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ABSTRACT

ON THE PROBLEM OF A PLANE, FINITE, LINEAR—ELASTIC

REGION CONTAINING A HOLE OF ARBITRARY SHAPE:

A BOUNDARY INTEGRAL APPROACH

By

Ali Reza Mir Mohamad Sadegh

Previous boundary integral equation methods have been

developed for problems of two-dimensional elastostatics

which yield excellent results everywhere except near the

boundary. This presents a major disadvantage for problems

in which a hole, slot or sharp crack is present, since

such an opening must be considered as boundary. Thus,

results in the vicinity of the hole are not reliable. In

this dissertation a new formulation of the boundary inte-

gral method is presented which eliminates this inaccuracy

on and near the opening. This is done by replacing the

kernel of the integrand (the influence function) with one

which includes the effect of the opening. This influence

function is determined in terms of the complex potential

functions for an infinite elastic plane containing the

opening and subjected to a concentrated line load at an

arbitrary point. This is accomplished using the

Muskhelishvili method of plane elasticity. Potential

functions are found for the cases of a circular hole, an
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Ali Reza Mir Mohamad Sadegh

ptical hole and a sharp crack. The determination of

ii! functions for other opening shapes is also discussed.

z'bOundary integral equation method is then applied to

finite regions containing either a circular hole, an

‘iptical hole, or a sharp crack. The results are pre-

ted and compared with exact solutions and experimental

.‘ults where available.
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INTRODUCTION

One of the most fundamental problem areas in elas—

ticity is the effect of an opening in an elastic region.

The literature is filled with analyses, analytical,

numerical and experimental, of problems involving holes

in finite bodies subjected to prescribed load. A renewed,

and intense, interest in this type of problem has evolved

with the advent of fracture mechanics, in which the

"hole" takes on the shape of a sharp crack. Although

specific problems (i.e., specific shaped regions con-

taining a specific shape of opening and subjected to

specific boundary conditions) have been defined and solved,

there still exist a large number of fundamentally impor-

tant problems which do not lend themselves to analytic

solution. These analytic approaches can be accomplished

only when the geometry and loading are simple. Numerical

analyses (such as finite elements, finite differences and

boundary integral methods) have played a big role in the

solution of problems of arbitrary geometry and loading.

In this dissertation, a boundary integral equation

method has been used to solve problems of this type. This

method has definite advantages over finite differences

and finite elements for various types of prOblems. In
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2

. ‘boundary integral methods, the stresses are obtained at

f, a point and, for locations greater than one boundary sub-

; division from the boundary, they are extremely accurate.

These methods do not require discretization of the domain

as with finite elements or finite differences, but merely

discretization of the boundary. This leads to a coef-

ficient matrix which is of lower order than would be

obtained by finite elements and finite differences.

Indeed, within the past ten years, boundary integral

equation methods have been applied to three dimensional

isotropic [l] and anisotropic [2] elasticity, plasticity

V [3], plate theory [4], fracture mechanics [5] and a broad

range of other applications I6].

The main limitation of the boundary integral equation

method is the inaccuracy of the results near the boundary.

‘ This is due to the fact that the boundary is discretized

, inand clearly the error worsens near the discretization.

I1i:£;_This is not usually a bothersome limitation but, in the

.regions, the opening must also be considered as a part of

the boundary and therefore the largest error occurs in the
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' [variables in elasticity, namely the Muskhelishvili

J: method, and the Cauchy integral theorems. The results are

.iishighly accurate along and near the opening.

D

h I In Chapter I, the boundary integral equation method,

'fit?‘ the complex variable analysis of elasticity (the

id

,gxf. are presented. A mapping technique and a general solu-

c ‘ tion for finding the kernel of the integrands of the
v

Muskhelishvili method) and the Cauchy integral theorems

: 1;? boundary integral equations is introduced in Chapter II.

- In Chapter III, the boundary integral equations

presented in Chapter II are used to solve the problem of

a plane finite linear elastic region containing a circular

_} 3% hole. The kernel of these equations is replaced by a

_ t‘l

. kernel which incorporates the effects of the hole on the

-}ET: elastic field. This kernel is derived using the mapping

'.K3 technique, the Muskhelishvili method and complex variable

.' theory. Some examples are presented and compared to some

";3 known solutions.

II In Chapter IV, this solution technique is extended

‘»to the problem of a finite plane linear elastic region

Containing an elliptical hole or a sharp crack. Again,
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4

‘In Chapter V, the extension of the solution techniqUe

fthe problem of a finite plane linear elastic region con-

; .

iiiming other types of opening is discussed.

0‘1.

Finally, the closure and conclusions are presented in

'pter VI. The computer programs used for computations

}Chapters III and IV are included in the Appendices.
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CHAPTER I

BACKGROUND AND PRELIMINARIES

     

     

      

    

  
 

I.1 AN INTEGRAL EQUATION METHOD

Introduction >

. The first application of the methods of poten-

49.- tial theory to classical elasticity theory was introduced

ti.

—~ by E. Betti [7] in 1872. Later this work was expanded by

:é; Somigliana [8], Lauricella [9] and others. In particular,

,-Bettifs contribution, i.e., the general method of inte-

ITS; grating the equations of elasticity, was simply a develop-

;?i:ment of the potential methods of Green and Poisson. Thus,

gsome fundamental results from potential theory should

first be discussed. Let a function 6 be the solution of

#Laplace 5 equation throughout a region R.

V2¢ = o in R (1-1)

6 = f on GR;

%%= g on 8R2 (1.2)

1" 3R; + 8R2 is the boundary of R. Note that

’L7Fere r is the distance between two points in R, is
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if;' found.

‘ ¢

6

1 I

‘,;a,singular solutIOn to Laplace's equation. Combining 1/r

1:;hwith the solution ¢ in the classical Green's theorem of

integral calculus [10] results in the identity,

4(2)

1

Where 2 is

1 l 3 1

If j:R[g(z°)FTZ:TFT - f(zo) 55 (ITITIITJ ]' d5(zo)

(1.3)

any point in R and Z0 any point on 8R; Since

f and g are both needed everywhere on 3R, only one of

To

" them is known at each point, then the other has to be

accomplish this [ll-13], consider taking the

limit of equation (1.3) as Z approaches a boundary point

'-T: Z}, on 3R.

Ami) - 24,—,

’nfthe lim

"eted in

zf.

g g is

The result is:

[[gczo) mi—m - H20) 5392—; (mf—Jw] d5(zo)=0

BR

(1.4)

it [11]. Thus, this integral is to be inter-

the Cauchy principal value sense. Equation

Solving the integral equation (1.4) for either

given, or g, if f is giVen, leads to the
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In spite of this classical foundation of the boun-

, dary integral equation method, the literature contains at

__£5 least two seemingly distinct formulations for the treat-

ment of elasticity problems. One of these, due to Rizzo

et a1. [14-16] and Cruse [l7], follows directly from

Somigliana's identity of elasticity [18]. The other

_formu1ation due to Massonnet [19] and extended by Altiero

and Sikarskie [20] attacks the problem by embedding the

region in an infinite plane and distributing a layer of

body force on the proposed boundary in such a way that the

desired solution is produced within the region of interest.

Both approaches will be discussed in this chapter and the

latter will be employed in the subsequent analysis.

The formulation of the boundary integral equation

method due to Rizzo [14] is based on Somigliana's identity:

\

. 'Uq(Z) = [B Ii;q(Z,Zo) ti(Zo) dS(Zo)

- LHij;q(Z,zo) Ui(zo) nJ-(Zo) dSCZo) (1-5)

+

where U is the displacement vector, Ii_q(Z,Zo) is the

l ' 9

[,ith component of the displacement at 2 produced by a

’gnit force applied in the q direction at 20 in an infinite

‘Qedium, and ti and Hij°q(z’z°) nj(Zo) are the components

‘1 i'q’ respectively. In three dimensions,
( . ,

A
J
E
E
B
E
S
I

7",.

Q
6

f

!
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Taking the limit as Z approaches a point 2; on B

from the inside leads to

% Uq(zi) + -/; Hij;q(zr.zo) Ui(zo) nj(zo) d5(zo)

= L11;q(21120) ti(zo) (15(20) (106)

where the integral on the left-hand side is to be inter-

preted in the Cauchy principal value sense. If the

traction is prescribed everywhere on B, then the right-

hand side of equation (1.6) is known and a system of

singular integral equations can be solved for the boundary

displacement U. The interior displacements can then be

found-from equation (1.5). If the displacements are

prescribed everywhere on B, then the left-hand side of

equation (1.6) is known but the resulting set of integral

equations are not singular. For the mixed boundary condi-

tions, some of the equations are singular and some are

not .

The second formulation of the boundary integral

method, i.e., that of Altiero and Sikarskie [20], is an

extension of the work of Massonnet [19]. Massonnet intro-

duced a method for solution of traction boundary value

problems in which the real body is embedded in a series

of "fictitious" half planes which are sequentially

tangent to the real boundary. To demonstrate the idea,

consider a finite two dimensional region with a prescribed

traction all around the boundary, Figure 1.1. Choose the
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Figure 1.1. Finite two-dimensional region with pre-
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Figure 1.3 Region of Figure 1.1 embedded successively

Thalf planes.
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simple radial stress distribution, i.e., a half plane

subjected to a concentrated line load on the boundary, as

a fundamental singular stress field, Figure 1.2. This

solution is well known [21]. Then, draw the tangent to a

point, 20, of the real boundary and consider the half plane

extending indefinitely below this tangent, Figure 1.3.

In other words, the body has been embedded in a succession

of half planes. An unknown "fictitious" line load is

introduced at each point of tangency. A vector boundary

integral equation for the unknown fictitious tractions

results when one forces satisfaction of the traction

boundary conditions of the original problem.

An approach somewhat similar to Massonnet's has been

developed [22] for anisotropic regions subject to traction

boundary conditions. This approach, later, was extended

by Altiero and Sikarskie [20] to mixed boundary value

problems. Consider a two dimensional, linear elastic

region R with boundary B as shown in Figure 1.4. For

prescribed boundary conditions, i.e., tractions and/or

displacements on B, the stress field and displacement

field in the region R are to be determined. The region

R will be embedded in an infinite (fictitious) plane of

the same material and thickness as R, Figure 1.5. The

influence function which satisfies the equations of

elasticity, i.e., H (Z,Zo) and Ii,q(Z,Zo), are known

ij;q

[23], where H. (Z,Zo) is the ijth stress component at

UN

a field point 2 due to a unit line load in the q direction
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at a source point 20 and Ii;q(Z,Zo) is the displacement in

the i direction at Z due to the unit line load at Z0. Con—

sider now a fictitious layer of body force P* (unknown)

acting along the contour B, see Figure 1.5. Since the

problem is linear, then the superposition of fundamental

solutions leads to the determination of stresses and dis-

placements at a point Z as follows:

0.. Z = H.. Z,Z P* 2 d Z13() [B 13;q( o) q( o) $( 0)

Ui(Z) = [B Ii;q(Z,Zo) Pane) d5(zo) (1'7)

where Z0 is now on the bOundary B and ds(Zo) is an element

of length along B at 20. Then all equations of linear

elasticity are satisfied by equations (1.7) since they

represent the superposition of fundamental solutions.

In order to solve the boundary value problem of interest,

the boundary conditions on B are yet to be satisfied.

    
   

  

These conditions are: 
U. = U: on B (1.8)

where nj is the j—component of the outward unit normal

to a point on B and Pi, U: are the specified traction and

displacement components, respectively. Note that one may

also specify one traction component and one displacement
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component at a particular boundary point, provided they

are mutually orthogonal. Let the interior point Z approach

a boundary point 21, on B, Figure 1.5. Then the stresses

and displacements, equations (1.7), must satisfy the boun-

dary conditions of equations (1.8). Thus, substitution of

equations (1.7) into equations (1.8) leads to

% P§(Z1) + S¢i Hij;q(zl’z°) Pa(ZO) njCZi) ds(Zo)

= Pfitzi)

Z1 on B1: (1.9)

9531,;qczi,zo)1>;(zo)dsczo) = Uiczl)

Z1 on Bu (1.10)

Note that the subscript i refers to a co-ordinate direc-

tion at a boundary point 21. Equations (1.9) and (1.10)

represent coupled integral equations in the unknown fic—

titious traction P*. Note that the singularity has been

extracted from equation (1.9) and the integral of this

equation is to be interpreted in the Cauchy principal

value sense. Equations (1.9) and (1.10) contain several

types of problem. For the first fundamental problem of

IJIane elasticity, i.e., traction boundary conditions only,

12he vector equation (1.9) is to be used. For the mixed

boundary value problem, both equations appear but not in
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the same direction at the same point, i.e., if a traction

is specified in the i direction at Z1, then equation (1.9)

holds; and if a displacement is specified, then equation

(1.10) holds.

Like the Rizzo formulation, equations (1.9), i.e.,

the traction boundary value problem, are singular. However,

for displacement boundary value problems, equations (1.10)

are used and these are not singular. For mixed boundary

value problems, some of the equations will be singular

and some not.

It is felt that the formulation of Altiero and

Sikarskie is preferable for the following reason. In the method of Rizzo, one must first perform integration around

the boundary before the required integral equations are

defined. This is clearly not necessary in the Altiero

and Sikarskie formulation, where one merely needs to

specify the tractions and displacements themselves and

the right-hand sides of the required integral equation

are immediately known. Therefore, the Altiero and

Sikarskie formulation will be used here.

Note the fact that the Altiero and Sikarskie formu-

lation is not restricted to embedment in an infinite

plane. Massonnet, as discussed earlier, used embedment

in a succession of half planes. However, to obtain

singular equations for the traction problem, and there-

fore more numerically efficient equations, this approach requires tangency of the half plane to the embedded body

successively around the boundary.
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The Massonnet approach is therefore somewhat cumber-

some and particularly inconvenient, particularly for the

solution of anisotropic elasticity problems [22]. Also,

it is very difficult to apply this method to multiply

connected regions. Whichever formulation is used, the

fundamental solutions for the fictitious region should

be simple. This is best satisfied by the infinite plane.

Once P* has been determined, the stresses and dis~

placements at any field point can be determined by sub-

stituting P* into equations (1.7). These stresses and

displacements represent the solution to the boundary

value problem of interest within R. The influence

functions, i.e., the stress and displacement fields in

component form, due to a concentrated line load P*ds in

an infinite plane are given by Love [23]. These are:

 

 

 

 

* = _ 1 * 2 2 2_ 2
Hxx;q Pq 4rr“ [erx(a1rx + azry) + P;ry(a3rX azry)

1 2 2 2 2
*=- * _ *

Hyy;qpq 4nru [erx(a3ry azrx) + Pyry(a1ry+a2rx)]

1 2 2 2 2
*=-— * *xy;qpq 4nr“ [ery(a1rx + azry) + Pyrx(a2rx+a1ry)]

(1.11)

P* = - 1 [P*(a.rzlog r + asrz) — P*a5r r

x;qq 4,,2 x y y xy

1a = - _ * * 2 2
y;qPq 4rr2 [ ansrxry + Py(aur log r + asrx)]

(1.12)

 



where rx and ry are the x,y components of the radius

vector from Z to 20 and the constants a1 through as for the

problem of plane strain are

a1 = (3-2v)/(1-v)

a2 = (l-Zv)/(1-V)

a3 = (l+2v)/(l-v)

(3-4v)(1+v)/(1-v)9
:

t

l

(1+v)/(1-v) (1.13)as

and, for plane stress, v is replaced by v* in all the

coefficients of equation (1.13) where:

\J
* =

V 1——+v

The influence functions found in equations (1.11) and

(1.12) can be obtained using the complex potential func—

tions associated with the concentrated line load in an

infinite plane. This will be discussed further in the

next section.

The solution to any boundary value problem of plane

    

     

   

 

elasticity is contained in equations (1.9), (1.10), and 
(1.7). For tractions specified everywhere on B, equations

(1.9) are to be solved for P*. These values of P* are

then substituted into equations (1.7) to find the stresses

and displacements at any field point. Equations (1.7)

may give the displacement field to within a rigid body

displacement. The rigid body displacement, however, can

A



r
q
/
A
—
J

O
-
r
-
«
I



 

 

'
V

 

  

    

  

18

be eliminated by suitably prescribing sufficient boundary

displacement information. For displacements specified

everywhere on B, equations (1.10) are solved for P* and

equations (1.7) again used to find the stress and dis-

placement fields. For mixed conditions at a point either

the x component equation (1.9) and the y component of

equations (1.10) or the converse must be satisfied.

To obtain a numerical solution to equations (1.9)

and (1.10), the boundary is first replaced by an N-sided

polygon with sides of arbitrary length ASi. The resultant

boundary data over the interval ASi.is now defined at

the midpoint of each interval as follows:

P*. = / P*d , P*. = f P*d

X1 AS. x S Y1 AS. Y s
1 1

P . = f Psds , P . = f Psds

*1 AS. X Y1 AS. Y
1 1

Uxi = f Uids , U i = / Usds (1.14)

ASi V Asi Y

Note that the superscript * implies the fictitious com-

ponent. Multiplying equations (1.9) and (1.10) by ds(Z;)

leads‘to

%P€(ZI) dS(ZI) + fiHij;q(zl’Z°) Pa(Zo) (15(20) . nj(21)dS(Zi)

= Pfcz.) ds(Z.)
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9% Ii;q(ZI,Zo) Pa(zo) d5(zo) ' dS(ZI)

= U§(Zl) ds(21) (1.15)

Integrating equations (1.15) over boundary interval ASi

and assuming that the influence functions are independent

of 20 over a particular interval yields:

1
P*PZ +¢Hn Z,Z P*Z -.2 d21‘ 1( I) B 1];q( 1 a) q( a) n3( 1) $( 1)

g Pi(zl)

YE Ii;q(Zi.Zo) Pa(Zo) dSCZI) = Ui(Zi) (1~16)

71§Eppint of an interval by the interval length. This is

2sufficient for all intervals except for the second equa-
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Si P§(Z1) + 1 Ii.q(zl!ZO) Pafzo) AS(ZI)

o= ’

20192,

= Ui(21) (1.17)

where g. = _/- 1., (21,20) ds(21) (1.18)

1 As. 1’q
1

over the interval which includes 21 = 20. Note that the

boundary points Z0 and Z; in the discrete terms will now

represent the center-point location of the intervals,

numbered counterclockwise. Separating x and y components,

one obtains

l

2' P;(Zl) + :1[HH’XX q(Zi,Zo) P*(Zo) nx(Z1)

2,921

+ ny qCZl,Zo) P*(Zo ) ny (Z )] AS(ZI) = PXCZI)

-]2'-P;(Zl) + :1[HH'X)’ q(zi,zo) P*(Zo) 11x (21)

0:

Z0#Z1 

 

    

 

(21.20) Pa(Zo) ny(21)] AS(21) = PYCZI) (1.19)

M

EXP;(ZI) + ;§;1 [Ix;q(21’z°) Pa(zo)] A5(Z1) = UX(ZI)

H

YYBQ

gyp;(zl) + ::;1 [Iy;q(zl,zo) PaCZOI] AS(ZI) ' Uy(ZI)(1-20)

where the influence functions can now be written as
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(21,20) P;(Zo)

 

q(ZI,Z o) P*(Zo) = Hij''x

y(21,20) P;(Zo) ’ '

Ii q(21,Zo) Pa(Zo) = Ii;X(Z1,Zo) P;(Zo)

 
y(zi,zo) P;(Zo)  

i,j = x,y (1.21)

.th

.2IASubstituting equations (1.21) into (1.19) and (1.20) and

,¥,$‘ rearranging the equations leads to

.‘.,.: N

. LIZ!) + :E; { [H“xx x(21,20) nx (2,)

a:

Zo¢Zx

+ MXY.x(zi,zo) ny(zi)] P;(Zo) + [Hxx;y(zl’z°) DXCZI)

+ H (21,20) ny(Zl)] P;(Zo) } AS(Zl) = Px(21)

XYEY

A) f _1 g [HH,,. x(21.2 o) nxtzil

2 22.2.

(21,20) HXCZI)x(zi,zo) ny(zr)] P;(Zo) + [ny;y

Hyy;y(21.zo) ny(zi) ] P;(Zo) 2 ASCZI) = Px(ZI) (1-22)
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'3‘ 22

';;5

‘n;”.P;(Z1) + g { Ix;x(zl’z°) P;(Zo)

20’21
   

    

  

  

k.

I:(u + Ix;y(zl,zo) P;(Zo) }AS(Z1) = Ux(zl)

éiz *

.'r.'?v"’§‘z” + XX W‘) PM
" 20‘21

+ 1y;y(21,zo) P;(Zo) } 5(21) = UYCZI) (1-23)

Qiyrfi-quations (1.22) and (1.23) can be written in the compact

. 9}" "7: form:

i=1,...N (1.24)
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Cij = [ny;x(zl,zo) nx(zl) + Hyy;x(21.zo) ny(Zx)]AS(z1)

Dij = [ny;y(zl,zo) nX(Z1) + Hyy;y(zl,zo) ny(zl):]AS(Z1)

= = 1

Kxi Kyi 2

Bvxi = Px(Zl) , vai = Py(Zl) (1.25)

for a traction condition specified and

Aij = IX;X(Z1,ZO) AS(Z1) Bij = Ix;y(Zl,Zo) AS(Z1)

Cij = Iy;x(Zl,Zo) AS(Z1) Dij = Iy;y(ZI,Zo) AS(Z1)

Kxi = gx Kyi = gy

Bin = UX(Z1) BVyi = Uy(Z1) (1.26)

or a specified displacement condition. There are several

methods for solving equation (1.24) for the fictitious

traction. The first and simplest method is iteration.

Iteration works particularly well for traction boundary

value problems, equations (1.22). An initial choice of

fictitious fractions equal to the actual tractions pro-

duces fairly rapid convergence. For the mixed problem,

equation (1.23), the iteration, in general, does not con-

verge. A second method is matrix inversion or elimina-

tion. Equation (1.24) can be written in the matrix form
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[[Kx] - [AH [B] {p;} €=%{Bvx}

where all sub-matrixes can be found using equations (1.25)

and/or (1.26). Equation (1.27) is written more compactly

W =33)
Once the fictitious tractions are determined, the

as:

stresses and displacements are found from the numerical

approximation of equations (1.7):

N .

= * ‘ *

0xx 5%; [Hxx;X(F’ i) Pxxi + Hxx;y(F’1) Pyi]

i50 = F P*i + H F ' P*.

U i=1 [Hm KC ’1) yy;y( ’1) >71]

'
M
z

_ *i ' *

XY [Hm X(F’ i) PX + ny;y(F’1) Pyi]
1=1

N

= - * - *
Ux 1:21 [Ix;x(F’l) Pxi + Ix;y(F’1) Pyi]

N

= I ' P*. + I F,' P*.] 1.29Uy E [y;x(F’1) x1 y;),( 1) Yl ( )

where F is a field point and P*xi’ P;i are the components

of the known fictitious traction at the interval 1. 
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It is clear from equations (1.29) that the stresses

and displacements can be found at small expense anywhere

in the field by simple summation.

It is important to note that the embedment in an

infinite plane can also be used for multiply connected

domains, such as a region containing a hole. However,

the hole would need to be treated as boundary. Discreti-

zation of the boundary would therefore cause inaccuracy

of the solution near the edge of the hole where the solu-

tion is most important. The goal of this dissertation

is to eliminate the contour of the hole from the boundary

and to find a new influence function for the problem,

which contains the effect of the hole, thus improving the

accuracy of the solution along and near the hole. To

accomplish this goal, the Muskhelishvili method will be

employed. 
I.2 THE MUSKHELISHVILI METHOD: A COMPLEX VARIABLE

METHOD IN ELASTICITY

After the formulation of the linear theory of

elasticity had been largely completed (by the middle of

the nineteenth century), functions of a complex variable

were introduced into plane elasticity problems in 1909

by Kolossoff [24] who, together with Muskhelishvili [25],

developed the theory. However, nearly forty years elapsed

before the theory, based on Kolossoff's idea, was brought

to a successful conclusion. This was accomplished, in the

 
main, by a group of Russian mathematicians inspired by

the work of Muskhelishvili. The development has been
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described by Muskhelishvili in two works [26,27]. The

general solution of the fundamental biharmonic boundary-

value problem can be made by means of two analytic func-

tions of a complex variable. Consider the biharmonic

boundary-value problem

vzv2 U(x,y) = o in R

U 6 = fe(s) on GR (1.30)

’

and let

V2U = X(x,y) (1.31)

Then, clearly, the function X is harmonic in R. Note that

a harmonic function is a single-valued function of class

C2 which satisfies Laplace's equation in R, i.e., V2X=0.

For every harmonic function there is a conjugate harmonic

function which satisfies V2Y=o where the function X + iY

is an analytic function. Every analytic function is a

C°° function because it has a series expansion. Also, an

analytic function satisfies the Cauchy-Riemann equations

and the Cauchy integral formulae. Thus, every analytic

function is a harmonic function [28].

The complex conjugate of function X, i.e., Y(x,y),

can be easily found by the Cauchy-Riemann equations to

within an arbitrary constant. Thus, an analytic function

of a complex variable 2 = X + iy can be constructed
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F(Z) X + iY.

Let

¢(2) =21ff1=(2)dz

= X° + iY° (1.32)

where X° and Y° are the integrated functions of X and Y.

Then, ¢(Z) is analytic and its derivative is

ax° . ay°
+¢'(Z) = M 1 fi— = %(X+iY). 

From the Cauchy-Riemann equations, it is clear that

o = o = 1
X,X Y,y IX

0 = _ o = l

x,y Y,x 4Y

Let

H(x,y) = U - X9x - Y9y (1.33)

Then it is easy to verify that H(x,y) is a harmonic

function, because

v2 (U - x‘Zx-Y‘iy) = VZU - v.V(X‘3x) - v-V(Y‘2y)

and the fact that X°, Y° are harmonic leads to
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x - 2vx°- 2VY°

l 1 1 1
X - 7X + 2'Y - 7X - '2-Y

Thus, H(x,y) is a harmonic function, the complex conjugate

of which can be easily found. Calling this conjugate

K(x,y), function can be constructed so that:

X(Z) = H(x,y) + iKCX,y) (1 34)

Solving equation (1.33) for U leads to:

U = XQX + YQV + H(x,y)

and substituting the analytic functions of equations

(1.34) and (1.32) into the above equation, the biharmonic

function is obtained in terms of the two analytic functions,

¢(Z) and x(Z):

U = Re[7¢(2) + x(2fl (1.35)

Since ¢(Z) and x(Z) are analytic functions, it follows

that U(x,y) is of class Cm in R. Denoting the complex

conjugate values by bars, the equation can also be

written as

2U = 7¢CZ1 + Z¢(21 + XCZ) + Xizj (1-36)

The determination of stresses and displacements in terms

of the two analytic functions will now be discussed. The
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stresses can be written in terms of the biharmonic

function:

0 = U

XX ,YY

Oyy = U,xx

oxy = -U,xy (1.37)

This leads to:

Oxx + ioxy = -1(U, + 1U, ),y

- ' = U + 'U 1.38

xx loxy ( .x 1 ,y).x ( )

Let

W(Z) = x'(Z)

Then, from equation (1.36), the expression U x + iU y can

’ ,

be written

U + iU y = ¢(Z) + Z¢'121 + WZZ) (1.39)
,X

Calculating the derivatives of equation (1.39) with respect

to x and y and substituting into equations (1.38) leads to:

- ¢'(Z) + ¢'(Zi - Z¢"IZ) - @TTZT'Q

+

H
0

Q

I

¢'(Z) + ¢'(21 + Z¢"ZZi + W‘ZZ)Q

I

H
o

Q

I
I

Stresses in terms of two analytic functions, ¢(Z) and

U(Z), can now be written as:
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OXX + Oyy = 4Re [¢'(Z)]

ny - Oxx + ZioXy = 2[7¢"(Z)+W'(Z)] (1.40)

Finally, displacements in terms of the two analytic func-

tions in the compact formula will be

 

2u(UX + in) = a¢(Z) - z¢'izi - W225 (1.41)

where

a = 3-4v for plane-strain problem

or

_ 3-v _
a - l+v for plane stress problem

Stresses and displacements can be found individually, using

equations (1.40) and (1.41), and are:

on = Re [2¢'(Z) - Z¢"(Z) - mm]

or”, = Re [2¢'(2) + Z¢"(Z) + ‘1“(Z)]

ox), = Im [7W (2) + \v'm]

u = Im [mm - 2W - m)”.

U = Im [a¢(Z) - ZCD'iZS - (NJ/2p (1.42)
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Now that stresses and displacements have been formulated

in terms of the two analytic functions, ¢(Z) and 9(2),

the structure and arbitrariness in the definition of the

two functions is an issue to be discussed. If the state

of stress in the region R is specified, from equations

(1.40), one can prove that the single-valued analytic

functions ¢(Z) and U(Z) could be determined to within a

linear function Ci+y and a constant B, respectively [29].

In addition, if the displacements are prescribed, follow—

ing equation (1.41), one can find that

and

aY - B = 0

Hence, when the stresses are given, the three constants

c, y, B will be chosen in such a way that

NC) = 0

Im¢'(0) = O

1(0) = 0 (1.43)

and when the displacements are given, a suitable choice

of y will be assured by the condition

Mo) = 0 (1.44)

Thus, using the conditions (1.43) and (1.44), the func-

tions ¢(Z) and U(Z) will be determined uniquely [27].
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The structure of the two analytic functions for a

finite and infinite simply connected regions has been

discussed in [27].

Since the state of stress and the displacements can

be expressed by means of the two complex functions ¢(Z)

and f(Z), the fundamental boundary-value problems of

plane elasticity lead to the determination of these func-

tions from prescribed values of certain combinations of

these functions on the boundary of the region.

Beginning with the first boundary-value problem in

which tractions are prescribed on the boundary, the

biharmonic function in terms of applied tractions, f(s),

can be written as

U,x + iU,y = f(s) on SR

The equation (1.39) leads to:

¢(Z) + Z¢'(Zj + W125 = f(s) on ER (1.45)

The corresponding boundary conditions of the second

boundary-value problem follow from equation (1.41):

a¢(Z) - Z¢'125 - [25 = g(s) on 3R (1.46)

where g(s) is a prescribed displacement function on the

boundary. From either equations (1.45) or (1.46) one can

obtain the two complex functions. However, mapping the

region R into the inside or outside of a unit circle makes

the determination of the two functions much simpler.

Suppose the mapping function
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Z = w(2;) (1.47)

maps point in the region R, Z plane, into a unit circle

Iclsl. The mapping function for a finite region where the

origin is taken in the interior can be represented as a

power series

Z=chn Iclsl

n=l n

whereas for an infinite region, where the origin is an

exterior point, the function is given by:

n

Z=%+Zn=o kn: lclsl

The boundary conditions, equations (1.45) and (1.46), can

then be written as

 ¢1(c)+ w“) “m,c + m.r. = Fm

 aqua) - W?) m;c - ‘77.c = cm (1.48)
w' 2;

where

¢[w(c)] = ¢1(C) and w[w(;)] = vim

Equations (1.48) can now be solved for the two functions

¢1(C) and W1(;) by a power series expansion method or

integrodifferential equations using Cauchy integral formulae

[27]. Since the solution of the integrodifferential
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equation reduces to the solution of the standard Fredholm

integral equation, then the existence of a solution of

equations (1.48) would follow, almost directly, from the

Fredholm theory [27].

1.3 CAUCHY INTEGRALS AND RELATED THEOREMS

Since the integrodifferential equations method will

be used to determine the two complex functions, it is

important to discuss Cauchy integrals and related theorems

briefly. The proof of the following theorems has been

presented in [30] and in [27].

Suppose R+ is a finite open simply connected region

enclosed by the contour B described in a counterclockwise

sense. Denote the region exterior to (R++B) by R- and

the points on the boundary B by t. Let f(Z) be a complex

function analytic (holomorphic) in R+ and continuous on C.

Then

2%]; 131,1". = £(2) for 2512* (1.49)

and

"2'31?ij fifgfi dt = fwm for 2512*

2%i./; %L%l dt = 0 for ZER- (1.50)

Equation (1.50) is a necessary and sufficient condition that

the continuous function f(t) defined on B can be the boundary

value of a function analytic in R+. Let f(Z) be a complex



fu

an

may

Khol

the



35

function analytic in R- including the point at infinity

and continuous on B. Then

2%1'1; «f—E? dt = f(°°) for ZcR+ (1.51)

2%1']; i—(él dt = f(w) - f(Z) for ZeR' (1.52)

The condition (1.51) that the Cauchy integral have a con-

stant value in R+ is both necessary and sufficient for the

continuous function f(t), defined on B, to be the boundary

value of a function analytic in R-.

Let ¢(t) be a complex function which satisfies the

Holder condition on an arc L. Then the Cauchy integral

<1>1(Z)= 7%1/14 $4? dt (1.53)

may be shown to be a sectionally analytic function in the

whole plane cut along the arc L. Further, the limiting

values ¢+(t), o-(t) may be shown to exist on L and satisfy

the relations

 

¢1+(to) - ¢1'(to)= we)

¢1+(to) + ¢1-(to) =‘#T./: isig dt (1-54)

where to is a point on L and the integral in equation

(1.54) is represented as a principal value. The assumption

that ¢(t) satisfies the Holder condition is sufficient for

the existence of the principal value. These results are
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referred to as the Plemelj formulae. They are derived in

[26].

Since the unit circular region will be used in the

determination of principal value of some integrals in the

following chapters, the following integral form will be

used frequently. Let a and b be constants where b/a<l

and let Y be the circumference of the unit circle. Then

for the points inside the unit circle

 

m t' dt = ln(a) (1.55)

This is simply because the function in the integrand

ln(aE-b) = ln(at-b) - ln(t) 

has two essential singularity inside the unit circle,

t = b/a and t=0,whereas the limit of the function at

infinity exists and is equal to ln(a). Thus, the function

is analytic outside the unit circle. Then following the

Cauchy theorem, equation (1.51), the result of the integral

(1.55) will be ln(a). This result can also be achieved by

the change of variable

01‘

dt = -——-dn

Thus, the integral becomes:
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_l,. ln(a-bn) = 1 ln(a-bn)

Zfll 96, -n11-zn5 dn 733'9E fiTTTZfiT‘ d0 (1.56)

The only singular point inside the unit circle is n = 0,

which is the corresponding point of t = w. Obtaining the

residue at n = 0 will prove equation (1.56).



CHAPTER II

GENERAL SOLUTION AND A MAPPING TECHNIQUE

11.1 INTRODUCTORY REMARKS

A general solution which leads to the influence

functions for an infinite plate containing an arbitrarily

shaped cavity is discussed here. These influence functions

describe the stress field and displacement field generated

by an isolated concentrated point force, P, applied on

the plane. It is obvious that these functions must be

defined everywhere except at the point where the load is

applied.

It is important to note that the load, P, is a con-

centrated point force, if just a very thin layer of the

plane is considered. In the cases of plane stress or

plane strain the load, P, is a line load along a line per-

pendicular to the layers of the plane, as shown in

Figure 2.1.

11.2 A MAPPING TECHNIQUE

Consider the problem of an infinite plane bounded by

an arbitrarily shaped cavity at the origin and having a

concentrated point force, P, acting in the plane at some

point 20, where Z0 is a point in the region outside of the

38
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hole. This problem can be expressed as the superposition

of two problems (Figure 2.2).

Let the first problem, Figure 2.2(B) be that of a

concentrated point force applied at the point, Z0, on an

infinite plane with no cavity. Let the second problem,

Figure 2.2(C) be an infinite region bounded by the hole

with some traction acting on the boundary C. Let this

traction be equal in magnitude and opposite in direction

to the traction generated on contour C in the problem of

Figure 2.2(B) by the concentrated point load P.

Clearly superposition of the problems of Figure 2.2(B)

and 2.2(C) gives the original problem of Figure 2.2(A),

where there is no traction acting on the hole.

The complex potential functions of the problem of

Figure 2.2(B) is known (Muskhelishvili [27]) and obviously

since the contour C of the hole is known, then the applied

traction of the problem of Figure 2.2(C) can be found.

To find the complex potential functions for the prob-

lem of Figure 2.2(C), a mapping technique is used. The

problem of Figure 2.2(C) will be mapped to a unit circular

disc (Figure 2.3).

If the type of contour, C, mentioned earlier in this

section, is known, then the transformation function can be

found. The mapping function, w(c), has to be conformal

and one to one, mapping points at infinity of the Z plane

to the origin of the t plane, and mapping points on the

contour to points on the circumference of the unit disc.



A

‘

 

 

 
(
A
)

F
i
g
u
r
e

2
.
2

t
w
o

p
r
o
b
l
e
m
s
.

 

 
 

(
B
)

(
C
)

T
h
e

p
r
o
b
l
e
m

o
f

i
n
t
e
r
e
s
t

e
x
p
r
e
s
s
e
d

a
s

t
h
e

s
u
p
e
r
p
o
s
i
t
i
o
n

o
f

41



 

 

2
.
p
l
a
n
e

 
(
C
)

F
i
g
u
r
e

2
.
3

M
a
p
p
i
n
g

t
h
e

a
u
x
i
l
i
a
r
y

p
r
o
b
l
e
m

t
o

t
h
e

d
i
s
c
.

42

 



43

The traction boundary condition on the contour, C, will

automatically transform to new boundary conditions acting

on the disc.

11.3 GENERAL SOLUTION

Let the complex potential functions for the problem

of Figure 2.2(B) be ¢°(Z) and W°(Z), and the complex

potential functions for the problem of Figure 2.2(C) be

¢*(Z) and P*(Z). By superposition, the complex potential

functions for the problem of Figure 2.2(A), 6(2) and f(Z)

will be

«1(2) ¢°(2) + 41%)

11(2) w°(z) + 11*(2) (2.1)

Since the problem of Figure 2.2(C) is to be transformed

to the problem of Figure 2.2(D), then the transformed

complex potential functions are

at * 3':

¢1(r.)= <1 [mm] = ¢ (Z)

* 1: i:

1110:) = ‘1’ [w(c)] = ‘P (2)

¢S’(c) = ¢>°[w(c)] = ¢>°(Z)

119(5) = W°[w(c)] = “(2)

and the derivatives are
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*

¢ '(Z) ° w'(C)

*

¢1'(C)

19m 1W2) - w'(c)

* * *

¢1"(c) = d2 "(2) - w'ZU.) + cb '(Z) ~ w"(c) (2.2)

To find the influence function, the derivatives of equa-

tions (2.1) are needed, so

¢°'(2) + ¢*'(Z)¢'(Z) =

‘1“(2) = w°'(z) + v*'(2)

¢"(2) = ¢°"(Z) + ¢*"(2) (2.3)

i:

where e '(Z), ¢*"(Z) and W*’(Z) can be easily found from

equations (2.2):

Q)

*

*1 = ¢1'(C)

<1 (2) C

¢*vc(z) = ¢I"(C) _ ¢I'(C)'w"(C)

w'ZICI 45T3(C)

*

w*'(2) = 54% (2.4)

Substituting equations (2.4) into equation (2.3) and recon-

sidering equations (2.1), the requirements for the influ-

ence function become:



*

¢(Z) = ¢°(Z) + mm

1(2) = W2) + vim

¢*'(c)I _ 01 + 1

4) (Z) r 49 (Z) W

I -— i w "(C

1(Z)-‘P°(Z)+—fiyrfijl

* *

¢1v(z) = ¢0!1(Z)+W .. (bl US$2.62) (C) (2.5)

The complex potential functions for an infinite plane with

a concentrated force, P, at a point 20, ¢°(Z) and W°(Z),

are known (Maskhelishvili [27], Sokolnikoff [29], Green

and Zerna [31]).

 

(130(2) = ' 2% ln(Z-Zo)

W0(Z) = C1 mim- ln(Z-Zo) + 7&1?- ' 2?.20 (2.6)

To find the complex potential functions for the problem

of Figure 2.2(A), it is necessary to find the complex

potential function for the problem of Figure 2.3(D), i.e.,

¢I(c) and 11(c).

Since ¢:(c) and WT(§) have to be analytic in the

domain, then as mentioned in Chapter I, just one boundary

condition is necessary to find the complex potential

functions, i.e., either of equations (1.45) or (1.46).

Note that in the original problem, Figure 2.2(A), the

boundary of the hole is traction-free. Recall equation

(1.45) for the traction boundary condition [29]:
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f(s) = £1 + if2 + const. = 0

Then equation (1.45) becomes:

¢(t) + t e'it) + Wit) = 0 on C (2.7)

where t represents the values of Z on the contour C. Sub-

stituting equations (2.1) into (2.7) leads to

¢*(t) + t ¢*‘(t) + P*(t) = - ¢°(t) + t ¢0'(t) + w°(t)

on C (2.8)

Clearly, the left-hand side of equation (2.8) is in

the form of the traction boundary condition for the problem

of Figure 2.2(C), since ¢*(t) and W*(t) are the boundary

values of 6*(2) and P*(Z). Also, the right-hand side of

equation (2.8) is known, since ¢°(t) and W°(t) are the

values of ¢°(Z) and W°(Z) on the fictitious contour in the

problem of Figure 2.2(B).

Since the boundary condition for the problem of

Figure 2.3(C) is known (equation 2.8), then the boundary

condition for the problem of Figure 2.3(D) can be obtained

by transforming (2.8) to the c plane using the transforma-

tion functions

Z = w(§)

so that the boundary transforms by:

t = w(0)

where 0 represents the values of c on the circumference of
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the disc. Hence, equation (2.8) becomes:

 ¢T(o) + 949-1- ¢’1"(o) + We) = (We) + ”(0) <12 0

“mo m

+ ngETZ) (2.9)

* i: 9:

where ¢1(o) and W1(o) are the boundary values of ¢1(;)

and WT(;), respectively. Also, ¢?(o) and W9(o) are the

boundary values of ¢9(c) and W?(c), respectively.

The right-hand side of equation (2.9) is known, so let

 

F(0) = -[p9(0) + “(0) ¢?'(0) + 19(0)] (2.10)

(0'10)

then, equation (2.9) becomes:

¢1'(0) + 11(0) = F(0) (2.11)
 

¢I(0) + “(0)

:3

This is the mixed boundary condition for the problem of

Figure 2.3(D) from which the two analytic functions

¢:(c) and PT(;) will be found. It is necessary to point

out some characteristics of ¢t(c) and W?(;) before

proceeding.

As mentioned in section 1.2, ¢:(;) and Wt(c) must be

analytic (holomorphic) inside y, the unit circle. Also,

without loss of generality, it can be assumed that

¢I(0) = 0. Thus, ¢:(c) and WT(;) may be developed for

Icl<1 in power series of the form

00

¢I(5) = g;; akck , vI(c) = ;E% bkck (2.13)
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where, in the first series, the constant term is absent

*

because of the condition ¢1(0) = 0. Furthermore,

_ —k * —k

¢TZC1 = Ea; akC , V1(C) = 2E; HR: (2.14)

Let g approach the boundary 7, i.e., c+o. Note that since

the radius of the disc is equal to one, then:

00 = l (2.15)

Equations (2.13) and (2.14) are valid for the boundary

9: i:

values ¢1(0) and 11(0). Substituting equation (2.15)

into equations (2.14) along with equations (2.13) for the

boundary values, these become:

¢I(o) =2; akok , 111(0) = 1:0 bkok (2.16.a)

¢§105 = E:; aka-k , Wfloi = 25% BkO-k (2.16.b)

Equations (2.16.a) show that ¢:(o) and Wf(o) have poles at

infinity, so they are analytic functions inside the unit

circle. Also, equations (2.16.b) show that 57(3) and TTTET

have poles at the origin, so they are analytic outside of

the unit circle.

Using this analysis and employing the Cauchy integral

formulas, the complex potential functions for the problem

of Figure 2.3(D), ¢:(c) and W?(;), can be computed. To find

¢:(§), let both sides of equation (2.11) be multiplied by
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l . do

Zni o-c

where C is a point inside 7, the unit circle.

Integrating both sides of the equation counterclockwise

around the unit circle leads to:

 

Li ¢1(0)d0+7L_¢w(01¢1“105d0

2N1 n1

+2111¢W1T§Td=2:1;;552

it 3!

Since ¢1(o) is analytic inside y and 91(0) is analytic

 (2.16)

outside y, then due to Cauchy integral formulas (section

1.3), equation (2.16) can be written as:

 

 

* l w(o) ejioi —;T—7-_ l dg F(0)

¢1(C) + TIT—{é m —O'C d0 + WI 0 - W Y O-C do

(2.17)

Note that the third integral of equation (2.16) becomes:

Y 0:...

where I???) is a constant.

Equation (2.17) is an intergodifferential equation

for ¢T(§). It contains an unknown constant WTTET, which

can be determined by letting c = O and imposing the condi-

*

tion ¢1(0)= . Thus, if the value of W1(0) in equation
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(2.17) is chosen arbitrarily and the corresponding solution

*

for ¢1(;) is found, then the actual value of WfIUI can

i:

be computed from the condition ¢1(0) = 0. This is due to

the fact that if ¢f*(;) is any solution of (2.17) for a

given wf(0), and if ¢f*(0) = auto, then ¢f*(;)-ao is a solu-

tion of (2.17) with T¥TUT replaced by TTTUT+ao. Thus,

WT(0) can be tentatively fixed, say VfTUT = 0. Also, as

mentioned in section 1.2, in order to have a unique solu-

tion for ¢T(§) and WT(;), the following conditions must

be satisfied:

3! it

¢1(0) = 0 11(0) = 0 (2.18)

* .

To find W1(c), take the conjugate of equation (2.11) and

multiply both sides of the equation by

11 do

2“ C

where g is a point inside y.

Integrating both sides of the equation counterclock-

wise around the unit circle leads to:

a

1 f dbin 5 £517 ¢ '(01

Zfll Y o- C do + 21w'(o) 3- C do

1 P*(o) _ l o

mi 'L‘e-r, «5-me 55;?“ (2'19)

 

An argument similar to that presented for reducing

equation (2.16) to equation (2.17) can also be presented

here to obtain:
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it

1 m7 we) * - 1 f 13:"
W*m mwdw‘mm'my e-.; d“

(2.20)

Substituting condition (2.18) into equations (2.17) and

(2.20) and rearranging leads to

  

 

 

* = 1 f F(o) _ 1 $1.1m rm0
¢1(C) "ZN—f Y 0"; (10 W Y w 0 0-; C10 (2.21)

i:

* _ l Fioi l 5‘. (oi ¢ '(o)

*1“) ‘ mi 0-; do ' 273 Y 31(0) é-r, do “-2“

It is easy to reduce the solution of the integrodifferen-

tial equation (2.21) to the solution of the standard

Fredholm integral equation. The existence of a solution

of equation (2.21) would then follow, almost directly,

from the Fredholm theory.

The second integrals of the right-hand sides of

equations (2.21) and (2.22) are left in general form since

function w(C) has not yet been Specified.



CHAPTER III

CIRCULAR HOLE IN A FINITE TWO-DIMENSIONAL REGION

111.1. INTRODUCTION

The effect of a circular hole on the stress distri-

bution in an elastic region has attracted considerable

attention for the past seventy years. The effect of a

circular hole on an infinite plate subjected to uniaxial

tension was first solved by Kirsch [32]. This work was

extended to other load conditions by Bickley [33].

Howland [34] solved the problem of a long strip weakened

by a circular hole subjected to uniaxial tension. Other

load conditions were considered by Savin [35]. The effect

of a circular hole on the stress distribution in a finite

elastic region has been treated numerically and experi-

mentally using several methods.

In this chapter, the solution of the problem of a

finite plane elastic region containing a circular hole and

subjected to traction boundary conditions is presented.

This is the first implementation of the mapping technique

and boundary integral equation method. In section 2 of

this chapter, some known complex potential functions [36]

are used to find the influence function for an infinite

domain weakened by a circular hole. In section 3, the

52



53

Muskhishvili method is used and the mapping technique is

employed to determine the influence function directly.

It is shown that the two results are identical. In the

last section some example problems are considered and the

results are compared to some known solutions, where

available. The computer program for the computation is

included in Appendix B.

111.2 DERIVATION OF THE INFLUENCE FUNCTIONS

USING KNOWN POTENTIAL FUNCTIONS

Consider an infinite elastic plane with a circular

cavity of radius a centered at the origin. Let a force

P act at a point 20 where IZoI>a. Bhargava and Kapoor

[36] have constructed the potential functions, ¢(Z) and

W(Z), for this problem. They assume, following Green and

Zerna [31], that the complex potentials are of the form:

¢(2) = P {-1n(z-z ) - a 1n (z-iz—M A (z-fi)’1
2nio+li ° 7? Z?

+ a 1n 2} (3.1)

(2) = F a 1n (Z-Z ) + 2 2 (2-2 )-1 + In (2-2:)“7—HTa+ O 0 p 0 7;

+ B (z-f‘-—:—)'1 + c (Zia-Y2 - ln 2 + 112'1 + E z‘z}(3.2)

20 o

This choice clearly gives preper singularities at the point

of action of the concentrated force 20. Also, it satis-

fies the condition of zero stresses at infinity. The
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unknown constants can be found from the condition that

and 0normal and tangential stresses, orr re’ are zero at

the boundary of the hole, i.e.,

(0
rr - 10re)2=o -

The boundary condition can be written in terms of ¢(Z) and

W(Z) following Muskhelishvili [27] as follows:

0,, - iOre = ¢'(Z) + 67177 - eZietf ¢"(2) + 1'(Z)1 (3.3)

Substituting equations (3.1) and (3.2) into equation (3.3)

 

 

 

 

leads to:

2-

A=§B 120
(1286

2-

B=3a20-B 120

F 82

2-

c=B 12%
B“

2-

n=8 12. --I:(Ol'-L)Zo
82 P- 82

E = - E a a2

P

where 82 - Z°Z° Th f ' 1 d ° f p- -7;T' US, or an 150 ate p01nt- OTCC

acting at the point 20, the complex potentials at the point

Z are:



SS

2

¢(2) — 2“ 5+1 3 - ln(Z-Zo) - a 1n(2-%:) + a ln 2

0

 

 

 
 

 

F 2020-1 a2 -1
+ (z-—)

ZTTTOH'I) ; 322-: n

P' 0.2 202-0-1 0.2 '1

1(2) = {a ln(Z-Zo) + ln(2-——) - 1n 2 - ——————(Z-——)
ZTTiOH'1) 0 70 To

z Z -1 o2 -2 2020-1 . 1 P — _ -1

+ 02?: (2-2—I) + ‘20 Z) + 71W“ 3 2°“ 2°)

2 - __ _ _ _

+ a 20(Z-%E) l - a 202 1 - i%—- 2 1 - a 322 2:

Without loss of generality, assume a = 1. Then 6(2) and

U(Z) become:

P 22 -1

MD = —(——T)- 3 - ln(Z-Zo) - a 1n( ° 1;
2” 0+ 270

+ P 2020-1 . 1

Z"(“+1) 23 220-1

P 22 -l 2 2 -l
W(2) ='_-T—__I 3a ln(Z-Zo) + 1n(——£——) - —£—£——-

211 CHI 22-0 Zia-l

+ ZoZofl + Zofo’l$+ P To + 02%

(220-1)2 220 2"E“+15 z'z° 270-1

_ aZogz'tl _ 292'; (3.3)
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Let these potential functions be written as:

¢(z) = 7FTETTj-{¢I(Z)} + 2FTSTTT {¢II(Z)}

“1) = 113+ {‘1’1(Z)}* man) {111(2)}

where o1, ¢II’ WI and W11 can be found by comparison to

equations (3.3).

Since ¢'(2), ¢"(Z) and w'(Z) will be needed, they

will be listed here:

4"”) = minim} * Wis—WWI}

1v .. P 11 P ..

¢ (2) _ n a+ {¢I } + n a+ {¢II}

w'(z) = fngTTT {wi(z)} + 21(g117 {111(2)} (3.4)

l a

Z(ZZo‘1)

1 222 -1
¢"(2)=+m_ + °

I ° 22(220-1)2

 

 ¢' (2) = - -

II 7% (Zia-m
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_ 2

¢ii(z) = 202-0 1 . 2.2-0

7% (220-1)3

W'(Z) = _ 2b - __EZ§___ + o202o+1 + 2o

I (Z'Z°) (220-1)2 7°22 7?

, _ l (Zo2o-l)Zo 2(Zo2o—l)2o
w (23-n-‘3‘ +_____+ -
11 ° 2(220-1) (220-1)2 (220-1)3

- 2335;}. (3.5)

2022

Hence, the influence function can be easily found as

described in section 1.2. They are

Hxx;qP3 = Re [2¢'(Z) - Z¢"(2) - w'(2)]

*= 1 I! v
Hyy;qPq Re 12¢ (Z) + 2¢ (2) + W (2)]

*= 1! v
ny;qpq 1m [2e (2) + W (2)]

l
* = _ -Ix:qpq Zfi-Re [o¢(Z) Ze'125 W125]

*=_l_ - ' -
Iyquq 2m 1m [a¢(2) Z¢ 125 W125] (3.6)

Substituting (3.4) into (3.6) leads to

Hxx;q(Z,Zo)Pa(Zo) = 2115:17'512¢i(z) - Zei'(2) - wi(2)] p*

+ 12¢],(2) - 7111(2) - wi1(2) 1 P3]
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R g - H + 1

+ 12¢i1(z) + Z¢]i(Z) + wil(2) 5 Pt]

Im

“xy;q‘z’z°)P3(Z°) = 2113:1111 7¢i'(z) + 11(2) 1 P*

Wham + 111(2) 5 W1

Ix;q(z,z )P;(zo) — 153%5117-[1a¢1(2) - 26:177‘- 1125 1 P*

+

18811”) + 211157:5 ’ 115Zj 15“]

1y;q(z,zo)1>a(zo) - fimy [{e¢1(2) - z—(‘Tei2 — T71z 113*

+1e¢n(z) + 2‘1—(‘74511z - mu2 [15*] (3.7)

where ¢I(Z), 11(2). ¢i'(2), ¢II(21. ¢i,(2), ¢ii(z)» w,(2).

Wi(2), WII(Z) and WiI(Z) are defined by equations (3.4).

These influence functions will be used to solve a simple

problem by the boundary-integral method in section 4 of

this chapter.

111.3 DERIVATION OF THE INFLUENCE FUNCTIONS

USING A MAPPING TECHNIQUE

The mapping technique which is presented in Chapter

II is now employed to obtain the influence functions. Con-

sider the problem of an infinite plane having a circular
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hole of radius a at the origin and a concentrated point

force P acting in the plane at some points 20 where IZol>a.

This problem can be expressed as the superposition of two

problems, Figure 3.1.

In the problem of Figure 3.1(B), the concentrated

point force P acting at the point 20 in an infinite plane

is considered. In the problem of Figure 3.1(C), the

infinite plane contains a circular hole with a prescribed

traction acting on its circumference. The traction on the

circular hole is equal in magnitude and opposite in direc-

tion to the generated traction on a circular contour in

the problem of Figure 3.1(B). By adding the solutions

to the problems of Figure 3.1(B) and 3.1(C), the zero

traction on the hole of the problem of Figure 3.1(A) is

obtained.

The solution of the problem of Figure 3.1(B) is well

known (Muskhelishvili [27]) so that the required traction

can be found. Also, the problem of Figure 3.1(C) may be

handled by mapping into a unit circle (disc), Figure 3.2.

Clearly, the mapping function for this problem is

2=w(c)=%

which is conformal and one to one [37]. Without loss of

generality, let a = 1. Let the complex potential function .

for the problems of Figure 3.1(A), 3.1(B), and 3.1(C) be

¢(Z), W(Z); ¢°(Z), W°(Z); and ¢*(Z) and W*(Z), respectively.
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 (C)

Figure 3.1 Fundamental problem expressed as super-

position of two problems.

 

   

  

 

Figure 3.2 Mapping the auxiliary problem to a unit

disc.
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Then the complex potential functions for the problem of

Figure 3.1(A) are

M2) ¢°(Z) + ¢*(Z)

NZ) ‘1’°(Z) + W*(Z)

where the derivatives are given by equations (2.2) through

(2.5) in section 11.3. To find ¢*(Z) and W*(Z), the

transformed complex potential functions which are given

by equations (2.21) and (2.22) will be used. It is first

necessary to calculate the integrals of equations (2.21)

 

 

and (2.22).

I; = 7.13% :37: ‘bgéoj do (3.8)

:2 mi 273%.. 122:9“ .. .3...

Taking the derivative of equation (2.16) leads to

M'CO) = Z: kakok (3.10)

k=1

and the complex conjugate is:

¢’1"(o§ = k2; kEkEk-l

Since 03 = 1, then
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Wo = 2:1 szko’k"1 (3.11)

The mapping function and its derivative, evaluated on the

boundary, are

 

= l ' = - __MO) 0 , w (o) 02

so that

“(0) = - 3— (3.12)

w'ioi o3

Multiplying equations (3.11) by (3.12) gives:

(0(0) . W; z: -kako'k'z (3.13)

w'io) k=1

From equation (3.13), it is clear that the right-hand side

is an analytic function outside of y, the unit circle.

The value of the right-hand side at infinity is zero.

Thus, due to the Cauchy integral formulas, the principal

value of the integral of equation (3.8) leads to:

 

_ 1 (0(0) W -
I1" mi 00 O 0-; d0 - 0 (3.14)

To calculate the integral of equation (3.9), consider the

complex conjugate of equation (3.13), which is

w 0 = - 03 (3.15)

Multiplying equations (3.10) by (3.15) leads to:
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oo

¢f'(o) = kzl - kakok+3 (3.16)
+

Clearly, the right-hand side of equation (3.16) is analytic

inside the unit circle. Hence, following the Cauchy

integral formulas, the principal value of the integral

of (3.9) leads to:

 12=m5€ 3‘30) ‘1’??? do = - 4: ewe) (3.17)

Substituting integrals (3.14) and (3.17) into the general

formulation for ¢f(g) and W§(;) (equations [2.21] and

[2.22]), the complex potential functions for a circular

disc with a specified boundary value, F(o), are obtained:

 

 

M02) - 7.13% if) do (3.18)

‘P’fm = 7,13% SC: do + c3¢*'(c) (3.19)

Y ,

For the case considered, F(o) and Fig) will now be calcu-

lated. Rewriting equation (2.10) and taking the conjugate

leads to:

 

13(0) = - («33(0) + %W1o + Wo] (3.20)

F105 = - [¢‘,’(0) + % ¢‘{'(o) + 13(0)] (3.21)

Substituting equation (3.7) into (2.6), the transformed

complex potential functions ¢2(c) and Wg(§) are:

 



12

F l

.7
73
/
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¢2(c) = - 71%ETT) 1n (ligii) (3.22)

_ P' l-ZC P 2c
12(c) - a ZFTETTj-ln ( o ) + 2fi(a+1) 1320; (3.23)

Taking the derivative of equation (3.22) and substituting

c = 0 into equations (3.22) and (3.23) leads to:

P
 

 

(133(0) = " m 1H (1-3500)

. _ P 1

¢3 (O) ' ’ 2nCa+l) (1-200)

0 _ fi 1 ZOO P _ 700

WI(O) - a Znia+I$ 1n ( ) + n a+ 1-Zoo

 

Taking the complex conjugates of equations (3.24) along

with equations (3.12) and (3.15) will provide all the

terms on the right-hand side of equations (3.20) and

(3.12). Then F(o) and Fioi will be

 

= l'ZoO _ _ + — l‘ZoC (3.25)

No) Q{1n ( O ) a In (a 70)} Q{_o(o-70)}

FTE) = Q‘{g§%%§%l-} + o'{1n (0-20) - a 1n.l;§19} (3.26)

_ P

where Q - 7ET6:T73

Substituting equation (3.25) into (3.18) leads to

73795 ”(12°C 9 1( J)l. _ n 0 0

$1 0- c do Zni Y -C do

U+-§$I.¢§ (1‘Z°°) do (3.27)

Y 0(0'70) (O'C)
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(l;%12) is anRecalling the discussion in section 1.3, In

analytic function outside of y, the unit circle. Because

Zo>l, the function has two essential singular points at

on and o = 1/20. The function is defined at infinity as:

 

l'ZoC

[1n ( O

[
I
t
—
J

= In (’20)

0
V

then

 

 

1 1 200

1 9;. C o ) _
2?: Y O_C do - 1n (~20) (3.28)

Clearly, ln(o-Zo) is an analytic function inside y, the

unit circle. Hence, the Cauchy integral formulas lead to:

mf l——:—-—n(0;20) d0 = ln(C'“2.0) (3.29)

Also

  

{ l'ZoO

1 (1-Z°O) do = Residu

7F? 36 oco-zo)(o-c)Y 0(0'Zo)(0'5)

 

 

O=C

+ Residu I { 1'Z°O

0:0 0(O'ZO)(O'C)

or

1 (l-Zoq) = 1-20; 1
'TFI _______.+ ___. (3.30)

Y 0(o-Zo)(o-c) c(c-fo) Zoc
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Substituting the integrals of equations (3.29) and (3.30)

into equation (3.27), the complex potential function can

be obtained:

 cptcc) = Q{1n(-zo) - a ln(c-m} + M 1'Z°7° } (3.31)
70(C‘Zo)

To obtain Wf(c) it is necessary to find the integral of

equation (3.19), i.e.,

= 1 .96 Flo)

I3 2N1 Y 0—; do

Then from equation (3.26):

_ 6(0-7 )do — 1 (0-2 )

I3 ’ 733$ (1-zoo§(o-;) 1 2%? Y no-; 0 do

 

  

l-Zoo
 

 

  

 

-. ln( )

- 3?%'5§ 0-: do (3.32)

where

—l+ C(O'Z°) do = Residu 0(O-Z°)

ZNI SE (1 2003(0-C) Ulc{ -Zo(o-;;)(o-C) }

+ Residu C(Oiz°)

1 -Z°(O-ZF)(O-C)

O:

7?

After some simplification:

1 0(0-7 ) _ g 1-Z 2

my: (I-zoofio-c) ‘10 ‘ ' 2‘; ‘ _°—'°‘
 

(3.33)
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Substituting equations (3.33), (3.29) and (3.28) into

equation (3.32) leads to:

 

2%"? it?“ = Q{‘ 2;: $23} + U{1n(c°Zo)

- a ln(-20)} (3.34)

Taking the derivative of equation (3.31) gives:

 

¢T1(C)= Q{ '01 } + Q’{1_'Z_£E£ . _'1_____2.} (3.35)

C'Zb Zo (C‘Zo)

Substituting equations (3.35), (3.34) into equation (3.19)

and following some simplification, the other complex

potential function is:

me) = Q { 7;“; - lit-71 - 953—}+Q{1n(c-Zo) - a ln(-z.)

_ 1-z.Zo_ . ____C3 } (3.36)

To (C’Zo)2

As is discussed in section 1.2, the two complex potential

functions ¢f(§) and ?f(c), expressed by equations (3.31)

and (3.36), are not a unique set of functions. Since the

origin of the coordinates is within 7, then, following

section 1.2, the uniqueness conditions for ¢f(c) and Wf(c)

are:
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¢1(0) = 0 , WT(0) = 0 (3.37)

Conditions (3.37) lead to the unique complex potential

functions:

We) Q{a ln(-7.) - a ln(a-70)}+ q{___1'zozo

702

 

1 1-2020 . 1 } (3.38)

70 6-2-0

_ _ c _ 6:3 + — _ - -
wt) - Q{ 73— th} Q{1n(c 2,) ln( To)

_ l;ZQZh.. __£3___.} (3.39)

2. (c-Zo)2

These can be rewritten as:

ma) Q {mm} + 6{¢f1(c)}

8 {W0} + 8 {18102)}81%;)

where ¢f(c), 6f1(c), W?(;) and W¥I(c) can be obtained by

comparison to equations (3.38) and (3.39) and are given

in Appendix A.

Then

¢§'(c) = Q {¢f‘(c)} + Q {¢§i(c)}

¢f"(c) = Q {¢f"(c)} + — {¢fi'(c)}Q

wt'cc) = Q {wg'm } + Q {mm} (3.40)
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where

¢’f'(c:) = - °‘_

C‘Zo

me.) = - —_1'§°7° . _1_

Z0 (C'Zo)2

¢*H(C) = a

I (C‘70)2

cb’fi'hz) = ———1'Z°Z° - ____2

79 (C‘zh)3

2 _ _

wg'cc) = - .21. - 8.; L24 3:0)

o (C'Zo)

W’I‘i(z;) = __1_ - 1-ZoZo , r.’-(c-3Zo)

5'20 Z. (C'Zo)3 (3.41)

Complex potential functions of equation (2.6) can be

rewritten as:

 

¢°(Z) = -Q.ln(Z-Zo)

11°(z) = Q- 7° + (5.111(2-20) (3.42)

Z-Zo

and the derivatives are:

¢°'(Z)='Q°2T0

¢°"(2) =+Q-—————1
(Z-Zo)2

‘1’“(2) = -Q 7° +Q- 0‘ (3.43) 

(Z-Zb)2 2’78
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Substituting equations (3.40), (3.42) and (3.43) into

equations (2.5) leads to:

 

 

 

 

4(2) = Q {- 1n(2-zo) + ¢I(2) }+ 6{¢II(z.-)}

8(2) = Q {272 + WI(2)}+ Ma 1n(2- 2.) + 8*II(:)}
- 0

¢*'(c) (2), _ -1 + I —

‘1’ (Z) ' Q{z-zo W2.)— (25%}

' _ -Z wf'(C) a + w¥i(C)

w (Z) - Q{m+m}+q{z-zo W}

4"(2) _ Q{ 1 ¢I"(2) ¢I'(2;)w"(2)}

(Z-Zo)2 (u'2(c) w'3CE)

¢*"(c) ¢*'(c)w"(c)

+ 6{—L———- II } (3.44) 

w'2(C) w'3(c)

where ¢I'(c), ¢I"(c). 4*II(2). ¢II'(2), WI'CC) and VI I(c)

are defined by equations (3.41).

Substituting equations (3.44) into equations (3.6)

along with the mapping function, w(§) = 1/C, and its

derivatives, leads to the influence functions for a

circular opening:

Hxx;q(z’z°)Pa(Z°) = Re: Q*<wz}%; ' 2C2¢I'(C) ' 7 [(2%TFT_I+

c“¢I"(z;) + 223¢I'(c)] + —-Z°—— +
’ (2'70)2

cz‘ilI'(z;))+ 6* (- 22; ¢II (2) - Z[2“ ¢II'(2)

7; + 2 WI I(c))£

z-zo

 + 223¢II(2)] -
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* = * -2 _ 2 *v — — 1

HYY;q(Z:Z°)Pq(Z°) Re Q (Ho 2“ 4’1 m 4' Z [(2202

+ C“¢*"(C) + 2C3¢*'(C) _ 2.0

I
I ] (Z-z-o)2

cz‘PI'm ) + 6* (-222¢II(2) + Z‘ [CW’I‘I'Ufl

 + 2¢II(2)23] + 230 - CZWIIMN

Im 0*(2 {—4—— + 2;“¢I"(c)ny;q(zszO)Pa(ZO) (Z-Z0)2

 

To
2¢*'(C) ' C3 - --———

I ] (z-Zo)2

+

- CZWI'(2))

Q*(Z[c“¢II'(c) + 2¢II(2) - 2:3]

 

- °‘ + c2W*'(c))
z_‘Z'o II

 I Z,Z P* 2 Rm( o) q( o) e

 

g: - 1 z-z + * - z '1
u an( 0) G¢I(C) [

-70

 - 3W2, ]- 22° - WIa; )+% (acbIIm)
'Z0

+ Z? Q¥liCi - oln(7-Zo) - Wflici) ‘

-1

7-70

Im  I Z,Z 13* Zy;q( o) q( o)

N “
C
!
-

(- alnCZ-Zo) + MIR) - Z[

 

 -EZ¢I'(25]- 22; - VIM}??? (a¢II(2;)

+ ZZZ¢¥iici - a1n(7-Zo) - WTIiCi ) ‘ (3.44)
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Hence the influence functions for an infinite plate with

a unit circular hole at the origin are obtained.

It has been stated that these influence functions are

unique. Therefore, they must be identical to those found

in section 111.2. To show this, let ¢*(Z) and W*(Z) be

determined, using the known solutions

 

 

 

 

- - 0 _ p _ Zia-1
p

¢*(2) - ¢(2) ¢ (Z) - Era—+17% 0‘1“ 220 z+ 7T 0” g

2020-1 , 1 z

202 220-1

* = _ 0 = P OLZO2 _ azDZiil - 3L)1! (Z) NZ) ‘1’ (Z) '2"n'(a+15 3270-1 220 22 g

+ Tr 5+ 3111(22-0‘1) _ 202-0-1 4. Ego—.3”..—

220 22-0-1 (ZZ0‘1)2

+ 2020'1 g
(3'45)

Z70

where ¢(Z), W(Z) were given by equations (3.3) and ¢°(Z),

W°(Z) were given by equation (2.6).

Transforming the two equations (3.45) into the c-plane,

i.e., Z = % , leads to

¢t(§) Q :a1n(-Zo) - a1n(c-zo) z... 631-2020

702

1-2020. 1 I

20 C‘Zo
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flu) = Q - 75; - “C3 3+ Oglnu-Zo) - ln(-70)
 

C'Zo

- 1—2070 . C3 i (3.46)

To (C’Zo)2

The two potential functions, found by equations (3.46),

have also been determined by the mapping technique,

equations (3.39), and as one can see, they are identical.

III.4 THE BOUNDARY INTEGRAL EQUATION METHOD

APPLIED TO PLANE FINITE REGIONS

WEAKENED BY A CIRCULAR HOLE

The basic idea of the Boundary Integral Equation

Method has been discussed in section 1.1, where the dis-

cretized form of the integral equations is given, see

equation (1.19). Consider a plane finite region with

boundary B subjected to specified traction boundary con-

dition, t, and containing a unit circular hole at the

origin, Figure 3.3. Divide the boundary, B, into N meshes

(not necessarily equal) and embed the region R in an

infinite (fictitious) plane of the same material as R

containing a unit circular hole at the origin, see Figure

3.4. Note that the influence functions H.

Um

Ii,q(Z,Zo) for this fictitious region are given by equa-

tions (3.44).

(2,20) and

Following section 1.1, the fictitious traction P*

around the fictitious boundary can be found from:
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Figure 3.3 A unit circular hole in a plane finite

region with prescribed traction on the boundary.

- ._-

(w v “__f _____ x 

 
 

 

‘
—

     
  
Figure 3.4 Region R embedded in an infinite plane

containing a circular hole at the origin.
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N

I. . 2X }X1 * . * . S.

T + i=1 HX><;q(z’7‘°)1’q(zo)nx1
+ ny;q(Z,Zo)Pq(Zo)ny1

A 1

j#i

= Pxi (1:1,..N)

N

p. . Z{
1 9. , + H z z P* z . A8._7%_ + j=1 ny;q(Z’Z°)Pq(Z°)nX1 yy;q( ’ 0) q( °)ny1 1

j¢i

= Pyi
(1:1,..N) (3047)

where the influence functions Hij,q(Z,Zo)Pa(Zo) given by

equation (3.44) and the resultant fictitious traction on

a given interval is represented by:

* = * . * .=
Pqi PXi + 1Pyi (1 1,..N)

In equation (3.47) nxi and nyi are the components of

the unit normal to the interval i. Also, Pxi and Pyi are

the x and y component of the real resultant traction

applied to the mesh i.

Considering the influence functions, equation(3.44)

and splitting each equation into two components of P*,

i.e., P; and P;, leads to:

II

I
:

'
U a
.

+ I
:

’
U a
.*

.
Hxx;q(z’z°)Pq(Z°) xx;x X XX;y

II

I
!

’
U a
.

4
.

I
E

’
U 3
&
-

H y;q(Z.Zo)1’c"I(Zo)
y yy;x ° x YY3Y °

II

V

3
}

.
4
.

”
U a
-

“ y;q(Z,Zo)Pa(Zo)
x ny;x ° x ny;x
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t = . * . *Ix;q(Z,Zo)Pq(Zo) Ix;x PX + Ix;y Py

I Z,Z P* Z — I ° P* + I - P* 3.48

ysqc °) q( °) y;x x yzy y ( )

where Hij;q and Ii;q can be easily found by comparing

equations (3.48) with (3.44), see Appendix A.

Substituting equations (3.48) into equations (3.47)

 

leads to:

N

P*.

X1 * * *+ :E:: 01 , - P + H , P ) - n . + (H , - P
2 j= xx,x x xx,y y x1 xy,x x

j#i

. it o = °=
+ ny;y Py) nyi :ASi PXi (1 1,..N)

N

12*. Z:
_§£ . * . * . . k

+ i=1 (nyzx PX + ny;y P y) ”xi + (Hyy;x PX

j¥i

. a . = .=
+ Hyy;y Py) nyi }ASi PXi (1 1,..N) (3.49)

Rearranging equations (3.49):

N

P*.

XI + [H - 11 . + H ° n ] ° P* +- HI ' n
7 .=1 xx;x x1 xy;x yi xi xx;y xi

jfi

* =

+ HXY.Y nyi] Pyi :AS xi



' N

+” Z}1 . , . * .

+ j=1 [ny;x nxi + Hyy;x nyi] Pxi + [ny;y nxi

i=1

. . * = . .
+ Hyy;y nyi] Pyi :ASi Py1 (3 50)

N

1 * . it . * = °=
7 PXi + ;§;(Aij pXi + Bij Pyi) BVXi (1 1,2..N)

j¥i

N

% P;i + :E:(C.. - P*. + D.. ' P*.)= BV . (i=1,2..N)(3.51)
.= 13 x1 13 y1 y1

where:

ij xx;x xi xy;x yi

B.. = H , ° n . + H , ° n .

1] XX:Y X1 xy,y Yl

C.. = H , - n . + H , - n .

1] XV,X X1 yy,x Yl

D.. = H - . + H - n .

1) xy;y nx1 yy;y y1

(i,j=l,...N)

Euqations (3.51) represent a set of 2N equations with 2N

unknowns, i.e., P*
t ' =

xi and Pyi for 1 1,...N. Methods for

obtaining the solution have been discussed in section 1.1.
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Writing equation (3.51) in matrix form:

  

.. B.. P*. BV .
1) 13 x1 x1

C.. D.. P*. BV .
_ 1] 1] d y1 y1

(3.52)

Note that the diagonals of submatrices [Aij] and [Dij] are

1/2 and the diagonals of submatrices [Bij] and [Cij] are

zero

Equation (3.52) can be solved by matrix inversion,

iteration, or elimination (Faddeeva [38]). Once the

fictitious tractions are found, then the stress and dis-

placement at the point F can be easily found following

section 1.2. These are:

. * , *(HXX;X(F,20) P . + Hxx;y(F.2o) PyI)
xx . x1

1

N

o = :E: [H ;X(F,Zo) - P§i - H (F,z,) - p*.]
YY i=1 yy yy;y Yl

N

OxY = g;; [ny;x(F’Z°) ' P§i + HXY;Y(F’Z°) . p;i]

N

Ux = i=1 [IX;X(F,ZO) - p;i + Ix;y(F,Zo) - P;i]

N

Uy = 22; [Iy;x(F,Z ) - P;i + 1y;y(F,z,) - P;i] (3.53)



79

EXAMPLE III.l

A Rectangular Plane Weakened by a Circular Hole

Consider the rectangular region (10cm x 20cm) of

unit thickness (h = 1cm) which is weakened by a circular

hole of radius r = 1cm at the origin, see Figure 3.5. A

uniformly distributed traction (w = 1.0 MPa) is applied

to the t0p and the bottom of the rectangular region as

shown. The boundary has been subdivided into sixty

equally-spaced meshes, each of length 1.0cm, i.e., 10

meshes are defined on each of the top and bottom edges

and 20 meshes on each vertical edge.

The field points, the points where the stress and

displacement are calculated, are chosen along the x,y axis

and include points on the edge of the hole. These are

also shown in Figure 3.6.

The data, i.e., the coordinates of the nodal points,

X(I) and Y(I), the resultant of the traction on each sub-

division (calculated by the trapezoidal rule), BVX(I)

and BVY(I), and the coordinates of the field points, XF(I)

and YF(I), are read into the program (Appendix B). The

results are presented in Table 3.1.

The results are compared to the theoretical solution

of a long strip weakened by a circular hole subjected to

uniaxial tension (Howland [34] and Savin [35]). The

program required 35 seconds of CPU time on a CDC 6500

computer.
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Figure 3.5 Circular hole symmetrically placed in a

finite rectangular plate under uniaxial tension.
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Table 3.1. Stresses and displacements in a rectangular

region containing a circular hole at the

origin, Case 1

Geometry: rectangular plane (10 x 20cm2) (1 cm thickness)

Load: w = 1.0 MPa

Eccentricity: X0 = 0.0 Y0 = 0.0

' E = 70000 MPa, u = 26315.79 MPa, v = 0.33

Field Coordinates U U

Point X Y Oxx Oyy xy x y

N0. cm cm (MPa) (MPa) (MPa) microns microns

1 1.0 0.0 70.0 3.13128 0.0 -o.oo14 0.0

2 1.2 0.0 0.32793 2.1486 0.0 -o.oo152 0.0

3 l 4 0.0 0.38043 1.70146 0.0 -0.00154 0.0

4 1.8 0.0 0.31226 1.33672 0.0 -0.00155 0.0

5 0.0 1 0 -1.ll98 0.0 0.0 0.0 0.00281

6 0.0 1 2 -0.44908 -0.0235 0.0 0.0 0.00291

7 0.0 l 4 -0.18639 0.10502 0.0 0.0 0.00298

8 0.0 1.8 -0.02031 0.36858 0.0 0.0 0.00314

9 -1.0 0.0 0.0 3.13128 0.0 0.0014 0.0

10 0.0 -l.0 -1.1198 0.0 0.0 0.0 -0.00275

AY

Available Solution: 1 f f I I t_f ‘

Field

Point

No. References

1 0 =3.14 MP 34 35

S oxx= “1'11 MPa [341.[351 \J V

9 =3.14 MP 34 35a”, a ( 1.( 1

10 0xx= -l.11 MPa [341,[35]

1 H I I I 4

\w



82

To see the effect of the size of the plane on the

stress and displacement solutions, smaller rectangular

planes, 8cm x 16cm and 6cm x 12cm, weakened by the circu-

lar hole of radius r = 1cm at the origin were considered.

The results are presented in Tables 3.2 and 3.4.

The program has been written in such a way that, if

different dimensions of the rectangular plane are needed,

only one character, WR, is to be changed. Note that the

proportionality of the long side to the small side remains

constant and equal to 2.0. Also, for different locations

of the hole, the new coordinates of the center of the hole

XO,YO must be read into the program. Finally, the example

of the problem of a rectangular plane (9cm x 19cm) weakened

by an unsymmetrically located circular hole is solved and

the results are presented in Table 3.4. Again, the CPU

time was 35 seconds for each run on a CDC 6500 computer.

EXAMPLE 111.2

A Circular Plane Weakened by a Circular Hole

Let a circular plane of radius R = 6cm and unit

thickness (h = 1cm), which is weakened by a circular hole

of radius r = lcm at the origin, be considered, see Figure

3.6. A radially uniform distributed load (w = 1.0 MPa) is

partially applied to the tOp and the bottom of the outer

circumference, as shown. The boundary has been subdivided

into sixty equally spaced meshes each of which covers 6

degrees of angle (0.6283cm) numbered from the top and
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Table 3.2 Rectangular region containing a circular hole

at the origin, Case 2

 

 

 

 

 

 

 

 

 

 

 

 

         
 

 
 

 

    

eometry: rectangular plane (8 x 16cm2) (1 cm thickness)

oad: w = 1.0 MPa

ccentricity: X0 = 0 Y0 = 0

= 70000 MPa, u = 26315.79 MPa, v = 0.33

ield Coord1nates

oint X Y 0xx ofiy XY UX UY

NO- cm cm (MP3) (M a) (MP3) [microns hicrons

1 1.0 0.0 ‘ 0.0 3.2212 0.0 -0.218 0.0

2 1 z 0.0 0.3339 2.2013 0.0 -0.229 0.0

3 1.4 0.0 0.382 1.738 0.0 -0.232 0.0

4 1.8 0.0 0.3040 1.3619 0.0 -0.234 0.0

5 0.0 1.0 —1.1821 0.0 0.0 0.0 0.404

6 0.0 1.2 -0.4851 -0.0294 0.0 0.0 0.418

7 0.0 1. -0.2090 0.0992 0.0 0.0 0.427

8 0.0 1.8 -0.0293 0.3662 0.0 0.0 0.450

9 -1.0 0.0 0.0 3.2212 0.0 0.218 0.0

10 0.0 -l.0 -1.1821 0.0 0.0 0.0 -0.392

0V

4111111“

([[[[[10

K.
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Table 3.3 Rectangular region containing a circular hole

at the origin, Case 3

Geometry: rectangular plane (6 x 12cm2) (1 cm thickness)

Load: w = 1.0 MPa

. Eccentricity: X0 = 0.0 Y0 = 0.0

E = 70000 MPa, u = 26315.79 MPa, 0 = 0.33

Field Coordinates U U

Point X Y Oxx O y Oxy X y

No. cm cm (MPa) (Mga) (MP8) microns microns

1 1.0 0.0 ' 0.0 3.4341 0.0 -0.244 0.0

2 1.2 0.0 0.3456 2.3206 0.0 -0.257 0.0

3 1.4 0.0 0.3827 1.8198 0.0 -0.260 0.0

4 1.8 0.0 0.2724 1.4061 0.0 0.265 0.0

5 0.0 1.0 -1.306 0.0 .0 0.0 0.406

6 0.0 1.2 -0.555 -0.0425 0.0 0.0 0.429

7 0.0 1.4 -0.2486 0.0852 0.0 0.0 0.439

8 0.0 1.8 -0.0361 0.3580 0.0 0.0 0.460

9 -1.0 0 0 0.0 3.4341 0.0 0.244 0.0

10 0.0 -l.0 -1.306 0.0 0.0 0.0 -0.390

IY

( no
‘111111‘1

([[[[[v 
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Table 3.4 Stresses and displacements in a rectangular

region containing a nonsymmetrically located

circular hole

Geometry: rectangular plane (9 x l8cm2) (1 cm thickness)

Load: w = 1.0 MPa

Eccentricity: X0 = -0.5 cm Y0 = 1.5 cm

- E = 70000 MPa, u = 26315.79 MPa, 0 = 0.33

Field Coordinates o o 0 U U

Point X Y xx y xy x y

No. cm cm (MPa) (MPa) (MPa) microns microns

1 1.0 0.0 0.0 3.16445 0.0 -0.3267 0.6244

2 1.2 0.0 0.3313 2.16904-0.0010>0.3376 0.6248

3 1.4 0.0 0.3841 1.71526-0.0013 -0.340 0.6251

4 1.8 0.0 0.31466 1.34361-0.0015-0.3415 0.6253

5 0.0 1.0 ~1.1624 0.0 0.0 -0.1193 1.033

6 0.0 1 2 r0.4736 -0.0269 -0.0038 -0.1180 1.044

7 0.0 1.4 ~0.2027 0.10251-0.0047’—0.1184 1.053

8 0.0 l 8 ~0.0294 0.3697 -0.0046 -0.1192 1.0763

9 -l.0 0 0 0.0 3.19990 0.0 0.0989 0.626

10 0.0 -1.0 [1.15149 0.0 0.0 -0.11812 0.2181

AY’

I Y 4
1H t I

d :;

/ h

\J

1 1 [4 [I 1) 
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counterclockwise. The field points are chosen along the

x,y axis and include points on the edge of the hole.

These are also shown in Figure 3.6.

The data, i.e., the coordinates of the nodal points,

X(I) and Y(I), the resultant of the traction on each sub—

division (calculated by the trapezoidal rule), BVX(I)

and BVY(I), and the coordinates of the field points, XF(I)

and YF(I), are read into the program (Appendix B). The

results are presented in Table 3.5. The program required

36 seconds of CPU time on a CDC 6500 computer.

The effect of the radius on the stress and displace-

ment solution has also been considered by solving the

problem for R = 4.8cm and 3.6cm and r = 1cm. The results

are presented in Tables 3.6 and 3.7.

To obtain the solution for different radii of the

plane, one has to change the character WR which is the

ratio of the desired radius to the R = 6cm. Also, for

a different location of the hole, the new coordinates of

the center of the hole, XO,YO must be read into the pro-

gram. To see the effect of eccentric placement of the

circular hole on the stress and displacement field, the

example of a circular plane (R = 5.4cm) weakened by an

unsymmetrically located circular hole of radius r = lcm

is solved and the results are presented in Table 3.8.

Again, the CPU time was 36 seconds for each run on a CDC

6500 computer.
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Table 3.5 Stress and displacement in a circular plane

containing a circular hole at the origin,

Case 1
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Geometry: circular plane R = 6 cm (1 cm thickness)

Load: w = 1.0 MPa

Eccentricity: X0 = 0.0 Y0 = 0.0

E = 70000 MPa, u = 26315.79 MPa, v.= 0.33

Field Coordinates 0 U U

Point X Y Oxx yy Oxy x y

No. cm cm (MPa) (MPa) (MP8) microns microns

1 1.0 0.0 0.0 2.948 0.0 -0.272 0.0

2 1.2 0.0 0.2975 1.9438 0.0 -0.284 0.0

3 1.4 0.0 0.32771 1.4742 0.0 -0.287 0.0

4 1.8 0.0 0.2345 1.06002 0.0 -0.290' 0.0

5 0.0 1.0 r1.70816 0.0 0.0 0.0 0.323

6 0.0 1.2 ~0.8751 -0.0846 0.0 0.0 0.380

7 0.0 1.4 I0.5090 0.0332 0.0 0.0 0.388

8 0.0 1.8 -0.2547 0.31029 0.0 0.0 0.409

9 -1.0 0.0 0.0 2.948 0.0 0.267 0.0

10 0.0 -1.0 (1°7081 0.0 0.0 0.0 -0.318

=‘X.
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Table 3.6 Circular plane containing a circular hole at

the origin, Case 2

 

 

 

 

 

 

 

 

 

 

 

 

         
 

 

 

 

Geometry: circular plane R = 4.8 cm (1 cm thickness)

Load: w = 1.0 MPa .

Eccentricity: X0 = 0.0 Y0 = 0.0

E = 70000 MPa, u = 26315.79 MPa, v.= 0.33

Field Coord1nates o 0 U U

Point X Y xx gy xy x y

No. cm cm (MPa) (M a) (MP3) microns microns

1 1.0 0.0 0.0 3.0268 0.0 -0.288 0.0

2 1.2 0.0 0.3077 1.9808 0.0 -0.3011 0.0

3 1.4 0.0 0.3414 1.4806 0.0 -0.304 0.0

4 1.8 0.0 0.2502 1.0181 0.0 -0.306' 0.0

5 0.0 1. -1.8281 ‘0.0 0.0 0.0 0.347

6 0.0 1.2 -0.9085 -0.0886 0.0 0.0 0.362

7 0.0 1.4 -0.528 0.0397 0.0 0.0 0.412

8 0.0 1.8 -0.232 0.339 0.0 0.0 0.434

9 -1.0 0. 0.0 3.0268 0.0 0.282 0.0

10 0.0 -l.0 51.8281 0.0 0.0 0.0 -0.340

=‘X
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Table 3.7 Circular plane containing a circular hole

at the origin, Case 3

Geometry: circular plane R = 3.6 cm (1 cm thickness)

Load: w = 1.0 MPa

Eccentricity: X0 = 0.0 Y0 = 0.0

E = 70000 MPa, 0 = 26315.79 MPa, v-= 0.33

Field Coordinates o 0 U U

Point X Y xx . yy xy x y

No. cm cm (MPa) (MPa) (MPa) microns microns

l 1.0 0.0 0.0 3.2127 0.0 -0.327 0.0

2 1.2 0.0 0.3298 2.0625 0.0 -0.341 0.0

3 0.0 0.3686 1.4878 0.0 -0.344 0.0

4 1.6 0.0 0.2748 0.9105 0.0 -0.344 0.0

S 0.0 1.0 -2.093 0.0 0.0 0.046 0.352

6 0.0 1.2 -1.0129 -0.0980 0.0 0.0 0.407

7 0.0 1.4 -0.550 0.0526 0.0 0.016 0.417

8 0.0 1.8 ~0.136 0.3982 0.0 0.0 0.485

9 -1.0 0.0 0.0 3.2127 0.0 0.319 0.0

10 0.0 -1.0 (2-0937 0.0 0.0 0.042 -0.343

IIY‘

—.—X
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Table 3.8 Stress and displacement of a circular plane

containing a nonsymmetrically located

circular hole

Geometry: circular plane R = 5.4 cm (1 cm thickness)

Load: m = 1.0 MPa

Eccentricity: X0 = -1.0 Y0 = 2.0

E = 70000 MPa, u = 26315.79 MPa, v-= 0.33

Field Coordinates o 0 U U

Point X Y xx yy xy x y

No. cm cm (MPa) (MPa) (MPa) microns microns

1 1.0 0.0 0.0 3.239 0.0 0.0 0.919

2 1.2 0.0 0.325 2.161 -0.019 -0.0116 0.9163

3 1.4 0.0 0.358 1.667 F0.0346 -0.0166 0.9118’

4 1.6 0.0 0.259 1.239 -0.0629 -0.0232 0.898

5 0.0 1.0 -1.532 0.0 0.0 0.358 1.226

6 0.0 1.2 r0.6160 -0.0417 0.05507 0.344 1.239

7 0.0 1.4 80.2224 0.11601 0.0629 0.332 1.247

8 0.0 1.8 0.1352 0.4443 0.04002 0.2523 1.309

9 - 0.0 0.0 2.779 0.0 0.509 0.782

10 -l.0 1.5716 0.0 0.0 0.1903 0.5704

[1,,

 

 

  
 

 

 



CHAPTER IV

ELLIPTICAL HOLE OR SHARP CRACK IN A FINITE

TWO-DIMENSIONAL REGION

IV.1 INTRODUCTION

Problems associated with stress concentration around

holes in structures have motivated the effort to solve

problems of plane elastic regions weakened by elliptical

holes or sharp cracks. The solution for the stress near

an elliptical hole in an infinite plane subjected to a

uniform load was first obtained by Inglis [39] using

complex potentials. Later this problem was examined

experimentally by Durelli and Murray [40]. A method for

the determination of stresses and displacements near the

tip of a sharp crack in an infinite plane subjected to in

plane load was developed in an infinite series form by

Westergaard [41]. The effect of holes of more general

shape on infinite planes has received considerable atten-

tion, most notably by Muskhelishvili [27]. The problem

of an elliptical hole or a sharp crack in a long strip

subjected to uniform tension and compression has been

treated experimentally and numerically using several

methods and techniques. Yet, no solution for an arbitrary

plane region weakened by an ellipse or crack is available.

92
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In this chapter the solution for the problem of an

arbitrary, finite, two dimensional elastic region, weakened

by an arbitrarily located and oriented ellipse or sharp

crack, is presented. This is the extension of the imple-

mentation of the mapping technique and boundary integral

equation method. In section 2 of this chapter, the

Muskhelishvili method is used and the mapping technique

is employed to determine the influence functions for an

elliptical hole. In section 3 this influence function is

extended to a sharp crack. Finally in the last section,

some example problems are solved for an elliptical hole

and a sharp crack at different orientations. These

solutions are compared to some available experimental

[42,43] and analytic [44] results. The computer programs

are included in Appendices C and D.

IV.2 DERIVATION OF THE INFLUENCE FUNCTION USING

THE MAPPING TECHNIQUE: THE ELLIPTICAL HOLE

PROBLEM

In this section, the influence function for an

infinite plane region containing an elliptical hole is

derived. Consider an infinite plane containing an ellip-

tical hole at the origin and a concentrated point force P

acting in the plane at some point 20, where 20 lies on or

outside of the ellipse, i.e.,

x o "
<

o

(4.1)

”
I
N

+

°
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|

N

\
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n
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where Z0 = Xo + iY0 and a,b are the semi-major and semi-

minor axes of the elliptic hole. The problem can be

expressed as the superposition of two problems, see

Figure 4.1. The problem of Figure 4.1(B) is simply that

of a concentrated point force P applied at 20 in an

infinite plane and the problem of Figure 4.1(C) is that

of prescribed traction acting on an elliptic hole in an

infinite region.

This applied traction on the elliptic hole is equal

in magnitude and opposite in direction to the traction

generated on an elliptic contour in the problem of Figure

4.1(B), by the concentrated point force P.

Adding the solutions of Figures 4.1(B) and 4.1(C),

the zero traction condition on the hole of the problem

of Figure 4.1(A) is obtained. The solution to the problem

of Figure 4.1(B) is known (Muskhelishvili [27]). Thus,

the required traction can be found.

To solve the problem of Figure 4.1(C), it is neces-

sary to map this problem into a unit circle (disc), see

Figure 4.2. It is easy to verify that the mapping function

2 = R(%+ m)

for R > 0 and 0 < m s l (4.2)

transforms the region exterior to the ellipse into a unit

circle Iclgl (Churchill [37]), provided R and M are taken

as:
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a+b

R = T and m - 3—4'5 (4.3)

where a and b are the semi—major and semi-minor axes of

the ellipse, respectively, and are equal to:

a = R(1+m) , b = R(1-m)

The mapping function is conformal for, if w'CC) is con-

sidered, i.e.,

w'(c) = -¥L-+-n1 o<m<1

C2

It is obvious that w'(§) has two roots, c = V175: outside

y, the unit circle. Thus, w'(;) is not equal to zero

inside y, the unit circle, and following the conformal

mapping theorems [37] it can be concluded that the mapping

function of equation (4.2) is conformal. .

It is important to note that, as the point c = :6

describes the circle Icl = 1 in the positive, counter-

clockwise direction, the correSponding point traces out

the ellipse in the clockwise direction. Clearly, the

parametric equations of the ellipse must be taken in the

form:

>
< II

R(1+m) Cos 0

*
< ll R(l-m) Sin 0 (4.4)

If m = o, the ellipse becomes a circle and the transforma-

tion function equation (4.2) becomes w(c) = R/c. How-

ever, it will be seen that several expressions derived in
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this chapter will be singular when m = o and therefore

the analysis is invalid for the case of the circular hole.

Since the case of the circular hole has already been

treated, the following restrictions will be placed on m:

o<m<l

When m = l, the point in the Z-plane traces out the segment

of the x-axis between X = +2R and X = -2R twice as the

point t describes the boundary of the unit circle, IQI = 1.

Thus, in this case the mapping function of equation (4.2)

maps a sharp crack along the line joining the points (2R,o)

and (-2R,o) to y, the circumference of the unit circle,

and thus maps the Z-plane, excluding the crack, onto the

unit circle Icl<1.

Without loss of generality, let R = 1. Then the

mapping function and its derivatives are:

Z=w(;) =%+mc (a)

w'(c)=--1—2+m (b)
C

Me) = 3:3— (c) (4.5)
C

Let ¢°(Z) and W°(Z) be the complex potential functions for

the problem of Figure 4.1(B) and ¢*(Z) and W*(Z) be the

complex potential functions for the problem of Figure 4.1(C).

Then the potential functions for the problem of Figure

4.1(A) are
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4(2) ¢°(2) + 4*(2)

W(Z) ‘l’°(Z) + “(2)

where the derivatives are given by equations (2.2) to

(2.5) in section 11.3. To find ¢*(Z) and W*(Z), the

transformed complex potential functions are

  

  

_ 1 F(O) 1 w(0) 41'195
¢*(C) - do - do (4.6)

1 2N1}; O"; 2“]. ‘¢_; m 0";

I _ l Flo) _ 1 (o) g:f(o)

WI(C) — 201 5g. o-L do 201 jé. :‘(o) o-g do (4'7)

It is first necessary to calculate the following integrals:

 

 

11 = 713'46. :(O: ¢§_§05 do (4.8)

*1

12 = III-jg. 34%;) ¢3_£°) do (4.9)

To construct the arguments of the integrals of (4.8) and

(4.9), it is necessary to substitute 0 into equation (4.5)

and note that 03 = 1. The mapping function and its complex

conjugates become:

-1
(0(0) O+mo

may“;

m'(o) =«34 + m

02

(0'10) = 02 + m (4.10)
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and, since 0*(0) and ¢*'(o) are analytic inside y and

¢*'[oi is analytic outside 7, equations (3.10) and (3.11)

lead to:

¢*'(o) = 2: ka ok and ¢*'[o) = 2: k3 o_k+1

k= 1 kg 1 k=1 k

Thus, the arguments of the integrals can be constructed as

follows:

 

(G) . ETTTET = _liEE:_ . 2: k5 o'k+1 (4.11)

k:

(L)

W?) 0011-02) k

24-$19 3 ¢I'(9) = - gfg;;%1_. 3:1 kakok (4.12)

Substituting equation (4.11) into the integral (4.8) leads

to:
(X)

[(1+m02)/(m-02)] 23 kako-

11:711—1— 0 = d0

-c
 

It is clear that the numerator of the argument is an ana-

lytic function outside 7, the unit circle. Hence, following

the Cauchy integral formula, presented in section 1.3, the

principal value 0f the integral of equation (4.8) becomes:

 I1 = 7%1-5é.w”(03 ¢o_£005 do = 0 (4.13)
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Also, substituting equation (4.12) into the integral (4.9)

leads to:

[(02+m)/(1-m02)] - Z 1641(ch+1

I = 1 - k=1 do
2 2?? Y o-c

Obviously the numerator of the argument is an analytic

 

function inside y, the unit circle. Thus, due to the Cauchy

integral formulae.the principal value of the integral

becomes:

m6) .4____*'(o) do _= 1 _ 2(22+m) . 4.

12 mi 673 o-c: 1-m62 $1 (C) (4'14)

Substituting the expressions (4.13) and (4.14) into equa-

tions (4.6) and (4.7) leads to:

_ 1 F(0)
¢f(c) - mi o- I; do (4.15)

14* (c)= mf-—§—F§544 + W:*———‘l‘—) 4*'(c) (4.16)
1--mc2

Recall equations (3.20) and (3.21):

F(O) = -[¢g(0) + MLm0' + WO 1 . (4.17)

w'ioi

Flo) = {42(0) * (5716)— ¢3'(0) + WIT—Io ] (4.18)
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where ¢°(Z) and W°(Z) are given by equations (2.6). To

find the transformed complex potential functions 02(g)

and 82(c), substitute the mapping function, equation (4.5.a),

into equation (2.6):

 

  

2-

42(2) = - Q In mg 2°C+1 (4.19)

— 2- —

42(4) = a Q In m; Z°¢*1 + Q - CZ° (4.20)
C mC2’20C+1

where Q = 7FT§TTT and O is the complex conjugate of Q.

Taking the derivative of equation (4.19) and evaluating

the potential functions, equations (4.19) and (4.20) at

C = 0, leads to:

 

 

_ moZ-Z o+1

42(9) - - Q 1n 0°

2

. _ -1
42 (o) - - Q - m“

o(mo2—Zoo+1)

  

2-

43(6) = o - a ln ”0 300*1 + Q - 02° (4.21)
moz-Zoo+l

Following equations (4.10), it is clear that:

w(oI = l+mo2 (4.22)

w'io) o(m-oz)

w o = _ o(oz+m) (4.23)

l-mo2
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Taking the complex conjugate of equations (4.21) along with

the equations (4.23) will provide all the terms needed to

calculate F(o) and F(o). Thus, equations (4.17) and (4.18)

 

 

become:

2_ 2_

F(o) = Q [In mo §°O+1 - a 1n 2__Z%Eflfl I

2-
+Q-{mo Z0041} (4.24)

oZ-Zoo+m

 

2 _

Q[O -700+m [+ Q—{ In Oz-ZoO‘Fm

o
moz-Zoo+l

 

mOZ-ZoO+1 }

o (4.25)- a 1n

Before any further calculation, it is necessary to examine

the terms in equations (4.24) and (4.25). There are two

distinct quadratic terms in the equations:

3
> ll moz-Zoo+1 (4.26)

U
7 ll oZ-Zoo+m (4.27)

Solving equation (4.5[a]), the mapping function, for c,

yields:

mcz — Z; + 1 = O (4.28)

As discussed earlier, the mapping function, equation

(4.5[a]), represents a conformal mapping, i.e., for every

point Z exterior to the ellipse, there exists only one
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corresponding point in the a plane interior to the circle.

Since equation (4.28) is of the quadratic form and has

two complex roots, then one root has to fall inside ; and

the other root has to fall outside y, the unit circle.

The two quardratics, equations (4.26) and (4.28), have

the same coefficients. Thus, equation (4.26) has two

roots, one inside and one outside y. Denote the root

inside Y by ri and the root outside y by r0. Then equa-

tion (4.26) can be written as

A = moz-Zoo+l = m(o-ri)(o-ro) (4.29)

where

 

For examination of equation (4.27), consider the following

mapping function:

2 = 4(2) = 2 +13 (4.30)

This function maps points in the plane exterior to the

ellipse onto points in the plane exterior to the unit

circle. This mapping function is also conformal. For,

if w'(§) is considered

w'(;) = 1 - IL o<m<1
C2

it is clear that w'(c) has two roots, ; = 1 JE: inside y,

the unit circle. Thus, w'(§) is not equal to zero outside

Y and, following the conformal mapping theorems [37], it
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is thus concluded that the mapping function, equation

(4.30), is also conformal.

Solving equation (4.30) for ; leads to:

22 - 22 + m = 0 (4.31)

where the roots are

C52 = Z/Z i 222/4-m' (4.32)

Since the mapping function is conformal, then for every

point in the Z plane exterior to the ellipse, there exists

only one corresponding point in the C plane exterior to

the circle. Hence, one of the roots of equation (4.32)

has to be inside Y and the other root has to be outside Y.

Note that, if the roots of a polynomial of degree N with

the complex coefficients, f(2) = 0, are oi(i=l,...N), then

roots of f(2) = 0 are E;(i=l,...N). Hence, the roots of

the following equation

:2 - Z; + m = O (4.33)

are the complex conjugate of the roots of equation (4.31),

i.e., complex conjugate of equation (4.32), and since the

equation (4.31) has one root inside and the other root

outside Y, then equation (4.33) has one root inside and

one root outside Y, the unit circle. Comparing equations

(4.33) and (4.27) leads to the fact that equation (4.27)

also has two roots, one inside and the other outside Y.

Denote the root inside Y by ti and the root outside Y

by t Then equation (4.27) can be written as:O.
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B = oz-Zoo+m = (o-ti)(o-to) (4.34)

where

 

Substituting equations (4.29) and (4.34) into equations

(4.24) and (4.25) leads to:

  

 

  

 

( - - 6 ) ( ~t-)(0-t )

F(O) = Q {1n m G r;)(o r0 - 6 ln 0 1 0 ° I

m(o-r1)(0- ro)

+ (6- t.)(6- to) 1 (4°35)

(0 t1)(0 t 0) (O't-)(0't )

F(o) = Q1 m(o- rf)(o- r00)} M1 10 o

(-. -
- 6 1n m G r1:(0 TO) I (4.36)

Substitution of equations (4.35) and (4.36) into equations

(4.16) and (4.17) leads to determination of the complex

potential functions:

 

 

 

m(o-r.)(o—r )

4I(c) = jgg-jé. 1n ; 0 . $93

_ 2%1’56. 1n (O-ti:(O-to) . 32—

Y
’C

y m(o-i-or)(or)

+ 2%? (0 1:1)(0-1;o)(o--§)d
(4.37)
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jfi' (0- t1)(0- to)

7%? Y m(o-.r7(o—Or)(o-dfl

“5" (o-t)(o- t0) do
. 373

Y

Mjfi' m(o-ri)(o-ro) do

Y o . 373

+ Ci;+m) ¢*'(c) (4.38)

m:

 

W?(c)

 

 :1
9

a?
»

The following integral will now be evaluated:

 I = TL 55 1.. ’“(°’ri)‘°"‘o) .212. = _1__ 1n ‘l‘fiiil . 1L
n1 0 o-c Zwi o o-c

Y Y

* 23*‘.¢§ £2£E;:91 do
n1 Y ' o-g

m(o-r.)
1

o ] is an analyticAs discussed in section 1.3, 1n[

function outside y, the unit circle. Also, this function

has two essential singular points (at o = 0 and o = ri)

inside y and the value at infinity of:

m(o-r.

[1n(———E—llfl = 1n(m) o<m<1

o=0°

Thus, due to the Cauchy integral formulas (section 1.3):

1 m(°'ri) do _

7F? 5%.3“"——7r“—'° at: ‘ 1n(m)
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Also, ln(o-ro) is an analytic function inside 7, so that:

1 % 1n(o-ro)

m —-——O'C d0 = 111(C‘r0)

Thus,

 

m(o-r.)(o-r )

I = 713-56. In 1 0 do = 1n m(c-ro) (4.39)
n o 0-Y C

Following the same argument, it is clear that the second

integral is:

 

(O‘t-)(0-t)

II = 7715'? In 1 ° . CL"— = ln(c-to) (4.40)
O O";

The third integral which needs to be calculated is:

m(o-ri)(o-ro)

1
III = do

m 9, G-tiMo-tp (o-c)
 

Clearly, III has two poles (at o = ti and o = ;) inside y;

thus,
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. m(o-ri)(o-ro)

III = Re51due| {(O’tij(0'to)(0‘cj }

o=ti

. m(o-ri)(o-ro) _ m(o-ri)(o-ro)

* ReSIdueI {Io-ti)Io-to)(o-cl}' IE-ti)(c-to)
0:;

m(ti-ri)(ti-ro)

(ti-to)(ti-c)

+ 

   

2

1 .yg m(o-ri)(o-ro) do _ mCz‘ZoC+l mti-Zoti+l

——r +

2H1 (O-ti)(0-toj(0‘C) - CZ‘Z0C+m (to-tiTCC-ti)

(4.41)

The fourth and final integral which must be calculated is:

¢ (O'ti) (O‘to)

IV = YET Y m(o-ri)(o-ro)(o-E) do

 

Clearly, IV has two poles (at o = r1 and o = ;) inside Y-

Determination of residues at the two poles leads to:

_ (c-ti)(c-to) (ri-ti)(ri-to)

’ m(o-ri)(o-ro) * m(ri-ro)(ri-c)
  

 
  

2

1 ¢ (o-ti)(o-to) do = C2-70C+m + ri-Zori+m

7F: m(o-ri)(o-r0)(o-C) mCZ‘Z0C+1 m(rO-ri)(C-riT

(4.42)

Substituting the evaluated integrals of equations (4.39),

(4.40), and (4.41) into the equation (4.37) leads to:
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CDT“) = Q(1n m(g-ro) - a 1n(C‘to)) + 6(mC2-Zoz;+l

C2‘70C+m

 

 

mt.-Zot.+1

1 1 ) (4.43)

(to-ti)(c-ti)

Taking the derivatives:

, _ 1 a — PD mti’z°1i+1
4:(U-—Q(;7—-;¢ )+Q( 2- 2‘ _ _ 2)

0 o (c Zoc+m) (to ti)(c 11)

  
 

(4.44)

where

PD = (ch-Zo)(41-Zoc+m) - (Zc-To)(m41-Zoc+1)

and

 

¢*H(C) = Q ( '1 .+ a ) + 6 ( PDD

(c-ro)2 (c-to)2 (CZ-70C+m)3

2(mti-zoti+1)

+ ) (4.45)

(to-ti)(C-ti)3

 

where

PDD = [ZmCm-Toc)-2(1-Zoc)](CZ-704+m)-2(24-70)[PD]

Substituting the evaluated integrals of equations (4.39),

(4.40), and (4.42) along with equation (4.44) into equation

(4.38) leads to:



«
a
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2—

W*(C) = Q CZ'ZOC1m + ri zori+m

1 mCZ'ZoC+1 m(ro-ri)(c-ri)

. 9.3.3.113). { ___1...._ .. 0‘ )+q(1n(;-t ) - a 1n m(z;~r)
l-mgz C-ro C-tO 1 O O

2-

+ Eigiiml PD - mti Z°t1+l }) (4.46)

l-mgz (Q2-70C+m)2 (to-ti)(C-ti)2

The two complex potential functions, ¢f(§) and T§(c),

expressed by equations (4.43) and (4.46), are not a unique

set of functions. Since the origin of the coordinates is

within y, then, following section 1.2, the uniqueness con-

ditions for ¢f(c) and WfCC) are:

¢?(0) = 0 , W§(0) = 0

These conditions lead to the unique complex potential

functions:

   

 

  

T 'C t -; 2_

¢f(c) - Q 1n z. - a 1n 2 + m: _Zoc+1

0 ° Cz'ZoC+m

2-

- l . (mti 1°111131
(4 47)

m ti(to-tiT(C-tij

2-7 r.1+m)

21 11m (r 0 ( 2+m)
w* = 0 +

+£_£____ . *1 _

’(C) m; 2~zoc+1 “11(10'11)(C1:7 ¢I (C) ml-mz;2

- a 1n
  «mm (4.48)

:(:n%“to-w; ro-c + C( 2+m)

16 l-m;2
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Note that equations (4.47) and (4.48) can be rewritten as:

Q (wc) ) + (5013(5))

Q (W302) )+ Q(‘P‘f1(c)) (4.49)

¢f(c)

ma)

where ¢f(c), ¢11(C)’ W¥(c) and Wf1(c) can be found by com-

parison to equations (4.47) and (4.48). The derivatives

of the complex potential functions can be written as:

¢f'(c) = Q (¢’f‘(c)) + Q(¢’f1'(c))

d>f"(c:) = Q (¢1§"(c))+ Q (¢’f'1'(c) )

9’1"“) = Q (W§'(c))+ Q(‘¥’fi(c))

where ¢f‘(c), ¢f"(c), ¢fi(c), ¢ff(c), Wf'(c) and WfiCC) are

given in Appendix C.

The complex potential functions of Figure 4.1(B) and

their derivatives are given by equations (3.42) and (3.43).

Applying superposition and adding the two sets of poten-

tial functions, expressed by equations (3.42) and (4.49),

leads to the potential functions of the problem of Figure

4.1(A):
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M2) (23- ln(Z'zo) + ”(03+ 53¢f1u):

Y(Z)  

Q g z' + Wf(c) £+ Q';a ln(Z-To) + Wf1(c)£ (4 50)

Z-o

Since ¢'(Z), ¢"(Z) and W'(Z) are also needed for the

influence functions, they are written here:

 

  

-1 ¢*'(C) ¢¥i(§)

¢'(Z) = Q3*Z-Zo +'—TG:f—+ W3

and) - Q3 ——°——Z+w71—WC)+Q:M)°‘ +51%“)
(Z-Zo)2 “"

¢*"(c) ¢*(c)w"(c) ¢*"(c)¢"(Z) = 3 1 + I _ I £+ Q: I

(Z-Zo)2 w'ZCC) w'3(C) w'2(c)

(4.51) 

¢*i(c)w"(c) :

w'3(c)

Finally, substituting equations (4.50) and (4.51) along

with the mapping function and its derivatives, equations

(4.5), into equation (3.6) leads to the influence functions

for an infinite region weakened by an elliptic hole:



Hxx;q(Z,Zo)Pa(Zo)

H z,z P*yy;q( o) q(Zo)

+
4
.

+
+

c“ n
-———————— ¢f (c) -
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Re Q*<:ZE%F.+
2:2

mcz—l

 ¢f'(c) - 7 [———l—-—
(2'20)2

2:3

(mCZ-l)3

W§'(c))

3'”WW .1 on]

To

(z-Zo)2

C2

mgz-l

  

 

 

1 nz [EETEI§? + ¢§ (c)

¢§'(c)] -

ff(c)

(mcz-l)“

To2:3

(Z'Zo)2(mCZ-l)3

6* “2
mcz-l

Z .___£:___ ¢

(mcz-l)“

. :2

mcz-l

 

wg'm)

 

*n C) _‘ 2§3

(mcz-l)3
II ¢ii(g)]*
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2

a + C who)
2'70 mcz-l

Im Q* Z'[ 1 + ———£:——- ¢*"(C)

(. (Z’Zo)2 (ch-l)“ I

  

*ny;q(Z,Zo)Pq(Zo)  

 

2; *1 2-0
‘ —-——- (b (C) -

(m<:,2-1)3 I ] (Z-Zo)2

 

 

3 2

- ———3£——— ¢¥i(C3 + a + C W§'(c)
(mcz-l)3 Z-To mcz-l

I 2,2 P* zx;q( o) q( 0) Re %(- 0L ln(Z'Zo) + 0‘ 43?“)

  

_ —2

z i + -§e—— ¢g'(c) - 2°
Z-Zo m; -1 {-20

3! :2

‘Y*IZC5)+ %(a ¢§I(c) - ZLEz-l d) CO]

d ln(Z—Zo) - V¥ETE{)

 

 

H
»

H
"
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I (Z Z )P*(Z ) = Im 91- - a ln(Z-Z ) + a ¢*(c)
y;q 9 0 q 0 2U 0 I

 
 

 

_ '1 :2 ! Z0
Z + _ ¢I C ' ' TIE)—

Z'z—o 111C, ’1 Z

+  

it - '52

9E a ¢¥I(C) Z [:m32_1 ¢II:C:]

a ln(Z-Zo) - WTIlCi (4.52)

Hence, the influence functions for an infinite plane with

an elliptical cavity at the origin are found.

IV.3 DERIVATION OF THE INFLUENCE FUNCTION:

THE SHARP CRACK PROBLEM

Considering m = l, a sharp crack along the x-axis

between x = 2 and x = -2 is obtained, Figure 4.3. The

transformation function

_ _ 1

Z - m(C) - E'+ C (4.53)

transforms the whole region exterior to the crack into a

unit circle |c|<1. Substituting m = 1 into equations

(4.52) leads to the influence functions for the crack

problem:



’
K

(-2,0) (2,0)

V
>
<

 

Z.plane

 
Figure 4.3 A sharp crack in an infinite plane.



 
*

HXX;q(Z’Z°)Pq(ZO)

ll

5
U

(
D

O

8
'

I
I

N

o

+

N W

N

'
9
-

H
}

r
-
\

n \
J

  

2 2

- ci-l wf‘(c))+ 5* (cf: ¢fi(c)

- 7' __£:L___ ¢*n(;) - _£¥::___ ¢*'(;):]

[(cZ-l)“ II (c2-1)3 II

2

- 0L - “-9—— $1102)
z-zo c2—1

Re Q* 7:5— + 2C2 ¢*'(c) + 7
'20 C2 I

 

___1__

(Z'Zo)2

+ c“ n 2:3 .
(CZ-1)“ ¢f (c) - (;2_1)3 ¢f (c)]

20 + C2 (11* ( 2C2

- -——————— ' c) + 6* ¢*'(c)

(2-7.)2 Cz-l I c2-1 II

 H Z,Z P* Zyy;q( o) q( o) -1

 
 

4
.

  



Hxy;q(z,zo)Pg(zo)

Ix;q(Z,Zo)Pa(Zo)
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= Im Q" '2' ————l——— + C“ *H

(Z-Zo)2 (C‘°'-1)"CbI (C)

- 2:3 (3,...” 7 '

(CZ-1 3 I C - 0 + Cl '
) (Z‘Zo)2 Cz'l W? (C)

+‘Q* 2’ -—£:L——— ¢*"(c) -—3¥::——

(2:2-1)“ II - (c2-1)3 Hm

+ a C2

Z-ZO + 2 WT'CC))

II

5
0

(
D

    

- Z[ -1 + E2 ¢g Z

z-Zo 52-1 I C - Z 2 - I C- 0

7:-

+ %(0 ¢fI(C) ' 2 ° _Ez ¢IIEC3

1

 

:2-

a ln(Z-zo) - W§}TETJ)‘
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Iy;q(Z’Z°)Pa(Z°) - a ln(Z-Zo) + a ¢f(c)

ll

H 5 r
0

   

_ —2

Z-Zo Cz'l 7’20

9—5.. -_Lij.
Zu a ¢II(C) Z 32-1 ¢Ii C4

.

a ln(-2'20) " 15511;; g (4.54)

where ¢f(c). ¢f1(c), ¢f'(c). ¢fi(c), ¢f”(c). ¢ff(c). Wf(c).

Wf1(c), Wf'(;) and Wfi(c) are given in Appendix D.

Hence, the influence functions for an infinite plane

with a horizontal sharp crack lying on the x-axis at the

origin are found.

One must exercise some care when using these influence

functions in that a singularity will occur when Z = 70.

This case will now be considered. First solve the trans-

formation function, equation (4.S3), for C.

 

c = g 1 //Z2/4 - 1T (4.54)

Then write the two roots inside and outside 7, equations

(4.29) and (4.34), for the case (m = l):

 

 

ri,o = %} : //Z%/4 - 1 (4.55)

t. = Zo/Z i J/Zfi/4 - 1 (4.56)
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If the field point, Z, is equal to the complex conjugate

of the load point, 20, then equations (4.54) and (4.56)

will be identical (; = ti), since lclsl and Itil<1. Note

that this makes the right-hand side of integral III,

equation (4.41), infinite. Thus, integral III has to be

reevaluated. Substituting ti = C into the integral leads

 

  

 
 

t0:

M(C-r.)(0-r )

111 = 7%; I. 1 0 do

‘Y (O-to)(o-z;)2

Thus,

m(o-r.)(o-r ) m(o-t.)(o_r )

III = Residuel 1 0 = é% oft o |

o=C (O-toMO'C)2
o 0:;

or

III — 71—. ¢m(o'ri)(°‘ro) do = (ZmC'Zo)(C'to)'(mC2-ZOC+1)

fll Y (U'to)(O-C)2

(C'to)2

This change modifies the complex potential function ¢§(C),

equation (4.47), to:

  

r0 0

r ‘C t -C

¢’;(<:)=Q{1n(° )-a1n(‘§ )}

 

_.:(ZmC'Zo)(C‘to)'(mC2'ZoC+1)

+ Q

(c-to)2

Zot -1

- ——9-——} (4.57)
2

t0
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Clearly, this change affects the other complex potential

function and all the derivatives. The modified functions,

¢f(c). ¢fI(c). ¢f'(c). fi(c). ¢f”(c), ¢ff(c). Wch).

Wf1(c), Wf'(c) and T?i(c) for this special case are given

in Appendix D.

Now that the influence functions have been obtained

it is important to notice that at the tips of the crack

where Z = :2 the stress influence functions will become

infinite as expected. These two points are the only

singular points in the plane.

IV.4 THE BOUNDARY INTEGRAL EQUATION METHOD APPLIED

TO A PLANE FINITE REGION WEAKENED BY AN ELLIP-

TICAL HOLE OR A CRACK

In this section, two classes of problems will be con-

sidered. These are: (1) a plane finite region subjected

to traction boundary condition t and weakened by an ellip-

tical hole, Figure 4.4; and (2) a plane finite region sub-

jected to traction boundary condition t and weakened by a

crack, Figure 4.5.

Solutions will be obtained by embedding the regions

Re (region with elliptical hole) and Rs (region with a

sharp crack) in infinite (fictitious) planes of the same

material as Re and Rs’ containing an elliptical hole,

Figure 4.7, or a crack, Figure 4.8, respectively.

In the treatment of either of these problems, the

boundary is divided into a finite number of divisions, N,

of equal or unequal length. A concentrated line load,

which is the resultant of the traction on each division,

is then applied at the center of the division, i.e.,
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region with prescribed traction on the boundary, Bs'
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Figure 4.6 The finite regionsRe and Rs, with sub-

divided boundary and concentrated line loads.
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Figure 4.7 Region Re, embedded in an infinite

plane containing an elliptical hole at the origin.
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Figure 4.8 Region Rs, embedded in an infinite

plane containing a horizontal slit at the origin.



127

P . = p ds
x1 A51 x

P . = ds

y1 {5, py
1

and for the fictitious tractions

* = *
PXi AS pX ds

i

P*. = p ds

yl Asi Y

where A81 is the ith interval and i = 1,...N, see Figure

(4.6). The trapezoidal rule is used to approximate these

integrals. Following section 1.1, the fictitious traction

P* around the fictitious boundary can be found from:

N

P*. 2
x1

.
. o

T .j_1(Hxx;q(z,zo)pa “xi + “xy;q(z’z°)Pa nyi)Asl

jv‘i

= P _

X].

N

P*. ' Z(
1 * * . .
+ + 1 ny;q(Z,Zo)Pq nxi + Hyy;q(z’z°)Pq ny1)ASi

i

g
n
u
.

1
L

II

= Pyi for 1 = 1,...N (4.58)
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where the resultant fictitious traction on a given interval

is represented by

13*
. = P*. + i P*

q1 x1
yi (i = 1,...N) (4.59)

and the influence functions Hij'q(z’z°) are given by equa-

tions (4.54), for a crack.

Note that, in equatlon (4.58), nxi and nyi are the

components of the unit normal to the division i and Pxi

and Pyi are the x and y component of the real resultant

traction applied to the division i, i.e.,

P . = P . + i P . (i = 1,...N)

Substituting the components of the resultant fictitious

traction, equation (4.59), into the influence functions

for an elliptical hole or a slit, equations (4.52) or

(4.54), and rewriting them leads to:

Hxx;q(Z,Zo)Pa(Zo) = Hxx;x - p; + Hxx;y - p;

Hyyzq(z’z°)P3(z°) = Hyy;x p; + Hyy;y ' P;

ny;q(z’z°)Pa(Z°) = ny;x P; + nysy ° P;

Ix;q(Z,Zo)Pa(Zo) = Ix;x ° P; + 1*;y P;

1y;q(z,zo)Pa(zo) = 1y;x P; + 1y;y P; (4.60)

where Hij-q(Z’Z°)’ which represents the ijth stress com-

ponent at a point 2 due to a unit load in the q direction
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at a source point 20, and Ii;q(Z,Zo), which represents the

ith displacement component at the point 2 due to the unit

load in the q direction at the source point 20, can be

easily found by comparing equations (4.60) with either

equations (4.52) for the elliptical hole (see Appendix C)

or equations (4.54) for the crack (See Appendix D).

Substituting equations (4.60) into equations (4.58)

and rearranging leads to:

N

 2: o o . *

2 + j=1 [Hxx;x nxi + ny;x nyi] Pxi

jti

* =

+ [Hxx,y nx1 + ny;y nyi] Pyi) AS1 Pxi

N

Pic

;1 *

+ 32:; ([HXY,X x1 + “max ny1] PM

j¢i

. . . * =
+ [ny;y nxi + Hyy;y nyi] Pyi)ASi Pyi (4.61)

or writing equation (4.61) in the form of equations (1.24)

leads to:

‘1 * * ' * =

szi * ;(Aij Pxi + Bij Pyi) 3in



N

1 * t t -

fpyi " Zj=1(cij Pxi ” Dij Pyi)‘ vai

j#i

for i=l,2,...N (4.62)

where

ij = Hxx;x nxi + ny;x nyi

ii = Hxx;y “xi + ny;y nyi

C.. = H n . + H n

13 xy;x y1 yy;x xi

= H

ii xysy “xi + H

n .

YY3Y Yl

Equations (4.62) are a set of 2N linear algebraic equations

with 2N unknowns, i.e., P;i and P;i for i = 1,...N. The

methods for obtaining the solution have been discussed in

section 1.1.

Clearly, from equation (4.61),'one can conclude that

1 1

Aij-Z Dij‘z

B.. 0.0 C..
13 13

0.0

for i j. In matrix form, equations (4.62) become:
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P o o B- o q P*. BV U

13 13 x1 x1

*

This system of equations can be solved for Pxi and P*. by

matrix inversion as follows:

  

-1

*

Pxi ’ Aij Bij ‘ Bin

P*. _ c.. D.. . BV .
y1 13 13 y1

(4.64)

or by other methods for solving systems of linear equa-

tions (Faddeeva [38]).

Let F be a field point at which the stresses and

displacements are to be found. Then, using Appendix C or

Appendix D, the stresses and displacements at the field

point due to a unit load at a boundary point such as 20,

for the plane finite region containing either the ellipti-

cal hole or the slit, i.e., (F,Z°) and Ii,q(F,Zo),H..

13:4

can be found. The known fictitious tractions, i.e., equa-

tion (4.64), will now be applied to find the real stresses

and displacements at the field point. These stresses and

displacements are



 

n
1
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N

<3 == 2: [H
* *

xx . l xx;x(F’Z°)Pxi + Hxx;y(F’z°)Pyi]

*

;X(F,ZO)P;1 + H y;y(F,ZO)Pyi]
O

YY i=1 YY Y

. * *(F,Zo) Pxi + H y”(lazo) Pyi]
Oxy i=1 xy;x x

. * . *

[IX;X(F,ZO) Pxi + Ix;y(F,Zo) P -]

N

U = .23 [I * *

i=1 Y:X(F’Z°) Pxi + 1y;y(F’z°) Pyi]

Some example problems will now be considered. The plane

stress or plane strain problem can be considered by choosing

the apprOpriate value for a in the complex potential

function. For generalized plane stress:

3-v

a = +V
 

p
a

and for generalized plane strain:

a = 3-4v
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EXAMPLE IV.1

A Rectangular Plane Weakened by an Elliptical Hole

Consider the rectangular region (10cm x 20cm) of

unit thickness (h = 1cm) which is weakened by an elliptical

hole described by

x = (1+m) Cos 0

y = -(l-m) Sin 6

o<m<l

with horizontal major axis 2a = 2(l+m) and minor axis

2b = 2(l-m) at the origin. A uniformly distributed

traction (w = 1.0 MPa) is applied to the top and the

bottom of the rectangular region, see Figure 4.9. To

obtain different ratios of major to minor axis, M can be

chosen between zero and one, in this case M = 0.5, as

shown. The boundary has been subdivided into sixty

equally-spaced meshes, each of length 1.0cm, i.e., 10

meshes are defined on each of the top and bottom edge and

20 meshes on each vertical edge.

The points where the stress and displacement are

calculated, i.e., the field points, are chosen along the

major and the minor axes and include points on the edge

of the hole. These are also shown in Figure 4.9.

The coordinates of the nodal points, X(I) and Y(I),

the resultant of the traction on each subdivision (calculated

by the trapezoidal rule), BVx(I) and BVy(I), and the
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Figure 4.9 Rectangular plane weakened by an ellip-

tical hole at the origin.
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coordinates of the field points, XF(I) and YF(I), are

read into the program as the data input (Appendix E).

The results are presented in Table 4.1.

The results are compared to the theoretical solution

of an infinite plane weakened by an elliptical hole sub-

jected to a uniaxial tension [39] and solution of a long

strip weakened by an elliptical hole subjected to uniform

tension [42]. The program required 41 seconds of CPU time

on a CDC 6500 computer.

Two angles of inclination of the ellipse, 6 = 30°, 60°,

are also considered and these results are presented in

Tables 4.2 and 4.3. Note that the rectangular boundary

has been embedded in the infinite domain at inclination 0

to the "horizontal" ellipse.

The program has been written in such a way that if

different angles of inclination are desired, only one

character, THETA, is to be changed. Also, different sizes

of the ellipse, i.e., different a and b, can be obtained

in each case by changing the character, M, in the program.

For different locations of the center of the hole, the

new coordinates of the center of the hole, Xo,Yo, must be

read into the program. The problem of a rectangular plane

subjected to uniform load and weakened by an elliptical

hole with major axis 2a = 3.6cm and minor axis 2b = 0.4cm

centered at X0 = 1.5cm, Y0 = 2.0cm and inclined at an angle

of 6 = 30° is solved. The results are presented in Table

4.4. Again, the CPU time was 42 seconds for each run on

a CDC 6500 computer.
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Table 4.1 Stress and displacement of a rectangular plane

containing an elliptical hole at the origin

 

 

 

  

 

 

 

 

 

 

 

 

         
 

Geometry: rectangle 10 x 20 cm2 (1 cm thickness)

Load: w = 1.0 MPa ,

Eccentricity: X0 = 0 Y0 = 0, Angle: e = 0.0

E = 70000 MPa, u = 26315.79 MPa, v = 0.33, m = 0.5

‘ Coordinates

Field

Point X Y 0xx 0 y Oxy Ux Uy

No. cm cm (MPa) MPa (MPa) Juicrons microns

1 1.5 0.0 0.0 7.4638 0.0 -0.359 0.0

2 1.7 0.0 1.0963 2.50561 0.0 -o.291 0.0

3 2.3 0.0 0.4496 1.4263 0.0 -0.251 0.0

2. 0.25124 1.2630 .0 -0.253 0.0

5 0. 0.5 -l.107l 0.0 .0 0.0 0.545

6 0.0 0.8 -0.5836 -0.0139 0.0 0.0 0.547

7 .0 1.7 -0.0108 0.30356 0.0 0.0 0.564

8 0.0 2.4 0.0566 0.5381 0.0 0.0 0.605

9 -l.5 0.0 0.0 7.4638 0.0 0.359 0.0

10 0.0 -0.5 -l.1071 0.0 0.0 0.0 -0.545

1V

Available Solution: 4 t f f f f f H

Field

Point

No. Reference

1 =7.4oyy MPa [42)

1 0 =7.0 MPa [39] <::::> a;

yy (infinite plane)

5 Oxx= -l.lSMPa [42]

v 1 11 1 1 1 v
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Table 4.2 Rectangular plane contaihing an elliptical hole

(inclined major axis) at the origin, Case 1

Geometry: rectangular plane (10cm x 20cm x 1cm)

Load: w = 1.0 MPa

- Eccentricity: X0 0 Y0 = 0, Angle: 6 = 30°

E = 70000 MPa, u = 26315.79 MPa, v = 0.33, m = 0.5

Field Coordinates 0 U U

Point X Y xx yy xy x y

No. cm cm (MPa) (MPa) (MPa) microns microns

l 1.5 0.0 0.0 5.34611 0.0. -0.1923 0.2319

2 1.7 0.0 0.8876 1.8630 0.9115 -0.1345 0.2241

3 1.9 0.0 0.7232 1.3653 0.8148 -0.1120 0.2313

4 2.8 _0.0 0.4109 0.9319 0.6010 -0.075 0.295

5 0.0 0.5 -0.4309 0.0 0.0 0.2514 0.3946

6 0.0 0.8 -0.0934 0.0103 0.2562 0.214 0.3905

7 0.0 1.1 0.1047 0.0784 0.4023 0.1983 0.3878

8 0.0 2.4 0.2976 0.4357 0.5113 0.2319 0.4190

9 -1.5 0.0 0.0 5.3461 0.0 0.1923 -0.2319

10 0.0 -0.5 -0.4309 0.0 0.0 -0.2514 -0.3905

W”.{ 1

\111111“

f

//

*w

1111111 
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Table 4.3 Rectangular plane containing an elliptical hole

(inclined major axis) at the origin, Case 2

 

 

 

 

 

 

 

 

 

 

 

 

         
 

 

 

   

Geometry: rectangular plane (10cm x 90cm x 1cm)

Load: w = 1.0 MPa

- Eccentricity: X0 = 0 Y0 = 0, Angle: 0 = 60°

E = 70000 MPa, u = 26315.79 MPa, v = 0.33, m = 0.5

Field Coordinates 0 o 0 U U

Point X Y xx yy xy x y

No. cm cm (MPa) (MPa) (MPa) microns microns

1 1.5 0.0“ 0.0 1.0337 0.0 0.1539 0.2344

2 1.7 0.0 0.453 0.5588 0.9191 0.1903 0.2263

3 1.9 0.0 0.5660 0.4398 0.8190 0.2086 0.2334

4 2.8 '0.0 0.69189 0.30451 0.5902 0.2853 0.2951

5 0.0 0.5 0.97538 0.0 0.0 0.2564 0.0818

6 0.0 0.8 0.9229 0.0593 0.2649 0.2191 0.0653

7 0.0 1.1 0.8810 0.1063 0.4156 0.2031 0.05381

8 0.0 2.4 0.7922 0.2095 0.5315 0.2385 0.0321

9 -1.5 0 0 0.0 1.0337 .0 -0.1539 -0.2344

10 0.0 -0. 0.9753 0.0 0.0 -0.2564 -0.0818

AY’ .y

‘111111‘

.1

“O

w111111 
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Table 4.4 Rectangular plane containing a nonsymmetri-

cally located elliptical hole (inclined major

axis)

Geometry: rectangular plane (9cm x 18cm x 1cm)

Load: w = 1.0 MPa

. Eccentricity: X0 = 1.5 Y0 = 2.0, Angle: = 30°

E = 70000 MPa, u = 26315.79 MPa, v = 0.33, m = 0.8

Field Coordinates 0 U U

Point X Y xx yy xy x y

No. cm cm (MPa) (MPa) (MPa) microns microns

l 1.8 0.0 1 0.0 17.1905 0.0 0.2434 0.3892

2 1.9 0.0 2.0736 2.9680 1.6635 0.6380 0.5744

3 2.1 0.0 1.1269 1.7636 1.1255 0.7245 0.6193

4 3.2 0.0 0.4972 0.9748 0.6480 0.8071 0.7640

5 .8 0.0 0.2913 1.2050 0.4385 0.8116 0.8020

0.0 0.2 -0.5871 0.0 0.0 1.1892 0.7932

0.0 0.25 -0.5355 -0.0015 0.0332 1.1808 0.7930

8 0.0 0.3 -0.4849 -0.0027 0.0656 1.1728 0.7927

9 0.0 0.4 -0.3873 -0.0030 0.1277 1.1585 0.7920

10 0.0 0.7 -0.1350 0.0151 0.2847 1.1261 0.7898

AY’

§\‘1HH‘1

1"” A

1 1111\11
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EXAMPLE IV.2

A Circular Plane Weakened by an Elliptical Hole

Let a circular plane of radius R = 6cm and of unit

thickness (h = 1cm) be weakened by an elliptical hole at

the origin described by:

X = (1+m) Cos 0

Y = -(l-m) Sin 0

o<m<1

with horizontal major axis 2a = 2(l+m) and minor axis

2b = 2(l-m), see Figure 4.10. A radially uniform dis-

tributed load (w = 1.0 MPa) is partially applied to the

t0p and the bottom of the outer circumference as shown.

Again, M can be chosen between zero and one where in the

Figure M = 0.5. The boundary has been subdivided into

sixty equally-spaced meshes, each of which covers 6 degrees

of angle (0.6283 cm) numbered from the top and counter-

clockwise. The field points are chosen along the x,y axis

and include points on the edge of the hole. These are also

shown in Figure 4.10.

The data, i.e., the coordinates of the nodal points,

X(I) and Y(I), the resultant of the traction on each sub-

division (calculated by the trapezoidal rule), BVx(I)

and BVy(I), and the coordinates of the field points, XF(I)

and YF(I), are read into the program (Appendix E). The
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Figure 4.10 Circular plane weakened by an elliptical

hole at the origin.



 

SI

Ci



142

results are presented in Table 4.5. The program required

42 seconds of CPU time on a CDC 6500 computer.

To see the effect of angle of inclination on the

stress and displacement solution, two cases, i.e., the

circular plane subjected to the load weakened by the

elliptical hole at the origin but rotated around the

origin counterclockwise, 0 = 30°and 0 = 60°, were considered.

The results are presented in Tables 4.6 and 4.7. Again,

note that the ellipse is kept horizontal and the outer

boundary is rotated clockwise.

As mentioned in Example IV.1, the solution to a prob-

lem with different angles of rotation, different hole size

and different location of the hole can be obtained by

reading the desired characters THETA, M, X0 and Yo into

the program. The examples of a circular plane subjected

to the given load and weakened by an elliptical hole with

major axis Za = 3.6cm and minor axis 2b = 0.4cm (m = 0.8),

X0 = -l.0cm, Yo 1.5cm and oriented at an angle of inclina-

tion 0 = 30° is treated. The results are presented in

Table 4.8. Again, the CPU time was 42 seconds for each

run on a CDC 6500 computer.
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Table 4.5 Stress and displacement of a circular plane

containing an elliptical hole at the origin

 

eometry:

w:

oad:

ccentricity: X0

= 70000 MPa, u =

0

circular plane R

1.0 MPa

Yo:

26315.79 MPa, v.= 0.33, m = 0.5

= 6cm (thickness 1cm)

0, Angle: 0 = 0.0°

 

 

 

 

 

 

 

 

 

 

 

         
 

 

Lield Coordinates 0 0 U U

P01nt X Y xx - yy xy x y

No. cm cm (MPa) (MPa) (MPa) microns microns

1 1.5 0.0 0.0 6.5903 0.0 -0.4953 0.0

2 1.7 0.0 0.9213 2.1188 0.0 -0.3756 0.0

3 1.9 0.0 0.6265 1.4786 0.0 -0.3403 0.0

4 2.3 0.0 0.3084 1.0501 .0 -0.3l67 0.0

5 2.8 0.0 0.1449 10.8032 0.0 -0.3130 0.0

6 0.0 0.5 -l.4106 0.0 0.0 0.0 0.5234

7 0.0 0.8 -0.8461 -0 0236 0.0 0.0 0.5206

0.0 1.1 -0.5098 0.0539 0.0 0.0 0.5210

9 0.0 1.7 -0.2088 0.3062 0.0 0.0 0.5384

10 0.0 2.4 -0.0681 0.5664 0.0 0.0 0.5858

.5), 

 

 



  

F
G
L
E
E
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Table 4.6 Circular plane containing an elliptical hole

(inclined major axis) at the origin, Case 1

Geometry: circular plane R = 6cm (thickness 1cm)

Load: = 1.0 MPa

Eccentricity: X0 = 0 Y0 = 0, Angle: 0 = 30°

E = 70000 MPa, u 26315.79 MPa, v.= 0.33, m = 0.5

Field Coordinates o o 0 U U

Point X Y xx y xy x y

No. cm cm (MPa) (MPa) (MPa) microns microns

l 1.5 0.0 0.0 4.5582 0.0 -0.2725 0.1497

2 1.7 0.0 0.6820 1.5269 0.9271 -0.l899 0.1894

3 1.9 0.0 0.5011 1.0992 0.8071 -0.l651 0.2036}

4 2.8 0.0 0.1629 0.6888 0.4720 -0.1423 0.2396

5 0.0 0.5 -0.5996 0.0 0.0 0.2734 0.3448

6 0.0 0.8 -0.2768 -0.0049 0.3027 0.2413 0.3399

7 0.0 1.1 -0.0766 0.0426 0.4676 0.2292 0.3371

8 0.0 2.4 0.2123 0.3145 0.5738 0.2648 0.3604

9 -l.5 0.0 0.0 4.5582 0.0 0.2725 -0.l497

10 0.0 -0.5 -0.5996 0.0 0.0 -0.2734 -0.3448

51 1"

x. +

\

.\ .

#fx
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Table 4.7 Circular plane containing an elliptical hole

(inclined major axis) at the origin, Case 2

Geometry: circular plane R = 6cm (thickness 1cm)

Load: w = 1.0 MPa

Eccentricity: X0 = 0.0 Y0 = 0.0, Angle: 0 = 60°

E = 70000 MPa, 0 = 26315.79 MPa, v'= 0.33, m = 0.5

Field Coordinates o o 0 U U

Point X Y xx - yy xy x y

No. cm cm (MPa) (MPa) (MPa) microns microns

l 1.5 0.0 0.0 -0.0207 0.0 0.2218 0.1470

2 1.7 0.0 0.222 0.1803 1.0262 0.2121 0.1963

3 1.9 0.0 0.3397 0.1848 0.9116 0.2156 0.2144’

4 2 8 0.0 0.4783 0.2323 0.6416 0.2593 0.2692

5 0.0 0.5 0.9728 0.0 0.0 0.2772 -0.0174

6 1 0.0 0.8 0.8375 0.0466 0.2805 0.2444 -0.0266

7 0.0 1.1 0.7508 0.0657 0.4323 0.2306 -0.0340

8 0.0 2.4 0.5885 0.0416 0.4502 0.2480 -0.0620

9 -1.5 0.0 0.0 -0.0207 0.0 -0.2218 -0.1470

10 0.0 -0.5 0.9728 0.0 0.0 -0.2772 0.0174

1' ,4

.1

l' 6;

I} j"

/ 1

‘Lw
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Table 4.8 Circular plane containing an elliptical hole

(inclined major axis 30°) nonsymmetrically

located

Geometry: circular plane R = 5.4cm (thickness 1cm)

Load: w = 1.0 MPa

Eccentricity: X0 = -l.0 Y0 = 1.5, Angle: 0 = 30°

E = 70000 MPa, u = 26315.79 MPa, v-= 0.33, m = 0.8

Coordinates

Field

Point X Y 0xx 0 y Oxy Ux Uy

No. cm cm (MPa) (MPa) (MPa) microns microns

l 1.8 0.0 0.0 14.847 0.0 -0.3198 0.5865

2 1.9 0.0 1.7233 2.5786 1.4976 0.1331 0.8280

3 2.1 0.0 0.8951 1.5769 0.9539 0.2231 0.8678

4 2.8 0.0 0.3450 1.0458 0.5191 0.2767 0.8884

5 3.8 0.0 0.1156 0.7727 0.2609 0.2769 0.8414

6 0.0 0.2 -0.5221 0.0 0.0 0.7170 1.0366

7 0.0 0.25 -0.4735 -0.0014 0.0466 0.7079 1.0359

8 0.0 0.3 -0.4258 -0.0023 0.0908 0.6993 1.0353

9 0.0 0.4 -0.3337 -0.0026 0.1719 0.6838 1,0340

10 0.0 0.7 -0.0902 0.0122 0.3583 0.6486 1.0304

~( 1"

\. '

.’° +

.\

\_ ,

X 
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EXAMPLE IV.3

A Rectangular Plane Weakened by a Sharp Crack

Consider a rectangular region (10cm x 20cm) of unit

thickness (h = 1cm) which is weakened by a sharp crack of

length 4cm at the origin. A uniformly distributed load

(w = 1.0 MPa) is applied to the top and the bottom of the

region, see Figure 4.11. The boundary has been subdivided

into sixty equally-spaced meshes, each of length 1.0cm,

i.e., 10 meshes are defined on each of the top and bottom

edge and 20 meshes on each vertical edge. The field points

are chosen along the x,y axes. Due to the singularities

at the tips of the crack, the points (x = :2, Y = 0) cannot

be considered as field points. However, one field point

is chosen very close to the tip of the crack to show the

trend of the stress distribution. These are also shown

in Figure 4.11.

The data, i.e., the coordinates of the nodal points

X(I), Y(I), the resultant of the traction on each subdi-

vision (calculated by the trapezoidal rule), BVx(I) and

BVy(I) and the coordinates of the field points XF(I) and

YF(I) are read into the program (Appendix E). The results

are presented in Table 4.9.

The results are compared to the theoretical solution

for the stress intensity factor of a sharp crack located

in a rectangular plane subjected to a uniform load (Tada

[44]). Since this solution [44] is good for points very

close to the tips of the crack, just two field points,
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Figure 4.11 Rectangular plane weakened by a sharp

crack at the origin.
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Table 4.9 Stress and displacement of a rectangular plane

containing a sharp crack at the origin

 

 

 

 

 

 

 

 

 

 

 

 

          
 

 
 

    

Geometry: rectangular p1ane (9.56cm x 19.12cm)

(thickness 1cm), Load: w = 1.0 MPa

. Eccentricity: X0 = 0 Y0 = 0, Angle: 0 0.0°

E = 70000 MPa, u = 26315.79 MPa, 0 0.33, m = 1.0(crack)

Field Coordinates o o a U U

Point X Y xx yy x x y

No. cm cm (MPa) (MPa) (MPa) microns microns

1 2 00000 0.0 '1109.14 1110.28 0.0 -68.098 0.0

2 2.001 0.0 33.975 35.123 0.0 -2.395 0.0

3 2.1 0.0 2.492 3.643 0.0 -0.433 0.0

4 3.0 0.0 0.318 1.493 0.0 -0.285 0.0

5 4.0 0.0 0.077 1.250 0.0 -0.311 0.0

6 0.0 1x10'1 -1.123 0.0 0.0 0.0 0.6331

7 0.0 0.001 -1.123 6.2x10'9 0.0 0.0 0.6332

8 0.0 0 1 -1.013 7.6)(10'5 0 0.0 0.635

9 0.0 1.0 -0.226 0.094 0.0 0.0 0.647

10 0.0 3.0 0.117 0.613 0.0 0.0 0.751

AY

Available Solution: 1 f i f 4 f 1

Field

Point

No. Reference

1 oxx=oyy=1110 MPa [44]

= = . -———+— A2 Uxx Oyy 3S 1 MPa [44]

7 Uy=0.665 microns [43]

1 ,2} 11 1 1 1

(L)
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l and 2, are compared. Note that error of the solution

at the two field points is less than 0.08%. The displace-

ments of the points on and at the middle of the crack

(i.e., the crack Opening displacement COD) are compared

to results obtained by Sharpe [43] for a slot. The program

required 41 seconds of CPU time on a CDC 6500 computer.

To see the effect of the inclination of the major

axis with respect to the x-axis, i.e., 0 counterclockwise,

on the stress and displacement solution, two cases, the

rectangular p1ane subjected to the given load weakened by

the sharp crack at the origin but rotated with respect to

x-axis, 6 = 30° and 0 = 60° counterclockwise, were con-

sidered. The results are presented in Tables 4.10 and

4.11 and compared to the theoretical [44] and experimental

[43] solutions. Again, note that the sharp crack is kept

horizontal and the outer boundary has been rotated

clockwise.

The program has been written in such a way that if

different inclination angles are desired, only one char-

acter, THETA, is to be changed. Also, if different dimen-

sions of the rectangular plane are needed, only one

character, WR, is to be changed. Note that the propor-

tionality of the long side to the small side and the length

of the crack remain constant and equal to 2.0 and 4.0cm,

respectively. For different locations of the crack, the

new coordinates of the center of the crack, Xo,Yo, must

be read into the program. An example, i.e., the problem

of a rectangular p1ane (9cm x 18cm) subjected to uniform
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Table 4.10 Rectangular plane containing an inclined sharp

crack at the origin, Case 1

 

Geometry: rectangular plane (9.56cm x 19.12cm)

(thickness 1cm), Load: w = 1.0 MPa

_ Eccentricity: X0 = 0.0 Y0 = 0.0, Angle: e = 30°

E = 70000 MPa, 0 = 26315.79 MPa, v = 0.33, m = 1.0 (crack)

 

 

  

 

 

 

 

 

 

 

 

          
 

 
 

 

Field Coordinates o o a U U

Point X Y xx yy xy x y

No. cm cm (MPa) (MPa) (MPa) microns microns

1 2.000001 0.0 1 842.01 842.63 450.26 -6l.79 -15.49

2 2.001 0.0 26.035 26.65. 14.244 -2.066 -0.194

3 2.01 0.0 7.835 8.456 4.521 -0.725 0.141

4 3.0 0.0 0.5026 1.0951 0.6268 -0.120 0.335

5 4.0 0.0 0.3513 0.8925 0.5506 -0.095 0.435

6 0.0 1x10-1 -0.6327 0.0 4.3x10.7 0.2541 0.4845

7 0.0 0.001 -0.6319 2.0x10-90.00043 0.2540 0.4845

8 0.0 0.1 -0.5472 0.00012 0.0433 0.2412 0.484

9 0.0 1.0 0.0592 0.0759 0.352 0.1815 0.482

10 0.0 3.0 0.3406 0.4784 0.4721. 0.239 0.541

.1 “Yr

Available Solution: 1 f f j 4 f f 1

Field

Point

No. Reference /////”r

6 U =0.448 microns [43]

Y - g

6 Ux=0‘247 microns [43] *3:
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Table 4.11 Rectangular plane containing an inclined

sharp crack at the origin, Case 2

 

Geometry: rectangular p1ane (9.56cm x 19.12cm)

(thickness 1cm), Load: w = 1.0 MPa

- Eccentricity: X0 = 0.0 Y0 = 0.0, Angle: 0 = 60°

E = 70000 MPa, 0 = 26315.79 MPa, 0 = 0.33, m = 1.0 (crack)

 

 

Field Coordinates

Point Cxx Oyy Oxy Ux Uy

No. cm cm (MPa) (MPa) (MPa) microns microns

 

1 2.000001 0.0 1284.97 284.51 465.15 -4S.68 -17.04

 

 

  
 

 

2 2.001 0.0 9.454 9.00' 14.714 -1.280 -0.238

3 2.01 0.0 3.308 2.853 4.668 -0.287 0.1316

4 2.5 0.0 0.9245 0.4570 0.7719 0.1592 0.2893

5 4 0 0.0 0.7845 0.2832 0.5208 0.3365 0.4264

6 0 0 1x10'6 0.4269 0.0 4.6x10'7 0.2262 0.166%

 

7 0.0 0.001 0.4272 7.7x10-94.6x10-“ 0.2661 0.166d

 

 

          
 

 

 
 

8 0.0 0.1 0.4573 1.09x10“ 0.0465 0.2529 0.1662

9 0.0 1.0 0.6682 0.0303 0.3736 0.1927 0.1283

10 0.0 3.0 0.7751 0.1859 0.4931 0.2525 0.091

1N” .+

Available Solution: 4 f f f 1 f f 1

Field

Point A

No. Reference

6 UX=0.2380 microns [43] J

6 Uy=0.l756 microns [431 ‘:X

   *
-

‘
—

« 1111 



153

load and weakened by a sharp crack which is inclined at

30° counterclockwise and centered atan angle of 0

X0 = +1.0, Yo 2.0, is solved. The results are presented

in Table 4.12.

The method can be applied quite simply to edge-crack

problems, with any angle of inclination of the crack. An

example of this extension, i.e., the problem of a rectangu-

lar plane subjected to the uniform load weakened by a

crack of length 4cm at the left-hand side of the boundary,

is solved by introducing the new coordinates of the crack

"center" (X0 = 3.0, Y0 = 0). The results are presented

in Table 4.13. Again, the CPU time was 42 seconds for

each run on a CDC 6500 computer.
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Table 4.12 Rectangular p1ane containing an inclined non-

symmetrically located sharp crack

Geometry: rectangular p1ane (9cm x 18cm) (thickness 1cm)

Load: w = 1.0 MPa 0

_Eccentricity: X0 = 1.0 Y0 = 1.5, Angle: 0 = 30

E = 70000 MPa, 0 = 26315.79 MPa, v = 0.33, m = 1.0 (crack)

Field Coordinates o o 0 U U

Point X Y xx yy xy x y

No. cm cm (MPa) (MPa) (MPa) microns microns

1 2.000001 0.0 1964.431 905.139 485.172 -66.05 -25.73

2 2.001 0.0 27.925 28.632 15.350 -1.397 -0.2336

3 2.01 0.0 8.375 9.082 4.876 0.0539 0.328

4 2.5 0.0 0.7970 1.4687 0.8609 0.669 0.574

5 4.0 0.0 0.3550 0.9974 0.5072 0.7326 0.7586

6 0.0 1x10'6 -0.6458 0.0 14.61110'7 1.1070 .0.739

7 0.0 0.001 -0.6450-7.9x10-914.6x10"" 1.1068 0.7397

8 0.0 0.1 -0.5608 2.7x10'5 0.0467 1.0923 0.739

9 0.0 1.0 0.0498 0.0709 0.3730 1.01929 0.737

.10 0.0 3.0 0.3250 0.4696 0.4880 1.0466 0.794

AY’

* 1 1 1 1 1 1 1 1
 

\

\1./
 

1’3—

  1 1 11  111\1 
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Table 4.13 Sharp crack (notch) on the side of a rec-

tangular p1ane

 

 

 

  
 

 

 

 

 

 

 

 

         
 

Geometry: rectangular p1ane (10cm x 20cm) (thickness 1cm)

Load: w = 1.0 MPa 0

. Eccentricity: X0 -4.0 Y0 = 0.0, Angle: 0 = 0.0

E = 70000 MPa, 0 = 26315.79 MPa, 0 = 0.33, m = 1.0 (crack)

Field Coordinates 0 a U U

Point X Y xx yy xy x y

No. cm cm (MPa) (MPa) (MPa) microns microns

1 2.000001 0.0 11742.69 1743.61 0.0 -138.77 0.0

2 2.001 0.0 54.229 55.143 0.0 -27.56 0.0

3 2.01 0.0 16.540 17.454 0.0 ~25.06 0.0

4 3.0 0,0 0.9894 1.8964 0.0 -23.87 0.0

5 4.0 0.0 0.5176 1.4099 0.0 -23.816 0.0

6 0.0 1x10'61 -l.l361 0.0 -4.1x10'7 -23.72 1.2867

7 0.0 0.001 -1.1349-2.7x107-0.0004l-23.726 1.2867

8 0.0 0.1 -l.0069 -0.0023 -0.0391 23.709 1.2851

9 0.0 3.0 0.07307 0.5705 -0.1638 -23.19 1.3451

10 0.0 8.0 -0.0679 1.0586 0.0401 -22.60 2.004

Y “Y?

1111 1 1 1 1 ‘1
 

 

 

   11111 

 



CHAPTER V

ON THE PROBLEM OF AN ARBITRARILY-SHAPED HOLE

IN A TWO-DIMENSIONAL REGION

V.1 INTRODUCTION

Distribution of stresses around an arbitrarily-shaped

hole in an infinite elastic region was first solved by

Sokolov [45] and, later, in a slightly different formula-

tion, by Savin [46]. As an extension of the mapping

technique and the integral equation method, the problem

of a plane finite region weakened by an arbitrarily-

shaped hole is considered in this chapter.

In section 2, the equation of the contour of any

arbitrarily-shaped cavity is discussed. The mapping

function is then introduced for a class of contours and

the inverse transformation function is determined using

the power series expansion and continued fractions methods

deve10ped by Frame [47,48]. In section 3, the influence

function for openings with three axes of symmetry is

discussed. In section 4, the influence function for

openings with two axes of symmetry is discussed. The

implementation of the boundary integral equation method

is also discussed for solution of any finite two-dimensional

region containing openings of this type. Finally, in the

156
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last section, the influence function for a more general

class of openings is discussed.

v.2 THE CONTOUR OF AN ARBITRARILY-SHAPED HOLE

AND THE MAPPING FUNCTION

A large class of smooth closed curves, e.g., triangu-

lar square or rectangular, can be written in a general

Fourier series form (Lekhnitskii [50]):

N

X

II R {C05 0 + e (dn Cos n 0 + hn Sin n 0) }

n=l

N

»
< ll

R.{C Sin 0 + e (-dn Sin n 0 + hn Cos n 6) }

n=l

(5.1)

Clearly, when a = 0, equation (5.1) represents an ellipse

and when C = 1, the equation represents a circle.

An infinite plane with an opening represented by

equation (5.1) can be Conformally transformed to a unit

circular disc, in the c plane. The transformation func-

tion is

z=6141=n{122%+l§£-4+ep(c)} (5.2)

where

N

- _. n
F(C) - 2g; (dn 1hn)c

In order to make the transformation single-valued, one-to-

one, and conformal, it is necessary that w'(§)=0 for all



158

the points inside the unit circle (Churchill [37]). Thus,

all the roots of the equation

 

_ 1+c 1 l-c f -- n'l ._._7_ Z; + 2 + 5 n=1 n(dn lhn); 0 (5-3)

should be expressed on the planes by points located outside

of the unit circle |C|=l. Hence, the coefficients an, bn

and parameter e have to be chosen such that the conformal

condition Of equation (5.3) is satisfied.

To present an example of smooth closed curves, equation

(5.1), let a special case of the equation be considered.

Consider the contour given by the equations

X R (Cos 0 + e Cos N 0)

Y R (c Sin 0 — a Sin N 0) (5.4)

where o<c<1, and N is an integer. When C = 1 and N = 2

the Opening has three axes of symmetry and, with an appro-

priate selection of parameter c, the opening will differ

little from an equilateral triangle with rounded corners,

see Figure 5.1. When c<1 and N = 2 the Opening will be

a branched slot, see Figure 5.2.

When c = 1 and N = 3 there are four axes Of symmetry

and, at some values Of e, the Opening will differ little

from a square with rounded corners, see Figure 5.3. When

c<1 and N = 3, an oval Of a special type is Obtained. If

c and e are taken very small, the Opening will be a slot,

see Figure 5.4. Also for elliptical case (e=0,c¥l), see

Figure 5.4. The computer programs for plotting Figures

5.1 tO 5.4 are presented in Appendix F.
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Figure 5.1 Different contours for N = 2 and c = 1.
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Figure 5.2 Different contours for N = 2 and o<c<1.
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Figure 5.3 Different contours for N = 3 and c :1.
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The transformation function which includes these

special cases Of equation (5.4) is

1+c

Z=w(c)=R1—2—-%+-17'£c+ecN§ (5.5)

In order to find points in the c p1ane corresponding to

points in the Z plane, the inverse of the transformation

function, i.e., m'1(c), is needed. In most cases, e.g.,

N>2 in equation (5.5) or n>2 in equation (5.2), it is very

cumbersome to find the inverse Of the transformation func-

tion even though some numerical technique could be employed,

but the following two methods appear to be the most power-

ful methods for determining the inverse transformation

function of equation (5.2).

Method 1: Power Series Expansions for the

Inverse Transformation Function

The transformation function Of equation (5.2) is

written in the following form:

  

N

_ R(1+c) . -1 l-c 2 26 Z _. n+1

Z — __2———' C { 1 + 1+c C + 1+c n=1 (dn lhn)C } (5'6)

and letting

W R(1+c)

Z 01ka } (5.7)
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where

  

 

(11:0

_ 28 . l-c

a2 - 1+c (dl-lhl) + 1+c

a = 26 (d -ih ) for k=1 3 4 N
k 1+c k-l k-l ’ ’ ""

ak = 0 for k>N

Equation (5.7) is a special case of:

where

173—2126 (kV+Q)/P)1al(<n) (5.8)
V+q 1‘:

Note that ('(::+:)/P) is the binomial coefficient. The

n

are homogeneous polynomials of degree n in a1
( )

akn

defined implicitly by:

a.) co

[20‘ka ]n = Z o‘(n)z;kv

k=1 k=1 k
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and defined explicitly as the sum of all ordered products

Of r factors in which the sum Of subscripts is k. For

example, for k = 6, r = 3 the coefficient air) is

.13) = Said“ + 6a10263 + a;

Thus, in this case, the inverse function of equation (5.7)

will be

r,=w{1+ Z Bkwkv}

k=l

where p = -l, q = 1 and v = 1. Hence, Bk can be found by

equation (5.8). An example using this method is presented

in the next section of this chapter.

Method 2: Continued Fractions

Writing equation (5.2) as

N

7.2; = 8&7?— + 1—23 :2 + e I§I(dn'ihn)1n+l1

OT

8(dN-ihN)cN+l + e(dN_TihN_1)§N + .........

+ 1&5 + e(d -ih 1C2 -zc + R(1+C) 0

1 1

then this equation can be written in the following form:
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+ 01C+ao = 0 (5.9)

where the ai's can be easily found by comparing the

coefficients.

Since the parameters and coefficients in equation

(5.2) have been chosen in such a way that the transforma-

tion function is conformal, then the polynomial f(c),

equation (5.9), has one root inside the unit circle and

m-l roots outside the unit circle, provided that f(;) has

many continuous derivatives in a neighborhood Of the root

inside the unit circle.

= _f(p = fn(p) = fvn(p) = f""(p)

" r15, 5 W 1 T EFF—(31" 5 W -----

Then, upon expanding the difference between the required

root, ;, and the estimated root, 0, with partial numerators

dk’ denominators l, and remainder gk, the required root

can be written as [48]:

 

 

 

C =0 + d1 = Pk+gk+lpk'1

1+32 Qk+gk+1Qk-l

1+. ..

1+d

1+gk+1
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where

k l+gk+1

The partial numerators dk in the continued fraction may be

determined by means Of the series expansion of the dif-

ference as a power series in n

k

C -o = 1:: Ckn

k=0

in which Ck is a certain rational function of the first

k-l of the quantities E, r, 6, ..... evaluated at the

chosen first estimate 0. The first few partial numerators

may be computed as follows:

(11 = n , d2 OE 9

nT(T-6)

E'Y
d3 05 - Yn , d4 05 -

Thus, an explicit form for c = P(Z) will be Obtained. An

example using this method is presented in the next section

Of this chapter.

v.3 ON THE INFLUENCE FUNCTION OF A PARTICULAR

CLASS OF OPENING, CASE 1

The general formulation of the transformation function

for any smooth closed contour is presented in the previous

section. The influence functions for an infinite plane

containing such an arbitrarily-shaped hole will be Obtained

by expressing the problem as the superposition of two
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problems, Figure 2.2. Transforming the second problem

into a unit circle, Figure 2.3, and following the general

solution presented in Chapter II, the influence function

can be obtained.

Thus, to find the influence function, one has to have

a specific Opening, i.e., a specific equation and trans-

formation function. For example, consider an infinite

plane bounded by a contour which is given by the equation:

>
< ll R(Cos 0 + e Cos 20)

.
.
<

I! R(c Sin 0 - 6 Sin 20) (5.10)

where O<c<l. The equation represents a contour with three

axes Of symmetry which will differ little from an equi-

lateral triangle with rounded corners. By choosing the

right c<l and small a one can Obtain a branched slot. The

transformation function which transfers the region into

the unit circle is

Z=w(c)=R(l§—C--%—+1—'ZEC+852) (5.11)

where c and e are fixed constants. Then letting

m = R(1+c)

_B%_1:l andr=Roe

the transformation function will be:
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z = 4(4) = g + 2: + r42 (5.12)

The inverse transformation w'1(c) can be easily found by

solving the cubic equation [49]:

rc3 + 162-Z; + m = 0 (5.13)

Clearly, since the transformation is conformal, then one

of the roots of equation (5.13) has to be inside the unit

circle and the other two have to be outside the unit circle.

A concentrated point force P is acting in the plane at

some point 20 where 20 lies on or outside of the opening,

i.e.,

X0 2 R(Cos 0 + C05 20)

Yo 2 R(c Sin 0 - 8 Sin 20)

where

20 = X0 + iY°

The problem can now be expressed as the superposition of

two problems, see Figure 5.5. The problem of Figure 5.5(B)

is that of a concentrated point force P applied at 20 in

an infinite region and the problem of Figure 5.5(C) is

that of an infinite region containing the hole with speci-

fied traction on the hole. This applied traction can be

found following section II.2.

The solution of the problem of Figure 5.5(C) can be

obtained using the mapping technique, i.e., transforming
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the problem to the unit circular disc, see Figure 5.6.

The mapping function is given by equation (5.11).

The complex potential functions for the problem of

Figure 5.5(A) will now be obtained following the general

method presented in section 11.3. Let ¢°(Z) and W°(Z)

be the complex potential functions for the problem of

Figure 5.5(B), and let 0*(2) and W*(Z) be the complex

potential functions for the problem of Figure 5.5(C).

Then the potential functions for the problem of Figure

5.5(A) are

11(2) 0°12) + 1*12)

1(2) T°(Z) + T*(Z) (5.14)

where ¢°(Z) and 1°(Z) are known [27] and, following section

11.3, the transformed complex potential functions of 0*(2)

and W*(Z) are given by

  11114) = FIT—1.95 gfg) do - 2.111.515 _% . 7771—1;— d. (5.15)

11*(8) = 1 ¢ 33—7 do - 1 ¢ “’10) - 911191 do (5 16)
1 {FT Y o—g 2?? Y ETTET’ U‘C °

where F(o) and F10] are given by equations (3.20) and (3.21).

Substituting 0 into the mapping function, equation (5.12),

and taking the complex conjugate leads to:
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m(o) = g + £0 + r02

9.
wio) = m + E + l;

0.2

for which the derivatives are

w'(o) ;E + 2 + ZrO

2r
w'loi = -mo2 + 1 + 77

Note that OE ll

1
.
:

'
-
1

3
"

(
D

:
3

‘
0 H (
D

9
)

"
1

1
—
-
'

‘
<

  

2 a -
10(0) ___ m+SLO +ro ;_ Z ano n (5.17)

w'ioi 2r+£o-mo3 n=0

and

3
= mo +£o+r (5.18)

2ro3+£oz-m

 

¢f(o) and of'(o) are analytic inside 7, the unit circle

and following section 11.3, of'ioi is analytic outside y.

Thus,

¢’f'(o) = Z kakok (5.19)

k=l

9*1'105 = Z kiko'k+l (5.20)

k=l

Multiplying equation (5.20) by (5.17) leads to:
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(X)

19(0) W = - Z a 0‘“ - Z k'aTko'k+1= - 2: e 0'“ (5-21)

k=1 n=0 n

The right-hand side of equation (5.21) is analytic outside

7, the unit circle. Hence:

1 ¢ 10(0) of'ioi =
'TFI O-C do e

Y w'lo)
0

where eo is a constant. Thus, equation (5.15) becomes:

 1111:) = 711—; 54 if? do (5.22)
Y

Multiplying equation (5.19) by equation (5.18) leads to:

 

3
-

“.105 ¢f'(o) = "‘0 ”‘01" - Z kakok 1 (5.23)
w 0 2roa+2oz-m k=1

The numerator of equation (5.23) is analytic inside y. Then

1 '¢' T786 .1110) =mc3+8c+r . .1.
m m 01-: d“ 2rc3+£z;2-m 1,141+ f“)

where f(c) contains the residues of

(moa+£o+r)¢j}(o)

(2roa+goz-m)(o-g)

at the roots which are inside y. Thus, equation (5.16)

becomes
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_ 1' FiGi m§3+l§+r

W*(z;) - 7% do - ¢*'(<:) - Hz) (5.24)

Rewriting equations (3.20) and (3.21)

 Mo) = - mus) + ”(0) Hima + Wo] (5.25)
(0'10;

77?o = - [Tmo + 3% Wm + 912(0)] (5.26)

where ¢°(Z) and ?°(Z) are given by equation (2.6). To

find the transformed complex potential functions ¢2(§)

and W2(c), substitute the mapping function, equation

(5.12), into equations (2.6). Thus,

 

  

_ m—Z o+£oz+ro3

¢‘,’(o) - - Q-1n( ° 0 ) (5.27)

_ 2 3

wgco) - Q - 2.0 + G-o-1n(m Zo°+§0 +m)
m-Zoo+£oz+ro3

(5.28)

Let

A(o) = m - Zoo + £02 + r03 (5.29)

B(o) = r + £0 - 2002+ mo3 (5.30)

Then the complex conjugates of equations (5.27) and (5.28)

are:
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(plioj = ' 6 111 [g-(—:)_]

C

 

 

m=q.a.1n[§%i1+c-§%§; (5.31)
0

Clearly:

3 2_

¢2'(o) - Q - 23°.+fiio)m

¢2'(o) = (ngfiggm0330 (5.52)

Substituting equations (5.17), (5.18) and (5.27) through

(5.32) into equations (5.25) and (5.26) leads to:

  

 

  

_ A( ) B A o

F(o) - Q {In 0° - on 1n :3) } + Q{o . fig} (5.33)

— _ B() +- B()_ A(
F(o) _ Q {6KT%TT} Q {In 0: a In 00) } (5.34)

where A(o) and B(o) are defined by equations (5.29) and

(5.30).

Conformity of the transformation function allows that

the inverse transformation function, equation (5.13), has

one root inside y, the unit circle, and two roots outside

7. Let ri,r01 and r02 be the roots, inside and outside,

respectively. Then the similarity of equations (5.13) and

(5.29) leads to:
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A(o) = m - Zoo + 202 + r03 = r(o-ri)(o-r )(o-roz) (5.35)
01

Let the function m(l/g) be considered. Clearly, the func-

tion transforms the problem onto an infinite plane bounded

by the unit circle.

1;z=w(1/c)=mc+l°
C2

+

n
l
r
—
I

and the inverse transformation function w-1(l/§) can be

obtained by solving the following cubic equation [49]:

mg3 - 2:2 + R; + r = 0 (5.36)

The conformality of the transformation function, m(l/c),

allows that the implicit form of the inverse transforma-

tion function, equation (5.36), has two roots inside 7 and

one outside. Comparing equations (5.30) and (5.36) and

noting that all coefficients of the two equations are real

except 2 and 20, one can take the conjugate of these coef-

ficients, thus yielding the conjugates of the roots of

equation (5.36), one outside and two inside the unit circle.

Let til and tiz be the two roots inside and to be the

root outside the unit circle. Then equation (5.30) becomes

B(o) = mo3 - 7002 + £0 + r = m(o'to)(O-ti1)(o-ti2) (5.37)

 

. 1 F(o) 1 y. Fm _
To find ZWTEE 0': do and YET Y 373- do, let the follow

ing integrals be calculated. The first one is
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_ 1 A(o) . do

“7132‘”ch 132—;

Substituting equation (5.35) into this integral and follow-

ing section 1.3 leads to

I = 1n r(c-r01)(C-r02) (5.38)

Note that equation (5.38) is evaluated in the same manner

as equation (4.39).

The second integral is

_ 1 B(o) do

Il‘m£1“[_oz] '67

Substituting equation (5.37) into this integral and follow-

ing section 1.3 leads to

II = ln m(c-to) (5.39)

The third integral is

III = 1 jfi. oA(o) . do

Zn1 Y Bio) o-c

Substituting equations (5.35) and (5.37) into this integral

and following the Cauchy integral theorem leads to
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_ oA(o - GACC)

III ' 211%W )(o- t. )(o- c) 7376'

t. A(t. ) t. A(t. )
+ 11 11 + 12 12

m(til-to)(til-t;:)(til-Z) m(t -to)(tiz-tilj(tiZ-CT

 

  

12

(5.40)

The last integral is

IV = 1 B(o) do

251' Y ERIC) o-c

 

Clearly, this integral leads to

B(ri)
- ’1‘ + +

IV ' if EXTET' r(Ti -r0:)(r- -ro )(ri-c) (5'41)

 

Using the four evaluated integrals, equations (5.38) to

(5.41), it follows from equation (5.38) that

Til—ff 5E2) do=Q{I-a-II}+Q'{III} (5.42)

Substituting equation (5.42) into equation (5.22) leads to:
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¢t(;) = Q.{ln r(§-r01)(C-r02) - a 1n m(C-to):}+ Qkng(§)

+
 

tilA(ti1) ti2A(ti2)

m(til-to)(til—tizj(til-c) + m(tiZ-to)(tiZ-ti:)(tiz'é)

(5.43)

The following integral can also be obtained by recalling

equation (5.34) and using the evaluated integrals of equa-

tions (5.38) to (5.41):

 271d]; ETC-gag = Q{Iv}+ Z5{II - a I} (5.44)

Substituting equation (5.44) into equation (5.24) leads to:

 

B(r.)
-r B(C) 1

“”1““ Q {m—c " WAc *’ ricri-roluri-rOZNri-a }

+

Q {In m(c-to) - a 1n r(C-r01)(c-r02)

_ mc3+24+r
4f'(c) - f(c) (5.45)

2rc3+2c2-m

Hence, the complex potential functions for the opening

described by equation (5.10) are obtained, and given by

equations (5.43) and (5.45).

The influence functions can now be found by taking the

derivatives of equations (5.43) and (5.45) and substituting

into equations (3.6). Since the procedure is very straight-

forward, the details of this calculation are omitted.
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v.4 ON THE INFLUENCE FUNCTION OF A PARTICULAR

CLASS OF OPENING, CASE 2

Consider an infinite plane bounded by the contour

described by:

X

II

R(Cos 6 + e Cos 3 6)

.
.
<

ll R(c Sin 6 - 5 Sin 3 6) (5.46)

where o<csl. Equation (5.46) represents an elongated

contour symmetric about the x and y axes. Changing C and

s will produce contours which vary from a square with

rounded corners to an oval or a slot. For example, when

C = .36 and e = -0.04, a contour is obtained which will

differ little from a rectangle with semi-circular short

sides and straight long sides. When C = 0.537 and e = -0.038,

the Opening is an oval and when C = 0.026 and e = -0.004,

the opening is a slot.

A concentrated point force P is acting in the plane at

some point 2 where 2 lies on or outside of the opening,

i.e.,

X0 2 R(Cos e + e Cos 3 6)

Yo 2 R(c Sin 9 - 6 Sin 30 )

where

20 = X0 + iYo

Again, as presented in the previous section, the problem

will be expressed as the superposition of two problems,
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Figure 5.7. The problem of Figure 5.7(B) is just the con-

centrated point force P applied at the same point in an

infinite plane and the problem of Figure 5.7(C) is the

infinite plane bounded by the opening on which the appro-

priate specified traction is applied.

The problem of Figure 5.7(C) can be solved using the

mapping technique, i.e., transferring the problem to the

unit circular disc, Figure 5.8. The mapping function is

given by the following equation:

1+c l 1-c

z=w(C)=R(T'E+TC*’€C3) (5-47)

where R, c and e are constants. Let

= R(1+c)
__7___

2 = Rgl-c)

Thus, the transformation function will be

z = w(?;) = % + 2; + r;3 (5.48)

The inverse transformation function w'1(§) can be found by

employing the two methods presented in the first section

of this chapter.

Following the first method, power series expansion for

the inverse transformation, the transformation function is

to be written in the form of equation (5.7). For simplicity,
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let 9 = (Mm/£)/§. Then equation (5.48) can be written

as follows:

  

4:17? 9 93

or

w = 9(1 + (2'2 + m'“) (5.49)

where

and

>
a II

(In - r)/£2

Finally, equation (5.49) can be written in the following

form:

w = (2% + Z ako‘Zk} (5.50)

k=1

where a; = 1, a2 = A and ak = 0 for k>3.

The inverse power series of equation (5.50) can now

be obtained following equation (5.8) where, in this case,

P = q = l and V = -2. Thus,

(5.51):
0

I
I

2

M
I
N

H 4
. M

8

m

w

2
I N w

W

where
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and the afin)'s can be formulated as

n

aén) = ”In k “E n (k-n)

Since ok = 0 for k>3 and a = 1, then

(n) = n k-n

Gk (k-n) A

so that

k

e = 1 2 (2H) (“MM1
k l-ZE n=l 11 k-n (5.52)

which leads to:

81 = '1

82 = '1 - A

83=‘2'4}\

s. = -s - 15x - 3A2

-14 - 56A - 28).285

It is clear that the Bk's are not converging very rapidly,

a deficiency of this method. However, the Bk's are all

functions of powers of A, which indicates that there would

be some general closed form for equation (5.51):

9W = 1 - p, - m - 92x2 - 93x3 ........ (5.53)
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The coefficient pi's will now be found. To find Do, let

A = 0 in equation (5.53), then

% = 1 - p, (5.54)

Also, when A = 0, the transformation function, equation

(5.49), becomes

 

92 - WQ + 1 = 0

or

Qi-Q+i=0

w2 W w2

. Q

S01v1ng for W leads to:

Q = l i Vl-4/W2 (5.55)

W 2

The minus sign is not valid since the limit of the solu-

tion, equation (5.55), must approach unity to satisfy

conformality of the transformation function, i.e., infinity

is transformed to infinity. Equating the right-hand sides

of equations (5.55) and (5.54) leads to:

l - Vl-4/W2

00 = T (5'56)
 

Now let n = k in equation (5.52). Then

1 2k-1 k 0 (Zk-Z)!

Bk ‘ T77? ( 1c ) (o) A ' ' ETTFTITT‘
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or

2p 1

BP+1 = ' (P) PTI

Substituting into the inverse transformation function,

equation (5.51) leads to:

2 2P w-zP-z

Comparing (5.57) and (5.54), it is found that

z 2P w-zp-z

Co = (p) W— (5-58)

Now let k - n = 1 in equation (5.52). Then

1 Zk-l k-l 1 Zk-l k

Bk=—2‘k‘1_(k-1)(1)>\+—2-E1_ (k)(o)x°

Substituting Bk into the inverse transformation function,

equation (5.51), yields:

_2 w2P'2 E 2k-2 -2k
(2 P) - A ( ) w

pO= P I I k=1 k-Z

Comparing this equation with equation (5.53) leads to:

=1<Z1(2k 22) W21‘ (5.59)

To find a relation between 0; and Do, i.e., a closed form

formulaeikn'ol, equations (5.58) and (5.59) can now be used.
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2k-2

Since (k_2 )== 0 for k = 0,1, then letting k = P + l

2k-2 2p

(k-Z) = (P-l)

But

2P P 2P 2P 1 2P

(P—l) = FTT'(I>) = (I?) ' PTT'(I))

Substituting k = P + l and the binomial coefficient above

into equation (5.59) leads to:

2P -2P-2 z ZP _ _

01=-Z (p)w———+ (P)W2P2 (5.60)

Taking the derivative of po, equation (5.58), and con-

structing % paw

2P
1 _ E -2P-2

Substituting equations (5.61) and (5.58) into the right-

hand side of equation (5.60) leads to the expression:

_ 1 .
01 - ' Do ‘ 7 DOW (5-62)

Taking the derivative of pa in its closed form, equation

(5.56), and calculating the right-hand side of equation

(5.62) leads to:
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2

_ 0°
pl — 1_Zpo

(5.63.61)

Similarly, one can find oz in terms of be, which will lead

to better convergence of equation (5.53). Thus, the

inverse transformation function becomes

2

n = w (1 - p0 - 19390 A— ...) (5.63) 

where

_ 1 - ./1-4/w2

00" 2
 

This was an example of using the power series expansion to-

find the inverse transformation function, even though the

method did not prove efficient. The second method, con-

tinued fractions, will also give the coefficient of 12,

i.e., oz. The second method will now be applied. Rewrite

equation (5.49) in the following form:

n“ - w n3 + oz + A = 0

Dividing the equation by W“ leads to

n . n 3 n 2 , 1 A =
(w) ‘ (w) + (w) F+T 0

or

_L
g

($3 c%-1)+ (€342 53+ w = o (5.64)

In order to check the accuracy and efficiency of this

method with the previous method, let the following
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assumption be made:

r = 1 - 1%, (5.65)

and

_ 1 - Vl-4/W2

o0 - 7 (5.66) 

Constructing (po - pi) using equation (5.66) leads to:

Substituting these results into equation (5.64) leads to:

f(T) = I‘(1"‘1)3 + (T-l)2 (Do-0%) + Mm-offlz = 0 (5-67)

Equation (5.67) is a polynomial in F of the form of equa-

tion (5.9), which can now be solved by the continued

fractions method.

Let the first estimate to the required root F of the

equation f(F) = 0 be 60. Then, after some simplification,

the function and the derivatives of the function at the

estimated root are:

f(Oo) = (pa-p312

f'(oo) = (co-1)2 (200-1)

f"(po) = 2(500-3) (00'1)

f'"(Do) = 6(4 po-3)

f""(po) = 24
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f(n)(po) = 0 for n>4

Thus

2

n = _ f(Do) = 400

E'Zpoj ‘

f"(oo) _ Spa-3
 

5 "' 77—72' Do ' -(1-po)(2po-1)

.= f'" 00 = 400'3

T 77—13" Do (Spa-31Tpo-1)

6 = fun(po) = 1

ail (Do) 2{Do-3

 

Then d1 = +n, d2 = fig and d3 = U(E'Y)

= _t(T-6)

d“ U(g €_.Y

Substitution into the continued fractions leads to:

- d1
T - 00 + + 2

 

01'

O

“M'W

I-nlY-Ei

For simplicity, consider the first numerator. Then expand-

ing as a binomial series and just choosing the first two

terms, the equation leads to:
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I‘=oo-n-n2€+ .....

Substituting equation (5.65), n and a into the above equa-

tion leads to

02 01(50 3)
$2 = W(l - p - ° 1 - ° °' ~12 ..... ) (5.68)

° 1'2“ (1'Zoo)3(1'oo)

where

_ 1 - Vl-4/W2

pO‘ 2
 

The inverse transformation function has now been obtained

by the two methods. Comparison of the two equations (5.63)

and (5.68) shows that the first three terms of both equa-

tions are exactly the same except that the second method,

continued fractions, provides one more term. It is also

clear that the second method was more efficient. The first

method, however, can be more useful in some special cases.

Returning to the solution of the problem of Figure

5.7(A) and equation (5.46), the complex potential functions

will now be obtained following the general procedure pre-

sented in section 11.3.

Let ¢°(Z) and W°(Z) be the complex potential functions

for the problem of Figure 5.7(B) and ¢*(Z) and 1*(2) be

the complex potential functions for the problem of Figure

5.7(C). Hence, the potential functions for othe problem

of Figure 5.7(A) are
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¢°(Z) + 4*(2)¢(Z)

W(Z) W°(Z) + P*(Z) (5.69)

where ¢°(Z) and W°(Z) are known [27]. The transformed

complex potential functions of ¢*(Z) and P*(Z) can be

obtained in a manner similar to that presented in section

11.3. These are

 

 

1
5'1 1£2) (10 ' mfi‘ 20_(£2_ (b1 0 (10 (5.70)

  

_ 1 F

¢T(C) - 7;? Y o w'(0) O-C

_ 1 FIG) 1 1 wio) ¢*'(o)
WT(C) - W Y 0'; (10 mi (”'(0) 0'; (10 (5.71)

where F(o) and ET?) are given by equations (3.20) and

(3.21). Equation (5.70) is an integral equation in which

the second integral can be evaluated. Let the transforma-

tion function of equation (5.48) and its complex conjugate

be evaluated at c = 0:

(11(0) =§+ 26 + r03

1'

(1)10) mo+%+—

0.3

Then the derivative and conjugate derivatives are



w'(o) = - 1L + 1 + 3ro2
2

o

m=-m62+2+§£
0,2

g(o) = o(m+2oz+ro“)
 
 

w'ioi 3r+Roz-mo“

2.3111211. Zako-Zk

m m2 02 k=2

= - % O - Z 616'21‘” (5.72)

k=1

where the ak's are the coefficient of the expansion.

Similarly,

mo“+202+r

(3ro“+£oz-m)

 

wloi =

(L) 10')

= X Bk6‘2k'1 (5.73)

k=0

where the Bk's are the coefficient of the expansion.

Note that ¢f(o) and of'(o) are analytic inside Y and

$¥TTET is analytic outside 7. Thus, following section

111.3:
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¢*'(0) = z kakok'1 (5.74)

1 k=1

M'io) = kzl kit—ko-l<+1 (5,75)

Multiplying equation (5.72) by (5.75) leads to:

 

(0(0) r z — -k+2 2 — O-k+1 Z on o-Zk+1
ETTTET = - a - kako - kak - k

w'io) k=1 k=1 k=1

= - % 510 - %§ 52 - 2;; end.“

where en is a coefficient of a power series expressed in

00

n

terms of 5k and ak. Since the summation 2 e o- is an
n

e=l

analytic function outside y, and the value of the summation

at infinity is zero, then, following section 1.3, the value

of the second integral in equation (5.70) is

_ 2 _

— - %alz; - 71-]?— a2 (5.76)

Note that the 51‘s are the complex conjugates of the coef-

ficients of the expansion series of ¢f(c) which are unknown.

Since -(2r/m)az is a constant term and does not have any

effect in obtaining ¢f(§), it will be omitted. Substituting

equation (5.76) into (5.70) leads to:

l F(o)

ZFT Y o-c

r — 2r —
“—1.81; ' F32 (5.77)

 do +¢f(c) =
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In order to obtain a closed form for ¢f(c), 51 has to be

evaluated. This can be easily determined. Since

n
1 1 1 C C
—=——=_+__+ + +

0.: 0(1-%) G 02 omI

then

 _L 1% ”0) do = Z c k (5.78)

where the ck's can be found by substituting the expansion

of l/(o-c) into (5.78):

_ 1

CR - Zni

 

F o)
Sé. géero

The Ck's could also be obtained by taking the kth deriva-

tive of equation (5.78) and setting C = 0. The function

¢§(;), however, is analytic inside 7 and has the series

form given by equation (2.13). Hence, substitution of

equations (5.78) and (2.13) into (5.77) leads to:

z =
k=1

00

where
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Finally, equating the real parts and the imaginary parts

leads to evaluation of 51:

(5.79)
51 = m{Re(c1) , . Im(c;)

m-r m+r }

Substituting equation (5.79) into (5.77) leads to the

closed form expression for the transformed complex poten-

tial function:

41%.) = %f :52) do + r{B;—E§f1—)— - i .Ilmn10;_1)} c (5.80)

 

In order to find Wf(c), the second integral of equation

(5.71) must first be calculated. Multiplying equation

(5.73) by equation (5.75)

 

w'ioi ¢*'(o) = mo"+SLoz+r . 2 ka Ok-l

w (o) 1 (3ro“+£oz-m) k=1 k

It is clear that the numerator of the equation above is

analytic inside 7 and the denominator has five roots, one

of which is zero and four of which can be found by solving

the biquadratic

1,

3ro + £02 - m = 0

Some of these roots are inside 7 and some outside. Thus,

the following integral can be evaluated by the Cauchy

integral theorem presented in section 1.3:
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*1
lb 2

..L. ¢ 31%?) ¢0~ go) do = "“1 ”C +1" WE'VE) * 89?)
Y 4(3rc“+8cz-m)

where g(c) represents the sum of the residues of

(m0“+202+r) ¢f'(0)

0(3r0“+£02-m)(0-c)

 

at the roots which are inside y. Thus, the other trans-

formed complex potential function, i.e., equation (5.71),

becomes:

 

E is 2

WT(C) = 2%T.9£.8 do - (m; +£§ +r) - ¢f'(c) - g(C)

C(3rc“+£C2-m)

(5.81)

Recall that F(o) and ET?) were given by equations (5.25)

and (5.26). The transformed complex potential functions

02(0) and 92(0) can be easily found by substituting the

transformation function, equation (5.48), into equations

(2.6). The results are

 

  

_ 2 4

02(0) = _ Q ln m ZOU+§U +r0 (5.82)

- _ 2 1+

1112(0) = Q ZOO + Q 1 a 1n "1 2004'th +1.0 (5.83)

m-200+£02+r0“ O

For simplicity, let
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A(0) m — 200 + £02 + r0“ (5.84)

r + £02 - 2003 + m0“ (5.85)B(o)

Taking the derivative of equation (5.82), obtaining the

complex conjugate of equations (5.82) and (5.83), and sub-

stituting into equations (5.25) and (5.26) leads to the

expressions for F(o) and FIE). The calculation is omitted

and the results are

  

  

F(O) = Q {1n Ago) - a 1n Biz) }+ Q{62 -A(.§)} (5.86)

w 1.22:2. 1+ 6 8:2) - . 1,, Am
where A(o) and B(o) are given by equations (5.84) and

(5.85).

The two remaining integrals in the potential func-

tions of equations (5.80) and (5.81) can now be calculated

since F(o) and ET?) are known.

To evaluate these two integrals, note that the con-

formality of the mapping function m(c) implies that the

equation A(o) = 0 has one root inside and three roots

outside Y (since the polynomial of Z-w(§) = 0 and A(0) = 0

are identical).

Denote the inside root by ri and the three outside

roots by r01, r02, and r03. Root ri has a significant

role in the calculation of the two integrals whereas ro ,

1

r02, and r03 need not be calculated. Root ri can be



201

calculated by the inverse transformation function using

either of the two methods presented at the beginning of

this section.

Now A(o) may be rewritten as:

A(o) = r(0-ri)(0-r01)(0-r02)(0-r03)

Similarly, equation B(o) = 0 is identical to Z-w(l/c) = 0,

one root of which is outside Y and three of which are

inside. Denote the outside root by to and the inside

roots by til’ tiz and tia' Thus B(0) may be rewritten as:

B(o) = m(o-til)(0-tiz)(0-tia)(0-to)

Using these forms of A(o) and B(o), the two integrations

may be computed quite simply in a manner similar to that

presented in the previous section. The results are:

7%; §§%l do Q{111r(c-r01)(c-r02)(c-r03)-aIh1m(c-to))1

 

  

'Y

3

(0-t. )t? A(t. )
+ c2A(c) 1k 1k 1k

8 {—BTEI— + k=1 B(tik)(tik-;) } (5'88)

1 F10) _ d. B(o) + B C

2N1 0-c d0 - Q‘130'A(0)-(0-;)| 2C )

7 0:0 6 A(c)

B(ri)(0-ri)

r;A(r1)(r1-;)

+
 }+ o{1nm(c-to)

a 1nr(c-rol)(c-r02)(c-r03)} (5.89)
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Substituting equations (5.88) and (5.89) into equations

(5.80) and (5.81) leads to the complex transformation

functions ¢f(;) and wf(;). The procedure for obtaining

the influence functions from ¢f(§) and Wf(§) is very

straightforward. This is done by substitution of these

functions into equation (5.69) and subsequent substitution

of this result into equation (3.6).

v.5 ON THE INFLUENCE FUNCTION OF A MORE

GENERAL CLASS OF OPENING

In the previous two sections, two cases of opening

were considered and the influence functions were found.

In this section a general form of this special kind of

opening is discussed. .

Consider an infinite p1ane bounded by the contour

given by equations

>
< II R( Cos 0 + e Cos N 0)

.
.
<

ll R(c Sin 0 - 8 Sin N 0)

where o<c<l and N is an integer greater than 3 (Cases

N = 2 and N = 3 have been discussed in sections V.3 and

v.4, respectively). A concentrated point force P is acting

in the plane at some point 20, where 26 lies on or outside

of the Opening.

Using the mapping technique presented in Chapter II,

the problem can be expressed as the superposition of two

problems. Consider the second of these superposed problems.

The mapping function is:
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z = 6(6) + 2; + rcN (5.90)ll

N
I
B

where

_ R(1+C) _
m - ——7——— , 8 - ll

i
d

and r
Egg .8

The inverse mapping function could be found by following

either of the two methods presented in section V.2.

To find the complex potential functions, equations

(5.70) and (5.71), the following quantities are needed:

 

 

 

m(o) = 0N'2(m+£02+r0N+1)

ETTET' r-NHLoN-I-moN+1

and

wioi = m0N+1+20N'1+r

' N-

w G 0 2(r-N0N+1+202-m)

The functions F(o) and ET?) which appear in equations (5.70)

and (5.71) can be calculated by substituting the mapping

function of equation (5.90) into equations (2.6) and taking

the derivatives and complex conjugates. Inserting these

functions into equations (5.25) and (5.26) leads to:

 

 

  

- A( ) B ) + N-l 1 A 0
F(o) — 03111 00 _ a In (E; s 630 17%;.” (5.91)

m: B(O) 11-11 B(o) _ 1 Mo) 1 (5.92)

O goN-1A(O) n ON a n 0
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where

N+1
A(o) m - 200 + £02 + r0

B(o) r + loN-l - ZFoN + m0N+1

Following the discussion presented in the previous section,

it is clear that A(o) must have one root inside Y, ri,

and N - l roots outside y. Also, B(o) must have one root

outside, to, and N - l roots inside Y. Thus,

A(o) r(0-ri)(0-rol)(0-r02)....(0-r0N_1)

B(o) m(0-t0)(0-til)(0-tiz)....(0-tiN_l)

The method of integration in the previous section may be

used to find the following integrals:

 

 

7.1:; Y (1:52) = Q {In NW6.)(C‘r623---(C‘roN—1)

I N-l

- 0 ln m(g-to)}+6{ C B(21C)

N-l

1 2 (M11) (9111111011,) }
 

k=1 B(tix)(tix'§)
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' N-2
1 TTF _ 1 d B(o)

201 0-: d0 _ Q'{ N- ! [dON-2(((0- C)A(0)]0

C:

+ B(C) + B(ri)(O-ri) }+

‘1A(o) r§‘1(r1-c)Acr1)

Q{ln m(c-to) - a 1n ICC-I‘OIMC-rOz)

“(C-roN-l) }

The other two terms in the complex potential functions can

be found exactly in the same manner as in section V.4.

Then the influence functions can be obtained. The procedure

is very straightforward and the calculation is omitted.

 



CHAPTER VI

CLOSURE‘

A boundary integral equation method for the solution

of finite, two-dimensional, isotropic, linear elastic

regions containing arbitrarily-shaped openings has been

presented. It is shown that stress and displacements at

any point away from the outer boundary can be easily found

by this method. Since the effect of the opening has been

included in the kernels of the integral equations, solu-

tions on or near the opening have been obtained with

excellent success.

A mapping technique has been employed to find the

complex potential functions which lead to the determina-

tion of the influence function. The significance of this

technique is that the influence function for any shape of

cavity in an infinite plane can be found. In Chapter II

it was shown how, with knowledge of the transformation of

the contour to a unit circle, one could employ this mapping

technique to obtain the influence function.

Such an influence function was found for a circular

hole in an infinite two-dimensional region in Chapter III.

To show the efficiency and applicability of the method to

any two-dimensional region which contains a circular hole,

206
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the boundary integral equation method presented in Chapter

I was applied to two example problems. In the final example

problem (i.e., a rectangular plane containing the hole and

subjected to a uniaxial tension), the results were within

0.8% of available solutions. This accuracy was obtained

using just 35 seconds of CPU time on a CDC 6500 computer.

To show the applicability of the method to a different

geometry, a second example (i.e., circular plane containing

the hole and partially loaded) was considered. No available

solutions for this problem were found. Again, the CPU was

35 seconds for each run on a CDC 6500 computer.

In Chapter IV, the mapping technique was used to

determine the influence function associated with an

elliptical hole in an infinite region. To solve any two-

dimensional problem, this influence function was used as

the kernel of the integral equations and two example prob-

lems having different locations and angles of inclination

of the elliptical hole were solved. In the first example

problem, four different orientations and inclination angles

of elliptical hole in a rectangular plane subjected to the

uniaxial tension were considered. For the first case,

some experimental solutions at specific points were

available. The results were within 3.0%. For these cases,

the computer time never exceeded 42 seconds of CPU time

on a CDC 6500 computer per run. It is important to note

that the major computer time consumption for this method

is in determining fictitious tractions. Computation of

stresses and displacements at any point uses very little
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CPU time. Thus, calculation of stresses and displacements

at new points has an extremely small effect on total CPU

time. Although such problems can also be solved by other

numerical methods (such as finite elements and finite

differences), the following advantages of the BIE method

are apparent. In the BIE method, different sizes and

locations of the elliptical hole can be specified by

changing one or two parameters in the input data, whereas

with the other methods, a new discretization of the region

has to be made for each case. Also, as the elliptical

hole gets thinner, more difficulty will arise as one needs

to discretize the region close to the ends of the hole.

No such discretization of the region is required in BIE.

The second example problem (i.e., a circular p1ane

containing the hole and partially loaded) was presented

as an example of the applicability of the method to dif-

ferent geometries. Again, four cases were considered.

No available solutions for this example problem were found.

Again, computer time was 42 seconds for each run on a CDC

6500 computer.

Some modifications were done to the influence function

of the elliptical opening to make it applicable for a sharp

crack. Thus, the influence function for an infinite plane

containing a sharp crack was determined. This influence

function was then used as the kernel of the integral equa-

tions and some finite two-dimensional problems (e.g., a

rectangular plane containing the crack and subjected to a
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uniaxial tension), with different locations and inclina-

tion angles of the crack, were considered. The tips of

the crack, at which the stresses are infinite, pose extreme

difficulties for other numerical methods, such as finite

elements and finite differences. With this new BIE method,

the stresses and displacements very close to the tips of

the crack can be determined with excellent accuracy and

ease of computation. Solutions for the stresses near the

tips of a horizontal crack were compared to the known stress

intensity factor (which is valid just very close to the

tips of the crack). The differences were within 0.1%.

No analytical or numerical solutions were found for the

other cases (crack at inclined angles). The crack opening

displacements, COD, for all the cases were compared to

some recently obtained experimental measurements on rec-

tangular specimens containing inclined slots. The dif-

ferences in results were all within 11%. This difference

is expected since the "slot” of the experimental study was

of finite width. The trend of the stresses and the dis-

placements can be seen in the tables. The problem of an

edge crack was also considered. CPU time did not exceed

42 seconds for any run.

Finally, in the last chapter the mapping technique

was extended to a larger class of problems (different shapes

of opening). The complete potential functions for two of

these cases (i.e., the triangular opening and square open-

ing) were obtained and the more general case was discussed.

Further deve10pment is left for future research in this area.
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APPENDIX A

THE POTENTIAL FUNCTIONS AND THE INFLUENCE

FOR AN INFINITE PLANE REGION CONTAINING

A CIRCULAR HOLE

a) The potential function used in equations (3.40) are:

¢f(€) = a ln(-z.) - a 1n(c-Zo)

 

¢¥I(C) = l-ZoZo + 1'2220 1 1

7O 0 C‘Zo

3

91(4) = - %o— - (“37:

C- o

- 3

W¥I(C) = ln(C‘Zo) ' ln(-20) - l_§1§£ . C

70 (5.7032

b) The influence functions Hij;q and Ii;q used in equa-

tions (3.48) are:

HXX;X = Re féé; ' 2C2¢E'(C) ‘ z (EE:%:3:'+ Cu¢§"(C)

 

' 0 " 0
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xx;y

H .
YY:X

H

YY§Y
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. -2 v t — 1Re§1(m ’ 2C2(¢¥ (C)-¢¥I(C)) - Z [(Z-Zo)2

 

(0?"(c)-¢ff(c))c“ - (of‘(c)-¢fi(c)) (2:3)]

 

Z Gt 1 _ I . 1

 Re 721—; - 282610) + r[ 1 2 + C“¢’f”(§)
(Z’Zo)

 20*‘(c) ° (4)3] - ——Z1——— + a - CZW*'(c)-[ 1' ]
I (z-Z'o)2 2-20 I g " a+

 Re i 29%; - 2:2(of'(c)-¢fi(c)) + 7 [ Z° 2

(Z’Zo)

(of”(:)-of¥(c))c“ - (of'(c)-¢fi(c)) (2:3)]

 

20 O. 2 v 1 .[ 1 :I—— - + a; 1* c 41* c
(Z_‘ZO)2 Z'Zo ( I ( ) II( )))% 71' (1+



xy;x

H .
ny

XBY
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 = Im§Z[ 1 + c"¢’f"(c) + 2 01"(4) - (4)3]

I

+  v . 1

E70)? Z-fo - CZW’I‘ (C) E [ma—+17]

 

1 n n 8 '[(z-zo)2 + (41 (c)-¢fI(c)) c - (9f (6)ll

H B

w

H
'

A

N
I

20 0

(Z'Zo)2 2'70

  

-¢fi(c)) (2:3)] - + 62(Wf'(c)

‘W’I‘i‘wahmh—m]

 

2'0

Reg -0Lln(Z-Zo) + 01 MCC) - Z [__‘l - :2 9*1'1C5]

 

2° - a ln(Z-Zo) - Wilci E/4un(a+l)

Regi (-91n(Z-Zo) + a (010;) - 011(c))- 2 [ET-:10

 (o’f‘t )-¢*11'lc)) 32] - 222 + 6 ln(Z-Zo)

" 0

P*IICMWIIZCJ);/41w(o+1)



Y3K

+

213

1

752—0

 1mg a ln(Z-Zo) + a ¢f(c) - z [-

Z—Z—g— - a 1n(7-Zo) - W’fici g/Wflofil)

' 0

1m§i(- a ln(Z’Zo) + a (we) - ¢f1(c)) - z[

 

 

- 2'2 ¢f'(c)]

-1

2'20

(4)]: (C)-¢II(C)) 32] ' 2° + a 111(7'20) - WET

‘Z-Zo

9’13 (U) z /4u1r(a+1)



APPENDIX B

COMPUTER PROGRAM FOR PLANE, FINITE REGION

CONTAINING A CIRCULAR HOLE

A computer program was employed for the numerical

computation of the stresses and the displacements at the

field points of a two-dimensional region containing a

unit circular hole. A listing of that program for the

rectangular region subjected to uniaxial tension (w = 1.0

MPa) and containing a unit circular hole and for the

circular p1ane subjected to a uniformly radially tension

(w = 1.0 MPa) and containing a unit circular hole are

presented in this appendix.

A. INPUT DATA

The following information must be provided as input

(this is the order of appearance in the program).

PR - Poisson's ratio of the material

EMUD - modulus of elasticity of the material

NML - total number of subdivisions on the boundary

NFP - the number of field points at which the

stresses and displacements are to be computed

X(I),Y(I) - coordinates of the outer boundary points (for

I=1,NML+1

circular plane case, this input has been

included in the program)

214
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WR - "width ratio" for the rectangular plane

(WR = width/10 cm) and for the circular plane

(WR = radius/6.0 cm)

Xo,Yo - location of the center of the circular hole

(has to be specified in the program)

BVx(I), - boundary value (tractions) specified at each

BVy(I+NML) subdivision

I=1,NML

XF(I), - coordinates of the field points at which the

IEIENFP stress and displacements are to be computed

B. OUTPUT DATA

The following information is obtained as output (this

is in the order of appearance in the output).

PR,EMUD - see input data

SHMUD - shear modulus of elasticity

NML,NFP - see input data

X(I),Y(I) - see input data

BVx(I), - see input data

BVy(I+NML)

PSX,PSY - components of the fictitious traction on the

boundary, represented by the concentrated load,

P;i’ P;i at the center of each one of the sub-

divisions. These are computed by solving a

system of linear equations (3.51) (LEQTlF,

computer library)

§£E%%, - location of the field points at which the

I=1,NFP stresses and displacements are computed
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SIGMAXX, - components of stress and displacement tensor

SIGMAYY,

SIGMAXY, at each of the field points. These are com-

UX,UY

puted by the use of equation (1.17).

C. COMPUTER PROGRAM FOR A RECTANGULAR PLANE CONTAINING

A CIRCULAR HOLE (follows)
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D. COMPUTER PROGRAM FOR A CIRCULAR PLANE CONTAINING

A CIRCULAR HOLE (follows)
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APPENDIX C

THE POTENTIAL FUNCTIONS AND THE INFLUENCE

FUNCTIONS FOR AN INFINITE PLANE REGION

CONTAINING AN ELLIPTICAL HOLE

The following complex functions were used in the

influence functions for an elliptical hole, equations
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Substituting the components of the resultant fictitious

traction, equations (4.59), into the influence functions

for an elliptical hole, equations (4.52),
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APPENDIX D

THE POTENTIAL FUNCTIONS AND THE INFLUENCE

FUNCTIONS FOR AN INFINITE PLANE REGION

CONTAINING A SHARP CRACK

The following complex functions were used in the

influence functions for a sharp crack, equations (4.54),
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For the special case Z = To, the only changes are
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Substituting the components of the resultant fictitious

traction, equation (4.59) into the influence functions

for a slit, equations (4.54):

xx;x

H .
xx,y

+

(Z'Zo)2 Z'70 C2'1

-2 2:2 1 C“
 

 

 

Re T + ¢*'(z;) - 7 ___— + —— <b*"(c)
Z 0 C2'1 I [(Z‘Zo) (CZ-1)“ I

2C3 70 a
___ ¢*'(;) + __ ..

(C2'1)3 I ] (Z-Zo)2 Z-Yo

2:2

“j—I'WE'CC) /2n(a+l)
C .-

. -2 2:2 1

Re 1 __Z_ + (¢*'(C) - ¢*'(C) - 7' --—-—
(Z' 0 C2_1 I ) II ) [(Z'Z0)2

C“ *n *n 2C3 *1 *1

(;Z-1)“ ($1 (C) ' ¢II(C)) ' EZ::E3:’(¢I (C) ' ¢II(C))]

20 O. C2
+
  

(Wf'(c) - Wfi(c)) ) /2n(a+1)



H .
Y)’,X

H .
yy.y

xy;x

H .
XY:Y

  

 

234

l ;“
 

 

 

  

 

 

 

 

  

 

 

 

Re _ + ¢*'(C) + 7 [ + *"

Z 20 C2-1 I (Z‘Zo)2 (CZ-1)“ ¢I (C)

a

-§5——; ¢f'(c)] - 2° + a

(C ‘1) (2-7032 220

C2

C2-1 WI'(§)
/(2"(0+1)

. -2 2C2

1

Re 1 ZTz—'+ (¢*' C - *' z"
<' o C2_1 I ( ) ¢II(;)) + [(z-zo)2

C“ ‘¢*"(C) ' ¢*”(C)) - 2C3 (¢*‘(c) - ¢*'( )3]
(CZ-1)“ I II (CZ-l)3 I II 5

Z
2

(Z-Z:)2 - z.a2'o + (:34 WIN“) ' wfiICD) /21r(a+1)

- 1 C“ 91 2:3

Im Z
+

¢* C - ___—___. *1

[(Z'Zo)2 (CZ-1)” I ( ) (CZ-1)3 ¢I (C)]

20 + _£L_.+ C2 Wf'(c) /2fl(a+1)

(Z'ZO)2 2‘20 :2-

Im 3i (7'[ 1. + C (¢f"(C) _ ¢f¥(§))
  

(Z-Zo)2
(C2_1)u

 

 

2:3 ' ' 7

(CZ-l)3 (¢I (C) ' ¢11(C)) ] ‘ ° - “

 

2

CE_1 (W1'(C) - Wfi(c)) > I /2n(a+1)



X§Y

YSX

YSY

235

  

_ —2

R€<{‘<11n(z‘zo) + a ¢f’(c) - Z [ 1' + _C ¢§’(c5]
Z-Z'o cz-l

Zo

Z-Zo

 

’ a ln(Z‘Zo) ‘ W¥icj‘}//¢ynp(a+u

Re{i (- on ln(Z-Zo) + a 013?“) ‘ ¢fi(§)) ' Z [i;‘

Z-Zo

 

  

32 (W - ¢fi(c))1 - 2° + a INT-2°) - ”1*“?cz-l

WIIECJ) ) } /4Ufl(a+l)

 

Im{- a ln(Z-Zo) + a ¢§'(c) - z [-'—1—+ 32 m:1

2-70 32-1

_ZZ—z— - a 1n(7-zo) - Wilt) 5/4"P‘4*"
- 0

Im{i(a ln(Z-Zo) + a (cb’f'UE) - mm) - 2 [Eli

+ a 1n(7-Zo)

  

32 (¢*'(c) - ¢*'(c))] - 2°32.1 I
II

7-20

(wflzgi - *IIICI))}/47TUCG+1)



APPENDIX E

COMPUTER PROGRAM FOR PLANE, FINITE REGION

CONTAINING AN ELLIPTICAL HOLE

OR A SHARP CRACK

A computer program was employed for the numerical

computation of the stresses and the displacements at the

field points of a two-dimensional region containing an

elliptical hole or a sharp crack. A listing of that

program for the rectangular region subjected to uniaxial

tension (w = 1.0 MPa) and containing an elliptical hole

or a sharp crack and for the circular p1ane subjected to

a uniformly radially tension (w s 1.0 MPa) and containing

an elliptical hole are presented in this appendix.

A. INPUT DATA

The following information must be provided as input

(this is the order of appearance in the program).

PR - Poisson's ratio of the material

BMUD - modulus of elasticity of the material

NML - total number of subdivisions on the boundary

NFP - the number of field points at which the stresses

and displacements are to be computed

M - parameter used to describe semi-major axis

(a

elliptical hole

1+M) and semi—minor axis (b = l-M) of
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THETA

XO’YO "

WR -

X(I).Y(I)

I=1,NML

IPLANE

BVX(I): '

BV (I+NML)

I= ,NML

XF(I)9 '

YF(I)

I=1,NFP
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angle of inclination of the elliptical hole or

the sharp crack with respect to the x-axis

location of the center of the rectangular or

circular plane with respect to the center of

the ellipse or crack

"width ratio" for the rectangular p1ane

(WR width/10 cm) and for the circular plane

(WR radius/6.0 cm)

coordinates of the outer boundary points,

specified counterclockwise (for circular p1ane

case, this input has been included in the

program)

this character specifies the type of the

plane problem, i.e., for plane stress, IPLANE=1

and for plane strain, IPLANE=2

x and y components of boundary tractions speci-

fied at each subdivision

coordinates of the field points at which the

stresses and displacements are to be computed

B. OUTPUT DATA

The following information is obtained as output (this

is in the order of the appearance in the output).

PR,BMUD -

SHMUD -

NML,NFP -

Poisson's ratio and modulus of elasticity

shear modulus of elasticity

total number of subdivisions on the boundary

and number of field points at which the stresses

and displacements are computed



THETA

Xo,Yo

WR

X(I),Y(I)

I=1,NML

BV (I) -

BVx(I+NML)

I=I,NML

PSX(I) -

PSY(I)

I=1,NML

XF(I)2 '

YF(I)

I=1,NFP

SIGMAXX, -

SIGMAYY,

SIGMAXY,

UX,UY
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angle of inclination of the elliptical hole

or the sharp crack with respect to the x-axis

location of the center of the rectangular or

circular p1ane

magnification of the size of the plane for the

rectangular plane (WR = width/10 cm) and for

the circular plane (WR = radius/6.0 cm)

coordinates of the outer boundary points, listed

counterclockwise

x and y components of boundary tractions speci-

fied at each subdivision

components of the fictitious traction on the

boundary, represented by the concentrated loads

Pii’ P;i at the center of each one of the sub-

divisions. These are computed by solving a

system of linear equations (4.61) (LEQTlF,

computer library).

location of the field point at which the

stresses and displacements are computed

components of stress and displacement at each

of the field points. These are computed using

equation (4.65).

C. THE COMPUTER PROGRAM FOR A RECTANGULAR PLANE

CONTAINING AN ELLIPTICAL HOLE OR A SHARP

CRACK (follows)
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D. THE COMPUTER PROGRAM FOR A CIRCULAR PLANE
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APPENDIX F

COMPUTER PROGRAM FOR PLOTTING THE

CONTOUR OF THE OPENING WITH TWO

OR THREE AXES OF SYMMETRY

A computer program was employed for plotting the

contour of an opening with two or three axes of symmetry

(e.g., triangular hole, square hole or elliptical hole).

A listing of that program for a triangular hole with

rounded corners, see Figures 5.1 and 5.2, for a square

hole with rounded corners, see Figures 5.3 and 5.4, and

for elliptical hole are presented in this appendix.

A. INPUT DATA

The following information must be provided as input.

AM(I) - This character represents 6 different coef—

- ficients, e, in equations (5.1) and (5.4)

c - coefficient in equations (5.1) and (5.4) (has

to be specified in the program)

The type of the paper, pen and ink has to be specified in

the statement "CALL PLOTS."

B. OUTPUT

Six different plots associated with the six different

e's (i.e., AM(I) in the program) and specified c.
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THE COMPUTER PROGRAM FOR PLOTTING A CONTOUR

WHICH HAS THREE AXES OF SYMMETRY (TRIANGULAR

HOLE WITH ROUNDED CORNERS)
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