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ABSTRACT

EQUIVALENCE OF TUBULAR NEIGHBORHOODS

By

Joan Elizabeth Quinn

Let p: X+X be a connected covering projection. We

"
a
a
.
.
.

7,]

say that p is almost regular (AR) if and only if for every

f: X+X,the commutativity of

~ f ~

X-———-—9’X

R/p
X

implies f is a homeomorphism. X is absolutely almost

regular (AAR) if and only if every p is AR. In general,

an AR covering projection may not be a regular covering

projection. Theorem: Among closed surfaces, the 2-sphere,

projective plane, torus, and Klein bottle are the only

(AAR) spaces.

Let M be an (n-l)-manifold locally flatly embedded

in an n-manifold. Then there exists a tubular neighbor-

hood N (a topological l-disk bundle over M) of M. The

pair (N,M) is equivalent to another such pair (N',M) if

.and only if there exists a homeomorphism between the two
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pairs. There exists a 2-sheeted covering pn:N+M and

(N,M) is homeomorphic to (Mpn, M) (where Mpn is the mapping

cylinder of pn). Theorem: (N1,M) and (N2, M) are equi-

valent if and only if there exists homeomorphisms h and

H such that

'
0

5 |
-
'

z
<
—
,
_
,
z
-

is commutative. Let M be a closed surface. Let T be the

set of equivalence classes of pairs (N, M), where N is

obtained by considering all possible locally flat embed-

dings of M into all possible 3-manifolds, except for the

case N = MxI. Let Ki be the subgroups of index 2 of nliM)

and say K1 and K2 are equivalent if and only if there

exists an automorphism of H1(M) that maps Kl onto K2.

Let N be the set of equivalence classes of all Ki‘ Theorem

3: There exists a natural 1-1 correspondence between N

. . _ 2 2
and T. (In particular, if H1(M) - [C1, C2,...CnIC1 C2 ...

an = l] , then T(M)in, and T(projective plane) = 1 and

T(Klein bottle) = 2.

Let (N,M) be defined as above. Theorem: Let hl

and h2 be involutions of N with M as fixed point set.

Then h1 and h2 are equivalent, that is, there exists a

'homeomorphism t of (N,M) onto itself with tIM = 1M and

l
h1 = t h2t.  
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INTRODUCTION

Call a covering projection, p, almost regular if

and only if the commutativity of

 

‘
5
1
.
"
,
M

.'
_

I

implies f is a homeomorphism. The first section is con-

cerned with what types of Spaces have covering projections

that are not almost regular. Theorem 1.1 says that if a

topological space X has a fundamental group, fll(X,xo),

which has a subgroup H and element t with th-l properly

contained in H and an open covering U with fl1(U,xo) con-

tained in H, then X has a covering projection that is not

almost regular. Then all surfaces are classified as to

whether or not they have non-almost regular covering pro-

jections or not: clearly, a surface with one handle or

crosscap does not, Theorem 1.2 proves all surfaces with 2

or more handles or 3 or more crosscaps do, and Theorem

1.3 proves that the Klein bottle does not. The section is

concluded with an example of a covering projection of the

‘Klein bottle that is almost regular but not regular.



Letting f: Mn—l-tNn be a locally flat embedding as

defined by Brown in [2], a tubular neighborhood T(f) of M

in N corresponding to f is a topological l-disk bundle of

f(M) that is contained in N. Section 2 is concerned with

when there is a homeomorphism h: (T(f),M)——+(T(g),M).

Theorem 2.1 proves that 2 tubular neighborhoods, T(f) and

T(g), of M are equivalent if and only if there is a homeo-

morphism H: T(f)-—)T(g) for which

T(f) e 5(9) 

 L
M 9M

:
7

 

commutes (where f and 9b are restrictions of the bundle
b

map). For M connected, it is shown that the number of

non-equivalent tubular neighborhoods of M, T(M),: l +

number of non-equivalent subgroups of index 2 of fll(M),

where H1 and H2 (subgroups of "1(M)) are equivalent if and

only if there is an automorphism a: wl(M)—9n1(M) with

a(H1) = H Theorem 2.2 shows that if M is a surface with2.

n (2 or more) crosscaps, then 3 i T(M):n+l. Also,

T(projective plane) = 2 and T(Klein bottle) = 3. Section

2 concludes with Theorem 2.3 on involutions of tubular

neighborhoods: If hl and h2 are involutions of T(f) with

M as fixed point set, then hl is equivalent to h2‘



Section 1. Almost Regular Covering Projections.
 

Let p: X+X be a covering projection with X con-

nected and locally path-connected and X connected. Note

that this implies X is locally path-connected, since p is

a local homeomorphism.

Definition 1.1. p is almost regular if and only
 

if the commutativity of

f

X———-—)X

P P

X

implies f is a homeomorphism.

Remark 1.1. One can also state Definition 1.1 in

terms of a property of the fundamental group of the

covering space, X. That is,

p is almost regular if and only if p# n1(X,xo) is

not properly contained in any of its conjugates in n1(X,xo)

(where x0 is any point of X and x0 is any preimage of xo

under p, and p# means the map on fundamental groups in-

duced by p).

Proof of Remark 1.1: a. Assume the commutativity of

 

implies f is a homeomorphism.





Suppose p#nl(X,io) were properly contained in one

of its conjugates, say tp#w1(X,xo)t—l. Then since

{P#"l(i,Xo)lXo 6 p-1(xo)} is a conjugacy class in

~ ~ -1 ~ ~l
«1(x,xo) by [11, Thm. 6, p. 73], tp#fl1(x,xo)t = p#fll(X,xo)

1
for some £01 in X for which p(§éo ) = x0. And therefore,

there exists f': X + X such that

 

Xlio $ X'io

P P

X,XO

commutes by'[ll, Thm. 5, p. 76]. Also by [11, Thm. 5, p.

76], there exists no such map from (X,xol) to (X,xo). So

f' is not a homeomorphism which contradicts our assumption.

Therefore, p#nl(X,xo) is not properly contained in any of

its conjugates in n1(X,xo).

b. Assume p#fll(X,xo) is not properly contained in

any of its conjugates. Suppose

f

i,xo———9 mac)

P P

X,X

commutes. (Note that f is a covering projection by [11,

JLemma 1, p. 79]). Suppose f#: nl(X,xO)——9n1(X,f(xo)) is

:not a surjection. Then p#f#: n1(X,xO)—)p#nl(X,f(xo)) is



not a surjection, since f# and p# are monomorphisms by

[11, Thm. 4, p. 72]. But p#f# nl(X,XO) = p#n1(X,Xo) and

by [11, Thm. 6, p. 73], p# nl(X,xo) = p# nl(X,f(Xo)), so

p#f#nl(X,xo) = p#wl(X,f(io)). Therefore, f# is a surjec-

tion. It follows that the multiplicity of p is l by

[11, Thm. 9, p. 73] and thus that f is a homeomorphism.

Examples of almost regular covering projections:

1. All regular covering projections are almost

regular by [11, Thm. 11, p. 74].

2. All covering,projections, p, with finite

multiplicity are almost regular. Since p is n to l, for

any commutative diagram

f

X-——————)X

P\
X

k

pf is n to 1. So f must be 1 to 1 and thus a homeomorphism.

3. If nl(X,xo) has the ascending or descending

chain condition, then, clearly, any covering projection of

X is almost regular.

Definition 1.2. A group G is said to be not regular
  

if there exists a subgroup H of G and an element t of G

for which th-l is properly contained in H. Otherwise, G

is said to be regular.

 



Any subgroup H and element t of a group G that is

not regular, mentioned in the following pages, is under-

stood to behave as in Definition 1.2.

Theorem 1.1. If n1(X,xO) is not regular and there

is an open covering U of X such that wl(u,xo) is contained

in H, then there is a covering projection with base space

X that is not almost regular.

Proof: Let p: (X,io)-—)(X,xo) be the covering projection

with p# fll(X,io) = H constructed as in [11, Thm. 13, p.

1 be the element of82]. X is clearly connected. Let x0

X which corresponds to a loop w(t) about X0 in X which

corresponds to the element t of fll(X,xo). Consider the

diagram:

fiscal £30

P\\\N ¢///P

X,xo

1
01 ta so) is (w(t)>'

which corresponds to t_1, p#n1(X,xol) = th_1. But th’

p#wl(X,xo) = H. Since p(path from i

l

is properly contained in H, so p is not almost regular.

Remark 1.2. One observes from the construction in

Theorem 1.1 that if M is a connected manifold for which

«1(M) is not regular, then there is a non-almost regular

covering projection of M (because there is a covering of

M by Open sets {U}, for which wl(u,xo) = 0).



Clearly, all covering projections of a surface

with precisely one handle or one crosscap are almost

regular. The following two theorems will complete a

classification of surfaces according to whether or not

they have non-almost regular covering projections or not.

Theorem 1.2. All surfaces with 2 or more handles

or 3 or more crosscaps have non-almost regular covering

projections.

Proof: Fact 1. If a group G is given by the generators

a1, a2, . . . . an and one relation f(a1,a2, . . . an) = l,

and if, further, the element an occurs in this relation

and cannot be removed from it by transformations, then

the subgroup {al’ a2, . . . , an_1} is free and

a1, a2, . . . , an_1 are free generators of the subgroup

by [8, p. 77].

Fact 2. Any free group, G, of 2 or more genera-

tors is not regular (Example by L. M. Sonneborn - Let H

be the subgroup generated by

{a, b‘1 ab, b‘zabz, . . . , b'n abn, . . .}

nl(xn), where Xn is a surface with n (2 or more)

handles, has generators a1, bl’ a2, b2, . . . , an, bn

and the single relation a b a -1b -1 1 -1
1 1 1 1 azbzaz b2 ' ' '

-1 -1
anbnan bn = l by [11, p. 149]. Therefore, nl(Xn) has

a free subgroup with more than one generator by Fact 1.

So by Fact 2, and Remark 1.2, Xn has a non-almost regular

[covering projection.



n1(Yn), where Yn is a surface with n (3 or more)

crosscaps, has generators c1, c2, . . . , cn and the

single relation clzcz2 : 0 ° cn2 = l by [11, p. 149].

Therefore, as in the case for Xn, Yn has a non-almost

regular covering projection.

Theorem 1.3. All covering projections of the

Klein bottle, K, are almost regular.

Proof: Consider the covering projection of multiplicity

2, p: S1 x Sl-—9K. 111(8l x 81) is regular, so, by the

following lemma, nl(K) is regular. Therefore, all

covering projections of K are almost regular.

Lemma 1.1. If G is not regular and N is a normal

subgroup of G for which [G:N]<w, N is not regular.

Proof: Since th-l is properly contained in H, tkHt-k is

properly contained in H for each positive integer k.

There is a k for which tk is an element of N since [G:N]<w.

Consider the following diagram:

k -k

————-> tk(HON)t-k——9tkHt_k—-)t Ht 4(HnN)t'k—>OO

1 111 i 12

0 * > HON ) H ——)H/HflN > 0
 

  

i2 is an isomorphism since H/(HnN) is isomorphic to HN/N

and [G:N]<m. So, by the five lemma in [11, p. 185], if

i1 is onto, then i is onto. 'But i is not onto by assump-

tion. Therefore, i1 is not onto and N is not regular.

 



Example of closed PL manifolds of arbitrarily

high dimension that have non-almost regular covering pro-

jections: Let m34. Embed Xn (or Yn) in Sm+l. Take a

1
regular neighborhood, N, of Xn in SI“... . wl(N) = nl(xn).

N is a closed PL manifold of dimension m and by Remark

1.2 has a non-almost regular covering projection.

Example of an almost regular covering projection

that is not regular:

nl(K) has 2 generators, c1 and c2, and the relation

c1 c2 = 1. Consider the covering projection p: (fi,§o»_,

(K,xo) with p#fll(X,xo) = {c2} (where {a} denotes the sub—

group generated by a). c1-1{c2} c1 is not equal to [c2].

Consider w: (I,O)——9(K,xo) where w(I) corresponds to Cl.

There is a lifting of w to w': (I,O%——9(X,Xo) by [11,

Thm. 3, p. 67]. Let w'(l) = ii. Then p(xol) = x0 and

p#nl(X,X;5 = cl-lp#1rl(X,Xo)cl which is not equal to

p#wl(X,Xo). So p is not regular by [11, Thm. 11, p. 74],

and, by Theorem 1.3, p is almost regular.
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Section 2. Equivalence of Tubular Neighborhoods.

Let M be an n-l manifold and f: M+N be a locally

flat embedding of M into any n—manifold N (where manifold

and locally flat embedding are defined as in [2]).

Definition 2.1. A tubular neighborhood, T(f), of
  

M in N corresponding to f is a topological l-disk bundle

of f(M) that is contained in N.

Remark 2.1. Given a locally flat embedding f:

M+N, one can exhibit a tubular neighborhood corresponding

to f in the style of [5] as follows:

Let {Ua} be a basis for the topology on N such that if

Uanf(M)+ ¢ then there is a homeomorphism

h: (En,En-)——)(Ua,Uanf(M)). En’l separates En, say into

E: and EB. Denote h(E$ UEn-l) by U: and b(Equ“'1) by

d' Let {US} = {UIU is an element of {ua}and Unf(M) = ¢

or U = U: or U; for some a}.

Let N1 = {(x,UB)Ix is an element of U8}' Define an

equivalence relation, R, on Nl by (x,UB) is equivalent to

(x1,UBl) if and only if x = x1 and UBnUBInC(f(M)) +¢.

Take N' = Nl/R and denote an equivalence class by [X'UB]°

Let {UB*} be a basis for N' where [X'UY] is an element of

U8* if and only if x is an element of U8' Define n: N'+N

by n[x,UB] = x. n is 2 to l restricted to n-1(f(M)) and

restricted to Cn-l(f(M)) is l to l. N' is an n-manifold

with boundary n-1(f(M)). n-1(f(M)) is collared by [2],

_and its image is a l-disk bundle of f(M).
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Remark 2.2. Let fb: T(f)+M be the bundle map.

Then fblT(f) is a covering projection of multiplicity 2

and, denoting the mapping cylinder of fblT(f) by Mf,

(Mf,M) is homeomorphic to (T(f),M)-

Definition 2.2. T(f) is equivalent to T(g) if and
 

only if there is a homeomorphism h: (T(f),M)._9(T(g),M).

Theorem 2.1. T(f) is equivalent to T(g) if and

only if there is a homeomorphism H: T(f)__9T(g) for which

 

. r7 .

T(f) > (g)

f 1gb

h

M ; M 

commutes.

Proof: Assume T(f) is equivalent to T(g). Then there is

a homeomorphism h: (Mf,M)-—9(Mg,M). Let 91 be the cover-

ing projection, 91: T(g)xI—1,MxI, induced by gb and let

i: M—)Mxl—-)MxI be the natural inclusion. Then, by the

diagram:

, id

T(g)xI + M > M 

91+i 9'

 \v
MxI

g' is continuous by [4, Thm. 3.2, p. 123]. (id will al-

,waysindicate the obvious identification map.)
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Case 1. Assume T(f), T(g), and M are connected.

We have

h*: T(f)xI——l-d—> Mf—fl—mg—L—nyI

where h*(x,l) is in Mxl. Consider the diagram:

T(g)xI

)7

/'

IL" 91
/

o / h*

T(f)xI ———> MxI

There exists h' with h'IT(f)x0 = h by [11, Thm. 3, p. 67].

Note that h'(T(f)x1) is contained in T(g)xl. Also

4':

h*|T(f)xl is a covering projection.

Now consider the diagram:

T(g)xl

h' 91

o h*

T(f)xl >Mxl

h'IT(f)xl is a covering projection, since T(f), T(g), and

M are connected and locally path-conntected by [11, Lemma

1, p. 79] and therefore h'lT(f)x1 is open and onto.

h'|T(f)xl must clearly than be 1 to 1, so h'IT(f)xl

induces the desired H.

Case 2. Assume T(f) and T(g) are not connected

and that M is connected.
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Then there are T1 and T2 (each connected) for

which fblTi: Ti-—+M is a homeomorphism. As in Case 1,

h*: T(f)xI-—9MxI. For this case, consider the diagram:

T(g)xI

‘3
//

h.l / g1
l/ R
/

/ h*

T x1 44; MxI 

There exists hil that makes the diagram commute and

 hil(TixI) is connected. So, we get a l to 1, onto map

h':T(f)—->T(g) that clearly must be Open.

Case 3. Assume M is not connected. The argument

is the same as the preceding ones applied to the components

of M and their preimages.

Assume there is h: T(f)—+T(g) for which

0 H O

T(f) ————-> T(g)

b 96

M hfixM 

commutes for some homeomorphism h: M-—9M.

Consideration of the following diagrams completes

the proof:
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T(f)xI + M £6 Mf T(g)xI + M——1‘9—;Mg

hxl+1 lel'l'i

T(g)xI + M T(f)xI + M -1

h h

id id

Mg Mf

Remark 2.3. Given a commutative diagram as in

Theorem 2.1, one can alter h to be base-point preserving

by an isotopy and H can be altered accordingly. So we

will assume h is base-point preserving.

Remark 2.4. Up to equivalence, there is one

tubular neighborhood, T(f), of M with T(f) not connected,

namely, MxI.

Remark 2.5. Given any subgroup H of n1(M) of

index 2, there is a corresponding tubular neighborhood,

T(p'), of M. Let p: E-—9M be a connected covering pro-

jection of M with p#nl(E) = H. And take N to be the

mapping cylinder of p and p': M-—)N to be the natural

map.

In this paragraph, assume T(f), T(g), and M are

connected. Consider the diagram:

on 33? , ’



15

By Theorem 2.1, if T(f) is equivalent to T(g), then there

exists 5 that makes the diagram commute, and therefore

h#: wimp—”104) with h#fb#1rlT(f) = gb#1r1'l‘(g) by [11,

Thm. 5, p. 76]. Suppose there is no automorphism

a: “(m—”1m with afb#1r1T(f) = gb#1r1'l'(g). Then T(f)

is not equivalent to T(g). One concludes that the number

of non-equivalent tubular neighborhoods, T(f), of M with

T(f) connected 1 the number of non-equivalent subgroups

of n1(M) of index 2, where if H1 and H2 are subgroups of

G, H1 is equivalent to H2 if and only if there is an

automorphism a: G—9G with a(H1) = H2.

When M is a surface, every automorphism of rl(M)

is induced by a homeomorphism of M by [10, Thm. 2, p. 542].

Therefore, if M is a surface, T(M) = the number of non-

equivalent subgroups of n1(M)+1. Let n1(M) = G. Define

a subgroup of G of index 2 by a homeomorphism from G to

22 and let H1 and H2 by 2 such subgroups.

Case 1. Suppose G has generators a1, b1, . . . ,

. -1 -l -1 -1 _
an, bn and the relation alblal bl anbnan bn — l.

A. If for both H1 and H2, one and only one

generator (aj for H1 and a1 for H2) is mapped to l in 22,

then there is clearly an automorphism a of G with

a(Hl) = H2.

B. If H1 is the subgroup of G defined by

sending a1 and only al to l and H2 is the subgroup of G

defined by sending bl to 1, then there is an automorphism
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a of G for which a(Hl) = H2. Namely, define a(a1)

and a(b1) = al-l. Otherwise, a(ai) = ai

all

and a(bi) = bi'

C. If H1 is the subgroup of G defined by

sending ai and only ai to 1 and H2 is the subgroup of G

defined by sending ai and bi to 1, then there is an auto-

morphism a of G with a(H1) = H2. Namely, a(aj) = a. and

J

a(bj) = bj for 3 not equal to 1 and a(ai) = aibi and

a(bi) = ai-l. One concludes when M is the torus, T(M) = 2.

Case 2. Suppose G has generators c1, c2, . . . , cn

and the single relation c12c22 ° ° - on2 = 1.

A. Let Hs denote the subgroup of index 2

defined by mapping C8 to 1, then there is an automorphism

s of G with s(HS)=H (where without loss of generality
t

assume s<t).

Define: s(ci) for i<s, i>tll

0

s(cs) = c c

S(cs+l) = C3 Ct cs+1ct Cs

3(cs+2) = C3 Ct cs+2ct Cs

s(ct_l) = c ct Ct-lct c

s(ct) = c

B. Let Hi denote the subgroup of G of index

2 defined by mapping c. , c. , . . . , c. to 1. Then

11 12 1n

there is an automorphism a of G with a(Hi) = Hj' Namely,
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define a = hlh2 ° ° - hn where hk = 1k if ik<jk and hk = 3k

if ij1k and hk = identity if 1k = jk (where 1k and 3k are

defined as above).

C. Suppose Hi is defined by sending ci and

Q o O ' C Ionly ci to l and Hj is defined by sending c. j

s

Ic-I

31 32

to l where s is even. Then there does not exist an auto-

morphism a of G for which a(Hi) = Hj' Abelianize G

giving Hi and H3, corresponding to Hi and Hj' In Hj',

there is a non-identity element, namely clc2 . . . cn,

whose square is equal to 1. So H3 is not free abelian,  
but Hi is clearly free abelian. So Hi is not isomorphic

to HE.

3

One concludes:

Theorem 2.2. T(surface with n crosscaps) is‘: 3

and i.n+1 (where n 3 2). T(projective plane) = 2 and

T(Klein bottle) = 3.

Let M be any surface and f: M-—,N a locally flat

embedding with corresponding tubular neighborhood T(f).

Let h1 and h2 be involutions on (T(f),f(M)) with f(M) as

fixed point set. As is standard, h1 is equivalent to h2

if there is a t: T(f)-—sT%f) with thlt”1 = h2'

Theorem 2.3. hl and h2 are equivalent.

Proof: Case 1. f(M) separates T(f), say into N1 and N2.

Claim: Either hi(Nl) = N and hi(N2) = N or hi(Nj) = N..
2 1 3

Suppose not and there are n1 and n1* which are elements of

. Nl for which hl(nl) = ni which is in N1 and h1(n1*) = n2
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which is in N2. Then there is a path 1 in N1 from n1 to

n1* and hl(i) is homeomorphic to I with hl (n1) = ni and

hl(n1*) = n2. So there must be an n in i for which hl(n)

is an element of f(M). This is a contradiction so the

claim holds. But we know hi(Nj) is not equal to Nj'

= N Therefore, theThus, we get hi(N and hi(N2) = N
1’ 2 1°

orbit spaces of h1 and h2 [acting on T(f)-f(M)] are clearly

homeomorphic, say by f. (Oh is the orbit space of h: N——>N

and h* is the projection from N to Oh.) Consider the

diagram:

 

There exists t which makes the diagram commute for each of

N1 and N2. Now,

hgthlt’1(n) = fhihit1(n) = fhit—l(n) = h5(n>.

So, tlh1t1(n) = n or h2 (n).

If t1h1t1(n) = n, then hlt1(n) = t-1(n) which is a contra-

diction. Extend t to T(f) by t(x) = x. Then thlt-1 = h2

and hl is equivalent to h2.

Case 2. f(M) does not separate T(f).

A. Assume M is not the projective plane.

Let x be an element of f(M) and let U be a neighborhood of
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x in N such that f(M) separates U, say into U1 and U2.

Then, as 1n Case 1, hi(Ul) = U2 and hi(UZ) = 01'

Let N' be defined as in Remark 2.1. Let

M = n-1(f(M)) and T = n-1(T(f)). Let 51 and 52 be the

involutions on T induced by h1 and h2' Then if x is an

element of M for which n(x) = n(x'), then fil(x) = fi2(x) = x'.

T is homeomorphic to MxI so without loss of generality

~ . ~ _ ~ ' = ~ , ,

assume T 18 MxI. Let B - Ohl and M Ofil|MxO Wthh is

homeomorphic to f(M) and therefore not the projective

. . . , = ~
plane. Let h. ML-—9B be the 1nc1u31on. M1 OHl'Mxl

and "1(Mi) = nl(M') = n1(B). B is clearly compact, con-

nected and a Poincare 3-manifold. Therefore, 0a is

1

homeomorphic to M'xI by [1, Thm. 3.1, p. 485]. Similarly

for O . So 0 is homeomorphic to O , say by f.

H2 H1 52

Consider the diagram:

 

 

~ t1 ~

MxI - e;.MxI

”* *

hl fi2

f

O s; 0

F11 52

Since f can be chosen so that f 5* n (MxI) = h n (MxI)

# l# l 2 1
#

and hi and 55 are covering projections by [11, Thm. 7,

p. 87], there is a t1 which makes the above diagram com-

-1

mute. As in Case 1, tlfilt1

l
by t1, we get thlt- = h2.

= hz. Letting t be induced
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B. Let M be the projective plane.

By Theorem 2.2, M has 2 non-equivalent tubular neighbor-

hoods. One is equivalent to MxI and is taken care of in

Case 1. The other tubular neighborhood can be defined

by the 2 to 1 covering projection p: S2->M as (Mp,M).

hi: (Mp,M)-—9(MP,M) induces an involution hi on 82x1.

By [9, Thm. 1, p. 582], there is a t': Ssz->SZxI for

which t'hit'-1 = hi. t' induces t: (Mp,M)-—->(MP,M)

with th t-1 = h
2

l 2' E 
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