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ABSTRACT
ON THE PROBLEM OF A PLANE, FINITE, LINEAR-ELASTIC
REGION CONTAINING A HOLE OF ARBITRARY SHAPE:
A BOUNDARY INTEGRAL APPROACH
By
Ali Reza Mir Mohamad Sadegh

Previous boundary integral equation methods have been
developed for problems of two-dimensional elastostatics
which yield excellent results everywhere except near the
boundary. This presents a major disadvantage for problems
in which a hole, slot or sharp crack is present, since
such an opening must be considered as boundary. Thus,
results in the vicinity of the hole are not reliable. In
this dissertation a new formulation of the boundary inte-
gral method is presented which eliminates this inaccuracy
on and near the opening. This is done by replacing the
kernel of the integrand (the influence function) with one
which includes the effect of the opening. This influence
function is determined in terms of the complex potential
functions for an infinite elastic plane containing the
opening and subjected to a concentrated line load at an
arbitrary point. This is accomplished using the
Muskhelishvili method of plane elasticity. Potential

functions are found for the cases of a circular hole, an
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iptical hole and a sharp crack. The determination of
se functions for other opening shapes is also discussed.
e boundary integral equation method is then applied to

ne finite regions containing either a circular hole, an
'11pt1cal hole, or a sharp crack. The results are pre-
ted and compared with exact solutions and experimental

sults where available.
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INTRODUCTION

One of the most fundamental problem areas in elas-
ticity is the effect of an opening in an elastic region.
The literature is filled with analyses, analytical,
numerical and experimental, of problems involving holes
in finite bodies subjected to prescribed load. A renewed,
and intense, interest in this type of problem has evolved
with the advent of fracture mechanics, in which the
"hole'" takes on the shape of a sharp crack. Although
specific problems (i.e., specific shaped regions con-
taining a specific shape of opening and subjected to
specific boundary conditions) have been defined and solved,
there still exist a large number of fundamentally impor-
tant problems which do not lend themselves to analytic
solution. These analytic approaches can be accomplished
only when the geometry and loading are simple. Numerical
analyses (such as finite elements, finite differences and
boundary integral methods) have played a big role in the
solution of problems of arbitrary geometry and loading.

In this dissertation, a boundary integral equation
method has been used to solve problems of this type. This
method has definite advantages over finite differences

and finite elements for various types of problems. In
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2
boundary integral methods, the stresses are obtained at
a point and, for locations greater than one boundary sub-
division from the boundary, they are extremely accurate.
These methods do not require discretization of the domain
as with finite elements or finite differences, but merely
discretization of the boundary. This leads to a coef-
ficient matrix which is of lower order than would be
obtained by finite elements and finite differences.
Indeed, within the past ten years, boundary integral
equation methods have been applied to three dimensional
isotropic [1] and anisotropic [2] elasticity, plasticity
[3], plate theory [4], fracture mechanics [5] and a broad
range of other applications [6].

The main limitation of the boundary integral equation
method is the inaccuracy of the results near the boundary.
This is due to the fact that the boundary is discretized
and clearly the error worsens near the discretization.
This is not usually a bothersome limitation but, in the
case of problems involving an opening, multiply connected
regions, the opening must also be considered as a part of
the boundary and therefore the largest error occurs in the
most important region (i.e., near the opening).

In this dissertation, a new formulation of the
boundary integral equation method is presented in which
the opening is no longer considered as part of the
boundary since its effect on the stress and displacement
fields is incorporated into the kernel of the integral

equations. This is done using the theory of complex







3
variables in elasticity, namely the Muskhelishvili
method, and the Cauchy integral theorems. The results are
highly accurate along and near the opening.

In Chapter I, the boundary integral equation method,
the complex variable analysis of elasticity (the
Muskhelishvili method) and the Cauchy integral theorems
are presented. A mapping technique and a general solu-
tion for finding the kernel of the integrands of the
boundary integral equations is introduced in Chapter II.

In Chapter III, the boundary integral equations
presented in Chapter II are used to solve the problem of
a plane finite linear elastic region containing a circular
hole. The kernel of these equations is replaced by a
kernel which incorporates the effects of the hole on the
elastic field. This kernel is derived using the mapping
technique, the Muskhelishvili method and complex variable
theory. Some examples are presented and compared to some
known solutions.

In Chapter IV, this solution technique is extended
to the problem of a finite plane linear elastic region
containing an elliptical hole or a sharp crack. Again,

a kernel which incorporates the effect of the elliptical
hole or the sharp crack is derived and replaces the
kernel of the equations of Chapter II. Some example
problems are presented and, in the case of the sharp
crack, solutions are compared to some recently obtained

experimental results.
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4

In Chapter V, the extension of the solution technique
the problem of a finite plane linear elastic region con-
-ing other types of opening is discussed.

Finally, the closure and conclusions are presented in
apter VI. The computer programs used for computations

Chapters III and IV are included in the Appendices.
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CHAPTER I
BACKGROUND AND PRELIMINARIES

I.1 AN INTEGRAL EQUATION METHOD

Introduction

The first application of the methods of poten-
tial theory to classical elasticity theory was introduced
by E. Betti [7] in 1872. Later this work was expanded by
Somigliana [8], Lauricella [9] and others. In particular,
Betti's contribution, i.e., the general method of inte-
grating the equations of elasticity, was simply a develop-
ment of the potential methods of Green and Poisson. Thus,
some fundamental results from potential theory should
first be discussed. Let a function ¢ be the solution of

Laplace's equation throughout a region R:
V2 = o in R (11

subjected to the boundary conditions

¢ = f on 3R,
g% =g on 3R Gig2)

where 3R = 3R; + 3R, is the boundary of R. Note that
1/r, where r is the distance between two points in R, is

5







6
a singular solution to Laplace's equation. Combining 1/r
with the solution ¢ in the classical Green's theorem of

integral calculus [10] results in the identity,

$(2) = 4L." ‘/;R[g(zo)r—(ﬁ)- - £(Zo) a_BE (ﬂ%z‘n‘)] ds(Zo)

%3)

where Z is any point in R and Z, any point on 3R. Since
f and g are both needed everywhere on 3R, only one of
them is known at each point, then the other has to be
found. To accomplish this [11-13], consider taking the
limit of equation (1.3) as Z approaches a boundary point

Z,, on 3R. The result is:

E 71_[ 20 bz - #0000
3R 0

(1.4)

where the limit as Z+Z,, of ¢(Z) is, by definition, f(Z.)

and the integral in equation (1.3) has a jump of £(Z,)/2
in the limit [11]. Thus, this integral is to be inter-
preted in the Cauchy principal value sense. Equation
(1.4) is the "Boundary-Integral Equation'" which relates
g and f. Solving the integral equation (1.4) for either
£, if g is given, or g, if f is given, leads to the

solution ¢.
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In spite of this classical foundation of the boun-
dary integral equation method, the literature contains at
least two seemingly distinct formulations for the treat-
ment of elasticity problems. One of these, due to Rizzo
et al. [14-16] and Cruse [17], follows directly from
Somigliana's identity of elasticity [18]. The other
formulation due to Massonnet [19] and extended by Altiero
and Sikarskie [20] attacks the problem by embedding the
region in an infinite plane and distributing a layer of
body force on the proposed boundary in such a way that the
desired solution is produced within the region of interest.
Both approaches will be discussed in this chapter and the
latter will be employed in the subsequent analysis.

The formulation of the boundary integral equation

method due to Rizzo [14] is based on Somigliana's identity:

U, (D) /B Ii,q(2:20) t5(Z0) ds(Zo)

= /];Hij;q(Z,Zn) Ui(Zq) nj(Zg) ds(Zo) (1.5)

where U is the displacement vector, Ii;q(Z,Zg) is the

ith component of the displacement at Z produced by a

unit force applied in the q direction at Z, in an infinite
medium, and ti and Hij;q(z'z") nj(Zu) are the components
of the boundary traction corresponding to the displace-

ments Ui and Ii respectively. In three dimensions,

Ay
HC
ds represents an element of area, in two dimensions, an

element of arc length.




ete

tract



‘r..I"""-"""""""""""'—_________________"'—____________-_'________'

8
Taking the limit as Z approaches a point Z; on B

from the inside leads to

U 20 + /B Hyj.q(21,20) U5 (Za) m5(Zo) ds(Zo)
- '[Bxi;q(zl,zo) t;(20) ds(za) (1.6)

where the integral on the left-hand side is to be inter-
preted in the Cauchy principal value sense. If the
traction is prescribed everywhere on B, then the right-
hand side of equation (1.6) is known and a system of
singular integral equations can be solved for the boundary
displacement E. The interior displacements can then be
found from equation (1.5). If the displacements are
prescribed everywhere on B, then the left-hand side of
equation (1.6) is known but the resulting set of integral
equations are not singular. For the mixed boundary condi-
tions, some of the equations are singular and some are
not.

The second formulation of the boundary integral
method, i.e., that of Altiero and Sikarskie [20], is an
extension of the work of Massonnet [19]. Massonnet intro-
duced a method for solution of traction boundary value
problems in which the real body is embedded in a series
of "fictitious" half planes which are sequentially
tangent to the real boundary. To demonstrate the idea,
consider a finite two dimensional region with a prescribed

traction all around the boundary, Figure 1.1. Choose the

L
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Figure 1.1. Finite two-dimensional region with pre-
ibed traction all around the boundary.

e 1.2 Half plane subjected to a concentrated
e boundary.
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Figure 1.3 Region of Figure 1.1 embedded successively
in half planes.

Y

-

7
NZ
R
\y/s
By

Figure 1.4 Boundary value problem in plane elasticity.
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simple radial stress distribution, i.e., a half plane
subjected to a concentrated line load on the boundary, as
a fundamental singular stress field, Figure 1.2. This
solution is well known [21]. Then, draw the tangent to a
point, Z,, of the real boundary and consider the half plane
extending indefinitely below this tangent, Figure 1.3.
In other words, the body has been embedded in a succession
of half planes. An unknown "fictitious" line load is
introduced at each point of tangency. A vector boundary
integral equation for the unknown fictitious tractions
results when one forces satisfaction of the traction
boundary conditions of the original problem.

An approach somewhat similar to Massonnet's has been
developed [22] for anisotropic regions subject to traction
boundary conditions. This approach, later, was extended
by Altiero and Sikarskie [20] to mixed boundary value
problems. Consider a two dimensional, linear elastic
region R with boundary B as shown in Figure 1.4. For
prescribed boundary conditions, i.e., tractions and/or
displacements on B, the stress field and displacement
field in the region R are to be determined. The region
R will be embedded in an infinite (fictitious) plane of
the same material and thickness as R, Figure 1.5. The
influence function which satisfies the equations of

Blasticity, i.e., (Z,Z,) and Ii,q(z,zo), are known
H

H..
ijsq

[23], where H; (Z,Zo) is the ijth stress component at

ijsq
a field point Z due to a unit line load in the q direction
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1.5 Region R embedded in an infinite plane.
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at a source point Z, and Ii;q(Z’Z°) is the displacement in
the i direction at Z due to the unit line load at Z,. Con-
sider now a fictitious layer of body force ;* (unknown)
acting along the contour B, see Figure 1.5. Since the
problem is linear, then the superposition of fundamental
solutions leads to the determination of stresses and dis-

placements at a point Z as follows:
= *
"ij(z) fB Hij;q(Z,Zo) Pq(Za) ds (Zo)

u;(2) = /B 1;,q(2,20) P2(Z0) ds(Z0) Ged)

where Z, is now on the boundary B and ds(Z,) is an element
of length along B at Z,. Then all equations of linear
elasticity are satisfied by equations (1.7) since they
represent the superposition of fundamental solutions.

In order to solve the boundary value problem of interest,
the boundary conditions on B are yet to be satisfied.

These conditions are:

eS|
o e Pi on B

Ui = Ui on Bu (1.8)

where ny is the j-component of the outward unit normal
to a point on B and P;, Ui are the specified traction and
displacement components, respectively. Note that one may

also specify one traction component and one displacement

|
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component at a particular boundary point, provided they
are mutually orthogonal. Let the interior point Z approach
a boundary point Z,, on B, Figure 1.5. Then the stresses
and displacements, equations (1.7), must satisfy the boun-
dary conditions of equations (1.8). Thus, substitution of

equations (1.7) into equations (1.8) leads to
1
7 P3(Z1) + ¢B Hij;q(zl,zﬂ) Pa(za) nj(Zl) ds(Zo)

= P5(21)

Zy on By (1.9)

Sb; 1;,q(Z1,20) PA(Z0) ds(Zo) = UF(Z1)

Z, on Bu (1.10)

Note that the subscript i refers to a co-ordinate direc-
tion at a boundary point Z:. Equations (1.9) and (1.10)
represent coupled integral equations in the unknown fic-
titious traction ;*. Note that the singularity has been
extracted from equation (1.9) and the integral of this
equation is to be interpreted in the Cauchy principal
value sense. Equations (1.9) and (1.10) contain several
types of problem. For the first fundamental problem of
Plane elasticity, i.e., traction boundary conditions only,
the vector equation (1.9) is to be used. For the mixed

boundary value problem, both equations appear but not in
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the same direction at the same point, i.e., if a traction
is specified in the i direction at Z,, then equation (1.9)
holds; and if a displacement is specified, then equation
(1.10) holds.

Like the Rizzo formulation, equations (1.9), i.e.,
the traction boundary value problem, are singular. However,
for displacement boundary value problems, equations (1.10)
are used and these are not singular. For mixed boundary
value problems, some of the equations will be singular
and some not.

It is felt that the formulation of Altiero and
Sikarskie is preferable for the following reason. In the
method of Rizzo, one must first perform integration around
the boundary before the required integral equations are
defined. This is clearly not necessary in the Altiero
and Sikarskie formulation, where one merely needs to
specify the tractions and displacements themselves and
the right-hand sides of the required integral equation
are immediately known. Therefore, the Altiero and
Sikarskie formulation will be used here.

Note the fact that the Altiero and Sikarskie formu-
lation is not restricted to embedment in an infinite
plane. Massonnet, as discussed earlier, used embedment

in a succession of half planes. However, to obtain

singular equations for the traction problem, and there-
fore more numerically efficient equations, this approach
requires tangency of the half plane to the embedded body

successively around the boundary.

i
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The Massonnet approach is therefore somewhat cumber-
some and particularly inconvenient, particularly for the
solution of anisotropic elasticity problems [22]. Also,
it is very difficult to apply this method to multiply
connected regions. Whichever formulation is used, the
fundamental solutions for the fictitious region should
be simple. This is best satisfied by the infinite plane.

Once ;* has been determined, the stresses and dis-
placements at any field point can be determined by sub-
stituting ;* into equations (1.7). These stresses and
displacements represent the solution to the boundary
value problem of interest within R. The influence

functions, i.e., the stress and displacement fields in

3
component form, due to a concentrated line load P*ds in

an infinite plane are given by Love [23]. These are:
H P b 1 c o aie2 b agr2) Wper (agrz—azrz)]
xx;q q T [ X X x y y'y x y
H peos . 1 [P*r (asr2-ap,r?) + P*r (a|r2+azr’)]
yysda q aqrt L XX 57 X Y % sy
1 2 2 2 2
B e * *
ny;qPq AT [ery(a,rx =3 azry) 2 Pyrx(azrx+a;ry)]
(1.11)
1 2 2
X = - * - *
Ix;qpq M [Px(a.r diog ety asry) Pyasrxry]
b S
* = - -P* * 2 2
Iy;qPq T [ ansrxry * Py(aur log r + asrx)] oo




where r and T, are the x,y components of the radius
vector from Z to Z, and the constants a, through as for the

problem of plane strain are

a (3-2v)/(1-v)
a; = (1-2v)/(1-v)
as = (1+2v)/(1-v)

ay = (3-4v) (1+v)/(1-v)

as (1+v)/(1-v) (ESIS)

and, for plane stress, v is replaced by v* in all the

coefficients of equation (1.13) where:

- V

vk =
T+v

The influence functions found in equations (1.11) and
(1.12) can be obtained using the complex potential func-
tions associated with the concentrated line load in an
infinite plane. This will be discussed further in the

next section.

The solution to any boundary value problem of plane
elasticity is contained in equations (1.9), (1.10), and
(1.7). For tractions specified everywhere on B, equations
(1.9) are to be solved for ;*. These values of ;* are
then substituted into equations (1.7) to find the stresses
and displacements at any field point. Equations (1.7)
may give the displacement field to within a rigid body

displacement. The rigid body displacement, however, can

| —
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be eliminated by suitably prescribing sufficient boundary
displacement information. For displacements specified
everywhere on B, equations (1.10) are solved for ;* and
equations (1.7) again used to find the stress and dis-
placement fields. For mixed conditions at a point either
the x component equation (1.9) and the y component of
equations (1.10) or the converse must be satisfied.

To obtain a numerical solution to equations (1.9)
and (1.10), the boundary is first replaced by an N-sided
polygon with sides of arbitrary length ASi. The resultant
boundary data over the interval ASi is now defined at

the midpoint of each interval as follows:

P, = f Pxd ; Pr. = f Pxd
B s, < i T
1 1
P . = f P3d ; P . = f P3d
s, < yi g RS
1 1
u.=f d u.=f usd 1.14
xi Asi UBEES % yi Asi ¥ 3 ( )

Note that the superscript * implies the fictitious com-
ponent. Multiplying equations (1.9) and (1.10) by ds(Z:)

leads' to
7 P3(Z1) ds(z1) + éﬂij;q(zl,zo) PA(Zo) ds(Za) * ny(21)ds(Z1)

= Pis(z,) ds(Z,)
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¢}; Ii;q(zl,z.,) Pa(zo) ds(Zo) - ds(Zi)
= Uf(z,) ds(Z1) (1.15)
Integrating equations (1.15) over boundary interval ASi

and assuming that the influence functions are independent

of Z, over a particular interval yields:
7 PE(Z) *%B Hij,q(21:20) PA(Ze) + mj(Z1) ds(Z1)
= P.(Z1)
f; I3,q(21,20) P3(Zo) ds(Z1) = U;(Z1) (1.16)

A simple integration procedure can be employed here, i.e.,

simply multiplying the value of the integrand at the mid-
point of an interval by the interval length. This is
sufficient for all intervals except for the second equa-
tion in which the kernel of Ii;q(Z,Zo) is undefined when
Z1 = Zo. Thus, this one interval must be integrated

analytically and the integrals can be written as:

N

ZPIZ) ¢+ ZE Hyj.q(Z1,20) PA(Ze) nj(Z1) S(Z3)
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8; P;(Z,) t - Ii;q(zx,za) Pa(Zo) AS(Z1)
Zo#Zy
= U;(21) (1.17)
where Bre= .is. Ii;q(Z;,Zu) ds(Z,) (1.18)
¢
over the interval which includes Z;, = Z,. Note that the

boundary points Z, and Z; in the discrete terms will now
represent the center-point location of the intervals,
numbered counterclockwise. Separating x and y components,

one obtains

1

Vi P;(Zl) + 2;1[ xx; q(ZA,Zo) P*(Za) n, (Z1)
Zo0¥Z,

+ xy q(Z;,Zn) P*(Z )] ny z, )] AS(Z,) = Px(Zx)

7 Pz + ﬁ_:l[ Hyysq(Z1:20) PE(Za) m, (21)
Z:#Z)

(Z1',Z0") Pa(Zu) ny(Zn)] AS(Z,) = Py(ZI) (1.19)
N

gPA(Z1) + ZZn;l [15;q(21,20) PAZO] 8520 = U, (21)

HYY;q

8 PS(21) + Z;l [Iy;q(zx,zo) Pa(Zo)-j AS(21) = U, (21)(1.20)

where the influence functions can now be written as
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Hij;q(zx.zo) Pa(zu) = Hij;x(znzo) P*(Zo)

%
* Hij;y(zl.zo) Py(Zo)
Ii;q(zl,za) Ps(zo) = Ii;x(zl.za) P¥(Zo)
= *
* Il;y(znzn) Py(zo)

1,3 = x,y (1.21)

Substituting equations (1.21) into (1.19) and (1.20) and

rearranging the equations leads to

N

EES(21) + Z % [Hxx;x(z"z”) n (Z1)

Zo=1
Zo#Z1

+ ny;x(za,zo) ny(Zl)] BY(Zo)i [Hxx;y(zlyzoJ n, (Z1)

+ ny;y(Zl,Zo) ny(Zl) ] P;(Za) } AS(Z,) = PX(ZI)

’SP*Y(ZI) 4 2 { [ ny;x(zhzo) n, (Z1)
o=

Zo#Zy
#* Hyy;x(zx,zo) ﬂy(zl)] P*(Zo) + [ny;y(zx.za) n, (Z1)

+ H

yy;y(Z1:20) ny(Zx)] P2(Z0) } AS(Z1) = P (21) (1.22)
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g PE(Z1) + 2 { Le,x (Z1,20) PA(Z0)

Zo#Z)

id Ix;y(Zx,Zo) P2(Z0) }AS(Zx) = U, (21)

gy'P;(Zl) * Zl % Iy;x(zl,za) P%(Zo)

Zo#ly

o Iy;y(zl,zo) P;(Zn) }S(Zl) = Uy(z‘) €1.23)

Equations (1.22) and (1.23) can be written in the compact

form:
* =
Kei PXi? Jg (Aij PXJ Y BlJ )’J) BVyi
j#i
K *. - (c.- .+ D ) =
yi y1i 32 1 x) &3 LY Bv)’l
j#i

SN (1.24)
where i and j represent Z, and Z,, respectively, and where

Aij = [Hxx;x(zl’z") nx(zl) + ny;x(zl,zu) ny(zl)]As(Z|)

Bij -3 [Hxx;y(zl’z°) N (23T ny;y(Z,,Zn) ny(Z;)]AS(Z,)




Dij
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Cij g [ny;x(zl,zo) n, (Zy) + Hyy;x(zl,zn) ﬂy(zl) ]AS(Z,)

Dij = [ny;yfzx,zo) n (Zy) + Hyy;y(zl,zn) ny(zl)]AS(Zl)

i
R

BV ; = P, (Z1) . BV ; = Py (1) (1.25)

for a traction condition specified and

Ay = Ty (21,20) 8S(2) Bij = I,y (21,20) AS(Z))

Cij = Iy, (21,20) 85(Z1) Dij = Iy,y(21,20) 8S(21)

Kei = 8 Kyi = 8y

BVy; = U (Z) vai = UY(Z1) (1.26)

or a specified displacement condition. There are several
methods for solving equation (1.24) for the fictitious
traction. The first and simplest method is iteration.
Iteration works particularly well for traction boundary
value problems, equations (1.22). An initial choice of
fictitious fractions equal to the actual tractions pro-
duces fairly rapid convergence. For the mixed problem,
equation (1.23), the iteration, in general, does not con-
verge. A second method is matrix inversion or elimina-

tion. Equation (1.24) can be written in the matrix form
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[[Kx] 2 [A]] [B] {P;} ; {BVX}
g [c] [[Ky] . [D]] { } {Byy} 1.27)

where all sub-matrixes can be found using equations (1.25)

p*
iy

and/or (1.26). Equation (1.27) is written more compactly

i 1o

Once the fictitious tractions are determined, the

as:

stresses and displacements are found from the numerical
approximation of equations (1.7):

= i * i *
% xx 1;1 [Hxx;x(F’l) l)xi 3 Hxx;y(F’l) Pyi]

M=

i * i *
[HYY;X(F’I) P1 * Hyyy (Fu1) Pyi]

e
Xy i=1
N
o i * i *
Ixy E [HXY;X(F’” PRi * Hyypy (F5 1) Pyi]

>‘t:.‘
]
'[‘12

[Ix;x(F’i) P;i + Ix;y(F’i) P;i]

i=]1
N
= i * i *
uy 1;1 [IY;X(F,l) e+ Iy;y(F,l) Pyi] (1.29)
where F is a field point and P*xi, P;i are the components

of the known fictitious traction at the interval i.
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It is clear from equations (1.29) that the stresses
and displacements can be found at small expense anywhere
in the field by simple summation.

It is important to note that the embedment in an
infinite plane can also be used for multiply connected
domains, such as a region containing a hole. However,
the hole would need to be treated as boundary. Discreti-
zation of the boundary would therefore cause inaccuracy
of the solution near the edge of the hole where the solu-
tion is most important. The goal of this dissertation
is to eliminate the contour of the hole from the boundary
and to find a new influence function for the problem,
which contains the effect of the hole, thus improving the
accuracy of the solution along and near the hole. To
accomplish this goal, the Muskhelishvili method will be
employed.

I.2 THE MUSKHELISHVILI METHOD: A COMPLEX VARIABLE

METHOD IN ELASTICITY

After the formulation of the linear theory of
elasticity had been largely completed (by the middle of
the nineteenth century), functions of a complex variable
were introduced into plane elasticity problems in 1909
by Kolossoff [24] who, together with Muskhelishvili [25],
developed the theory. However, nearly forty years elapsed
before the theory, based on Kolossoff's idea, was brought
to a successful conclusion. This was accomplished, in the
main, by a group of Russian mathematicians inspired by

the work of Muskhelishvili. The development has been
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described by Muskhelishvili in two works [26,27]. The
general solution of the fundamental biharmonic boundary-
value problem can be made by means of two analytic func-
tions of a complex variable. Consider the biharmonic

boundary-value problem

v2v% U(x,y) = 0 in R
U’e = fe(s) on 3R 530
and let
VU = X(x,y) (1.31)

Then, clearly, the function X is harmonic in R. Note that
a harmonic function is a single-valued function of class
C? which satisfies Laplace's equation in R, i.e., V2X=o,
For every harmonic function there is a conjugate harmonic
function which satisfies V2Y=o where the function X + iY
is an analytic function. Every analytic function is a
C” function because it has a series expansion. Also, an
analytic function satisfies the Cauchy-Riemann equations
and the Cauchy integral formulae. Thus, every analytic
function is a harmonic function [28].

The complex conjugate of function X, i.e., Y(x,y),
can be easily found by the Cauchy-Riemann equations to
within an arbitrary constant. Thus, an analytic function

of a complex variable Z = X + iy can be constructed
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F(Z)

X + iY.

Let

6(2) = %.fF(Z)dz

= X% + iYy?® (1.32)

where X° and Y° are the integrated functions of X and Y.

Then, ¢(Z) is analytic and its derivative is

' _axe . dY? _ 1 )
¢'(2) = sx 1 X I(X+1Y).

From the Cauchy-Riemann equations, it is clear that

0 =Y° =1X
X x y &

o - _yo - L
X,y Y,x 4

Let

H(x,y)

U - X% - Y% (1.33)

Then it is easy to verify that H(X,y) is a harmonic

function, because

V2 (U - X% -Y%) = v2U - v.v(X%x) - V-V (Yly)

and the fact that X°, Y° are harmonic leads to
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X - 2vX°%- 2vYy°®

1 1 1 1
X-TX+7Y--2-X-7Y

Thus, H(x,y) is a harmonic function, the complex conjugate
of which can be easily found. Calling this conjugate

K(x,y), function can be constructed so that:

x(Z) = H(x,y) + iK(x,y) (1.34)
Solving equation (1.33) for U leads to:

U=X%%+ Y% + H(x,y)

and substituting the analytic functions of equations
(1.34) and (1.32) into the above equation, the biharmonic

function is obtained in terms of the two analytic functions,

¢(Z) and x(2):
U = Re[7¢(Z) + X(zﬂ (1.35)

Since ¢(Z) and x(Z) are analytic functions, it follows
that U(x,y) is of class c” in R. Denoting the complex
conjugate values by bars, the equation can also be

written as

2U = Z¢(Z) + Zo(Z) + x(Z2) + x(2) (1.36)

The determination of stresses and displacements in terms

of the two analytic functions will now be discussed. The
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stresses can be written in terms of the biharmonic

function:

Oxx T U,YY
vy = U xx
oxy = 'U,xy (1.37)
This leads to:
O x + 10xy = —1(U’x + 1U’ ),y
vy ~ 1oxy = (U,x + lu,y),x (1.38)
Let
¥(Z) = x'(2)

Then, from equation (1.36), the expression U x ¥ iU y can
’ ’

be written

U + iU y = ¢(2) + 207 (2) + ¥(2) (1.39)

» X

Calculating the derivatives of equation (1.39) with respect

to x and y and substituting into equations (1.38) leads to:

Q
+
e
Q
|

=¢'(z) + ¢7(2) - 2o"(2) - Y (O)

Q
1
e
Q
n

¢'(Z) + T(Z) + Zo"(Z) + ¥Y'(D)

Stresses in terms of two analytic functions, ¢(Z) and

¥(Z), can now be written as:
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Iyx * Oyy * 4 Re [¢'(Z)]

Oy * Oxx * 2i0., = z[7¢"(Z)+w'(Z)] (1.40)

Finally, displacements in terms of the two analytic func-

tions in the compact formula will be

Zu(Ux + in) = oad(Z) - 2¢6'(2) - Y(2) (1.41)
where
a = 3-4v for plane-strain problem
or
_ 3-v -
a = Iy for plane-stress problem

Stresses and displacements can be found individually, using

equations (1.40) and (1.41), and are:

o = Re [207(2) - To"(2) - v ()]
o, = Re (207 (2) + Tp"(2) + ¥' ()]
Ogy = I (76" (2) + ¥ (2) ]

u. = Im [wo(2) - 237CD) - Y77 ] /2u

U, = Im [§¢(Z) - 26" (2) - _TZT] /2u (1.42)
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Now that stresses and displacements have been formulated
in terms of the two analytic functions, ¢(Z) and ¥(Z),
the structure and arbitrariness in the definition of the
two functions is an issue to be discussed. If the state
of stress in the region R is specified, from equations
(1.40), one can prove that the single-valued analytic
functions ¢(Z) and ¥(Z) could be determined to within a
linear function Ci+y and a constant B, respectively [29]
In addition, if the displacements are prescribed, follow

ing equation (1.41), one can find that

and

ay - B =0

Hence, when the stresses are given, the three constants

C, Y, B will be chosen in such a way that

¢(0) =0
Im¢ '(0) = 0
¥(0) =0 (1

and when the displacements are given, a suitable choice

of y will be assured by the condition

¢(0) =0 (1

Thus, using the conditions (1.43) and (1.44), the func-

tions ¢(Z) and ¥(Z) will be determined uniquely [27].

.43)

.44)
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The structure of the two analytic functions for a
finite and infinite simply connected regions has been
discussed in [27].

Since the state of stress and the displacements can
be expressed by means of the two complex functions ¢ (Z)
and ¥(Z), the fundamental boundary-value problems of
plane elasticity lead to the determination of these func-
tions from prescribed values of certain combinations of
these functions on the boundary of the region.

Beginning with the first boundary-value problem in
which tractions are prescribed on the boundary, the
biharmonic function in terms of applied tractions, f(s),

can be written as

U,x + 1U,y = f(s) on oaR

The equation (1.39) leads to:
$(Z) + 20'(Z) + F(Z) = f(s) on 3R (1.45)

The corresponding boundary conditions of the second

boundary-value problem follow from equation (1.41):
ad(Z) - Z6'(Z) - ¥(Z) = g(s) on dR (1.46)

where g(s) is a prescribed displacement function on the
boundary. From either equations (1.45) or (1.46) one can
obtain the two complex functions. However, mapping the
region R into the inside or outside of a unit circle makes
the determination of the two functions much simpler.

Suppose the mapping function
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Z = w(g) (1.47)

maps point in the region R, Z plane, into a unit circle
|z|€1. The mapping function for a finite region where the
origin is taken in the interior can be represented as a

power series

Z=chn lz]<1
n=1 1

whereas for an infinite region, where the origin is an

exterior point, the function is given by:

[od n
z=—+z 4 lg]<1
¢ n=0 kn

The boundary conditions, equations (1.45) and (1.46), can

then be written as

¢:(2) + 2L TEY + (T = F(o)
w'(2)
-el®) FEy - v = G 1.48
ad1(z) s 1(2) (¢) ( )
where
¢[w(z)] = ¢1(z) and ¥Y[w(z)] = ¥i(z)

Equations (1.48) can now be solved for the two functions
¢$1(¢) and ¥Y:(z) by a power series expansion method or
integrodifferential equations using Cauchy integral formulae

[27]. Since the solution of the integrodifferential
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equation reduces to the solution of the standard Fredholm
integral equation, then the existence of a solution of
equations (1.48) would follow, almost directly, from the

Fredholm theory [27].

I.3 CAUCHY INTEGRALS AND RELATED THEOREMS

Since the integrodifferential equations method will
be used to determine the two complex functions, it is
important to discuss Cauchy integrals and related theorems
briefly. The proof of the following theorems has been
presented in [30] and in [27].

Suppose R* is a finite open simply connected region
enclosed by the contour B described in a counterclockwise
sense. Denote the region exterior to (R*+B) by R™ and
the points on the boundary B by t. Let f(Z) be a complex

function analytic (holomorphic) in R* and continuous on C.

Then

1 f(t)dt _ +

= ‘/; -7 f(Z) for ZeR (1.49)
and

Lf £(8) 4¢ - £ 7y for zer®
B

2Tl (t-Z)n+1
1 £(t) ., -
2“1/]; el dt = 0 for ZeR (1.50)

Equation (1.50) is a necessary and sufficient condition that
the continuous function f(t) defined on B can be the boundary

value of a function analytic in R*. Let f(Z) be a complex



fu

an

o o4
O:
[

ray
who
Valy

the



35
function analytic in R~ including the point at infinity

and continuous on B. Then

z%f/]; %El dt = (=) for zeR' (1.51)
211ﬁ/1; {(2) dt = f(=) - £(2) for ZeR™ (1.52)

The condition (1.51) that the Cauchy integral have a con-
stant value in R' is both necessary and sufficient for the
continuous function f(t), defined on B, to be the boundary
value of a function analytic in R™.

Let ¢(t) be a complex function which satisfies the

Holder condition on an arc L. Then the Cauchy integral

61(2) = 23:1‘/; L) gt (1.53)

may be shown to be a sectionally analytic function in the
whole plane cut along the arc L. Further, the limiting
values ¢+(t), ¢ (t) may be shown to exist on L and satisfy

the relations

617 (to) - 61 (to)

—’

¢ (to

(1.54)

1

m1

;‘~‘\
+|o
1~
[adlad
o Nt
[a W)
(o

¢1+(to) + 61 (to)

where t, is a point on L and the integral in equation
(1.54) is represented as a principal value. The assumption
that ¢(t) satisfies the Holder condition is sufficient for

the existence of the principal value. These results are
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referred to as the Plemelj formulae. They are derived in
[26].

Since the unit circular region will be used in the
determination of principal value of some integrals in the
following chapters, the following integral form will be
used frequently. Let a and b be constants where b/a<l
and let y be the circumference of the unit circle. Then

for the points inside the unit circle

71 g =7 dt = 1n(a) (1.55)

This is simply because the function in the integrand

at'b)

In( T

= 1n(at-b) - 1n(t)

has two essential singularity inside the unit circle,

t = b/a and t=0, whereas the limit of the function at
infinity exists and is equal to 1n(a). Thus, the function
is analytic outside the unit circle. Then following the
Cauchy theorem, equation (1.51), the result of the integral
(1.55) will be 1n(a). This result can also be achieved by

the change of variable

or
dt = -— dn

Thus, the integral becomes:



ln(a bn = ln(a bn)
2ﬂ1¢ -ntl—z—}. n dn m¢ n1-zn) dn (1.56)

The only singular point inside the unit circle is n = 0,
which is the corresponding point of t = ». Obtaining the

residue at n = 0 will prove equation (1.56).



CHAPTER II
GENERAL SOLUTION AND A MAPPING TECHNIQUE

ITI.1 INTRODUCTORY REMARKS

A general solution which leads to the influence
functions for an infinite plate containing an arbitrarily
shaped cavity is discussed here. These influence functions
describe the stress field and displacement field generated
by an isolated concentrated point force, P, applied on
the plane. It is obvious that these functions must be
defined everywhere except at the point where the load is
applied.

It is important to note that the load, P, is a con-
centrated point force, if just a very thin layer of the
plane is considered. In the cases of plane stress or
plane strain the load, P, is a line load along a line per-
pendicular to the layers of the plane, as shown in

Figure 2.1.

I1.2 A MAPPING TECHNIQUE

Consider the problem of an infinite plane bounded by
an arbitrarily shaped cavity at the origin and having a
concentrated point force, P, acting in the plane at some

point Z,, where Z, is a point in the region outside of the

38
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hole. This problem can be expressed as the superposition
of two problems (Figure 2.2).

Let the first problem, Figure 2.2(B) be that of a
concentrated point force applied at the point, Z,, on an
infinite plane with no cavity. Let the second problem,
Figure 2.2(C) be an infinite region bounded by the hole
with some traction acting on the boundary C. Let this
traction be equal in magnitude and opposite in direction
to the traction generated on contour C in the problem of
Figure 2.2(B) by the concentrated point load P.

Clearly superposition of the problems of Figure 2.2(B)
and 2.2(C) gives the original problem of Figure 2.2(A),
where there is no traction acting on the hole.

The complex potential functions of the problem of
Figure 2.2(B) is known (Muskhelishvili [27]) and obviously
since the contour C of the hole is known, then the applied
traction of the problem of Figure 2.2(C) can be found.

To find the complex potential functions for the prob-
lem of Figure 2.2(C), a mapping technique is used. The
problem of Figure 2.2(C) will be mapped to a unit circular
disc (Figure 2.3).

If the type of contour, C, mentioned earlier in this
section, is known, then the transformation function can be
found. The mapping function, w(gz), has to be conformal
and one to one, mapping points at infinity of the Z plane
to the origin of the ¢ plane, and mapping points on the

contour to points on the circumference of the unit disc.
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The traction boundary condition on the contour, C, will
automatically transform to new boundary conditions acting

on the disc.

II.3 GENERAL SOLUTION

Let the complex potential functions for the problem
of Figure 2.2(B) be ¢°(Z) and ¥°(Z), and the complex
potential functions for the problem of Figure 2.2(C) be
¢*(Z) and W*(Z). By superposition, the complex potential
functions for the problem of Figure 2.2(A), ¢(Z) and Y¥(Z)
will be

0 *
$°(Z) + ¢ (2)

¢ (2)

v(Z) = ¥0(Z) + ¥ (2) (2.1)

Since the problem of Figure 2.2(C) is to be transformed
to the problem of Figure 2.2(D), then the transformed

complex potential functions are

* * *
¢1(2) = ¢ [w(B)] = ¢ (Z)
* % *
¥i(z) = ¥ [w(z)] = ¥ (2)
$3(z) = ¢°[w(z)] = ¢°(2)
¥i(z) = ¥ [w(g)] = ¥°(2)

and the derivatives are
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%
¢ '(Z) - w'(g)

*
¢1' (%)

¥1t(g) = ¥A'(Z) - w' (1)
* * 2 *
6111 (2) = 0*1I(Z) - w'3(L) + 6 ' (Z) - w''(Z) (2.2)

To find the influence function, the derivatives of equa-

tions (2.1) are needed, so

01 + *v
7' (z) + ¢ '(2)

' (2) =
YI(Z) = ¥Or(z) + ¥ ' (2)
$11(Z) = 601T(Z) + 6 11 (2) (2.3)

where ¢*'(Z), ¢*"(Z) and W*’(Z) can be easily found from

equations (2.2):

* 61" (2)
' = 1
¢ '(2) T

w

* *
R BYTT(D) L 0h (D) w (1)
NS S1G D
* ‘P*(c)
B (3]

(2.4)
Substituting equations (2.4) into equation (2.3) and recon-
sidering equations (2.1), the requirements for the influ-

ence function become:
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$(2) = 6°(2) + 01(2)

¥(Z) = ¥O(Z) + ¥1(2)
61" (%)

' - 01 + 1
¢'(Z) = ¢°'(2) N
v (z) = verz) » B f5)

* *
0''(2) = ¢°"(Z) + zl éC) _ o £?2i2) (z) (2.5)

The complex potential functions for an infinite plane with
a concentrated force, P, at a point Z,, ¢°(Z) and ¥°(2),
are known (Maskhelishvili [27], Sokolnikoff [29], Green
and Zerna [31]).

$°(2) = - ﬁTg—,,,r)- In(Z-Zy)
WO(Z) = Q Z—TTTE_"'TT In(Z-Z,) + mngT . Z?—_%O (2.6)

To find the complex potential functions for the problem
of Figure 2.2(A), it is necessary to find the complex
potential function for the problem of Figure 2.3(D), i.e.,
$1(2) and ¥1(2).

Since ¢t(;) and Wt(c) have to be analytic in the
domain, then as mentioned in Chapter I, just one boundary
condition is necessary to find the complex potential
functions, i.e., either of equations (1.45) or (1.46).

Note that in the original problem, Figure 2.2(A), the
boundary of the hole is traction-free. Recall equation

(1.45) for the traction boundary condition [29]:
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f(s) = £, + if, + const. = 0

Then equation (1.45) becomes:

o(t) + t ¢'(t) + ¥(t) =0 on C (2.7)

where t represents the values of Z on the contour C. Sub-

stituting equations (2.1) into (2.7) leads to

¢*(t) +t $FT(t) + TE(T) = - ¢°(t) + t 97 (t) + ¥°(t)
on C (2.8)

Clearly, the left-hand side of equation (2.8) is in
the form of the traction boundary condition for the problem
of Figure 2.2(C), since ¢*(t) and W*(t) are the boundary
values of ¢*(Z) and W*(Z). Also, the right-hand side of
equation (2.8) is known, since ¢°(t) and ¥°(t) are the
values of ¢°(Z) and ¥°(Z) on the fictitious contour in the
problem of Figure 2.2(B).

Since the boundary condition for the problem of
Figure 2.3(C) is known (equation 2.8), then the boundary
condition for the problem of Figure 2.3(D) can be obtained
by transforming (2.8) to the z plane using the transforma-

tion functions
Z = w(g)
so that the boundary transforms by:
t = w(o)

where o represents the values of ¢ on the circumference of
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the disc. Hence, equation (2.8) becomes:

$1(0) + 2L 4Ty + ¥i(o) = '<¢?(0) » 200)_ 3775
) 5 (o)
+ m) (2.9)

* * *
where ¢, (o) and ¥, (o) are the boundary values of ¢,(Z)
and Wf(;), respectively. Also, ¢{(o) and ¥3(o) are the
boundary values of ¢$(z) and ¥}(z), respectively.

The right-hand side of equation (2.9) is known, so let

F(o) = -[M(o) + 00 3Gy o« w?(o)] (2.10)

]

then, equation (2.9) becomes:

61(0) + L9 4Tv (o) + ¥1(0) = F(o) (2.11)
This is the mixed boundary condition for the problem of
Figure 2.3(D) from which the two analytic functions

¢t(;) and WT(c) will be found. It is necessary to point
out some characteristics of ¢T(c) and Wt(c) before
proceeding.

As mentioned in section I.2, ¢t(§) and WT(;) must be
analytic (holomorphic) inside y, the unit circle. Also,
without loss of generality, it can be assumed that
¢t(0) = 0. Thus, ¢T(c) and WT(;) may be developed for

|z]<1 in power series of the form

o]

61(5) = kZ; a ct L, ¥i(D) = kZ; b t®  (2.13)
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where, in the first series, the constant term is absent

because of the condition ¢t(0) = 0. Furthermore,
- x -
¢’;( ) = ; akck , Yi(z) = 2 b‘kr,k (2.14)
=] =

Let ¢z approach the boundary vy, i.e., z+oc. Note that since

the radius of the disc is equal to one, then:
oo =1 (2.15)

Equations (2.13) and (2.14) are valid for the boundary

&
values ¢T(o) and ¥, (o). Substituting equation (2.15)
into equations (2.14) along with equations (2.13) for the

boundary values, these become:

o) =20 ad® L vl = 2 byoF (2.16.2)
k=1 k=0

$¥(0) = :E: Eko-k , ¥¥(o) = }E: Eko-k (2.16.b)
k=1 k=0

Equations (2.16.a) show that ¢t(c) and Wf(o) have poles at
infinity, so they are analytic functions inside the unit
circle. Also, equations (2.16.b) show that $3(o) and ¥7(o)
have poles at the origin, so they are analytic outside of
the unit circle.

Using this analysis and employing the Cauchy integral
formulas, the complex potential functions for the problem
of Figure 2.3(D), ¢?(;) and WT(;), can be computed. To find
¢:(;), let both sides of equation (2.11) be multiplied by
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1 do

3

21 og-C

where ¢ is a point inside y, the unit circle.
Integrating both sides of the equation counterclockwise

around the unit circle leads to:

—1*?( $1(0) 4o 4 .1 55 w(o) TETAT 4,
Y Y

2m1 o-C T1 =TS o-C

1 ¢ T@, - L 55 F(o)
M1 j( 0-C d = 271 o-C do (2.16)
Y Y
* * . .
Since ¢,(o0) is analytic inside y and ¥, (o) is analytic
outside Yy, then due to Cauchy integral formulas (section

I.3), equation (2.16) can be written as:

* 1 w(o) FFEY o1 ¢ F (o)
$1(2) +m¢; m-o_c do + ¥¥(0) = 5ot ot do

(2.17)

Note that the third integral of equation (2.16) becomes:

21. Y3(0) 45 - ¥%(5T, = V¥(OT = b,
ml . 0-¢C 1 | 1

where ¥*(0) is a constant.

Equation (2.17) is an intergodifferential equation
for ¢t(c). It contains an unknown constant WTTET, which
can be determined by letting ¢ = 0 and imposing the condi-

x *
tion ¢1(0) = 0. Thus, if the value of ¥,(0) in equation
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(2.17) is chosen arbitrarily and the corresponding solution
for ¢t(;) is found, then the actual value of WfTUT can
be computed from the condition ¢T(0) = 0. This is due to
the fact that if ¢T*(g) is any solution of (2.17) for a
given WI(O), and if ¢1 (0) = ao#0, then ¢1 (c)-ao is a solu-
tion of (2.17) with ¥¥(0) replaced by ¥7(0)+a,. Thus,
WT(O) can be tentatively fixed, say ¥¥(0) = 0. Also, as
mentioned in section I.2, in order to have a unique solu-
tion for ¢T(c) and ?t(c), the following conditions must

be satisfied:
* *
$1(0) =0 ¥,(0) =0 (2.18)

. .
To find Y.(z), take the conjugate of equation (2.11) and
multiply both sides of the equation by

1 do
2T -z

where ¢ is a point inside Y.
Integrating both sides of the equation counterclock-

wise around the unit circle leads to:

*
1 f HE S{ 91" (0)
2m1 y o-C do + 2 w' (o) é-; do

1 W*(O) _ 1 o

An argument similar to that presented for reducing
equation (2.16) to equation (2.17) can also be presented

here to obtain:
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(2.20)

Substituting condition (2.18) into equations (2.17) and

(2.20) and rearranging leads to

* _ 1 F(0) 1 (o) 3% (o)
¢1(z) = m£ o-1 do - m‘¢‘ w - e do (2.21)
vi(z) = 2%{_%‘ 52 - e -¢$(%05) ¢; éc) do  (2.22)

It is easy to reduce the solution of the integrodifferen-
tial equation (2.21) to the solution of the standard
Fredholm integral equation. The existence of a solution
of equation (2.21) would then follow, almost directly,
from the Fredholm theory.

The second integrals of the right-hand sides of
equations (2.21) and (2.22) are left in general form since

function w(z) has not yet been specified.



CHAPTER III
CIRCULAR HOLE IN A FINITE TWO-DIMENSIONAL REGION

IIT.1. INTRODUCTION

The effect of a circular hole on the stress distri-
bution in an elastic region has attracted considerable
attention for the past seventy years. The effect of a
circular hole on an infinite plate subjected to uniaxial
tension was first solved by Kirsch [32]. This work was
extended to other load conditions by Bickley [33].

Howland [34] solved the problem of a long strip weakened
by a circular hole subjected to uniaxial tension. Other
load conditions were considered by Savin [35]. The effect
of a circular hole on the stress distribution in a finite
elastic region has been treated numerically and experi-
mentally using several methods.

In this chapter, the solution of the problem of a
finite plane elastic region containing a circular hole and
subjected to traction boundary conditions is presented.
This is the first implementation of the mapping technique
and boundary integral equation method. In section 2 of
this chapter, some known complex potential functions [36]
are used to find the influence function for an infinite

domain weakened by a circular hole. In section 3, the

52
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Muskhishvili method is used and the mapping technique is
employed to determine the influence function directly.
It is shown that the two results are identical. In the
last section some example problems are considered and the
results are compared to some known solutions, where
available. The computer program for the computation is
included in Appendix B.
III.2 DERIVATION OF THE INFLUENCE FUNCTIONS
USING KNOWN POTENTIAL FUNCTIONS

Consider an infinite elastic plane with a circular
cavity of radius a centered at the origin. Let a force
P act at a point Z, where |Z,|»a. Bhargava and Kapoor
[36] have constructed the potential functions, ¢(Z) and
¥(Z), for this problem. They assume, following Green and

Zerna [31], that the complex potentials are of the form:

2 2 _
02) = ey {7 @2 -0 dn @ Dyen @D
+ o 1n z} (3.1)
- 2
(Z) = 5= g+ {a In (Z-Z,) + Zo % (Z-Z0) 14 1n (Z-%E)
+B (z-29 1w c 28972 anz ezl 4 E z‘z}(s.Z)
70 7

This choice clearly gives proper singularities at the point

of action of the concentrated force Z,. Also, it satis-

fies the condition of zero stresses at infinity. The
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unknown constants can be found from the condition that

normal and tangential stresses, O and o

T e’ are zero at

the boundary of the hole, i.e.,

( - iore) =0

o}
rr Z=0

The boundary condition can be written in terms of ¢(Z) and

¥(Z) following Muskhelishvili [27] as follows:

Opp - 10 = 01(2) + T - T o) + v ()] (3.3)

Substituting equations (3.1) and (3.2) into equation (3.3)

leads to:
2—
A=T Bl
2Bt
2-
B = B a .Z-o - B 1 Zo
P B2
2
c=£8-132
8'4
2—
p=28-1, _PBulysz
82 p' 82
E = - B a a2
P
where 82 = 2920 . Thyus, f isolated point-f p
= -—Tz— us, Oor an 1solate pOlnt orce

acting at the point Z,, the complex potentials at the point

Z are:
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2
¢(Z) 'mgm 3 - ln(Z'Zo) - o ln(Z-a—z—_—) + a ln Z

0

Z0Zo-1 _a? -1
+ 271 (a+1) g aZZg (Z Z?)
Y(Z) = P ga In(Z-Z,) + ln(Z-gi) - 1ln Z - ZLZL;}-(Z-gz—)-1
ot 7o Zo Zo
Z0Zo-1 02,-2 , ZoZo-1 .1 P -1
BI Gt BB
+ a'Zo(Z-%;)-l S o ezl o- i%-' 27l g a?Z'Zi
Zo
Without loss of generality, assume a = 1. Then ¢(Z) and
¥Y(Z) become:
- P _ ) ) 27,-1
¢(Z) = 7T (a+I) ; In(Z-Zy) a 1In( Z%o )‘
+ ZoZo 1 . 1
Zﬂ(a+l) 77,-1
P ZZ7,-1 ZoZo-1
¥(Z) = 3a In(Z-Z¢) + 1ln(&=t—) - =020
27 (a+1) 27, 2Z0-1
ZoZo-l Zoz-o‘ % ; aZ‘%
+ : + + +
(Z'Z‘o_l)z Z'Z'o ZTT(G.+1) Z- Zo Z-Z-o_l
) aZoZ:+1 ) ;;% (3.3)
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Let these potential functions be written as:

6(2) = 7?T§TTT {¢I(Z)} + Z?TETTT {¢II(Z)}
P

¥(Z) = WETD_ {‘YI(Z)} + VEICE0) {WII(Z)}

where ¢I’ d11s WI and WII can be found by comparison to
equations (3.3).
Since ¢'(Z), ¢''(Z) and y¥'(Z) will be needed, they

will be listed here:
o' (@) = ey {01} * me {04
¢''(2) = = z+ {¢i'} + szl)-{q)ii}

v'(2) = gy {1} ¢ mrey {12} G0

where
1 o
01(2) = - g - —2—
I O 7(2Z,-1)
011 (2) = + 1 . _227,-1

(Z-Z0) 2%(2Z,-1)*

¢iI(Z) = -



57

- 2
¢ii(z) _ ZoZo-1 27%
7% (2Z,-1)°
Zo aZ'% dZoZo"'l 20
¥1(2) = - =777 - + +
I 0 (z'z'o_l)z Zoz’2 2—3-
' _ 1 (ZoZo-1)Zo 2(20Z20-1)Z,
¥1,(2) = g * + -
11 °  Z2(2Ze-1)  (2Z0-1)2 (2Z,-1)°
- ZoZo-1 (3.5)
Zo2?
Hence, the influence function can be easily found as
described in section I.2. They are
Hyy;qP% = Re [207(2) - Zo''(2) - ¥'(2)]
* = t te '
Hyy qPa = Re [20'(2) + Zo''(Z) + ¥'(2)]
% = [ ] '
ny;qpq Im [Z¢''(Z) + ¥Y'(2)]
1
% = - -
Ix:qpq v Re [0 (Z) 267 (2) (2]
2 = L - -
Iy:qpq v Im [ad¢(Z) 267 (2) Y(Z)] (3.6)

Substituting (3.4) into (3.6) leads to

o (L Z0PE(20) = ey [ {2010 - Topr @) - ¥p@) s

+ {201,(2) - Top1(2) - ¥1(2) } F*]
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Ho o g (2:20)P2(Z0) = 7F%§TTT[{2¢i(Z) + Toy(z) + ¥3(2) } P
+ {205,(2) + Zo33(2) + ¥1,(2) } F*]

Im

ny;q(Z,Zo)Pa(ZO) = m[{ T‘i’i'(z) + ‘l’i(Z) } p*
SEHORENONS S

L q 22 P52 = gty [{osy (@) - 27T2Y - 7707 oo

+

{ao; (2) + 231D - V(D) } ﬁ*]

Iy, (2 20)PA(20) = gmileyy [{a¢1(2) - I3T(T) - V() } e+

+{ap((2) + 297 (D) - ¥ [ (O) }P*] (3.7)

where ¢1(2), 0}(2), ¢1'(2), ¢;;(2), ¢};(2), ¢11(2), ¥;(2),
Wi(Z), WII(Z) and WiI(Z) are defined by equations (3.4).
These influence functions will be used to solve a simple
problem by the boundary-integral method in section 4 of
this chapter.
ITI.3 DERIVATION OF THE INFLUENCE FUNCTIONS
USING A MAPPING TECHNIQUE

The mapping technique which is presented in Chapter

II is now employed to obtain the influence functions. Con-

sider the problem of an infinite plane having a circular
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hole of radius a at the origin and a concentrated point
force P acting in the plane at some points Z, where |Z,|>a.
This problem can be expressed as the superposition of two
problems, Figure 3.1.

In the problem of Figure 3.1(B), the concentrated
point force P acting at the point Z, in an infinite plane
is considered. 1In the problem of Figure 3.1(C), the
infinite plane contains a circular hole with a prescribed
traction acting on its circumference. The traction on the
circular hole is equal in magnitude and opposite in direc-
tion to the generated traction on a circular contour in
the problem of Figure 3.1(B). By adding the solutions
to the problems of Figure 3.1(B) and 3.1(C), the zero
traction on the hole of the problem of Figure 3.1(A) is
obtained.

The solution of the problem of Figure 3.1(B) is well
known (Muskhelishvili [27]) so that the required traction
can be found. Also, the problem of Figure 3.1(C) may be
handled by mapping into a unit circle (disc), Figure 3.2.

Clearly, the mapping function for this problem is

Z=w() =%

which is conformal and one to one [37]. Without loss of

generality, let a 1. Let the complex potential function
for the problems of Figure 3.1(A), 3.1(B), and 3.1(C) be

¢(2), ¥Y(2); ¢°(Z), ¥°(Z); and ¢*(Z) and ¥*(Z), respectively.
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Figure 3.1 Fundamental problem expressed as super-
position of two problems.

) Y

.
\t/

Z PLANE )

(C) (D)

Figure 3.2 Mapping the auxiliary problem to a unit
disc.
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Then the complex potential functions for the problem of

Figure 3.1(A) are

$(Z) = ¢°(Z) + ¢*(2)

¥(2) ¥o0(Z) + ¥*(2)

where the derivatives are given by equations (2.2) through
(2.5) in section II.3. To find ¢*(Z) and ¥*(Z), the
transformed complex potential functions which are given

by equations (2.21) and (2.22) will be used. It is first
necessary to calculate the integrals of equations (2.21)

and (2.22).

I, = 2_11T_1,£ % ¢z_'£°5 do (3.8)
| (o) ¢%'(o
I, = m% e 21.{0) 4o (3.9)

Taking the derivative of equation (2.16) leads to
o¥' (o) = E kakok (3.10)
k=1
and the complex conjugate is:
¢*"(0) = kzl kika'k'l

Since oo = 1, then
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¥ (o) = g':l k?a'ko']“1 (3.11)

The mapping function and its derivative, evaluated on the

boundary, are

= l ' = - _1_
O N O R
so that
wl@) .. L (3.12)
w' (o) ol
Multiplying equations (3.11) by (3.12) gives:
w(o) . m; z -kiko'k'z (3.13)
w' (0) k=1

From equation (3.13), it is clear that the right-hand side
is an analytic function outside of y, the unit circle.

The value of the right-hand side at infinity is zero.
Thus, due to the Cauchy integral formulas, the principal

value of the integral of equation (3.8) leads to:

.1 w(o) 9¥F (o) -
I“’Zﬁ'% —— do = 0 (3.14)

To calculate the integral of equation (3.9), consider the

complex conjugate of equation (3.13), which is

s = - o3 (3.15)

Multiplying equations (3.10) by (3.15) leads to:
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o]

¢*' (o) = kzl - kakok+3 (3.16)
+

Clearly, the right-hand side of equation (3.16) is analytic
inside the unit circle. Hence, following the Cauchy
integral formulas, the principal value of the integral

of (3.9) leads to:

I, m% z %0) ¢OL(2) do = - z%*'(z) (3.17)

Substituting integrals (3.14) and (3.17) into the general
formulation for ¢%(z) and ¥%(z) (equations [2.21] and
[2.22]), the complex potential functions for a circular

disc with a specified boundary value, F(o), are obtained:

6% (2) = 2—,,1;{%{. 29 4o (3.18)
¥1() = ﬁg% 5?25 do + £3¢*' (1) (3.19)

For the case considered, F(oc) and F(g) will now be calcu-
lated. Rewriting equation (2.10) and taking the conjugate

leads to:

F(o) = - [¢3(0) + 29 3T7(GT + W(a)]  (3.20)
w' (o)
F(0) = - [¢3(0) *+ 53725 60" (0) + ¥i(0)]  (3.21)

Substituting equation (3.7) into (2.6), the transformed

complex potential functions ¢2(;) and ¥{(z) are:




T

F|

et}
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00(0) = - oy In (529 (3.22)

0 P 1-Z0C Zol
Wl(c) o VACTI] 1n (——27—0 + 7?TE$TT T-7.7 (3.23)

Taking the derivative of equation (3.22) and substituting

¢ = o into equations (3.22) and (3.23) leads to:

_ P 1-2Z
$1(0) = - gy In (F529)
0 - P 1
¢,'(0) = 2T (0+1) 1-Z00
0 _ 1 1- ZoO P CZoo  (3.24)
¥00) = o ey In ) * eIy " 1-Zg0

Taking the complex conjugates of equations (3.24) along
with equations (3.12) and (3.15) will provide all the
terms on the right-hand side of equations (3.20) and

(3.12). Then F(o) and F(o) will be

Fo) = Q{in 2% - a1n (o-ZT0)} - Q‘{lléﬂi-—}(3'25)
o(0-Zo)

F(o) = Q‘{E%%%%%l } + Q {ln (0-Zy) - o 1n llglg} (3.26)

where Q = ﬂpa+

Substituting equation (3.25) into (3.18) leads to
1- Z 0
ln( 0
In(0-7o)
o1(2) = wlgg do 7%% Y __E_E—i_ do

2 55 (1-209) 4 (3.27)
Y o(0-Zy) (o-2)
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Recalling the discussion in section I.3, 1In( ) is an

1-Zo0
o
analytic function outside of y, the unit circle. Because
Zo>1, the function has two essential singular points at
op and 0 = 1/Z,. The function is defined at infinity as:

)1 = 1In (-Zo)
c:

then

1 In(=—;
wiJ, T ot do = 1n (-Z,) (3.28)

Clearly, 1n(o-Z,) is an analytic function inside y, the

unit circle. Hence, the Cauchy integral formulas lead to:

Zﬁt'jf ln(° Z0) 45 = 1n(z-Zo) (3.29)

Also

l'ZoG
0(0-Zo) (0-T)

1 (1-2,40) do = Residu
mf; 5(0-T0) (-0) !

1-Zy0
a0 0(0-T0) (0-2)

+
~
(]
7]
[ N
(a9
c
—~——

(1-Z,0) = 1-Z0t , 1 (3.30)

Y o(0-Zo)(0-2) t(z-Zo) Zoz

1
2m1
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Substituting the integrals of equations (3.29) and (3.30)
into equation (3.27), the complex potential function can

be obtained:

1'2070
o%(2) = Qdin(-2o) - o In(z-zo)} + qf LZeZo Y} (3.31)
‘ QyInC-z0) - o 2b Q{Zo(C°Zo)}

To obtain ¥%(z) it is necessary to find the integral of

equation (3.19), i.e.,

_ 1 56 F(o)
I; = 2171 . o-¢C do

Then from equation (3.26):
- Q o(0-Zo)do Q 1n(o-Z,)
I3 mi 95 (1-Zoo) (0-C) Yoo y o-¢ do

1-Zoo0

) %%¢ 1____’1(0_2 ) 4o (3.32)

Y

where

1 0(0-Z,) do = Residu { 0(0-Zo) }
71 ¥ st o e e
+ Residu o(ciZo)
ool 'Zo(o'zz)(o'ﬁ)
Zo
After some simplification:
1 o0(0-Zy) _ 4 1-Z2,7
'2—‘"—]-.-2‘ (l"ZoO’)%O"C) do = - ﬁ - _——ZOZO g (3.33)
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Substituting equations (3.33), (3.29) and (3.28) into

equation (3.32) leads to:

2%{.? S-(?_dc’ - Q{‘ zc—,, lz-:-?gﬁ} * Q{ln(c~Zo)

- a ln(-Zo)} (3.34)

Taking the derivative of equation (3.31) gives:

o*'(z) = Q{ -2 } + 6{1'Z°7° -1 (3.35)

t-Zo Zy (C‘ZO)Z}
Substituting equations (3.35), (3.34) into equation (3.19)
and following some simplification, the other complex

potential function is:

Vi) = of- £ - BEefe - 2 b g din(e-Zy) - o In(-Zo)

Zo2 t-Zo
o 1-20Z, | _E° } (3.36)
Zo (C'Zo)2

As is discussed in section I.2, the two complex potential
functions ¢%(z) and Wf(;), expressed by equations (3.31)
and (3.36), are not a unique set of functions. Since the
origin of the coordinates is within y, then, following
section I.2, the uniqueness conditions for ¢§(c) and ?f(c)

are:
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o%(0) = 0 , ¥%(0) = 0 (3.37)

Conditions (3.37) lead to the unique complex potential

functions:

¢%(z) Q{OL In(-Zo) - « 1n(g-2’o)}+ Q{I-ZoZo

Zo?

1-2,7, 1
+ . (3.38)
Zo C-Zo }
- .t _ ag? = ) . -
e = o {- g - Ho e I - 10T
1-ZoZ, g3
- . (3.39)
Zo (g-Zy)? }

These can be rewritten as:

01() = ¢ {ot@} + T{ot;0)}

Q {1} + T s @)

where ¢f(c), ¢f1(c), Wf(c) and W?I(c) can be obtained by

¥ (z)

comparison to equations (3.38) and (3.39) and are given
in Appendix A.

Then

01' () = Q {ot (@)} + T{e1(0) |

{170}

0171 () = Q {o311 (D)} + 0
v = {40
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where
31 (2) = - ==
T-Zo
1’2020
631 () = -
I Zo (;-70)2
o211 (g) = ———
I (C‘Zo)z
1-207, 2
6317 (2) = :
I o (z-Zo)?
, _ 1 0z?(2z-3Z0)
YA () = - o -
: Zo (z-To)?
¥31(c) = 1 1-Z0Z, . £2(5-37,)
z-Zo Zo (C"Zo)3 (3.41)

Complex potential functions of equation (2.6) can be

rewritten as:

¢°(2) = -Q.1n(Z-Zo)

¥o(z) = + Q.1n(Z-Zo) (3.42)

]
O

and the derivatives are:

$°'(z) = - Q - =75
601 (D) =+ Q ——
(Z-24)2
¥or(z) = - Q Zo + . 0 (3.43)

(2-Zy)? Z2-Z,
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Substituting equations (3.40), (3.42) and (3.43) into

equations (2.5) leads to:

0(2) = Q{- 1n(z-20) * 6§(0) }+ Tfo3;(0) )

O ol (O} B CRLCA S NO)
TN R 116D

¢'”)=‘3{L%O*Z{u§ Q{ﬁTS—}

Q { -7, ¥1'(z) }+ { o ¥i1 () }

‘V'(Z) B (z_'z'o)z * w'(z) Z-'Z'o w (CT
¢31''(z)  ¢1'(Dw''(T)
¢'I(Z) - Q{ 1 + I _ I }
(Z2-Z0)%  w'?(z) w'?(zg)
x11 % (]
w'?(z) w'?(z)

where ¢7'(2), ¢71''(c), ¢7;(2), ¢F1'(2), ¥j'(z) and ¥};(T)
are defined by equations (3.41).

Substituting equations (3.44) into equations (3.6)
along with the mapping function, w(gz) = 1/z, and its
derivatives, leads to the influence functions for a

circular opening:

Zo
(2-70)?

+

che3 () + 22063 (2) | +

CZWf'(c)> + Q* (- 2c%¢31(2) - Z [ *"(c)

+ 20731 (2) | - : cZWfi(c)>‘

‘Zo
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q(Z Zo)P*(Zo) = Re Q*(Z:_%o - 2C2¢f'(6) + 7l:" 1

}'Y (Z-20)2

Zo
(Z2-7,)?

* it (o) ¢+ 2c3¢}"(c)] -

- YR (z) ) + Q* (-2c2¢’f1(c) + 7 [c“cbﬁ'(c)

* 2¢fi(c)c3] + zaZ - g2y (c))g

- l e
ny;q(Z,Zo)Pa(Zo) = Im Q*<Z[(Z-Zo)2 * i3 ()
* 201" (%) - §3] ‘E%' Cz‘*”f'(C))
“4&L0

(7 [sotp @ » 20830 - 2]

- S+ g2y (c))‘
Z-7,

Ix,q(Z,Zo)Pa(Zo) = %i (' aln(Z-Zo) + a¢j(z) - Z [f-;o
+ 7T Q*II'Ici - aln(Z-20) - W*H(z;j)‘
Iy’q(Z,Zo)Pa(Zo) = Im,%(- aln(Z-Zo) + a¢3(z) - Z [Z_ ;_0

'Ezq)l (C)]‘ _Z_%zo - ‘?Ifﬂ)*% <a¢fI(C)

+ ZEz¢I*I‘ici - aln(Z-2Z0) - ‘i’*IIici )‘ (3.44)
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Hence the influence functions for an infinite plate with
a unit circular hole at the origin are obtained.
It has been stated that these influence functions are
unique. Therefore, they must be identical to those found
in section III.2. To show this, let ¢*(Z) and Y¥*(Z) be

determined, using the known solutions

= _ 40 - P _ 2Z70-1 P
¢$*(Z) = ¢(2) ¢°(Z) = mg aln Z;_‘) ; Y T aT 3
Z0Zo-1 | 1 i
Zo? ZZ,-1
* = _ 0 = P G.Zoz _ aZoz-o*‘l .o
¥Y*(Z) ¥(Z) Y°(Z) 727 (a+1) 3220-1 77 P ;
+ - E+ ln(ZZo-l) _ ZoZo‘l + ZoZo'l
27, ZZo-1  (ZZo-1)2
+ Z"Z-_Vl ; (3.45)
27

where ¢(Z), ¥(Z) were given by equations (3.3) and ¢°(2),
¥%(Z) were given by equation (2.6).
Transforming the two equations (3.45) into the z-plane,
1

i.e., Z = 7 leads to

6%(2) = Q{aln(-Zo) - aln(c-Zo) §+ 631—%—2-}74
0

+

1-Z0Zo . _1 $
Zo z-Zo
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3 _ -
Y1) = Q- &~ - ‘Zfzo 2 Q ) In(z-Zo) - 1n(-Zo)
LZeZo T i (3.46)
Zo (z-Zo)?

The two potential functions, found by equations (3.46),
have also been determined by the mapping technique,
equations (3.39), and as one can see, they are identical.
IIT.4 THE BOUNDARY INTEGRAL EQUATION METHOD

APPLIED TO PLANE FINITE REGIONS

WEAKENED BY A CIRCULAR HOLE

The basic idea of the Boundary Integral Equation

Method has been discussed in section I.1, where the dis-
cretized form of the integral equations is given, see
equation (1.19). Consider a plane finite region with
boundary B subjected to specified traction boundary con-
dition, t, and containing a unit circular hole at the
origin, Figure 3.3. Divide the boundary, B, into N meshes
(not necessarily equal) and embed the region R in an
infinite (fictitious) plane of the same material as R
containing a unit circular hole at the origin, see Figure
3.4. Note that the influence functions H,

ijsq
(Z,Zo) for this fictitious region are given by equa-

(Z,Zo) and
I..
i;q
tions (3.44).
Following section I.1, the fictitious traction P*

around the fictitious boundary can be found from:
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Figure 3.3 A unit circular hole in a plane finite
region with prescribed traction on the boundary.

[ . o \

Figure 3.4 Region R embedded in an infinite plane
containing a circular hole at the origin.
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N
px_ }E:{
X1 * * .
— 4 Hyy g (Zo20)P2(Zadn, g + Hooo o (2,20)P2(Z0)n ; (AS

P_. (i=1,..N)

p* . (AS.
yiq(Z:20) q(zo)HYI} ;

N
p* . :E : {
1 *
—2L + ny;q(Z,Zo)Pq(Zo)nxi + H

y

= P_. (i=1,..N) (3.47)

where the influence functions Hij'q

equation (3.44) and the resultant fictitious traction on

(Z,Zo)P;(Zo) given by

a given interval is represented by:

* = * T P% 1 =
Pr, = Pi; + iP%, (i=1,..N)

In equation (3.47) N i and nyi are the components of

the unit normal to the interval i. Also, Pxi and Pyi are
the x and y coﬁponent of the real resultant traction
applied to the mesh 1i.

Considering the influence functions, equation (3.44)

and splitting each equation into two components of P*,

i.e., P; and P;, leads to:

* = . % 3 *
Hixsq(Zr20)PE(Ze) = Hyooo @ PX+ H o - P
H Z,20)P*(Zo) = H . PX o+ . P*

yy;q(Zs2o)Pq(Zo) = Hyy o - Py * Hypry o P

% = . X . *

ny;q(Z,Zo)Pq(Zo) HX)’;X px + HX)’;X P
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[}
—

Ix;q(Z,Zo)Pa(zo)

L[}
-

I Z,20)P*(Z
y:q(Zs20)PE(Z0)

where H.

ij;q and Ii;q can

equations (3.48) with (3.44), see Appendix A.

'P*+I
X X

.P*+I
X

4

ysY

. px
y

. p*
y

(3.48)

be easily found by comparing

Substituting equations (3.48) into equations (3.47)

leads to:
N
P*. E :
==+ (HXX'X ) P; * Hexiy P3)
2 j=1 ’ s Y Yy
j#i
. P*) - =
+ ny;y Py) nyi }Asi Pxi
N
P ‘2:{
_§l . p* . D%
' j=1 Faysx = Px * Baysy = PYy)
j#i

. pP%x) . -
* Hyy.o @ PR) - ony }Asi P s

Rearranging equations (3.49):

N
p*. z:{
xi .
7t =1 [Hxx;x S T ny;x nyi]
j#i
. . p# =
* ny;y nyi] Pyi }Asi Pxi

. P*.

X1

..N)

+

(3.49)

[Hxx;y T Dxi



N
SN
1 . . . D% .
* j=1 [ny;x Nyi ¥ Hyy;x nyi] Pxi * [ny;y nxi
j=i
. . * = . .
+ Hyy;y nyi] Pyi zASi Py1 (3.50)

N
1 * E . %* . * = 1 =
> Pxi + j=1(Aij Pxi + Bij Pyi Bin (i=1,2..N)
j#i
N

xi ij yi yi

1l px :E:( . p* . px_ )= - =
3 Pyi + Cij P*. + D.. P*. BV. . (i=1,2..N)(3.51)

where:

Aij B Hxx;x R ny;x . nyi
Bij T Haxsy " M™xi f Hxysy T My
Cij - ny;x " Myi 7t Hyy;x ) nyi

D.. = H . . + H I s
ij xy;y © Mxi T Pyy;y C fyi

(i,j=1,...N)

Euqations (3.51) represent a set of 2N equations with 2N
unknowns, i.e., P;i and P;i for i=1,...N. Methods for

obtaining the solution have been discussed in section I.1.



78

Writing equation (3.51) in matrix form:

.. B.. PX. BV .
1) 1) X1 X1
. ) = ‘
*
L ClJ ij Pyi va1

(3.52)

Note that the diagonals of submatrices [Aij] and [Dij] are
1/2 and the diagonals of submatrices [Bij] and [Cij] are
zero

Equation (3.52) can be solved by matrix inversion,
iteration, or elimination (Faddeeva [38]). Once the
fictitious tractions are found, then the stress and dis-
placement at the point F can be easily found following

section I.2. These are:

N .

O%x = gé; [Hxx;x(F’Z°) ) P;i * Hxx;y(F’Z°) ) P;i]
N

yy T ;g; Hyy;x(FaZod = Prs = Hyy y(FaZo) = P34

N
o = :E: [H

. * . *
xy ~ & xy;x(FsZo) = PXi + H o (F,Zo) - P3;]

X1

N
UX = — [IX;X(F’ZO) ‘ P;l + Ix,y(F’ZO) ° P;l]
i=1
N
U = Z I . P*. . *.
y st [Iy.x(F,Z ) xi ¥ ly;y(FsZg) * P54] (3.53)
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EXAMPLE III.1

A Rectangular Plane Weakened by a Circular Hole

Consider the rectangular region (10cm x 20cm) of
unit thickness (h = 1lcm) which is weakened by a circular
hole of radius r = 1lcm at the origin, see Figure 3.5. A
uniformly distributed traction (w = 1.0 MPa) is applied
to the top and the bottom of the rectangular region as
shown. The boundary has been subdivided into sixty
equally-spaced meshes, each of length 1.0cm, i.e., 10
meshes are defined on each of the top and bottom edges
and 20 meshes on each vertical edge.

The field points, the points where the stress and
displacement are calculated, are chosen along the x,y axis
and include points on the edge of the hole. These are
also shown in Figure 3.6.

The data, i.e., the coordinates of the nodal points,
X(I) and Y(I), the resultant of the traction on each sub-
division (calculated by the trapezoidal rule), BVX(I)
and BVY(I), and the coordinates of the field points, XF(I)
and YF(I), are read into the program (Appendix B). The
results are presented in Table 3.1.

The results are compared to the theoretical solution
of a long strip weakened by a circular hole subjected to
uniaxial tension (Howland [34] and Savin [35]). The
program required 35 seconds of CPU time on a CDC 6500

computer.



20 ¢cm

ArY {.w=|.o_MPo
..T.-oU.-,UGU.-UJ.
COTTTTUTTT T

Figure 3.5 Circular hole symmetrically placed in a
finite rectangular plate under uniaxial tension.
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Table 3.1. Stresses and displacements in a rectangular
region containing a circular hole at the
origin, Case 1
Geometry: Trectangular plane (10 x 20cm?) (1 cm thickness)
Load: w = 1.0 MPa
Eccentricity: X, = 0.0 Yo = 0.0
“|E = 70000 MPa, py = 26315.79 MPa, v = 0.33
Field Coordinates " y
Point X Y Ixx 0yy oxy X y
No. cm cm (MPa) (MPa) (MPa) |microns |microns
1 1.0 0.0 0.0 3.13128] 0.0 -0.0014] 0.0
2 1.2 0.0 | 0.32793| 2.1486 | 0.0 |-0.00152| 0.0
3 1.4 0.0 0.38043| 1.70146| 0.0 |-0.00154] 0.0
4 1.8 0.0 0.31226 1.33672! 0.0 [-0.00155f 0.0
5 0.0 1.0 |-1.1198 0.0 0.0 0.0 0.0028
6 0.0 1.2 |-0.44908|-0.0235 0.0 0.0 0.00291
7 0.0 1.4 |-0.18639} 0.10502| 0.0 0.0 0.00298
8 0.0 1.8 |-0.02031) 0.36858| 0.0 0.0 0.00314
9 -1.0 0.0 0.0 3.13128} 0.0 0.0014} 0.0
10 0.0 -1.0 [-1.1198 0.0 0.0 0.0 -0.00275
Y
Available Solution: b4 4414 ¢4 ¢
Field
Point
No. References
1 0.,.=3.14 MP 34 35
5 Oy x™ -1.11 MPa [34], [35T \.J
9 =3.14 MP 34 5
Tyy a 341, [35]
10 Oxx™ -1.11 MPa [34], [35]
RIRRE
No
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To see the effect of the size of the plane on the
stress and displacement solutions, smaller rectangular
planes, 8cm x 16cm and 6cm x 12cm, weakened by the circu-
lar hole of radius r = 1lcm at the origin were considered.
The results are presented in Tables 3.2 and 3.4.

The program has been written in such a way that, if
different dimensions of the rectangular plane are needed,
only one character, WR, is to be changed. Note that the
proportionality of the long side to the small side remains
constant and equal to 2.0. Also, for different locations
of the hole, the new coordinates of the center of the hole
X0,Y0 must be read into the program. Finally, the example
of the problem of a rectanguiar plane (9cm x 19cm) weakened
by an unsymmetrically located circular hole is solved and
the results are presented in Table 3.4. Again, the CPU

time was 35 seconds for each run on a CDC 6500 computer.

EXAMPLE III.2

A Circular Plane Weakened by a Circular Hole

Let a circular plane of radius R = 6cm and unit
thickness (h = 1lcm), which is weakened by a circular hole
of radius r = lcm at the origin, be considered, see Figure
3.6. A radially uniform distributed load (w = 1.0 MPa) is
partially applied to the top and the bottom of the outer
circumference, as shown. The boundary has been subdivided
into sixty equally spaced meshes each of which covers 6

degrees of angle (0.6283cm) numbered from the top and
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Table 3.2 Rectangular region containing a circular hole
at the origin, Case 2

eometry: rectangular plane (8 x 16cm?) (1 cm thickness)
oad: w = 1.0 MPa

ccentricity: X, = 0 Yo = 0

= 70000 MPa, u = 26315.79 MPa, v = 0.33

Eield Coordinates
oint X Y Oxx ogy OXY UX UY
No. cm cm (MPa) (MPa) (MPa) Imicrons jmicrons
1 1.0 0.0} 0.0 3.2212 0.0 -0.218 0.0
2 1.2 0.0 | 0.3339{ 2.2013 | 0.0 -0.229| 0.0
3 1.4 0.0 0.382 1.738 0.0 -0.232 0.0
4 1.8 0.0 0.3040] 1.3619 0.0 -0.234 0.0
5 0.0 1.0 |-1.1821| 0.0 0.0 0.0 0.404
6 0.0 1.2 1-0.48511-0.0294 0.0 0.0 0.418
7 0.0 1.4 {-0.2090{ 0.0992 0.0 0.0 0.427
8 0.0 1.8 |-0.0293) 0.3662 0.0 0.0 0.450
9 -1.0 0.0 0.0 3.2212 0.0 0.218 0.0
10 0.0 -1.0 |-1.1821] 0.0 0.0 0.0 -0.392
ﬂW
SEEIIEEX
D
RERRERE
Lo
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Table 3.3 Rectangular region containing a circular hole
at the origin, Case 3

Geometry: rectangular plane (6 x 12cm?) (1 cm thickness)
Load: w = 1.0 MPa
|Eccentricity: X, 0.0 = 0.0
E = 70000 MPa, u 26315.79 MPa, v = 0.33
Field Coordinates U
Point X Y Oxx o y Oxy Ux y
No. cm cm (MPa) (Mga) (MPa) |microns|microns
1 1.0 0.0 }]0.0 3.4341 0.0 -0.244 0.0
1.2 | 0.0 | 0.3456 | 2.3206| 0.0 |-0.257 | 0.0
3 1.4 0.0 0.3827 1.8198 0.0 -0.260 0.0
4 1.8 0.0 0.2724 1.4061 0.0 0.265 0.0
5 0.0 1.0 |-1.306 0.0 0.0 0.0 0.406
6 0.0 1.2 |-0.555 -0.0425 0.0 0.0 0.429
7 0.0 1.4 |-0.2486 0.0852 0.0 0.0 0.439
8 0.0 1.8 |-0.0361 0.3580 0.0 0.0 0.460
9 -1.0 0.0 0.0 3.4341 0.0 0.244 0.0
10 0.0 }-1.0 |[-1.306 0.0 0.0 0.0 -0.390
bY
1 ~w
ERBIIEEN
<> -
RRILERR;
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Table 3.4 Stresses and displacements in a rectangular
region containing a nonsymmetrically located
circular hole

Geometry: rectangular plane (9 x 18cm?) (1 cm thickness)

Load: w = 1.0 MPa

Eccentricity: X, = -0.5 cm Yo = 1.5 cm

{E = 70000 MPa, u = 26315.79 MPa, v = 0.33
Field Coordinates . 5 5 U U
Point X Y XX Yy Xy X y
No. cm cm (MPa) (MPa) (MPa) |microns|microns
1 1.0 0.0]0.0 3.16445] 0.0 -0.3267 | 0.6244
2 1.2 0.0 10.3313 2.1690 {-0.0010{-0.3376 | 0.6248
3 1.4 0.0 | 0.3841 1.71526|-0.0013|-0.340 0.6251
4 1.8 0.0 | 0.31466| 1.3436 {-0.0015|-0.3415| 0.6253
0.0 1.0 F1.1624 0.0 0.0 -0.1193}| 1.033
6 0.0 1.2 +0.4736 |-0.0269 |-0.0038|-0.1180| 1.044
7 0.0 1.4 +0.2027 0.10251(-0.0047(-0.1184 | 1.053
8 0.0 1.8 }0.0294 0.3697 |-0.0046{-0.1192 | 1.0763
9 -1.0 0.0 ]0.0 3.19990f 0.0 0.0989 ] 0.626
10 0.0 -1.0 F1.15149] 0.0 0.0 -0.11812 0.2181
IV
Y
BREIINEE
0’
-X
(D
ERERIRER

¥x
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counterclockwise. The field points are chosen along the
X,y axis and include points on the edge of the hole.
These are also shown in Figure 3.6.

The data, i.e., the coordinates of the nodal points,
X(I) and Y(I), the resultant of the traction on each sub-
division (calculated by the trapezoidal rule), BVX(I)
and BVY(I), and the coordinates of the field points, XF(I)
and YF(I), are read into the program (Appendix B). The
Tesults are presented in Table 3.5. The program required
36 seconds of CPU time on a CDC 6500 computer.

The effect of the radius on the stress and displace-
ment solution has also been considered by solving the
problem for R = 4.8cm and 3.6cm and r = 1lcm. The results
are presented in Tables 3.6 and 3.7.

To obtain the solution for different radii of the
plane, one has to change the character WR which is the
ratio of the desired radius to the R = 6cm. Also, for
a different location of the hole, the new coordinates of
the center of the hole, X0,YO must be read into the pro-
gram. To see the effect of eccentric placement of the
circular hole on the stress and displacement field, the
example of a circular plane (R = 5.4cm) weakened by an
unsymmetrically located circular hole of radius r = lcm
is solved and the results are presented in Table 3.8.
Again, the CPU time was 36 seconds for each run on a CDC

6500 computer.
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o X

Figure 3.6 Circular plane, containing a circular hole,
subjected to radially uniform tension over a portion of the
boundary.
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Table 3.5 Stress and displacement in a circular plane
containing a circular hole at the origin,
Case 1
Geometry: circular plane R = 6 cm (1 cm thickness)
Load: w = 1.0 MPa
Eccentricity: X, = 0.0 Yo = 0.0
E = 70000 MPa, pu = 26315.79 MPa, v.= 0.33
Field Coordinates 5 5 5 U U
Point X Y XX Yy Xy X y
No. cm cm (MPa) (MPa) (MPa) |microns |microns
1 1.0 0.0 0.0 2.948 0.0 -0.272 0.0
2 1.2 0.0 0.2975 1.9438 0.0 -0.284 0.0
3 1.4 0.0 0.32771} 1.4742 0.0 -0.287 0.0
4 1.8 0.0 0.2345 1.06002] 0.0 -0.290 | 0.0
5 0.0 1.0 f1.70816] 0.0 0.0 0.0 0.323
6 0.0 1.2 [0.8751 |-0.0846 0.0 0.0 0.380
7 0.0 | 1.4 Fo0.5090 | 0.0332| 0.0 | 0.0 0.388
8 0.0 1.8 }0.2547 0.31029f 0.0 0.0 0.409
9 -1.0 0.0 0.0 2.948 0.0 0.267 0.0
10 0.0 |-1.0 }1.7081 0.0 0.0 0.0 -0.318
:x'
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Table 3.6 Circular plane containing a circular hole at

the origin, Case 2

4

Geometry: <circular plane R = 4.8 cm (1 cm thickness)
Load: w = 1.0 MPa
Eccentricity: X, = 0.0 Yo = 0.0
E = 70000 MPa, u = 26315.79 MPa, v. = 0.33
Field Coordinates . U U
Point X Y XX ogy Xy X y
No. cm cm (MPa) (MPa) (MPa) |microns|microns
1 1.0 0.0 0.0 3.0268 0.0 -0.288 0.0
2 1.2 0.0 0.3077 1.9808 0.0 -0.3011| 0.0
3 1.4 0.0 0.3414 1.4806 0.0 -0.304 0.0
4 | 1.8 | 0.0 |o0.2502 | 1.0181| 0.0 |-0.306 | 0.0
) 0.0 1.0 |-1.8281 | 0.0 0.0 0.0 0.347
6 0.0 1.2 |-0.9085 |-0.0886 0.0 0.0 0.362
7 0.0 1.4 |-0.528 0.0397 0;0 0.0 0.412
8 0.0 1.8 |0.232 0.339 0.0 0.0 0.434
9 -1.0 0.0 0.0 3.0268 0.0 0.282 0.0
10 0.0 -1.0 }1.8281 0.0 0.0 0.0 -0.340
1Y
1
..-;o
\
\
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Table 3.7 Circular plane containing a circular hole
at the origin, Case 3
Geometry: circular plane R = 3.6 cm (1 cm thickness)
Load: w = 1.0 MPa
Eccentricity: X, = 0.0 Yo = 0.0
E = 70000 MPa, p = 26315.79 MPa, v = 0.33
Field Coordinates . 5 5 U U
Point X Y XX 'S 4 Xy X y
No. cm cm (MPa) (MPa) (MPa) |microns|{microns
1 1.0 0.0 0.0 3.2127 0.0 -0.327 0.0
2 1.2 0.0 0.3298 2.0625 0.0 -0.341 0.0
3 1.4 0.0 0.3686 1.4878 0.0 -0.344 0.0
4 1.6 0.0 0.2748 0.9105 0.0 -0.344 0.0
S 0.0 1.0 [-2.093 0.0 0.0 0.046 0.352
6 0.0 1.2 }-1.0129 |-0.0980 0.0 0.0 0.407
7 0.0 1.4 |-0.550 0.0526 0.0 0.016 0.417
8 0.0 1.8 [0.136 0.3982 0.0 0.0 0.485
9 -1.0 0.0 0.0 3.2127 0.0 0.319 0.0
10 0.0 |-1.0 }2.0937 0.0 0.0 0.042 |-0.343
AY
— X
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Table 3.8 Stress and displacement of a circular plane
containing a nonsymmetrically located
circular hole

Geometry: circular plane R = 5.4 cm (1 cm thickness)
Load: w = 1.0 MPa
Eccentricity: Xp, = -1.0 Yo = 2.0
E = 70000 MPa, p = 26315.79 MPa, v.= 0.33
Field Coordinates 5 5 5 U U
Point X Y XX : Yy Xy X Yy
No. cm cm (MPa) (MPa) (MPa) |microns|microns
1 1.0 0.0 0.0 3.239 0.0 0.0 0.919
2 1.2 0.0 0.325 2.161 [|-0.019 |-0.0116| 0.9163
3 1.4 0.0 0.358 1.667 }0.0346|-0.0166]| 0.9118
4 1.6 0.0 0.259 1.239 0.0629(-0.0232| 0.898
5 0.0 1.0 }1.532 0.0 0.0 0.358 1.226
6 0.0 1.2 [0.6160 |-0.0417 |0.05507| 0.344 1.239
7 0.0 1 -0.2224 0.11601} 0.0629| 0.332 1.247
8 0.0 1.8 0.1352 0.4443 10.04002| 0.2523| 1.309
9 -1.0 0.0 0.0 2.779 0.0 0.509 0.782
10 0.0 [-1.0 }1.5716 0.0 0.0 0.1903] 0.5704
vl
1f
\rEf
..ﬂ
\
\
\ 4
— o
o e X
\\./




CHAPTER 1V

ELLIPTICAL HOLE OR SHARP CRACK IN A FINITE
TWO-DIMENSIONAL REGION

IV.1 INTRODUCTION

Problems associated with stress concentration around
holes in structures have motivated the effort to solve
problems of plane elastic regions weakened by elliptical
holes or sharp cracks. The solution for the stress near
an elliptical hole in an infinite plane subjected to a
uniform load was first obtained by Inglis [39] using
complex potentials. Later this problem was examined
experimentally by Durelli and Murray [40]. A method for
the determination of stresses and displacements near the
tip of a sharp crack in an infinite plane subjected to in
plane load was developed in an infinite series form by
Westergaard [41]. The effect of holes of more general
shape on infinite planes has received considerable atten-
tion, most notably by Muskhelishvili [27]. The problem
of an elliptical hole or a sharp crack in a long strip
subjected to uniform tension and compression has been
treated experimentally and numerically using several
methods and techniques. Yet, no solution for an arbitrary

plane region weakened by an ellipse or crack is available.

92
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In this chapter the solution for the problem of an
arbitrary, finite, two dimensional elastic region, weakened
by an arbitrarily located and oriented ellipse or sharp
crack, is presented. This is the extension of the imple-
mentation of the mapping technique and boundary integral
equation method. In section 2 of this chapter, the
Muskhelishvili method is used and the mapping technique
is employed to determine the influence functions for an
elliptical hole. In section 3 this influence function is
extended to a sharp crack. Finally in the last section,
some example problems are solved for an elliptical hole
and a sharp crack at different orientations. These
solutions are compared to some available experimental
[42,43] and analytic [44] results. The computer programs
are included in Appendices C and D.
IV.2 DERIVATION OF THE INFLUENCE FUNCTION USING

THE MAPPING TECHNIQUE: THE ELLIPTICAL HOLE

PROBLEM

In this section, the influence function for an
infinite plane region containing an elliptical hole is
derived. Consider an infinite plane containing an ellip-
tical hole at the origin and a concentrated point force P
acting in the plane at some point Z,, where Z, lies on or

outside of the ellipse, i.e.,

bad
o
<
o

(4.1)

ol

N
+

<
\%
-



94
where Z, = X, + iY, and a,b are the semi-major and semi-
minor axes of the elliptic hole. The problem can be
expressed as the superposition of two problems, see
Figure 4.1. The problem of Figure 4.1(B) is simply that
of a concentrated point force P applied at Z, in an
infinite plane and the problem of Figure 4.1(C) is that
of prescribed traction acting on an elliptic hole in an
infinite region.

This applied traction on the elliptic hole is equal
in magnitude and opposite in direction to the traction
generated on an elliptic contour in the problem of Figure
4.1(B), by the concentrated point force P.

Adding the solutions of Figures 4.1(B) and 4.1(C),
the zero traction condition on the hole of the problem
of Figure 4.1(A) is obtained. The solution to the problem
of Figure 4.1(B) is known (Muskhelishvili [27]). Thus,
the required traction can be found.

To solve the problem of Figure 4.1(C), it is neces-
sary to map this problem into a unit circle (disc), see

Figure 4.2. It is easy to verify that the mapping function

Z = R(3 + mo)
for R>0and 0 s m g1 (4.2)
transforms the region exterior to the ellipse into a unit

circle |z|g¢l (Churchill [37]), provided R and M are taken

as:
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R = 3%2 and m = o5 (4.3)

where a and b are the semi-major and semi-minor axes of

the ellipse, respectively, and are equal to:
a = R(1+m) , b = R(1-m)

The mapping function is conformal for, if w'(z) is con-
sidered, i.e.,

w'(zg) = R m osmg1l

CZ

It is obvious that w'(z) has two roots, ¢ = /5752 outside
Y, the unit circle. Thus, w'(z) is not equal to zero
inside y, the unit circle, and following the conformal
mapping theorems [37] it can be concluded that the mapping
function of equation (4.2) is conformal. )

It is important to note that, as the point ¢ = ;e
describes the circle |z| = 1 in the positive, counter-
clockwise direction, the corresponding point traces out
the ellipse in the clockwise direction. Clearly, the
parametric equations of the ellipse must be taken in the

form:

~
"

R(1+m) Cos 6

-
n

R(1-m) Sin 9 (4.4)

If m = o, the ellipse becomes a circle and the transforma-
tion function equation (4.2) becomes w(Z) = R/r. How-

ever, it will be seen that several expressions derived in
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this chapter will be singular when m = o and therefore
the analysis is invalid for the case of the circular hole.
Since the case of the circular hole has already been

treated, the following restrictions will be placed on m:
o<m<1

When m = 1, the point in the Z-plane traces out the segment
of the x-axis between X = +2R and X = -2R twice as the
point ¢ describes the boundary of the unit circle, |z| = 1.
Thus, in this case the mapping function of equation (4.2)
maps a sharp crack along the line joining the points (2R,0)
and (-2R,0) to y, the circumference of the unit circle,
and thus maps the Z-plane, excluding the crack, onto the
unit circle |z|<1.

Without loss of generality, let R = 1. Then the

mapping function and its derivatives are:

Z=w() =7+m (a)

w'(g) =-L+m (b)
c

w(z) = £ () (4.5)
C

Let ¢°(Z) and ¥°(Z) be the complex potential functions for
the problem of Figure 4.1(B) and ¢*(Z) and ¥*(Z) be the
complex potential functions for the problem of Figure 4.1(C).
Then the potential functions for the problem of Figure

4.1(A) are
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$(Z) = ¢°(2) + ¢*(2)

¥(Z)

¥O(2) + ¥*(2)

where the derivatives are given by equations (2.2) to
(2.5) in section II.3. To find ¢*(Z) and ¥*(Z), the

transformed complex potential functions are

_ 1 F (o) 1 w(o) 3¥F(0)
03(2) = 7 j‘ —< do - 7_*'j£ - do (4.6)
1 ml Y o-C Tl Y w—'—(gT o-C
. _ 1 f_(_)'Fo 1 fm_(_)-o 0% (o)
WT(C) 271 Y o-C do 2Tl Y w'(o) é-g do  (4.7)
It is first necessary to calculate the following integrals:
st f wlol ¢g,_§"j do (4.8)
Y w' (o)
I | jﬂ w(o) ¢*'(0)
I, T g MG é-g do (4.9)
To construct the arguments of the integrals of (4.8) and
(4.9), it is necessary to substitute ¢ into equation (4.5)
and note that oo = 1. The mapping function and its complex
conjugates become:
-1
w (o) >+ mo
5(a) = o + D
w'(o) = 1, m
0,2
w'(g) = o2 +m (4.10)
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and, since ¢*(o) and ¢*'(c) are analytic inside y and

¢*"(0) is analytic outside y, equations (3.10) and (3.11)

lead to:
¢*' (o) = > kakok and ¥ (o) = ) kEko-k+1
k=1 k=1

Thus, the arguments of the integrals can be constructed as

follows:
2
w(o . $TTT87 - _1*mo® | 2: kiko k+1 (4.11)
w'(0) o(m-02) k=1
2
m #21(0) = - L) LT kg ok (4.12)

1-mo? k=1

Substituting equation (4.11) into the integral (4.8) leads
to:

=]

[(1+mo?)/(m-02)] X kao ¥
11 = 1 k=1 do
271 . o-¢

It is clear that the numerator of the argument is an ana-

lytic function outside y, the unit circle. Hence, following
the Cauchy integral formula, presented in section 1.3, the

principal value of the integral of equation (4.8) becomes:

- 1 w(o) [k (05 -
I, = m% 5 0-¢ do = 0 (4.13)
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Also, substituting equation (4.12) into the integral (4.9)

leads to:

[(¢2+m)/(1-moc?)] - Z kakok+1
1 k=1

I = =3 s B o-C do

Obviously the numerator of the argument is an analytic

function inside y, the unit circle. Thus, due to the Cauchy

integral formulae,the principal value of the integral

becomes:

D | w(o) . ¢*'(0) -
I 21 ¢ w' (0) 0-¢ do =
Y

2
z(g“+m) . ¢’f'(€) (4
1-mz?

Substituting the expressions (4.13) and (4.14) into equa-

tions (4.6) and (4.7) leads to:

.14)

$2(2) = wir f £ 4o (4.15)
Y
.1 F(0) . £(z2+m) '
Recall equations (3.20) and (3.21):
F(o) = -[¢3(0) + ‘:JEOL IICORRHOBRE (4.17)
F(o) = -[¢7(0) + :I,C%)_ ¢3'(c) + ¥i(0) ] (4.18)
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where ¢°(Z) and ¥°(Z) are given by equations (2.6). To
find the transformed complex potential functions ¢g(c)

and Wf(;), substitute the mapping function, equation (4.5.a),

into equation (2.6):

2—
$°(z) = - Q 1n "E—EL‘ZLI- (4.19)
. _
¥9(z) = o Q1n Do 2ol g . _EZo (4,20
¢ mg2-Z,z+1

where Q = 7FT§7TT and Q is the complex conjugate of Q.
Taking the derivative of equation (4.19) and evaluating
the potential functions, equations (4.19) and (4.20) at

£ = 0, leads to:

_ mo2-Zy,0+1

¢2(c) = - Q 1n T2 20C72
2

' _ -1
$%'(0) = - Q - — 29

o(mo2-Z,0+1)

2 _
¥9(0) =Q + o 1n EE__%EEil +Q - _9Zo (4.21)
m02-200+1

Following equations (4.10), it is clear that:

w(o) _ 1+mo? (4.22)
w' (o) o(m-02)
olds = - o(of+m) (4.23)

1-mo?
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Taking the complex conjugate of equations (4.21) along with
the equations (4.23) will provide all the terms needed to
calculate F(o) and F(o). Thus, equations (4.17) and (4.18)

become:

_ mo2-Z,0+1 02-7y0+m
F(O) _Q{ln_o.—'aln“—o_—}
2
-7 00
+ Qi ZZ° 1 (4.24)
g°-LgOo+m
2 _ 2 5
F(e) = Qf T2l q{in S-Zeoen
mo2-Zeo+l
2-
- o 1n EE_EZ£911 } (4.25)

Before any further calculation, it is necessary to examine
the terms in equations (4.24) and (4.25). There are two

distinct quadratic terms in the equations:

A = mo?-Z,0+1 (4.26)

o)
"

02-T,0+m (4.27)
Solving equation (4.5[a]), the mapping function, for z,
yields:

mg2 - Zz +1 =0 (4.28)

As discussed earlier, the mapping function, equation
(4.5[a]), represents a conformal mapping, i.e., for every

point Z exterior to the ellipse, there exists only one
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corresponding point in the z plane interior to the circle.
Since equation (4.28) is of the quadratic form and has
two complex roots, then one root has to fall inside ¢ and
the other root has to fall outside y, the unit circle.
The two quardratics, equations (4.26) and (4.28), have
the same coefficients. Thus, equation (4.26) has two
roots, one inside and one outside y. Denote the root
inside y by L and the root outside y by T, Then equa-

tion (4.26) can be written as
A = mo?2-Zy0+l = m(o-r;) (o-1) (4.29)

where

For examination of equation (4.27), consider the following

mapping function:
Z=w(g) =z+zF (4.30)

This function maps points in the plane exterior to the
ellipse onto points in the plane exterior to the unit
circle. This mapping function is also conformal. For,

if w'(z) is considered
w'(z) =1 -1 o<mgl
E;2

it is clear that w'(g) has two roots, ¢ = + ¥/m, inside y,
the unit circle. Thus, w'(z) is not equal to zero outside

Y and, following the conformal mapping theorems [37], it
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is thus concluded that the mapping function, equation
(4.30), is also conformal.

Solving equation (4.30) for ¢ leads to:

t?2 - Zg +m =0 (4.31)
where the roots are
C_,l,z = 27/2 + vZ2/4-m (4.32)

Since the mapping function is conformal, then for every
point in the Z plane exterior to the ellipse, there exists
only one corresponding point in the ¢ plane exterior to
the circle. Hence, one of the roots of equation (4.32)
has to be inside Y and the other root has to be outside Y.
Note that, if the roots of a polynomial of degree N with
the complex coefficients, f(Z) = 0, are ai(i=1,...N), then
roots of T(Z) = 0 are E;(i=1,...N). Hence, the roots of

the following equation
g2 - Zg +m=0 (4.33)

are the complex conjugate of the roots of equation (4.31),
i.e., complex conjugate of equation (4.32), and since the
equation (4.31) has one root inside and the other root
outside y, then equation (4.33) has one root inside and
one root outside y, the unit circle. Comparing equations
(4.33) and (4.27) leads to the fact that equation (4.27)
also has two roots, one inside and the other outside Y.
Denote the root inside y by ty and the root outside y

by t Then equation (4.27) can be written as:

o°
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B

2.Zo0+m = (o-t;) (o-t) (4.34)

where

Substituting equations (4.29) and (4.34) into equations
(4.24) and (4.25) leads to:

F(o) = Q {1n m(o-ri)(o-ro) o 1n (o—ti)io—to) }

* Izécti)l)(c(rot:())) } (4.35)
FGT - o n(lczotr))((;tr)) e g {1n (o-ti()’(o-to)

"o dn m(o-rii(o-ro) } (4.36)

Substitution of equations (4.35) and (4.36) into equations
(4.16) and (4.17) leads to determination of the complex

potential functions:

7&-% I m(o-r;) (o-1,) do
Tl Y o] o-C
(o-t.) (o-t_ ) do

‘¢‘ m(or)(or)
R e RICENICEI (4.37)

¥ (z)
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f (o-t;) (0-t,)
7%? Y m(c-ri)(o-ro)(o-c) do
(o-t.) (o-t_)
ik § o TR e
Q. f . m(o-t3)(o-1) g4
Y

2m1 o o-C

¥%(z)

+ g (g%+m) o*' (2) (4.38)
1-mz?

The following integral will now be evaluated:

Lo ] jﬁ' In m(o-r;)(0-1,) Ldo _ 1 In m(o-r;)
2m1 o o-C 2mi o
Y Y
In(o-1r )
1 56 : 0
* 271 Y " o0-C do

m(o-ri)

As discussed in section I.3, 1n[ ] is an analytic

o
function outside y, the unit circle. Also, this function
has two essential singular points (at ¢ = 0 and ¢ = ri)
inside y and the value at infinity of:

[ m(o-ri)

ln(———E———ﬂ = 1n(m) o<m<1
0’=oo

Thus, due to the Cauchy integral formulas (section.I.3):

1 m(o-1;) do _
VETH -¢. 1n S ‘ot T In(m)
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Also, ln(o-ro) is an analytic function inside y, so that:

1 % ln(o-ro)
VLS 4 T do = ln(c-ro)

Thus,

(0 o-C

m(o-r.)(o-r )
I = ﬁ{f 1n 1 © 29 = 1n m(z-r,) (4.39)

Following the same argument, it is clear that the second

integral is:

(o-t;)(o-t))
11 = 2% f 1n 1 oc . do_ In(z-t,) (4.40)

o} o-C

The third integral which needs to be calculated is:

m(o-ri)(o-ro)

21'
III = ¢ do
Tl Y (B-ti)(o-taj(O'C)

Clearly, III has two poles (at o = ti and o = ¢) inside v

thus,
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. m(o-ri)(o-ro)
IIT1 = Re51due| {(o-ti)(c-to)(o-QT }
o=t.
1
) m(o-ri)(o-ro) ) m(o-ri)(o-ro)
* Residue {To-ti)To-to)(o-D}' Tt (t-t)

o=C

m(ti-ri)(ti-ro)
(ti'to)(ti°g)

+

2
1 jzf mlory)(ory) o mgZozezer, Mytletytl

2l (o-t;)(o-t ) (0-2) £2-Toc+m (t,-t;) (-t

(4.41)

The fourth and final integral which must be calculated is:

-t. -t
we i f oot

T Zni m(o—ri)(o-ro)(o-E§ do

Clearly, IV has two poles (at o = T, and o = ¢) inside Y.

Determination of residues at the two poles leads to:

_ (C-ti)(c-to) (ri'ti)(ri'to)
- m(o-ri)(o-ro) * m(ri-ro)(ri-c)

2
1 ¢ (0-t;) (0-t,) oo E2Tersm , _ TiTZTiM
Zni m(o-1;) (6-1.)(0-0) me2-Z,z+1  M(ToT)(T-Ty)
(4.42)

Substituting the evaluated integrals of equations (4.39),

(4.40), and (4.41) into the equation (4.37) leads to:
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¢f(?;) = Q(ln m(g-ro) - a 1n(2;-t0)) + Q<mc2-zog+1

z2-Zog+m

+

mt.-Zot.+1
1 1 ) (4.43)

(to-ti)(c-ti)

Taking the derivatives:

2
¢r@)=Q(1 . )+g( PD | mtj-Zot;tl )
“To o (22-Zoz#+m)?  (t -t;)(5-t;)?

(4.44)
where
PD = (2mg-Zo) (2®-Zog+m) - (22-Z0) (Mc?-Zog+1)
and
orie) = 0 ((c--rlo)2 ' (c-mto)z)+ ? ((tzzrjglc?fa*‘ﬂl)3
. 2(mt?-Zot +1) ) (4.45)

(to-t;) (5-t;)°
where
PDD = [2m(m-Z05)-2(1-Z0c)](c?-Zoc+m)-2(2¢-Zo) [PD]

Substituting the evaluated integrals of equations (4.39),
(4.40), and (4.42) along with equation (4.44) into equation
(4.38) leads to:
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2-
y*(z) = Q z2-Zoz+m Ty Z°ri+m
' mz2-Zyz+1 m(ro'ri)(C‘ri)

g (g%+m) ) In(e. o )

' 1-mz? { z-T, -t })*Q-( n(z-t,) a 1n m(g-r )

2.

+ &(g?+m) PD o mti-Zoty+l }) .16)

1-mg? (g2-Zog+m)?  (to-t)(g-t;)?

The two complex potential functions, ¢§(c) and Y% (z),
expressed by equations (4.43) and (4.46), are not a unique
set of functions. Since the origin of the coordinates is
within vy, then, following section I.2, the uniqueness con-

ditions for ¢%*(z) and y¥(z) are:

¢%(0) =0 , ¥%(0) = 0

These conditions lead to the unique complex potential

functions:
T'o™t ty ¢ mz2-Zoz+l
¢3(2) = Q|1ln —— - o ln — + Me “LoB?l
) ) z2-ZoL+m
(mt2-Zot.+1)¢
- % T (tl-t )%C-t ) (4.47)
itto "1 i
r2-Zor.+m
Y*(z) = z-°€+m + ( i 7% ) + C(Ez“m) ¢*'(C) - m
: mg2-zog+1  MFi(To T (T-Ti) g g I

- o 1ln °,

2
2 ) L grre) | 4.48)
) 1-mg?

(5
( t -t r -t



No
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Note that equations (4.47) and (4.48) can be rewritten as:

Q (¢§(c)) +Q (¢f1(c)>

Q (‘P}‘(c) ) q (wgl(c)) (4.49)

¢* ()

Y*(z)

where ¢f(c), ¢f1(c), Wf(;) and W?I(c) can be found by com-
parison to equations (4.47) and (4.48). The derivatives

of the complex potential functions can be written as:

o%'(z) = Q (¢§'(¢)) + 6’<¢§i(c))
0% (2) = Q (&;"(c) ) Q (cb’f'l'(c))
¥¥r(z) = Q (W’{'(c) )+ Q(‘P’I‘i(;) )

where ¢3'(2), o§"(c), ¢$1(2), ¢37(2), ¥3'(2) and ¥#i(z) are
given in Appendix C.

The complex potential functions of Figure 4.1(B) and
their derivatives are given by equations (3.42) and (3.43).
Applying superposition and adding the two sets of poten-
tial functions, expressed by equations (3.42) and (4.49),
leads to the potential functions of the problem of Figure

4.1(A):
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$(2) Qg- In(2-2,) + ¢§(c)§+ Q;H‘I(c)z

¥(Z)

Q jz?zo + ¥3 (D) % an In(2-Z) + wﬁ(a)} (4.50)

Since ¢'(Z), ¢"(Z) and ¥'(Z) are also needed for the

influence functions, they are written here:

. - -1 91" (%) $71(2)
¢ (Z) = Q%Z'Zo + w'(;) + Q;w_l_(Tc
i ~ VA , vi'(z) . o ¥4, (0)
Yy (Z) = Q 3 - (Z-Z?O)z w'(C) sz-z-o + w'(c) g
%1 * " kn
" (2) = % 1 L) et («:)§+ Q; ¢1" (%)
(Z2-20)*  w'*(z) w'?(z) w'?(zg)

(4.51)

931 (2)u"(2) {
w'3(z)

Finally, substituting equations (4.50) and (4.51) along
with the mapping function and its derivatives, equations
(4.5), into equation (3.6) leads to the influence functions

for an infinite region weakened by an elliptic hole:
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Hyx q(Z:20)PA(Z0) = Re Q*(zi%—+ 287 ga1(2) - Z[—l—

Tt mg?-1 (Z-2,)*
z* " 2z 3
o pX" () - ——=—— $*' (1)
(mg2-1)* 1 (mg2-1)3 I

N L ISP U § B ARy
me2o1 11 mez-1y I
2&3 o
- e ¢*l(c) -
(mC2‘1)3 11 ] Z-Zo

2
__L__.w*v(;)
mz2-1 II

H y;q(Z,Zo)Pa(zo)

y

-2 2¢2
Re{ Q* | +—— + %' (z)
(z Zo " peen 1

+

7=t v 2 gt (2)
(2-20)?  (mg?-1)"

an f X} z-(JD Cz
- —— %' (z) | - + v¥'(z)
(mg2-1)3 I ] (Z2-To)?  mg2-1 L

* 2t? %1
Q (m;2-1 31 (@)

+

+
Ny
—
Y
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©
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2
@+ B yr ()
7-7y mg2-1 11

Ho . (Z,20)P*(Zo) = Im{Qr (7| —L1— + & 4an(p
AL : < [(Z’Zo)z (mz2-1)* !
L2 ] - T
(mg2-1)% 1 (2-Zo)?2
L yrr(g) |+ T[ " %1 (z)
mz2-1 I Q- (m;z-l)" II
2‘:3 X1 o §2 '
- —— ¢¥2(7) | + + Y¥'(z)
(mg2-1)3 I ] 2-Z, mz?-1 I )
Ix;q(Z,Zo)Pa(zo) = Re %%(‘ a In(Z-Zy) + @ ¢’I‘(C)

_ =2
2| v e — et ()|~ e
Z-7, mz“-1 Z-Z

* EZ
W)-* %(a ¢71(2) - Z[mfz-l ¢ (C)]

a In(Z-Z,) - W)

—%
Pt
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1. (Z,20)P*(Zo) = In] = [- o In(Z-2Z0) + a 6% (2)
y;q,OqO 211 n 0 aq)IC

_ =2
-z[ L, & ¢>I'c]- Lo . Ty
Z-Zg

+

* ) 52
O

o In(Z-Z,) - Wfll;i (4.52)

Hence, the influence functions for an infinite plane with

an elliptical cavity at the origin are found.

IV.3 DERIVATION OF THE INFLUENCE FUNCTION:
THE SHARP CRACK PROBLEM

Considering m = 1, a sharp crack along the x-axis
between x = 2 and x = -2 is obtained, Figure 4.3. The

transformation function
- =1
Z = w(g) = T + (4.53)

transforms the whole region exterior to the crack into a
unit circle |z|<1l. Substituting m = 1 into equations
(4.52) leads to the influence functions for the crack

problem:



Y
A

(-2,0) (2,0)

Y

Figure 4.3 A sharp crack in an infinite plane.
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ny;q(Z,Zo)Pa(Zo) Im {Q* (Z 1 + c* ¢f"(€)

(Z-20)%  (g%-1)*

. .
S L S 031 (8) - —E v X yriy)
(2-Z)2  g2-1 !

2¢ 3

037 (0) - —2o
1 (z2-1)°
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Z-7o z?-1 I ( )>

*
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Ix;q(Z,Zo)Pa(Z 0) = Re
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*
’q(Z’ZO)Pq(ZO) ZU

Iy Im) Ll In(Z-Zo) + a ¢7(2)

_ =2
2| =+ Wm] L - T
Z‘Z_o C_.z'l VA

+

* 3

o In(Z-Z,) - _f;TET : (4.54)

where ¢3(z), ¢3;(c), ¢7'(2), ¢31(2), ¢3"(2), o77(2), ¥i(2),
Wfl(c), Wf‘(;) and Wfi(;) are given in Appendix D.

Hence, the influence functions for an infinite plane
with a horizontal sharp crack lying on the x-axis at the
origin are found.

One must exercise some care when using these influence
functions in that a singularity will occur when Z = Z,.
This case will now be considered. First solve the trans-

formation function, equation (4.53), for z.

c=2+ /2274 -1 (4.54)

Then write the two roots inside and outside y, equations

(4.29) and (4.34), for the case (m = 1):

Lo+ /23/8 -1 (4.55)
Zo/2 + Y/ T3/4 - 1 (4.56)

a]
n

(ad
n
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If the field point, Z, is equal to the complex conjugate
of the load point, Z,, then equations (4.54) and (4.56)
will be identical (¢ = t;), since |z|<1 and [t;]|<1. Note
that this makes the right-hand side of integral III,
equation (4.41), infinite. Thus, integral III has to be

reevaluated. Substituting t, = ¢ into the integral 1leads

to:
m(o-r.)(o-r_)
111 = 2_1I [ 1 °” 4o
Y (o-t ) (0-2)?
Thus,
m(o-r.) (o-r_ ) m(o-t.)(o-r_)
ITT = Residue, 1 0 - & S
s=g (0-t ) (0-2)? o i
or
m(o-r.)(o-r_) 2mg-Zo) (2-t_ )-(mg2-ZoC+1
III'ZTIrif r;)(o-rg do:(m o) (g-ty)-(m 05+1)
Y (o-to)(o-c)2 («:-to)2

This change modifies the complex potential function ¢%*(Z),

equation (4.47), to:

rO o

Tr -C t -C
¢’;(c)=Q{1n(° ) - o ln(-3 )}

_ {(ZmC'Zo)(C'to)'(mCz'ZoC*l)
+Q
(z-t,)?

Zot_ -1
] ____} (4.57)

2
t0
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Clearly, this change affects the other complex potential
function and all the derivatives. The modified functions,
01(2), ¢31(2), ¢7'(2), ¢F1(2), ¢F"(2), o37(2), ¥§(2),
Wfl(c), Wf'(c) and Wfi(c) for this special case are given
in Appendix D.

Now that the influence functions have been obtained
it is important to notice that at the tips of the crack
where Z = *2 the stress influence functions will become
infinite as expected. These two points are the only
singular points in the plane.

IV.4 THE BOUNDARY INTEGRAL EQUATION METHOD APPLIED
TO A PLANE FINITE REGION WEAKENED BY AN ELLIP-
TICAL HOLE OR A CRACK

In this section, two classes of problems will be con-
sidered. These are: (1) a plane finite region subjected
to traction boundary condition t and weakened by an ellip-
tical hole, Figure 4.4; and (2) a plane finite region sub-
jected to traction boundary condition t and weakened by a
crack, Figure 4.5.

Solutions will be obtained by embedding the regions
Re (region with elliptical hole) and RS (region with a
sharp crack) in infinite (fictitious) planes of the same
material as Re and Rs’ containing an elliptical hole,
Figure 4.7, or a crack, Figure 4.8, respectively.

In the treatment of either of these problems, the
boundary is divided into a finite number of divisions, N,
of equal or unequal length. A concentrated line load,
which is the resultant of the traction on each division,

is then applied at the center of the division, i.e.,



Figure 4.4 An elliptical hole in a plane finite

region with prescribed traction on the boundary, Be‘

T

Figure 4.5 A horizontal slit in a plane finite
region with prescribed traction on the boundary, B

- <

s.
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Re

>

Figure 4.6 The finite regiom Re and Ry, with sub-
divided boundary and concentrated line loads.
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Figure 4.7 Region Ry, embedded in an infinite
plane containing an elliptical hole at the origin.
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Y
]

Figure 4.8 Region Ry, embedded in an infinite
plane containing a horizontal slit at the origin.
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and for the fictitious tractions

* = *
Pxi {S. Px ds
i
P*, = ds
yi rs. TV
i

where ASi is the ith interval and i = 1,...N, see Figure
(4.6). The trapezoidal rule is used to approximate these
integrals. Following section I.1, the fictitious traction

P* around the fictitious boundary can be found from:

N
99>
- ) * . . )AS.
+ ot Hxx;q(Z,Zo)Pa N, + ny;q(Z,Zo)Pq ny1 Sl
j#i
- pxi

q xi = yysq

N
+ _Z( (Z ZO)p* n + H . (Z,ZO)P:{ ° nyi)ASi

= P . for i = 1,...N (4.58)
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where the resultant fictitious traction on a given interval

is represented by

P*

qi (i =1,...N) (4.59)

= P*. + i P*.
Xi yi

and the influence functions Hij'q(z’z°) are given by equa-

tions (4.54), for a crack.

Note that, in equation (4.58), n s and nyi are the

components of the unit normal to the division i and Pxi
and Pyi are the x and y component of the real resultant

traction applied to the division i, i.e.,

P. =P . +1iP_. (1

1,...N)

Substituting the components of the resultant fictitious
traction, equation (4.59), into the influence functions
for an elliptical hole or a slit, equations (4.52) or

(4.54), and rewriting them leads to:

Hyx;q(ZrZ0)PE(Zo) = Hyyoo " Po o+ Hypoo © P2
Hyyiq(Z:20)PE(Z0) = H oo - PR+ Ho .o - PJ
Hyyiq(2:20)Pq(Z0) = Hypo = PR+ Hypop © PY

I q(ZZ0)PA(Zo) = I . " PF+ I . P

Iy, q(Zs20)P2(Z0) = I . PR + I . P} (4-60)

where Hij,q(Z,Zo), which represents the ijth stress com-

ponent at a point Z due to a unit load in the q direction
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at a source point Z,, and Ii;q(z,zo), which represents the
ith displacement component at the point Z due to the unit
load in the q direction at the source point Z,, can be
easily found by comparing equations (4.60) with either
equations (4.52) for the elliptical hole (see Appendix C)
or equations (4.54) for the crack (see Appendix D).

Substituting equations (4.60) into equations (4.58)
and rearranging leads to:

N

BiL %
. . . *
7 j=1 [Hxx;x Nyi ¥ ny;x nyi] Pxi
j#i
* =
[Hxx,y xi ¥ ny;y ny1] Pyi) Asl Pxi
N
P*.
_%1 . px
* Eg% ([ny;x xi * Hyy,x nYI] Pxi
j#i
H . . + H . .] - PX*. )AS. = P_. (4.61
Maysy * Mxi * Hyypy o Bysl y1) i~ Py; (4-61)

or writing equation (4.61) in the form of equations (1.24)

leads to:

1 * * * * =
7Pt ; (Aij PXi * Bij Pyi) BV,i



N
lpa o :E: C.. P*. + D.. P*.]= BV
2 yi = ij “xi ij “vyi yi
j#i
for i=1,2,...N (4.62)
where
ij - Hxx;x Mei ¥ ny;x nyi

ij Hxx;y Nyi ¥

Cij = Hay;x Byi * Hyyix Mys

Dij = Hyyiy ™xi * Hyysy Pyi

Equations (4.62) are a set of 2N linear algebraic equations

i i * *
with 2N unknowns, i.e., Pxi and Pyi
methods for obtaining the solution have been discussed in

for i = 1,...N. The

section I.1.
Clearly, from equation (4.61), one can conclude that

1 _ 1
=5 D.. = Vi

A..
ij ij

B.. 0.0 C..
1) 1)

0.0

for i j. In matrix form, equations (4.62) become:
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P*. BV_.

ij ij xi xi
[} —_
*
Cij Dij Pyi BVyi (4.63)

This system of equations can be solved for P;i and P;i by

matrix inversion as follows:

-1
*

] Aij Bij BV, i
*

Px. Cy; D, B ;

(4.64)

or by other methods for solving systems of linear equa-
tions (Faddeeva [38]).

Let F be a field point at which the stresses and
displacements are to be found. Then, using Appendix C or
Appendix D, the stresses and displacements at the field
point due to a unit load at a boundary point such as Z,,
for the plane finite region containing either the ellipti-

cal hole or the slit, i.e., H (F,Z,) and Ii,q(F,Zo),

ijsq
can be found. The known fictitious tractions, i.e., equa-
tion (4.64), will now be applied to find the real stresses
and displacements at the field point. These stresses and

displacements are



"~
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N
o} = 2: [H

* *
XX o1 xx;x(F’Z°)Pxi * Hxx;y(F’Z°)Pyi]

N
= 2 [H

o F,Zo)P*. + H
YY o1 yy;x(Fr2o)Px;

*
yy;y (FrZ0)Py;]

. p* %
xy T 2 Waysx(FoZod o Pry * By (FaZo) Py

. *
[Ix;x(F’Z°) P Y Ix;y ’

I F,Zo) P*. + I F,Zo) P*.
L (1 (FZo) PRy + 1y (F,20) P,

Some example problems will now be considered. The plane

stress or plane strain problem can be considered by choosing

the appropriate value for a in the complex potential

function. For generalized plane stress:

3-v

o = ey

[

and for generalized plane strain:

o = 3-4v
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EXAMPLE 1IV.1

A Rectangular Plane Weakened by an Elliptical Hole

Consider the rectangular region (10cm x 20cm) of
unit thickness (h = 1lcm) which is weakened by an elliptical

hole described by

x = (1+m) Cos ©
y = -(1-m) Sin 6
o<m<1

with horizontal major axis 2a = 2(1+m) and minor axis

2b = 2(1-m) at the origin. A uniformly distributed
traction (w = 1.0 MPa) is applied to the top and the
bottom of the rectangular region, see Figure 4.9. To
obtain different ratios of major to minor axis, M can be
chosen between zero and one, in this case M = 0.5, as
shown. The boundary has been subdivided into sixty
equally-spaced meshes, each of length 1.0cm, i.e., 10
meshes are defined on each of the top and bottom edge and
20 meshes on each vertical edge.

The points where the stress and displacement are
calculated, i.e., the field points, are chosen along the
major and the minor axes and include points on the edge
of the hole. These are also shown in Figure 4.9.

The coordinates of the nodal points, X(I) and Y(I),
the resultant of the traction on each subdivision (calculated

by the trapezoidal rule), BVx(I) and BVy(I), and the
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/-w=lOMPa
! qu'Ti Té‘rirlt 31 3t 3 1éTu
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Figure 4.9 Rectangular plane weakened by an ellip-
tical hole at the origin.
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coordinates of the field points, XF(I) and YF(I), are
read into the program as the data input (Appendix E).
The results are presented in Table 4.1.

The results are compared to the theoretical solution
of an infinite plane weakened by an elliptical hole sub-
jected to a uniaxial tension [39] and solution of a long
strip weakened by an elliptical hole subjected to uniform
tension [42]. The program required 41 seconds of CPU time
on a CDC 6500 computer.

Two angles of inclination of the ellipse, 6 = 30°, 60°,
are also considered and these results are presented in
Tables 4.2 and 4.3. Note that the rectangular boundary
has been embedded in the infinite domain at inclination 6
to the "horizontal" ellipse.

The program has been written in such a way that if
different angles of inclination are desired, only one
character, THETA, is to be changed. Also, different sizes
of the ellipse, i.e., different a and b, can be obtained
in each case by changing the character, M, in the program.
For different locations of the center of the hole, the
new coordinates of the center of the hole, Xo,Yo, must be
read into the program. The problem of a rectangular plane
subjected to uniform load and weakened by an elliptical
hole with major axis 2a = 3.6cm and minor axis 2b = 0.4cm
centered at Xo = 1.5cm, Yo = 2.0cm and inclined at an angle
of 8 = 30° is solved. The results are presented in Table
4.4, Again, the CPU time was 42 seconds for each run on

a CDC 6500 computer.



136

Table 4.1 Stress and displacement-of a rectangular plane
containing an elliptical hole at the origin

Geometry: rectangle 10 x 20 cm? (1 cm thickness)
Load: w = 1.0 MPa o
Eccentricity: X, =0 Yo = 0, Angle: 6 = 0.0
E = 70000 MPa, u = 26315.79 MPa, v = 0.33, m = 0.5
" {Coordinates
Field
Point| X Y Ixx Oy Ixy Uy Uy
No. cm cm (MPa) (MPa) (MPa) Imicronslmicrons
1 1.5 0.0 0.0 7.4638 0.0 -0.359 0.0
2 1.7 0.0 1.0963 | 2.5056 0.0 -0.291 0.0
3 2.3 0.0 0.4496 | 1.4263 0.0 -0.251 0.0
4 2 0. 0.25124{1.2630 0.0 -0.253 0.0
) 0.0 0.5 |-1.1071{ 0.0 0.0 0.0 0.545
6 0.0 0.8 |-0.5836 |-0.0139 0.0 0.0 0.547
7 0.0 .7 |-0.0108 | 0.30356 0.0 0.0 0.564
8 0.0 2.4 0.0566 | 0.5381 0.0 0.0 0.605
9 -1.5 0.0 0.0 7.4638 0.0 0.359 0.0
10 0.0 |-0.5 [-1.1071 | 0.0 0.0 0.0 -0.545
Y
Available Solution: / ’ i 4 f f {
Field
Point
No. Reference
1 =7.4
oyy MPa [42]
1  o0..=7.0 MPa [39] L
Yy (infinite plane)
5 O = -1.15MPa [42]
RRILRRE
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Table 4.2 Rectangular plane contaihing an elliptical hole
(inclined major axis) at the origin, Case 1

Geometry: rectangular plane (10cm x 20cm x 1lcm)
Load: w = 1.0 MPa
-|JEccentricity: X, = 0 Yo, = 0, Angle: 6 = 30°
E = 70000 MPa, u = 26315.79 MPa, v = 0.33, m = 0.5
Field Coordinates 5 5 . U U
Point X Y XX Yy Xy X y
No. cm cm (MPa) (MPa) (MPa) |microns |microns
1 1.5 0.0]0.0 5.34611{ 0.0 -0.1923} 0.2319
2 1.7 0.0]0.8876 1.8630 | 0.9115/|-0.1345| 0.2241
3 1.9 0.010.7232 1.3653 |1 0.8148}-0.1120| 0.2313
4 2.8 .0.01]0.4109 0.9319 | 0.6010(-0.075 0.295
5 0.0 0.5}-0.4309 0.0 0.0 0.2514| 0.3946
6 0.0 0.8 |-0.0934 0.0103 | 0.2562| 0.214 0.3905
7 0.0 1.110.1047 0.0784 | 0.4023| 0.1983| 0.3878
8 0.0 2.4 10.2976 0.4357 | 0.5113{ 0.2319| 0.4190
9 -1.5 0.0(0.0 5.3461 [ 0.0 0.1923]-0.2319
10 0.0 -0.5 }-0.4309 0.0 0.0 -0.25141-0.3905
< AY"
Npp [t
///'*
» -’
v
RREILERRAN
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Table 4.3 Rectangular plane coutaihing an elliptical hole
(inclined major axis) at the origin, Case 2

Geometry: rectangular plane (10cm x 90cm x lcm)
Load: w = 1.0 MPa
-|Eccentricity: X, = 0 Yo = 0, Angle: 6 = 60°

E = 70000 MPa, u = 26315.79 MPa, v = 0.33, m = 0.5

Pield Coordinates . . . U U

Point X Y XX Yy Xy X y

No. cm cm (MPa) (MPa) (MPa) |microns |microns
1 1.5 0.0 0.0 1.0337 0.0 0.1539| 0.2344
2 1.7 0.0 |0.453 0.5588 0.9191| 0.1903| 0.2263
3 1.9 0.0 { 0.5660 |0.4398 0.8190| 0.2086 | 0.2334

2.8 0.0 0.69189]0.30451 {0.5902| 0.2853| 0.2951
) 0.0 0.510.97538(0.0 0.0 0.2564 | 0.0818
6 0.0 0.8 ]10.9229 |0.0593 0.2649| 0.2191| 0.0653
7 0.0 1.1 {0.8810 |0.1063 0.4156| 0.2031 | 0.05381
8 0.0 2.4 10.7922 |0.2095 0.5315} 0.2385| 0.0321
9 -1.5 0.0 0.0 1.0337 0.0 -0.1539(-0.2344
10 0.0 -0.5]0.9753 0.0 0.0 -0.2564 |-0.0818
IV /.y
EREIIEE
A
“O
Ax’
EENEERR
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Table 4.4 Rectangular plane contaihing a nonsymmetri-
cally located elliptical hole (inclined major
axis)

Geometry: rectangular plane (9cm x 18cm x lcm)

Load: w = 1.0 MPa

-|Eccentricity: X, = 1.5 Yo = 2.0, Angle: 6 = 30°

E = 70000 MPa, py = 26315.79 MPa, v = 0.33, m = 0.8

Field Coordinates . 5 U U

Point| X Y XX Yy xy X y

No. cm cm (MPa) (MPa) (MPa) |microns|microns
1 1.8 0.0 | 0.0 17.1905 0.0 0.2434 |0.3892
2 1.9 0.0 2.0736 2.9680 | 1.6635{0.6380 |0.5744
3 2.1 0.0 1.1269 1.7636 | 1.1255|0.7245 |0.6193
4 2 .0 0.4972 0.9748 | 0.6480(0.8071 |0.7640
5 8 0 0.2913 1.2050 | 0.4385}0.8116 |0.8020
6 0.0 0.2 |-0.5871 0.0 0.0 1.1892 |0.7932
7 0.0 0.25(-0.5355 |-0.0015| 0.0332{1.1808 |0.7930
8 0.0 0.3 |-0.4849 |-0.0027 | 0.0656{1.1728 |0.7927
9 0.0 0.4 |-0.3873 |-0.0030| 0.1277{1.1585 [0.7920

10 0.0 0.7 |-0.1350 0.0151 1 0.2847|1.1261 |0.7898

Y
AR EIIEEE

N

RRIE
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EXAMPLE 1V.2

A Circular Plane Weakened by an Elliptical Hole

Let a circular plane of radius R = 6cm and of unit
thickness (h = 1lcm) be weakened by an elliptical hole at

the origin described by:

X = (1+m) Cos 6
Y = -(1-m) Sin 6
o<m<1

with horizontal major axis 2a = 2(1+m) and minor axis
2b = 2(1-m), see Figure 4.10. A radially uniform dis-
tributed load (w = 1.0 MPa) is partially applied to the
top and the bottom of the outer circumference as shown.
Again, M can be chosen between zero and one where in the
Figure M = 0.5. The boundary has been subdivided into
sixty equally-spaced meshes, each of which covers 6 degrees
of angle (0.6283 cm) numbered from the top and counter-
clockwise. The field points are chosen along the x,y axis
and include points on the edge of the hole. These are also
shown in Figure 4.10.

The data, i.e., the coordinates of the nodal points,
X(I) and Y(I), the resultant of the traction on each sub-
division (calculated by the trapezoidal rule), BVx(I)
and BVy(I), and the coordinates of the field points, XF(I)

and YF(I), are read into the program (Appendix E). The
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Figure 4.10 Circular plane weakened by an elliptical
hole at the origin.
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results are presented in Table 4.5. The program required
42 seconds of CPU time on a CDC 6500 computer.

To see the effect of angle of inclination on the
stress and displacement solution, two cases, i.e., the
circular plane subjected to the load weakened by the
elliptical hole at the origin but rotated around the
origin counterclockwise, 6 =30°and 6 = 60°, were considered.
The results are presented in Tables 4.6 and 4.7. Again,
note that the ellipse is kept horizontal and the outer
boundary is rotated clockwise.

As mentioned in Example IV.1, the solution to a prob-
lem with different angles of rotation, different hole size
and different location of the hole can be obtained by
reading the desired characters THETA, M, Xo and Yo into
the program. The examples of a circular plane subjected
to the given load and weakened by an elliptical hole with

major axis 2a = 3.6cm and minor axis 2b = 0.4cm (m = 0.8),

Xo = -1.0cm, Yo 1.5cm and oriented at an angle of inclina-
tion & = 30° is treated. The results are presented in
Table 4.8. Again, the CPU time was 42 seconds for each

run on a CDC 6500 computer.
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Table 4.5 Stress and displacement of a circular plane
containing an elliptical hole at the origin

eometry: circular plane R = 6cm (thickness 1lcm)
oad: w = 1.0 MPa

ccentricity: Xo =0 Yo, = 0, Angle: 6 = 0.0°

= 70000 MPa, u = 26315.79 MPa, v.= 0.33, m = 0.5

Field Coordinates

Point X Y I%x | ny Oxy Ux Uy
No. cm cm (MPa) (MPa) (MPa) jimicrons |microns
1 [1.5 |o0.0 | 0.0 6.5903 | 0.0 [-0.4958 0.0
2 1.7 0.0 0.9213] 2.1188 | 0.0 -0.3756 0.0
3 1.9 0.0 0.6265| 1.4786 | 0.0 |-0.340310.0
4 2.3 0.0 0.3084] 1.0501 | 0.0 |-0.3167 [0.0
5 2.8 0.0 0.1449 A0.8032 0.0 -0.3130 /0.0
6 0.0 0.5 |-1.4106| 0.0 0.0 0.0 0.5234
7 0.0 0.8 -0.8461(-0.0236 | 0.0 0.0 0.5206
8 0.0 1.1 |-0.5098| 0.0539 | 0. 0.0 0.5210
9 0.0 1.7 |-0.2088| 0.3062 | 0.0 0.0 0.5384
10 0.0 2.4 -0.0681| 0.5664 | 0.0 0.0 0.5858
-X
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Table 4.6 Circular plane containing an elliptical hole

(inclined major axis) at the origin, Case 1

Geometry: <circular plane R = 6cm (thickness 1lcm)
Load: w = 1.0 MPa
Eccentricity: X 0 Yo = 0, Angle: 6 30°
E = 70000 MPa, u 26315.79 MPa, v.= 0.33, m = 0.5
Field Coordinates . 5 5 . U
Point X Y XX yy Xy X y
No. cm cm (MPa) (MPa) (MPa) |microns|microns
1 1.5 0.0 0.0 4.5582 1 0.0 -0.2725] 0.1497
2 1.7 0.0 0.6820| 1.5269 | 0.9271}|-0.1899| 0.1894
3 1.9 0.0 0.5011} 1.0992 | 0.8071}-0.1651| 0.2036
4 2.8 0.0 0.1629] 0.6888 | 0.4720]-0.1423| 0.2396
5 0.0 0.5 -0.5996| 0.0 0.0 0.2734| 0.3448
6 0.0 0.8 -0.2768}-0.0049 | 0.3027| 0.2413}| 0.3399
7 0.0 1.1 -0.0766] 0.0426 0.4676 0.2292| 0.3371
8 0.0 2.4 0.2123| 0.3145 | 0.5738| 0.2648| 0.3604
9 1.5 0.0 0.0 4.5582 { 0.0 0.2725(-0.1497
10 0.0 {-0.5 -0.5996| 0.0 0.0 -0.2734|-0.3448
»‘*\ tY
y +
\
\
\ .
> X
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Table 4.7 Circular plane containing an elliptical hole
(inclined major axis) at the origin, Case 2

Geometry: circular plane R = 6cm (thickness 1lcm)

Load: w = 1.0 MPa

Eccentricity: X, 0.0 = 0.0, Angle: 6 = 60°

E = 70000 MPa, p = 26315.79 MPa, v = 0.33, m = 0.5

Field Coordinates . 5 U U

Point X Y XX Yy Xy X y

No. cm cm (MPa) (MPa) (MPa) |microns|microns
1 1.5 0.0 | 0.0 -0.0207 | 0.0 0.2218| 0.1470
2 1.7 0.0 0.222 0.1803|1.0262| 0.2121| 0.1963
3 1.9 0.0 0.3397 0.1848 | 0.9116| 0.2156| 0.2144
4 2.8 0.0 | 0.4783 | 0.2323|0.6416| 0.2593| 0.2692
5 0.0 0.5 0.9728 0.0 0.0 0.27721-0.0174
6 0.0 0.8 0.8375 0.0466 | 0.2805| 0.2444]|-0.0266
7 0.0 1.1 0.7508 0.0657 0.4323 0.2306{-0.0340
8 0.0 2.4 0.5885 0.0416 | 0.4502}| 0.2480}-0.0620
9 -1.5 | 0.0 0.0 -0.0207 | 0.0 -0.2218]-0.1470

10 0.0 {-0.5 0.9728 0.0 0.0 -0.2772| 0.0174
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Table 4.8 Circular plane containing an elliptical hole
(inclined major axis 30°) nonsymmetrically
located

Geometry: circular plane R = 5.4cm (thickness 1lcm)

Load: = 1.0 MPa

Eccentricity: X, -1.0 Yo = 1.5, Angle: 6 = 30°

E = 70000 MPa, u 26315.79 MPa, v-= 0.33, m = 0.8

Coordinates
Field
Point X Y Ixx oyy cxy Ux Uy
No. cm cm (MPa) (MPa) (MPa) |[microns|microns
1 1.8 0.0 0.0 14.847 0.0 -0.3198]0.5865
2 1.9 0.0 1.7233 2.5786 | 1.4976| 0.1331(0.8280
3 2.1 0.0 0.8951 1.5769 | 0.9539| 0.2231]0.8678
4 2.8 0.0 0.3450 1.0458 | 0.5191| 0.2767|0.8884
5 3.8 { 0.0 0.1156 0.7727 | 0.2609| 0.276910.8414
6 0.0 0.2 [|-0.5221 0.0 0.0 0.7170(1.0366
7 0.0 0.25 |-0.4735 |-0.0014 0.0466 0.7079}1.0359
8 0.0 0.3 |-0.4258 |-0.0023 [ 0.0908| 0.6993/1.0353
9 0.0 0.4 [-0.3337 |-0.0026 | 0.1719] 0.6838)1,0340
10 0.0 0.7 }-0.0902 0.0122 | 0.3583] 0.6486]1.0304
L Y’
}
+
=
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EXAMPLE 1IV.3

A Rectangular Plane Weakened by a Sharp Crack

Consider a rectangular region (10cm x 20cm) of unit
thickness (h = 1lcm) which is weakened by a sharp crack of
length 4cm at the origin. A uniformly distributed load
(w = 1.0 MPa) is applied to the top and the bottom of the
region, see Figure 4.11. The boundary has been subdivided
into sixty equally-spaced meshes, each of length 1.0cm,
i.e., 10 meshes are defined on each of the top and bottom
edge and 20 meshes on each vertical edge. The field points
are chosen along the x,y axes. Due to the singularities
at the tips of the crack, the points (x = *+2, Y = 0) cannot
be considered as field points. However, one field point
is chosen very close to the tip of the crack to show the
trend of the stress distribution. These are also shown
in Figure 4.11.

The data, i.e., the coordinates of the nodal points
X(I), Y(I), the resultant of the traction on each subdi-
vision (calculated by the trapezoidal rule), BVx(I) and
BVy(I) and the coordinates of the field points XF(I) and
YF(I) are read into the program (Appendix E). The results
are presented in Table 4.9.

The results are compared to the theoretical solution
for the stress intensity factor of a sharp crack located
in a rectangular plane subjected to a uniform load (Tada
[44]). Since this solution [44] is good for points very

close to the tips of the crack, just two field points,



148

[ w=1.0 MPa
K VY T S T!.A
x mwo e 8 7 6 5 a 3 2 |
12 60 -
3 89
14 88 -
HS 871
16 56 -
Li7 85 -
8 54 1
-9 83
20em [2° ‘ %21
-ZP—————————ilIléllll+ﬂHh ) >
22 50 - X
-23 49
.24 48-
25 47
L26 46-
27 45 -
28 44-
29 43
30 42-
I 32 33 34 35 36 37 38 39 404l
Y Y Yy \ Yy Y Y \
k——10em >

Figure 4.11 Rectangular plane weakened by a sharp
crack at the origin.
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Table 4.9 Stress and displacement of a rectangular plane
containing a sharp crack at the origin

Geometry: rectangular plane (9.56cm x 19.12cm)
(thickness 1lcm), Load: w = 1.0 MPa

‘|Eccentricity: Xo = 0 Yo = 0, Angle: 6 = 0.0°

E = 70000 MPa, u = 26315.79 MPa, v = 0.33, m = 1.0(crack)

Field Coordinates . 5 5 U U
Point X Y XX yy Xy X Yy
No. cm cm (MPa) (MPa) (MPa) |microns|microns
1 2.00000040.0 [1109.14 [1110.28 0.0 -68.098(0.0
2 2.001(0.0 33.975| 35.123 0.0 -2.395(0.0
3 2.1 0.0 2.492 3.643 0.0 -0.43310.0
4 3.0 0.0 0.318 1.493 0.0 -0.28510.0
5 4.0 0.0 0.077 1.250 0.0 -0.31110.0
6 0.0 1x10°9 -1.123 0.0 0.0 0.0 0.6331
7 0.0 0.001 -1.12316.2x10°% 0.0 0.0 0.6332
8 0.0 0.1 -1.013|7.6x10 % 0.0 0.0 0.635
9 0.0 1.0 -0.226 0.094 0.0 0.0 0.647
10 0.0 3.0 0.117 0.613 0.0 0.0 0.751
I\
Available Solution: y f j ’ f f /
Field
Point
No. Reference
1 cxx=oyy=1110 MPa [44]
=g = ——— —— ’
O rx °yy 35.1 MPa [44] —X
7 Uy=0.665 microns [43]
wl/)HHv
w
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1 and 2, are compared. Note that error of the solution
at the two field points is less than 0.08%. The displace-
ments of the points on and at the middle of the crack
(i.e., the crack opening displacement COD) are compared
to results obtained by Sharpe [43] for a slot. The program
required 41 seconds of CPU time on a CDC 6500 computer.

To see the effect of the inclination of the major
axis with respect to the x-axis, i.e., 8 counterclockwise,
on the stress and displacement solution, two cases, the
rectangular plane subjected to the given load weakened by
the sharp crack at the origin but rotated with respect to
x-axis, 6 = 30° and 6 = 60° ;ounterclockwise, were con-
sidered. The results are presented in Tables 4.10 and
4.11 and compared to the theoretical [44] and experimental
[43] solutions. Again, note that the sharp crack is kept
horizontal and the outer boundary has been rotated
clockwise.

The program has been written in such a way that if
different inclination angles are desired, only one char-
acter, THETA, is to be changed. Also, if different dimen-
sions of the rectangular plane are needed, only one
character, WR, is to be changed. Note that the propor-
tionality of the long side to the small side and the length
of the crack remain constant and equal to 2.0 and 4.0cm,
respectively. For different locations of the crack, the
new coordinates of the center of the crack, Xo,Yo, must
be read into the program. An example, i.e., the problem

of a rectangular plane (9cm x 18cm) subjected to uniform
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Table 4.10 Rectangular plane containing an inclined sharp
crack at the origin, Case 1
Geometry: rectangular plane (9.56cm x 19.12cm)
(thickness 1lcm), Load: w = 1.0 MPa
|Eccentricity: X, = 0.0 Yo = 0.0, Angle: 6 = 30°
E = 70000 MPa, u = 26315.79 MPa, v = 0.33, m = 1.0 (crack)
Field Coordinates . 5 . U U
Point X Y XX Yy Xy X y
No. cm cm (MPa) (MPa) (MPa) |microns |microns
1 2.000001}0.0 842.01 |842.63 WKU50.26 |-61.79 |[-15.49
2 2.001 (0.0 26.035| 26.65 |14.244| -2.066| -0.194
3 2.01 0.0 7.835 8.456 4,521} -0.725 0.141
4 3.0 0.0 0.5026f 1.0951 | 0.6268] -0.120 0.335
5 .0 0.0 0.3513| 0.8925 | 0.5506] -0.095 0.435
6 0.0 1x10°4 -0.6327 0.0 4.3x10°7] 0.2541] 0.4845
7 ]0.0 0.001| -0.6319]2.0x10 0.00043| 0.2540| 0.4845
8 0.0 0.1 -0.5472]10.00012 | 0.0433] 0.2412 0.484
9 0.0 1.0 0.0592| 0.0759 0.352] 0.1815 0.482
10 0.0 3.0 0.3406| 0.4784 | 0.4721| 0.239 0.541
§ Y
Available Solution: TEENEEE
Field
Point
No. Reference ////’r
6 U _=0.448 microns [43]
Y ®
6 Ux=0.247 microns [43]
RRRIIRRRN
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Table 4.11 Rectangular plane containing an inclined
sharp crack at the origin, Case 2

Geometry: rectangular plane (9.56cm x 19.12cm)
(thickness 1lcm), Load: w = 1.0 MPa
|Eccentricity: X, = 0.0 Y, = 0.0, Angle: 6 = 60°
E = 70000 MPa, y = 26315.79 MPa, v = 0.33, m = 1.0 (crack)
Field Coordinates 5 5 . U U
Point XX Yy Xy X Yy
No. cm cm (MPa) (MPa) (MPa) |microns |microns
1 2.00000110.0 1284.97 284.51 465.15(-45.68 |-17.04
2 2.001 (0.0 9.454 9.00 |14.714| -1.280| -0.238
3 2.01 0.0 3.308 2.853 4.668{ -0.287 0.13164
4 2.5 0.0 0.9245 0.4570,0.7719| 0.1592 0.2894
5 4.0 0.0 0.7845 0.2832]1 0.5208] 0.3365 0.4264
6 0.0 1x10 ¢ 0.4269| 0.0 1.6x10°7 0.2262| 0.1665
7 10.0 0.001 | 0.4272]7.7x10 °4.6x10° " 0.2661| 0.1665
8 0.0 0.1 0.4573]1.09x10% 0.0465( 0.2529 0.1662
9 0.0 1.0 0.6682 0.0303,0.3736| 0.1927 0.128ﬂ
10 0.0 3.0 0.7751 0.1859]/0.4931}| 0.2525 0.0916
A? +
Available Solution: b4 4 41044 ¢
Field
Point 4
No. Reference
6 U,=0.2380 microns [43] @
6 Uy=0.1756 microns [43] —X
EERIIERE
0
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load and weakened by a sharp crack which is inclined at

30° counterclockwise and centered at

an angle of ©

Xo = +1.0, Yo 2.0, is solved. The results are presented
in Table 4.12.

The method can be applied quite simply to edge-crack
problems, with any angle of inclination of the crack. An
example of this extension, i.e., the problem of a rectangu-
lar plane subjected to the uniform load weakened by a
crack of length 4cm at the left-hand side of the boundary,
is solved by introducing the new coordinates of the crack
"center" (Xo = 3.0, Yo = 0). The results are presented

in Table 4.13. Again, the CPU time was 42 seconds for

each run on a CDC 6500 computer.
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Table 4.12 Rectangular plane containing an inclined non-
symmetrically located sharp crack
Geometry: rectangular plane (9cm x 18cm) (thickness 1lcm)
Load: w = 1.0 MPa .
|Eccentricity: Xo = 1.0 Yo = 1.5, Angle: 6 = 30
E = 70000 MPa, y = 26315.79 MPa, v = 0.33, m = 1.0 (crack)
Field Coordinates . . 5 U U
Point X Y XX Yy Xy X y
No. cm cm (MPa) (MPa) (MPa) |[microns |microns
1 2.000001f 0.0 P64.431 |905.139 |485.172{-66.05 |-25.73
2 2.001 0.0 27.925 28.632 | 15.350{ -1.397| -0.2336
3 2.01 0.0 8.375 9.082 4,876 0.0539 0.328
4 2.5 0.0 0.7970 1.4687| 0.8609]| 0.669 0.574
5 4.0 0.0 0.3550 0.9974| 0.5072] 0.7326 0.7586
6 0.0 1x10 % -0.6458 0.0 h.6x1077 1.1070| 0.739
7 (0.0 0.001 | -0.6450-7.9x10 °p#.6x10 % 1.1068| 0.7397
8 0.0 0.1 -0.5608(2.7x10°5 0.0467| 1.0923 0.739
9 0.0 1.0 0.0498 0.0709} 0.3730{1.01929 0.737
10 0.0 3.0 0.3250 0.4696] 0.4880f 1.0466 0.794
Y
NEIRRIIEEN

X

N/

<

\s?

RER!
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Table 4.13 Sharp crack (notch) on the side of a rec-

tangular plane

Geometry: rectangular plane (10cm x 20cm) (thickness 1lcm)
Load: w = 1.0 MPa .
.|Eccentricity: X, = -4.0 Yo = 0.0, Angle: 6 = 0.0
E = 70000 MPa, p = 26315.79 MPa, v = 0.33, m = 1.0 (crack)
Field Coordinates 5 . 5 U U
Point X Y XX yy Xy X y
No. cm cm (MPa) (MPa) (MPa) |microns|microns
1 2.000001)0.0 1742.69 |1743.61 | 0.0 -138.770.0
2 2.001 |0.0 54.229 55.143 1 0.0 -27.5610.0
3 2.01 0.0 16.540 17.454 | 0.0 -25.06/0.0
4 3.0 0.0 0.9894 1.8964] 0.0 -23.8710.0
5 4.0 0.0 0.5176 1.4099{ 0.0 -23.81610.0
6 0.0 1x10°9 -1.1361 0.0 -4,1x10,7 -23.72|1.2867
7 0.0 0.001| -1.1349{-2.7x107}-0.00041-23.726|1.2867
8 0.0 0.1 -1.0069|-0.0023 |-0.0391| 23.709|1.2851
9 0.0 3.0 0.07307] 0.5705 |-0.1638| -23.19(1.3451
10 0.0 8.0 -0.0679 1.0586 | 0.0401| -22.60(2.004
Y AY'
TERIINEY,
S W L — -
IRRIIRRR




CHAPTER V

ON THE PROBLEM OF AN ARBITRARILY-SHAPED HOLE
IN A TWO-DIMENSIONAL REGION

V.1 INTRODUCTION

Distribution of stresses around an arbitrarily-shaped
hole in an infinite elastic region was first solved by
Sokolov [45] and, later, in a slightly different formula-
tion, by Savin [46]. As an extension of the mapping
technique and the integral equation method, the problem
of a plane finite region weakened by an arbitrarily-
shaped hole is considered in this chapter.

In section 2, the equation of the contour of any
arbitrarily-shaped cavity is discussed. The mapping
function is then introduced for a class of contours and
the inverse transformation function is determined using
the power series expansion and continued fractions methods
developed by Frame [47,48]. 1In section 3, the influence
function for openings with three axes of symmetry is
discussed. In section 4, the influence function for
openings with two axes of symmetry is discussed. The
implementation of the boundary integral equation method
is also discussed for solution of any finite two-dimensional

region containing openings of this type. Finally, in the

156
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last section, the influence function for a more general
class of openings is discussed.
V.2 THE CONTOUR OF AN ARBITRARILY-SHAPED HOLE

AND THE MAPPING FUNCTION

A large class of smooth closed curves, e.g., triangu-
lar square or rectangular, can be written in a general
Fourier series form (Lekhnitskii [50]):

N

~
]

R.{Cos B + ¢ (dn Cos n 6 + hn Sin n 6) }

n=1

N

<
]

R{CSin6+e (-dnSinn6+hnCosn6)}

n=1

(5.1)

Clearly, when ¢ = 0, equation (5.1) represents an ellipse
and when C = 1, the equation represents a circle.

An infinite plane with an opening represented by
equation (5.1) can be conformally transformed to a unit
circular disc, in the ¢z plane. The transformation func-
tion is

2= o s R{FELL L i crm ) 5

where

N
_ . n
flo) ~ nzl (dp-ihp)e

In order to make the transformation single-valued, one-to-

one, and conformal, it is necessary that w'(z)=0 for all
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the points inside the unit circle (Churchill [37]). Thus,
all the roots of the equation
- L;E _1; + l_zs + € i n(dn-ihn)c“’l =0 (5.3)
z n=1
should be expressed on the planes by points located outside

b

of the unit circle |z|=1. Hence, the coefficients a ., b,

and parameter € have to be chosen such that the conformal
condition of equation (5.3) is satisfied.

To present an example of smooth closed curves, equation
(5.1), let a special case of the equation be considered.

Consider the contour given by the equations

X

R (Cos 8 + € Cos N 8)
Y

R (c Sin 6 - € Sin N 8) (5.4)

where o<cg1l, and N is an integer. When C =1 and N = 2
the opening has three axes of symmetry and, with an appro-
priate selection of parameter e, the opening will differ
little from an equilateral triangle with rounded corners,
see Figure 5.1. When c<1 and N = 2 the opening will be

a branched slot, see Figure 5.2.

When ¢ = 1 and N = 3 there are four axes of symmetry
and, at some values of ¢, the opening will differ little
from a square with rounded corners, see Figure 5.3. When
c<l and N = 3, an oval of a special type is obtained. 1If
c and € are taken very small, the opening will be a slot,
see Figure 5.4. Also for elliptical case (e=0,c¥1l), see
Figure 5.4. The computer programs for plotting Figures

5.1 to 5.4 are presented in Appendix F.
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Figure 5.1 Different contours for N = 2 and ¢ = 1.
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Figure 5.2 Different contours for N = 2 and o<c<l.



161

=0.90

E-—U 30
C=1.00
E=-0.30

) C=0.70
=-0.25
C=1.00

E=-0.15

C=0.70
E-—-U-IU

c=1.00 ()&%
E=-0.10

Figure 5.3 Different contours for N = 3 and ¢ =l.
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Figure 5.4 Different contours for N = 3, c # 1
and € = 0.
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The transformation function which includes these

special cases of equation (5.4) is

1+c

Z = w() = Ry - +-1—£—C¢+e§N$ (5.5)

Y| =

In order to find points in the ¢ plane corresponding to
points in the Z plane, the inverse of the transformation
function, i.e., w !(z), is needed. In most cases, e.g.,
N>2 in equation (5.5) or n>2 in equation (5.2), it is very
cumbersome to find the inverse of the transformation func-
tion even though some numerical technique could be employed,
but the following two methods appear to be the most power-
ful methods for determining the inverse transformation
function of equation (5.2).
Method 1: Power Series Expansions for the

Inverse Transformation Function

The transformation function of equation (5.2) is

written in the following form:

N
_ R(1+c) . .1 l-c _» 2€ z: s n+l
s { L+ Isc o * Tac =1 (dy-ihp)e } (5.6)
and letting
W R(1+c)

2. at® } (5.7)
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where

oc1=0
_ 2¢ . 1-c
0z = Tyg (di-ih) =+ g5¢
o, = 2 (4. _-ih, .) for k=1,3.4....N
k 1+c k-1 k-1 YUy T e
ak =0 for k>N

for which the inverse function is given by Frame [47]:

;q = Wq-{l + z: B

o~ kwkv }

where

2: ( (kV+q)/P\ (5.8)

+q r=1

Note that (-(kv+q)/P’> is the binomial coefficient. The
n

(n)
akn

are homogeneous polynomials of degree n in a;.....

defined implicitly by:

o o]

[ Zukck ]n - Z o (B) kv

k=1 k=1 X
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and defined explicitly as the sum of all ordered products
of r factors in which the sum of subscripts is k. For

example, for k = 6, r = 3 the coefficient aﬁr) is
«(3) = 3524, + 6 + af
6 1O Q30203 a2

Thus, in this case, the inverse function of equation (5.7)

will be
ce Wil )3 Bkwk"}
k=1

where p = -1, q =1 and v = 1. Hence, Bk can be found by
equation (5.8). An example using this method is presented

in the next section of this chapter.

Method 2: Continued Fractions

Writing equation (5.2) as

N
g = R{l—zﬁ + 55 4 e rgl (dn-ihn)c’”l}

or
. N+1 - N

e (dy-ih) e+ e(dy qihy N ¢
* l%i * E(dlnihl)gz -z + R*e)

then this equation can be written in the following form:
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+ a;g*tag = 0 (5.9)

where the ai's can be easily found by comparing the
coefficients.

Since the parameters and coefficients in equation
(5.2) have been chosen in such a way that the transforma-
tion function is conformal, then the polynomial f(z),
equation (5.9), has one root inside the unit circle and
m-1 roots outside the unit circle, provided that f(z) has
many continuous derivatives in a neighborhood of the root

inside the unit circle.

= f(p - £f"(p) - £f'"(p) - £1'(p
n TTT%T » & AONEE AR S ZTT#T%T .....

Then, upon expanding the difference between the required
root, ¢z, and the estimated root, p, with partial numerators
dk’ denominators 1, and remainder 8y the required root

can be written as [48]:

ceo 4 41 _ Px*8re1Praa
I+ Ut Br+1%-1
1+
1+d

1+8x41
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where
.
k 1+gk+1
The partial numerators dk in the continued fraction may be
determined by means of the series expansion of the dif-

ference as a power series in n
(<]
k
T -p = Z Ckn
k=0

in which Ck is a certain rational function of the first
k-1 of the quantities &, 1, 6, ..... evaluated at the
chosen first estimate p. The first few partial numerators

may be computed as follows:

dl =n Y d2 ng ’

_nt(t-9%)

ds £-Y

ng - yn , dy = ng

Thus, an explicit form for ¢ = P(Z) will be obtained. An
example using this method is presented in the next section
of this chapter.
V.3 ON THE INFLUENCE FUNCTION OF A PARTICULAR

CLASS OF OPENING, CASE 1

The general formulation of the transformation function
for any smooth closed contour is presented in the previous
section. The influence functions for an infinite plane
containing such an arbitrarily-shaped hole will be obtained

by expressing the problem as the superposition of two
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problems, Figure 2.2. Transforming the second problem
into a unit circle, Figure 2.3, and following the general
solution presented in Chapter II, the influence function
can be obtained.

Thus, to find the influence function, one has to have
a specific opening, i.e., a specific equation and trans-
formation function. For example, consider an infinite

plane bounded by a contour which is given by the equation:

>~
L}

R(Cos 6 + € Cos 26)

]
[}

R(c Sin 6 - € Sin 26) (5.10)

where O<cgl. The equation represents a contour with three
axes of symmetry which will differ little from an equi-
lateral triangle with rounded corners. By choosing the
right c<1 and small € one can obtain a branched slot. The
transformation function which transfers the region into
the unit circle is

z=w() =R @GS 2+ 580 ech)  (5.1D)

where ¢ and € are fixed constants. Then letting

m = R(1+c)

_ﬁ%_ﬂ and r = R-¢

the transformation function will be:
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Z = w(g) = % + 27 + rg2 (5.12)

The inverse transformation w !(z) can be easily found by

solving the cubic equation [49]:
rzd + 2g2%-Zz +m = 0 (5.13)

Clearly, since the transformation is conformal, then one
of the roots of equation (5.13) has to be inside the unit
circle and the other two have to be outside the unit circle.
A concentrated point force P is acting in the plane at

some point Z, where Z, lies on or outside of the opening,

i.e.,
Xo > R(Cos 6 + Cos 260)
Yo > R(c Sin 6 - e Sin 26)
where
Zo = Xo + 1Yy

The problem can now be expressed as the superposition of
two problems, see Figure 5.5. The problem of Figure 5.5(B)
is that of a concentrated point force P applied at Z, in
an infinite region and the problem of Figure 5.5(C) is
that of an infinite region containing the hole with speci-
fied traction on the hole. This applied traction can be
found following section II.2.

The solution of the problem of Figure 5.5(C) can be

obtained using the mapping technique, i.e., transforming
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the problem to the unit circular disc, see Figure 5.6.
The mapping function is given by equation (5.11).

The complex potential functions for the problem of
Figure 5.5(A) will now be obtained following the general
method presented in section II.3. Let ¢°(Z) and ¥°(2)
be the complex potential functions for the problem of
Figure 5.5(B), and let ¢*(Z) and Y*(Z) be the complex
potential functions for the problem of Figure 5.5(C).
Then the potential functions for the problem of Figure

5.5(A) are

$(2) = ¢°(Z) + ¥*(2)

¥(Z)

YO (Z) + ¥*(2) (5.14)

where ¢°(Z) and ¥°(Z) are known [27] and, following section
I1.3, the transformed complex potential functions of ¢*(Z)

and Y*(Z) are given by

01(2) = o P s f; - 1090 40 (5.15)

¥3(2)

Ea €| |E
Q

L 9 - o) _ . ¢*'(0)
2?1'¢ BE;QdO mf o do (5.16)

where F(o) and F(o) are given by equations (3.20) and (3.21).
Substituting o into the mapping function, equation (5.12),

and taking the complex conjugate leads to:
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w(o) = g + %0 + ro?
L r
w(o) =m + — + —
o) 2
o
for which the derivatives are
w'(o) = B+ 2 + 2r0

57(G) = -mo? + &+ 2L
Note that oo = 1. Then clearly:

2 3 -
w(o) _ m+Ro°+ro’_ 2: a o n (5.17)
@' (0) 2r+20-mo®  n=0

and

3
gi%;7= mo’+20+r (5.18)
2rod+20%-m

¢f(o) and ¢f'(o) are analytic inside y, the unit circle

and following section II.3, ¢¥7(o) is analytic outside Y.

Thus,
%' (o) = 2: kakok (5.19)
k=1
MO Z kiko'k+1 (5.20)
k=1

Multiplying equation (5.20) by (5.17) leads to:
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-

wlo)  $F75) = - Z oo™ . Z kg o K= - Z e o " (5.21)
k=1

n=0

The right-hand side of equation (5.21) is analytic outside

Y, the unit circle. Hence:

1 jﬁ. w(c) $¥(a) do = e

ZriJy ey 90 ©
where € is a constant. Thus, equation (5.15) becomes:
$3(2) = wiy f 29 4o (5.22)
Y

Multiplying equation (5.19) by equation (5.18) leads to:

3 -
% o%1 (o) = TIZROTT . :L:.l ka, 0¥ (5.23)

2rod+g0%2-m

The numerator of equation (5.23) is analytic inside y. Then

¢ w(9) ,'(o) do = MEHaT+r .
2—-— = - o1 (z) + £(2)
w'!'(o 2r;3+2;2-m 1 ( ) (

where f(z) contains the residues of

(mo®+g0+r) %' (0)
(2ro®+g02-m) (0-1)

at the roots which are inside y. Thus, equation (5.16)

becomes
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_ 1 F(0) mz3+2z+T
¥3(z) = > 96 do - o*'(¢) - f(z) (5.24)
1 Tl Y o-T 2rc3+2c2-m 1

Rewriting equations (3.20) and (3.21)

F(o) = - [¢°(0) + :("i 3TT6) + V(@)1 (5.25)
FOY = - (37060 + 285 480 (0) + ¥3(@)]  (5.26)

where ¢°(Z) and ¥°(Z) are given by equation (2.6). To
find the transformed complex potential functions ¢g(;)
and ¥)(z), substitute the mapping function, equation

(5.12), into equations (2.6). Thus,

_ m-Z,0+%2%+ro?
$%(c) = - Q » 1n (M2 ) (5.27)
_ 2 3
¥0(o) = Q - Zoo +Q - o 1n.(m Zoo*lo+ro )
m-Z,0+20%+r03 o
(5.28)
Let
A(c) =m - Zo0 + 0% + ro? (5.29)
B(c) =1 + %0 - Zy02+ mo? (5.30)

Then the complex conjugates of equations (5.27) and (5.28)

are:
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3T = - Tan (B2
(o]

TIGY =Q - o - 1n (2] g . Tege (5.3

s o
Clearly:
. _ 2rod+g02-m
¢’2 (6) = Q - - A(0)
Lqg- 3
631 (o) = {Zrghomo)e (5.32)

Substituting equations (5.17), (5.18) and (5.27) through
(5.32) into equations (5.25) and (5.26) leads to:

_ A B A
F(0) —Q{ln () 4 1n ij)} +Q{c 1;%} (5.33)
B = B A
F(o) = Q {_K'(To (g)} + q {111 i‘z’) - o 1n AL0) } (5.34)

where A(c) and B(o) are defined by equations (5.29) and
(5.30).

Conformity of the transformation function allows that
the inverse transformation function, equation (5.13), has
one root inside y, the unit circle, and two roots outside

y. Let Ti»T and r02 be the roots, inside and outside,

0,
respectively. Then the similarity of equations (5.13) and

(5.29) leads to:
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A(c) =m - Zoo + 0% + ro? = r(g-ri)(o-rol)(o-roz) (5.35)

Let the function w(l/z) be considered. Clearly, the func-
tion transforms the problem onto an infinite plane bounded
by the unit circle.

I

Z = w(l/g) =mg + 2 - L+
C z?

and the inverse transformation function w !'(1/z) can be

obtained by solving the following cubic equation [49]:
mgd - Zzg2 + g + 1 =0 (5.36)

The conformality of the transformation function, w(1l/%),
allows that the implicit form of the inverse transforma-
tion function, equation (5.36), has two roots inside y and
one outside. Comparing equations (5.30) and (5.36) and
noting that all coefficients of the two equations are real
except Z and Z,, one can take the conjugate of these coef-
ficients, thus yielding the conjugates of the roots of
equation (5;36), one outside and two inside the unit circle.
Let til and tiz be the two roots inside and t, be the

root outside the unit circle. Then equation (5.30) becomes

B(o) = mo?® - Zeo?2 + 0 + 1 = m(o-to)(o-tix)(o-tiz) (5.37)

To find 7%{2‘ gég—) do and 2%{ f OI _(Zj do, let the follow-

ing integrals be calculated. The first one is
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- 1 A(o) do
I‘mi In [% ' 52

Substituting equation (5.35) into this integral and follow-

ing section I.3 leads to

I = 1n r(c-rol)(c-roz) (5.38)

Note that equation (5.38) is evaluated in the same manner
as equation (4.39).

The second integral is
- 1 B (o) . do
II VESE ‘%‘ 1n [ 2 ] 5T

Substituting equation (5.37) into this integral and follow-

ing section I.3 leads to
IT = 1n m(;-to) (5.39)
The third integral is

111 = 1 f gA(o) . do
2m1 Y Eios o-C

Substituting equations (5.35) and (5.37) into this integral

and following the Cauchy integral theorem leads to



179

111 = 1 oA(o) . do - LA(Z)
21 Y m(c-to) (o-til)(o-tiz)(c-c) B(Z)

tixA(tix) tizA(tiz)

+ +
m(til-to) (til-ti? (til-ﬁ m(t.z-to) (tiz-tilj (tiz-a)

i
(5.40)
The last integral is
IV = 1 B(oc) do
21 oA(o) o-¢
Clearly, this integral leads to
- B(r;)
v = L+ B(2) 1 (5.41)

3

c " TA(R) * ri(ry-ry J(ry-r, )(r;-2)

Using the four evaluated integrals, equations (5.38) to

(5.41), it follows from equation (5.38) that

'2%{% g%)do = Q{I - a II}+ Q'{III} (5.42)

Substituting equation (5.42) into equation (5.22) leads to:
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¢1(2) = Q {1n r(z-ry J(z-ry ) - o ln m(z-t) }+ Q\{E%%%%

+

tilA(til) . tizA(tiz)
mrtil-to)(til-tizj(til-c) m(tiz-to)(tiz-til)(tiz-;)

(5.43)

The following integral can also be obtained by recalling

equation (5.34) and using the evaluated integrals of equa-

tions (5.38) to (5.41):

2—11rf.£ lz?'do - Q{Iv}+ Q'{II - 1} (5.44)

Substituting equation (5.44) into equation (5.24) leads to:

¥¥(z)

B(r.)
-T B(z) i
Q {ﬁf I ri(ri-rol)(ri-rozj(ri-c) }

+

Q'{ln m(z-ty) - o 1n r(z-ry )(z-1,,)

_mgi+gprer
2rgd+g9z?-m

¢3'(z) - £(z) } (5.45)

Hence, the complex potential functions for the opening
described by equation (5.10) are obtained, and given by
equations (5.43) and (5.45).

The influence functions can now be found by taking the
derivatives of equations (5.43) and (5.45) and substituting
into equations (3.6). Since the procedure is very straight-

forward, the details of this calculation are omitted.
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V.4 ON THE INFLUENCE FUNCTION OF A PARTICULAR
CLASS OF OPENING, CASE 2

Consider an infinite plane bounded by the contour

described by:

~
]

R(Cos 8 + € Cos 3 6)

<
"

R(c Sin 6 - € Sin 3 8) (5.46)

where o<cgl. Equation (5.46) represents an elongated
contour symmetric about the x and y axes. Changing C and
e will produce contours which vary from a square with
rounded corners to an oval or a slot. For example, when
C= .36 and € = -0.04, a contour is obtained which will
differ little from a rectangle with semi-circular short
sides and straight long sides. When C = 0.537 and € = -0.038,
the opening is an oval and when C = 0.026 and € = -0.004,
the opening is a slot.

A concentrated point force P is acting in the plane at
some point Z where Z 1lies on or outside of the opening,

i.e.,
Xo 2 R(Cos 6 + € Cos 3 6)
Yo > R(c Sin 8 - € Sin 36 )
where
Zo = Xo + 1Yy

Again, as presented in the previous section, the problem

will be expressed as the superposition of two problems,
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Figure 5.7. The problem of Figure 5.7(B) is just the con-
centrated point force P applied at the same point in an
infinite plane and the problem of Figure 5.7(C) is the
infinite plane bounded by the opening on which the appro-
priate specified traction is applied.

The problem of Figure 5.7(C) can be solved using the
mapping technique, i.e., transferring the problem to the
unit circular disc, Figure 5.8. The mapping function is
given by the following equation:

1l+c 1 l-c

z=w(r,)=R(—2—-E+—2—c+er,3) (5.47)

where R, ¢ and € are constants. Let

m = R(1+c)
S A

¢ = R(1-c)

r = R €

Thus, the transformation function will be

Z = w(zg) = % + %z + rgd (5.48)

The inverse transformation function w !(Z) can be found by
employing the two methods presented in the first section
of this chapter.

Following the first method, power series expansion for
the inverse transformation, the transformation function is

to be written in the form of equation (5.7). For simplicity,
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let @ = (vm/%2)/z. Then equation (5.48) can be written

as follows:

7 = Q ., 1/m/T | r(vm/2) 3

mrr a°
or

W=2Q(l + Q2%+ 22" (5.49)
where
and

>
]

(m . r)/22

Finally, equation (5.49) can be written in the following

form:

W = 9{1 + Z akQ'Zk} (5.50)
k=1

where a; = 1, a2 = XA and ap = 0 for k>3.
The inverse power series of equation (5.50) can now
be obtained following equation (5.8) where, in this case,

P=q=1and V= -2. Thus,

(5.51)

Lo
/]
=
N\
—
+
s
o)
o
2l
N
=
\‘-\/‘/

where
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and the aﬁn)'s can be formulated as

_ _ n
af™ = oM R G (D)

Since ap = 0 for k>3 and a = 1, then

(n) _ , 1 k-n
ap = (gop) 2
so that
k
s« 10 N My ken
k ~ T-2k = n k-n (5.52)
which leads to:
By = -1
B = -1 - A
83 = '2 - 4A
By = -5 - 151 - 3%

Bs -14 - 56X - 2812

It is clear that the Bk's are not converging very rapidly,
a deficiency of this method. However, the Bk's are all
functions of powers of A, which indicates that there would

be some general closed form for equation (5.51):

% =1 - Po - pll - pzkz - p3A3........ (5.53)
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The coefficient pi's will now be found. To find p,, let

A = 0 in equation (5.53), then
B=1 - 0 (5.54)

Also, when A = 0, the transformation function, equation

(5.49), becomes

Q2 - WQ + 1 =0

or
.S-ﬁ-Q+_l_=0
W2 W W?

. Q

Solving for W leads to:
2 _ 1+ /1-4/W? (5.55)
W 2

The minus sign is not valid since the 1limit of the solu-
tion, equation (5.55), must approach unity to satisfy
conformality of the transformation function, i.e., infinity
is transformed to infinity. Equating the right-hand sides
of equations (5.55) and (5.54) leads to:

1 - /1-4/W?

Po = ) (5‘56)

Now let n = k in equation (5.52). Then

1 2k-1 k (2k-2)!
By T2k C x ) (A = - moeDT
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or

2P
Bps1 = - (p) par

Substituting into the inverse transformation function,

equation (5.51) leads to:

Z wo2P-2
= (p) T (5.57)

EI:O

Comparing (5.57) and (5.54), it is found that
Z 2P w-zP-z
Po = (P) P+ (5.58)

Now let k - n = 1 in equation (5.52). Then

1 2k-1 k-1 1 2k-1 k
B =2k (k1) (1) 2 v G ) QY

Substituting Bk into the inverse transformation function,

equation (5.51), yields:
2P-2 Z _ .
Z(P)’—’p—I—-A (PK2) ek

2
k=1 k-2

Comparing this equation with equation (5.53) leads to:

(-}

Z ) w2k (5.59)

To find a relation between p, and po, i.e., a closed form

formulae for p1, equations (5.58) and (5.59) can now be used.
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2k-2
Since (k-Z) = 0 for k = 0,1, then letting k = P + 1

2k-2 2p
(x-2) = (p-p)

But

2P p 2P 2P . 2P
(po1) = par (p) = (p) - p31 (p)

Substituting k = P + 1 and the binomial coefficient above

into equation (5.59) leads to:
2P -2P-2 2: 2P oD
oy = - 2: (p) L v (p) W22 (5.60)

Taking the derivative of p,, equation (5.58), and con-

structing % poW
2P
1 2: -2P-2
o'W = - () W (5.61)
2 "o P=0 P
Substituting equations (5.61) and (5.58) into the right-
hand side of equation (5.60) leads to the expression:

P1 = - Po - 7 oW (5.62)

Taking the derivative of po in its closed form, equation
(5.56), and calculating the right-hand side of equation

(5.62) leads to:
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2
0
°r = To75s (5.63.a)
Similarly, one can find p, in terms of p,, which will lead
to better convergence of equation (5.53). Thus, the
inverse transformation function becomes

2

Q=W (1 - po - 15’;00 A= ..l) (5.63)

where

_ 1 - /1-4/W?

Po = 2

This was an example of using the power series expansion to-
find the inverse transformation function, even though the
method did not prove efficient. The second method, con-
tinued fractions, will also give the coefficient of A?%,
i.e., p2. The second method will now be applied. Rewrite
equation (5.49) in the following form:

Q* - W3+ + =0

Dividing the equation by W* leads to

Qvu _ (Sys . Rz . 1 . A _
(W) (W) + (W) ﬁ; + — 0
or

M -1+ (P2 ‘% + wi =0 (5.64)

In order to check the accuracy and efficiency of this

method with the previous method, let the following
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assumption be made:
_ _f
r=1-g (5.65)
and

1 - /1-4/W?

oo = 7 (5.66)

Constructing (po - pi) using equation (5.66) leads to:

Substituting these results into equation (5.64) leads to:

£(T) = T(T-1)° + (T-1)2 (po-p3) + A(po-p3)?2 =0 (5.67)

Equation (5.67) is a polynomial in T of the form of equa-
tion (5.9), which can now be solved by the continued
fractions method.

Let the first estimate to the required root I' of the
equation f(I') = 0 be po. Then, after some simplification,
the function and the derivatives of the function at the

estimated root are:

£(po) = (po-pa)?
£'(po) = (po-1)2 (200-1)
£"(po) = 2(5p0-3) (po-1)
£'"(po) = 6(4 po-3)

£ (po) = 24
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f(n)(po) =0 for n34

Thus

_ f(po) . Ape

T T T ey I-2
= " Do) = 5p0-3
2 H‘L(p_or “T=00) (Zpo-1)
= £'"(po = 4po-3
T ??W%ET% (500-3)(po-1)

6 _ f""(po) _ 1
7 (0o) po-3

Then d; = +n, d, = n& and d; = n(&-vy)

1(r-8)

dlb = n(g E_.Y

Substitution into the continued fractions leads to:

or

' = po - N
I-(-n%)

I-n(y-%)

For simplicity, consider the first numerator. Then expand-
ing as a binomial series and just choosing the first two

terms, the equation leads to:



Substituting equation (5.65), n and & into the above equa-

tion leads to

[N
N = W(l - po - Po A - 00(500-3) . A2

..... ) (5.68)
I1-Zp9 (1-2p06) % (1-po)

where

_ 1 - /1-4/W?

Po = i

The inverse transformation function has now been obtained
by the two methods. Comparison of the two equations (5.63)
and (5.68) shows that the first three terms of both equa-
tions are exactly the same except that the second method,
continued fractions, provides one more term. It is also
clear that the second method was more efficient. The first
method, however, can be more useful in some special cases.

Returning to the solution of the problem of Figure
5.7(A) and equation (5.46), the complex potential functions
will now be obtained following the general procedure pre-
sented in section II.3.

Let ¢°(Z) and ¥°(Z) be the complex potential functions
for the problem of Figure 5.7(B) and ¢*(Z) and ¥*(Z) be
the complex potential functions for the problem of Figure
5.7(C). Hence, the potential functions for othe problem

of Figure 5.7(A) are
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$°(Z) + ¢*(2)

$(Z)

¥(Z) YO(zZ) + ¥*(2) (5.69)

where ¢°(Z) and ¥°(Z) are known [27]. The transformed
complex potential functions of ¢*(Z<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>