*

This is to certify that the
thesis entitled
ON THE PROBLEM OF A PLANE, FINITE, LINEAR-ELASTIC REGION CONTAINING A HOLE OF ARBITRARY SHAPE:

A BOUNDRY $\underset{\text { presented by }}{\text { INTEGRAL APPROACH }}$

Ali Reza Mir Mohamed Sadegh
has been accepted towards fulfillment
of the requirements for
Ph.D. degree in $\frac{\text { Metallurgy, Mechanics }}{\text { and Material Science }}$
Date $5 / 19 / 78$
\qquad

43 _R188 f199

ON THE PROBLEH OF A FLANE FINITE, LINEAR-ELASTYE

A BOURBAR IHTEGKAL APPROAGR

Mi Eoca Mi = Motumai Sadegh

Mloligan siuve yniversivy tial fulfilamon of the requim aty

DOCTOR OF FHIL LOSOHYY

Depsitonat of Metallurgy, Xachamics and Mrrctial Science

ON THE PROBLEM OF A PLANE, FINITE, LINEAR-ELASTIC REGION CONTAINING A HOLE OF ARBITRARY SHAPE:

A BOUNDARY INTEGRAL APPROACH

By
Ali Reza Mir Mohamad Sadegh

A DISSERTATION
Submitted to
Michigan State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Metallurgy, Mechanics and Material Science

ABSTRACT
 ON THE PROBLEM OF A PLANE, FINITE, LINEAR-ELASTIC REGION CONTAINING A HOLE OF ARBITRARY SHAPE:
 A BOUNDARY INTEGRAL APPROACH
 By

 Ali Reza Mir Mohamad Sadegh

 Ali Reza Mir Mohamad Sadegh}

Previous boundary integral equation methods have been developed for problems of two-dimensional elastostatics which yield excellent results everywhere except near the boundary. This presents a major disadvantage for problems in which a hole, slot or sharp crack is present, since such an opening must be considered as boundary. Thus, results in the vicinity of the hole are not reliable. In this dissertation a new formulation of the boundary integral method is presented which eliminates this inaccuracy on and near the opening. This is done by replacing the kernel of the integrand (the influence function) with one which includes the effect of the opening. This influence function is determined in terms of the complex potential functions for an infinite elastic plane containing the opening and subjected to a concentrated line load at an arbitrary point. This is accomplished using the Muskhelishvili method of plane elasticity. Potential functions are found for the cases of a circular hole, an
ell
re:
elliptical hole and a sharp crack. The determination of these functions for other opening shapes is also discussed. The boundary integral equation method is then applied to some finite regions containing either a circular hole, an elliptical hole, or a sharp crack. The results are presented and compared with exact solutions and experimental results where available.

To my brother, my mother and my father

ACKNOWLEDGEMENTS

It is my pleasure to take this opportunity to express my deepest appreciation and gratitude to my major advisor, Professor Nicholas J. Altiero, for his contributions, guidance, and encouragement during the course of this investigation, and also for his friendship and painstaking review of this manuscript.

Grateful appreciation is expressed to Professor William N. Sharpe for his valuable suggestions as member of my doctoral committee. The advice of Professors David Yen and Larry Segerlind, also members of the doctoral committee, is appreciated. Thanks are extended to Professor R. Summitt, Chairman of the Department of Metallurgy, Mechanics and Material Science.

Financial support for this research was provided by the National Aeronautics and Space Administration under grant number NSG-3101. Partial financial aid was provided by the Department of Metallurgy, Mechanics and Material Science and the Division of Engineering Research.

Special thanks are due to my family, especially my father, for their encouragement and moral support, and for the genuine interest they have always shown in my work.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS iii
LIST OF TABLES vi
LIST OF FIGURES. viii
LIST OF APPENDICES xi
LIST OF SYMBOLS. xii
INTRODUCTION 1
CHAPTER I - BACKGROUND AND PRELIMINARIES 5
I. 1 AN INTEGRAL EQUATION METHOD 5
I. 2 THE MUSKHELISHVILI METHOD: A COMPLEX VARIABLE METHOD IN ELASTICITY 25
I. 3 CAUCHY INTEGRALS AND RELATED THEOREMS 34
CHAPTER II - GENERAL SOLUTION AND A MAPPING TECHNIQUE. 38
II. 1 INTRODUCTORY REMARKS. 38
II. 2 A MAPPING TECHNIQUE 38
II. 3 GENERAL SOLUTION. 43
CHAPTER III - CIRCULAR HOLE IN A FINITE TWO- DIMENSIONAL REGION 52
III. 1 INTRODUCTION. 52
III. 2 DERIVATION OF THE INFLUENCE FUNCTIONS USING KNOWN POTEN- TIAL FUNCTIONS 53
III. 3 DERIVATION OF THE INFLUENCE FUNCTIONS USING A MAPPING TECHNIQUE 58

CH:T

4:
8
III. 4 THE BOUNDARY INTEGRAL EQUATION METHOD APPLIED TO PLANE FINITE REGIONS WEAKENED BY A CIRCULAR HOLE. 73
CHAPTER IV - ELLIPTICAL HOLE OR SHARP CRACK IN A FINITE TWO-DIMENSIONAL REGION. 92
IV. 1 INTRODUCTION. 92
IV. 2 DERIVATION OF THE INFLUENCE FUNCTION USING THE MAPPING TECHNIQUE: THE ELLIPTICAL HOLE PROBLEM. 93
IV. 3 DERIVATION OF THE INFLUENCE FUNCTION: THE SHARP CRACK PROBLEM 116
CHAPTER V - ON THE PROBLEM OF AN ARBITRARILY- SHAPED HOLE IN A TWO-DIMENSIONAL REGION 156
V. 1 INTRODUCTION. 156
V. 2 THE CONTOUR OF AN ARBITRARILY- SHAPED HOLE AND THE MAPPING FUNCTION. 157
V. 3 ON THE INFLUENCE FUNCTION OF A PARTICULAR CLASS OF OPENING, CASE 1. 167
V. 4 ON THE INFLUENCE FUNCTION OF A PARTICULAR CLASS OF OPENING, CASE 2 181
V. 5 ON THE INFLUENCE FUNCTION OF A MORE GENERAL CLASS OF OPENING 202
CHAPTER VI - CLOSURE 206
APPENDICES 210
REFERENCES 253
\square

LIST OF TABLES

Table Page
3.1 Stresses and displacements in a rectangular region containing a circular hole at the origin, Case 1 81
3.2 Rectangular region containing a circular hole at the origin, Case 2 83
3.3 Rectangular region containing a circular hole at the origin, Case 3 84
3.4 Stresses and displacements in a rectangular region containing a nonsymmetrically located circular hole. 85
3.5 Stress and displacement in a circular plane containing a circular hole at the origin, Case 1 88
3.6 Circular plane containing a circular hole at the origin, Case 2. 89
3.7 Circular plane containing a circular hole at the origin, Case 3 90
3.8 Stress and displacement of a circular plane containing a nonsymmetrically located circular hole. 91
4.1 Stress and displacement of a rectangular plane containing an elliptical hole at the origin 136
4.2 Rectangular plane containing an elliptical hole (inclined major axis) at the origin, Case 1 137
4.3 Rectangular plane containing an elliptical hole (inclined major axis) at the origin, Case 2 138
4.4 Rectangular plane containing a nonsymmet- rically located elliptical hole (inclined major axis). 139
TablePage
4.5 Stress and displacement of a circular plane containing an elliptical hole at the origin. 143
4.6 Circular plane containing an elliptical hole (inclined major axis) at the origin, Case 1. 144
4.7 Circular plane containing an elliptical hole (inclined major axis) at the origin, Case 2. 145
4.8 Circular plane containing an elliptical hole (inclined major axis 30°) nonsymmetrically located. 146
4.9 Stress and displacement of a rectangular plane containing a sharp crack at the origin 149
4.10 Rectangular plane containing an inclined sharp crack at the origin, Case 1. 151
4.11 Rectangular plane containing an inclined sharp crack at the origin, Case 2. 152
4.12 Rectangular plane containing an inclined nonsymmetrically located sharp crack 154
4.13 Sharp crack (notch) on the side of a rectangular plane. 155

LIST OF FIGURES

Figure Page
1.1 Finite two-dimensional region with pre- scribed traction all around the boundary 9
1.2 Half plane subjected to a concentrated force on the boundary. 9
1.3 Region of Figure 1.1 embedded successively in half planes 10
1.4 Boundary value problem in plane elasticity 10
1.5 Region R embedded in an infinite plane 12
2.1 Concentrated line load 39
2.2 The problem of interest expressed as the superposition of two problems. 41
2.3 Mapping the auxiliary problem to the disc. 42
3.1 Fundamental problem expressed as super- position of two problems 60
3.2 Mapping the auxiliary problem to a unit disc 60
3.3 A unit circular hole in a plane finite region with prescribed traction on the boundary 74
3.4 Region R embedded in an infinite plane con- taining a circular hole at the origin. 74
3.5 Circular hole symmetrically placed in a finite rectangular plate under uniaxial tension. 80
3.6 Circular plane, containing a circular hole, subjected to radially uniform tension over a portion of the boundary. 87
Figure Page
4.1 Superposition of the problem of ellip- tical hole 95
4.2 Mapping the auxiliary problem to a unit disc 96
4.3 A sharp crack in an infinite plane 117
4.4 An elliptical hole in a plane finite region with prescribed traction on the boundary, B_{e} 123
4.5 A horizontal slit in a plane finite region with prescribed traction on the boundary, B_{s} 123
4.6 The finite region R_{e} and R_{S}, with sub- divided boundary and concentrated line loads. 124
4.7 Region R_{e}, embedded in an infinite plane containing an elliptical hole at the origin 125
4.8 Region R_{S}, embedded in an infinite plane containing a horizontal slit at the origin 126
4.9 Rectangular plane weakened by an ellip- tical hole at the origin 134
4.10 Circular plane weakened by an elliptical hole at the origin 141
4.11 Rectangular plane weakened by a sharp crack at the origin. 148
5.1 Different contours for $N=2$ and $c=1$ 159
5.2 Different contours for $\mathrm{N}=2$ and $\mathrm{o}<\mathrm{c}<1$ 160
5.3 Different contours for $\mathrm{N}=3$ and $\mathrm{c}=1$ 161
5.4 Different contours for $\mathrm{N}=3$, $\mathrm{c}=1$ and $\varepsilon=0$. 162
5.5 The problem of infinite plane containing a triangular hole expressed as the super- position of the two problem. 170
5.6 Mapping the problem of the hole and the applied traction into a unit circular disc 172
Ei
5.
3.3
Figure Page
5.7 The problem of infinite plane containing an arbitrarily-shaped hole expressed as the superposition of the two problems. 183
5.8 Mapping the problem of the hole subjectedto applied traction into a unit circulardisc184

LIST OF APPENDICES

Appendix PageA THE POTENTIAL FUNCTIONS AND THEINFLUENCE FOR AN INFINITE PLANE REGION
CONTAINING A CIRCULAR HOLE. 210B COMPUTER PROGRAM FOR PLANE, FINITEREGION CONTAINING A CIRCULAR HOLE214C THE POTENTIAL FUNCTIONS AND THEINFLUENCE FUNCTIONS FOR AN INFINITEPLANE REGION CONTAINING AN ELLIPTICALHOLE.226
D THE POTENTIAL FUNCTIONS AND THE INFLUENCE FUNCTIONS FOR AN INFINITE PLANE REGION CONTAINING A SHARP CRACK 231
E COMPUTER PROGRAM FOR PLANE, FINITEREGION CONTAINING AN ELLIPTICAL HOLEOR A SHARP CRACKCOMPUTER PROGRAM FOR PLOTTING THECONTOUR OF THE OPENING WITH TWO ORTHREE AXES OF SYMMETRY. 250

LIST OF SYMBOLS

a	diameter of the circular hole or semimajor axis of the elliptical hole
a_{k}	coefficient of the power series expansion of $\phi_{1}^{*}(\zeta)$
$A_{i j}$	sub-matrix of matrix RM
b	semi-minor axis of the elliptical hole
b_{k}	coefficient of the power series expansion of $\Psi_{1}^{*}(\zeta)$
B	boundary of region
$B_{i j}$	sub-matrix of matrix RM
$\mathrm{BV}_{\mathrm{xi}}$	x component of the boundary value at subdivision i
$\mathrm{BV}_{y i}$	y component of the boundary value of subdivision i
C	contour of the hole
$C_{i j}$	sub-matrix of matrix RM
dn	coefficient of power series in the equation of opening
D_{ij}	sub-matrix of matrix RM
F	field point
g_{k}	coefficient used in the transformation function
h_{n}	coefficient of power series in the equation of opening
$H_{i j} ; q^{\left(Z, Z_{0}\right)}$	ijth stress component at the point Z due to a unit load acting in the q direction at the point Z_{0}

α_{k}
coefficient for the expansion series of transformation function
coefficient for the expansion series of inverse transformation function
circumference of unit circle
a function of Ω and W
coefficient used in the transformation function
constant coefficient used in the equation of opening
point in the transformed plane
coefficient used in the transformation function
angle (measured counterclockwise)
coefficient used in the transformation function
shear modulus of elasticity (MPa)
Poisson's ratio
coefficient used in the transformation function
coefficient of expansion of inverse transformation
ijth stress component at field point
boundary point of the unit circle
harmonic function
complex potential functions
and transformed complex potentials
an analytic function
the mapping function

$I_{i ; q}\left(Z, z_{0}\right)$	ith displacement component at the point Z due to a unit load acting in the q direction at the point Z_{0}
ℓ	constant used in the transformation function
m	constant used in the equation of ellipse
n_{i}	outward direction cosine to boundary
$\mathrm{P}_{x i}, \mathrm{P}_{y i}$	real line load components in the ith interval
$\mathrm{P}_{\mathrm{x}}^{*}{ }^{*}, \mathrm{P}_{\underset{y}{*}}{ }_{i}$	fictitious line load components in the ith interval
PD	function of ζ
PDD	derivative of PD
$\mathrm{r}_{\mathrm{i}}, \mathrm{r}_{0}$	roots of $A(\sigma)=0$ which fall inside and outside the unit circle, respectively
r_{x}, r_{y}	```x, y distances from field point to boundary point```
S	co-ordinate along boundary
t	point on hole boundary
t_{i}, t_{0}	roots of $B(\sigma)=0$ which fall inside and outside the unit circle, respectively
U_{i}	ith component of displacement at field point
U	biharmonic function
X_{0}	X component of boundary point Z_{0}
$X(x, y)$	harmonic function
Y_{0}	Y component of boundary point Z_{0}
$Y(x, y)$	harmonic function
2	field point
Zo	point on contour B where line load is applied
Z_{1}	point on contour B where boundary conditions are to be satisfied
α	function of Poisson's ratio

INTRODUCTION

One of the most fundamental problem areas in elasticity is the effect of an opening in an elastic region. The literature is filled with analyses, analytical, numerical and experimental, of problems involving holes in finite bodies subjected to prescribed load. A renewed, and intense, interest in this type of problem has evolved with the advent of fracture mechanics, in which the "hole" takes on the shape of a sharp crack. Although specific problems (i.e., specific shaped regions containing a specific shape of opening and subjected to specific boundary conditions) have been defined and solved, there still exist a large number of fundamentally important problems which do not lend themselves to analytic solution. These analytic approaches can be accomplished only when the geometry and loading are simple. Numerical analyses (such as finite elements, finite differences and boundary integral methods) have played a big role in the solution of problems of arbitrary geometry and loading.

In this dissertation, a boundary integral equation method has been used to solve problems of this type. This method has definite advantages over finite differences and finite elements for various types of problems. In
boundary integral methods, the stresses are obtained at a point and, for locations greater than one boundary subdivision from the boundary, they are extremely accurate. These methods do not require discretization of the domain as with finite elements or finite differences, but merely discretization of the boundary. This leads to a coefficient matrix which is of lower order than would be obtained by finite elements and finite differences. Indeed, within the past ten years, boundary integral equation methods have been applied to three dimensional isotropic [1] and anisotropic [2] elasticity, plasticity [3], plate theory [4], fracture mechanics [5] and a broad range of other applications [6].

The main limitation of the boundary integral equation method is the inaccuracy of the results near the boundary. This is due to the fact that the boundary is discretized and clearly the error worsens near the discretization. This is not usually a bothersome limitation but, in the case of problems involving an opening, multiply connected regions, the opening must also be considered as a part of the boundary and therefore the largest error occurs in the most important region (i.e., near the opening).

In this dissertation, a new formulation of the boundary integral equation method is presented in which the opening is no longer considered as part of the boundary since its effect on the stress and displacement fields is incorporated into the kernel of the integral equations. This is done using the theory of complex
variables in elasticity, namely the Muskhelishvili method, and the Cauchy integral theorems. The results are highly accurate along and near the opening.

In Chapter I, the boundary integral equation method, the complex variable analysis of elasticity (the Muskhelishvili method) and the Cauchy integral theorems are presented. A mapping technique and a general solution for finding the kernel of the integrands of the boundary integral equations is introduced in Chapter II.

In Chapter III, the boundary integral equations presented in Chapter II are used to solve the problem of a plane finite linear elastic region containing a circular hole. The kernel of these equations is replaced by a kernel which incorporates the effects of the hole on the elastic field. This kernel is derived using the mapping technique, the Muskhelishvili method and complex variable theory. Some examples are presented and compared to some known solutions.

In Chapter IV, this solution technique is extended to the problem of a finite plane linear elastic region containing an elliptical hole or a sharp crack. Again, a kernel which incorporates the effect of the elliptical hole or the sharp crack is derived and replaces the kernel of the equations of Chapter II. Some example problems are presented and, in the case of the sharp crack, solutions are compared to some recently obtained experimental results.

In Chapter V, the extension of the solution technique to the problem of a finite plane linear elastic region contraining other types of opening is discussed.

Finally, the closure and conclusions are presented in Chapter VI. The computer programs used for computations in Chapters III and IV are included in the Appendices.

CHAPTER I

BACKGROUND AND PRELIMINARIES

I. 1 AN INTEGRAL EQUATION METHOD

Introduction

The first application of the methods of potential theory to classical elasticity theory was introduced by E. Betti [7] in 1872. Later this work was expanded by Somigliana [8], Lauricella [9] and others. In particular, Betti's contribution, i.e., the general method of integrating the equations of elasticity, was simply a development of the potential methods of Green and Poisson. Thus, some fundamental results from potential theory should first be discussed. Let a function ϕ be the solution of Laplace's equation throughout a region R :

$$
\begin{equation*}
\nabla^{2} \phi=0 \quad \text { in } R \tag{1.1}
\end{equation*}
$$

subjected to the boundary conditions

$$
\begin{array}{ll}
\phi=f & \text { on } \partial R_{1} \\
\frac{\partial \phi}{\partial n}=g & \text { on } \partial R_{2} \tag{1.2}
\end{array}
$$

where $\partial R=\partial R_{1}+\partial R_{2}$ is the boundary of R. Note that $1 / r$, where r is the distance between two points in R, is
a singular solution to Laplace's equation. Combining $1 / r$ with the solution ϕ in the classical Green's theorem of integral calculus [10] results in the identity,
$\phi(z)=\frac{1}{4 \pi} \int_{\partial R}\left[g\left(Z_{0}\right) \frac{1}{r\left(z, Z_{0}\right)}-f\left(Z_{0}\right) \frac{\partial}{\partial n}\left(\frac{1}{r\left(z, Z_{0}\right)}\right)\right] \cdot d s\left(Z_{0}\right)$
where Z is any point in R and Z_{0} any point on ∂R. Since f and g are both needed everywhere on ∂R, only one of them is known at each point, then the other has to be found. To accomplish this [11-13], consider taking the limit of equation (1.3) as Z approaches a boundary point Z_{1}, on ∂R. The result is:
$f\left(Z_{1}\right)-\frac{1}{2 \pi} \int_{\partial R}\left[g\left(Z_{0}\right) \frac{1}{r\left(Z_{1}, Z_{0}\right)}-f\left(Z_{0}\right) \frac{\partial}{\partial n_{Z_{0}}}\left(\frac{1}{r\left(Z_{1}, Z_{0}\right)}\right)\right] d s\left(Z_{0}\right)=0$
where the limit as $Z \rightarrow Z_{1}$, of $\phi(Z)$ is, by definition, $f\left(Z_{1}\right)$ and the integral in equation (1.3) has a jump of $f\left(Z_{1}\right) / 2$ in the limit [11]. Thus, this integral is to be interpreted in the Cauchy principal value sense. Equation (1.4) is the "Boundary-Integral Equation" which relates g and f. Solving the integral equation (1.4) for either f, if g is given, or g, if f is given, leads to the solution ϕ.

In spite of this classical foundation of the boundary integral equation method, the literature contains at least two seemingly distinct formulations for the treatment of elasticity problems. One of these, due to Rizzo et al. [14-16] and Cruse [17], follows directly from Somigliana's identity of elasticity [18]. The other formulation due to Massonnet [19] and extended by Altiero and Sikarskie [20] attacks the problem by embedding the region in an infinite plane and distributing a layer of body force on the proposed boundary in such a way that the desired solution is produced within the region of interest. Both approaches will be discussed in this chapter and the latter will be employed in the subsequent analysis.

The formulation of the boundary integral equation method due to Rizzo [14] is based on Somigliana's identity: $U_{q}(z)=\int_{B} I_{i ; q}\left(z, Z_{0}\right) t_{i}\left(Z_{0}\right) d s\left(Z_{0}\right)$

$$
\begin{equation*}
-\int_{B} H_{i j ; q}\left(z, z_{0}\right) U_{i}\left(z_{0}\right) n_{j}\left(Z_{0}\right) d s\left(Z_{0}\right) \tag{1.5}
\end{equation*}
$$

where \vec{U} is the displacement vector, $I_{i ; q}\left(Z, z_{0}\right)$ is the ith component of the displacement at Z produced by a unit force applied in the q direction at Z_{0} in an infinite medium, and t_{i} and $H_{i j ; q}\left(Z, Z_{0}\right) n_{j}\left(Z_{0}\right)$ are the components of the boundary traction corresponding to the displacements U_{i} and $I_{i ; q}$, respectively. In three dimensions, ds represents an element of area, in two dimensions, an element of arc length.

Taking the limit as Z approaches a point Z_{1} on B from the inside leads to

$$
\begin{gather*}
\frac{1}{2} U_{q}\left(z_{1}\right)+\int_{B} H_{i j ; q}\left(z_{1}, z_{0}\right) U_{i}\left(z_{0}\right) n_{j}\left(z_{0}\right) d s\left(z_{0}\right) \\
=\int_{B} I_{i ; q}\left(z_{1}, z_{0}\right) t_{i}\left(z_{0}\right) d s\left(z_{0}\right) \tag{1.6}
\end{gather*}
$$

where the integral on the left-hand side is to be interpreted in the Cauchy principal value sense. If the traction is prescribed everywhere on B, then the righthand side of equation (1.6) is known and a system of singular integral equations can be solved for the boundary displacement U. The interior displacements can then be found from equation (1.5). If the displacements are prescribed everywhere on B, then the left-hand side of equation (1.6) is known but the resulting set of integral equations are not singular. For the mixed boundary conditions, some of the equations are singular and some are not.

The second formulation of the boundary integral method, i.e., that of Altiero and Sikarskie [20], is an extension of the work of Massonnet [19]. Massonnet introduced a method for solution of traction boundary value problems in which the real body is embedded in a series of "fictitious" half planes which are sequentially tangent to the real boundary. To demonstrate the idea, consider a finite two dimensional region with a prescribed traction all around the boundary, Figure 1.1. Choose the

Figure 1.1. Finite two-dimensional region with prescribed traction all around the boundary.

Figure 1.2 Half plane subjected to a concentrated force on the boundary.
in ha

Figure 1.3 Region of Figure 1.1 embedded successively in half planes.

Figure 1.4 Boundary value problem in plane elasticity.
simple radial stress distribution, i.e., a half plane subjected to a concentrated line load on the boundary, as a fundamental singular stress field, Figure 1.2. This solution is well known [21]. Then, draw the tangent to a point, Z_{0}, of the real boundary and consider the half plane extending indefinitely below this tangent, Figure 1.3. In other words, the body has been embedded in a succession of half planes. An unknown "fictitious" line load is introduced at each point of tangency. A vector boundary integral equation for the unknown fictitious tractions results when one forces satisfaction of the traction boundary conditions of the original problem.

An approach somewhat similar to Massonnet's has been developed [22] for anisotropic regions subject to traction boundary conditions. This approach, later, was extended by Altiero and Sikarskie [20] to mixed boundary value problems. Consider a two dimensional, linear elastic region R with boundary B as shown in Figure 1.4. For prescribed boundary conditions, i.e., tractions and/or displacements on B, the stress field and displacement field in the region R are to be determined. The region R will be embedded in an infinite (fictitious) plane of the same material and thickness as R, Figure 1.5. The influence function which satisfies the equations of elasticity, i.e., $H_{i j ; q}\left(Z, Z_{0}\right)$ and $I_{i ; q}\left(Z, Z_{0}\right)$, are known [23], where $H_{i j ; q}\left(Z, Z_{0}\right)$ is the $i j t h$ stress component at a field point Z due to a unit line load in the q direction

Figure 1.5 Region R embedded in an infinite plane.
at a source point Z_{0} and $I_{i ; q}\left(z, Z_{0}\right)$ is the displacement in the i direction at Z due to the unit line load at Z_{0}. Consider now a fictitious layer of body force P* (unknown) acting along the contour B, see Figure 1.5. Since the problem is linear, then the superposition of fundamental solutions leads to the determination of stresses and displacements at a point Z as follows:

$$
\begin{align*}
& \sigma_{i j}(z)=\int_{B} H_{i j ; q}\left(z, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right) d s\left(Z_{0}\right) \\
& U_{i}(z)=\int_{B} I_{i ; q}\left(z, z_{0}\right) P_{\mathrm{q}}^{*}\left(z_{0}\right) d s\left(z_{0}\right) \tag{1.7}
\end{align*}
$$

where Z_{0} is now on the boundary B and $d s\left(Z_{0}\right)$ is an element of length along B at Z_{0}. Then all equations of linear elasticity are satisfied by equations (1.7) since they represent the superposition of fundamental solutions. In order to solve the boundary value problem of interest, the boundary conditions on B are yet to be satisfied. These conditions are:

$$
\begin{gather*}
\sigma_{i j} n_{j}=P_{i}^{s} \quad \text { on } B_{t} \\
U_{i}=U_{i}^{S} \quad \text { on } B_{u} \tag{1.8}
\end{gather*}
$$

where n_{j} is the j-component of the outward unit normal to a point on B and P_{i}^{S}, U_{i}^{S} are the specified traction and displacement components, respectively. Note that one may also specify one traction component and one displacement
component at a particular boundary point, provided they are mutually orthogonal. Let the interior point Z approach a boundary point Z_{1}, on B, Figure 1.5. Then the stresses and displacements, equations (1.7), must satisfy the boundary conditions of equations (1.8). Thus, substitution of equations (1.7) into equations (1.8) leads to

$$
\frac{1}{2} P_{i}^{*}\left(z_{1}\right)+\oint_{\mathrm{B}} \mathrm{H}_{\mathrm{ij} ; \mathrm{q}}\left(z_{1}, z_{0}\right) \mathrm{P}_{\mathrm{q}}^{*}\left(z_{0}\right) \mathrm{n}_{\mathrm{j}}\left(z_{1}\right) \mathrm{ds}\left(z_{0}\right)
$$

$$
=P_{i}^{S}\left(Z_{1}\right)
$$

$$
\begin{equation*}
\mathrm{Z}_{1} \text { on } \mathrm{B}_{\mathrm{t}} \tag{1.9}
\end{equation*}
$$

$$
\oint_{B} I_{i ; q}\left(Z_{1}, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right) d s\left(Z_{0}\right)=U_{i}^{s}\left(Z_{1}\right)
$$

$$
\begin{equation*}
Z_{1} \text { on } B_{u} \tag{1.10}
\end{equation*}
$$

Note that the subscript i refers to a co-ordinate direction at a boundary point Z_{1}. Equations (1.9) and (1.10) represent coupled integral equations in the unknown fictitious traction P^{*}. Note that the singularity has been extracted from equation (1.9) and the integral of this equation is to be interpreted in the Cauchy principal value sense. Equations (1.9) and (1.10) contain several types of problem. For the first fundamental problem of plane elasticity, i.e., traction boundary conditions only, the vector equation (1.9) is to be used. For the mixed boundary value problem, both equations appear but not in
the same direction at the same point, i.e., if a traction is specified in the i direction at Z_{1}, then equation (1.9) holds; and if a displacement is specified, then equation (1.10) holds.

Like the Rizzo formulation, equations (1.9), i.e., the traction boundary value problem, are singular. However, for displacement boundary value problems, equations (1.10) are used and these are not singular. For mixed boundary value problems, some of the equations will be singular and some not.

It is felt that the formulation of Altiero and Sikarskie is preferable for the following reason. In the method of Rizzo, one must first perform integration around the boundary before the required integral equations are defined. This is clearly not necessary in the Altiero and Sikarskie formulation, where one merely needs to specify the tractions and displacements themselves and the right-hand sides of the required integral equation are immediately known. Therefore, the Altiero and Sikarskie formulation will be used here.

Note the fact that the Altiero and Sikarskie formu1ation is not restricted to embedment in an infinite plane. Massonnet, as discussed earlier, used embedment in a succession of half planes. However, to obtain singular equations for the traction problem, and therefore more numerically efficient equations, this approach requires tangency of the half plane to the embedded body successively around the boundary.

The Massonnet approach is therefore somewhat cumbersome and particularly inconvenient, particularly for the solution of anisotropic elasticity problems [22]. Also, it is very difficult to apply this method to multiply connected regions. Whichever formulation is used, the fundamental solutions for the fictitious region should be simple. This is best satisfied by the infinite plane.

Once $\overrightarrow{\mathrm{P}}^{*}$ has been determined, the stresses and displacements at any field point can be determined by substituting P^{*} into equations (1.7). These stresses and displacements represent the solution to the boundary value problem of interest within R. The influence functions, i.e., the stress and displacement fields in component form, due to a concentrated line load p*ds in an infinite plane are given by Love [23]. These are:

$$
\begin{align*}
& H_{x x} ; q P_{q}^{*}=-\frac{1}{4 \pi r^{4}}\left[P_{x}^{*} r_{x}\left(a_{1} r_{x}^{2}+a_{2} r_{y}^{2}\right)+P_{y}^{*} r_{y}\left(a_{3} r_{x}^{2}-a_{2} r_{y}^{2}\right)\right] \\
& H_{y y} ; q^{P}{ }_{q}^{*}=-\frac{1}{4 \pi r^{4}}\left[P_{x}^{*} r_{x}\left(a_{3} r_{y}^{2}-a_{2} r_{x}^{2}\right)+P_{y}^{*} r_{y}\left(a_{1} r_{y}^{2}+a_{2} r_{x}^{2}\right)\right] \\
& H_{x y ; q_{q}^{*}}=-\frac{1}{4 \pi r^{4}}\left[P_{x}^{*} r y\left(a_{1} r_{x}^{2}+a_{2} r_{y}^{2}\right)+P_{y}^{*} r r_{x}\left(a_{2} r_{x}^{2}+a_{1} r_{y}^{2}\right)\right] \tag{1.11}
\end{align*}
$$

$$
\begin{align*}
& I_{x ; q} P_{q}^{*}=-\frac{1}{4 \pi r^{2}}\left[P_{x}^{*}\left(a_{4} r^{2} l o g r+a_{5} r_{y}^{2}\right)-P_{y}^{*} a_{5} r_{x} r_{y}\right] \\
& I_{y ; q} P_{q}^{*}=-\frac{1}{4 \pi r^{2}}\left[-P_{x}^{*} a_{5} r_{x} r_{y}+P_{y}^{*}\left(a_{4} r^{2} l o g r+a_{5} r_{x}^{2}\right)\right] \tag{1.12}
\end{align*}
$$

where r_{x} and r_{y} are the x, y components of the radius vector from Z to Z_{0} and the constants a_{1} through a_{5} for the problem of plane strain are

$$
\begin{align*}
& a_{1}=(3-2 v) /(1-v) \\
& a_{2}=(1-2 v) /(1-v) \\
& a_{3}=(1+2 v) /(1-v) \\
& a_{4}=(3-4 v)(1+v) /(1-v) \\
& a_{5}=(1+v) /(1-v) \tag{1.13}
\end{align*}
$$

and, for plane stress, v is replaced by v^{*} in all the coefficients of equation (1.13) where:

$$
v^{*}=\frac{v}{1+v}
$$

The influence functions found in equations (1.11) and (1.12) can be obtained using the complex potential functions associated with the concentrated line load in an infinite plane. This will be discussed further in the next section.

The solution to any boundary value problem of plane elasticity is contained in equations (1.9), (1.10), and (1.7). For tractions specified everywhere on B, equations (1.9) are to be solved for P^{*}. These values of P * are then substituted into equations (1.7) to find the stresses and displacements at any field point. Equations (1.7) may give the displacement field to within a rigid body displacement. The rigid body displacement, however, can
be eliminated by suitably prescribing sufficient boundary displacement information. For displacements specified everywhere on B, equations (1.10) are solved for $\overrightarrow{P^{*}}$ and equations (1.7) again used to find the stress and displacement fields. For mixed conditions at a point either the x component equation (1.9) and the y component of equations (1.10) or the converse must be satisfied.

To obtain a numerical solution to equations (1.9) and (1.10), the boundary is first replaced by an N-sided polygon with sides of arbitrary length ΔS_{i}. The resultant boundary data over the interval ΔS_{i} is now defined at the midpoint of each interval as follows:

$$
\begin{align*}
& P_{x i}^{*}=\int_{\Delta S_{i}} P_{x}^{* d s} \quad, \quad P_{y i}^{*}=\int_{\Delta S_{i}} P_{y}^{* d s} \\
& P_{x i}=\int_{\Delta S_{i}} P_{x}^{s} d s \quad, \quad P_{y i}=\int_{\Delta S_{i}} P_{y}^{s} d s \\
& U_{x i}=\int_{\Delta S_{i}} U_{x}^{s} d s \quad, \quad U_{y i}=\int_{\Delta S_{i}} U_{y}^{s} d s \tag{1.14}
\end{align*}
$$

Note that the superscript * implies the fictitious component. Multiplying equations (1.9) and (1.10) by as(Z_{1}) leads to

$$
\begin{aligned}
& \frac{1}{2} P_{i}^{*}\left(Z_{1}\right) d s\left(Z_{1}\right)+\oiiint_{B}^{H_{i j} ; q}\left(Z_{1}, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right) d s\left(Z_{0}\right) \cdot n_{j}\left(z_{1}\right) d s\left(Z_{1}\right) \\
&=p_{i}^{s}\left(z_{1}\right) d s\left(z_{1}\right)
\end{aligned}
$$

$$
\begin{align*}
& \oint_{B} I_{i ; q}\left(Z_{1}, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right) \mathrm{ds}\left(Z_{0}\right) \cdot \mathrm{ds}\left(Z_{1}\right) \\
& =\mathrm{U}_{\mathrm{i}}^{\mathrm{S}}\left(Z_{1}\right) \mathrm{ds}\left(Z_{1}\right) \tag{1.15}
\end{align*}
$$

Integrating equations (1.15) over boundary interval ΔS_{i} and assuming that the influence functions are independent of Z_{0} over a particular interval yields:

$$
\begin{align*}
& \frac{1}{2} P_{i}^{*}\left(Z_{1}\right)+\oint_{B} H_{i j ; q}\left(Z_{1}, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right) \cdot n_{j}\left(Z_{1}\right) d s\left(Z_{1}\right) \\
& \quad=P_{i}\left(Z_{1}\right) \\
& \oint_{B} I_{i ; q}\left(Z_{1}, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right) d s\left(Z_{1}\right)=U_{i}\left(Z_{1}\right) \tag{1.16}
\end{align*}
$$

A simple integration procedure can be employed here, i.e., simply multiplying the value of the integrand at the midpoint of an interval by the interval length. This is sufficient for all intervals except for the second equation in which the kernel of $I_{i ; q}\left(z, Z_{0}\right)$ is undefined when $Z_{1}=Z_{0}$. Thus, this one interval must be integrated analytically and the integrals can be written as:

$$
\frac{1}{2} P_{i}^{*}\left(Z_{1}\right)+\sum_{\substack{Z_{0}=1 \\ Z_{0} \neq Z_{1}}}^{N} H_{i j ; q}\left(Z_{1}, Z_{0}\right) p_{q}^{*}\left(Z_{0}\right) n_{j}\left(Z_{1}\right) \Delta S\left(Z_{1}\right)
$$

$$
=P_{i}\left(Z_{1}\right)
$$

$$
\begin{align*}
& \qquad g_{i} P_{i}^{*}\left(Z_{1}\right)+\sum_{\substack{Z_{0}=1 \\
Z_{0} \neq Z_{1}}}^{N} I_{i ; q}\left(Z_{1}, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right) \Delta S\left(Z_{1}\right) \\
& =U_{i}\left(Z_{1}\right) \tag{1.17}\\
& \text { where } g_{i}=\int_{\Delta S_{i}} I_{i ; q}\left(Z_{1}, Z_{0}\right) d s\left(Z_{1}\right) \tag{1.18}
\end{align*}
$$

over the interval which includes $Z_{1}=Z_{0}$. Note that the boundary points Z_{0} and Z_{1} in the discrete terms will now represent the center-point location of the intervals, numbered counterclockwise. Separating x and y components, one obtains

$$
\begin{align*}
& \frac{1}{2} P_{x}^{*}\left(Z_{1}\right)+\sum_{\substack{z_{0}=1 \\
Z_{0} \neq Z_{1}}}^{N}\left[H_{x x ; q}\left(Z_{1}, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right) n_{x}\left(Z_{1}\right)\right. \\
& \left.+H_{x y} ; q\left(Z_{1}, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right) n_{y}\left(Z_{1}\right)\right] \Delta S\left(Z_{1}\right)=P_{x}\left(Z_{1}\right) \\
& \frac{1}{2} P_{y}^{*}\left(Z_{1}\right)+\sum_{\substack{Z_{0}=1 \\
Z_{0} \neq Z_{1}}}^{N}\left[H_{x y} ; q^{\left(Z_{1}, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right) n_{x}\left(Z_{1}\right)}\right. \\
& \left.+H_{y y} ; q^{\left(Z_{1}, Z_{0}\right)} P_{q}^{*}\left(Z_{0}\right) n_{y}\left(Z_{1}\right)\right] \Delta S\left(Z_{1}\right)=P_{y}\left(Z_{1}\right) \tag{1.19}\\
& g_{x} P_{x}^{*}\left(z_{1}\right)+\sum_{z_{0}=1}^{N}\left[I_{x ; q}\left(Z_{1}, z_{0}\right) P_{q}^{*}\left(Z_{0}\right)\right] \Delta S\left(Z_{1}\right)=U_{x}\left(Z_{1}\right) \\
& g_{y} P_{y}^{*}\left(Z_{1}\right)+\sum_{z_{0}=1}^{N}\left[I_{y ; q}\left(z_{1}, z_{0}\right) P_{q}^{*}\left(Z_{0}\right)\right] \Delta S\left(z_{1}\right)=U_{y}\left(Z_{1}\right)(1.20)
\end{align*}
$$

where the influence functions can now be written as

$$
\begin{align*}
& H_{i j ; q}\left(Z_{1}, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right)=H_{i j ; x}\left(Z_{1}, Z_{0}\right) P_{x}^{*}\left(Z_{0}\right) \\
& \quad+H_{i j ; y}\left(Z_{1}, Z_{0}\right) P_{y}^{*}\left(Z_{0}\right) \\
& I_{i ; q}\left(Z_{1}, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right)=I_{i ; x}\left(Z_{1}, Z_{0}\right) P_{x}^{*}\left(Z_{0}\right) \\
& \quad+I_{i ; y}\left(Z_{1}, Z_{0}\right) P_{y}^{*}\left(Z_{0}\right) \\
& \quad i, j=x, y \tag{1.21}
\end{align*}
$$

Substituting equations (1.21) into (1.19) and (1.20) and rearranging the equations leads to

$$
\begin{aligned}
& \frac{1}{2}^{P_{x}^{*}}\left(Z_{1}\right)+\sum_{\substack{Z_{0}=1 \\
Z_{0} \neq Z_{1}}}^{N}\left\{\left[H_{x x ; x}\left(Z_{1}, Z_{0}\right) n_{x}\left(Z_{1}\right)\right.\right. \\
& \left.+H_{x y ; x}\left(Z_{1}, Z_{0}\right) n_{y}\left(Z_{1}\right)\right] P_{x}^{*}\left(Z_{0}\right)+\left[H_{x x ; y}\left(Z_{1}, Z_{0}\right) n_{x}\left(Z_{1}\right)\right. \\
& \left.\left.+H_{x y ; y}\left(Z_{1}, z_{0}\right) n_{y}\left(Z_{1}\right)\right] P_{y}^{*}\left(Z_{0}\right)\right\} \Delta S\left(Z_{1}\right)=P_{x}\left(Z_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.+H_{y y ;}\left(Z_{1}, Z_{0}\right) n_{y}\left(Z_{1}\right)\right] P_{x}^{*}\left(Z_{0}\right)+\left[H_{x y ; y}\left(Z_{1}, Z_{0}\right) n_{x}\left(Z_{1}\right)\right. \\
& \left.\left.+H_{y y ; y}\left(Z_{1}, z_{0}\right) n_{y}\left(Z_{1}\right)\right] P_{y}^{*}\left(Z_{0}\right)\right\} \Delta S\left(Z_{1}\right)=P_{x}\left(Z_{1}\right) \text { (1.22) }
\end{aligned}
$$

Euat
 form:
 $\mathbb{N}_{x i}$

$\mathbb{K}_{Y i}$
whe
${ }_{i j}$
B_{i}

$$
\begin{align*}
& g_{x} \cdot P_{x}^{*}\left(Z_{1}\right)+\sum_{\substack{Z_{0}=1 \\
Z_{0} \neq Z_{1}}}^{N}\left\{I_{x ; x}\left(Z_{1}, Z_{0}\right) P_{x}^{*}\left(Z_{0}\right)\right. \\
& \left.+I_{x ; y}\left(Z_{1}, Z_{0}\right) P_{y}^{*}\left(Z_{0}\right)\right\} \Delta S\left(Z_{1}\right)=U_{x}\left(Z_{1}\right) \\
& g_{y} \cdot P_{y}^{*}\left(Z_{1}\right)+\sum_{\substack{z_{0}=1 \\
Z_{0} \neq Z_{1}}}^{N}\left\{I_{y ; x}\left(Z_{1}, Z_{0}\right) P_{x}^{*}\left(Z_{0}\right)\right. \\
& \left.+I_{y ; y}\left(Z_{1}, Z_{0}\right) P_{y}^{*}\left(Z_{0}\right)\right\} S\left(Z_{1}\right)=U_{y}\left(Z_{1}\right) \tag{1.23}
\end{align*}
$$

Equations (1.22) and (1.23) can be written in the compact form:

$$
\begin{align*}
& K_{x i} P_{x i}^{*}+\sum_{\substack{j=1 \\
j \neq i}}^{N}\left(A A_{i j} P_{x j}^{*}+B_{i j} P_{y j}^{*}\right)=B V_{x i} \\
& K_{y i} P_{y i}^{*}+\sum_{\substack{j=1 \\
j \neq i}}^{N}\left(C_{i j} P_{x j}^{*}+D_{i j} P_{y j}^{*}\right)=B V_{y i} \\
& i=1, \ldots N \tag{1.24}
\end{align*}
$$

where i and j represent Z_{1} and Z_{0}, respectively, and where

$$
\begin{aligned}
& A_{i j}=\left[H_{x x ; x}\left(Z_{1}, Z_{0}\right) n_{x}\left(Z_{1}\right)+H_{x y ; x}\left(Z_{1}, Z_{0}\right) n_{y}\left(Z_{1}\right)\right] \Delta S\left(Z_{1}\right) \\
& B_{i j}=\left[H_{x x ; y}\left(Z_{1}, z_{0}\right) n_{x}\left(Z_{1}\right)+H_{x y ; y}\left(Z_{1}, Z_{0}\right) n_{y}\left(Z_{1}\right)\right] \Delta S\left(Z_{1}\right)
\end{aligned}
$$

$$
\begin{align*}
& C_{i j}=\left[H_{x y ; x}\left(z_{1}, z_{0}\right) n_{x}\left(z_{1}\right)+H_{y y} ; x\left(z_{1}, z_{0}\right) n_{y}\left(Z_{1}\right)\right] \Delta S\left(z_{1}\right) \\
& D_{i j}=\left[H_{x y ; y}\left(z_{1}, z_{0}\right) n_{x}\left(z_{1}\right)+H_{y y ; y}\left(z_{1}, z_{0}\right) n_{y}\left(z_{1}\right)\right] \Delta S\left(z_{1}\right) \\
& K_{x i}=K_{y i}=\frac{1}{2} \\
& B V_{x i}=P_{x}\left(z_{1}\right) \quad, \quad B V_{y i}=P_{y}\left(Z_{1}\right)
\end{align*}
$$

for a traction condition specified and

$$
\begin{array}{ll}
A_{i j}=I_{x ; x}\left(Z_{1}, Z_{0}\right) \Delta S\left(Z_{1}\right) & B_{i j}=I_{x ; y}\left(Z_{1}, Z_{0}\right) \Delta S\left(Z_{1}\right) \\
C_{i j}=I_{y ; x}\left(Z_{1}, Z_{0}\right) \Delta S\left(Z_{1}\right) & D_{i j}=I_{y ; y}\left(Z_{1}, Z_{0}\right) \Delta S\left(Z_{1}\right) \\
K_{x i}=g_{x} & K_{y i}=g_{y} \\
B V_{x i}=U_{x}\left(Z_{1}\right) & B V_{y i}=U_{y}\left(Z_{1}\right)
\end{array}
$$

or a specified displacement condition. There are several methods for solving equation (1.24) for the fictitious traction. The first and simplest method is iteration. Iteration works particularly well for traction boundary value problems, equations (1.22). An initial choice of fictitious fractions equal to the actual tractions produces fairly rapid convergence. For the mixed problem, equation (1.23), the iteration, in general, does not converge. A second method is matrix inversion or elimination. Equation (1.24) can be written in the matrix form
where all sub-matrixes can be found using equations (1.25) and/or (1.26). Equation (1.27) is written more compactly as:

$$
\begin{equation*}
[\mathrm{RM}]\{\mathrm{P} *\}=\{\mathrm{BV}\} \tag{1.28}
\end{equation*}
$$

Once the fictitious traction are determined, the stresses and displacements are found from the numerical approximation of equations (1.7):

$$
\begin{align*}
& \sigma_{x x}=\sum_{i=1}^{N}\left[H_{x x ; x}(F, i) P_{x i}^{*}+H_{x x ; y}(F, i) P_{y i}^{*}\right] \\
& \sigma_{x y}=\sum_{i=1}^{N}\left[H_{y y ; x}(F, i) P_{x i}^{*}+H_{y y ; y}(F, i) P_{y i}^{*}\right] \\
& \sigma_{x y}=\sum_{i=1}^{N}\left[H_{x y ; x}(F, i) P_{x i}^{*}+H_{x y ; y}(F, i) P_{y i}^{*}\right] \\
& U_{x}=\sum_{i=1}^{N}\left[I_{x ; x}(F, i) P_{x i}^{*}+I_{x ; y}(F, i) P_{y i}^{*}\right] \\
& U_{y}=\sum_{i=1}^{N}\left[I_{y ; x}(F, i) P_{x i}^{*}+I_{y ; y}(F, i) P_{y i}^{*}\right] \tag{1.29}
\end{align*}
$$

where F is a field point and $P^{*}{ }_{x i}, P_{y i}^{*}$ are the components of the known fictitious traction at the interval i.

It is clear from equations (1.29) that the stresses and displacements can be found at small expense anywhere in the field by simple summation.

It is important to note that the embedment in an infinite plane can also be used for multiply connected domains, such as a region containing a hole. However, the hole would need to be treated as boundary. Discretization of the boundary would therefore cause inaccuracy of the solution near the edge of the hole where the solution is most important. The goal of this dissertation is to eliminate the contour of the hole from the boundary and to find a new influence function for the problem, which contains the effect of the hole, thus improving the accuracy of the solution along and near the hole. To accomplish this goal, the Muskhelishvili method will be employed.

I. 2 THE MUSKHELISHVILI METHOD: A COMPLEX VARIABLE METHOD IN ELASTICITY

After the formulation of the linear theory of elasticity had been largely completed (by the middle of the nineteenth century), functions of a complex variable were introduced into plane elasticity problems in 1909 by Kolossoff [24] who, together with Muskhelishvili [25], developed the theory. However, nearly forty years elapsed before the theory, based on Kolossoff's idea, was brought to a successful conclusion. This was accomplished, in the main, by a group of Russian mathematicians inspired by the work of Muskhelishvili. The development has been
described by Muskhelishvili in two works $[26,27]$. The general solution of the fundamental biharmonic boundaryvalue problem can be made by means of two analytic functions of a complex variable. Consider the biharmonic boundary-value problem

$$
\begin{gather*}
\nabla^{2} \nabla^{2} \mathrm{U}(\mathrm{x}, \mathrm{y})=0 \quad \text { in } \mathrm{R} \\
\mathrm{U}, \theta=\mathrm{f}_{\theta}(\mathrm{s}) \tag{1.30}\\
\text { on } \partial \mathrm{R}
\end{gather*}
$$

and 1 et

$$
\begin{equation*}
\nabla^{2} U=X(x, y) \tag{1.31}
\end{equation*}
$$

Then, clearly, the function X is harmonic in R. Note that a harmonic function is a single-valued function of class C^{2} which satisfies Laplace's equation in R, i.e., $\nabla^{2} X=0$. For every harmonic function there is a conjugate harmonic function which satisfies $\nabla^{2} Y=0$ where the function $X+i Y$ is an analytic function. Every analytic function is a C^{∞} function because it has a series expansion. Also, an analytic function satisfies the Cauchy-Riemann equations and the Cauchy integral formulae. Thus, every analytic function is a harmonic function [28].

The complex conjugate of function X, i.e., $Y(x, y)$, can be easily found by the Cauchy-Riemann equations to within an arbitrary constant. Thus, an analytic function of a complex variable $Z=X+i y$ can be constructed

$$
F(Z)=X+i Y
$$

Let

$$
\begin{align*}
\phi(Z) & =\frac{1}{4} \int F(Z) d Z \\
& =X^{0}+i Y^{0} \tag{1.32}
\end{align*}
$$

where X^{0} and Y^{0} are the integrated functions of X and Y. Then, $\phi(Z)$ is analytic and its derivative is

$$
\phi^{\prime}(Z)=\frac{\partial X^{0}}{\partial x}+i \frac{\partial Y^{0}}{\partial x}=\frac{1}{4}(X+i Y) .
$$

From the Cauchy-Riemann equations, it is clear that

$$
\begin{aligned}
& X_{, x}^{0}=Y_{, y}^{0}=\frac{1}{4} X \\
& X_{, y}^{0}=-Y_{, x}^{0}=\frac{1}{4} Y
\end{aligned}
$$

Let

$$
\begin{equation*}
H(x, y)=U-X 0 x-Y^{0} y \tag{1.33}
\end{equation*}
$$

Then it is easy to verify that $H(x, y)$ is a harmonic function, because

$$
\nabla^{2}\left(U-X^{0} \cdot x-Y^{0} \cdot y\right)=\nabla^{2} U-\nabla \cdot \nabla\left(X^{0} \cdot x\right)-\nabla \cdot \nabla\left(Y^{0} \cdot y\right)
$$

and the fact that X^{0}, Y^{0} are harmonic leads to

$$
\begin{aligned}
& =X-2 \nabla X^{0}-2 \nabla Y^{0} \\
& =X-\frac{1}{2} X+\frac{1}{2} Y-\frac{1}{2} X-\frac{1}{2} Y \\
& =0
\end{aligned}
$$

Thus, $H(x, y)$ is a harmonic function, the complex conjugate of which can be easily found. Calling this conjugate $K(x, y)$, function can be constructed so that:

$$
\begin{equation*}
x(z)=H(x, y)+i K(x, y) \tag{1.34}
\end{equation*}
$$

Solving equation (1.33) for U leads to:

$$
U=X^{0} \cdot x+Y^{0} \cdot y+H(x, y)
$$

and substituting the analytic functions of equations (1.34) and (1.32) into the above equation, the biharmonic function is obtained in terms of the two analytic functions, $\phi(Z)$ and $X(Z):$

$$
\begin{equation*}
U=\operatorname{Re}[\bar{Z} \phi(Z)+\chi(Z)] \tag{1.35}
\end{equation*}
$$

Since $\phi(Z)$ and $\chi(Z)$ are analytic functions, it follows that $U(x, y)$ is of class C^{∞} in R. Denoting the complex conjugate values by bars, the equation can also be written as

$$
\begin{equation*}
2 U=\bar{Z} \phi(Z)+Z \overline{\phi(Z)}+x(Z)+\overline{\chi(Z)} \tag{1.36}
\end{equation*}
$$

The determination of stresses and displacements in terms of the two analytic functions will now be discussed. The
stresses can be written in terms of the biharmonic function:

$$
\begin{align*}
& \sigma_{x x}=\mathrm{U}, \mathrm{yy} \\
& \sigma_{y y}=\mathrm{U}, \mathrm{xx} \\
& \sigma_{x y}=-\mathrm{U}, \mathrm{xy} \tag{1.37}
\end{align*}
$$

This leads to:

$$
\begin{align*}
& \sigma_{x x}+i \sigma_{x y}=-i(U, x+i U, y), y \\
& \sigma_{y y}-i \sigma_{x y}=(U, x+i U, y), x \tag{1.38}
\end{align*}
$$

Let

$$
\psi(z)=x^{\prime}(z)
$$

Then, from equation (1.36), the expression $U, x+i U, y$ can be written

$$
\begin{equation*}
\mathrm{U}, \mathrm{x}+\mathrm{iU}, \mathrm{y}=\phi(Z)+Z \overline{\phi^{\prime}(Z)}+\overline{\Psi(Z)} \tag{1.39}
\end{equation*}
$$

Calculating the derivatives of equation (1.39) with respect to x and y and substituting into equations (1.38) leads to:

$$
\begin{aligned}
& \sigma_{x x}+i \sigma_{x y}=\phi^{\prime}(Z)+\phi^{\prime}(Z)-z \bar{\phi}^{\prime \prime}(Z)-\Psi^{\prime}(Z) \\
& \sigma_{y y}-i \sigma_{x y}=\phi^{\prime}(Z)+\overline{\phi^{\prime}(Z)}+z \overline{\phi^{\prime \prime}(Z)}+\overline{\Psi^{\prime}(Z)}
\end{aligned}
$$

Stresses in terms of two analytic functions, $\phi(Z)$ and $\Psi(Z)$, can now be written as:

$$
\begin{gather*}
\sigma_{x x}+\sigma_{y y}=4 \operatorname{Re}\left[\phi^{\prime}(z)\right] \\
\sigma_{y y}-\sigma_{x x}+2 i \sigma_{x y}=2\left[\bar{Z} \phi^{\prime \prime}(z)+\psi \prime(z)\right] \tag{1.40}
\end{gather*}
$$

Finally, displacements in terms of the two analytic fundlions in the compact formula will be

$$
\begin{equation*}
2 \mu\left(U_{x}+i U_{y}\right)=\alpha \phi(Z)-Z \overline{\phi^{\prime}(Z)}-\overline{\Psi(Z)} \tag{1.41}
\end{equation*}
$$

where

$$
\alpha=3-4 \nu \quad \text { for plane-strain problem }
$$

or

$$
\alpha=\frac{3-v}{1+v} \quad \text { for plane-stress problem }
$$

Stresses and displacements can be found individually, using equations (1.40) and (1.41), and are:

$$
\begin{align*}
& \sigma_{x x}=\operatorname{Re}\left[2 \phi^{\prime}(Z)-\bar{Z} \phi^{\prime \prime}(Z)-\Psi^{\prime}(Z)\right] \\
& \sigma_{y y}=\operatorname{Re}\left[2 \phi^{\prime}(Z)+\bar{Z} \phi^{\prime \prime}(Z)+\Psi^{\prime}(Z)\right] \\
& \sigma_{x y}=\operatorname{Im}\left[\bar{Z} \phi^{\prime \prime}(Z)+\Psi^{\prime}(Z)\right] \\
& U_{x}=\operatorname{Im}\left[\alpha \phi(Z)-Z \overline{\phi^{\prime}(Z)}-\overline{\Psi(Z)}\right] / 2 \mu \\
& U_{y}=\operatorname{Im}\left[\alpha \phi(Z)-Z \overline{\phi^{\prime}(Z)}-\Psi(Z)\right] / 2 \mu \tag{1.42}
\end{align*}
$$

Now that stresses and displacements have been formulated in terms of the two analytic functions, $\phi(Z)$ and $\Psi(Z)$, the structure and arbitrariness in the definition of the two functions is an issue to be discussed. If the state of stress in the region R is specified, from equations (1.40), one can prove that the single-valued analytic functions $\phi(Z)$ and $\Psi(Z)$ could be determined to within a linear function $\mathrm{Ci}+\gamma$ and a constant β, respectively [29]. In addition, if the displacements are prescribed, following equation (1.41), one can find that

$$
c=0
$$

and

$$
\alpha \gamma-\bar{\beta}=0
$$

Hence, when the stresses are given, the three constants c, γ, β will be chosen in such a way that

$$
\begin{align*}
& \phi(0)=0 \\
& \operatorname{Im} \phi^{\prime}(0)=0 \\
& \Psi(0)=0 \tag{1.43}
\end{align*}
$$

and when the displacements are given, a suitable choice of γ will be assured by the condition

$$
\begin{equation*}
\phi(0)=0 \tag{1.44}
\end{equation*}
$$

Thus, using the conditions (1.43) and (1.44), the functions $\phi(Z)$ and $\Psi(Z)$ will be determined uniquely [27].

The structure of the two analytic functions for a finite and infinite simply connected regions has been discussed in [27].

Since the state of stress and the displacements can be expressed by means of the two complex functions $\phi(Z)$ and $\Psi(Z)$, the fundamental boundary-value problems of plane elasticity lead to the determination of these functions from prescribed values of certain combinations of these functions on the boundary of the region.

Beginning with the first boundary-value problem in which tractions are prescribed on the boundary, the biharmonic function in terms of applied tractions, $f(s)$, can be written as

$$
U_{, x}+i U, y=f(s) \quad \text { on } \partial R
$$

The equation (1.39) leads to:

$$
\begin{equation*}
\phi(Z)+Z \overline{\phi^{\prime}(Z)}+\overline{\Psi(Z)}=f(s) \quad \text { on } \partial R \tag{1.45}
\end{equation*}
$$

The corresponding boundary conditions of the second boundary-value problem follow from equation (1.41):

$$
\begin{equation*}
\alpha \phi(Z)-Z \overline{\phi^{\prime}(Z)}-\Psi(Z)=g(s) \quad \text { on } \partial R \tag{1.46}
\end{equation*}
$$

where $g(s)$ is a prescribed displacement function on the boundary. From either equations (1.45) or (1.46) one can obtain the two complex functions. However, mapping the region R into the inside or outside of a unit circle makes the determination of the two functions much simpler.

Suppose the mapping function
maps point in the region R, Z plane, into a unit circle $|\zeta| \leqslant 1$. The mapping function for a finite region where the origin is taken in the interior can be represented as a power series

$$
z=\sum_{n=1}^{\infty} k_{n} \zeta^{n} \quad|\zeta| \leqslant 1
$$

whereas for an infinite region, where the origin is an exterior point, the function is given by:

$$
z=\frac{c}{\zeta}+\sum_{n=0}^{\infty} k_{n} \zeta^{n} \quad|\zeta| \leqslant 1
$$

The boundary conditions, equations (1.45) and (1.46), can then be written as

$$
\begin{align*}
& \phi_{1}(\zeta)+\frac{\omega(\zeta)}{\overline{\omega^{\prime}(\zeta)}} \overline{\phi_{1}^{\prime}(\zeta)}+\overline{\Psi_{1}(\zeta)}=F(\zeta) \\
& \alpha \phi_{1}(\zeta)-\frac{\omega(\zeta)}{\omega^{\prime}(\zeta)} \overline{\phi_{1}^{\prime}(\zeta)}-\overline{\Psi_{1}(\zeta)}=G(\zeta) \tag{1.48}
\end{align*}
$$

where

$$
\phi[\omega(\zeta)]=\phi_{1}(\zeta) \text { and } \psi[\omega(\zeta)]=\Psi_{1}(\zeta)
$$

Equations (1.48) can now be solved for the two functions $\phi_{1}(\zeta)$ and $\Psi_{1}(\zeta)$ by a power series expansion method or integrodifferential equations using Cauchy integral formulae [27]. Since the solution of the integrodifferential
equation reduces to the solution of the standard Fredholm integral equation, then the existence of a solution of equations (1.48) would follow, almost directly, from the Fredholm theory [27].

I. 3 CAUCHY INTEGRALS AND RELATED THEOREMS

Since the integrodifferential equations method will be used to determine the two complex functions, it is important to discuss Cauchy integrals and related theorems briefly. The proof of the following theorems has been presented in [30] and in [27].

Suppose R^{+}is a finite open simply connected region enclosed by the contour B described in a counterclockwise sense. Denote the region exterior to $\left(R^{+}+B\right)$ by R^{-}and the points on the boundary B by t. Let $f(Z)$ be a complex function analytic (holomorphic) in R^{+}and continuous on C . Then

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{B} \frac{f(t) d t}{t-Z}=f(Z) \quad \text { for } Z \varepsilon R^{+} \tag{1.49}
\end{equation*}
$$

and

$$
\begin{align*}
& \frac{1}{2 \pi i} \int_{B} \frac{f(t)}{(t-Z)^{n+1}} d t=f^{(n)}(Z) \text { for } Z \varepsilon R^{+} \\
& \frac{1}{2 \pi i} \int_{B} \frac{f(t)}{t-Z} d t=0 \quad \text { for } Z \varepsilon R^{-} \tag{1.50}
\end{align*}
$$

Equation (1.50) is a necessary and sufficient condition that the continuous function $f(t)$ defined on B can be the boundary value of a function analytic in R^{+}. Let $f(Z)$ be a complex
function analytic in R^{-}including the point at infinity and continuous on B. Then

$$
\begin{gather*}
\frac{1}{2 \pi i} \int_{B} \frac{f(t)}{t-Z} d t=f(\infty) \quad \text { for } Z \varepsilon R^{+} \tag{1.51}\\
\frac{1}{2 \pi i} \int_{B} \frac{f(t)}{t-Z} d t=f(\infty)-f(z) \quad \text { for } Z \varepsilon R^{-} \tag{1.52}
\end{gather*}
$$

The condition (1.51) that the Cauchy integral have a constant value in R^{+}is both necessary and sufficient for the continuous function $f(t)$, defined on B, to be the boundary value of a function analytic in R^{-}.

Let $\phi(t)$ be a complex function which satisfies the Hölder condition on an arc L. Then the Cauchy integral

$$
\begin{equation*}
\phi_{1}(z)=\frac{1}{2 \pi i} \int_{L} \frac{\phi(t)}{t-z} d t \tag{1.53}
\end{equation*}
$$

may be shown to be a sectionally analytic function in the whole plane cut along the arc L. Further, the limiting values $\phi^{+}(t), \phi^{-}(t)$ may be shown to exist on L and satisfy the relations

$$
\begin{align*}
& \phi_{1}^{+}\left(t_{0}\right)-\phi_{1}^{-}\left(t_{0}\right)=\phi\left(t_{0}\right) \\
& {\phi_{1}}^{+}\left(t_{0}\right)+\phi_{1}^{-}\left(t_{0}\right)=\frac{1}{\pi i} \int_{L} \frac{\phi(t)}{t-t_{0}} d t \tag{1.54}
\end{align*}
$$

where t_{0} is a point on L and the integral in equation (1.54) is represented as a principal value. The assumption that $\phi(t)$ satisfies the Hölder condition is sufficient for the existence of the principal value. These results are
referred to as the Plemelj formulae. They are derived in [26].

Since the unit circular region will be used in the determination of principal value of some integrals in the following chapters, the following integral form will be used frequently. Let a and b be constants where $b / a<1$ and let γ be the circumference of the unit circle. Then for the points inside the unit circle

$$
\begin{equation*}
\frac{1}{2 \pi i} \oint_{\gamma} \frac{\ln \left(\frac{a t-b}{t}\right)}{t-z} d t=\ln (a) \tag{1.55}
\end{equation*}
$$

This is simply because the function in the integrand

$$
\ln \left(\frac{a t-b}{t}\right)=\ln (a t-b)-\ln (t)
$$

has two essential singularity inside the unit circle, $t=b / a$ and $t=0$, whereas the limit of the function at infinity exists and is equal to $\ln (a)$. Thus, the function is analytic outside the unit circle. Then following the Cauchy theorem, equation (1.51), the result of the integral (1.55) will be $\ln (a)$. This result can also be achieved by the change of variable

$$
\eta=\frac{1}{t}
$$

or

$$
\mathrm{dt}=-\frac{1}{\eta^{2}} \mathrm{~d} \eta
$$

Thus, the integral becomes:
$\frac{1}{2 \pi i} \oint_{\gamma} \frac{\ln (a-b n)}{-n(1-2 n)} d \eta=\frac{1}{2 \pi i} \oint_{\gamma} \frac{\ln (a-b n)}{n(1-2 n)} d n$

The only singular point inside the unit circle is $\eta=0$, which is the corresponding point of $t=\infty$. Obtaining the residue at $\eta=0$ will prove equation (1.56).

CHAPTER II

GENERAL SOLUTION AND A MAPPING TECHNIQUE

II. 1 INTRODUCTORY REMARKS

A general solution which leads to the influence functions for an infinite plate containing an arbitrarily shaped cavity is discussed here. These influence functions describe the stress field and displacement field generated by an isolated concentrated point force, P , applied on the plane. It is obvious that these functions must be defined everywhere except at the point where the load is applied.

It is important to note that the load, P, is a concentrated point force, if just a very thin layer of the plane is considered. In the cases of plane stress or plane strain the load, P, is a line load along a line perpendicular to the layers of the plane, as shown in Figure 2.1.

II. 2 A MAPPING TECHNIQUE

Consider the problem of an infinite plane bounded by an arbitrarily shaped cavity at the origin and having a concentrated point force, P, acting in the plane at some point Z_{0}, where Z_{0} is a point in the region outside of the

Figure 2.1 Concentrated line load.
hole. This problem can be expressed as the superposition of two problems (Figure 2.2).

Let the first problem, Figure $2.2(B)$ be that of a concentrated point force applied at the point, Z_{0}, on an infinite plane with no cavity. Let the second problem, Figure $2.2(\mathrm{C})$ be an infinite region bounded by the hole with some traction acting on the boundary C. Let this traction be equal in magnitude and opposite in direction to the traction generated on contour C in the problem of Figure 2.2(B) by the concentrated point load P.

Clearly superposition of the problems of Figure 2.2(B) and 2.2(C) gives the original problem of Figure 2.2(A), where there is no traction acting on the hole.

The complex potential functions of the problem of Figure 2.2(B) is known (Muskhelishvili [27]) and obviously since the contour C of the hole is known, then the applied traction of the problem of Figure 2.2(C) can be found.

To find the complex potential functions for the problem of Figure $2.2(\mathrm{C})$, a mapping technique is used. The problem of Figure $2.2(\mathrm{C})$ will be mapped to a unit circular disc (Figure 2.3).

If the type of contour, C, mentioned earlier in this section, is known, then the transformation function can be found. The mapping function, $\omega(\zeta)$, has to be conformal and one to one, mapping points at infinity of the Z plane to the origin of the ζ plane, and mapping points on the contour to points on the circumference of the unit disc.

(C)

[^0]
Figure 2.3 Mapping the auxiliary problem to the disc.

The traction boundary condition on the contour, C, will automatically transform to new boundary conditions acting on the disc.

II. 3 GENERAL SOLUTION

Let the complex potential functions for the problem of Figure 2.2(B) be $\phi^{0}(Z)$ and $\Psi^{0}(Z)$, and the complex potential functions for the problem of Figure 2.2(C) be $\phi^{*}(Z)$ and $\Psi^{*}(Z)$. By superposition, the complex potential functions for the problem of Figure 2.2(A), $\phi(Z)$ and $\Psi(Z)$ will be

$$
\begin{align*}
& \phi(z)=\phi^{0}(z)+\phi^{*}(z) \\
& \psi(Z)=\Psi^{0}(Z)+\Psi^{*}(Z) \tag{2.1}
\end{align*}
$$

Since the problem of Figure 2.2(C) is to be transformed to the problem of Figure $2.2(\mathrm{D})$, then the transformed complex potential functions are

$$
\begin{aligned}
& \phi_{1}^{*}(\zeta)=\phi^{*}[\omega(\zeta)]=\phi^{*}(Z) \\
& \psi_{1}^{*}(\zeta)=\psi^{*}[\omega(\zeta)]=\psi^{*}(Z) \\
& \phi_{1}^{0}(\zeta)=\phi^{0}[\omega(\zeta)]=\phi^{0}(Z) \\
& \psi_{1}^{0}(\zeta)=\psi^{0}[\omega(\zeta)]=\psi^{0}(Z)
\end{aligned}
$$

and the derivatives are

$$
\begin{align*}
& \phi_{1}^{*}(\zeta)=\phi^{*} \cdot(Z) \cdot \omega^{\prime}(\zeta) \\
& \Psi_{1}^{*} \cdot(\zeta)=\Psi^{*}(Z) \cdot \omega^{\prime}(\zeta) \\
& \phi_{1}^{*} \prime^{\prime}(\zeta)=\phi^{*} \prime^{\prime}(Z) \cdot \omega^{\prime 2}(\zeta)+\phi^{*}(Z) \cdot \omega^{\prime}(\zeta) \tag{2.2}
\end{align*}
$$

To find the influence function, the derivatives of equations (2.1) are needed, so

$$
\begin{align*}
& \phi^{\prime}(Z)=\phi^{0}(Z)+\phi^{*}(Z) \\
& \Psi^{\prime}(Z)=\psi^{0}(Z)+\psi^{*},(Z) \\
& \phi^{\prime}(Z)=\phi^{\prime \prime}(Z)+\phi^{*},(z) \tag{2.3}
\end{align*}
$$

where $\phi^{*},(Z), \phi^{*}, '(Z)$ and $\Psi^{*} \cdot(Z)$ can be easily found from equations (2.2):

$$
\begin{align*}
& \phi^{*} \cdot(Z)=\frac{\phi_{1}^{*}(\zeta)}{\omega^{\prime}(\zeta)} \\
& \phi^{*} \prime^{\prime}(Z)=\frac{\phi_{1}^{*} \prime^{\prime}(\zeta)}{\omega^{\prime 2}(\zeta)}-\frac{\phi_{1}^{*}(\zeta) \cdot \omega^{\prime \prime}(\zeta)}{\omega^{\prime 3}(\zeta)} \\
& \Psi^{*} \cdot(Z)=\frac{\psi_{1}^{*}(\zeta)}{\omega^{\prime}(\zeta)} \tag{2.4}
\end{align*}
$$

Substituting equations (2.4) into equation (2.3) and reconsidering equations (2.1), the requirements for the influence function become:

$$
\begin{align*}
& \phi(Z)=\phi^{0}(Z)+\phi_{1}^{*}(\zeta) \\
& \Psi(Z)=\Psi^{0}(Z)+\Psi_{1}^{*}(\zeta) \\
& \phi^{\prime}(Z)=\phi^{0}(Z)+\frac{\phi_{1}^{*}(\zeta)}{\omega^{\prime}(\zeta)} \\
& \Psi^{\prime}(Z)=\Psi^{0}(Z)+\frac{\Psi_{1}^{\prime \prime}(\zeta)}{\omega^{\prime}(\zeta)} \\
& \phi^{\prime \prime}(Z)=\phi^{0} \prime^{\prime}(Z)+\frac{\phi_{1}^{*} \prime^{\prime}(\zeta)}{\omega^{\prime 2}(\zeta)}-\frac{\phi_{1}^{*}(\zeta) \cdot \omega^{\prime \prime}(\zeta)}{\omega^{\prime^{3}}(\zeta)} \tag{2.5}
\end{align*}
$$

The complex potential functions for an infinite plane with a concentrated force, P, at a point $Z_{0,} \phi^{0}(Z)$ and $\Psi^{0}(Z)$, are known (Maskhelishvili [27], Sokolnikoff [29], Green and Zerna [31]).

$$
\begin{align*}
& \phi^{0}(z)=-\frac{P}{2 \pi(\alpha+1)} \ln \left(z-Z_{0}\right) \\
& \psi^{0}(Z)=\alpha \frac{P}{2 \pi(\alpha+1)} \ln \left(z-Z_{0}\right)+\frac{P}{2 \pi(\alpha+1)} \cdot \frac{\bar{Z}_{0}}{Z-Z_{0}} \tag{2.6}
\end{align*}
$$

To find the complex potential functions for the problem of Figure 2.2(A), it is necessary to find the complex potential function for the problem of Figure 2.3(D), i.e., $\phi_{1}^{*}(\zeta)$ and $\Psi_{1}^{*}(\zeta)$.

Since $\phi_{1}^{*}(\zeta)$ and $\Psi_{1}^{*}(\zeta)$ have to be analytic in the domain, then as mentioned in Chapter I, just one boundary condition is necessary to find the complex potential functions, i.e., either of equations (1.45) or (1.46).

Note that in the original problem, Figure 2.2(A), the boundary of the hole is traction-free. Recall equation (1.45) for the traction boundary condition [29]:

$$
f(s)=f_{1}+i f_{2}+\text { const. }=0
$$

Then equation (1.45) becomes:

$$
\begin{equation*}
\phi(t)+t \overline{\phi^{\prime}(t)}+\overline{\Psi(t)}=0 \quad \text { on } C \tag{2.7}
\end{equation*}
$$

where t represents the values of Z on the contour C. Substituting equations (2.1) into (2.7) leads to

```
\mp@subsup{\phi}{}{*}(t)+t\overline{\mp@subsup{\phi}{}{*}(t)}+\overline{\mp@subsup{\Psi}{}{*}(t)}=-\mp@subsup{\phi}{}{0}(t)+t\overline{\mp@subsup{\phi}{}{\prime}(t)}+\mp@subsup{\psi}{}{0}(t)
on C
```

Clearly, the left-hand side of equation (2.8) is in the form of the traction boundary condition for the problem of Figure $2.2(\mathrm{C})$, since $\phi^{*}(\mathrm{t})$ and $\Psi^{*}(\mathrm{t})$ are the boundary values of $\phi^{*}(Z)$ and $\Psi^{*}(Z)$. Also, the right-hand side of equation (2.8) is known, since $\phi^{0}(t)$ and $\Psi^{0}(t)$ are the values of $\phi^{0}(Z)$ and $\Psi^{0}(Z)$ on the fictitious contour in the problem of Figure 2.2(B).

Since the boundary condition for the problem of Figure 2.3(C) is known (equation 2.8), then the boundary condition for the problem of Figure 2.3(D) can be obtained by transforming (2.8) to the ζ plane using the transformation functions

$$
z=\omega(\zeta)
$$

so that the boundary transforms by:

$$
t=\omega(\sigma)
$$

where σ represents the values of ζ on the circumference of
the disc. Hence, equation (2.8) becomes:

$$
\begin{align*}
\phi_{1}^{*}(\sigma)+\frac{\omega(\sigma)}{\frac{\omega^{\prime}(\sigma)}{\phi_{1}^{\prime}(\sigma)}+\overline{\Psi_{1}^{*}(\sigma)}} & =-\left(\phi_{1}^{0}(\sigma)+\frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}} \overline{\phi_{1}^{0}(\sigma)}\right. \\
& \left.+\overline{\Psi_{1}^{0}(\sigma)}\right) \tag{2.9}
\end{align*}
$$

where $\phi_{1}^{*}(\sigma)$ and $\Psi_{1}^{*}(\sigma)$ are the boundary values of $\phi_{1}^{*}(\zeta)$ and $\Psi_{1}^{*}(\zeta)$, respectively. Also, $\phi_{1}^{0}(\sigma)$ and $\Psi_{1}^{0}(\sigma)$ are the boundary values of $\phi_{1}^{0}(\zeta)$ and $\Psi_{1}^{0}(\zeta)$, respectively.

The right-hand side of equation (2.9) is known, so let

$$
\begin{equation*}
F(\sigma)=-\left[\phi_{1}^{0}(\sigma)+\frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}} \overline{\phi_{1}^{0}(\sigma)}+\overline{\Psi_{1}^{0}(\sigma)}\right] \tag{2.10}
\end{equation*}
$$

then, equation (2.9) becomes:

$$
\begin{equation*}
\phi_{1}^{*}(\sigma)+\frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}} \overline{\phi_{1}^{*}(\sigma)}+\overline{\Psi_{1}^{*}(\sigma)}=F(\sigma) \tag{2.11}
\end{equation*}
$$

This is the mixed boundary condition for the problem of Figure 2.3(D) from which the two analytic functions $\phi_{1}^{*}(\zeta)$ and $\Psi_{1}^{*}(\zeta)$ will be found. It is necessary to point out some characteristics of $\phi_{1}^{*}(\zeta)$ and $\Psi_{1}^{*}(\zeta)$ before proceeding.

As mentioned in section I. $2, \phi_{1}^{*}(\zeta)$ and $\Psi_{1}^{*}(\zeta)$ must be analytic (holomorphic) inside γ, the unit circle. Also, without loss of generality, it can be assumed that $\phi_{1}^{*}(0)=0$. Thus, $\phi_{1}^{*}(\zeta)$ and $\Psi_{1}^{*}(\zeta)$ may be developed for $|\zeta|<1$ in power series of the form

$$
\begin{equation*}
\phi_{1}^{*}(\zeta)=\sum_{k=1}^{\infty} a_{k} \zeta^{k}, \quad \Psi_{1}^{*}(\zeta)=\sum_{k=0}^{\infty} b_{k} \zeta^{k} \tag{2.13}
\end{equation*}
$$

where, in the first series, the constant term is absent because of the condition $\phi_{1}^{*}(0)=0$. Furthermore,
$\overline{\phi *(\zeta)}=\sum_{\mathrm{k}=1}^{\infty} \overline{\mathrm{a}}_{\mathrm{k}} \bar{\zeta}^{\mathrm{k}}, \quad \Psi_{1}^{*}(\zeta)=\sum_{\mathrm{k}=0}^{\infty} \overline{\mathrm{b}}_{\mathrm{k}} \bar{\zeta}^{\mathrm{k}}$

Let ζ approach the boundary γ, i.e., $\zeta \rightarrow \sigma$. Note that since the radius of the disc is equal to one, then:

$$
\begin{equation*}
\sigma \bar{\sigma}=1 \tag{2.15}
\end{equation*}
$$

Equations (2.13) and (2.14) are valid for the boundary values $\phi_{1}^{*}(\sigma)$ and $\Psi_{1}^{*}(\sigma)$. Substituting equation (2.15) into equations (2.14) along with equations (2.13) for the boundary values, these become:
$\phi_{1}^{*}(\sigma)=\sum_{k=1}^{\infty} a_{k} \sigma^{k}, \quad \Psi_{1}^{*}(\sigma)=\sum_{k=0}^{\infty} b_{k} \sigma^{k}$
$\overline{\phi_{1}^{*}(\sigma)}=\sum_{k=1}^{\infty} \bar{a}_{k} \sigma^{-k}, \quad \overline{\Psi_{1}^{*}(\sigma)}=\sum_{k=0}^{\infty} \bar{D}_{k} \sigma^{-k}$

Equations (2.16.a) show that $\phi_{1}^{*}(\sigma)$ and $\Psi_{1}^{*}(\sigma)$ have poles at infinity, so they are analytic functions inside the unit circle. Also, equations (2.16.b) show that $\overline{\phi_{1}^{*}(\sigma)}$ and $\overline{\Psi_{1}^{*}(\sigma)}$ have poles at the origin, so they are analytic outside of the unit circle.

Using this analysis and employing the Cauchy integral formulas, the complex potential functions for the problem of Figure $2.3(\mathrm{D}), \phi_{1}^{*}(\zeta)$ and $\Psi_{1}^{*}(\zeta)$, can be computed. To find $\phi_{1}^{*}(\zeta)$, let both sides of equation (2.11) be multiplied by

$$
\frac{1}{2 \pi i} \cdot \frac{d \sigma}{\sigma-\zeta}
$$

where ζ is a point inside γ, the unit circle.
Integrating both sides of the equation counterclockwise around the unit circle leads to:

$$
\begin{align*}
& \frac{1}{2 \pi i} \oint_{\gamma} \frac{\phi_{1}^{*}(\sigma)}{\sigma-\zeta} d \sigma+\frac{1}{2 \pi i} \oint_{\gamma} \frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}} \frac{\overline{\phi_{1}^{* T}(\sigma)}}{\sigma-\zeta} d \sigma \\
& \quad+\frac{1}{2 \pi i} \oint_{\gamma} \frac{\bar{\Psi} *(\sigma)}{\sigma-\zeta} d=\frac{1}{2 \pi i} \oint_{\gamma} \frac{F(\sigma)}{\sigma-\zeta} d \sigma \tag{2.16}
\end{align*}
$$

Since $\phi_{1}^{*}(\sigma)$ is analytic inside γ and $\Psi_{1}^{*}(\sigma)$ is analytic outside γ, then due to Cauchy integral formulas (section I.3), equation (2.16) can be written as:
$\phi_{1}^{*}(\zeta)+\frac{1}{2 \Pi i} \oint_{\gamma} \frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}} \overline{\Phi_{i}^{*}(\sigma)} \frac{d \sigma}{\sigma-\zeta}+\overline{\Psi_{1}^{*}(0)}=\frac{1}{2 \pi i} \oint_{\gamma} \frac{F(\sigma)}{\sigma-\zeta} \mathrm{d} \sigma$

Note that the third integral of equation (2.16) becomes:

$$
\frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{\Psi \sum_{1}^{*}(\sigma)}}{\sigma-\zeta} d \sigma=\left.\overline{\Psi_{1}^{*}(\sigma)}\right|_{\sigma=\infty}=\overline{\Psi_{1}^{*}(0)}=Б_{0}
$$

where $\bar{\Psi}{ }_{1}^{\hbar(\sigma)}$ is a constant.
Equation (2.17) is an intergodifferential equation for $\phi_{1}^{*}(\zeta)$. It contains an unknown constant $\Psi_{1}^{*}(\sigma)$, which can be determined by letting $\zeta=0$ and imposing the condition $\phi_{1}^{*}(0)=0$. Thus, if the value of $\Psi_{1}^{*}(0)$ in equation
(2.17) is chosen arbitrarily and the corresponding solution for $\phi_{1}^{*}(\zeta)$ is found, then the actual value of $\overline{\Psi_{1}^{*}(0)}$ can be computed from the condition $\phi_{1}^{*}(0)=0$. This is due to the fact that if $\phi_{1}^{* *}(\zeta)$ is any solution of (2.17) for a given $\Psi_{1}^{*}(0)$, and if $\phi_{1}^{* *}(0)=a_{0} \neq 0$, then $\phi_{1}^{* *}(\zeta)-a_{0}$ is a solution of (2.17) with $\overline{\Psi_{1}^{*}(0)}$ replaced by $\overline{\Psi_{1}^{*}(0)}+a_{0}$. Thus, $\Psi_{1}^{*}(0)$ can be tentatively fixed, say $\bar{\Psi}_{1}^{*}(0)=0$. Also, as mentioned in section I.2, in order to have a unique solution for $\phi_{1}^{*}(\zeta)$ and $\psi_{1}^{*}(\zeta)$, the following conditions must be satisfied:

$$
\begin{equation*}
\phi_{1}^{*}(0)=0 \quad \psi_{1}^{*}(0)=0 \tag{2.18}
\end{equation*}
$$

To find $\psi_{1}^{*}(\zeta)$, take the conjugate of equation (2.11) and multiply both sides of the equation by

$$
\frac{1}{2 \pi i} \frac{d \sigma}{\sigma-\zeta}
$$

where ζ is a point inside γ.
Integrating both sides of the equation counterclockwise around the unit circle leads to:

$$
\begin{align*}
& \frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{\phi_{1}^{*}(\sigma)}}{\sigma-\zeta} d \sigma+\frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{\omega(\sigma)}}{\omega^{\prime}(\sigma)} \frac{\phi_{1}^{*} \cdot(\sigma)}{\sigma-\zeta} d \sigma \\
& \quad+\frac{1}{2 \pi i} \oint_{\gamma} \frac{\psi_{1}^{*}(\sigma)}{\sigma-\zeta} d \sigma=\frac{1}{2 \pi i} \oint_{\gamma} \frac{F(\sigma)}{\sigma-\zeta} d \sigma \tag{2.19}
\end{align*}
$$

An argument similar to that presented for reducing equation (2.16) to equation (2.17) can also be presented here to obtain:
$\overline{\phi_{1}^{*}(0)}+\frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{\omega(\sigma)}}{\omega^{\prime}(\sigma)} \frac{\phi_{1}^{*} \cdot(\sigma)}{\sigma-\zeta} d \sigma+\Psi_{1}^{*}(\zeta)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{F(\sigma)}}{\sigma-\zeta} d \sigma$

Substituting condition (2.18) into equations (2.17) and (2.20) and rearranging leads to
$\phi_{1}^{*}(\zeta)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{F(\sigma)}{\sigma-\zeta} d \sigma-\frac{1}{2 \pi i} \oint_{\gamma} \frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}} \frac{\overline{\Phi_{i}{ }^{\prime}(\sigma)}}{\sigma-\zeta} d \sigma$
$\Psi_{1}^{*}(\zeta)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{F(\sigma)}}{\sigma-\zeta} d \sigma-\frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{\omega(\sigma)}}{\omega^{\prime}(\sigma)} \frac{\phi_{1}^{*} \cdot(\sigma)}{\sigma-\zeta} d \sigma$

It is easy to reduce the solution of the integrodifferential equation (2.21) to the solution of the standard Fredholm integral equation. The existence of a solution of equation (2.21) would then follow, almost directly, from the Fredholm theory.

The second integrals of the right-hand sides of equations (2.21) and (2.22) are left in general form since function $\omega(\zeta)$ has not yet been specified.

CHAPTER III

CIRCULAR HOLE IN A FINITE TWO-DIMENSIONAL REGION

III.1. INTRODUCTION

The effect of a circular hole on the stress distribution in an elastic region has attracted considerable attention for the past seventy years. The effect of a circular hole on an infinite plate subjected to uniaxial tension was first solved by Kirsch [32]. This work was extended to other load conditions by Bickley [33]. Howland [34] solved the problem of a long strip weakened by a circular hole subjected to uniaxial tension. Other load conditions were considered by Savin [35]. The effect of a circular hole on the stress distribution in a finite elastic region has been treated numerically and experimentally using several methods.

In this chapter, the solution of the problem of a finite plane elastic region containing a circular hole and subjected to traction boundary conditions is presented. This is the first implementation of the mapping technique and boundary integral equation method. In section 2 of this chapter, some known complex potential functions [36] are used to find the influence function for an infinite domain weakened by a circular hole. In section 3 , the

Muskhishvili method is used and the mapping technique is employed to determine the influence function directly. It is shown that the two results are identical. In the last section some example problems are considered and the results are compared to some known solutions, where available. The computer program for the computation is included in Appendix B.
III. 2 DERIVATION OF THE INFLUENCE FUNCTIONS USING KNOWN POTENTIAL FUNCTIONS

Consider an infinite elastic plane with a circular cavity of radius a centered at the origin. Let a force P act at a point Z_{0} where $\left|Z_{0}\right| \geqslant a$. Bhargava and Kapoor [36] have constructed the potential functions, $\phi(Z)$ and $\Psi(Z)$, for this problem. They assume, following Green and Zerna [31], that the complex potentials are of the form:
$\phi(Z)=\frac{P}{2 \pi(\alpha+1)}\left\{-\ln \left(Z-Z_{0}\right)-\alpha \ln \left(Z-\frac{a^{2}}{\overline{Z_{0}}}\right)+A\left(Z-\frac{a^{2}}{Z_{0}}\right)^{-1}\right.$
$+\alpha \ln Z\}$
$(Z)=\frac{\bar{P}}{2 \pi(\alpha+1)}\left\{\alpha \ln \left(Z-Z_{0}\right)+\bar{Z}_{0} \frac{P}{\bar{P}}\left(Z-Z_{0}\right)^{-1}+\ln \left(Z-\frac{a^{2}}{\overline{Z_{0}}}\right)\right.$
$\left.+B\left(Z-\frac{a^{2}}{Z_{0}}\right)^{-1}+C\left(Z-\frac{a^{2}}{Z_{0}}\right)^{-2}-\ln Z+D Z^{-1}+E Z^{-2}\right\}(3.2)$

This choice clearly gives proper singularities at the point of action of the concentrated force Z_{0}. Also, it satisfies the condition of zero stresses at infinity. The
unknown constants can be found from the condition that normal and tangential stresses, $\sigma_{r r}$ and $\sigma_{r \theta}$, are zero at the boundary of the hole, i.e.,

$$
\left(\sigma_{r r}-i \sigma_{r \theta}\right)_{Z=\sigma}=0
$$

The boundary condition can be written in terms of $\phi(Z)$ and $\Psi(Z)$ following Muskhelishvili [27] as follows:
$\sigma_{r r}-i \sigma_{r \theta}=\phi^{\prime}(Z)+\overline{\phi^{\prime}(Z)}-e^{2 i \theta}\left[\bar{Z} \phi^{\prime}(Z)+\Psi^{\prime}(Z)\right]$
Substituting equations (3.1) and (3.2) into equation (3.3) leads to:

$$
\begin{aligned}
& A=\frac{P}{P} \frac{\beta^{2}-1}{\alpha^{2} \beta^{6}} Z_{0} \\
& B=\frac{P}{P} \alpha Z_{0}-\frac{\beta^{2}-1}{\beta^{2}} Z_{0} \\
& C=\frac{\beta^{2}-1}{\beta^{4}} Z_{0}^{2} \\
& D=\frac{\beta^{2}-1}{\beta^{2}} Z_{0}-\frac{P}{P}\left(\alpha-\frac{1}{\beta^{2}}\right) Z_{0} \\
& E=-\frac{P}{\bar{P}} \alpha a^{2}
\end{aligned}
$$

where $\beta^{2}=\frac{Z_{0} \bar{Z}_{0}}{a^{2}}$. Thus, for an isolated point-force P acting at the point Z_{0}, the complex potentials at the point Z are:

$$
\begin{aligned}
\phi(Z) & =\frac{P}{2 \pi(\alpha+1)}\left\{-\ln \left(Z-Z_{0}\right)-\alpha \ln \left(Z-\frac{a^{2}}{\bar{Z}_{0}}\right)+\alpha \ln Z\right\} \\
& +\frac{\bar{P}}{2 \pi(\alpha+1)}\left\{\frac{Z_{0} \bar{Z}_{0}-1}{a^{2} \bar{Z}_{0}^{3}}\left(Z-\frac{a^{2}}{Z_{0}}\right)^{-1}\right\} \\
\Psi(Z) & =\frac{\bar{P}}{2 \pi(\alpha+1)}\left\{\alpha \ln \left(Z-Z_{0}\right)+\ln \left(Z-\frac{\alpha^{2}}{Z_{0}}\right)-\ln Z-\frac{Z_{0} \bar{Z}_{0}^{-1}}{\bar{Z}_{0}}\left(Z-\frac{\alpha^{2}}{\bar{Z}_{0}}\right)^{-1}\right. \\
& \left.+\frac{Z_{0} \bar{Z}_{0}-1}{\bar{Z}_{0}^{2}}\left(Z-\frac{\alpha^{2}}{\overline{Z_{0}}}\right)^{-2}+\frac{Z_{0} \bar{Z}_{0}-1}{\bar{Z}_{0}} \cdot \frac{1}{Z}\right\}+\frac{P}{2 \pi(\alpha+1)}\left\{\bar{Z}_{0}\left(Z-Z_{0}\right)^{-1}\right. \\
& \left.+\alpha \bar{Z}_{0}\left(Z-\frac{\alpha^{2}}{\overline{Z_{0}}}\right)^{-1}-\alpha \bar{Z}_{0} Z^{-1}-\frac{1}{Z_{0}} \cdot Z^{-1}-\alpha a^{2} Z^{-2}\right\}
\end{aligned}
$$

Without loss of generality, assume $a=1 . \quad$ Then $\phi(Z)$ and $\Psi(Z)$ become:

$$
\begin{align*}
\phi(Z) & =\frac{P}{2 \pi(\alpha+1)}\left\{-\ln \left(Z-Z_{0}\right)-\alpha \ln \left(\frac{Z \bar{Z}_{0}-1}{Z \bar{Z}_{0}}\right)\right\} \\
& +\frac{P}{2 \pi(\alpha+1)}\left\{\frac{Z_{0} \bar{Z}_{0}-1}{\bar{Z}_{0}^{2}} \cdot \frac{1}{Z \bar{Z}_{0}-1}\right\} \\
\Psi(Z) & =\frac{\bar{P}}{2 \pi(\alpha+1)}\left\{\alpha \ln \left(Z-Z_{0}\right)+\ln \left(\frac{Z \bar{Z}_{0}-1}{Z \bar{Z}_{0}}\right)-\frac{Z_{0} \bar{Z}_{0}-1}{Z \bar{Z}_{0}-1}\right. \\
& \left.+\frac{Z_{0} \bar{Z}_{0}-1}{\left(Z \bar{Z}_{0}-1\right)^{2}}+\frac{Z_{0} \bar{Z}_{0}-1}{Z \bar{Z}_{0}}\right\}+\frac{P}{2 \pi(\alpha+1)}\left\{\frac{\bar{Z}_{0}}{Z-Z_{0}}+\frac{\alpha \bar{Z}_{0}^{2}}{Z \bar{Z}_{0}-1}\right. \\
& \left.-\frac{\alpha Z_{0} \bar{Z}_{0}+1}{Z Z_{0}}-\frac{\alpha}{Z^{2}}\right\} \tag{3.3}
\end{align*}
$$

Let these potential functions be written as:

$$
\begin{aligned}
& \phi(z)=\frac{P}{2 \pi(\alpha+1)}\left\{\phi_{I}(z)\right\}+\frac{\bar{P}}{2 \pi(\alpha+1)}\left\{\phi_{I I}(z)\right\} \\
& \Psi(z)=\frac{P}{2 \pi(\alpha+1)}\left\{\psi_{I}(z)\right\}+\frac{\bar{P}}{2 \pi(\alpha+1)}\left\{\psi_{I I}(z)\right\}
\end{aligned}
$$

where $\phi_{I}, \phi_{I I}, \Psi_{I}$ and $\Psi_{I I}$ can be found by comparison to equations (3.3).

Since $\phi^{\prime}(Z), \phi^{\prime}(Z)$ and $\Psi^{\prime}(Z)$ will be needed, they will be listed here:

$$
\begin{align*}
& \phi^{\prime}(Z)=\frac{P}{2 \pi(\alpha+1)}\left\{\phi_{I}^{\prime}\right\}+\frac{\bar{P}}{2 \pi(\alpha+1)}\left\{\phi_{I}^{\prime}\right\} \\
& \phi^{\prime}(Z)=\frac{P}{2 \pi(\alpha+1)}\left\{\phi_{I^{\prime}}^{\prime}\right\}+\frac{\bar{P}}{2 \pi(\alpha+1)}\left\{\phi_{I}^{\prime} I^{\prime}\right\} \\
& \Psi^{\prime}(Z)=\frac{P}{2 \pi(\alpha+1)}\left\{\psi_{I}^{\prime}(Z)\right\}+\frac{P}{2 \pi(\alpha+1)}\left\{\Psi_{I I}^{\prime}(Z)\right\} \tag{3.4}
\end{align*}
$$

where

$$
\begin{aligned}
& \phi_{I}^{\prime}(Z)=-\frac{1}{Z-Z_{0}}-\frac{\alpha}{Z\left(Z \bar{Z}_{0}-1\right)} \\
& \phi_{I}^{\prime}(Z)=+\frac{1}{\left(Z-Z_{0}\right)^{2}}+\frac{2 Z \bar{Z}_{0}-1}{Z^{2}\left(Z \bar{Z}_{0}-1\right)^{2}} \\
& \phi_{I I}^{\prime}(Z)=-\frac{Z}{Z_{0} \bar{Z}_{0}-1} \\
& \bar{Z}_{0}^{2}
\end{aligned} \frac{\bar{Z}_{0}}{\left(Z \bar{Z}_{0}-1\right)^{2}} .
$$

$$
\begin{align*}
\phi_{I}^{\prime} \prime(Z) & =\frac{Z_{0} \bar{Z}_{0}-1}{\bar{Z}_{0}^{2}} \cdot \frac{2 \bar{Z}_{0}^{2}}{\left(Z \bar{Z}_{0}-1\right)^{3}} \\
\Psi_{I}^{\prime}(Z) & =-\frac{\bar{Z}_{0}}{\left(Z-Z_{0}\right)^{2}}-\frac{\alpha \bar{Z}_{0}^{3}}{\left(Z \bar{Z}_{0}-1\right)^{2}}+\frac{\alpha Z_{0} \bar{Z}_{0}+1}{Z_{0} Z^{2}}+\frac{2 \alpha}{Z^{3}} \\
\Psi_{I I}^{\prime}(Z) & =\frac{\alpha}{Z-Z_{0}}+\frac{1}{Z\left(Z \bar{Z}_{0}-1\right)}+\frac{\left(Z_{0} \bar{Z}_{0}-1\right) Z_{0}}{\left(Z Z_{0}-1\right)^{2}}-\frac{2\left(Z_{0} \bar{Z}_{0}-1\right) \bar{Z}_{0}}{\left(Z \bar{Z}_{0}-1\right)^{3}} \\
& -\frac{Z_{0} \bar{Z}_{0}-1}{\bar{Z}_{0} Z^{2}} \tag{3.5}
\end{align*}
$$

Hence, the influence function can be easily found as described in section I.2. They are

$$
\begin{align*}
& H_{x x} ; q^{P}{ }_{q}^{*}=\operatorname{Re}\left[2 \phi^{\prime}(Z)-\bar{Z} \phi^{\prime}(Z)-\Psi^{\prime}(Z)\right] \\
& H_{y y} ; q^{P} \underset{q}{*}=\operatorname{Re}\left[2 \phi^{\prime}(z)+\bar{Z} \phi^{\prime}(z)+\Psi^{\prime}(z)\right] \\
& H_{x y} ; q_{q}{ }_{q}^{*}=\operatorname{Im}\left[\bar{Z}^{\prime}{ }^{\prime}(Z)+\psi^{\prime}(Z)\right] \\
& I_{x: q}{ }_{\mathrm{P}}^{\mathrm{q}}{ }^{*}=\frac{1}{2 \mu} \operatorname{Re}\left[\alpha \phi(Z)-Z \overline{\phi^{\prime}(Z)}-\Psi(Z)\right] \\
& I_{y}: q_{q}{ }_{q}^{*}=\frac{1}{2 \mu} \operatorname{Im}\left[\alpha \phi(Z)-Z \overline{\phi^{\prime}(Z)}-\Psi(Z)\right] \tag{3.6}
\end{align*}
$$

Substituting (3.4) into (3.6) leads to

$$
\begin{aligned}
H_{x x ; q}\left(z, z_{0}\right) P_{q}^{*}\left(Z_{0}\right) & =\frac{\operatorname{Re}}{2 \pi(\alpha+1)}\left[\left\{2 \phi_{\mathrm{I}}^{\prime}(z)-\bar{Z}_{\phi_{I}^{\prime}}^{\prime}(z)-\Psi_{I}^{\prime}(z)\right\} p^{*}\right. \\
& \left.+\left\{2 \phi_{I I}^{\prime}(z)-\bar{Z}_{\phi_{I}}^{\prime}(z)-\Psi_{I I}^{\prime}(z)\right\} \bar{P}^{*}\right]
\end{aligned}
$$

$$
\begin{align*}
& H_{y y ; q}\left(Z, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right)=\frac{R e}{2 \pi(\alpha+1)}\left[\left\{2 \phi_{I}^{\prime}(Z)+\bar{Z}_{\phi_{I}^{\prime \prime}}(Z)+\Psi_{I}^{\prime}(Z)\right\} P *\right. \\
& \left.+\left\{2 \phi_{I I}^{\prime}(Z)+Z_{\phi} I_{I}^{\prime}(Z)+\Psi_{I I}^{\prime}(Z)\right\} P^{*}\right] \\
& H_{x y ; q}\left(Z, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right)=\frac{I m}{2 \pi(\alpha+1)}\left[\left\{\bar{Z}_{I}^{\prime} \prime^{\prime}(z)+\Psi_{I}^{\prime}(z)\right\} p^{*}\right. \\
& \left.+\left\{\bar{Z}_{I}^{\prime} I_{I}^{\prime}(Z)+\Psi_{I I}^{\prime}(z)\right\} \bar{P}^{*}\right] \\
& I_{x ; q}(Z, Z) P_{q}^{*}\left(Z_{0}\right)=\frac{R e}{4 \pi \mu(\alpha+1)}\left[\left\{\alpha \phi_{I}(Z)-2 \overline{\phi_{\mathrm{I}}^{(}(Z)}-\overline{\Psi_{I}(Z)}\right\} P^{*}\right. \\
& \left.+\left\{\alpha \phi_{I I}(Z)+Z \overline{\phi_{I I}^{\top}(Z)}-\overline{\Psi_{I I}(Z)}\right\} \overline{\mathrm{P}}{ }^{\star}\right] \\
& I_{y ; q}\left(Z, z_{0}\right) P_{q}^{*}\left(Z_{0}\right)=\frac{I m}{4 \pi \mu(\alpha+1)}\left[\left\{\alpha \phi_{I}(Z)-Z \overline{\phi_{\mathrm{I}}^{\prime}(Z)}-\overline{\Psi_{I}(Z)}\right\} P *\right. \\
& \left.+\left\{\alpha \phi_{I I}(Z)+Z \overline{\phi_{I I}^{\prime}(Z)}-\overline{\Psi_{I I}(Z)}\right\} \bar{P}^{*}\right] \tag{3.7}\\
& \text { where } \phi_{I}(z), \phi_{I}^{\prime}(Z), \phi_{I}^{\prime}(Z), \phi_{I I}(Z), \phi_{I I}^{\prime}(Z), \phi_{I}^{\prime}(Z), \psi_{I}(Z) \text {, } \\
& \Psi_{I}^{\prime}(Z), \Psi_{I I}(Z) \text { and } \Psi_{I I}^{\prime}(Z) \text { are defined by equations (3.4). } \\
& \text { These influence functions will be used to solve a simple } \\
& \text { problem by the boundary-integral method in section } 4 \text { of } \\
& \text { this chapter. }
\end{align*}
$$

III. 3 DERIVATION OF THE INFLUENCE FUNCTIONS USING A MAPPING TECHNIQUE

The mapping technique which is presented in Chapter II is now employed to obtain the influence functions. Consider the problem of an infinite plane having a circular
hole of radius a at the origin and a concentrated point force P acting in the $p l a n e$ at some points Z_{0} where $\left|Z_{0}\right| \geqslant a$. This problem can be expressed as the superposition of two problems, Figure 3.1.

In the problem of Figure $3.1(\mathrm{~B})$, the concentrated point force P acting at the point Z_{0} in an infinite plane is considered. In the problem of Figure 3.1(C), the infinite plane contains a circular hole with a prescribed traction acting on its circumference. The traction on the circular hole is equal in magnitude and opposite in direction to the generated traction on a circular contour in the problem of Figure 3.1(B). By adding the solutions to the problems of Figure $3.1(B)$ and $3.1(C)$, the zero traction on the hole of the problem of Figure $3.1(\mathrm{~A})$ is obtained.

The solution of the problem of Figure $3.1(\mathrm{~B})$ is well known (Muskhelishvili [27]) so that the required traction can be found. Also, the problem of Figure 3.1(C) may be handled by mapping into a unit circle (disc), Figure 3.2.

Clearly, the mapping function for this problem is

$$
z=\omega(\zeta)=\frac{a}{\zeta}
$$

which is conformal and one to one [37]. Without loss of generality, let $a=1$. Let the complex potential function for the problems of Figure 3.1(A), 3.1(B), and 3.1(C) be $\phi(Z), \Psi(Z) ; \phi^{0}(Z), \Psi^{0}(Z) ;$ and $\phi^{*}(Z)$ and $\Psi^{*}(Z)$, respectively.

Figure 3.1 Fundamental problem expressed as superposition of two problems.

Figure 3.2 Mapping the auxiliary problem to a unit disc.

Then the complex potential functions for the problem of Figure 3.1(A) are

$$
\begin{aligned}
& \phi(Z)=\phi^{0}(Z)+\phi^{*}(Z) \\
& \psi(Z)=\psi^{0}(Z)+\psi^{*}(Z)
\end{aligned}
$$

where the derivatives are given by equations (2.2) through (2.5) in section II.3. To find $\phi^{*}(Z)$ and $\Psi^{*}(Z)$, the transformed complex potential functions which are given by equations (2.21) and (2.22) will be used. It is first necessary to calculate the integrals of equations (2.21) and (2.22).

$$
\begin{align*}
& I_{1}=\frac{1}{2 \pi i} \oint_{\gamma} \frac{\omega(\sigma)}{\frac{\overline{\xi^{\prime}}(\sigma)}{\omega^{\prime}(\sigma)}} \mathrm{d}-\zeta \tag{3.8}\\
& I_{2}=\frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{\omega^{\prime}(\sigma)}}{\omega^{\prime}(\sigma)} \frac{\phi^{\prime}(\sigma)}{\sigma-\zeta} d \sigma \tag{3.9}
\end{align*}
$$

Taking the derivative of equation (2.16) leads to

$$
\begin{equation*}
\phi_{I^{\prime}}^{\prime}(\sigma)=\sum_{k=1}^{\infty} k a_{k} \sigma^{k} \tag{3.10}
\end{equation*}
$$

and the complex conjugate is:

$$
\overline{\phi_{1}^{*}(\sigma)}=\sum_{k=1}^{\infty} k \bar{a}_{k} \bar{\sigma}^{k-1}
$$

Since $\sigma \bar{\sigma}=1$, then

$$
\begin{equation*}
\overline{\phi_{1}^{* T}(\sigma)}=\sum_{\mathrm{k}=1}^{\infty} k \bar{a}_{\mathrm{k}} \sigma^{-\mathrm{k}+1} \tag{3.11}
\end{equation*}
$$

The mapping function and its derivative, evaluated on the boundary, are

$$
\omega(\sigma)=\frac{1}{\sigma} \quad, \quad \omega^{\prime}(\sigma)=-\frac{1}{\sigma^{2}}
$$

so that

$$
\begin{equation*}
\frac{\omega(\sigma)}{\overline{\omega^{\top}(\sigma)}}=-\frac{1}{\sigma^{3}} \tag{3.12}
\end{equation*}
$$

Multiplying equations (3.11) by (3.12) gives:

$$
\begin{equation*}
\frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}} \cdot \overline{\phi_{1}^{* T}(\sigma)}=\sum_{k=1}^{\infty}-k \bar{a}_{k} \sigma^{-k-2} \tag{3.13}
\end{equation*}
$$

From equation (3.13), it is clear that the right-hand side is an analytic function outside of γ, the unit circle. The value of the right-hand side at infinity is zero. Thus, due to the Cauchy integral formulas, the principal value of the integral of equation (3.8) leads to:

$$
\begin{equation*}
I_{1}=\frac{1}{2 \pi i} \oint_{\gamma} \frac{\omega(\sigma)}{\omega^{\prime}(\sigma)} \frac{\overline{\phi_{1}^{*}(\sigma)}}{\sigma-\zeta} d \sigma=0 \tag{3.14}
\end{equation*}
$$

To calculate the integral of equation (3.9), consider the complex conjugate of equation (3.13), which is

$$
\begin{equation*}
\frac{\overline{\omega(\sigma)}}{\omega^{1}(\sigma)}=-\sigma^{3} \tag{3.15}
\end{equation*}
$$

Multiplying equations (3.10) by (3.15) leads to:

$$
\begin{equation*}
\frac{\overline{\omega(\sigma)}}{\omega^{\prime}(\sigma)} \phi_{1}^{*}(\sigma)=\sum_{k+1}^{\infty}-k a_{k} \sigma^{k+3} \tag{3.16}
\end{equation*}
$$

Clearly, the right-hand side of equation (3.16) is analytic inside the unit circle. Hence, following the Cauchy integral formulas, the principal value of the integral of (3.9) leads to:

$$
\begin{equation*}
I_{2}=\frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{\omega(\sigma)}}{\omega^{\prime}(\sigma)} \frac{\phi^{*^{*}}(\sigma)}{\sigma-\zeta} d \sigma=-\zeta^{3} \phi^{*^{\prime}}(\zeta) \tag{3.17}
\end{equation*}
$$

Substituting integrals (3.14) and (3.17) into the general formulation for $\phi_{1}^{*}(\zeta)$ and $\psi_{1}^{*}(\zeta)$ (equations [2.21] and [2.22]), the complex potential functions for a circular disc with a specified boundary value, $F(\sigma)$, are obtained:

$$
\begin{align*}
& \phi_{1}^{*}(\zeta)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{F(\sigma)}{\sigma-\zeta} d \sigma \tag{3.18}\\
& \psi_{1}^{*}(\zeta)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{F(\sigma)}}{\sigma-\zeta} d \sigma+\zeta^{3} \phi^{*}(\zeta) \tag{3.19}
\end{align*}
$$

For the case considered, $F(\sigma)$ and $F(\sigma)$ will now be calculated. Rewriting equation (2.10) and taking the conjugate leads to:

$$
\begin{align*}
& F(\sigma)=-\left[\phi_{1}^{0}(\sigma)+\frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}} \overline{\phi_{1}^{0}(\sigma)}+\overline{\Psi_{1}^{0}(\sigma)}\right] \tag{3.20}\\
& \overline{F(\sigma)}=-\left[\overline{\phi_{1}^{0}(\sigma)}+\frac{\overline{\omega(\sigma)}}{\omega^{\prime}(\sigma)} \phi_{1}^{0}(\sigma)+\Psi_{1}^{0}(\sigma)\right] \tag{3.21}
\end{align*}
$$

Substituting equation (3.7) into (2.6), the transformed complex potential functions $\phi_{1}^{0}(\zeta)$ and $\Psi_{1}^{0}(\zeta)$ are:

$$
\begin{align*}
& \phi_{1}^{0}(\zeta)=-\frac{\mathrm{P}}{2 \pi(\alpha+1)} \ln \left(\frac{1-Z_{0 \zeta}}{\zeta}\right) \tag{3.22}\\
& \Psi_{1}^{0}(\zeta)=\alpha \frac{\bar{P}}{2 \pi(\alpha+1)} \ln \left(\frac{1-Z_{0 \zeta}}{\zeta}\right)+\frac{\mathrm{P}}{2 \pi(\alpha+1)} \frac{\bar{Z}_{0 \zeta}}{1-Z_{0 \zeta}} \tag{3.23}
\end{align*}
$$

Taking the derivative of equation (3.22) and substituting $\zeta=\sigma$ into equations (3.22) and (3.23) leads to:

$$
\begin{align*}
\phi_{1}^{0}(\sigma) & =-\frac{\mathrm{P}}{2 \pi(\alpha+1)} \ln \left(\frac{1-Z_{0} \sigma}{\sigma}\right) \\
\phi_{1}^{0}(\sigma) & =-\frac{\mathrm{P}}{2 \pi(\alpha+1)} \frac{1}{\left(1-Z_{0} \sigma\right)} \\
\Psi_{1}^{0}(\sigma) & =\alpha \frac{\bar{P}}{2 \pi(\alpha+1)} \ln \left(\frac{1-Z_{0} \sigma}{\sigma}\right)+\frac{\mathrm{P}}{2 \pi(\alpha+1)} \cdot \frac{\bar{Z}_{0} \sigma}{1-Z_{0} \sigma} \tag{3.24}
\end{align*}
$$

Taking the complex conjugates of equations (3.24) along with equations (3.12) and (3.15) will provide all the terms on the right-hand side of equations (3.20) and (3.12). Then $F(\sigma)$ and $\overline{F(\sigma)}$ will be

$$
\begin{equation*}
F(\sigma)=Q\left\{\ln \quad\left(\frac{1-Z_{0} \sigma}{\sigma}\right)-\alpha \ln \left(\sigma-\bar{Z}_{0}\right)\right\}+\bar{Q}\left\{\frac{1-Z_{0} \sigma}{\sigma\left(\sigma-\bar{Z}_{0}\right)}\right\} \tag{3.25}
\end{equation*}
$$

where $Q=\frac{P}{2 \pi(\alpha+1)}$.
Substituting equation (3.25) into (3.18) leads to

$$
\begin{align*}
\phi_{1}^{*}(\zeta) & =\frac{Q}{2 \pi i} \oint_{\gamma} \frac{\ln \left(\frac{1-z_{0} \sigma}{\sigma}\right)}{\sigma-\zeta} d \sigma-\frac{\alpha Q}{2 \pi i} \oint_{\gamma} \frac{\ln \left(\sigma-\bar{z}_{0}\right)}{\sigma-\zeta} d \sigma \\
& +\frac{Q}{2 \pi i} \oint_{\gamma} \frac{\left(1-z_{0} \sigma\right)}{\sigma\left(\sigma-\bar{z}_{0}\right)(\sigma-\zeta)} d \sigma \tag{3.27}
\end{align*}
$$

Recalling the discussion in section I. $3, \ln \left(\frac{1-Z_{0} \sigma}{\sigma}\right)$ is an analytic function outside of γ, the unit circle. Because $Z_{0}>1$, the function has two essential singular points at σ_{0} and $\sigma=1 / Z_{0}$. The function is defined at infinity as:

$$
\left[\ln \left(\frac{1-Z_{0} \sigma}{\sigma}\right)\right]=\ln \left(-Z_{0}\right)
$$

then

$$
\begin{equation*}
\frac{1}{2 \pi i} \oint_{\gamma} \frac{\ln \left(\frac{1-Z_{0} \sigma}{\sigma}\right)}{\sigma-\zeta} d \sigma=\ln \left(-Z_{0}\right) \tag{3.28}
\end{equation*}
$$

Clearly, $\ln \left(\sigma-Z_{0}\right)$ is an analytic function inside γ, the unit circle. Hence, the Cauchy integral formulas lead to:

$$
\begin{equation*}
\frac{1}{2 \pi i} \oint_{\gamma} \frac{\ln \left(\sigma-\bar{Z}_{0}\right)}{\sigma-\zeta} d \sigma=\ln \left(\zeta-\bar{Z}_{0}\right) \tag{3.29}
\end{equation*}
$$

Also
$\frac{1}{2 \pi i} \oint_{\gamma} \frac{\left(1-Z_{0} \sigma\right)}{\sigma\left(\sigma-\bar{Z}_{0}\right)(\sigma-\zeta)} d \sigma=$ Residu $\left.\right|_{\sigma=\zeta}\left\{\frac{1-Z_{0} \sigma}{\sigma\left(\sigma-\bar{Z}_{0}\right)(\sigma-\zeta)}\right\}$

$$
+ \text { Residu }\left.\right|_{\sigma=0}\left\{\frac{1-Z_{0} \sigma}{\sigma\left(\sigma-\bar{Z}_{0}\right)(\sigma-\zeta)}\right\}
$$

or
$\frac{1}{2 \pi i} \oint_{\gamma} \frac{\left(1-Z_{0} \sigma\right)}{\sigma\left(\sigma-\bar{Z}_{0}\right)(\sigma-\zeta)}=\frac{1-Z_{0} \zeta}{\zeta\left(\zeta-\bar{Z}_{0}\right)}+\frac{1}{\bar{Z}_{0} \zeta}$

Substituting the integrals of equations (3.29) and (3.30) into equation (3.27), the complex potential function can be obtained:
$\phi_{1}^{*}(\zeta)=Q\left\{\ln \left(-Z_{0}\right)-\alpha \ln \left(\zeta-Z_{0}\right)\right\}+\bar{Q}\left\{\frac{1-Z_{0} \bar{Z}_{0}}{Z_{0}\left(\zeta-\bar{Z}_{0}\right)}\right\}$

To obtain $\Psi_{1}^{*}(\zeta)$ it is necessary to find the integral of equation (3.19), ice.,

$$
I_{3}=\frac{1}{2 \pi i} \oint_{\gamma} \frac{F(\sigma)}{\sigma-\zeta} d \sigma
$$

Then from equation (3.26):

$$
\begin{align*}
I_{3} & =\frac{Q}{2 \pi i} \oint_{\gamma} \frac{\sigma\left(\sigma-\bar{Z}_{0}\right) d \sigma}{\left(1-Z_{0 \sigma}\right)(\sigma-\zeta)}+\frac{\bar{Q}}{2 \pi i} \oint_{\gamma} \frac{\ln \left(\sigma-\bar{Z}_{0}\right)}{\sigma-\zeta} d \sigma \\
& -\frac{\bar{Q} \cdot \alpha}{2 \pi i} \oint_{\gamma} \frac{\ln \left(\frac{1-Z_{0} \sigma}{\sigma}\right)}{\sigma-\zeta} d \sigma \tag{3.32}
\end{align*}
$$

where

$$
\begin{aligned}
\frac{1}{2 \pi i} \oint_{\gamma} \frac{\sigma\left(\sigma-\bar{Z}_{0}\right)}{\left(1-Z_{0} \sigma\right)(\sigma-\zeta)} d \sigma & =\text { Residu }\left.\right|_{\sigma=\zeta}\left\{\frac{\sigma\left(\sigma-\bar{Z}_{0}\right)}{-Z_{0}\left(\sigma-\frac{1}{Z_{0}}\right)(\sigma-\zeta)}\right\} \\
& + \text { Residu } \left\lvert\,\left\{\frac{\sigma\left(\sigma-Z_{0}\right)}{-Z_{0}\left(\sigma-\frac{1}{Z_{0}}\right)(\sigma-\zeta)}\right\}\right. \\
\sigma & =\frac{1}{Z_{0}}
\end{aligned}
$$

After some simplification:
$\frac{1}{2 \pi i} \oint_{\gamma} \frac{\sigma\left(\sigma-\bar{Z}_{0}\right)}{\left(1-Z_{0} \sigma\right)(\sigma-\zeta)} d \sigma=-\frac{\zeta}{Z_{0}}-\frac{1-Z_{0} Z_{0}}{Z_{0}{ }^{2}}$

Substituting equations (3.33), (3.29) and (3.28) into equation (3.32) leads to:
$\frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{F(\sigma)}}{\sigma-\zeta} d \sigma=Q\left\{-\frac{\zeta}{Z_{0}}-\frac{1-Z_{0} \bar{Z}_{0}}{Z_{0}{ }^{2}}\right\}+\bar{Q}\left\{\ln \left(\zeta \cdot \bar{Z}_{0}\right)\right.$

$$
\begin{equation*}
\left.-\alpha \ln \left(-Z_{0}\right)\right\} \tag{3.34}
\end{equation*}
$$

Taking the derivative of equation (3.31) gives:
$\phi_{1}^{\star \prime}(\zeta)=Q\left\{\frac{-\alpha}{\zeta-Z_{0}}\right\}+\bar{Q}\left\{\frac{1-Z_{0} \bar{Z}_{0}}{\bar{Z}_{0}} \cdot \frac{-1}{\left(\zeta-\bar{Z}_{0}\right)^{2}}\right\}$

Substituting equations (3.35), (3.34) into equation (3.19) and following some simplification, the other complex potential function is:

$$
\begin{align*}
\Psi_{1}^{*}(\zeta) & =Q\left\{-\frac{\zeta}{Z_{0}}-\frac{1-Z_{0} \bar{Z}_{0}}{Z_{0}{ }^{2}}-\frac{\alpha \zeta^{3}}{\zeta-\bar{Z}_{0}}\right\}+\bar{Q}\left\{\ln \left(\zeta-\bar{Z}_{0}\right)-\alpha \ln \left(-Z_{0}\right)\right. \\
& \left.-\frac{1-Z_{0} \bar{Z}_{0}}{Z_{0}} \cdot \frac{\zeta^{3}}{\left(\zeta-\bar{Z}_{0}\right)^{2}}\right\} \tag{3.36}
\end{align*}
$$

As is discussed in section $I .2$, the two complex potential functions $\phi_{1}^{*}(\zeta)$ and $\Psi_{1}^{*}(\zeta)$, expressed by equations (3.31) and (3.36), are not a unique set of functions. Since the origin of the coordinates is within γ, then, following section $I .2$, the uniqueness conditions for $\phi_{1}^{*}(\zeta)$ and $\Psi_{1}^{*}(\zeta)$ are:

$$
\begin{equation*}
\phi_{1}^{*}(0)=0 \quad, \quad \Psi_{1}^{*}(0)=0 \tag{3.37}
\end{equation*}
$$

Conditions (3.37) lead to the unique complex potential functions:

$$
\begin{align*}
\phi_{1}^{*}(\zeta) & =Q\left\{\alpha \ln \left(-\bar{Z}_{0}\right)-\alpha \ln \left(\zeta-\bar{Z}_{0}\right)\right\}+Q\left\{\frac{1-Z_{0} \bar{Z}_{0}}{\bar{Z}_{0}^{2}}\right. \\
& \left.+\frac{1-Z_{0} Z_{0}}{\bar{Z}_{0}} \cdot \frac{1}{\zeta-\bar{Z}_{0}}\right\} \tag{3.38}\\
\Psi_{1}^{*}(\zeta) & =Q\left\{-\frac{\zeta}{Z_{0}}-\frac{\alpha \zeta^{3}}{\zeta-\bar{Z}_{0}}\right\}+\bar{Q}\left\{\ln \left(\zeta-\bar{Z}_{0}\right)-\ln \left(-\bar{Z}_{0}\right)\right. \\
& \left.-\frac{1-Z_{0} \bar{Z}_{0}}{\bar{Z}_{0}} \cdot \frac{\zeta^{3}}{\left(\zeta-\bar{Z}_{0}\right)^{2}}\right\} \tag{3.39}
\end{align*}
$$

These can be rewritten as:

$$
\begin{aligned}
& \phi_{1}^{*}(\zeta)=Q\left\{\phi_{\mathrm{I}}^{*}(\zeta)\right\}+\bar{Q}\left\{\phi_{\mathrm{II}}^{*}(\zeta)\right\} \\
& \psi_{1}^{*}(\zeta)=Q\left\{\psi_{\mathrm{I}}^{*}(\zeta)\right\}+\bar{Q}\left\{\psi_{\mathrm{I} I}^{*}(\zeta)\right\}
\end{aligned}
$$

where $\phi_{I}^{*}(\zeta), \phi_{I}^{*}(\zeta), \psi_{I}^{*}(\zeta)$ and $\psi_{I}^{*}(\zeta)$ can be obtained by comparison to equations (3.38) and (3.39) and are given in Appendix A.

Then

$$
\begin{align*}
& \phi_{1}^{*}(\zeta)=Q\left\{\phi_{\mathrm{I}}{ }^{\prime}(\zeta)\right\}+\bar{Q}\left\{\phi_{\mathrm{I}}^{\mathrm{I}} \mathrm{I}(\zeta)\right\} \\
& \phi_{1}^{*}{ }^{\prime}(\zeta)=Q\left\{\phi_{\mathrm{I}}^{*}{ }^{\prime \prime}(\zeta)\right\}+\bar{Q}\left\{\phi_{\mathrm{I}}^{*} \mathrm{I}^{\prime}(\zeta)\right\} \\
& \psi_{i}^{*}(\zeta)=Q\left\{\Psi_{\mathrm{I}}{ }^{\prime}(\zeta)\right\}+\bar{Q}\left\{\psi_{\mathrm{I}}^{\mathrm{K}^{\prime}}(\zeta)\right\} \tag{3.40}
\end{align*}
$$

where

$$
\begin{align*}
& \phi_{\mathrm{I}}^{*}(\zeta)=-\frac{\alpha}{\zeta-\bar{Z}_{0}} \\
& \phi_{\mathrm{I}}^{\mathrm{I}}(\zeta)=-\frac{1-Z_{0} \bar{Z}_{0}}{\bar{Z}_{0}} \cdot \frac{1}{\left(\zeta-\bar{Z}_{0}\right)^{2}} \\
& \phi_{\mathrm{I}^{\prime}}^{\prime}(\zeta)=\frac{\alpha}{\left(\zeta-\bar{Z}_{0}\right)^{2}} \\
& \phi_{\mathrm{I} \mathrm{I}^{\prime}}^{\prime}(\zeta)=\frac{1-Z_{0} \bar{Z}_{0}}{\bar{Z}_{0}} \cdot \frac{2}{\left(\zeta-\bar{Z}_{0}\right)^{3}} \\
& \Psi_{\mathrm{I}}^{*}(\zeta)=-\frac{1}{\bar{Z}_{0}}-\frac{\alpha \zeta^{2}\left(2 \zeta-3 \bar{Z}_{0}\right)}{\left(\zeta-\bar{Z}_{0}\right)^{2}} \\
& \psi_{\mathrm{I}}^{*}(\zeta)=\frac{1}{\zeta-\bar{Z}_{0}}-\frac{1-Z_{0} \bar{Z}_{0}}{\bar{Z}_{0}} \cdot \frac{\zeta^{2}\left(\zeta-3 \bar{Z}_{0}\right)}{\left(\zeta-\bar{Z}_{0}\right)^{3}} \tag{3.41}
\end{align*}
$$

Complex potential functions of equation (2.6) can be rewritten as:

$$
\begin{align*}
& \phi^{0}(Z)=-Q \cdot \ln \left(Z-Z_{0}\right) \\
& \Psi^{0}(Z)=Q \cdot \frac{\bar{Z}_{0}}{Z-\bar{Z}_{0}}+\bar{Q} \cdot \ln \left(Z-\bar{Z}_{0}\right) \tag{3.42}
\end{align*}
$$

and the derivatives are:

$$
\begin{align*}
& \phi^{0 \prime}(Z)=-Q \cdot \frac{1}{Z-Z_{0}} \\
& \phi^{0 \prime \prime}(Z)=+Q \frac{1}{\left(Z-Z_{0}\right)^{2}} \\
& \Psi^{0}(Z)=-Q \frac{\bar{Z}_{0}}{\left(Z-\bar{Z}_{0}\right)^{2}}+\bar{Q} \cdot \frac{\alpha}{Z-\bar{Z}_{0}} \tag{3.43}
\end{align*}
$$

Substituting equations (3.40), (3.42) and (3.43) into equations (2.5) leads to:

$$
\begin{align*}
& \phi(Z)=Q\left\{-\ln \left(Z-Z_{0}\right)+\phi_{I}^{*}(\zeta)\right\}+\bar{Q}\left\{\phi_{I}^{*}(\zeta)\right\} \\
& \Psi(Z)=Q\left\{\frac{\bar{Z}}{Z-\bar{Z}_{0}}+\Psi_{\bar{I}}^{*}(\zeta)\right\}+\bar{Q}\left\{\alpha \ln \left(Z-\bar{Z}_{0}\right)+\Psi_{\bar{I}}^{*}(\zeta)\right\} \\
& \phi^{\prime}(Z)=Q\left\{\frac{-1}{Z-Z_{0}}+\frac{\phi_{\mathrm{I}}{ }^{\prime}(\zeta)}{\omega^{\prime}(\zeta)}+\bar{Q}\left\{\frac{\phi_{\mathrm{I}} \mathrm{I}(\zeta)}{\omega^{\prime}(\zeta)}\right\}\right. \\
& \psi^{\prime}(Z)=Q\left\{\frac{-\bar{Z}_{0}}{\left(Z-\bar{Z}_{0}\right)^{2}}+\frac{\Psi^{*}{ }^{\prime}(\zeta)}{\omega^{\prime}(\zeta)}\right\}+\bar{Q}\left\{\frac{\alpha}{Z-\bar{Z}_{0}}+\frac{\Psi^{*}{ }^{\prime} \frac{1}{I}(\zeta)}{\omega^{\prime}(\zeta)}\right\} \\
& \phi^{\prime \prime}(Z)=Q\left\{\frac{1}{\left(Z-Z_{0}\right)^{2}}+\frac{\phi_{\mathrm{I}}^{\prime^{\prime}}(\zeta)}{\omega^{\prime 2}(\zeta)}-\frac{\phi_{\mathrm{I}}{ }^{\prime}(\zeta) \omega^{\prime \prime}(\zeta)}{\omega^{\prime 3}(\zeta)}\right\} \\
& +\bar{Q}\left\{\frac{\phi_{I}^{*}{ }^{\prime}(\zeta)}{\omega^{\prime 2}(\zeta)}-\frac{\phi_{I}^{*} I(\zeta) \omega^{\prime \prime}(\zeta)}{\omega^{\prime 3}(\zeta)}\right\} \tag{3.44}
\end{align*}
$$

 are defined by equations (3.41).

Substituting equations (3.44) into equations (3.6)
along with the mapping function, $\omega(\zeta)=1 / \zeta$, and its derivatives, leads to the influence functions for a circular opening:

$$
\begin{aligned}
& H_{x x ; q}\left(Z, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right)=\operatorname{Re}\left\{Q ^ { * } \left(\frac{-2}{Z-Z_{0}}-2 \zeta^{2} \phi_{\mathrm{I}}^{*}(\zeta)-\bar{Z}\left[\frac{1}{\left(Z-Z_{0}\right)}+\right.\right.\right. \\
& \left.\zeta^{4} \phi_{\mathrm{I}}^{\mathrm{I}^{\prime}}{ }^{\prime}(\zeta)+2 \zeta^{3} \phi_{\mathrm{I}}^{\prime}(\zeta)\right]+\frac{\mathrm{Z}_{0}}{\left(\mathrm{Z}-\bar{Z}_{0}\right)^{2}}+ \\
& \left.\zeta^{2} \Psi_{I}^{*}(\zeta)\right)+\bar{Q}^{*}\left(-2 \zeta^{2} \phi_{I}^{*} I^{\prime}(\zeta)-\bar{Z}\left[\zeta^{4} \phi_{I}^{*} I^{\prime}(\zeta)\right.\right. \\
& \left.\left.\left.+2 \zeta^{3} \phi_{I}^{*} \frac{I}{I}(\zeta)\right]-\frac{\alpha}{Z-\bar{Z}_{0}}+\zeta^{2} \Psi \frac{*}{I} \frac{I}{}(\zeta)\right)\right\}
\end{aligned}
$$

$$
\begin{align*}
& H_{y y ; q}\left(Z, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right)=\operatorname{Re}\left\{Q ^ { * } \left(\frac{-2}{Z-Z_{0}}-2 \zeta^{2} \phi_{I}^{*}(\zeta)+\bar{Z}\left[\frac{1}{\left(Z-Z_{0}\right)^{2}}\right.\right.\right. \\
& \left.+\zeta^{4} \phi_{\mathrm{I}}^{*}{ }^{\prime}(\zeta)+2 \zeta^{3} \phi_{\mathrm{I}}^{*}(\zeta)\right]-\frac{\bar{Z}_{0}}{\left(\mathrm{Z}-\bar{Z}_{0}\right)^{2}} \\
& \left.-\zeta^{2} \Psi{ }_{\mathrm{I}}{ }^{\prime}(\zeta)\right)+\bar{Q}^{*}\left(-2 \zeta^{2} \phi_{\mathrm{I} I}^{*}(\zeta)+\bar{Z}\left[\zeta^{4} \phi_{\mathrm{I}}^{\mathrm{I}^{\prime}}{ }^{\prime}(\zeta)\right.\right. \\
& \left.\left.\left.+2 \phi_{I}^{*} \dot{I}(\zeta) \zeta^{3}\right]+\frac{\alpha}{Z-\bar{Z}_{0}}-\zeta^{2} \Psi \underset{I}{I}(\zeta)\right)\right\} \\
& H_{x y ; q}\left(Z, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right)=\operatorname{Im}\left\{Q ^ { * } \left(Z \left[\frac{1}{\left(Z-Z_{0}\right)^{2}}+\zeta^{4} \phi_{I}^{*} \prime^{\prime}(\zeta)\right.\right.\right. \\
& \left.\left.+2 \phi_{I}^{*}(\zeta) \cdot \zeta^{3}\right]-\frac{\bar{Z}_{0}}{\left(Z-\bar{Z}_{0}\right)^{2}}-\zeta^{2} \Psi{ }_{I}^{\prime}(\zeta)\right) \\
& \bar{Q}^{*}\left(Z\left[\zeta^{4} \phi_{I}^{*} I^{\prime}(\zeta)+2 \phi_{I}^{*} I(\zeta) \cdot \zeta^{3}\right]\right. \\
& \left.\left.-\frac{\alpha}{Z-\bar{Z}_{0}}+\zeta^{2} \Psi_{I}^{\prime}{ }_{I}^{\prime}(\zeta)\right)\right\} \\
& I_{x ; q}\left(Z, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right)=\operatorname{Re}\left\{\frac { Q ^ { * } } { 2 \mu } \left(-\alpha \ln \left(Z-Z_{0}\right)+\alpha \phi_{\mathrm{I}}^{*}(\zeta)-Z\left[\frac{-1}{\bar{Z}-\bar{Z}_{0}}\right.\right.\right. \\
& \left.\left.-\bar{\zeta}^{2} \overline{\phi_{I}^{*}}(\zeta)\right]-\frac{Z_{0}}{\bar{Z}-Z_{0}}-\overline{\Psi_{I}^{*}(\zeta)}\right)+\frac{\mathbb{Q}^{*}}{2 \mu}\left(\alpha \phi_{I I}^{*}(\zeta)\right. \\
& \left.\left.+Z \bar{\zeta}^{2} \overline{Q_{I}^{*} I(\zeta)}-\alpha \ln \left(\bar{Z}-Z_{0}\right)-\overline{\Psi_{I}^{*}(\zeta)}\right)\right\} \\
& I_{y ; q}\left(Z, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right)=\operatorname{Im}\left\{\frac { Q ^ { * } } { 2 \mu } \left(-\alpha \ln \left(Z-Z_{0}\right)+\alpha \phi_{I}^{*}(\zeta)-Z\left[\frac{-1}{\bar{Z}-\bar{Z}_{0}}\right.\right.\right. \\
& \left.\left.-\bar{\zeta}^{2} \overline{\phi_{I}^{*}(\zeta)}\right]-\frac{z_{0}}{\bar{Z}-Z_{0}}-\overline{\Psi_{I}^{*}(\zeta)}\right)+\frac{\bar{Q}^{*}}{2 \mu}\left(\alpha \phi_{I I}^{*}(\zeta)\right. \\
& \left.\left.+Z \bar{\zeta}^{2} \overline{\phi_{I I}^{*}(\zeta)}-\alpha \ln \left(\bar{Z}-Z_{0}\right)-\overline{\Psi_{I I}^{*}(\zeta)}\right)\right\} \tag{3.44}
\end{align*}
$$

Hence the influence functions for an infinite plate with a unit circular hole at the origin are obtained.

It has been stated that these influence functions are unique. Therefore, they must be identical to those found in section III.2. To show this, let $\phi^{*}(Z)$ and $\psi *(Z)$ be determined, using the known solutions

$$
\begin{align*}
\phi^{*}(Z)= & \left.\phi(Z)-\phi^{0}(Z)=\frac{P}{2 \pi(\alpha+1)}\left\{-\alpha \ln \frac{Z \bar{Z}_{0}-1}{Z \bar{Z}_{0}}\right\}+\frac{P}{2 \pi(\alpha+1)}\right\} \\
& \left.\frac{Z_{0} \bar{Z}_{0}-1}{\bar{Z}_{0}{ }^{2}} \cdot \frac{1}{Z \bar{Z}_{0}-1}\right\} \\
\Psi *(Z)= & \Psi(Z)-\Psi^{0}(Z)=\frac{P}{2 \pi(\alpha+1)}\left\{\frac{\alpha \bar{Z}_{0}{ }^{2}}{Z \bar{Z}_{0}-1}-\frac{\alpha Z_{0} \bar{Z}_{0}+1}{Z Z_{0}}-\frac{\alpha}{Z^{2}}\right\} \\
+ & \frac{\bar{P}}{2 \pi(\alpha+1)}\left\{\ln \left(\frac{Z \bar{Z}_{0}-1}{Z \bar{Z}_{0}}\right)-\frac{Z \bar{Z}_{0}-1}{Z \bar{Z}_{0}-1}+\frac{Z_{0} \bar{Z}_{0}-1}{\left(Z \bar{Z}_{0}-1\right)^{2}}\right. \\
+ & \left.\frac{Z_{0} \bar{Z}_{0}-1}{Z \bar{Z}_{0}}\right\} \tag{3.45}
\end{align*}
$$

where $\phi(Z), \Psi(Z)$ were given by equations (3.3) and $\phi^{0}(Z)$, $\Psi^{0}(Z)$ were given by equation (2.6).

Transforming the two equations (3.45) into the $\zeta-\mathrm{plane}$, i.e., $Z=\frac{1}{\zeta}$, leads to

$$
\begin{aligned}
\phi_{1}^{*}(\zeta) & =Q\left\{\alpha \ln \left(-\bar{Z}_{0}\right)-\alpha \ln \left(\zeta-\bar{Z}_{0}\right)\right\}+\bar{Q}\left\{\frac{1-Z_{0} \bar{Z}_{0}}{\bar{Z}_{0}{ }^{2}}\right. \\
& \left.+\frac{1-Z_{0} \bar{Z}_{0}}{\bar{Z}_{0}} \cdot \frac{1}{\zeta-\bar{Z}_{0}}\right\}
\end{aligned}
$$

$$
\begin{align*}
\Psi_{1}^{*}(\zeta) & =Q\left\{-\frac{\zeta}{Z_{0}}-\frac{\alpha \zeta^{3}}{\zeta-\bar{Z}_{0}}\right\}+\bar{Q}\left\{\ln \left(\zeta-\bar{Z}_{0}\right)-\ln \left(-\bar{Z}_{0}\right)\right. \\
& \left.-\frac{1-Z_{0} \bar{Z}_{0}}{\bar{Z}_{0}} \cdot \frac{\zeta^{3}}{\left(\zeta-\bar{Z}_{0}\right)^{2}}\right\}
\end{align*}
$$

The two potential functions, found by equations (3.46), have also been determined by the mapping technique, equations (3.39), and as one can see, they are identical.
III. 4 THE BOUNDARY INTEGRAL EQUATION METHOD APPLIED TO PLANE FINITE REGIONS WEAKENED BY A CIRCULAR HOLE

The basic idea of the Boundary Integral Equation Method has been discussed in section I.1, where the discretized form of the integral equations is given, see equation (1.19). Consider a plane finite region with boundary B subjected to specified traction boundary condition, t, and containing a unit circular hole at the origin, Figure 3.3. Divide the boundary, B, into N meshes (not necessarily equal) and embed the region R in an infinite (fictitious) plane of the same material as R containing a unit circular hole at the origin, see Figure 3.4. Note that the influence functions $H_{i j ; q}\left(Z, Z_{0}\right)$ and $I_{i ; q}(Z, Z 0)$ for this fictitious region are given by equations (3.44).

Following section I.l, the fictitious traction P * around the fictitious boundary can be found from:

Figure 3.3 A unit circular hole in a plane finite region with prescribed traction on the boundary.

Figure 3.4 Region R embedded in an infinite plane containing a circular hole at the origin.

$$
\begin{align*}
& \frac{P{ }_{x i}}{2}+\sum_{\substack{j=1 \\
j \neq i}}^{N}\left\{H_{x x ; q}\left(z, z_{0}\right) P_{q}^{*}\left(Z_{0}\right) n_{x i}+H_{x y ; q}\left(z, z_{0}\right) P_{q}^{*}\left(Z_{0}\right) n_{y i}\right\} \Delta S_{i} \\
& =P_{x i} \\
& (i=1, \ldots N) \\
& \frac{P^{*} y i}{2}+\sum_{\substack{j=1 \\
j \neq i}}^{N}\left\{H_{x y ; q}\left(z, z_{0}\right) P_{q}^{*}\left(Z_{0}\right) n_{x i}+H_{y y ; q}\left(z, z_{0}\right) P_{q}^{*}\left(Z_{0}\right) n_{y i}\right\} \Delta S_{i} \\
& =P_{y i} \\
& (i=1, \ldots N) \tag{3.47}
\end{align*}
$$

where the influence functions $H_{i j ; q}\left(Z, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right)$ given by equation (3.44) and the resultant fictitious traction on a given interval is represented by:

$$
P_{q i}^{*}=P_{x i}^{*}+i P_{y i}^{*} \quad(i=1, \ldots N)
$$

In equation (3.47) $n_{x i}$ and $n_{y i}$ are the components of the unit normal to the interval i. Also, $P_{x i}$ and $P_{y i}$ are the x and y component of the real resultant traction applied to the mesh i.

Considering the influence functions, equation (3.44) and splitting each equation into two components of P^{*}, i.e., P_{x}^{*} and P_{y}^{*}, leads to:

$$
\begin{aligned}
& H_{x x ; q}\left(Z, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right)=H_{x x ; x} \cdot P_{x}^{*}+H_{x x ; y} \cdot P_{y}^{*} \\
& H_{y y ; q}\left(Z, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right)=H_{y y ;} \cdot P_{x}^{*}+H_{y y} ; y \cdot P_{y}^{*} \\
& H_{x y ; q}\left(Z, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right)=H_{x y} ; x \cdot P_{x}^{*}+H_{x y} ; x \cdot P_{y}^{*}
\end{aligned}
$$

$$
\begin{align*}
& I_{x ; q}\left(Z, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right)=I_{x ; x} \cdot P_{x}^{*}+I_{x ; y} \cdot P_{y}^{*} \\
& I_{y ; q}\left(Z, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right)=I_{y ; x} \cdot P_{x}^{*}+I_{y ; y} \cdot P_{y}^{*} \tag{3.48}
\end{align*}
$$

where $\mathrm{H}_{\mathrm{ij} ; \mathrm{q}}$ and $\mathrm{I}_{\mathrm{i} ; \mathrm{q}}$ can be easily found by comparing equations (3.48) with (3.44), see Appendix A.

Substituting equations (3.48) into equations (3.47)
leads to:
$\frac{P_{x i}^{*}}{2}+\sum_{\substack{j=1 \\ j \neq i}}^{N}\left\{\left(H_{x x ; x} \cdot P_{x}^{*}+H_{x x ; y} \cdot P_{y}^{*}\right) \cdot n_{x i}+\left(H_{x y} ; x \cdot P_{x}^{*}\right.\right.$
$\left.\left.+H_{x y ; y} \cdot P_{y}^{*}\right) \cdot n_{y i}\right\} \Delta S_{i}=P_{x i} \quad(i=1, \ldots N)$

$$
\begin{align*}
\frac{P_{y i}^{*}}{2} & +\sum_{\substack{j=1 \\
j \neq i}}^{N}\left\{\left(H_{x y ; x} \cdot P_{x}^{*}+H_{x y} ; y \cdot P_{y}^{*}\right) \cdot n_{x i}+\left(H_{y y} ; x \cdot P_{x}^{*}\right.\right. \\
& \left.\left.+H_{y y ; y} \cdot P_{y}^{*}\right) \cdot n_{y i}\right\} \Delta S_{i}=P_{x i} \quad(i=1, \ldots N) \quad(3.49) \tag{3.49}
\end{align*}
$$

Rearranging equations (3.49):

$$
\begin{aligned}
& \frac{P_{x i}^{*}}{2}+\sum_{\substack{j=1 \\
j \neq i}}^{N}\left\{\left[H_{x x ; x} \cdot n_{x i}+H_{x y ; x} \cdot n_{y i}\right] \cdot P_{x i}^{*}+\left[H_{x x ; y} \cdot n_{x i}\right.\right. \\
& \left.\left.\quad+H_{x y ; y} \cdot n_{y i}\right] \cdot P_{y i}^{*}\right\} \Delta S_{i}=P_{x i}
\end{aligned}
$$

$$
\begin{align*}
& \frac{P^{\star} \dot{i}}{2}+\sum_{\substack{j=1 \\
j=i}}^{N}\left\{\left[H_{x y ; x} \cdot n_{x i}+H_{y y ; x} \cdot n_{y i}\right] \cdot P_{x i}^{*}+\left[H_{x y ; y} \cdot n_{x i}\right.\right. \\
& \left.\left.+H_{y y ; y} \cdot n_{y i}\right] \cdot P_{y i}^{*}\right\} \Delta S_{i}=P_{y i} \tag{3.50}\\
& \text { or writing equation (3.50) in the form of equation (1.24): } \\
& \frac{1}{2} P_{x i}^{*}+\sum_{\substack{j=1 \\
j \neq i}}^{N}\left(A_{i j} \cdot P_{x i}^{*}+B_{i j} \cdot P_{y i}^{*}\right)=B V_{x i} \quad(i=1,2 \ldots N) \\
& \frac{1}{2} P_{y i}^{*}+\sum_{\substack{j=1 \\
j \neq i}}^{N}\left(C_{i j} \cdot P_{x i}^{*}+D_{i j} \cdot P_{y i}^{*}\right)=B V_{y i} \quad(i=1,2 \ldots N) \tag{3.51}
\end{align*}
$$

where:

$$
\begin{aligned}
& A_{i j}=H_{x x ; x} \cdot n_{x i}+H_{x y ; x} \cdot n_{y i} \\
& B_{i j}=H_{x x ; y} \cdot n_{x i}+H_{x y ; y} \cdot n_{y i} \\
& C_{i j}=H_{x y ; x} \cdot n_{x i}+H_{y y ; x} \cdot n_{y i} \\
& D_{i j}=H_{x y ; y} \cdot n_{x i}+H_{y y ; y} \cdot n_{y i} \\
& (i, j=1, \ldots N)
\end{aligned}
$$

Euqations (3.51) represent a set of 2 N equations with 2 N unknowns, i.e., $P_{x i}^{*}$ and P_{y}^{*} for $i=1, \ldots N$. Methods for obtaining the solution have been discussed in section I.l.

Writing equation (3.51) in matrix form:

$$
\left[\begin{array}{cc}
A_{i j} & B_{i j} \tag{3.52}\\
C_{i j} & D_{i j}
\end{array}\right] \cdot\left\{\begin{array}{c}
P_{x i}^{*} \\
P_{y i}^{*}
\end{array}\right\}=\left\{\begin{array}{c}
B V_{x i} \\
B V_{y i}
\end{array}\right\}
$$

Note that the diagonals of submatrices $\left[A_{i j}\right]$ and $\left[D_{i j}\right]$ are $1 / 2$ and the diagonals of submatrices $\left[B_{i j}\right]$ and $\left[C_{i j}\right]$ are zero

Equation (3.52) can be solved by matrix inversion, iteration, or elimination (Faddeeva [38]). Once the fictitious tractions are found, then the stress and displacement at the point F can be easily found following section I.2. These are:

$$
\begin{align*}
& \sigma_{x x}=\sum_{i=1}^{N}\left[H_{x x ; x}\left(F, Z_{0}\right) \cdot P_{x i}^{*}+H_{x x ; y}\left(F, Z_{0}\right) \cdot P_{y i}^{*}\right] \\
& \sigma_{y y}=\sum_{i=1}^{N}\left[H_{y y ; x}\left(F, Z_{0}\right) \cdot P_{x i}^{*}-H_{y y ; y}\left(F, Z_{0}\right) \cdot P_{y i}^{*}\right] \\
& \sigma_{x y}=\sum_{i=1}^{N}\left[H_{x y} ; x\left(F, Z_{0}\right) \cdot P_{x i}^{*}+H_{x y ; y}\left(F, Z_{0}\right) \cdot P_{y i}^{*}\right] \\
& U_{x}=\sum_{i=1}^{N}\left[I_{x ; x}\left(F, Z_{0}\right) \cdot P_{x i}^{*}+I_{x ; y}\left(F, Z_{0}\right) \cdot P_{y i}^{*}\right] \\
& U_{y}=\sum_{i=1}^{N}\left[I_{y ; x}(F, z) \cdot P_{x i}^{*}+I_{y ; y}\left(F, Z_{0}\right) \cdot P_{y i}^{*}\right] \tag{3.53}
\end{align*}
$$

EXAMPLE III. 1
A Rectangular Plane Weakened by a Circular Hole

Consider the rectangular region ($10 \mathrm{~cm} \times 20 \mathrm{~cm}$) of unit thickness ($h=1 \mathrm{~cm}$) which is weakened by a circular hole of radius $r=1 \mathrm{~cm}$ at the origin, see Figure 3.5. A uniformly distributed traction ($\omega=1.0 \mathrm{MPa}$) is applied to the top and the bottom of the rectangular region as shown. The boundary has been subdivided into sixty equally-spaced meshes, each of 1 ength 1.0 cm, i.e., 10 meshes are defined on each of the top and bottom edges and 20 meshes on each vertical edge.

The field points, the points where the stress and displacement are calculated, are chosen along the x, y axis and include points on the edge of the hole. These are also shown in Figure 3.6.

The data, i.e., the coordinates of the nodal points, $X(I)$ and $Y(I)$, the resultant of the traction on each subdivision (calculated by the trapezoidal rule), BVX(I) and $B V Y(I)$, and the coordinates of the field points, $X F(I)$ and $Y F(I)$, are read into the program (Appendix B). The results are presented in Table 3.1.

The results are compared to the theoretical solution of a long strip weakened by a circular hole subjected to uniaxial tension (Howland [34] and Savin [35]). The program required 35 seconds of CPU time on a CDC 6500 computer.

Figure 3.5 Circular hole symmetrically placed in a finite rectangular plate under uniaxial tension.

Table 3.1. Stresses and displacements in a rectangular region containing a circular hole at the origin, Case 1

Geometry: rectangular plane (10 x $20 \mathrm{~cm}^{2}$) (1 cm thickness) Load: $\omega=1.0 \mathrm{MPa}$
Eccentricity: $\quad X_{0}=0.0 \quad Y_{0}=0.0$
$\mathrm{E}=70000 \mathrm{MPa}, \mu=26315.79 \mathrm{MPa}, \nu=0.33$

Field Point No.	Coordinates		$\begin{gathered} \sigma_{x x} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \sigma_{y y} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \sigma_{x y} \\ (M P a) \end{gathered}$	$\begin{gathered} \mathrm{U}_{\mathrm{x}} \\ \text { microns } \end{gathered}$	$\stackrel{U_{y}}{\text { microns }}$
	$\begin{array}{r} \mathrm{X} \\ \mathrm{~cm} \end{array}$	$\begin{array}{r} Y \\ \mathrm{~cm} \end{array}$					
1	1.0	0.0	0.0	3.13128	0.0	-0.0014	0.0
2	1.2	0.0	0.32793	2.1486	0.0	-0.00152	0.0
3	1.4	0.0	0.38043	1.70146	0.0	-0.00154	0.0
4	1.8	0.0	0.31226	1.33672	0.0	-0.00155	0.0
5	0.0	1.0	-1.1198	0.0	0.0	0.0	0.0028
6	0.0	1.2	-0.44908	-0.0235	0.0	0.0	0.00291
7	0.0	1.4	-0.18639	0.10502	0.0	0.0	0.00298
8	0.0	1.8	-0.02031	0.36858	0.0	0.0	0.00314
9	-1.0	0.0	0.0	3.13128	0.0	0.0014	0.0
10	0.0	-1.0	-1.1198	0.0	0.0	0.0	-0.00275

Available Solution:
Field
Point No.
References

$$
\begin{aligned}
1 & \sigma_{y y}=3.14 \mathrm{MPa} \\
5 & \sigma_{x x}=-1.11 \mathrm{MPa} \\
9 & \sigma_{y y}=3.14 \mathrm{MPa} \\
10 & \sigma_{x x}=-1.11 \mathrm{MPa}
\end{aligned}
$$

[34],[35]
[34],[35]
[34], [35]

To see the effect of the size of the plane on the stress and displacement solutions, smaller rectangular planes, $8 \mathrm{~cm} \times 16 \mathrm{~cm}$ and $6 \mathrm{~cm} \times 12 \mathrm{~cm}$, weakened by the circular hole of radius $r=1 \mathrm{~cm}$ at the origin were considered. The results are presented in Tables 3.2 and 3.4.

The program has been written in such a way that, if different dimensions of the rectangular plane are needed, only one character, $W R$, is to be changed. Note that the proportionality of the long side to the small side remains constant and equal to 2.0. Also, for different locations of the hole, the new coordinates of the center of the hole $X 0, Y O$ must be read into the program. Finally, the example of the problem of a rectangular plane ($9 \mathrm{~cm} \times 19 \mathrm{~cm}$) weakened by an unsymmetrically located circular hole is solved and the results are presented in Table 3.4. Again, the CPU time was 35 seconds for each run on a CDC 6500 computer.

EXAMPLE III. 2

A Circular Plane Weakened by a Circular Hole

Let a circular plane of radius $R=6 \mathrm{~cm}$ and unit thickness $(h=1 c m)$, which is weakened by a circular hole of radius $r=1 \mathrm{~cm}$ at the origin, be considered, see Figure 3.6. A radially uniform distributed load $(\omega=1.0 \mathrm{MPa})$ is partially applied to the top and the bottom of the outer circumference, as shown. The boundary has been subdivided into sixty equally spaced meshes each of which covers 6 degrees of angle (0.6283 cm) numbered from the top and

Table 3.2 Rectangular region containing a circular hole at the origin, Case 2

Geometry: rectangular plane ($8 \times 16 \mathrm{~cm}^{2}$) (1 cm thickness) Load: $\omega=1.0 \mathrm{MPa}$
Eccentricity: $\quad X_{0}=0 \quad Y_{0}=0$
$E=70000 \mathrm{MPa}, \mu=26315.79 \mathrm{MPa}, \nu=0.33$

Field Point No.	Coordinates		$\begin{gathered} \sigma_{x x} \\ (M P a) \end{gathered}$	$\begin{gathered} \sigma_{y y} \\ \text { (MPa) } \end{gathered}$	$\begin{gathered} 0 \times y \\ \text { (MPa) } \end{gathered}$	$\underset{\text { microns }}{\mathrm{U}_{\mathrm{x}}}$	$\underset{\text { Uicrons }}{\mathrm{U}_{\mathrm{y}}}$
	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \mathrm{Y} \\ & \mathrm{~cm} \end{aligned}$					
1	1.0	0.0	0.0	3.2212	0.0	-0.218	0.0
2	1.2	0.0	0.3339	2.2013	0.0	-0.229	0.0
3	1.4	0.0	0.382	1.738	0.0	-0.232	0.0
4	1.8	0.0	0.3040	1.3619	0.0	-0.234	0.0
5	0.0	1.0	-1.1821	0.0	0.0	0.0	0.404
6	0.0	1.2	-0.4851	-0.0294	0.0	0.0	0.418
7	0.0	1.4	-0. 2090	0.0992	0.0	0.0	0.427
8	0.0	1.8	-0.0293	0.3662	0.0	0.0	0.450
9	-1.0	0.0	0.0	3.2212	0.0	0.218	0.0
10	0.0	-1.0	-1.1821	0.0	0.0	0.0	-0.392

Table 3.3 Rectangular region containing a circular hole at the origin, Case 3

Table 3.4 Stresses and displacements in a rectangular region containing a nonsymmetrically located circular hole

```Geometry: rectangular plane (9 x 18cm}\mp@subsup{}{}{2})(1\textrm{cm}\mathrm{ thickness) Load: }\omega=1.0\textrm{MPa Eccentricity: }\mp@subsup{X}{0}{}=-0.5\textrm{cm}\quad\mp@subsup{Y}{0}{}=1.5\textrm{cm E = 70000 MPa, }\mu=26315.79 MPa, \nu = 0.3```							
Field Point No.	Coordinates		$\begin{gathered} \sigma_{\mathbf{x x}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \sigma_{y y} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \sigma_{x y} \\ (\text { MPa }) \end{gathered}$	$\underset{\text { microns }}{\mathrm{U}_{\mathrm{x}}}$	$\underset{\text { microns }}{\mathrm{U}_{\mathrm{y}}}$
	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \hline \mathrm{Y} \\ & \mathrm{~cm} \end{aligned}$					
1	1.0	0.0	0.0	3.16445	0.0	-0.3267	0.6244
2	1.2	0.0	0.3313	2.1690	-0.0010j	-0.3376	0.6248
3	1.4	0.0	0.3841	1.71526	-0.0013	-0.340	0.6251
4	1.8	0.0	0.31466	1.3436	-0.0015	-0.3415	0.6253
5	0.0	1.0	1.1624	0.0	0.0	-0.1193	1.033
6	0.0	1.2	-0.4736	-0.0269	-0.0038	-0.1180	1.044
7	0.0	1.4	-0.2027	0.10251	-0.0047	-0.1184	1.053
8	0.0	1.8	-0.0294	0.3697	-0.0046	-0.1192	1.0763
9	$-1.0$	0.0	0.0	3.19990	0.0	0.0989	0.626
10	0.0	-1.0	-1.15149	0.0	0.0	-0.11812	0.2181

counterclockwise. The field points are chosen along the $x, y$ axis and include points on the edge of the hole. These are also shown in Figure 3.6.

The data, i.e., the coordinates of the nodal points, $X(I)$ and $Y(I)$, the resultant of the traction on each subdivision (calculated by the trapezoidal rule), BVX(I) and $B V Y(I)$, and the coordinates of the field points, $X F(I)$ and $Y F(I)$, are read into the program (Appendix B). The results are presented in Table 3.5. The program required 36 seconds of CPU time on a CDC 6500 computer.

The effect of the radius on the stress and displacement solution has also been considered by solving the problem for $R=4.8 \mathrm{~cm}$ and 3.6 cm and $\mathrm{r}=1 \mathrm{~cm}$. The results are presented in Tables 3.6 and 3.7 .

To obtain the solution for different radii of the plane, one has to change the character $W R$ which is the ratio of the desired radius to the $R=6 \mathrm{~cm}$. Also, for a different location of the hole, the new coordinates of the center of the hole, $X O, Y O$ must be read into the program. To see the effect of eccentric placement of the circular hole on the stress and displacement field, the example of a circular $p l a n e(R=5.4 c m)$ weakened by an unsymmetrically located circular hole of radius $r=1 \mathrm{~cm}$ is solved and the results are presented in Table 3.8. Again, the CPU time was 36 seconds for each run on a CDC 6500 computer.


Figure 3.6 Circular plane, containing a circular hole, subjected to radially uniform tension over a portion of the boundary.

Table 3.5 Stress and displacement in a circular plane containing a circular hole at the origin, Case 1

Geometry: circular plane $\mathrm{R}=6 \mathrm{~cm}$ (1 cm thickness)
Load: $\omega=1.0 \mathrm{MPa}$
Eccentricity: $\quad X_{0}=0.0 \quad Y_{0}=0.0$
$\mathrm{E}=70000 \mathrm{MPa}, \mu=26315.79 \mathrm{MPa}, \nu=0.33$

Field   Point No.	Coordinates		$\begin{gathered} \sigma_{x x} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \sigma_{y y} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \sigma_{x y} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{\text { microns }}{\mathrm{U}_{\mathrm{x}}}$	$\underset{\text { microns }}{\mathrm{U}_{\mathrm{y}}}$
	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~cm} \end{aligned}$	$\begin{aligned} & Y \\ & \mathrm{~cm} \end{aligned}$					
1	1.0	0.0	0.0	2.948	0.0	-0.272	0.0
2	1.2	0.0	0.2975	1.9438	0.0	-0.284	0.0
3	1.4	0.0	0.32771	1.4742	0.0	-0.287	0.0
4	1.8	0.0	0.2345	1.06002	0.0	-0.290	0.0
5	0.0	1.0	-1.70816	0.0	0.0	0.0	0.323
6	0.0	1.2	-0.8751	-0.0846	0.0	0.0	0.380
7	0.0	1.4	-0.5090	0.0332	0.0	0.0	0.388
8	0.0	1.8	-0.2547	0.31029	0.0	0.0	0.409
9	-1.0	0.0	0.0	2.948	0.0	0.267	0.0
10	0.0	-1.0	-1.7081	0.0	0.0	0.0	-0.318



Table 3.6 Circular plane containing a circular hole at the origin, Case 2

Geometry: circular plane $R=4.8 \mathrm{~cm}$ ( 1 cm thickness) Load: $\omega=1.0 \mathrm{MPa}$
Eccentricity: $\quad X_{0}=0.0 \quad Y_{0}=0.0$
$\mathrm{E}=70000 \mathrm{MPa}, \mu=26315.79 \mathrm{MPa}, \nu=0.33$

$\begin{array}{\|l} \text { Field } \\ \text { Point } \\ \text { No. } \end{array}$	Coordinates		$\begin{gathered} \sigma_{x x} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \sigma_{y y} \\ \text { (MPa) } \end{gathered}$	$\begin{gathered} \sigma_{x y} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{\text { microns }}{\mathrm{U}_{\mathrm{x}}}$	$\underset{\text { microns }}{\mathrm{U}_{\mathrm{y}}}$
	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \hline \mathrm{Y} \\ & \mathrm{~cm} \end{aligned}$					
1	1.0	0.0	0.0	3.0268	0.0	-0.288	0.0
2	1.2	0.0	0.3077	1.9808	0.0	-0.3011	0.0
3	1.4	0.0	0.3414	1.4806	0.0	-0.304	0.0
4	1.8	0.0	0.2502	1.0181	0.0	-0.306	0.0
5	0.0	1.0	-1.8281	0.0	0.0	0.0	0.347
6	0.0	1.2	-0.9085	-0.0886	0.0	0.0	0.362
7	0.0	1.4	-0.528	0.0397	0.0	0.0	0.412
8	0.0	1.8	-0.232	0.339	0.0	0.0	0.434
9	-1.0	0.0	0.0	3.0268	0.0	0.282	0.0
10	0.0	-1.0	-1.8281	0.0	0.0	0.0	-0.340



Table 3.7 Circular plane containing a circular hole at the origin, Case 3

Geometry: circular plane $R=3.6 \mathrm{~cm}$ (1 cm thickness) Load: $\omega=1.0 \mathrm{MPa}$
Eccentricity: $\quad X_{0}=0.0 \quad Y_{0}=0.0$
$\mathrm{E}=70000 \mathrm{MPa}, \mu=26315.79 \mathrm{MPa}, \nu=0.33$

$\begin{aligned} & \text { Field } \\ & \text { Point } \\ & \text { No. } \end{aligned}$	Coordinates		$\begin{gathered} \sigma_{x x} \\ (\mathrm{MPa}) \end{gathered}$		$\begin{gathered} \sigma_{x y} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{\text { microns }}{\mathrm{U}_{\mathrm{x}}}$	$\underset{\text { microns }}{\mathrm{U}_{\mathrm{y}}}$
	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \hline \mathrm{Y} \\ & \mathrm{~cm} \end{aligned}$					
1	1.0	0.0	0.0	3.2127	0.0	-0.327	0.0
2	1.2	0.0	0.3298	2.0625	0.0	-0.341	0.0
3	1.4	0.0	0.3686	1.4878	0.0	-0.344	0.0
4	1.6	0.0	0.2748	0.9105	0.0	-0.344	0.0
5	0.0	1.0	-2.093	0.0	0.0	0.046	0.352
6	0.0	1.2	-1.0129	-0.0980	0.0	0.0	0.407
7	0.0	1.4	-0.550	0.0526	0.0	0.016	0.417
8	0.0	1.8	-0.136	0.3982	0.0	0.0	0.485
9	-1.0	0.0	0.0	3.2127	0.0	0.319	0.0
10	0.0	$-1.0$	-2.0937	0.0	0.0	0.042	-0.343


$\omega$

Table 3.8 Stress and displacement of a circular plane containing a nonsymmetrically located circular hole

Geometry: circular plane $R=5.4 \mathrm{~cm}$ (1 cm thickness)
Load: $\omega=1.0 \mathrm{MPa}$
Eccentricity: $\quad X_{0}=-1.0 \quad Y_{0}=2.0$
$\mathrm{E}=70000 \mathrm{MPa}, \mu=26315.79 \mathrm{MPa}, \nu=0.33$

Field Point No.	Coordinates		$\begin{gathered} \sigma_{\mathbf{x x}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \sigma_{y y} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \sigma_{x y} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{\mathrm{X}}{\mathrm{U}_{\mathrm{x}}} \underset{\text { microns }}{ }$	$\underset{\text { microns }}{\mathrm{U}_{\mathrm{y}}}$
	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \mathrm{Y} \\ & \mathrm{~cm} \end{aligned}$					
1	1.0	0.0	0.0	3.239	0.0	0.0	0.919
2	1.2	0.0	0.325	2.161	-0.019	-0.0116	0.9163
3	1.4	0.0	0.358	1.667	-0.0346	-0.0166	0.9118
4	1.6	0.0	0.259	1.239	-0.0629	-0.0232	0.898
5	0.0	1.0	-1.532	0.0	0.0	0.358	1.226
6	0.0	1.2	-0.6160	-0.0417	0.05507	0.344	1.239
7	0.0	1.4	-0.2224	0.11601	0.0629	0.332	1.247
8	0.0	1.8	0.1352	0.4443	0.04002	0.2523	1.309
9	-1.0	0.0	0.0	2.779	0.0	0.509	0.782
10	0.0	-1.0	-1.5716	0.0	0.0	0.1903	0.5704



## CHAPTER IV

ELLIPTICAL HOLE OR SHARP CRACK IN A FINITE TWO-DIMENSIONAL REGION

## IV. 1 INTRODUCTION

Problems associated with stress concentration around holes in structures have motivated the effort to solve problems of plane elastic regions weakened by elliptical holes or sharp cracks. The solution for the stress near an elliptical hole in an infinite plane subjected to a uniform load was first obtained by Inglis [39] using complex potentials. Later this problem was examined experimentally by Durelli and Murray [40]. A method for the determination of stresses and displacements near the tip of a sharp crack in an infinite plane subjected to in plane load was developed in an infinite series form by Westergaard [41]. The effect of holes of more general shape on infinite planes has received considerable attention, most notably by Muskhelishvili [27]. The problem of an elliptical hole or a sharp crack in a long strip subjected to uniform tension and compression has been treated experimentally and numerically using several methods and techniques. Yet, no solution for an arbitrary plane region weakened by an ellipse or crack is available.

In this chapter the solution for the problem of an arbitrary, finite, two dimensional elastic region, weakened by an arbitrarily located and oriented ellipse or sharp crack, is presented. This is the extension of the implementation of the mapping technique and boundary integral equation method. In section 2 of this chapter, the Muskhelishvili method is used and the mapping technique is employed to determine the influence functions for an elliptical hole. In section 3 this influence function is extended to a sharp crack. Finally in the last section, some example problems are solved for an elliptical hole and a sharp crack at different orientations. These solutions are compared to some available experimental [42,43] and analytic [44] results. The computer programs are included in Appendices $C$ and $D$.

## IV. 2 DERIVATION OF THE INFLUENCE FUNCTION USING THE MAPPING TECHNIQUE: THE ELLIPTICAL HOLE PROBLEM

In this section, the influence function for an infinite plane region containing an elliptical hole is derived. Consider an infinite plane containing an elliptical hole at the origin and a concentrated point force $P$ acting in the plane at some point $Z_{0}$, where $Z_{0}$ lies on or outside of the ellipse, i.e.,

$$
\begin{equation*}
\frac{X_{0}}{a^{2}}+\frac{Y_{0}}{b^{2}} \geqslant 1 \tag{4.1}
\end{equation*}
$$

where $Z_{0}=X_{0}+i Y_{0}$ and $a, b$ are the semi-major and semiminor axes of the elliptic hole. The problem can be expressed as the superposition of two problems, see Figure 4.1. The problem of Figure $4.1(B)$ is simply that of a concentrated point force $P$ applied at $Z_{0}$ in an infinite plane and the problem of Figure 4.1(C) is that of prescribed traction acting on an elliptic hole in an infinite region.

This applied traction on the elliptic hole is equal in magnitude and opposite in direction to the traction generated on an elliptic contour in the problem of Figure 4.1(B), by the concentrated point force P.

Adding the solutions of Figures $4.1(B)$ and $4.1(C)$, the zero traction condition on the hole of the problem of Figure $4.1(A)$ is obtained. The solution to the problem of Figure $4.1(B)$ is known (Muskhelishvili [27]). Thus, the required traction can be found.

To solve the problem of Figure 4.1(C), it is necessary to map this problem into a unit circle (disc), see Figure 4.2. It is easy to verify that the mapping function

$$
\begin{gather*}
Z=R\left(\frac{1}{\zeta}+m \zeta\right) \\
\text { for } R>0 \text { and } 0 \leqslant m \leqslant 1 \tag{4.2}
\end{gather*}
$$

transforms the region exterior to the ellipse into a unit circle $|\zeta| \leqslant 1$ (Churchill [37]), provided $R$ and $M$ are taken as:


Figure 4.1 Superposition of the problem of elliptical hole.


$$
\begin{equation*}
R=\frac{a+b}{2} \quad \text { and } \quad m=\frac{a-b}{a+b} \tag{4.3}
\end{equation*}
$$

where $a$ and $b$ are the semi-major and semi-minor axes of the ellipse, respectively, and are equal to:

$$
a=R(1+m) \quad, \quad b=R(1-m)
$$

The mapping function is conformal for, if $\omega^{\prime}(\zeta)$ is considered, i.e.,

$$
\omega^{\prime}(\zeta)=-\frac{1}{\zeta^{2}}+m \quad 0 \leqslant m \leqslant 1
$$

It is obvious that $\omega^{\prime}(\zeta)$ has two roots, $\zeta=\sqrt{1 / m}$, outside $\gamma$, the unit circle. Thus, $\omega^{\prime}(\zeta)$ is not equal to zero inside $\gamma$, the unit circle, and following the conformal mapping theorems [37] it can be concluded that the mapping function of equation (4.2) is conformal.

It is important to note that, as the point $\zeta=\mathrm{e}$ describes the circle $|\zeta|=1$ in the positive, counterclockwise direction, the corresponding point traces out the ellipse in the clockwise direction. Clearly, the parametric equations of the ellipse must be taken in the form:

$$
\begin{align*}
& X=R(1+m) \operatorname{Cos} \theta \\
& Y=R(1-m) \operatorname{Sin} \theta \tag{4.4}
\end{align*}
$$

If $m=0$, the ellipse becomes a circle and the transformation function equation (4.2) becomes $\omega(\zeta)=R / \zeta$. However, it will be seen that several expressions derived in
this chapter will be singular when $m=0$ and therefore the analysis is invalid for the case of the circular hole. Since the case of the circular hole has already been treated, the following restrictions will be placed on m:

$$
0<m \leqslant 1
$$

When $m=1$, the point in the $Z-p l a n e$ traces out the segment of the $x$-axis between $X=+2 R$ and $X=-2 R$ twice as the point $\zeta$ describes the boundary of the unit circle, $|\zeta|=1$. Thus, in this case the mapping function of equation (4.2) maps a sharp crack along the line joining the points ( $2 \mathrm{R}, 0$ ) and $(-2 R, 0)$ to $\gamma$, the circumference of the unit circle,
 unit circle $|\zeta|<1$.

Without loss of generality, let $R=1$. Then the mapping function and its derivatives are:

$$
\begin{align*}
& Z=\omega(\zeta)=\frac{1}{\zeta}+m_{\zeta}  \tag{a}\\
& \omega^{\prime}(\zeta)=-\frac{1}{\zeta^{2}}+m  \tag{b}\\
& \omega^{\prime \prime}(\zeta)=\frac{2}{\zeta^{3}} \tag{c}
\end{align*}
$$

Let $\phi^{0}(Z)$ and $\Psi^{0}(Z)$ be the complex potential functions for the problem of Figure $4.1(B)$ and $\phi^{*}(Z)$ and $\psi *(Z)$ be the complex potential functions for the problem of Figure 4.1(C). Then the potential functions for the problem of Figure 4.1(A) are

$$
\begin{aligned}
& \phi(Z)=\phi^{0}(Z)+\phi^{*}(Z) \\
& \Psi(Z)=\Psi^{0}(Z)+\Psi^{*}(Z)
\end{aligned}
$$

where the derivatives are given by equations (2.2) to (2.5) in section II.3. To find $\phi^{*}(Z)$ and $\psi *(Z)$, the transformed complex potential functions are

$$
\begin{align*}
& \phi_{1}^{*}(\zeta)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{F(\sigma)}{\sigma-\zeta} d \sigma-\frac{1}{2 \pi i} \oint_{\gamma} \frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}} \frac{\overline{\phi_{1}^{k^{\prime}}(\sigma)}}{\sigma-\zeta} d \sigma  \tag{4.6}\\
& \psi_{1}^{*}(\zeta)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{F(\sigma)}}{\sigma-\zeta} d \sigma-\frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{\omega(\sigma)}}{\omega^{\prime}(\sigma)} \frac{\phi_{1}^{*^{\prime}}(\sigma)}{\sigma-\zeta} d \sigma \tag{4.7}
\end{align*}
$$

It is first necessary to calculate the following integrals:

$$
\begin{align*}
& I_{1}=\frac{1}{2 \pi i} \oint_{\gamma} \frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}} \frac{\overline{\phi_{2}^{*}(\sigma)}}{\sigma-\zeta} d \sigma  \tag{4.8}\\
& I_{2}=\frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{\omega(\sigma)}}{\omega^{\prime}(\sigma)} \frac{\phi_{1}^{*^{\prime}}(\sigma)}{\sigma-\zeta} d \sigma \tag{4.9}
\end{align*}
$$

To construct the arguments of the integrals of (4.8) and (4.9), it is necessary to substitute $\sigma$ into equation (4.5) and note that $\sigma \bar{\sigma}=1$. The mapping function and its complex conjugates become:

$$
\begin{align*}
& \omega(\sigma)=\frac{1}{\sigma}+m \sigma \\
& \overline{\omega(\sigma)}=\sigma+\frac{m}{\sigma} \\
& \omega^{\prime}(\sigma)=\frac{1}{\sigma^{2}}+m \\
& \overline{\omega^{\prime}(\sigma)}=\sigma^{2}+m \tag{4.10}
\end{align*}
$$

and, since $\phi^{*}(\sigma)$ and $\phi^{* \prime}(\sigma)$ are analytic inside $\gamma$ and $\overline{\phi^{\prime \prime}(\sigma)}$ is analytic outside $\gamma$, equations (3.10) and (3.11) lead to:

$$
\phi_{1}^{*}(\sigma)=\sum_{k=1}^{\infty} k a_{k} \sigma^{k} \quad \text { and } \quad \overline{\phi_{1}^{*}(\sigma)}=\sum_{k=1}^{\infty} k \bar{a}_{k} \sigma^{-k+1}
$$

Thus, the arguments of the integrals can be constructed as follows:

$$
\begin{align*}
& \frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}} \cdot \overline{\phi_{1}^{* \top}(\sigma)}=\frac{1+m \sigma^{2}}{\sigma\left(m-\sigma^{2}\right)} \cdot \sum_{k=1}^{\infty} k \bar{a}_{k} \sigma^{-k+1}  \tag{4.11}\\
& \frac{\overline{\omega(\sigma)}}{\omega^{\prime}(\sigma)} \phi_{1}^{*}(\sigma)=-\frac{\sigma\left(\sigma^{2}+m\right)}{1-m \sigma^{2}} \cdot \sum_{k=1}^{\infty} k a_{k} \sigma^{k}
\end{align*}
$$

Substituting equation (4.11) into the integral (4.8) leads to:

$$
I_{1}=\frac{1}{2 \pi i} \oint_{\gamma} \frac{\left[\left(1+m \sigma^{2}\right) /\left(m-\sigma^{2}\right)\right] \sum_{k=1}^{\infty} k \bar{a}_{k} \sigma^{-k}}{\sigma-\zeta} d \sigma
$$

It is clear that the numerator of the argument is an ana lytic function outside $\gamma$, the unit circle. Hence, following the Cauchy integral formula, presented in section I.3, the principal value of the integral of equation (4.8) becomes:

$$
\begin{equation*}
I_{1}=\frac{1}{2 \pi i} \oint_{\gamma} \frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}} \frac{\overline{\phi_{1}^{k_{1}}(\sigma)}}{\sigma-\zeta} d \sigma=0 \tag{4.13}
\end{equation*}
$$

Also, substituting equation (4.12) into the integral (4.9) leads to:

$$
I_{2}=\frac{1}{2 \pi i} \oint_{\gamma}-\frac{\left[\left(\sigma^{2}+m\right) /\left(1-m \sigma^{2}\right)\right] \cdot \sum_{k=1}^{\infty} k a_{k} \sigma^{k+1}}{\sigma-\zeta} d \sigma
$$

Obviously the numerator of the argument is an analytic function inside $\gamma$, the unit circle. Thus, due to the Cauchy integral formulae, the principal value of the integral becomes:

$$
\begin{equation*}
I_{2}=\frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{\omega(\sigma)}}{\omega^{\prime}(\sigma)} \cdot \frac{\phi^{*}(\sigma)}{\sigma-\zeta} d \sigma=-\frac{\zeta\left(\zeta^{2}+m\right)}{1-m \zeta^{2}} \cdot \phi_{1}^{*}(\zeta) \tag{4.14}
\end{equation*}
$$

Substituting the expressions (4.13) and (4.14) into equations (4.6) and (4.7) leads to:

$$
\begin{gather*}
\phi_{1}^{*}(\zeta)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{F(\sigma)}{\sigma-\zeta} d \sigma  \tag{4.15}\\
\Psi_{i}^{*}(\zeta)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{F(\sigma)}}{\sigma-\zeta} d \sigma+\frac{\zeta\left(\zeta^{2}+m\right)}{1-m \zeta^{2}} \phi_{1}^{* \prime}(\zeta) \tag{4.16}
\end{gather*}
$$

Recall equations (3.20) and (3.21):

$$
\begin{align*}
& F(\sigma)=-\left[\phi_{1}^{0}(\sigma)+\frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}} \overline{\phi_{1}^{0}(\sigma)}+\overline{\Psi_{1}^{0}(\sigma)}\right]  \tag{4.17}\\
& F(\sigma)=-\left[\overline{\phi_{1}^{0}(\sigma)}+\frac{\overline{\omega(\sigma)}}{\omega^{\prime}(\sigma)} \phi_{1}^{0}(\sigma)+\overline{\Psi_{1}^{0}(\sigma)}\right] \tag{4.18}
\end{align*}
$$

where $\phi^{0}(Z)$ and $\Psi^{0}(Z)$ are given by equations (2.6). To find the transformed complex potential functions $\phi_{1}^{0}(\zeta)$ and $\Psi_{1}^{0}(\zeta)$, substitute the mapping function, equation (4.5.a), into equation (2.6):

$$
\begin{gather*}
\phi_{1}^{0}(\zeta)=-Q \ln \frac{m \zeta^{2}-Z_{0} \zeta+1}{\zeta}  \tag{4.19}\\
\psi_{1}^{0}(\zeta)=\alpha \bar{Q} \ln \frac{m \zeta^{2}-Z_{0} \zeta+1}{\zeta}+Q \cdot \frac{\zeta \bar{Z}_{0}}{m \zeta^{2}-Z_{0} \zeta+1} \tag{4.20}
\end{gather*}
$$

where $Q=\frac{P}{2 \pi(\alpha+1)}$ and $\bar{Q}$ is the complex conjugate of $Q$. Taking the derivative of equation (4.19) and evaluating the potential functions, equations (4.19) and (4.20) at $\zeta=\sigma$, leads to:
$\phi_{1}^{0}(\sigma)=-Q \ln \frac{m \sigma^{2}-Z_{0} \sigma+1}{\sigma}$
$\phi_{1}^{0}(\sigma)=-Q \cdot \frac{m \sigma^{2}-1}{\sigma\left(m \sigma^{2}-Z_{0} \sigma+1\right)}$
$\Psi_{1}^{0}(\sigma)=\bar{Q} \cdot \alpha \ln \frac{m \sigma^{2}-Z_{0} \sigma+1}{\sigma}+Q \cdot \frac{\sigma Z_{0}}{m \sigma^{2}-Z_{0} \sigma+1}$

Following equations (4.10), it is clear that:

$$
\begin{align*}
& \frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}}=\frac{1+m \sigma^{2}}{\sigma\left(m-\sigma^{2}\right)}  \tag{4.22}\\
& \frac{\overline{\omega(\sigma)}}{\omega^{\prime}(\sigma)}=-\frac{\sigma\left(\sigma^{2}+m\right)}{1-m \sigma^{2}} \tag{4.23}
\end{align*}
$$

Taking the complex conjugate of equations (4.21) along with the equations (4.23) will provide all the terms needed to calculate $F(\sigma)$ and $\overline{F(\sigma)}$. Thus, equations (4.17) and (4.18) become:

$$
\begin{align*}
F(\sigma) & =Q\left\{\ln \frac{m \sigma^{2}-Z_{0} \sigma+1}{\sigma}-\alpha \ln \frac{\sigma^{2}-\bar{Z}_{0} \sigma+m}{\sigma}\right\} \\
& +\bar{Q}\left\{\frac{m \sigma^{2}-Z_{0} \sigma+1}{\sigma^{2}-\bar{Z}_{0} \sigma+m}\right\}  \tag{4.24}\\
\overline{F(\sigma)} & =Q\left\{\frac{\sigma^{2}-\bar{Z}_{0} \sigma+m}{m \sigma^{2}-Z_{0} \sigma+1}\right\}+\bar{Q}\left\{\ln \frac{\sigma^{2}-\bar{Z}_{0} \sigma+m}{\sigma}\right. \\
& \left.-\alpha \ln \frac{m \sigma^{2}-Z_{0} \sigma+1}{\sigma}\right\}
\end{align*}
$$

Before any further calculation, it is necessary to examine the terms in equations (4.24) and (4.25). There are two distinct quadratic terms in the equations:

$$
\begin{align*}
& A=m \sigma^{2}-Z_{0} \sigma+1  \tag{4.26}\\
& B=\sigma^{2}-\bar{Z}_{0} \sigma+m \tag{4.27}
\end{align*}
$$

Solving equation (4.5[a]), the mapping function, for $\zeta$, yields:

$$
\begin{equation*}
m \zeta^{2}-Z \zeta+1=0 \tag{4.28}
\end{equation*}
$$

As discussed earlier, the mapping function, equation (4.5[a]), represents a conformal mapping, i.e., for every point $Z$ exterior to the ellipse, there exists only one
corresponding point in the $\zeta$ plane interior to the circle. Since equation (4.28) is of the quadratic form and has two complex roots, then one root has to fall inside $\zeta$ and the other root has to fall outside $\gamma$, the unit circle. The two quardratics, equations (4.26) and (4.28), have the same coefficients. Thus, equation (4.26) has two roots, one inside and one outside $\gamma$. Denote the root inside $\gamma$ by $r_{i}$ and the root outside $\gamma$ by $r_{o}$. Then equation (4.26) can be written as

$$
\begin{equation*}
A=m \sigma^{2}-Z_{0} \sigma+1=m\left(\sigma-r_{i}\right)\left(\sigma-r_{0}\right) \tag{4.29}
\end{equation*}
$$

where

$$
r_{i, 0}=\frac{Z_{0} \pm \sqrt{Z_{0}^{2}-4 m}}{2 m}
$$

For examination of equation (4.27), consider the following mapping function:

$$
\begin{equation*}
z=\omega(\zeta)=\zeta+\frac{m}{\zeta} \tag{4.30}
\end{equation*}
$$

This function maps points in the plane exterior to the ellipse onto points in the plane exterior to the unit circle. This mapping function is also conformal. For, if $\omega^{\prime}(\zeta)$ is considered

$$
\omega^{\prime}(\zeta)=1-\frac{m}{\zeta^{2}} \quad 0<m \leqslant 1
$$

it is clear that $\omega^{\prime}(\zeta)$ has two roots, $\zeta= \pm \sqrt{m}$, inside $\gamma$, the unit circle. Thus, $\omega^{\prime}(\zeta)$ is not equal to zero outside $\gamma$ and, following the conformal mapping theorems [37], it
is thus concluded that the mapping function, equation (4.30), is also conformal.

Solving equation (4.30) for $\zeta$ leads to:

$$
\begin{equation*}
\zeta^{2}-2 \zeta+m=0 \tag{4.31}
\end{equation*}
$$

where the roots are

$$
\begin{equation*}
\zeta_{1,2}=z / 2 \pm \sqrt{Z^{2} / 4-m} \tag{4.32}
\end{equation*}
$$

Since the mapping function is conformal, then for every point in the 2 plane exterior to the ellipse, there exists only one corresponding point in the $\zeta$ plane exterior to the circle. Hence, one of the roots of equation (4.32) has to be inside $\gamma$ and the other root has to be outside $\gamma$. Note that, if the roots of a polynomial of degree $N$ with the complex coefficients, $f(Z)=0$, are $\alpha_{i}(i=1, \ldots N)$, then roots of $\mathrm{f}(\mathrm{Z})=0$ are $\overline{\alpha_{i}}(\mathrm{i}=1, \ldots \mathrm{~N})$. Hence, the roots of the following equation

$$
\begin{equation*}
\zeta^{2}-\bar{z}_{\zeta}+m=0 \tag{4.33}
\end{equation*}
$$

are the complex conjugate of the roots of equation (4.31), i.e., complex conjugate of equation (4.32), and since the equation (4.31) has one root inside and the other root outside $\gamma$, then equation (4.33) has one root inside and one root outside $\gamma$, the unit circle. Comparing equations (4.33) and (4.27) leads to the fact that equation (4.27) also has two roots, one inside and the other outside $\gamma$.

Denote the root inside $\gamma$ by $t_{i}$ and the root outside $\gamma$ by $t_{0}$. Then equation (4.27) can be written as:

$$
\begin{equation*}
B=\sigma^{2}-\bar{Z}_{0} \sigma+m=\left(\sigma-t_{i}\right)\left(\sigma-t_{0}\right) \tag{4.34}
\end{equation*}
$$

where

$$
t_{i, 0}=\frac{\bar{Z}_{0} \pm \sqrt{Z_{0}^{2}-4 m}}{2}
$$

Substituting equations (4.29) and (4.34) into equations (4.24) and (4.25) leads to:

$$
\begin{align*}
\mathrm{F}(\sigma) & =Q\left\{\ln \frac{\mathrm{~m}\left(\sigma-\mathrm{r}_{\mathrm{i}}\right)\left(\sigma-\mathrm{r}_{0}\right)}{\sigma}-\alpha \ln \frac{\left(\sigma-\mathrm{t}_{\mathrm{i}}\right)\left(\sigma-\mathrm{t}_{0}\right)}{\sigma}\right\} \\
& +\bar{Q}\left\{\frac{\mathrm{~m}\left(\sigma-\mathrm{r}_{\mathrm{i}}\right)\left(\sigma-\mathrm{r}_{0}\right)}{\left(\sigma-\mathrm{t}_{\mathrm{i}}\right)\left(\sigma-\mathrm{t}_{\mathrm{o}}\right)}\right\}  \tag{4.35}\\
\overline{\mathrm{F}(\sigma)} & =Q\left\{\frac{\left(\sigma-\mathrm{t}_{\mathrm{i}}\right)\left(\sigma-\mathrm{t}_{0}\right)}{\mathrm{m}\left(\sigma-\mathrm{r}_{\mathrm{i}}\right)\left(\sigma-\mathrm{r}_{0}\right)}\right\}+\bar{Q}\left\{\ln \frac{\left(\sigma-\mathrm{t}_{\mathrm{i}}\right)\left(\sigma-\mathrm{t}_{\mathrm{o}}\right)}{\sigma}\right. \\
& \left.-\alpha \ln \frac{\mathrm{m}\left(\sigma-\mathrm{r}_{\mathrm{i}}\right)\left(\sigma-\mathrm{r}_{\mathrm{o}}\right)}{\sigma}\right\} \tag{4.36}
\end{align*}
$$

Substitution of equations (4.35) and (4.36) into equations (4.16) and (4.17) leads to determination of the complex potential functions:

$$
\begin{align*}
\phi_{1}^{*}(\zeta) & =\frac{Q}{2 \pi i} \oint_{\gamma} \ln \frac{m\left(\sigma-r_{i}\right)\left(\sigma-r_{0}\right)}{\sigma} \cdot \frac{d \sigma}{\sigma-\zeta} \\
& -\frac{\alpha Q}{2 \pi i} \oint_{\gamma} \ln \frac{\left(\sigma-t_{i}\right)\left(\sigma-t_{0}\right)}{\sigma} \cdot \frac{d \sigma}{\sigma-\zeta} \\
& +\frac{Q}{2 \pi i} \oint_{\gamma} \frac{m\left(\sigma-r_{i}\right)\left(\sigma-r_{0}\right)}{\left(\sigma-t_{i}\right)\left(\sigma-t_{0}\right)(\sigma-\zeta)} d \sigma \tag{4.37}
\end{align*}
$$

$$
\begin{align*}
\Psi_{1}^{*}(\zeta) & =\frac{Q}{2 \pi i} \oint_{\gamma} \frac{\left(\sigma-t_{i}\right)\left(\sigma-t_{0}\right)}{m\left(\sigma-r_{i}\right)\left(\sigma-r_{0}\right)(\sigma-\zeta)} d \sigma \\
& +\frac{\bar{Q}}{2 \pi i} \oint_{\gamma} \ln \frac{\left(\sigma-t_{i}\right)\left(\sigma-t_{0}\right)}{\sigma} \cdot \frac{d \sigma}{\sigma-\zeta} \\
& -\frac{\bar{\alpha} \alpha}{2 \pi i} \oint_{\gamma} \ln \frac{m\left(\sigma-r_{i}\right)\left(\sigma-r_{0}\right)}{\sigma} \cdot \frac{d \sigma}{\sigma-\zeta} \\
& +\frac{\zeta\left(\zeta^{2}+m\right)}{1-m \zeta^{2}} \phi_{1}^{*^{\prime}}(\zeta) \tag{4.38}
\end{align*}
$$

The following integral will now be evaluated:

$$
\begin{aligned}
I & =\frac{1}{2 \pi i} \oint_{\gamma} \ln \frac{m\left(\sigma-r_{i}\right)\left(\sigma-r_{o}\right)}{\sigma} \cdot \frac{d \sigma}{\sigma-\zeta}=\frac{1}{2 \pi i}{ }_{\gamma} \ln \frac{m\left(\sigma-r_{i}\right)}{\sigma} \cdot \frac{d \sigma}{\sigma-\zeta} \\
& +\frac{1}{2 \pi i} \oint_{\gamma} \frac{\ln \left(\sigma-r_{o}\right)}{\sigma-\zeta} d \sigma
\end{aligned}
$$

As discussed in section $I .3, \ln \left[\frac{m\left(\sigma-r_{i}\right)}{\sigma}\right]$ is an analytic function outside $\gamma$, the unit circle. Also, this function has two essential singular points (at $\sigma=0$ and $\sigma=r_{i}$ ) inside $\gamma$ and the value at infinity of:

$$
\left[\ln \left(\frac{\mathrm{m}\left(\sigma-\mathrm{r}_{\mathrm{i}}\right)}{\sigma}\right)\right]_{\sigma=\infty}=\ln (\mathrm{m}) \quad 0<\mathrm{m}<1
$$

Thus, due to the Cauchy integral formulas (section.I.3):

$$
\frac{1}{2 \pi i} \oint_{\gamma} \ln \frac{m\left(\sigma-r_{i}\right)}{\sigma} \cdot \frac{d \sigma}{\sigma-\zeta}=\ln (m)
$$

Also, $\ln \left(\sigma-r_{0}\right)$ is an analytic function inside $\gamma$, so that:

$$
\frac{1}{2 \pi i} \oint_{\gamma} \frac{\ln \left(\sigma-\mathbf{r}_{0}\right)}{\sigma-\zeta} d \sigma=\ln \left(\zeta-\mathbf{r}_{o}\right)
$$

Thus,
$I=\frac{1}{2 \pi i} \oint_{\gamma} \ln \frac{m\left(\sigma-r_{i}\right)\left(\sigma-r_{o}\right)}{\sigma} \frac{d \sigma}{\sigma-\zeta}=\ln m\left(\zeta-r_{o}\right)$

Following the same argument, it is clear that the second integral is:
$I I=\frac{1}{2 \pi i} \oint_{\gamma} \ln \frac{\left(\sigma-t_{i}\right)\left(\sigma-t_{0}\right)}{\sigma} \cdot \frac{d \sigma}{\sigma-\zeta}=\ln \left(\zeta-t_{0}\right)$

The third integral which needs to be calculated is:

III $=\frac{1}{2 \pi i} \oint_{\gamma} \frac{m\left(\sigma-r_{i}\right)\left(\sigma-r_{0}\right)}{\left(\sigma-t_{i}\right)\left(\sigma-t_{0}\right)(\sigma-\zeta)} d \sigma$

Clearly, III has two poles (at $\sigma=t_{i}$ and $\sigma=\zeta$ ) inside $\gamma$; thus,

The fourth and final integral which must be calculated is:

$$
I V=\frac{1}{2 \pi i} \oint_{\gamma} \frac{\left(\sigma-t_{i}\right)\left(\sigma-t_{0}\right)}{m\left(\sigma-r_{i}\right)\left(\sigma-r_{0}\right)(\sigma-\zeta)} d \sigma
$$

Clearly, IV has two poles (at $\sigma=r_{i}$ and $\sigma=\zeta$ ) inside $\gamma$. Determination of residues at the two poles leads to:

$$
I V=\frac{\left(\zeta-t_{i}\right)\left(\zeta-t_{0}\right)}{m\left(\sigma-r_{i}\right)\left(\sigma-r_{0}\right)}+\frac{\left(r_{i}-t_{i}\right)\left(r_{i}-t_{0}\right)}{m\left(r_{i}-r_{0}\right)\left(r_{i}-\zeta\right)}
$$

$$
\begin{equation*}
\frac{1}{2 \pi i} \oint_{\gamma} \frac{\left(\sigma-t_{i}\right)\left(\sigma-t_{0}\right)}{m\left(\sigma-r_{i}\right)\left(\sigma-r_{0}\right)(\sigma-\zeta)} d \sigma=\frac{\zeta^{2}-\bar{Z}_{0} \zeta+m}{m \zeta^{2}-Z_{0} \zeta+1}+\frac{r_{i}^{2}-\bar{Z}_{0} r_{i}+m}{m\left(r_{0}-r_{i}\right)\left(\zeta-r_{i}\right)} \tag{4.42}
\end{equation*}
$$

Substituting the evaluated integrals of equations (4.39), (4.40), and (4.41) into the equation (4.37) leads to:

$$
\begin{align*}
& \text { III }=\left.\operatorname{Residue}\right|_{\sigma=t_{i}}\left\{\frac{m\left(\sigma-\mathbf{r}_{\mathbf{i}}\right)\left(\sigma-\mathbf{r}_{0}\right)}{\left(\sigma-\mathrm{t}_{\mathbf{i}}\right)\left(\sigma-\mathrm{t}_{\mathrm{o}}\right)(\sigma-\zeta)}\right\} \\
& +\operatorname{Residue}_{\sigma=\zeta}\left\{\frac{\mathrm{m}\left(\sigma-\mathrm{r}_{\mathrm{i}}\right)\left(\sigma-\mathrm{r}_{0}\right)}{\left(\sigma-\mathrm{t}_{\mathrm{i}}\right)\left(\sigma-\mathrm{t}_{0}\right)(\sigma-\zeta)}\right\}=\frac{\mathrm{m}\left(\sigma-\mathrm{r}_{\mathrm{i}}\right)\left(\sigma-\mathrm{r}_{0}\right)}{\left(\zeta-\mathrm{t}_{\mathrm{i}}\right)\left(\zeta-\mathrm{t}_{0}\right)} \\
& +\frac{m\left(t_{i}-r_{i}\right)\left(t_{i}-r_{0}\right)}{\left(t_{i}-t_{0}\right)\left(t_{i}-\zeta\right)} \\
& \frac{1}{2 \pi i} \oiint_{\gamma} \frac{m\left(\sigma-r_{i}\right)\left(\sigma-r_{0}\right)}{\left(\sigma-t_{i}\right)\left(\sigma-t_{0}\right)(\sigma-\zeta)} d \sigma=\frac{m \zeta^{2}-Z_{0} \zeta+1}{\zeta^{2}-\bar{Z}_{0} \zeta+m}+\frac{m t_{i}^{2}-Z_{0} t_{i}+1}{\left(t_{0}-t_{i}\right)\left(\zeta-t_{i}\right)} \tag{4.41}
\end{align*}
$$

$$
\begin{align*}
\phi_{1}^{*}(\zeta) & =Q\left(\ln m\left(\zeta-r_{o}\right)-\alpha \ln \left(\zeta-t_{o}\right)\right)+\bar{Q}\left(\frac{m \zeta^{2}-Z_{0} \zeta+1}{\zeta^{2}-\bar{Z}_{0} \zeta+m}\right. \\
& \left.+\frac{m t_{i}-Z_{0} t_{i}+1}{\left(t_{0}-t_{i}\right)\left(\zeta-t_{i}\right)}\right) \tag{4.43}
\end{align*}
$$

Taking the derivatives:
$\phi_{1}^{*}(\zeta)=Q\left(\frac{1}{\zeta-r_{0}}-\frac{\alpha}{\zeta-t_{0}}\right)+\bar{Q}\left(\frac{P D}{\left(\zeta^{2}-\bar{Z}_{0} \zeta+m\right)^{2}}-\frac{m t_{i}^{2}-Z_{0} t_{i}+1}{\left(t_{0}-t_{i}\right)\left(\zeta-t_{i}\right)^{2}}\right)$
where

$$
\mathrm{PD}=\left(2 \mathrm{~m} \zeta-Z_{0}\right)\left(\zeta^{2}-\bar{Z}_{0} \zeta+\mathrm{m}\right)-\left(2 \zeta-\bar{Z}_{0}\right)\left(m \zeta^{2}-Z_{0} \zeta+1\right)
$$

and

$$
\begin{align*}
\phi^{* \prime \prime}(\zeta) & =Q\left(\frac{-1}{\left(\zeta-r_{0}\right)^{2}}+\frac{\alpha}{\left(\zeta-t_{0}\right)^{2}}\right)+\bar{Q}\left(\frac{P D D}{\left(\zeta^{2}-\bar{Z}_{0} \zeta+m\right)^{3}}\right. \\
& \left.+\frac{2\left(m t_{i}^{2}-Z_{0} t_{i}+1\right)}{\left(t_{0}-t_{i}\right)\left(\zeta-t_{i}\right)^{3}}\right) \tag{4.45}
\end{align*}
$$

where

$$
\operatorname{PDD}=\left[2 m\left(m-\bar{Z}_{0} \zeta\right)-2\left(1-Z_{0} \zeta\right)\right]\left(\zeta^{2}-\bar{Z}_{0} \zeta+m\right)-2\left(2 \zeta-\bar{Z}_{0}\right)[P D]
$$

Substituting the evaluated integrals of equations (4.39), (4.40), and (4.42) along with equation (4.44) into equation (4.38) leads to:

$$
\begin{align*}
\Psi_{i}^{*}(\zeta) & =Q\left(\frac{\zeta^{2}-\bar{Z}_{0} \zeta+m}{m \zeta^{2}-Z_{0} \zeta+1}+\frac{r_{i}^{2}-\bar{Z}_{0} r_{i}+m}{m\left(r_{0}-r_{i}\right)\left(\zeta-r_{i}\right)}\right. \\
& \left.+\frac{\zeta\left(\zeta^{2}+m\right)}{1-m \zeta^{2}}\left\{\frac{1}{\zeta-r_{0}}-\frac{\alpha}{\zeta-t_{0}}\right\}\right)+\bar{Q}\left(\ln \left(\zeta-t_{0}\right)-\alpha \ln m\left(\zeta-r_{0}\right)\right. \\
& \left.+\frac{\zeta\left(\zeta^{2}+m\right)}{1-m \zeta^{2}}\left\{\frac{P D}{\left(\zeta^{2}-\bar{Z}_{0} \zeta+m\right)^{2}}-\frac{m t_{i}^{2}-Z_{0} t_{i}+1}{\left(t_{0}-t_{i}\right)\left(\zeta-t_{i}\right)^{2}}\right\}\right) \tag{4.46}
\end{align*}
$$

The two complex potential functions, $\phi_{1}^{*}(\zeta)$ and $\Psi_{1}^{*}(\zeta)$, expressed by equations (4.43) and (4.46), are not a unique set of functions. Since the origin of the coordinates is within $\gamma$, then, following section $I .2$, the uniqueness conditions for $\phi_{1}^{*}(\zeta)$ and $\psi_{1}^{*}(\zeta)$ are:

$$
\phi_{1}^{*}(0)=0 \quad, \quad \Psi_{1}^{*}(0)=0
$$

These conditions lead to the unique complex potential functions:

$$
\begin{align*}
\phi_{1}^{*}(\zeta) & =Q\left(\ln \frac{r_{0}-\zeta}{r_{0}}-\alpha \ln \frac{t_{0}-\zeta}{t_{0}}\right)+\bar{Q}\left(\frac{m \zeta^{2}-Z_{0} \zeta+1}{\zeta^{2}-\bar{Z}_{0} \zeta+m}\right. \\
& \left.-\frac{1}{m}+\frac{\left(m t_{i}^{2}-Z_{0} t_{i}+1\right) \zeta}{t_{i}\left(t_{0}-t_{i}\right)\left(\zeta-t_{i}\right)}\right)  \tag{4.47}\\
\Psi_{i}^{*}(\zeta) & =Q\left(\frac{\zeta^{2}-\bar{Z}_{0} \zeta+m}{m \zeta^{2}-Z_{0} \zeta^{+1}}+\frac{\left(r_{i}^{2}-\bar{Z}_{0} r_{i}+m\right)}{m r_{i}\left(r_{0}-r_{i}\right)\left(\zeta-r_{i}\right)}+\frac{\zeta\left(\zeta^{2}+m\right)}{1-m \zeta^{2}} \cdot \phi_{I}^{*}(\zeta)-m\right) \\
& +\bar{Q}\left(\ln \frac{t_{0}-\zeta}{t_{0}}-\alpha \ln \frac{r_{0}-\zeta}{r_{o}}+\frac{\zeta\left(\zeta^{2}+m\right)}{1-m \zeta^{2}} \cdot \phi_{I}^{*} \bar{I}(\zeta)\right) \tag{4.48}
\end{align*}
$$

Note that equations (4.47) and (4.48) can be rewritten as:

$$
\begin{align*}
& \phi_{1}^{*}(\zeta)=Q\left(\phi_{\mathrm{I}}^{*}(\zeta)\right)+\bar{Q}\left(\phi_{\mathrm{II}}^{*}(\zeta)\right) \\
& \Psi_{1}^{*}(\zeta)=Q\left(\psi_{\mathrm{I}}^{*}(\zeta)\right)+\bar{Q}\left(\psi_{\mathrm{I} I}^{*}(\zeta)\right) \tag{4.49}
\end{align*}
$$

where $\phi_{\mathrm{I}}^{*}(\zeta), \phi_{\mathrm{I} I}^{*}(\zeta), \Psi_{\mathrm{I}}^{*}(\zeta)$ and $\Psi_{\mathrm{I}}^{*}(\zeta)$ can be found by comparison to equations (4.47) and (4.48). The derivatives of the complex potential functions can be written as:

$$
\begin{aligned}
& \phi_{1}^{*}(\zeta)=Q\left(\phi_{I}^{*}(\zeta)\right)+\bar{Q}\left(\phi_{I}^{*} I(\zeta)\right) \\
& \phi_{1}^{* \prime \prime}(\zeta)=Q\left(\phi_{I}^{* \prime \prime}(\zeta)\right)+\bar{Q}\left(\phi_{I}^{*}{ }^{\prime}(\zeta)\right) \\
& \psi_{1}^{*}(\zeta)=Q\left(\Psi_{I}^{*}(\zeta)\right)+\bar{Q}\left(\Psi_{I}^{*} I(\zeta)\right)
\end{aligned}
$$

where $\phi_{\mathrm{I}}^{*}(\zeta), \phi_{\mathrm{I}}^{* \prime \prime}(\zeta), \phi_{\mathrm{I}}^{\mathrm{I}}(\zeta), \phi_{\mathrm{I}}^{\mathrm{I}}(\zeta), \Psi_{\mathrm{I}}^{\prime}(\zeta)$ and $\psi_{\mathrm{I}}^{\prime}(\zeta)$ are given in Appendix C.

The complex potential functions of Figure $4.1(B)$ and their derivatives are given by equations (3.42) and (3.43). Applying superposition and adding the two sets of potential functions, expressed by equations (3.42) and (4.49), leads to the potential functions of the problem of Figure 4.1(A):

$$
\begin{align*}
& \phi(Z)=Q\left\{-\ln \left(Z-Z_{0}\right)+\phi_{\mathrm{I}}^{*}(\zeta)\right\}+\bar{Q}\left\{\phi_{\mathrm{I} I}^{*}(\zeta)\right\} \\
& \Psi(Z)=Q\left\{\frac{\bar{Z}}{Z-\bar{Z}_{0}}+\psi_{\mathrm{I}}^{*}(\zeta)\right\}+\bar{Q}\left\{\alpha \ln \left(Z-\bar{Z}_{0}\right)+\psi_{\mathrm{I} I}^{*}(\zeta)\right\} \tag{4.50}
\end{align*}
$$

Since $\phi^{\prime}(Z), \phi^{\prime \prime}(Z)$ and $\Psi^{\prime}(Z)$ are also needed for the influence functions, they are written here:
$\phi^{\prime}(Z)=Q\left\{\frac{-1}{Z-Z_{0}}+\frac{\phi_{I}^{*}(\zeta)}{\omega^{\prime}(\zeta)}\right\}+\bar{Q}\left\{\frac{\phi_{I}^{*}{ }^{\prime}(\zeta)}{\omega^{\prime}(\zeta)}\right\}$
$\psi^{\prime}(Z)=Q\left\{-\frac{\bar{Z}_{0}}{\left(Z-\bar{Z}_{0}\right)^{2}}+\frac{\Psi_{I}^{*}(\zeta)}{\omega^{\prime}(\zeta)}\right\}+\bar{Q}\left\{\frac{\alpha}{Z-\bar{Z}_{0}}+\frac{\Psi_{\mathrm{I}}(\zeta)}{\omega^{\prime}(\zeta)}\right\}$
$\phi^{\prime \prime}(Z)=Q\left\{\frac{1}{\left(Z-Z_{0}\right)^{2}}+\frac{\phi_{\mathrm{I}}^{* \prime}(\zeta)}{\omega^{\prime 2}(\zeta)}-\frac{\phi_{\mathrm{I}}^{*}(\zeta) \omega^{\prime \prime}(\zeta)}{\omega^{\prime 3}(\zeta)}\right\}+Q\left\{\frac{\phi_{\mathrm{I}}^{* \prime \prime}(\zeta)}{\omega^{\prime 2}(\zeta)}\right.$

$$
\begin{equation*}
\left.-\frac{\phi_{I}^{*} I(\zeta) \omega^{\prime \prime}(\zeta)}{\omega^{\prime 3}(\zeta)}\right\} \tag{4.51}
\end{equation*}
$$

Finally, substituting equations (4.50) and (4.51) along with the mapping function and its derivatives, equations (4.5), into equation (3.6) leads to the influence functions for an infinite region weakened by an elliptic hole:

$$
\begin{aligned}
& H_{x x ; q}\left(Z, Z_{0}\right) \underset{q}{P^{*}}\left(Z_{0}\right)=\operatorname{Re}\left\{Q ^ { * } \left(\frac{-2}{Z-Z_{0}}+\frac{2 \zeta^{2}}{m \zeta^{2}-1} \phi_{I}^{*}(\zeta)-\bar{Z}\left[\frac{1}{\left(Z-Z_{0}\right)^{2}}\right.\right.\right. \\
& \left.+\frac{\zeta^{4}}{\left(m \zeta^{2}-1\right)^{4}} \phi_{\mathrm{I}}^{\star \prime \prime}(\zeta)-\frac{2 \zeta^{3}}{\left(m \zeta^{2}-1\right)^{3}} \phi_{\mathrm{I}}{ }^{\prime}(\zeta)\right] \\
& \left.+\frac{Z_{0}}{\left(Z-Z_{0}\right)^{2}}-\frac{\zeta^{2}}{m \zeta^{2}-1} \Psi_{I}^{*}(\zeta)\right) \\
& +\bar{Q}^{*}\left(\frac{2 \zeta^{2}}{m \zeta^{2}-1} \phi_{I I}^{*}(\zeta)-\bar{Z}\left[\frac{\zeta^{4}}{\left(m \zeta^{2}-1\right)^{4}} \phi_{I I}^{*} \underset{I}{ }(\zeta)\right.\right. \\
& \left.-\frac{2 \zeta^{3}}{\left(m \zeta^{2}-1\right)^{3}} \phi_{I}^{*} I(\zeta)\right]-\frac{\alpha}{Z-Z_{0}} \\
& \left.\left.-\frac{\zeta^{2}}{m \zeta^{2}-1} \Psi \underset{I}{\prime}(\zeta)\right)\right\} \\
& H_{y y} ; q^{\left(Z, Z_{0}\right)} P_{q}^{*}\left(Z_{0}\right)=\operatorname{Re}\left\{Q ^ { * } \left(\frac{-2}{Z-Z_{0}}+\frac{2 \zeta^{2}}{m \zeta^{2}-1} \phi_{\mathrm{I}}^{*}(\zeta)\right.\right. \\
& +Z\left[\frac{1}{\left(Z-Z_{0}\right)^{2}}+\frac{\zeta^{4}}{\left(m \zeta^{2}-1\right)^{4}} \phi_{\mathrm{I}}^{* \prime}(\zeta)\right. \\
& \left.\left.-\frac{2 \zeta^{3}}{\left(m \zeta^{2}-1\right)^{3}} \phi_{\mathrm{I}}{ }^{\prime}(\zeta)\right]-\frac{Z_{0}}{\left(Z-Z_{0}\right)^{2}}+\frac{\zeta^{2}}{m \zeta^{2}-1} \Psi_{I}^{*}{ }^{\prime}(\zeta)\right) \\
& +\bar{Q}^{*}\left(\frac{2 \zeta^{2}}{m \zeta^{2}-1} \phi_{I}^{*} \dot{I}(\zeta)\right. \\
& +\bar{Z}\left[\frac{\zeta^{4}}{\left(m \zeta^{2}-1\right)^{4}} \phi_{I I}^{*} I(\zeta)-\frac{2 \zeta^{3}}{\left(m \zeta^{2}-1\right)^{3}} \phi_{I}^{*} I(\zeta)\right]+
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\frac{\alpha}{Z-\bar{Z}_{0}}+\frac{\zeta^{2}}{m \zeta^{2}-1} \Psi \stackrel{*}{I}(\zeta)\right)\right\} \\
& H_{x y ; q}\left(Z, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right)=\operatorname{Im}\left\{Q ^ { * } \left(Z \left[\frac{1}{\left(Z-Z_{0}\right)^{2}}+\frac{\zeta^{4}}{\left(m \zeta^{2}-1\right)^{4}} \phi_{I}^{*} "(\zeta)\right.\right.\right. \\
& \left.-\frac{2 \zeta^{3}}{\left(m \zeta^{2}-1\right)^{3}} \phi_{I}^{*}(\zeta)\right]-\frac{Z_{0}}{\left(Z-Z_{0}\right)^{2}} \\
& \left.+\frac{\zeta^{2}}{m \zeta^{2}-1} \Psi_{I}^{*}(\zeta)\right)+\bar{Q}^{*}\left(\overline { Z } \left[\frac{\zeta^{4}}{\left(m \zeta^{2}-1\right)^{4}} \cdot \phi_{I}^{*}{ }_{I}^{\prime \prime}(\zeta)\right.\right. \\
& \left.\left.\left.-\frac{2 \zeta^{3}}{\left(m \zeta^{2}-1\right)^{3}} \phi_{I}^{*} I_{I}(\zeta)\right]+\frac{\alpha}{Z-\bar{Z}_{0}}+\frac{\zeta^{2}}{m \zeta^{2}-1} \Psi_{I}^{*}(\zeta)\right)\right\} \\
& I_{x ; q}\left(Z, Z_{0}\right) P_{\mathrm{q}}^{*}\left(Z_{0}\right)=\operatorname{Re}\left\{\frac { Q ^ { * } } { 2 \mu } \left(-\alpha \ln \left(Z-Z_{0}\right)+\alpha \phi_{\mathrm{I}}^{*}(\zeta)\right.\right. \\
& -Z\left[\frac{-1}{Z-\bar{Z}_{0}}+\frac{\bar{\zeta}^{2}}{m \bar{\zeta}^{2}-1} \phi_{I}^{*}(\zeta)\right]-\frac{Z_{0}}{\bar{Z}-Z_{0}} \\
& \left.-\overline{\psi_{\mathrm{I}}^{*}(\zeta)}\right)+\frac{\overline{\mathrm{Q}}^{*}}{2 \mu}\left(\alpha \phi_{\mathrm{II}}^{*}(\zeta)-Z\left[\frac{\bar{\zeta}^{2}}{\mathrm{~m} \bar{\zeta}^{2}-1} \overline{\phi_{\mathrm{I}}^{*} \dot{\mathrm{I}}(\zeta)}\right]\right. \\
& \left.\left.-\alpha \ln \left(\bar{Z}-Z_{0}\right)-\overline{\Psi_{I}^{*}}(\zeta)\right)\right\}
\end{aligned}
$$

$$
\begin{align*}
& I_{y ; q}\left(Z, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right)=\operatorname{Im}\left\{\frac { Q ^ { * } } { 2 \mu } \left(-\alpha \ln \left(Z-Z_{0}\right)+\alpha \phi_{\mathrm{I}}^{*}(\zeta)\right.\right. \\
& \left.-z\left[\frac{-1}{Z-\bar{Z}_{0}}+\frac{\bar{\zeta}^{2}}{m \bar{\zeta}^{2}-1} \overline{\phi_{I}^{\prime}(\zeta)}\right]-\frac{Z_{0}}{Z-Z_{0}}-\overline{\Psi_{I}^{*}(\zeta)}\right) \\
& +\frac{\bar{Q}^{*}}{2 \mu}\left(\alpha \phi_{I I}^{*}(\zeta)-Z\left[\frac{\bar{\zeta}^{2}}{m \bar{\zeta}^{2}-1} \bar{\phi}_{I I}^{*}(\zeta)\right]\right. \\
& \left.\left.-\alpha \ln \left(\bar{Z}-Z_{0}\right)-\overline{\Psi_{I}^{*}(\zeta)}\right)\right\} \tag{4.52}
\end{align*}
$$

Hence, the influence functions for an infinite plane with an elliptical cavity at the origin are found.
IV. 3 DERIVATION OF THE INFLUENCE FUNCTION: THE SHARP CRACK PROBLEM

Considering $m=1$, a sharp crack along the $x$-axis between $x=2$ and $x=-2$ is obtained, Figure 4.3. The transformation function

$$
\begin{equation*}
Z=\omega(\zeta)=\frac{1}{\zeta}+\zeta \tag{4.53}
\end{equation*}
$$

transforms the whole region exterior to the crack into a unit circle $|\zeta| \leqslant 1$. Substituting $m=1$ into equations (4.52) leads to the influence functions for the crack problem:


Figure 4.3 A sharp crack in an infinite plane.

$$
\begin{aligned}
& H_{x x ; q}\left(Z, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right)=\operatorname{Re}\left\{Q ^ { * } \left(\frac{-2}{Z-Z_{0}}+\frac{2 \zeta^{2}}{\zeta^{2}-1} \phi_{\mathrm{I}}{ }^{\prime}(\zeta)\right.\right. \\
& -Z\left[\frac{1}{\left(z-z_{0}\right)^{2}}+\frac{\zeta^{4}}{\left(\zeta^{2}-1\right)^{4}} \phi_{I}^{* \prime \prime}(\zeta)\right. \\
& \left.-\frac{2 \zeta^{3}}{\left(\zeta^{2}-1\right)^{3}} \phi_{\overline{\mathrm{I}}}{ }^{\prime}(\zeta)\right]+\frac{\overline{\mathrm{Z}}_{0}}{\left(Z-\bar{Z}_{0}\right)^{2}} \\
& \left.-\frac{\zeta^{2}}{\zeta^{2}-1} \psi_{\mathrm{I}}^{\star}(\zeta)\right)+\bar{Q}^{*}\left(\frac{2 \zeta^{2}}{\zeta^{2}-1} \phi_{\mathrm{I}}^{*} \mathrm{I}^{\prime}(\zeta)\right. \\
& -\bar{Z}\left[\frac{\zeta^{4}}{\left(\zeta^{2}-1\right)^{4}} \phi_{I}^{*} I I(\zeta)-\frac{2 \zeta^{3}}{\left(\zeta^{2}-1\right)^{3}} \phi_{I}^{*} \dot{I}(\zeta)\right] \\
& \left.\left.-\frac{\alpha}{z-\bar{Z}_{0}}-\frac{\zeta^{2}}{\zeta^{2}-1} \Psi \underset{I}{*} \dot{I}(\zeta)\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{\zeta^{4}}{\left(\zeta^{2}-1\right)^{4}} \phi_{\mathrm{I}}^{* \prime}(\zeta)-\frac{2 \zeta^{3}}{\left(\zeta^{2}-1\right)^{3}} \phi_{\mathrm{I}}^{*}(\zeta)\right] \\
& \left.-\frac{\bar{Z}_{0}}{\left(Z-\bar{Z}_{0}\right)^{2}}+\frac{\zeta^{2}}{\zeta^{2}-1} \Psi_{I}^{\star}{ }^{\prime}(\zeta)\right)+\bar{Q}^{*}\left(\frac{2 \zeta^{2}}{\zeta^{2}-1} \phi_{I}^{*} ⿳^{\prime}(\zeta)\right. \\
& +\bar{z}\left[\frac{\zeta^{4}}{\left(\zeta^{2}-1\right)^{4}} \phi_{I}^{*} I(\zeta)-\frac{2 \zeta^{3}}{\left(\zeta^{2}-1\right)^{3}} \phi_{I}^{*} I(\zeta)\right] \\
& \left.\left.+\frac{\alpha}{z-\bar{Z}_{0}}+\frac{\zeta^{2}}{\zeta^{2}-1} \Psi \underset{\mathrm{I} \dot{I}}{ }(\zeta)\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& H_{x y} ; q\left(Z, Z_{0}\right) P_{\mathrm{q}}^{*}\left(Z_{0}\right)=\operatorname{Im}\left\{Q ^ { * } \left(\bar{Z} \frac{1}{\left(Z-Z_{0}\right)^{2}}+\frac{\zeta^{4}}{\left(\zeta^{2}-1\right)^{4}} \phi_{1}^{* \prime \prime}(\zeta)\right.\right. \\
& \left.-\frac{2 \zeta^{3}}{\left(\zeta^{2}-1\right)^{3}} \phi_{\mathrm{I}}^{\prime}(\zeta)-\frac{\bar{Z}_{0}}{\left(Z-\bar{Z}_{0}\right)^{2}}+\frac{\zeta^{2}}{\zeta^{2}-1} \Psi_{\mathrm{I}}{ }^{\prime}(\zeta)\right) \\
& +\bar{Q}^{*}\left(\bar{Z} \frac{\zeta^{4}}{\left(\zeta^{2}-1\right)^{4}} \phi_{I}^{* \prime \prime}(\zeta)-\frac{2 \zeta^{3}}{\left(\zeta^{2}-1\right)^{3}} \phi_{I}^{*} \dot{I}(\zeta)\right. \\
& \left.\left.+\frac{\alpha}{Z-\bar{Z}_{0}}+\frac{\zeta^{2}}{\zeta^{2}-1} \Psi_{\bar{I}}{ }^{\prime}(\zeta)\right)\right\} \\
& I_{x ; q}\left(Z, Z_{0}\right) P_{\mathrm{q}}^{*}\left(Z_{0}\right)=\operatorname{Re}\left\{\frac { Q ^ { * } } { 2 \mu } \left(-\alpha \ln \left(Z-Z_{0}\right)+\alpha \phi_{\mathrm{I}}^{*}(\zeta)\right.\right. \\
& \left.-z\left[\frac{-1}{z-\bar{Z}_{0}}+\frac{\bar{\zeta}^{2}}{\bar{\zeta}^{2}-1} \overline{\phi_{I}^{*}(\zeta)}\right]-\frac{Z_{0}}{\bar{Z}-Z_{0}}-\overline{\Psi_{I}^{*}(\zeta)}\right) \\
& +\frac{\bar{Q}^{\hbar}}{2 \mu}\left(\alpha \phi_{I I}^{*}(\zeta)-Z \cdot \frac{\bar{\zeta}^{2}}{\bar{\zeta}^{2}-1} \overline{\phi_{I I}^{*}(\zeta)}\right. \\
& \left.\left.-\alpha \ln \left(\bar{Z}-Z_{0}\right)-\overline{\Psi \underset{I}{*}(\zeta)}\right)\right\}
\end{aligned}
$$

$$
\begin{align*}
I_{y ; q}\left(Z, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right) & =\operatorname{Im}\left\{\frac { Q ^ { * } } { 2 \mu } \left(-\alpha \ln \left(Z-Z_{0}\right)+\alpha \phi_{I}^{*}(\zeta)\right.\right. \\
& \left.-z\left[\frac{-1}{Z_{-Z_{0}}}+\frac{\bar{\zeta}^{2}}{\bar{\zeta}^{2}-1} \overline{\phi_{I}^{*}(\zeta)}\right]-\frac{Z_{0}}{\bar{Z}-Z_{0}}-\overline{\Psi_{I}^{*}(\zeta)}\right) \\
& +\frac{\overline{Q^{*}}}{2 \mu}\left(\alpha \cdot \phi_{I I}^{*}(\zeta)-Z \frac{\bar{\zeta}^{2}}{\bar{\zeta}^{2}-1} \overline{\phi_{I I}^{*}(\zeta)}\right. \\
& \left.\left.-\alpha \ln \left(\bar{Z}-Z_{0}\right)-\overline{\Psi_{I I}^{*}(\zeta)}\right)\right\} \tag{4.54}
\end{align*}
$$

where $\phi_{\mathrm{I}}^{*}(\zeta), \phi_{\mathrm{I} I}^{*}(\zeta), \phi_{\mathrm{I}}^{*}(\zeta), \phi_{\mathrm{I}}^{*}(\zeta), \phi_{\mathrm{I}}^{* \prime \prime}(\zeta), \phi_{\mathrm{I}}^{*}{ }_{\mathrm{I}}(\zeta), \psi_{\mathrm{I}}^{*}(\zeta)$, $\Psi_{\mathrm{I}}^{\mathrm{I}}(\zeta), \Psi_{\mathrm{I}}{ }^{\prime}(\zeta)$ and $\Psi_{\mathrm{I}}^{\mathrm{I}}(\zeta)$ are given in Appendix D .

Hence, the influence functions for an infinite plane with a horizontal sharp crack lying on the $x$-axis at the origin are found.

One must exercise some care when using these influence functions in that a singularity will occur when $Z=\bar{Z}_{0}$. This case will now be considered. First solve the transformation function, equation (4.53), for $\zeta$.

$$
\begin{equation*}
\zeta=\frac{z}{2} \pm \sqrt{z^{2} / 4-1} \tag{4.54}
\end{equation*}
$$

Then write the two roots inside and outside $\gamma$, equations (4.29) and (4.34), for the case ( $m=1$ ):

$$
\begin{align*}
& r_{i, 0}=\frac{Z_{0}}{2} \pm \sqrt{Z_{0}^{2} / 4-1}  \tag{4.55}\\
& t_{i, 0}=z_{0} / 2 \pm \sqrt{Z_{0}^{2} / 4-1} \tag{4.56}
\end{align*}
$$

If the field point, $Z$, is equal to the complex conjugate of the load point, $\bar{Z}_{0}$, then equations (4.54) and (4.56) will be identical $\left(\zeta=t_{i}\right)$, since $|\zeta| \leqslant 1$ and $\left|t_{i}\right| \leqslant 1$. Note that this makes the right-hand side of integral III, equation (4.41), infinite. Thus, integral III has to be reevaluated. Substituting $t_{i}=\zeta$ into the integral leads to:

$$
I I I=\frac{1}{2 \pi i} \int_{\gamma} \frac{m\left(\sigma-r_{i}\right)\left(\sigma-r_{0}\right)}{\left(\sigma-t_{0}\right)(\sigma-\zeta)^{2}} d \sigma
$$

Thus,

$$
\text { III }=\left.\operatorname{Residue}\right|_{\sigma=\zeta}\left\{\frac{m\left(\sigma-r_{i}\right)\left(\sigma-r_{o}\right)}{\left(\sigma-t_{o}\right)(\sigma-\zeta)^{2}}\right\}=\left.\frac{d}{d \sigma} \frac{m\left(\sigma-t_{i}\right)\left(\sigma-r_{0}\right)}{\sigma-t_{o}}\right|_{\sigma=\zeta}
$$

or

$$
\text { III }=\frac{1}{2 \pi i} \oint_{\gamma} \frac{m\left(\sigma-r_{i}\right)\left(\sigma-r_{0}\right)}{\left(\sigma-t_{0}\right)(\sigma-\zeta)^{2}} d \sigma=\frac{\left(2 m \zeta-Z_{0}\right)\left(\zeta-t_{0}\right)-\left(m \zeta^{2}-Z_{0} \zeta+1\right)}{\left(\zeta-t_{0}\right)^{2}}
$$

This change modifies the complex potential function $\phi_{1}^{*}(\zeta)$, equation (4.47), to:

$$
\begin{align*}
\phi_{1}^{*}(\zeta)=Q\left\{\ln \left(\frac{r_{0}^{-\zeta}}{r_{0}}\right)\right. & \left.-\alpha \ln \left(\frac{t_{0}^{-\zeta}}{t_{0}}\right)\right\} \\
& +\bar{Q}\left\{\frac{\left(2 m \zeta-Z_{0}\right)\left(\zeta-t_{0}\right)-\left(m \zeta^{2}-Z_{0} \zeta+1\right)}{\left(\zeta-t_{0}\right)^{2}}\right. \\
& \left.-\frac{Z_{0} t_{0}-1}{t_{0}^{2}}\right\} \tag{4.57}
\end{align*}
$$

Clearly, this change affects the other complex potential function and all the derivatives. The modified functions,
 $\Psi_{\mathrm{I}}^{\mathrm{I}} \mathrm{I}(\zeta), \Psi_{\mathrm{I}}^{\mathrm{I}}{ }^{\prime}(\zeta)$ and $\Psi_{\mathrm{I}}^{\mathrm{I}}(\zeta)$ for this special case are given in Appendix $D$.

Now that the influence functions have been obtained it is important to notice that at the tips of the crack where $Z= \pm 2$ the stress influence functions will become infinite as expected. These two points are the only singular points in the plane.

## IV. 4 THE BOUNDARY INTEGRAL EQUATION METHOD APPLIED to a plane finite region weakened by an ellipTICAL HOLE OR A CRACK

In this section, two classes of problems will be considered. These are: (1) a plane finite region subjected to traction boundary condition $\vec{t}$ and weakened by an elliptical hole, Figure 4.4; and (2) a plane finite region subjected to traction boundary condition $\vec{t}$ and weakened by a crack, Figure 4.5.

Solutions will be obtained by embedding the regions $\mathrm{R}_{\mathrm{e}}$ (region with elliptical hole) and $\mathrm{R}_{\mathrm{s}}$ (region with a sharp crack) in infinite (fictitious) planes of the same material as $\mathrm{R}_{\mathrm{e}}$ and $\mathrm{R}_{\mathrm{s}}$, containing an elliptical hole, Figure 4.7, or a crack, Figure 4.8, respectively.

In the treatment of either of these problems, the boundary is divided into a finite number of divisions, $N$, of equal or unequal length. A concentrated line load, which is the resultant of the traction on each division, is then applied at the center of the division, i.e.,


Figure 4.4 An elliptical hole in a plane finite region with prescribed traction on the boundary, $\mathrm{B}_{\mathrm{e}}$.


Figure 4.5 A horizontal slit in a plane finite region with prescribed traction on the boundary, $B_{s}$.


Figure 4.6 The finite region $R_{e}$ and $R_{S}$, with subdivided boundary and concentrated line loads.


Figure 4.7 Region $R_{e}$, embedded in an infinite plane containing an elliptical hole at the origin.


Figure 4.8 Region $\mathrm{R}_{\mathrm{S}}$, embedded in an infinite plane containing a horizontal slit at the origin.

$$
\begin{aligned}
& P_{x i}=\int_{\Delta S_{i}} p_{x} d s \\
& P_{y i}=\int_{\Delta S_{i}} p_{y} d s
\end{aligned}
$$

and for the fictitious traction

$$
\begin{aligned}
& P_{x i}^{*}=\int_{\Delta S_{i}} p_{x}^{*} d s \\
& P_{y i}^{*}=\int_{\Delta S_{i}} p_{y} d s
\end{aligned}
$$

where $\Delta S_{i}$ is the eth interval and $i=1, \ldots N$, see Figure (4.6). The trapezoidal rule is used to approximate these integrals. Following section I.l, the fictitious traction P* around the fictitious boundary can be found from:

$$
\begin{align*}
& \frac{P_{x i}^{*}}{2}+\sum_{\substack{j=1 \\
j \neq i}}^{N}\left(H_{x x ; q}\left(z, z_{0}\right) P_{q}^{*} \cdot n_{x i}+H_{x y ; q}\left(z, z_{0}\right) P_{q}^{*} \cdot n_{y i}\right) \Delta S_{i} \\
& =P_{x i} \\
& \begin{array}{c}
\frac{P_{y i}^{*}}{2}+\sum_{\substack{j=1 \\
j \neq i}}^{N}\left(H_{x y ; q}\left(z, z_{0}\right) P_{q}^{*} n_{x i}+H_{y y ; q}\left(z, z_{0}\right) P_{q}^{*} \cdot n_{y i}\right) \Delta S_{i} \\
=P_{y i} \quad \text { for } i=1, \ldots N
\end{array}
\end{align*}
$$

where the resultant fictitious traction on a given interval is represented by

$$
\begin{equation*}
\mathrm{P}_{\mathrm{q} i}^{*}=\mathrm{P}_{\mathrm{x} i}^{*}+\mathrm{i} \mathrm{P}_{\mathrm{y} i}^{*} \quad(\mathrm{i}=1, \ldots \mathrm{~N}) \tag{4.59}
\end{equation*}
$$

and the influence functions $H_{i j} ; q\left(Z, Z_{0}\right)$ are given by equations (4.54), for a crack.

Note that, in equation (4.58), $n_{x i}$ and $n_{y i}$ are the components of the unit normal to the division $i$ and $P_{x i}$ and $P_{y i}$ are the $x$ and $y$ component of the real resultant traction applied to the division i, i.e.,

$$
P_{q i}=P_{x i}+i P_{y i} \quad(i=1, \ldots N)
$$

Substituting the components of the resultant fictitious traction, equation (4.59), into the influence functions for an elliptical hole or a slit, equations (4.52) or (4.54), and rewriting them leads to:
$H_{x x ;} q^{\left(Z, Z_{0}\right)} P_{\underset{q}{*}\left(Z_{0}\right)}=H_{x x ;} \cdot P_{x}^{*}+H_{x x} ; y \cdot P_{y}^{*}$
$H_{y y} ; q^{\left(Z, Z_{0}\right)} P_{q}^{*}\left(Z_{0}\right)=H_{y y} ; x \cdot P_{x}^{*}+H_{y y} ; y \cdot P_{y}^{*}$
$H_{x y ;}\left(Z, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right)=H_{x y} ; x \cdot P_{x}^{*}+H_{x y} ; y \cdot P_{y}^{*}$
$I_{x ; q}\left(Z, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right)=I_{x ; x} \cdot P_{x}^{*}+I_{x ; y} P_{y}^{*}$
$I_{y ; q}\left(Z, Z_{0}\right) P_{q}^{*}\left(Z_{0}\right)=I_{y ; x} P_{x}^{*}+I_{y ; y} P_{y}^{*}$
 ponent at a point $Z$ due to a unit load in the $q$ direction
at a source point $Z_{0}$, and $I_{i ; q}\left(Z, Z_{0}\right)$, which represents the ith displacement component at the point $Z$ due to the unit load in the $q$ direction at the source point $Z_{0}$, can be easily found by comparing equations (4.60) with either equations (4.52) for the elliptical hole (see Appendix C) or equations (4.54) for the crack (see Appendix D).

Substituting equations (4.60) into equations (4.58) and rearranging leads to:

$$
\begin{aligned}
\frac{P_{x i}^{*}}{2}+ & \sum_{\substack{j=1 \\
j \neq i}}^{N}\left(\left[H_{x x ; x} \cdot n_{x i}+H_{x y ; x} \cdot n_{y i}\right] \cdot P_{x i}^{*}\right. \\
& \left.+\left[H_{x x ; y} \cdot n_{x i}+H_{x y ; y} \cdot n_{y i}\right] \cdot P_{y i}^{*}\right) \Delta S_{i}=P_{x i}
\end{aligned}
$$

$$
\frac{P_{y i}^{*}}{2}+\sum_{\substack{j=1 \\ j \neq i}}^{N}\left(\left[H_{x y ; x} \cdot n_{x i}+H_{y y ; x} \cdot n_{y i}\right] \cdot P_{x i}^{*}\right.
$$

$$
\begin{equation*}
\left.+\left[H_{x y ; y} \cdot n_{x i}+H_{y y ; y} \cdot n_{y i}\right] \cdot P_{y i}^{*}\right) \Delta S_{i}=P_{y i} \tag{4.61}
\end{equation*}
$$

or writing equation (4.61) in the form of equations (1.24) leads to:

$$
\frac{1}{2} P_{x i}^{*}+\sum_{\substack{j=1 \\ j \neq i}}^{N}\left(A_{i j} P_{x i}^{*}+B_{i j} \cdot P_{y i}^{*}\right)=B V_{x i}
$$

$$
\frac{1}{2} P_{y i}^{*}+\sum_{\substack{j=1 \\ j \neq i}}^{N}\left(C_{i j} P_{x i}^{*}+D_{i j} P_{y i}^{*}\right)=B V_{y i}
$$

$$
\begin{equation*}
\text { for } i=1,2, \ldots N \tag{4.62}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{i j}=H_{x x ; x} n_{x i}+H_{x y ; x} n_{y i} \\
& B_{i j}=H_{x x ; y} n_{x i}+H_{x y ; y} n_{y i} \\
& C_{i j}=H_{x y ; x} n_{y i}+H_{y y ; x} n_{y i} \\
& D_{i j}=H_{x y ; y} n_{x i}+H_{y y ; y} n_{y i}
\end{aligned}
$$

Equations (4.62) are a set of 2 N linear algebraic equations with 2 N unknowns, ie., $\mathrm{P}_{x i}^{*}$ and $\mathrm{P}_{y i}^{*}$ for $\mathrm{i}=1, \ldots \mathrm{~N}$. The methods for obtaining the solution have been discussed in section I.1.

Clearly, from equation (4.61), one can conclude that

$$
\begin{array}{ll}
A_{i j}=\frac{1}{2} & D_{i j}=\frac{1}{2} \\
B_{i j}=0.0 & C_{i j}=0.0
\end{array}
$$

for $i=j$. In matrix form, equations (4.62) become:

$$
\left[\begin{array}{cc}
A_{i j} & B_{i j} \\
& \\
C_{i j} & D_{i j}
\end{array}\right] \cdot\left\{\begin{array}{c}
P_{x i}^{*} \\
\\
P_{y i}^{*}
\end{array}\right\}=\left\{\begin{array}{c}
B V_{x i} \\
\\
\\
B V_{y i}
\end{array}\right\}_{(4.63)}
$$

This system of equations can be solved for $P_{x i}^{*}$ and $P_{y i}^{*}$ by matrix inversion as follows:

$$
\left\{\begin{array}{c}
P_{x i}^{*}  \tag{4.64}\\
\\
P_{y i}^{*}
\end{array}\right\}=\left[\begin{array}{cc}
A_{i j} & B_{i j} \\
\\
C_{i j} & D_{i j}
\end{array}\right\} \quad \cdot\left\{\left\{\begin{array}{c}
B V_{x i} \\
\\
B V_{y i}
\end{array}\right\}\right.
$$

or by other methods for solving systems of linear equations (Faddeeva [38]).

Let $F$ be a field point at which the stresses and displacements are to be found. Then, using Appendix C or Appendix $D$, the stresses and displacements at the field point due to a unit load at a boundary point such as $Z_{0}$, for the plane finite region containing either the elliptical hole or the slit, i.e., $H_{i j ; q}\left(F, Z_{0}\right)$ and $I_{i ; q}\left(F, Z_{0}\right)$, can be found. The known fictitious tractions, i.e., equation (4.64), will now be applied to find the real stresses and displacements at the field point. These stresses and displacements are

$$
\sigma_{x x}=\sum_{i=1}^{N}\left[H_{x x ; x}\left(F, z_{0}\right) P_{x i}^{*}+H_{x x ; y}\left(F, z_{0}\right) P_{y i}^{*}\right]
$$

$$
\begin{aligned}
& \sigma_{y y}=\sum_{i=1}^{N}\left[H_{y y ; x}\left(F, Z_{0}\right) P_{x i}^{*}+H_{y y ; y}\left(F, Z_{0}\right) P_{y i}^{*}\right] \\
& \sigma_{x y}=\sum_{i=1}^{N}\left[H_{x y ; x}\left(F, Z_{0}\right) \cdot P_{x i}^{*}+H_{x y ; y}\left(F, Z_{0}\right) P_{y i}^{*}\right]
\end{aligned}
$$

$$
U_{x}=\sum_{i=1}^{N}\left[I_{x ; x}\left(F, Z_{0}\right) \cdot P_{x i}^{*}+I_{x ; y}\left(F, Z_{0}\right) \cdot P_{y i}^{*}\right]
$$

$$
\begin{equation*}
U_{y}=\sum_{i=1}^{N}\left[I_{y ; x}\left(F, Z_{0}\right) P_{x i}^{*}+I_{y ; y}\left(F, Z_{0}\right) P_{y i}^{*}\right] \tag{4.65}
\end{equation*}
$$

Some example problems will now be considered. The plane stress or plane strain problem can be considered by choosing the appropriate value for $\alpha$ in the complex potential function. For generalized plane stress:

$$
\alpha=\frac{3-v}{1+v}
$$

and for generalized plane strain:

$$
\alpha=3-4 \nu
$$

EXAMPLE IV. 1
A Rectangular Plane Weakened by an Elliptical Hole

Consider the rectangular region ( $10 \mathrm{~cm} \times 20 \mathrm{~cm}$ ) of unit thickness ( $h=1 \mathrm{~cm}$ ) which is weakened by an elliptical hole described by

$$
\begin{aligned}
& x=(1+m) \cos \theta \\
& y=-(1-m) \sin \theta \\
& 0<m<1
\end{aligned}
$$

with horizontal major axis $2 \mathrm{a}=2(1+\mathrm{m})$ and minor axis $2 \mathrm{~b}=2(1-\mathrm{m})$ at the origin. A uniformly distributed traction ( $\omega=1.0 \mathrm{MPa}$ ) is applied to the top and the bottom of the rectangular region, see Figure 4.9. To obtain different ratios of major to minor axis, M can be chosen between zero and one, in this case $M=0.5$, as shown. The boundary has been subdivided into sixty equally-spaced meshes, each of length 1.0 cm , i.e., 10 meshes are defined on each of the top and bottom edge and 20 meshes on each vertical edge.

The points where the stress and displacement are calculated, i.e., the field points, are chosen along the major and the minor axes and include points on the edge of the hole. These are also shown in Figure 4.9.

The coordinates of the nodal points, $X(I)$ and $Y(I)$, the resultant of the traction on each subdivision (calculated by the trapezoidal rule), $B V x(I)$ and $B V y(I)$, and the


Figure 4.9 Rectangular plane weakened by an elliptical hole at the origin.
coordinates of the field points, $X F(I)$ and $Y F(I)$, are read into the program as the data input (Appendix E). The results are presented in Table 4.1.

The results are compared to the theoretical solution of an infinite plane weakened by an elliptical hole subjected to a uniaxial tension [39] and solution of a long strip weakened by an elliptical hole subjected to uniform tension [42]. The program required 41 seconds of CPU time on a CDC 6500 computer.

Two angles of inclination of the ellipse, $\theta=30^{\circ}, 60^{\circ}$, are also considered and these results are presented in Tables 4.2 and 4.3. Note that the rectangular boundary has been embedded in the infinite domain at inclination $\theta$ to the "horizontal" ellipse.

The program has been written in such a way that if different angles of inclination are desired, only one character, THETA, is to be changed. Also, different sizes of the ellipse, i.e., different $a$ and $b$, can be obtained in each case by changing the character, $M$, in the program. For different locations of the center of the hole, the new coordinates of the center of the hole, Xo,Yo, must be read into the program. The problem of a rectangular plane subjected to uniform load and weakened by an elliptical hole with major axis $2 \mathrm{a}=3.6 \mathrm{~cm}$ and minor axis $2 \mathrm{~b}=0.4 \mathrm{~cm}$ centered at $X o=1.5 \mathrm{~cm}, Y o=2.0 \mathrm{~cm}$ and inclined at an angle of $\theta=30^{\circ}$ is solved. The results are presented in Table 4.4. Again, the CPU time was 42 seconds for each run on a CDC 6500 computer.

Table 4.1 Stress and displacement of a rectangular plane containing an elliptical hole at the origin

```Geometry: rectangle \(10 \times 20 \mathrm{~cm}^{2}\) ( 1 cm thickness) Load: \(\quad \omega=1.0 \mathrm{MPa}\) Eccentricity: \(X_{0}=0 \quad Y_{0}=0\), Angle: \(\theta=0.0^{\circ}\) \(\mathrm{E}=70000 \mathrm{MPa}, \mu=26315.79 \mathrm{MPa}, \nu=0.33, \mathrm{~m}=0.5\)```							
	Coordi	ates					
Point No.	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \mathrm{Y} \\ & \mathrm{~cm} \\ & \hline \end{aligned}$	$\begin{gathered} \sigma_{x x} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{gathered} \sigma_{y y} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \sigma_{x y} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{\text { microns }}{\mathrm{U}_{\mathrm{x}}}$	$\begin{gathered} U_{y} \\ \text { microns } \end{gathered}$
1	1.5	0.0	0.0	7.4638	0.0	-0.359	0.0
2	1.7	0.0	1.0963	2.5056	0.0	-0.291	0.0
3	2.3	0.0	0.4496	1.4263	0.0	-0.251	0.0
4	2.8	0.0	0.25124	1.2630	0.0	-0.253	0.0
5	0.0	0.5	-1.1071	0.0	0.0	0.0	0.545
6	0.0	0.8	-0.5836	-0.0139	0.0	0.0	0.547
7	0.0	1.7	-0.0108	0.30356	0.0	0.0	0.564
8	0.0	2.4	0.0566	0.5381	0.0	0.0	0.605
9	-1.5	0.0	0.0	7.4638	0.0	0.359	0.0
10	0.0	-0.5	-1.1071	0.0	0.0	0.0	-0.545

Available Solution:
Field
Point No.
$1 \quad \sigma_{y y}=7.4 \mathrm{MPa}$
$1 \quad \sigma_{y y}=7.0 \mathrm{MPa}$

5

$$
\sigma_{x x}=-1.15 \mathrm{MPa}
$$

Table 4.2 Rectangular plane containing an elliptical hole (inclined major axis) at the origin, Case 1

Table 4.3 Rectangular plane containing an elliptical hole (inclined major axis) at the origin, Case 2

```Geometry: rectangular plane ( }10\textrm{cm}\times90\textrm{cm}\times1\textrm{cm} Load: }\omega=1.0\textrm{MPa Eccentricity: }\mp@subsup{X}{0}{}=0\quad\mp@subsup{Y}{0}{}=0, Angle: 0 = 600 E = 70000 MPa, }\mu=26315.79 MPa, \nu = 0.33, m = 0.5```							
$\begin{gathered} \text { Field } \\ \text { Point } \\ \text { No. } \\ \hline \end{gathered}$	Coordinates		$\begin{gathered} \sigma_{x x} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \sigma_{y y} \\ \text { (MPa) } \end{gathered}$	$\begin{gathered} \sigma_{x y} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{\text { microns }}{\mathrm{U}_{\mathbf{x}}}$	$\underset{y}{\mathrm{U}_{\mathrm{y}}}$
	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~cm} \end{aligned}$	$\begin{aligned} & Y \\ & \mathrm{~cm} \end{aligned}$					
1	1.5	0.0	0.0	1.0337	0.0	0.1539	0.2344
2	1.7	0.0	0.453	0.5588	0.9191	0.1903	0.2263
3	1.9	0.0	0.5660	0.4398	0.8190	0.2086	0.2334
4	2.8	0.0	0.69189	0.30451	0.5902	0.2853	0.2951
5	0.0	0.5	0.97538	0.0	0.0	0.2564	0.0818
6	0.0	0.8	0.9229	0.0593	0.2649	0.2191	0.0653
7	0.0	1.1	0.8810	0.1063	0.4156	0.2031	0.05381
8	0.0	2.4	0.7922	0.2095	0.5315	0.2385	0.0321
9	-1. 5	0.0	0.0	1.0337	0.0	-0.1539	-0.2344
10	0.0	-0.5	0.9753	0.0	0.0	-0.2564	-0.0818

Table 4.4 Rectangular plane containing a nonsymmetrically located elliptical hole (inclined major axis)


EXAMPLE IV. 2
A Circular Plane Weakened by an Elliptical Hole

Let a circular plane of radius $R=6 \mathrm{~cm}$ and of unit thickness ( $h=1 \mathrm{~cm}$ ) be weakened by an elliptical hole at the origin described by:

$$
\begin{aligned}
& X=(1+m) \operatorname{Cos} \theta \\
& Y=-(1-m) \operatorname{Sin} \theta \\
& 0<m<1
\end{aligned}
$$

with horizontal major axis $2 \mathrm{a}=2(1+\mathrm{m})$ and minor axis $2 b=2(1-m)$, see Figure 4.10 . A radially uniform distributed load ( $\omega=1.0 \mathrm{MPa}$ ) is partially applied to the top and the bottom of the outer circumference as shown. Again, $M$ can be chosen between zero and one where in the Figure $M=0.5$. The boundary has been subdivided into sixty equally-spaced meshes, each of which covers 6 degrees of angle ( 0.6283 cm ) numbered from the top and counterclockwise. The field points are chosen along the $x, y$ axis and include points on the edge of the hole. These are also shown in Figure 4.10.

The data, i.e., the coordinates of the nodal points, $X(I)$ and $Y(I)$, the resultant of the traction on each subdivision (calculated by the trapezoidal rule), $B V x(I)$ and $B V y(I)$, and the coordinates of the field points, $X F(I)$ and $Y F(I)$, are read into the program (Appendix E). The


Figure 4.10 Circular plane weakened by an elliptical hole at the origin.
results are presented in Table 4.5. The program required 42 seconds of CPU time on a CDC 6500 computer.

To see the effect of angle of inclination on the stress and displacement solution, two cases, i.e., the circular plane subjected to the load weakened by the elliptical hole at the origin but rotated around the origin counterclockwise, $\theta=30^{\circ}$ and $\theta=60^{\circ}$, were considered. The results are presented in Tables 4.6 and 4.7. Again, note that the ellipse is kept horizontal and the outer boundary is rotated clockwise.

As mentioned in Example IV.1, the solution to a problem with different angles of rotation, different hole size and different location of the hole can be obtained by reading the desired characters THETA, $M, X o$ and Yo into the program. The examples of a circular plane subjected to the given load and weakened by an elliptical hole with major axis $2 \mathrm{a}=3.6 \mathrm{~cm}$ and minor axis $2 \mathrm{~b}=0.4 \mathrm{~cm}(\mathrm{~m}=0.8)$, $\mathrm{Xo}=-1.0 \mathrm{~cm}, \mathrm{Yo}=1.5 \mathrm{~cm}$ and oriented at an angle of inclination $\theta=30^{\circ}$ is treated. The results are presented in Table 4.8. Again, the CPU time was 42 seconds for each run on a CDC 6500 computer.

Table 4.5 Stress and displacement of a circular plane containing an elliptical hole at the origin


Table 4.6 Circular plane containing an elliptical hole (inclined major axis) at the origin, Case 1

Geometry: circular plane $\mathrm{R}=6 \mathrm{~cm}$ (thickness 1 cm )   Load: $\quad \omega=1.0 \mathrm{MPa}$   Eccentricity: $X_{0}=0 \quad Y_{0}=0$, Angle: $\theta=30^{\circ}$ $\mathrm{E}=70000 \mathrm{MPa}, \mu=26315.79 \mathrm{MPa}, \nu=0.33, \mathrm{~m}=0.5$							
$\begin{aligned} & \text { Field } \\ & \text { Point } \\ & \text { No. } \end{aligned}$	Coordinates		$\begin{gathered} \sigma_{x x} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \sigma_{y y} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \sigma_{x y} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{\text { microns }}{\mathrm{U}_{\mathrm{x}}}$	$\underset{y}{\mathrm{U}_{\mathrm{y}}} \begin{gathered} \text { microns } \end{gathered}$
	$\underset{\text { Cm }}{ }$	$\begin{aligned} & \mathrm{Y} \\ & \mathrm{~cm} \end{aligned}$					
1	1.5	0.0	0.0	4.5582	0.0	-0.2725	0.1497
2	1.7	0.0	0.6820	1.5269	0.9271	-0.1899	0.1894
3	1.9	0.0	0.5011	1.0992	0.8071	-0.1651	0.2036
4	2.8	0.0	0.1629	0.6888	0.4720	-0.1423	0.2396
5	0.0	0.5	-0.5996	0.0	0.0	0.2734	0.3448
6	0.0	0.8	-0.2768	-0.0049	0.3027	0.2413	0.3399
7	0.0	1.1	-0.0766	0.0426	0.4676	0.2292	0.3371
8	0.0	2.4	0.2123	0.3145	0.5738	0.2648	0.3604
9	$-1.5$	0.0	0.0	4.5582	0.0	0.2725	-0.1497
10	0.0	-0.5	-0.5996	0.0	0.0	-0.2734	-0.3448

Table 4.7 Circular plane containing an elliptical hole (inclined major axis) at the origin, Case 2

```Geometry: circular plane R = 6cm (thickness 1cm) Load: }\omega=1.0\textrm{MPa Eccentricity: }\mp@subsup{X}{0}{}=0.0\quad\mp@subsup{Y}{0}{}=0.0, Angle: 0 = 60 % E = 70000 MPa, }\mu=26315.79 MPa, v = 0.33, m = 0.5```							
Field Point No.	Coordinates		$\begin{gathered} \sigma_{x x} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \sigma_{y y} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \sigma_{x y} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{\text { microns }}{\mathrm{U}_{\mathrm{x}}}$	$\stackrel{\mathrm{U}_{\mathrm{y}}}{\text { microns }}$
	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \mathrm{Y} \\ & \mathrm{~cm} \end{aligned}$					
1	1.5	0.0	0.0	-0.0207	0.0	0.2218	0.1470
2	1.7	0.0	0.222	0.1803	1.0262	0.2121	0.1963
3	1.9	0.0	0.3397	0.1848	0.9116	0.2156	0.2144
4	2.8	0.0	0.4783	0.2323	0.6416	0.2593	0.2692
5	0.0	0.5	0.9728	0.0	0.0	0.2772	-0.0174
6	0.0	0.8	0.8375	0.0466	0.2805	0.2444	-0.0266
7	0.0	1.1	0.7508	0.0657	0.4323	0.2306	-0.0340
8	0.0	2.4	0.5885	0.0416	0.4502	0.2480	-0.0620
9	-1.5	0.0	0.0	-0.0207	0.0	-0.2218	-0.1470
10	0.0	-0.5	0.9728	0.0	0.0	-0.2772	0.0174

Table 4.8 Circular plane containing an elliptical hole (inclined major axis 30°) nonsymmetrically located

EXAMPLE IV. 3
A Rectangular Plane Weakened by a Sharp Crack

Consider a rectangular region ($10 \mathrm{~cm} x 20 \mathrm{~cm}$) of unit thickness ($h=1 \mathrm{~cm}$) which is weakened by a sharp crack of length 4 cm at the origin. A uniformly distributed load ($\omega=1.0 \mathrm{MPa}$) is applied to the top and the bottom of the region, see Figure 4.11. The boundary has been subdivided into sixty equally-spaced meshes, each of length 1.0 cm , i.e., 10 meshes are defined on each of the top and bottom edge and 20 meshes on each vertical edge. The field points are chosen along the x, y axes. Due to the singularities at the tips of the crack, the points $(x=+2, Y=0)$ cannot be considered as field points. However, one field point is chosen very close to the tip of the crack to show the trend of the stress distribution. These are also shown in Figure 4.11.

The data, i.e., the coordinates of the nodal points $X(I), Y(I)$, the resultant of the traction on each subdivision (calculated by the trapezoidal rule), $B V x(I)$ and BVy (I) and the coordinates of the field points $X F(I)$ and YF(I) are read into the program (Appendix E). The results are presented in Table 4.9.

The results are compared to the theoretical solution for the stress intensity factor of a sharp crack located in a rectangular plane subjected to a uniform load (Tada [44]). Since this solution [44] is good for points very close to the tips of the crack, just two field points,

Figure 4.11 Rectangular plane weakened by a sharp crack at the origin.

Table 4.9 Stress and displacement of a rectangular plane containing a sharp crack at the origin

Geometry: rectangular plane ($9.56 \mathrm{~cm} \times 19.12 \mathrm{~cm}$)
(thickness 1 cm), Load: $\omega=1.0 \mathrm{MPa}$
Eccentricity: $X_{0}=0 \quad Y_{0}=0$, Angle: $\theta=0.0^{\circ}$
$\mathrm{E}=70000 \mathrm{MPa}, \mu=26315.79 \mathrm{MPa}, \nu=0.33, \mathrm{~m}=1.0$ (crack)

Fie1d Point No .	Coordinates		$\begin{gathered} \sigma_{x x} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \sigma_{y y} \\ (\mathrm{MPa}) \end{gathered}$		$\underset{\text { microns }}{\mathrm{U}_{\mathrm{x}}}$	$\underset{\text { microns }}{\mathrm{U}_{\mathrm{y}}}$
	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~cm} \end{aligned}$	$\begin{aligned} & Y \\ & \mathrm{~cm} \end{aligned}$					
12	000000	0.0	1109.14	1110.28	0.0	-68.098	0.0
2	2.001	0.0	33.975	35.123	0.0	-2.395	0.0
3	2.1	0.0	2.492	3.643	0.0	-0.433	0.0
4	3.0	0.0	0.318	1.493	0.0	-0.285	0.0
5	4.0	0.0	0.077	1.250	0.0	-0.311	0.0
6	0.0	1×10^{-6}	-1.123	0.0	0.0	0.0	0.6331
7	0.0	0.001	-1.123	6.2×10^{-9}	0.0	0.0	0.6332
8	0.0	0.1	-1.013	7.6×10^{-5}	0.0	0.0	0.635
9	0.0	1.0	-0.226	0.094	0.0	0.0	0.647
10	0.0	3.0	0.117	0.613	0.0	0.0	0.751

Available Solution:
Field
Point
No .
$1 \quad \sigma_{x x}=\sigma_{y y}=1110 \mathrm{MPa}$
Reference
$2 \quad \sigma_{x x}=\sigma_{y y}=35.1 \mathrm{MPa}$
$7 \quad \mathrm{U}_{\mathrm{y}}=0.665$ microns

1 and 2, are compared. Note that error of the solution at the two field points is less than 0.08%. The displacements of the points on and at the middle of the crack (i.e., the crack opening displacement COD) are compared to results obtained by Sharpe [43] for a slot. The program required 41 seconds of CPU time on a CDC 6500 computer.

To see the effect of the inclination of the major axis with respect to the x -axis, i.e., θ counterclockwise, on the stress and displacement solution, two cases, the rectangular plane subjected to the given load weakened by the sharp crack at the origin but rotated with respect to x-axis, $\theta=30^{\circ}$ and $\theta=60^{\circ}$ counterclockwise, were considered. The results are presented in Tables 4.10 and 4.11 and compared to the theoretical [44] and experimental [43] solutions. Again, note that the sharp crack is kept horizontal and the outer boundary has been rotated clockwise.

The program has been written in such a way that if different inclination angles are desired, only one character, THETA, is to be changed. Also, if different dimensions of the rectangular plane are needed, only one character, $W R$, is to be changed. Note that the proportionality of the long side to the small side and the length of the crack remain constant and equal to 2.0 and 4.0 cm , respectively. For different locations of the crack, the new coordinates of the center of the crack, Xo,Yo, must be read into the program. An example, i.e., the problem of a rectangular plane ($9 \mathrm{~cm} \times 18 \mathrm{~cm}$) subjected to uniform

Table 4.10 Rectangular plane containing an inclined sharp crack at the origin, Case 1

Geometry: rectangular plane $(9.56 \mathrm{~cm} \times 19.12 \mathrm{~cm})$ (thickness lcm), Load: $\omega=1.0 \mathrm{MPa}$ Eccentricity: $X_{0}=0.0 \quad Y_{0}=0.0$, Angle: $\theta=30^{\circ}$ $\mathrm{E}=70000 \mathrm{MPa}, \mu=26315.79 \mathrm{MPa}, \nu=0.33, \mathrm{~m}=1.0$ (crack)							
$\begin{aligned} & \text { Field } \\ & \text { Point } \\ & \text { No. } \end{aligned}$	Coordinates		$\begin{gathered} \sigma_{\mathbf{x x}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \sigma_{\mathrm{yy}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \sigma_{x y} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{\text { microns }}{\mathrm{U}_{\mathrm{x}}}$	$\underset{\text { microns }}{\mathrm{U}_{\mathrm{y}}}$
	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \mathrm{Y} \\ & \mathrm{~cm} \end{aligned}$					
12.000001		0.0	842.01	842.63	450.26	-61.79	-15.49
2	2.001	0.0	26.035	26.65	14.244	-2.066	-0.194
3	2.01	0.0	7.835	8.456	4.521	-0.725	0.141
4	3.0	0.0	0.5026	1.0951	0.6268	-0.120	0.335
5	4.0	0.0	0.3513	0.8925	0.5506	-0.095	0.435
6	0.0	1×10^{-6}	-0.6327	0.0	4.3×10^{-7}	0.2541	0.4845
7	0.0	0.001	-0.6319	2.0×10^{-9}	0.00043	0.2540	0.4845
8	0.0	0.1	-0.5472	0.00012	0.0433	0.2412	0.484
9	0.0	1.0	0.0592	0.0759	0.352	0.1815	0.482
10	0.0	3.0	0.3406	0.4784	0.4721	0.239	0.541

Available Solution:
Field
Point No .

$$
\begin{array}{ll}
6 & U_{y}=0.448 \mathrm{microns} \\
6 & \mathrm{U}_{\mathrm{x}}=0.247 \mathrm{microns}
\end{array}
$$

Reference
[43]

Table 4.11 Rectangular plane containing an inclined sharp crack at the origin, Case 2

load and weakened by a sharp crack which is inclined at an angle of $\theta=30^{\circ}$ counterclockwise and centered at $X_{0}=+1.0, Y_{0}=2.0$, is solved. The results are presented in Table 4.12.

The method can be applied quite simply to edge-crack problems, with any angle of inclination of the crack. An example of this extension, i.e., the problem of a rectangular plane subjected to the uniform load weakened by a crack of length 4 cm at the left-hand side of the boundary, is solved by introducing the new coordinates of the crack "center" ($\mathrm{Xo}=3.0$, $\mathrm{Yo}=0$) . The results are presented in Table 4.13. Again, the CPU time was 42 seconds for each run on a CDC 6500 computer.

Table 4.12 Rectangular plane containing an inclined nonsymmetrically located sharp crack

```Geometry: rectangular plane (9cm x 18cm) (thickness 1cm) Load: }\omega=1.0\textrm{MPa Eccentricity: }\mp@subsup{X}{0}{}=1.0\quad\mp@subsup{Y}{0}{}=1.5, Angle: 0 = 30' E = 70000 MPa, }\mu=26315.79 MPa, \nu = 0.33, m = 1.0 (crack)```							
$\begin{aligned} & \text { Field } \\ & \text { Point } \\ & \text { No. } \end{aligned}$	Coordinates		$\begin{gathered} \sigma_{\mathbf{x x}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \sigma_{y y} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \sigma_{x y} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{\text { microns }}{\mathrm{U}_{\mathrm{x}}}$	$\underset{\text { microns }}{\mathrm{U}_{y}}$
	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \mathrm{Y} \\ & \mathrm{~cm} \end{aligned}$					
12.000001		0.0	964.431	905.139	485.172	-66.05	-25.73
2	2.001	0.0	27.925	28.632	15.350	-1.397	-0.2336
3	2.01	0.0	8.375	9.082	4.876	0.0539	0.328
4	2.5	0.0	0.7970	1.4687	0.8609	0.669	0.574
5	4.0	0.0	0.3550	0.9974	0.5072	0.7326	0.7586
6	0.0	$1 \times 10^{-6}$	-0.6458	0.0	$4.6 \times 10^{-7}$	1.1070	0.739
7	0.0	0.001	-0.6450	$-7.9 \times 10^{-9}$	$4.6 \times 10^{-4}$	1.1068	0.7397
8	0.0	0.1	-0.5608	$2.7 \times 10^{-5}$	0.0467	1.0923	0.739
9	0.0	1.0	0.0498	0.0709	0.3730	1.01929	0.737
10	0.0	3.0	0.3250	0.4696	0.4880	1.0466	0.794
							Coses)

Table 4.13 Sharp crack (notch) on the side of a rectangular plane

Geometry: rectangular plane ( $10 \mathrm{~cm} \times 20 \mathrm{~cm}$ ) (thickness 1 cm ) Load: $\omega=1.0 \mathrm{MPa}$
Eccentricity: $\quad X_{0}=-4.0 \quad Y_{0}=0.0$, Angle: $\quad \theta=0.0^{\circ}$ $\mathrm{E}=70000 \mathrm{MPa}, \mu=26315.79 \mathrm{MPa}, \nu=0.33, \mathrm{~m}=1.0$ (crack)

Field Point No.	Coordinates		$\begin{gathered} \sigma_{\mathbf{x x}} \\ (\mathrm{MPa}) \end{gathered}$	$\sigma_{y y}$(MPa)	$\sigma_{x y}$(MPa)	$\underset{\text { microns }}{\mathrm{U}_{\mathrm{x}}}$	$\underset{\text { microns }}{\mathrm{U}_{\mathrm{y}}}$
	$\begin{aligned} & X \\ & \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \mathrm{Y} \\ & \mathrm{~cm} \end{aligned}$					
12.000001		0.0	1742.69	1743.61	0.0	-138.77	0.0
2	2.001	0.0	54.229	55.143	0.0	-27.56	0.0
3	2.01	0.0	16.540	17.454	0.0	-25.06	0.0
4	3.0	0.0	0.9894	1.8964	0.0	-23.87	0.0
5	4.0	0.0	0.5176	1.4099	0.0	-23.816	0.0
6	0.0	$1 \times 10^{-6}$	-1.1361	0.0	$-4.1 \times 10^{-}$	7-23.72	1.2867
7	0.0	0.001	-1.1349	$-2.7 \times 10^{7}$	-0.00041	-23.726	1.2867
8	0.0	0.1	-1.0069	-0.0023	-0.0391	23.709	1.2851
9	0.0	3.0	0.07307	0.5705	-0.1638	-23.19	1.3451
10	0.0	8.0	-0.0679	1.0586	0.0401	-22.60	2.004



## CHAPTER V

ON THE PROBLEM OF AN ARBITRARILY-SHAPED HOLE
IN A TWO-DIMENSIONAL REGION

## V. 1 INTRODUCTION

Distribution of stresses around an arbitrarily-shaped hole in an infinite elastic region was first solved by Sokolov [45] and, later, in a slightly different formulation, by Savin [46]. As an extension of the mapping technique and the integral equation method, the problem of a plane finite region weakened by an arbitrarilyshaped hole is considered in this chapter.

In section 2, the equation of the contour of any arbitrarily-shaped cavity is discussed. The mapping function is then introduced for a class of contours and the inverse transformation function is determined using the power series expansion and continued fractions methods developed by Frame [47,48]. In section 3, the influence function for openings with three axes of symmetry is discussed. In section 4, the influence function for openings with two axes of symmetry is discussed. The implementation of the boundary integral equation method is also discussed for solution of any finite two-dimensional region containing openings of this type. Finally, in the
last section, the influence function for more general class of openings is discussed.

## V. 2 THE CONTOUR OF AN ARBITRARILY-SHAPED HOLE AND THE MAPPING FUNCTION

A large class of smooth closed curves, e.g., triangular square or rectangular, can be written in a general Fourier series form (Lekhnitskii [50]):

$$
\begin{align*}
& X=R\left\{\operatorname{Cos} \theta+\varepsilon \sum_{n=1}^{N}\left(d_{n} \operatorname{Cos} n \theta+h_{n} \operatorname{Sin} n \theta\right)\right\} \\
& Y=R\left\{C \operatorname{Sin} \theta+\varepsilon \sum_{n=1}^{N}\left(-d_{n} \operatorname{Sin} n \theta+h_{n} \operatorname{Cos} n \theta\right)\right\} \tag{5.1}
\end{align*}
$$

Clearly, when $\varepsilon=0$, equation (5.1) represents an ellipse and when $C=1$, the equation represents a circle.

An infinite plane with an opening represented by equation (5.1) can be conformally transformed to a unit circular disc, in the $\zeta$ plane. The transformation function is

$$
\begin{equation*}
Z=\omega(\zeta)=R\left\{\frac{1+c}{2} \frac{1}{\zeta}+\frac{1-C}{2} \cdot \zeta+\varepsilon P(\zeta)\right\} \tag{5.2}
\end{equation*}
$$

where

$$
P_{(\zeta)}=\sum_{n=1}^{N}\left(d_{n}-i h_{n}\right) \zeta^{n}
$$

In order to make the transformation single-valued, one-toone, and conformal, it is necessary that $\omega^{\prime}(\zeta)=0$ for all
the points inside the unit circle (Churchill [37]). Thus, all the roots of the equation

$$
\begin{equation*}
-\frac{1+C}{2} \frac{1}{\zeta^{2}}+\frac{1-c}{2}+\varepsilon \sum_{n=1}^{N} n\left(d_{n}-i h_{n}\right) \zeta^{n-1}=0 \tag{5.3}
\end{equation*}
$$

should be expressed on the planes by points located outside of the unit circle $|\zeta|=1$. Hence, the coefficients $a_{n}, b_{n}$ and parameter $\varepsilon$ have to be chosen such that the conformal condition of equation (5.3) is satisfied.

To present an example of smooth closed curves, equation (5.1), let a special case of the equation be considered. Consider the contour given by the equations

$$
\begin{align*}
& X=R(\operatorname{Cos} \theta+\varepsilon \operatorname{Cos} N \theta) \\
& Y=R(c \operatorname{Sin} \theta-\varepsilon \operatorname{Sin} N \theta) \tag{5.4}
\end{align*}
$$

where $0<c \leqslant 1$, and $N$ is an integer. When $C=1$ and $N=2$ the opening has three axes of symmetry and, with an appropriate selection of parameter $\varepsilon$, the opening will differ little from an equilateral triangle with rounded corners, see Figure 5.1. When $c<1$ and $N=2$ the opening will be a branched slot, see Figure 5.2.

When $c=1$ and $N=3$ there are four axes of symmetry and, at some values of $\varepsilon$, the opening will differ little from a square with rounded corners, see Figure 5.3. When $\mathrm{c}<1$ and $\mathrm{N}=3$, an oval of a special type is obtained. If c and $\varepsilon$ are taken very small, the opening will be a slot, see Figure 5.4. Also for elliptical case ( $\varepsilon=0, c \neq 1$ ), see Figure 5.4. The computer programs for plotting Figures 5.1 to 5.4 are presented in Appendix $F$.


Figure 5.1 Different contours for $N=2$ and $c=1$.


Figure 5.2 Different contours for $N=2$ and $0<c<1$.


Figure 5.3 Different contours for $N=3$ and $c=1$.

$M=0.50$ $E=0.0$


$$
\begin{aligned}
& M=0.80 \\
& E=0.0
\end{aligned}
$$

$$
M=0.95
$$

$$
E=0.0
$$



$$
\begin{aligned}
& C=0.50 \\
& E=-0.02
\end{aligned}
$$

$C=0.50$

$$
E=-0.04
$$

$$
\begin{aligned}
& C=0.20 \\
& E=-0.02
\end{aligned}
$$

$$
\begin{aligned}
& C=0.03 \\
& E=-0.001
\end{aligned}
$$

Figure 5.4 Different contours for $N=3, c \neq 1$ and $\varepsilon=0$.

The transformation function which includes these special cases of equation (5.4) is

$$
\begin{equation*}
Z=\omega(\zeta)=R\left\{\frac{1+c}{2} \cdot \frac{1}{\zeta}+\frac{1-c}{2} \zeta+\varepsilon \zeta^{N}\right\} \tag{5.5}
\end{equation*}
$$

In order to find points in the $\zeta$ plane corresponding to points in the $Z$ plane, the inverse of the transformation function, i.e., $\omega^{-1}(\zeta)$, is needed. In most cases, e.g., $N>2$ in equation (5.5) or $n>2$ in equation (5.2), it is very cumbersome to find the inverse of the transformation function even though some numerical technique could be employed, but the following two methods appear to be the most powerful methods for determining the inverse transformation function of equation (5.2).

Method 1: Power Series Expansions for the Inverse Transformation Function

The transformation function of equation (5.2) is written in the following form:

$$
\begin{equation*}
Z=\frac{R(1+c)}{2} \cdot \zeta^{-1}\left\{1+\frac{1-c}{1+c} \zeta^{2}+\frac{2 \varepsilon}{1+c} \sum_{n=1}^{N}\left(d_{n}-i h_{n}\right) \zeta^{n+1}\right\} \tag{5.6}
\end{equation*}
$$

and letting

$$
W=\frac{R(1+c)}{2 Z}
$$

equation (5.6) becomes

$$
\begin{equation*}
W^{-1}=\zeta^{-1}\left\{1+\sum_{k=1}^{\infty} \alpha_{k} \zeta^{k}\right\} \tag{5.7}
\end{equation*}
$$

where

$$
\begin{aligned}
& \alpha_{1}=0 \\
& \alpha_{2}=\frac{2 \varepsilon}{1+c}\left(d_{1}-i h_{1}\right)+\frac{1-c}{1+c} \\
& \alpha_{k}=\frac{2 \varepsilon}{1+c}\left(d_{k-1}-i h_{k-1}\right) \quad \text { for } k=1,3,4 \ldots N \\
& \alpha_{k}=0 \quad \text { for } k>N
\end{aligned}
$$

Equation (5.7) is a special case of:

$$
W^{P}=\zeta^{P}\left\{1+\sum_{k=1}^{\infty} \alpha_{k} z^{k v}\right\}
$$

for which the inverse function is given by Frame [47]:

$$
\zeta^{q}=W^{q}\left\{1+\sum_{k=1}^{\infty} \beta_{k} W^{k v}\right\}
$$

where

$$
\begin{equation*}
\beta_{k}=\frac{q}{k v+q} \sum_{r=1}^{k}\binom{-(k v+q) / P}{n} \alpha_{k}^{(n)} \tag{5.8}
\end{equation*}
$$

Note that $\binom{-(k v+q) / P}{n}$ is the binomial coefficient. The $\alpha_{k}^{(n)}$ are homogeneous polynomials of degree $n$ in $a_{1} \ldots a_{k}$
defined implicitly by:

$$
\left[\sum_{k=1}^{\infty} \alpha_{k} \zeta^{k}\right]^{n}=\sum_{k=1}^{\infty} \alpha_{k}^{(n)} \zeta^{k v}
$$

and defined explicitly as the sum of all ordered products of $r$ factors in which the sum of subscripts is $k$. For example, for $k=6, r=3$ the coefficient $\alpha_{k}^{(r)}$ is

$$
\alpha_{6}^{(3)}=3 \alpha_{1}^{2} \alpha_{4}+6 \alpha_{1} \alpha_{2} \alpha_{3}+\alpha_{2}^{3}
$$

Thus, in this case, the inverse function of equation (5.7) will be

$$
\zeta=W\left\{1+\sum_{k=1}^{\infty} \beta_{k} W^{k v}\right\}
$$

where $p=-1, q=1$ and $v=1$. Hence, $\beta_{k}$ can be found by equation (5.8). An example using this method is presented in the next section of this chapter.

Method 2: Continued Fractions
Writing equation (5.2) as

$$
Z \zeta=R\left\{\frac{1+c}{2}+\frac{1-c}{2} \zeta^{2}+\varepsilon \sum_{n=1}^{N}\left(d_{n}-i h_{n}\right) \zeta^{n+1}\right\}
$$

or

$$
\begin{aligned}
& \varepsilon\left(d_{N}-i h_{N}\right) \zeta^{N+1}+\varepsilon\left(d_{N-1}-i h_{N-1}\right) \zeta^{N}+\ldots \ldots \cdot \\
& \quad+\frac{1-c}{2}+\varepsilon\left(d_{1}-i h_{1}\right) \zeta^{2}-Z \zeta+\frac{R(1+c)}{2}=0
\end{aligned}
$$

then this equation can be written in the following form:

$$
\begin{align*}
f(\zeta) & =\zeta^{m}+\alpha_{m-1} \zeta^{m-1}+\ldots \ldots \ldots \\
& +\alpha_{1} \zeta+\alpha_{0}=0 \tag{5.9}
\end{align*}
$$

where the $\alpha_{i}$ 's can be easily found by comparing the coefficients.

Since the parameters and coefficients in equation (5.2) have been chosen in such a way that the transformaLion function is conformal, then the polynomial $f(\zeta)$, equation (5.9), has one root inside the unit circle and $m-1$ roots outside the unit circle, provided that $f(\zeta)$ has many continuous derivatives in a neighborhood of the root inside the unit circle.
$\eta=-\frac{f(\rho)}{f^{\prime}(\rho)}, \quad \xi=\frac{f^{\prime \prime}(\rho)}{2 f^{\prime}(\rho)}, \tau=\frac{f^{\prime \prime \prime}(\rho)}{3 f^{\prime}(\rho)}, \delta=\frac{f^{\prime \prime \prime}(\rho)}{4 f^{\prime \prime \prime}(\rho)} \ldots$.

Then, upon expanding the difference between the required root, $\zeta$, and the estimated root, $\rho$, with partial numerators $d_{k}$, denominators 1 , and remainder $g_{k}$, the required root can be written as [48]:

$$
\zeta=\rho+\frac{\mathrm{d}_{1}}{\frac{1+\mathrm{d}_{2}}{1+\ldots}} \frac{\mathrm{P}_{\mathrm{k}}+\mathrm{g}_{\mathrm{k}+1} \mathrm{P}_{\mathrm{k}-1}}{\frac{1+\mathrm{d}_{\mathrm{k}}}{\mathrm{Q}_{\mathrm{k}}+\mathrm{g}_{\mathrm{k}+1} \mathrm{Q}_{\mathrm{k}-1}}}
$$

where

$$
\mathrm{g}_{\mathrm{k}}=\frac{\mathrm{d}_{\mathrm{k}}}{1+\mathrm{g}_{\mathrm{k}+1}}
$$

The partial numerators $d_{k}$ in the continued fraction may be determined by means of the series expansion of the difference as a power series in $\eta$

$$
\zeta-\rho=\sum_{k=0}^{\infty} c_{k} n^{n}
$$

in which $C_{k}$ is a certain rational function of the first $k-1$ of the quantities $\xi, \tau, \delta, \ldots .$. evaluated at the chosen first estimate $\rho$. The first few partial numerators may be computed as follows:

$$
\begin{array}{ll}
d_{1}=\eta \quad, \quad d_{2}=n \xi, \\
d_{3}=\eta \xi-\gamma \eta, & d_{4}=n \xi-\frac{n \tau(\tau-\delta)}{\xi-\gamma}
\end{array}
$$

Thus, an explicit form for $\zeta=P(Z)$ will be obtained. An example using this method is presented in the next section of this chapter.

## V. 3 ON THE INFLUENCE FUNCTION OF A PARTICULAR CLASS OF OPENING, CASE 1

The general formulation of the transformation function for any smooth closed contour is presented in the previous section. The influence functions for an infinite plane containing such an arbitrarily-shaped hole will be obtained by expressing the problem as the superposition of two
problems, Figure 2.2. Transforming the second problem into a unit circle, Figure 2.3, and following the general solution presented in Chapter II, the influence function can be obtained.

Thus, to find the influence function, one has to have a specific opening, i.e., a specific equation and transformation function. For example, consider an infinite plane bounded by a contour which is given by the equation:

$$
\begin{align*}
& X=R(\operatorname{Cos} \theta+\varepsilon \operatorname{Cos} 2 \theta) \\
& Y=R(c \operatorname{Sin} \theta-\varepsilon \operatorname{Sin} 2 \theta) \tag{5.10}
\end{align*}
$$

where $0<c \leqslant 1$. The equation represents a contour with three axes of symmetry which will differ little from an equilateral triangle with rounded corners. By choosing the right $c<1$ and small $\varepsilon$ one can obtain a branched slot. The transformation function which transfers the region into the unit circle is

$$
\begin{equation*}
Z=\omega(\zeta)=R\left(\frac{1+c}{2} \cdot \frac{1}{\zeta}+\frac{1-c}{2} \zeta+\varepsilon \zeta^{2}\right) \tag{5.11}
\end{equation*}
$$

where $c$ and $\varepsilon$ are fixed constants. Then letting

$$
\begin{aligned}
& m=\frac{R(1+c)}{2} \\
& \ell=\frac{R(1-c)}{2} \quad \text { and } r=R \cdot \varepsilon
\end{aligned}
$$

the transformation function will be:

$$
\begin{equation*}
Z=\omega(\zeta)=\frac{m}{\zeta}+\ell \zeta+r \zeta^{2} \tag{5.12}
\end{equation*}
$$

The inverse transformation $\omega^{-1}(\zeta)$ can be easily found by solving the cubic equation [49]:

$$
\begin{equation*}
r \zeta^{3}+\ell \zeta^{2}-Z \zeta+m=0 \tag{5.13}
\end{equation*}
$$

Clearly, since the transformation is conformal, then one of the roots of equation (5.13) has to be inside the unit circle and the other two have to be outside the unit circle. A concentrated point force $P$ is acting in the plane at some point $Z_{0}$ where $Z_{0}$ lies on or outside of the opening, i.e.,

$$
\begin{aligned}
& X_{0} \geqslant R(\operatorname{Cos} \theta+\operatorname{Cos} 2 \theta) \\
& Y_{0} \geqslant R(c \operatorname{Sin} \theta-\varepsilon \operatorname{Sin} 2 \theta)
\end{aligned}
$$

where

$$
Z_{0}=X_{0}+i Y_{0}
$$

The problem can now be expressed as the superposition of two problems, see Figure 5.5. The problem of Figure 5.5(B) is that of a concentrated point force $P$ applied at $Z_{0}$ in an infinite region and the problem of Figure $5.5(\mathrm{C})$ is that of an infinite region containing the hole with specified traction on the hole. This applied traction can be found following section II. 2.

The solution of the problem of Figure 5.5(C) can be obtained using the mapping technique, i.e., transforming


Figure 5.5 The problem of infinite plane containing a triangular hole
expressed as the superposition of the two problems
the problem to the unit circular disc, see Figure 5.6. The mapping function is given by equation (5.11).

The complex potential functions for the problem of Figure 5.5(A) will now be obtained following the general method presented in section II. 3. Let $\phi^{0}(Z)$ and $\Psi^{0}(Z)$ be the complex potential functions for the problem of Figure 5.5(B), and let $\phi^{*}(Z)$ and $\Psi^{*}(Z)$ be the complex potential functions for the problem of Figure 5.5(C). Then the potential functions for the problem of Figure 5.5(A) are

$$
\begin{align*}
& \phi(Z)=\phi^{0}(Z)+\Psi^{*}(Z) \\
& \Psi(Z)=\Psi^{0}(Z)+\psi *(Z) \tag{5.14}
\end{align*}
$$

where $\phi^{0}(Z)$ and $\Psi^{0}(Z)$ are known [27] and, following section II. 3 , the transformed complex potential functions of $\phi^{*}(Z)$ and $\Psi *(Z)$ are given by
$\phi_{1}^{*}(\zeta)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{F(\sigma)}{\sigma-\zeta} d \sigma-\frac{1}{2 \pi i} \oint_{\gamma} \frac{\omega(\sigma)}{\overline{\omega^{\top}(\sigma)}} \cdot \frac{\overline{\phi^{* T}(\sigma)}}{\sigma-\zeta} d \sigma$
$\Psi_{1}^{*}(\zeta)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{F(\sigma)}}{\sigma-\zeta} d \sigma-\frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{\omega(\sigma)}}{\omega^{\prime}(\sigma)} \cdot \frac{\phi^{*}(\sigma)}{\sigma-\zeta} d \sigma$
where $F(\sigma)$ and $F(\sigma)$ are given by equations (3.20) and (3.21). Substituting $\sigma$ into the mapping function, equation (5.12), and taking the complex conjugate leads to:

(B)
Figure 5.6 Mapping the problem of the hole and the applied traction into
a unit circular disc.

$$
\begin{aligned}
& \omega(\sigma)=\frac{m}{\sigma}+\ell \sigma+\mathrm{r} \sigma^{2} \\
& \overline{\omega(\sigma)}=\mathrm{m}+\frac{\ell}{\sigma}+\frac{\mathrm{r}}{\sigma^{2}}
\end{aligned}
$$

for which the derivatives are

$$
\begin{aligned}
& \omega^{\prime}(\sigma)=\frac{-m}{\sigma^{2}}+\ell+2 r \sigma \\
& \overline{\omega^{\prime}(\sigma)}=-m \sigma^{2}+\ell+\frac{2 r}{\sigma}
\end{aligned}
$$

Note that $\sigma \bar{\sigma}=1$. Then clearly:

$$
\begin{equation*}
\frac{\omega(\sigma)}{\overline{\omega^{\top}(\sigma)}}=\frac{m+\ell \sigma^{2}+r \sigma^{3}}{2 r+\ell \sigma-m \sigma^{3}}=-\sum_{n=0}^{\infty} \alpha_{n} \sigma^{-n} \tag{5.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\overline{\omega(\sigma)}}{\omega^{\prime}(\sigma)}=\frac{m \sigma^{3}+\ell \sigma+r}{2 r \sigma^{3}+l \sigma^{2}-m} \tag{5.18}
\end{equation*}
$$

$\phi_{1}^{*}(\sigma)$ and $\phi_{1}^{*}(\sigma)$ are analytic inside $\gamma$, the unit circle and following section II.3, $\overline{\phi_{1}^{\pi}(\sigma)}$ is analytic outside $\gamma$. Thus,

$$
\begin{align*}
& \phi_{1}^{*}(\sigma)=\sum_{k=1}^{\infty} k a_{k} \sigma^{k}  \tag{5.19}\\
& \overline{\phi_{1}^{\pi}(\sigma)}=\sum_{k=1}^{\infty} k \bar{a}_{k} \sigma^{-k+1} \tag{5.20}
\end{align*}
$$

Multiplying equation (5.20) by (5.17) leads to:
$\frac{\omega(\sigma)}{\omega^{\prime}(\sigma)} \overline{\phi_{1}^{* \top}(\sigma)}=-\sum_{n=0}^{\infty} \alpha_{n} \sigma^{-n} \cdot \sum_{k=1}^{\infty} k \bar{a}_{k} \sigma^{-k+1}=-\sum_{n=0}^{\infty} e_{n} \sigma^{-n}$

The right-hand side of equation (5.21) is analytic outside $\gamma$, the unit circle. Hence:

$$
\frac{1}{2 \pi i} \oint_{\gamma} \frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}} \frac{\bar{\phi}^{\pi \gamma}(\sigma)}{\sigma-\zeta} d \sigma=e_{0}
$$

where $e_{o}$ is a constant. Thus, equation (5.15) becomes:

$$
\begin{equation*}
\phi_{1}^{*}(\zeta)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{F(\sigma)}{\sigma-\zeta} d \sigma \tag{5.22}
\end{equation*}
$$

Multiplying equation (5.19) by equation (5.18) leads to:

$$
\begin{equation*}
\frac{\overline{\omega(\sigma)}}{\omega^{\prime}(\sigma)} \phi_{1}^{*}(\sigma)=\frac{m \sigma^{3}+\ell \sigma+r}{2 r \sigma^{3}+\ell \sigma^{2}-m} \cdot \sum_{k=1}^{\infty} k a_{k} \sigma^{k-1} \tag{5.23}
\end{equation*}
$$

The numerator of equation (5.23) is analytic inside $\gamma$. Then

$$
\frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{\omega(\sigma)}}{\omega^{\prime}(\sigma)} \cdot \frac{\phi_{1}^{*}(\sigma)}{\sigma-\zeta} d \sigma=\frac{m \zeta^{3}+\ell \zeta+r}{2 r \zeta^{3}+\ell \zeta^{2}-m} \cdot \phi_{1}^{* \prime}(\zeta)+f(\zeta)
$$

where $f(\zeta)$ contains the residues of

$$
\frac{\left(m \sigma^{3}+\ell \sigma+r\right) \phi_{i}^{*}(\sigma)}{\left(2 r \sigma^{3}+\ell \sigma^{2}-m\right)(\sigma-\zeta)}
$$

at the roots which are inside $\gamma$. Thus, equation (5.16) becomes
$\psi_{1}^{*}(\zeta)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{F(\sigma)}}{\sigma-\zeta} d \sigma-\frac{m \zeta^{3}+l \zeta+r}{2 r \zeta^{3}+l \zeta^{2}-m} \phi_{1}^{*}(\zeta)-f(\zeta)$

Rewriting equations (3.20) and (3.21)

$$
\begin{align*}
& F(\sigma)=-\left[\phi_{1}^{0}(\sigma)+\frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}} \bar{\phi}_{1}^{0}(\sigma)\right.  \tag{5.25}\\
& \left.\hline \overline{\psi_{1}^{0}(\sigma)}\right]  \tag{5.26}\\
& \overline{F(\sigma)}=-\left[\overline{\phi_{1}^{0}(\sigma)}+\frac{\overline{\omega(\sigma)}}{\omega^{\prime}(\sigma)} \phi_{1}^{0}(\sigma)+\psi_{1}^{0}(\sigma)\right]
\end{align*}
$$

where $\phi^{0}(Z)$ and $\Psi^{0}(Z)$ are given by equation (2.6). To find the transformed complex potential functions $\phi_{1}^{0}(\zeta)$ and $\Psi_{1}^{0}(\zeta)$, substitute the mapping function, equation (5.12), into equations (2.6). Thus,

$$
\begin{equation*}
\phi_{1}^{0}(\sigma)=-Q \cdot \ln \left(\frac{\mathrm{~m}-\mathrm{Z}_{0} \sigma+\ell^{2}+\mathrm{r} \sigma^{3}}{\sigma}\right) \tag{5.27}
\end{equation*}
$$

$\Psi_{1}^{0}(\sigma)=Q \cdot \frac{\bar{Z}_{0} \sigma}{m-Z_{0} \sigma+l \sigma^{2}+r \sigma^{3}}+\bar{Q} \cdot \alpha \cdot \ln \left(\frac{m-Z_{0} \sigma+l \sigma^{2}+r \sigma^{3}}{\sigma}\right)$

Let

$$
\begin{align*}
& A(\sigma)=m-Z_{0} \sigma+\ell \sigma^{2}+r \sigma^{3}  \tag{5.29}\\
& B(\sigma)=r+\ell \sigma-\bar{Z}_{0} \sigma^{2}+m \sigma^{3} \tag{5.30}
\end{align*}
$$

Then the complex conjugates of equations (5.27) and (5.28) are:

$$
\begin{align*}
& \overline{\phi_{1}^{0}(\sigma)}=-\bar{Q} \ln \left[\frac{B(\sigma)}{\sigma^{2}}\right] \\
& \overline{\Psi_{1}^{0}(\sigma)}=Q \cdot \alpha \cdot \ln \left[\frac{B(\sigma)}{\sigma^{2}}\right]+\bar{Q} \cdot \frac{Z_{0} \sigma^{2}}{B(\sigma)} \tag{5.31}
\end{align*}
$$

Clearly:

$$
\begin{align*}
& \phi_{1}^{0}(\sigma)=Q \cdot \frac{2 r \sigma^{3}+\ell \sigma^{2}-m}{\sigma \cdot A(\sigma)} \\
& \overline{\phi_{1}^{\prime}(\sigma)}=\frac{\left(2 \mathrm{r}+\ell \sigma-m \sigma^{3}\right) \sigma}{B(\sigma)} \tag{5.32}
\end{align*}
$$

Substituting equations (5.17), (5.18) and (5.27) through (5.32) into equations (5.25) and (5.26) leads to:
$F(\sigma)=Q\left\{\ln \frac{A(\sigma)}{\sigma}-\alpha \ln \frac{B(\sigma)}{\sigma^{2}}\right\}+\bar{Q}\left\{\sigma \cdot \frac{A(\sigma)}{B(\sigma)}\right\}$
$\overline{\bar{F}(\sigma)}=Q\left\{\frac{\mathrm{~B}(\sigma)}{\sigma \mathrm{A}(\sigma)}\right\}+\overline{\mathrm{Q}}\left\{\ln \frac{\mathrm{B}(\sigma)}{\sigma^{2}}-\alpha \ln \frac{\mathrm{A}(\sigma)}{\sigma}\right\}$
where $A(\sigma)$ and $B(\sigma)$ are defined by equations (5.29) and (5.30).

Conformity of the transformation function allows that the inverse transformation function, equation (5.13), has one root inside $\gamma$, the unit circle, and two roots outside $\gamma$. Let $\mathrm{r}_{\mathrm{i}}, \mathrm{r}_{\mathrm{o}_{1}}$ and $\mathrm{r}_{\mathrm{O}_{2}}$ be the roots, inside and outside, respectively. Then the similarity of equations (5.13) and (5.29) leads to:

$$
\begin{equation*}
\mathrm{A}(\sigma)=\mathrm{m}-Z_{0} \sigma+\ell \sigma^{2}+\mathrm{r} \sigma^{3}=\mathrm{r}\left(\sigma-\mathrm{r}_{\mathrm{i}}\right)\left(\sigma-\mathrm{r}_{\mathrm{o}_{1}}\right)\left(\sigma-\mathrm{r}_{\mathrm{o}_{2}}\right) \tag{5.35}
\end{equation*}
$$

Let the function $\omega(1 / \zeta)$ be considered. Clearly, the function transforms the problem onto an infinite plane bounded by the unit circle.

$$
Z=\omega(1 / \zeta)=m \zeta+\ell \cdot \frac{1}{\zeta}+\frac{r}{\zeta^{2}}
$$

and the inverse transformation function $\omega^{-1}(1 / \zeta)$ can be obtained by solving the following cubic equation [49]:

$$
\begin{equation*}
m \zeta^{3}-Z \zeta^{2}+l \zeta+r=0 \tag{5.36}
\end{equation*}
$$

The conformality of the transformation function, $\omega(1 / \zeta)$, allows that the implicit form of the inverse transformation function, equation (5.36), has two roots inside $\gamma$ and one outside. Comparing equations (5.30) and (5.36) and noting that all coefficients of the two equations are real except $Z$ and $Z_{0}$, one can take the conjugate of these coefficients, thus yielding the conjugates of the roots of equation (5.36), one outside and two inside the unit circle.

Let $t_{i_{1}}$ and $t_{i_{2}}$ be the two roots inside and $t_{0}$ be the root outside the unit circle. Then equation (5.30) becomes
$B(\sigma)=m \sigma^{3}-\bar{Z}_{0} \sigma^{2}+l \sigma+\mathbf{r}=m\left(\sigma-t_{0}\right)\left(\sigma-t_{i_{1}}\right)\left(\sigma-t_{i_{2}}\right)$
To find $\frac{1}{2 \pi i} \oint_{\gamma} \frac{F(\sigma)}{\sigma-\zeta} d \sigma$ and $\frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{F(\sigma)}}{\sigma-\zeta} d \sigma$, let the following integrals be calculated. The first one is

$$
I=\frac{1}{2 \pi i} \oint_{\gamma} \ln \left[\frac{A(\sigma)}{\sigma}\right] \cdot \frac{d \sigma}{\sigma-\zeta}
$$

Substituting equation (5.35) into this integral and following section $I .3$ leads to

$$
\begin{equation*}
\mathrm{I}=\ln \mathrm{r}\left(\zeta-\mathrm{r}_{\mathrm{O}_{1}}\right)\left(\zeta-\mathrm{r}_{\mathrm{O}_{2}}\right) \tag{5.38}
\end{equation*}
$$

Note that equation (5.38) is evaluated in the same manner as equation (4.39).

The second integral is

$$
I I=\frac{1}{2 \pi i} \oint_{\gamma} \ln \left[\frac{B(\sigma)}{\sigma^{2}}\right] \cdot \frac{d \sigma}{\sigma-\zeta}
$$

Substituting equation (5.37) into this integral and following section $I .3$ leads to

$$
\begin{equation*}
I I=\ln m\left(\zeta-t_{0}\right) \tag{5.39}
\end{equation*}
$$

The third integral is

$$
I I I=\frac{1}{2 \pi i} \oint_{\gamma} \frac{\sigma A(\sigma)}{B(\sigma)} \cdot \frac{d \sigma}{\sigma-\zeta}
$$

Substituting equations (5.35) and (5.37) into this integral and following the Cauchy integral theorem leads to
$I I I=\frac{1}{2 \pi i} \oint_{\gamma} \frac{\sigma A(\sigma)}{m\left(\sigma-t_{0}\right)} \cdot \frac{d \sigma}{\left(\sigma-t_{i_{1}}\right)\left(\sigma-t_{i_{2}}\right)(\sigma-\zeta)}=\frac{\zeta A(\zeta)}{B(\zeta)}$

$$
\begin{equation*}
+\frac{t_{i_{1}} A\left(t_{i_{1}}\right)}{m\left(t_{i_{1}}-t_{0}\right)\left(t_{i_{1}}^{-t_{i_{2}}}\right)\left(t_{i_{1}}-\zeta\right)}+\frac{t_{i_{2}} A\left(t_{i_{2}}\right)}{m\left(t_{i_{2}}-t_{0}\right)\left(t_{i_{2}}-t_{i_{1}}\right)\left(t_{i_{2}}-\zeta\right)} \tag{5.40}
\end{equation*}
$$

The last integral is

$$
I V=\frac{1}{2 \pi i} \oint_{\gamma} \frac{B(\sigma)}{\sigma A(\sigma)} \frac{d \sigma}{\sigma-\zeta}
$$

Clearly, this integral leads to

$$
\begin{equation*}
I V=\frac{-r}{m \zeta}+\frac{B(\zeta)}{\zeta A(\zeta)}+\frac{B\left(r_{i}\right)}{r_{i}\left(r_{i}-r_{o_{1}}\right)\left(r_{i}-r_{O_{2}}\right)\left(r_{i}-\zeta\right)} \tag{5.41}
\end{equation*}
$$

Using the four evaluated integrals, equations (5.38) to (5.41), it follows from equation (5.38) that

$$
\begin{equation*}
\frac{1}{2 \pi i} \oint_{\gamma} \frac{F(\sigma)}{\sigma-\zeta} d \sigma=Q\{I-\alpha \cdot I I\}+\bar{Q}\{I I I\} \tag{5.42}
\end{equation*}
$$

Substituting equation (5.42) into equation (5.22) leads to:

$$
\begin{align*}
& \phi_{1}^{*}(\zeta)=Q\left\{\ln \operatorname{r}\left(\zeta-\mathrm{r}_{\mathrm{o}_{1}}\right)\left(\zeta-\mathrm{r}_{\mathrm{o}_{2}}\right)-\alpha \ln \mathrm{m}\left(\zeta-\mathrm{t}_{\mathrm{o}}\right)\right\}+\bar{Q}\left\{\frac{\zeta \mathrm{~A}(\zeta)}{\mathrm{B}(\zeta)}\right. \\
& \left.+\frac{t_{i_{1}} A\left(t_{i_{1}}\right)}{m\left(t_{i_{1}}-t_{0}\right)\left(t_{i_{1}}-t_{i_{2}}\right)\left(t_{i_{1}}-\zeta\right)}+\frac{t_{i_{2}} A\left(t_{i_{2}}\right)}{m\left(t_{i_{2}}-t_{0}\right)\left(t_{i_{2}}-t_{i_{1}}\right)\left(t_{i_{2}}-\zeta\right)}\right\} \tag{5.43}
\end{align*}
$$

The following integral can also be obtained by recalling equation (5.34) and using the evaluated integrals of equations (5.38) to (5.41):

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\gamma} \frac{F(\sigma)}{\sigma-\zeta} d \sigma=Q\{I V\}+\bar{Q}\{I I-\alpha I\} \tag{5.44}
\end{equation*}
$$

Substituting equation (5.44) into equation (5.24) leads to:

$$
\begin{align*}
\Psi_{1}^{*}(\zeta) & =Q\left\{\frac{-r}{m \zeta}+\frac{B(\zeta)}{\zeta A(\zeta)}+\frac{B\left(r_{i}\right)}{r_{i}\left(r_{i}-r_{o_{1}}\right)\left(r_{i}-r_{o_{2}}\right)\left(r_{i}-\zeta\right)}\right\} \\
& +\bar{Q}\left\{\ln m\left(\zeta-t_{0}\right)-\alpha \ln r\left(\zeta-r_{o_{1}}\right)\left(\zeta-r_{o_{2}}\right)\right. \\
& \left.-\frac{m \zeta^{3}+\ell \zeta+r}{2 r \zeta^{3}+\ell \zeta^{2}-m} \phi_{1}^{*}(\zeta)-f(\zeta)\right\} \tag{5.45}
\end{align*}
$$

Hence, the complex potential functions for the opening described by equation (5.10) are obtained, and given by equations (5.43) and (5.45).

The influence functions can now be found by taking the derivatives of equations (5.43) and (5.45) and substituting into equations (3.6). Since the procedure is very straightforward, the details of this calculation are omitted.

## V. 4 ON THE INFLUENCE FUNCTION OF A PARTICULAR

 CLASS OF OPENING, CASE 2Consider an infinite plane bounded by the contour described by:

$$
\begin{align*}
& X=R(\operatorname{Cos} \theta+\varepsilon \operatorname{Cos} 3 \theta) \\
& Y=R(c \operatorname{Sin} \theta-\varepsilon \operatorname{Sin} 3 \theta) \tag{5.46}
\end{align*}
$$

where $0<c \leqslant 1$. Equation (5.46) represents an elongated contour symmetric about the $x$ and $y$ axes. Changing $C$ and $\varepsilon$ will produce contours which vary from a square with rounded corners to an oval or a slot. For example, when $C=.36$ and $\varepsilon=-0.04$, a contour is obtained which will differ little from a rectangle with semi-circular short sides and straight long sides. When $C=0.537$ and $\varepsilon=-0.038$, the opening is an oval and when $C=0.026$ and $\varepsilon=-0.004$, the opening is a slot.

A concentrated point force $P$ is acting in the plane at some point $Z$ where $Z$ lies on or outside of the opening, i.e.,

$$
\begin{aligned}
& X_{0} \geqslant R(\operatorname{Cos} \theta+\varepsilon \operatorname{Cos} 3 \theta) \\
& Y_{0} \geqslant R(c \operatorname{Sin} \theta-\varepsilon \operatorname{Sin} 3 \theta)
\end{aligned}
$$

where

$$
Z_{0}=X_{0}+i Y_{0}
$$

Again, as presented in the previous section, the problem will be expressed as the superposition of two problems,

Figure 5.7. The problem of Figure $5.7(B)$ is just the concentrated point force $P$ applied at the same point in an infinite plane and the problem of Figure $5.7(\mathrm{C})$ is the infinite plane bounded by the opening on which the appropriate specified traction is applied.

The problem of Figure $5.7(\mathrm{C})$ can be solved using the mapping technique, i.e., transferring the problem to the unit circular disc, Figure 5.8. The mapping function is given by the following equation:

$$
\begin{equation*}
Z=\omega(\zeta)=R\left(\frac{1+c}{2} \cdot \frac{1}{\zeta}+\frac{1-c}{2} \zeta+\varepsilon \zeta^{3}\right) \tag{5.47}
\end{equation*}
$$

where $R, C$ and $\varepsilon$ are constants. Let

$$
\begin{aligned}
& m=\frac{R(1+c)}{2} \\
& \ell=\frac{R(1-c)}{2} \\
& r=R \cdot \varepsilon
\end{aligned}
$$

Thus, the transformation function will be

$$
\begin{equation*}
z=\omega(\zeta)=\frac{\mathrm{m}}{\zeta}+\ell \zeta+\mathrm{r} \zeta^{3} \tag{5.48}
\end{equation*}
$$

The inverse transformation function $\omega^{-1}(\zeta)$ can be found by employing the two methods presented in the first section of this chapter.

Following the first method, power series expansion for the inverse transformation, the transformation function is to be written in the form of equation (5.7). For simplicity,

(c)
Figure 5.7 The problem of infinite plane containing an arbitrarily-shaped
hole expressed as the superposition of the two problems.

let $\Omega=(\sqrt{m / \ell}) / \zeta$. Then equation (5.48) can be written as follows:

$$
z=\frac{\Omega}{\sqrt{m / \ell}}+\frac{1 \sqrt{m / \ell}}{\Omega}+\frac{r(\sqrt{m / \ell})^{3}}{\Omega^{3}}
$$

or

$$
\begin{equation*}
W=\Omega\left(1+\Omega^{-2}+\lambda \Omega^{-4}\right) \tag{5.49}
\end{equation*}
$$

where

$$
\mathrm{W}=\frac{\mathrm{Z}}{\mathrm{~m}} \cdot \sqrt{\frac{\mathrm{~m}}{\ell}}
$$

and

$$
\lambda=(m \cdot r) / \ell^{2}
$$

Finally, equation (5.49) can be written in the following form:

$$
\begin{equation*}
W=\Omega\left\{1+\sum_{k=1}^{\infty} \alpha_{k} \Omega^{-2 k}\right\} \tag{5.50}
\end{equation*}
$$

where $\alpha_{1}=1, \alpha_{2}=\lambda$ and $\alpha_{k}=0$ for $k \geqslant 3$.
The inverse power series of equation (5.50) can now be obtained following equation (5.8) where, in this case, $\mathrm{P}=\mathrm{q}=1$ and $\mathrm{V}=-2$. Thus,

$$
\begin{equation*}
\Omega=W\left\{1+\sum_{k=1}^{\infty} \beta_{k} W^{-2 k}\right\} \tag{5.51}
\end{equation*}
$$

where

$$
\beta_{k}=\frac{1}{1-2 k} \sum_{r=1}^{k}\binom{2 k-1}{n} \alpha_{k}^{(n)}
$$

and the $\alpha_{k}^{(n)}$ 's can be formulated as

$$
\alpha_{k}^{(n)}=\alpha_{1}^{2 n-k} \alpha_{2}^{k-n}\left(\begin{array}{c}
n \\
k-n)
\end{array}\right.
$$

Since $\alpha_{k}=0$ for $k>3$ and $\alpha=1$, then

$$
\alpha_{k}^{(n)}=\binom{n}{k-n} \lambda^{k-n}
$$

so that

$$
\begin{equation*}
\beta_{k}=\frac{1}{1-2 k} \sum_{n=1}^{k}\binom{2 k-1}{n}\binom{n}{k-n} \lambda^{k-n} \tag{5.52}
\end{equation*}
$$

which leads to:

$$
\begin{aligned}
& \beta_{1}=-1 \\
& \beta_{2}=-1-\lambda \\
& \beta_{3}=-2-4 \lambda \\
& \beta_{4}=-5-15 \lambda-3 \lambda^{2} \\
& \beta_{5}=-14-56 \lambda-28 \lambda^{2}
\end{aligned}
$$

It is clear that the $\beta_{k}$ 's are not converging very rapidly, a deficiency of this method. However, the $\beta_{k}$ 's are all functions of powers of $\lambda$, which indicates that there would be some general closed form for equation (5.51):

$$
\begin{equation*}
\frac{\Omega}{W}=1-\rho_{0}-\rho_{1} \lambda-\rho_{2} \lambda^{2}-\rho_{3} \lambda^{3} \ldots \ldots \cdot \tag{5.53}
\end{equation*}
$$

The coefficient $\rho_{i}$ 's will now be found. To find $\rho_{o}$, let $\lambda=0$ in equation (5.53), then

$$
\begin{equation*}
\frac{\Omega}{W}=1-\rho_{0} \tag{5.54}
\end{equation*}
$$

Also, when $\lambda=0$, the transformation function, equation (5.49), becomes

$$
\Omega^{2}-W \Omega+1=0
$$

or

$$
\frac{\Omega^{2}}{W^{2}}-\frac{\Omega}{W}+\frac{1}{W^{2}}=0
$$

Solving for $\frac{\Omega}{\bar{W}}$ leads to:

$$
\begin{equation*}
\frac{\Omega}{W}=\frac{1 \pm \sqrt{1-4 / W^{2}}}{2} \tag{5.55}
\end{equation*}
$$

The minus sign is not valid since the limit of the soluslion, equation (5.55), must approach unity to satisfy conformality of the transformation function, ice., infinity is transformed to infinity. Equating the right-hand sides of equations (5.55) and (5.54) leads to:

$$
\begin{equation*}
\rho_{0}=\frac{1-\sqrt{1-4 / W^{2}}}{2} \tag{5.56}
\end{equation*}
$$

Now let $n=k$ in equation (5.52). Then

$$
\beta_{k}=\frac{1}{1-2 k}\binom{2 k-1}{k}\binom{k}{0} \lambda^{0}=-\frac{(2 k-2)!}{k!(k-1)!}
$$

or

$$
\beta_{P+1}=-\binom{2 P}{P} \frac{1}{P+1}
$$

Substituting into the inverse transformation function, equation (5.51) leads to:

$$
\begin{equation*}
\frac{\Omega}{W}=1-\sum_{P=0}^{\infty}\binom{2 P}{P} \frac{W^{-2 P}-2}{P+1} \tag{5.57}
\end{equation*}
$$

Comparing (5.57) and (5.54), it is found that

$$
\begin{equation*}
\rho_{0}=\sum_{p=0}^{\infty}\binom{2 P}{P} \frac{W^{-2} P-2}{P+1} \tag{5.58}
\end{equation*}
$$

Now let $\mathrm{k}-\mathrm{n}=1$ in equation (5.52). Then

$$
\beta_{k}=\frac{1}{1-2 k}\binom{2 k-1}{k-1}\binom{k-1}{1} \lambda+\frac{1}{1-2 k}\binom{2 k-1}{k}\binom{k}{0} \lambda^{0}
$$

Substituting $\beta_{k}$ into the inverse transformation function, equation (5.51), yields:

$$
\frac{\Omega}{W}=1-\sum_{p=0}^{\infty}\binom{2 P}{p} \frac{W^{-2} P-2}{P+1}-\lambda \sum_{k=1}^{\infty}\binom{2 k-2}{k-2} W^{-2 k}
$$

Comparing this equation with equation (5.53) leads to:

$$
\begin{equation*}
\rho_{1}=\sum_{k=1}^{\infty}\binom{2 k-2}{k-2} W^{-2 k} \tag{5.59}
\end{equation*}
$$

To find a relation between $\rho_{1}$ and $\rho_{0}$, i.e., a closed form formulae for $\rho_{1}$, equations (5.58) and (5.59) can now be used.

Since $\binom{2 k-2}{k-2}=0$ for $k=0,1$, then letting $k=P+1$

$$
\binom{2 k-2}{k-2}=\binom{2 P}{p-1}
$$

But

$$
\binom{2 P}{P-1}=\frac{P}{P+1}\binom{2 P}{p}=\binom{2 P}{p}-\frac{1}{P+1}\binom{2 P}{P}
$$

Substituting $k=P+1$ and the binomial coefficient above into equation (5.59) leads to:
$\rho_{1}=-\sum_{P=0}^{\infty}\binom{2 P}{P} \frac{W^{-2 P}-2}{P+1}+\sum_{P=0}^{\infty}\binom{2 P}{P} W^{-2 P-2}$

Taking the derivative of $\rho_{0}$, equation (5.58), and constructing $\frac{1}{2} \rho_{0}^{\prime} W$

$$
\begin{equation*}
\frac{1}{2} \rho_{0}^{\prime} W=-\sum_{P=0}^{\infty}\binom{2 P}{P} W^{-2 P-2} \tag{5.61}
\end{equation*}
$$

Substituting equations (5.61) and (5.58) into the righthand side of equation (5.60) leads to the expression:

$$
\begin{equation*}
\rho_{1}=-\rho_{0}-\frac{1}{2} \rho_{0}^{\prime} W \tag{5.62}
\end{equation*}
$$

Taking the derivative of $\rho_{0}$ in its closed form, equation (5.56), and calculating the right-hand side of equation (5.62) leads to:

$$
\begin{equation*}
\rho_{1}=\frac{\rho_{0}^{2}}{1-2 \rho_{0}} \tag{5.63.a}
\end{equation*}
$$

Similarly, one can find $\rho_{2}$ in terms of $\rho_{0}$, which will lead to better convergence of equation (5.53). Thus, the inverse transformation function becomes

$$
\begin{equation*}
\Omega=W\left(1-\rho_{0}-\frac{\rho_{0}^{2}}{1-2 \rho_{0}} \lambda-\ldots\right) \tag{5.63}
\end{equation*}
$$

where

$$
\rho_{0}=\frac{1-\sqrt{1-4 / W^{2}}}{2}
$$

This was an example of using the power series expansion to find the inverse transformation function, even though the method did not prove efficient. The second method, contined fractions, will also give the coefficient of $\lambda^{2}$, i.e., $\rho_{2}$. The second method will now be applied. Rewrite equation (5.49) in the following form:

$$
\Omega^{4}-W \Omega^{3}+\Omega^{2}+\lambda=0
$$

Dividing the equation by $W^{4}$ leads to

$$
\left(\frac{\Omega}{W}\right)^{4}-\left(\frac{\Omega}{W}\right)^{3}+\left(\frac{\Omega}{W}\right)^{2} \cdot \frac{1}{W^{2}}+\frac{\lambda}{W^{4}}=0
$$

or

$$
\begin{equation*}
\left(\frac{\Omega}{W}\right)^{3}\left(\frac{\Omega}{W}-1\right)+\left(\frac{\Omega}{W}\right)^{2} \frac{1}{W^{2}}+\frac{\lambda}{W^{4}}=0 \tag{5.64}
\end{equation*}
$$

In order to check the accuracy and efficiency of this method with the previous method, let the following
assumption be made:

$$
\begin{equation*}
\Gamma=1-\frac{\Omega}{W} \tag{5.65}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{0}=\frac{1-\sqrt{1-4 / W^{2}}}{2} \tag{5.66}
\end{equation*}
$$

Constructing ( $\rho_{0}-\rho_{0}^{2}$ ) using equation (5.66) leads to:

$$
\rho_{0}-\rho_{0}^{2}=\frac{1}{W^{2}}
$$

Substituting these results into equation (5.64) leads to:
$f(\Gamma)=\Gamma(\Gamma-1)^{3}+(\Gamma-1)^{2}\left(\rho_{0}-\rho_{0}^{2}\right)+\lambda\left(\rho_{0}-\rho_{0}^{2}\right)^{2}=0$

Equation (5.67) is a polynomial in $\Gamma$ of the form of equation (5.9), which can now be solved by the continued fractions method.

Let the first estimate to the required root $\Gamma$ of the equation $f(\Gamma)=0$ be $\rho_{0}$. Then, after some simplification, the function and the derivatives of the function at the estimated root are:

$$
\begin{aligned}
& f\left(\rho_{0}\right)=\left(\rho_{0}-\rho_{0}^{2}\right)^{2} \\
& f^{\prime}\left(\rho_{0}\right)=\left(\rho_{0}-1\right)^{2}\left(2 \rho_{0}-1\right) \\
& f^{\prime \prime}\left(\rho_{0}\right)=2\left(5 \rho_{0}-3\right)\left(\rho_{0}-1\right) \\
& f^{\prime \prime \prime}\left(\rho_{0}\right)=6\left(4 \rho_{0}-3\right) \\
& f^{\prime \prime \prime}\left(\rho_{0}\right)=24
\end{aligned}
$$

$$
f^{(n)}\left(\rho_{0}\right)=0 \quad \text { for } n \geqslant 4
$$

Thus

$$
\begin{aligned}
& \eta=-\frac{f\left(\rho_{0}\right)}{f^{\prime}\left(\rho_{0}\right)}=\frac{\lambda \rho_{0}^{2}}{1-2} \\
& \xi=\frac{f^{\prime \prime}\left(\rho_{0}\right)}{2 f^{\prime}\left(\rho_{0}\right)}=\frac{5 \rho_{0}-3}{-\left(1-\rho_{0}\right)\left(2 \rho_{0}-1\right)} \\
& \tau=\frac{f^{\prime \prime \prime}\left(\rho_{0}\right)}{3 f^{\prime \prime}\left(\rho_{0}\right)}=\frac{4 \rho_{0}-3}{\left(5 \rho_{0}-3\right)\left(\rho_{0}-1\right)} \\
& \delta=\frac{f^{\prime \prime \prime \prime}\left(\rho_{0}\right)}{4 f^{\prime \prime \prime}\left(\rho_{0}\right)}=\frac{1}{4 \rho_{0}-3}
\end{aligned}
$$

Then $d_{1}=+\eta, d_{2}=n \xi$ and $d_{3}=n(\xi-\gamma)$

$$
d_{4}=\eta\left(\xi-\frac{\tau(\tau-\delta)}{\xi-\gamma}\right.
$$

Substitution into the continued fractions leads to:

$$
\Gamma=\rho_{0}+\frac{d_{1}}{1+d_{2}}
$$


or

$$
\Gamma=\rho_{0}-\frac{\eta}{1-\frac{(-\eta \xi)}{1-\eta(\gamma-\xi)}}
$$

For simplicity, consider the first numerator. Then expanding as a binomial series and just choosing the first two terms, the equation leads to:

$$
\Gamma=\rho_{0}-\eta-\eta^{2} \xi+\ldots .
$$

Substituting equation (5.65), $\eta$ and $\xi$ into the above equation leads to

$$
\begin{equation*}
\Omega=W\left(1-\rho_{0}-\frac{\rho_{0}^{2}}{1-2 \rho_{0}} \lambda-\frac{\rho_{0}^{4}\left(5 \rho_{0}-3\right)}{\left(1-2 \rho_{0}\right)^{3}\left(1-\rho_{0}\right)} \cdot \lambda^{2} \ldots\right) \tag{5.68}
\end{equation*}
$$

where

$$
\rho_{0}=\frac{1-\sqrt{1-4 / W^{2}}}{2}
$$

The inverse transformation function has now been obtained by the two methods. Comparison of the two equations (5.63) and (5.68) shows that the first three terms of both equations are exactly the same except that the second method, continued fractions, provides one more term. It is also clear that the second method was more efficient. The first method, however, can be more useful in some special cases. Returning to the solution of the problem of Figure $5.7(A)$ and equation (5.46), the complex potential functions will now be obtained following the general procedure presented in section II.3.

Let $\phi^{0}(Z)$ and $\Psi^{0}(Z)$ be the complex potential functions for the problem of Figure $5.7(B)$ and $\phi^{*}(Z)$ and $\psi *(Z)$ be the complex potential functions for the problem of Figure $5.7(C)$. Hence, the potential functions for othe problem of Figure $5.7(\mathrm{~A})$ are

$$
\begin{align*}
& \phi(Z)=\phi^{0}(Z)+\phi^{*}(Z) \\
& \psi(Z)=\Psi^{0}(Z)+\psi^{*}(Z) \tag{5.69}
\end{align*}
$$

where $\phi^{0}(Z)$ and $\Psi^{0}(Z)$ are known [27]. The transformed complex potential functions of $\phi^{*}(Z)$ and $\Psi^{*}(Z)$ can be obtained in a manner similar to that presented in section II.3. These are
$\phi_{1}^{*}(\zeta)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{F(\sigma)}{\sigma-\zeta} d \sigma-\frac{1}{2 \pi i} \oint_{\gamma} \frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}} \frac{\phi_{1}^{* T}(\sigma)}{\sigma-\zeta} d \sigma$
$\psi_{1}^{*}(\zeta)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{F(\sigma)}}{\sigma-\zeta} d \sigma-\frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{\omega(\sigma)}}{\omega^{\prime}(\sigma)} \frac{\phi^{*} \cdot(\sigma)}{\sigma-\zeta} d \sigma$
where $F(\sigma)$ and $\overline{F(\sigma)}$ are given by equations (3.20) and (3.21). Equation (5.70) is an integral equation in which the second integral can be evaluated. Let the transformation function of equation (5.48) and its complex conjugate be evaluated at $\zeta=\sigma$ :

$$
\begin{aligned}
& \omega(\sigma)=\frac{m}{\sigma}+\ell \sigma+r \sigma^{3} \\
& \overline{\omega(\sigma)}=m \sigma+\frac{\ell}{\sigma}+\frac{\mathrm{r}}{\sigma^{3}}
\end{aligned}
$$

Then the derivative and conjugate derivatives are

$$
\begin{align*}
\omega^{\prime}(\sigma) & =-\frac{m}{\sigma^{2}}+\ell+3 r \sigma^{2} \\
\overline{\omega^{\prime}(\sigma)} & =-m \sigma^{2}+\ell+\frac{3 r}{\sigma^{2}} \\
\frac{\frac{\omega}{}(\sigma)}{\omega^{\prime}(\sigma)} & =\frac{\sigma\left(m+\ell \sigma^{2}+r \sigma^{4}\right)}{3 r+\ell \sigma^{2}-m \sigma^{4}} \\
& =-\sigma \frac{r}{m}+\frac{\ell(m+r)}{m^{2}} \cdot \frac{1}{\sigma^{2}}+\sum_{k=2}^{\infty} \alpha_{k} \sigma^{-2 k} \\
& =-\frac{r}{m} \sigma-\sum_{k=1}^{\infty} \alpha_{k} \sigma^{-2 k+1} \tag{5.72}
\end{align*}
$$

where the $\alpha_{k}$ 's are the coefficient of the expansion. Similarly,

$$
\begin{align*}
\frac{\overline{\omega(\sigma)}}{\omega^{\prime}(\sigma)} & =\frac{m \sigma^{4}+l \sigma^{2}+r}{\left(3 r \sigma^{4}+l \sigma^{2}-m\right)} \\
& =\sum_{k=0}^{\infty} \beta_{k} \sigma^{-2 k-1} \tag{5.73}
\end{align*}
$$

where the $\beta_{k}$ 's are the coefficient of the expansion. Note that $\phi_{1}^{*}(\sigma)$ and $\phi_{1}^{*}(\sigma)$ are analytic inside $\gamma$ and $\overline{\phi_{1}^{\top}(\sigma)}$ is analytic outside $\gamma$. Thus, following section III. 3:

$$
\begin{align*}
& \phi_{1}^{*}(\sigma)=\sum_{k=1}^{\infty} k a_{k} \sigma^{k-1}  \tag{5.74}\\
& \overline{\phi_{1}^{*}(\sigma)}=\sum_{k=1}^{\infty} k \bar{a}_{k} \sigma^{-k+1} \tag{5.75}
\end{align*}
$$

Multiplying equation (5.72) by (5.75) leads to:

$$
\begin{aligned}
\frac{\omega(\sigma)}{\omega^{\prime}(\sigma)} \overline{\phi_{1}^{*}(\sigma)} & =-\frac{r}{m} \cdot \sum_{k=1}^{\infty} k \bar{a}_{k} \sigma^{-k+2}-\sum_{k=1}^{\infty} k \bar{a}_{k} \sigma^{-k+1} \cdot \sum_{k=1}^{\infty} \alpha_{k} \sigma^{-2 k+1} \\
& =-\frac{r}{m} \bar{a}_{1} \sigma-\frac{2 r}{m} \bar{a}_{2}-\sum_{n=1}^{\infty} e_{n} \sigma^{-n}
\end{aligned}
$$

where $e_{n}$ is a coefficient of a power series expressed in terms of $\bar{a}_{k}$ and $\alpha_{k}$. Since the summation $\sum_{e=1}^{\infty} e_{n} \sigma^{-n}$ is an analytic function outside $\gamma$, and the value of the summation at infinity is zero, then, following section I.3, the value of the second integral in equation (5.70) is

$$
\begin{equation*}
\frac{1}{2 \pi i} \oint_{\gamma} \frac{\omega(\sigma)}{\omega^{\top}(\sigma)} \frac{\bar{\phi}_{1}^{* \top}(\sigma)}{\sigma-\zeta} d \sigma=-\frac{r}{m} \bar{a}_{1} \zeta-\frac{2 r}{m} \bar{a}_{2} \tag{5.76}
\end{equation*}
$$

Note that the $\overline{a_{i}}$ 's are the complex conjugates of the coefficients of the expansion series of $\phi_{1}^{*}(\zeta)$ which are unknown. Since $-(2 r / m) \bar{a}_{2}$ is a constant term and does not have any effect in obtaining $\phi_{1}^{*}(\zeta)$, it will be omitted. Substituting equation (5.76) into (5.70) leads to:
$\phi_{1}^{*}(\zeta)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{F(\sigma)}{\sigma-\zeta} d \sigma+\frac{r}{m} \bar{a}_{1} \zeta-\frac{2 r}{m} \bar{a}_{2}$

In order to obtain a closed form for $\phi_{1}^{*}(\zeta), \bar{a}_{1}$ has to be evaluated. This can be easily determined. Since

$$
\frac{1}{\sigma-\zeta}=\frac{1}{\sigma\left(1-\frac{\zeta}{\sigma}\right)}=\frac{1}{\sigma}+\frac{\zeta}{\sigma^{2}}+\ldots .+\frac{\zeta^{n}}{\sigma^{n+1}}+\ldots
$$

then

$$
\begin{equation*}
\frac{1}{2 \pi i} \oint_{\gamma} \frac{F(\sigma)}{\sigma-\zeta} d \sigma=\sum_{k=0}^{\infty} c_{k} \zeta^{k} \tag{5.78}
\end{equation*}
$$

where the $c_{k}$ 's can be found by substituting the expansion of $1 /(\sigma-\zeta)$ into (5.78):

$$
c_{k}=\frac{1}{2 \pi i} \oint_{\gamma} \frac{F(\sigma)}{\sigma^{k+1}} d \sigma
$$

The $c_{k}$ 's could also be obtained by taking the $k$ th derivative of equation (5.78) and setting $\zeta=0$. The function $\phi_{1}^{*}(\zeta)$, however, is analytic inside $\gamma$ and has the series form given by equation (2.13). Hence, substitution of equations (5.78) and (2.13) into (5.77) leads to:

$$
\sum_{k=1}^{\infty} a_{k} \zeta^{k}=\sum_{k=0}^{\infty} c_{k} \zeta^{k}+\frac{r}{m} \bar{a}_{1} \zeta
$$

Equating the coefficients of $\zeta$ leads to:

$$
a_{1}=c_{1}+\frac{r}{m} \bar{a}_{1}
$$

where

$$
c_{1}=\frac{1}{2 \pi i} \oint_{\gamma} \frac{F(\sigma)}{\sigma^{2}} d \sigma
$$

Finally, equating the real parts and the imaginary parts leads to evaluation of $\bar{a}_{1}$ :

$$
\begin{equation*}
\bar{a}_{1}=m\left\{\frac{\operatorname{Re}\left(c_{1}\right)}{m-r}-i \cdot \frac{\operatorname{Im}\left(c_{1}\right)}{m+r}\right\} \tag{5.79}
\end{equation*}
$$

Substituting equation (5.79) into (5.77) leads to the closed form expression for the transformed complex potential function:
$\phi_{1}^{*}(\zeta)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{F(\sigma)}{\sigma-\zeta} d \sigma+r\left\{\frac{\operatorname{Re}\left(c_{1}\right)}{m-r}-i \frac{\operatorname{Im}\left(c_{1}\right)}{m+r}\right\} \zeta$

In order to find $\psi_{1}^{*}(\zeta)$, the second integral of equation (5.71) must first be calculated. Multiplying equation (5.73) by equation (5.75)

$$
\frac{\overline{\omega(\sigma)}}{\omega^{\prime}(\sigma)} \phi_{1}^{*}{ }^{\prime}(\sigma)=\frac{m \sigma^{4}+l \sigma^{2}+r}{\left(3 r \sigma^{4}+l \sigma^{2}-m\right)} \cdot \sum_{k=1}^{\infty} k a_{k} \sigma^{k-1}
$$

It is clear that the numerator of the equation above is analytic inside $\gamma$ and the denominator has five roots, one of which is zero and four of which can be found by solving the biquadratic

$$
3 r \sigma^{4}+l \sigma^{2}-m=0
$$

Some of these roots are inside $\gamma$ and some outside. Thus, the following integral can be evaluated by the Cauchy integral theorem presented in section I.3:

$$
\frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{\omega(\sigma)}}{\omega^{\prime}(\sigma)} \frac{\phi^{* \prime}(\sigma)}{\sigma-\zeta} \mathrm{d} \sigma=\frac{\mathrm{m} \zeta^{4}+l \zeta^{2}+r}{\zeta\left(3 \mathrm{r} \zeta^{4}+l \zeta^{2}-\mathrm{m}\right)} \phi_{1}^{* \prime}(\zeta)+\mathrm{g}(\zeta)
$$

where $g(\zeta)$ represents the sum of the residues of

$$
\frac{\left(m \sigma^{4}+l \sigma^{2}+r\right) \phi_{1}^{*^{\prime}}(\sigma)}{\sigma\left(3 r \sigma^{4}+l \sigma^{2}-m\right)(\sigma-\zeta)}
$$

at the roots which are inside $\gamma$. Thus, the other transformed complex potential function, i.e., equation (5.71), becomes:
$\Psi_{1}^{*}(\zeta)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{F(\sigma)}}{\sigma-\zeta} d \sigma-\frac{\left(m \zeta^{4}+l \zeta^{2}+r\right)}{\zeta\left(3 r \zeta^{4}+l \zeta^{2}-m\right)} \cdot \phi_{1}^{*}(\zeta)-g(\zeta)$

Recall that $F(\sigma)$ and $F(\sigma)$ were given by equations (5.25) and (5.26). The transformed complex potential functions $\phi_{1}^{0}(\sigma)$ and $\Psi_{1}^{0}(\sigma)$ can be easily found by substituting the transformation function, equation (5.48), into equations (2.6). The results are

$$
\begin{gather*}
\phi_{1}^{0}(\sigma)=-Q \ln \frac{m-Z_{0} \sigma+\ell \sigma^{2}+r \sigma^{4}}{\sigma}  \tag{5.82}\\
\Psi_{1}^{0}(\sigma)=Q \frac{\bar{Z}_{0} \sigma}{m-Z_{0} \sigma+l \sigma^{2}+r \sigma^{4}}+\bar{Q} \cdot \alpha \ln \frac{m-Z_{0} \sigma+\ell \sigma^{2}+r \sigma^{4}}{\sigma} \tag{5.83}
\end{gather*}
$$

For simplicity, let

$$
\begin{align*}
& \mathrm{A}(\sigma)=\mathrm{m}-\mathrm{Z}_{0} \sigma+\ell \sigma^{2}+\mathrm{r} \sigma^{4}  \tag{5.84}\\
& \mathrm{~B}(\sigma)=\mathrm{r}+\ell \sigma^{2}-\mathrm{Z}_{0} \sigma^{3}+\mathrm{m} \sigma^{4} \tag{5.85}
\end{align*}
$$

Taking the derivative of equation (5.82), obtaining the complex conjugate of equations (5.82) and (5.83), and substituting into equations (5.25) and (5.26) leads to the expressions for $F(\sigma)$ and $F(\sigma)$. The calculation is omitted and the results are

$$
\begin{align*}
& F(\sigma)=Q\left\{\ln \frac{A(\sigma)}{\sigma}-\alpha \ln \frac{B(\sigma)}{\sigma^{3}}\right\}+\bar{Q}\left\{\sigma^{2} \cdot \frac{A(\sigma)}{B(\sigma)}\right\}  \tag{5.86}\\
& \overline{F(\sigma)}=Q\left\{\frac{B(\sigma)}{\sigma^{2} \mathrm{~A}(\sigma)}\right\}+\bar{Q}\left\{\ln \frac{B(\sigma)}{\sigma^{3}}-\alpha \ln \frac{A(\sigma)}{\sigma}\right\} \tag{5.87}
\end{align*}
$$

where $A(\sigma)$ and $B(\sigma)$ are given by equations (5.84) and (5.85).

The two remaining integrals in the potential functions of equations (5.80) and (5.81) can now be calculated since $F(\sigma)$ and $F(\sigma)$ are known.

To evaluate these two integrals, note that the conformality of the mapping function $\omega(\zeta)$ implies that the equation $A(\sigma)=0$ has one root inside and three roots outside $\gamma$ (since the polynomial of $Z-\omega(\zeta)=0$ and $A(\sigma)=0$ are identical).

Denote the inside root by $r_{i}$ and the three outside roots by $\mathrm{r}_{\mathrm{O}_{1}}, \mathrm{r}_{\mathrm{O}_{2}}$, and $\mathrm{r}_{\mathrm{O}_{3}}$. Root $\mathrm{r}_{\mathrm{i}}$ has a significant role in the calculation of the two integrals whereas $r_{0_{1}}$, $\mathrm{r}_{\mathrm{O}_{2}}$, and $\mathrm{r}_{\mathrm{O}_{3}}$ need not be calculated. Root $\mathrm{r}_{\mathrm{i}}$ can be
calculated by the inverse transformation function using either of the two methods presented at the beginning of this section.

Now $\mathrm{A}(\sigma)$ may be rewritten as:

$$
\mathrm{A}(\sigma)=\mathrm{r}\left(\sigma-\mathrm{r}_{\mathrm{i}}\right)\left(\sigma-\mathrm{r}_{\mathrm{o}_{1}}\right)\left(\sigma-\mathrm{r}_{\mathrm{o}_{2}}\right)\left(\sigma-\mathrm{r}_{\mathrm{o}_{3}}\right)
$$

Similarly, equation $B(\sigma)=0$ is identical to $\bar{Z}-\omega(1 / \zeta)=0$, one root of which is outside $\gamma$ and three of which are inside. Denote the outside root by $t_{0}$ and the inside roots by $t_{i_{1}}, t_{i_{2}}$ and $t_{i_{3}}$. Thus $B(\sigma)$ may be rewritten as:

$$
B(\sigma)=m\left(\sigma-t_{i_{1}}\right)\left(\sigma-t_{i_{2}}\right)\left(\sigma-t_{i_{3}}\right)\left(\sigma-t_{0}\right)
$$

Using these forms of $A(\sigma)$ and $B(\sigma)$, the two integrations may be computed quite simply in a manner similar to that presented in the previous section. The results are:

$$
\begin{align*}
& \frac{1}{2 \pi i} \oint_{\gamma} \frac{F(\sigma)}{\sigma-\zeta} d \sigma=Q\left\{\ln r\left(\zeta-r_{o_{1}}\right)\left(\zeta-r_{o_{2}}\right)\left(\zeta-r_{o_{3}}\right)-\alpha \ln m\left(\zeta-t_{o}\right)\right\} \\
& +\bar{Q}\left\{\frac{\zeta^{2} A(\zeta)}{B(\zeta)}+\sum_{k=1}^{3} \frac{\left(\sigma-t_{i k}\right) t_{i k}^{2} A\left(t_{i k}\right)}{B\left(t_{i k}\right)\left(t_{i k}-\zeta\right)}\right\}  \tag{5.88}\\
& \frac{1}{2 \pi i} \oint_{\gamma} \frac{\overline{F(\sigma)}}{\sigma-\zeta} d \sigma=Q\left\{\left.\frac{d}{d \sigma} \frac{B(\sigma)}{A(\sigma) \cdot(\sigma-\zeta) \mid}\right|_{\sigma=0}+\frac{B(\zeta)}{\zeta^{2} A(\zeta)}\right. \\
& \left.+\frac{B\left(r_{i}\right)\left(\sigma-r_{i}\right)}{r_{i}^{2} A\left(r_{i}\right)\left(r_{i}-\zeta\right)}\right\}+\bar{Q}\left\{\ln m\left(\zeta-t_{o}\right)\right. \\
& \left.-\alpha \operatorname{lnr}\left(\zeta-\mathrm{r}_{\mathrm{O}_{1}}\right)\left(\zeta-\mathrm{r}_{\mathrm{O}_{2}}\right)\left(\zeta-\mathrm{r}_{\mathrm{O}_{3}}\right)\right\} \tag{5.89}
\end{align*}
$$

Substituting equations (5.88) and (5.89) into equations (5.80) and (5.81) leads to the complex transformation functions $\phi_{1}^{*}(\zeta)$ and $\Psi_{1}^{*}(\zeta)$. The procedure for obtaining the influence functions from $\phi_{1}^{*}(\zeta)$ and $\Psi_{1}^{*}(\zeta)$ is very straightforward. This is done by substitution of these functions into equation (5.69) and subsequent substitution of this result into equation (3.6).

## V. 5 ON THE INFLUENCE FUNCTION OF A MORE

 GENERAL CLASS OF OPENINGIn the previous two sections, two cases of opening were considered and the influence functions were found. In this section a general form of this special kind of opening is discussed.

Consider an infinite plane bounded by the contour given by equations

$$
\begin{aligned}
& X=R(\operatorname{Cos} \theta+\varepsilon \operatorname{Cos} N \theta) \\
& Y=R(c \operatorname{Sin} \theta-\varepsilon \operatorname{Sin} N \theta)
\end{aligned}
$$

where $0<c \leqslant 1$ and $N$ is an integer greater than 3 (Cases $N=2$ and $N=3$ have been discussed in sections V. 3 and V.4, respectively). A concentrated point force $P$ is acting in the plane at some point $Z_{0}$, where $Z_{0}$ lies on or outside of the opening.

Using the mapping technique presented in Chapter II, the problem can be expressed as the superposition of two problems. Consider the second of these superposed problems. The mapping function is:

$$
\begin{equation*}
z=\omega(\zeta)=\frac{m}{\zeta}+\ell \zeta+r \zeta^{N} \tag{5.90}
\end{equation*}
$$

where

$$
m=\frac{R(1+c)}{2} \quad, \quad \ell=\frac{R(1-c)}{2} \quad \text { and } r=R \cdot \varepsilon
$$

The inverse mapping function could be found by following either of the two methods presented in section V. 2.

To find the complex potential functions, equations (5.70) and (5.71), the following quantities are needed:

$$
\frac{\omega(\sigma)}{\overline{\omega^{\prime}(\sigma)}}=\frac{\sigma^{N-2}\left(m+l \sigma^{2}+r \sigma^{N+1}\right)}{r \cdot N+l \sigma^{N-1}-m \sigma^{N+1}}
$$

and

$$
\frac{\overline{\omega(\sigma)}}{\omega^{\prime}(\sigma)}=\frac{m \sigma^{N+1}+l \sigma^{N-1}+r}{\sigma^{N-2}\left(r \cdot N \sigma^{N+1}+l \sigma^{2}-m\right)}
$$

The functions $F(\sigma)$ and $F(\sigma)$ which appear in equations (5.70) and (5.71) can be calculated by substituting the mapping function of equation (5.90) into equations (2.6) and taking the derivatives and complex conjugates. Inserting these functions into equations (5.25) and (5.26) leads to:
$F(\sigma)=Q\left\{\ln \frac{A(\sigma)}{\sigma}-\alpha \ln \frac{B(\sigma)}{\sigma^{N}}\right\}+\bar{Q}\left\{\sigma^{N-1} \cdot \frac{A(\sigma)}{B(\sigma)}\right\}$
$F(\sigma)=Q\left\{\frac{B(\sigma)}{\sigma^{N-1} A(\sigma)}\right\}+\bar{Q}\left\{\ln \frac{B(\sigma)}{\sigma^{N}}-\alpha \ln \frac{A(\sigma)}{\sigma}\right\}$
where

$$
\begin{aligned}
& A(\sigma)=m-Z_{0} \sigma+\ell \sigma^{2}+r \sigma^{N+1} \\
& B(\sigma)=r+\ell \sigma^{N-1}-\overline{Z_{0}} \sigma^{N}+m \sigma^{N+1}
\end{aligned}
$$

Following the discussion presented in the previous section, it is clear that $A(\sigma)$ must have one root inside $\gamma, r_{i}$, and $N$ - 1 roots outside $\gamma$. Also, $B(\sigma)$ must have one root outside, $t_{o}$, and $N-1$ roots inside $\gamma$. Thus,

$$
\begin{aligned}
& \mathrm{A}(\sigma)=\mathrm{r}\left(\sigma-\mathrm{r}_{\mathrm{i}}\right)\left(\sigma-\mathrm{r}_{\mathrm{o}_{1}}\right)\left(\sigma-\mathrm{r}_{\mathrm{o}_{2}}\right) \ldots\left(\sigma-\mathrm{r}_{\mathrm{oN}-1}\right) \\
& \mathrm{B}(\sigma)=\mathrm{m}\left(\sigma-\mathrm{t}_{\mathrm{o}}\right)\left(\sigma-\mathrm{t}_{\mathrm{i}_{1}}\right)\left(\sigma-\mathrm{t}_{\mathrm{i}_{2}}\right) \ldots\left(\sigma-\mathrm{t}_{\mathrm{iN}-1}\right)
\end{aligned}
$$

The method of integration in the previous section may be used to find the following integrals:

$$
\begin{aligned}
\frac{1}{2 \pi i} \oint_{\gamma} \frac{F(\sigma)}{\sigma-\zeta} & =Q\left\{\ln r\left(\zeta-r_{O_{1}}\right)\left(\zeta-r_{O_{2}}\right) \ldots\left(\zeta-r_{o N-1}\right)\right. \\
& \left.-\alpha \ln m\left(\zeta-t_{o}\right)\right\}+\bar{Q}\left\{\frac{\zeta^{N-1} A(\zeta)}{B(\zeta)}\right. \\
& \left.+\sum_{k=1}^{N-1} \frac{\left(\sigma-t_{i K}\right)\left(t_{i K}^{N-1}\right) A\left(t_{i K}\right)}{B\left(t_{i K}\right)\left(t_{i K}-\zeta\right)}\right\}
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{2 \pi i} \oint_{1} \frac{\overline{F(\sigma)}}{\sigma-\zeta} d \sigma= & Q\left\{\frac{1}{(N-2)!}\left[\frac{d^{N-2}}{d \sigma^{N-2}} \cdot\left(\frac{B(\sigma)}{(\sigma-\zeta) A(\sigma)}\right)\right]\right. \\
& \left.+\frac{B(\zeta)}{\zeta^{N-1} A(\sigma)}+\frac{B\left(r_{i}\right)\left(\sigma-r_{i}\right)}{r_{i}^{N-1}\left(r_{i}-\zeta\right) A\left(r_{i}\right)}\right\}+ \\
& \bar{Q}\left\{\ln m\left(\zeta-t_{o}\right)-\alpha \ln r\left(\zeta-r_{o_{1}}\right)\left(\zeta-r_{o_{2}}\right)\right. \\
& \left.\ldots\left(\zeta-r_{o N-1}\right)\right\}
\end{aligned}
$$

The other two terms in the complex potential functions can be found exactly in the same manner as in section V.4.

Then the influence functions can be obtained. The procedure is very straightforward and the calculation is omitted.

## CHAPTER VI

CLOSURE

A boundary integral equation method for the solution of finite, two-dimensional, isotropic, linear elastic regions containing arbitrarily-shaped openings has been presented. It is shown that stress and displacements at any point away from the outer boundary can be easily found by this method. Since the effect of the opening has been included in the kernels of the integral equations, solutions on or near the opening have been obtained with excellent success.

A mapping technique has been employed to find the complex potential functions which lead to the determination of the influence function. The significance of this technique is that the influence function for any shape of cavity in an infinite plane can be found. In Chapter II it was shown how, with knowledge of the transformation of the contour to a unit circle, one could employ this mapping technique to obtain the influence function.

Such an influence function was found for a circular hole in an infinite two-dimensional region in Chapter III. To show the efficiency and applicability of the method to any two-dimensional region which contains a circular hole,
the boundary integral equation method presented in Chapter I was applied to two example problems. In the final example problem (i.e., a rectangular plane containing the hole and subjected to a uniaxial tension), the results were within $0.8 \%$ of available solutions. This accuracy was obtained using just 35 seconds of CPU time on a CDC 6500 computer.

To show the applicability of the method to a different geometry, a second example (i.e., circular plane containing the hole and partially loaded) was considered. No available solutions for this problem were found. Again, the CPU was 35 seconds for each run on a CDC 6500 computer.

In Chapter IV, the mapping technique was used to determine the influence function associated with an elliptical hole in an infinite region. To solve any twodimensional problem, this influence function was used as the kernel of the integral equations and two example problems having different locations and angles of inclination of the elliptical hole were solved. In the first example problem, four different orientations and inclination angles of elliptical hole in a rectangular plane subjected to the uniaxial tension were considered. For the first case, some experimental solutions at specific points were available. The results were within $3.0 \%$. For these cases, the computer time never exceeded 42 seconds of CPU time on a CDC 6500 computer per run. It is important to note that the major computer time consumption for this method is in determining fictitious tractions. Computation of stresses and displacements at any point uses very little

CPU time. Thus, calculation of stresses and displacements at new points has an extremely small effect on total CPU time. Although such problems can also be solved by other numerical methods (such as finite elements and finite differences), the following advantages of the BIE method are apparent. In the BIE method, different sizes and locations of the elliptical hole can be specified by changing one or two parameters in the input data, whereas with the other methods, a new discretization of the region has to be made for each case. Also, as the elliptical hole gets thinner, more difficulty will arise as one needs to discretize the region close to the ends of the hole. No such discretization of the region is required in BIE. The second example problem (i.e., a circular plane containing the hole and partially loaded) was presented as an example of the applicability of the method to different geometries. Again, four cases were considered. No available solutions for this example problem were found. Again, computer time was 42 seconds for each run on a CDC 6500 computer.

Some modifications were done to the influence function of the elliptical opening to make it applicable for a sharp crack. Thus, the influence function for an infinite plane containing a sharp crack was determined. This influence function was then used as the kernel of the integral equations and some finite two-dimensional problems (e.g., a rectangular plane containing the crack and subjected to a
uniaxial tension), with different locations and inclination angles of the crack, were considered. The tips of the crack, at which the stresses are infinite, pose extreme difficulties for other numerical methods, such as finite elements and finite differences. With this new BIE method, the stresses and displacements very close to the tips of the crack can be determined with excellent accuracy and ease of computation. Solutions for the stresses near the tips of a horizontal crack were compared to the known stress intensity factor (which is valid just very close to the tips of the crack). The differences were within $0.1 \%$. No analytical or numerical solutions were found for the other cases (crack at inclined angles). The crack opening displacements, $C O D$, for all the cases were compared to some recently obtained experimental measurements on rectangular specimens containing inclined slots. The differences in results were all within $11 \%$. This difference is expected since the "slot" of the experimental study was of finite width. The trend of the stresses and the displacements can be seen in the tables. The problem of an edge crack was also considered. CPU time did not exceed 42 seconds for any run.

Finally, in the last chapter the mapping technique was extended to a larger class of problems (different shapes of opening). The complete potential functions for two of these cases (i.e., the triangular opening and square opening) were obtained and the more general case was discussed. Further development is left for future research in this area.

## APPENDICES

## APPENDIX A <br> THE POTENTIAL FUNCTIONS AND THE INFLUENCE FOR AN INFINITE PLANE REGION CONTAINING A CIRCULAR HOLE

a) The potential function used in equations (3.40) are:

$$
\begin{aligned}
& \phi_{\mathrm{I}}^{*}(\zeta)=\alpha \ln \left(-\bar{Z}_{0}\right)-\alpha \ln \left(\zeta-\bar{Z}_{0}\right) \\
& \phi_{\mathrm{I} I}^{*}(\zeta)=\frac{1-Z_{0} \bar{Z}_{0}}{\bar{Z}_{0}}+\frac{1-Z_{0} \bar{Z}_{0}}{\bar{Z}_{0}^{2}} \cdot \frac{1}{\zeta-\bar{Z}_{0}} \\
& \Psi_{\mathrm{I}}^{*}(\zeta)=-\frac{\zeta}{Z_{0}}-\frac{\alpha \zeta^{3}}{\zeta-\bar{Z}_{0}} \\
& \Psi_{\mathrm{I}}^{*}(\zeta)=\ln \left(\zeta-\bar{Z}_{0}\right)-\ln \left(-\bar{Z}_{0}\right)-\frac{1-Z_{0} Z_{0}}{Z_{0}} \cdot \frac{\zeta^{3}}{\left(\zeta-\bar{Z}_{0}\right)^{2}}
\end{aligned}
$$

b) The influence functions $H_{i j ; q}$ and $I_{i ; q}$ used in equatons (3.48) are:

$$
\begin{aligned}
H_{x x} ; x & =\operatorname{Re}\left\{\frac{-2}{Z-Z_{0}}-2 \zeta^{2} \phi_{\mathrm{I}}^{\star^{\prime}}(\zeta)-\bar{z}\left(\frac{1}{\left(z-Z_{0}\right)^{2}}+\zeta^{4} \phi_{\mathrm{I}}^{\star_{\mathrm{I}}^{\prime \prime}}(\zeta)\right.\right. \\
& \left.\left.+2 \zeta^{3} \phi_{\mathrm{I}}^{\prime}(\zeta)\right)+\frac{\bar{Z}_{0}}{\left(z-\bar{Z}_{0}\right)^{2}}-\frac{\alpha}{z-\bar{z}_{0}}+\zeta^{2} \Psi_{\mathrm{I}}{ }^{\prime}(\zeta)\right\} \cdot\left[\frac{1}{2 \pi(\alpha+1)}\right]
\end{aligned}
$$

$$
\begin{aligned}
& H_{x x ; y}=\operatorname{Re}\left\{i \left(\frac{-2}{Z-Z_{0}}-2 \zeta^{2}\left(\phi_{\mathrm{I}}^{\prime}(\zeta)-\phi_{\mathrm{I}}^{\mathrm{I}} \mathrm{I}(\zeta)\right)-\bar{Z}\left[\frac{1}{\left(Z-Z_{0}\right)^{2}}\right.\right.\right. \\
& \left.+\left(\phi_{\mathrm{I}}^{* \prime \prime}(\zeta)-\phi_{\mathrm{I}}^{*}{ }_{\mathrm{I}}(\zeta)\right) \zeta^{4}-\left(\phi_{\mathrm{I}}^{*}(\zeta)-\phi_{\mathrm{I}}^{\mathrm{k}} \mathrm{I}(\zeta)\right)\left(2 \zeta^{3}\right)\right] \\
& \left.\left.+\frac{Z_{0}}{\left(Z-Z_{0}\right)^{2}}+\frac{\alpha}{Z-\bar{Z}_{0}}+\zeta^{2}\left(\Psi_{\stackrel{\star}{\prime}}^{\prime}(\zeta)-\Psi_{I}^{*} \dot{I}^{\prime}(\zeta)\right)\right)\right\} \cdot\left[\frac{1}{2 \pi(\alpha+1)}\right] \\
& H_{y y ; x}=\operatorname{Re}\left\{\frac{-2}{Z-Z_{0}}-2 \zeta^{2} \phi_{I}^{*}(\zeta)+\bar{Z}\left[\frac{1}{\left(Z-Z_{0}\right)^{2}}+\zeta^{4} \phi_{I}^{* \prime \prime}(\zeta)\right.\right. \\
& \left.\left.+2 \phi_{\mathrm{I}}^{\mathrm{I}^{\prime}}(\zeta) \cdot(\zeta)^{3}\right]-\frac{Z_{0}}{\left(Z-\bar{Z}_{0}\right)^{2}}+\frac{\alpha}{Z-\bar{Z}_{0}}-\zeta^{2} \Psi_{\mathrm{I}}{ }^{\prime}(\zeta)\right\} \cdot\left[\frac{1}{2 \pi(\alpha+1)}\right] \\
& H_{y y ; y}=\operatorname{Re}\left\{i \left(\frac{-2}{Z-Z_{0}}-2 \zeta^{2}\left(\phi_{I}^{*}(\zeta)-\phi_{I}^{*} I^{\prime}(\zeta)\right)+\bar{Z}\left[\frac{Z_{0}}{\left(Z-Z_{0}\right)^{2}}\right.\right.\right. \\
& \left.+\left(\phi_{I}^{* \prime \prime}(\zeta)-\phi_{I}^{*}{ }_{I}^{\prime \prime}(\zeta)\right) \zeta^{4}-\left(\phi_{I}^{*}(\zeta)-\phi_{I}^{*} I_{I}^{\prime}(\zeta)\right)\left(2 \zeta^{3}\right)\right] \\
& \left.\left.-\frac{\bar{Z}_{0}}{\left(Z-Z_{0}\right)^{2}}-\frac{\alpha}{Z-\bar{Z}_{0}}+\zeta^{2}\left(\Psi \underset{\mathrm{I}}{ }(\zeta)-\Psi \mathrm{I}_{\mathrm{I}}(\zeta)\right)\right)\right\} \cdot\left[\frac{1}{2 \pi(\alpha+1)}\right]
\end{aligned}
$$

$$
\begin{aligned}
& H_{x y ; x}=\operatorname{Im}\left\{\bar{Z}\left[\frac{1}{\left(Z-Z_{0}\right)^{2}}+\zeta^{4} \phi_{\mathrm{I}}^{\prime \prime}(\zeta)+2 \phi_{\mathrm{I}}{ }^{\prime}(\zeta) \cdot(\zeta)^{3}\right]\right. \\
& \left.-\frac{\bar{Z}_{0}}{\left(Z-\bar{Z}_{0}\right)^{2}}+\frac{\alpha}{Z-\bar{Z}_{0}}-\zeta^{2} \Psi_{\mathrm{I}}{ }^{\prime}(\zeta)\right\} \cdot\left[\frac{1}{2 \pi(\alpha+1)}\right] \\
& H_{x y ; y}=\operatorname{Im}\left\{i \left(\overline { Z } \left[\frac{1}{\left(Z-Z_{0}\right)^{2}}+\left(\phi_{\mathrm{I}}{ }^{\prime \prime}(\zeta)-\phi_{\mathrm{I}}^{* \prime \prime}(\zeta)\right) \zeta^{4}-\left(\phi_{\mathrm{I}}{ }^{\prime}(\zeta)\right.\right.\right.\right. \\
& \left.\left.-\phi_{I}^{*} \dot{I}(\zeta)\right)\left(2 \zeta^{3}\right)\right]-\frac{\bar{Z}_{0}}{\left(Z-Z_{0}\right)^{2}}-\frac{\alpha}{Z-\bar{Z}_{0}}+\zeta^{2}\left(\Psi_{I}^{*}{ }^{\prime}(\zeta)\right. \\
& -\Psi \underset{I I}{*}(\zeta))\}\}\left[\frac{1}{2 \pi(\alpha+1)}\right] \\
& I_{x ; x}=\operatorname{Re}\left\{-\alpha \ln \left(Z-Z_{0}\right)+\alpha \phi_{1}^{*}(\zeta)-Z\left[\frac{-1}{\bar{Z}-\bar{Z}_{0}}-\bar{\zeta}^{2} \overline{\phi_{1}^{*}(\zeta)}\right]\right. \\
& \left.-\frac{\bar{Z}_{0}}{\bar{Z}-Z_{0}}-\alpha \ln \left(\bar{Z}-Z_{0}\right)-\overline{\Psi_{1}^{*}(\zeta)}\right\} / 4 \mu \pi(\alpha+1) \\
& I_{x ; y}=\operatorname{Re}\left\{i \left(-\alpha \ln \left(Z-Z_{0}\right)+\alpha\left(\phi_{I}^{*}(\zeta)-\phi_{I I}^{*}(\zeta)\right)-z\left[\frac{-1}{Z-Z_{0}}\right.\right.\right. \\
& \left.\left.-\overline{\left(\phi_{I}^{*}(\zeta)\right.}-\overline{\phi_{I I}^{*}(\zeta)}\right) \quad \bar{\zeta}^{2}\right]-\frac{Z_{0}}{\bar{Z}-Z_{0}}+\alpha \ln \left(\bar{Z}-Z_{0}\right) \\
& \left.\left.-\overline{\Psi_{I}^{*}(\zeta)}+\overline{\Psi_{I I}^{*}(\zeta)}\right)\right\} / 4 \pi \mu(\alpha+1)
\end{aligned}
$$

213

$$
\begin{aligned}
& I_{y ; x}=\operatorname{Im}\left\{-\alpha \ln \left(Z-Z_{0}\right)+\alpha \phi_{1}^{*}(\zeta)-Z\left[-\frac{1}{\bar{Z}-\bar{Z}_{0}}-\bar{\zeta}^{2} \overline{\phi_{1}^{*}(\zeta)}\right]\right. \\
& \left.-\frac{Z_{0}}{\bar{Z}-Z_{0}}-\alpha \ln \left(\bar{Z}-Z_{0}\right)-\overline{\Psi_{1}^{*}(\zeta)}\right\} / 4 \mu \pi(\alpha+1) \\
& I_{y ; y}=\operatorname{Im}\left\{i \left(-\alpha \ln \left(Z-Z_{0}\right)+\alpha\left(\phi_{\mathrm{I}}^{*}(\zeta)-\phi_{\mathrm{I} I}^{*}(\zeta)\right)-z\left[\frac{-1}{Z-Z_{0}}\right.\right.\right. \\
& \left.-\left(\overline{\phi_{I}^{*}}(\bar{\zeta})-\bar{\phi}_{I I}^{*}(\zeta)\right) \bar{\zeta}^{2}\right]-\frac{Z_{0}}{\bar{Z}-Z_{0}}+\alpha \ln \left(\bar{Z}-Z_{0}\right)-\overline{\Psi_{I}^{*}(\zeta)} \\
& \left.\left.+\Psi_{I}^{*} I(\zeta)\right)\right\} / 4 \mu \pi(\alpha+1)
\end{aligned}
$$

APPENDIX B
COMPUTER PROGRAM FOR PLANE, FINITE REGION CONTAINING A CIRCULAR HOLE

A computer program was employed for the numerical computation of the stresses and the displacements at the field points of a two-dimensional region containing a unit circular hole. A listing of that program for the rectangular region subjected to uniaxial tension $(\omega=1.0$ MPa ) and containing a unit circular hole and for the circular plane subjected to a uniformly radially tension $(\omega=1.0 \mathrm{MPa})$ and containing a unit circular hole are presented in this appendix.
A. INPUT DATA

The following information must be provided as input (this is the order of appearance in the program).

PR - Poisson's ratio of the material
EMUD - modulus of elasticity of the material
NML - total number of subdivisions on the boundary
NFP - the number of field points at which the stresses and displacements are to be computed
$X(I), Y(I)$ - coordinates of the outer boundary points (for $\mathrm{I}=1, \mathrm{NML}+1$ circular plane case, this input has been included in the program)

WR

- "width ratio" for the rectangular plane (WR $=$ width $/ 10 \mathrm{~cm}$ ) and for the circular plane $(W R=$ radius $/ 6.0 \mathrm{~cm})$
$X_{0}, Y_{0}-$ location of the center of the circular hole (has to be specified in the program)
$B V_{x}(I), \quad-b o u n d a r y$ value (tractions) specified at each $B V_{y}(I+N M L)$ subdivision
$\mathrm{I}=1$, NML
XF(I), - coordinates of the field points at which the YF (I) $\mathrm{I}=1$,NFP stress and displacements are to be computed


## B. OUTPUT DATA

The following information is obtained as output (this is in the order of appearance in the output). PR,EMUD - see input data

SHMUD - shear modulus of elasticity
NML, NFP - see input data
$X(I), Y(I)$ - see input data
$B V_{x}(I)$ - see input data
$B V_{y}(I+N M L)$
PSX,PSY - components of the fictitious traction on the boundary, represented by the concentrated load, $P_{x i}^{*}, P_{y i}^{*}$ at the center of each one of the subdivisions. These are computed by solving a system of linear equations (3.51) (LEQT1F, computer library)

XF (I), - location of the field points at which the YF (I)
$I=1$,NFP stresses and displacements are computed

SIGMAXX, - components of stress and displacement tensor SIGMAYY, SI GMAXY, UX,UY at each of the field points. These are computed by the use of equation (1.17).
C. COMPUTER PROGRAM FOR A RECTANGULAR PLANE CONTAINING A CIRCULAR HOLE (follows)




## FORFAT

／／／／／／．10x．＊NO．OF MESHESac， $33,25 x$ ，＊NO

## FO 3



FORMAT（6F10．A）

$\varepsilon$
$16 x, F 10 \cdot 5,25 x, F 1 D \cdot 511$
$F O R M A T$

© ME SH NO，
FORMAT（ $6 F 10.6$ ）
FORMAT


FORMA $\quad(1 / 1,4 X, I 3,5(5 X, F 20.10)$ ）



## 



```
MEsASESERIAL PROPERTRES
REAO (5,100) PR,EMUO
SHMUO= EMUQ (2+ (1+PR,)
WRITE ENOD1(2)
WRITE (B,12O) PR , EMUO, SHMUD
```



	$\begin{aligned} & \text { R } 3=2=(H 1-H 2) \\ & R 4=2 E C(I)+(K 1-K 2)+S 1-S 2 \end{aligned}$
	RH\｛I•J）$=(R E A L(R \&-R 2) A N X I+A I M A G(R 2) \& N Y I)=C O E F=O S I$   RM（I：$J+M M L)=(R E A L I=I *(P 3-R 4))=N X I+A I M A G(E I * R 4)$ ONVI）＊COEF＊OSI   $R M(I+N M L, J)=(A I M A G(Z 2) N X I+R E A L(R 1+R 2)$ NYI）C CEFFOSI  
16	
$\begin{aligned} & C \\ & 15 \\ & C \\ & 14 \\ & C \end{aligned}$	CONTINUE $\qquad$ CONTINUE  
C C C	$\begin{aligned} & \text { Gen sen } \\ & \text { CALCULATION JF FICIITIOUS TRACTION PASTAR } \end{aligned}$
$C$ $C$ $C$ 46	```REAO (5,ITO) (BV(I), BY (I+NML), I=1, NNL)```  ```- CORRECTING THE BZV DUE TO THE CHANG IN MIOTH RATIO TO:```  ```00 46 I=1,NML 3V(I)=8V(I)+WR GV(I+NM()=BV(I&NML)& WR CONTINUE WRITE (6,180) (I,ZV(I), BV(I+NML),I=1,NML)```
	CALL LEOTIF（RM 1 I，NMLZ，NMI，EV，O，WKAREA，IERI WRITE（6，190）（I．BV（I），BV．II＋NML），I＝1，NML）
C	：CAL CULATFON OF STRESSES ANO OISPLACENENTS＊
24	
20	CONTINUE ${ }^{\text {WRITE }}(6,220)$
C	
C	
C	```\(0022 \mathrm{~J}=1\), MML```  ```\}EFD=2EF(I)-2E(J) そEFDR=2EFDA* pz=2E (う) 4 (I) QME1-PZ OM2 = OMCO 2 QC=2F(I)-2EC(J)```  ```\(0 \mathrm{C} 3=0 \mathrm{C} 2 \mathrm{O}_{\mathrm{Cl}} \mathrm{C}\) x1=CLOG(QC)```

```
x2=CLOG(-2EC(J))
PI=ALPHA XZ-ALFHA*X1
Pそ=FZ(J)/OC+FZ(J)/ZEC(J)
PO1z=ALPHA/QC
OOI=+AL PHA/OC
```



```
2TI=ALPHA- KF 31OC-2(I)/2E(J)
2T2=-FZ(J)*ZF3/QC24x1-x2
```



```
M1 = PO1/NO
H2=PDZ/NO
N2=201/NO
K1=PODO1/WO2-PD1OWOD/WO3
K1=POD1/WOZ=FD1*WOD/WOS
P1:P1-CLOG(ZEFC)
H1=HI-1/ZEFO
K1=KI+1/\&EFOR
2F={IT+ZEC(J)/ZEFD
ZY{=2Y1+ZEC(J)CZEFDO
Si=SI-ZEC{(J)/2EFD2
R1=2*(H1+H2)
R2=2EFC'(KI+K2)+S1+S2
R3=2*(H1-H2)
```



```
R6=ALPHA*(P1-PZ) + ZEF (I)*CONJG(H1-H2) +CONJG(2T1-2T2)
```








```
CONTINUE
```



```
MRITE (6,230) I,SGMXX,SGMYY,SGMXY,UX,UY
```



```
CONTINUE
```


D. COMPUTER PROGRAM FOR A CIRCULAR PLANE CONTAINING A CIRCULAR HOLE (follows)


```
 K2=POO2/MOS-PC2*WNO/WO3
 H1=H1-1/2EO
 K1=K2+1/7是?2
 M
 R1=2*(H1+H2)
 R2zEEC({)&(K1+"2)+S1+S2
 R 3=2-(M1-H2)
 R4=2EC(I)*(k1-k2)+S1-S2
 RH(I,J)=(REAL (&1-R2) *NXI*AIMAG(R2) *NYI)*COEF=OSI
```



```
RM(I+NML,J)=(AIMAGIR2)*NXI+REAL(2I&R2) NYI)=COEF=DSI
RH(I+NML;J+NML)=(AIMAG(EIФR4)&NXI+REAL(EIO(R3&R4))ONYIIOCOEFAOSI
GO TO 15
```



```
RN(Y!ま{NML)=N.g
RMiま+NML;倝NMLi=1/2.0
```



```
C5 C=xEmEz
```



```
 CONTINUE
```




```
* CALCULATICN OF FINTITIOUS TRACTION PESTAR PSPI)
REAO (5,17 2) (8V(I),8V(I&NML),IEI,NML)
```



```
* CORRECTING TYE g,V, OUE TC THE CHANG FN WIDTH RATIO TO
```



```
00 46 F=1,NML
8VI{+NMLIEEV(I +NML) - WS
CONTINES
WRITE (6,130) (I,BV(I), OV(I+NML),I=1,NML)
```





```
REAQ (5,2\0) (XF(I),VF(I), =%&,NFP)
00 20 I=1.NFF
ZEF(I)=C4DLX(XF(I),YF(I))
ZF(I)=1/ZEFII)
A=REAL(ZFII))
B=ATMAG(2F1I))
CONTINUE
HOITE (5, 220)
```



```
00 21 E=1,NFF
```



```
SGMXX=0:?
SGMYY=0.
SGMXY=
UX=0.0
UY=0.0
```



```
MO=-12%
HO2=HOES?
MO3=MO2*MO
HOO=2/2F3
2*)
ZEFC=CONJG(ZEF(I))
```



```
00 22 J=1,NML
```



```
ZEFD=ZEF(I)-ZE(J)
```

```
2EFC2=2EFGNES
QM=1-PZ
OM2=OM@S2
QC=ZF(I)-ZEC(J
OC2=OC=E2
0C3=0C2*nc
<1=CLOG(QC)
x2=CLOG(QCZ=C(J))
x2=CLOG (-ZECCJN'**X1
P1=ALPHA*X'-ALFHA*XI
P2=FZ\J!/OC+FZ
PO{=-ALPHA/OC
PODI= &AL PNA/OC?
POO2=FZ(J)=2/\C3
2TI=-ALOHA-2FY/QC-2&I)/ZE(J)
```




```
H1=P01/40
H2=902/HO
SI=201/ NO
S2=202/Wh
k1=OOD1/NO2-PO1OWOD/WO3
< 2=POO2/NO2-P I2'HOC/HOS
P1=PI-CLOG(ZEFC)
H1=H1-1/ZEFO
Ki=Kiti/ 2EFD2
z4{=2T1+2EC(J)/ZEFD
ZT2=ZT2+ALPHAECLOGIZEFO)
S1=SI-2EC(J)/ZEFO2
Q1=2*(H1+H2)
R2=2EFC=(K1+K2)+S1+S2
R3x2苃(H2-H2)
Q4=2EFC= (K1-K2)+S1-S2
RL=ZEFCHK(1-KZ)+SI-SZ
RS=ALPHA*(PI*O2)- -EF(F) CONJG (N1+H2)-CCNJG(ZT1&ZT 2)
SGMXX=SGMXX&COEFEREAL((R1-R2)*QV(J)&EF*(R 3-R4)*RV(J&NML))
SGMXY=SGMXY +COEF=AIMAG(R2*BV(J)+EI& 24& QY(J+NML))
```



```
UY=UY COEFAAINAG(R5'GV(J)+EI&RG*GV(J&NML))\(2*SHMUD)
```



```
CONTINUE
```



```
WRITE (6,230) I,SGMXX, SGMYY,SGMXY,UX,UY
```



```
CONTINUE
```



```
ENC
```


## APPENDIX C <br> THE POTENTIAL FUNCTIONS AND THE INFLUENCE FUNCTIONS FOR AN INFINITE PLANE REGION CONTAINING AN ELLIPTICAL HOLE

The following complex functions were used in the influence functions for an elliptical hole, equations (4.52).
$\phi_{\mathrm{I}}^{*}(\zeta)=\ln \left(\frac{r_{0}-\zeta}{r_{0}}\right)-\alpha \ln \left(\frac{t_{0}-\zeta}{t_{0}}\right)$
$\phi_{I I}^{*}(\zeta)=\frac{m \zeta^{2}-z_{\zeta}+1}{\zeta^{2}-Z_{\zeta}+m}+\frac{\left(m t_{i}^{2}-z_{0} t_{i}+1\right) \zeta}{t_{i}\left(t_{0}-t_{i}\right)\left(\zeta-t_{i}\right)}-\frac{1}{m}$
$\phi_{\mathrm{I}}^{*^{\prime}}(\zeta)=\frac{1}{\zeta-\mathrm{r}_{\mathrm{o}}}-\frac{\alpha}{\zeta-\mathrm{t}_{\mathrm{o}}}$
$\phi_{I}^{*} \dot{I}(\zeta)=\frac{P D}{\left(\zeta^{2}-\bar{z}_{0} \zeta+m\right)^{2}}-\frac{m t_{i}^{2}-z_{0} t_{i}+1}{\left(t_{0}-t_{i}\right)\left(\zeta-t_{i}\right)^{2}}$
$\phi_{\mathrm{I}}^{* \prime}(\zeta)=\frac{-1}{\left(\zeta-\mathrm{r}_{0}\right)^{2}}+\frac{\alpha}{\left(\zeta-t_{0}\right)^{2}}$

$$
\begin{aligned}
& \phi_{I}^{*}{ }_{I}^{\prime \prime}(\zeta)=\frac{\left[2 m\left(\zeta^{2}-\bar{Z}_{0} \zeta+m\right)-2\left(m \zeta^{2}-20 \zeta+1\right)\right]\left(\zeta^{2}-\bar{Z}_{0} \zeta+m\right)-2\left(2 \zeta-\bar{Z}_{0}\right)[P D]}{\left(\zeta^{2}-\bar{Z}_{0} \zeta+m\right)^{3}} \\
& +\frac{2\left(m t_{i}^{2}-Z_{0} t_{i}+1\right)}{\left(t_{o}-t_{i}\right)\left(\zeta-t_{i}\right)^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \Psi_{I I}^{*}(\zeta)=\ln \left(\frac{t_{0}-\zeta}{t_{0}}\right)-\alpha \ln \left(\frac{r_{0}-\zeta}{r_{0}}\right)+\frac{\zeta\left(\zeta^{2}+m\right)}{1-m \zeta^{2}} \cdot \phi_{I I}^{*}(\zeta) \\
& \Psi_{\bar{I}}^{\prime}(\zeta)=\frac{-P D}{\left(m \zeta^{2}-Z_{0} \zeta+1\right)^{2}}-\frac{r_{i}^{2}-\bar{Z}_{0} r_{i}+m}{m\left(r_{0}-r_{i}\right)\left(\zeta-r_{i}\right)^{2}}+\frac{\zeta\left(\zeta^{2}+m\right)}{1-m \zeta^{2}} \cdot \phi_{I}^{* \prime \prime}(\zeta) \\
& +\frac{\left(3 \zeta^{2}+m\right)\left(1-m \zeta^{2}\right)+2 m \zeta^{2}\left(\zeta^{2}+m\right)}{\left(1-m \zeta^{2}\right)^{2}} \phi_{I^{\prime}}^{*}(\zeta) \\
& \Psi \underset{\mathrm{I}}{\mathrm{I}}(\zeta)=\frac{1}{\zeta-t_{0}}-\frac{\alpha}{\zeta-r_{0}}+\frac{\zeta\left(\zeta^{2}+m\right)}{1-m \zeta^{2}} \phi_{\mathrm{I}}^{\mathrm{I}} \mathrm{I}(\zeta) \\
& +\frac{\left(3 \zeta^{2}+m\right)\left(1-m \zeta^{2}\right)+2 m \zeta^{2}\left(\zeta^{2}+m\right)}{\left(1-m \zeta^{2}\right)^{2}} \cdot \phi_{I}^{*}(\zeta) \\
& P D=\left(2 m \zeta-Z_{0}\right)\left(\zeta^{2}-\bar{Z}_{0} \zeta+m\right)-\left(2 \zeta-Z_{0}\right)\left(m \zeta^{2}-Z_{0} \zeta+1\right)
\end{aligned}
$$

Substituting the components of the resultant fictitious traction, equations (4.59), into the influence functions for an elliptical hole, equations (4.52),

$$
\begin{aligned}
& H_{x x ; x}=\operatorname{Re}\left\{\frac{-2}{Z-Z_{0}}+\frac{2 \zeta^{2}}{m \zeta^{2}-1} \phi_{\Sigma}^{*}(\zeta)-\bar{Z}\left[\frac{1}{\left(Z-Z_{0}\right)^{2}}+\frac{\zeta^{4}}{\left(m \zeta^{2}-1\right)^{4}} \phi_{\Sigma}^{* \prime \prime}(\zeta)\right.\right. \\
& \left.-\frac{2 \zeta^{3}}{\left(m \zeta^{2}-1\right)^{3}} \phi_{I}^{*}(\zeta)\right]+\frac{\bar{Z}_{0}}{\left(Z-\bar{Z}_{0}\right)^{2}}-\frac{\alpha}{Z-\bar{Z}_{0}} \\
& \left.-\frac{\zeta^{2}}{\left(m \zeta^{2}-1\right)} \Psi_{I^{\prime}}^{\prime}(\zeta)\right\} / 2 \pi(\alpha+1) \\
& H_{x x ; y}=\operatorname{Re}\left\{i \left(\frac{-2}{Z-Z_{0}}+\frac{2 \zeta^{2}}{m \zeta^{2}-1}\left(\phi_{I}^{*}(\zeta)-\phi_{I}^{*} \dot{I}(\zeta)\right)-\bar{Z}\left[\frac{1}{\left(Z-Z_{0}\right)^{2}}\right.\right.\right. \\
& +\frac{\zeta^{4}}{\left(m \zeta^{2}-1\right)^{4}}\left(\phi_{\mathrm{I}}^{* \prime}(\zeta)-\phi_{\mathrm{I}}^{*} \mathrm{I}(\zeta)\right)-\frac{2 \zeta^{3}}{\left(\mathrm{~m} \zeta^{2}-1\right)^{3}}\left(\phi_{\mathrm{I}}{ }^{\prime}(\zeta)\right. \\
& \left.\left.-\phi_{I}^{*} \dot{I}(\zeta)\right)\right]+\frac{\bar{Z}_{0}}{\left(Z-\bar{Z}_{0}\right)}+\frac{\alpha}{Z-\bar{Z}_{0}}-\frac{\zeta^{2}}{\left(m \zeta^{2}-1\right)}\left(\Psi_{\bar{I}}{ }^{\prime}(\zeta)\right. \\
& -\Psi \underset{I}{\prime}(\zeta))\} / 2 \pi(\alpha+1) \\
& H_{y y} ; x=\operatorname{Re}\left\{\frac{-2}{Z-Z_{0}}+\frac{2 \zeta^{2}}{m \zeta^{2}-1} \phi_{I}^{*}(\zeta)+\bar{z}\left[\frac{1}{\left(Z-Z_{0}\right)^{2}}+\frac{\zeta^{4}}{\left(m \zeta^{2}-1\right)^{4}} \phi_{I}^{* \prime \prime}(\zeta)\right.\right. \\
& \left.-\frac{2 \zeta^{3}}{\left(m \zeta^{2}-1\right)^{3}} \phi_{1}^{\prime \prime}(\zeta)\right]-\frac{\bar{Z}_{0}}{\left(Z-\bar{Z}_{0}\right)^{2}}+\frac{\alpha}{Z-\bar{Z}_{0}} \\
& \left.+\frac{\zeta^{2}}{m \zeta^{2}-1} \Psi_{\Gamma}^{* \prime}(\zeta)\right\} /(2 \pi(\alpha+1))
\end{aligned}
$$

$$
\begin{aligned}
& H_{y y ; y}=\operatorname{Re}\left\{i \left(\frac{-2}{Z-Z_{0}}+\frac{2 \zeta^{2}}{m \zeta^{2}-1}\left(\phi_{\bar{I}}^{*}(\zeta)-\phi_{I}^{*} I^{\prime}(\zeta)\right)+\bar{Z}\left[\frac{1}{\left(Z-Z_{0}\right)^{2}}\right.\right.\right. \\
& +\frac{\zeta^{4}}{\left(m \zeta^{2}-1\right)^{4}}\left(\phi_{I}^{* \prime \prime}(\zeta)-\phi_{I}^{* \prime \prime}(\zeta)\right)-\frac{2 \zeta^{3}}{\left(m \zeta^{2}-1\right)^{3}}\left(\phi_{\mathrm{I}}^{\prime}(\zeta)\right. \\
& \left.\left.-\phi_{\mathrm{I} I}^{*}(\zeta)\right)\right]-\frac{\bar{Z}_{0}}{\left(Z-\bar{Z}_{0}\right)^{2}}-\frac{\alpha}{Z-\bar{Z}_{0}}+\frac{\zeta^{2}}{m \zeta^{2}-1}\left(\Psi_{I}^{*}(\zeta)\right. \\
& -\Psi \underset{I I}{ }(\zeta)))\{12 \pi(\alpha+1) \\
& H_{x y ; x}=\operatorname{Im}\left\{\bar{Z}\left[\frac{1}{\left(Z-Z_{0}\right)^{2}}+\frac{\zeta^{4}}{\left(m \zeta^{2}-1\right)^{4}} \phi_{I}^{* \prime \prime}(\zeta)-\frac{2 \zeta^{3}}{\left(m \zeta^{2}-1\right)^{3}} \phi_{I}^{*}{ }^{\prime}(\zeta)\right]\right. \\
& \left.-\frac{\bar{Z}_{0}}{\left(Z-\bar{Z}_{0}\right)^{2}}+\frac{\alpha}{Z-\bar{Z}_{0}}+\frac{\zeta^{2}}{m \zeta^{2}-1} \Psi_{I}^{\prime}(\zeta)\right\} /(2 \pi(\alpha+1)) \\
& H_{x y ; y}=\operatorname{Im}\left\{i \left(\overline { Z } \left[\frac{1}{\left(Z-Z_{0}\right)^{2}}+\frac{\zeta^{4}}{\left(m \zeta^{2}-1\right)^{4}}\left(\phi_{I}^{* \prime \prime}(\zeta)-\phi_{I I}^{* \prime \prime}(\zeta)\right)\right.\right.\right. \\
& \left.-\frac{2 \zeta^{3}}{\left(m \zeta^{2}-1\right)^{3}}\left(\phi_{I}^{*}(\zeta)-\phi_{I}^{*}(\zeta)\right)\right]-\frac{\bar{Z}_{0}}{\left(Z-\bar{Z}_{0}\right)^{2}}-\frac{\alpha}{Z-\bar{Z}_{0}} \\
& \left.\left.+\frac{\zeta^{2}}{m \zeta^{2}-1}\left(\Psi_{I}^{*}(\zeta)-\Psi \star I_{I}^{\prime}(\zeta)\right)\right)\right\} /(2 \pi(\alpha+1)) \\
& I_{x ; x}=\operatorname{Re}\left\{-\alpha \ln \left(Z-Z_{0}\right)+\alpha \phi_{I^{\prime}}^{\prime}(\zeta)-z\left[\frac{-1}{z-\bar{Z}_{0}}+\frac{\bar{\zeta}^{2}}{m \bar{\zeta}^{2}-1} \overline{\phi_{I}^{*}(\zeta)}\right]\right. \\
& \left.-\frac{Z_{0}}{\bar{Z}-Z_{0}}-\alpha \ln \left(\bar{z}-Z_{0}\right)-\overline{\Psi_{I}^{*}(\zeta)}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& 230 \\
& I_{x ; y}=\operatorname{Re}\left\{i \left(-\alpha \ln \left(Z-Z_{0}\right)+\alpha\left(\phi_{I}^{*}(\zeta)-\phi_{I}^{*}(\zeta)\right)-Z\left[\frac{-1}{Z-\bar{Z}_{0}}\right.\right.\right. \\
& \left.+\frac{\bar{\zeta}^{2}}{m \bar{\zeta}^{2}-1}\left(\overline{\phi_{I}^{*}(\zeta)}-\overline{\phi_{I I}^{*}(\zeta)}\right)\right]-\frac{Z_{0}}{\bar{Z}-Z_{0}}+\alpha \ln \left(\bar{Z}-Z_{0}\right) \\
& \text { - } \left.\left(\overline{\Psi_{I}^{*}(\zeta)}-\overline{\Psi_{I I}^{*}(\zeta)}\right)\right\} / 4 \mu \pi(\alpha+1) \\
& I_{y ; x}=\operatorname{Im}\left\{-\alpha \ln \left(Z-Z_{0}\right)+\alpha \phi_{\mathrm{I}}{ }^{\prime}(\zeta)-Z\left[\frac{-1}{Z-\bar{Z}_{0}}+\frac{\bar{\zeta}^{2}}{m \bar{\zeta}^{2}-1} \overline{\phi_{I}^{* \prime}(\zeta)}\right]\right. \\
& \left.+\frac{Z_{0}}{\bar{Z}-Z_{0}}-\alpha \ln \left(\bar{Z}-Z_{0}\right)-\overline{\Psi_{I}^{*}(\zeta)}\right\} / 4 \mu \pi(\alpha+1) \\
& I_{y ; y}=\operatorname{Im}\left\{i \left(-\alpha \ln \left(Z-Z_{0}\right)+\alpha\left(\phi_{I^{\prime}}^{\prime}(\zeta)-\phi_{I}^{*}(\zeta)\right)-Z\left[\frac{-1}{Z-\bar{Z}_{0}}\right.\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.-\left(\overline{\Psi_{I}^{*}(\zeta)}-\overline{\Psi_{I}^{*}(\zeta)}\right)\right)\right\} / 4 \mu \pi(\alpha+1)
\end{aligned}
$$

## APPENDIX D <br> THE POTENTIAL FUNCTIONS AND THE INFLUENCE FUNCTIONS FOR AN INFINITE PLANE REGION CONTAINING A SHARP CRACK

The following complex functions were used in the influence functions for a sharp crack, equations (4.54), $\mathrm{m}=1$ :

$$
\phi_{\mathrm{I}}^{*}(\zeta)=\ln \left(\frac{r_{0}-\zeta}{r_{0}}\right)-\alpha \ln \left(\frac{t_{0}-\zeta}{t_{0}}\right)
$$

$$
\phi{\underset{I}{*}}^{(\zeta)}=\frac{\zeta^{2}-Z_{0} \zeta+1}{\zeta^{2}-\bar{Z}_{0} \zeta+1}+\frac{\left(t_{i}^{2}-z_{0} t_{i}+1\right)}{t_{i}\left(t_{0}-t_{i}\right)\left(\zeta-t_{i}\right)}-1
$$

$$
\phi_{\mathrm{I}}^{*}(\zeta)=\frac{1}{\zeta-\mathrm{r}_{0}}-\frac{\alpha}{\zeta-t_{0}}
$$

$$
\phi_{I}^{*}(\zeta)=\frac{P D}{\left(\zeta^{2}-\bar{Z}_{0} \zeta+1\right)^{2}}-\frac{t_{i}^{2}-Z_{0} t_{i}+1}{\left(t_{0}-t_{i}\right)\left(\zeta-t_{i}\right)^{2}}
$$

$$
\phi_{I}^{* \prime \prime}(\zeta)=\frac{-1}{\left(\zeta-r_{0}\right)^{2}}+\frac{\alpha}{\left(\zeta-t_{0}\right)^{2}}
$$

$$
\phi_{\mathrm{I}}^{\star} \ddot{\prime}(\zeta)=\frac{\left[2\left(\zeta^{2}-\bar{Z}_{0} \zeta+1\right)-2\left(\zeta^{2}-Z_{0} \zeta+1\right)\right]\left(\zeta^{2}-\bar{Z}_{0} \zeta+1\right)-2\left(2 \zeta-\bar{Z}_{0}\right)(\mathrm{PD})}{\left(\zeta^{2}-\bar{Z}_{0} \zeta+1\right)^{3}}
$$

$$
+\frac{2\left(t_{i}^{2}-z_{0} t_{i}+1\right)}{\left(t_{0}-t_{i}\right)\left(\zeta-t_{i}\right)^{3}}
$$

For the special case $Z=\bar{Z}_{0}$, the only changes are

$$
\begin{aligned}
& \phi_{I I}^{*}(\zeta)=\frac{(A N)}{\left(\zeta-t_{0}\right)^{2}}-\frac{Z_{0} t_{0}^{-1}}{t_{0}^{2}} \\
& \phi_{I I}^{*}(\zeta)=\frac{2}{\zeta-t_{0}}-\frac{2(A N)}{\left(\zeta-t_{0}\right)^{3}} \\
& \phi_{I}^{* \prime \prime}(\zeta)=\frac{-6}{\left(\zeta-t_{0}\right)^{2}}+\frac{6(A N)}{\left(\zeta-t_{0}\right)^{4}}
\end{aligned}
$$

where

$$
\begin{gathered}
\mathrm{PD}=\left(2 \zeta-\mathrm{Z}_{0}\right)\left(\zeta^{2}-\bar{Z}_{0} \zeta+1\right)-\left(2 \zeta-\bar{Z}_{0}\right)\left(\zeta^{2}-Z_{0} \zeta+1\right) \\
\mathrm{AN}=\left(2 \zeta-Z_{0}\right)\left(\zeta-\mathrm{t}_{0}\right)-\left(\zeta^{2}-Z_{0} \zeta+1\right)
\end{gathered}
$$

For all the cases

$$
\begin{aligned}
\Psi_{\mathrm{I}}^{*}(\zeta)= & \frac{\zeta^{2}-\bar{Z}_{0} \zeta+1}{\zeta^{2}-Z_{0} \zeta+1}+\frac{\left(r_{i}^{2}-\bar{Z}_{0} r_{i}+1\right)}{r_{i}\left(r_{0}-r_{i}\right)\left(\zeta-r_{i}\right)}+\frac{\zeta\left(\zeta^{2}+1\right)}{1-\zeta^{2}} \cdot \phi_{I}^{*}(\zeta)-1 \\
\Psi_{I}^{*}(\zeta)= & \ln \left(\frac{t_{0}-\zeta}{t_{0}}\right)-\alpha \ln \left(\frac{r_{0}-\zeta}{r_{0}}\right)+\frac{\zeta\left(\zeta^{2}+1\right)}{1-\zeta^{2}} \phi_{I}^{*} I_{I}^{\prime}(\zeta) \\
\Psi_{I}^{*}(\zeta)= & \frac{-P D}{\left(\zeta^{2}-Z_{0} \zeta+1\right)^{2}}-\frac{r_{i}^{2}-\bar{Z}_{0} r_{i}+1}{\left(r_{0}-r_{i}\right)\left(\zeta-r_{i}\right)^{2}}+\frac{\zeta\left(\zeta^{2}+1\right)}{1-\zeta^{2}} \cdot \phi_{I}^{* \prime \prime}(\zeta) \\
& \frac{\left(3 \zeta^{2}+1\right)\left(1-\zeta^{2}\right)+2 \zeta^{2}\left(\zeta^{2}+1\right)}{\left(1-\zeta^{2}\right)^{2}} \phi_{I}^{*}(\zeta)
\end{aligned}
$$

$$
\begin{aligned}
\Psi_{I}^{*} \dot{I}(\zeta) & =\frac{1}{\zeta-t_{0}}-\frac{\alpha}{\zeta-r_{0}}+\frac{\zeta\left(\zeta^{2}+1\right)}{1-\zeta^{2}} \phi_{\mathrm{I}}^{\star^{\prime \prime}}(\zeta) \\
& +\frac{\left(3 \zeta^{2}+1\right)\left(1-\zeta^{2}\right)+2 \zeta^{2}\left(\zeta^{2}+1\right)}{\left(1-\zeta^{2}\right)^{2}} \phi_{\mathrm{I}}^{k}(\zeta)
\end{aligned}
$$

Substituting the components of the resultant fictitious traction, equation (4.59) into the influence functions for a slit, equations (4.54):

$$
\begin{aligned}
& H_{x x ; x}=\operatorname{Re}\left\{\frac{-2}{Z-Z_{0}}+\frac{2 \zeta^{2}}{\zeta^{2}-1} \phi_{I}^{*}(\zeta)-\bar{Z}\left[\frac{1}{\left(Z-Z_{0}\right)}+\frac{\zeta^{4}}{\left(\zeta^{2}-1\right)^{4}} \phi_{I}^{* \prime \prime}(\zeta)\right.\right. \\
& \left.-\frac{2 \zeta^{3}}{\left(\zeta^{2}-1\right)^{3}} \phi_{I}^{*}(\zeta)\right]+\frac{\bar{Z}_{0}}{\left(Z-\bar{Z}_{0}\right)^{2}}-\frac{\alpha}{Z-\bar{Z}_{0}} \\
& \left.-\frac{\zeta^{2}}{\zeta^{2}-1} \Psi \mathrm{I}^{\prime}(\zeta)\right\} / 2 \pi(\alpha+1) \\
& H_{x x ; y}=\operatorname{Re}\left\{i\left(\frac{-2}{Z-Z_{0}}+\frac{2 \zeta^{2}}{\zeta^{2}-1}\left(\phi_{I}^{*}(\zeta)\right)-\phi_{I}^{*}(\zeta)\right)-\bar{Z}\left[\frac{1}{\left(Z-Z_{0}\right)^{2}}\right.\right. \\
& \left.+\frac{\zeta^{4}}{\left(\zeta^{2}-1\right)^{4}}\left(\phi_{I}^{* \prime \prime}(\zeta)-\phi_{I I}^{* \prime \prime}(\zeta)\right)-\frac{2 \zeta^{3}}{\left(\zeta^{2}-1\right)^{3}}\left(\phi_{I}^{*}(\zeta)-\phi_{I}^{*}(\zeta)\right)\right] \\
& \left.\left.+\frac{\bar{Z}_{0}}{\left(Z-\bar{Z}_{0}\right)^{2}}+\frac{\alpha}{Z-\bar{Z}_{0}}-\frac{\zeta^{2}}{\zeta^{2}-1}\left(\Psi_{I}^{*}(\zeta)-\Psi * \prime(\zeta)\right)\right)\right\} / 2 \pi(\alpha+1)
\end{aligned}
$$

$$
\begin{aligned}
& H_{y y} ; x=\operatorname{Re}\left\{\frac{-2}{z-z_{0}}+\frac{2 \zeta^{2}}{\zeta^{2}-1} \phi_{\mathrm{I}}^{\prime}(\zeta)+\bar{z}\left[\frac{1}{\left(z-z_{0}\right)^{2}}+\frac{\zeta^{4}}{\left(\zeta^{2}-1\right)^{4}} \phi_{\mathrm{I}}^{\star \prime \prime}(\zeta)\right.\right. \\
& \left.-\frac{2 \zeta^{3}}{\left(\zeta^{2}-1\right)^{3}} \phi_{I}^{*}(\zeta)\right]-\frac{\bar{Z}_{0}}{\left(Z-\bar{Z}_{0}\right)^{2}}+\frac{\alpha}{Z-\bar{Z}_{0}} \\
& \left.+\frac{\zeta^{2}}{\zeta^{2}-1} \Psi{ }_{\mathrm{I}}^{\prime}(\zeta)\right\} /(2 \pi(\alpha+1) \\
& H_{y y ; y}=\operatorname{Re}\left\{i \left(\frac{-2}{Z-Z_{0}}+\frac{2 \zeta^{2}}{\zeta^{2}-1}\left(\phi_{I}^{*}(\zeta)-\phi_{\mathrm{I}}^{\mathrm{I}}(\zeta)\right)+\bar{Z}\left[\frac{1}{\left(Z-Z_{0}\right)^{2}}\right.\right.\right. \\
& \left.+\frac{\zeta^{4}}{\left(\zeta^{2}-1\right)^{4}}\left(\phi_{I}^{* \prime \prime}(\zeta)-\phi_{I}^{* \prime \prime}(\zeta)\right)-\frac{2 \zeta^{3}}{\left(\zeta^{2}-1\right)^{3}}\left(\phi_{I}^{* \prime}(\zeta)-\phi_{I}^{*}(\zeta)\right)\right] \\
& \left.\left.-\frac{\bar{Z}_{0}}{\left(Z-\bar{Z}_{0}\right)^{2}}-\frac{\alpha}{Z-\bar{Z}_{0}}+\frac{\zeta^{2}}{\zeta^{2}-1}\left(\Psi_{\bar{I}^{\prime}}^{\prime}(\zeta)-\Psi_{I}^{\prime}(\zeta)\right)\right)\right\} / 2 \pi(\alpha+1) \\
& H_{x y ; x}=\operatorname{Im}\left\{\bar{Z}\left[\frac{1}{\left(Z-Z_{0}\right)^{2}}+\frac{\zeta^{4}}{\left(\zeta^{2}-1\right)^{4}} \phi_{I}^{* \prime \prime}(\zeta)-\frac{2 \zeta^{3}}{\left(\zeta^{2}-1\right)^{3}} \phi_{I^{\prime}}^{\prime}(\zeta)\right]\right. \\
& \left.-\frac{\bar{Z}_{0}}{\left(Z-\bar{Z}_{0}\right)^{2}}+\frac{\alpha}{Z-\bar{Z}_{0}}+\frac{\zeta^{2}}{\zeta^{2}-1} \Psi_{\bar{I}}{ }^{\prime}(\zeta)\right\} / 2 \pi(\alpha+1) \\
& H_{x y ; y}=\operatorname{Im}\left\{i \left(\overline { Z } \left[\frac{1}{\left(Z-Z_{0}\right)^{2}}+\frac{\zeta^{4}}{\left(\zeta^{2}-1\right)^{4}}\left(\phi_{I}^{* \prime \prime}(\zeta)-\phi_{I I}^{* \prime \prime}(\zeta)\right)\right.\right.\right. \\
& \left.-\frac{2 \zeta^{3}}{\left(\zeta^{2}-1\right)^{3}}\left(\phi_{\mathrm{I}}{ }^{\prime}(\zeta)-\phi_{\mathrm{I}}^{\mathrm{I}}(\zeta)\right)\right]-\frac{\overline{\mathrm{Z}}_{0}}{\left(\mathrm{Z}-\bar{Z}_{0}\right)^{2}}-\frac{\alpha}{\mathrm{Z}-\overline{\mathrm{Z}}_{0}} \\
& \left.\left.+\frac{\zeta^{2}}{\zeta^{2}-1}\left(\Psi_{\mathrm{I}}{ }^{\prime}(\zeta)-\Psi{ }_{\mathrm{I}}^{\mathrm{I}}(\zeta)\right)\right)\right\} / 2 \pi(\alpha+1)
\end{aligned}
$$

$$
\begin{aligned}
& I_{x ; x}=\operatorname{Re}\left\{-\alpha \ln \left(z-z_{0}\right)+\alpha \phi_{I}^{A_{1}^{\prime}}(\zeta)-z\left[\frac{-1}{z-\bar{z}_{0}}+\frac{\bar{\zeta}^{2}}{\bar{\zeta}^{2}-1} \overline{\phi_{1}^{z_{1}^{\prime}}(\zeta)}\right]\right. \\
& \left.-\frac{Z_{0}}{\bar{Z}-z_{0}}-\alpha \ln \left(\bar{Z}-z_{0}\right)-\overline{Y_{1}^{*}(\bar{I})}\right\} / \Delta \pi \mu(\alpha+1) \\
& I_{x ; y}=\operatorname{Re}\left\{i \left(-\alpha \ln \left(Z-Z_{0}\right)+\alpha\left(\phi_{I}^{*}(\zeta)-\phi_{I T}^{*}(\zeta)\right)-z\left[\frac{-1}{z-\bar{Z}_{0}}\right.\right.\right. \\
& \left.+\frac{\bar{\zeta}^{2}}{\bar{\zeta}^{2}-1}\left(\overline{\phi_{\mathrm{I}}^{*}} \overline{(\zeta)}-\overline{\phi_{I}^{*} \bar{I}(\zeta)}\right)\right]-\frac{z_{0}}{z-z_{0}}+\alpha \ln \left(\bar{Z}-z_{0}\right)-\left(\overline{\varphi_{I}^{*}}(\bar{\zeta})\right. \\
& \left.\left.\left.-\overline{Y_{I}^{*}(\xi)}\right)\right)\right\} / 4 \mu \pi(\alpha+1) \\
& I_{y ; x}=\operatorname{Im}\left\{-\alpha \ln \left(z-z_{0}\right)+\alpha \phi 耳^{\prime}(\zeta)-z\left[\frac{-1}{z-z_{0}}+\frac{\bar{\zeta}^{2}}{\bar{\zeta}^{2}-1} \overline{\Phi_{Y}^{\prime}(\zeta)}\right]\right. \\
& \left.\left.-\frac{z_{0}}{\bar{Z}-z_{0}}-\alpha \ln \left(\bar{z}-z_{0}\right)-\overline{\Psi_{1}^{z}(\bar{z}}\right)\right\} / 4 \pi \mu(\alpha+1) \\
& I_{y ; y}=\operatorname{Im}\left\{i \left(\alpha \ln \left(z-Z_{0}\right)+\alpha\left(\phi_{\bar{I}}^{\prime}(\zeta)-\phi_{\bar{I} \dot{I}}^{\prime}(\zeta)\right)-z\left[\frac{-1}{z-\bar{z}_{0}}\right.\right.\right. \\
& \left.+\frac{\bar{\zeta}^{2}}{\bar{\zeta}^{2}-1}\left(\phi_{\mathrm{I}}^{*}(\zeta)-\phi_{\mathrm{I}}^{*} \dot{\mathrm{I}}(\zeta)\right)\right]-\frac{z_{0}}{\overline{\bar{z}}-z_{0}}+\alpha \ln \left(\bar{z}-z_{0}\right) \\
& \left.-\left(\overline{\psi_{I}^{*}(\zeta)}-\overline{\psi_{I I}^{*}(\zeta)}\right)\right\} / 4 \pi \mu(\alpha+1)
\end{aligned}
$$

A computer program was employed for the numerical computation of the stresses and the displacements at the field points of a two-dimensional region containing an elliptical hole or a sharp crack. A listing of that program for the rectangular region subjected to uniaxial tension $(\omega=1.0 \mathrm{MPa})$ and containing an elliptical hole or a sharp crack and for the circular plane subjected to a uniformly radially tension ( $\omega=1.0 \mathrm{MPa}$ ) and containing an elliptical hole are presented in this appendix.

## A. INPUT DATA

The following information must be provided as input (this is the order of appearance in the program).

PR - Poisson's ratio of the material
EMUD - modulus of elasticity of the material
NML $\quad$ - total number of subdivisions on the boundary
NFP - the number of field points at which the stresses and displacements are to be computed

M

- parameter used to describe semi-major axis $(a=1+M)$ and semi-minor axis $(b=1-M)$ of elliptical hole


THETA - angle of inclination of the elliptical hole or the sharp crack with respect to the $x$-axis
$X_{0}, Y_{0} \quad-$ location of the center of the rectangular or circular plane

WR - magnification of the size of the plane for the rectangular $p l a n e(W R=w i d t h / 10 \mathrm{~cm})$ and for the circular plane ( $W R=$ radius $/ 6.0 \mathrm{~cm}$ )
$X(I), Y(I)$ - coordinates of the outer boundary points, listed $\mathrm{I}=1, \mathrm{NML}$ counterclockwise
$\mathrm{BV}_{\mathrm{x}}(\mathrm{I}) \quad-\mathrm{x}$ and y components of boundary tractions speci$\mathrm{BV}_{\mathrm{y}}^{\mathrm{x}}(\mathrm{I}+\mathrm{NML})$
$I=1$,NML fied at each subdivision
PSX(I) - components of the fictitious traction on the PSY (I)
$I=1$,NML boundary, represented by the concentrated loads $P_{x i}^{*}, P_{y i}^{*}$ at the center of each one of the subdivisions. These are computed by solving a system of linear equations (4.61) (LEQT1F, computer library).

XF(I), - location of the field point at which the YF (I) $\mathrm{I}=1$, NFP stresses and displacements are computed

SIGMAXX, - components of stress and displacement at each SI GMAYY,
SIGMAXY, of the field points. These are computed using UX,UY equation (4.65).
C. THE COMPUTER PROGRAM FOR A RECTANGULAR PLANE CONTAINING AN ELLIPTICAL HOLE OR A SHARP CRACK (follows)




FORMAT (2F12, 8 )

FORMAT $6 F 10,5$

 $16 x, F 10.5,25 \mathrm{X}, \mathrm{FiO} .5)$

FCRMAT ( 6 Fi, 19.6 )
FORNAT ( $11 / 1,20 x, * F I E L J P O I N T, N O * * 24 X, * X F(I) *, 28 X, * Y F(I) *$


FORMAT ( $/ 1 /, 4 x, I 3,5(5 x, F 20,10)$ )
FORMAT ( $1 / 25$,




F15. 101
FORMAT $(1 / 1 /, 30 x, s$ SHARP
CRACK
PRO9LEM*)


* $4 * 4$ MATERIAL PROPERTIES

READ (5, 109 ) PQ, EMUD
SHMUO = EMUO/(2* (1 + PR))
WRITE ( $6,1 \frac{110)}{12}$ ) PR EFUD, SHNUD



```
 G(I):=QNT/170(IJ)-TI(I))
```



```
 GONTINUE
 * CALCULATION OF ELEMENTS OF THE RMINNL2,NMLTI) MATRIX *
```



```
 00 14 IE1,NML
```



```
 NXI=(Y(I+1)-Y(%))/OS
 NYI=(X(I)=X(I+1))/OSI
 NO=-1/22(I) +M
 MO2=H0&e2
 MOJ=WO2*NO
 HOO=2/23(I)
```



```
 00 15 J=1,NML
 IF IIEEQ,J) 60 TO 16
 2ED=2E(f)=TE(J)
 OM=2Z2(I)-2E(J)*2(I)*1
 OM2=QME&2
 OC=Z2(I)-ZEC(J)*Z(I) +M
 OC2=OC**?
 jR=2*ZP(I)-ZE(J)
 5=2*2(I)-7EC(J)
 22=10222(I)
 F=Z(I):(Z2(I)+M)/ZZ
 FO=(13=ZZ(f)+M):ZZ*Z=222(I)*(Z2(I)4H))/ZZ**2
 <1年=219%-1* (J)
 ZRIE2\ま)-RI(N)
 \TO=11<(z(I)-YO(J))
 ZRO=1'(Z(I)-RO(J))
 OO1 = ZRO-ALPHAE ZTO
 lol
 {F1ZTITNNEOMO
 Z103=210*5*O
```



```
 OO2=2*2TD-2-AN42T03
 PDO2=-G*2TOZ+6*AN*2TOM
 GO TO 31
 PD2=PD/QC2-G(J)/ZTI**2
 POO2=((2*M4OC-2*OM)*OC-2*OT*OO)/(OC2*OC) +2*G(J)/ZTI**3
 201=(OTSGM-AREOC)/QM2-K(J)/ZRI**2+F=PDOL+FO*PO1
 ZO2=2TO-ALPHA=ZROOFGPOOZ&FDOAOL
 H1=901/ND
 S{=201/W0
 K1=POO1/MO2-PO1-WDD/WO3
 K2=PNO2/MO2-PD2*WOOWWO3
 HI=H1-1/ZED
 K1=K1+1/{ED2
 SI=S1-ZEC(J)RZED2
 R1=2*(H2+H2)
 R2={EC(1)* (K1*K2)+S1+S2
 R3=2E(H(-H2)
 QM(I.J)=(REAL(F1-22)@NXI+AIMAG(R2)4NYI)*COEF&OSI
 RM(I: JHNML)E(PEAL (EF (R3-RR)) NXIFAIYAG (EISOLISNYI) ECOEFE OSI
```



```
RM(I+NML,J+NML)=(AIMAG(EI*R4)&NXI+REAL(EI*(R3+QUU)*NYI)*COEFADSI
 G0(FO
 RM(F:I)EM/2:O.&
```

$\begin{aligned} & c \\ & i_{5} \\ & c \\ & c^{4} \end{aligned}$	CONTINUE    CONTINUE  
C	 
$\begin{aligned} & \text { G } \\ & \text { C } \\ & \text { C } \end{aligned}$	REAO (5, 170 ) ( $8 V(I), 3 V(I+N M L)$ I $I=1, N M L)$   semend   - CORRECTING THE KISYRIBUETO THE CHANG IN HIDTH RATIC TO     
	CONTINUE $\qquad$    GEA CALCULATION OF THE ROTATED BOUNOAPY VALUES :   IFITHETA EO.O.O) GO TO 49   0 $Q^{\prime}=8 V^{4}(I)$ $I=1 ; N M L$      - JESV (I+ NML)   OV(I) = EITCOS(T)+BIOSIN(T)  
4	CRITE ${ }^{\text {CONTI }}$ ( 6,180$)(I, a \cup(I), B \cup(I+N M L), I=1, N M L)$
$\begin{aligned} & \mathbf{C} \\ & \mathbf{C} \end{aligned}$	: COALCULATION OF STRESSES AND OI SPLACEMENTS
24	
20	CRITENUE 6,270$) \quad J, A, B$
C	
C	00 21 Incin NFP
6	
C	


D. THE COMPUTER PROGRAM FOR A CIRCULAR PLANE CONTAINING AN ELLIPTICAL HOLE OR A SHARP CRACK (follows)



```
TI(I)=Y3
1 9
```

PI(I) = Y

```
2Pis) = M (
```

2Pis) = M (
द2215) EMET2 (1

```
द2215) EMET2 (1
```








```
GONTINE
```

GONTINE
相
相
G CALCULATION OF EE EMENTS OF THE RHNHL? NHLTI MATRIX:

```
G CALCULATION OF EE EMENTS OF THE RHNHL? NHLTI MATRIX:
```



```
 00 14 IEL,NML
 OSI=SOQT((X(I*I)=X(I) +0 2+(Y&I*1)-Y(I))**2)
 NXI=(Y(I+1)-Y(I))/0SI
```




```
 MO=-1/22(1
 MOJ=WO2*HO
 HOO=2/23(I)
```



```
 00 15 J=1, NML
```



```
 IF IIOEROJ)GGOO TO 16
 ZED=2EE(1)
 OM=222(I)-2E(J)*2(I)+1
 OM2=QMOBL
 GC=22(I)=2EC(J)*Z(I) &M
 OC2=OC-*?
 OR=2* 2P(I)-2E(J)
```



```
 Z2=1-2Z2(I)
 F=2(I)=(Z2(I) +M)/22
```



```
 2TG=2(I)=T&(J)
 2TO=1/(Z(I)=FO(J))
 Z402=240:-2
 {RO=1 (2(I)-QO(J))
PO1= 2RO-ALDHAE 2TO
```



```
 IFIZTI NNESOO
 2TO 3= 2T0 2T02
2T04=27034240
P02=2* \TO-24AN*2TO3
POO2=-6' 2TO246 ANA 2TO4
0
```




```
M1=PO&/NO
M&=PO1/NO
}&=201/MO
K1=P001/NO2-P01*NOO/HO3
<{2POO2/NOS-PO{ONOO/NOS
M1=M1-1/2 ED
K1=K1+1/7EJ2
```



```
R1=2* (H1+H2)
R2=2EC(I)-(K1+K2)+S1 -52
R4=2EC(I)O(K1-K2)+S1-S2
```

16	
$C$ 15 $C$ 14	CONTINUE    CONTI NUE  
$C$ $C$	- CALCULATION PF FICTITIOUS TRACTION POSTAR PS(I)  
C C C	```REAO (5, (70) (BV(I), 3V(I+NNL),I=I,NML) * CORRECTING THE ERV DUE TO THE CHANG IN HIOTH RATIO TO```  ```*) 00 46 IET,NHL 8\cup(I)=8V(I)&WR BV(I+NML) =SV(I &NML)*WR```
+6 $C$ $C$ $C$	GONTINUE   ```IF(THETA,EQ.O.O) GO TO 49 OO 4I Y= 1,NML 8I=8v(!) BJ=OV(I+NML) BV(I)=EI*COS(T) &OJESTN(T) 8Y(I+NM() =B JoCOS(T)-BI*SIN(T) CONTINUE WRITE (6,100) (I,BV(I),BV(I+NML),I=1,NML)```
C c	   $\qquad$
24	$\begin{aligned} & \text { A=REAC(ZFIJ) } \\ & \text { BEAIMAG(ZFI才) } \\ & \text { HRIF } \quad \text { IG,270) I,A,B } \end{aligned}$
20	CONTINUE   WQITE $(6,220)$
C	
C	
C	



```
 ZEFD=2EFF(I)=ZE\\)
```



```
 OM2 =OMOS?
 OC&ZF?-2FCC(J)*2F(I)+M
 OC2=0CB'2
 OT=2*2F(I)- LEC(J)
 OO=ORGOC
 }=1-}22F
 =2F(\xi)=(2F2+M)/ZZ
 FOz((3*ZF2+M)*ZZZ2-ZZZF*(ZFZ+M))/Z2**2
 ZTI=2F(I)=RI(J)
 {TO=1/(ZF(IJ)-子O(J))
 2T02E2T0E&2
 2RO=1/(ZF(\frac{y}{2})-RO(J))
 X{=CLOG(-1)(ZRO*RO(J)))
 x2=CLOG(-1)(zT0-TO(J))
 P1=X1-ALPHA=X2
 \rho2=0M/OC+G(J)IM11/2「I+1/TI(J))
 PO1=2RO-ALPHA 2FO
 POZ=PO/QC2-G(J)/2TIF*2
 POOI=-ZROS*ALPHA*ZTJ2Z-2*OT*PD)/(IOC2*OC) +2*G(J)/ZTI**3
 ZTI=OC/QN+K(J){(IN/ZRI+1/RI'(J))=M+F&POL
 2H2=& X2-ALPHA*XI (OH2-K(J)/2RIEA2+FAPOOO1+FOSPC1
 2O1 = OTYOALPOR=2CN'OM2-KNJNZZIN
 H1=PO1/NO
 H2=POD/WO
 Si=201/WO
 S 2=202/MO
 K1= POD 1/HOL-PO1*WOD/ WOS
 K2=POO2/WO2-PD2-WOO/WO3
 P1=P1-CLOG(ZEFC)
 H1=N1-1/ZEFD
K1=K1+1/2EFD2
KT1=2TI+ZEC\J\/ZEFD
ZT2=2T2+ALPHA:CLOG(ZEFD)
S1=SI-ZEC(J)/PEFOZ
R1=2:(H1 + H2)
R2=2EFC=(K1+K2) +S 1+52
R3=2=(H1-H2)
R4=2EFC=(K)-*2)+S1-5 2
*)
SGMXX=SGMXX+COEFEREAL((RI-R2)*QV(J)+EFE(R S-R4)&BV(J+NML)),
SGMXY=SGMXY+COEFEAIMAG(R2*BV (J)+EI*R4* OV (J+NML)!
```





```
CONTINUE
```



```
YRITE (6,230) I,S6MX, SGMYY, SGMXY,UX:UY
```



```
CONTINUE
```



```
ENO
```


## APPENDIX F <br> COMPUTER PROGRAM FOR PLOTTING THE CONTOUR OF THE OPENING WITH TWO OR THREE AXES OF SYMMETRY

A computer program was employed for plotting the contour of an opening with two or three axes of symmetry (e.g., triangular hole, square hole or elliptical hole). A listing of that program for a triangular hole with rounded corners, see Figures 5.1 and 5.2, for a square hole with rounded corners, see Figures 5.3 and 5.4 , and for elliptical hole are presented in this appendix.

## A. INPUT DATA

The following information must be provided as input.
AM(I) - This character represents 6 different coef-
ficients, $\varepsilon$, in equations (5.1) and (5.4)
c - coefficient in equations (5.1) and (5.4) (has to be specified in the program)

The type of the paper, pen and ink has to be specified in the statement "CALL PLOTS."
B. OUTPUT

Six different plots associated with the six different ع's (i.e., AM(I) in the program) and specified c.

## C. THE COMPUTER PROGRAM FOR PLOTTING A CONTOUR WHICH HAS THREE AXES OF SYMMETRY (TRIANGULAR HOLE WITH ROUNDED CORNERS)

```
PROGRAM TRPLTR (INPUT,OUTPUT, TAPE5=INRUT,TAPE6=OUTPUT)
OIMENSTON AM(S)
```





```
REAO (5,100) (AM(I),I=1,6)
00 20 J=1,6
\(\begin{array}{ll}x X=0.0 \\ y Y & =20\end{array}\)
DO 10101,361
THETA=(I-1) \(3600^{\circ} 2=3\) B 1415926535897
```





```
\(U=x+1.0\)
CALL PLOT (X,Y, IPEN)
CALL SYY (X,Y,IDEN) \(14,2 H E=0,0,2)\)
CALL NUMBER (U,V,0.14,AM(J),0,0,2)
```



```
CALL SY MAOL (R,2,0,14,2HC=,J,0,2)
```



```
\(x x=x x+7, i\)
\(y\)
YYE-2OYY \(\quad(X X, Y Y,-3)\)
CAL
CONTINUET
CALL PLOT (0,0,993)
```

D. THE COMPUTER PROGRAM FOR PLOTTING A CONTOUR WHICH HAS TWO AXES OF SYMMETRY (E.G., SQUARE HOLE WITH ROUNDED CORNERS, OVAL HOLE AND ELLIPTICAL HOLE WHEN $\varepsilon=0$ )

$28^{3 n}$

REFERENCES

## REFERENCES

[1] T. A. Cruse, "Application of the Boundary-IntegralEquation Method to Three Dimensional Stress Analysis", Computers and Structures, vol. 3, pp. 509-527, (1973).
[2] S. M. Vogel and F. J. Rizzo, "An Integral Equation Formulation of Three Dimensional Anisotropic Elastostatic Boundary Value Problems', Journal of Elasticity, vol. 3, no. 3, pp. 203-216, (1973).
[3] A. Mendelson and L. U. Albers, "Application of Boundary Integral Equations to Elastoplastic Problems', AMD, vol. 11,.pp. 47-85, ASME, (1975).
[4] N. J. Altiero and D. L. Sikarskie, "A BoundaryIntegral Method Applied to Plates of Arbitrary Plan Form", to appear in Journal of Computers and Structures, (1978).
[5] T. A. Cruse, "Elastic Fracture Mechanics Analysis for Three Dimensional Cracks, Proceedings of the Symposium on Advanced Analysis Methods for Fracture Mechanics, ASCE, (April 1975).
[6] T. A. Cruse and F. J. Rizzo (eds.), Boundary-Integral Equation Method: Computational Applications in Applied Mechanics, ASME-AMD, vol. 11, (1975).
[7] E. Betti, Il Nuovo Cimento, pp. 6-10, (1872).
[8] C. Somigliana, I1 Nuovo Cimento, pp. 17-20, (1885).
[9] G. Lawricella, Acta Math, p. 32, (1909).
[10] 0. D. Kellogg, Foundations of Potential Theory, 1st ed., Dover, New York, (1953).
[11] M. A. Jaswon, "Integral Equation Methods in Potential Theory", 1. Proc. Roy. Soc. Ser. A, pp. 273, (1963).
[12] M. A. Jaswon and A. R. Ponter, "An Integral Equation Solution of the Torsion Problem", Proc. Roy. Soc. Ser. A, p. 273, (1963).
[13] G. T. Symm, "Integral Equation Methods in Potential Theory', II, Proc. Roy. Soc. Ser. A, p. 275, (1963).
[14] F. J. Rizzo, "Some Integral Equation Methods for Plane Problems of Classical Elastostatics", Ph.D. Dissertation, University of Illinois, (1964).
[15] F. J. Rizzo, "An Integral Equation Approach to Boundary Value Problems of Classical Elastostatics", Quarterly of Applied Mathematics, vol. 40, pp. 8395, (1967).
[16] F. J. Rizzo and D. J. Shippy, "A Formulation and Solution Procedure for the General Non-Homogeneous Elastic Inclusion Problem", International J. of Solids and Structures, vol. 4, pp. 1161-1179, (1968).
[17] T. A. Cruse, "Numerical Solutions in Three Dimensional Elastostatics", International J. of Solids and Structures, vol. 5, pp. 1259-1274, (1969).
[18] C. E. Pearson, Theoretical Elasticity, Harvard, (1959).
[19] C. E. Massonnet, Stress Analysis, Chapt. 10, (ed. O. C. Zienkiewicz and G. S. Hollister), Wiley, (1965).
[20] N. J. Altiero and D. L. Sikarskie, "An Integra1 Equation Method Applied to Penetration Problems in Rock Mechanics', AMD, vo1. 11, pp. 119-141, ASME, (1975).
[21] S. Timoshenko and J. M. Goodier, Theory of Elasticity, 2nd ed., McGraw-Hill, (1951).
[22] R. Benjumea and D. L. Sikarskie, "On the Solution of Plane Orthotropic Elasticity Problems by an Integral Method", J. of Applied Mech., vol. 39, no. 3, Series E, pp. 801-808, (Sept. 1972).
[23] A. E. H. Love, The Mathematical Theory of Elasticity, 4th ed., Dover Publication, (1950).
[24] G. V. Kolossoff, "On the Application of Complex Function Theory to a Plane Problem of the Mathematical Theory of Elasticity", Dorpat (Yuriev) University, (1909).
[25] G. V. Kolossoff and N. I. Muskhelishvili, Izv Electrotech Inst., Petrograd, vol. 12, p. 39, (1915).
[26] N. I. Muskhelishvili, Singular Integral Equation, 2nd ed., translated from the Russian by J. R. M. Rodak, Groningen-Holland, (1953).
[27] N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, translated from the Russian by J. R. M. Radok, P. Noordhoff Ltd., (1953).
[28] J. W. Dettman, Mathematical Methods in Physics and Engineering, 2nd ed., McGraw-Hill, (1969).
[29] I. S. Sokolnikoff, Mathematical Theory of Elasticity, 2nd ed., McGraw-Hill, (1956).
[30] L. M. Milne-Tomson, PZane EZastic Systems, SpringerVerlag, (1960).
[31] A. E. Green and W. Zerna, Theoretical EZasticity, 2nd ed., Oxford at the Clarendon Press, (1968).
[32] G. Kirsch, V.D.I., vol. 42, no. 29, s.799, (1898).
[33] W. G. Bickley, "The Distribution of Stress Round a Circular Hole in a Plate", Royal Soc. of London, Phil. Transaction Ser. A v-227, pp. 383-415, (1928).
[34] R. C. J. Howland, "On the Stress in the Neighborhood of a Circular Hole in a Strip Under Tension", Phil. Trans. Roy. Soc., Series A, pp. 229,49, London, (1930).
[35] G. N. Savin, Stress Concentration Around Holes, translated from the Russian by E. Gros, Pergamon Press, (1961).
[36] R. D. Bhargava and F. P. Kapoor, "Circular Inclusion in an Infinite Elastic Medium with a Circular Hole", Cambridge Philosophical Society Proceeding, p. 60, (1964).
[37] R. V. Churchill, Complex Variables and Application, 2nd ed., McGraw-Hill, (1960).
[38] Y. N. Faddeeva, Computational Methods of Linear Algebra, translated from the Russian by C. D. Benster, Dover Publications, Inc., (1959).
[39] C. E. Inglis, "Stress in a Plate Due to the Presence of Cracks and Sharp Corners', trans. Inst. Naval Architects; vol. 55, pp. 219-241, (1913).
[40] A. J. Durelli and W. M. Murray, "Stress Distribution Around an Elliptical Discontinuity in Any TwoDimensional Uniform and Axial System of Combined Stress", Soc. for Experimental Stress Analysis, vol. 1, no. 1, pp. 19-31, (1943).
[41] H. M. Westergaard, "Bearing Pressures and Cracks", J. of Applied Mech., vol. 61, pp. 449-453, (1939).
[42] A. J. Durelli, V. J. Parks and H. C. Feng, "Stress Around an Elliptical Hole in a Finite Plate Subjected to Axial Loading", J. of Applied Mech., ASME Series E, pp. 192-195, (1966).
[43] W. N. Sharpe, Jr., T. S. Payne, and M. K. Smith, "Biaxial Laser-Based Displacement Transducer", Rev. Sci. Instrum., vol. 49, no. 4, pp. 57-62, (April 1978) .
[44] H. Tada, P. Paris and G. Irwin, "The Stress Analysis of Crack Handbook", Del Research Corp., Hellertown, Pennsylvania, (1973).
[45] P. A. Sokolov, "Distribution of the Stresses in a Plane Field Weakened by a Hole of Any Type", Bull. Scient.-Technical Commission, Upr. Voyenno-morsk. Sil., rab.-Krest. Kras. arm., IV, pp. 39-71, (1930).
[46] G. N. Savin, "Distribution of Stresses in a Plane Field Containing a Hole of Any Type", Trudy dnepropet. inzh-honstruk. inst. Communication, no. 10, (1936).
[47] J. S. Frame, "Power Series Expansions for Inverse Functions", American Mathematical Month1y, vol. LXIV, no. 4, pp. 236-240, (April 1957).
[48] J. S. Frame, "The Solution of Equations by Continued Fractions", American Mathematical Monthly, vol. LX, no. 5, pp. 293-305, (May 1953).
[49] M. R. Spiegel, Mathematical Handbook, Schaum's Outline Series, McGraw-Hill, (1968).
[50] S. G. Lekhnitskil, Anisotropic Plates, translated from the second Russian edition by S. W. Tsai and T. Cheron, Gordon and Breach Science Publishers, (1968).


[^0]:    Figure 2.2 The problem of interest expressed as the superposition of
    two problems.

