present investigation,
a method developed by Clutter and Smith [24], will be
used and is discussed below. It uses a four-point form
of the Falkner extrapolation formulas and the Adams
interpolation formulas [24],

Consider first the general situation where the

solution is known up to n_ and the problem is to find the

S

values of ¢ and 6 and their derivatives at n (= n_+4n)

S+1 S
by use of egs. (3.9 to 3.12) and egs. (3.18) and (3.19).
A special procedure is used to get started near the wall
and is described later in this section.

Consider the momentum equations first where the
integration indicated in (3.9, 3.11, 3.12) will be approxi-
mated by the Falkner's extrapolation and Adams' inter-
polation formulas. The extrapolation formulae use values
of (c$")' and ¢" at the S, S-1, S-2, S-3 stations to
determine values of ¢, ¢', ¢", and (c¢")' at the S+l

station. The formulas are

(co") g + SH[55(co™ & = 59(co™)

(c¢") g4y = S-1

+ 37 (co" é_z - 9(co" 5_3] (3.26)

where the subscript E denotes extrapolation. The step

size An is constant.
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The extrapolation formulae for ¢' and ¢ are

L} - [ ] A n N " " n
%S+1)E = 95 * 235505 - 5905 ) + 37dg 5, - 9¢g 5]

(3.27)
and
¢ -— + A ] + (Aﬂ)2[323 " 264 "
s+1)E - %s neg + 350 ¢g - ¢s-1
+ 159¢§_2 - 39¢§_3] (3.28)

The quantity (c¢" can now be determined by using the

) 1 4
S+1
momentum equation (3.7) and the extrapolated values of

E’ ¢é, ¢E. The result will be denoted by

(€0™) &y1yg = F(OR, 04, Op)g iy (3.29)

The interpolation formulae are now used to determine more
exact values of ¢", ¢', ¢, and (cd")' at the S+1 station.

The formulae are
(8" gyy = (8™ g + 3709(cO™M g 1 0+ 19(co™) g

+ (co™) L ] (3.30)

- S(ce” S-2

)§-1
and
1] = ¢l + ﬂ[9¢ll + 19¢ll - 5¢Il
S+1 S 24 S+1)E S S-1

+ (3.31)

s-2!
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and
¢ = ¢ + Ano! + iéﬂli[38¢" + 1716"
s+1 = %s s 360 S+1)E s
- 3668 ) + 708 _,] (3.32)

A comparison of the error terms for the extrapolated and
interpolated formulas show that not only are the inter-
polation errors much less than the extrapolation ones but
they are also opposite in sign [24]. Thus, the errors
tend to cancel rather than add up. The solution can be
made as exact as desired by choosing a small enough step
size.

The formulas for performing the integration required
in the solution of the energy equation are similar to those

above. The extrapolation formulae are

1 = [ ﬂ "o " n - n
eS+l)E eS + 24[556s 5968_l + 3788_2 968_3]
(3.33)
and
0 =0 + 2N(550" - 590! . + 378% . - 90 _]
S+1)E S 24 S S-1 S-2 S-3
(3.34)
and then using eqg. (3.16)
" -— [ ]
es+1)E B Gl(eE'eE)S+l (3.35)
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The interpolation formulas are given by

An

! = ' =1 ] n o n ]

8441 = 04 + 570908, 1,5 + 1968 - 568 , + 6% o] (3.36)
6. . =6 + 2N[9g" + 198" - 581 + 8% _] (3.37)
S+1 S 24 S+1)E S S S-2 )

and finally, using (3.16)
SS+1 = G(6 ,G)S+l (3.38)

The extrapolation-interpolation formulae above
require values of the functions ¢ and 6 along with their
derivatives at four previous { stations. To get started
at the wall Taylor's Series will be used, with a step
size of An/16; An is the step size used in the four-point
extrapolation-interpolation formulas. The step size is
gradually built up to the full length step An by using
two-point and three-point extrapolation formulae using
step sizes of An/8, An/4, and An/2, respectively.

The steps to be used in the procedure are shown

in Table 5. The equations to be used are given below.

Taylor Series--Step Size An/16

" -— " An n ]
|} - | An "

*"ans16 T %w T 16 %w (3.40)
An/16 w 16 512 w :
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t = ' éﬂ "

8 An/16 ' + 1€ Gw (3.42)
= A1 g

eAn/ls = ew + 3 8 (3.43)

Two-Point Formulas--Step Size An/l16

" - " AT'I "yt - ny
(c6™) ppsg = (€9") 516 + 3213 (c0 ans16 ~ ¢y

(3.44)
o = ¢ + B0p3gn - "] (3.45)
An/8 ans16 ¥ 3203%"a0 /16 T Yu .
_ an .,
®ans8 = ®ans16 t 16 ¢ an/ie
+ iéﬂli[4¢" _— (3.46)
15364 "an/16 ~ %w .
X =9 + S0 p3gm - 6" (3.47)
An/8 ans16 ¥ 3203%"an/16 T %% .
8 = 9 + 80p3g0 - 8] (3.48)
ans8 = ®ans16 t 32038 An/16 T O .

Two-Point Formulas--Step Size An/8

n -— 11 An ” L} - " ]

(3.49)
¢ = ¢ + L3¢ - "] (3.50)
An/4 An/8 16 An/8 w '
_ An
%ansa = %®anss ¥ B ? Anys
+ (An)2[4 " - ¢"] (3 51)
384 4% An/8 W .
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8 An/4

eAn/4 =

=0

An
an/8 ¥ T6(30 an/s8

4
An/8

An ”
+ T€[36

46

An/8

- o'

w

- o]

Two-Point Formulas--Step Size An/4

(0™ i1

]
¢r+l

r+l

er+l

er+l

1]

(o) + Bl3(com) ! - (co™) !

- %ra

]

2
(An) "
96 (49

- er—l]

r

- %"

r-

Three-Point Formulas--Step Size An/2

" " An "y o nwy ¥
(c0") . q + (c0")  + Zx[23(co™) ! - 16(co™) !

]
r+l

r+l

L}
er+l

r+l

+ 5(C¢"

y

r-2

= ' é_r_]_ "
= ¢y + 3gl230;

¢

r

+

An
- ¢

+

'
r

+ 36,1

r

An "o
51[236r

An '
24[23er

(An)2
96

(19¢

n
166",

- v
1661

+ 5¢ll
r—

"
r

+ 50"
r

]
+ 501

-1

- 10¢"

]

1}

5]

r-1

-2}

2]

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)
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All of the above expressions may be found in

Reference [24].

3.7 Starting the Solution

At § = 0, the £-dependent terms disappear in both
the momentum and energy equation, when buoyancy forces

are excluded. The momentum equation reduces to

(o™ ' = PL(¢* + D? -1] - [?;—1- + RJ(¢>+n)¢>" (3.64)
and energy equation to
0" = Prw[¥ + R] (¢+n)6° (3.65)

Hence, values of ¢ and 6 at previous stations are not re-
quired. The {-dependent terms also disappear for similar
type flows. Such flows occur when P and R and the wall
boundary condition are constant for all £. These include
flow over a flat plate with constant pressure and wedge
type flows (buoyancy forces not included).

The procedure of solution described earlier requires
that the momentum equation be solved first, but to do so
requires the values of viscosity. To get started at the
€ = 0 station, a linear temperature profile that satis-
fies the inner and outer boundary conditions for tempera-
ture is assumed. The viscosity obtained from this
temperature profile is then used to start the solution.

After the first solution of the momentum equation at any
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particular station is found, the viscosity obtained from
the last solution of the energy equation is used.

At £ = 0, the value of P, the pressure parameter
is known. For the flat plate with zero pressure gradient,
P = 0, while for a sphere, P = 1. At £ = 0, the value of
R, the radius parameter, for any conical body is zero,

while for a flat plate R = 0 for any ¢£.

3.8 Boundary Layer Parameters

Once the momentum and energy equations have been
solved at a particular {-station, the conventional bound-

ary layer parameters are calculated.

1. Displacement Thickness.

A physically meaningful measure for the boundary
layer thickness is the displacement thickness 61, which
is the distance by which the external potential flow is
displaced outwards as a consequence of the decrease in

the velocity gradient in the boundary layer.
oo
= - L
61 =/ (1 g )dy (3.66)
o e
Using the transformation equations (2.13), the definition

of 61, equation (3.65) transformed into the (§£,n) coordi-

nates is
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VX U, =
61 = //,ﬁ:- // ﬁ; é (1 - £Y)dy (3.67)

A dimensionless displacement thickness may be defined as

in Smith and Clutter [24]

§° = / Ual 0 (3.68)
1 v, R :
Substituting (3.67) into (3.68)
* nm - fn:oo
61 = — (3.69)
/% /v
Um X
2. Momentum Thickness,
The momentum thickness is defined as
§, =/ 21 - D)dy (3.70)
2 o Ue Ue
In the (£,n) coordinates, 61 may be written as
// v EL u,6
- —_— ] - '
62 = 5 g S f£'(1 f')dy
L e o
A dimensionless momentum thickness is defined [24] as
UR 6
*
sr=/ =2 (3.71)

2 V. R
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or

12

f~"dn

(3.72)

fm

°]
VAN
0] X

3. Shear Stress at the Wall.

The shear stress at the wall is defined as
_ Ju
Tw T “w[ﬁ}w

or in (£,n) coordinates as

/ U
- e n
T = M Uefw (3.73)

Introducing the local skin friction coefficient defined

[23] as:
Tw
Cg = — (3.74)
40,Uq
or
AL 2"l
f UeEL M, w

Define the local Reynolds Number Re_ to be

£
u_¢g
= &
Reg = v

Thus

2 |Hw| ..
cf(Reg) —/i [Um]fw (3.74)
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A conventional shear parameter is defined [23] as

which with (3.74) becomes

U
ce* = -2 /L {—‘i] £ (3.75)
X Um w

4. Heat Transfer Parameter.

The heat transfer rate at the wall is given by

U
= - € '
qw = kw m ngao (3.76)

Let the local Nusselt Number be defined as (for flat
plates)

qwx

k(T = T,)

Nu =
X

or with (3.76) and definition of Rex,

gl
Nu_/Re, = ——o" (3.77)
x X 1l - i

For the sphere, Nusselt Number is defined as
q, D

Nup = ey (3.78)

W w
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Since the external velocity field Ue is a function of g,

it may be written as

U, = U_£(8)

Thus

(3.79)

_ L /E® | 9w
NuD//ﬁaR = 2 3 [1 oy

3.9 Computer Program

A computer program was written to solve the momentum
and energy equations simultaneously by the method de-
scribed in the proceeding sections., This program was run
on the CDC 6500 and is reproduced in the Appendix. The

results of the runs made are given in Chapter 5.



CHAPTER 4

EXPERIMENTAL APPARATUS AND PROCEDURE

4.1 Introduction

The experiments were conducted to provide a quali-
tative estimate of the effect of heating a sphere on the
separation point. A brass sphere was placed in a square
horizontal test section of a loop designed to circulate
water. The sphere was heated electrically by means of a
heating element placed inside the hollow brass sphere.
The temperature difference between the water upstream
from the sphere and the wall of the sphere was measured
with the use of thermocouples. Hydrogen bubbles generated
off a fine wire placed on the surface of the sphere were
used to visualize the flow around the unheated sphere,
while the shadowgraph method was employed when the sphere
was heated.

A description of the sphere, test loop, and the

flow visualization techniques follow.

4.2 Description of the Heated
Sphere

A sketch of the sphere with the heating element

installed inside it, is shown in Fig. 8. The 3.00"

353
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(+.004) external diameter hollow brass sphere consisted
of two hemispheres joined together. The wall of the
sphere was 0.25 inches thick resulting in a constant
temperature sphere. The heating element consisted of

21 feet of Nichrome wire with asbestos insulation. The
heating wire was held in a plastic cage inside the sphere,
as shown in Fig. 8.

Four, 30-gage iron-constantine thermocouples were
soft-soldered into the inside wall of the sphere at the
position shown, i.e., No. 1 at 70°, No. 2 at 45°, No. 3
at 0°, No. 4 at 315° (all angles measured clockwise from
the forward stagnation point). The thermocouples, when
inbedded into the wall, were 1/16" from the outside sur-
face. Since the temperature difference between the up-
stream water and the wall of the sphere is required, a
thermocouple was placed upstream of the sphere and used
as the reference junction.

The heating element lead wires and the thermocouple
wires passed through the Plexiglass support tube. A photo-
graph of the sphere with the support tube is shown in
Fig. 9.

The brass sphere was marked at 2 degree intervals
between 80° and 100° (measured from the forward stagnation
point).

The sphere was coated with a fine coat of varnish,

which insulated the brass sphere from the fine wire which
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generated the hydrogen bubbles, The hollow sphere was
filled with water before it was placed into the test
section. The water served to improve the heat transfer
to the interior walls of the sphere.

4,3 Description of the Test
Section Loop

A schematic diagram of the test loop, which consists
of a variable flow rate pump, two tanks and a 10-inch
square plexiglass test section is shown in Fig. 10. Water
was circulated by a centrifugal pump. The walls of the
upstream and downstream tanks were lined with stainless
steel sheets. The upstream tank contained three straighten-
ing sections. The first of these contained glass marbles
sandwiched between two stainless steel screens; the second,
a fine mesh stainless steel screen; and the third, a
honeycomb constructed by placing 3-inch long, 0.2 inches
diameter plastic soda straws between two stainless steel
screens. The honeycomb was placed at the inlet of the
square test section, so as to insure uniform velocity
profiles in the test section. No measurement was made of
the low free stream fluctions level. However, hydrogen
bubbles traces showed no observable fluctions. The
piping used to transport water from the downstream tank
to the upstream tank through the pump was made of P.V.C.,

a plastic material.
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Care was taken to maintain the water as free from
impurities as possible. Before any tests were made, the
water in the test loop was passed through a water filter at

low speeds for at least 12 hours.

4.4 Flow Visualization Techniques

The two visualization techniques, the hydrogen bubble
method and the shadowgraph method, used in the present work
will not be discussed at any length because they have been
used in the past by many researchers [40]. Mention will
be made, however, of the problems encountered in using
these techniques in the present situation.

The hydrogen bubble method consists of using a fine
wire as one end of a d-c circuit to electrolyze the water.
The tiny bubbles thus formed are visualized by means of an
appropriate light source placed outside the test section.

A .00l-inch platinum wire was used to generate the hydro-
gen bubbles. A Spectra-Physics Laser beam passed through
a cylindrical lens was used as a light source. The plati-
num wire was stretched across the top half of the meridian
plane. Thus the hydrogen bubbles were generated next to
the surface of the sphere, in the boundary layer and the
wake region.

The shadowgraph method is based on the phenomenon
that light passing through a density gradient in a fluid
is deflected. It measures the second derivative, there-

fore allowing visualization of only those parts of the
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flow where the density gradient change is sufficiently
large. The shadowgraph system consists of a bright light
source, a colliminating lens, and a viewing screen,
Photographs were taken of the region near the
separation point using the hydrogen bubble method and of
the whole flow field around the sphere using the shadow-
graph method. The laser beam used to visualize the
hydrogen bubbles was not photographed directly; a video
recording was made with a TV camera installed with a
130 mm lens. The video pictures projected on the TV
screen were then photographed. The shadowgraph pictures

were directly photographed.

4.5 Operating Procedures

The test loop was filled with soft water and the
brass sphere was installed in the test section. The flow
rate was adjusted so that the pump circulated 94 gallons
per minute through the test loop. This flow rate resulted

in the flow rate of the water in the test section to be

0.3 ft/sec. The Reynolds Number, based on the diameter
of the sphere, was thus 7500. This low Reynolds Number
assured a laminar flow in the boundary layer prior to
separation.

Before the sphere was heated, the hydrogen bubbles
were generated and photographs taken to insure the occur-
rence of laminar separation (about 84°). The power to

the heating element inside the sphere was then adjusted
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to provide the desired temperature difference between the
water upstream of the sphere and the wall of the sphere.

The shadowgraph pictures were taken for various tempera-

ture differences,

Prior to making any tests, the sphere was heated to
check the uniformity of the temperature of the sphere wall.
All the thermocouples (1 thru 4) were used to check the
wall temperature of the sphere and it was found that the
sphere temperature was essentially constant. When the
sphere was heated to make tests two thermocouples (2 and 4)
were used to determine the temperature difference between
the water upstream and the wall of the sphere.

The sphere reached a constant temperature within

three minutes after the power was turned on.



CHAPTER 5

NUMERICAL AND EXPERIMENTAL RESULTS

5.1 Introduction

In this chapter results will be presented to show
the effect of heating a body which is placed in a uniform
stream of water. Numerical results will be presented for
various flow cases of water flowing past a flat plate and
a sphere. Experimental results, which are qualitative in
nature, will be presented for the case of water flowing
past a 3-inch sphere placed in a 10-inch horizontal square
test section.

Though the primary objective of this investigation
is to show that heating does affect separation, numerical
results will include the effect of heating on the boundary
layer parameters.

In Chapter 3, the numerical methods of solution,
for the momentum and energy equations, were discussed.

It should be emphasized that the boundary layer equations
(momentum and energy) are valid only if § << 1. Near the
separation point this requirement is no longer valid and

hence the boundary layer equations are not applicable.

59
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If the boundary layer equations were extended up to the
separation point, a mathematical singularity would exist
at the separation point, This presents a serious problem
to investigators interested in locating the separation
point. One way to eliminate this mathematical singularity
would be to solve the full Navier-Stokes equations instead
of the boundary layer equations. Since the Navier-Stokes
equations are very difficult to solve, what is usually
done is that the boundary layer equations are solved to

a point as near the separation point as possible and then
the solution is extrapolated to the separation point. The
usual procedure is to use the value of ¢; along the sur-
face of the wall and to extrapolate the separation point
to be the point where ¢; = 0. (This is done by fitting

a curve through the ¢; data points.)

5.2 Verification of the
Numerical Technique

The purpose of this section is to establish the
accuracy of the numerical method of solution. It will be
done by comparison with known numerical and exact solutions,

and experimental data.

A. Similar Flows on a Flat Plate

The only boundary layer flows which can be solved
exactly are similar flows for which Ue = Em, where con-
stant coefficients are assumed. For such flows the

momentum equation and the energy equations are uncoupled.
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The momentum equation is independent of &, and since the
flow is two-dimensional, the radius parameter R is zero;

eq. (3.7) then reduces to

o = - Bloemen + B0 + D? - 1) (5.1)

In this equation P = m where Ug = g™, The flows included

in this study are for m 1.0, 0.33, 0, -.047619, and
-0.090429., m = 1.0 is the stagnation point flow; m = 0
is the Blasius type or flat plate flow; and m = 0.090429
corresponds to the separation profile. Fig. 11 shows
these five profiles and in Table 6 the values of ¢; are
compared with exact results.

Kaups and Smith [24] present results for a flat
plate (Ue = &m, m = 0) where the plate is heated. Heating
causes a viscosity variation u(T) across the boundary

layer coupling the momentum and energy equations; they

are

= (co™) = - Blioemyom + pl(er + D? - 1)

" = prm(P—;—l-] (6+n) 6" (5.2)

where c is the variable viscosity parameter defined by
eq. (2.9).

The egs. (5.2) are solved simultaneously. Figs.
12 and 13 show the velocity and temperature profiles

respectively for the heated and the cooled flat plate.
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It can be seen that the given temperature variation causes
considerable deviation from the Blasius profile. As ex-
pected, the inverse viscosity-temperature relationship for
liquids makes the effect of heating and cooling opposite
to that for gases. Also shown in Fig. 12 is the "seventh
power" turbulent profile. In Chapter 1, it was pointed
out that the reason why a turbulent boundary layer around
a sphere separated "later" (110°) than a laminar boundary
layer (84°) was that the turbulent boundary layer contained
more momentum near the wall than the laminar boundary
layer and thus could better overcome the adverse pressure
gradient., The "seventh power" turbulent boundary layer
profile in Fig. 12 is shown to indicate that with sufficient
heating the laminar profile tends to look more like the
turbulent profile (i.e., contains more momentum). Figs.
12 and 13 also give a check against the calculations of
Kaups and Smith [24]. Table 7 shows the effect of heating
and cooling on the skin friction and the heat transfer
parameters; the results are compared with Kaups and Smith,
Since buoyancy forces are to be included in the
calculations for flow around a sphere, a check was made
with Kaups and Smith's [24] example of flow past a verti-
cal flat plate with Tw = 312°F, T = 40°F, and U_ = 6fps.
Figs. 14 and 15 show the velocity and temperature pro-
files respectively at a distance of two feet from the

leading edge.
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It is concluded from the results presented for the
similar flows that the numerical method of solution being
used in the present investigation is sufficiently accurate.
Since in this investigation, attention is focused on the
separation point, a check was made on decelerated, or

adverse pressure gradient, flows.

B. Adverse Pressure Gradient Flows

The development of the laminar boundary layer in a

linearly retarded velocity field
]
e_;-6&
o - 1 ) (5.3)

has been studied by Howarth [34], Von-Karman and Millikan
[35], Hartree [36], and Smith and Clutter [37]. This
fluid flow case was studied without the consideration of
heat transfer effects. 1In this investigation, a method
of solution which is identical to the method of the latter
two [36, 37] is used. This particular type of flow,

eq. (5.3), leads to separation, Table 8 compares values
of ¢& calculated by the present author and those by
Hartree and Smith and Clutter.

As was pointed out earlier, the boundary layer
equations are not valid at the separation point, thus the
separation point is extrapolated from the values of ¢;.
The present method extrapolated the separation point to

lie at £ = 0.96 for the flow given by eq. (5.3).
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In addition, the retarded flow

=1-¢ (5.4)

Clc
o

8

has been studied by various authors [6, 34, 38]. Table 9
compares the separation point as calculated (extrapolated)
by various workers and the present author. It is evident
that the discrepancy is greater than for the retarded flow
given by eq. (5.3). The reason for this seems to be that,
because eq. (5.4) represents a very strong adverse pres-
sure gradient, separation occurs very close to the leading
edge. The boundary layer equations are valid in only a
short region near the leading edge; hence the extrapolation
procedure is assumed inaccurate.

The flows discussed in parts A and B have been two-
dimensional plane flows. For axially symmetric bodies,
the radius parameter R = (E/ro)(dro/dﬁ) has values other
than zero. The boundary layer growth on a sphere is pre-

sented next.

C. Flow Over a Sphere

Two cases for the potential flow around the sphere
will be considered; in one case, the simple potential
flow for an unseparated flow is employed, while in the
other, use is made of a velocity distribution U_ /U,
which has been obtained experimentally ([31] in the case

when the flow separates from the forward portion of the
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sphere. The two velocity distributions are shown in
Fig. 16. The pressure distribution around the sphere has
been reproduced from [31] and is shown in Fig. 17.
"Critical flow" is defined as the flow where the flow in
the boundary layer "just" becomes turbulent at the point
of separation. 1In Fig. 17 the "above critical" curve
represents the pressure distribution around the sphere
when the boundary layer becomes turbulent before it
separates and the "below critical" curve represents the
pressure distribution when the boundary layer remains
laminar up to the separation point. It is obvious from
Fig. 17 that the pressure distribution measured for the
"above critical" flow is similar to that of the simple
potential flow. Thus the solution obtained from the
potential flow theory for flow around the sphere serves
as an approximation for the "above critical" flow.

The theoretical velocity distribution on the sur-
face of a sphere as obtained from potential flow theory,

is given by

Ye
u

©o

N W

= % sin a = sin £, (5.5)

The radius ro(g) is given by

ro = R1 sin §

where Rl is the radius of the sphere. The boundary layer

calculations for the flow around the sphere, with no
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heating, were carried out to determine the separation
point. The value of ¢; are tabulated in Table 10 and
are compared with those calculated by Smith and Clutter
[37). The separation point, ¢; = 0, was extrapolated to
be at 104°.

The experimentally determined velocity distribution
[31] for "below critical" flow around the sphere is given

by

= 1.5 £E- .364026° + .246685°. (5.6)

(=] =]
8 |o

The boundary layer calculations using eq. (5.6) for the
velocity distribution with no heating predicts the
separation point to be at 87°. Tomotika [31l] using
eqg. (5.6) calculated the separation point to be at 81°
using a momentum integral technique. Fage [41l] measured
the separation point to be around 85°.

Fig. 18 shows ¢; plotted against a for the two types
of flows around the sphere corresponding to egs. (5.5)
and (5.6). Referring back to Fig., 17, it is evident that
the point of minimum pressure lies at 74° for the "below
critical" flow. It is because of this stronger adverse
pressure gradient for the "below critical" flow case that
the flow separates earlier (about 10° after minimum pres-
sure point) than for the "above critical" flow case (about

20° after the minimum pressure point).
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5.3 Flow Past an Unheated Sphere:
Hydrogen Bubble Experiment

The purpose of this section is to present experi-
mental results which show that the flow past the unheated
sphere is laminar. This is done by showing that separation
exists around 85°., The hydrogen bubbles, generated by the
platinum wire placed on the surface of the sphere, made it
possible to visualize the entire flow region around the
sphere, i.e., the boundary layer and the wake region,

Fig. 19 shows a photograph of the flow region between 80°
and 100° (measured from the stagnation point). It is
evident from the photograph that there is reverse flow
beyond 88°, implying that the separation point must lie
ahead of 88°. To define the separation point, the follow-
ing procedure was employed.

A tracing of the photograph was made, as is shown
in Fig. 20 (solid lines). Then a dotted line was passed
through the zero velocity point of the reverse flow "path"
lines and extrapolated to a point on the sphere. This
point was defined as the separation point. As is evident
from Fig. 20, the separation point lies near 84°,

It must be emphasized that the major problem en-
countered was the generation of large hydrogen bubbles.
Researchers have experienced this problem in the past
[41] but it was especially a nuisance in these experi-
ments because the large bubbles would stick to the surface

of the sphere thus disturbing the flow. Conventional
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techniques of brushing off the bubbles and switching the
polarity of the platinum wire were employed but without
satisfactory results.

5.4 Effect of Heat Transfer in

Linearly Retarded Flows on
a Flat Plate

Consider first the flow over a heated flat plate

where the external velocity flow field is given by
]
e g
— = l - = o (5.7)
u, 8

Since the viscosity variation is important in heated
liquid flows, the momentum and energy equations are
coupled and thus solved simultaneously. The free stream
fluid temperature is assumed to be 70°F and the flat plate
is heated to temperatures of 100°F, 150°F, and 200°F,
Also considered will be the case of the cooled flat plate,
where the free stream temperature is 150°F and the plate
is 70°F. Thus we have three heated cases with tempera-
ture differences of AT = 30°, 80°, 130°, and one cooled
case with AT = -80° (AT = Ty ~ T,). For all the cases
to be presented, the results will be given for the four
temperature differences mentioned above.

Figs. 21 through 23 show the velocity profiles at
various £-stations along the flat plate for AT = 130°,
80°, 30°, 0°, and -80°. Fig. 24 shows how ¢; varies

along the plate for various AT. The dotted line in
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Fig. 24 represents the extrapolation to ES' the separation
point. Fig. 25 shows the separation point location for
various temperature differences. Figs. 26 through 28 are
plots of the temperature profiles at various £-stations.
Next, the flow over a heated flat plate where the

external velocity flow field is given by

Ye
=1-¢ (5.8)

A

©o

was calculated. This external velocity flow field repre-
sents a stronger adverse pressure gradient than the case
represented by eq. (5.7). Figs. 29 through 31 show the
velocity profiles at various £-stations along the flat
plate for different AT. Fig. 32 shows the variation of
¢; vs. & and here again the dotted line shows the extrapo-
lated values of £S. Fig. 33 shows the location of the
separation point for various temperature differences, AT.
Since heating tends to increase the £-component of
the velocity vector (i.e., increased momentum in the
boundary layer), it is obvious that as the plate is heated,
there will be a corresponding decrease in the displacement
thickness. Fig. 34 shows this decrease in displacement
thickness by comparing the curves of various ATs. Note
that for the cooled flat plate, the displacement thickness
is the greatest. Fig. 35 gives a similar plot for the

momentum thickness. Figs. 36 through 38 show the
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temperature profiles for various ATs. It may be inferred
from these plots that as the plate is heated, the thermal
boundary layer decreases with correspondingly higher
gradients at the wall, thus increasing the heat transfer
rate. Fig. 39 is a plot of the heat transfer parameter

Nug/Reg, showing the increased heat transfer.

5.5 Effect of Heating a Sphere

Numerical results will be presented for the two
potential flows, eq. (5.5) and eq. (5.6), around the sphere
(see Section 5.2), The effect of introducing the buoyancy
force term will be discussed for the case of flow of water
past a heated sphere in a vertical channel. Experimental
results showing the effect of heating a 3-inch sphere in

a 10-inch square horizontal test section will be presented.

A, Simple Potential Flow ("Above Critical")

The velocity profiles for the temperature differ-
ences, AT = 130°, 80°, 30°, 0°, -80°, at various a
locations along the surface of the sphere are shown in
Figs. 40 through 42. Fig. 43 shows the variation of ¢;
vs. a for the temperature differences mentioned above.
The dotted line shows the extrapolation to the separation

point a Fig. 44 is a plot of the local skin friction

S.
coefficient along the surface of the sphere. Referring
back to Fig. 17, it is evident that the pressure distri-

bution represented by the "theoretical" curve is such
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that the pressure gradient is favorable (negative) from
the stagnation point (a = 0°) to a = 90° and that beyond
o = 90°, the pressure gradient is unfavorable (positive).
Fig. 44 shows that heating the sphere diminishes the skin
friction before a = 90° and increases it beyond a = 90°.
Figs, 45 through 47 are plots of the temperature profiles
for various a-locations along the surface of the sphere.
Fig. 48 shows the variation of local heat transfer
parameters, Nux//§5¥ for the temperature differences
being discussed. Table 11 gives the extrapolated values

of ag for the various temperature differences.

B. Experimentally Determined Velocity
Distribution ("Below Critical")

The effect heating has on the velocity profiles in
the boundary layer at various a-locations is shown in
Figs, 49 through 51. It is evident that heating tends
to decrease the velocity boundary layer thickness. Figs.
52 and 53 show how the displacement thickness and
momentum thickness is affected by heating and cooling
the sphere. Fig. 54 shows the effect of heat transfer
on the velocity gradient ¢; at the wall. The dotted lines
indicate the extrapolation to the separation point Oge
Figs. 55 through 57 are plots of temperature profiles at
various a-locations. The local heat transfer parameter
Nux//ﬁg* is plotted in Fig. 58, Table 12 gives the
extrapolated values of ag for the various temperature

differences.
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C. Effect of Introducing the Buoyanc
Force Term ("Below Critical")

The buoyance force term in the momentum equation

(3 .7) is retained to show its effect. For the potential
flow around the sphere, use is made of eq. (5.6), which
represents the "below critical"” flow. Before the results
showing the effect of the buoyancy force term are pre-
sented, a definition of positive and negative buoyancy
force is given.

The buoyancy force is considered positive when it
is in the same direction as the free stream velocity and
negative when in a direction opposite to the free stream
velocity. Fig. 59 shows the positive and negative buoy-
ancy force in a vertical channel that exists in the
boundary layer when the sphere is heated or cooled. The
reason for presenting the flow in the vertical channel
is that the flow remains axisymmetric and thus can be
treated by the numerical solution.

It is obvious that when the buoyancy force is posi-
tive (Fig. 59a and 59d), it would delay separation, and
that when the buoyancy force is negative (Fig. 59b and
59¢), it would bring about separation earlier.

Calculations were made, with the buoyancy force
term included for the four cases listed below, where the

sphere was either heated or cooled.
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Case 1. T = 150°F; T_ = 70°F (heating)

Fig. 59a Buoyancy Force Positive

Case 2. T_ = 150°F; T_ = 70°F (heating)

Fig. 59c Buoyancy Force Negative

Case 3. T = 70°F; T_ = 150°F (cooling)

Fig. 59d Buoyancy Force Positive

Case 4. T = 70°F; T = 150°F (cooling)

Fig. 59b Buoyancy Force Negative

Fig. 60 shows the effect of the positive and nega-
tive buoyancy forces on the velocity profile at an a-
station on the sphere when the sphere was cooled (Case
3 and 4). Also shown in Fig. 60, for comparison, is the
velocity profile when the buoyancy force was not included
in the calculation. It is evident that the negative
buoyancy force makes the velocity profile approach the
separation profile. Figs. 61 and 62 are plots of ¢;
vs. a for the cases mentioned above. Both the cooled
sphere (Fig. 61) and the heated sphere (Fig. 62) indicate
a slight shift in the separation point when the buoyancy
forces are included.

In Chapter 1, reference was made to an experimental
study by Brown [27], where he studied the effect of heat-
ing a sphere in a vertical channel (as in Fig. 59a).

The copper sphere was heated with a constant heat flux
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such that the temperature difference between the water
upsstream and the stagnation point of the sphere was 10°F.
The two extreme cases for which Brown presents results
are: (1) water temperature = 70°F, sphere temperature =
80°F; and (2) water temperature = 180°F, sphere tempera-
ture = 190°F. Brown plotted the experimentally deter-
mined local Nusselt number along the sphere for various

Reynolds numbers. Also presented was a plot of a heat

% 5,..36
D

Brown's experimental results are verified quali-

transfer parameter (NuD/Re Pr ) vs. a.
tatively by the present numerical solution, with the
buoyancy force term included. For the purpose of simu-
lating the potential flow around the sphere, use was
made of eq. (5.6).

The local Nusselt number NuD is plotted in Figs.
63 and 64, and compared with Brown's results. Fig. 65
compares the heat transfer parameter used by Brown, as
calculated by the present analysis.

The results show that Brown's experimental data

agree within 10% of the results calculated by the present

work.

D. Experimental Results

Hydrogen bubble method: The hydrogen bubble method

was unsuccessful in visualizing the flow past the heated
sphere. It was evident that the platinum wire generated

large bubbles very rapidly and that these bubbles remained
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on the wire thus disturbing the flow field. Attempts to
brush off the bubbles fast enough and record only the tiny
bulbles were unsuccessful. Repeatedly, a new platinum
wirxre was used with the anticipation of generating uniform
bubbles but all attempts failed. It was thought that the
secondary currents produced by the heating element wire
(which had A.C. flowing through it) may be the cause of
a large potential across the platinum wire, and reducing
the input d.c. potential did not produce any different
results,

Thus the hydrogen bubble method was abandoned in

favor of the shadowgraph method.

Shadowgraph method: The 3-inch brass sphere was

heated in a 10-inch square horizontal test section. The
temperature difference between the water upstream and the
wall of the sphere ranged from 20°F to 100°F. Shadow-
graph pictures were taken for various temperature differ-
ences and these are presented in Figs. 66 through 69,
Since shadowgraph pictures show dark lines where the
derivatives of the density gradients are large, the wake
region is visualized. It becomes difficult to extrapo-
late the separation point, since the reverse flow patterns
are not visualized.

However, these pictures do merit some qualitative
analysis. It is evident that as the sphere is heated to

higher temperatures the flow about the sphere becomes
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asymmetric, i.e., the wake region becomes asymmetric,
This is probably due to the buoyancy forces. Also, note
that the wake is apparently three-dimensional at higher
temperatures. Even though the location of the separation
point cannot be determined, it is evident that there is
not a significant shift in the separation point, i.e.,
the separation streamline appears to lie in the same
region.

As is evident from the results presented, the
shadowgraph method is not suited to determine the location
of the separation point.

5.6 Effect of Treating Viscosity
Constant in Linearly Retarded Flow

The results presented in the preceding sections
were calculated when the viscosity varied across the
boundary layer. In the present section, calculations
are made with the viscosity held constant across the
boundary layer.

The linearly retarded flow, eq. (5.4), past a
heated flat plate is examined. Calculations are made

using: (1) the value of viscosity at wall temperature

u U..; and (2) the value of viscosity at free stream

w
temperature, u = u_. These results will be compared with
the results obtained previously, when the viscosity was
allowed to vary, u = u(T). Calculations are made for

the case when the temperature of the flat plate is 150°F

and that of the free stream is 70°F (AT = 80°F).
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Figs. 70 and 71 compare the velocity and temperature
profiles at a typical £-station, when the viscosity is
considered constant and variable across the boundary layer.
In Figs. 72 and 73, the effect of treating viscosity con-
stant on the velocity gradient at the wall and the heat
transfer parameter Nux/Rex are shown.

The plots show that the results obtained by treat-
ing viscosity constant are substantially different than
those obtained by treating viscosity variable. When
viscosity is considered constant, the calculations do
not show any significant shift in the position of the

separation point.

5.7 Conclusions

Heating substantially increases the u-component of
the velocity in the laminar boundary layer. With a AT
of 180°F the u~component of the velocity in the boundary
layer increases by 100% for the linearly retarded flow
past a heated flat plate, while the u-component of the
velocity increases by approximately 50% in the laminar
boundary layer for the flow past a heated sphere.

Heating retards the laminar boundary layer sepa-
ration. The shift in the separation point is more pro-
nounced in the linearly retarded flow past heated flat

plate (30%), than for the flow past the heated sphere*

*The numerical calculations were made using the
experimentally determined [31] pressure distribution from
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(5%). Experimental results tend to confirm that heating
a sphere has a small effect on the position of the sepa-
ration point.

Heating has the effect of decreasing the displace-
ment thickness and the momentum thickness. The displace-
ment thickness decreased by 22% and the momentum thickness
by 6% for the linearly retarded flows past the heated
flat plate with AT = 180°F. For the flow past the heated
sphere, the displacement thickness decreased by 30% and
the momentum thickness by 20%.

While the effect of heating and cooling is small on
the velocity boundary layer thickness, cooling does sub-
stantially increase the thermal boundary layer thickness.

The effect of introducing the buoyancy terms is not
significant and thus may be neglected for the flow of
water past a heated sphere in a vertical channel.

The effect of heating a body subjected to a uniform
flow of water on the boundary layer parameters cannot be
determined with high accuracy by treating viscosity con-
stant. The skin friction coefficient may be calculated,
with up to a 10% error, using the value of viscosity at

the wall temperature as constant, and the heat transfer

an unheated sphere. This pressure distribution was not
allowed to change during the calculations; but as the
separation point shifts the actual pressure distribution
also changes. To properly account for this change an
iteration scheme would be necessary which would un-
doubtedly result in a greater shift of the separation
point.
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coefficient may be calculated, with up to a 15% error,
using the value of viscosity at the free-stream tempera-

ture as being constant.



TABLES
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TABLE 1. Similarity solutions (Ue = x™)

Tw/Tw Val:sja;f=mofor Reference
2 -0.06 7, 13
1 -0.094 13
0.6 -0.109 7
0.5 -0.1178 13
0.25 -0.1351 13
0.2 -0.134 7

TABLE 2. Calculated separation point for the case Ue/U~ =1-x

Value of x_, According to Several Authors

T,/T. S
Illingworth Morduchon Gadd Curle Poots
(10) & Grape [6] [14) [15] [16]
2 0.067 0.073 0.072 0.071 0.075
1.295 0.093 0.106
0.8 0.128 0.135
0.6 0.152 0.16
0.5 0.168 0.195
0.3 0.19 0.195

TABLE 3. Values of y at the point of separation
(Illingworth [10])

A Y
-1 1.402
0 1.429

+1 1.550
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TABLE 6. Value of ¢; for similar flows

m ¢& Calculated ¢; Exact
1.0 1.232587 1.2325877
0.33 0.47413 0.4741
0.0 0.332057 0.3320573

-0.04 0.220325 0.220317
-0.0904285 0.00006 0.0

TABLE 7. Effect of heating and cooling a flat plate on
skin friction and heat transfer parameters

1
Cf(Rx)1

%
Nu/Ry

Kaups & Present
Smith [24] Method

Kaups & Present
Smith Method

T, T

°F °F
312 40
130 40

40 312

0.3698 0.36985
0.5540 0.55401

0.8182 0.81823

1,0646 1.06462
0.8938 0.89387

0.2937 0.29375
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TABLE 8. Calculated values of ¢y for Howarth's retarded
flow U /U, =1 - &/8

Present

Smith &

§ Author Clutter Hartree
0.0 .33206
0.025 .325728
0.04795 0.32263
0.05 .321842
0.100 .312 ,311979
0.1534 .30102 .301031
0.206 .28966 .290089
.3116 .26564 .265623
.417 .23962 .239712 .23972
.5226 .21108
.62808 .17922 .179232
.73356 .14254 .142554
.83904 .097337 .098627 .09773
.8865 .071046 .072033
.948 .02642 .026397 .0249
. 956 .014267 .0114
.958 .009534 .0059
.9589 .006469 O-extrapo-
lated
.96 0-extrapo- O-extrapo-
lated lated
Computing
Time 106 secs 70 mins
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TABLE 9. Separation point calculated for the flow
u/u =1-¢
e oo
£ Sep. Reference
.12 Present Author
.122 6
.12 38
.12 34
.1198 39
TABLE 10. Comparison of values of ¢;; on a sphere as
calculated by the present author and Smith and
Clutter [37]
L]
¢w
ao
Smith & Clutter Present Author
[37]
0° 1.31189 1.31193
30° 1.26099 1.261
60° 1.08115 1.082
90° 0.64833 0.642
101.7° 0.2394
104° o*
105.9° 0*

*Value obtained by extrapolation.
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TABLE 11. The effect of heating the sphere on the
separation point "above critical" flow

AT (°F) ac®*
130 107.9
80 106.6
30 105.2

0 104
-80 101.5

*Values obtained by extrapolation.

TABLE 12. The effect of heating the sphere on the
separation point "below critical" flow

AT (°F) a®*

130 91°

80 90°
30 88.5°

0 87°

-80 85°

*Values obtained by extrapolation.
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Figure 6. Notation for velocity and temperature pro-
files in the boundary layer on a body of
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Figure 7. Notation for finite difference representation.
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/_ Thermocouple locations

Heating element

Figure 8. Brass sphere with heating element and location of
thermocouples.

Figure 9. Photograph of the sphere with the support rod.
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Figure 12. The effect of heating and cooling on the
velocity profiles on a flat plate.
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Figure 13. The effect of heating and cooling on the
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Figure 14. The effect of buoyancy forces on the velocity pro-

files on a heated vertical plate, two feet from
leading edge.
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Figure 15. The effect of buoyancy forces on the temperature
profiles on a heated vertical plate, two feet from
leading edge.
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Figure 19. Photograph of hydrogen bubbles visualized on
unheated sphere.

Zero-velocity line

Figure 20. Graphical procedure for extrapolating separation
point from hydrogen bubble pictures.
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Figure 21. Velocity profiles for a heated flat
plate. Ue/U°° =1-£&E/8; £E=0
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Figure 22. Velocity profiles for a heated flat
plate. Ue/Uw =1-£&/8; £ = .575
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Figure 23. Velocity profiles for a heated flat
plate. Ue/Um =1-%&/8; £ = .7863
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Figure 26. Temperature profiles for a heated flat

plate. Ue/U°° =1-&E/8, =0
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Figure 27. Temperature profiles for a heated flat
plate. Ue/U°° =1-£&/8, £E = .575
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Figure 28. Temperature profiles for a heated flat

plate. Ue/Um =1-¢%/8, £ = .786
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Figure 30. Velocity profiles for a heated flat

plate. U /U =1-§&, £ =.083
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Figure 31. Velocity profiles for a heated flat plate.
Ue/U°° =1-£, £ =.118
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Figure 36. Temperature profiles for a heated flat
plate. !Je/tlao =1-¢&, & =.047
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Figure 37. Temperature profiles for a heated flat
plate. U/U,=1-¢, £ = .083



118

3.0
AT (°F)

2.7 I~

A: 30°

B: 80°

C: 130°
2.4 -
2.1
1.8 =
1.5

A
1.2
B
C
0.9 -
0.6
0.3
0. 1 1 1 1
0. 0.2 0.4 0.6 0.8
G

Figure 38. Temperature profiles for a heated flat
plate. Ue/Um =1-£, £ =.118
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Figure 40. Velocity profiles for a heated sphere.
"Above critical" flow, a = 0°.
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Figure 41. Velocity profiles for a heated sphere.
"Above critical" flow, o = 47.5°.
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Figure 45. Temperature profiles for a heated sphere.
"Above critical" flow, a = 0°.
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Figure 46. Temperature profiles for a heated sphere.
"Above critical" flow, a = 47.5°.
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Figure 47. Temperature profiles for a heated sphere.
"Above critical" flow, o = 67.8°.
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Figure 49. Velocity profiles for a heated sphere.
"Below critical" flow, o = 40°.
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Figure 50. Velocity profiles for a heated sphere.
"Below critical flow, o = 62.6°.
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Figure 51. Velocity profiles for a heated sphere.
"Below critical” flow, a = 82°.
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Figure 55. Temperature profiles for a heated sphere.
"Below critical" flow, o = 40°.
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Figure 56. Temperature profiles for a heated sphere.
"Below critical" flow, O = 62.6°.
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Figure 57. Temperature profiles for a heated sphere.
"Below critical" flow, a = 82°.
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Figure 60. The effect of buoyancy forces on the
velocity profiles, when the sphere is
cooled. "Below critical" flow, o = 82°
AT = -80°F.
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Figure 66. Shadowgraph picture of the heated sphere.
AT = 20°F

Figure 67. Shadowgraph picture of the heated sphere.
AT = 40°F
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Figure 68. Shadowgraph picture of the heated sphere.
AT = 70°F

AT:=100 F

Figure 69. Shadowgraph picture of the heated sphere.
AT = 100°F
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Figure 70. The effect of treating viscosity constant
and variable on the velocity profile.
Ue/U°° =1-¢§, § = .083, AT = 80°F
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Figure 71. The effect of treating viscosity constant

and variable on the temperature profile.
Ue/U°° =1-¢§&, £ = .083, AT = 80°F
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