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ABSTRACT
INVESTIGATION OF METHODS OF ANALYZING
HIERARCHICAL DATA
By

Boonreang Kajornsin

In recent years researchers have become more cognizant of the
problems of analyzing hierarchical data. It has become increasingly
evident that efforts to investigate the relationship among educational
variables have suffered from a failure to understand complications
caused by hierarchical data. When faced with the analysis of hier-
archical data many researchers have proposed alternative ways of
analyzing such data.

The general purpose of this dissertation was to investigate
various alternatives used to analyze hierarchical data by applying them
to a set of simulated data. This study extends the regression model
presented by Burstein, Linn and Capell (1978) to its multivariate form.
The model used to simulate the data is the random effects model. The
main assumption used in this model is that there is homogeneity of the
within-group regression coefficients. The main concern of this dis-
sertation is to determine which approach gives the best estimates of
the between and within regression coefficients in terms of accuracy
(least amount of bias) and in terms of precision for various situationms.
The bias ratio of each estimator was also computed to facilitate com-

parisons.

Two situations were investigated in this dissertation. The first
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situation was one in which there were both individual level predictors.
which were aggregated to the group level and predictors which were
defined only at the group level. The second situation was one in
which there were only individual level predictors which could be ag-
gregated. For each situation, three different data sets were genera-
ted; first, there were no group level effects; second, group level
effects were equal to the individual level effects; third, group level
effects were not equal to the individual level effects.

The simulation results showed that all analysis approaches gave
the same estimates of the pooled within-group regression coefficients
for all six cases with good precision and small bias ratios.

In the situation where there were both individual level predictors
which were aggregated to the group level, the group level analysis
approach, full model analysis approach and substraction analysis
approach all gave essentially the same estimates of the regression
coefficients defined for the group level variables. In the case where
there was no group level effects, the two stage analysis approach gave
better estimates of the regression coefficients defined for the group
level variables than for the other three approaches. In the case
where the between-group regression coefficients were equal to the
pooled within-group coefficients, all four approaches gave essentially
the same estimates of the regression coefficients defined for the group
level variables. In the case where the between-group regression coef-
ficients were not equal to the pooled within-group regression coeffi-
cients and when the intraclass correlations were low (about 0.30) all
four approaches gave the same estimates, but when the intraclass cor-

relations were high (about 0.90) the two stage analysis approach did
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not give estimates of the regression coefficients as good as those
given by the other three approaches.

In the situation where there were only individual level predictors
which could be aggregated to the group level, the simulation results
showed that for all three cases, the full model analysis approach and
the subtraction analysis approach gave exactly the same estimates of
the between-group regression coefficients but they were not close to
the true parameter values. The group level analysis and Bock appli-
cation approaches gave estimates of the between-group regression coef-
ficients that were not that different from each other and were also
close to the parameters. When the intraclass correlations were high
(about 0.90), the group level analysis approach seemed to give better
estimates of the between-group regression coefficients, but the Bock
application analysis approach gave better estimates when the intraclass
correlations were low (about 0.30) in the case where the between-
group regression coefficients were not equal to the within regression
coefficients. When the between-group regression coefficients were
equal to zero, the Bock application analysis approach gave better
estimates of the between-group regression coefficients than the group
level analysis approach. However, when the between-group regression
coefficients were equal to the pooled within group regression coef-
ficients, the two approaches gave essentially the same estimates for

the between-group level analysis approach.
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CHAPTER 1
STATEMENT OF THE PROBLEM

In recent years, the problems of analyzing hierarchical data have
been well known among researchers. It has become increasingly evident
that efforts to investigate the relationship between variables have
suffered from a failure to understand complications caused by hier-
archical data. Most educational data are hierarchically arranged,
i.e., students are grouped into classrooms which are grouped within
grade levels and within schools. The schools are also grouped within
school districts and these in turn are also grouped within state educa-
tional administrations.

Consider the problem of modeling the effects of school structure
on student achievement. Suppose we are interested in the effects of
some characteristic of school structure on achievement. There is a
systematic sorting of families into school districts that produces a
correlation of individual student attributes with school characteristics.
Theréfore, an adequate description of the achievement process must
contain both student characteristics and school characteristics.

The practical problem is that the researcher may either analyze
individual level data (e.g., regressing individual achievement on
student characteristics and school characteristics) or he may analyze
school level averages (e.g., regressing average achievement on average
individual characteristics and school characteristics). Hannan and
Young (1976) have shown that in most realistic situations (i.e., when
models are not perfectly specified) results of the two different

analyses will be quite dissimilar.



Bidwell and Kasarda (1975) argue that when the question is posed
at the school level, the school level regression is most appropriate.
Hannan, Freeman and Meyer (1976) point out that researchers seldom
adequately specify school-level processes that are anything more than
the sum of individual-level processes. The causal arguments are con-
cerned with the impacts on individual students which are composed of
school-level outcomes. Consequently, the choice of level is open to
question.

Wiley (1973) points out the problem of analyzing data when using
large numbers of correlated explanatory variables. He indicates that
when variables defined at the level of the individual pupil are ag-
gregated to the level of the school their correlations tend to increase.
As a consequence, in the presence of large numbers of such variables,
effective analyses are hindered by excessive collinearity (high rela-
tions among independent variables). When the number of such collinear
variables becomes very large, the effects of individual variables
become very difficult to detect. Whenever variables are defined at
the school level, the appropriate unit of analysis is the school and
the number of degrees of freedom available is limited to the number of
schools.

Research on the differences between multiple regression models
applied at different levels of aggregated data indicates three things:
1) there are substantial differences in the magnitude of regression
coefficients across aggregated levels for specific models; 2) different
variables enter the models at different levels; and 3) aggregation of
individual characteristics generally inflates the estimated effects of

pupil background and thus decreases the likelihood of identifying



teacher and classroom characteristics that are effective. The results
cited above are not very comforting for the researcher who wishes to
draw conclusions about educational processes at one level but is
constrained to analysis at a different level.

When faced with the analysis of hierarchical data many researchers
have tried to propose alternative ways of analyzing such data (e.g.,
Keesling and Wiley, 1974; Cronbach and Webb, 1975; Keesling, 1976; and
Burnstein, 1976).

Keesling and Wiley (1974) propose a two stage analysis of hier-
archical data. They set out to define a model for disentangling the
effects of variables defined solely at the school level from those
defined at the level of the pupil.

Cronbach (1975) claims that the overall between-student coefficient
from the regression of individual outcome on individual outcome on
individual explanatory variables is a composite of the between groups
regression coefficient and the pooled within-group regression coef-
ficient. He recommends that between group effects and individual within
group effects should be examined separately.

According to Keesling (1976), to obtain the correct estimates of
the between school regression coefficient at least two models need to
be examined. These two models are a school level model and an indivi-
dual within school level model. Keesling recommends subtracting the
within school regression coefficient from the between school regression
coefficient to obtain the correct regression coefficient appropriate to
school level effects.

Burstein (1976) proposes an alternative approach by suggesting

the examination of determinants of heterogeneity of the within class



slope. He suggests that the first step is to find the specific within
class adjusted intercept and slope. The second step is to fit a model
at the class level with the adjusted intercept and slope used as out-
come variables and the class level explanatory variables used as
independent variables.

The general purpose of this dissertation is to investigate various
alternatives used to analyze hierarchical data by applying them to a
set of simulated data. This study extends the regression model
presented by Burstein, Linn and Capell (1978) to its multivariate form.
The model used to simulate the data is the random effects model. The
main assumption used in this model is the homogeneity of the within
group regression, that is, in contrast with Burstein's approach which
suggests allowing for the heterogeneity of the within group regressions.

The main concern of this dissertation is to determine which approach
gives the best estimates of the between and within regression coef-
ficients in terms of accuracy, least amount of bias and in terms of
precision for various situations. In other words, this dissertation
is concerned with determining how correctly the alternative procedures
tend to work, i.e., how similar the estimated coefficients at the
group level are to the known parameter values, and if the conclusions
arrived at under each analysis approach are the same.

Two situations are investigated. The first is where there are
both individual level predictors which can be aggregated, and predictors
defined only at the group level. For example, the predictors could be
length of the school day (group level), and average home background
(individual level aggregated to the group level). The second situation

is where there are only individual level predictors which are aggregated.



For example, the predictors are average home background, and average
pretest scores (both individual level variables aggragated to the
group level). For each situation, three different populations are
investigated; first, there are no group level effects; second, group
level effects are equal to the individual level effects; third, group
level effects are not equal to the individual level effects.

For the first situation, four analytical approaches will be
investigated: a two stage least squares-analysis recommended by
Keesling and Wiley, a group level analysis approach using only averages
recommended by Cronbach and Webb, a full model analysis approach
recommended by Keesling. For the second situation, four approaches
will be investigated: the group level analysis approach, an approach
based on Bock (1968) using his method of estimating heritable varia-
tion in twin studies, the full model analysis approach and the sub-
traction analysis approach.

The method of investigating these various approaches will involve
the use of simulated data which are generated by computer algorithms
where the population parameters are known. For each population, fifty
samples were generated. By analyzing fifty samples, one can compare
1) the empirical distribution of the estimator for each analysis
approach to the others and 2) the empirical standard errors of the
parameter estimates. These results can be used to help determine the

appropriateness of each of the analyses for different data situations.



CHAPTER II
REVIEW OF THE LITERATURE

Traditionally, in a situation involving heirarchical data, a
variety of competing points of view have been cited as justification
for the choice of either pupils or groups (classroom, schools, etc.)
as the unit of analysis. Hannan (1976) has shown that in most inexact
cases (i.e., when the models are not perfectly specified) results of
individual level analyses and group level analyses will be quite
dissimilar. This finding makes the choice between models extremely
important. This section will review the methodologies that some invest-
igators have used to analyze multi-level data.

Cronbach and Webb (1975) reanalyzed a study by G. L. Anderson.
Anderson reported finding an interaction of drill and meaningful methods
of arithmetic instruction with student ability and achievement. Drill
was found to be superior for "overachievers" and meaningful instruction
for "underachievers" in 18 fourth-grade classrooms. Pretest measures
used in the study were the Minnesota School Ability Test and the Compass
Survey Test. Cronbach and Webb argued the importance of separating the
regression effects into the between-class and within-class categories.
In their reanalysis, separating between-class and within-class regres-
sion components of the outcome on aptitude, the Aptitude by Treatment
interaction finding disappeared. An apparent interaction in the
between-class analysis was dismissed as unreliable. No interactions
were found within classes. Finally, the concluded that studies of

interactions usually have not been powerful enough to evaluate outcome



on aptitude regressions accurately. Using the class as the unit of
analysis, even the rather large Anderson study could not set narrow
confidence limits on the regression slopes. They urged investigators
collecting data on intact classes to examine between group and within
group regressions separately.

Keesling and Wiley (1974) discussed the problem of disentangling
the effects of variables defined solely at the level of the school
(e.g., length of the school day or the highest degree held by the
principal) from those defined at the level of the individual pupil
(e.g., home background characteristics). They summarized the model
implicit in this situation by:

=y +y'Z. +0, +3'%X. .+
Vij T Yo FXZ; O HE K e

ij

where Yij is the outcome of the jth pupil in the ith school, Y, is an
additive constant, y' is the vector of adjusted effects of school
characteristics on Y, Zi is the vector of school variables for the
ith school, Oi is an error component defined at the school level, B'
is the vector of adjusted effects of individual characteristics on

Y, X.. 1s the vector of the characteristic of the jth individual in the

ij
ith school, and eij is an error component defined at the individual
level.

In the context of hierarchically defined educational data, they
proposed three alternatives to obtain appropriate adjusted estimates
of the effects at the individual and school levels. The first alter-
native was to assume that the model was completely specified at the
school level, i.e., all of the school variables relevant to the out-
come are included in the model. Then the covariance (Oi’ Xi) is equal

to zero, where g& is the mean of Xij for the ith school. This model



implies that individual level variables have direct impact on outcomes
only at the level of the individual; their effects at the school level
are mediated through other variables defined at the level of the school.
The second alternative was that if all the mediating variables
at the school level were not specified in the model, then the covariance
(O;, zi) was not equal to zero where O; was the residual from the
measured school variables. 1In this case, the fitting of the model will
produce a biased estimate of B. This source of bias may, however, be
eliminated by performing an analysis based on the variation within
schools. This may be done by subtracting the relevant school means
(school effect values) for the criterion variable and for each of the
pupil level explanatory variables from each of the individual values
for these variables. An analysis performed using these deviated values
will be adjusted for all sources of variation among schools. The
covariance matrix of the deviated values is called the pooled within
school covariance matrix. If this covariance matrix is computed for
all individually defined variables and used as the basis for the regres-

sion of the outcome on the X

150 the resulting estimate of B will not be

biased by specification errors at the school level.

After the adjusted effects of the individual level variables are
found, the average effect value for each school, aggregated over all
the individual pupils, may be subtracted from the criterion mean for
each school. Analyses using the school as a unit with variables
defined at the level of school as the independent variables and the
modified criterion means as the dependent variable will produce esti-
mates of the effect of the school variables adjusted for the effects

of individually defined variables. The model at the school level



becomes:

-

Yy - BX =y oty ey

A,

where Yi is an achievement mean for ith school, E‘Ki is the estimated
average effect value for ith school, Y, is the constant, Y“is the
vector of the adjusted effects for the school variables, and ¢i is an
error component at the school level. Using this model, the analysis
will produce unbiased estimates of Y, and y in the absence of specifi-
cation error.

The third alternative was that if there was some specification
bias at the level of the school-defined variables (i.e., some impor-
tant variables are missing) then the covariance (Oi, Xi) is not equal
to zero and the covairance (¢i’ Xi) is not equal to zero, either.

Some of the biases in the estimate of y can be removed by including
the sum of the average effect values (é'zi) of the individually defined
varialbes as another variable in the school level analysis. The model
then becomes as follows:

Y=y, ta'zg (-ézi) t oy

This technique allows the partial removal of some of the additional
bias due to the omission of relevant school level variables to the
extent that the sum of these average effect values is correlated with
the omitted variables.

Rock, Baird, and Linn (1972) studied the interaction between
college effects and students' aptitudes. They claimed that their
approach was designed to find groups of colleges that are about equally
effective for students with various levels of initial performance.

Then the characteristics of the identified criterion groups were com-

pared to see which characteristics were related to the relative
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effectiveness of the groups. Their method attempted to provide an
intuitively simple approach which identified both overall college
effects and effects which interact with student ability. Specifically,
four steps were carried out: 1) all within school regression lines
were computed, i.e., Graduate Record Examination (GRE), area tests were
regressed on the College Entrance Examination Board, Scholastic
Aptitude Test (SAT) scores within school; 2) Ward's (1963) hierarch-
ical clustering technique was applied to group schools in the basis of
the similarity of their regression lines; 3) multiple group discriminant
functions using the estimates of the regression parameters as the
group discriminants were computed to test whether the newly formed
groups differed with respect to their pooled regression lines; and
4) discriminant functions using college descriptive variables as the
group discriminants were then computed. This method thus identified
criterion clusters of colleges that differed in effectiveness by
clustering on the slope, the mean SAT scores of the students, and the
intercept. Therefore, one can identify and group colleges that have
different levels of initial ability. Then the simultaneous evaluation
of the college along with the relative slopes of their pooled within
group regression lines indicated the college characteristics which
are associated with overall as well as differential effectiveness.
Burstein (1976) discussed two examples of multi-level analyses
found in studies by Rock, Baird and Linn (1972) about the interaction
of student aptitude and college characteristics and by Keesling and
Wiley (1974) in which they reanalyzed a subset of the Coleman data.
He stated that each method has certain merits and certain drawbacks.

The Keesling and Wiley approach provided effect parameters more nearly
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mirroring the structural form of school effects than the Rock, Baird
and Linn approach or the usual single level analysis models. Burstein's
concern was that the Keesling and Wiley approach fails to adequately
reflect the effects of between class differences in slopes. Moreover,
treating the resulting clusters as groups in a discriminant analysis

as Rock, Baird, and Linn did discarded any metric differences existing
among the clusters and thereby eliminated the possibility of describing
school effects in structural terms. The use of discriminant groups
results in some loss in generalizability of findings that should be
avoided. 1In the same paper Burstein also criticized Cronbach's approach
that recommended analyzing between class and within class separately
when intact classrooms are sampled. Burstein said that the between
class and within class analyses did not remove the need for concern
about homogeneity of regression.

Burstein proposed an alternative multilevel analysis atragety
that consisted of two stages, as follows:

1. perform within class regression (not pooled) of outcomes on

input, and

2. use the parameters (a,B) from the within class regressions

as "outcomes" in a between class analysis.

Burstein claimed that his strategy combined certain features of
approaches by Keesling and Wiley and by Rock, Baird and Linn. The
technique of using the within class parameter estimates as outcomes
should lead to more sensitive interpretation of effects and clearer
policy implications of the findings.

Burstein and Miller (1979) stated that because of its hierarchical

organization, the effects of schooling on individual pupil performance
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can exist both between and within the levels of the educational system.
Moreover, analyses at different levels address different questions and
thus analyses conducted at a single level were inherently inadequate.
While analyses of the relationships between '"treatment'" dimensions and
the mean outcomes of groups often provide useful information, impor-
tant differences in within group processes may be obscured. These
within group processes may arise due to group composition (e.g., ability
level and mixture affecting participation patterns), differential
allocation of instructional resources among the members of the group
(e.g., the grouping and pacing features of reading instruction), or
differential reactions of group members to the same instructional
treatment (aptitude-treatment interactions).

If important group-to-group differences in within group processes
exist then the use of group means as the only indicator of group out-
comes will result in misleading estimates of group (teacher, class,
treatment) effects.

Burstein and Miller's interest in alternative measures of group
outcomes has concentrated on the properties of the within-group slopes
from the regression of outcome on input. They have argued that within
group slopes are group level indicators of within group processes.
Their reason for considering slopes as outcomes was that there may be
instructional effects on the within group regression of outcomes on
input, whether there were instructionél effects were present, the
analysis should attempt of isolate instructional process and practice
variables that were associated with slope variation. If such variables
can be found and alternative explanations cannot be ruled out then

variation in slopes becomes an important source of information for
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researchers and policy makers, especially when considered along with
effects on other group level outcomes.

Keesling (1976) presented a model for analysis at two levels of
aggregation (e.g., pupil and school). The multivariate random effects

model for this situation is:

=u+a, +e, i

Y a; tey, 1,2,.....,k

j 1,2,.....,n

all vectors are p x l. This implies Zy Za +7¥ assuming that there are
k groups of n units, each unit having measures on p variables.

The above model, adopted from Schmidt (1969), was comprehensive
in that it permitted the estimation of effects and their standard
errors at both levels of aggregation simultaneously. Keesling, however,
did not analyze the data by using Schmidt's procedure.

Two sets of data were presented. One set dealt with data con-
structed to a particular specification. The second set dealt with
real data of a two-level nature. He analyzed data under three models.
The first model used pupil post-test score as the dependent variable,
ignoring the group structure in the data, and pretest, SES, average
pretest, average SES and hours per month of principal absence as pre-
dictors. The second model used school mean post-test as the depen-
dent variable, average pretest, average SES and hours per month of
principal absence as predictors. The third model used pupil posttest
score within school as the dependent variable with pretest and SES as
predictors. The results suggested that in order to obtain both the
correct parameter estimates and the correct standard errors, it is
necessary to perform at least two analyses. The first model gave the

correct parameter estimates, but it did not partition the residual sum
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of squares by level of effect. The second model gave the aggregate
level standard errors, but the parameter estimates were the sum of the
between and within effects. The third model obtained the appropriate
estimates and standard errors for the within school effects. The
second and third model may be combined to produce correct estimates

of the between school effects by subtracting the within school

estimates from the between school estimates.



CHAPTER TII
ALTERNATIVE APPROACHES FOR ANALYZING

HIERARCHICAL DATA

Of the different alternatives proposed to analyze the hierarchical
data, four were selected for comparison in the present study. The two
stage analysis approach which was recommended by Keesling and Wiley,
group level analysis approach which was recommeded by Cronbacih and
Webb, full model and csubtraction analysis approaches which were recom-
mended by Keesling, and Bock application analysis approach will be dis-
cussed in this chapter.

Consider the following general situation where person j is a
member of group i. The person has a set of scores, Eij and Yij' Also
available are a set of explanatory variables defined only at the group

level which is denoted as Z The relationship of ﬁij and Z, to Y

i’ i

can be decomposed into between group and within group components as

given in equation (3-1).

(3-1) Y. =u +8'" (0 - u)+R" (Z, -u)+&, +
1] y —a _xi —X -z —i -2z i
(] - - ' -
B (Kij u i) + (8, - B) (Eij gxi) + €5

where u , y_ and u_ represent the population means, u represents the
y' —z X Xy

ith group population mean, Ea denotes the between-group regression

coefficients for the individual level variables, Ez represents the

regression coefficients defined for the group level variables, B

represents the pooled within-group regression coefficients for the

15
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individual level variables, and Ei represents the specific within-group
regression coefficients for group i for the individual level variables.
The Gi and Eij represent the error at the group level and at the indivi-
dual level, respectively.

This study will deal with the case where all within group slopes
are equal, resulting in (gi - B) being equal to zero. The model for

the first simulated case is:

- = ' - ' - g
(3-2) Yij uy + Ea (Exi Bx) + Ez (Zi uz) + &, +
B'(X,. —u_ ) +e
=ij x ij
i
Let 2k, T Ex, T X
i i
2, - El -4,
i
a = X..-
-x,, —ij -x
1]

The equation (3-2) can be rewritten as equation (3-3):

(3-3) Y..=u + B'a + B'a 4+ ¢i + B'a + €.,
ij y Tax; Tzzg - —xij ij

This implies that the variance of Y is:
(3-4) Var(Y) = 8't¥8 +8'5% 8 + o2 + B'L'8 + o2
—a aa -~z a-z a

where X: is the between level variance-covariance matrix of X, Z: is
the between level variance-covariance matrix of Z, £* is the within
level covariance matrix of X, 0; is the error variance defined at the
group level and 02is the error variance defined at the individual level.
Then there are only individual level explanatory variables, the
model is:
(3-5) Yij =y + B’ (gx -p) + 8+ B (51j - Exi) + €5

And the variance of Y is:
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(3-6) Var(Y) = E;Z:Ea + oi + E'Zxﬁ + o2,
The five alternative analysis approaches (two-stage analysis,
group level analysis, full model analysis, subtraction analysis, and
Bock application analysis) that are investigated in this dissertation
can be related to the models as given in equations (3-2) and (3-5)

for the first and second situation, respectively. In the following

pages, the procedures of each alternative approach is discussed.

Two Stage Analysis Approach

The two stage analysis approach was recommended by Keesling and
Wiley (1974). Wiley mentions that one of the problems in the analysis
of multi-level data has been separation of the effects of the aggregated
variables into parts reflecting their individual level effects on one
hand, and their effects via school climate and organization on the other.
One way to describe an appropriate method of analysis of hierarchical
data is in terms of the general notions of statistical confounding and
control. If we wish to assess the impact of how one explanatory vari-
able is correlated with another one, then if we ignore the second, we
will attribute to the first not only its effect, but also a spurious
effect which is due to the correlation between it and the second, and
the effect of the second. If we utilize an appropriate method of
analysis which takes into account the second variable, i.e., its
effects and its relationship to the first, we may obtain an adjusted
assessment of the effect of the first variable which is not confounded
by the second.

Keesling and Wiley set out to define a model for disentangling

the effects of variables defined solely at the school level from those
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defined at the level of the pupil. The process of disentanglement
involves two stages. The first stage adjusted the effects of indivi-
dual background characteristic on outcome for the effects of the
schools in which the individuals receive instruction. The second stage
used the adjusted effects of individual level variables aggregated
over pupils within schools to determine the adjusted effects of school
level variables. In practice, they carried out the following:
1. Determine the pooled within-school slopes under equation (3-7).
3-7) Y,  =wu_  +B8"(X,, - M ) + €.,

ij Yy —1j i ij

where Yij is the outcome of the jth subject in the ith school, uyi is
the population mean of the ith school, Xij is the vector of explanatory
variables of the jth subject in the ith school, and B is the vector

of pooled within-school slopes.

An analysis using the school mean deviated values of both explana-
tory and criterion variable will effectively '"control" or adjust for
all sources of variation among schools. The covariance matrix of the
deviated values is called the pooled-within school covariance matrix.
If this covariance matrix is computed for all individually defined
variables and used as the basis for the regression of the outcome on
the set of explanatory variables, the resulting estimates of B will

not be biased by specification errors at the school level.

2. Find the mean predicted outcome for each school.

~

- =A A'A --A
(3-8) uyi uy+_8_(y,xi B

where p_ is the mean predicted outcome for the ith school.
i

3. Fit a model at the school level regressing the observed school
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mean outcome on school level explanatory variables and predicted
school mean outcomes,

= ' -
(3-9) My My +8(2, -+ Auy' + 8
i i
where Ez is the vector of adjusted effects of the school level varia-

bles, Z, is the vector of the school level variables, Gi is the error

i
defined at the group level, X is the coefficient allowing for partial
removal of some of the additional bias due to the omission of relevant
school level variables (to the extent that the sum of these average
effect values is correlated with the sum of the average individual
level effect values represented in p ). If all relevant school level

i
variables are included, then A will be equal to one.

Group Level Analysis Approach

Cronbach (1976) mentions that in the situation where pupil j is
a member of group i, Bt’ the overall between student coefficient from

the regression of Y1j on Xij’

- = + - +
(3-10) Yij uy Bt(xij ux) Eij

has been shown by Duncan, Cuzzort, and Duncan (1961) to be a composite
of Ba, the between group regression coefficient and B, the pooled

within-group coefficient;

- = n2 _ 2
(3-11) Bt ana + (1 nx)B

where ni is the correlation ratio of X.

p )
X,. - u,
(3-12) n2 =1 - A (Xy5 = Mey)
X )JZ (X - )2 .
15 "5 7 Y&
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Cronbach indicated that analyses at the group level and the
individual level give conflicting descriptive results because they
speak to different substantive questions. The investigator who wants
to know the relationship between two variables is not asking a clear
question until he tells whether the group or individual level relation-
ship is the one of interest. He recommended that between group effects
and individual within group effects should be examined separately. He
proposed the following:

1. Between groups:

(3-13) uyi = +8,(2, -p)+ _B_é(g,xi - B) 68
where the §z is the effect of school level variables on mean outcomes,
and Ea is the between groups effect that reflects any consistent tendency
of higher-X groups to do better or worse than others on the outcome
measure.,

2, Pooled within groups:

(3-13) Yij =y, +_§'(§ij - B ) + eij
where B is the common within-group effect that reflects the tendency

for students above the group average to outperform or underperform

the rest of the group.

Subtraction Analysis Approach

In the situation where subject j is nested within group i, Keesling
(1977) analyzed constructed data to show how well ordinary least square
estimators can retrieve the information. He analyzed the data under
two models, as follow:

1. The group level model uses group mean outcome as the indepen-

dent variable:
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- = + B! - + B*! - +

(3-15) uyi My Bz, - u) + B* (-L-lx, v 8;

Keesling claimed that this model gives the aggregated level standard
errors, but the parameter estimates are the sum to the between and within
effects.

2. The within group model is the model that uses the individual
level outcome variable within groups as the dependent variable. Accord-
ing to Keesling, this model obtains the appropriate estimates and
standard errors for the within group effects.

3-16 Y,. = + 87 (X,, - u + €
( ) 13 uyi B (_lj _"i)

ij
Keesling concluded that to obtain the correct estimates of the
between school effects at least these two models need to be performed

and then substract the within group estimates from the between group

estimates. That is,

*

(3-17) 8, =8, - &

*
wherega is the correct between group effects, Ea is the estimate of
the between groups effects using the group level data and B is the

within group effect.

The Full Model Analysis Approach

The full model is the model that uses the individual level outcome
variable as the dependent variable. The explanatory variables are:
1) the variables defined at the individual level but which can also
be aggregated, 2) the means of the variables defined at the individual
level, and 3) the variables defined at the group level only. The model

is shown in equation (3-18).
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(3-18) Yij=uy+§_z(gi-gz)+§a(gxi-y,x)+§(x.—gx)+6..

where uy, L and b are the population means, Ex, is the ith group popu-
lation mean, Ea represents the between-group reg;ession coefficients

for the aggregated individual level variables, Ez represents the regres-
sion coefficients for the group level variables, B represents the

pooled within-group regression coefficients for the individual level

variables, and € represents the error defined at the individual level.

1j
Keesling (1977) at one time analyzed the heirarchical data under
the full model. He mentioned that this model gave the correct parameter

estimates, but it did not partition the residual sum of squares by the

level of effect.

Bock Application Analysis Approach

In the situation where there are students nested within schools
and the school is a random variable, the model is the random effects
model. In this dissertation, there is one dependent measure and two

antecedent measures for each subject; the random effects model is:

=pu + +

-
P
]
—
-
N
-
.
.
-

k.

where all vectors are 3xl in this application, Eij is the response

vector representing the dependent, and antecedent measures, M is vector
of the population means on each measure, a, andgij are the random
vectors assumed to be multivariate normally and independently distri-
buted with zero mean vectors and covariance matrices Xa and L respectively.

The above model implies Zw = Ea + I, where Zw is the total variance
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covariance matrix, Za is the between school variance matrix, and I is
the within school variance covariance matrix.

The use of the Bock application approach is to provide an estimate
of Ea which is at least a positive semi-definite variance covariance
matrix, and then from this matrix to estimate the group level regression
coefficients. Bock's method is presented in the context of twin studies
and is used to estimate the component of heritable variation. A more
detailed description of this approach can be found in Bock (1968).

Under the random effects model, the expected value of the mean
square matrix between schools is I + nZa, and the expected value of

the mean square matrix within schools is L.

[]

Let S £+ nl
a a
S =1
Then for a symmetric positive definite matrix S and a symmetric
positive definite matrix Sa’ it is possible to find a nonsingular
transformation T such that
(3-19) T'SaT =9

(3-20) T'ST=1

where ¢ is diagonal with positive diagonal elements, and I is an
identity matrix. The columns of T are the solution of a system of

homogeneous equations of the form:

-

(Sa - ¢18)t =0,1=1, 2, 3, and ¢, is a root of

|s - ¢s5] =o0.
a

In practice, the estimate of S is the mean square matrix within

schools, that is obtained from the equation (3-21).

1

(3-21) S =m—

W

- _ [}
Wy ~ WM -8

Heo™ &’
™S
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where W

13

vector, k is the number of groups and n is the number of subjects in

is the individual response vector, Ei is the group mean

each group.

Yij - Yi

The estimate of Sa is the mean square matrix between schools that

is obtained from the equation (3-22).

k
- - _ '
(3-22) S, = ni W, - W, - W
Y
where W is the grand mean vector. W =1 _|.
X

From equations (3-19) and (3-20),

T'SaT - T'ST =¢ -1

T'(sa -S9T =0¢ -1
T'nZ T = ¢ -1
4 =1 1
L, = [(T )'"(¢ - IDT ]/n

Practically, for the elements in the columns of T the discriminant
function coefficients are substituted and for the elements of ¢ the
corresponding significant canonical variances ¢l 1=1,2, ..., s)
and p -s unities are substituted (p is the dimension of T). This esti-
mate has the following properties. Because the elements of the diagonal
matrix (¢ -I) are non-negative, it can be expressed as the product of
a matrix and its transpose and is therefore positive semi-definite.

Its rank is s and its nullity is p - s. When all of the canonical var-
iances are significant (s = p),

)
a

[(T-l)'(T'SaT - T'ST)T_I]/n

[Sa - S]/n
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where Sa is the estimate of mean square matrix between schools and S
is the estimate of mean square matrix within school.
The between school covariance matrix (Za) estimated in this way

and guaranteeing positive semi-definiteness can then be used to estimate

the between school regression coefficient.



CHAPTER 1V

SIMULATION PROCEDURE

Simulation procedures were used in this study to generate the
data. The use of simulated data enables us to determine which method
of analyzing hierarchical data gives the best estimator, in terms of
accuracy and precision, of the parameters under various situations.

The bias ratio of each estimator was also computed to facilitate com-
parisons. Two situations were investigated in this dissertation. The
first situation was one in which there were both individual level pre-
dictors which can be aggregated to the group-level and predictors
defined only at the group-level. The second situation was one in which
there were only individual-level predictors which can be aggregated.
For each situation, three different data sets will be generated. These
are described in the following ways:

1. No group level effect. The between-group regression coef-

ficient is set to zero, but the within-group regression coefficient is
non-zero. This case implies that there is no group level effect
(i.e., §a = 0).

2. Group level effect is equal to the individual level effect.

The between group regression coefficient is not equal to zero but is
equal to the within-group regression coefficient. This case implies
that there is a group level effect, and that the group level effect
is equal to the within level group effect (i.e., ga =8 #0).

3. Group level effect is not equal to the individual level effect.

26
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The between group regression coefficient is neither equal to zero, nor
equal to the within-group regression coefficient. This case implies
that there is a group level effect but it is not equal to the within-

group effect.

Description of Population Parameters

The data generated for the present study were from a multivariate
normal distribution with a mean vector u and a covariance matrix I + Za’
where I is the within covariance matrix, and Za is the between covariance
matrix. The between-groups and within-groups regression coefficients
(B and ga), the within and between covariance matrix of individual

(x) and Zix)

level predictors (I ), the between covariance matrix of

(2)

predictors defined at the group level only (Z ), the between covariance

matrix of predictors defined at the individual level and at the group

level (Z(XZ)

), the error variance at the individual level (02), the
error variance at the group level (og), and the population mean (u)
were specified in advance.

The study by Keesling and Wiley (1974) was used as a guide to
choose parameter values which would be reasonable. Three population
covariance matrices were constructed based on the model (3-2) and (3-5)
for the first and second situations, respectively. The six possible
total covariance matrices ( I + Za) were derived from the 3x2 crossed
design of possible combinations of population parameters and situations
(see Table 4-1). Fifty samples of 1,500 subjects each were generated
for each cell in Table 4-1. In each sample there were fifty schools

with thirty subjects within each school. The structure of the within

covariance matrix (Z) and the between covariance matrix (Za) for the
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Table 4-1

3x2 Design of Populations Defining the Structure of (I + Za)

Both individual level Individual level
and school level varia- variables only.
bles.
B=0,8%0 I-A I11-A
=8 #0 I-A I1-B
B, T B 2
B, #8#0 I-C II-C

first and second situations are shown in Table 4-2. The vector of
populations means (u), pooled within-group regression

coefficient (B), between-groups regression coefficient (ga), error
variance at the individual level (02), and at the group level (og)

for both situations are given in Tables 4-3, and 4-4. The numerical

(x) Z(X) (2) z(x2)
* "a a ’* "a

values of & s L , L, and Z + Xa are given in Tables
4-5, 4-6, and 4-7.

The'intraclass correlations of variables Y and X are quite high
(about 0.6052 for Y and 0.6547 for X) in population I-C. In popula-
tion II-C, the intraclass correlations of Y and X variables are all
about 0.98. Therefore, in order to check whether the analysis appro-
ches give the same result in the situation where the intraclass cor-
relations are not as high as the first set of data, a second set of
data for populations I-C and II-C were generated with a new set of

parameters as shown in Table 4-8 which have intraclass correlations of

about 0.30. The numerical values of Z(x), Z(X), Z(z), E(xz), z

a a b Z b

a
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Table 4-3

Parameter Values for the First Situation

e
ke
™
Q
N
Q
N

Case

12.0810 i
1.3491 2.53 0 4.08

2.4587 0.32 0 2.15 0.5276 0.0812
6.8660

1.0511

!
L

12.0810
1.3491 2.53 2.53 4.08
1-B 2.4587 0.32 0.32 2.15 0.5276 0.8972
6.8660

1.0551

12.0810 ]

1.3491 2.53 1.45

&

.08

I-c 2.4587 0.32 0.89

N

.15 0.5276 0.9547

6.8660

1.0511
-
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Table 4-4

Parameter Values for the Second Situation

2 2
Case u B8 B—a a o
25.3810 | 2.53 0
II-A 12.5912 (0.32 0 0.5276 20.7321
u1.4587
-
75.381ﬂ 2.53 2.53
11-B 12.5912 0.32 0.32 0.5276 32.7341
114587
25.3810 | 2.53 1.45
11-C 12.5912 0.32 0.89 0.5276 22.3454
11.4587
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Table 4-5

Population Covariance Matrices of the Predictor Variables

Covariance Matrices Situation I Situation II

(x) 0.0912  0.1901 | 0.0912  0.1901 |

a 0.1901 2.4775 | 0.1901 2.4775 |

-~ - -
z(x) 0.1729 0.14007 14.7149 2.9871
a

[0.1400 0.3746 | 2.9871 25.8970

-

(2) (0.0072  0.0007 | Not Applicable

[0.0007 0.0009 |

E(XZ) [0.0159 0.0065 | Not applicable
a

L_0.0260 0.008§J
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Table 4-8

Parameter Values of the Second Set of Data

Case U B8 B, 8, o ol
12.0810
1.3491 2.53 1.45 4.08 100.2311 22.3454
I-C 2.4587 0.32 0.89 2.15
6.8660
1.0511
L .
12.0810] 0.08 0.05 None 35.0000 11.9994
1I-C 1.3491 0.76 0.95
| 2.4587




36

and T + Xa for the new set of data are given in Tables 4-9 and 4-10.
Ten samples of 1,500 subjects were generated for population I-C and
twenty-five samples of 1,500 subjects were generated for population
II-C. Populations I-C and II-C were chosen to have additional data
generated in addition to the first set because these two cases are the

most realistic.

Description of the Generation Routine

The present study requires that data be generated from a multi-
variate normal distribution with mean u and covariance matrix I + Xa’
where the within covariance matrix (Z) and the between covariance
matrix (Xa) are specified as in Table 4-2. The generation procedure
is composed of five steps:

1. Specify the values for the parameters so that they approximate
the actual data. The Keesling and Wiley (1974) which analyzed real
hiefarchical data was used as a guide. This provided values for the
pooled within-group regression coefficients (B), the between-group
regression coefficients for the individual level variables (ga), the
regression coefficients for the group level variables (Ez), the
population means (u), error variance defined at the individual level
(02), and at the group level (o;) as shown in Tables 4-3 and 4-4 for
the first and second situation respectively. The population covar-
iance matrices of the predictors were also specified based on the
Keesling and Wiley study as shown in Table 4-5. The number of schools
(k) and the number of subjects in each school (n) were specified a
priori.

2. Compute the within and between covariance matrices (I and Za)
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Table 4-9

Population Covariance Matrices of the Predictor

Variables of the Second Set of Data

Covariance Matrices

Population I-C

Population II-C

Z(X)

(x)
La

I.”

z(xz)

36.3347

.7423

.7149

.9871

.0072

.0007

.0159

.0260

4.

61.

25.

.9871]

.0007]

.0009,

.0065]

.0088)]

7243

4263

8970

§1.0000  18.0000]

[18.0000 100.0000

35.0000 11.6383]

11.6383  43.0000

Not Applicable

Not Applicable
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between the outcome measure and the predictors as specified in Table
4-2.

3. Generate a random sample of k vectors a5 where a, is multi-
variate normally distributed with mean vector 0 and covariance matrix
Za. A random sample of k vectors éi are generated with the following
procedure.

a. Generate 12 independent random variables which are uniformly
distributed between zero and one. Software for the CDC 6500 has been
developed which generates independent values of a random variable
which is uniformly distributed over the range (0, 1), the values zero
and one are excluded. This function, called Ranf, is described in
Fortran reference manual version four (1978).

b. Convert the values from a uniform distribution to values
from the normal distribution by Teichroew's method to approximate the
inverse of the probability function for the standard normal distri-
bution. Teichroew used a polynomial approximation to evaluate the
inverse function. His procedure generates 12 independent random vari-
ables, Ul’ U2, e e ey U12’ uniformly distributed between zero and one.
Then R is defined as (Knuth, 1968):

R=(U1+U + .. .+ - 6)/4

2 U2

The normal deviate, z is then approximated by:

2 = ((((ang +a) R? + ay) R? + ay R + a) R

where a, = 3.949846138
ay = 0.252408784
ag = 0.076542912
a; = 0.008355968
a, = 0.029899776
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For the first situation, each observation needed in this study
consisted of 5 measures. Those 5 measures are the outcome variable
(Y), two predictors defined at the individual level (X), and two pre-
dictors defined only at the group level (Z). For the second situation,
each observation consists of 3 measures, the outcome variable (Y), and
two predictors defined at the individual level (X). Therefore, the
procedure from a to b is repeated to obtain a 5x1 vector z for the first
situation and a 3x1 vector z for the second situation which is normally
distributed with a mean vector of zero and an identity matrix as the
covariance matrix.
c. Transform z to a where a is normally distributed (0, Za). The
transformation is:
a=1Tz
where T is the cholesky factor of Za. The cholesky factor is a lower
triangular matrix such that TT' = Za. This is used because the covariance
matrix of the transformed variables a is:
Var(a) = T Var (a)T'.
In this case, Var(a) is the identity matrix. Thus,
Var(a) = TT' = Za
which gives the desired result (Morrison, 1976). After the transforma-
tion, a is multivariate distributed normally with mean vector 0 and
covariance matrix Za.
4. Generate a random sample of kn vectors Eij where Eij is multi-
variate normally distributed with mean vector 0 and covariance matrix I.
A random sample of kn vectors gij are generated with the same procedure
as used in the generation of vector a, except that here we generate kn

vectors, and the covariance matrix is I instead of ¥ .
a
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5. Add the k values of a; and kn values of Eij to the p according

to formula (4-1) resulting in kn values of Hij' The values of a, are

i

constant for the ith group, i.e.,

(46-1) W.., =u+a, +e,,
=ij = = =ij

Y

where W for the first situation

]
|><

and W= for the second situation.

[ =< N

The program MYDATA (see appendix A) was written for this study to
generate a random sample of kn vectors of Eij where Ei’ is multivariate
normally distributed with mean vector u and covariance matrix I + Ea,
using the procedure described above.

For each sample the pooled within and between mean square matrices

(S and Sa) are computed as shown in formulas (4-2) and (4-3) respectively:

1 k n
- e '
Iz (wij wi) (wi. wi)

(4-2) S ="m-D  ij ]

where the expected value of S is the pooulation within covariance
matrix and the E(S) = I and
k
- = - _ 1
(4-3) s, kilni(ﬂi W oW, - W

where the expected value of Sa is the following:
E(S) = I + n&
a a

Here, Za is the population between levels covariance matrix. The

general structure of S is the following:
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where Sy is the pooled within variance of Y, Sxy is the pooled within
covariance matrix between X and Y, Sx is the pooled within covariance
matrix of X.

To compute an estimate of the pooled within-group regression

coefficient (B8) for any approach the formula (4-4) is used.
(4-4) B = Sx S

For the first situation where there are both individual level pre-
dictors and group level predictors, four approaches were investigated:
two stage analysis, group level analysis, full model analysis, and the
subtraction approach. The main concern is to estimate the regrassion
coefficients for the group level variables (§2) by those four approaches.

For the second situation where there were only individual level pre-
dictors, four approaches were investigated: group level analysis, Bock
application, subtraction analysis and full model analysis. The main
purpose of each approach is to estimate the between group regression
coefficients for the individual level variables (Ea)' The procedure

for each analysis approach is described in following sections.

Two Stage Analysis Approach

The procedure to estimate §2 by using the two stage analysis ap-
proach is the following:
1. Compute an estimate of the pooled within-group regression coef-

icient (B8) using formula (4-4).
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2. Compute an estimate of the group mean (uy ) using formula
i

(4-5).
(4=5) w_ =wu_+ B8'(p u
vy y Xy X
3. Computeéz using equation (4-6) implemented by the Finn multi-

variance program (1972).

(4-6) Uy' =pu +B8'(Z, —p) +ru  + 8§,
i y —z —i -2 Yy 1

Group Level Analysis Approach

Under the group level analysis approach the éz for the first
situation and Ea for the second situation are estimated separately
from B. The Finn multivariance program (1972) is used to estimate §2

under equation (4-7) and ga under the equation (4-8).

' - ' -
(4-7) w by ¥ B (Zy mu) + B mw)+ S

vy o 1

' -
uy M Ea(gx Ex) M 61

(4-8) u
Yy i

Subtraction Analysis Approach

For the first situation, Z variables are defined only at the group
level. The procedure of estimating Ez by the subtraction approach is
the same as for the group level analysis approach. The Finn multivariance
program is used to estimate gz under equation (4-7).

To obtain the correct estimates of Ea in the second situation
Keesling recommends performing three steps as follows.

1. Compute estimates of the pooled within-group regression

coefficient (B) using formula (4-4). This step is to compute B under
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the model of (4-9):

= ' -
(4-9) Yy =y +§(2(_ij L

2. Compute the estimates of the between-group regression coef-
ficient (E;) with equation (4-10) using the Finn multivariance program.
- = + B*! - + 8
(4-10) uyi My Brt(u, - w) i
3. Compute the correct estimates of the between-group regression

coefficients for the individual level variables (ga) by using formula

(4-11).

(4-11) B_=8* -8

Full Model Analysis Approach

The full model analysis approach used the individual outcome as
the dependent variable, the individual level variables, the mean of the
individual variables and the variables that are defined at the group
level as the predictors. The Finn multivariance program is used to
estimate ﬁz for the first situation under equation (4-12) and Ea for

the second situation under equation (4-13).

(4-12) Yij Thy BaZy —u) + Ea(Ex. U
' -
E-(gij Ex) + Eij
- = ! = ' -
(4-13) Yij uy + Ea(Ex HX) + §_(§ij Ex) + Eij

i
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Bock Application Analysis Approach

Bock's analysis approach provides an estimate of the between co-
variance matrix (Ea) which is guaranteed to be at least a positive
semi-definite covariance matrix, and then from this matrix estimates
the regression coefficient. The'steps to this approach are as follows:

1. Use the Finn multivariance program to determine discrimination
function coefficientsigl, and canonical variances ¢1 (1=1, 2, 3).

2. Compute the positive semi-definite between covariance matrix

(Za) using formula (4-14).
(4-16) I = (M7 e - DT /n

where elements in the columns of T are the discrimination function
coefficients El’ and the diagonal elements of diagonal matrix ¢ are
significant canonical variances ®1 (=1, 2, . . . , s) and p-s unities
(p 1s the dimension of T and s is less than and equal to p). When all

canonical variance ¢ are significant (s=p)
Za = [Sa - S]/n

where S and Sa are within and between mean square matrices that are
computed by formula (4-2) and (4-3) respectively.

3. Using Za to estimate Ea by formula (4-15).

A

(4-15) g = pX-lzOy)

—a a a

~

The general structure of Za is the following:

> (y) 2 (y%)]
a a

2 =

a
g(xy) E(X)
-a a -
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Z:y) Z;Xy) is the between covariance

where is the between variation of Y,

~(x)

of X and Y, and Ea is the between covariance of X.



CHAPTER V

SIMULATION RESULTS

The simulation procedures employed in this study to investigate
the methods of analyzing hierarchical data were reviewed in Chapter 1IV.
The main purpose of this dissertation is to determine which approach
gives the best estimates of the between and within-group regression
coefficients in terms of accuracy (least amount of bias) and in terms
of precision for various situations. Six populations as shown in Table
4-1 were used as the basis from which the questions of interest were
explored. For each population, 50 samples of size 1,500 were gen-

)
erated. In each sample, there were 50 schools with 30 students nested
within each school. 1In order to confirm the emerging conclusions
resulting from the analyses, 10 additional samples for population I-C
and 25 additional samples for population II-C with the new set of
parameter values as given in Table 4-8, were generated. Data from
population I-A, I-B and I-C were analyzed by the two stage analysis
approach (as suggested by Keesling and Wiley), group level analysis
approach (as suggested by Cronbach and Webb), subtraction analysis
approach (as suggested by Keesling) and full model analysis approach
(as suggested by Keesling). Data from population II-A, II-B, and II-C
were analyzed by Bock application analysis approach, group level
analysis approach, subtraction analysis approach and full model analy-

sis approach.

The results of the data analysis of population I-A are shown in

L7
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Table 5-1. All four approaches give good estimates of the pooled
within-group regression coefficients B1 and 82. The means of the
estimates of Bl and éz over the 50 samples are 2.524 and 0.322 for

all four approaches while the values of the parameters of 61 and_B2
are 2.530 and 0.320. The standarderrors of él and éz are 0.009 and
0.002 for all four approaches. The result of testing the hypotheses
that the mean of the estimates of the within-group regression coef-
ficients of all 50 samples are equal to the parameters B1 and 82 are
not significant at the 0.01 level (t = -0.667, t = 1.000). The ratios
of the bias squared to mean square error which are computed by formula
(5-1) for Bl and éz are 0.008 and 0.028. The formula is:

2
(5-1) Bias ratio = (Bias)
mean square error

where Bias = average value of the estimates - parameter value and mean
2

square error = variance of estimator + (bias) . We can conclude that

all four approaches give good estimates of Bl and 62 since the bias

ratios are quite small. The results of the hypothesis tests showed

~

that the means of Bl and B, over the 50 samples are not different from

2

the values of the parameters 81 and 82.

The means of the estimates of Bz and BZ analyzed by the two

1 2

stage analysis approach are closer to the parameters than the other

three analysis approaches (B = 3.905, B , = 1.722, B = 4,08, B =
z z2 z z2

1 1
2.15). The results of testing the hypotheses that the mean of the

estimates of the regression coefficients defined for the group level

variables over all 50 samples are equal to the parameters B and 822
Z

1

are not significant for the two stage analysis approach, whereas, the

tests for the other three analysis approaches are significant at the
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Table 5-1

Simulation Results of Population I-A

Parameters Analysis Approach Estimators t Ratio**
Mean SD SE
Two stage1 2.524 0.066 0.009 -0.667 0.008
Bl= 2.53 Group level 2.524 0.066 0.009 -0.667 0.008
Full model 2.524 0.066 0.009 -0.667 0.008
Subtraction 2.524 0.066 0.009 -0.667 0.008
Two stage 0.322 0.012 0.002 1.000 0.028
82= 0.32  Group level 0.322 0.012 0.002 1.000 0.028
Full model 0.322 0.012 0.002 1.000 0.028
Subtraction 0.322 0.012 0.002 1.000 0.028
Two stage 3.905 0.920 0.130 -1.346 0.036
le=4.08 Group level 3.651 0.858 0.121 -3.545*% 0.203
Full model 3.651 0.858 0.121 -3.545* 0.203
Subtraction 3.651 0.858 0.121 -3.545*% 0.203
Two stage 1.722 1.795 0.254 -1.682 0.055
622=2.15 Group level 1.405 1.709 0.242 -3.079* 0.162
Full model 1.405 1.709 0.242 -3.079 0.162
Subtraction 1.405 1.709 0.242 -3.079 0.162

*Significant at 0.01 level of significance.

**Ratio of the estimate of the bias to mean square error.

1All four approaches gave exactly the same estimates of Bl and 82

as was expected.
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0.01 level of significance. The bias ratios of Bz and Bz2 analyzed by

1
the two stage analysis are 0.036 and 0.055 while the bias ratios for

the other three approaches are 0.203 and 0.162. We can conclude that

in the situation where there is no group level effect (Ea =0) two
stage analysis approach gives the best estimates of the regression coef-
ficients defined for the group level variables. The empirical sampling

distributions of Bz and Bz2 over the 50 samples are shown in Figures

1
5-1 and 5-2. According to Figures 5-1 and 5-2, all four approaches
have very similar distributions.

The results of the data analysis of population I-B are shown in
Table 5-2. The parameter values of Bl and 82 are 2.53 and 0.32,
respectively. All four approaches gave the same average estimates for
Bl and 82 (2.519 and 0.322). The standard errors of él and éz for
all four approaches are quite small, 0.011 and 0.001. The bias ratio
of él and éZ for all four approaches are 0.019 and 0.033. The result
of testing the hypotheses that the mean of the estimates for the within-
group regression coefficients over all 50 samples are equal to the
parameters 81 and 82 are not significant at the 0.01 level of signifi-
cance (t = -1.000, t = 2,000). Therefore, the results of the data
analysis of population I-B indicate that all four approaches gave good
estimates of the within-group regression coefficients with good pre-
cision and small bias ratios.

The means of the estimates of Bz

and Bz analyzed by the four

1

approaches are almost the same. However, the two stage analysis approach

2

gave a somewhat better estimate than the other three approaches as

demonstrated by the fact that the bias ratios of Bz and 822 are smaller.

1

The bias ratio of the estimates of Bz and 822 are 0.005 and 0.018 for

1
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Table 5-2

Parameters Analysis Approach Estimators t Ratio*#*
Mean SD SE
Two stage 2.519 0.080 0.011 -1.000 0.019
Bl= 2.53 Group level 2.519 0.080 0.011 -1.000 0.019
Full model 2.519 0.080 0.011 -1.000 0.019
Subtraction 2.519 0.080 0.011 -1.000 0.019
Two stage 0.322 0.011 0.001 2.000 0.033
82= 0.32 Group level 0.322 0.011 0.001 2.000 0.033
Full model 0.322 0.011 0.001 2.000 0.033
Subtraction 0.322 0.011 0.001 2.000 0.033
Two stage 4,203 1.782 0,252 0.488 0.005
le=4.08 Group level 4.236 1.907 0.270 0.578 0.007
Full model 4.235 1.907 0.270 0.578 0.007
Subtraction 4.235 1.907 0.270 0.578 0.007
Two stage 1.381 5.651 0.799 -0.962 0.018
822=2.15 Group level 1.335 5.901 0.834 -0.977 0.019
Full model 1.330 5.901 0.834 -0.977 0.019
Subtraction 1.335 5.901 0.834 -0.977 0.019

**Ratio of the estimate of the bias to

mean square error.
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the two stage analysis approach, and 0.007 and 0.019 for the other
three approaches. The results of testing the hypotheses that the
means of the estimates of the regression coefficients defined for the
group level variables over all 50 samples are equal to the parameters

B

21 and BzZ are not significant at the 0.0l level of significance for
all four approaches. We conclude that in the situation where the
group level effects are equal to the individual effects (ga = B) all
four approaches give good estimates of the regression coefficients
defined for the group level variables. The sampling distributions of

A

R are shown in Figures 5-3 and 5-4.

and B
z

zl 2

The results of the data analysis of population I-C are shown in
Table 5-3. The parameter values of B1 and 82 are 2.53 and 0.32. The
means of the estimates of Bl and 82 are 2.512 and 0.321 for all four
approaches. The standard errors for all four approaches are quite
small \0.010 and 0.002). The bias ratios of 81 and 82 for all four
approaches are 0.067 and 0.005. The results of testing the hypotheses
that the means of the estimates of within-group regression coefficient
of all 50 samples are equal to the parameters Bl and 82 are not sig-
nificant at the 0.01 level of significance (t = 0.067, t = 0.005). So,
all four approaches gave the same good estimates of within-group regres-
sion coefficients with high precision and small bias ratios.

The means of the estimates of the regression coefficients defined
for the group level variables (E;l and ;;2) from the parameter values
than in the other three approaches. The results of testing the hypo-
theses that the means of the estimates of the regression coefficients

defined for the group level variables over all 50 samples are equal to

the parameters le and BzZ are significant at the 0.01 level of
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o0——o0 Two Stage
®---9 Group Level, Full Model
and Subtraction

Figure 5-3 Sampling Distribution of P From Population |-B
21

-
o0——o0 Two Stage
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e and Subtraction
-
o
1 1 1 1
7 -1 5 n

Figure 5-4 Sampling Distribution of B 2From Population |-B
z
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Table 5-3

Simulation Results of Population I-C

Parameters Analysis Approach Estimators t Ratio**
Mean SD SE
Two stage 2.512 0.068 0.010 -1.800 0.067
81 = 1.53 Group level 2.512 0.068 0.010 -1.800 0.067
Full model 2.512 0.068 0.010 -1.800 0.067
Subtraction 2.512 0.068 0.010 -1.800 0.067
Two stage 0.321 0.014 0.002 0.500 0.005
82 = 0.32 Group level 0.321 0.014 0.002 0.500 0.005
Full model 0.321 0.014 0.002 0.500 0.005
Subtraction 0.321 0.014 0.002 0.500 0.005
Two stage 5.325 1.986 0.281 4.527 0.286
le= 4,08 Group level 4,296 1.946 0.275 0.785 0.012
Full model 4,296 1.946 0.275 0.785 0.012
Subtraction 4,926 1.946 0.275 0.785 0.012
Two stage 4.932 4.937 0.697 3.991*% 0.245
Bzz=2.15 Group level 3.194 4.911 0.695 1.502 0.044
Full model 3.194 4.911 0.695 1.502 0.044
Subtraction 3.194 4.911 0.695 1.502 0.044

*Significant at 0.01 level of significance.

**Ratio of the estimate of the bias to mean square error.
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significance for the other three approaches (t = 3.062, t = 3.991).
These were not significant at the 0.0l level of significance for the
other three approaches (t = 0.785, t = 1.502). The bias ratios of

~

B . and 822 analyzed by the other three approaches are 0.012 and 0.044.

zl
We can conclude that in the situation where the group level effects
are not equal to the individual level effects (ga#g# 0), the group
level analysis approach, the subtraction analysis approach and the full
model analysis approach gave the better estimates of the regression

coefficients defined for the group level variables as opposed to the

two stage analysis approach. The sampling distributions of le and

A

B

22 are shown in Figures 5-5 and 5-6.
In the situation where there were only individual level explana-
tory variables, the data for three populations II-A, II-B, and II-C
were analyzed by the group level analysis approach, the Bock applica-
tion approach, the full model analysis approach, and the subtraction
analysis approach. The results of the data analysis of population
II-A are shown in Table 5-4. All four approaches gave the same esti-
mates of the pooled within-group regression coefficients. The means
of the estimates of 81 and 82 are 2.533 and 0.321 while the parameter
values of Bl and 82 are 2,530 and 0.320 respectively. The standard
errors of él and éz are 0.010 and 0.002 for all four approaches. The
results of testing the hypotheses that the means of the estimates of
within regression coefficients of all 50 samples are equal to the para-
meters Bl and 82 are not significant at the 0.01 level of significance
(t = 0.300, t = 0.500) for all four approaches. The bias ratios of él

and 82 are 0.002 and 0.004. All four approaches yielded the same esti-

mates of the within-group regression coefficients with high precision



25

25

58

R
,l \ o----@ Group Level, Full Model
’ AN and Subtraction

1 3 5 7 9

§ ,’\ o0——o0 Two Stage
/ \\\ o----0 Group Level, Full Model
B ,’ and Subtraction

-7 -1 5 1" 17
Figure 5-6 Sampling Distribution of 3 2 From Population 1-C
z



59

Table 5-4

Simulation Results of Population II-A

Parameters Analysis Approach Estimators t Ratio*#*
Mean SD SE
Group level 2.533 0.070 0.010 0.300 0.002
Bl = 2.53 Bock application 2.533 0.070 o0.010 0.300 0.002
Full model 2.533 0.070 0.010 0.300 0.002
Subtraction 2.533 0.070 0.010 0.300 0.002
Group level 0.321 0.015 0.002 0.500 0.004
62 = 0.32 Bock application 0.321 0.015 0.002 0.500 0.004
Full model 0.321 0.015 0.002 0.500 0.004
Subtraction 0.321 0.015 0.002 0.500 0.004
Group level 0.017 0.146 0.021 0.810 0.013
Ba1= 0.00 Bock application 0.008 0.148 0.021 0.381 0.003
Full model -2.519 0.168 0.024 -104.958*% 0.996
Subtraction -2.159 0.168 0.024 -104.958* 0.996
Group level -0.011 0.161 0.023 -0.478 0.002
BaZ= 0.00 Bock application -0.067 0.181 0.026 -2.577 0.123
Full model -0.338 0.168 0.024 -14.083* 0.805
Subtraction -0.338 0.168 0.024 -14.083* 0.805

*Significant at 0.0l level of significance.

**Ratio of the estimate of the bias to mean square error.
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and small bias ratios.

The means of the estimates of the between-group regression coef-

ficients for the individual level variables (Ba and Baz) analyzed by

1

the group level analysis approach and the Bock application approach are
similar and closer to the parameters (Bal =0, Ba2= 0). The full model

analysis approach and the subtraction analysis approach gave the same esti-

~

mates of Bal and Ba2 and they are not close to the parameter values

A~

(8a1= -2.519, éaZ = -0.338). The resultsof testing the hypothesis that
the means of the estimates of the between-group regression coefficients
for the individual level variables over the 50 samples are equal to the
parameters Bal and BaZ are not significant for the group level analysis ap-
proach and the Bock application analysis approach. However, they are
significant at 0.01 level of significance for the full model analysis ap-

proach and the subtraction analysis approach. The bias ratios of Bal and

-~

B

a2 for the group level analysis approach and the Bock application analy-

~

sis approach were quite small (the bias ratios of Ba for the group level

1

analysis approach and the Bock application analysis approach were 0.013
and 0.003, the bias ratio of 832 for the group level analysis approach and
the Bock application analysis approach were 0.002 and 0.123), while

the bias ratios of Ba and Ba for the other analysis approaches were

1 2

A

quite large (bias ratio of Ba and Baz for these two approaches were

1
0.996 and 0.805). We can conclude that in the situation where there
was no group level effect (Sal = BaZ = 0), the group level analysis
approach and the Bock application analysis approach gave the better
estimates of the between-group regression coefficients while the full

model and subtraction analysis approach gave incorrect estimates of

the between-group regression coefficients. The sampling distributions
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of Bal and Ba2 are shown in Figures 5-7 and 5-8.

The results of the data analyses for population II-B are shown in
Table 5-5. All four approaches gave the same estimates of the pooled
within regression coefficients. The means of the estimates of Bl and

A

‘82 were 2.546 and 0.320. The standard errors of Bl and éz were 0.010
and 0.002 for all four approaches. The results of testing the hypo-
thesis that the means of the estimates of the pooled within regression
coefficients over all 50 samples were equal to the parameters Bl and
82 were not significant at 0.01 level of significance (t = 0.000,

t = 0.000). The bias ratios of él and éz were 0.051 and 0.000. All
four approaches gave good estimates of the pooled within regression
coefficients.

The means of the estimates of the between-group regression coef-
ficients for the individual level variables analyzed by the group level
analysis approach and the Bock application approach were quite similar
and close to the paremeter values. The means of éal and éaZ for the
group level analysis approach were 2.525 and 0.310, and for the Bock
application analysis approach were 2.524 and 0.309. The full model
analysis approach and the subtraction analysis approach gave the same
estimates for Bal and Ba2 and they were not close to the parameter

A~ A~

values (Bal = -0.021, Ba2 = -0.01%). The results of testing the hypo-
thesis that the means of the estimates of the between-group regression
coefficients were equal to the parameters Bal and BaZ were not signi-
ficant for the group level analysis approach or for the Bock applica-
tion analysis approach. However, they were significant at 0.01 level
of significance when analyzed by the full model and subtraction analy-

~

sis approaches. The bias ratios of Ba and Ba2 for the group level and

1
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Table 5-5

Simulation Results of Population II-B

Parameters Analysis Approach Estimators t Ratio**
Mean SD SE
Group level 2.546 0.070 0.010 0.600 0.051
Bl = 2.53 Bock application 2.546 0.070 0.010 0.600 0.051
Full model 2.546 0.070 0.010 0.600 0.051
Subtraction 2.546 0.070 0.010 0.600 0.051
Group level 0.320 0.012 0.002 0.000 0.000
82 = 0.32 Bock application 0.320 0.012 0.002 0.000 0.000
Full model 0.320 0.013 0.002 0.000 0.000
Subtraction 0.320 0.012 0.010 0.000. 0.000
Group level 2.525 0.221 0.031 -0.161 0.001
Bal= 2.53 Bock application 2.524 0.222 0.031 -0.194 0.001
Full model -0.021 0.228 0.032 -79.719*% 0.992
Subtraction -0.021 0.228 0.032 -79.719* 0.992
Group level 0.310 0.158 0.022 -0.455 0.004
Ba2= 0.32 Bock application 0.309 0.178 0.025 -0.440 0.004
Full model -0.010 0.157 0.022 -15.000% 0.818
Subtraction -0.010 0.157 0.022 -15.000*% 0.818

*Significant at 0.01 level of significance.

**Ratio of the estimate of the bias to mean square error.
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Bock application analysis approaches were quite small (bias ratios of

-

B and BaZ for both the group level analysis approach and the Bock

al
application analysis approach were 0.001 and 0.004) while the bias
ratios of Bal and Baz analyzed by the other two analysis approaches

~

were quite large (bias ratios of Ba and BaZ equal to 0.992 and 0.822).

1
We can conclude that in the situation where the between-group regres-
sion coefficients (Ea = 8 # 0), the group level and Bock application
analysis approaches gave correct estimates of the between-group regres-
sion coefficients while the full model and subtraction analysis

approaches gave incorrect estimates of the between-group regression

and Ba are shown

coefficients. The sampling distributions of Ba 2

1
in Figures 5-9 and 5-10.

The results of the data analysis of population II-C are shown in
Table 5-6. All four approaches gave the same estimates of the pooled
within regression coefficients. The means of the estimates of B1 and
82 were 2.518 and 0.323 while the standard errors were 0.010 and 0.002
for all four approaches. The results of testing the hypothesis was
that the means of the estimates of the within regression coefficients
were equal to the parameters were not significant (t = -1.200, t =
1.500). The bias ratios of él and éz were 0.028 and 0.060 for all four
approaches.

The means of the estimates of the between-group regression coef-
ficients for the group level and Bock application analysis approaches
were quite similar and close to the parameter values. The means of
éal and éaZ analyzed by group level analysis approach were 1.424 and

0.934 and for the Bock application analysis approach they were 1.412

and 0.946 (Ba1 = 1.45 and Ba2 = 0.89). The full model analysis
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Table 5-6

Simulation Results of Population II-C

Parameters Analysis Approach Estimators t Ratio**
Mean SD SE
Group level 2.518 0.071 0.010 -1.200 0.028
Bl = 2.53 Bock application 2.518 0.071 0.010 -1.200 0.028
Full model 2.518 0.071 0.010 -1.200 0.028
Subtraction 2,518 0.071 0.010 -1.200 0.028
Group level 0.323 0.012 0.002 1.500 0.060
82 = 0.32 Bock application 0.323 0.012 0.002 1.500 0.060
Full model 0.323 0.012 0.002 1.500 0.060
Subtraction 0.323 0.012 0.002 1.500 0.060
Group level 1.424 0.260 0.037 -0.703 0.010
8 l= 1.45 Bock application 1.412 0.184 0.026 -1.462 0.042
a
Full model -1.093 0.179 0.025 -101.720*% 0.995
Subtraction -1.093 0.117 0.025 -101.720* 0.995
Group level 0.934 0.196 0.021 2.095 0.049
Baz= 0.89 Bock application 0.946 0.165 0.023 2.453 0.105
Full model 0.611 0.021 0.021 -13.286* 0.782
Subtraction 0.611 0.149 0.021 -13.286* 0.782

*Significant at 0.01 level of significance.

**Ratio of the estimate of the bias to mean square error.
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approach and the subtraction analysis approach yielded the same esti-

~ ~

mates fgf Ba1 and Ba2 were not close to the parameter values (Bal =
1.093, Ba2 = 0.611). In testing the hypothesis that the means of the
estimates of the between-group regression coefficients were equal to

the parameters Ba and Ba2 were not significant for the group level

1
analysis approach and the Bock application analysis approach; however,
they were significant for the full model and subtraction analysis

approaches. The bias ratios of Ba and 832 for the group level analy-

1
sis approach and the Bock application analysis approach were quite
small while the same bias ratios for the other two analysis approaches
were quite large. We can conclude that in the situation where the
between-group regression coefficients were not equal to the within-
group regression coefficients (§a # B8 # 0), that the group level and
Bock application analysis approaches gave the correct estimates of

the between-group regression coefficients while the full model and the
subtraction analysis approaches gave incorrect estimates of the
between-group regression coefficients. The sampling distributions of

A

B

al and éaZ are shown in Figures 5-11 and 5-12.

The specifications concerning Ea and £ for populations I-C and
II-C are most similar to the types of situations encountered in the
real world. The intraclass correlations of variables Y and X are,
however, quite high for both cases (0.90). Therefore, in order to
check whether the analysis approaches give the same results for situ-
ations where the intraclass correlations are not as high as for the
data presented in the preceding pages, a second set of data for popu-

lations I-C and II-C was generated with new parameter values chosen so

that the intraclass correlations were lower than those in the first set



30

25

20

15

10

35

30

25

20

15

10

1 ] 1 1

68

o——o Group Level

o----@ Bock Application
88— gybtraction and

Full Model

14 -1.0 -0.6 0.2
Figure 5-11 Sampling Distribution of

0.2

0.6

/381 From Population 11-C

0———o0 Group Level

o-- --8 Bock Application
®——a Subtraction and Full Model

y |

0 02 04 06 08 1

1.2

14

1.6

1.8

Figure 5-12 Sampling Distribution of B, From Population 11-C

24



69

of data. All analysis approaches were used to analyze the second set
of data in the same fashion as for the first set of data. The intra-
class correlations of the second set of data are 0.30.

The ten samples for population I-C were analyzed by the two stage
analysis approach, the group level analysis approach, the full model
analysis approach and the subtraction approach. The results of the
data analysis of the second set of data in population I-C are shown
in Table 5-7. The parameter values of 81 and 82 were 2.53 and 0.32.
The means of the estimates of B1 and 82 were 2.522 and 0.329 for all
four approaches. The standard errors of él and éz for all four
approaches. The standard errors of él and éz for all four approaches
were quite small (about 0.013 and 0.010). The bias ratios of él and
éz for all four approaches were 0.039 and 0.081. The results of
testing the hypothesis that the means of the estimates of the within
regression coefficients of all 10 samples were equal to the parameters
Bl and 62 were not significant at 0.01 level of significance (t =
-0.615, t = 0.900). Therefore, all four approaches gave the same good
estimates of within regression coefficients.

The means of the estimates of the regression coefficients defined
for the group level variables (ézl and 822) analyzed by the two stage
analysis approach were closer to the parameter values than when using
the other three approaches. However, the results of testing the hypo-
thesis that the means of the estimates of the regression coefficients
defined for the group level variables of all 10 samples were equal to
the parameters le and Bzz were not significant at the 0.01 level of

significance for all four approaches. The bias ratios of le and Bz2

analyzed by two stage analysis approach were 0.001 and 0.007, while the
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Table 5-7

Simulation Results of the Second Set of Data of Population I-C

Parameters Analysis Approach Estimators t Ratio**
Mean SD SE
Two stage 2.522 0.042 0.013 -0.615 0.039
Bl = 2.53 Group level 2,522 0.042 0.013 -0.615 0.039
Full model 2.522 0.042 0.013 -0.615 0.039
Subtraction 2.522 0.042 0.013 -0.615 0.039
Two stage 0.329 0.032 0.010 0.900 0.081
62 = 0.32 Group level 0.329 0.032 0.010 0.900 0.081
Full model 0.329 0.032 0.010 0.900 0.081
Subtraction 0.329 0.032 0.010 0.900 0.081
Two stage 4.221 7.162 2.265 0.062 0.001
le= 4.08 Group level 3.004 6.652 2.103 -0.512 0.028
Full model 3.004 6.652 2.103 -0.512 0.028
Subtraction 3.004 6.652 2.103 -0.512 0.028
Two stage 5.450 42.965 13.587 0.243 0.007
Bzz= 2.15 Group level 7.509 44.182 13.971 0.384 0.016
Full model 7.509 44,182 13.971 0.384 0.016
Subtraction 7.509 44.182 13,971 0.384 0.016

**Ratio of the estimate of the bias to mean square error.
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bias ratios of ézl and ézz analyzed by the other three approaches were
0.028 and 0.016. We can conclude that in the situation where the
group level effects were not equal to the individual level effects

(éa # B # 0) and the intraclass correlations were not high (about 0.30)
all four approaches gave the correct estimates of the regression
coefficients and with small bias ratios but that the two stage approach

~

resulted in the smallest bias. The standard errors for Ez and 622 for

1
all four approaches, however, were quite high (see Table 5-7).

Twenty five samples of the second set for population II-C were
analyzed by the group level analysis approach, the Bock application
analysis approach, the full model analysis approach and the subtrac-
tion analysis approach. The results of the data analyses of the
second set of data for population II-C are shown in Table 5-8. The
parameter values of Bl and 82 were 0.08 and 0.76. The means of the
estimates of B1 and 82 were 0.083 and 0.758 for all four approaches.
The standard errors of él and éz of all four approaches were 0.004
and 0.003. The bias ratios of él and éz of all four approaches were
0.025 and 0.014. The results of testing the hypothesis that the means
of the estimates of pooled within regression coefficients over the 25
samples were equal to the parameters Bl and 82 were not significant
at 0.01 level of significance (t = 0.025, t = 0.014). Therefore, all
four approaches gave the same good estimates of the pooled within
regression coefficients.

The means of the estimates of the between-group regression coef-
ficients for the individual level variables analyzed by the group level

analysis approach and the Bock application analysis approacﬁ were quite

similar and close to the parameter values (Bal = 0.05, Ba2 = 0.95).
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Table 5-8

Simulation Results of the Second Set of Data of Population II-C

Parameters Analysis Approach Estimators t Ratio**
Mean SD SE
Group level 0.083 0.019 0.004 0.750 0.025
Bl = 0.08 Bock application 0.083 0.019 0.004 0.750 0.025
Full model 0.083 0.019 0.004 0.750 0.025
Subtraction 0.083 0.019 0.004 0.750 0.025
Group level 0.758 0.017 0.003 -0.667 0.014
82 = 0.76 Bock application 0.758 0.017 0.003 -0.667 0.014
Full model 0.758 0.017 0.003 -0.667 0.014
Subtraction 0.758 0.017 0.003 -0.667 0.014
Group level 0.051 0.104 0.021 0.048 0.000
Bal= 0.05 Bock application 0.047 0.114 0.023 -0.130 0.001
Full model -0.033 0.102 0.020 -4.150* 0.408
Subtraction -0.033 0.102 0.020 -4.150*% 0.408
Group level 0.933 0.078 0.016 -1.063  0.047
Ba2= 0.95 Bock application 0.946 0.085 0.017 -0.235 0.002
Full model 0.175 0.076 0.015 -51.667* 0.991
Subtraction 0.175 0.076 0.015 -51.667% 0.991

*Significant at 0.0l level of significance.

**Ratio of the estimate of the bias to mean square error.
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The means of éal and éaZ analyzed by the group level analysis approach
were 0.051 and 0.933 and when analyzed by the Bock application analysis
approach they were 0.047 and 0.946. The full model analysis approach
and the subtraction analysis approach gave the same average estimates
of Bal and Ba2 and they were not close to the parameter values

(éal = -0.033, E;Z = 0.175). The results of testing the hypothesis
that the means of the estimates of the between-group regression coef-
ficients were equal to the parameter values were not significant for
the group level analysis approach or for the Bock application analysis
approach, but they were significant (p < 0.01) for the full model and
the subtraction analysis approach. The bias ratios of éal and éaZ for
the group level and the Bock application analysis approaches were quite
small (bias ratios of éal when using the group level analysis approach
and the Bock application analysis approach were 0.000 and 0.001, and
bias ratios of éaZ when using the group level analysis approach and

the Bock application analysis approach were 0.047 and 0.002) while the
bias ratio of éal and éaZ analyzed by the full model and the subtrac-

tion analysis approaches were quite large (bias ratios of Ba and 8a2

1
with these two apporaches were 0.408 and 0.991). From this we can
conclude that in the situation where the between-group regression coef-
ficients were not equal to the within-group regression coefficients

(Ea # B # 0) and the intraclass correlations were not high (0.30) the
group level and Bock application analysis approaches still gave the
correct estimates of the between-group regression coefficients and the

full model and the subtraction analysis approaches continued to yield

incorrect estimates.



CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

The main purpose of the present study was to investigate various
alternatives used to analyze hierarchical data by applying them to a
set of simulated data. We determined which approach would give the
best estimates of the between and within regression coefficients in
terms of accuracy (the least amount of bias) and in terms of preci-
sion for various situations. The bias ratio of each estimator was
computed to facilitate comparisons.

Two situations were investigated in this dissertation. The first
situation was one in which there were both individual-level predictors
which can be aggregated to the group-level and predictors defined only
at the group level. The second situation was one in which there were
only individual-level predictors which can be aggregated. For each sit-
uation, data were generated from three different populations: the first
in which there were no group level effects; the second in which group
level effects were equal to individual level effects; the third in which
group level effects were not equal to the individual level effects.

The original intention of this study was to do a simulation
study to contrast the various analysis methods. However, the simulation
results suggested several patterns that imply certain relationships
between the alternative approaches. Therefore, an analytical study of
the relationship among the alternative approaches was used as a follow
up. The results of the analytical work are presented in this section

74
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supporting the simulation results.

The simulation results showed that all analysis approaches gave
the same estimates of the within-group regression coefficients for all
six cases with good precision and small bias ratios. All approaches
gave the same estimates of the within-group regression coefficients
because they used the same basic formula (formula 4-4) to compute the
pooled within-group regression coefficients.

For the situation in which there were both individual level
predictors which can be aggregated to the group level and predictors
defined only at the group level, the two stage analysis approach,
group level analysis approach, full model analysis approach and the
subtraction analysis approach were used to analyze the data. Analyti-
cally, these four approaches can be grouped into two sets. One set
includes only the two stage analysis approach. The other set includes
the group level analysis approach, the full model analysis approach,
and the subtraction analysis approach. Theoretically, these three
approaches should give the same estimates of the regression coefficients
defined for the group level variable (gz) by the two stage analysis
approach and the other three approaches are defined by formulas (6-1)

and (6-2) respectively.
6-1) 3 =88 -31B  (Gp)

B, z Tzx ‘AE

(6-2) g8 =B B _-B B g

where Bz’ B , and Bzx are the between-group sum of squares and cross

2y
product matrices of Z;, Z and Y, and Z and X variables.
The simulation results showed that for all three cases, the group

level analysis approach, the full model approach and the subtraction
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approach gave the same estimates of gz and were consistent with the
theoretical results suggested above.

In the case where there were no group level effects, the two
stage analysis approach gave estimates of Ez better than those derived
from the other three approaches. Where the between-group regression
coefficients were equal to the pooled within group regression coef-
ficients, all four approaches gave essentially the same estimates of
Ez’ all with comparable bias ratios. In the case where the between-
group regression coefficients were neither equal to the pooled within-
group regression coefficients nor to zero, the simulation results
were different depending upon the value of the intraclass correlation
coefficient. For the case where the intraclass coefficient was high,
the two stage analysis did not give as good estimates of éz as the
other three approaches. However, when the intraclass correlations
were more moderate in value (around 0.30) all four approaches gave the
same estimates of gz’ although the two stage approach yielded better
bias ratios indicating less bias relative to mean square error.

When the situation was such that there were only individual level
predictors which could be aggregated to the group level, the group
level analysis approach, Bock application analysis approach, full model
analysis approach and subtraction analysis approach were used to
analyze the data. Theoretically, these four approaches can be grouped
into three sets: first, the group level analysis approach by itself;
second, the Bock application analysis approach by itself; and third,
the full model analysis approach and the subtraction analysis approach.
In theory, the estimates of the between-group regression coefficients

(ga) by the full model analysis approach are equal to the differences
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between the between-group regression coefficients that are estimated
from the between-group sum of squares and cross products matrix and
the pooled within group regression coefficients. Therefore, the esti-
mates of Ea that obtain from the full model analysis approach and the
subtraction analysis approach should be the same. Analytically, the
relationship between the between-group regression coefficients esti-
mated by the group level analysis approach, Bock application analysis

approach are shown in equation (6-3).

~B G -1 -1°F
- = + -
(6-3) ﬁa ﬁa (B~ A 1) Ea
B G F
where B , éa and Ea are the between-group regression coefficients

estimated by the Bock application analysis approach, the group level
analysis approach and the full model analysis approach, respectively,
B is the within-group mean of square divided by the number of subjects
in each group, A is the between-group mean of square divided by the
number of subjects in each group, and I is the identity matrix. The
derivation of this relationship is shown in Appendix B.

The simulation results showed that for all three cases, the full
model analysis approach and subtraction analysis approach gave exactly
the same estimates of the between-group regression coefficients. They
were also equal to the difference between the regression coefficients
that were estimated from the between-group sum of squares and cross
products matrix and the pooled within-group regression coefficients
which is consistent with the theoretical results. However, the esti-
mates of Ea from these two approaches were not close to the parameter
values. The bias ratios for the estimates resulting from these two

approaches were very high. From this, we can conclude that the
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subtraction and the full model approach gave totally wrong estimates of
8 . For all three cases the group level analysis approach and the Bock
application analysis approach gave good estimates of §a. The bias
ratios for these two approaches were quite small when compared to the
bias ratios for the other two approaches. When the between-group
regression coefficients were equal to zero, the Bock application
analysis approach gave better estimates of Ea than the group level
analysis approach. However, when the between-group and within-group
regression coefficients were equal, both approaches gave the same
estimates of Ea' For the situation where the between-group regression
coefficients were not equal to the pooled within-group regression coef-
ficients, the group level analysis approach gave better estimates of
éa than the Bock application analysis approach when the intraclass
correlations were high (about 0.90), but the Bock application analysis
approach gave the better estimates of ga when the intraclass correla-
tions were low (about 0.30).

From the simulation results, we can summarize which approach
gave good estimates of the parameters for the different populations.
This is shown in Table 6-1.

Table 6-1 shows the quality of the estimates of the between
regression coefficients defined for the group level variables (EZ)
and the between-group regression coefficients (ga) under the alter-
native approaches in terms of accuracy (bias ratios less than 0.15).
In the situation where there were both individual level predictors
which were aggregated to the group level and predictors which were de-

fined only at the group level, the two stage analysis approach gave

good estimates of the regression coefficients defined for the group
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level variables: 1) in the case where there were no group level effects;
2) where the group level effects were equal to the individual level
effects; and 3) where the group level effects were not equal to the
individual level effects and when the intraclass correlations were low
(about 0.30). The group level analysis, the full model and the sub-
traction approach gave good estimates of the regression coefficients
defined for the group level variables in the case where: 1) the group
level effects were not equal to the individual level effects; and 2)
the group level effects were not equal to the individual level effects
and when the intraclass correlations were either low (about 0.30) or
high (about 0.90).

When the situation was such that there were only individual level
predictors which could be aggregated to the group level, the group level
analysis and Bock application approaches gave good estimates of the
between-group regression coefficients for all cases. The full model
and the subtraction approach gave bad estimates of the between-group
regression coefficients for all cases.

In the present study, we only dealt with the simulation of specific
parameter values and specific situations. We did not investigate all
types of parameter values or all types of situations. Therefore, the
results of this study can be generalized only to similar situations

and similar parameter values.

Recommendations for Further Study

The present study deals with situations where homogeneity of
within-group regression coefficients is assumed; therefore, one possible

extension of the present work is an investigation of the methods of
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analyzing hierarchical data which allow for heterogeneity of the within-
group regression coefficients. The results of this study suggest'that
the intraclass correlations have an effect on estimating the between-
group regression coefficients (Eﬁ) and the between-group regression
coefficients defined for the group variables (Ez)' This would suggest
the investigation of all analysis approaches that are used to analyze
hierarchical data for different sets of data that are generated from
populations which are described by intraclass correlations of dif-
ferent magnitudes. The present study, although not designed to examine
this issue, and upon finding the apparent relationship, was able to
suggest in a preliminary way the need for examining this issue more
thoroughly.

Another avenue of future work is to apply the analytical pro-
cedures based on the methods of analysis of covariance structures for
hierarchical data devised by Schmidt (1969) and Wisenbaker and Schmidt

(1979) to simulated data of the sort considered in this study.
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COMPUTER PROGRAMS
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FORMAT (X¥0SAMFLE NO. X»I2)
GENERATE E(I».)
CALL GENEAKWyNTySTIGMALE»T)
WRITE TWO MORE COLUHNS FOR WITHIN COVARIANCE
DO 750 I=1sNT
E(Iy4)=0.
E(I95)=0,
CONTINUE
WRITE CHOLESKY FAACTOR OF WITHIN COVARIANCE
WRITE(6925)
FORMAT (XOTHE CHOLESLY FACTOR OF WITHIN COVARTANCEX)
DO 110 I=1,sKW
WRITE(He30)(T(Tyd)rd=1yKW)
FORMAT (X0X ¢y 3F10,4)
CONTINUE
GENERATE AT(I)
CALL GENEA(RYNS»SIGIHAAYATYyTA)
WRITE CHOLLSKY FACTOR OF BETWEEN COVARIANCE
WRITE (65 37)

3 FORMAT(XOTHE CHOLESKY FACTOR OF BETWEEN COVARTIANCEX)

DO 120 I=1sNKN
83
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WRITESOH»40 3 CTACLy D)y d=dy )
40 FORMAT(kOErGF 104 4)
120 CONTINUE
GENERATE Y(TIs.J) .
CALL GENDATA(KyNyNSyNEyNTyMUsEsALy Y YRARy "My PGSV GMEy SULy GMEANY 5V, 6
+HAT)
FRINT FOOLED MEAN OF EACH VARIAELE
WRITE(Hy45) (FMOIY v J=1 9 KD
45 FORMAT(XOVECTOR OF FOOLED MEAN =Xy5(F10.4,3X))
FRINT SaMPLE FOOLED WITHIN COVARIANCE
WRITE(HyS0) (FESVIL) yL=19NE)
S0 FORMAT(ROSAMFLE FOOLED WITHIN COUVARIANCE MATRIXVy//90XsF10.49/95Y
F+2(F10645y3X) s /90X 3(F1044yIX) s /s GXrAF 1O Ay 3X) » /9y SXyG(F10.493X))
FRINT GRAND MEAN 0F EACH VARIABLE» SCHOUL BEAN TS UNIT OF ANALYSIH
WRITE(6960) (SVUB(L) sL=1yNE)
60 FORMAT (XOSAMPLE RBETWEEN COVARTANCE MATRIZZ /7994, F10.4y /v SXy 2(F1C,
453X s /9 UXy3(F104A4y3X) v/ 9 SX s d 10 A3y /9 GXeSF10.493X))
FRINT GRAND MEAN OF EACH VARTAARLE
WRITEC(Hy65) (GMEANCD) v )=15K)
65 FORMAT (¥OVECTOR OF GRAND MEAM =Y 5(F10,453X%))
FRINT SAMFLE COVARIANCE MATRIX
WRITEC(Hy70)(GV(L) yL=1 9y NE)
70 FORMAT (XOSANMFLE COVARIANCE MATRIXNKy//35XsF 104645/ v5Xs2(F10,493X) v/
+5Xr3(F1044y3X) 2/ vIXrA(FL06A4:3X) 9/ 95X A(FL1G,493X0)
FRINT FURE EBETUWEEN COVARIANCE :
WRITEC(Sy75) (SHAT (1) yL=1 y NE)
75 FORMAT (XOSANMNFLE FURE BETWEEN COVARINANCEX,//:S5XsF10.4v/95Xv2(F10.,4,
+3X) e /2 GXe3(FL104453X) v /9 SXvACF10,493X) 9/ v 54y S(F10.403X))
FRINT Y AND YRAR ON TAFEL
II=1
L=N
0 125 M=1sNS
DO 130 I=IIsL
WRITECL»80)IMsIy (Y (Ird)rJ=1sK)y CYRARCH = J) p J=2293)

80 . FORMAT(I2y1XyI497(F10.4))
130 CONTINUE

IT=II+N

L=L+N

125 CONTINUE
ENDFILE 1
FRINT SCHOOL MEAN ON TAFE2
DO 135 M=1sNS
WRITE(2y85)My (YREAR(My J) 9 =1 9K)
89 FORMAT(I2s3(3X9F10.4))
135 CONTINUE
ENDFILE 2
FRINT FOOLED WITHIN COVARIANCE ON TAFEZR
WRITE(3y20)FSV(1)yFSU(2)»yFSV(A) s FSU2) yFOHUCI) v FEUCS) s FEULA) y FEU (S
+yFSV(6)
90 FORMAT(3F10.45/y3F10.4y/93F10.4)
ENDFILE 3
100 CONTINUE
END
SURROUTINE GENEA(KyNySIGMAYYyT)
GENERATION FROGRAM FOR ACI) AND EC(IyJ)
READ IN SIGMA
FIND CHOLESKY FACTOR OF SIGMA = T
GENERATE & VARIARLES DISTRIBUTED N(O,1) - Z-5X1
TRANSFORM ACI)=TZy ACI) DISTRIBUTED NC(OySIGMA-A)

SUBROUTINES NEED
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CHOL
CHANGE

DIMENSTON STGMACIE) o T(Se5) o Z(0 17 -Y (1003 o NCLG) y TEMF (G 1)
OLT GENLRS i FokaMETOR
A1=3,949046130

AS=0,076542912
A7=0,0083L5968
A9=0,0298997746
CALIL RANSET(CLOCK(DUMMY))
FINDN CHOLESKY FACTOR OF STGHA =T AND DETERMINAONT OF T
CALL CHOL(SIGMAsAy Ko DIET)
CALL CHANGE (N TyK)
D0 700 II=1sN
GENERATE 12 RANDOM NUMEBER DISTRIEBUTED UCOy1)
Do 200 J=1eK
E=0, )
N0 300 IN=1,12 <
RX=RANF (IiLJiiMY)
B=R+RX
CONTINUE
TRANSFORM UNIFORM RANDOM MNUMBER TO Z VARTARBLE DISTRIRUTEID NUOs1)
R=(R=-b6.)/4.

RG=FkR
Z(Jr1)=CCCCATRRSHAT I XRSHALT ) KRSHNT) KRG HALI KR
CONTINUE

TRANSFORM Z VARIABLE TO Y VARIAELE DISTRIBUTED MCQsSIGHA)

D0 400 JJ=1sK

X=0,
[0 500 KK=1,K
X=X+TCJIy KK XZ (KK 1)
_CONTINUE
TEME(JJy 1) =X
CONTINUE
DO 600 J=1,K
Y(IIr D) =TEMF(Jr1) -

CONTINUE , A
CONTINUE T
RETURN
END
SURROUTINE CHOL (SIGMAsAsKyUET)

SIGMA AN K RY K SYMMETRIC MATRIX

) AN ARRAY OF AT LEAST R¥(K+1)/2 LOCATIONS
K NUMEER OF ROWS IN SIGMN

DET THE DETERMINANT OF A
DIMENSION SIGHAC(LS)sACLY)
X=SQRT(SIGMA(1))
DET=X
AC1)=X
K1=K-1
KC=1
IFIR=1
DO 101 J=1,K1
KC=KC+J
A(RC)=SIGMA(KC) /X
CONTINUE
0O 105 I=1,K1
IFIR=IFIR+I
KC=IFIR
X=0,
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104
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44
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o 102 J=1,1
X=X+A(KC) k%2
KC=KC+1

CONTINUE

X=8QRT(SIGMA(KC)Y-X)

DET =DET%X

ACKC) =X

IT=1+1

TECITWEQ I YURN

JC=IFIR

no 103 J=I1sK1
JC=C+.)

JC=JC
NC=JTF1K
Y=() o
N0 104 L=14,y1
Y=Y4+AC10) xACKE)
KNC=KC+1
IC=IC+1
CONTTNUE
ACIC)=(STENMNCICY=-Y)I/X
CONTINUE
CONTTHUE
RETURN
END
SURROUTIRLE CHANGE(As TeK)

A MATRIX TO BRE CONVERTED
T ARRAY WHERE CONVERTED MATRIX WILL EBE STOKED
K DIMENSION OF MATRIX

CHANGE TO SQUARE MATRIX

DIMENSION AC15)»T(5,5)
L=K+1
LL=(LKK) /241 .
00 41 J=1,K
JR=1.-J
DO 42 I=1,JR ,
IR=JR~1+1 -
LL=LL-1 v
TCIRy TR =ACLL)
CONTINUE

CONTINUE

DO 43 J=2,K
L=J-1 .
. 4
DO 44 I=1,L ‘ :
T(I,d)=0, : .
CONTINUE
CONTINUE
RETURN
ENI
SUBRDUTINE GEMDATACKyNyNSsNEsNTyMUsE A Y YTAE FMy FEUy GHE Y SUR» GMEAN
+55V, GHAT)
GENERATION FROGRAM FOR Y(IsJ)
YCIrd)=MUHACI)+ECT)
THAKE ARE 5 VARIARLES FOR EACH SURJECTS
VECTOR OF Y DISTRIBUTED N(iilsSIGNA)
DIHENSION E(150055)sAC150055) Y (150055) s GTOTAL (5) y GHEANCS) s GMS (5)
DIMENSTON YEAR(150095) ySUMCSE05) pWC15) 951G yMUCL) 5 U LS y SGW (150
DIMENSION SUECLE) ySUWCTS) »GMECS) M5 yLTWCS) s FSUC15) y SHAT (15)
DIMENSION SUKT(15)
REAL MU
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5: rg. OF VARIABLESs N:=NO. OF SUEJECTS IN EACH SCHOUL
$=NO, OF SCHOULS, NE=NO, OF ELEMENTS = ER “CTS
B OF seio NTSy NT=TOTAL NUMBER OF SUEJECTS
I1=1
L=N
10 100 M=1,N5
DO 200 T=I[,L
D0 250 J=1+K
Y(Io D =MUCH+AHr D HECT 9 J)
CONTINUE
CONTINUE
TI+11HN
Ll +N
CONTIHUE
COMPUTE SUM AND MEAN FOR LACH SCHOOL
I1=1
L=N
AN=:N
DO 450 M=1/,NS
D0 400-J- 1K
SUM (M )= 0,
D0 500 KK=IT,L
SUM(My ) =SUMCHis J)+Y (KK y )
CONTINUE
YEAR (My J)==5UH My J) /AN
CONTINUE ‘
II=II4N
L=L+N
CONTITNUE
COMFUTE FOOLED MCAN
ANT=NT
DO 94 J=1,K
GTW(=0,0
DO 93 M=1,NS
GTUCH =GTWC HSUM My .))
CONTINUE
FMOD=GTW(D) /ANT
CONTINUE ,
COMFUTE FOOLED WITHIMN COVAKRIANCE MATRIX
AN1:=N-1
DO 97 J=1,NE
SSW(J)=0.0
CONT INUE
Ii=1
L=N
[0 98 I=1sNS ,
CALL COVARCITLyYsKsNyNEySUWsGMS)
DO 99 J=1sNE
SSWCI) =SSW () +HANTRSUW (L))
CONTIHUE
IT=TI+N
L=L+N
CONTINUE
PN=NT-NS
DO 96 J=1sNE
PSSV =5SW () /I'N
CONT INUE
COMFUTE SAMFLE BETWEEN COVARIANCE
I1=1
L=NS
CALL COVAR(IIyL»YEARyKsNSyNE»SURT yGME)
AN=N
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N0 451 I=1,NE
® SVEB(I)=SVET(I)%AN

- CONTINUE

COMFUTE SAMFLE TOTAL COVARTANCE MATRIX
II=1

L=NT

CALL COVARC(ITI oLy YKy NTyNE»GVyGMEAN)

COMIFUTE THE ESTIMATION OF FURE BETWEEN COVARIANCE

AN=N
Nno 130 I=1yNE
SHhT(I)w(SvB(I)—Psv(}))/AN
CONTINUE
RETURN
END
SURKOUTINE COUVARCTL Ly Yy Ky NI ¢ NE»SU GIIANY

COMFUTE MEAN AND COVARIANCE MATRIXY
DIMENSTON Y(1500935) 9 5VCLG7 s GMEANCS) o GTOTAL
COMFUTE SUM AND MEAN
ANT=HT
v 600 J=1,K

GTOTALCJ):=0,

no 700 I=IIyl.

GTUTAL (D) =GTOTALCII+Y (I v J)
CONTIMUE
GMEAN(J)=GTOTAL(J) /ANT

CONTINUE
COMFUTE YEAR RY YRAR TRANSFOCE
IC=0
D0 750 J=1,K
no 710 M=1,J

IC=IC+1

WCIC)=GMEANCJ) ¥GMEAN (M)
CONTINUE

CONTITNUE
COMFUTE NT BY (YEAR RY YEBAR TRANSFOLLE)
ANT=NT
DO 800 I=1,NE
WCIDd=WOTIXANT
COMNTINUE
COMFUTE Y TRANSFOSE Y
IC=0
Do 925 J=1sK
N0 200 M=1+J
X=0,
00 9250 KR=1TyL
X=X+Y (KKy J)XY (KKyM)

CONTINUE

IC=IC+1

S(IC)=X
CONTINUE

CONTINUE
COMPUTE SAMPLE VARIANCE COVARIANCEMATRIX
ANT1=NT—-1
D0 955 J=1yNE
SCH=5CI)~-W ()
SVUCUI=5(J)/ANT1

5 CONTINUE

RETURN
ERD

)y UC15)95(135)
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DISCRIMINATION AMALYSTIS ( FTHN MANOYA |ﬁ%ﬁA1 70
GET CHARACTERISTIC KOOT Al UlLfg“ PS i& LOCK GFFROACH
3 1 1 1 1 1

gCHOO
>AMFLE NUMBCR 2

FINISH
(I295X93(F10.4))
Y X1 X2
S0
COr
Ciy
C2y
C3y
CAr
CSy
Céy
C?7»y
C8,
C9y
Ci0y
Cii,
C12y
C13y
Cl4,
C15y
Cl1é6»
Ci7y
Ci8»
C19,
C20,
C21,
c22 14
C23y
C24,
C25y
C26y
C27y
c28y
C29,
C30y
C31,
C32y
C33,
C34,
C35y
C36y
C37»
C38y
C39y
C40,
Ca1.,
Ca42,
Ca43,
CAa4,y
CAS5y
CA6»
Ca7y
Ca8y
CA49y
3 1 1

"1'490 STOF_
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FROGRAM BOCKCINFUTyOQUTFUT=85Gy TAFESy TAFE60UTFUT)
SAMPLLE NUMRER 50

ESTIMATE FOSITIVE SFMI DEFINITE ECTWEEN COVARIANCE
USE IMSL SURROUTINE
DIMENSTON WKAKEA(200) s TINVT C353)» TINV(3,3)yAT(353)yT(3,3)
DIMENGION FHIC(3:3) s FHIMI(353) yRES(3+3) »STGMAC313) yRES1(3,3)
DIMENSION SXX(252)sEXY (2910 s SXXINV(2,2) yEHAT(251)
DIMENSTON SYX(1,2)»SE(2)
N=NO. OF SURJECTS IN EACH SCHOOL
K=NO. OF DIMENSION OF MATRICES
N=30
K=3
READ IN T(IsJ)sFHICIsJ)
DO 100 I=1,K
REALI(Sy LO) (TCI v d) s J=1,K) s (FHICIrd) 5 J=17K)
FORMAT(6F10.6)
CREATE TDENTITY MATRIX
DO 200 J=1,K
IF (I.EQ.J) THEN
AT(I,J)=1,
ELSE
AI(I,J)=0,
ENDIF
CONTINUE
CONTINUE
PRINT TCIsJ)»PHICI,J) AICI,d)
WRITE(6520)
FORMAT (X1MATRIX OF CHARACTERISTIC VECTOR¥)
DO 300 I=1,K
WRITEC6s25) (T(Ird)rJ=1+K)
FORMAT (KOX» (3X»3(F10,673X)))
CONT INUE
WRITE(6530)
FORMAT (XOMATRIX OF FHIX)
D0 350 I=1,K
WRITE(6y25) (FHICI»d)yJ=1sK)
CONTINUE
WR1TE(4550)
FORMAT CKOIDENTITY MATRIXX)
DO 375 I=1,K
WRITE(6525) (AICIyd) s J=1,K)
CONTINUE
COMFUTE FHI-I
DO 400 I=1,K
DO 500 J=1,K
FHIMICIy ) =FHIC(IyJ)-AI(IsJ)
CONTINUE
CONTINUE :
COMFUTE INVERSE OF T
CALL LINVZF(T»3,3,TINVyOsUKAREA» IER)
CREATE TINVERSE TRANSFOSE
DO 600 I=1,K
D0 700 J=1,K
TINVTCI» ) =TINV(JsI)
CONTINUE
CONTINUE
FRINT INVERSE OF T
WRITE(6960)
FORMAT (XOINVERSE OF TX)
DO 725 I=1,K
WRITE(4y25) CTINV(I9J) yJ=1,K)
CONTINUE
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800
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30
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FRINO TREaertSPOOE O TINVERSE
WRITECSHY70)
FORMAT(XOTRANSFOSE OF TINVERSEY)
D0 750 I=1sK
WRITE(AH:20)Y(TINVT(X9d) e d:21yK)
CONTINUE
COMFUTIS THE FRODUCT OF TINVERSE TRANSFOSE AND FHI-T
CALL VMULFFCTINVT sFPHIMI 3939393 3,RES1y 3y LER)
COMFUIE THE FRODUCT OF TINUVERSE TRAISFOSEyFHI-I AND TINVERSE
Sr X3y IERD
COMFUTE FOSITIVE SEMNI DEFIMITEBETWEEN COVARLIANCE(SIGMA-A HAT)
AN=N
D0 800 I=1yK
no 850 J=1,K
SIGMACT y J)=RES(T» J)/AN
CONTINUE
CONTTNUE
FRINT FOSITIVE SEMI DEFINITE EBETWEEN COUNRTANCE
WRITE(6H,80)
FORMAT(XOFOSITIVE SEMI DIFINITE EETWEEM COVARIANCE MATRIUCES(SIOGMA-
+HAT)Y %)
D0 900 I=1,K
WRITE(S925)(SIGMA(TIvJ) ryJ=1yK)
CONTINUE
SYY=GIGMA(L»1)
SXY(1y1)=SIGMA(2,1)
SXY(2y1)=GIGMA(3»1)
SXX(1s1)=SIGMA(2,2)
SXX(1y2)=SIGMA(2,3)
SXX(2y1)=SIGMA(3,2)
SXX(2y2)=S1GMA(3»3)
CALL EBETAHAT(SYYsS5XY»SXX)
END
SURROUTINE BETAHAT(SYY»S5XY»SXX)
COMFUTE BETWEEN SLOFE EY BOCK APFLICATION AFFROAGCH
USE IMSL SURRQUTINE )
DIMENSION SXX(292)ySXY(2y 1)y SXXINV(2:2) yEHAT(2y1) s WEAREA(200)
DIMENSION SYX(192)ySE(2)
N=NO. OF SURJECTS
K=N0O. OF X
N=50
K=2
FRINT SXX
WRITE(6y20)
FORMAT (XIMATRIX OF SXXX)
D0 200 I=1yK
WRITE(6930)(SXX(IyJd)yJ=1yK)
FORMAT(XOXKySXr2(F10.453X))
CONTINUE
FRINT SXY
WRITE(4740)
FORMAT (XOMATRIX OF SXYX)
00 300 I=1yK
WRITE(SH950) (SXY(Iv1))
FORMAT(XOX»5XyF10,4)
CONTINUE
COMFUTE INVERSE OF SXX
CALL LINVIZF(SXXy2y2ySXXINVyOsWKAREAY IER)

- PRINT INVERSE OF $XX

60

WRITE(6+60)
FORMAT (XOINVERSE OF SXXX)
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Relationship of the Between-Group Regression Coefficients

From Various Analysis Approaches

To estimate the between-group regression coefficients, Bock
application approach uses the estimated between-group variance-

covariance matrix, Za' An unbiased estimate of Za is:

- 1
Za E-(Sa -9S)

where Sa is the matrix of the between-group mean squares,
S is the matrix of the within-group mean squares,

and n is the number of subjects within each group.
I

Denote: g (&) (k) (kD _kb
.- Xy -X )& -X )
n(I - 1) KxK
I n
(k) 2(k), (kD) (kD)
I I (X - X, )X - X )
L iml el ij i ij i
nl(n - 1) KxK
1
- n(I - 1) Kx1
I n
DX (k) =(k) =
and b= i=1 g=1 Ky~ X D@y, =YY
nI(n - 1) Kx1

where I is the number of groups.
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Then ﬁa can be written as

) S(n)? G !
L= a a
@ 2 (xy) 2(x)
X T
a a
) ;;y)z (a - b)
(a-b) (A - B)
~ 2 v 9) 2
where oiy) =1 In(¥y -1 _ LYy ij ~ ¥y)
" on(-1 n(I - 1)
1

MS (Between) - MS(Within)

The least squares estimate of the between-group regression coef-

ficient can then be written as

"B _ L(x)-12(xy)_ -1
Ea = Xa Za = (A - B) (a - b).

While the matrices A and B are in general non-singular, the dif-
ference matrix (A - B) may not be non-singular. Thus, Bock (1968)
proposed to use the orthogonal decomposition of (A - B) and retain only
those eigen values and eigen vectors that were statistically signifi-
cant to construct the "inverse'" of Z(x)

In order to relate the estimated between-group regression coef-
ficient to those obtained from the other approaches, A - B is also
assumed to be non-singular so that (A - Bf-lexists. Furthermore, both

A and B are assumed to be non-singular. The least squares estimate

of the between-group regression coefficient is then:
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(A - B)'l(a -b)

Ba =
—a-mla-@a-mh
= aa - a7y ta - e - )7
—a-atmy s g la-
But A_la = Qg is the between-group regression coefficient esti-
1

mated from the group level apporach, and B b= B is the pooled within

group regression coefficient. Hence,

-a-a'm - e - s

A

Applying a theroem presented by Nobel (1969, Theorem 5.22, p. 147),

(I - A-IB).1 can be written as:

(1 - A'IB)'1 =1+ (B-IA - 1)'1.
Thus,

"B _ -1 -1 G -1 -1

B,=(I+ (B A-I) B - (B A-DI)" 8
_ oG -1 G -1 -1
=B, + (B A-DB - (B A-1) 8

~G -1 1,56 *

=B, + (B A-1 (8 -8

"B G -1 -1°F

B, =8+ (B A-1) 8

~

where g: is the between-group regression coefficient obtained from the
full model analysis approach, and §: is the between-group regression

coefficient obtained from the Bock application approach.
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