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ABSTRACT

DETECTION OF TRENDS

IN

WATER QUALITY PARAMETERS

By

Robert Hale Montgomery

With the advent of standards and criteria for water quality param-

eters, there has been an increasing concern about the changes of these

parameters over time. Thus, sound statistical methods dealing with the

detection of trends in water quality parameters are needed.

The method presented provides: 1) formulation of a problem

(hypothesis), 2) selection of water quality parameter(s) and data,

3) data analysis techniques, and 4) statistical tests for detection of

trends. A review of water quality parameters and certain topics in sta-

tistics is also provided. The techniques are explained in a non-

statistical manner to allow usage for those not well versed in statis-

tical theory.
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Chapter I

INTRODUCTION

Study Objectives
 

The earth is endowed with numerous natural resources available for

man's use. However, long-term maintenance of the environment is a pre-

requisite to the continuing usage of natural resources. Thus, society

is responsible for the protection and propagation of the environment for

future generations. As society becomes more technologically oriented,

the use of qualitative knowledge in decision planning can be balanced

and supported by quantitative information. The use of quantitative tech-

niques in water quality planning, for example, provides the necessary

"hard" evidence that planners and managers have lacked in recent years.

An especially weak area of water quality management is quantitative meth-

ods dealing with trend detection in water quality parameters. Trend de-

tection techniques are vital in the development of planning, policy and

management of water resource systems.

The objective of this study is to provide sound statistical methods

dealing with the detection of trends in water quality parameters. The

trend detection method is based on strong statistical techniques, but

attempts to explain the techniques in a non-statistical manner. The in-

tention of the study is to make the trend detection method available for

use by persons not well versed in statistical theory.

The remaining sections of Chapter 1 describe water quality manage—

ment, the application and usefulness of trend detection techniques to

water quality management, and provide a general review of trend theory.

1



Chapter 2 discusses water quality parameters. The emphasis is on data

availability and on selecting the appropriate parameter for a given

management decision or concern. Chapter 3 provides a general review of

the field of statistics that apply to the application and use of trend

detection techniques, particularly those dealing with time series data

and analysis. The trend detection method is explained in Chapter 4

and all phases necessary for its use are discussed (i.e., hypothesis

testing, data preparation, data analysis, statistical tests, and time

series modeling). Two applications of the trend detection method are

at the end of Chapter 4. The conclusions and recommendations on the

trend detection method are discussed in Chapter 5. There are also two

Appendices: A) containing water quality parameter data sets, and

B) containing statistical tables needed for the statistical methods.

Water Qualitnganagement
 

As the demand for water increased over the years, there has been a

profound expansion of the goals among water quality management agencies.

First, it was protection of the public health. Later, as both the

amount and variety of waste discharges grew, concern for the protection

of other beneficial uses was expressed. Recently, esthetic or social

goals of water quality have been added to the growing list of objec-

tives for water quality management. The result is an emphasis on re-

source oriented management instead of management oriented to use. Thus,

the concern has shifted from pollutants to the water resource itself.

In this context, resource protection becomes the object of public policy,

and the various beneficial uses appear as subsystems which must be



managed in a coordinated and integrated fashion to achieve resource

policy objectives (McGauhey, 1968).

Water quality management programs, or agencies, have two broad

objectives: prevention and abatement. The prevention objective is

related to maintaining the existing "good" water quality, while abate-

ment refers to reducing or moderating existing pollution conditions.

These two objectives can be subdivided into seven basic activities,

which are (Ward, 1973):

1. Planning

2. Research

3. Aid Programs

4. Technical Assistance

5. Regulation

6. Legal Enforcement

7. Data Collection, Processing, and Dissemination

Planning, research and aid programs are generally classified as pre-

vention, while technical assistance, regulation and legal enforcement

are classified as abatement. Data collection, processing and dissemin-

ation provide support to the first six activities. Figure 1 illus-

trates this type of water quality management structure.

The planning activity in water quality management has received

increased emphasis in recent years, at both the state and federal

level. The state level emphasis has been on program planning, while

at the federal level, emphasis has primarily been on project planning.

Project and program planning are similar in that a plan for future

action is being developed, but the plans differ in the amount of detail

required. Program planning deals with broad definitions in program and
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work plans. Consequently, general overall trends in water quality best

serve the program planning function at the state level. Project plan-

ning entails specific planning related to detailed evaluation of future

water quality effects as a result of specific causes (e.g., waste

treatment plant location, number of pollution sources). Thus, the change

in a specific parameter over time is the concern in project planning.

The detection of trends in water quality parameters is extremely

important for both program and project planning.

The general objective of research is to conduct studies and inves-

tigations on issues relating to water quality. Included in the research

objective is the implementation of research findings. All too often,

research results are not put to an effective use. It is in the research

phase that the detection of trends in water quality parameters is

carried out.

The activity denoted under aid programs is: 1) accepting and

supervising of loans and grants, 2) processing applications and admin-

istration of loans or grants, and 3) certification of the need for

money for various projects. The information used to verify a need for

a certain project can often deal with how a parameter(s) has or will

change when the project is implemented. Thus, past trends can pro-

vide the impetus to invoke a project and future changes can be used to

evaluate the effectiveness of the project.

The objective of technical assistance is to advise, consult, and

cooperate on technical matters concerning water quality. Technical

assistance may be given to other agencies (federal, state, local) or

to private enterprises. In order for technical assistance to be given,

valid information about water quality parameters is needed. A major



form of information disseminated concerns the changes in water quality

parameters over time and methods of determining (quantifying) the

change.

The objective of water quality regulations is the maintenance of

water quality. This objective has traditionally been the most impor-

tant to public agencies given the money and manpower devoted to its

accomplishment. Regulation entails the development of water quality

standards and the routine surveillance of water quality to insure com-

pliance with the established standards. Regulation also involves devel-

oping pollution abatement requirements and establishing procedures to

assure that future actions do not cause violations of standards. Im-
/

/
/

portant uses of trend detection for regulation are: 1) to evaluate the 9’

progress of abatement programs toward meeting standards, and 2) to iden-

tify emerging water quality problem areas so that prevention can be

affected, before abatement programs are required.

The object of legal enforcement is to enforce water quality stan-

dards when standards cannot be maintained by persuasion. The need

for quantitative factual information on water quality parameters for

legal evidence is paramount. Until recently, environmental lawyers

had only qualitative information to support their position. Subjec-

tive evaluations, however, may be easily contradicted by the opposing

side's experts. With the use of statistical techniques to provide

quantitative information on water quality trends the courts should

have a clear path to follow (i.e., what the data dictate).

Successful accomplishment of the six objectives outlined depends

upon good data collection, processing and dissemination. The first

step toward good water quality data is to select a representative



sample. Following proper sample preparation, handling, and laboratory

procedures, with quality control, the results of the analysis are

processed. Data processing involves screening, verification, inter-

pretation, indexing, storage and retrieval of the data. Data dis-

semination is accomplished through the generation of reports. The

idea of proper sampling design cannot be overstressed. For a detailed

review of sampling design, consult Cochran (1977), Beckers et al. (1973),

Sanders et al. (1976), and Ward (1973).

All phases of planning, development and operation of a water

quality management system require data to quantify existing states of

the system, to forecast future changes and trends, and to predict the <

response of the system to intervention. To evaluate alternative ways

of combating perceived conditions of water quality deterioration re-

quires objective measurements that: 1) describe the observed condi-

tions, and 2) can be related to appropriate measures of water resource

management. A number of parameters have been observed which might

provide objective criteria to study trends in water systems. An impor-

tant concern with water quality parameter selection for trend detec-

tion analysis is whether the parameter provides the best measure of the

perceived condition or qualities of concern. The kind of data required

and their spatial and temporal resolution depend upon the nature of the

problem and type of intervention under consideration. A partial list

of needs and uses of water quality data is shown in Figure 2 (Sherwani

and Moreau, 1975).

Relatively few studies have been conducted on trends in the quality

of the nation's waters. The emphasis of past water quality trend analy-

sis has been primarily with river water quality (Holman, 1971; EPA, 1974;



Public Interest:

Planning:

Regulation and Control:

Public Health

Aesthetics

Nuisance

Ecological balance

Conservation

Natural state preservation

Recreation

Water and related land use planning

Economic planning

Urban planning

Identification of sources

Fate of pollutants

Description of present state of

quality

Prediction of water quality

Evaluation of trends

Available control strategies

and tactics

Measurement of progress in pollution

abatement

Episodic effects

Non-degradation policy

Research

Legislation

Public hearings

User-oriented reports

Figure 2. Water quality data uses (Sherwani and Moreau, l975)



Lettenmaier, 1977), and only a few with lake trend analysis (Rockwell

et al., 1979; Chapra, 1980; Dobson, 1980). The reason for the lack of

water quality trend studies is due to the number of disabilities that

interfere with a truly adequate statistical analysis of time series

data. The major disabilities that affect the use of proper statistical

procedures are (Holman, 1971):

1. Short records of water quality data.

2. Techniques of observation and analysis have

changed over the years.

3. Changing location or frequency of observations.

4. Correlations that relate specific variables to

limnologic and hydrologic behavior are rarely

available.

5. Natural background often hides water quality

trends.

6. Explanation of trends requires a knowledge of

the economy and land use in the area.

Most measures of natiOnal growth suggest that demands on water

resources are increasing. It is these increasing demands for water

resources that usually result in deterioration of water quality. Thus,

even without proof, one might assume that water quality conditions are

getting worse. The problem is to precisely determine the relationshipsfiEIF—)

between the pressures posed by society and the responses of water quality

parameters. The main interest for the management of a water resource is

not its present state, but how the state of the system has changed and

will change in the future. Thus, the use of trend detection techniques

to quantify the change in water quality parameters over time is critical.
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By providing information on water quality trends, one can determine

whether a given water resource is improving, deteriorating or station-

ary under the current conditions. Therefore, management and policy

decisions can be developed, with a degree of certainty, based on the

changing system. For example, if a lake with excellent water quality

was exhibiting a declining trend, emphasis could be placed on an effort

to control the situation. Conversely, a lake exhibiting poor water

quality, but with an improving trend is evidence of good recent manage-

ment. If planning is to be based on sound information and the effec-

tiveness of management alternatives are to be judged, then observational

tools (e.g., trend detection methods) must be designed and implemented

in water quality management.

Trend Theory
 

Lake water quality parameters are subject to continual change

over time. The inputs to the lake, outputs from the lake, and the

lake itself are variable. Thus, lake water quality data arise from a

nonstationary process. To provide a representation of the changing

conditions over a period of time, a time sequence of measurements on

water quality parameters is needed. The data exist in a time series,

which preserves the order of occurrence. The measurements may be taken

at approximately regular intervals or values may be obtained as averages

over fixed periods. The measurements should be taken over a sufficient-

ly long period of time using similar methods. Usually most existing

water quality data are: 1) not measured over sufficient periods of

“M

time, 2) measured at different times and time intervals, and 3) variable,

"I
i/
-

‘0 w- “’r
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due to changes in sampling methods and laboratory techniques. Thus,

inherent problems exist in trend detection of water quality parameters.

In order for a trend to appear, the data from a time series must ,

display a non-random pattern. In a non-random series the observations

cannot be explained by purely random variation at a given level of

significance. Non-randomness can arise from: 1) presence of a trend,

2) cyclicality, and 3) serial correlation. A series exhibits a trend if

the values of its members show a tendency to increase or decrease. A

cyclic, or periodic, series occurs when the values rise or fall in a

regular fashion. Serial correlation occurs when a value is dependent

upon previous values.

A time series can be considered to be made up of two parts:

1) a systematic or deterministic component changing over time in a

regular and predictable way, and 2) a random component superimposed

on the regular part (Sherwani and Moreau, 1975). The changes in the

deterministic part are those attributable to fundamental changes in the

nature of the process itself. The random component represents short-

term fluctuations due to transitory factors. Often, a trend may be

obscured by superimposed random variation. Also, it is difficult to

detect small trends in a short series.

A general time series equation is

x =

t “t + et (1)

time series of data2 =
-

(
D
1 (
D

x
r
.
-

II

the trend

random variation (noise term)0

(
"
P

I
I
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Two of the most common trends are step and linear trends

(Lettenmaier, 1977). A step trend is an instantaneous jump in the

mean level at some point in time, i.e.,

xt = “1 + [“2 ' ”1]T + 9t (2)

where: u1 = true mean of first part of record

“2 = true mean of second part of record

[L1T function with value zero for t §_T

and L for t > T , where t is start of

step trend

A linear trend is simply a uniform increase in the mean level:

xt = u + t/TAu + et (3)

where: t = time length of each time unit

T = total time length of time series

For large sample sizes, or when the variance of e is known, the
t

power of the classical two-tailed t-test (Breiman, 1973) against step

and linear trends, where the noise terms et are statistically inde-

pendent and normally distributed with mean zero and variance 0: , is

1 ' B = F(NT - W1_a/2) (4)

where: F cumulative distribution function of a standard

normal probability distribution

W1_a/2 = standard normal quartile at probability

level 1 - a/Z
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T n
_ r

NT - 20 (for a step trend) (5)
 

N = Tr n(n + 1) (n - 1) 3 Tr n

T n [120e 120

Tr = trend magnitude (7)

(for a linear trend) (6)
  

lul - “2' for step trend

Au for linear trend

Trend equations can be expanded to include seasonal movement or modi-

fied to a multiplicative system (log or polynomial) instead of the

additive system, as in the step and linear trend (consult Lettenmaier

(1977) and Sherwani and Moreau (1975) for more information).

A step trend is a permanent increase or decrease in the value of

the water quality parameter. This may, for example, result from a

permanent change in land use or the construction of a waste treatment

plant. A linear trend is a steady upward (or downward) movement in a

water quality parameter. This may, for example, result from a change

in agricultural or urban runoff (i.e., nutrient loads).

The classical hypothesis testing framework may be used to deter-

mine the existence or nonexistence of trends in water quality param-

eters. The null hypothesis, H0, is that no trend exists, while the

alternative hypothesis, H1, is that a trend does exist. The choice

between H0 and H1 is made on the basis of a test statistic, computed

from the data. The test statistic is compared to a probability out-

come distribution, and H0 is either accepted or rejected at a given

level of confidence.



CHAPTER II

WATER QUALITY

The quality of water is affected by many factors, some of which

are 1) nutrients, 2) organic material, 3) toxic chemicals, 4) dissolved

and suspended solids, 5) dissolved oxygen, and 6) pH. The number of

factors required to specify water quality is limitless, changing both

the physical, chemical and biological environment and the socio-economic

activities within the water system. Any consideration of water quality

should also include water quantity, because quality and quantity of

water are interrelated. A knowledge of ambient water quality is re-

quired to: I) ascertain reliable and accurate information on the

current status of water quality required for planning of water re- /

sources, 2) provide reliable data to assess long-term trends and over-

all changes in water quality, 3) determine the degree to which water

quality is improved as a result of pollution abatement measures, 4) in-

dicate problem areas requiring corrective actions, and 5) determine the

extent of compliance and non-compliance with water quality standards

(Sherwani and Moreau, 1975).

Water Quality Parameters

Water quality management seeks to insure levels of pollutants in

surface waters which will not interfere with desired uses. Thus, water

quality depends directly on the use of the water. There are numerous

physical, chemical, and biological parameters which are significant in

14
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determining water quality. Figure 3 lists some parameters and the role

they play for various water uses.

Water quality parameters may be general or specific purpose param-

eters. The general purpose parameters provide basic information about

water quality. Some general purpose parameters are: 1) dissolved oxy-

gen, 2) pH, 3) temperature, and 4) conductivity. Special purpose param-

eters relate to definite processes, activities, or pollution sources

affecting water quality. Examples of specific purpose parameters are:

1) BOD, biological oxygen demand, 2) fecal coliforms, and 3) toxic

chemicals.

There are numerous parameters that affect water quality and

discussion of all of them is not possible here. Therefore, only the

major parameters are discussed below. For more information on these

parameters and others, consult: 1) EPA, (1976), 2) Wetzel, (1975),

3) Hutchinson (1957), 4) McNeely (1979).

Alkalinity_refers to the quantity and types of compounds, mainly
 

inorganic carbon, which collectively shift the pH to the alkaline side

of neutrality. The forms of inorganic carbon in fresh waters are:

1) free carbon dioxide (C02), 2) carbonic acid (H2C03), 3) calcium

bicarbonate (HC03'), and 4) carbonate (CO3=). These four species of

inorganic carbon form an equilibrium between each other based primarily

on pH. As the pH increases, the dominant species moves from free carbon

dioxide to carbonate ions. Alkalinity is a measure of the buffering

capacity of water. Since pH has a direct effect on organisms and an

indirect effect on the toxicity of certain pollutants in water, the

buffering capacity of water is very important to water quality. Long

term trends in alkalinity are extremely important in those areas
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Use
 

 

Parameter~

1. Temperature

2. Turbidity

3. pH

4. Dissolved Oxygen

5. BOD

6. Suspended Solids

7. Total Dissolved Solids

8. Coliform

9. Nutrients

10. Organics

11. Heavy Metals

12. Radioactivity

13. Oil

14. Color

15. Conductivity

16. Chlorophyll

Figure 3.

Aquatic life, Industrial use, assimila—

tive capacity, recreation

Drinking water, recreation, industrial

use

Industrial use, aquatic life, recreation

Aquatic life, aesthetics, industrial

use, assimilative capacity

Food and beverage industries, recrea-

tion, assimilative capacity

Aesthetics, photosynthesis, reservoir

capacity depletion, hydroelectric power

generation, navigation

Irrigation, water supply, industrial use

Direct-contact water-based recreation,

water supply, food and beverage indus-

tries, irrigation

Eutrophication, aesthetic degradation,

secondary effects on aquatic life

Water supply, industrial use, aquatic

life

Water supply, aquatic life

Water supply

Recreation, industrial use

Aesthetics, water supply, recreation,

industrial use

General parameter of water quality

Biological activity

Important water quality parameters and related uses

(modified from Sherwani and Moreau (1975))
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receiving acid rain. Acid rain tends to lower the natural pH of waters

with low buffering capacity. Thus, monitoring of alkalinity changes

may serve as an indicator of deteriorating water quality due to acid

rain. Another important parameter for trend analysis in water quality

is the hypolimnetic inorganic carbon accumulation. The accumulation of

inorganic carbon in the hypolimnion of a lake can be used to estimate

indirectly the organic production in a lake's epilimnion and metalimnion

(for more information consult Wetzel, 1975).

The use of biological organisms fbr evaluating water quality is

an old concept that only recently has received attention. The response

of sensitive biological indicator organisms to an environmental stress

provides an early indicator of changing water quality. Biological

organisms are: 1) uniquely sensitive to multiple environmental stresses

operating consecutively or simultaneously, and 2) integrate the effects

of environmental stresses over time. Thus, the ability to selectively

accumulate, biomagnify, and show the synergistic effects to exposure

from environmental stresses gives bioindicators useful properties for

determining trends in water quality. Figure 4 lists the major communi-

ties of biological organisms and the parameters used to describe them

for water quality evaluation. One problem with the use of biological

organisms is the difficulty in obtaining quantitative numbers and

levels on the organisms. The use of biological organisms for detection

of trends in water quality has tremendous possibilities, especially

when dealing with water systems affected by numerous stresses. For

more information on biological organisms and monitoring consult 1) Norf,

(1980), and 2) Cairns, et al. (1977).

Organic carbon is of two forms, particulate or dissolved, and
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Community Parameter
 

Plankton Counts and identification

Chlorophyll a

Biomass as ashfree weight

Periphyton Counts and identification

Chlorophyll a

Biomass as ashfree weight

Macrophyton Areal coverage

Identification

Biomass as ashfree weight

Macroinvertebrate Counts and identification

Biomass as ashfree weight

Flesh tainting

Toxic substances in tissue

Fish Toxic substances in tissue

Counts and identification

Biomass as wet weight

Condition factor

Flesh tainting

Age and growth

Figure 4. Major communities of biological organisms used in

biological monitoring (Weber, 1980)



19

results from outside of the lake (allochthonous) or from within the lake

(autochthonous). The dissolved to particulate organic carbon ratio

approximates 6:1 to 10:1 in most natural water bodies (Netzel and Rich,

1973). The biochemical trnasformations of particulate and dissolved or-

ganic matter by microbial metabolism are fundamental to the dynamics of

nutrient cycling and energy flux within aquatic ecosystems. Thus,

trends in organic carbon may provide valuable information on possible

changes in water quality.

Iron is an essential trace element required by both plants and

animals. In some marl lakes where iron is precipitated by the highly

alkaline conditions, iron may be the limiting factor for algal growth.

Iron is also a vital oxygen transport element in the blood of all

vertebrate and some invertebrate animals. Iron exists in solution in

water as either the ferrous (Fe++) or ferric (Fe+++) state. Amounts

of iron in solution in natural water, and rate of oxidation of Fe++ to

Fe+++, as occurs in oxygenated waters, are dependent primarily on:

1) pH, 2) Eh (redox potential), and 3) temperature. As the hypolimnion

of a lake goes anaerobic, ferric iron is reduced to ferrous iron. This

reduction in the state of iron causes a release of iron-bound phosphorus

from the sediments, because ferrous iron is quite soluble. Thus, the

changing concentration of both forms of iron over time are very important

in lakes, consult: 1) Hutchinson (1957), and 2) Stumm and Morgan, (1970).

Microbiological organisms (bacteria, viruses, etc.) have been used
 

to determine the safety of water for drinking, swimming and shellfish

harvesting, for it is well known that water may serve as a medium for

the transfer of disease (EPA, 1976). The exact relationship between

numbers of specific disease-causing organisms in water and the potential



20

for transmission is unknown. However, the numbers and biomass of

bacteria tend to increase with increasing concentrations of inorganic

and organic compounds in lakes (i.e., change from oligotrophic to

eutrophic lake). The seasonal distribution of bacterial populations

is highly variable between lakes and within a lake between years. In

some cases, bacterial populations are correlated to numbers of phyto-

planktonic algae (Netzel, 1975). Bacteria of the coliform group are

usually considered the primary indicators of fecal contamination from

warmblooded animals.

Nitrogen occurs in fresh water in numerous forms: 1) ammonium

(NH4+), 2) nitrite (NOZ'), 3) nitrate (N03'), 4) dissolved molecular

(N2), and 5) a large number of particulate and dissolved organic com-

pounds (Wetzel, 1975). Ammonia is a pungent, gaseous, alkaline com-

pound of nitrogen and hydrogen and is highly soluble in water. Ammonia

is generated primarily from decomposition of organic matter by hetero-

trophic bacteria and as an excretory product of animals. It is present

primarily as NH4+ and as undissociated NH4OH (NH3 is sometimes used),

the latter being highly toxic (Trussell, 1972). The proportions of

NH3 to NH4OH are dependent on 1) pH, 2) temperature, and 3) ionic

strength (salinity). Ammonia usually increases as lake productivity

increases or when the hypolimnion is anaerobic. Nitrite (NOZ') levels

in natural lake waters are usually very low, while nitrate (N03') is

much more common. Nitrogen may often be the limiting factor in algal

productivity, especially when large amounts of phosphorus have been

added to the lake by man's activities. Vollenweider (1968) found a

direct correlation, with some exceptions, between productivity of algae

and average concentrations of nitrogen. Since nitrogen is a dominant
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factor in lake systems, the analysis of trends in nitrogen concentra-

tions are extremely useful in the examination of water quality.

951922 is a fundamental parameter in lakes and is a major parameter

for evaluating water quality. Dissolved oxygen has a direct effect on

the maintenance of aquatic life. Insufficient dissolved oxygen in the

water causes: 1) decrease in numbers and kinds of aquatic life, 2) de-

composition of organic materials, and 3) release of nutrients from the

sediments and formation of anaerobic gases (e.g., hydrogen sulfide and

methane). Numerous criteria for dissolved oxygen have been established

for most forms of aquatic life (EPA, 1976). While mean oxygen concentra-

tions are mainly used for water quality, oxygen deficits may also pro-

vide valuable information. The oxygen deficit, in lakes, is the differ-

ence in the amount of oxygen present at the beginning and at the end of

stratification below a given depth. The oxygen deficit reflects the

amount of organic matter synthesized by measuring the rate of oxygen

utilization, thus provides an indirect estimate of lake productivity.

The use of oxygen as a parameter for water quality trend analysis is

extremely effective.

pfl_is a measure of the hydrogen ion activity in water and results

from the dissociation of water to H+ and OH' ions. The pH usually is

defined as the logarithm of the reciprocal of the concentration of free

1
).

H+
 

hydrogen ions (i.e., pH = log In truth, pH measures the

activity of the hydrogen ion and not the concentration. The pH of

natural waters is governed mainly by the carbonate system (discussed in

inorganic carbon). pH affects the dissociation of weak acids and bases

of many toxic compounds. The solubility of metal compounds in bottom

sediments or suspended material also is affected by pH. As with
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alkalinity and inorganic carbon, pH may provide valuable information on

water quality in areas receiving acid rain.

Phosphorus is one of the major nutrients required for algal and
 

macrophyte nutrition and is often the limiting factor for productivity

in lakes. When phosphorus is limiting, increased supplies of phosphorus

have led to a condition of accelerated eutrophication or aging of waters.

The majority of phosphorus in lake water is bound organically in organic

phosphates and cellular constituents (Wetzel, 1975). The only signifi—

cant form of inorganic phosphorus in natural waters is orthophosphate

(PO4=, H2PO4'). Phosphorus is often stored, consolidated in lake sedi-

ments (i.e., phosphorus sink), with some being released under anaerobic

conditions. The amount of phosphorus, and other nutrients, retained by

a lake is a function of: 1) the phosphorus loading to the lake, 2) the

volume of the euphotic zone (zone that receives light), 3) the extent of

biological activities, 4) the lake detention time, and 5) the level of

discharge (outflow) from the lake (EPA, 1976). Phosphorus is probably

the most studied of all lake parameters, and only a small fraction is

presented here. For more information on phosphorus in natural waters

consult: 1) Hutchinson, (1957), 2) Wetzel, (1975), and 3) Hynes, (1970).

Physical parameters describe the physical characteristics of lakes.

Some physical parameters are: 1) temperature, 2) inflow and outflow,

3) Take volume, 4) lake and shoreline area, 5) mean depth, 6) hydraulic

detention time, and 7) sediment characteristics. Changes in the physical

state of a lake may have definite effects on lake water quality. For

example, reduction in lake volume may decrease the hypolimnion of the

lake. Thus, an oxygen depletion may occur due to the small volume of

water (and oxygen) in the hypolimnion. The usefulness of physical
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parameters is increased when dealing with reservoirs, where physical

characteristics are easily controlled. For more information on physical

parameters consult: 1) Hutchinson, (1957), and 2) Wetzel, (1975).

The salinity of inland waters is made up primarily of the major

anions, bicarbonate (HCO3'), carbonate (CO3=), sulfate (504:), and

clorides (CL’) and major cations, calcium (Ca++), magnesium (Mg++),

sodium (Na+) and potassium (K+). The proportions of major ions in

natural waters tend towards Ca > Mg 3_K and C03 > $04 > C1, with Na and

CL having larger concentrations in soft waters (Wetzel, 1975). Mag-

nesium, sodium, potassium, and chloride are relatively conservative ions

and undergo minor spatial and temporal changes within a lake. Calcium,

inorganic carbon, and sulfate are non-conservative (dynamic) ions and

their concentrations are strongly influenced by biotic activities. Soft

and hard waters refer to conditions of low and high salinity levels, re-

spectively in natural waters. The ratios of monovalentzdivalent cations

and the proportions of cations influence the metabolism of many organ-

isms. Therefore, salinity can indirectly affect seasonal population

succession and productivity of certain algae and macrophytes.

gfilj§a_(5i02) is a major component in algal production, especially

for diatom algae which utilize silica for cell wall formation. Seasonal

population dynamics of diatoms can greatly influence silica concentra-

tions in natural waters (Lund, 1949; 1950). In a lake dominated by

diatoms, sedimenting diatom frustules can accumulate within the sedi-

ments and be lost permanently to the system. Thus, silica concentrations

will exhibit decreasing trends and affect diatom populations. The con-

centration of silica is very important for water quality trends in lakes

where diatom algae are present (e.g., Lake Michigan).
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Other water quality parameters, and references for information on

each of the parameters, are: 1) toxic compounds (EPA, 1976), 2) micro-

nutrients, (boron, calcium, cobalt, molybdenum, zinc, etc.) (Wetzel,

1975), 3) dissolved and suspended solids (Hutchinson, 1957), and

4) organic matter (Hutchinson, 1957). The water quality parameters

discussed above are far from all inclusive, but are usually the major

parameters that are used for evaluating water quality and for which

sufficient data has been collected for to allow good trend analysis.

Data Selection
 

The process of selecting data for use in water quality trend

analysis consists of four phases:

1. Determine desired output

Determine availability of data

Choose data to fit needs

D
O
O
M

Place data in desired form

The first three are discussed in this section, while the last, data

preparation, is discussed in Chapter 4.

The first step in data selection is to determine the desired output,

or the information that is needed. When dealing with water quality

trends, for example, the desired output may be the changes in the overall

quality of water or changes in a specific parameter. Thus, the desired

output may determine the exact parameter to use. For example, if the

management concern is whether a lake is maintaining its ability to

sustain trout populations, trends in temperature and dissolved oxygen,

the two critical factors for trout, should be analyzed. Often, the
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desired output may be achieved by analyzing one of a number of param-

eters. For example, when trends in overall water quality are the

desired outputs, examination of phosphorus, nitrogen, oxygen or others

may be used. Also, when overall water quality is desired, the analysis

in trends in trophic status indicators may provide more information than

does any single parameter. Some trophic state indicators are:

1) Carlson (1977), 2) Walker (1979), and 3) Reckhow (1980) who provides

a review of trophic state indicators.

Once the desired output has been defined, the data that are avail-

able must be determined. The major concern with data availability is

which parameters have been sampled. Water quality data has been collec-

ted by countless individuals for numerous reasons. Ideally, one would

like to use their own data. However, when dealing with water quality

trend analysis, especially annual trends, one will often need to use

data from other sources. There are numerous water quality data banks,

for example: 1) STORET (EPA), 2) WATSTORE (uses), 3) NAWDEX (USGS), and

4) several state data systems (see Edwards (1980) for a review of water

quality data systems). An important issue when dealing with different

or multiple data sources is whether the data are mutually compatible.

Similar sampling designs, sampling devices, laboratory techniques, and

methods are a prerequisite to combine data. A major concern in time

series analysis is the need for continuously spaced data over time,

without missing values. Water quality data usually are unevenly spaced

in time, with missing values. Thus, the combination of data from

different sources may be necessary. Usually, the more data one has,

the more information one can obtain. However, extreme care must be

taken when combining data sets from various sources.
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Based on the desired output and the availability of data, data

should be chosen for trend detection analysis. Ideally, one has a

definite parameter in mind based on the desired output and excellent

data on these parameters collected over time. In reality, the choice

of a parameter(s) and the choice of data on this parameter to use, are

highly subjective. It may be necessary to use the parameter desired,

with low sample size, or use another parameter (related to that desired,

limnologically or by correlation) with a larger sample size. The choice

may be remedied by analysis of a few parameters in order to use all of

the results in the management and planning of water resources. In

closing, the selection of an appropriate parameter(s) and associated

data is extremely important in the application of trend detection

analysis, for the information produced from the analysis can only be

applied on the basis of the data used.



CHAPTER III

STATISTICS

Introduction
 

In order to apply trend detection techniques, a general knowledge

of statistics is necessary. The key statistical topics relevant to the

application of time series analysis are descriptive statistics, proba-

bility distributions, and hypothesis testing. The information in this

chapter provides the basic theory of these statistical concepts in an

informal manner. The first section presents the statistical aspects

of descriptive statistics. The application (when and where to use

descriptive statistics) is discussed in the beginning of Chapter 4.

The second section on probability distributions is a theoretical pres—

entation which is needed to understand hypothesis testing. Finally,

hypotheses testing is discussed and provides the basis of statistical

trend detectidn techniques.

This chapter is not meant to serve as a substitute for a statis-

tical textbook, but is intended to present only the necessary areas of

statistics needed to properly apply and analyze the trend detection

techniques presented in Chapter 4. The following books are suggested

for a more complete treatment on these subjects: 1) classical statis-

tics (Sokal and Rolf, 1969; Bhattacharyya and Johnson, 1977; Neter and

Wasserman, 1974), 2) nonparametric statistics (Conover, 1971; Siegel,

1956; Hollander and Wolfe, 1973), and 3) data analysis and regression

27
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(Mosteller and Tukey, 1977; Reckhow and Chapra, 1980; Tukey, 1977;

Reckhow, 1980; Chatterjee and Price, 1977).

DeScriptive Statistics

In order to apply statistical methods, a concise description of the

data is necessary. This can be achieved by performing arithmetic opera-

tions on the data to obtain values for one or more descriptive measures

or statistics.

There are three catagories of statistics used to describe random

variables in a particular population: 1) measures of central tendency

(location of an ordinary value), 2) measures of dispersion (relative

distance of extreme values from a central value), and 3) measures of

relationship between variables (degree of similarity or dissimilarity

in magnitude).

Measures of Central Tendency

In most sets of data there is a tendency for the observed values

to group themselves about some central value. This central value is

characteristic of the data and may be used to describe the central ten-

dency of the data's distribution. The statistics that describe this

phenomenon are measures of location or central tendency. Common mea-

sures of location include the arithmetic mean, median, and mode.

The average, or arithmetic mean, is the most frequently used of all

statistical measures. The population arithmetic mean (or simply mean)

of a particular random variable Y in a population is usually denoted
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by the Greek letter O or “X' The estimate of “X for samples of size n

is:

. _ n

“X = X = .E XT/n (8)

1-l

where: BX = X = estimate of population mean (sample mean)

X. = ith observation1

n = sample size (i.e., number of X's).

The mean is calculated by summing all the individual observations

(X1, X2, X3, ..., Xn) of a sample and dividing this sum by the number of

items (n) in the sample. If, for example, three total phosphorus con-

centration measurements of 1, 2, and 6 mg/l were taken from a lake,

their sample mean concentration is:

-_1+2+6_g_
X-——3———-3-3mg/l

The median is the value of‘a random variable that ranks midway

between the largest and smallest values. It can also be defined by the

value of the variable (in an ordered array) that has an equal number of

items on either side of it, (i.e., divides the frequency distribution in

half).

If n is an odd integer, the sample median is the (n + 1)/2th number

in the ordered array. For example, consider this array of oxygen concen-

trations 1, 1, 2, 3, 7, 8, 11, 12, 14, 19, 20 mg/l. It has 11 observa-

tions and the (11 + 1)/2, or the sixth number, is equal to 8. Hence,

the median oxygen concentration of this set of values is 8 mg/l. If n

is even, the median is calculated as the midpoint between the (n/2)th

and the [(n/2) + 1]th variate. Thus, from a sample of 6 oxygen
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concentrations, 5, 8, 10, 11, 12, 13 mg/l, the median would be the mid-

th value. For this example,point between 6/2 = 3rd and [(6/2) + 1] = 4

the median is 10.5 mg/l. The median is especially useful when the

random variates exhibit skewed (asymmetric) distributions (Mosteller

and Tukey, 1977), for example, when dealing with lake phosphorus concen-

tration, in a eutrophic lake.

The mode refers to the value occupied by the greatest number of

individuals in a frequency distribution. When applied to a frequency

distribution it is the value of the variable where the probability

density function peaks. Given a set of nitrate concentrations of 1,

2, 3, 3, 3, 4, 4, 5 mg/l, the mode would be equal to 3 mg/l.

The midrange is the average of the largest and smallest value.

The midrange provides a quick and easy measure of location but is

subject to extreme variation from sample to sample unless the samples

are quite large.

The geometric mean is the antilog of the arithmetic mean of the

logarithms of a set of values, and it is always as small or smaller

than the arithmetic mean of the same set of values. The geometric mean

is computed as:

n

G.M.x = antilog %- 2 log X (9)

i 1

The harmonic mean is the reciprocal of the arithmetic mean of the

reciprocals of a set of values and is always as small or samller than

the geometric mean of the same set of values. The harmonic mean is

computed as:
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(10)

X

M
S
H

.1. 1

n Xi=l

In making a decision as to which measure of location should be used

with a given set of data, a primary consideration is the intended use

once of the measure once selected. In addition, the advantages and

disadvantages inherent in each of the measures of location should be

known. If the distribution of the data is symmetrical and unimodel, the

mean, median, and mode are identical, but as the distribution becomes

skewed, differences among these measures will occur. This is illus-

trated in Figure 5.

In addition to the intuitive appeal for the use of the mean, the

mean also has smaller variability from sample to sample, is easier to

work with mathematically, and has more desirable properties in connec-

tion probability distributions than other measures. However, the mean

is sensitive to extreme values, particularly when n is small.

In general, the mean is recommended when the distribution is

normal or uniform. Robust statistics (e.g., median) are preferred when

the data distribution is skewed or irregularly shaped or when insuffi-

cient information is available, i.e., n is small (Mosteller and Tukey,

1977; Tukey, 1977). If the distribution is questionable as to whether

the distribution is normal or not, it is desirable to use a couple

different measures of location to provide more information.

Measures of Dispersion

In most sets of statistical data the numerical values will not be

identical, but will be scattered or dispersed to some degree. The
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statistics used to measure this characteristic of the data are measures of

variation or dispersion. Several sets of data could have the same, or

nearly the same, mean, median, or mode, but vary considerably in the

level of dispersion around a central value. Thus, a more complete de-

scription of the data results when we evaluate one of the measures of

variation in addition to one or more of the measures of location.

The range is the difference between the largest and smallest values

in the data. Using data set A.1 (found in Appendix A), the range is 7.1.

Although the range is easy to calculate and is commonly used as a rough-

and-ready measure of variability, it is generally not a satisfactory

measure of variation for three reasons. First, the calculation involves

only two of the observations, regardless of sample size. Therefore, it

utilizes only a fraction of the available information concerning varia-

tion in the data. Secondly, since the range tends to become larger as

sample size increases, it is improper to compare ranges from two sets of

data with different sample sizes. Finally, the range is very unstable

except in small sample sizes. With repeated samples taken from the same

source, the ranges will exhibit more variation from sample to sample

than will other measures of variation. However, the use of the range

differs from the other measures in that it provides a relatively good

measure of variation for small numbers of observations.

Among measures of variation, the standard deviation and its square

the variance, are almost universally accepted as the most useful dis-

persion statistics. The standard deviation for a particular random

variable X in a population usually is denoted by the lower case Greek

letter sigma (o), and the variance by 02 or oi . The estimate of 02

from a particular sample size n is:



n 2 n 2 ( > ( )‘2 _ 2 _ X X. - Z n - 1 11

0 ‘ S ‘ i=1 ' i=l Xi "

Using data set A.1, an estimate of the variance and standard devia-

tion of the data are as follows:

s = [(20.82 + ... + 15.92) - (20.8 + 20.9 + ... 15.9)2/11] / 1o

. [4727.37 - (225.9)2/111 / 10

= (4727.37 - 4680.32) / 10

s2 = 4.70

s = V4.70

s = 2.17

Strictly speaking, only one parameter 0 or 02 is needed to describe

the dispersion in X. However, the squared form is much easier to work

with mathematically (variances are ascribed to independent causal agents

are additive) while the unsquared form has the advantage of being ex-

pressed in the same units as X, the variable measured. Thus, both are

usually calculated and used.

When the data are presented in an ordered array, the interquartile

range is the difference between the value at the 75 percent level and

the value at the 25 percent level. The interquartile range provides a

description of the dispersion in the central half of the distribution.

Since the interquartile range, like the median, is based on order statis-

tics, it is robust in situations with extreme data (i.e., outliers) and

skewed distributions. These percent levels can be altered to accommo-

date more or less of the variable as desired. The interquartile range

for data set A.1 is 3.55.

The mean of median absolute deviation is computed by:



 

n

2 IX - XI

- '=1 1 (12)A.D. - n

where: A.D. = mean or median absolute deviation

X = mean or median

The value of X is either the mean or median depending whether the

mean or median absolute deviation is desired. The choice between these

two is equivalent to the choice between the mean and median. The mean

and median absolute deviation for data set A.1 is 1.42 and 1.38,

respectively.

The coefficient of variation is a measure of relative, rather than

absolute variation, since it is a unitless quantity. It is calculated

by:

X
I

[
(
0

c.v. = (13)

t
:
>
|
Q
>

and can be expressed as a ratio or a percentage. It's primary advantage

is that it is independent of the unit of measurement and can therefore

be used to compare the relative variations of two or more sets of data,

regardless of the units involved. The coefficient of variation for data

set A.1 is .105. 0

Standard deviations of various statistics are generally known as

standard errors. The standard error of a statistic, for example the

mean, is the standard deviation of a distribution of means for samples

of a given sample size n. The standard error is used as a measure of

the reliability of an estimate. The following are the estimates of

standard error for the mean and median, respectively (for standard

errors of other estimators, consult Sokal and Rohlf (1969)).
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5, =3:- (14)

smed = (1.2533) 5X (15)

where: s = standard error of mean

5 = standard error of median
med

The estimates for 5X and smed for data set A.1 are .65 and .82, respec-

tively. It should be noted that 5X is valid for any population with

finite variance and smed for large samples from normal populations.

Measures of Relationships

Measures of relationship commonly used are correlation and re-

gression. There has been much confusion on the subject matter of cor-

relation and regression for several reasons. First, the mathematical

relations between the two methods of analysis are similar. Second,

earlier statistical texts did not make a sufficiently clear distinction

between the two approaches. Finally, while the approach chosen by an

investigator may be correct in terms of his intentions, the data avail-

able for analysis may be such as to make one or the other technique

inappropriate.

Regression is intended to describe the dependence of a variable

Y on an independent variable X. Regression equations lend support to

hypotheses regarding the possible causation of changes in Y by changes

in X; for purposes of prediction, of Y in terms of X; and for purposes

of explaining some of the variation of Y by X, by using the latent

variable as a statistical control.

Correlation, by contrast, is concerned largely with whether two
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variables are interdependent of covary (i.e., vary together). One

variable is not expressed as a function of the other, hence no dis-

tinction between dependent and independent variables is made. The in-

tent is to estimate the degree to which these variables vary together.

Regression is the proper measure of relationship when a random

variable Y is dependent on, or caused by, one or more controllable or

fixed variates Xi, which are said to be independent. Ordinary methods

of linear regression require a proposed model to be linear in the para-

meters but not necessarily in the relation of Y to X. The simple linear

statistical model is:

Y = 80 + 81 X + e (16)

where: Y = dependent variable

80 = origin (extrapolated value of Y when x is fixed at zero)

81 = slope (average change in Y per unit change in x)

X = independent or fixed variable

e = random error

The random error is composed of two basic parts: 1) failure of the

linear form properly to describe the relation between Y and X (i.e., non-

linear bias) and 2) random contributions of latent variables to Y.

Regression is based on four assumptions (Sokal and Rohlf, 1969).

1. The independent variable X is measured without error

(i.e., the X values are known). This means that only Y the

dependent variable, is a random variable, and X does not vary

at random.

2. The expected value for the variable Y for any given X is

described by the linear function ”Y = so + 81 X.
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Another way of stating this assumption is that the

parametric means ”Y of the values of Y are a function

of X and lie on a straight line described by this equation.

3. For any given value of X the Y's are independently and

identically distributed. The distributions must be normally

distributed when confidence intervals or hypothesis testing

is needed. Figure 6 illustrates this assumption. By taking

repeated measurements each year, a frequency distribution of

nutrient concentrations (Y) to the independent variates

(X = time (years)) is generated. Due to the inherent varia-

bility in lakes and in time, it is obvious that a frequency

distribution of values of Y (nutrient concentration) around

the expected value will result. This assumption states that

these sample values must be independently and identically

distributed.

4. The variance of Y given X, is equal for all X's. This means

that variances of the samples along the regression line are

homoscedastic. Thus, the variance around the regression line

is constant and independent of the magnitude of X and Y.

Commonly, least squares estimation is used to derive estimators for

the regression parameters Bo and 31. The general idea is to minimize

for samples of size n the squared random errors of Equation 16 with

respect to 80 and 81. This is so the estimators obtained specify an

estimator of Y, given X, which has the smallest variance of any linear

equation having unbiased estimators of the same parameters. An estimate

for 81 is:
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x Y (2 xx; 'U] x
- . . n

1(" ') i=1 ' i=1 ' __= pr (17)
 

B _=

1 1 n 2 n 2 ssX

1=l 1=l

where: spXy = sum of cross products of X and Y

ssX = sum of squares of X

80 can then be estimated by:

A

so = bo = Y - b1 X (18)

Given a linear model, an observation Y may be partitioned into

three parts: 1) the mean, 2) the deviation of the regression line

from the mean (regression effect), and 3) the deviation of the obser-

vation from the regression line (error). Therefore, the sum of squares

of Y may be partioned into a sum of squares caused by regression and a

residual (error) sum of squares, which measures the failure of the

observed values to fall exactly on the regression line. The equation

takes the form:

ssY = ssR + 55 (19)
e

where: ssY sum of squares of Y

ssR regression sum of squares

ss residual (error) sum of squares
e

When sse is divided by n - 2 degrees of freedom, the error sum of

squares is an unbiased estimate of the variation of Y, given X, if the

linear model is correct, i.e.,

(Silx) = sse/(n - 2) (20)

where: (sjlx) - variance of Y given X
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Usually, the error sum of squares is obtained by subtracting the

regression sum of squares from the total sum of squares for Y. The

regression sum of squares is computed as:

SSR = b1 pry (21)

Also note that:

2
ssR/ssY = (stY)2/ssx ssY = r XY (22)

where° r2
' XY = coefficient of determination (represents percentage

of the total variation explained by the model)

This (rZXY) shows that the proportion of the total sum of squares of Y

attributable to linear regression on X is the square of the correlation

between X and Y.

In order to develop interval estimates or tests of hypotheses for

the parameters and predictions, the validity of the assumptions of nor-

mality, homogeneous variance, and linearity must be checked. The proce-

dures for satisfying this requirement are in the next chapter. Adjust-

ments may be made to the data for: l) non-normality by transformations

(discussed in the next chapter), 2) heterogeneous variance by transforma-

tions or weighted regressions, and 3) nonlinearity by transformations

and adding higher degrees of polynomials to the model (consult an ad-

vanced regression analysis text for more information concerning these

problems).

Given satisfaction in the assumptions, the (l-a) 100 percent

confidence interval estimates may be computed from:
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2
b0 i ta/Z, n _ 2 (sYIX) ‘l(1/n) + X /ssX (23)

b1 i tel/2’ n _ 2 (sylx)/,/—ssx (24)

where: ta/Z, n _ 2 = value from t distribution

a = alpha level, i.e., desired level of significance

The expression to the right of to”2 _ 2 is the standard error of esti-

mate for b0 and b1.

Tests of hypotheses about parameters (e.g., H: 81 = 81) are com-

puted from:

t = (b1 - Bi) / [(syIX)/\Issx] (25)

where: Bi = the slope you are testing for

The appropriate critical levels for a two-tailed are ita/z, n _ 2 and

for a one-tailed ta, n _ 2. The theory of hypotheses testing will be

discussed in a later section and present the information about those

tests to those unfamiliar with the subject.

The following is an example of developing a linear regression model

and estimation of parameters for data set A.2. In this example all

assumptions are assumed valid, which in reality, is probably not the

case.

When using time as the independent variable it is convenient to

recode the time units into whole numbers from 1 to n. For this example,

time (years) are 1968-1979, which are recoded from 1 to 12. The first

step in developing a regression model is to calculate the slope (b1)

of the equation (Equation 17):
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[(1-215. + 2-237. + ... + 12-335) -

 

  

01 = (1 + 2 + ... + 12) - ( 215. + 237. + ... + 335.)/12]

[(12 + 22 + ... + 122) - (1 + 2 + ... + 12)2/121

= [22877 - (78-274)] = 1505 = prv

[650 - 5071 143 ssX

b = 10.52
I

The intercept (b0) can then be solved (Equation 18):

b0 = Y - b1 X

bo
275. - (10.52 - 6.5)

205.62

Therefore, the regression model is Y = 205.62 + 10.52X + e.

The quantity ssY is calculated the same as $5 , with y's substi-
x

tuted for X's (Equation 17 (denominator)).

ssY = (215.2 + 237.2 + ... + 3352) - [(215. + 237. + ... + 335)2/12)

= 917452 - (32882/12)

= 917542 - 900912

ssY = 16540.

The regression sum of squares (SSR) is (Equation 21):

ssR = b1 Sny

SSR = 10.52 - 1505

= 15832.6
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Then, the residual (error) sum of squares is calculated (Equation 19):

$5 16540 - 15832.6

707.4

The variance of Y given X is (Equation 20):

(sYZIX) = sse/(n - 2)

(syzlx) 707.4/10

70.74

The coefficient of determination (riy), which represents the percen-

tage of the total variation explained by the model, is calculated (Equa-

tion 22):

2 _ 55

r xv ' EEB'

Y

r2

XY = 15832.6

16540.

= .957

Finally, standard errors for estimates of b0 and b1 are calculated

(Equation 23 and 24):

 

Sbo (SYIX) (1(1/0) + Xz/ssX

 

8.41 (1/12) + 6.52/143

1.32

sb1 (sYIX) ('ssx

8.41/ ‘V143

.703
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If the joint distribution of X and Y is a bivariate normal distri-

bution, one of its parameters is the product moment correlation coef-

ficient p (rho), or simply, the correlation coefficient.

The correlation coefficient 0 is a measure of the linear covariation

of the variables, that is, it measures the degree of linear association

between them. It may vary from -1 to +1, inclusive, and is a dimension-

less quantity. As p increases in absolute value, so does the linear

association. A positive correlation means as one variable increases,

the other increases. A negative correlation means as one variable in-

creases, the other decreases. Since p measures only linear_relationship,

the variable may be perfectly correlated in a curvilinear relationship,

and 9 could be equal to zero.

The common estimate for p is:

. s

Mug-2%; (26)

The estimator of p is nearly unbiased for large sample sizes but

slightly underestimates in small samples, especially in small magnitudes

of correlation (Kendall and Stuart, 1967). For small samples

(4 < n < 15) r may be adjusted (Olkin and Pratt, 1958) to provide an

estimate that is nearly unbiased,

r* = r[1 + (1 - r2) /2 (n - 4)] (27)

where: r* = adjusted correlation coefficient

To test if p = O a t-value is computed:

t = r/ 1 - r2)/(n - 2) (28)

 

and compared with critical levels of ita/z n _ 2 from the t distribution

for a two-tailed test. Weir (1960) has shown a quick, approximate,
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two-sided test (HO: p = 0, given n > 4 and a = .05) is achieved simply by

noting if r > 2/n. Those interested on testing p = po or construction

of confidence intervals should consult Bhattacharyya and Johnson (1977).

Another method of estimating the relationship in random variables,

where a linear relationship is not assumed, nor that the variables are

normally distributed, is Spearman's rank correlation coefficient rs.

" 2

6 z (91:)
r = 1 — i=1 (29)
S

'13-"

where: di = difference between the ranks of the ith pair of n pairs

It is computed from:

of observations.

For samples of n > 100, Spearman's coefficient may be tested with good

approximation by using the procedures for product moment correlation.

Otherwise, see Zar (1974) for tables of the distribution (4 §_n 5_1OO).

The following is an example of computing the product moment correla-

tion (r and r*) and Spearman's rank correlation coefficient (rs) using

the same data (A.2) as in the regression analysis example. The estimate

for p (i.e. r) is calculated using Equation 26:

1505

1J143 - 16540

1

ll

 

 

prY

ssx ssY

= .978

The estimate is adjusted for small sample size in the following

manner (Equation 27):
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r [1 + (1 - r2)/2 (n - 4)]

= .978

1

3
4
'

I
I

The estimate is adjusted for small sample size in the following

manner (Equation 27):

r [1 + (1 - r2)/2 (n - 4)]

.978 [1 + (1 .9782)/2 (12 - 4)]

= .980

r*

The Spearman's rank correlation coefficient (rs) is computed using

(Equation 29):

Ranks for the observations are found in data set 2 in Appendix A.

_6-H1-02+Q-mZ+Q-3F+(emz+u.+gzqmfi
 = 1

123 - 12

6 - 4
=1-.___.___

123 - 12

= .986

Probability Distributions

Given any continuous random variable Y, there is a corresponding

mathematical expression or function f(Y) known as the frequency func-

tion of Y. For the theoretical or population distribution of Y the

frequency function is the analog of the frequency distribution (histo-

gram). Thus, f(Y) is a mathematical model that provides a basis for

calculating theoretical frequencies or probabilities for any or all out-

come classes of the variable. These functions are: 1) defined for all
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values of the variable, 2) non-negative for all values of Y, and 3) such

that the total area under the corresponding frequency curve and above

the Y-axis is equal to one.

Let Y be a continuous random variable with a frequency function

f(Y), shown graphically in Figure 7. The function is adjusted so that

the total area under the curve is one and corresponds to probability

one for the range of all possible values for Y. In addition, f(Y) has

the property that, given any two numbers a and b, the probability that

a randomly selected element of the population will have a Y value be-

tween 8 and b, inclusive, is equal to the area under the curve between

the lines Y = a and Y = b as indicated by the shaded portion in Figure 7.

Therefore, for any continuous distribution, the area under the curve

between a and b is the probability P(a 5.Y §_b).

For every discrete random variable there is also a frequency func-

tion or probability distribution function which has essentially the same

properties as continuous frequency functions. However, since the varia-

ble is discrete, the graph of the function does not result in a contin-

uous curve, but in a bar diagram (Figure 8). The probability of each

value that Y can take is represented by the height of the appropriate

bar.

Among the more important properties of a theoretical distribution

is a set of quantities known as the moments of the distribution. The

moments characterize the distribution. In applied statistics, the first

two moments are of most importance. The first moment about the origin is

the mean u of the theoretical distribution and is defined as the average

value or expected value of the variable. The variance 02 of a random

variable Y is defined as the second moment about the mean, the average
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value of (Y - 0)2. The third and fourth moments, skewness and kurtosis,

respectively, refer to distribution shape and will be discussed in the

next chapter when dealing with distribution selection.

Probability or density distributions describe the relative frequency

of occurrence of value taken on by random variables. The distributions

used in practice are usually at best close approximations to the true

distribution.- The more widely used distributions are the binomial,

multinomial, and poisson distributions for discrete variables and the

normal or gaussian distribution for continuous variables.

While density distributions describe actual frequency (in popula-

tions) or probable occurrence (in samples) of different values of natural

phenomena, sampling distributions describe the relative frequencies of

different values of functions of random variables in samples of specified

size. Three important sampling distributions associated with samples

from normal distributions are the chi-square, student's t, and variance

ratio (F) distributions.

Normal or Gaussian Distribution

The normal distribution provides a good approximation to many empir-

ical frequency distributions found in biological sciences. Its strength

results from the central limit theorem of Laplace (Mood and Graybill,

1963). The speed with which the distribution of means, drawn at random

from distinctly non-normal distributions, converges to the normal distri-

bution as sample size increases, provides the keystone to the support of

most statistical procedures (Gill, 1978).

For a continuous random variable Y, the normal density function is:
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1 e-(1/2 62) (Y _ u)2

V2170

The distribution of any normal variable depends only on the mean (u) and

 f(Y) = (30)

variance (02).

The normal density function is a symmetric, bell-shaped curve

(Figure 9). The mean is a location parameter and the standard devia-

tion, a scale parameter, is the distance from the mean to the inflection

in the curve. An infinite number of normal curves exist, differing in

location, scale or both.

Hypothesis Testing

The most frequent application of statistics in biological research

is to test some scientific hypothesis. To decide whether or not any dis-

agreement between the observed and the theoretical values is sufficient

to warrant rejection of the theory, data are collected in a suitable

manner and a statistical test on the hypothesis is used. A statistical

hypothesis is an expression, in some manner, of the theory of concern.

Statistical methods are important in biology because results of experi-

ments are usually not clearcut and therefore need statistical tests to

support decisions between alternative hypotheses. A statistical test

examines a set of sample data and, on the basis of an expected distri-

bution of the data, leads to a decision on whether to accept the hypoth-

esis underlying the expected distribution, or whether to reject that hy-

pothesis and accept an alternative one. The nature of the tests varies

with the data and the hypothesis, but the same general philosophy of

hypothesis testing is common to all tests.
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The first step is to state the null hypothesis (H0). The null hypo-

thesis is a hypothesis of no differences (such as H0: 01 = 02). It is

formulated for the express purpose of being rejected. If it is rejected,

the alternative hypothesis (H1) is accepted. Usually, hypotheses tested

by random samples cannot be absolutely disproved because the range of

theoretical distributions of sampling variables extends to infinity. If

one attempts to propose and test a direct hypothesis, such as H0: 01 f 02

against the alternative H1: 01 = 02, statistical assessment of probabili-

‘ ty of the evidence is not possible because the ability to obtain numeri-

cal values from sampling distributions, given H0, depends on knowing the

value of pl - 02, the very value being questioned in the hypothesis.

On the other hand, for an indirect hypothesis, such as H0: 01 = 82, the

value of ”1 - 02, given H0, is zero, and numerical values can be obtain-

ed from the sampling distribution.

Rejection of the indirect hypothesis proposed usually is a strong

decision because the experimenter chooses a small degree of doubt (prob-

ability of being wrong). Therefore, when sufficiently conclusive results

occur in a sample, one may be confident (but not certain) that the re-

sults represent the true status of the population. Acceptance of the

indirect hypothesis proposed normally is a weak decision, because in

that case the experimenter usually cannot completely control the proba-

bility of being wrong. Acceptance of a hypothesis, such as H0: 01 = p2,

should not be interpreted firmly, such as "no mean difference exists,"

but in a more qualified way. For example, "the experimental difference

in means was not sufficient to provide high confidence that the true

means differ." It is important to be cautious against over confidence

in the results of any one isolated case by reminding us that "the one
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chance in a million will undoubtedly occur sometime." However, one

should not discard a significant result just because it leads to awkward

conclusions or goes against one's personal bias.

Given that a null hypothesis is formed and data collected, the

question arises “what is the probability of having obtained the observed

outcome or an even more extreme outcome if there is actually no differ-

ence in populations?"1 To answer this question, the relative frequency

distribution of all possible outcomes, given the two populations are

equivalent, must be examined. The specific observed outcome may then be

compared with this distribution. Figure 10 shows a typical outcome dis-

tribution. The proportion of the probability in the tails is designated

as g_(alpha), the level 91 significance. The points on the outcome
 

scale, such that no more than 100 (a/2)% of the outcomes are beyond them

in each tail are referred to as the critical values. The total area be-
 

yond these values is called the critical region or rejection region, and
  

is shaded in Figure 10. This region contains the most rare 100 0% of

the outcomes, given H0 is true. The area inside the critical values is

called the acceptance region (unshaded area). Given this distribution,
 

the probability that an outcome will fall in the critical region, if H0

is true, is less than or equal to a. In other words, if H0 is true and

a study is repeated numerous times, in about 100 6% of cases the observed

outcome would fall into this region. The value chosen for 8 provides an

arbitrary means of making a decision as to whether or not an observed

outcome is rare or not rare under H0.

 

1Here we consider the null hypothesis to be concerned with possible

differences between two populations. This is the case with trend detec-

tion.
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In testing a null hypothesis, two possibilities arise. One is when

the observed outcome falls in the critical region, then H0 is rejected.

The probability of such a result, or more extreme result, is considered

to be too small (§_a) to be attributed solely to chance. Hence, H1

(i.e., mean difference) would be statistically significant at the a or

100 a%) level. The second possibility is when the observed outcome falls

in the acceptance region, then H0 is accepted. The probability of such

a result, or even more extreme, is greater than a. This, by the arbi-

trary definition established, is not a rare outcome if H0 is true.

Therefore, one would state that no statistically significant difference

between the means had been demonstrated at the 100 8% level.

It is important to remember that a null hypothesis is not proved or

disproved by a statiStical significance test, but rather, precise proba-

bility statements may be made regarding the compatability of a set of

observations with H0. The true cause of observed differences in effects

is almost always an inextricable combination of real differences and

random processes. Although it would be useful to have the entire distri-

bution of outcomes under H0 available for every situation, the calcula-

tions are prohibitive. Therefore, tables have been prepared for most

tests with critical levels for a few selected 8 levels. While the most

commonly chosen values for a are 0.05 and 0.01, these values are arbi-

traty, and mainly for the sake of having concise tables, they have be-

come standard. The choice of a will be discussed later in the section.

The outcome distribution discussion above is based on two-tailed

tests (1.8-. H1: ”1 f “2)' However, in some cases, a set of restricted

alternative hypotheses may be desired, those being H1: 01 > 02 or

H ° In these situations the entire 100 6% of the probability
1' ”1

<
112-



58

is assigned to the appropriate single tail. The corresponding critical

value is the basis for these one-tailed tests of H0. When applying these

one-sided tests, the critical value used is that for the entire 8, as

compared to two-tailed, where the a is divided in half (i.e., 6/2) and

distributed to each tail.

When testing hypotheses in the manner described, two kinds of de-

cision errors are possible. One, a true hypothesis may be rejected or,

two, a false hypothesis may be accepted. These are referred to as Iype_1_

and 1222.11.2222E52 respectively. These errors and the conditions under

which they arise are shown in Figure 11. These errors occur with certain

probabilities, since the decision to accept or reject H0 is based upon

the outcome of a random process. Type I error, or a, is equal to P

(reject HOIHO is true). Type II error, or 8 (not to be confused with

3 used in regression analysis), is equal to P (accept HOIHO is false).

The probability of Type I error is also referred to as the size of the

critical region or as the level of significance of the test. Beta (8).

the probability of Type II error, provides a more specific criterion for

the assigning of critical regions for statistical significance tests.

The general principle is: among all critical regions of the same size,

use the one for which the probability of a Type II error is minimum.

The probability of making a Type II error, 8, depends upon the amount

of real deviation from the null hypothesis. It is a function of the

true value of the parameter being tested, and therefore usually cannot

be evaluated. However, 8 can be lowered in three ways: 1) increase the

sample size, 2) reduce experimental error, and 3) increase the permissi-

ble probability for Type I error (a). Decreasing B is equivalent to

increasing 1 — B, the probability of rejecting an incorrect hypothesis.
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The probability 1 - B is termed the pgwer_of the test to detect that a

parameter differs from a specified value. Obviously, for any given test

one would like to minimize B and maximize 1 - B. The curve described by

1 - 8 as a function of the magnitude to be detected (usually in 0 units)

is the power curve (Figure 12). This curve shows the probability of re-

jecting H0 as a function of n. It is interpreted in the following manner:

as one moves away from u (values under H1) the probability of rejecting

an incorrect hypothesis increases; as sample size increases, less of a

change is necessary to develop the power. Hence, as stated before,

increasing sample size will increase power, which decreases Type II error.

This power curve is for a two—tailed test, they are usually expressed as

one-tailed, where only half of the curve is presented.

Graphically, the relation between a and B is shown in Figure 13.

The two distributions represent H0 and H1, with mean u and ud (dif-
o

ference is mean that is being tested). The area under H0 to the right

of YC (critical level) is the rejection region. Values in this region

are considered members of H1 based on the arbitrary selection of an a

level. However, there still is some probability (Type I error) that

they belong to H0. The area under H1 to the left of Yc is the probabil-

ity of Type II error, 8. While these values are not considered extreme

enough to support H1, there is some probability that they do belong to

H1. Thus, the two types of errors result from the overlap in the distri-

butions of the two hypotheses, Ho and H1. If a was to be increased, then

B would decrease (if ud did not change), which was stated earlier as a

measure to decrease 8. Also, if “d (i.e., H1 is changed) is moved to

the right, this would also cause a decrease in 8. Both these situations

are reversible and would cause increases in B.
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One would like to minimize both probabilities of making errors but

usually only direct control of a, Type I error, is possible. In the

past, it has been common only to report the statistical significance of

results when a < 0.05 or a < 0.01 (the chance that a rejection of H0 is

less than 1 in 20 or 1 in 100, respectively). It is unfortunate that

"nonsignificant" results, or results judged significant at values of a

larger than 0.05, are often regarded as unpublishable. In many early

experiments or fields of high variation and complexity, the probability

of error a = 0.10, 0.25 or even 0.50 may be acceptable.

Basically, research is an organized method for finding out what will

not work as well as what will work. Those who object to this idea, fail

to appreciate that most positive knowledge is gained through acquisition

of negative knowledge. It is important not to place undue emphasis on

the exact level of significance achieved in a particular instance. Too

many scientists use the significance test for support instead of

illumination.



CHAPTER IV

TREND DETECTION METHODS

The statistical process of detecting trends in lake water quality

data is a step-wise procedure and is illustrated in Figure 14. The

process starts with the need to determine if some lake water quality

parameter has or is changing over time (hypothesis formation). Data to

solve this question are then placed in a usable form so that appropriate

statistical techniques can be applied. The data are then plotted to

yield general information about the change in the parameter over time.

Exploratory data analysis is conducted to provide the necessary infor-

mation as to what statistical technique should be applied. Finally,

appropriate statistical tests are applied to the data, to test the

hypothesis of concern. Thus, quantitative information is generated con-

cerning trends in lake water quality parameters. The time series data

may also be modeled. The model can be used to develop the pattern(s) of

change and for forecasting future events. While these steps appear dis-

crete on the diagram, in practice, information from one phase may often

be used in another. In the following sections each of these phases will

be discussed.

Hypothesis Formation
 

The problem of asserting the existence or nonexistence of trends in

lake water quality data may be treated in the classical hypothesis test-

ing framework (discussed in Chapter III). In this case, the null hy-

pothesis, H0, is that there is no change (no trend) in the underlying

64
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Figure l4 . Flow diagram for Trend Detection Methods.



66

population (lake) from which the data set (water quality parameter) was

drawn. The alternative hypothesis, H1, may be either a hypothesis that

a trend does exist in the data (two-sided test) or that a positive (or

a negative) trend exists in the data (one-sided test). If the concern

is, "has there been a change in a given parameter," the power of a test

is extremely important. The power (one of four possible outcomes, Fig-

ure 11) gives the probability, at a fixed confidence level, that the

statistical test detects a trend of a specified magnitude, when in truth,

there really is one. However, if the concern is of no change or trend,

then the confidence interval (1 - o) is crucial, for it is the probabil-

ity of concluding that H0 is true, given H0 is actually true in nature.

In developing a hypothesis there are three concerns: 1) selection

of water quality parameter(s), 2) selection of a measure of central ten-

dency, and 3) selection of one or two-tailed alternative hypothesis.

The selection of a water quality parameter (discussed in Chapter II)

will determine the limnological variable or process that information

will be generated about. Hence, it is important to select the appropri-

ate parameter that will provide the information about the question of

concern. :The selection of a measure of central tendency (discussed in

Chapter III) is dependent upon: 1) what information is desired, and

2) the characterisitcs of the data and the distribution of the data.

Ideally, one would like to have numerous observations in each time in- ,5

terval, so that the data's distribution can be analyzed and a measure of

central tendency can be confidently chosen. However, in reality, one

usually has limited data which were unevenly sampled through time using

various methods. Hence, a subjective decision must be made, taking into

consideration all the facets of each individual question, as to which
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measure of central tendency should be used in a given situation. The

third issue in selecting a null hypothesis is whether a one or two-

tailed alternative is desired. If it is known that a parameter either

increased or decreased, a one-tail H1 should be used. A one-tailed test

will maximize the probabilities of each outcome by placing all of the

rejection region (a) at one tail of the outcome distribution. However,

if the type of change is not known, a two-tailed should be used. It

should be stressed, that when possible, the one-tailed alternative

should be chosen. The construction of the two hypotheses (H0 and H1)

may be simple or complex, depending on the question being asked and the

data available. Hypothesis formation is an extremely important phase,

for as with all statistical test, only the hypothesis stated is being

tested. Hence, if this information is going to be used in planning and

management one must be sure of what is being tested.

Data Preparation
 

Before any analysis can be conducted, the data must be prepared or

placed in the desired form. By this, it is meant that the data be ex-

pressed as some measure of central tendency, such as the mean or the

median. In order to apply trend detection techniques, there can be only

one data point for each time unit. For example, when dealing with ni-

trogen changes over ten years, in yearly increments, 9gly_one data point

for each year can be used. The data preparation problem arises when

numerous observations are located in the same time unit, yet one value

is needed to represent that discrete time unit. If the data are contin-

uous throughout the interval and equally spaced, then any measure may be
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directly calculated and used. However, when unequal sampling occurs

over time, the data must be corrected. Two methods that can be used are

regression analysis and polynomial models (regression is discussed in

Chapter III, polynomial models are discussed later in this Chapter).

For either, a model is constructed with the data for that time unit, and

an estimate for the parameter is calculated at the middle of the time

unit. Thus, one parameter value that represents that discrete time unit

is generated. Data preparation, as in hypothesis formation, is highly

variable and may be simple or complex depending on the situation. When

dealing with numerous observations in a time unit the one value used

for testing the null hypothesis should best represent the parameter

in the fashion desired.

Data Analysis
 

Once a hypothesis is formed and the data are properly arranged

(i.e., one data value per time unit) the data are ready to be explored

and analyzed. The data analysis step will provide the necessary infor-

mation to determine which method (statistical test) should be used to

test the null hypothesis. This information may also be used to examine

the hypothesis formation and data preparation steps. Thus, after exam-

ining the data, one may find it necessary to restate the null and al-

ternative hypothesis and/or express the data in a given time unit in a

different manner. As noted before, the conduction of the tasks in the

first three sections of this chapter are interdependent and may cause

reevaluation of one or two of the others. This same inter-relationship

occurs within this section. While this step should follow the flow
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diagram in Figure 14, it may be necessary, based on the outcome in a

subsection, to change the flow. For example, if the data are non-normal

when tested, one may wish to transform the data and retest for normality.

Graphical Techniques

The graphical techniques presented help provide a general knowledge

about the parameter in the time series data. These plots provide: 1) a

visual test for trends, 2) a check on validity of assumptions (normality,

homogeneous variance), and 3) an examination of outliers. Although

qualitative in nature, these graphs provide an important starting point

for all data analysis in trend detection.

The first, and simplest, is the time series plot. The time series

plot is a plot of the data (parameter) against time. These plots may be

useful in visually detecting trends and should always be done. The plot

may be expanded to include the standard deviation or quartile range

around each value. Figure 15 shows a time series plot of the mean and

standard deviation for mean annual ammonia concentrations in Lake

Ontario from 1967-1977. From looking at the mean values only, one would

expect a decreasing trend, but by including the standard deviation range,

one may question the strength of the visual evidence. It may also be

useful to plot both the mean and median (or other combination of mea-

sures of central tendency) to provide more information about the overall

pattern and distribution of the parameter, in question, over time.

A slightly more sophisticated technique is the cumulative sum plot

(Lettenmaier, 1977). The cumulatvie sum is simply the area under local

mean to "j" minus a fraction (j/n) of the area under the global mean.
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The cumulative sum is defined as

j n

CU. = 2 xi - j/n 2 xi (31)

3 i=1 i=1

. _ .th .
where. CUj - j cusum paint

xi = ith data point

j = subinterval of n

n = sample size

The value for j is determined by the sample size (n) and the level of

information desired. For example, if n = 100, one may choose j = 10

and thus 10 cusum points would be plotted. If more information (also

more computational effort) is desired, a smaller value of j may be

chosen. This provides more points and allows for a better representa-

tion of the trend in the data. There may be n - 1 cusum values calcu-

lated for any set of data. If the mean is constant (no trend), the

cusum is zero; if there is a step change in the mean level, the cusum is

linear; if a linear change exists, the cusum is quadratic. These three

possibilities are shown in Figure 16, with t being the trend starting

point.

The histogram (frequency plot) is a useful technique for examining

the normality of the data's distribution. A normal distribution will

have a bell-shaped curve. Also, the mean, median, and mode should all

be identical. Two statistics that describe the shape of distributions

are skewness and kurtosis, the third and fourth moments, respectively,

Skewness, or asymmetry, means that one tail of the frequency curve is

drawn out more than the other. Curves are skewed to the right or left,

depending upon whether the right or left tails are drawn out. Kurtosis
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Figure l6 . CUSUM plot of step, linear, and no trend.
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is a measure of peakedness of the distribution. A leptokurtic curve,

higher peak than normal curve, results from having more data near the

mean and at the tails and fewer data in the intermediate. Platykurtic,

flattened curves, have more data in the intermediate area and less at

the mean and in the tails. Figure 17 shows a normal curve along with

skewed right, skewed left, leptokurtic, and platykurtic distributions.

The calculation of skewness and kurtosis statistics is complicated and

one should consult a statistical textbook for the procedure (e.g., Sokal

and Rohlf, 1969).

The sample residuals (errors) may be plotted to check the validity

of assumptions on homogeneous variance (Behnken and Draper, 1972). The

sample residuals are estimates of the random errors and may be calcu-

lated from:

6. = X. - X (32)

where: Xi

X

data point

mean of all X's

For use with regression analysis, the sample residuals are computed from:

ei = (Yi - Y) - b1 (Xi - X) (33)

where: Yi = ith Y observation or data point

7 = mean of all Y's

b. = estimate regression line slope
l

A plot of ei against Xi or ei against Yi (for regression) should

produce a horizontal band of points. If the band of points increases or

decreases in width, then heterogeneous variances usually are indicated.
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If the band of points is fairly uniform in width but is not horizontal,

transformations of the addition of higher degrees of polynomials to

the model may be necessary. If an unusually large ei is observed

("outlier"), the corresponding Xi or Yi should be identified to discover

the possibility of a recording error or an unusual condition in the sys-

tem. Techniques for examining "outliers" are discussed later in this

section. While these techniques may lead one to identify a so-called

outlier, the exclusion of data should occur gflly when concrete evidence

for removal is present and not only because of test statistics or plot-

ting techniques suggest it.

For sample sizes less than 50, these plotting techniques may not

provide enough information to make proper decisions. Even with large

sample sizes, the statistical tests which follow should be utilized to

provide the maximum assurance that the assumptions required for the

usage of the statistical tests are not violated.

Distribution Tests

An assumption central to most parametric statistical tests is that

the data come from a population that exhibits a normal distribution.

This normality assumption is relaxed by nonparametric statistics, which

require only a continuous distribution. In the previous section, graph-

ical techniques were used to provide qualitative information on the form

of the data's distribution. This section provides a statistical test of

the assumption on normality. Two important considerations of this test

are: 1) the test determines only whether the data is nonnormal and flgt

whether it is normal (i.e., proves the alternative hypothesis and not the
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null hypothesis) and 2) when the sample size is small it is extremely

difficult to reject the null hypothesis even if the data grossly devi-

ates from normality or symmetry. Therefore, when dealing with samll

sample sizes, one should use an appropriate statistical test and also

intuitive knowledge of the parameter and the water system in determining

whether to use parametric or nonparametric statistical tests for trend

detection.

The W~test is used to evaluate the assumption that a sample has a

normal distribution for samples 5 50 (Shapiro and Wilk, 1965). The

W-test has been shown to be an effective technique for evaluating the

assumption of normality against a wide spectrum of deviations from nor-

mality such as skewness and kurtosis of the distribution (Atkinson, 1967;

Chen, 1971).

The W-test is used as follows:

Sgep_1. Rearrange the data to obtain the ordered array

X X , Xn, where X1 5 X2 5 ... g X".1, 2, ...

Step 2. Compute the variance ($2) of the data (Equation 11

and from previous chapter).

Step 3. If n is even, set k = n/2; if n is odd, set

k = (n - 1)/2. Then compute

k

b = Z 8

i=1

n-1+1 (Xn-i+1 ' xi) (34)

where the values of a for i = l, ..., k
n-i+l

are given in Table 1 of Appendix B for n = 3,

., 50.

§1ep_4. Compute

w = b2 s2 (35)
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If the test statistic W is less than the critical

value W1, n from Table 2 of Appendix B, one may reject

the hypothesis of normality with probability of

Type I error less than a.

For large sample sizes (n > 50) the Kolmogorov-Smirnov test is sug-

gested (Siegel, 1956; Sokal and Rohlf, 1969).

A quick and easy measure that displays the general shape of the

data's distribution is the mode to mean ratio (R) (Springer and Gifford,

1980). It is calculated using the following:

R = [1 + (C.V.)Z] ‘3/2 (36)

where: C.V. = coefficient of variation (Equation 13)

If R < 1, the distribution is skewed right. If R = 1, the distribution

is normal or symmetric. If R > 1, the distribution is skewed left.

This should not be substituted for a statistical test for normality, but

may be used as a quick check technique.

Homogeneous Variance

In the biological sciences there is a common tendency toward

positive correlation of the mean and variance over a wide range of

a specific variable (i.e., groups with large means tend to have large

variances and those with smaller means have smaller variances (Gill,

1978)). A check of the assumption of homogeneous variance is done

by testing the hypothesis, Ho: oi = a: = ... 0%, where t is the number

of treatments (in this case, the number of time units). The first test

described is a quick and easy method, while the second is more efficient
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and capable of dealing with uneven numbers of data within the different

time units.

Hartley's fmax test (Hartley, 1950) involves the ratio of the

largest to the smallest of the variances within groups.

- 2 2

1cmax — Smax /smin (36)

where: fmax = test statistic

5:8x = maximum variance of all treatments (time unit)

56in = minimum variance of all treatments (time unit)

If the test statistic exceeds the critical value, f (from
max, 8, t, v

Table 3 of Appendix B), for t groups with v = r - 1 df (r equals number

of data points within each time step or unit), one may reject H0. If

replication within each group is only slightly unequal, the critical

value should be corrected by using v = (Zri/t)-1.

Bartlett's test (Bartlett, 1937) for homogenity of variances is

used because it provides good efficiency and handles uneven replication

within groups.

The following is the procedure for Bartlett's test:

§1_p_1. Convert the variances for X's to logarithms. It is

convenient to add 1 to the data when zeros are present

and multiply by 10, or a power of 10, to avoid

technical problems with logarithms.

St E 2. Compute

2_ a 2 a 2
X — 2.3026 2 ("i - 1) log 5 - Z ("i - 1) log Si (37)

i=1 i=1

number of X's

ith variance

where: a

(
n H
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a

 

Z (n, - 1) s?

2 _ i-1
S .—

a

Z ("i - 1)

i=1

The constant 2.3026 transforms the common logarithms to natural ones,

which are needed for the formula. If this value x2 exceeds 5: a _ 1

from Table 4 and Table 5 of Appendix B, one may reject Ho. If the com-

puted 52 is nearly equal to the critical value, a correction factor

should be used (see Sokal and Rholf, 1969).

Examination of Outliers

If it can be determined that an extreme observation is a result of

errors in recording data, parameter value determination, or foreign to

the defined population the outlier may be excluded. Otherwise, the ob-

servation should be used in the computations, unless one has adopted

some consistent procedure of testing outliers or of censoring or

"Winzorizing" (replacing an extreme value by the next most extreme ob-

servation) all extreme data (Tukey, 1962). However, arbitrary exclusion

of data that do not conform to one's perceived ideas can lead to serious

bias in estimation as well as underestimation of experimental error.

The procedures of Grubbs and Beck (1972) may be used as an approx-

imate test of whether the magnitude of the largest residual is so large,

that the corresponding value may be excluded. The procedure is as

follows:

Step 1. Compute residuals
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Step 2. Select largest residual (eL), either

[emaxl or 'emin'

Step 3. Compute test statistic

A = eL/s (38)

where: A test statistic

5 standard deviation

If the test statistic exceeds the critical value Au, n from Table 6 of

Appendix B, one may exclude the corresponding data point. One should

chose a small Type I Error (a = 0.01) for rejection of an outlier, be-

cause a Type I Error would result in the exclusion of an extreme pp;

valid observation which would lead to a biased estimate of 02 (too small)

and distortion of confidence statements. While a Type II Error would

lead to an inflated estimate of 02 and conservative confidence state-

ments about means.

Graphical methods, statistical tests, and intuitive knowledge must

be used in considering whether to remove an outlier. When outliers are

removed one must have: 1) sound evidence, 2) be capable of supporting

such a removal, and 3) held responsible for the removal. One final point

when dealing with outliers is that in some cases an extreme value or

outlier may be more interesting than the rest of the data.

Time Dependency of Data

A very important issue when dealing with time series data in lakes,

especially those with long detention times, is time correlated data

(Yule, 1921; Bartlett, 1935). This time correlation arises from the

fact that the value of a data point is dependent, to some degree, upon
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data points previous to it in time. This time correlation of data is

termed autocorrelation or serial correlation. In a lake system, an

annual concentration will depend on the concentration in the lake in

previous year, or years, to some degree. Thus, those lakes with long

detention or residence times, (i.e., not much change in yearly water

composition) will usually exhibit autocorrelated data. Autocorrelated

data means that the random error terms are correlated over time. If

autocorrelation is present, the assumption that the random error terms

(ei) are independent is violated.

Consider the time series of data X1, X2, ..., X“, the most satis-

factory estimate of the kth lag autocorrelation (pk) is (Jenkins and

Watts, 1968; Box and Jenkins, 1968)

Ck
Pk = E— (39)

o

where: rk = estimate of pk

Ck = estimate of Yk (autocovariance)

Co = estimate of Y0

An estimate of Yk’ autocovariance of the kth lag is

1 n-k _ _

Ck = H .E (Xi - X) (Xi + k - X) (40)

1-1

An estimate of Y0 is

1 " - 2
Co = H i (X - X) (41)

The Durbin-Watson test can be used to test for autocorrelation,

(i.e., Ho: p = 0) (Durbin and Watson, 1951). The Durbin-Watson

statistic d is defined in terms of the observed residuals by
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d = '= (42) 

where: ei = ith residual

The d statistic is compared to upper (du) and lower (du) bounds (Table 7

in Appendix B). If d falls below dL’ the hypothesis that the original

residuals are uncorrelated is rejected, and if it falls above du’ the

hypothesis is accepted. When d falls between du and d the test isL’

inconclusive and further statistics are necessary (see Durbin and Watson,

1971). The formula above tests for positive autocorrelation, which is

by far the most common in lakes. When testing for negative autocorrela-

tion, the test statistic, 4 - d, is used. The remaining part of the

test is conducted in the same manner as for positive autocorrelation,

where if 4 - D < dL’ one concludes negative autocorrelation (p < 0)

exists. The two-sided test is done by employing both of the one-sided

tests separately. Thus, the Type I Error for a two-tailed test is 20.

For more information on other methods of testing for autocorrelation,

consult Kenkel (1975) and Sen (1978, 1979).

Transformations

To correct for violations of the assumptions detected by analyzing

the data, transformations of the data may be used. Transformations are

valid because the linear scale has a relationship with other scales of

measurement. In essence, the scale of measurement is arbitrary, there-

fore, one may transform data to a different scale of measurement so the

transformed variates more closely satisfies the assumptions. A
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fortunate fact of transformations is that often several departures from

the assumptions are simultaneously cured by the same transformation to a

new scale. For example, simply by correcting for nonnormality, homoge-

neous variance may also be obtained.

When a transformation is applied, tests of significance are per-

formed on the transformed data. When the transformations are nonlinear

(e.g., log, square root), confidence limits computed in the transformed

scale changed to the original form are asymmetrical (Sokal and Rohlf,

1969). However, the use of the standard error in the original scale is

misleading and should not be used with transformed data. The log and

square root transofrmations are discussed below.

The most common of all transformations is the log transformation.

The log transformation consists of converting all the data into log-

arithms, usually common logarithms. There are two situations where the

log transformation is quite effective. First, is with skewed right

distributions (very common in lake parameters). The log transformation

of skewed data will usually result in a normal distribution. The second

situation is when the mean is positively correlated with the variance

(i.e., large means have large variances). The variance should become

independent of the mean when the data undergoes a logarithmic transfor-

mation. When dealing with log transformation, two helpful hints are:

1) if the data includes zero, add 1 to all values to avoid the log of

zero (i.e., negative infinity) and 2) if there are data between 0 and 1,

multiply all values by 10 or some power of 10, to avoid the negative

values that will result.

For stronger relationships of mean to variance (such as the mean

directly proportional to the variance) or for skewed distributions, the
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square root transformation may be appropriate for obtaining approximate

normality as well as homogeneous variance. When the data include zero's,

one-half should be added to remedy the problem of trying to take the

square root of zero.

Other transformations are available, for example reciprocal,

arcsine, and probit. For a further discussion of these and the subject

of transformations, consult Tukey (1962), Sokal and Rohlf (1969), Neter

and Wasserman (1974), and Mosteller and Tukey (1975).

A final form of data transformation is the process of removing

seasonality in the data. This is only necessary when dealing with data

in less than yearly time units. The commonest methods of removing

seasonality are differencing and modeling. The differencing technique

is used by forming a grand mean for each identical time unit (i.e., all

the same month, all the same season) and form a new time series as the

difference between the raw time series and the corresponding grand

mean. Durbin and Murphy (1975) and Cleveland and Tiao (1976) consider

the use of an additive-multiplicative model and ARIMA model, respec-

tively. For more information on the seasonal adjustment of data,

consult Wallis (1974).

Statistical Tests for Trend Detection

The final step in the trend detection method is to compute a test

statistic using an appropriate statistical test. This test statistic

is compared to a table of critical levels and the strength of evidence

(i.e., level of alpha that rejects H0) is determined. Classically, the

alpha level has been chosen apriori (i.e., before the data are examined).
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In the case of detecting trends in lake parameters the concern is with

the degree of certainty that the data exhibit some type of trend. Thus,

the alpha level that provides acceptance of H1 (i.e., that a trend

exists) should be used to provide the necessary quantitative information

needed for planning, policy and management decisions. Three cases of

data are possible, based on type of distribution and time dependency,

and will determine which statistical test to be used. The three cases

are:

1. Normal and Independent Data

2. Symmetric and Independent Data

3. Dependent Data

For each case, statistical tests are discussed to allow computation of

the necessary statistics to test for the presence of trends.

Normal and Independent Data

All classical parametric statistics require that the data come from

a normal population and are independent of each other (i.e., independent

in time for trend analysis). However, when dealing with lake systems

the validity of these assumptions is highly questionable. Many lake

parameters will exhibit skewed distributions which may be converted to

normality through transformations of the data. A more important issue

is the small sample size of data usually available for trend detection.

As discussed before, it is difficult to disprove normality on small data

sets, even when the data grossly deviate from normality. The issue of

autocorrelation in lake data is usually more of a problem than is nor-

mality. Since most lakes do not renew their total volume of water very
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quickly, one data point collected in time will be dependent upon the

previous data point in time (to some degree). Since the majority of

lake parameters are autocorrelated over time, the assumption of inde-

pendent data is violated. The violation of the independent data assump-

tion has been almost completely ignored in past lake trend analyses.

While it is unlikely that both of these assumptions would be valid,

especially independence, it may be possible in some situations. There-

fore, a statistical test is provided for this case. If doubt exists

about these assumptions, one should use a test from one of the other

cases that do not require the assumptions.

When testing for the difference between means of normal variables,

four cases, for which different methods are needed, may be distinguished:

1) known variances or large sample size, 2) unknown but equal variances,

3) unequal variances but equal coefficients of variation, and 4) unequal

variances and coefficients of variation (Gill, 1978). If the variances

of the populations are known from prior research or the sample size is

large (n > 200), case 1 should be used. Case 3 and 4 are less powerful

than case 2 and are needed only when variances cannot be made equal

through transformations. Since cases 1, 3, and 4 are rare, only the

second case will be discussed here. For case 1, 3, and 4 a statistical

textbook should be consulted (e.g., Gill, 1978; Sokal and Rohlf, 1969).

Case 2 is used when the variances are unknown but the hypothesis

of equal variances has been accepted (the test for homogenious variance

is in an earlier section). The statement that the variances are unknown,

implies that the true population variance is not known, while a variance

estimate, calculated from the sample data, is known, and used to test

for equal variances. The variances discussed here are for the two
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populations that are designated by the null hypothesis and not the in-

dividual variances for each time unit, as was tested for in the homoge-

neous variance section.

This case involves the use of the well known two-sample t-test.

The test statistic is computed from

t = (X1 - X2) [5 (l/nl) + (1/n2)] (43]

where: X1 mean of population 1

x
l

l
l

2 mean of population 2

(I
: ll standard deviation of population 1 and 2

n1 = sample size of population 1

sample size of population 2

The standard deviation (5) for the total population (p1 and p2) is

Y‘ 7" Y‘ 7‘

1 1 2 2

, i=1 i=1 i=1 i=1 _

(r1 + r2 - 2)

 

= (44)

The test statistic is compared to the critical values (Table 8 of Appen-

dix B):

- H
0, r1 + r2 2 1 1

- t _ for H : p > p
a1 r 5 r 2 1 1 2

If the test statistic exceeds tha appropriate critical value, the null

hypothesis is rejected and a trend is indicated with the probability of

a Type I Error less than a.
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Symmetric and Independent

By relaxing the assumption of normal distribution to symmetric dis-

tribution, while still assuming independent data, nonparametric tests

may be used. Nonparametric tests should also be used if the data have a

small sample size to bypass the assumption of normality. Again, it

should be stressed that assuming independent data in lake systems is ex-

tremely questionable. The nonparametric tests suggested are the Mann-

Whitney and Spearman Rho, and these should be applied to step and linear

trends, respectively.

The Mann-Whitney test is one of the most powerful of the non-

parametric tests, especially when dealing with step changes between the

populations (Conover, 1971; Siegel, 1956). The data consist of two ran-

Xdom samples. Let X Xn denote the random sample of size n1

1’ 1
2, ...,

from population 1, and let Y1, Y , Yn denote the random sample of

2

size n2 from population 2 (defined by null hypothesis). The test sta-

1, ...

tistic is calculated in the following manner.

Spep_1. Rank the combined sample of X's and Y's from

smallest to largest. For ties, take average of

ranks that would have been assigned to them had

there been no ties.

Step 2. Sum the ranks for the X's

n

s = Z R<Xi)

i=1

Step 3. Compute the test statistic

_ n1(“1 + 1)
2 (45)T = s
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The lower critical values we n n are found in Table 9 of Appendix B.

’ 1’ 2

Substitute n1 for n and n2 for m in Table 9. The upper critical level

is computed by:

W = n n = W (46)

An alternative to using upper critical values, the statistic T', defined

as

- T (47)

may be used with the lower critical values whenever an upper tailed

test is desired.

The following decisions rules should be used for their respective

alternative hypothesis.

H1: p1 < p2 Reject H0 when T lS less than W1

H1: p1 > p2 Reject H0 when T is greater than

. . .

W a or if T 15 less than Wk
1-

When testing for continuous (i.e., linear) trends, the Spearman

Rho test is suggested (Conover, 1971; Siegel, 1956). The data X1,

X2, ..., Xn is used to compute a test statistic:

" 2
T = Z (R (Xi) - i) (48)

i=1

th
where: R(Xi) = rank of the i observation Xi in the sample size

of n

The null hypothesis is rejected if T is less than Wa, n(H0: “1 2 P2)

or if T is greater than 1 - W1 (H0: p1 < “2), with W& values found in

Table 10 of Appendix B. The quantities of the Hotelling-Pabst Test sta-

tistics are used in Table 10.
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Dependent Data

When dealing with lake parameters over time, time dependency is al-

most certain to occur. This autocorrelation leads to violation of the

assumption of independent data. The sensitivity of statistical proce-

dures to violations of the independence assumption is well known

(Gastwirth and Rubin, 1971, 1975; Serfling, 1968). Thus, some procedure

is needed if quantitative information is desired about trends in lake

parameters over time. Two similar approaches are those of Lettenmaier

(1976, 1977) and Sen (1963, 1965). The test statistics proposed by Sen

were shown to be asymptotically normal for large sample sizes (n > 1000),

but they were found unsuited for application to small and medium sample

sizes (Lettenmaier, 1976). The method suggested here is that proposed

by Lettenmaier (1976, 1977). In this method, the test critical levels

are corrected based on the degree of dependence. The correction values

were generated using Monte Carlo simulation. The data dependence is as-

sumed to be of the lag one Markov type. Test rejection levels were gen-

erated based on p, n, a, and trend magnitude and compared to the inde-

pendent case. For a more detailed discussion of the generation of the

correction values consult Lettenmaier (1976, 1977).

When testing the trend hypothesis with dependent data, the follow-

ing procedure should be used.

Step_1. Calculate the test statistic from data using the

Mann-Whitney or the Spearman Rho test for step or

linear trend hypothesis, respectively.
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Step 2. The modified critical level is calculated as the

upper or lower rejection level, plus a scaled

difference:

I — -

Wa - L1 + f(n, a, p) (W1 L1) (49)

L L

wau = Lu + f(n, a. p) (”“0 - Lu) (50)

where: W& = modified lower critical level

‘
5 u modified upper critical level

L1 = lower bound of the test statistic of outcome

distribution

L = upper bound of the test statistic of outcome

distribution

f(n, a, p) = correction value from Table 11 or 12 from Appendix B

for Mann-Whitney or Spearman Rho test, respectively

WA = lower critical level for independent data

L

W1 = upper critical level for independent data

u

For both, the Mann-Whitney and Spearman Rho, the lower

bound of the test statistic (L1) is zero. The upper

bound (Lu) is [n(n2 - l)]/3 for the Spearman Rho and

n1 n2 for the Mann-Whitney, where n1 and n2 are the

number of data in the first and second partitions,

respectively. The 0 levels used in f(n, a, p) to

determine the correction value from Tables 11 and 12

of Appendix B are for a two-sided test. If a one-sided

test is desired at significance level a, a value of Za

should be entered into f(n, a, p).
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Spep_§. The modified critical level is compared to the test

statistic calculated in Step 1, with H0 accepted or

rejected under the same circumstances as for independent

data.

The power associated with the data may be calculated for the Mann-

Whitney and Spearman Rho by using an equivalent number of independent

samples, based on the autocorrelation of the data, in the normalized

power function. The procedure is as follows:

Sgep_1. Calculate the number of equivalent independent

samples based on lag 1 Markov dependence (Matalas

and Langbein, 1962).

+ 2+

% 1+2_(9+-92) (51)

(p '1)

g
J
e
a

where: n* = number of equivalent independent samples

n = sample size

p = lag 1 correlation coefficient

t = sampling interval (t = 1 for equal spaced samples)

Step 2. Calculate the trend number:

Tr(n*)1/2

"r =T (52)

where: NT = trend number (dimensionless)

Tr = trend magnitude (for Step Trend Tr = p1 - p2 )

o = standard deviation of time series (5, an

estimate of a should be used)

Step 3. Calculate the power:

1 - 8 = F(NT - t (53)
1 - a/2,V)



93

llwhere: 1 - 8 power of test

F
cumulative distribution function of a

standard student's t distribution

_ . . , . . _

t1 _ a/2 — critical level of student 5 t distribu

tion at probability level 1 - o/2

(two-tailed test)

V = degrees of freedom (n - 2)

Table 8 of Appendix 8 lists the values for the

Student's t distribution.

The procedure for calculating the power of the Spearman Rho test,

is the same as for the Mann-Whitney, except N ' is substituted for N
T T’

where

Tr [n* (n* + 1) (n* - m“2
N _

1/2 n*

 

' (54)

T (12) o

where: Tr = trend magnitude (for linear trend Tr = A0)

One problem with these procedures is that the standard deviation

and lag 1 correlation coefficient are assumed to be known. When sample

size is greater than 30 and data are independent, s may be substituted

for o with little sample error (Lettenmaier, 1977). However, sample

error in the lag 1 correlation coefficient estimation is of more

concern, since errors in p will effect the estimation in the equivalent

independent sample size (n*) and the variance (Bayley and Hammersley,

T946). These errors will be translated into uncertainty in the estima-

tion of NT or N}. Thus, the problem of uncertainty in the estimations

of the parameters (n*,s) should be considered when the results are being

used for planning, policy and management of lake ecosystems.
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Time Series Modeling
 

After completing the trend detection phase, one may wish to model

the time series data to provide information on the pattern of change

over time and to forecast future events. The subject of time series

modeling has become increasing important and it's use is expanding. The

attempt here is to provide basic information only and not an indepth

study. The range of books, for those interested in a more complete re-

view, include: 1) introductory texts (Kendall, 1973; Chatfield,1975),

2) spectral analysis (Jenkins and Watts, 1968; Bloomfield, 1976),

3) univariate forecasting (Box and Jenkins, 1970; Granger and Newbold,

1977), and 4) a general review article on time series analysis (Chat-

field, 1977). Only the basic method of fitting polynomials and the use

of linear regression analysis will be discussed here.

A general model for the deterministic (trend) component is the

polynomial model. Polynomial curves are convenient approximations for

nonlinear relationships. The polynomial function is of the general

form:

- _ 2 3
Y — a + bx + cX + dX + ... (55)

where: Y = dependent variable

X = independent variable

a, b, c, d = coefficients

The polynomial involving only the terms of X and X2, will yield a

parabola with one inflection point. As increasing powers of X are

used, the curve becomes more and more complex and will fit data

increasingly well. However, each added power to X, one degree of
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freedom is lost and the test of significance is harder. For most work,

a cubic polynomial is the upper limit of degree. The aim of a polynomial

model is to obtain a better fitting regression to a set of points. This

is done by adding a quadratic term (X2) to the regression equation and

observing if a significant portion of the residual sum of squares is re-

moved. The same is done for cubic and possibly higher terms. The nu-

meric procedures of calculating third or higher degree polynomials

usually involves matrix inversion and the use of a computer. For a

second degree polynomial, Steel and Torric (1960) or Sokal and Rohlf

(1969) should be consulted for the necessary formulas.

The methods for developing a linear regression model was discussed

in Chapter III. The major problem with the use of linear regression on

water quality time series data is the violation of the assumptions for

the use of linear regression. As has been discussed, most water quality

parameters are autocorrelated. Thus, the assumption of independent data

is violated. While the model itself may not be able to statistically

test for a trend, the pattern or shape of the time series data can be

illustrated. Linear regression can be used for forecasting future events

if one assumes that conditions under which the data was collected will

continue and be uneffected or changed. Other areas of regression analy-

sis which may be of use are: 1) distribution-free regression analysis

(Hollander and Wolfe, 1973), and 2) regression with autocorrelated

residuals (Neter and Wasserman, 1974; Kendall, 1973).

Linear and polynomial regression are simple techniques that can

be used for modeling the pattern of change in a parameter over time.

However, their use in forecasting is limited. Forecasting should in-

valve the use of more complicated models and mathematical techniques not
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explained here. Gilchrist (1970) provides an excellent review of sta-

tistical forecasting. Also, the references cited at the beginning of

this section can be used to provide more information on methods of fore-

casting with time series data.

Application
 

In order to allow for better understanding of the trend detection

methods and their usage, two examples are presented, one for a linear

trend and the other for a step trend. The linear trend uses real data,

while the step trend is a hypothetical situation. The examples were

chosen in an attempt to cover the majority of techniques. The format

is both verbal and numerical to provide a clear explanation of the tech-

niques. Some equations will not be repeated, but are referenced by the

equation number or the step number for a given procedure.

Linear Trend Example

Two problems with Lake Ontario are the increased algal densities

and nutrient loading to the lake. While phosphorus is often the limit-

ing nutrient in clean (oligotrophic) lakes, nitrogen has an increasing

effect as water quality declines. Thus, to provide information on these

two problems, the mean nitrate concentration in the springtime for Lake

Ontario is examined for possible trends in the years 1968-1979. This

information can be used to compare algal population growth and the

nitrogen loading over these same years.



97

The mean springtime nitrate concentrations (pg/l) from Lake Ontario

during 1968-1979 are in data set 2 in Appendix A. The data are mean

values of samples collected evenly through the spring. The variances

are assumed equal between different years because of limnological knowl-

edge. Based on the knowledge that nutrient loadings have increased in

this time period, the null and alternative hypotheses are

(i.e., a positive trend is hypothesized).

The analysis is started by graphically displaying the data in a

time series plot (Figure 18) and a cumulative sum plot (Figure 19). The

following shows the calculation for the cusum points. A value of j = 1

is chosen to provide the maximum number of cusum points (i.e., maximum

information). The cusum points are calculated in the following manner

(Equation 31):

h n

cu. Z X. - j/n Z X.

3 i=1 ' i=1 '

cu1 = 215. - 1/12 - (215 + 237 + ... + 335)

= -59

cu2 = (215 + 237) - 2/12 . 3288

= -96

cu11 = (215 + 237 + ... + 324) - 11/12 ° 3288
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Both the time series plot and cumulative sum plot seem to indicate a

linear trend and further analysis should be conducted. The mode to mean

ratio is used to provide a quick check of normality. The mode to mean

ratio (Equation 36) is 0.97, which suggests the distribution is slightly

skewed right. The skewness is shown in the relation between the mean

and mode (Data set 2 in Appendix A). The W test is not used here due to

the very small sample size and the inability of the test to determine

non-normality under these conditions. Therefore, to be safe and not

violate the normality assumption, the distribution is considered

symetric, which is much easier to satisfy.

The next step is to estimate the autocorrelation coefficient and

test to see if the autocorrelation is zero. To estimate p1 (Equation 39)

both ck (k is equal to 1 in this case) and co need to be calculated in

the following manner (Equation 40 and 41):

15 [(215 ' 274) (237 - 274) + (237 - 274) (242 - 274) + ... +
C1:

(324 - 274) (335 - 274)]

= 968.67

co = %5 [(215 - 274) + (327 - 274) + ... + (335 - 274)]

= 1378.3

c1 968 67
r = -— = -——L- ‘ .703
1 co 1368.3

Thus, the estimate of the lag 1 autocorrelation coefficient is .703.

To test (H0: p = O) the Durbin-Watson test is used (Equation 42).

= {-37 - (-59) + (-32) - (-37) + ... + (61 — 59)]

(-59)2 + (—37)2 + ... + 612

.0073
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Since the calculated d value is less than dL (critical level) = 0.81,

H0 is rejected and the data are correlated. A technical note here is

that it is useful to first calculate the residuals so as to make the

calculations easier.

Based on dependent data and a linear trend hypothesis (from apriori

information and examining time series and cusum plots), the Spearman Rho

test is used, with adjusted critical levels, to test the hypothesis

(H1: “1 < 92).

Step 1. Using Equation 48, the test statistic is

T = (1 - 1)2 + (2 - 2)2 + (3 - 3)2 + 5 - 4)2 + 4 - 5)2 + ... +

(12 - 12)2

= 2

Step 2. Calculate the modified critical level (Equation 49)

I — -

waL— L1 + f(n, o, p) (WfiL L1)

where: L] = 0

f(12, .01, .7) .63 from Table 12 Appendix 8 (generated)

W = Wa = 52 from Table 10 Appendix B

L
.005, 12

W' O + (.11) (52 - O)

5.72

Since the test statistic (T = 2) is less than the critical level

(Wt;L = 5.72) one may reject the H0 and conclude that a linear trend

exists at a 99.5% confidence level.

The power associated with the Spearman Rho test for a linear

trend in the mean springtime nitrate concentration is as follows:
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Step 1. Calculate the number of equivalent independent samples

Equation 51):

 

 

1 1 2(9t - pZt)

E? n 1 + (pt _ 1)2

1 _1___ 2 (p1 - p“)
E? 12 1 T (p1 _ 1)2

n* 2

Step 2. Calculate the trend number (Equation 54):

Tr [n* (n* + 1) (n* - 1))”2

"T = 12 n* o
 

Au for Linear Trendswhere: Tr

100

38.78Q

II

100 [2. (2. + 1) (2. - 1))“2

”i = 12 (2.12) (38.78)

0.86

Step 3. Calculate the power (Equation 53):

1 - B = F(NT - t1 - a/Z)

Substitute a for a/Z because the test is one-tailed.

where: t1 _ .005, 10 = 3.169

1 - 8 = F(.86 - 3.169)

= F(-2.309)

From the standard normal tables F(-2.31) is

equal to .010, therefore the power is .01.
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Based on the analysis, one may conclude that mean springtime nitrate

levels have undergone a linear trend in Lake Ontario from 1968-1979 at

the 99.5% confidence level. However, due to the small sample size and

the large autocorrelation coefficient, only a power of .01 can be

associated with the test.

Step Trend Example

The following hypothetical example illustrates the procedures for

detection of step trends in lake parameters. For many years Lake A has

had excellent water quality which allowed for tremendous recreation usage.

These beautiful conditions prompted numerous housing developments on the

lake and the surrounding area. Nutrient loads have increased signifi-

cantly, to the point where the lake is experiencing accelerated eutrophi-

cation. The lake association consulted local officials and the state

Department of Natural Resources for possible solutions. The lake exhib-

its a short detection time, therefore if nutrient loading is curtailed,

water quality should respond fairly quick. A program was developed to

control the limiting nutrient of the lake, phosphorus. The management

program includes a sewage system, fertilizer control, and land use

practices. The costs involved for the plan, especially for the construc-

tion of sewer pipes to connect to the local treatment plant, are high.

During public meetings people expressed the concern of how sure can one

be that these measures will "cure" the lake.

Another lake system, Lake 8, nearby, underwent the exact same

problem as Lake A. Since both lakes are limnologically very similar

and the methods for restoration are similar, data from Lake 8 can be
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used to provide the degree of quantitative evidence that the plan will

be effective.

The hypothesis formed is that a step trend occurred starting at

the time of implementation of the water quality plan. Mean annual total

phosphorus is chosen as the lake parameter because of the availability

of data and the significance it plays in lake eutrophication. Thus,

”0' “1 l2

H0: p1 > p2

where: “1 = (X1, ... , X15) and “2 = (X16, ..., X30)

The value which divides p1 and p2 is dependent upon when the management

plan was initiated.

The mean annual total phosphorus concentrations are found in data

set 3 of Appendix A. Figure 20 and 21 show the time-series plot and

cusum plot, respectively. The sample residuals are shown in Figure 22

to check the validity of the assumption of homogeneous variance. The

residuals are calculated by using

e1 = Xi - X

Therefore,

él = 77 - 77.7 = 7 - 0.7

éz = 83 - 77.7 = 5.3

e = 64 - 77.7 = -13.7

30
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The residual plot tends to be fairly horizontal and thus suggesting

homogeneous variannce. Also, no extreme value is indicated in the plot.

The W-test is used to test for normality. The steps are:

§t_p_1. Order the array X1, X2, ..., X”:

58.0, 59.0 ..., 94.0, 95.0

Stgp_g. Compute the variance (Equation 11):

52 = 143.80

Step 3. Since n is even,

Then, compute (Equation 34):

b = .0076 (95.0 - 58.0) + .0227 (94.0 - 59.0) +

. + .4254 (81.0 - 80.0)

b = 25.66

St p 4. Compute test statistic (Equation 35):

w 25.662/143.60

4.58

Since the test statistic (W = 4.58) exceeds the critical value

(v 09’ 30 = .983) one may ppt reject Ho, therefore one assumes normality.

The mode to mean ratio is .99, which also suggests normality.

The lag 1 autocorrelation coefficient calculations are shown in

the linear trend example, and thus repetition is not necessary. The

value of r1 (estimate of p1) is 0.46. The Durbin-Watson was used to

test whether p is significantly different from zero. The results

(computation not shown) show p is significantly different from zero at

the 99% confidence level.



109

The analysis of the data showed a possible step trend, normal

and dependent data. Therefore, the Mann-Whitney test will be used to

test the hypothesis of trend.

Step 1a. Rank all values from each population from

smallest to largest (already done in w-test)

Step 1b. Sum the ranks for pl:

5 13 + 18 + ... + 30

(Note, for values of 80.0 and

80.0, the ranks would have been

25 and 26, thus 25.5 is used for

each.)

s 325

Step 1c. Compute test statistic (Equation 45):

 

_ 15 (15 + 1)

2

_
q l

- 325

= 205

Step 2. Modify the critical level (Equation 50):

w; = Lu + f(n, a, p) (Na - Lu)

u u

where: Lu = n1 - n2

= 15 - 15

= 225

f(.30, .01, .46) = .491 (interpolated from Table 8.11)

".01, 15, 15 = 57

W = w _ = n . n - w
au 1 a 1 2 a, n1, n2

= (15 ° 15) ' 57

= 168
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225 + (.491) (168 ~ 225)

Q
g
i ll

197.01

Since the test statistic (T = 205) exceeds the modified critical level

(w; = 197.01), H0 is rejected and one may conclude a step trend at a

99.5% confidence level.

The associated power of the Mann-Whitney test is calculated in

the following manner.

Stpp_1. Calculate number of equivalent independent

samples (Equation 51):

+ 2 (.45 - .462)

(.46 - 1)2

-.l_

K 30 1
 

:
l
e

n* = 11

Step 2. Calculate the trend number (Equation 52):

1/2
- Tr(n*)

NT — 20

where: Tr = lpl - “2| for step trends

[86.47 - 53.93l

17.54

N. 17 54 (11)1/2

T 2 - 11.99
 

2.43

Step 3. Calculate the power (Equation 53):

1 — B = F(NT - t1 - a, v)

where: t1 _ .005, 28 = 2.763

F(2.43 - 2.763)

F(-.333)
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From the standard normal tables F(-.33) is equal to .371, therefore the

power of the test is .371.

Based on the test results one may conclude with 99.5% confidence

and a power of .37 that a step trend is present in mean annual total

phosphorus concentrations in Lake A.



CHAPTER V

CONCLUSIONS

Most phases of water quality management are concerned not only with

the present condition, but with the spectrum from past to future condi-

tions. Hence, information on the changes in water quality parameters

over time is important for water quality management. The use of statis-

tical techniques to detect trends in water quality parameters has the

potential to provide the quantitative information needed for water re-

sources management and planning decisions. The usefulness of the infor-

mation generated by the detection of trends in water quality parameters

should greatly increase in the future.

The method presented here, provides:

1. formulation of a problem (hypothesis)

2. selection of water quality parameter(s) and data

3. data analysis techniques

4. statistical tests for detection of trends

The development of any quantitative methodology usually has its

roots in a need exhibited in the area of management or planning. Thus,

the use of the trend detection technique arises from a need discerned in

the management area for quantitative information on changes in water

quality parameters over time. The starting point for the use of trend

detection techniques is the determination of a desired output for which

proper management, and planning decisions are to be based upon. This

desired output determines the parameter(s) and data chosen, and the for-

mulation of the null and alternative hypotheses. It is extremely impor-

tant to properly consider the desired output in the selection of data

and hypothesis formation, for decisions made based on the results of the

112
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trend detection analysis, must be in lieu of the input information

(i.e., parameter(s), data, and hypothesis).

The preliminary data analysis techniques are a necessary step for

trend detection analysis. The data analysis step provides: 1) visual

evidence of trends and validity of assumptions, 2) statistical tests to

determine the data's distribution, 3) statistical tests for the verifica-

tion of the assumptions of homogeneous variance and independent data,

4) methods of examining "outliers," and 5) types of data transformations.

The data analysis techniques presented are the ones generally accepted

by applied scientists. However, many other techniques are available

and may be substituted, given the alternative technique is as powerful.

The importance of preliminary data analysis cannot be overstressed. The

information provided by the examining the data will: 1) determine which

statistical tests to use for detecting trends in water quality param-

eters, and 2) provide a “good feel" for the data to allow for the utmost

evaluation and application of the trend detection results to water

quality management and planning decisions.

The autocorrelation present in most lake data, prohibits the use of

most statistical techniques, including regression, based on the viola-

tion of the independency assumption. The violation of the independency

assumption, as well as the normality assumption, is a major problem with

the majority of lake analyses conducted in the past. The continued vio-

lation of these assumptions is not necessary, when there are techniques,

such as the one presented here, that accommodate the dependent data

situation. Thus, the statistical tests for dependent data are suggested

for use, almost exclusively, when dealing with lake systems. The de-

pendency of the data is used, along with sample size and alpha level, to

correct the critical level of the statistical test.
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As with most statistical techniques, there are some limitations to

the trend detection method. The major problem, especially with trend

detection analysis for water quality parameters, is the poor power as-

sociated with small sample sizes. The small sample size problem is com-

pounded by increasing autocorrelation. When the sample size is small

and a large autocorrelation of the data is present, the number of effec-

tive independent samples is exceedingly small. Since the power is a

function of the effective independent samples, as effective samples de-

crease, so does the power. This is exemplified in the step trend exam-

ple in the application section of Chapter 4. Based on a sample size of

12 and an autocorrelation of 0.7 the number of effective independent

samples is 2, and this results in a power of 0.01.

Recalling Figure 11, the power is the probability of accepting H1

when in reality H1 is true. In trend detection, the power means the

probability of detecting a trend when in truth a trend exists. From a

management aspect, the power is important since the information usually

desired is whether a parameter has changed over time (i.e., did phos-

phorus concentrations change?).

Another problem with the trend detection technique for dependent

data, is the assumption that both the variance and autocorrelation are

known. The assumption of known variance and autocorrelation is true

when the estimates for the variance and autocorrelation are accurate

(i.e., known with certainty). Accuracy in the estimate of variance oc-

curs when: 1) the sample size exceeds 30, 2) the data are independent,

and 3) the sampling design is good. Autocorrelation accuracy is very

important, for the autocorrelation is used in calculating: 1) effective

independent samples, and 2) variance estimate. Both the number of ef-

fective independent samples and the variance estimate are used to
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calculate the test statistic (NT or N+) which determines the power of

the test. The problem of not knowing the variance and autocorrelation

may be accomodated by using upper confidence limits of estimates of the

variance and autocorrelation to provide conservative results.

Water quality management requires an understanding of aquatic eco-

systems. Basic to the understanding of aquatic systems is sound infor-

mation on which an understanding can be derived from. Thus, for water

quality management, information is needed on the changes in water qual-

ity parameters over time. The detection of trends in water quality

parameters allows for the management of water resources for their full

beneficial use. Thus, trend detection techniques for water quality

parameters is an integral part of water resources management for pro-

tecting environmental quality.
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Data Set A.1:

1223

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

Mean total phosphorus concentrations (pg/1) in Lake

121

Ontario's offshore waters in springtime from 1969-1979

(Dobson, 1980)

Total Phosphorus

(pg P/L)

20.

20.

23.

21.

22.

21.

21.

21.

20.

17.

15.

8

9

0

 

.
< II 226.

11

Mean

Median

Midrange

Geometric mean

Harmonic mean

Range

Variance

Standard deviation

Standard error of mean

Coefficient of variation

20.63

21.1

19.45

20.51

20.39

0.105
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Data Set A.2. Mean nitrate concentrations (pg/1) for Lake Ontario in

spring from 1968-1979 (from Great Lakes Environmental

Research Lab).

 

Nitrate

X225 Rank (pg/1) Rgpk

1968 1 215. 1

1969 2 237. 2 Mean = 274.0

1970 3 242. 3 Median = 267.5

1971 4 249. 5 Variance = 1503.64

1972 5 247. 4 Standard deviation = 38.78

1973 6 251. 6 Standard error of mean = 11.19

1974 7 287. 8 Coefficient of variation = 0.142

1975 8 286. 7 n = 12

1976 9 306. 9

1977 10 309. 10

1978 11 324. 11

1979 12 335. 12
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Data Set A.3. Hypothetical mean annual total phosphorus concentration

for Lake 8, over 30 years.

  

Phosphorus Phosphorus

m (pg/1) 1% L691: 819/1) 3925

1 77.0 13 16 91.0 27

2 83.0 18 17 86.0 21

3 80.0 15 18 79.0 14

4 85.0 20 19 75.0 11

5 89.0 24 20 76.0 12

6 84.0 12 21 70.0 10

7 81.0 16 22 64.0 8

8 82.0 17 23 60.0 3

9 87.0 22 24 61.0 4

10 94.0 29 25 66.0 9

11 90.0 25.5 26 58.0 1

12 90.0 25.5 27 63.0 6

13 92.0 28 28 62.0 5

14 88.0 23 29 59.0 2

15 95.0 30 30 64.0 7

77.70 Mean 1 - 15) = 86.47Overall Mean 1 (

143.80 Mean2 (16 - 30) = 68.93Overall Variance

Overall Standard Deviation 11.99

n = 30
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TABLE B. l.

124

 

 

SHAPIRO-WILK TEST FOR NORMALITY

Coefficients of Ordered Differences (ai n)

0

i n=11 12 13 14 15 16 17 18 19 20

1 .5601 .5475 .5359 .5251 .5150 .5056 .4968 .4886 .4808 .4734

2 .1315 .3325 .1125 .1118 .1106 .1290 .1273 .3253 .3212 .1211

3 .2260 .2347 .2412 .2460 .2495 .2521 .2540 .2553 .2561 .2565

4 . 429 .1586 .1707 .1802 .1878 .1939 .1988 .2027 .2059 .2085

5 .0695 .0922 .1099 .1240 .1353 .1447 .1524 .1587 .1641 .1686

6 .0303 .0539 .0727 .0880 .1005 .1109 .1197 .1271 .1334

7 . .0240 .0433 .0593 .0725 .0837 .0932 .1013

8 .. ... .0196 .0359 .0496 .0612 .0711

9 . .0163 .0303 .0422

10 . . .0140

i n=21 22 23 24 25 26 27 28 29 30

1 .4643 .4590 .4542 .4493 .4450 .4407 .4366 .4328 .4291 .4254

2 .3185 .3156 .3126 .3098 .3069 .3043 .3018 .2992 .2968 .2944

3 .2578 .2571 .2563 .2554 .2543 .2533 .2522 .2510 .2499 .2487

4 .2119 .2131 .2139 .2145 .2148 .2151 .2152 .2151 .2150 .2148

5 .1736 .1764 .1787 .1807 .1822 .1836 .1848 .1857 .1864 .1870

6 .1399 .1443 .1480 .1512 .1539 .1563 .1584 .1601 .1616 .1630

7 .1092 .1150 .1201 .1245 .1283 .1316 .1346 .1372 .1395 .1415

8 .0804 .0878 .0941 .0997 .1046 .1089 .1128 .1162 .1192 .1219

9 .0530 .0618 .0696 .0764 .0823 .0876 .0923 .0965 .1002 .1036

10 .0263 .0363 .0459 .0539 .0610 .0672 .0728 .0778 .0822 .0862

11 .0122 .0228 .0321 .0403 .0476 .0540 .0598 .0650 .0697

12 .0107 .0200 .0284 .0358 .0424 .0483 .0537

13 . .0094 .0178 .0253 .0320 .0381

14 . .. .0084 .0159 .0227

15 . .. .0076
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Table 8.1. Coefficients of Ordered Differences (a, ) (cont.)

2,)”. —'-'—'

i n=31 32 33 34 35 36 37 38 39 40

1 .4220 .4188 .4156 .4127 .4096 .4068 .4040 .4015 .3989 .3964

2 .2921 .2898 .2876 .2854 .2834 .2813 .2794 .2774 .2755 .2737

3 .2475 .2463 .2451 .2439 .2427 .2415 .2403 .2391 .2380 .2368

4 .2145 .2141 .2137 .2132 .2127 .2121 .2116 .2110 .2104 .2098

5 .1874 .1878 .1880 .1882 .1883 .1883 .1883 .1881 .1880 .1878

6 .1641 .1651 .1660 .1667 .1673 .1678 .1683 .1686 .1689 .1691

7 .1433 .1449 .1463 .1475 .1487 .1496 .1505 .1513 .1520 .1526

8 "1243 .1265 .1284 .1301 .1317 .1331 .1344 .1356 .1366 .137

9 .1066 .1093 .1118 .1140 .1160 .1179 .1196 .1211 .1225 .1237

O1 .0899 .0931 .0961 .0988 .1013 .1036 .1056 .1075 .1092 .1108

11 .0739 .0777 .0812 .0844 .0873 .0900 .0924 .0947 .0967 .0986

12 .0585 .0629 .0669 .0706 .0739 . 770 .0798 .0924 .0848 .0870

13 .0435 .0485 .0530 .0572 .0610 .0645 .0677 .0706 .0733 .0759

14 .0298 .0344 .0395 .0441 .0484 .0523 .0559 .0592 .0622 .0651

15 .0144 .0206 .0262 .0314 .0361 .0404 .0444 .0481 .0515 .0546

16 ... .0068 .0131 .0187 .0239 .0287 .0331 .0372 .0409 .0444

17 ... ... ... .0062 .0119 .0172 .0220 .0264 .0305 .0343

18 ... ... ... ... ... .0057 .0110 .0138 .0203 . 244

19 . .. . .. .0053 .0101 .0146

20 ... ... ... ... ... ... ... ... ... .0049
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Table 8.1. Coefficients of Ordered Differences (a. ) (cont.)

1,72 _

i- n=41 42 43 44 45 46 47 48 49 5O

1 .3940 .3917 .3894 .3872 .3850 .3830 .3808 .3789 .3770 3751

2 .2719 .2701 .2684 .2667 .2651 .2635 .2620 .2604 .2589 2574

3 .2357 .2345 .2334 .2323 .2313 .2302 .2291 .2281 .2271 2250

4 .2091 .2085 .2078 .2072 .2065 .2058 .2052 .2045 .2038 2037

5 .1876 .1874 .1871 .1868 .1865 .1862 .1859 .1855 .1851 .1847

6 .1693 .1694 .1695 .1695 .1695 .1695 .1695 .1693 .1692 .1691

7 .1531 .1535 .1539 .1542 .1545 .1548 .1550 .1551 .1553 .1554

8 .1384 .1392 .1398 .1405 .1410 .1415 . 420 .1423 .1427 .1430

9 .1249 .1259 .1269 .1278 .1286 .1293 .1300 .1306 .1312 .1317

10 .1123 .1136 .1149 .1160 .1170 .1180 .1189 .1197 .1205 .1217

11 .1004 .1020 .1035 .1049 .1062 .1073 .1085 .1095 .1105 .1113

12 .0891 .0909 .0927 .0943 .0959 .0972 .0986 .0998 .1010 .1020

13 .0782 .0804 .0824 .0842 .0860 .0876 .0892 .0906 .0919 .0932

14 .0677 .0701 .0724 .0745 .0765 .0783 .0801 .0817 .0832 .0846

15 .0575 .0602 .0628 .0651 .0673 .0694 .071 .0731 .0748 .0764

16 .0476 .0506 .0534 .0560 .0584 .0607 .0628 .0648 .0667 .0685

17 .0379 .0411 .0442 .0471 .0497 .0522 .0546 .0568 .0588 .0608

18 .0283 .0318 .0352 .0383 .0412 .0439 .0465 .0489 .0511 .0532

19 .0188 .0227 .0263 .0296 .0328 .0357 .0385 .0411 .0436 .0459

20 .0094 .0136 .0175 .0211 .0245 .0277 .0307 .0335 .0361 .0386

21 ... .0045 .0087 .0126 .0163 .0197 .0229 .0259 .0288 .0314

22 .0042 .0081 .0118 .0153 .0185 .0215 .0244

23 . .0039 .0076 .0111 .0143 .0174

24 . ... ... .0037 .0071 .0104

25 . . . . .0015

 

Source: Gill (1978).
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Table 38.2. Critical Values for W Statistic*

n u=0.9 0.5 0.10 0.05 0.02 0.01

11 .973 .940 .876 .850 .817 .79

12 .973 .943 .883 .859 .828 .807

13 .974 .945 .889 .866 .837 .81'

14 .975 .947 .895 .874 .846 825

15 .975 .950 .901 .881 .855 835

16 .976 .952 .906 .887 .863 .844

17 .977 .954 .910 .892 .869 .851

‘18 .978 .956 .914 .897 .874 .858

19 .978 .957 .917 .901 .879 .863

20 .979 .959 .920 .905 .884 .868

21 .980 .960 .923 .908 .888 .873

22 .980 ‘ .961 .936 .911 .59: .575

23 .981 .962 .928 .914 .895 .881

24 .981 .963 .930 .916 .898 .894

25 .981 .964 .931 .918 .901 .888

26 .982 .965 .933 .920 .904 .891

27 .982 ‘ .965 .935 .923 .906 .594

28 .982 .966 .936 .924 .908 .696

29 .982 .966 .937 .926 .910 .898

30 .983 .967 .939 .927 .912 .900

31 .983 .967 .940 .929 .914 .902

32 .983 .968 .941 .930 .915 .904

33 .983 .968 .942 .931 .917 .906

34 .983 .969 .943 .933 .919 .908

35 .984 .969 .944 .934 .920 .910

36 .984 .970 .945 .935 .922 912

37 .984 .970 .946 .936 .924 914

38 .984 .971 .947 .938 .925 916

39 .984 .971 .948 .939 .927 .917

40 .985 .972 .949 .940 .928 .919

41 .985 .972 .950 941 929 .9-

42 .985 .972 .951 .942 .930 .922

43 .985 .973 .951 .943 .932 .923

44 .985 .973 .952 .944 .933 .924

45 .985 .973 .953 .945 .934 .926

46 .985 .974 .953 .945 .935 .927

47 .985 .974 .954 .946 .936 .928

48 .985 .974 .954 .947 .937 .929

49 .985 .974 .955 .947 .937 .929

50 .985 .974 .955 .947 .918 .930

Source: Gill (1978). I

  

*Nonnormality is indicated when the W statistic is smaller than the

appropriate critical value.
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Table 3.3. Upper Percentage Points of F Distribution (l-CDF): Equal

Replication (conc.) max

; 1 t=3 1 5 6 S 9 10 12

10 .25 2.85 3.39 3 8 4..1 4 5 4.86 5.13 5.39 5 85

.10 3.93 4 6) 5.1 5.68 6 11 6.49 6 84 7.16 7 74

.05 4.85 5 67 6.34 6. 2 7. 2 7.87 8 28 8 66 9.34

.01 7.4 8 6 9.6 10.4 11.1 11.8 12.4 12.9 13 9

12 .25 2.58 3.02 3.38 3.68 3.95 4.18 4.40 1.60 4.95

.10 3.45 4.00 4.44 4.81 5.13 5.42 5.68 3.92 6 33

‘ .05 4.16 4.79 5.30 5.72 6.09 6. 2 6.x2 “.00 7 48

.01 6.1 6 9 7.6 8.2 8.7 9.1 9.5 9.9 10 6

15 .25 2.32 2.67 2.95 3.18 3.38 3.56 3.72 3.87 4.13

.10 3.00 3.41 3.74 4.02 4.25 4 46 4.65 4.82 5.13

.05 3.54 4.01 4.37 4.68 4.95 5.19 5.40 5.59 5.93

.01 4.9 5.5 6.0 6.4 6.7 7.1 7.3 7.5 8.0

20 .23 2.07 2.33 2.53 2.70 2.85 2.98 3.09 3.20 3 38

.10 2.57 2.87 3 10 3.29 3 46 3 60 3.73 3.85 4.06

.05 2.95 3.29 3.54 3.76 3 94 4.10 4.24 4.37 4.59

.01 3.8 4.3 4.6 4.9 5 5.3 5.5 5.6 5.9

30 .25 1.80 1.98 2.12 2.24 2.34 2.42 2.49 2.56 2.68

.10 2.14 2 34 2.50 2.62 2.73 2.8- 2.90 2.97 3.10

.05 2.40 2.61 2.7 2.91 3.02 3.12 3.2 3.29 3.39

.01 3.0 3.3 3.4 3.6 3.7 3.8 3.9 4.0 4.2

60 .2 1.51 1.62 1.70 1.76 1.81 1.86 1.90 1.93 2.00

.10 1.71 1.82 1.90 1.96 2.02 2.07 2.11 2 14 2.21

.05 1.35 1.96 2.04 2.11 2.1 2.22 2.26 2.30 2.36

.01 2.2 2.3 2.4 2.4 2 2.5 2.6 2.6 2.7

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 00 1 00
 

Source: Gill (1978)
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Table Ba 4» Upper Percentage Points of Chi-Square Distribution

0 a: 0.3 0.2 0.1 0.05 0.025 0.01 0.005 0.001

1 1.074 1.642 2.706 3.841 5.024 _6.635 7.879 10.83

2 2.408 3.219 4.605 5.991 7.378 9.210 10.60 13.82

3 3.665 4.642 6.251 7.815 9.348 11.34 12.84 16.27

4 4.878 5.989 7.779 9.488 11.14 13.28 14.86 18.47

5 6.064 7.289 9.236 11.07 12.83 15.09 16-75 20.52

6 7.231 ' 8.558 10.64 12.59 14.45 16.81 18.55 22.46

7 8.383 9.803 12.02 14.07 16.01 18.48 20.28 24.32

8 9.524 11.03 13.36 15.51 17.53 20.09 21.96 26.12

9 10.66 12.24 14.68 16.92 19.02 21.67 23.59 27.88

10 11.78 13.44 15.99 18.31 20.48 23.21 25.19 29.59

11 12.90 14.63 17.28 19.68 21.92 24.72 26.76 31.26

12. 14.01 15.81 18.55 21.03 23.34 26.22 28.30 32.91

13 15.12 16.98 19.81 22.36 24.74 27.69 29.82 34.53

14 16.22 18.15 21.06 23.68 26.12 29.14 31.32 36.12

15 17.32 19.31 22.31 _ 25.00 27.49 30.58 32.80 37.70

16 18.42 20.47 23.54 26.30 28.85 32.00 34.27 39.25

17 - 19.51 21.61 24.77 27.59 30.19 33.41 35.72 40.79

18 20.60 22.76 25.99 28.87 31.53 34.81 37.16 42.31

19 21.69 23.90 27.20 30.14 32.85 36.19 38.58 43.82

20 . 22.77 25.04 28.41 - 31.41 34.17 37.57 40.00 45.31

21 23.86 26.17 29.62 32.67 35.48 38.93 41.40 46.80

22 24.94 27.30 30.81 33.92 36.78 40.29 42.80 48.27

23 26.02 28.43 32.01 35.17 38.08 41.64 44.18 49.73

24 27.10 29.55 , 33.20 36.42 39.36 42.98 45.56 51.18

25 28.17 30.68 34.38 37.65 40.65 44.31 46.93 52.62

26 29.25 31.79 35.56 38.89 41.92 45.64 48.29 54.05

27 30.32 32.91 36.74 40.11 43.19 46.96 49.64 55.48

28 31.39 34.03 37.92 41.34 44.46 48.28 50.99 56.89

29 32.46 35.14 39.09 42.56 45.72 49.59 52.34 58.30

30 33.53 36.25 40.26 43.77 46.98 50.89 53.67 59.70

H)1. oq

O

o1 )(g

PEQ > x2] . a. For two-tailed procedures, table should be en-

tered at percentage corresponding to a/Z.
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Table B. 4. Upper Percentage Points of Chi-Square Distribution (cont.)

0 a: 0.3 0.2 0.1 0.05 0.025 0.01 0.005 0.001

31 34.60 37.36 41.42 44.99 48.23 2.19 55.00 61.10

2 35.66 38.47 42.58 46.19 49.48 53.49 56.33 62.49

33 36.73 39.57 43.75 47.40 50.73 54.78 57.65 63.87

34 37.80 40.68 44.90 48.60 51.97 56.06 58.96 65.25

35 38.86 41.78 46.06 49.80 53.20 57.34 60.27 66.62

36 39.92 42.88 47.21 51.00 54.44 58.62 61.58 67.99

7 40.98 43.98 48.36 ’2.19 55.67 59.89 62.88 69.35

38 42.05 45.08 49.51 53.38 56.90 61.16 64.18 70.70

39 43.11 46.17 50.66 54.57 58.12 62.43 65.48 72.05

40 44.16 47.27 51.81 55.76 59.34 63.69 66.77 73.40

41 45.22 48.36 52.95 56.94 60.56 64.95 68.05 74.74

42 46.28 49.46 54.09 58.12 61.78 66.21 69.34 76.08

43 47.34 50.55 55.23 59.30 62.99 67.46 70.62 77.42

44 48.40 51.64 56.37 60.48 64.20 68.71 71.89 78.75

45 49.45 52.73 57.51 61.66 65.41 69.96 73.17 80.08

46 50.51 53.82 58.64 62.83 66.62 71.20 74.44 81.40

47 51.56 54.91 59.77 64.00 67.82 72.44 75.70 82.72

48 52.62 55.99 60.91 65.17 69.02 73.68 76.97 84.04

49 53.67 57.08 62.04 66.34 70.22 74.92 78.23 85.35

50 54.72 58.16 63.17 67.50 71.42 76.15 79.49 86.66

51 55.78 59.25 64.30 68.67 72.62 77 39 80.75 87.97

52 56.83 60.33 65.42 69.83 73.81 78.62 82.00 89.27

53 57.88 61.41 66.55 70.99 75.00 79.84 83.25 90.57

54 58.93 62.50 67.67 72.15 76.19 81.07 84.50 91.87

55 59.98 63.58 68.80 73.31 77.38 82 29 85.75 93.17

56 61.03 64.66 69.92 74.47 78.57 83.51 86.99 94.46

57 62.08 65.74 71.04 75.62 79.75 84.73 88.24 95.75

58 63.13 66.82 72.16 76.78 80.94 85.95 89.48 97.04

59 64.18 67.89 73.28 77.93 82.12 87.17 90.72 98.32

60 65.23 65.97 74.40 79.08 83.30 88 38 91.95 99.61

61 66.27 70.05 75.51 80.23 84.48 89.59 93.19 100.9

62 67.32 71.13 76.63 81.38 85.65 90.80 94.42 102.2

63 68.37 72.20 77.75 82.53 86.83 2 01 95.65 103.4

64 69.42 73.28 78.86 83.68 88.00 93 22 96.88 104.7

65 70.46 74.35 79.97 84.82 89.18 94.42 98.11 106.0

66 71.51 75.42 81.09 85.96 90.35 93 63 99.33 107.3

67 72.55 76.50 82.20 87.11 91.52 96.83 100.6 108.5

68 73.60 77.57 83.31 88.25 92.69 98.03 101.8 109.8

69 74.64 78.64 84.42 89.39 93.86 99.23 103.0 111.1

70 75.69 79.71 85.53 90.53 95.02 100.4 104.2 112.3
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Table .B.“- Upper Percentage Points of Chi-Square Distribution (cont.)

1; a: 0.3 0.2 0.1 0.05 0.025 0.01 0.005 0.001

71 76.73 80.79 86.64 91.67 96.19 101.6 105.4 113.6

72 77.78 81.86 87.74 92.81 97.35 102.8 106.6 114.8

73 78.82 82.93 88.85 93.95 98.52 104.0 107.9 116.1

74 79.86 83.00 89.96 95.08 99.68 105.2 109.1 117.3

75 80.91 85.07 91.06 96.22 100.8 106.4 110.3 118.6

76 81.95 86.13 92.17 97.35 102.0 107.6 111.5 119.8

77 82.99 87.20 93.27 98.48 103.2 108.8 112.7 121.1

78 84.04 88.27 94.37 99.62 104.3 100.0 113.9 122.3

79 85.08 89.34 95.48' 100.7 105.5 111.1 115.1 123.6

80 86.12 90.41 96.58 101.9 106.6 112.3 116.3 124.8

81 . 87.16 91.47 97.68 103.0 107.8 113.5 117.5 126.1

82 88.20 92.54 98.78 104.1 108.9 114.7 118.7 127.3

83 89.24 93.60 99.88 105.3 110.1 115.9 119.9 128.6

84 90.28 94.67 101.0 106.4 111.2 117.1 121.1 129.8

85 91.32 95.73 102.1 107.5 112.4 118.2 122.3 131.0

86 92.36 96.80 103.2 108.6 113.5 119.4 123.5 132.3

87 93.40 97.86 104.3 109.8 114.7 120.6 124.7 133.5

88 94.44 98.93 105.4 110.9 115.8 121.8 125.9 134.7

89 95.48 99.99 106.5 112.0 117.0 122.9 127.1 136.0

90 96.52 101.1 107.6 113.1 118.1 124.1 128.3 137.2

91 97.56 102.1 108.7 114.3 119.3 125.3 129.5 138.4

92 98.60 103.2 109.8 115.4 120.4 126.5 130.7 139.7

93 99.64 104.2 110.8 116.5 121.6 127.6 131.9 140.9

94 100.7 105.3 111.9 117.6 122.7 128.8 133.1 142.1

95 101.7 106.4 113.0 118.8 123.9 130.0 134.2 143.3

96 102.8 107.4 114.1 119.9 125.0 131.1 135.4 144.6

97 103.8 108.5 115.2 121.0 126.1 132.3 136.6 145.8

98 104.8 109.5 116.3 122.1 127.3 133.5 137.8 147.0

99 105.9 110.6 117.4 123.2 128.4 134.6 139.0 148.2

100* 106.9 111.7 118.5 124.3 129.6 135.8 140.2 149.4

Source: Gill (1978)

’3

*For v > IOU, one may use the approximation x: v = (zl_a+/2v-1)‘/2, where

21 is an upper percentage point from the standard normal distribution (Table

-a

A.2).
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Table B. 5- Lower Percentage Points of Chi-Square Distribution

0 1-«: 0.999 0.995 0.99 0.975 0.95 0.9 0.8 0.7

1 0.002* 0.039* 0.157* 0.982* 0.004 0.016 0.064 0.148

2 0.002 0.010 0.020 0.051 0.103 0.211 0.446 0.713

3 0.024 0.072 0.115 0.216 0.352 0.584 1.005 1.424

4 0.091 0.207 0.297 0.484 0.710 1.064 1.649 2.195

5 0.210 0.412 0.554 0.831 1.145 1.610 2.343 3.000

6 0.381 0.676 0.872 1.237 1.635 2.204 3.070 3.828

7 0.598 0.989 1.239 1.690 2.167 2.833 3.822 4.671

8 0.857 1.344 1.646 . 2.180 2.733 3.490 4.594 5.527

9 1.152 1.735 2.088 2.700 3.325 4.168 5.380 6.393

10 1.479 2.156 2.558 3.247 3.940 4.865 6.179 7.267

11 1.834 2.603 3.053 3.816 4.575 5.578 6.989 8.148

12 2.214 3.074 3.571 4.404x 5.226 6.304 7 807 9.034

13 2.617 3.565 4.107 5.009‘ 5.892 7.042 8.634 9.926

14 3.041 4.075 4.660 5.629 6.571 7.790 9.467 10.82

15 3.483 4.601 5.229 6.262 7.261 8.547 10.31 11.72

16 3.942 5.142 5.812 6.908 7.962 9.312 11.15 12.62

17 4.416 5.697 6.408 7.564 8.672 10.09 12.00 13.53

18 4.905 6.265 7.015 8.231 9.390 10.86 12.86 14.44

19 5.407 6.844 7.633 8.907 10.12 11.65 13.72 15.35

2 5.921 7.434 8.260 9.591 10.85 12. 4 14.58 16.27

21 6.447 8.034 8.897 10.28 11.59 13.24 15.44 17 18

22 6.983 8.643 9.542 10.98 12.34 14.04 16.3 18.10

23 7.529 9.260 10.20 11.69 13.09 14.85 17.19 19. 2

24 8.085 9.886 10.86 12.40 13.85 15.66 18.06 19.94

25 8.649 10.52 11.52 13.12 14 61 16.47 18.94 20.87

26 9.222 11.16 12.20 13.84 15.38 7.29 19.82 21.79

27 9.803 11.81 12.88 14.57 16.15 18.11 20.70 22.72

28 10.39 12.46 13.56 15.31 16.93 18.94 21.59 23.65

29 10.99 13.12 14.26 16.05 17.71 19.77 22.48 4.58

30 11.59 13.79 14.95 16.79 18.49 20.60 23.36 25.51
 

*Divide these entries by 1000.

10(0) 1‘

 
I-a

 

P[Q > xi_a] 8 l-a. For two-tailed procedures, table should be

entered at percentage corresponding to l-a/Z.
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Table B. 5. Lower Percentage Points of Chi-Square Distribution (con .)

‘0 1-01: 0.999 0.995 0.99 0.975 0.95 0 9 0.8 0.7

31 12.20 14.46 15.66 17.54 19.28 21.43 24.26 26.44

32 12.81 15.13 16.36 18.29 20.07 22.27 25.15 27.37

33 13.43 15.82 17.07 19.05 20.87 23.11 26.04 28.31

34 14.06 16.50 17.79 19.81 21.66 23.95 26.94 29.24

35 14.69 17.19 18.51 20.57 22.46 24.80 27.84 30.18

36 15.32 17.89 19.23 21.34 23.27 25.64 28.74 31.12

37 15.97 18.59 19.96 22.11 24.07 26.49 2 .64 32.05

38 16.61 19.29 20.69 22.88 24.88 27. 4 30.54 32.99

39 17.26 20.00 21.43 23.65 25.70 28.20 31.44 33.93

40 17I92 20.71 22.16 24.43 26.51 29 05 2.34 34.87

41 18.58 21.42 22.91 25.21 27.33 29.91 33.25 35.81

42 19.24 22.14 23.65 26.00 28.14 30.77 34.16 36.76

43 19.91 22.86 24.40 26.79 28.96 31.63 35.07 37.70

44 20.58 23.58 25.15 27.57 29.79 2 49 35.97 38.64

45 21.25 24.31 25.90 28.37 30.61 33.35 36.88 39.58

46 21.93 25.04 26.66 29.16 31.44 34.22 37.80 40.53

47 22.61 25.77 27.42 29.96 32.27 35.08 38.71 41.47

48 23.29 26.51 28.18 30.75 33.10 35.95 39.62 42-42

49 23.98 27.25 28.94 31.55 33.93 36.82 40.53 43.37

50 24.67 27.99 29.71 32.36 34.76 37.69 41.45 44.31

51 25.37 28.73 30.48 33.16 35.60 38.56 42.36 45.26

52 26.07 29.48 31.25 33.97 36.44 39.43 43.28 46.21

53 26.76 30.23 32.02 34.78 37.28 40.31 44.20 47.16

54 27.47 30.98 32.79 35.59 38.12 41.18 45.12 48.11

55 28.17 31.73 33.57 36.40 38.96 42.06 46.04 49.06

56 28.88 32.49 34.35 37.21 39.80 42.94 46.96 50.01

57 29.59 33.25 _ 35.13 38.03 40.65 43.82 47.88 50.96

58 30.30 34.01 35.91 38.84 41.49 44.70 48.80 51.91

59 31.02 34.77 36.70 39.66 42.34 45.58 49.72 52.86

60 31.74 35.53 37.48 40.48 43.19 46.46 50.64 53.81

61 32.46 36.30 38.27 41.30 44.04 47.34 51.56 54.76

62 33.18 37.07 39.06 42.13 44.89 48.23 52.49 55.71

63 33.91 37.84 39.86 42.95 45.74 49.11 53.41 56.67

64 34.63 38.61 40.65 43.78 46.59 50.00 54.34 57.62

65 35.36 39.38 41.44 44.60 47.45 50.88 55.26 58.57

66 36.09 40.16 42.24 45.43 48.31 51.77 56.19 59.53

67 36.83 40.94 43.04 46.26 49.16 52.66 57.11 60.48

68 37.56 41.71 43.84 47.09 50.02 53.55 58.04 61.44

69 38.30 42.49 44.64 47.92 50.88 54.44 58.97 62.39

70 39.04 43.28 45.44 48.76 51.74 55.33 59.90 63.35
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Table. B. 5. Lower Percentage Points of Chi-Square Distribution (cont.)

9 1-0: 0.999 0.995 0.99 0.975 0.95 0.9 0.8 0.7

71 39.78 44.06 46.25 49.59 52.60 56.22 60.63 64.30

72 40.52 44.84 47.95 50.43 53.46 57.11 61.76 65.26

73 41.26 45.63 47.86 51.26 54.33 58.01 62.69 66.21

74 42.01 46.42 48.67 52.10 55.19 58.90 63.62 67.17

75 42.76 47.21 49.48 52.94 56.05 59.79 64.55 68.13

76 43.51 48.00 50.29 53.78 56.92 60.69 65.48 69.08

77 44.26 48.79 51.10 , 54.62 57.79 61.59 66.4 70.04

78 45.01 49.58 51.91 55.47 58.65 62.48 67.34 71.00

79 45.76 50.38 52.72 56.31 59.52 63.38 68.27 71.96

80 46.52 51.17 53.54 57.15 60.39 64.2 69.21 72.92

81 47.28 51.97 54.36 58.00 61.26 65.18 70.14 73.87

82 48.04 52.77 55.17 58.84 62.13 66.08 71.07 74.83

83 48.80 53.57 55.99 59.69 63.00 66.98 72.01 75.79

84 49.56 54.37 56.81 60.54 63.88 67.88 72.94 76.75

85 50.32 55.17 57.63 61.39 64.75 68.78 73.88 77.71

86 51.08 55.97 58.46 62.24 65.62 69.68 74.81 78.67

87 51.85 56.78 59.28 63.09 66.50 70.58 75.75 79.63

88 52.62 57.58 60.10 63.94 67.37 71.48 76.69 80.59

89 53.39 58.39 60.93 64.79 68.25 72.39 77.62 81 55

90 54.16 59.20 61.75 65.65 69.13 73.29 78.56 82.51

91 54.93 60.00 62.58 66.50 70.00 74.20 79.50 83 47

92 55.70 60.81 63.41 67.36 70.88 75.10 80.43 84.43

93 56.47 61.63 64.24 68.21 71.76 76.01 81 37 85 39

94 57.25 62.44 65.07 69.07 72.64 76.91 82.31 86 36

95 58.02 63.25 65.90 69.92 73.52 77.82 83 25 87.32

96 58.80 64.06 66.73 70.78 74.40 78.73 84 19 88 28

97 59.58 64.88 67.56 71.64 75.28 79.63 85.13 89.24

98 60.36 65.69 68.40 72.50 76.16 80.54 86.07 90.2

99 61.14 66.51 69.23 73.36 77.05 81.45 87.01 91.17

100* 61.92 67.33 70.06 74.22 77.93 82.36 87.95 92 13

Source: Gill (1978)

*For v > 100, one may use the approximation, xi vI-(za+¢2v-1)2/2, where

an is a lower percentage point from the standard normal distribution (Table
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TABLE B. 6. CRITICAL VALUES FOR TESTING ONE OUTLYIXG OBSERVATION

 

 

n 330.01 0.05 0.10 n 1=0.01 0.05 0.10

. 32 3.135 2.773 2.531

.. . 34 3.164 2.799 2.616

3 1.155 1.153 1 45 36 3.191 2.823 2.639

4 1.492 1.463 1 425 38 3.216 2.546 2.661

5 1.74 1.672 1 02 40 3.240 2.866 2.682

6 1.944 1.822 1.729 42 3.261 2.987 2.700

7 2.097 1.938 1.323 44 3.252 2 905 2.719

8 2.221 2.032 1.909 46 3.302 2 923 2.736

9 2.323 2.110 1.97 48 3.319 2.94 2.753

10 2.410 2.176 2.036 50 3.336 2.956 2.765

11 2 485 2.234 2.038 55 3.376 2.992 2.804

12 2 550 2.285 2.134 60 3.411 3.025 2.337

1 2.607 2.331 2.175 65 3.442 3.055 2.866

14 2.659 2.371 2.213 70 3.471 3.082 2.893

15 2.705 2.409 2.247 75 3.496 3.107 2.917

16 2.747 2.443 2 279 80 3.521 3.130 2.940

17 2.785 2.475 2 309 85 3.543 3.151 2.961

18 2.821 2.504 2 335 90 3.563 3.171 2.981

19 2.854 2.532 2.361 95 3.582 3.139 3.000

20 2.884 2.557 2.385 100 3.600 3.207 3.017

21 2.912 2.580 2.408 105 3.617 3.224 3.033

22 2.939 2.603 2.429 110 3.632 3.239 3.049

23 2.963 2.624 2.448 115 3.647 3.254 3.064

24 2.987 2.644 2.467 120 3.662 3.267 3.078

25 3.009 2.663 2.486 125 3.675 3.281 3.092

26 3.029 2.681 2.502 130 3.688 3.294 3.104

27 3.049 2.698 2.519 135 3.700 3.306 3.116

28 3.068 25714 2.534 140 3.712 3.318 3.129

2. 3.085 2.730 2.549 145 3.723 3.323 3.140

30 3.103 2.745 2.563

Source: Gill (.1978)
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Source Kendal (1973)
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TABLE 13.8. UPPER PERCENTAGE POINTS OF STUDENT'S t DISTRIBUTION (l-CDP)

 

  
 

0.

v 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.0005

1 1.000 1.376 1.963 3.078 6.314 2.706 31.82 63.66 636.6

2 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 31.60

3 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 12.92

4 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 8.610

5 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 6.869

6 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.959

7 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.500 5.408

8 0.706 0.889 1.108 1.397 1.860 2.306. 2.896 3.355 5.041

9 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4.781

10 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.587

11 0.698 0.876 1.088 1.363 1.796 2.201 2.718 3.106 4.437'

12 0.696 0.873 1.083 1.356 1.782 2.179 2.681 3.054 4.318

13 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 4.221

14 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 4.140

15 0.691 0.866 1.074 1.341 1.753 2.132 2.602 2.947 4.073

16 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 4.015

17 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.965

18 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.922

19 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.883

20 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.850

21 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.819

22 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.792

23 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.767

24 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.745

25 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.725

26 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.707

27 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.690

28 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.674

29 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.659

30 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.646

f (t)1
T

(1

I

" <’?=:

o ta 1

P [T > ta] = o. For two-tailed procedures, table should be entered

at column headed by desired value of 3/2.

grees of freedom.

In all cases, 6 = de-
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TABLE 3.8. UPPER PERCENTAGE POINTS OF STUDENT'S t DISTRIBUTION (l-CDF) (cont.)

3

v 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.0005

'31 0.682 0.854 1.054 1.310 1.696 2.040 2.453 2.744 3.634

32 0.682 0.853 1.054 1.309 1.694 2.037 2.449 2.738 3.622

33 0.682 0.853 1.053 1.308 1.692 2.034 2.445 2.733 3.611

34 0.682 0.852 1.053 1.307 1.691 2.032 2.441 2.728 3.601

35 0.682 0.852 1.052 1.306 1.690 2.030 2.438 2.724 3.592

36 0.681 0.852 1.052 1.306 1.688 2.028 2.434 2.720 3.582

37 0.681 0.852 1.051 1.305~ 1.687 2.026 2.431 2.716 3.574

38 0.681 0.851 1.051 1.304 1.686 2.024 2.428 2.712 3.566

39 0.681 0.851 1.050 1.304 1.685 2.023 2.426 2.708 3.559

40 0.681 0.851 1.050 1.303 1.684 2.02 2.423 2.704 3.551

42 0.680 0.850 1.049 1.302 1.682 2.018 2.418 2.698 3.538

44 0.680 0.850 . 1.049 1.301 1.680 2.015 2.414 2.692 3.526

46 0.680 0.850 1.048 1.300 1.679 2.013 2.410 2.687 3.515

48 0.680 0.849 1.048 1.299 1.677 2.011 2.406 2.682 3.305

50 0.679 0.849 1.047 1.299 1.676 2.009 2.403 2.678 3.496

60 0.679 0.848 1.046 1.296 1.671 2.000 2.390 2.660 3.461

70 0.678 0.847 1.044 1.294 1.667 1.994 2.381 2.648 3.436

80 0.678 0.846 1.043, 1.292 1.664 1.990 2.374 2.639 3.417

90 0.677 0.846 1.042 1.291 1.662 1.987 2.368 2.632 3.402

100 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 3.391

120 0.676 0.845 1.041 1.289 1.658 1.980 2.358 2.618 3.374

140 0.676 0.844 1.040 1.288 1.656 1.977 2.353 2.611 3.362

160 0.676 0.844 1.040 1.287 1.654 1.975 2.350 2.607 3.353

180 0.676 0.844 1.039 1.286 1.653 1.973 2.347 2.604 3.346

200 0.676 0.843 1.039 1.286 1.652 1.972 2.345 2.601 3.340

300 0.676 0.843 1-038 1.285 1.650 1.968 2 338* 2.592 3.323

400 0.676 0.843 1.038 1.284 1.649 1.966 2 335* 2.588 3.315

500 0.676 0.843 1.037 1.284 1.648 1.965 2 334* 2.586 3.310

1000 0.675 0.842 1.037 1.283 1.647 1.962 2 330* 2.581 3.301

a 0.6745 0.8416 1.0364 1.2816 1.6448 1.9600 2 3263 2.5758 3.2905
 

Source: Gill (1978)
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Table 8.9. (CONTINUED)
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Table B.9. (CONUNUED)

 

 

n p m a 2 3 4 5 6 7 8 9 10 ll [2 l3 [4 15 [6 I7 18 19 20

.001 3 6 10 I4 18 22 26 30 35 39 44 48 53 58 62 67 71

.005 7 1 1 16 20 25 30 35 40 45 50 55 61 66 71 76 82 87

17 .01 9 14 19 24 29 34 39 45 50 56 61 67 72 78 83 89 94

.025 12 18 23 29 35 40 46 52 58 64 70 76 82 88 94 100 106

.05 1 16 21 27 34 40 46 52 58 65 71 78. 84 90 97 103 110 116

.10 1 19 26 32 39 46 53 59 66 73 80 86 93 100 . 107 114 121 128

.001 4 7 1 1 15 19 24 28 33 38 43 47 52 57 62 67 72 77

005 7 12 17 22 27 32 38 43 48 54 59 65 71 76 82 88 93

10 15 20 25 31 37 42 48 54 60 66 71 77 83 89 95 101

.025 13 19 25 31 37 43 49 56 62 68 75 81 87 94 100 107 113

.05 17 23 29 36 42 49 56 62 69 76 83 89 96 103 110 117 124

t
a
o
o
x
b
—

U
n
w
o
o
w
A
—
a
o
m
m
w
—
w
o
q
m
w
—

t
o

28 35 42 49 56 63 70 78 85 92 99 107 114 121 129 136

8 12 16 21 26 30 35 41 46 51 56 61 67 72 78 83

13 18 23 29 34 40 46 52 58 64 7 75 82 88 94 100

16 21 27 33 39 45 51 57 64 70 76 83 89 95 102 108S
o
o
n

.025 14 20 26 33 39 46 53 59 66 73 79 86 93 100 107 114 120

.05 1 18 24 31 38 45 52 59 66 73 81 88 95 102 110 117 124 I31

.10 1 22 29 37 44 52 59 67 74 82 90 98 105 113 121 129 136 144

.001 4 8 13 17 22 27 33 38 43 49 55 60 66 71 77 83 89

.005 9 14 19 25 31 37 43 49 55 61 68 74 80 87 93 100 106

20 .01 11 17 23 29 35 41 48 54 61 68 74 81 88 94 101 108 115

.025 15 21 28 35 42 49 56 63 70 77 84 91 99 106 1 13 120 12

.05 1 19 26 33 40 48 55 63 70 78 85 93 101 108 1 I6 124 131 139

O

o
o
m
u
u
—
O

O
O
U
n
u
t
J
—
O
\
m
e
—
O
O
q
h
w
—
o
c

_
-

C
‘

I
.
)

u 31 39 47 55 63 71 79 87 95 103 111 120 128 136 144 152

 

Fur n or m greater than 20. the pth quantile w” of the Mann-Whitney test statistic may be approximated by

 

nm \'mn(n + m + I)

H p = 1 ID l1

 

where .r" is the pth quantile 01' a standard normal random variable,
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Table 3.10, QUAN'I’ILLS or fill: 1'10l‘tl.LlNU-1’Alt.\"l' Tesr SI'AI‘ISI'IC“

 

n p = .00! .005 .0/0 .025 .050 .100 f,n(n“— 1)

 

4 2 2 20

5 2 2 4 6 40

6 2 4 6 8 14 70

7 2 6 8 14 18 26 1 12

8 6 12 16 24 32 42 168

9 12 22 28 38 50 64 240

10 22 36 44 60 74 92 ' 330

11 36 56 66 86 104 128 440

12 52 78 9'4 120 144 172 572

13 76 110 130 162 190 226 728

14 106 148 172 212 246 290 910

15 142 194 224 270 312 364 1120

16 186 250 284 340 390 450 1360

17 238 314 356 420 480 550 1632

18 300 390 438 512 582 664 1938

19 372 476 532 618 696 790 2280

20 454 574 638 738 826 934 2660

21 546 686 758 870 972 1092 3080

22 652 810 892 1020 1134 1270 3542

23 772 950 1042 1184 1312 1464 4048

24 904 1 104 1208 1366 1510 1678 4600

25 1050 1274 1390 1566 1726 1912 5200

26 1212 1462 1590 1786 1960 2168 5850

27 1390 1666 1808 2024 2216 2444 6552

28 1586 1890 2046 2284 2494 2744 7308

29 1800 2134 2306 2564 2796 3068 8120

30 2032 2398 2584 2868 3120 3416 8990

For n greater than 30, the quantiles of 7‘ may be approximated by

l n(n2 - 1)

“.3 21'1“": - l) + '1'). -=.—‘

I u I 6 \ n - 1

where .1“, is the pth quantile of a standard normal random variable

 

souncu. Conover (1971)
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Table 8.11. Estimated Correction Factor for the Mann Whitney Test.

N = 30

a = 01 a = .05 a = 1

.1 .903 .038 .980

.2 .715 .876 .822

.3 .688 .769 .790

p .4 .516 .609 .716

.5 .474 .556 .632

.6 .386 .459 .519

.7 .283 .336 1 .405

N = 50

8 = 01 a = .05 a = 1

.1 .895 .910 .928

.2 .781 .854 .857

.3 .714 .787 .828

p .4 .603 .706 .769

.5 .478 .633 .694

.6 .383 .510 .580

.7 .192 .371 .465



Tab1e B.11.

'
O

\
n
'
m
‘
o
‘
l

a
r
e
.
)

N

Continued

.885

.851

.815

.725

.612

.510

.374

.01

149

N = 100

.945

.897

.863

.743

.653

.597

.500 '

.05

.963

.923

.878

.830

.756

.688

.584
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Tabie B.12. Estimated Correction Factor for the Spearman Rho Test.

N = 30

a = .01 8 = .05 a = .1

.1 .923 .930 .939

.2 .786 .854 .875

.3 .785 .806 .830

p .4 .682 .729 .762

.5 .548 .639 .686

.6 .463 .539 .588

.7 .350 .418 .476

N = 50

a = 01 a = .05 a = 1

.1 .925 .929 .939

.2 .869 .895 .911

.3 .777 .786 .857

o .4 .698 .798 .814

.5 .629 .711 .756

.6 .546 .636 .676

.7 .389 .507 .579



Table 8.12.

'
0

u
m
m
b
'
w
m

Continued

.944

. 954

.874

.817

.768

.686

.593

.01

151

N = 100

.954

.941

.905

.866

.815

.756

.669

.05

.970

.942

.923

.887

.850

.786

.716


