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ABSTRACT
ARSENIC PROFILES IN

SEDIMENTS AND SEDIMENTATION PROCESSES
ALONG THE SLOPE OF A LAKE BASIN

By

Mehdi Siami

Lake Lansing, Michigan was treated with sodium arsenite
for macrophyte control in 1957. Seven 1.5 m sediment cores
taken on a line through the littoral zone to the deepest
portion of the basin were analyzéd for arsenic in 5 cm incre-
ments. The objectives were to determine rates that sediment
surfaces at different depths were returning to pre-treatment
concentrations and to evaluate sedimentation processes affect-
ing those rates.

Arsenic concentrations going downward from the surface
in each core increased to some maximum. Below the maximum,
there was a recession to background concentrations. Depth of
peak concentrations followed two patterns; three littoral
cores showed peak arsenic at 0.13 m from the sediment surface;
four cores from progressively deeper regions of the lake
showed a regular decrease in peak depth from 0.32 m to 0.17 m.

Magnitude of peak arsenic in each core increased with
depth of water from which the core was taken. This suggested

that 1957 treatment arsenic quantitatively precipitated to
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the sediments as a function of depth of overlying water.

Sediment accumulation rates were calculated. They were
low in the littoral, highest at 3.75 m, and decreased going
into deeper water. Particle-size sorting of sediments along
the basin's slope was measured. This work suggested that
sediments originated from wetland vegetation at the edge of
the lake. Turbulent movement of water in the shallows caused
suspension and down-slope movement of small particles. Fewer
particles of wetland origin were available for sedimentation
beyond the region of highest fallout (3.75 m), thus accounting
for progressively lower sedimentation rates in deeper portions
of the basin.

In each sediment profile, there was a decline in arsenic
from peak concentration to the 1980 sediment surface. Expo-
nential curves were fit to these data. From them, the
littoral sediment surface was predicted to reach pre-treatment
concentration >100 years after treatment. Using this model,
the pelagial sediment surface would return to background in
28 to 43 years. The latter rates are unrealistic; the rate
of approach of deep sediments to background will be limited
by the rate of approach of shallow sediments to pre-treatment
arsenic concentrations. For Lake Lansing, that prediction

is >100 years.
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INTRODUCTION

Inorganic and organic compounds of arsenic exist as
natural components of terrestrial systems and are detectable
in nearly all soils (Peoples, 1975; Walsh and Keeney, 1972).
Arsenic is naturally distributed in high levels in rocks and
minerals that contain iron, sulfur, and manganese where the
element can be concentrated up to 2,000 ppm (Fleischer,
1973). The arsenic content of soils is generally much lower,
averaging 6 ppm and ranging from 1 to 40 ppm (Bowen, 1966;
Vallee et al., 1960). Where higher soil arsenic levels are
found the source can usually be traced to anthropogenic acti-
vities. Mining, disposal of industrial wastes and widespread
use of arsenical pesticides can elevate arsenic to concen-
trations several fold natural levels (Bishop and Chisholm,
1962; Vallee et al., 1960). Natural concentrations of
arsenic in marine waters are usually low, ranging from 0.15
to 6.0 ug As 171 ang averaging near 2 ug As 17! (Woolson,
1975). The highest concentrations in inland waters have
been found in hot springs, like those in Nevada and Wyoming,
where two examples showed arsenic levels of 2,300 and 500 ug

1 1

As 17 (Hem, 1959). Ritchie (1961) reported 8,500 ug As 1~

in a New Zealand hot spring. A survey of other fresh water

systems in the U.S. revealed concentrations ranging from 10

1

ug As 17~ to 140 ug As 171, with 76% of the 726 water samples

1
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1

analyzed falling below 10 ﬁg As 1~ (Durum et al., 1974). A

survey of arsenic content of U.S. lakes placed 94% of the

1, with an

1577 lakes sampled between 10 and 340 ﬁg As 1~
average value of 60 ug As l-l (Kopp and Kroner, 1967). As
with soil, high arsenic levels in lake water can often be
attributed to human impact. Release of industrial and domes-
tic waste, burning of fossil fuels, and application of arsen-
ical pesticides are principal causes of artificially elevated
arsenic in lakes and streams (Shapiro, 1971; Lis and Hopke,
1973; Aston et al., 1975; Domogalla, 1926). Of particular
interest here is the large scale use over the last several
decades of sodium arsenite as an herbicide to control aquatic
vegetation (Kobayashi and Lee, 1978; Ferguson and Gavis,
1972; Ruppert et al., 1974; Mackenthun, 1950). This activity,
coupled with the ensuing potential of acute, or more likely,
chronic toxicity of arsenic to humans and non-target aquatic
organisms, has generated interest in the fate of applied
arsenic in lake systems (Bails and Ball, 1966; Cowell, 1965;
Gilderhus, 1966; Crosby, 1966).

Studies of the movement of arsenic in lakes or ponds
treated with the herbicide sodium arsenite (NazAsoz) show
that aqueous levels decrease within a period of weeks after
application. The mechanism of this decline has generally
been attributed to coprecipitation of arsenic from the water
column with iron oxides, followed by sorption of the iron-
arsenic complex by sediment particles (Crecelius, 1975; Sey-

del, 1972; Sohacki, 1968; Mackenthun, 1964). This mechanism
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is supported by observed increases of iron-associated
arsenic in surficial sediments (Crecelius, 1975; Kanamori,
1965; Kobayashi and Lee, 1978). Because of the complex chem-
istry of arsenic and unknown patterns of lake sedimentatién,
the fate of sediment arsenic has not been fully described.
Most of the work toward this end has involved analysis of
arsenic content with depth in single sediment cores, or in
several cores taken from widely separated locations in a lake
(Crecelius, 1975; Kobayashi and Lee, 1978). Arsenic profiles
in single cores have been used to reflect the timing of
arsenic loading to the sediments (e.g., Crecelius, 1975), and
to suggest the change in potential of sediment arsenic to be
recycled into overlying water. However, interpretation of
results from a single or widely separated cores is limited
in that it cannot be extended to develop a model for sediment
arsenic distribution in the basin as a whole.

In this study, a series of cores was taken along a line
running from a wetland fringe, on Lake Lansing, Michigan,
across the littoral zone of the lake, and down the pelagial
slope to the deep plain of the lake. Batterson (1980) has
shown that the vertical profile of arsenic in cores from
the deep basin have an arsenic peak related to a single
sodium arsenite treatment applied in 1957 for macrophyte con-
trol. The Lake and Stream Improvement Section of the Michi-
gan Department of Conservation treated areas with a total of
3800 liters of sodium arsenite in June of that year (Roelofs,

1958). This treatment resulted in an input of 2920 kilograms
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of arsenic. Historical records indicate that this has been
the sole arsenic treatment of the lake. Batterson (Ibid.)
showed arsenic loading to the lake from atmospheric fallout
and overland flow was negligible. He also demonstrated that
the arsenic content of the upper 5 cm of sediments was 2 to 6
times pre-treatment concentrations found in deep portions of
cores. For example, the arsenic content of pre-treatment
sediments in the south basin was in the range of 17 to 20 ug
g-l dry weight; 46 ug As g.l were found in surficial sedi-
ments near shore and 125 ug As g"l just beyond 7 m contour
(cf. Figure 1). The significance of high sediment arsenic
levels stems from the potential of sediment to contribute
soluble arsenic to overlying water. This was suggested when
in 1978 the arsenic of the lower pelagial water of the south
basin increased from 14 to 115 ug As 1.1 during a period of
summer stratification.

In his cores from the deep plain of the lake,
Batterson (Ibid.) observed a recession in the arsenic con-
centration from 1957 peak with the addition of recent sedi-
ments to the lake bottom, and calculated the rate at which
sediments of the pelagial plain were returning to the back-
ground concentration. Since sedimentation rates and sediment
mixing processes are likely different at different depths
along the slope of the lake basin, he could not predict from
his data the time necessary for sedimentation to ameliorate
the effects of the 1957 treatment in the basin as a whole.

The purposes of this study were: (1) determine the nature of
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the arsenic profiles in littoral sediments and sediments of
the pelagial slope, (2) to use these profiles to determine
sedimentation rates and the degrees of mixing of new sedi-
ments with base sediments at different depths in the lake,

and (3) to use the profiles to predict the rates at which
sediments at different depths would approach background, thus
bringing sediment surfaces to pre-treatment arsenic concentra-

tions.



MATERIALS AND METHODS

Lake Lansing is located approximately 5.6 kilometers
northeast of the city of East Lansing, Michigan. The lake

3 m2, mean depth of 2.3 m,

has a surface area of 1816 x 10
and a maximum depth of 10 m. The littoral zone of the lake
extends to the 3 m contour; 77% of the lake surface area
lies over the littoral zone (Figure 1). The volume of the
lake is approximately 4,124 x 103 3 (Figure 2). The bathy-
metry of Lake Lansing shows it is divided by a shallow bar
into a north and a south basin. Each basin has a tendency
to thermally stratify in the summer (Figure 3) and develop
anoxic conditions in the lower pelagial regions. The ten-
dency for oxygen loss is particularly evident in the south
basin (Figure 4).

The slope of the lake basin along transect line AB
shown in Figure 1 was determined by gauging the depth of
water at measured distances from the shore. This was accom-
plished by lowering a plumb through augered holes in the ice
cover. The plumb weight consisted of a 25 cm diameter disc
to minimize error caused by sinking into the soft sediments.

Seven cores were obtained along line AB during July to
August, 1980. Since the sediments along the transect were
loose and unconsolidated, they were sampled by freezing the

sediment onto the exterior surface of tubing which extended

6



Figure 1. The Lake Lansing basin showing areas treated.,with
sodium arsenite in 1957 (stippled), ug As g of
dry surficial sediments (from Batterson, 1980), and

the position of the sampling transect (AB) used
in this study.



Figure 2. Depth-volume curve for Lake Lansing, with tabled
volumes for strata of the two deep holes and the
lake as a whole.
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Figure 3. Temperatures (c®) in the south basin of Lake
Lansing during 1978.
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Figure 4. Dissolved oxygen concentrations (mg 1-1) in the
south basin of Lake Lansing during 1978.
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from the water surface and penetrated the sediments a known
distance. Lengths of 5.08 cm o.d. thin-walled aluminum
electrical conduit were used which were threaded and joined
by couplings. Added to the water depth at each coring site
was the length of the sediment core desired. Sections of
tubing were then selected which would exceed that length by
several feet to provide excess tubing above the water. The
joints were not water-tight so silicone sealant was applied
to the threads to accomplish this. The bottom of the sam-
pling tube was stoppered and lowered into the water. Addi-
tional lengths were added until the stoppered end was just
above the sediment surface. When the last section was
attached, the tube was carefully pushed into the sediments to
the appropriate depth. After insertion into the sediments,
pelletized dry ice was added to the end of the tube extend-
ing above the water surface. The amount added was enough to
freeze the sediments as well as a small portion of water
above the sediment-water interface. Replenishment of dry
ice was maintained at a rate to offset sublimation. Thirty
minutes after the initial addition of dry ice, the samples
were retrieved. As the tube was pulled out of the water
the sections were uncoupled down to the frozen sample.
After the sediment sample was removed from the lake, the
unfrozen exterior layer was stripped away. The sample was
then placed in plastic and the tube repacked with dry ice
for transportation to the laboratory. 1In the laboratory,

the dry ice was removed from the tube and replaced with tap
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water. This melted the sediment in contact with the tubing
and allowed for the tube to be pulled free. The frozen
sample was then cut into 5 cm sections using an electric band
saw. The exterior of each doughnut-shaped piece was rinsed
with ion-free water and placed in a labeled plastic bag.
There were two reasons for the rinsing: to wash away any
contamination that might have resulted from the sectioning
process or sediment contact with the aluminum tube, and to
remove dislocated particles from the core surfaces.

The frozen samples were then dried in a Napco model
630 forced air drying oven at 75°C for 72 hours and dry
samples were ground with mortar and pestle. From each of
the well-mixed ground samples approximately one gram of
sediment was removed and dried at 105°C for 24 hours. The
sample was then introduced into an acid-washed and pre-
weighed two dram polyvial and weighed. After weighing, the
polyvials were heat-sealed and taken to Michigan State Uni-
versity's nuclear reactor facility for neutron activation
analyses. For each group of samples that was irradiated
there were three standards for quantifying the analyses. Two
of the standards were obtained from the Natural Bureau of
Standards and prepared for introduction to the polyvials ac-
cording to the procedure recommended by the Bureau. These
were Standard Reference Material 1645 (River sediment) and
1571 (Orchard leaves). The other standard was a 2 ml solu-
tion containing 150 ug As m17l.

A Triga Mark I nuclear reactor was used for irradiation.
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Thirty-seven sediment samples and three standards were intro-
duced into a 40-position specimen rack that was rotated dur-

ing irradiation to establish uniform flux for all sample

12 2 -1

positions. A flux rate of 10 neutrons cm ° sec was used.

Sixteen to twenty hours following irradiation (allowing for

24

the partial decay of Na activity), the samples were counted

3

for 1000 seconds live-time with a 76.2 cm~ active volume Ge

(Li) detector having a relative efficiency of 15% and an
energy resolution of 1.8 KeV FWHM at the 1.333 MeV photopeak

60

of Co. The source-to-detector geometry was kept constant

for all counts and the detector resolution was sufficient to

completely resolve the 76

As peak (559 KeV) and the adjacent
peak of 82Br (554 KeV). The gamma-ray spectrum from each
sample and standard was analyzed by a Canberra Series 80
multi-channel analyzer. This analyzer computed the peak net
area which is the number of counts in a peak that are above
an average background level. Standards and samples were
corrected for decay during counting by the following equation:
0.693t

A

Ac=Ae

Area corrected for decay between counting
time of the sample and standards (net count)

76

where Ac

A = Area of As (net count)

Base of the natural logarithms

X% = Half-life of 76As = 1584 minutes

1]
]

t = Finishing time in minutes
The mass of arsenic in the sample was derived using the time

corrected counts of the standards.
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Estimates were made of the mass of dry sediments in each
5 cm section of core. The volume of cores was obtained by
determining the cross-sectional area of frozen sediments
plus the sampling pipe. The cross-sectional area of the
pipe was subtracted from the total area and the remainder was
multiplied by the length of the core section (5 cm). The
density of sediments in core sections was measured by a water
displacement method. A known volume of ion-free water was
added to a graduated cylinder. Longitudinal sections of
frozen core material were placed in the cylinder. When the
frozen piece thawed, volume in the cylinder was recorded.
The volume of the piece of the core was calculated by sub-
tracting the initial volume in the cylinder from the final
volume. Contents of the cylinder were rinsed with ion-free
water into a pre-dried and weighed aluminum tray and dried
in an oven at 95°C to a constant weight. The weight of the
dried material was divided by the calculated volume of the
core fragment to obtain an estimate of the density of the

sediments in the fragment; g DW cm™3

in the fragment multi-
plied by the volume of 5 cm core sections yielded the total
dry weight in core sections. Additional analyses of the
physical features of cores were made during this study. The
results of this work are included here as Appendix Table 1.
In February of 1981, surficial sediment samples were
collected along line AB for particle size fractionation.

Samples were collected with an Ekman dredge at points corres-

ponding to those from which cores had been taken. Each
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sample was mixed thoroughly and three 200 ml volumes were
withdrawn. These replicates were dried to a constant weight
at 95°c. In addition, three 200 ml subsamples from each
dredge were rinsed through a stack of U.S. Standard Sieves;
numbers 10, 20, and 50 (pore sizes 2, 0.833, and 0.227 mm,
respectively) were used. A measured volume of tap water was
ﬁsed for the rinse. Particles retained by each sieve were
emptied into pre-weighed aluminum trays and dried at 95°C to
constant weight. The weight of particles passing through the
smallest sieve (0.227 mm) was calculated by subtracting the
sum of the dry weights of the larger size classes from the
dry weight of whole samples. The data obtained were used to
calculate the percent dry weight contribution of each particle
size fraction in the surficial sediments along the slope of

the lake basin.



RESULTS

The profile of the south basin along transect AB showed
two zones with distinct gradients (Figure 5). Within the
first zone extending from shore to approximately 105 m lake-
ward, the basin gradually declined to 2 m below the lake
surface. The slope of the basin in this region was approx-
imately 1:50. Within the second zone, which extended from
the edge of this shallow shelf to a point about 50 m lake-
ward, the basin dropped 5 m; the slope increased nearly five-
fold. The basin profile suggests that there was an extensive
shallow region where the sediment surface was subject to
wind-generated water movement that could resuspend previously
sedimented materials. Since aquatic plant cover tends to
stabilize the sediments, resuspension processes may be most
intense during periods when submersed plant biomass is low,
as during spring overturn. However, potential for contact
between these sediments and moving water is higher than in
the deep region of the basin. The vertical bars of Figure 5
indicate the position and depths of cores taken in this
study. Core sampling was concentrated in the portion of the
basin where slope was greatest. One would expect sedimenta-
tion and mixing processes to change most rapidly in that
region of the lake where influence of water movement changes
rapidly (Hutchinson, 1957).

20
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Figure 5. Shape of the south basin of Lake Lansing along
line AB based on measurements of depth of water
at metered distances from the edge of the lake.
Bars indicate location of sediment core sampling.
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The concentration of total arsenic with depth in each
sediment core taken along the slope of the south basin is
present in Figure 6. It is obvious from a comparison of
the curves that the total amount of arsenic was different in
cores from different depths in the lake; for example, cores
from the shallows of the lake contained less arsenic than
cores from the pelagial region. Arsenic concentrations
going downward in each core increased to some maximum point.
The maximum was followed by a recession to background levels
in deep portions of the cores. The position of the arsenic
trace with respect to the abscissa, and the magnitude of
peak arsenic in each core, increased with the depth of the
water from which the core was taken.

The depth of occurrence of peak concentrations followed
two patterns in the series of cores. The three shallow cores
showed peak arsenic at 0.13 m from the sediment surface. The
four cores of the deeper regions of the basin showed a regu-
lar decrease in depth of occurrence of peak arsenic concen-
tration as a function of increasing water depth. Figure 6
shows that the rate of recession from the peak arsenic con-
centration to the sediment surface increased with depth of
water, or perhaps more significantly, with the magnitude of
the arsenic peak. This has resulted in a convergence of the
surficial arsenic concentrations in the five deepest cores
to a range of 84-92 ﬁg As g.l dry weight. Arsenic profiles
were obtained for cores taken along transect 1 in Figure 1,

as well as along line AB. However, stations on transect 1
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Figure 6. Concentrations of total-arsenic with depth in
sediment cores taken along line AB of the south
basin of Lake Lansing.
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were used during 1978 and 1979 in intensive sampling programs
for water chemistry and zooplankton and benthic populations.
The data from transect 1 is included here in Appendix Tables
3 and 4. In general, the depth profiles for arsenic along
transect 1 showed patterns similar to those described for
line AB. Portions of individual profiles appear to have
been badly disturbed by sampling.

Decreases in arsenic from peak concentrations toward
the surface in each core suggests that newly deposited sedi-
ments of relatively low arsenic concentration were burying
the arsenic introduced in 1957. The low relief topography
of the land surrounding the lake, the relatively small size
of the drainage basin, the absence of appreciable stream
flow to the lake, and the lack of eroding beaches (Batterson,
1980) argue for the position that inorganic soil materials
do not contribute substantially to the buildup of sediments.
They appear to accumulate from the breakdown of vegetation
from residential shorelines and wetlands around the lake
(Knoecklein, 1981) and from submersed plant remains. Wet-
lands dominate the shoreline of the south basin of Lake
Lansing (Figure 1). The shoreward origin of the transect
used in this study was located at the edge of a wetland.
That in-shore sediments originated in the wetland was sug-
gested by the common occurrence of macroscopic fragments of
plant tissues in the shallows. Currents generated by wind
action on the lake were expected to sort out particles on

the sediment surface in relation to their size and the
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velocity of the currents in a manner that is well known for
streams (Wetzel, 1975).

The percent dry weight contribution of each of four
particle sizes constituting the surficial sediments along
line AB are presented in Figure 7. Regular changes occurred
in the largest and the smallest size categories. The largest
particles (> 2000 u) were made up of fibrous fragments‘of
the wetland vegetation. The largest size class made up 40.6%
of the sediments by weight at 0.15 m water depth. This size
category dropped to 1.3% at 3.75 m. At depths greater than
3.75 m the change in this size was less than 1%. In con-
trast, the smallest particle size (< 227 u) made up 30.4% of
the sediments at 0.15 m water depth, and increased to 75% at
2.75 m. This size class did not change appreciably beyond
2.75 m. The data of Figure 7 show that particles of the
sizes measured were sorted by currents primarily in depths
of 2.75 m and less; size distribution was essentially the
same for depths of 3.75 m and more. There may have been
significant differences in particle size distribution within
the smallest size class (< 227 u) between the four deepest
stations; if so they would not be evident with the techniques

used here.
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Figure 7. Mean of percent dry weight contribution of each
of four particles sizes constituting the surficial
sediment of the south basin along line AB.
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DISCUSSION

The profiles of arsenic concentration in the cores
taken along line AB in the south basin of Lake Lansing (Fig-
ure 6), show that the peak concentrations increase as the
depth of water overlying the sediments increased. This sug-
gests that 1957 treatment arsenic quantitatively precipitated
to the sediment surface as a function of depth of overlying
water. That relationship is presented in Figure 8. The
horizontal scale in the figure was obtained using estimated
sedimentation rates at sampling points along the slope of
the basin; these are discussed later in this section. Part
of the scatter in this relationship may result from decreases
in the magnitude of arsenic peaks since 1957 due, for example,
to the transport of precipitated arsenic from the sediment
surface downward in the sediment profile.

Three conditions must be met for the relationship in
Figure 8 to be accepted as valid. Arsenic sprayed over
weed-beds at the time of lake treatment must have become well
mixed in the volume of water in the lake before precipitation.
Some mechanisms for the removal of arsenic from the water
column were required. Once on the sediment surface, arsenic
must have remained relatively immobile, thus allowing the
maximum concentration in each core profile to represent the
depth in the sediments of the 1957 sediment surface.

30
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Figure 8. Regression of maximum arsenic concentrations found
in cores from Lake Lansing on depth of the water
column at coring stations corrected for sediment
accumulation since 1957.
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Evidence for extensive mixing of arsenic in the lake
prior to fallout on the sediments comes from the work of
Batterson (1980). His core taken from the north deep basin
of Lake Lansing had an arsenic profile and peak arsenic con-
centrations remarkably similar to his core from the deep
portion of the south basin. This was observed even though
the distances from 1957 treatment areas to his coring areas
were substantially different. Batterson's surficial sedi-
ment data is given in Figure 1 of this paper. They show that
arsenic concentrations in surface sediments along six tran-
ects in the lake decreased from the shallows to deep water
in the same manner observed along line AB. The prediction
from the relationshgp presented here between peak arsenic
concentration and depth of overlying water in 1957 (Figure 8)
is that peak arsenic concentrations marking the time of treat-
ment in 1957 occur beneath the surface sediments sampled by
Batterson over most of the lake bottom. That Lake Lansing
was likely well mixed after the arsenic treatment in July of
1957 is further suggested by the weak thermal stratification
that exists in the lake in summer. An example of this is
shown here in Figure 3. Vertical temperature differences
occur only in the small volume of water over the deep holes
in the lake. High south and southwest winds in summer tend
to prevent the development of a stable metalimnion.

The pfincipal mechanisms involved in the loss of inor-
ganic arsenic from the water column of lakes has received

considerable attention in the literature. Ferguson and Gavis
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(1972) suggest that arsenite, As (III), tends to be oxidized
+o-arsenate, As (V), in aerobic water. Arsenite is most
likely to exist as the anion HAsO42-. Chemically similar to
phosphate, it can be absorbed, occluded or precipitated with
hydrous ferric oxides. Kobayashi and Lee (1978) studied
accumulation of arsenic in sediment of five Wisconsin lakes
treated with sodium arsenite. They found a strong coefficient
of correlation between arsenic and iron in the sediments of
Lake Mendota. They concluded that iron controls arsenic
levels in the water column through sorption of arsenate by
ferric hydroxides, followed by precipitation to the sedi-
ment. Crecelius (1975), studying the geochemical cycle of
arsenic in Lake Washington, found a strong correlation be-

2 _ 0.94). He suggested

tween sediment iron and arsenic (r
that arsenic is associated with the iron phase which causes
a major portion of arsenic to be removed from Lake Washing-
ton water and accumulated in the sediments. Seydel (1972)
studied the distribution and circulation of arsenic through
water, organisms, and sediments of Lake Michigan. She sug-
gested that accumulation of the arsenic in the sediments
up to 28.8 ppm was due to the coprecipitation of arsenic
with iron.

In snaerobic water of a hypolimnion or in anaerobic
sediments, arsenate tends to be reduced to arsenite (Ferguson
and Gavis, 1972). Ferguson and Anderson (1?74) reported that

at low Eh in the presence of sulfide (Sz-), arsenite should

be effectively removed from the water columr as insoluble
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sulfides. The experiments of Batterson (1980) lead to the
conclusion that iron controlled the solubility of inorganic
arsenic in aerated freshwater systems, while sulfide con-
trolled the solubility in anoxic systems. Because of these
mechanisms, significant quantities of soluble arsenic are
expected only where the redox status permits oxidized sulfur
and reduced iron to exist simultaneously. Batterson (1980)
showed that these conditions can occur in the hypolimnion of
Lake Lansing; for example, arsenic increased from 14 to 115
ug l.l in deep water of the south basin in a two-week period
in the summer of 1978. However, he showed the conditions
were short-lived and were not typical. Similar elevations
in hypolimnetic arsenic were not observed in the winter,
spring or summer of 1979. This discussion argues for the
position that arsenic, well mixed in the volume of Lake Lan-
sing, would fall out on the sediment surface and tend to stay
there as insoluble compounds of iron or sulfur.

A question can arise as to the immobility of the arsenic
peak deposited on the sediments as a result of the 1957
treatment. Carighan and Flett (1981) showed that phosphorus
in lake sediments could migrate upward and accumulate near
the mud-water interface. 1In spite of the similarity between
arsenic and phosphorus chemistry, an important difference is
that phosphorus does not combine with sulfide as arsenic does.
Crecelius et al. (1975) found that the concentration of total
arsenic was high in the surface sediment of Puget Sound in

Washington and dropped to background levels of 10 ppm with
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the depth in the core. They suggested that high arsenic at
surface sediment was the result of a recent additional input
of arsenic from a large copper smelter. In the same study,
sediment accumulation rates were aetermined by the lead-210
technique. They showed that the arsenic level started to
increase in the cores at the time when the copper smelter
started to operate. Crecelius (1975) also found that the
position of peak concentrations of arsenic for five different
locations in Lake Washington varied with sedimentation rate.
In areas with lower sedimentation rates, peak concentration
occurred at a shallower depth in sediment cores.

Kobayashi and Lee (1978) studied accumulation of arsenic
in sediments of lakes treated with sodium arsenite. Arsenic
profiles were developed for cores from five lakes. They
used sedimentation rate for eutrophic lakes in the study area
from Bartleson (1970) and showed that the depth of peak con-
centration corresponded to treatment time. In two lakes
(Big Cedar and Pewaukee) with the same sedimentation rates,
the difference in depth of peak concentration was due to
time of treatment. From these considerations, it is con-
cluded that arsenic deposited on Lake Lansing sediments fol-
lowing treatment in 1957 has been relatively immobile.

Sediment accumulation rates along line AB can be cal-
culated using the depth of peak arsenic concentration in each
core to represent the 1957 sediment surface. The density of
core sections (g DW cm-3) was used with depth of the peaks to

express sedimentation rate in units of g DW m_2 yr-l; these
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data are presented in Figure 9. Net sedimentation rates were
low in shallow portions of the lake. The rate was highest at
3.75 m, and diminished from this maximum going into deeper
water. Particle-size sorting of sediments along line AB
has been demonstrated in this study (Figure 7). It is postu-
lated that sediments originate largely from fragmenting vege-
tation of the wetland at the edge of the lake. Wind-induced
turbulent movement of water in the shallows causes suspension
and down-slope movement, particularly of small particles.
The region of highest sedimentation rate corresponds to the
point along the,slope of the basin where the mean turbulent
energy of water is diminished rapidly with sudden increase
in depth (Wetzel, 1975). Fewer numbers of particles of marsh
origin are available for sedimentation beyond the region of
highest fallout, thus accounting for progressively lower
sedimentation rates in portions of the south basin deeper
than 3.75 m.

In each sediment profile presented in this study, there
was a decline in arsenic from the peak concentration to the
1980 sediment surface. It is proposed that the rates of
these declines are a function primarily of sedimentation
rates, concentration of arsenic in sedimenting materials,
concentration of arsenic in base sediments, and the degree to
which sedimenting materials are mixed with base sediments.
The relationship between these factors is expressed in Figure
10. An underlying assumption of this figure is that diffusion

processes are not important in establishing observed arsenic
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Figure 9. Sedimentation rates at the points of sampling along
the slope of the Lake Lansing basin.
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Figure 10.

40

Expected change in arsenic concentration of
surficial sediments as a function of the difference
in arsenic concentration between sedimenting and
base materials. Curves reflect extent of

influence of mixing newly sedimented material

with base sediments. Dashed line represents
maximum influence of newly sedimented material on
surficial sediment. Ratios are for new sediment:
base sediment mixing.
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profiles.

The horizontal axis of Figure 10 represents the difféf-
ence in arsenic concentration between sedimenting and base
materials. This scale can be used independently of the
arsenic concentrations of these materials. For example, if
base sediment has 100 ug As g-l and sedimenting material 50,
or base 1100 and sedimenting material 1050, or base 50 and
sedimenting material 0, then all of these conditions are
represented by the same point on the abscissa (A EA{] 50 ug
g-l). To facilitate use of the figure, it is best to be con-
sistent by subtracting sedimenting arsenic concentration from
that of base material. Note that when sedimenting arsenic
concentration is lower than that in base material, the
expected change would be a negative value.

The vertical axis marks the expected change in surficial
arsenic concentration following sedimentation and mixing of
the materials under consideration. This value is negative
when sedimenting arsenic concentration is lower than base
concentration, and positive when it is higher. This scale
can also be used independent of the arsenic concentrations in
the sediment materials.

The curves of the figure represent the degree of
mixing at the sediment surface under consideration. Mixing
is viewed as a ratio; for example, when the degree of
mixing of new sediments with base sediments is low, the

ratio is high. 1In general, this situation is likely in lakes

where turbulent flow is diminishing and suspended materials



43
fall out on a sediment surface that is not exposed to
appreciable turbulence. As shown in Figure 10, the surface
arsenic concentration is expected in this case to be heavily
influenced by the concentration of arsenic in sedimenting
materials. The family of curves given in Figure 10 illus-
trates a range of cases.

The shapes of recession curves in cores of this study
from peak arsenic concentrations to the arsenic concentra-
tions of 1980 sediment surfaces suggest that the relationships
of Figure 10 were operative along line AB since 1957. These
declines can be described as exponential decreases in arsenic
concentration with distance from the depth of the peak.

Using the core data, exponential coefficients were calculated.
Employing the described function, which takes the general
form y = aeP* where y = [As] and x = depth, the estimated
times for sediment surfaces to reach background were calcu-
lated. The time element was obtained by using sedimentation
rates estimated from the depths of peak concentration due to
1957 treatment. These data are presented in Table 1.

The results in the last column of the table show that
shallow sediments are expected to take a long period of time
(> 100 yrs.) to reach pre-treatment background. The surface
of these sediments, covered primarily by materials of fring-
ing wetland and submersed macrophyte origin, could experience
relatively high mixing due to the action of waves and wind-
generated currents. Mixing arsenic-bearing surface sediments

with newly sedimented materials of lower concentration slows
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the process of burying 1957 arsenic. The data of Table 1
further suggest that sediments in the deep portion of the
lake would return to background much faster than shallow
sediments. As an explanation for this, it is proposed that
sediments from shallow water with relatively low arsenic con-
centrations have been a dominant source of new material for
deep sediments since the time of treatﬁent. If these were
mixed poorly in deep water with the heavily contaminated base
sediments there, the arsenic concentration of the deep sedi-
ment surfaces would recede rapidly toward the level of the
incoming materials. Poor mixing of surface sediments by tur-
bulence is expected in deep portions of the lake. It must be
noted that by this model, the rate of approach of deep sedi-
ments to background arsenic concentration will be limited by
the rate of approach of shallow sediments to background. Be-
cause of this, it is proposed that the years to reach back-
ground calculated for deep sediments and given in Table 1 are
unrealistic. If shallow sediments are predicted to reach
background in > 100 years, then on the assumptions of this
dissertation, a similar length of time can be predicted for
deep sediments as well.

The data of this study, and the assumptions used to
examine them, provide the framework for an experimental
approach to answer a question of considerable ecological
importance. The processes involved in burying contaminants
in lake sediments, and the time required to accomplish this

are not generally known.
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During February of 1981, cores were taken from transect
AB from the same depth as those used for total arsenic
analysis. The top 5 cm section was removed from each frozen
core and cut longitudinally. Density of the surficial sedi-
ments as well as bulk density of constituent particles was
measured by a water displacement method. The results are
given in Appendix Table 1.

A known volume of distilled water was added to a grad-
uated cylinder; weight of cylinder and water was measured and
volume of water was recorded. Longitudinal sections were
placed in the cylinder. When the frozen piece thawed, weight
and volume of the cylinder and contents were measured and
water temperature recorded. The weight of core section,
consisting of particulate and dissolved solids plus core
water, was obtained from the increase in weight. The volume
of core section was calculated by subtracting the initial
volume in the cylinder from the final volume. Contents of
the cylinder were rinsed into a pre-dried and weighed alum-
inum tray and dried in an oven at 95°C to a constant weight.
The weight of dry material was divided by the calculated
volume of core section to obtain the density of particulate
and dissolved solids in the core section. The weight of
the core water was calculated by subtracting the weight of
dry solids from the weight of solids plus core water. The
volume of core water was calculated from the weight of the
water corrected for density at the temperature at which the

weight was measured. To obtain the volume of solids, the
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the volume of core water was subtracted from the volume of
solids plus core water. The bulk density of solids was cal-
culated by dividing solids weight by solids volume.

Core total solids density and bulk total solids density
were corrected for dissolved solids. To measure the dissolved
solids component of core water, a frozen core fragment was
thawed on a glass fiber filter and the water was drawn through
its 0.5 pores. A measured volume of filtrate was placed in
a pre-washed aluminum tray and dried in an oven at 95°C to a
constant weight. The resultant dry weight of dissolved solids
was divided by the filtrate volume to obtain the concentration
of dissolved solids in the core water. The mass of dissolved
solid was subtracted from estimates of the core total solids
density and from the bulk total solids density.

The percent-ash was determined in dissolved solids
fractions of cores. After weighing, the contents of alum-
inum trays containing dried core filtrate were combusted at
550°C for one hour (APHA, 1976). The weight of the residue
was used to calculate ash-weight; weight loss on ignition

was taken to represent organic material.
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Table A-7. The slope of the south basin of Lake Lansing.

TRANSECT 1 LINE AB
Distance Depth Distance Depth

from shore cm from shore cm
0 0 0 0
80 84 35 84
100 93 55 123
130 109 65 140
160 138 75 158
190 192 85 191
200 260 95 191
210 344 105 271
220 391 110 320
230 421 115 | 392
240 455 120 429
250 497 125 477
260 549 130 504
270 606 135 540
280 676 145 604
290 711 155 665
300 730 165 702

310 750 185 730
210 723
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