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ABSTRACT

THE EFFECT OF HEAT TRANSFER ON THE LAMINAR

BOUNDARY LAYER AND LAMINAR SEPARATION

OF WATER FLOWING PAST A FLAT PLATE

AND A SPHERE

BY

Surinder Kapur

The effect of heating a body, which is in a uniform

flow of water, is investigated numerically and experi-

mentally. Primary interest is in the effect of heat

transfer on the laminar boundary layer separation. Since

the variation of viscosity with temperature is large for

water, the velocity and temperature fields interact. This

necessitates the simultaneous solution of the momentum and

energy equations. Numerical results for various flow con—

figurations are presented. Experimental results are pre—

sented for the flow of water past a three-inch sphere in

a ten-inch square horizontal test section. Flow visuali—

zation techniques, hydrogen bubble, and the shadowgraph

methods, were used to locate the separation point experi—

mentally.

Numerical results indicate that heating does sub—

stantially shift the separation point backward for the



Surinder Kapur

linearly retarded flow past a heated flat plate. The

effect of heating on the position of the separation point,

for flow past a sphere, is small. Experimental results

tend to confirm the small influence of heating on the

position of the separation point on the heated sphere.

Numerical results also include the effect of heat-

ing on the various boundary layer parameters such as

displacement thickness, thermal boundary layer thickness,

and wall shear.
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CHAPTER 1

INTRODUCTION

The concept of flow separation is as old as that of

boundary layer theory. Ludwig Prandtl, the originator of

the boundary layer theory was concerned about flow sepa-

ration before he formulated his ideas on the boundary

layer. As a young engineer Prandtl found that the com—

puted pressure recovery could not be achieved in actual

diffusors [1]. He spent considerable time, prior to his

presentation of the boundary layer theory, attempting to

understand flow separation and the pressure losses in the

diffuser. In 1904 Prandtl [2] presented his new theo—

retical concept of the boundary layer in a paper entitled

"Fluid Motion with Very Small Friction." In this paper he

discussed flows over objects for which the Reynolds number

was large. For such flows he made the following obser—

vations:

1. Frictional effects are confined to a very thin

layer, called the boundary layer, near the

surface of the object.



2. The flow external to the boundary layer can be

considered frictionless.

3. The pressure variation from the mainstream is

"impressed" upon the boundary layer, i.e.,

Bp/By = 0.

Because flow separation is caused by viscous effects

confined in the boundary layer, it is often expressed as

"boundary layer separation." Prandtl [3] states clearly

that the necessary condition for separation from the wall

is the increasing pressure in the direction of flow, i.e.,

positive (or adverse) pressure gradient along the flow

path. The statement holds for compressible flow as well

as incompressible flow.

Within the boundary layer, the effect of viscosity

is such that the velocity parallel to the wall changes

along the distance perpendicular to the surface, i.e., the

velocity gradient Bu/ay exists (u is the streamwise

velocity and y is the distance normal to the surface).

Since the flow velocity at the wall is zero u increases

and finally reaches Ue' the inviscid flow velocity at the

outer edge of the boundary layer. The momentum of flow

near the wall is small and the ability of the fluid to

move forward against the pressure rise is also limited.

Downstream, this small amount of momentum along the body

surface is used up to overcome the pressure rise, and,

finally, the fluid particles are brought to rest at the



"separation point." The point, at which the velocity

gradient 3u/3y at the wall is zero, is defined as the

separation point. At a point downstream of separation,

because of the existing adverse pressure gradient, reverse

flow occurs as shown in Fig. l, and, owing to this reverse

flow, the flow in the boundary layer is forced away from

the wall. At the point of separation, the flows begin to

leave the surface at a small angle, maintaining the

adverse pressure gradient.

It has been demonstrated [1] that a laminar boundary

layer can support only a very small adverse pressure

gradient without the occurrence of separation. In the

case where the boundary layer is turbulent, the danger of

separation is intrinsically reduced, compared with laminar

flow, because the turbulent flow boundary layer contains

much more momentum and hence is able to resist the adverse

pressure gradient for a greater distance than the laminar

flow boundary layer. Typical velocity profiles of laminar

and turbulent boundary layers are shown in Fig. 2.

It is this transition from laminar to turbulent

boundary layer flow around the sphere which explains the

abrupt change in the drag coefficient around a Reynolds

Number of 3 x 105 in Fig. 3. It is well known that for

S
Reynolds Number less than 3 x 10 , the boundary layer flow

around the sphere is laminar until 84° where it separates

and that for Reynolds Number above 3 x 105, the boundary



layer flow undergoes transition to turbulence and the

flow does not separate until it reaches 110°. This sudden

backward shift in the separation point reduces the size of

the wake which accomplishes the decreased drag coefficient.

Thus by changing the shape of the velocity profile in the

boundary layer (from a laminar to a turbulent one, see

Fig. 2) a delay in the separation point is achieved.

There are in existence several methods which have

been developed for the purpose of artificially controlling

the behavior of boundary layers, i.e., to delay or elimi—

nate separation. Of the most popular ones are:

l. Blowing—~acceleration of the boundary layer by

injecting fast moving fluid parallel to the wall.

2. Suction—-removal of slow moving layer of fluid

in the boundary layer near the wall.

3. Reduction in Viscosity of Fluid Near the Wall—-

by heating the wall for liquids and cooling the

wall for gases.

It is obvious that the first method would give the

fluid particles in the boundary layer the momentum they!

need to overcome the adverse pressure gradient, while in

the second method the slow moving fluid in the boundary

layer is removed which again increases the boundary layer

momemtum thus delaying separation.

It is the third method, that of controlling the

fluid viscosity near the wall by heating the wall, that



is the subject of the present investigation. Only liquids

will be considered.

There has been some interest in the last twenty years

in the effect of heat transfer on laminar separation par-

ticularly in flows involving gases. Work with liquids has

been very limited.

A number of general qualitative conclusions on

laminar separation with heat transfer in gases [4], which

have been established (more or less independently) by

various investigators are:

1. Cooling the wall tends to lessen the direct*

effect of the pressure gradient.

2. Cooling the wall tends to delay separation.

3. Cooling the wall tends to diminish the skin

friction for a favorable pressure gradient but

tends to increase it for an unfavorable pressure

gradient.

All of the above conclusions were reached by

Morduchow and Galorion [5] on the basis of a Karman—

Pohlhausen type of analysis with a fourth degree velocity

profile and were subsequently confirmed by the use of

higher degree profiles by Morduchow and Grape [6]. More—

over, these conclusions have also been reached on the basis

 

*By "direct" effect is meant here the influence of

the gradient term prOportional to dUe/dx. The influence

of a pressure gradient, however, appears "indirectly"

also, mainly, through the dependence of Ue and Te on x

(cf., e.g., Refs. 5 and 6).



of similarity solutions by Cohen and Reshotko [7] and Li

and Nagamatsu [8], through the use of the Illingworth-

Stewartson transformation [9], and by the analysis of

Illingworth [10], Luxton and Yonug [11] and Low [1]].

By far, most of the solutions on the laminar bound-

ary layer with heat transfer in gases which have been

considered are the similarity solutions [7, 13] in which

Ue ” xm, and adverse pressure gradients are represented

by negative values of m.

In connection with the effect of heat transfer on

separation, the results of the similar solutions of pri-

mary interest are the value of m, as a function of wall

temperature, required for a zero—skin-friction boundary

layer. These are shown in Table 1. It is noted that,

as the wall is cooled, a larger negative m, corresponding

to a larger adverse pressure gradient, is required for

separation.* This may be considered to illustrate the

tendency of cooling to delay or prevent separation in

gases.

The case where the external velocity may be repre—

sented by

U

6 = .-
{-1— l X

00

 

*A comparison between entries Tw/Tm = .2 and .25

slightly contradict this trend, but this seems to be due to

use of Pr = l in Ref. 7 and Pr = .7 in Ref. 13.



may almost be regarded as the prototype of an adverse

pressure gradient. It has probably been the most fre—

quently studied case of an adverse pressure gradient. A

number of investigators: Illingworth [10]; Morduchow and

Grape [6]; Gadd [l4]; Curle [15]; and Poots [16], have

investigated the effect of heat transfer on the separation

point for such a flow of gas on a flat plate. Table 2

shows their results and confirms the result that "cooling

the wall tends to delay separation."

In addition to the similarity solutions and the

various solutions for the case of Ue/U0° = 1 — x, there

have been a few other cases for which the effect of heat

transfer on laminar separation has been calculated. Poots

[16] considered the case Ue/Uoo = l - g-and calculated the

case of zero heat transfer (Tw/Tco = l) and of a heated

wall (TW/Tm = 2). The results showed, that for low Mach

Number, an upstream movement of the separation point when

the wall is heated. Morduchow and Grape [6] have con-

sidered the case in which a stagnation flow is followed

by an adverse pressure gradient and have calculated the

adverse pressure requirement for "immediate" separation

as a function of wall temperature. Gadd [14] gives

corresponding results if the initial region is one of

zero pressure gradient, instead of stagnation flow.

Baxter and Flfigge-Lotz [17] have calculated somewhat

similar cases, in which a zero pressure gradient is



followed by either a step pressure gradient or a ramp

pressure gradient and found in each case that separation

would occur sooner with a hotter wall. Fannelop and

Flfigge-Lotz [18] have calculated the boundary layer over

a flat—plate leading edge section followed by a semi—

infinite wavy wall and found that separation occurred

earlier for a heated wall than for an adiabatic wall,

whereas cooling considerably delayed separation.

Illingworth [10] presented an approximate analytical

solution to show the effect of uniformly heating and cool-

ing a circular cylinder, uniformly in motion in a gas.

The results are presented in Table 3 where the position

of laminar separation is y and A is defined as

h (x)

A=l- w 

e

h and He being specific static and specific total enthalphy

respectively.

From Table 3, it is evident that there would be no

appreciable difference in the position of separation be—

tween the two cases (1) the temperature of the cylinder

0°C (A = .0521) and (2) 100°C (A = -,2951). Chang [1]

explains this result of Illingworth by noting "that with

the cylinder the effect of heat transfer on separation is

small, due to the fact that the flow over the first 90%

of the unseparated boundary layer is accelerated; conse-

quently the deceleration region is short. Furthermore,



the skin friction has taken time (see Table 4, Ref. 10)

to reach a considerably larger value at the minimum pres-

sure than for the unheated case. Thickening subsequently

takes place more rapidly with a heated wall than with an

unheated cylinder, but not enough to cause much change in

the position of separation."

One should also note that viscosity for a gas is

quite insensitive to small changes in temperature, an

increase of 100°C produces only a 30% change in the

viscosity.

Because the viscosity in liquids decreases with

increasing temperature, the influence of viscosity vari-

ation on the velocity profile is Opposite to that for

gases. Consequently, heating should delay separation and

lessen the "direct" effect of pressure gradient, while

cooling should do the reverse.

Surprisingly few solutions for liquids with vari—

able viscosity have been presented. Schuh [19], Hanna

[20], and Seban [21] solved the flat plate case (simi—

1arity solution, m = 0) with an inverse power law for

the viscosity—temperature relationship, holding other

fluid properties constant. Schuh calculated by successive

approximation two flows having high Prandtl Number; one

representing cooling and the other heating. Hanna pre—

sented an approximate solution achieved by integral

methods in which polynomical profiles were used for the
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velocity and temperature. Hanna presented results where

the Prandtl Number ranged from 0.25 to 1000. Seban ex-

tended Schuh's results for a wide range of wall Prandtl

Number.

The three works reveal the effect of heating and

cooling the wall in that they show that the skin friction

decreases when the wall is heated and increases when the

wall is cooled.

Poots and Raggett [22], using experimental values

(in the range of 0—100°C) for the viscosity, conductivity,

specific heat and density, solved two different laminar

boundary layer configurations. First the case of the

heated flat plate and secondly the heat transfer effect

on an infinite rotating disk is analyzed. Their results

confirm the effect of heating and cooling on the skin

friction and also indicate that heating tends to increase

the heat transfer rate. Poots and Raggett have also pre—

sented an analytical expression for the local heat trans—

fer at the wall.

The only other theoretical work that appears in the

literature where the effect of heat transfer in liquids

is treated is that of Kaups and Smith [23]. They have

extended the method of Smith and Clutter [24], which

solves the boundary layer equations, for calculating the

laminar boundary layer in liquids having variable fluid

prOperties, including viscosity. Kaups and Smith have,
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like the previous researchers, presented numerical results

for the flat plate case. They also present results of a

flow past a semi-infinite body of revolution and indicate

that by heating the body, the flow is stabilized, i.e.,

heating eliminates the inflection point from the velocity

profile. They state: "In adverse pressure gradients, a

heated wall appears to delay separation." However, they

present no results which indicate the relationship between

heating and the delay of separation.

It should be noted that in the cases where the

temperature difference brings about a difference in the

density of the fluid, it becomes necessary to consider

buoyancy effects also. Even though the density differ-

ences in liquids are relatively small, see Fig. 5, the

buoyancy effects are often considerable. Of the five

references just cited [19 through 23] where the investi—

gators have studied the effect of heating a body in

liquids, only Kaups and Smith [23] have considered the

effect of buoyancy. They present the cases of a heated

vertical plate for both positive and negative buoyancy

forces. The negative buoyancy force appears to have an

effect similar to that of an adverse pressure gradient,

while the positive buoyancy force has an opposite effect.

This implies that the buoyancy force in the direction of

fluid motion (positive buoyancy) tends to delay separation.
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While there has been experimental work done on flows

around spheres in air to determine the effect of heating

the sphere, there exist only three papers cited in litera—

ture on the experimental results of flows around spheres

in water; Kramers [25], Vliet and Leppert [26], and Brown

[27].

Kramers measured the heat transfer from an induction

heated steel sphere to water and to oil in forced con-

vection. The Reynolds Number ranged from 0.4 to 2100.

These experiments were conducted with small sphere to

water temperature differences.

Vliet and Leppert measured heat transfer coefficients

from an induction heated copper sphere transfering heat to

water in the Reynolds Number range of 103 to 6 x 104 with

substantial temperature differences (up to 130°F measured

experimentally).

Whereas Kramers [25] and Vliet and Leppert [26] have

made measurements on a heated sphere that has a constant

temperature surface, Brown [27] has measured the heat

transfer coefficients for a uniformly heated sphere.

Brown has presented results indicating the relationship

between Nusselt Number and Reynolds Number for flow around

a uniformly heated sphere. From his data on heat transfer

and shadowgraph pictures, Brown points out that, for

laminar flow around a uniformly heated sphere the sepa-

ration point occurs at 90° (note: as mentioned earlier,
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the separation point for unheated sphere for laminar flow

is 84°). Thus Brown's work shows a backward shift of the

separation point.

In the experimental papers just cited above [25, 26,

27] the heated spheres were suspended in vertical test

sections with upward fluid motion, which means that the

buoyancy forces were positive.

In the present investigation a computer program is

used to show numerically the effect of heating on the

separation point and the various boundary layer parameters

for various flow configurations. This is done by treating

the viscosity as a temperature dependent variable.

Buoyancy effects are included also. Flow of water about

a heated sphere also is studied experimentally.



CHAPTER 2

MATHEMATICAL FORMULATION

Formulation of the incompressible laminar boundary

layer problem with heat transfer in liquids is complicated

by the strong dependence of viscosity on temperature. The

equations necessary to describe such a flow are those of

continuity, momentum, and energy. Also, the relations

describing the dependence of viscosity and density of the

fluid on temperature are needed. Axisymmetric, steady

flow about a body of revolution will be considered. The

simpler problem of plane two-dimensional flow is included

in the equations by letting r, the body radius, be a con—

stant.*

The basic notation and coordinate system is shown

in Fig. 4. U°° is the reference velocity and Ue(x) is the

velocity of the main flow just outside the "velocity"

boundary layer. T00 is the reference temperature and Te(x)

is the temperature of the main flow field just outside the

 

*This will be illustrated later.

14
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"thermal" boundary layer.* gx is the gravitational

acceleration in the free stream direction.

In the curvilinear coordinate system x is the dis—

tance along the surface of the body, measured from the

forward stagnation point and the dimension y is measured

perpendicular to x. The velocity components are u and v,

u being parallel to x and positive when moving in the

direction of increasing x. The velocity component v bears

similar relation to the y-direction. The body radius rO

is as shown and it may vary with x.

The boundary layer equations for the axisymmetric

case in the above coordinate system were first developed

by Boltz [28] and Millikan [29]. They are listed as

follows:**

Continuity:
 

1 a a __ .
Flé—x-(ru) + 37mm — o , (2.1)

Momentum:

A9532 .
+ r 3y 3y , (2.2)

 

*In all the numerical examples to be presented in the

subsequent chapters, Te(x) is considered constant and equal

to T .

**One can observe that if r = const the equations are

identical to the boundary layer flow for plane 2 — D flow.
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Energy:

C,.§.2..§2_k32T.ur_a_T (23)
p p 8x 3y 7 3y r y y ' '

In the above equations Cp and k are considered to

be constant. Also the viscous dissipation and the com—

pression effects are neglected. Eqs. (2.2) and (2.3)

differ from the equations obtained for plane flow when the

Prandtl boundary layer approximations are made in that they

contain the transverse curvature terms (u/r) (Br/3y)

(Bu/3y) in eq. (2.2) and (k/r) Br/By aT/ay in (2.3).

The transverse curvature terms are important when

the boundary layer thickness is of the same order of magni-

tude as the radius of the contour of the body (i.e.,

6 ~ r0), which would be the case for any long, slender

body as indicated by Schlichting [30]. If 6 <<irO every—

where, then the transverse curvature terms could be neg—

lected.

This investigation will be limited to various flows

over a flat plate plus the axisymmetric flow around a

sphere. Tomotika [31] has shown that for the case of the

sphere 6 << ro and thus the transverse curvature terms

may be neglected. The condition that 6 is very small

compared with ro is not necessarily satisfied at the nose.

It was proved by Millikan [29] for a blunt-nosed body of

revolution, that the transverse curvature terms may be
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legitimately neglected even in the neighborhood of the

forward stagnation point at the nose where rO + 0.

Thus if é/ro << 1 (as in the case of a sphere), then

the transverse curvature terms can be neglected in both

the momentum and energy equations, so that they assume the

two—dimensional form. This is equivalent to replacing

r(x,y) by ro(x) in the continuity equation.

Thus the equations to be treated in this investi—

gation take the forms:

a (r u) 3v _

T)? O 4’ r0 7 — 0 (2.4)

C(u31+v§31-k32T (26)
p p 3x 3y _ 3y: '

Using the subscript w, to denote the wall, the

boundary conditions are

v = 0

W

TW = g1ven

L (2.7)

at the edge of the boundary layer

u Ue(x)

T = T  oo ' J
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Eqs. (2.4) and (2.5) may be combined into a single

third order equation in terms of the stream function W by

use of the relation

__ 1 3 _ 3x
u - F3537 (Wro) - 5'; (2'8)

3r

_ _ .1. L _ .. .331 - 1L 0
V — to 3X Wro) - 3x r0 ‘3'):— (2.9)

From the definition of w, the continuity equation

is automatically satisfied, thus, the momemtum equation,

using eq. (2.8) and (2.9) becomes

218% -[21.1_i"_o]fil
payaxay 3x r 3x 2

 

0 3y

d2 3 32w

= - dx + pgx + 5Y[u 3Y2] (2.10)

or

aw 32w _ av 3241 _ w Bro 32w
poo 59‘ my ’5; 3:2 r0 awn.— 5‘2

dU 2

= 0.,U _ 3 LA]
e a— + poong(T Too) + Sybil 3Y2

(2.11)

In eq. (2.11) use has been made of Euler's equation

which is given by
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d0
1 d. e dz _

ga§+°efi+9a§r° ”‘12)

where the density gradient dpm/dx is neglected. The re-

lationship

o = pwtl — evr - Teen

is used and certain terms in eq. (2.11) are neglected

because 8 is very small.

Eq. (2.11) is transformed to a more convenient

coordinate system by stretching the y-coordinate. The

transformation from the (x,y) coordinate system to the

(E,y) coordinate system is a modified Howarth-Dorotnitsyn

transformation as used in reference [23] given by

E = x/L

 

Y (2.13)J

n

c

8
:
m

x
6
’

&
-
—
—
—
.
J
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< I

f
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D
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m

'
0

b
8

 

where L is the characteristic length (for the sphere

L = radius).

Furthermore, it is convenient to introduce a

dimensionless stream function f, such that

3 H
I

=f':
u 2 ]
__

( . 4)

Q
)
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The relation between f and w is

 

Ueumx 8

II} = p f(€rn)
(2°15)

In order to transform the boundary layer equation

above from the (x,y) coordinate system to the (E.n)

coordinate system, the following relations are used:

i=§£i+3ni

3x 3x 35 Xi'an

1-11-111.13_i"_e2_ (216)
ax ‘ E'ag 2L 5 an 2 0e .1 an °

3y y 86 y an

.33.: Uep°° 5;
(2.17)

3y umEL 3y

 

After transformations the momentum equation becomes

3 n _ :2 22 n
fi(Cf ) 4’ PI]. f ]+ [ 2 + R]ff

 + 31E.g B(T - T ) = g[%'§£; - f"§£] (2.18)

2 x °° a

Ue

where the primes denote differentiation with respect to n,

and
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= 1L.
c “m

g; dUe

P = —— ——— = Pressure Parameter

[Ha d5

g drO

R = F"‘ET = Radius Parameter.

o

The boundary conditions now become

n = 0 f'w = 0 ; f = 0

for large n, f' + 1

The energy equation is rewritten here

3T 2

87

T8T _
pCpIu-a—i + V ] — k

3

3y

Define g(x,y) as

T

9 = f—

Then eq. (2.21) becomes

29. 22 432
pCpt“ 3x + V 3y] = k 3y2 '

To transform the above equation from the (x,y)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

coordinate system to the (€,n) one, use is made of the

same transformations, eqs. (2.13) to (2.17). Thus the

energy equation along with the boundary conditions now

become
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l_ I3 laf

—-—+R)fg -€[f§%-ga—gl (2.24)

Prco . (2.25)

The boundary conditions necessary for the energy

equation are

n = 0 9w = Tw/Tm

for large n g + 1. (2.26)

Equations (2.13) through (2.26) have been previously

given by Smith and Clutter [24].

In this investigation, the only property of water

that is assumed to be a function of temperature is vis-

cosity, thus limiting the application to moderate pres—

sures. The temperature range used in this study varies

from 32°F to 212°F, a range in which viscosity decreases

monotonically with increasing temperatures.

The fluid property data (eq. 2.27 and 2.28) was

taken from [23]. The data is nondimensionalized by divid—

ing through by values at 32°F. The viscosity and density

variation are given by
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_ 2
“/“ref — 1./[35.16 - 106.98(T/Tref) + lO7.77(T/Tref)

- 4o 6(T/T )3 + 5 64(T/T )4]
' ref ' ref

_ _ 2
p/pref — 0.8039 + 0'4615(T/Tref) 0'2869(T/Tref)

3
+ 0'0235(T/Tref) (2.27)

The Prandtl Number at infinity is needed in the

calculations and is calculated by using the following

expression (again taken from [23]):

2
Pr/Prw - l/[73.38 - 208.75(T/Tref) + l97.76(T/Tref)

3 4
68.86(T/Tref) + 7°48(T/Tref) ] (2.28)

In (2.27) and (2.28) T is expressed in degrees Rankin so

= c
that Tref 491.69 P.

Fig. 5 shows the graph of these equations and the

reference values are also given in the figure.



CHAPTER 3

NUMERICAL SOLUTIONS

3.1 Introduction
 

The momentum and energy equations, which must be

solved simultaneously, are summarized here for convenience:

(Cf")' + P[l — f'2] + [Egl + R]ff" + 5L— : ng(T - Too)

3 , P+l
Pr 5? (g ) + {—2 + R]fg n

F
_
—
1

F
—
—
1

”
I
n

I
1

E
1
_
J

C N

The boundary conditions are:

_ 0 . = =at n — 0 . fw f 0 and gw
W TINT/T"Jo

for large n: f' l and g = l (3.3)

The momentum equation (3.1) is a third order, non—

linear equation. Once the momentum equation is solved,

the energy equation becomes linear. Solution of these

equations is also made difficult by the fact that one of

the boundary conditions lies at "large n," a rather poorly

defined boundary condition.

24
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The fundamental idea for the method of solution used

in the present investigation was advanced by Hartree and

Womersley [32]. They proposed replacing the g-derivatives,

which here are only of first order, by finite difference

approximations. The remainder of the equations is left

unchanged and as a consequence the equations are converted

to ordinary differential-difference equations. A far more

common procedure is to approximate the derivatives in both

directions by finite difference formulas, thereby obtain-

ing the usual network of elements. The present procedure

combines both procedures as will be examined in more

detail later.

To eliminate the problem of the boundary condition

that lies at "large n," the present procedure changes this

two—point boundary value problem to an initial value

problem, where another boundary condition at the wall is

arbitrarily chosen, i.e., f; for eq. (3.1) and g; for eq.

(3.2). It is then necessary to search through the

possible values of f; and g; to find the ones that satisfy

the outer boundary conditions.

Later in this chapter this method of solution, which

was initially advanced by Hartree and Womersley [32] and

since has been used by Clutter and Smith [24], will be

deve10ped but first it is felt that some explanation

should be given for the preference of this method over

the other available techniques for solving the equations.



26

To justify the preference of the so—called "Hartree-

Womersley Method," two essential aspects must be discussed.

The first is the form of the boundary layer equations to

be solved; the second is the question of the method to be

used in solving the particular equations.

Consider the form of the equations. In the original

equations of continuity, momentum, and energy, u, v, and

T are functions of the independent variables x and y. Not

all the methods of solution retain the independent vari-

ables x and y. In certain methods the variable x and y,

are stretched by certain rules, while there are other

methods which involve transformations such that x and y

are no longer the independent variables. The most pOpular

of these latter type transformations is that by Crocco

[33], where x and u are the independent variables and T,

the shear stress is the dependent variable in the momentum

equation. Crocco's form of equation receives a great deal

of attention because the variable in the y-direction is

replaced by u and is therefore bounded. These equations

become attractive for the network method because the

location of the secondary boundary is known. In the

majority of problems T is a smooth regular, single valued

function of u, but on occasion I can be double valued, as

in the case of accelerating flow past a hot wall. While

techniques may be found to handle this problem it presents

a real difficulty when using Crocco's method.
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Methods of solution fall into two classes. In one

class some simplifying approximation is made in the origi-

nal equations in the interest of obtaining a more con-

venient solution. When this is done, even if the solution

of the resulting equation is exact, the answer is usually

in substantial error because the equation itself is

approximate. In the second class, the equation is solved

by some numerical finite difference technique. Even

though the equation is not compromised, the answers are

not exact because of the use of finite increments instead

of infinitesimals. In the finite difference class itself

there are two procedures, the explicit and the implicit.

In the explicit method, a finite difference formula is so

written that the results at a downstream point are given

in terms of certain small number of known upstream values.

In the implicit method, the results entirely across the

boundary layer are found simultaneously by solving a

system of algebraic equations for the full set of values

at all the y-stations involved.

Table 4, which was arranged by Smith and Clutter

[24], presents a summary of the principal methods for

solving the laminar boundary layer equations. It is pre—

sented without comment except for certain points which

merit emphasis.

Numbers 1 and 2 are definitely approximate pro-

cedures, in the sense that the original equation has been
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compromised. Though they are rapid and convenient,

accuracy is only good for certain particular external

velocity distributions (wedge flows).

Method 3 is exact in the limit, that is, for an

infinite number of terms. For incompressible flows it has

the advantage that certain universal solutions can be

found once and for all, and when they are available,

calculations of a particular boundary layer flow becomes

trivial. It is not so attractive for variable properties

because of difficulties in obtaining these universal

solutions.

The next three methods, 4, 5, and 6 are various

applications of classical finite difference procedures.

Conceptually, the Hartree-Womersley Method (7) is differ—

ent because it divides the region of the boundary layer

into vertical strips, whereas methods 4, 5, and 6 divide

it into rectangular elements.

Finally, it is worth noting certain important proper-

ties of the momentum equation (3.1), which is the diffi-

cult equation to solve because of its non—linearity. If

the edge velocity is of the form Ue = clam (wedge flows),

the pressure parameter (E/Ue)(dUe/d£) is identically m.

If r0 = ngn, the radius parameter (E/ro)(dro/d£) is

equal to n. If m and n are constant and if buoyancY

forces can be neglected, it is known [30] that the

equation is independent of 5 and provides the so—called

similar solutions. The equation takes the form:



29

jLficf") + P[l - f'2] + [Egl + R]ff" = 0 (3.4)

3n

Equation (3.1) has another very important property. Most

other forms of the equations are singular at E = 0 and thus

require that an initial profile be specified, but at i = 0,

eq. (3.1) becomes eq. (3.4), if buoyancy forces are absent,

and the solution can be started with a similar flow.

Hence, Clutter and Smith [24] refer to the E-derivative

terms in the bracket in eq. (3.1), as the "non—similarity"

terms.

The addition of the buoyancy term does not present

any difficulty at E = 0. For the flat plate case the

buoyancy term is identically equal to zero at E = O. For

the case of the uniform stream flowing past the sphere,

where the direction of uniform stream and buoyancy force

are the same, the term representing the buoyancy force

becomes gB(T — Tm). Thus this term is added on to the

right-hand side of eq. (3.4) and is solved numerically.

3.2 Procedure for Solving the

Boundary Layer Equations

 

 

The Hartree—Womersley Method [32], as modified by

Clutter and Smith [24], will be used to solve the boundary

layer equations; this will be discussed in the following

sections. In this section only a brief outline of the

procedure for solving the equations simultaneously will

be given. The major steps employed in the solution are

as follows:
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1. Initially the viscosity variation across the

boundary layer, which exists because of tempera—

ture variation, is assumed. At the first

station, a linear form is used. At the stations

that follow, the solution of the fluid flow

properties from the previous station is used.

(Since u = u(T), the temperature profile is used

from the previous station to solve the momentum

equation at the station of interest.)

2. Using u from Step 1, a first solution of the

momentum equation is obtained.

3. The energy equation, which now is linear because

of the solution from Step 2, is solved.

4. Using the solution of the energy equation, i.e.,

the temperature profile, corrected values of U

are calculated.

5. The momentum equation is again solved.

6. Steps 3 to 5 are repeated until convergency of

both the momentum and energy equation is

obtained.

3.3 Method for Solving the

Momentum Equation

The momentum and energy equations will be solved

simultaneously by the method of Hartree-Womersley [24] as

modified. The é—derivative in the momentum and energy
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equations are replaced by finite differences, so that the

partial differential equations are approximated by ordi-

nary differential-difference equations at each E-station.

The region of solution is thus divided in stations in the

E—direction as shown in Fig. 6. Each equation must be

solved step-by—step as the calculation proceeds in the

E-direction.

Consider the momentum equation for the boundary

layer:

3 (cf") + P[l - f'2] + [Bil-+ R]ff"

5? 2

5L _ ,Bf' _ "if

+U—79xB(T*Tm) ~€lf§zfl f 35; (3-5)

e

In the studies conducted by Clutter and Smith [24], it was

found that round-off errors in the computation were re-

duced by making the following substitution in the momentum

equation

.

¢ = f - n

4): = f. _ l

¢Ul = f" ?

¢Ill= ft" (3.6)

J 
The same substitution is made here. Introduction of

eq. (3.6) into (3.5) gives
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a ll _ u 2 _ __ 2:1; It

fi(c¢)-P[(¢ +1) 1] [2 +R](¢+n)¢

_ 5L _ , Bo' _ " 3¢

U—‘fng(T Tm) + €[W + MW ‘1’ 52:}

e

(3.7)

with boundary conditions

n = 0 ¢W = 0 I (1).: '1

for large n' + 0

The momentum equation is of third order and non-

linear. Solution is made difficult by both the non—

linearity and the boundary that lies at very large n. To

solve eq. (3.7) an initial value problem is created using

arbitrary values of ¢$ as the third boundary condition.

Thus it becomes necessary to search through possible

values of ¢§ until one is found that satisfies the outer

boundary condition ¢' = 0 at large n. Thus the boundary

conditions now become

71:0 I ¢W

[I

O

‘ '
9
-

II I

|
-
‘

6
-

: arbitrary

w

for large n ¢' + 0 (3.8)

The procedure for performing the search is described

below, but first consider the solution of the momentum

equation as an initial value problem. We must first

determine

n

3

c6" = f —— (c¢")dn + c ¢" (3.9)
0 3n w w
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where 3/3n(c¢") is given by the right—hand side of eq.

(3.7). cw is known and ¢$ is "searched" for. The method

of integration used in eq. (3.9) will be described in

Section 3.6. Other quantities needed in eq. (3.7) are

¢ll

¢U

c¢ II

_E_
(3.10)

n

f ¢"dn — l (3.11)

o

n

f ¢'dn (3.12)

o

The steps in the procedure for searching for the

correct value of ¢$ are:

1. Initially, ¢& = (¢&) input, where the latter is

an input into the program for the first station

E = 0; for the following stations, it is the

value of ¢§ from the previous station. Integrate

outwards and determine if the trial solution

exceeds ¢' = 0 or not.

If ¢' exceeds zero, it implies that the trial

value of ¢§ that was used in Step 1 is high and

a second solution is used to integrate out,

using a lower ¢;. The procedure is continued

until both a high and a low value of ¢$ are

obtained.
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3. Once a (¢&) high and a (¢;) low are known, a

new value of q;is obtained by splitting the

difference between the high and low value of

¢a and the procedure is continued.

4. This "splitting" is continued until three

solutions are obtained such that ¢' at ”max = noo

is between the bounds of -k : ¢'(nm) : k where

k << 1. (Both k and U00 are inputs.) At least

one of the solutions is a high one and one a

low one. A three—point interpolation procedure

is used to determine the value of ¢$ that

satisfies the outer boundary condition.

Once the interpolated value of ¢Q has been deter-

mined, it is now used to provide the correct solution to

eq. (3.7), from which the velocity profile and its deriva-

tives can be determined.

A similarity solution exists at the first station

(E = 0), so the correct value of ¢§ at E = 0 is known

a priori also, since ¢$ is a relatively smooth function of

E, the searching procedure does not take long because the

value of ¢$ does not change radically from one station to

the next.

The interpolation procedure is now described. Con-

sider the three solutions which have been obtained by the

searching procedure to be ¢l, ¢2, $3. The interpolated
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value of ¢$ obtained by three-point Langrangian inter-

polation which meets the outer boundary condition

¢'(nm) = 0 is

¢& = A1¢l(n=0) + A2¢3(n=0) + A3¢§(n=0) (3.13)

where the coefficients are given by

_ ¢é¢5

1 WI - 431w: - ¢51
 

 

¢'¢'

A - . ,1 3, , (3.14)

¢'¢

A = ' '3 2' '

 

All values in eq. (3.14) of ¢' are evaluated at nm.

3.4 Method for Solving the

Energy Equation

 

 

Before solving the energy equation, it is convenient

to use the function ¢, introduced in the preceding section,

and to introduce the function 9, defined as

e = g - l
(3.15)

for the same reason that ¢ was introduced in the momentum

equation. Substitutions of the functions in eq. (3.2)

gives
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e" = ROOF—”2:1. + R] (¢+n)e' + g[(¢ «Lug-2- - e'aq’ (3.16)

The boundary conditions are

n = 0 6w = gw - l (constant wall temperature)

or 6; = g; (constant heat flux)

for large n 6 + 0

6' + 0. (3.17)

The method of solution of eq. (3.16) is similar to

that of the momentum equation. The region is divided into

E-wise stations as shown in Fig. 6. Again the E-deriva-

tives are replaced by finite differences, these will be

defined in the next section. When solving eq. (3.16), the

previous solution of the momentum equation is known. Thus

in eq. (3.16) the only unknown is 8. The equation is

linear.

The solution of equation (3.16) is as follows:

n

6' = f 6"dn + 6; (3.18)

O

The right-hand side of eq. (3.16) gives the value of 6".

6w is known from the prescribed wall temperature. In this

case 6; is arbitrarily chosen and

n

9 = f B'dn + 8w (3.19)

O
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The method of integration to be used for eqs. (3.18)

and (3.19) is the same as for the momentum equation and is

described in Section 3.6. Since eq. (3.16) is linear, its

solutions may be linearly combined. Thus eq. (3.16) is

solved twice, and the two solutions combined to meet the

outer boundary conditions. The exact procedure is de-

pendent upon whether gw or g; is known. Consider both

cases:

 

Case 1: 2w is known. Both solutions begin with

the same given value of 9w, the one imposed by the bound—

ary condition

Equation (3.16) is solved using a trial value of 6; = g&.

Let this solution be denoted by 61(n).

If 61(nm) is greater than zero, a lower value of

6; is chosen, if it is less, a higher value of 6%. The

second solution is denoted by 62(n). The two solutions

are added to produce the general solution which can be

made to meet the boundary conditions. The general solution

is

6(n) = A61(n) + 362(n) (3.20)

The boundary conditions are
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0(nm) = A61(nm) + B92(nm)

I _ O O

9 (nm) - A61(nm) + 892(nm)

and 6w = Aelw + 862w (3.21)

But, the solutions were started using

A + B = l or B = l — A.

Thus boundary conditions (3.21) gives

 

~92(nm)

A = 617an- 92(nm) (3°22)

Thus, the correct solution becomes:

9(n) = A61(n) + (l - A)62(n)

6'01) = AOiM) + (l - A)6§(n) (3.23)

Case 2: gé is known. The procedure is similar to
 

that of Case 1, but now the energy equation is solved

USing two trial values of gw instead of gé. Again the two

trial values are denoted as 91(n) and 62(n). Relations

(3.22) and (3.23) then gives the correct solution.
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3.5 Finite-Difference Representation

of géDerivatives

The fundamental idea for the method of solution,

that of replacing the E-derivatives by finite differences

to approximate the partial differential equation by an

ordinary differential-difference equation, was advanced by

Hartree and Womersley [32]. Note that all the E-deriva-

tives that appear in the momentum and energy equations

are only of first order.

The notation for the finite—difference representation

is presented in Fig. 7. The space is divided into a number

of rectangular strips of variable thicknesszug. The cor—

ners of the strips are located at "€n+l' En, €n_1, £n_2,

€n—3'" The momentum and energy equations, being "para—

bolic" are solved by proceeding in the direction of posi-

tive E. It is assumed that the solution has been obtained

at all previous stations up to and including €n_1, which

of course means that ¢(n) and 6(n) and their derivatives

are fully known at these stations. The problem is to find

¢(n) and 9(n) at the new station En.

In solving the boundary layer equations the calcu-

lations must start at E = O. For the E = 0 station the

terms with the E-derivatives in both momentum and energy

equations disappear. At the second station the two—point

form of finite difference is used, but, at all stations

farther downstream the three-point form is used.
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For two points:

3¢n ¢n - ¢n-l
 

 

  

 

 

  

 

___ =
(3.24)

3 En - gn-l

Ag 32¢
The error in this expression is of order 77 3E: .

For three_points:

3¢n = [: 1 + 1 ¢
‘5? (En - En-l) (En - Em? n

- (En - €n_2) ¢

_(€n - 51H) (En-1 - £n_2)_ n-l

V (a: - e; ) ‘1

+ n “’1 ¢n~2 (3.25)

Lfgn - En-ZSGn-l — En-Zl‘

2 3

The error here is of order (Ag) 3 ¢ .

353

Because of the errors being of order A5 for two

point and (A6)2 for three point, the first step must be

suitably reduced in order to have the same accuracy in

the solution at all stations.

The other E—derivatives 8¢'/3€ and 36/85 are re-

placed by similar expressions as (3.24) and (3.25).

All of the above relations are given in Ref. [24].

3.6 Method of Integration

The method of solution of both the momentum and

energy equations is outlined in Sections 3.3 and 3.4.

The problem of solution is one of integration. There

are several methods of performing the integrations that
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are available in computer libraries for example, Milne's

fourth-order predictor corrector method; but, because of

their generality, they require long computing time to

solve the present problem. In the present investigation,

a method developed by Clutter and Smith [24], will be

used and is discussed below. It uses a four-point form

of the Falkner extrapolation formulas and the Adams

interpolation formulas [24].

Consider first the general situation where the

solution is known up to n and the problem is to find the
S

values of ¢ and 6 and their derivatives at n (= n +An)
8+1 S

by use of eqs. (3.9 to 3.12) and eqs. (3.18) and (3.19).

A special procedure is used to get started near the wall

and is described later in this section.

Consider the momentum equations first where the

integration indicated in (3.9, 3.11, 3.12) will be approxi-

mated by the Falkner's extrapolation and Adams' inter-

polation formulas. The extrapolation formulae use values

of (c¢")' and ¢" at the S, S-l, S-2, S—3 stations to

determine values of ¢, ¢‘, ¢", and (c¢")' at the 8+1

station. The formulas are

(C¢")S + §—}I55(c¢")é - 59(c¢" '
(C¢")s+1)E = s-1

- 9(c¢" ' ] (3.26)+ 37(c¢ S-3
")é—z

where the subscript E denotes extrapolation. The step

size An is constant.
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The extrapolation formulae for ¢' and ¢ are

I _ I A n I II II II

¢S+1)E — ¢S + 24I55¢S - 59¢S_1 + 37¢S_2 - 9¢S_3]

(3.27)

and

¢ = ¢ + A ¢' + iéflli[323¢" - 264¢"
S+l)E s n s 350 s s—l

+ 159¢§_2 - 39¢§_3] (3.28)

The quantity (c¢")' can now be determined by using the
8+1

momentum equation (3.7) and the extrapolated values of

E, ¢é, ¢E° The result will be denoted by

(c¢")g+1)E = F(¢g. ¢'. ¢E)S+l (3.29)

The interpolation formulae are now used to determine more

exact values of ¢", ¢', ¢, and (c¢")' at the 8+1 station.

The formulae are

(c¢")s+1 = (cw)S + %%[9‘C¢"’é+1)2 + 19(c¢")é

- 5(C¢")é_1 + (c¢")§_21 (3.30)

and

I = ¢I + fl[9¢n + 19¢" __ 5CD"

5+1 5 24 S+l)E S S-l

+ " ] (3.31)
S-2
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and

¢ — ¢ + A ¢' + iéflli[38¢" + 171¢"
s+1 ’ s n s 360 S+l)E s

- 36¢S_l + 7¢S_2] (3.32)

A comparison of the error terms for the extrapolated and

interpolated formulas show that not only are the inter-

polation errors much less than the extrapolation ones but

they are also Opposite in sign [24]. Thus, the errors

tend to cancel rather than add up. The solution can be

made as exact as desired by choosing a small enough step

size.

The formulas for performing the integration required

in the solution of the energy equation are similar to those

above. The extrapolation formulae are

AnI = I _ II __ II II _ II
eS+l)E 68 + 24[556S 5968-1 + 3765—2 968—3]

(3.33)

and

e = a + 91[559' - 599' + 376' - 99' 1
S+l)E S 24 S S-l S-2 S—3

(3.34)

and then using eq. (3.16)

II _ I

eS+l)E ‘ 61(6E'6E)S+l (3'35)
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The interpolation formulas are given by

' .—

e8+1

I

o

m
..

+

_A_T_]_ II II _ II II

“(96%”E + 1968 seS_1 + 93-2] (3.36)

= 9.3. ' I _ I I
6 6 + 24[96 + 196S 56 + 6 (3.37)
8+1 8 S+l)E 8 S-2]

and finally, using (3.16)

II ._.. I
68+1 G(6 '6)S+l (3.38)

The extrapolation—interpolation formulae above

require values of the functions ¢ and 6 along with their

derivatives at four previous 5 stations. To get started

at the wall Taylor's Series will be used, with a step

size of An/16; An is the step size used in the four-point

extrapolation-interpolation formulas. The step size is

gradually built up to the full length step An by using

two-point and three—point extrapolation formulae using

step sizes of An/8, An/4, and An/Z, respectively.

The steps to be used in the procedure are shown

in Table 5. The equations to be used are given below.

Taylor Series--Step Size An/16
 

.. _ .. An .. .

I _ I AT] II

¢ An/16 - ¢W + 16 ¢W (3.40)

¢ z ¢ - Al + 1911: ¢" (3 41)

An/16 w 16 512 w '
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An II (3 42)
= ' + — 6 .

e.An/16 6 16 w

- 91 ' (3.43)
eAn/lG ' 6w + 16 e

Two-Point Formulas-—Step Size An/16

II A") II I _ II I

(04")An/8 = (C¢ )An/l6 + §§[3(c¢ An/16 c¢ )w]

(3.44)

¢'An/8 = ¢'An/16 + 3%[3¢"An/l6 ” ¢§1 (3'45)

¢An/a = ¢An/l6 + 9% ¢'An/16

+ (§+36[4¢"An/16 ¢Q1 (3'46)

e'An/a = e'An/16 + 32[36"An/16 ' 6;] (3'47)

eAn/B = eAn/16 + 3%[38'An/16 ‘ 6&1 (3°48)

Two-Point Formulas--StepfiSize An/8

II Ar) II I _ II I

(C¢")An/4 = (C¢ )An/8 + T§[3(C¢ ) An/8 (c¢ )w]

(3.49)

¢'An/4 = ¢'An/8 + %%[3¢"An/8 ' ¢§l (3'50)

¢An/4 = ¢An/8 + %? ¢'An/8

+ ‘QELI4¢"An/s - 4&1 (3.51)
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]

2-1]

I = I 91 II _ II

9 An/4 9 An/8 + 16[36 An/8 9

_ 93 I _ I

eAn/4 ” eAn/a + 16[36 An/8 ew]

Two-Point Formulas--Step Size An/4

tech“) = (cw) + fli3<c¢")' - <c¢")' 1
r+l r 8 r r-l

I _ I All II _ II

¢r+l _'¢r'+' 8I3¢r r-l]

¢ = q) + fl¢l + (An)2[4¢n _

r+l r 4 :r 96 r

AnII _ I _ II _ II

er-I-l - 6r + 8 Bar er—l]

_ £1 . .

er+l — er'+ 8l3er 6 -l]

Three-Point Formulas-—Step Size An/Z
 

II II AT] II I _ II I(¢¢ )r+l + (c¢ )r + 24[23(c¢ )r 16(c¢ )r—l

+ 5(C¢")£_2]

 

I = I __ II _ II . II

r+l ¢ + 24l23¢r 16¢)r—l L 5(pp-2]

¢ - ¢ + fl ((3. + (An)2[19¢u _ 10¢"

r+l — r 2 r' 96 r r-

+ 3 r-2]

6' = e + Afll236" - 166" + 56" 1
r+l r 24 r r-l r-2

6 = e + 91(236' - 166' + 56' 1
r+l r 24 r r-l r-2

1

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)
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All of the above expressions may be found in

Reference [24].

3.7 Starting the Solution
 

At 6 = 0, the E-dependent terms disappear in both

the momentum and energy equation, when buoyancy forces

are excluded. The momentum equation reduces to

(C¢")' = P[(¢' + l)2 -l] - [Pg-1- + R](¢>+n)¢" (3.64)

and energy equation to

6" = Prm[:§l + R](¢+n)6' (3.65)

Hence, values of ¢ and 6 at previous stations are not re—

quired. The E-dependent terms also disappear for similar

type flows. Such flows occur when P and R and the wall

boundary condition are constant for all 5. These include

flow over a flat plate with constant pressure and wedge

type flows (buoyancy forces not included).

The procedure of solution described earlier requires

that the momentum equation be solved first, but to do so

requires the values of viscosity. To get started at the

E = 0 station, a linear temperature profile that satis-

fies the inner and outer boundary conditions for tempera—

ture is assumed. The viscosity obtained from this

temperature profile is then used to start the solution.

After the first solution of the momentum equation at any
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particular station is found, the viscosity obtained from

the last solution of the energy equation is used.

At 5 = O, the value of P, the pressure parameter

is known. For the flat plate with zero pressure gradient,

P = 0, while for a sphere, P = 1. At E = 0, the value of

R, the radius parameter, for any conical body is zero,

while for a flat plate R = 0 for any 5.

3.8 Boundary Layer Parameters
 

Once the momentum and energy equations have been

solved at a particular E-station, the conventional bound-

ary layer parameters are calculated.

1. Displacement Thickness.
 

A physically meaningful measure for the boundary

layer thickness is the displacement thickness 61, which

is the distance by which the external potential flow is

displaced outwards as a consequence of the decrease in

the velocity gradient in the boundary layer.

= f (1 - 694dy (3.66)

0 e

61

Using the transformation equations (2.13), the definition

of 61, equation (3.65) transformed into the (€,n) coordi-

nates is

000x 0" u

61=/-fi—f (1"5")dy

e 0 e
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vmx / U0° w

6 = ——— U— f (l - f‘)dy (3.67)

e o

A dimensionless displacement thickness may be defined as

in Smith and Clutter [24]

 

 

 

6* — / U—“L 61 (3 68)
l “ v00 'R_ '

Substituting (3.67) into (3.68)

* nm - fnzoo

61 = (3.69)

/E/a
U0° x

2. Momentum Thickness.

The momentum thickness is defined as

5 ._. f B—(l - .13..)dy
(3.70)

2 o Ue Ue

In the (€,n) coordinates, 61 may be written as

/ vmgL / U0° w

_ __ I - I
62 — U U f f (l f )dy

m e o

A dimensionless momentum thickness is defined [24] as

* UmR 62

5 = __ (3.71)

2 ‘v TT"
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or m

f — I flzdn

* n=00 0

(s = (3.72)

2 U

/_2 A

U x

3. Shear Stress at the Wall.
 

The shear stress at the wall is defined as

T=B_u
w 11w 8y w

or in (€,n) coordinates as

/ U

_ e N

Introducing the local skin friction coefficient defined

[23] as:

Tw
of = L U 2 (3.74)

zpme

or

C = 2 LEE "

f / UeEL um w

 

Define the local Reynolds Number Reg to be

Re = fig:

5 V00

Thus

1 U

cf(Re£)’5 =/% [Ufl]f; (3.74)

L 00
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A conventional shear parameter is defined [23] as

which with (3.74) becomes

u

c * = ———£——— / L-[—EI f" (3.75)

x um w

4. Heat Transfer Parameter.

The heat transfer rate at the wall is given by

or in (5,0) coordinates

U

qw = - k V e gQTm (3.76)
W \) L

(D

Let the local Nusselt Number be defined as (for flat

plates)

qu

kw(Tw - T )

 Nu=

x

or with (3.76) and definition of Rex,

I

Nu /Re = ——E!—— (3.77)
x x l - 9

w

For the sphere, Nusselt Number is defined as

qw D

D kwfiw - Tm)

 

Nu (3.78)
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Since the external velocity field Ue is a function of E,

it may be written as

Ue = Umf(€)

Thus

 (3.79)
_ /—f(€) 95)

NuD//R5fi — 2 5 [1 _ g

3.9 Computer Program

 

W

 

A computer program was written to solve the momentum

and energy equations simultaneously by the method de-

scribed in the proceeding sections. This program was run

on the CDC 6500 and is reproduced in the Appendix. The

results of the runs made are given in Chapter 5.



CHAPTER 4

EXPERIMENTAL APPARATUS AND PROCEDURE

4.1 Introduction
 

The experiments were conducted to provide a quali-

tative estimate of the effect of heating a sphere on the

separation point. A brass sphere was placed in a square

horizontal test section of a loop designed to circulate

water. The sphere was heated electrically by means of a

heating element placed inside the hollow brass sphere.

The temperature difference between the water upstream

from the sphere and the wall of the sphere was measured

with the use of thermocouples. Hydrogen bubbles generated

off a fine wire placed on the surface of the sphere were

used to visualize the flow around the unheated sphere,

while the shadowgraph method was employed when the Sphere

was heated.

A description of the sphere, test 100p, and the

flow visualization techniques follow.

4.2 Description of the Heated

Sphere

A sketch of the sphere with the heating element

 

installed inside it, is shown in Fig. 8. The 3.00"

53
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(1.004) external diameter hollow brass sphere consisted

of two hemispheres joined together. The wall of the

Sphere was 0.25 inches thick resulting in a constant

temperature sphere. The heating element consisted of

21 feet of Nichrome wire with asbestos insulation. The

heating wire was held in a plastic cage inside the sphere,

as shown in Fig. 8.

Four, 30-gage iron—constantine thermocouples were

soft-soldered into the inside wall of the sphere at the

position shown, i.e., No. l at 70°, No. 2 at 45°, No. 3

at 0°, No. 4 at 315° (all angles measured clockwise from

the forward stagnation point). The thermocouples, when

inbedded into the wall, were 1/16" from the outside sur-

face. Since the temperature difference between the up-

stream water and the wall of the Sphere is required, a

thermocouple was placed upstream of the sphere and used

as the reference junction.

The heating element lead wires and the thermocouple

wires passed through the Plexiglass support tube. A photo~

graph of the sphere with the support tube is shown in

Fig. 9.

The brass sphere was marked at 2 degree intervals

between 80° and 100° (measured from the forward stagnation

point).

The sphere was coated with a fine coat of varnish,

which insulated the brass Sphere from the fine wire which
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generated the hydrogen bubbles. The hollow sphere was

filled with water before it was placed into the test

section. The water served to improve the heat transfer

to the interior walls of the Sphere.

4.3 Description of the Test

Section Loop

A schematic diagram of the test loop, which consists

of a variable flow rate pump, two tanks and a lO-inch

square plexiglass test section is Shown in Fig. 10. Water

was circulated by a centrifugal pump. The walls of the

upstream and downstream tanks were lined with stainless

steel sheets. The upstream tank contained three straighten—

ing sections. The first of these contained glass marbles

sandwiched between two stainless steel screens; the second,

a fine mesh stainless steel screen; and the third, a

honeycomb constructed by placing 3-inch long, 0.2 inches

diameter plastic soda straws between two stainless steel

screens. The honeycomb was placed at the inlet of the

square test section, so as to insure uniform velocity

profiles in the test section. No measurement was made of

the low free stream fluctions level. However, hydrogen

bubbles traces showed no observable fluctions. The

piping used to transport water from the downstream tank

to the upstream tank through the pump was made of P.V.C.,

a plastic material.
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Care was taken to maintain the water as free from

impurities as possible. Before any tests were made, the

water in the test loop was passed through a water filter at

low speeds for at least 12 hours.

4.4 Flow Visualization Techniques

The two visualization techniques, the hydrogen bubble

method and the shadowgraph method, used in the present work

will not be discussed at any length because they have been

used in the past by many researchers [40]. Mention will

be made, however, of the problems encountered in using

these techniques in the present Situation.

The hydrogen bubble method consists of using a fine

wire as one end of a d—c circuit to electrolyze the water.

The tiny bubbles thus formed are visualized by means of an

appropriate light source placed outside the test section.

A .001—inch platinum wire was used to generate the hydro—

gen bubbles. A Spectra—Physics Laser beam passed through

a cylindrical lens was used as a light source. The plati—

num wire was stretched across the top half of the meridian

plane. Thus the hydrogen bubbles were generated next to

the surface of the Sphere, in the boundary layer and the

wake region.

The Shadowgraph method is based on the phenomenon

that light passing through a density gradient in a fluid

is deflected. It measures the second derivative, there—

fore allowing visualization of only those parts of the
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flow where the density gradient change is sufficiently

large. The shadowgraph system consists of a bright light

source, a colliminating lens, and a viewing screen.

Photographs were taken of the region near the

separation point using the hydrogen bubble method and of

the whole flow field around the sphere using the shadow-

graph method. The laser beam used to visualize the

hydrogen bubbles was not photographed directly; a video

recording was made with a TV camera installed with a

130 mm lens. The video pictures projected on the TV

screen were then photographed. The shadowgraph pictures

were directly photographed.

4.5 Operating Procedures
 

The test loop was filled with soft water and the

brass sphere was installed in the test section. The flow

rate was adjusted so that the pump circulated 94 gallons

per minute through the test loop. This flow rate resulted

in the flow rate of the water in the test section to be

0.3 ft/sec. The Reynolds Number, based on the diameter

of the sphere, was thus 7500. This low Reynolds Number

assured a laminar flow in the boundary layer prior to

separation.

Before the sphere was heated, the hydrogen bubbles

were generated and photographs taken to insure the occur—

rence of laminar separation (about 84°). The power to

the heating element inside the sphere was then adjusted
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to provide the desired temperature difference between the

water upstream of the sphere and the wall of the sphere.

The shadowgraph pictures were taken for various tempera—

ture differences.

Prior to making any tests, the sphere was heated to

check the uniformity of the temperature of the Sphere wall.

All the thermocouples (1 thru 4) were used to check the

wall temperature of the sphere and it was found that the

Sphere temperature was essentially constant. When the

Sphere was heated to make tests two thermocouples (2 and 4)

were used to determine the temperature difference between

the water upstream and the wall of the Sphere.

The sphere reached a constant temperature within

three minutes after the power was turned on.



CHAPTER 5

NUMERICAL AND EXPERIMENTAL RESULTS

5.1 Introduction
 

In this chapter results will be presented to Show

the effect of heating a body which is placed in a uniform

stream of water. Numerical results will be presented for

various flow cases of water flowing past a flat plate and

a sphere. Experimental results, which are qualitative in

nature, will be presented for the case of water flowing

past a 3—inch sphere placed in a lO-inch horizontal square

test section.

Though the primary objective of this investigation

is to show that heating does affect separation, numerical

results will include the effect of heating on the boundary

layer parameters.

In Chapter 3, the numerical methods of solution,

for the momentum and energy equations, were discussed.

It Should be emphasized that the boundary layer equations

(momentum and energy) are valid only if 6 << 1. Near the

separation point this requirement is no longer valid and

hence the boundary layer equations are not applicable.

59
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If the boundary layer equations were extended up to the

separation point, a mathematical singularity would exist

at the separation point. This presents a serious problem

to investigators interested in locating the separation

point. One way to eliminate this mathematical singularity

would be to solve the full Navier-Stokes equations instead

of the boundary layer equations. Since the Navier—Stokes

equations are very difficult to solve, what is usually

done is that the boundary layer equations are solved to

a point as near the separation point as possible and then

the solution is extrapolated to the separation point. The

usual procedure is to use the value of ¢§ along the sur-

face of the wall and to extrapolate the separation point

to be the point where ¢& = 0. (This is done by fitting

a curve through the 6; data points.)

5.2 Verificatign of the

Numerical Techanue

The purpose of this section is to establish the

accuracy of the numerical method of solution. It will be

done by comparison with known numerical and exact solutions,

and experimental data.

A. Similar Flows on a Flat Plate

The only boundary layer flows which can be solved

exactly are similar flows for which Ue = Em, where con—

stant coefficients are assumed. For such flows the

momentum equation and the energy equations are uncoupled.
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The momentum equation is independent of €, and since the

flow is two-dimensional, the radius parameter R is zero;

eq. (3.7) then reduces to

4'" = - 331-(¢+n)¢"+ 9((4' + 1)2 - 11 (5.1)

In this equation P = m where Ue = Em. The flows included

in this study are for m = 1.0, 0.33, 0, -.0476l9, and

—0.090429. m = 1.0 is the stagnation point flow; m = 0

is the Blasius type or flat plate flow; and m = 0.090429

corresponds to the separation profile. Fig. 11 shows

these five profiles and in Table 6 the values of ¢§ are

compared with exact results.

Kaups and Smith [24] present results for a flat

plate (Ue = Em, m = 0) where the plate is heated. Heating

causes a viscosity variation u(T) across the boundary

layer coupling the momentum and energy equations; they

are

7}”- (c4“) = - P—‘glwwm" + P[(¢>' + 1)2 - 1]

6" = Prw[2§l](¢+n)9'
(5'2)

where c is the variable viscosity parameter defined by

eq. (2.9).

The eqs. (5.2) are solved simultaneously. Figs.

12 and 13 show the velocity and temperature profiles

respectively for the heated and the cooled flat plate.
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It can be seen that the given temperature variation causes

considerable deviation from the Blasius profile. As ex-

pected, the inverse viscosity—temperature relationship for

liquids makes the effect of heating and cooling opposite

to that for gases. Also shown in Fig. 12 is the "seventh

power" turbulent profile. In Chapter 1, it was pointed

out that the reason why a turbulent boundary layer around

a sphere separated "later" (110°) than a laminar boundary

layer (84°) was that the turbulent boundary layer contained

more momentum near the wall than the laminar boundary

layer and thus could better overcome the adverse pressure

gradient. The "seventh power" turbulent boundary layer

profile in Fig. 12 is shown to indicate that with sufficient

heating the laminar profile tends to look more like the

turbulent profile (i.e., contains more momentum). Figs.

12 and 13 also give a check against the calculations of

Kaups and Smith [24]. Table 7 shows the effect of heating

and cooling on the skin friction and the heat transfer

parameters; the results are compared with Kaups and Smith.

Since buoyancy forces are to be included in the

calculations for flow around a sphere, a check was made

with Kaups and Smith's [24] example of flow past a verti-

cal flat plate with Tw = 312°F, T0° = 40°F, and U00 = 6fps.

Figs. 14 and 15 Show the velocity and temperature pro—

files respectively at a distance of two feet from the

leading edge.
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It is concluded from the results presented for the

Similar flows that the numerical method of solution being

used in the present investigation is sufficiently accurate.

Since in this investigation, attention is focused on the

separation point, a check was made on decelerated, or

adverse pressure gradient, flows.

B. Adverse Pressure Gradient Flows

The development of the laminar boundary layer in a

linearly retarded velocity field

C
2

U_:=1-% (5.3)

has been studied by Howarth [34], Von—Karman and Millikan

[35], Hartree [36], and Smith and Clutter [37]. This

fluid flow case was studied without the consideration of

heat transfer effects. In this investigation, a method

of solution which is identical to the method of the latter

two [36, 37] is used. This particular type of flow,

eq. (5.3), leads to separation. Table 8 compares values

of 6; calculated by the present author and those by

Hartree and Smith and Clutter.

As was pointed out earlier, the boundary layer

equations are not valid at the separation point, thus the

separation point is extrapolated from the values of 6;.

The present method extrapolated the separation point to

lie at E = 0.96 for the flow given by eq. (5.3).
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In addition, the retarded flow

1 - E (5.4)

C
'
C
‘
.

(‘
D

8

has been studied by various authors [6, 34, 38]. Table 9

compares the separation point as calculated (extrapolated)

by various workers and the present author. It is evident

that the discrepancy is greater than for the retarded flow

given by eq. (5.3). The reason for this seems to be that,

because eq. (5.4) represents a very strong adverse pres—

sure gradient, separation occurs very close to the leading

edge. The boundary layer equations are valid in only a

short region near the leading edge; hence the extrapolation

procedure is assumed inaccurate.

The flows discussed in parts A and B have been two—

dimensional plane flows. For axially symmetric bodies,

the radius parameter R = (E/ro)(dro/d€) has values other

than zero. The boundary layer growth on a Sphere is pre—

Sented next.

C. Flow Over a Sphere
 

Two cases for the potential flow around the sphere

will be considered; in one case, the simple potential

flow for an unseparated flow is employed, while in the

other, use is made of a velocity distribution Ue/U0°

which has been obtained experimentally [31] in the case

when the flow separates from the forward portion of the
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Sphere. The two velocity distributions are shown in

Fig. 16. The pressure distribution around the sphere has

been reproduced from [31] and is shown in Fig. 17.

"Critical flow" is defined as the flow where the flow in

the boundary layer "just" becomes turbulent at the point

of separation. In Fig. 17 the "above critical" curve

represents the pressure distribution around the sphere

when the boundary layer becomes turbulent before it

separates and the "below critical" curve represents the

pressure distribution when the boundary layer remains

laminar up to the separation point. It is obvious from

Fig. 17 that the pressure distribution measured for the

"above critical" flow is similar to that of the simple

potential flow. Thus the solution obtained from the

potential flow theory for flow around the sphere serves

as an approximation for the "above critical" flow.

The theoretical velocity distribution on the sur—

face of a sphere as obtained from potential flow theory,

is given by

C

e
.IT-

00

N
H
»

= % Sin a = sin 5. (5.5)

The radius ro(€) is given by

r = R1 Sln 6

where R1 is the radius of the Sphere. The boundary layer

calculations for the flow around the Sphere, with no
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heating, were carried out to determine the separation

point. The value of 6; are tabulated in Table 10 and

are compared with those calculated by Smith and Clutter

[37]. The separation point, ¢& = 0, was extrapolated to

be at 104°.

The experimentally determined velocity distribution

[31] for “below critical” flow around the sphere is given

by

C

a: = 1.5 6- .3640263 + .2466865. (5.6)

The boundary layer calculations using eq. (5.6) for the

velocity distribution with no heating predicts the

separation point to be at 87°. Tomotika [31] using

eq. (5.6) calculated the separation point to be at 81°

using a momentum integral technique. Page [41] measured

the separation point to be around 85°.

Fig. 18 Shows ¢$ plotted against a for the two types

of flows around the sphere corresponding to eqs. (5.5)

and (5.6). Referring back to Fig. 17, it is evident that

the point of minimum pressure lies at 74° for the ''below

critical" flow. It is because of this stronger adverse

pressure gradient for the "below critical" flow case that

the flow separates earlier (about 10° after minimum pres-

sure point) than for the "above critical" flow case (about

20° after the minimum pressure point).



67

5.3 Flow Past an Unheated Sphere:

Hydrqgenfiubee Experiment

The purpose of this section is to present experi-

mental results which show that the flow past the unheated

Sphere is laminar. This is done by showing that separation

exists around 85°. The hydrogen bubbles, generated by the

platinum wire placed on the surface of the Sphere, made it

possible to visualize the entire flow region around the

sphere, i.e., the boundary layer and the wake region.

Fig. 19 shows a photograph of the flow region between 80°

and 100° (measured from the stagnation point). It is

evident from the photograph that there is reverse flow

beyond 88°, implying that the separation point must lie

ahead of 88°. To define the separation point, the follow—

ing procedure was employed.

A tracing of the photograph was made, as is shown

in Fig. 20 (solid lines). Then a dotted line was passed

through the zero velocity point of the reverse flow "path"

lines and extrapolated to a point on the sphere. This

point was defined as the separation point. AS is evident

from Fig. 20, the separation point lies near 84°.

It must be emphasized that the major problem en—

countered was the generation of large hydrogen bubbles.

Researchers have experienced this problem in the past

[41] but it was eSpecially a nuisance in these experi-

ments because the large bubbles would stick to the surface

of the sphere thus disturbing the flow. Conventional
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techniques of brushing off the bubbles and Switching the

polarity of the platinum wire were employed but without

satisfactory results.

5.4 Effect of Heat Transfer in

Linearly Retafded Flows on

a Flat Plate

 

 

Consider first the flow over a heated flat plate

where the external velocity flow field is given by

U

6 _ .. E.
U "‘ l 8 o (507)

Since the viscosity variation is important in heated

liquid flows, the momentum and energy equations are

coupled and thus solved simultaneously. The free stream

fluid temperature is assumed to be 70°F and the flat plate

is heated to temperatures of 100°F, 150°F, and 200°F.

Also considered will be the case of the cooled flat plate,

where the free stream temperature is 150°F and the plate

is 70°F. Thus we have three heated cases with tempera—

ture differences of AT = 30°, 80°, 130°, and one cooled

case with AT = -80° (AT = Tw — Tm). For all the cases

to be presented, the results will be given for the four

temperature differences mentioned above.

Figs. 21 through 23 show the velocity profiles at

various E-stations along the flat plate for AT = 130°,

80°, 30°, 0°, and -80°. Fig. 24 Shows how ¢§ varies

along the plate for various AT. The dotted line in
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Fig. 24 represents the extrapolation to is, the separation

point. Fig. 25 shows the separation point location for

various temperature differences. Figs. 26 through 28 are

plots of the temperature profiles at various E-stations.

Next, the flow over a heated flat plate where the

external velocity flow field is given by

U

9 =1—6 (5.8)

on

“I

was calculated. This external velocity flow field repre—

sents a stronger adverse pressure gradient than the case

represented by eq. (5.7). Figs. 29 through 31 Show the

velocity profiles at various E-stations along the flat

plate for different AT. Fig. 32 shows the variation of

¢§ vs. 6 and here again the dotted line Shows the extrapo—

lated values of as. Fig. 33 shows the location of the

separation point for various temperature differences, AT.

Since heating tends to increase the E-component of

the velocity vector (i.e., increased momentum in the

boundary layer), it is obvious that as the plate is heated,

there will be a corresponding decrease in the displacement

thickness. Fig. 34 Shows this decrease in displacement

thickness by comparing the curves of various ATS. Note

that for the cooled flat plate, the displacement thickness

is the greatest. Fig. 35 gives a similar plot for the

momentum thickness. Figs. 36 through 38 show the
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temperature profiles for various ATS. It may be inferred

from these plots that as the plate is heated, the thermal

boundary layer decreases with correspondingly higher

gradients at the wall, thus increasing the heat transfer

rate. Fig. 39 is a plot of the heat transfer parameter

Nug/Reg, showing the increased heat transfer.

5.5 Effect of Heating a Sphere
 

Numerical results will be presented for the two

potential flows, eq. (5.5) and eq. (5.6), around the sphere

(see Section 5.2). The effect of introducing the buoyancy

force term will be discussed for the case of flow of water

past a heated sphere in a vertical channel. Experimental

results showing the effect of heating a 3—inch sphere in

a lO—inch square horizontal test section will be presented.

A. Simple Potential Flow ("Above Critical")

The velocity profiles for the temperature differ-

ences, AT = 130°, 80°, 30°, 0°, -80°, at various a

locations along the surface of the sphere are shown in

Figs. 40 through 42. Fig. 43 shows the variation of 6;

vs. a for the temperature differences mentioned above.

The dotted line shows the extrapolation to the separation

point a Fig. 44 is a plot of the local skin frictionS.

coefficient along the surface of the sphere. Referring

back to Fig. 17, it is evident that the pressure distri—

bution represented by the "theoretical" curve is such
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that the pressure gradient is favorable (negative) from

the stagnation point (a = 0°) to a = 90° and that beyond

a = 90°, the pressure gradient is unfavorable (positive).

Fig. 44 shows that heating the sphere diminishes the skin

friction before a = 90° and increases it beyond a = 90°.

Figs. 45 through 47 are plots of the temperature profiles

for various a-locations along the surface of the Sphere.

Fig. 48 shows the variation of local heat transfer

parameters, NuX//RE* for the temperature differences

being discussed. Table 11 gives the extrapolated values

of a for the various temperature differences.
S

B. Experimentally Determined Velocity

Distribution (“Below Critical")
 

The effect heating has on the velocity profiles in

the boundary layer at various a-locations is shown in

Figs. 49 through 51. It is evident that heating tends

to decrease the velocity boundary layer thickness. Figs.

52 and 53 Show how the displacement thickness and

momentum thickness is affected by heating and cooling

the Sphere. Fig. 54 shows the effect of heat transfer

on the velocity gradient ¢$ at the wall. The dotted lines

indicate the extrapolation to the separation point as.

Figs. 55 through 57 are plots of temperature profiles at

various a-locations. The local heat transfer parameter

Nux//RE* is plotted in Fig. 58. Table 12 gives the

extrapolated values of a for the various temperature
S

differences.
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C. Effect of Introducin the Buo anc

Force Term I Below Critical

The buoyance force term in the momentum equation

(3 .7) is retained to Show its effect. For the potential

flxDW'around the sphere, use is made of eq. (5.6), which

represents the "below critical" flow. Before the results

showing the effect of the buoyancy force term are pre-

Sen¢ed, a definition of positive and negative buoyancy

force is given.

The buoyancy force is considered positive when it

is in the same direction as the free stream velocity and

negative when in a direction opposite to the free stream

velocity. Fig. 59 shows the positive and negative buoy-

ancy force in a vertical channel that exists in the

boundary layer when the Sphere is heated or cooled. The

reason for presenting the flow in the vertical channel

is that the flow remains axisymmetric and thus can be

treated by the numerical solution.

It is obvious that when the buoyancy force is posi—

tive (Fig. 59a and 59d), it would delay separation, and

that when the buoyancy force is negative (Fig. 59b and

59c), it would bring about separation earlier.

Calculations were made, with the buoyancy force

term included for the four cases listed below, where the

sphere was either heated or cooled.
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Case 1. T = 150°F; T0° = 70°F (heating)

Fig. 59a Buoyancy Force Positive

Case 2. T = 150°F; Tco = 70°F (heating)

Fig. 59c Buoyancy Force Negative

Case 3. T = 70°F; T0° = 150°F (cooling)

Fig. 59d Buoyancy Force Positive

Case 4. T = 70°F; Tco = 150°F (cooling)

Fig. 59b Buoyancy Force Negative

Fig. 60 shows the effect of the positive and nega—

tive buoyancy forces on the velocity profile at an a—

station on the Sphere when the Sphere was cooled (Case

3 and 4). Also shown in Fig. 60, for comparison, is the

velocity profile when the buoyancy force was not included

in the calculation. It is evident that the negative

buoyancy force makes the velocity profile approach the

separation profile. Figs. 61 and 62 are plots of ¢$

vs. a for the cases mentioned above. Both the cooled

sphere (Fig. 61) and the heated sphere (Fig. 62) indicate

a slight Shift in the separation point when the buoyancy

forces are included.

In Chapter 1, reference was made to an experimental

study by Brown [27], where he studied the effect of heat—

ing a Sphere in a vertical channel (as in Fig. 59a).

The copper sphere was heated with a constant heat flux
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su<:h that the temperature difference between the water

upstream and the stagnation point of the sphere was 10°F.

The two extreme cases for which Brown presents results

area: (1) water temperature = 70°F, Sphere temperature =

80°TV and (2) water temperature = 180°F, sphere tempera—

ture = 190°F. Brown plotted the experimentally deter-

oumed local Nusselt number along the sphere for various

Reynolds numbers. Also presented was a plot of a heat

transfer parameter (NuD/Reg Pr'36) vs. a.

Brown's experimental results are verified quali-

tatively by the present numerical solution, with the

buoyancy force term included. For the purpose of simu-

lating the potential flow around the Sphere, use was

made of eq. (5.6).

The local Nusselt number NuD is plotted in Figs.

63 and 64, and compared with Brown's results. Fig. 65

compares the heat transfer parameter used by Brown, as

calculated by the present analysis.

The results Show that Brown's experimental data

agree within 10% of the results calculated by the present

work .

D. Experimental Results

Hydrpgen bubble method: The hydrogen bubble method

was unsuccessful in visualizing the flow past the heated

sphere. It was evident that the platinum wire generated

large bubbles very rapidly and that these bubbles remained
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on. the wire thus disturbing the flow field. Attempts to

brtash off the bubbles fast enough and record only the tiny

buldbles were unsuccessful. Repeatedly, a new platinum

Idgre was used with the anticipation of generating uniform

bubbles but all attempts failed. It was thought that the

secondary currents produced by the heating element wire

Othich had A.C. flowing through it) may be the cause of

a large potential across the platinum wire, and reducing

the input d.c. potential did not produce any different

results.

Thus the hydrogen bubble method was abandoned in

favor of the shadowgraph method.

Shadowgraph method: The 3-inch brass Sphere was

heated in a lO—inch square horizontal test section. The

temperature difference between the water upstream and the

‘wall of the sphere ranged from 20°F to 100°F. Shadow-

graph pictures were taken for various temperature differ—

enceS and these are presented in Figs. 66 through 69.

Since Shadowgraph pictures Show dark lines where the

derivatives of the density gradients are large, the wake

region is visualized. It becomes difficult to extrapo—

late the separation point, since the reverse flow patterns

are not visualized.

However, these pictures do merit some qualitative

analysis. It is evident that as the sphere is heated to

higher temperatures the flow about the sphere becomes
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asymmetric, i.e., the wake region becomes asymmetric.

This is probably due to the buoyancy forces. Also, note

that the wake is apparently three—dimensional at higher

temperatures. Even though the location of the separation

point cannot be determined, it is evident that there is

not a significant shift in the separation point, i.e.,

the separation streamline appears to lie in the same

region.

As is evident from the results presented, the

shadowgraph method is not suited to determine the location

of the separation point.

5.6 Effect of Treating Viscosity

Constant in LInearly Retarded Flow

The results presented in the preceding sections

were calculated when the viscosity varied across the

boundary layer. In the present section, calculations

are made with the viscosity held constant across the

boundary layer.

The linearly retarded flow, eq. (5.4), past a

heated flat plate is examined. Calculations are made

using: (1) the value of viscosity at wall temperature

u = u ; and (2) the value of viscosity at free stream
w

temperature, u = uw. These results will be compared with

the results obtained previously, when the viscosity was

allowed to vary, u = u(T). Calculations are made for

'the case when the temperature of the flat plate is 150°F

and that of the free stream is 70°F (AT = 80°F) .
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Figs. 70 and 71 compare the velocity and temperature

profiles at a typical E—station, when the viscosity is

considered constant and variable across the boundary layer.

In Figs. 72 and 73, the effect of treating viscosity con-

Stant on the velocity gradient at the wall and the heat

transfer parameter Nux/Rex are shown.

The plots show that the results obtained by treat—

ing viscosity constant are substantially different than

those obtained by treating viscosity variable. When

viscosity is considered constant, the calculations do

not Show any significant shift in the position of the

separation point.

5.7 Conclusions

Heating substantially increases the u—component of

the velocity in the laminar boundary layer. With a AT

of 180°F the u—component of the velocity in the boundary

layer increases by 100% for the linearly retarded flow

past a heated flat plate, while the u—component of the

velocity increases by approximately 50% in the laminar

boundary layer for the flow past a heated Sphere.

Heating retards the laminar boundary layer sepa-

ration. The shift in the separation point is more pro—

nounced in the linearly retarded flow past heated flat

plate (30%), than for the flow past the heated sphere*

*The numerical calculations were made using the

experimentally determined [31] pressure distribution from
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(5%). Experimental results tend to confirm that heating

a sphere has a small effect on the position of the sepa-

ration point.

Heating has the effect of decreasing the displace-

ment thickness and the momentum thickness. The displace-

ment thickness decreased by 22% and the momentum thickness

by 6% for the linearly retarded flows past the heated

flat plate with AT = 180°F. For the flow past the heated

Sphere, the displacement thickness decreased by 30% and

the momentum thickness by 20%.

While the effect of heating and cooling is small on

the velocity boundary layer thickness, cooling does sub—

stantially increase the thermal boundary layer thickness.

The effect of introducing the buoyancy terms is not

significant and thus may be neglected for the flow of

water past a heated sphere in a vertical channel.

The effect of heating a body subjected to a uniform

flow of water on the boundary layer parameters cannot be

determined with high accuracy by treating viscosity con-

stant. The Skin friction coefficient may be calculated,

with up to a 10% error, using the value of viscosity at

the wall temperature as constant, and the heat transfer

 

an unheated sphere. This pressure distribution was not

allowed to change during the calculations; but as the

separation point Shifts the actual pressure distribution

also changes. To properly account for this change an

iteration scheme would be necessary which would un-

doubtedly result in a greater Shift of the separation

Point.
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coefficient may be calculated, with up to a 15% error,

using the value of viscosity at the free-stream tempera-

ture as being constant.



TABLES



TABLE 1. Similarity

8C)

solutions (Ue = xm)

 

Values of m for

 

Tw/Ton au/ay = 0 Reference

2 -0.06 7, 13

1 -0.094 13

0.6 -0.109 7

0.5 ~0.ll78 13

0.25 —0.l351 13

0.2 -0.134 7

 

TABLE 2. Calculated separation point for the case Ue/Uco = 1 - x

 

Value of x According to Several Authors

 

 

Tw/TQ S

Illingworth Morduchon Gadd Curle Poots

[10] 8 Grape [6] [14] [15] [16]

2 0.067 0.073 0.072 0.071 0.075

1.295 0.093 0.106

0.8 0.128 0.135

0.6 0.152 0.16

0.5 0.168 0.195

0.3 0.19 0.195

 

TABLE 3. Values of y at the point of separation

(Illingworth [10])

 

 

A Y

-1 1.402

0 1.429

+1 1.550
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TABLE 6. Value of ¢$ for similar flows

 .____.._.___-

 

m ¢$ Calculated ¢a Exact

1.0 1.232587 1.2325877

0.33 0.47413 0.4741

0.0 0.332057 0.3320573

-0.04 0.220325 0.220317

-0.0904285 0.00006 0.0

 

TABLE 7. Effect of heating and cooling a flat plate on

skin friction and heat transfer parameters

 

l

 

 

C(RW N/R’fi
Tw Tm f x u x

°F °F Kaups & Present Kaups & Present

Smith [24] Method Smith Method

312 40 0.3698 0.36985 1.0646 1.06462

130 40 0.5540 0.55401 0.8938 0.89387

40 312 0.8182 0.81823 0.2937 0.29375
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TABLE 8. Calculated values of ¢§

flow Ue/U0° = 1 — E/8

for Howarth's retarded

 

 

 

Present Smith &

5 Author Clutter Hartree

0.0 .33206

0.025 .325728

0.04795 0.32263

0.05 .321842

0.100 .312 .311979

0.1534 .30102 .301031

0.206 .28966 .290089

.3116 .26564 .265623

.417 .23962 .239712 .23972

.5226 .21108

.62808 .17922 .179232

.73356 .14254 .142554

.83904 .097337 .098627 .09773

.8865 .071046 .072033

.948 .02642 .026397 .0249

.956 .014267 .0114

.958 .009534 .0059

.9589 .006469 0—extrapo—

lated

.96 O—extrapo— O-extrapo-

lated lated

Computing

Time 106 secs 70 mins
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TABLE 9. Separation point calculated for the flow

Ue/Um = l — 5

 

 

5 Sep. Reference

.12 Present Author

.122 6

.12 38

.12 34

.1198 39

 

TABLE 10. Comparison of values of 6% on a Sphere as

calculated by the present author and Smith and

Clutter [37]

 

 

 

u

a° ¢w

Smith & Clutter Present Author

[37]

0° 1.31189 1.31193

30° 1.26099 1.261

60° 1.08115 1.082

90° 0.64833 0.642

101.7° 0.2394

104° 0*

105.9° 0*

 

*Value obtained by extrapolation.
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TABLE 11. The effect of heating the Sphere on the

separation point "above critical" flow

 

 

AT(°F) d°*

130 107.9

80 106.6

30 105.2

0 104

-80 101.5

 

*Va1ues obtained by extrapolation.

TABLE 12. The effect of heating the sphere on the

separation point "below critical" flow

 

 

AT(°F) d°*

130 91°

80 90°

30 88.5°

0 87°

-30 85°

 

*Values obtained by extrapolation.
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Figure 4. Boundary layer on a body of revolution--coordinate system.
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Figure 8. Brass sphere with heating element and location of

thermocouples.

 
Figure 9. Photograph of the sphere with the support rod.
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Figure 19. Photograph of hydrogen bubbles visualized on

unheated sphere.

 

Zero-velocity line

Figure 20. Graphical procedure for extrapolating separation

point from hydrogen bubble pictures.



101

 

10.

9. — AT(°F)

A: -80°

B: 0°

3. P- C: 30°

D: 80°

E: 130°

7.

 
 

Figure 21.

 
Velocity profiles for a heated flat

plate. Ue/U0° = 1 - 5/8; E = 0

 

 



102

 

  
 

10.

AT(°F)

9. _' A: -80°

B: 0°

C: 30°

D: 80°

0 O

8. __ E. 130

7. _

6. ~

5. L

4. r

3. —

2. F B

C\

D

l. "‘ E

0. 1, 1 1 L

O. 0.2 0.4 0.6 0.8

u/Ue

Figure 22. Velocity profiles for a heated flat

plate. Ue/U0° = l - 5/8; E = .575
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Figure 26. Temperature profiles for a heated flat

plate. Ue/U0° = l - 5/8, E = 0
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plate. Ue/U0° = l - E/B, E = .786
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06/000 = 1 - g, g = .118
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Figure 36. Temperature profiles for a heated flat

plate. 06/000 = l - E, E = .047
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Figure 40. Velocity profiles for a heated sphere.

"Above critical" flow, a = 0°.
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Figure 41. Velocity profiles for a heated sphere.

"Above critical" flow, a = 47.5°.
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Figure 42. Velocity profile for a heated sphere.

"Above critical" flow, a = 67.8°.
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Figure 45. Temperature profiles for a heated sphere.

"Above critical" flow, a = 0°.
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Figure 46. Temperature profiles for a heated sphere.

"Above critical" flow, a = 47.5°.
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Figure 47. Temperature profiles for a heated Sphere.

"Above critical" flow, a = 67.8°.



 

2
.
4

A
T
(
°
F
)

1
3
0
°

8
0
°

3
0
°

-
8
0
°

2
.
0

”

«(30:2

1
.
6

h

0
.
8

 
 

1
l

l
l

l
l

1
l

1

0
°

1
2
°

2
4
°

3
6
°

4
8
°

6
0
°

7
2
°

8
4
°

9
6
°

1
0
8
°

1
2
0
°

 

0
(
d
e
g
r
e
e
s
)

F
i
g
u
r
e

4
8
.

T
h
e

e
f
f
e
c
t

o
f

h
e
a
t
i
n
g

a
n
d

c
o
o
l
i
n
g

a
s
p
h
e
r
e

o
n

t
h
e

l
o
c
a
l

h
e
a
t

t
r
a
n
s
f
e
r

p
a
r
a
m
e
t
e
r
s
.

"
A
b
o
v
e

c
r
i
t
i
c
a
l
"

f
l
o
w
.

128



129

 

 
 

4.0

3.6 T

AT(°F)

A: -80°

__ B: 0°

3'2 c: 30°

D: 80°

E: 130°

2.8 T

2.4 ~

2.0 T

1.6 T‘

1.2 T'

0.8 "

0.4 *-

0.   
  

Figure 49. Velocity profiles for a heated sphere.

"Below critical" flow, a = 40°-
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Figure 51. Velocity profiles for a heated sphere.

"Below critical" flow, a = 82°.
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Figure 66. Shadowgraph picture of the heated sphere.

AT = 20°F

 
Figure 67. Shadowgraph picture of the heated sphere.

AT = 40°F





 
Figure 68. Shadowgraph picture of the heated sphere.

AT = 70°F

AT=100 F

 
Figure 69. Shadowgraph picture of the heated sphere.

AT = lOOOF
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Figure 71. The effect of treating viscosity constant

and variable on the temperature profile.

Ue/Uoo = 1 - E, E = .083, AT = 80°F
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