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ABSTRACT

INVESTIGATION OF METHODS OF ANALYZING

HIERARCHICAL DATA

By

Boonreang Kajornsin

In recent years researchers have become more cognizant of the

problems of analyzing hierarchical data. It has become increasingly

evident that efforts to investigate the relationship among educational

variables have suffered from a failure to understand complications

caused by hierarchical data. When faced with the analysis of hier-

archical data many researchers have proposed alternative ways of

analyzing such data.

The general purpose of this dissertation was to investigate

various alternatives used to analyze hierarchical data by applying them

to a set of simulated data. This study extends the regression model

presented by Burstein, Linn and Capell (1978) to its multivariate form.

The model used to simulate the data is the random effects model. The

main assumption used in this model is that there is homogeneity of the

within-group regression coefficients. The main concern of this dis-

sertation is to determine which approach gives the best estimates of

the between and within regression coefficients in terms of accuracy

(least amount of bias) and in terms of precision for various situations.

The bias ratio of each estimator was also computed to facilitate com-

parisons.

Two situations were investigated in this dissertation. The first
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situation was one in which there were both individual level predictors.

which were aggregated to the group level and predictors which were

defined only at the group level. The second situation was one in

which there were only individual level predictors which could be ag-

gregated. For each situation, three different data sets were genera-

ted; first, there were no group level effects; second, group level

effects were equal to the individual level effects; third, group level

effects were not equal to the individual level effects.

The simulation results showed that all analysis approaches gave

the same estimates of the pooled within-group regression coefficients

for all six cases with good precision and small bias ratios.

In the situation where there were both individual level predictors

which were aggregated to the group level, the group level analysis

approach, full model analysis approach and substraction analysis

approach all gave essentially the same estimates of the regression

coefficients defined for the group level variables. In the case where

there was no group level effects, the two stage analysis approach gave

better estimates of the regression coefficients defined for the group

level variables than for the other three approaches. In the case

where the between-group regression coefficients were equal to the

pooled within-group coefficients, all four approaches gave essentially

the same estimates of the regression coefficients defined for the group

level variables. In the case where the between—group regression coef—

ficients were not equal to the pooled within-group regression coeffi—

cients and when the intraclass correlations were low (about 0.30) all

four approaches gave the same estimates, but when the intraclass cor-

relations were high (about 0.90) the two stage analysis approach did



Boonreang Kajornsin

not give estimates of the regression coefficients as good as those

given by the other three approaches.

In the situation where there were only individual level predictors

which could be aggregated to the group level, the simulation results

showed that for all three cases, the full model analysis approach and

the subtraction analysis approach gave exactly the same estimates of

the between-group regression coefficients but they were not close to

the true parameter values. The group level analysis and Bock appli-

cation approaches gave estimates of the between-group regression coef-

ficients that were not that different from each other and were also

close to the parameters. When the intraclass correlations were high

(about 0.90), the group level analysis approach seemed to give better

estimates of the between-group regression coefficients, but the Bock

application analysis approach gave better estimates when the intraclass

correlations were low (about 0.30) in the case where the between-

.group regression coefficients were not equal to the within regression

coefficients. When the between-group regression coefficients were

equal to zero, the Bock application analysis approach gave better

estimates of the between-group regression coefficients than the group

level analysis approach. However, when'the between-group regression

coefficients were equal to the pooled within group regression coef-

ficients, the two approaches gave essentially the same estimates for

the between-group level analysis approach.
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CHAPTER I

STATEMENT OF THE PROBLEM

In recent years, the problems of analyzing hierarchical data have

been well known among researchers. It has become increasingly evident

that efforts to investigate the relationship between variables have

suffered from a failure to understand complications caused by hier-

archical data. Most educational data are hierarchically arranged,

i.e., students are grouped into classrooms which are grouped within

grade levels and within schools. The schools are also grouped within

school districts and these in turn are also grouped within state educa-

tional administrations.

Consider the problem of modeling the effects of school structure

on student achievement. Suppose we are interested in the effects of

some characteristic of school structure on achievement. There is a

systematic sorting of families into school districts that produces a

correlation of individual student attributes with school characteristics.

Therefore, an1 adequate description of the achievement process must

contain both student characteristics and school characteristics.

The practical problem is that the researcher may either analyze

individual level data (e.g., regressing individual achievement on

student characteristics and school characteristics) or he may analyze

school level averages (e.g., regressing average achievement on average

individual characteristics and school characteristics). Hannan and

Young (1976) have shown that in most realistic situations (i.e., when

models are not perfectly specified) results of the two different

analyses will be quite dissimilar.



Bidwell and Kasarda (1975) argue that when the question is posed

at the school level, the school level regression is most appropriate.

Hannan, Freeman and Meyer (1976) point out that researchers seldom

adequately specify school-level processes that are anything more than

the sum of individual—level processes. The causal arguments are con—

cerned with the impacts on individual students which are composed of

school—level outcomes. Consequently, the choice of level is open to

question.

Wiley (1973) points out the problem of analyzing data when using

large numbers of correlated explanatory variables. He indicates that

when variables defined at the level of the individual pupil are ag-

gregated to the level of the school their correlations tend to increase.

As a consequence, in the presence of large numbers of such variables,

effective analyses are hindered by excessive collinearity (high rela-

tions among independent variables). When the number of such collinear

variables becomes very large, the effects of individual variables

become very difficult to detect. Whenever variables are defined at

the school level, the appropriate unit of analysis is the school and

the number of degrees of freedom available is limited to the number of

schools.

Research on the differences between multiple regression models

applied at different levels of aggregated data indicates three things:

1) there are substantial differences in the magnitude of regression

coefficients across aggregated levels for specific models; 2) different

variables enter the models at different levels; and 3) aggregation of

individual characteristics generally inflates the estimated effects of

pupil background and thus decreases the likelihood of identifying



teacher and classroom characteristics that are effective. The results

cited above are not very comforting for the researcher who wishes to

draw conclusions about educational processes at one level but is

constrained to analysis at a different level.

When faced with the analysis of hierarchical data many researchers

have tried to propose alternative ways of analyzing such data (e.g.,

Keesling and Wiley, 1974; Cronbach and Webb, 1975; Keesling, 1976; and

Burnstein, 1976).

Keesling and Wiley (1974) prOpose a two stage analysis of hier-

archical data. They set out to define a model for disentangling the

effects of variables defined solely at the school level from those

defined at the level of the pupil.

Cronbach (1975) claims that the overall between-student coefficient

from the regression of individual outcome on individual outcome on

individual explanatory variables is a composite of the between groups

regression coefficient and the pooled within—group regression coef-

ficient. He recommends that between group effects and individual within

group effects should be examined separately.

According to Keesling (1976), to obtain the correct estimates of

the between school regression coefficient at least two models need to

be examined. These two models are a school level model and an indivi-

dual within school level model. Keesling recommends subtracting the

within school regression coefficient from the between school regression

coefficient to obtain the correct regression coefficient appropriate to

school level effects.

Burstein (1976) proposes an alternative approach by suggesting

the examination of determinants of heterogeneity of the within class



SIOpe. He suggests that the first step is to find the specific within

class adjusted intercept and SIOpe. The second step is to fit a model

at the class level with the adjusted intercept and slope used as out—

come variables and the class level explanatory variables used as

independent variables.

The general purpose of this dissertation is to investigate various

alternatives used to analyze hierarchical data by applying them to a

set of simulated data. This study extends the regression model

presented by Burstein, Linn and Capell (1978) to its multivariate form.

The model used to simulate the data is the random effects model. The

main assumption used in this model is the homogeneity of the within

group regression, that is, in contrast with Burstein's approach which

suggests allowing for the heterogeneity of the within group regressions.

The main concern of this dissertation is to determine which approach

gives the best estimates of the between and within regression coef-

ficients in terms of accuracy, least amount of bias and in terms of

precision for various situations. In other words, this dissertation

is concerned with determining how correctly the alternative procedures

tend to work, i.e., how similar the estimated coefficients at the

group level are to the known parameter values, and if the conclusions

arrived at under each analysis approach are the same.

Two situations are investigated. The first is where there are

both individual level predictors which can be aggregated, and predictors

defined only at the group level. For example, the predictors could be

length of the school day (group level), and average home background

(individual level aggregated to the group level). The second situation

is where there are only individual level predictors which are aggregated.



For example, the predictors are average home background, and average

pretest scores (both individual level variables aggragated to the

group level). For each situation, three different populations are

investigated; first, there are no group level effects; second, group

level effects are equal to the individual level effects; third, group

level effects are not equal to the individual level effects.

For the first situation, four analytical approaches will be

investigated; a two stage least squares—analysis recommended by

Keesling and Wiley, 3 group level analysis approach using only averages

recommended by Cronbach and Webb, a full model analysis approach

recommended by Keesling. For the second situation, four approaches

will be investigated: the group level analysis approach, an approach

’based on Bock (1968) using his method of estimating heritable varia-

tion in twin studies, the full model analysis approach and the sub-

traction analysis approach.

The method of investigating these various approaches will involve

the use of simulated data which are generated by computer algorithms

where the population parameters are known. For each pOpulation, fifty

samples were generated. By analyzing fifty samples, one can compare

1) the empirical distribution of the estimator for each analysis

approach to the others and 2) the empirical standard errors of the

parameter estimates. These results can be used to help determine the

appropriateness of each of the analyses for different data situations.



CHAPTER II

REVIEW OF THE LITERATURE

Traditionally, in a situation involving heirarchical data, a

variety of competing points of view have been cited as justification

for the choice of either pupils or groups (classroom, schools, etc.)

as the unit of analysis. Hannan (1976) has shown that in most inexact

cases (i.e., when the models are not perfectly specified) results of

individual level analyses and group level analyses will be quite

dissimilar. This finding makes the choice between models extremely

important. This section will review the methodologies that some invest—

igators have used to analyze multi-level data.

Cronbach and Webb (1975) reanalyzed a study by G. L. Anderson.

Anderson reported finding an interaction of drill and meaningful methods

of arithmetic instruction with student ability and achievement. Drill

was found to be superior for "overachievers" and meaningful instruction

for "underachievers" in 18 fourth-grade classrooms. Pretest measures

used in the study were the Minnesota School Ability Test and the Compass

Survey Test. Cronbach and Webb argued the importance of separating the

regression effects into the between—class and within—class categories.

In their reanalysis, separating between—class and within-class regres-

sion components of the outcome on aptitude, the Aptitude by Treatment

interaction finding disappeared. An apparent interaction in the

between-class analysis was dismissed as unreliable. No interactions

were found within classes. Finally, the concluded that studies of

interactions usually have not been powerful enough to evaluate outcome



on aptitude regressions accurately. Using the class as the unit of

analysis, even the rather large Anderson study could not set narrow

confidence limits on the regression slopes. They urged investigators

collecting data on intact classes to examine between group and within

group regressions separately.

Keesling and Wiley (1974) discussed the problem of disentangling

the effects of variables defined solely at the level of the school

(e.g., length of the school day or the highest degree held by the

principal) from those defined at the level of the individual pupil

(e.g., home background characteristics). They summarized the model

implicit in this situation by:

= + ' + +0! +

Y.. Yo -l-§i 01 & zij e

13 1}

where Yij is the outcome of the jth_pupil in the ith school, Yo is an

'

additive constant,_l is the vector of adjusted effects of school

characteristics on Y’-§i is the vector of school variables for the

ith school, Oi is an error component defined at the school level, 8'

is the vector of adjusted effects of individual characteristics on

Y,_§ is the vector of the characteristic of the jth individual in the

13'

i£h_school, and Eij is an error component defined at the individual

level.

In the context of hierarchically defined educational data, they

proposed three alternatives to obtain appropriate adjusted estimates

of the effects at the individual and school levels. The first alter—

native was to assume that the model was completely specified at the

school level, i.e., all of the school variables relevant to the out-

come are included in the model. Then the covariance (Oi, Xi) is equal

to zero, where:i is the mean of Xij for the ith school. This model



implies that individual level variables have direct impact on outcomes

only at the level of the individual; their effects at the school level

are mediated through other variables defined at the level of the school.

The second alternative was that if all the mediating variables

at the school level were not specified in the model, then the covariance

(0:, 2;) was not equal to zero where O: was the residual from the

measured school variables. In this case, the fitting of the model will

produce a biased estimate of 8, This source of bias may, however, be

eliminated by performing an analysis based on the variation within

schools. This may be done by subtracting the relevant school means

(school effect values) for the criterion variable and for each of the

pupil level explanatory variables from each of the individual values

for these variables. An analysis performed using these deviated values

will be adjusted for all sources of variation among schools. The

covariance matrix of the deviated values is called the pooled within

school covariance matrix. If this covariance matrix is computed for

all individually defined variables and used as the basis for the regres—

sion of the outcome on the fiij’ the resulting estimate of §_will not be

biased by specification errors at the school level.

After the adjusted effects of the individual level variables are

found, the average effect value for each school, aggregated over all

the individual pupils, may be subtracted from the criterion mean for

each school. Analyses using the school as a unit with variables

defined at the level of school as the independent variables and the

modified criterion means as the dependent variable will produce esti-

mates of the effect of the school variables adjusted for the effects

of individually defined variables. The model at the school level



becomes:

’

Yi-é’gi=yo+lgi+¢i

where T; is an achievement mean for i£h_school, éfgi is the estimated

average effect value for ith school, yo is the constant, l’is the

vector of the adjusted effects for the school variables, and oi is an

error component at the school level. Using this model, the analysis

will produce unbiased estimates of Y0 and l in the absence of specifi-

cation error.

The third alternative was that if there was some specification

bias at the level of the school-defined variables (i.e., some impor-

tant variables are missing) then the covariance (Oi, Xi) is not equal

to zero and the covairance (¢i, 2%) is not equal to zero, either.

Some of the biases in the estimate of 1_can be removed by including

the sum of the average effect values (8521) of the individually defined

varialbes as another variable in the school level analysis. The model

then becomes as follows:

I. +' + _ +
1 Yo 151 A<§2<—i) ¢1

This technique allows the partial removal of some of the additional

bias due to the omission of relevant school level variables to the

extent that the sum of these average effect values is correlated with

the omitted variables.

Rock, Baird, and Linn (1972) studied the interaction between

college effects and students' aptitudes. They claimed that their

approach was designed to find groups of colleges that are about equally

effective for students with various levels of initial performance.

Then the characteristics of the identified criterion groups were com-

pared to see which characteristics were related to the relative
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effectiveness of the groups. Their method attempted to provide an

intuitively simple approach which identified both overall college

effects and effects which interact with student ability. Specifically,

four steps were carried out: 1) all within school regression lines

were computed, i.e., Graduate Record Examination (GRE), area tests were

regressed on the College Entrance Examination Board, Scholastic

Aptitude Test (SAT) scores within school; 2) Ward's (1963) hierarch-

ical clustering technique was applied to group schools in the basis of

the similarity of their regression lines; 3) multiple group discriminant

functions using the estimates of the regression parameters as the

group discriminants were computed to test whether the newly formed

groups differed with respect to their pooled regression lines; and

4) discriminant functions using college descriptive variables as the

group discriminants were then computed. This method thus identified

criterion clusters of colleges that differed in effectiveness by

clustering on the SIOpe, the mean SAT scores of the students, and the

intercept. Therefore, one can identify and grouI3colleges that have

different levels of initial ability. Then the simultaneous evaluation

of the college along with the relative slopes of their pooled within

group regression lines indicated the college characteristics which

are associated with overall as well as differential effectiveness.

Burstein (1976) discussed two examples of multi-level analyses

found in studies by Rock, Baird and Linn (1972) about the interaction

of student aptitude and college characteristics and by Keesling and

Wiley (1974) in which they reanalyzed a subset of the Coleman data.

He stated that each method has certain merits and certain drawbacks.

The Keesling and Wiley approach provided effect parameters more nearly
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mirroring the structural form of school effects than the Rock, Baird

and Linn approach or the usual single level analysis models. Burstein's

concern was that the Keesling and Wiley approach fails to adequately

reflect the effects of between class differences in SIOpes. Moreover,

treating the resulting clusters as groups in a discriminant analysis

as Rock, Baird, and Linn did discarded any metric differences existing

among the clusters and thereby eliminated the possibility of describing

school effects in structural terms. The use of discriminant groups

results in some loss in generalizability of findings that should be

avoided. In the same paper Burstein also criticized Cronbach's approach

that recommended analyzing between class and within class separately

when intact classrooms are sampled. Burstein said that the between

class and within class analyses did not remove the need for concern

about homogeneity of regression.

Burstein proposed an alternative multilevel analysis atragety

that consisted of two stages, as follows:

1. perform within class regression (not pooled) of outcomes on

input, and

2. use the parameters (a,8) from the within class regressions

as "outcomes" in a between class analysis.

Burstein claimed that his strategy combined certain features of

approaches by Keesling and Wiley and by Rock, Baird and Linn. The

technique of using the within class parameter estimates as outcomes

should lead to more sensitive interpretation of effects and clearer

policy implications of the findings.

Burstein and Miller (1979) stated that because of its hierarchical

organization, the effects of schooling on individual pupil performance
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can exist both between and within the levels of the educational system.

Moreover, analyses at different levels address different questions and

thus analyses conducted at a single level were inherently inadequate.

While analyses of the relationships between "treatment" dimensions and

the mean outcomes of groups often provide useful information, impor-

tant differences in within group processes may be obscured. These

within group processes may arise due to group composition (e.g., ability

level and mixture affecting participation patterns), differential

allocation of instructional resources among the members of the group

(e.g., the grouping and pacing features of reading instruction), or

differential reactions of group members to the same instructional

treatment (aptitude-treatment interactions).

If important group-to-group differences in within group processes

exist then the use of group means as the only indicator of group out-

comes will result in misleading estimates of group (teacher, class,

treatment) effects.

Burstein and Miller's interest in alternative measures of group

outcomes has concentrated on the properties of the within-group slopes

from the regression of outcome on input. They have argued that within

group slopes are group level indicators of within group processes.

Their reason for considering slopes as outcomes was that there may be

instructional effects on the within group regression of outcomes on

input, whether there were instructional effects were present, the

analysis should attempt of isolate instructional process and practice

variables that were associated with slope variation. If such variables

can be found and alternative explanations cannot be ruled out then

variation in SIOpes becomes an important source of information for
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researchers and policy makers, especially when considered along with

effects on other group level outcomes.

Keesling (1976) presented a model for analysis at two levels of

aggregation (e.g., pupil and school). The multivariate random effects

model for this situation is:

= + + ' = .....‘Xij E. 2i Eij 1 1,2, ,k

j = 1,2,.....,n

all vectors are p x 1. This implies 2y = 2a +ifassuming that there are

k groups of n units, each unit having measures on p variables.

The above model, adopted from Schmidt (1969), was comprehensive

in that it permitted the estimation of effects and their standard

errors at both levels of aggregation simultaneously. Keesling, however,

did not analyze the data by using Schmidt's procedure.

Two sets of data were presented. One set dealt with data con-

structed to a particular specification. The second set dealt with

real data of a two-level nature. He analyzed data under three models.

The first model used pupil post-test score as the dependent variable,

ignoring the group structure in the data, and pretest, SES, average

pretest, average SES and hours per month of principal absence as pre—

dictors. The second model used school mean post—test as the depen—

dent variable, average pretest, average SES and hours per month of

principal absence as predictors. The third model used pupil posttest

score within school as the dependent variable with pretest and SES as

predictors. The results suggested that in order to obtain both the

correct parameter estimates and the correct standard errors, it is

necessary to perform at least two analyses. The first model gave the

correct parameter estimates, but it did not partition the residual sum
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of squares by level of effect. The second model gave the aggregate

level standard errors, but the parameter estimates were the sum of the

between and within effects. The third model obtained the apprOpriate

estimates and standard errors for the within school effects. The

second and third model may be combined to produce correct estimates

of the between school effects by subtracting the within school

estimates from the between school estimates.



CHAPTER III

ALTERNATIVE APPROACHES FOR ANALYZING

HIERARCHICAL DATA

Of the different alternatives prOposed to analyze the hierarchical

data, four were selected for comparison in the present study. The two

stage analysis approach which was recommended by Keesling and Wiley,

group level analysis approach which was recommeded by Cronbach and

Webb, full model and 'subtraction. analysis approaches which were recom-

mended by Keesling, and Bock application analysis approach will be dis-

cussed in this chapter.

Consider the following general situation where person j is a

member of group i. The person has a set of scores, £1. and Yif’ Also

available are a set of explanatory variables defined only at the group

level which is denoted as 21. The relationship of}:ij and ii to Yi

can be decomposed into between group and within group components as

given in equation (3—1).

(3-1) Y..=u+§'(y_ —£)+B'(Z.-u)+6,+

13 Y 3 xi x ‘—Z *1 -—z 1

V _ _ 1 _

E-(Kij u i) + (8i E) (Eij 3x1) + Eij

where u , U and u represent the population means, u represents the

y -z —x —xi

i£h_group population mean,__8_a denotes the between-group regression

coefficients for the individual level variables, 82 represents the

regression coefficients defined for the group level variables, 8

represents the pooled within-group regression coefficients for the

15
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individual level variables, and Ei represents the specific within—group

regression coefficients for group i for the individual level variables.

The (Si and Eij represent the error at the group level and at the indivi-

dual level, respectively.

This study will deal with the case where all within group slopes

are equal, resulting in (B1 - B) being equal to zero. The model for

the first simulated case is:

.. = ' - + V' - +S +(32) Yij uy+§a(ui 11) 52(51 112) (i

8'(X. - u ) + e

-—13 -x. 13

1

Let a = u -

-x. —x, -x

1 1

a = Z. - u

—z. —1 ‘-z

1

a = X..- H

—x.. -1 —x.

13 1

The equation (3-2) can be rewritten as equation (3—3):

(3—3) Y.. = u + B'a + B‘a + Ci + B'a + 6,,

13 y -—a—xi --z—zi ---—xij 13

This implies that the variance of Y is:

(3-4) Var(Y) = B'zxa + 3'22 8 + q2 + s'zxs + 02
—aa—a —Za-Z a _ —

X . . . 7. .

where Ea is the between level variance—covariance matrix of g, 2a 18

. O l x I O O

the between level variance-covariance matrix of g, 2 IS the within

level covariance matrix of x, o: is the error variance defined at the

group level and ozis the error variance defined at the individual level.

Then there are only individual level explanatory variables, the

model is:

-' Y = + ' - +18 "l' ' -

(3 5) ij uy Ea (3x1 Bx) i E- (éij 'Exi) + Eij

And the variance of Y is:
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(3-6) Var(Y) = £328? + o: + @ng + 02.

The five alternative analysis approaches (two—stage analysis,

group level analysis, full model analysis, subtraction analysis, and

Bock application analysis) that are investigated in this dissertation

can be related to the models as given in equations (3-2) and (3—5)

for the first and second situation, respectively. In the following

pages, the procedures of each alternative approach is discussed.

Two Stage Analysis Approach
 

The two stage analysis approach was recommended by Keesling and

Wiley (1974). Wiley mentions that one of the problems in the analysis

of multi-level data has been separation of the effects of the aggregated

variables into parts reflecting their individual level effects on one

hand, and their effects via school climate and organization on the other.

One way to describe an appropriate method of analysis of hierarchical

data is in terms of the general notions of statistical confounding and

control. If we wish to assess the impact of how one explanatory vari—

able is correlated with another one, then if we ignore the second, we

will attribute to the first not only its effect, but also a spurious

effect which is due to the correlation between it and the second, and

the effect of the second. If we utilize an apprOpriate method of

analysis which takes into account the second variable, i.e., its

effects and its relationship to the first, we may obtain an adjusted

assessment of the effect of the first variable which is not confounded

by the second.

Keesling and Wiley set out to define a model for disentangling

the effects of variables defined solely at the school level from those
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defined at the level of the pupil. The process of disentanglement

involves two stages. The first stage adjusted the effects of indivi—

dual background characteristic on outcome for the effects of the

schools in which the individuals receive instruction. The second stage

used the adjusted effects of individual level variables aggregated

over pupils within schools to determine the adjusted effects of school

level variables. In practice, they carried out the following:

1. Determine the pooled within-school slopes under equation (3—7).

3—7 Y = u + 8' X.. - u ) + 6..

( ) ij yi “(‘13 —Xi 13

i = 1, 2, . . ., k; j = 1, 2, . . ., n

j is the outcome of the jth subject in the ith_school, uy is

i

the population mean of the ith school, gij is the vector of explanatory

where Yi

variables of the j£h_subject in the ith_school, and B is the vector

of pooled within—school slopes.

An analysis using the school mean deviated values of both explana-

tory and criterion variable will effectively "control" or adjust for

all sources of variation among schools. The covariance matrix of the

deviated values is called the pooled-within school covariance matrix.

If this covariance matrix is computed for all individually defined

variables and used as the basis for the regression of the outcome on

the set of explanatory variables, the resulting estimates of §_will

not be biased by specification errors at the school level.

2. Find the mean predicted outcome for each school.

_. A =A 4-".A —-A
(3 8) uy. uy §_(gx. Ex)

1 1

where u is the mean predicted outcome for the ith_school.

i

3. Fit a model at the school level regressing the observed school
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mean outcome on school level explanatory variables and predicted

school mean outcomes,

_ v _
(3-9) uy - my +_§z(§i .32) + Any + 61

i i

where 82 is the vector of adjusted effects of the school level varia-

bles, 2i is the vector of the school level variables, 61 is the error

defined at the group level, Ais the coefficient allowing for partial

removal of some of the additional bias due to the omission of relevant

school level variables (to the extent that the sum of these average

effect values is correlated with the sum of the average individual

level effect values represented in u ). If all relevant school level

1

variables are included, then Anwill be equal to one.

 
Group Level Analysis Approach

Cronbach (1976) mentions that in the situation where pupil j is

a member of group i, Bt’ the overall between student coefficient from

the regression of Yij on X .,

iJ

- = + - +(3 10) Yij uy Bt(Xij ux) eij

has been shown by Duncan, Cuzzort, and Duncan (1961) to be a composite

of 83, the between group regression coefficient and B, the pooled

within-group coefficient;

- = 2 _ 2
(3 11) 8t nXBa + (1 nx)8

where n: is the correlation ratio of X.

 

22 2
x . - u .

(3—12) n2 = 1 - 11~( 13 X1)
X XX (X _ )2

ij ij “x
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Cronbach indicated that analyses at the group level and the

individual level give conflicting descriptive results because they

speak to different substantive questions. The investigator who wants

to know the relationship between two variables is not asking a clear

question until he tells whether the group or individual level relation—

ship is the one of interest. He recommended that between group effects

and individual within group effects should be examined separately. He

proposed the following:

1. Between groups:

(3-13) uyi = uy + EAQI — £2) + _B_(,:l(y,Xi — 10+ 61

where the 82 is the effect of school level variables on mean outcomes,

and Ea is the between groups effect that reflects any consistent tendency

of higher-X groups to do better or worse than others on the outcome

measure.

2. Pooled within groups:

3-13 Y.. = u + 8' X.. - u + 6..

< ) 13 yi “ (‘13 -_Xi) 1]

where §_is the common within-group effect that reflects the tendency

for students above the group average to outperform or underperform

the rest of the group.

Subtraction Analysis Approach
 

In the situation where subject j is nested within group i, Keesling

(1977) analyzed constructed data to show how well ordinary least square

estimators can retrieve the information. He analyzed the data under

two models, as follow:

1. The group level model uses group mean outcome as the indepen-

dent variable:



21

(3-15) uyi = uy ”'15-;‘51 - 112) + Eg'Qin - ix) + 61

Keesling claimed that this model gives the aggregated level standard

errors, but the parameter estimates are the sum to the between and within

effects.

2. The within group model is the model that uses the individual

level outcome variable within groups as the dependent variable. Accord-

ing to Keesling, this model obtains the apprOpriate estimates and

standard errors for the within group effects.

(3—16) Yij = 11y. +§ (£13, - 3x.) + 513’

Keesling concluded that to obtain the correct estimates of the

between school effects at least these two models need to be performed

and then substract the within group estimates from the between group

estimates. That is,

3 l7 - *<— > fia-éa-E

A

wherefia is the correct between group effects, 88 is the estimate of

the between groups effects using the group level data and_§ is the

within group effect.

The Full Model Analysis Approach
 

The full model is the model that uses the individual level outcome

variable as the dependent variable. The explanatory variables are:

l) the variables defined at the individual level but which can also

be aggregated, 2) the means of the variables defined at the individual

level, and 3) the variables defined at the group level only. The model

is shown in equation (3-18).
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(3-18) Yij = uy + a2 (a, - 1.1.2) + £8 (3X1 ' 1%,.) + $5- ‘Eij ‘ Ex) + Co

where uy’-Ez and Ex are the population means,_y_xi is the ith group popu-

lation mean,§a represents the between—group regression coefficients

for the aggregated individual level variables, 82 represents the regres—

sion coefficients for the group level variables, 8 represents the

pooled within—group regression coefficients for the individual level

variables, and t. represents the error defined at the individual level.

13

Keesling (1977) at one time analyzed the heirarchical data under

the full model. He mentioned that this model gave the correct parameter

estimates, but it did not partition the residual sum of squares by the

level of effect.

Bock Application Analysis Approach
 

In the situation where there are students nested within schools

and the school is a random variable, the model is the random effects

model. In this dissertation, there is one dependent measure and two

antecedent measures for each subject; the random effects model is:

W,, = u + a, + e,, , i = 1, 2, . . . ., k.

—13 - -1 ~13

where all vectors are 3x1 in this application, Eij is the response

vector representing the dependent, and antecedent measures,_p is vector

of the population means on each measure, 2i and;ij are the random

vectors assumed to be multivariate normally and independently distri—

buted with zero mean vectors and covariance matrices Xa andllrespectively.

The above model implies 2w = 2a + X, where 2w is the total variance
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covariance matrix, 23 is the between school variance matrix, and X is

the within school variance covariance matrix.

The use of the Bock application approach is to provide an estimate

of 28 which is at least a positive semi—definite variance covariance

matrix, and then from this matrix to estimate the group level regression

coefficients. Bock's method is presented in the context of twin studies

and is used to estimate the component of heritable variation. A more

detailed description of this approach can be found in Bock (1968).

Under the random effects model, the expected value of the mean

square matrix between schools is E + n23, and the expected value of

the mean square matrix within schools is I.

Let S X + n2

3 a

S = X

Then for a symmetric positive definite matrix S and a symmetric

positive definite matrix Sa’ it is possible to find a nonsingular

transformation T such that

¢
_ I

(3 19) T SaT

(3-20) T'S T I

where ¢ is diagonal with positive diagonal elements, and I is an

identity matrix. The columns of T are the solution of a system of

homogeneous equations of the form:

Q

(58 — ¢18)t = 0, l = l, 2, 3, and ¢1 IS a root of

Is - <I>SI =0.
a

In practice, the estimate of S is the mean square matrix within

schools, that is obtained from the equation (3-21).

k

(3-21) 3 = ———1——— 2 (14.. - w.)(w.. — w.)'
i ‘—1J - ~1k(n - 1) 1 —Tj

u
-
P
T
S



24

where W_. is the individual response vector, W_ is the group mean

13 1

vector, k is the number of groups and n is the number of subjects in

each group.

<
1

Yij _ i

z

I

l
x
l

Xij

The estimate of Sa is the mean square matrix between schools that

is obtained from the equation (3—22).

 

k

_ = z - _ '(3 22) 83 k _ 1 n1 (34,i y)<yi 59

Y’

where W_is the grand mean vector. W_= __ .

X

From equations (3-19) and (3-20),

T'SaT - T'ST = ¢ - I

T'(Sa - S)T = ¢ - I

T'nX T = ¢ -1

a -1 1

28 = [(T )'<¢ — I)T’ ]/n

Practically, for the elements in the columns of T the discriminant

function coefficients are substituted and for the elements of ¢ the

corresponding significant canonical variances ¢ (1 = l, 2, . . . , s)

l

and p -s unities are substituted (p is the dimension of T). This esti—

mate has the following properties. Because the elements of the diagonal

matrix (¢ -I) are non-negative, it can be expressed as the product of

a matrix and its transpose and is therefore positive semi-definite.

Its rank is s and its nullity is p - 3. When all of the canonical var-

iances are significant (8 = p),

A

X

a

-1 —1

[(T )‘(T'SaT - T'ST)T ]/n

[88 - S]/n
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where S8 is the estimate of mean square matrix between schools and S

is the estimate of mean square matrix within school.

The between school covariance matrix (23) estimated in this way

and guaranteeing positive semi—definiteness can then be used to estimate

the between school regression coefficient.



CHAPTER IV

SIMULATION PROCEDURE

Simulation procedures were used in this study to generate the

data. The use of simulated data enables us to determine which method

of analyzing hierarchical data gives the best estimator, in terms of

accuracy and precision, of the parameters under various situations.

The bias ratio of each estimator was also computed to facilitate com-

parisons. Two situations were investigated in this dissertation. The

first situation was one in which there were both individual level pre-

dictors which can be aggregated to the group—level and predictors

defined only at the group-level. The second situation was one in which

there were only individual—level predictors which can be aggregated.

For each situation, three different data sets will be generated. These

are described in the following ways:

1. No group level effect. The between-group regression coef—
 

ficient is set to zero, but the within-group regression coefficient is

non-zero. This case implies that there is no group level effect

(i.e., Ea = 0).

2. Group level effect is equal to the individual level effect.

The between group regression coefficient is not equal to zero but is

equal to the within—group regression coefficient. This case implies

that there is a group level effect, and that the group level effect

is equal to the within level group effect (i.e., Ea =.§ # 0).

3. Group level effect is not equal to the individual level effect.

26
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The between group regression coefficient is neither equal to zero, nor

equal to the within-group regression coefficient. This case implies

that there is a group level effect but it is not equal to the within-

group effect.

Description of Population Parameters
 

The data generated for the present study were from a multivariate

normal distribution with a mean vector B_and a covariance matrix X + 23,

where X is the within covariance matrix, and 2a is the between covariance

matrix. The between-groups and within—groups regression coefficients

(§_and 83), the within and between covariance matrix of individual

(X) (X)

a

level predictors (Z and 2 ), the between covariance matrix of

predictors defined at the group level only (2(2) ), the between covariance

matrix of predictors defined at the individual level and at the group

level (2(xz)), the error variance at the individual level (02), the

error variance at the group level (0:), and the population mean (3)

were specified in advance.

The study by Keesling and Wiley (1974) was used as a guide to

choose parameter values which would be reasonable. Three population

covariance matrices were constructed based on the model (3-2) and (3-5)

for the first and second situations, respectively. The six possible

total covariance matrices ( 2 + 23) were derived from the 3x2 crossed

design of possible combinations of pOpulation parameters and situations

(see Table 4—1). Fifty samples of 1,500 subjects each were generated

for each cell in Table 4-1. In each sample there were fifty schools

with thirty subjects within each school. The structure of the within

covariance matrix (2) and the between covariance matrix (23) for the
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Table 4-1

3x2 Design of POpulations Defining the Structure of (Z + Ea)

 

 

 

 

 

Both individual level Individual level

and school level varia— variables only.

bles.

E; g, g 3‘ g I-A II-A

= 8 # 0 I-A II—B
—a _. _.

_a E .8. E O
I-C

II-C

 

 

first and second situations are shown in Table 4-2. The vector of

populations means (2), pooled within-group regression

coefficient (8), between-groups regression coefficient (83), error

variance at the individual level (02), and at the group level (0:)

for both situations are given in Tables 4-3, and 4-4. The numerical

values of 2(x)’ 2(x)’ 2:2), Z:XZ)

, Z, and Z + 2a are given in Tables

4-5, 4—6, and 4—7.

The intraclass correlations of variables Y and §_are quite high

(about 0.6052 for Y and 0.6547 for g) in population I—C. In pOpula-

tion II—C, the intraclass correlations of Y and §_variables are all

about 0.98. Therefore, in order to check whether the analysis appro—

ches give the same result in the situation where the intraclass cor-

relations are not as high as the first set of data, a second set of

data for populations I-C and II-C were generated with a new set of

parameters as shown in Table 4-8 which have intraclass correlations of

(X) Z(X) Z(2)

’ a a

about 0.30. The numerical values of X , 2(XZ), z, z ,
’ a a
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Table 4-3

Parameter Values for the First Situation

 

 

I
T
:

l
o
o

‘
3
)

o

M

Q

N

Case

 

12.0810 1

1.3491 2.53 0 4.08

2.4587 0.32 0 2.15 0.5276 0.0812

6.8660

1.0511

1
L
l

p
-
l

r

2.0810

1.3491 2.53 2.53 4.08

1’3 2.4587 0.32 0.32 2.15 0.5276 0.8972

6.8660

1.0551   
12.0810 1

1.3491 2.53 1.45 b .08

1‘0 2.4587 0.32 0.89 N .15 0.5276 0.9547

6.8660   1.0511

J
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Table 4-4

Parameter Values for the Second Situation

 

 

 

  

  

2 2
Case p_ B_ Ba 0 03

"25.38101 2.53 0

II-A 12.5912 [9.32 0 0.5276 20.7321

11.4587
i—. .1

"25.3810j 2.53 2.53

II—B 12.5912 0.32 0.32 0.5276 32.7341

g1.4587_

25.38101 2.53 1.45

II—C 12.5912 0.32 0.89 0.5276 22.3454

  11.4587_
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Table 4-5

Population Covariance Matrices of the Predictor Variables

 

 

Covariance Matrices Situation I Situation II

 

(x) 0.0912 0.1901 0.0912 0.1901

3 0.1901 2.4775 0 1901 2.4775

2(x) 0.1729 0.1400 14.7149 2.9871

a

0.1400 0.3746 2.9871 25.8970

(2) 0.0072 0.0007 Not Applicable

3 0.0007 0.0009

2(xz) 0.0159 0.0065 Not applicable

a

0.0260 0.0088
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Table 4-8

Parameter Values of the Second Set of Data

 

 

 

  

Case u_ §_ Ea 82 0 08

"12.08101

1.3491 2.53 1.45 4.08 100.2311 22.3454

1-c 2.4587 0.32 0.89 2.15

6.8660

1.1'05113

52.08107 0.08 0.05 None 35.0000 11.9994

II-C 1.3491 0.76 0.95

  L245874
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and X + 2a for the new set of data are given in Tables 4-9 and 4-10.

Ten samples of 1,500 subjects were generated for population I-C and

twenty-five samples of 1,500 subjects were generated for pOpulation

II-C. Populations I-C and II—C were chosen to have additional data

generated in addition to the first set because these two cases are the

most realistic.

Description of the Generation Routine
 

The present study requires that data be generated from a multi—

variate normal distribution with mean p_and covariance matrix X + Xa’

where the within covariance matrix (X) and the between covariance

matrix (23) are specified as in Table 4—2. The generation procedure

is composed of five steps:

1. Specify the values for the parameters so that they approximate

the actual data. The Keesling and Wiley (1974) which analyzed real

hierarchical data was used as a guide. This provided values for the

pooled within—group regression coefficients (8), the between-group

regression coefficients for the individual level variables (88), the

regression coefficients for the group level variables (82), the

population means (2), error variance defined at the individual level

(02), and at the group level (0:) as shown in Tables 4-3 and 4-4 for

the first and second situation respectively. The population covar-

iance matrices of the predictors were also specified based on the

Keesling and Wiley study as shown in Table 4—5. The number of schools

(k) and the number of subjects in each school (n) were specified a

priori.

2. Compute the within and between covariance matrices (Z and Z )

a
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Table 4-9

Population Covariance Matrices of the Predictor

Variables of the Second Set of Data

 

 

 

Covariance Matrices Population I-C Population II-C

1(X) 36.3347 4.7243 81.0000 18.0000

4.7423 61.4263 18.0000 100.0000

2(X) 14.7149 2.9871 35.0000 11.6383

a 2.9871 25.8970 11.6383 43.0000

2(2) 0.0072 0.0007 Not Applicable

8 0 0007 0.0009

1(Xz) 0.0159 0.0065 Not Applicable

3 0.0260 0.0088
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between the outcome measure and the predictors as specified in Table

4-2.

3. Generate a random sample of k vectors ai, where-ai is multi-

variate normally distributed with mean vector 9_and covariance matrix

Ea. A random sample of k vectors 21 are generated with the following

procedure.

a. Generate 12 independent random variables which are uniformly

distributed between zero and one. Software for the CDC 6500 has been

developed which generates independent values of a random variable

which is uniformly distributed over the range (0, 1), the values zero

and one are excluded. This function, called Ranf, is described in

Fortran reference manual version four (1978).

b. Convert the values from a uniform distribution to values

from the normal distribution by TeichrOew's method to approximate the

inverse of the probability function for the standard normal distri-

bution. Teichroew used a polynomial approximation to evaluate the

inverse function. His procedure generates 12 independent random vari-

ables, Ul’ U2, . . . , U12, uniformly distributed between zero and one.

Then R is defined as (Knuth, 1968):

R = (U1 + U2 + . . . + U12 - 6)/4

The normal deviate, z is then approximated by:

_ 2 2 2 2
z — ((((a9R + a7) R + 85) R + 33) R + al) R

where a1 = 3.949846138

a3 = 0.252408784

a5 = 0.076542912

a7 = 0.008355968

a = 0.029899776
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For the first situation, each observation needed in this study

consisted of 5 measures. Those 5 measures are the outcome variable

(Y), two predictors defined at the individual level (X), and two pre-

dictors defined only at the group level (2). For the second situation,

each observation consists of 3 measures, the outcome variable (Y), and

two predictors defined at the individual level (x). Therefore, the

procedure from a to b is repeated to obtain a 5x1 vector_z for the first

situation and a 3x1 vector §_for the second situation which is normally

distributed with a mean vector of zero and an identity matrix as the

covariance matrix.

c. Transform E.t° a_where a'is normally distributed (g, 23). The

transformation is:

2.: TE

where T is the cholesky factor of 23. The cholesky factor is a lower

triangular matrix such that TT' = Ea. This is used because the covariance

matrix of the transformed variables a is:

Var(a) = T Var (§)T'.

In this case, Var(§) is the identity matrix. Thus,

Var(a) = TT' = 23

which gives the desired result (Morrison, 1976). After the transforma—

tion, a is multivariate distributed normally with mean vector Q_and

covariance matrix 23.

4. Generate a random sample of kn vectors Eij where Eij is multi-

variate normally distributed with mean vector Q_and covariance matrix X.

A random sample of kn vectors Eij are generated with the same procedure

as used in the generation of vector 2i except that here we generate kn

vectors, and the covariance matrix is 2 instead of X



41

5. Add the k values of a1 and kn values of Eij to the p according

to formula (4-1) resulting in kn values of Eij' The values of 21 are

constant for the i£h_group, i.e.,

(4-1) W..=u+a +e
ij —- -i -ij

where W_ for the first situation1

l
x

and W_= for the second situation.

I
x

1
<

I
N

The program MYDATA (see appendix A) was written for this study to

generate a random sample of kn vectors of Eij where Eij is multivariate

normally distributed with mean vector u_and covariance matrix X + 28,

using the procedure described above.

For each sample the pooled within and between mean square matrices

(S and 88) are computed as shown in formulas (4—2) and (4-3) respectively:

1 k n

- - 'Z X (Wij Wi) (W,, W1)

(4'2) 5 = k(n — 1) 1 j 13
 

where the expected value of S is the pooulation within covariance

matrix and the E(S) = Z and

k

(4-3) 3 = 1 n X (E. - E) (3i. - fl)‘
a k _ 1 i 1 1

where the expected value of S8 is the following:

E(S ) = Z + n2
a 3

Here, Ea is the population between levels covariance matrix. The

general structure of S is the following:
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where Sy is the pooled within variance of Y, Sxy is the pooled within

covariance matrix between X and Y, Sx is the pooled within covariance

matrix 0f.§-

To compute an estimate of the pooled within—group regression

coefficient (8) for any approach the formula (4-4) is used.

—1
(4-4) _8 — sX sxy

For the first situation where there are both individual level pre-

dictors and group level predictors, four approaches were investigated:

two stage analysis, group level analysis, full model analysis, and the

sUbtraction approach. The main concern is to estimate the regrassion

coefficients for the group level variables (82) by those four approaches.

For the second situation where there were only individual level pre-

dictors, four approaches were investigated: group level analysis, Bock

application, subtraction analysis and full model analysis. The main

purpose of each approach is to estimate the between group regression

coefficients for the individual level variables (88). The procedure

for each analysis approach is described in following sections.

Two Stage Analysis Approach
 

The procedure to estimate 82 by using the two stage analysis ap-

proach is the following:

1. Compute an estimate of the pooled within-group regression coef-

icient (89 using formula (4-4).
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A

2. Compute an estimate of the group mean (uy ) using formula

i

(4-5).

.. A =A+A'A _A
(4 5) uy' uy §_(gx Ex)

1 i

3. Compute 82 using equation (4—6) implemented by the Finn multi-

variance program (1972).

(4‘6) “y. = u + B'(z, - u ) + An + 6
1 y —2 —1 —2 y I

Group Level Analysis Approach
 

Under the group level analysis approach the 82 for the first

situation and_§a for the second situation are estimated separately

from 8. The Finn multivariance program (1972) is used to estimate B2

under equation (4—7) and pa under the equation (4—8).

(4-7) uy = uy + §z(_Z__i - 32) + §,(g . - Ex) + 6

ll

1
:

+ n
o

A

I
I
: I

1
:

v

+ 0
'
»

(4-8) H

yi 1

Subtraction Analysis Approach
 

For the first situation, Z variables are defined only at the group

level. The procedure of estimating 82 by the subtraction approach is

the same as for the group level analysis approach. The Finn multivariance

program is used to estimate 82 under equation (4—7).

To obtain the correct estimates ofpa in the second situation

Keesling recommends performing three steps as follows.

1. Compute estimates of the pooled within—group regression

coefficient (8) using formula (4—4). This step is to compute_§ under
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the model of (4-9):

(4-9) Y.. u + B'(X., -

1] Y

2. Compute the estimates of the between-group regression coef—

ficient (8;) with equation (4-10) using the Finn multivariance program.

_ = +7'c' _ +5

(4 10) uyi uy Ea (Ex. Ex) 1

3. Compute the correct estimates of the between—group regression

coefficients for the individual level variables (Ba) by using formula

(4-11).

<4-11) 8, = 8* - a
a

Full Model Analysis Approach
 

The full model analysis approach used the individual outcome as

the dependent variable, the individual level variables, the mean of the

individual variables and the variables that are defined at the group

level as the predictors. The Finn multivariance program is used to

estimate 82 for the first situation under equation (4-12) and Ea for

the second situation under equation (4-13).

(4-12) Yij = uy + §z(§i - £2) + Ea(B-x, - lJor) +

E. Qiij - ix) + Eij

_ = v _ 1 _
(4 13) Yij uy + §a(gxi 2x) + §_(§ij EX) + Eij
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Bock Application Analysis Approach
 

Bock's analysis approach provides an estimate of the between co-

variance matrix (Za) which is guaranteed to be at least a positive

semi-definite covariance matrix, and then from this matrix estimates

the regression coefficient. The’steps to this approach are as follows:

1. Use the Finn multivariance program to determine discrimination

function coefficients p1, and canonical variances 01 (l=l, 2, 3).

2. Compute the positive semi—definite between covariance matrix

(Ea) using formula (4-14).

(4-14) Ea = [(T)'1'( e - I)T'1]/n

where elements in the columns of T are the discrimination function

coefficients £1, and the diagonal elements of diagonal matrix ¢ are

significant canonical variances $1 (l=l, 2, . . . , s) and p—s unities

(p is the dimension of T and s is less than and equal to p). When all

canonical variance 0 are significant (s=p)

2 = -a [Sa S]/n

where S and Sa are within and between mean square matrices that are

computed by formula (4-2) and (4-3) respectively.

3. Using Ea to estimate Ea by formula (4—15).

A

(4—15) 8 = E(X)‘IE(XY)
—a a a

A

The general structure of Ba is the following:

“gm g<yxfl

a a

Z =

a

Ea(IXY) £(X)

a   
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“(y)
where Z

a

A x

X; y) is the between covarianceis the between variation of Y,

“(X)
of §_and Y, and 2a is the between covariance of X,



CHAPTER V

SIMULATION RESULTS

The simulation procedures employed in this study to investigate

the methods of analyzing hierarchical data were reviewed in Chapter IV.

The main purpose of this dissertation is to determine which approach

gives the best estimates of the between and within-group regression

coefficients in terms of accuracy (least amount of bias) and in terms

of precision for various situations. Six populations as shown in Table

4-1 were used as the basis from which the questions of interest were

explored. For each pOpulation, 50 samples of size 1,500 were gen—

1

erated. In each sample, there were 50 schools with 30 students nested

within each school. In order to confirm the emerging conclusions

resulting from the analyses, 10 additional samples for population I-C

and 25 additional samples for population II—C with the new set of

parameter values as given in Table 4—8, were generated. Data from

population I-A, I—B and I-C were analyzed by the two stage analysis

approach (as suggested by Keesling and Wiley), group level analysis

approach (as suggested by Cronbach and Webb), subtraction analysis

approach (as suggested by Keesling) and full model analysis approach

(as suggested by Keesling). Data from pOpulation II-A, II-B, and II-C

were analyzed by Bock application analysis approach, group level

analysis approach, subtraction analysis approach and full model analy-

sis approach.

The results of the data analysis of population I—A are shown in

47
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Table 5-1. All four approaches give good estimates of the pooled

within-group regression coefficients B1 and 82. The means of the

estimates of 81 and 82 over the 50 samples are 2.524 and 0.322 for

all four approaches while the values of the parameters of 81 and_82

are 2.530 and 0.320. The standarderrorsofé1 and 82 are 0.009 and

0.002 for all four approaches. The result of testing the hypotheses

that the mean of the estimates of the within—group regression coef-

ficients of all 50 samples are equal to the parameters 81 and 82 are

not significant at the 0.01 level (t = -0.667, t = 1.000). The ratios

of the bias squared to mean square error which are computed by formula

(5—1) for 81 and 82 are 0.008 and 0.028. The formula is:

2

(5-1) Bias ratio = (Bias)

mean square error

 

where Bias = average value of the estimates - parameter value and mean

square error = variance of estimator + (bias)2. We can conclude that

all four approaches give good estimates of 81 and 82 since the bias

ratios are quite small. The results of the hypothesis tests showed

that the means of El and 82 over the 50 samples are not different from

the values of the parameters 81 and 82.

The means of the estimates of 82 analyzed by the twoand 8

z1 2

stage analysis approach are closer to the parameters than the other

A

three analysis approaches (821 = 3.905, 822 = 1.722, 821

2.15). The results of testing the hypotheses that the mean of the

= 4.08, 822 =

estimates of the regression coefficients defined for the group level

variables over all 50 samples are equal to the parameters 8 and 822

z 1

are not significant for the two stage analysis approach, whereas, the

tests for the other three analysis approaches are significant at the
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Table 5-1

Simulation Results of Population I-A

 

 

 

Parameters Analysis Approach Estimators t Ratio**

Mean SD SE

Two stage1 2.524 0.066 0.009 —0.667 .008

Bl= 2.53 Group level 2.524 0.066 0.009 -0.667 .008

Full model 2.524 0.066 0.009 —0.667 .008

Subtraction 2.524 0.066 0.009 -0.667 .008

Two stage 0.322 0.012 0.002 1.000 .028

82= 0.32 Group level 0.322 0.012 0.002 1.000 .028

Full model 0.322 0.012 0.002 1.000 .028

Subtraction 0.322 0.012 0.002 1.000 .028

Two stage 3.905 0.920 0.130 —1.346 .036

le=4.08 Group level 3.651 0.858 0.121 -3.545* .203

Full model 3.651 0.858 0.121 —3.545* .203

Subtraction 3.651 0.858 0.121 -3.545* .203

Two stage 1.722 1.795 0.254 -l.682 .055

822=2.15 Group level 1.405 1.709 0.242 —3.079* .162

Full model 1.405 1.709 0.242 —3.079 .162

Subtraction 1.405 1.709 0.242 -3.079 .162

 

*Significant at 0.01 level of significance.

**Ratio of the estimate of the bias to mean square error.

1

All four approaches gave exactly the same estimates of 81 and 82

as was expected.
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A

0.01 level of significance. The bias ratios of 82 and 822 analyzed by
1

the two stage analysis are 0.036 and 0.055 while the bias ratios for

the other three approaches are 0.203 and 0.162. We can conclude that

in the situation where there is no group level effect (Ea = _) two

stage analysis approach gives the best estimates of the regression coef-

ficients defined for the group level variables. The empirical sampling

and 82distributions of 82 over the 50 samples are shown in Figures
1 2

5-1 and 5-2. According to Figures 5—1 and 5-2, all four approaches

have very similar distributions.

The results of the data analysis of population I-B are shown in

Table 5-2. The parameter values of 81 and 82 are 2.53 and 0.32,

respectively. All four approaches gave the same average estimates for

81 and 82 (2.519 and 0.322). The standard errors of 81 and 82 for

all four approaches are quite small, 0.011 and 0.001. The bias ratio

of 81 and 82 for all four approaches are 0.019 and 0.033. The result

of testing the hypotheses that the mean of the estimates for the within-

group regression coefficients over all 50 samples are equal to the

parameters 81 and 82 are not significant at the 0.01 level of signifi-

cance (t = -1.000, t = 2.000). Therefore, the results of the data

analysis of population I-B indicate that all four approaches gave good

estimates of the within—group regression coefficients with good pre—

cision and small bias ratios.

The means of the estimates of 82 and 82 analyzed by the four
1 2

approaches are almost the same. However, the two stage analysis approach

gave a somewhat better estimate than the other three approaches as

demonstrated by the fact that the bias ratios of 82 and 822 are smaller.

1

The bias ratio of the estimates of 82 and 822 are 0.005 and 0.018 for

1
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Table 5-2

 

 

 

Parameters Analysis Approach Estimators t Ratio**

Mean SD SE

Two stage 2.519 0.080 0.011 —l.000 0.019

81: 2.53 Group level 2.519 0.080 0.011 —1.000 0.019

Full model 2.519 0.080 0.011 -1.000 0.019

Subtraction 2.519 0.080 0.011 -1.000 0.019

Two stage 0.322 0.011 0.001 2.000 0.033

82= 0.32 Group level 0.322 0.011 0.001 2.000 0.033

Full model 0.322 0.011 0.001 2.000 0.033

Subtraction 0.322 0.011 0.001 2.000 0.033

Two stage 4.203 1.782 0,252 0.488 0.005

821=4.08 Group level 4.236 1.907 0.270 0.578 0.007

Full model 4.235 1.907 0.270 0.578 0.007

Subtraction 4.235 1.907 0.270 0.578 0.007

Two stage 1.381 5.651 0.799 —0.962 0.018

822=2.15 Group level 1.335 5.901 0.834 -0.977 0.019

Full model 1.330 5.901 0.834 -0.977 0.019

Subtraction 1.335 5.901 0.834 —0.977 0.019

 

**Ratio of the estimate of the bias to mean square error .
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the two stage analysis approach, and 0.007 and 0.019 for the other

three approaches. The results of testing the hypotheses that the

means of the estimates of the regression coefficients defined for the

group level variables over all 50 samples are equal to the parameters

B 21 and 822 are not significant at the 0.01 level of significance for

all four approaches. We conclude that in the situation where the

group level effects are equal to the individual effects (pa = 8) all

four approaches give good estimates of the regression coefficients

defined for the group level variables. The sampling distributions of

A

B and B are shown in Figures 5-3 and 5-4.

21 z2

The results of the data analysis of population I—C are shown in

Table 5-3. The parameter values of 81 and 82 are 2.53 and 0.32. The

means of the estimates of B and 82 are 2.512 and 0.321 for all four

1

approaches. The standard errors for all four approaches are quite

small (0.010 and 0.002). The bias ratios of 81 and 82 for all four

approaches are 0.067 and 0.005. The results of testing the hypotheses

that the means of the estimates of within-group regression coefficient

of all 50 samples are equal to the parameters 81 and 82 are not sig-

nificant at the 0.01 level of significance (t = 0.067, t = 0.005). So,

all four approaches gave the same good estimates of within-group regres—

sion coefficients with high precision and small bias ratios.

The means of the estimates of the regression coefficients defined

for the group level variables (:21 and E;2) from the parameter values

than in the other three approaches. The results of testing the hypo-

theses that the means of the estimates of the regression coefficients

defined for the group level variables over all 50 samples are equal to

the parameters 821 and 822 are significant at the 0.01 level of
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Table 5-3

Simulation Results of Population I-C

 

 

 

Parameters Analysis Approach Estimators t Ratio**

Mean SD SE

Two stage 2.512 0.068 0.010 —1.800 0.067

81 = 1.53 Group level 2.512 0.068 0.010 -1.800 0.067

Full model 2.512 0.068 0.010 -1.800 0.067

Subtraction 2.512 0.068 0.010 —1.800 0.067

Two stage 0.321 0.014 0.002 0.500 0.005

82 = 0.32 Group level 0.321 0.014 0.002 0.500 0.005

Full model 0.321 0.014 0.002 0.500 0.005

Subtraction 0.321 0.014 0.002 0.500 0.005

Two stage 5.325 1.986 0.281 4.527 0.286

821: 4.08 Group level 4.296 1.946 0.275 0.785 0.012

Full model 4.296 1.946 0.275 0.785 0.012

Subtraction 4.926 1.946 0.275 0.785 0.012

Two stage 4.932 4.937 0.697 3.991* 0.245

822=2.15 Group level 3.194 4.911 0.695 1.502 0.044

Full model 3.194 4.911 0.695 1.502 0.044

Subtraction 3.194 4.911 0.695 1.502 0.044

 

*Significant at 0.01 level of significance.

**Ratio of the estimate of the bias to mean square error.
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significance for the other three approaches (t = 3.062, t = 3.991).

These were not significant at the 0.01-level of significance for the

other three approaches (t = 0.785, t = 1.502). The bias ratios of

A

B and 822 analyzed by the other three approaches are 0.012 and 0.044.

21

We can conclude that in the situation where the group level effects

are not equal to the individual level effects (83348740), the group

level analysis approach, the subtraction analysis approach and the full

model analysis approach gave the better estimates of the regression

coefficients defined for the group level variables as opposed to the

two stage analysis approach. The sampling distributions of 821 and

A

B22 are shown in Figures 5-5 and 5-6.

In the situation where there were only individual level explana-

tory variables, the data for three populations II-A, II-B, and II—C

were analyzed by the group level analysis approach, the Bock applica-

tion approach, the full model analysis approach, and the subtraction

analysis approach. The results of the data analysis of population

II-A are shown in Table 5—4. All four approaches gave the same esti-

mates of the pooled within-group regression coefficients. The means

of the estimates of 81 and 82 are 2.533 and 0.321 while the parameter

values of 81 and 82 are 2.530 and 0.320 respectively. The standard

errors of 81 and 82 are 0.010 and 0.002 for all four approaches. The

results of testing the hypotheses that the means of the estimates of

within regression coefficients of all 50 samples are equal to the para-

meters 81 and 82 are not significant at the 0.01 level of significance

(t = 0.300, t = 0.500) for all four approaches. The bias ratios of 81

and 82 are 0.002 and 0.004. All four approaches yielded the same esti-

mates of the within-group regression coefficients with high precision
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Table 5-4

Simulation Results of POpulation II-A

 

 

 

Parameters Analysis Approach Estimators t Ratio**

Mean SD SE

Group level 2.533 0.070 0.010 0.300 0.002

81 = 2.53 Bock application 2.533 0.070 0.010 0.300 0.002

Full model 2.533 0.070 0.010 0.300 0.002

Subtraction 2.533 0.070 0.010 0.300 0.002

Group level 0.321 0.015 0.002 0.500 0.004

82 = 0.32 Bock application 0.321 0.015 0.002 0.500 0.004

Full model 0.321 0.015 0.002 0.500 0.004

Subtraction 0.321 0.015 0.002 0.500 0.004

Group level 0.017 0.146 0.021 0.810 0.013

Sal: 0.00 Bock application 0.008 0.148 0.021 0.381 0.003

Full model —2.519 0.168 0.024 —104.958* 0.996

Subtraction -2.159 0.168 0.024 -104.958* 0.996

Group level -0.011 0.161 0.023 -0.478 0.002

Ba2= 0.00 Bock application -0.067 0.181 0.026 -2.577 0.123

Full model -0.338 0.168 0.024 -14.083* 0.805

Subtraction —0.338 0.168 0.024 —14.083* 0.805

 

*Significant at 0.01 level of significance.

**Ratio of the estimate of the bias to mean square error.
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and small bias ratios.

The means of the estimates of the between—group regression coef—

ficients flnrthe individual level variables (Ba and 832) analyzed by

1

the group level analysis approach and the Bock application approach are

similar and closer to the parameters (83 = 0, Ba2= 0) . The full model
1

analysis approach and the subtraction analysis approach gave the same esti-

mates of Ba and Ba and they are not close to the parameter values
1 2

A

(gal: -2.519, 882== —0.338). The resultscflitesting the hypothesis that

the meanscflfthe estimates oftfimabetween-group regression coefficients

for the individual level variables over the 50 samples are equal to the

parameters Bal and Ba2 are not significant for the group level analysis ap—

proachanulthe Bock application analysis approach. However, they are

significant at 0.01 level of significance for the full model analysis ap-

A

proach and the subtraction analysis approach. The bias ratios of Bal and

A

B for the group level analysis approach and the Bock application analy-

a2

A

sis approach were quite small(}iuabias ratios of Ba for the group level

1

analysis approach and the Bock application analysis approach were 0.013

and 0.003, the bias ratio of 832 for the group level analysis approach and

the Bock application analysis approach were 0.002 and 0.123), while

the bias ratios of Ba and 882 for the other analysis approaches were
1

A

quite large (bias ratio of Bal and 832 for these two approaches were

0.996 and 0.805). We can conclude that in the situation where there

was no group level effect (Ba1 = Baz = 0), the group level analysis

approach and the Bock application analysis approach gave the better

estimates of the between-group regression coefficients while the full

model and subtraction analysis approach gave incorrect estimates of

the between-group regression coefficients. The sampling distributions
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A

of 8 and 832 are shown in Figures 5—7 and 5-8.

al

The results of the data analyses for population II—B are shown in

Table 5-5. All four approaches gave the same estimates of the pooled

within regression coefficients. The means of the estimates of 81 and

‘82 were 2.546 and 0.320. The standard errors of 81 and 82 were 0.010

and 0.002 for all four approaches. The results of testing the hypo-

thesis that the means of the estimates of the pooled within regression

coefficients over all 50 samples were equal to the parameters 81 and

82 were not significant at 0.01 level of significance (t = 0.000,

t = 0.000). The bias ratios of 81 and 82 were 0.051 and 0.000. All

four approaches gave good estimates of the pooled within regression

coefficients.

The means of the estimates of the between-group regression coef-

ficients for the individual level variables analyzed by the group level

analysis approach and the Bock application approach were quite similar

A

and close to the paremeter values. The means of Ba and 832 for the

1

group level analysis approach were 2.525 and 0.310, and for the Bock

application analysis approach were 2.524 and 0.309. The full model

analysis approach and the subtraction analysis approach gave the same

estimates for Bal and Ba2 and they were not close to the parameter

A A

values (881 = —0.021, 8&2 = —0.014). The results of testing the hypo-

thesis that the means of the estimates of the between-group regression

coefficients were equal to the parameters Ba1 and BaZ were not signi-

ficant for the group level analysis approach or for the Bock applica-

tion analysis approach. However, they were significant at 0.01 level

of significance when analyzed by the full model and subtraction analy-

A

sis approaches. The bias ratios of Ba and 832 for the group level and

1
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Table 5-5

Simulation Results of Population II-B

 

 

 

Parameters Analysis Approach Estimators t Ratio**

Mean SD SE

Group level 2.546 .070 0.010 0.600 0.051

81 = 2.53 Bock application 2.546 .070 0.010 0.600 0.051

Full model 2.546 .070 0.010 0.600 0.051

Subtraction 2.546 .070 0.010 0.600 0.051

Group level 0.320 .012 0.002 0.000 0.000

82 = 0.32 Bock application 0.320 .012 0.002 0.000 0.000

Full model 0.320 .013 0.002 0.000 0.000

Subtraction 0.320 .012 0.010 0.000I 0.000

Group level 2.525 0.221 0.031 -0.161 0.001

Ba}: 2.53 Bock application 2.524 0.222 0.031 -0.194 0.001

Full model -0.021 0.228 0.032 -79.7l9* 0.992

Subtraction -0.021 0.228 0.032 ~79.719* 0.992

Group level 0.310 0.158 0.022 -O.455 0.004

Ba2= 0.32 Bock application 0.309 0.178 0.025 -0.440 0.004

Full model —0.010 0.157 0.022 -15.000* 0.818

Subtraction —0.010 0.157 0.022 -15.000* 0.818

 

*Significant at 0.01 level of significance.

**Ratio of the estimate of the bias to mean square error.
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Bock application analysis approaches were quite small (bias ratios of

A

8 and Ba2 for both the group level analysis approach and the Bock

a1

application analysis approach were 0.001 and 0.004) while the bias

ratios of Bal and 8&2 analyzed by the other two analysis approaches

A

were quite large (bias ratios of 8a and Ba2 equal to 0.992 and 0.822).
1

We can conclude that in the situation where the between-group regres-

sion coefficients (pa = B_# 0), the group level and Bock application

analysis approaches gave correct estimates of the between-group regres-

sion coefficients while the full model and subtraction analysis

approaches gave incorrect estimates of the between—group regression

and Ba are showncoefficients. The sampling distributions of Ba 2
1

in Figures 5—9 and 5—10.

The results of the data analysis of population II-C are shown in

Table 5-6. All four approaches gave the same estimates of the pooled

within regression coefficients. The means of the estimates of B1 and

82 were 2.518 and 0.323 while the standard errors were 0.010 and 0.002

for all four approaches. The results of testing the hypothesis was

that the means of the estimates of the within regression coefficients

were equal to the parameters were not significant (t = -1.200, t =

1.500). The bias ratios of 81 and 82 were 0.028 and 0.060 for all four

approaches.

The means of the estimates of the between-group regression coef-

ficients for the group level and Bock application analysis approaches

were quite similar and close to the parameter values. The means of

gal and 8&2 analyzed by group level analysis approach were 1.424 and

0.934 and for the Bock application analysis approach they were 1.412

and 0.946 (881 = 1.45 and Ba2 = 0.89). The full model analysis
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Table 5-6

Simulation Results of Population II-C

 

 

 

Parameters Analysis Approach Estimators t Ratio**

Mean SD SE

Group level 2.518 0.071 0.010 -1.200 0.028

81 = 2.53 Bock application 2.518 0.071 0.010 -1.200 0.028

Full model 2.518 0.071 0.010 -1.200 0.028

Subtraction 2.518 0.071 0.010 -1.200 0.028

Group level 0.323 0.012 0.002 1.500 0.060

82 = 0.32 Bock application 0.323 0.012 0.002 1.500 0.060

Full model 0.323 0.012 0.002 1.500 0.060

Subtraction 0.323 0.012 0.002 1.500 0.060

Group level 1.424 0.260 0.037 -0.703 0.010

Sal: 1.45 Bock application 1.412 0.184 0.026 -1.462 0.042

Full model —1.093 0.179 0.025 -101.720* 0.995

Subtraction -1.093 0.117 0.025 -101.720* 0.995

Group level 0.934 0.196 0.021 2.095 0.049

832: 0.89 Bock application 0.946 0.165 0.023 2.453 0.105

Full model 0.611 0.021 0.021 -13.286* 0.782

Subtraction 0.611 0.149 0.021 -l3.286* 0.782

 

*Significant at 0.01 level of significance.

**Ratio of the estimate of the bias to mean square error.
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approach and the subtraction analysis approach yielded the same esti-

A A

mates for gal and Ba2 were not close to the parameter values (Sal =

1.093, 8a2 = 0.611). In testing the hypothesis that the means of the

estimates of the between-group regression coefficients were equal to

the parameters 8a and 832 were not significant for the group level

1

analysis approach and the Bock application analysis approach; however,

they were significant for the full model and subtraction analysis

approaches. The bias ratios of Ba and Ba2 for the group level analy-

1

sis approach and the Bock application analysis approach were quite

small while the same bias ratios for the other two analysis approaches

were quite large. We can conclude that in the situation where the

between—group regression coefficients were not equal to the within-

group regression coefficients (Ba # §_# 0), that the group level and

Bock application analysis approaches gave the correct estimates of

the between-group regression coefficients while the full model and the

subtraction analysis approaches gave incorrect estimates of the

between-group regression coefficients. The sampling distributions of

A

8a1 and 832 are shown in Figures 5-11 and 5-12.

The specifications concerning Ea and §_for populations I—C and

II-C are most similar to the types of situations encountered in the

real world. The intraclass correlations of variables Y and §_are,

however, quite high for both cases (0.90). Therefore, in order to

check whether the analysis approaches give the same results for situ-

ations where the intraclass correlations are not as high as for the

data presented in the preceding pages, a second set of data for popu—

lations I-C and II-C was generated with new parameter values chosen so

that the intraclass correlations were lower than those in the first set
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of data. All analysis approaches were used to analyze the second set

of data in the same fashion as for the first set of data. The intra-

class correlations of the second set of data are 0.30.

The ten samples for pOpulation I-C were analyzed by the two stage

analysis approach, the group level analysis approach, the full model

analysis approach and the subtraction approach. The results of the

data analysis of the second set of data in population I-C are shown

in Table 5-7. The parameter values of 81 and 82 were 2.53 and 0.32.

The means of the estimates of 81 and 82 were 2.522 and 0.329 for all

four approaches. The standard errors of 81 and 82 for all four

approaches. The standard errors of 81 and 82 for all four approaches

were quite small (about 0.013 and 0.010). The bias ratios of 81 and

82 for all four approaches were 0.039 and 0.081. The results of

testing the hypothesis that the means of the estimates of the within

regression coefficients of all 10 samples were equal to the parameters

81 and 82 were not significant at 0.01 level of significance (t =

-0.615, t = 0.900). Therefore, all four approaches gave the same good

estimates of within regression coefficients.

The means of the estimates of the regression coefficients defined

for the group level variables (821 and 822) analyzed by the two stage

analysis approach were closer to the parameter values than when using

the other three approaches. However, the results of testing the hypo-

thesis that the means of the estimates of the regression coefficients

defined for the group level variables of all 10 samples were equal to

the parameters 821 and 822 were not significant at the 0.01 level of

significance for all four approaches. The bias ratios of 82 and 822

1

analyzed by two stage analysis approach were 0.001 and 0.007, while the
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Table 5—7

Simulation Results of the Second Set of Data of Population I-C

 

 

 

Parameters Analysis Approach Estimators t Ratio**

Mean SD SE

Two stage 2.522 0.042 0.013 -0.615 0.039

81 = 2.53 Group level 2.522 0.042 0.013 —0.615 0.039

Full model 2.522 0.042 0.013 —0.615 0.039

Subtraction 2.522 0.042 0.013 -0.615 0.039

Two stage 0.329 0.032 0.010 0.900 0.081

82 = 0.32 Group level 0.329 0.032 0.010 0.900 0.081

Full model 0.329 0.032 0.010 0.900 0.081

Subtraction 0.329 0.032 0.010 0.900 0.081

Two stage 4.221 7.162 2.265 0.062 0.001

B 1= 4.08 Group level 3.004 6.652 2.103 -O.512 0.028

z

Full model 3.004 6.652 2.103 —0.512 0.028

Subtraction 3.004 6.652 2.103 —0.512 0.028

Two stage 5.450 42.965 13.587 0.243 0.007

822: 2.15 Group level 7.509 44.182 13.971 0.384 0.016

Full model 7.509 44.182 13.971 0.384 0.016

Subtraction 7.509 44.182 13.971 0.384 0.016

 

**Ratio of the estimate of the bias to mean square error.
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A

bias ratios of 821 and 822 analyzed by the other three approaches were

0.028 and 0.016. We can conclude that in the situation where the

group level effects were not equal to the individual level effects

(pa # §_# 9) and the intraclass correlations were not high (about 0.30)

all four approaches gave the correct estimates of the regression

coefficients and with small bias ratios but that the two stage approach

A

resulted in the smallest bias. The standard errors for 82 and 82 for

1 2

all four approaches, however, were quite high (see Table 5-7).

Twenty five samples of the second set for population II-C were

analyzed by the group level analysis approach, the Bock application

analysis approach, the full model analysis approach and the subtrac-

tion analysis approach. The results of the data analyses of the

second set of data for population II-C are shown in Table 5—8. The

parameter values of 81 and 82 were 0.08 and 0.76. The means of the

estimates of B1 and 82 were 0.083 and 0.758 for all four approaches.

The standard errors of 81 and 82 of all four approaches were 0.004

and 0.003. The bias ratios of 81 and 82 of all four approaches were

0.025 and 0.014. The results of testing the hypothesis that the means

of the estimates of pooled within regression coefficients over the 25

samples were equal to the parameters 81 and 82 were not significant

at 0.01 level of significance (t'= 0.025, t = 0.014). Therefore, all

four approaches gave the same good estimates of the pooled within

regression coefficients.

The means of the estimates of the between—group regression coef-

ficients for the individual level variables analyzed by the group level

analysis approach and the Bock application analysis approach were quite

similar and close to the parameter values (83 = 0.05, B = 0.95).
1 32
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Table 5—8

Simulation Results of the Second Set of Data of Population II-C

 

 

 

Parameters Analysis Approach Estimators t Ratio**

Mean SD SE

Group level 0.083 0.019 0.004 0.750 0.025

81 = 0.08 Bock application 0.083 0.019 0.004 0.750 0.025

Full model 0.083 0.019 0.004 0.750 0.025

Subtraction 0.083 0.019 0.004 0.750 0.025

Group level 0.758 0.017 0.003 —0.667 0.014

82 = 0.76 Bock application 0.758 0.017 0.003 -0.667 0.014

Full model 0.758 0.017 0.003 -0.667 0.014

Subtraction 0.758 0.017 0.003 —0.667 0.014

Group level 0.051 0.104 0.021 0.048 0.000

Sal: 0.05 Bock application 0.047 0.114 0.023 -0.130 0.001

Full model -0.033 0.102 0.020 -4.150* 0.408

Subtraction —0.033 0.102 0.020 -4.150* 0.408

Group level ’ 0.933 0.078 0.016 —1.063 0.047

Ba2= 0.95 Bock application 0.946 0.085 0.017 -0.235 0.002

Full model 0.175 0.076 0.015 —51.667* 0.991

Subtraction 0.175 0.076 0.015 —51.667* 0.991

 

*Significant at 0.01 level of significance.

**Ratio of the estimate of the bias to mean square error.
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The means of Ba and BaZ analyzed by the group level analysis approach
1

were 0.051 and 0.933 and when analyzed by the Bock application analysis

approach they were 0.047 and 0.946. The full model analysis approach

and the subtraction analysis approach gave the same average estimates

of Bal and 832 and they were not close to the parameter values

(Sal = —0.033, 882 = 0.175). The results of testing the hypothesis

that the means of the estimates of the between-group regression coef-

ficients were equal to the parameter values were not significant for

the group level analysis approach or for the Bock application analysis

approach, but they were significant (p < 0.01) for the full model and

A

the subtraction analysis approach. The bias ratios of Ba and Ba2 for

1

the group level and the Bock application analysis approaches were quite

small (bias ratios of gal when using the group level analysis approach

and the Bock application analysis approach were 0.000 and 0.001, and

bias ratios of 882 when using the group level analysis approach and

the Bock application analysis approach were 0.047 and 0.002) while the

bias ratio of Sal and 882 analyzed by the full model and the subtrac—

A

tion analysis approaches were quite large (bias ratios of Ba and Ba2

1

with these two apporaches were 0.408 and 0.991). From this we can

conclude that in the situation where the between-group regression coef-

ficients were not equal to the within-group regression coefficients

(Ea # §_# 9) and the intraclass correlations were not high (0.30) the

group level and Bock application analysis approaches still gave the

correct estimates of the between-group regression coefficients and the

full model and the subtraction analysis approaches continued to yield

incorrect estimates.



CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

The main purpose of the present study was to investigate various

alternatives used to analyze hierarchical data by applying them to a

set of simulated data. We determined which approach would give the

best estimates of the between and within regression coefficients in

terms of accuracy (the least amount of bias) and in terms of preci-

sion for various situations. The bias ratio of each estimator was

computed to facilitate comparisons.

Two situations were investigated in this dissertation. The first

situation was one in which there were both individual-level predictors

which can be aggregated to the group—level and predictors defined only

at the group level. The second situation was one in which there were

only individual-level predictors which can be aggregated. For each sit-

uation, data were generated from three different populations: the first

in which there were no group level effects; the second in which group

level effects were equal to individual level effects; the third in which

group level effects were not equal to the individual level effects.

The original intention of this study was to do a simulation

study to contrast the various analysis methods. However, the simulation

results suggested several patterns that imply certain relationships

between the alternative approaches. Therefore, an analytical study of

the relationship among the alternative approaches was used as a follow

up. The results of the analytical work are presented in this section

74
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supporting the simulation results.

The simulation results showed that all analysis approaches gave

the same estimates of the within-group regression coefficients for all

six cases with good precision and small bias ratios. All approaches

gave the same estimates of the within-group regression coefficients

because they used the same basic formula (formula 4-4) to compute the

pooled within-group regression coefficients.

For the situation in which there were both individual level

predictors which can be aggregated to the group level and predictors

defined only at the group level, the two stage analysis approach,

group level analysis approach, full model analysis approach and the

subtraction analysis approach were used to analyze the data. Analyti-

cally, these four approaches can be grouped into two sets. One set

includes only the two stage analysis approach. The other set includes

the group level analysis approach, the full model analysis approach,

and the subtraction analysis approach. Theoretically, these three

approaches should give the same estimates of the regression coefficients

defined for the group level variable (gz) by the two stage analysis

approach and the other three approaches are defined by formulas (6-1)

and (6—2) respectively.

II

U
S l

0
3

m

X

A >
J

>

re
;A -1

(6_1) E2 2 Bzy z 2

II

o
n

o
n l

[0
0

(6-2) $2 2 zy Bz Bzx

where Bz, Bzy’ and Bzx are the between—group sum of squares and cross

product matrices of 2;, 2_and Y, and 2_and §_variables.

The simulation results showed that for all three cases, the group

level analysis approach, the full model approach and the subtraction
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approach gave the same estimates of 82 and were consistent with the

theoretical results suggested above.

In the case where there were no group level effects, the two

stage analysis approach gave estimates of 82 better than those derived

from the other three approaches. Where the between-group regression

coefficients were equal to the pooled within group regression coef-

ficients, all four approaches gave essentially the same estimates of

p2, all with comparable bias ratios. In the case where the between-

group regression coefficients were neither equal to the pooled within-

group regression coefficients nor to zero, the simulation results

were different depending upon the value of the intraclass correlation

coefficient. For the case where the intraclass coefficient was high,

the two stage analysis did not give as good estimates of 82 as the

other three approaches. However, when the intraclass correlations

were more moderate in value (around 0.30) all four approaches gave the

same estimates of 82, although the two stage approach yielded better

bias ratios indicating less bias relative to mean square error.

When the situation was such that there were only individual level

predictors which could be aggregated to the group level, the group

level analysis approach, Bock application analysis approach, full model

analysis approach and subtraction analysis approach were used to

analyze the data. Theoretically, these four approaches can be grouped

into three sets: first, the group level analysis approach by itself;

second, the Bock application analysis approach by itself; and third,

the full model analysis approach and the subtraction analysis approach.

In theory, the estimates of the between-group regression coefficients

(Ba) by the full model analysis approach are equal to the differences
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between the between-group regression coefficients that are estimated

from the between-group sum of squares and cross products matrix and

the pooled within group regression coefficients. Therefore, the esti-

mates of Ea that obtain from the full model analysis approach and the

subtraction analysis approach should be the same. Analytically, the

relationship between the between-group regression coefficients esti—

mated by the group level analysis approach, Bock application analysis

approach are shown in equation (6-3).

1AF
G+(B-1A-I)_B_

a
<6-3> 9.4.

B

where 8 , BG
—a -a

and 8: are the between-group regression coefficients

estimated by the Bock application analysis approach, the group level

analysis approach and the full model analysis approach, respectively,

B is the within-group mean of square divided by the number of subjects

in each group, A is the between-group mean of square divided by the

number of subjects in each group, and I is the identity matrix. The

derivation of this relationship is shown in Appendix B.

The simulation results showed that for all three cases, the full

model analysis approach and subtraction analysis approach gave exactly

the same estimates of the between-group regression coefficients. They

were also equal to the difference between the regression coefficients

that were estimated from the between-group sum of squares and cross

products matrix and the pooled within-group regression coefficients

which is consistent with the theoretical results. However, the esti-

mates of Ea from these two approaches were not close to the parameter

values. The bias ratios for the estimates resulting from these two

approaches were very high. From this, we can conclude that the
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subtraction and the full model approach gave totally wrong estimates of

§_. For all three cases the group level analysis approach and the Bock

application analysis approach gave good estimates of Ba. The bias

ratios for these two approaches were quite small when compared to the

bias ratios for the other two approaches. When the between-group

regression coefficients were equal to zero, the Bock application

analysis approach gave better estimates of Ea than the group level

analysis approach. However, when the between—group and within—group

regression coefficients were equal, both approaches gave the same

estimates of Ea' For the situation where the between-group regression

coefficients were not equal to the pooled within—group regression coef—

ficients, the group level analysis approach gave better estimates of

Ea than the Bock application analysis approach when the intraclass

correlations were high (about 0.90), but the Bock application analysis

approach gave the better estimates of Ea when the intraclass correla-

tions were low (about 0.30).

From the simulation results, we can summarize which approach

gave good estimates of the parameters for the different populations.

This is shown in Table 6-1.

Table 6—1 shows the quality of the estimates of the between

regression coefficients defined for the group level variables (82)

and the between-group regression coefficients (83) under the alter-

native approaches in terms of accuracy (bias ratios less than 0.15).

In the situation where there were both individual level predictors

which were aggregated to the group level and predictors which were de-

fined only at the group level, the two stage analysis approach gave

good estimates of the regression coefficients defined for the group
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level variables: 1) in the case where there were no group level effects;

2) where the group level effects were equal to the individual level

effects; and 3) where the group level effects were not equal to the

individual level effects and when the intraclass correlations were low

(about 0.30). The group level analysis, the full model and the sub-

traction approach gave good estimates of the regression coefficients

defined for the group level variables in the case where: 1) the group

level effects were not equal to the individual level effects; and 2)

the group level effects were not equal to the individual level effects

and when the intraclass correlations were either low (about 0.30) or

high (about 0.90).

When the situation was such that there were only individual level

predictors which could be aggregated to the group level, the group level

analysis and Bock application approaches gave good estimates of the

between-group regression coefficients for all cases. The full model

and the subtraction approach gave bad estimates of the between-group

regression coefficients for all cases.

In the present study, we only dealt with the simulation of specific

parameter values and specific situations. We did not investigate all

types of parameter values or all types of situations. Therefore, the

results of this study can be generalized only to similar situations

and similar parameter values.

Recommendations for Further Study
 

The present study deals with situations where homogeneity of

within—group regression coefficients is assumed; therefore, one possible

extension of the present work is an investigation of the methods of
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analyzing hierarchical data which allow for heterogeneity of the within-

group regression coefficients. The results of this study suggest‘that

the intraclass correlations have an effect on estimating the between—

group regression coefficients (pa) and the between—group regression

coefficients defined for the group variables (82). This would suggest

the investigation of all analysis approaches that are used to analyze

hierarchical data for different sets of data that are generated from

populations which are described by intraclass correlations of dif-

ferent magnitudes. The present study, although not designed to examine

this issue, and upon finding the apparent relationship, was able to

suggest in a preliminary way the need for examining this issue more

thoroughly.

Another avenue of future work is to apply the analytical pro-

cedures based on the methods of analysis of covariance structures for

hierarchical data devised by Schmidt (1969) and Wisenbaker and Schmidt

(1979) to simulated data of the sort considered in this study.
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COMPUTER PROGRAMS
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20

35

PROGRAM MYUfilfl(lNPUTrUUTFUlfibfirThFEéfioUTPUTrTfiFESVTAPEIITGPEQITAPE

+3)

GENEROTIUN PRUGNOH

SUBNUUTINL'S NIEILIl

GENEA

CHOL

CHANGE

GENUGTQ

COUOR

HINENSION SIGMA(15)71(575)92(571)rE(150075)70(15)9TEMP(571)

DIMENSION SIGHOA(15)rTfi(SrS)901(1500r5)9Y(150015)rGTUTOL(5)

UIMENSIUN UMH(5)7YBWR(150075)rSUN(5075)7U(15)rS(15 rMU(5)rSV(15

DIMENSION HOU(15)79UB(15)78UH(15)rUMH15)7PH(5)IGTU(5)1PSU(15)

DIMENQION SHNT(15)7GNEON(5 rSUBT(15)

REAL NU

REOLI IN Kvl'x'l'errNSrN'lrNErNEUrNSAi’ir53311311111SIl'I-if'lifll’ilyi‘il.’

KxNOo OF VONIORLEQ

KUGNOo 0F UHRIAHLES FUN WITHIN SCHOOL

NSNUo 0F SUBJECTS NllHIN KOCH SCHUUL

NSzNOo 0F SCHUUL

NT==NOo OF TFle‘lL SUBJECTS

NEHNU. OF ELEMENTS 1N CUVORIONCE MATRIX

NEN=NOo 0F ELEMENTS IN HITHIN COUORINNCE MfilNIX

NSGMFND. 0F SAMPLES

READ(5110)K7KU9N7NSrNTrNErNEUrNSflM

FORMAT(815) '

READ(5915)(SIGMA(I)rlerNEU)v(SIGHON(1)71#19NE)r(MU(I)rI*HK)

F0RMAT(6F10.47/yOFlOo4r/r7F1064r/73F1064) ‘

WRITE KrKUINvNSrNTrNErNEUrNSfiMrSIGHArSIGNOArUU

URITE(6720)KrKMrNrNSrNTrNErNEUyNSflMr(SIGMO(I}rI$1rNEH)r

+(SIGMAA(I)71319NE)r(NU(I)71$1rK)

FORNGT(*1DATQ INFORMATIUN*r//75XVTNO. OF UONINHLES m *rISr/rSXr*NO

+0 0F WITHIN SCI'lUUI- UKTIRII‘NBLJEifii 31' *7].Sr./r5Xr>f<i‘-.'l.l. OF SUBJECTS UITHIN S

+CHUUL m *rISr/rSXr*NU. OF SCHOOLS I *rIUr/VUXrXNOo OF TOTAL SUBJEC

+TS = *rISr/VSXHFNO. OF 13:1..E.i"'llll"'-l'l"53;. IN COUFIFIIl‘lNlQEi MATRIX =3 *rISr/rSXrt

+N0. 0F ELEMENTS IN WITHIN CUUONTONCE HOTNIX m *rISr/75X7*N06 0F SA

+MPLES m *rISv/rMOTHE UITHIN COUHRIHNCE MOTHIXT://15XvF10.49/95X12F

+10.49/75X73Floo4v/rTOlHE BETWEEN COUHHIONCE HATRIXAr//75XrF10.4r/v

+5X92F10.4y/vSXr3FlO.4r/75‘r4F10.4y/y5X15FlO.4y/r*OFOPULATION MEAN

+=*95F10.4)

START GENERATING DATA

DO 100 IJlerNSfiM

PRINT SAMPLE NUMBER

URITE(6721)IJK

FORMAT<$OSOHFLE NO. #912)

GENERATE E(IyJ)

CALL GENEA(KW7NTrSIOMArErT)

WRITE TUO NONE COLUMNS FOR NITHIN COUARIONCE

DO 750 IuerT

E(Ir4)30.

E(I!5)'~‘Oo

CONTINUE

WRITE CHOLESKY FAACTOR OF WITHIN COUARIANCE

WRITE(6r25

FORMAT<$OTHE CHULESLY FACTOR OF WITHIN COUflRIANCEX)

DO 110 1317K”

WRITE(6930)(T(I9J)7J$17KW)

FORHOTOROX‘73F110.4)

CONTINUE

GENERATE 01(1)

CALL OENEACNrNSySIGHAAyAIrTfi)

“RITE CHOLESKY FACTOR OF BETWEEN COUORIANCE

URITE(6735)

FORMAT($0THE CHOLLSKY FACTOR OF BFTNEEN COUARIANCEX)

DO 120 I=4-'-l.rl\"

83
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84

URITE<6v40)(lfl(lrJ)yJP1yk)

4o FORHNT<$0Ty5FlO.4>

12o CONTINUE

OENCRNTE Y(IyJ) .

CALL GENUATN(KyNyNSyNErNTrMUyEyAITY:YBARyPfirPSUrGMB:SUBrGMEANySUys

+HAT)

PRINT PUOLED MEAN OF EACH UARTRDLE

URITE(6.45)(PM(J>.JN1.N) ‘

45 FORMAT<R0URCTOR 0F PUOLED MEAN xxys<r10.4.3x>)

PRINT SNMPLE POOLED UITHTN COURRTNNCE

URITE<6.50>(POU(L).Lm1yNR)

so FORMAT<$OSRHPLE POOLED wITHIN COUARIRNCE NATRIXR.//.Ox,F1o.4,/.Ov.

+2(F10.493X)7/95X93(F10.473X)v/rSXy4(F1094y3X)y/ySXy5(F10.4r3X))

PRINT ORNND MEAN OF EACH UARIOBLETSCHUUL MLRN IS UNIT 0F RNALYSTR

URITE<6.60)<5UD<L>.L:1.NE>

60 FORMRT<ROORMPLE DRTUREN COUNRTNNCL MRTRTNRr//,ON,P10.4,/TOXTQ<P10.

+493X)1/95Xy3(F10.473X)y/ySXy4(F10.4r3K)y/rfiXyS(F10.4y3X))

PRINT ORRND MEAN OF EACH UNRTNARLC

URITE<6y65>(GMEON(J)TJm1yK)

65 FORMAT(*0UECTUR 0F ORNND MEAN NTTO<P10.4T3XT>

PRINT SAMPLE COUNRIRNCE ”ATRIX

NRITE(6.70)(OU<L>.Lm1yNE)

7o FORMAT(#OSAHPLE COONRINNCE MNTRINR,//,Oxyr10.4,/TSX.Q(P10.4.3X)y/y

+5X73<F10.473X)7/75X74(F10.423X)r/TSX94(F10.473X))

PRINT PURE BETwEEN COUNRIMNCE

NRITE<6.75)(SNNT<L>,L:1,NE)

75 FORMAT<R08AMPLE PURE BETNEEN CUUNRIAHCETrH/rOXyFIO.4y/TSX12(F10.4T

+3X)y/75Xr3(F10.4v3X)v/95X94(F]0.493X)y/ySXyS(F10.4v3X))

PRINT Y AND YBAR ON TAPEI

11:1

L=N

DO 125 MxlyNS

DO 130 I:IIyL

wRITE(1980)Mny(Y(IyJ)erlyK)y(YBOR(MeJ)yJwa3)

80 . FORMAT<IQ.1X.14.7(F10.4)T

130 CONTINUE

IIaII+N

L=L+N

125 CONTINUE

ENDFILE 1

PRINT SCHOOL MEAN ON TAPEB

no 135 “=1 9N8

NR1TE<2.85)M.<YDNR<M.J>,Jn1,N>

85 FORMAT(12.5(3X.F10.4>) A

135 CONTINUE

ENDFILE 2

PRINT POOLED NITNIN COUNRIANCE ON TNPCz

URITE(3.90>PSU<1>,PSU<2>.PSUT4).Psvc2),POU<3),POU(5),PSU<4>,PSUTOT

+:PSU(6) *

9o FORMNT<3F10.4./,3F1o.4./.3F10.4)

ENDFILE 3

100 CONTINUE

END

SUDROUTINE CENEN<R.N,SICMA.Y.T>

GENERATION PROGRAM FOR n<1> AND E(IyJ)

READ IN SIGMA

FIND CHOLESKY FACTOR 0F SIGMA =_I

GENERATE 5 vARIABLES DISTRIBUTED N(0r1) — z~5x1

TRANSFORM A<I>=Tz, A(I) DISTRIBUTED N<0.OTONA~A)

SUBROUTINES NEED
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300

200.

500

400

600

700

101

85

CHOL

CHANGE

DIMENSION STGMA(]5)9T(575)32(591)rY(150075)rfl(15)vTEMP(571)

Sil;l‘ [5t Til Iii} IIJI£ l‘fll(flfiE:T (If?

9133.949946138

A330.252408794

9520.0765‘2913

6730.008355968

9930.029899776

CALL RANSET ( CL.UC|’§([IUMMY))

FIND CHOLESKY FACTOR 0F SIGMA ”~'T 0N1] IJf-i’l'lif'RMINhNT OF T

CéLL CHUL.(SIGMAyfivKrUEr)

CALL CI'UINUE((HT7K)

DO 700 IlerN

GENERATE 12 RflNDUM NUMBER DISTRIBUTED ”(091)

DO 200 Jfllvfi

B3300 .

D0 300 IerrIQ J

RXmRflNF(DUMMY)

BxB+RX

CONTINUE

TRGNSFORH UNIFORM RANDOM NUMBER T0 2 UfiRIfiBLE UISTRIBUTED N(071)

R3(B*6o)/4o

RS=R$R

Z(J91):((((A9XRS+Q7)*RS+AS)XRS+O3)*RS+N1)*R

CONTINUE

TRANQFORM Z VARIABLE TU Y VARIABLE DISTRIBUTED N(OrSIGHfi)

DO 400 JJ=19K

X==O 0

DD 500 KKflHK

X=X+T(JJTKK)*Z(KKTI)

.CONTINUE

TENP(JJ91)$X

CONTINUE

DO 600 J=1yK

Y<II.J)mTENP<U,1> , ‘1 '

CONTINUE J N . ,- . - taz~

CONTINUE ‘4 ‘3 r,a,f <

RETURN ‘

ENO

SUBROUTINE CHOL(SIGMAyArKrUET)

SIGMA AN K BY K SYMMETRIC MATRIX

A AN ARRAY 0F AT LEAST K$(K+l)/2 LOCfiTIONS

K NUMBER OF RUNS IN Slfififi

BET THE DETERMINfiNT 0F 9

DIMENSION SIGHH(15)99(15)

X=SQRT<SIGMA(1))

DETmX

A(1)3X

K1=K~1

KC=1

IFIR=1

no 101 JnHKl

NCxKC+J

A(KC)3SIGHA(KC)/X

CONTINUE

DO 105 leyfil

IFIRfiIFIR+I

KCleIR

X=O.



0
0
0
0
0
0
0

0
0
0
0

102

104

103

105

4?

41

44

43

86

DO 102 J=le

X=X+A(KC)$*2

KC=NC+1

CONTINUE

XmSORT(SIOMA(KC)~X)

DET =3DETXX

A(KC)=X

IIxI+1

]F(II.EO.R)RITURN

OJCI==IIF'III

IN) 103 .kkIIrRl

JCuJC+J

ICfiJC

KOwIFIR

Y::::() 0

DO 104 LKIyI

YWY+AQIC)$A(KC)

NCSKC+1

ICSICII

CONTINUE

A(IC):(SIOMA(IO)*Y)/X

CON I I N UE

C(HTTIIHJE

RETURN

END

SUDROUT I NC [II-IT’H‘JOE ( A r T v N)

A MATRIX TO BE CDNVERTED

T ARRAY “HERE CONVERTED MATRIX HILL DE STORED

K DIMENSION 0F MATRIX

CHANGE TO SQUARE MATRIX

DIMENSION A<15),T(5.5)

LmN+1

LL:(L*K)/2+1 ,

no 41 Jn1yN ' f “

JR=L—J

no 42 1:1.JN _

IRmJRMI+1 ~*"

LLxLLwI ‘*

T(JR91R)HA(LL)

CONTINUE

CONTINUE

no 43 Jm2.N

Lmel

no 44 Ia1yL ‘ ,

T<I.J)mo. : , ;

CONTINUE

CONTINUE

RETURN

ENIZI

SUBROUTINE GENDATA(K;NyNSrNEyNTyMUyE9A:YrYBmRyPMyPSUyGHBySUByGHEAN

p
u
-

‘
\

\
x

+ySV98HAT)

GENRRATION PROGRAM FOR Y(I7J)

Y(IrJ)$MU+A(I)+E(I)

THARE ARE 5 VARIABLES FOR EACH SUBJECTS

VECTOR OF Y DISTRIBUTED N(MUISIGMA)

DIMENSION E(ISOOIS)9A(1500y5)rY(150095):GTOTAL(S)IGMEAN(5)rGM8(55

DIMENSION YDAR<150095>98UM<50r5>9N(15)98(JS)yMU(O)yOU(lS)rSSM(15I

DIMENSION SVD(15)18VN(]S)yOMB(5)yPM(5)beNk5)rPSV(15)rSHAT(15)

DIMENSION SVDT(15

REAL MU
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K7”: NO. OF VORIAD’LES7 Nfi=NOo OF SUBJECTS IN EOCH SCHOOL

NOV-NO. OF OCI'IOULS7 ATE-“NO. OF ELEME "‘3‘ '3: - T-' ' " '0
COMPUTE Y(I,‘J) NI.” NT TOTAL NOMILD UF SUBJECT.)

III3’1

Lr-‘N

DO 100 M”'—'I.7NS

DO 200 I=“I[7L

DO 250 .1331le

Y(IvJ)==’MU('J)+A(MIJ)+£<I7J)

9.50 CONTINUE:

200 CON-TINT”?

I 13341 I IN

L‘3L'I'N

100 CONTIT'TUE

COMF'UTE SUM AND MEAN FOR EACH SCHOOL

11:31

L~"=N

AN:N

[TO 450 MTJIINO

[IO 4()O-J“-'17K

SUM ( M 7 J ) "‘0 o

DO 500 l‘iK‘JIIvL

SUM(M7J)-'=Ol.llvl(f’i7J)'I'Y(l§|\'7J)

500 CONTINUE

YBARU’HJNISUN(M7‘J)/AN

400 CONTINUE '

IIiJII‘I'N

L'~'-'L+N

450 CONTINUE

CONF'UTE POULED MEAN

ONTWNT

DO 94 J35’I7K

GTU(.J):-'0o0

DO 93 M’JI7N‘3

GTU(J)'~'~ITIU(\.J)‘I'SLJM(Mr.I)

93 CONTINUE

F'M(J)35’5TU(J)/ANT

94 CONTINUE ,

CONF'UTE F'OOLIED NITHI N COVI’IIT.‘ I ANCE T'TI'I'ITRIX

ANI==N"‘I

DO 97 C131 7NE

SSU(J):10oO

97 CONTINUE

II=I

L33N

DO 98 I;"I7NS .

CALL COVOFI‘: I I 7 L 7 Y 7 l"\' 7 Nr NE 7 SUI-J 7 OMS)

DO 99 J=317NE

SOU<J)'~"—SSU(J)+(ON1*SVU(J))

99 CONTINUE

IIflII+N

L=L+N

98 CONTINUE

PN‘xNT‘“NS

DO 96 .1117le

PSV(J)=SSU(J)/F'N

96 CONTINUE

COMF’UTE SAMPLE. BETWEEN COVARIANCE

113:1

L=N8

CALL COVAR(II7L7YBAR7K7NS7NErSVBT76MB)

AN=N



130

700

600

710

750

800
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[I0 451 I=17NE

. SVB(I)=SVBT(I)*AN

' CONTINUE

CONF'UTE SAMPLE TOTAL COUARIHNCE NOTRIX

11:1

L=NT

CALL COVAR(II7L7Y7N7NT7NE7SU7ONIZAN)

COMF‘UTE THE ESTIMATION OF PURE BETWEEN COUI‘NRIHNCE

AN-‘ZN

DO 130 I=I7NE

SHKTT( I)“‘~'(SVB( I )‘F'SV(\I ) )/F-\N

CONTINUE

RETURN

END

SURROUTII‘JE (WH'FH‘H .T 1 7 I... 7 Y 7K 7 N] 5' NF: 7 OU 7 (EH-H”.th

COMF'UTE ”Hf-TN (1er COUfiRIl-NNCE MATRIX

DIPHINSIUI‘Q Y( .1 1.70075) 7 53V( 15) 7ONK(\N(5) 7 O'I'llil'l'fil..(1‘3) 7b” 15) 78( 15)

COMF’U'IE SUN fiNII MEAN

ANT==HT
DU 600 J‘r-‘IH‘L'

GT0T!’:L(J)I-30o

DO 700 I=~‘-IIH.-

GTOTKTL. ( J)’=fl'3'l‘(.)T(-ll- ( J)+Y( I 7 J)

CONTINUE

ONEfiT'HJJ=GTOTAL(J)/ANT

CONTINUE

COMF'UTE YEAR BY YEN? TRGNSF'OSE

Ic=o

['0 750 J=17K

[TO 710 N==17J

IC=’IC+1

W(IC)~‘-3=GNEAN(J)*OMEAN(N)

CONTINUE

CONTINUE

COMF'UTE NT BY (YBN‘T BY YEAR Tllr'x’flfx'itift'OiiEi)

ANT-”4N1.

DO 800 13:17le

“(I)3=U(I)*I"NNT

CONTINUE

CONF'UTE Y TRANSF‘OSE: Y

10340

DO 925 .J3317K

DO 900 NfllrJ

X330.

['0 950 I§l§fi21]:7l-

X==X+Y(Kl”\'7J)*Y(Kl\7H)

CONTINUE

ICSIC‘T'I

S(IC)='~'X

CONTINUE

CONTINUE

CONF‘UTE SAMPLE VARIANCE COUIMQIONCiEMI‘fl'INIX

fiNT] “NT“ 1

DO 9535 J=17NE

8(J):S(J)*U(J)

SU(J)-‘*S(J)/QNT1

" CUNTI NUE

RETURN

END
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DISCRIMINATION ANALY?IF r FINN N A nnnuga1 TO

GET CHfiRfiCTERISTlC H60? nan vucr S 93 UEM 1% LOCK APPROACH

3 1 1 1 2o 1 1

CHQOk 50 '

‘AMPLE NUMBER 2

FINISH

(IQ!5X93(F10.4))

Y X1 X2

50

C0!

C1!

C2!

C3!

C4!

C57

C61

C79

C89

C99

0101

C11!

C121

C137

C149

C159

C169

C177

C189

0199

C201

C217

C229

023!

0249

C259

C269

C271

C28!

C29!

C309

C319

C321

C33!

C34!

C357

C367

C377

C381

C399

C401

C419

C429

C437

C447

C457

C469

C479

C48!

C49!

3 1 1

“1749.
STOP



10

200

100

25

300

30

500

400
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PROGRAM BOCK(INPUTrOUTPUrméfiyTAPESvTAPEémOUTPUT)

SAMPLE NUMBER 50

ESTIMATE POSITIVE SFMI DEFINITE BETwEEN COVORIANCE

USE IMSL SUDROUTINE

DIMENSION UNAREN<200>.TINUTC3.3>.TINU<3,3>.AI(3.3).T(3,3)

DIMENSION PHI(373)yPHIMI(3r3)vRES(3y3)ySIGHA<3v3)yRESl(3y3)

DIMENSION SXX<292)y8XY(2v1)ySXXINU<2y2)yBHAT<2v1)

DIMENSION 5Yx<1.2).sE<2>

N=NO. 0F SUDJECTS IN EACH SCHOOL

KsNO. 0F DIMENSION 0F MATRICES

cho

N=3

READ IN T(IyJ)rPHI(IrJ)

DO 100 1:1,K

READ<S:10)(T(IvJ)yJ:19K)y(PHI(I:J):JE1:K)

FORMGT<6F10.6)

CREATE IDENTITY MATRIX

DO 200 JxHK

IF (I.EQ.J) THEN

AI(I:J)=1.

ELSE

AI<I.J>=0.

ENDIF

CONTINUE

CONTINUE

PRINT T<I.J).RHI<I.J>.AI<I.J)

URITE<6.20)

FORMAT<$1MATRIX 0F CHARACTERISTIC vECTORt)

DO 300 1:1.N

NRITE<6,25>(T(I,J>.Jz1,N)

FORNAT(xo*,<3x,3(F10.6.3x>))

CONTINUE

URITE<6.30)

FORMAT(*0MATRIX OF PHlx)

DO 350 I=I.N

NRITE<6.25)(RHI<1.J>,J:I.N)

CONTINUE

NRITE<6,50)

FORMAT(*OIDENTITY MATRIXX)

DO 375 1:1.N

URITE<6925><AI(I:J)yJ=1vK)

CONTINUE

CUMPUTE PHI—I

DO 400 I=17K

DO 500 JEIyK

PHIHI(I:J):PHI(IvJ)~AI(IyJ)

CONTINUE

CONTINUE

CONRUTE INVERSE OF T

CALL LINv2F(Ty3r3rTINUyOrUKAREA:IER)

CREATE TINUERSE TRANSPOSE

DO 600 1:1,N

DO 700 Jm1yx

TINUT<I.J):TINU(J,I)

CONTINUE

CONTINUE

RRINT INVERSE OF T

NRITE<6.60)

FORMAT<XOINUERSE 0F TX)

Do 723 1319K

NRITE<6.25><TINU(I.J).J:1.K)

CONTINUE
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750
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T4€lfi!! 'lktnififl’ULNZ LN: TIIJUlliifl:

WRITE(697O)

FORMAT(*OTRAN8POSE OF TINUERSE*)

DO 750 I=17K

URITE(6925)(TINUT(IIJ)9J$17K)

CONTINUE

COMPUTE THE PRODUCT OF TINUERSE TRfiNSPOSF AND PHI~I

CALL UHULFF(TINUT1PHIMI1373:393QSIRE81v5rIER)

COMF'UIE THE F'FL‘TIJDUCT OF 'TINUERSE TFn’u‘lESF'TlffSErF-‘HI~~I (5ND TINUER‘SE

' CALL UNULFF(HE81rTINUv39313v3739RESr3rIER)

850

800

COMPUTE POSITIVE SEMI UEFINITEBETUEEN CUUHHIHNCE(SIOMA~A HAT)

AN=N

DO 800 I=19K

DO 850 J=17K

SIOMO(IIJ)*RES(I7J)/ON

CONTINUE

CONTINUE

PRINT POSITIUE SEMI DEFINITE BETUEEN COUGRIQNCE

URITE(6980)

80 FORMAT(*OPOSITIUE SEMI DIFINITE BETWEEN COUfiRIfiNCE MATRICES<SIOMQ“

900

30

200

40

50

300

+HFIT ) *)

DO 900 lerK

NRITE<6725)(SIONA(I!J)1J*17K)

CONTINUE

SYY=SIGNA(171)

SXY(1!1)3SIGMH(271)

SXY<291)=SIGMA(371)

SXX(111)=SIGMA(272)

SXX(1!2)=SIGNA(273)

SXX(271)=SIOMA(372)

SXX(272)=SIGNA(373)

CALL BETAHAT(SYY15XYISXX)

END

SUBROUTINE HETAHAT(SYYISXYISXX)

COMPUTE BETWEEN SLOPE BY BOOK APPLICfiIION APPROHCH

USE INSL SUBROUTINE _

DIMENSION SXX(272)18XY(271)78XXINU(272)yBHflT(271)rUKAREA(ROO)

DIMENSION SYX(1,2)7SE(2)

N=NOo OF SUBJECTS

K=NOo OF X

N=JO

K=2

PRINT SXX

URITE<6720)

FORMGT(*1HATRIX OF SXXX)

DO 200 I=HK

URITE(6730)(SXX(I7J)9J$1!K)

FORMAT(*O*75XIQ(F10.4:3X))

CONTINUE

PRINT SXY

URITE(694O)

FORMOT(*OMATRIX OF SXYX)

DO 300 I=vi

URITE(6750)(SXY(III))

FORMAT(*O*’5X9F10.4)

CONTINUE

COMPUTE INUERSE OF SXX

CALL LINUIIF ( SXX v 2 7 2 r SXXINNl r 0 1 ”KOREA r I ER)

-PRINT INVERSE OF SXX

60

URITE(6760)

FORMAT(*OINVERSE OF SXXX)



APPENDIX B

RELATIONSHIP OF THE BETWEEN-GROUP REGRESSION COEFFICIENTS

FROM VARIOUS ANALYSIS APPROACHES



Relationship of the Between-Group Regression Coefficients

From Various Analysis Approaches

To estimate the between-group regression coefficients, Bock

application approach uses the estimated between-group variance—

covariance matrix, 23. An unbiased estimate of 2a is:

where Sa is the matrix of the between-group mean squares,

S is the matrix of the within-group mean squares,

and n is the number of subjects within each group.

I

 

 

 

 

Denote: Z _(k) _(k) _(k1) ____(k1)

i=1n(x1 - x )(xi - x )

A

n(I - l) KxK

I n

(k) —<k) (k1) -<k1)
z 2 (x - x )(x - x )

B 1=1 j=1 13 1 ij i

nI(n - 1) KxK

I

—- n(I - l) le

I n

X X (k) -(k) -

and §_= i=14j=1 (X13 ’ X1 >(Yij ' Y1)

nI(n — l) le

where I is the number of groups.

92



93

Then fa can be written as

 

 

. . 1
,. 0(Y)2 E(xy) I

2 = a a

.a ,. ,.

Z(xy) 2(X) l

a a .-

3 32"” <2. - 19'

(g - g) (A - B) |

A 2 " "2 _ _' 2

where 0(y) = 1_ 211(Y1 - Y) 22(Yij Yi)
 

n(I - 1) n(I - 1)

%- MS(Between) - MS(Within)

The least squares estimate of the between-group regression coef-

ficient can then be written as

“B _ “(x)-1“(xy)_ -1
E3 — Ea 2a - (A - B) (a - b).

While the matrices A and B are in general non-singular, the dif-

ference matrix (A - B) may not be non-singular. Thus, Bock (1968)

proposed to use the orthogonal decomposition of (A - B) and retain only

those eigen values and eigen vectors that were statistically signifi-

cant to construct Ohe "inverse" of Iix).

In order to relate the estimated between-group regression coef-

ficient to those obtained from the other approaches, A - B is also

assumed to be non-singular so that (A - BT-lexists. Furthermore, both

A and B are assumed to be non-singular. The least squares estimate

of the between-group regression coefficient is then:
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m-BYHa-wBa '

-l -1

= (A - B) a — (A - B) b

= (A(I - A‘IB))'1a - (n(B’lA - I))'1b

= (I - A-lB)-lA-la - (B'IA - I)'lB'lb

But A—la = E: is the between—group regression coefficient esti-

1

mated from the group level apporach, and B- b = §_is the pooled within

group regression coefficient. Hence,

1A

1A - I)- .g.= (I — A-lB)-l§: - (B-

I
m
u
s

Applying a theroem presented by Nobel (1969, Theorem 5.22, p. 147),

(I - AmlB).l can be written as:

(I - A-lB)-l = I + (B-IA - I)'1.

Thus,

“B _ -1 -1 “G -1 -1 *

Ea — (I + (B A - 1) ga - (B A - I) a

_ “G -1 “G -1 -1 A
—§a+(B A-I)§a-(B A-I) g

_ “G -1 -1 “G “
- Ea + (B A - I) (Ea — g)

“B “G -1 -1‘F
Ea — Ea + (B A - I) ga

A

F

where Ea is the between-group regression coefficient obtained from the

A

full model analysis approach, and g: is the between-group regression

coefficient obtained from the Bock application approach.
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