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ABSTRACT

INFORMATION-ENTROPY CONCEPTS

FOR NUTRITIONAL SYSTEMS

BY

Jerome Paul Harper

The objective of this dissertation is to view

nutritive processes as communication systems for trans—

mitting dietary nutritional information. This study

utilizes information theory concepts in the analysis of

nutritive communication systems. The concept of

information-entropy is used to derive the information

capacity of the system's dietary inputs and metabolic

requirements.

The major process investigated isthe systenltrans—

mitting informationensamino acids for protein metabolism.

First, a gene-protein channel is defined and hpothesized

to be the determinant of the metabolic information—

entropy requirements for amino acids. A nutritive

communication system is then postulated which contains

five basic components: (1) information source (food

protein), (2) encoder (intestinal amino acid transport

system), (3) channel (circulatory system), (4) decoder

cellular amino acid transport system), and (5) receiver
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(cellular amino acid pool). The transmission capacity of

amino acid information depends upon cellular metabolic

requirements which control the decoding capacity, and

thus the overall transmission efficiency. Cost of trans-

mission is defined as the ability of an information

source to satisfy metabolic requirements during a fixed

time period. A familiar rank-frequency distribution of

information theory, Zipf‘s law, is employed to order

source proteins on the basis of metabolic cost. Net

protein value is shown to be proportional to the inverse

protein rank (quality). A single channel model yields a

protein ranking similar to chemical score, while the

multichannel model generates a ranking similar to Oser's

essential amino acid index. The multichannel model could

be adapted to consider amino acid catabolism by the liver

(an important loss of information in the channel), and

predict a new protein ranking termed the "essential amino

acid retention index."

The other study concerns the information-entropy

of carbohydrate polymers. The hydrolysis of these poly-

mers is regarded as a metabolic encoding process. The

dietary carbohydrate message has to be reduced to the

monomer or dimer form if it is to be transmitted through

the nutritional channel (i.e., circulatory system). The

cost of encoding (time/monomer) is equated with the
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inverse activity of enzymatic hydrolysis (monomers/time).

The ranking of carbohydrate message length (degree of

polymerization) with respect to the rate of encoding

(hydrolytic activity) is shown to be identical to the

ordering scheme dictated by Zipf's law.
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CHAPTER I

INTRODUCTION

The title of this dissertation contains a compound

word, "information-entropy." This word carries with it

two different and distinct concepts which together repre—

sent somewhat of a union of information theory and ther-

modynamics. This union can be viewed as generalizing the

study of thermodynamics.

My notion of a generalized theory of thermo-

dynamics revolves about a simple hypothesis on the

occurrence of events. All events occur more or less

frequently for two reasons: (a) There exist physical

reasons favoring certain states, and (b) there exist

some mental reasons favoring certain states. Therefore,

if one is to interpret phenomena, a theory, methodology,

or principle is needed to quantify the frequency of

physical phenomena, and understand what quantification

means.

In science, the quantification of observable phe—

nomena is accomplished by calculating the entropy of the

system. In fact, the Second Law of Thermodynamics

implies that systems which cannot be quantified because

 

 

 



 



their behavior is so random have no utility. It was the

purpose of men such as Boltzman, with his permutability

factor, and Gibbs, with his interpretation of the

behavior of volume in phase space, to develop within the

science of thermodynamics the ability to quantify nature.

Given that entrOpy is a measure which strives to

quantify, how does it relate to information theory?

Information theory is the science of quantification.

Using its concepts and applying its theorems allows us to

understand how we are quantifying a system. This is why

I will later stress the importance of Zipf's law, an

empirical rank-size rule, in its information theory con-

text of frequency-cost relationships. The empirical

observation of Zipfian behavior is of little benefit if

one does not recognize that such behavior depicts a sys-

tem's organization. It is, then, no mere coincidence that

thermodynamic measures of entropy and the communication

measure of information are similar.

Because it is important to quantify phenomena, I

have sought in my thesis to develOp an information-

entropy methodology for analyzing nutritional systems.

Frequency, pattern, and organization are important con-

cepts in nutrition and a proper format should be devel-

oped for quantifying them. My conceptualization of

entrOpy in thermodynamics is that of quantification.

Little difference between the meanings of "entropy" in

 

 

 





thermodynamics, and "information" in information theory

exists. Both strive to achieve the same end, quantifica-

tion, which is the deeper meaning of entropy.

The quantification of nutritional systems is

begun by assuming the organism under study exists as a

 
biological information processing system. The informa-

tion being processed here is nutritional information.

The source of nutritional information for the organism is

the diet, which contains a vast array of different nutri—

 

tional signals, each signal varying in its frequency of

occurrence and each diet providing a distinctive pattern

of signals. This information is then fed into a highly

organized biological communication system which distrib—

utes and integrates the nutritional information to provide

the necessary chemical order (nutrients) for the continu-

ance of the organism's metabolic processes.

The nutritive system which best fits into the

above sequence of events is the protein metabolic system.

An extensive study of this system will be presented in

the text, and the relationships between the frequencies

of nutritional information (amino acids) and different

nutritional frequency patterns of proteins can be used

as a measure of the protein quality of the diet.

The carbohydrate study measures the information

or entropy of macromolecules. The amount of information

which they possess is based upon the frequency of

 



nutritional signals (glucose units) per molecule. The

ability of the carbohydrate message to be interpreted

(hydrolyzed) by the organism's enzymes depends on mes-

sage length.

The concept of "information—entropy" as used in

this study is thus defined as "the frequency of a nutri-

tional event" (e.g., the occurrence of an amino acid in

the diet or glucose unit insipolymer). This nutritional

frequency is then shown to favor a particular metabolic

state.

 



 



CHAPTER II

 LITERATURE REVIEW AND PERSPECTIVE

The relationship between entropy, information and

biology is complex. The following chapter presents

 

classical and statistical mechanical ideas on entropy,

 

their relationships to information, and the role of

 

information—entropy in biological systems. This chapter

is partically an historical review and partially a com-

mentary on the subject. Its purpose is to provide the

reader with a perspective on both subjects' scientific

aspects and my own conceptualization of the interrela—

tionships among entropy, information and biology.

2.1 Some Thermodynamic Aspects

of Entropy

 

Perhaps the best way to present the concept of

information-entropy is to begin with the development of

the entropy principle in thermodynamics. Early ideas

on heat were based on the study of steam engines, and

Sadi Carnot's (1) notes in 1824 on the efficiencies of

these engines are often regarded as the starting point

of thermodynamics. The concept of entropy was intimately

associated with views on the nature of energy, which was





 

thought to possess one of two qualities: (1) to be free

and available to do mechanical work, or (2) to be bound

and incapable of mechanical work. A qualitative degrada-

tion of energy from the free to the bound form was invari-

 ably observed to occur, and several rules were formulated

to describe this phenomenon.

Clausius (2) stated, "Heat can never, of itself,

flow from a colder to a hotter temperature." Thomson's

position, on the other hand, was, "It is impossible to  
derive mechanical effect from any portion of matter by

cooling it below the temperature of the coldest sur-

roundings" (3).

These statements are similar, and the principle

of physics which was derived from them is known as the

Second Law of Thermodynamics. Clausius presented in

1865 the classic formulation of this law:

The entropy of the universe at all times

moves toward a maximum.

The sense of entropy here is like the notion of bound

or latent energy with the added constraint of being

quantified at a particular temperature. The following

equation shows the relationship (4):

Bound energy (2 l 1)

Absolute temperature ' ° '

 Entropy =

A refinement of the above relationship was

obtained from analysis of the behavior of an elementary



heat engine in the Carnot cycle. It was reasoned that

if heat, g, were allowed in or out of the cycle only in

infinitesimally small increments, then q could be

approximated by its differential form, dq. Utilizing

this differential form the Carnot cycle heat behavior can

be described by the following integral form:

dq _ .

§ 77 — 0 (reverSIble), (2.1.2)

where T is the absolute temperature. The above is an

interesting mathematical form, for it is an equation which  implies that one has uncovered an exact differential mea-

sure, another state variable, different from energy, which

describes a system's thermodynamic behavior as the state

changes from a to b. The new state function was entropy,

S, and was formally defined:

dS = g? (for a reversible process) (2.1.3)

A mathematical approach for the derviation of caloric

entropy proposed by Caratheodory (5) verified that dq/T

is an exact differential only if the process is reversible.

Clausius used the efficiency concept to illustrate

a general difference in the entropy behavior between

reversible and irreversible processes. His result, known

as the Inequality of Clausius, states that the efficiency

of a reversible cyclic process, like the Carnot cycle,



is always greater than that of an irreversible cycle.

Clausius' comprehension of the fact that all real (i.e.,

irreversible) processes result in an entropy increase of

their surroundings, led to his statement of the Second

Law of Thermodynamics, which was the climactic effort

of the classicists in heat theory.

Because of the macroscopic nature of the Carnot

cycle study, it is not amenable to mechanistic analysis.

Such analysis requires a more detailed description of

the phenomenon, a microscopic picture, so that the macro-

scopic parameters such as temperature, pressure, etc.,

Vare understood as the aggregated mechanical behavior of

the elementary masses (atoms, molecules) in the system.

In a mechanical model, the possibility exists for defin—

ing the state variable, entropy, irrespective of the

process being reversible or in equilibrium. The ground—

work for such a model began in the late nineteenth cen—

tury and was to be the basis for understanding the

formulation of entropy.

The development of a mechanical explanation of

the Second Law of Thermodynamics can primarily be

attributed to Ludwig Boltzman. His explanation of the

Second Law has become the mainstay of statistical

mechanics. Boltzman began his studies in 1866 (6) which

were highlighted in 1872 (7) with the publication of a

long memoir which gave the first derivation of the

 

 

 



irreversible increase of entropy based on the laws of

mechanics and also upon those of probability. In this

memoir Boltzman presented a mathematical proof of the

second thermodynamic law by illustrating the uniqueness

of Maxwell's velocity distribution law (8) as a descrip-

 
tor of the equilibrium state. Maxwell had shown for

gases that his distribution was stationary and Boltzman

expanded the application of this proof by demonstrating

that whatever the initial state of a gas, it approaches  
a limit in the distribution of Maxwell.

In this proof Boltzman derived a partial dif—

ferential equation for a distribution function d(x,t),

with respect to time, the distribution function repre—

senting the number of molecules per unit volume with

kinetic energies at time t lying within an interval of

x to (x + dx). He showed that Maxwell's function is

stationary and makes 8d(x,t)/at vanish. The next phase

called for the introduction of an auxiliary function

called H, defined:

H = fowd<x,t> {1n [d(x,t)/fl] - 1} dx, (2.1.4)

which he proved can only decrease with time due to the

symmetry characteristics of the collision process and

the possibility of inverse collisions. It was then

shown that the Maxwell's distribution function minimizes
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the H function, proving that regardless of the initial

distribution of d(x,t) the final or equilibrium state

is realized in the Maxwell distribution. Even more

important than this fact, Boltzman pointed out, was

that the quantity H was proportional (with a negative

proportionality constant) to the entropy of the gas.

Needless to say, this result caused a consider—

able degree of interest and before long criticisms of his

approach arose. It was Boltzman's response (9) to one

of his critics that resulted in the formulation of the

second thermodynamic law as an expression of the laws of

probability. He showed that the entropy of a state is

reflected by its probability and an increase in entropy

merely reflects a shift from less to more probable states.

He employed a discrete model to illustrate this proba—

bilistic nature of entropy. It was hypothesized that a

collection of N particles possessed energies which were

integral multiples, j, of a basic energy unit, 3. The

number of particles having the j x e energy is denoted

by nj, such that the sum over i of nj equals N.

For a complete assessment of this system of par—

ticles, a listing of all the individual molecular ener—

gies would be required. To attain this assessment a

permutability measure, P, the number of different

arrangements (microstates) for a given distribution was

constructed by the equation:
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P— N‘ (215)
_—l—_l—__—' "n0.nl....nj1

Boltzman then reasoned that the most probable distribution

was the one where P is maximized. To find the maximum

for 3 he first used Stirling's approximation for factori—  
als (10) and proceeded to deduce the following equality:

1n P = —E n. ln nj + constant . (2.1.6)

3  
Recall equation (2.1.4) and recognize the similarities

between nj and d(x,t) and that the negative of the H

function is entropy. The beauty of Boltzman's proof

becomes readily apparent: he has, first, found the dis—

tribution which maximizes 3; second, shown the relation-

ship between P and entropy; and third, knows the nj's

will have a Maxwell distribution when the entropy of the

system is maximum. The classic formulation Boltzman gave

for statistical entropy, Sm, of the macrosystem in terms

of its microstate distribution is:

S = k - 1n P (2.1.7)

where kbis known as Boltzman's constant which is deter—

mined by dividing the gas constant by Avogadro's number.

The notion of probability is ascertained from P,

the permutability factor. Consider the logarithmic

expansion of equation (2.1.5) and apply Stirling's

approximation; the result has the form:
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1n P a N (ln N—l) - Z n.(1n n. - 1)

j J 3

= N 1n N - Z nj 1n jn

J

= -N X (nj/N)ln nj/N . (2.1.8)

3

The quantity nj/N is identical to the probability of the

jth microstate which shall be denoted as Pj' Substitut-

ing equation (2.1.8) into equation (2.1.7) for the

macrosystem entropy:

sm = —kbN g Pj 1n Pj . (2.1.9)

The behavior of this function is identical to that in

equation (2.1.3), and generates the most probable dis-

tributions when P is maximized.

Because one is greatly limited in his knowledge

of the microsystem structure, another successful approach

which overcame such limitations appeared at the beginning

of the twentieth century. It was developed by Gibbs

(11). The Gibbsian approach was proposed to show how

microscopic "behavior" determined the total thermodynamic

picture. Primarily, this was attained by employing an

abstraction which Gibbs called an ensemble. In essence,

this was a statistical-mechanical theory which could be

generalized as a statistical theory of systems of dif-

ferential equations (12).

 





13

An ensemble can be defined as a collection of a

large number of identical replicas of the representative

system. These replicas are all independently performing

the identical irreversible process. The main assumption

of ensemble theory is that the instantaneous macroscopic

state is related to the average of the replicas' states

taken over all the replicas.

The ensemble's macroscopic conditions can dic-

tate the probability distributions for each replica by  
affecting energy and motion. Then, for different macro-

scopic conditions, different ensemble types can be

identified. The following are the three most common

ensembles employed (13):

Microcanonical ensemble: A statistical ensemble

of closed, energetically isolated systems in a

constant volume, a replica here can be thought

of as being enclosed in an adiabatic shell where

neither exchange of energy nor of particles is

allowed. The rigidity of the constraints implies

that a simple probability function holds for this

type of ensemble. The microcanonical probability

function, Pmc, is constant and of the form

Pmc = l/P . (2.1.10)

The Maxwell—Boltzman distribution can be used to

calculate the probability function of a micro-

canonical ensemble.

 

Canonical ensemble: A statistical ensemble in

thermal contact with a thermostat, here the

replica is permitted to exchange energy with

another system whose energy is so large by com—

parison that its state remains unchanged. The

canonical probability function, PC, is there—

fore a function of the energy E- of each

replica and its form is exponenfial:

PC = A exp(-B'Ej) . (2.1.11)

 



14

A is a constant fixed by normalizaton, B' is the

inverse of thepmoduct of the Boltzman constant

and the absolute temperature. The term exp(-B'Ej)

is called the Boltzman factor.

Grand canonical ensemble: A statistical ensemble

which can exchange both energy and particles with

its surroundings, such an ensemble can be con—

ceived of as a box in contact with a thermostat

and possessing permeable walls. The grand canoni-

cal probability function, P C, is based both on

considerations of energy an particles:

._ _ V .. '
ch A exp( B Ej B Z njuk) (2.1.12)

where pk is the chemical potential of the jth

particle type.

 

After deciding what ensemble to employ, the

remaining problem in the Gibbs approach is that of com—

puting what is known as the partition function. The

partition function is probably the most important concept

in statistical mechanics today, from which important

thermodynamic variables (including entropy) can be esti-

mated. The partition function is a very simple mathe-

matical form that depicts the distribution or partitioning

of the system among the various energy levels or quantum

states. To calculate, sum the Boltzman factors for all

the different states (14):

Z = E exp(-B'E.) . (2.1.13)

j J

The partition function has an important statistical rela-

tionship to the probability of the system:

Pj = nj/N = exp(—B Ej)/Z (2.1.14)

 



15

which gives the function immense utility in thermodynamic

calculations.

An expression for entropy in terms of the parti-

tion function can be readily deduced. Recall that the

classical definition for entropy is the reversible dif—

ferential energy change divided by the absolute tempera-

ture. As the energy changes:h1theprocess so will the

partition function with respect to B' and Ej(15):

d 1n z = -E dB' — (B'/N) 2 nj dEj (2.1.15)

3'

(1n Z is preferred to Z because of its additive proper-

ties).

By performing a Legendre transformation on equa—

tion (2.1.15) and collecting terms, we cause the differ-

ential energy or heat change of the system to become:

dE = T - dS = d(ln Z + B'E)/B' (2.1.16)

or, alternatively, the entropy is:

d8 = kb - d(ln Z) + d(E/T) (2.1.17)

S = kb - 1n Z + E/T . (2.1.18)

Equation (2.1.17) can be converted to the Boltzman

equation for entropy after we recognize two relationships:

E = Z P.E. (2.1.19)

j
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-B'Ej = 1n(PjZ) . (2.1.20)

Equation 2.1.19 states that the macroscopic

energy of the system is the expected value determined

from the energies of each microstate, and equation

(2.1.20) is the logarithmic form of equation (2.1.14).

Substituting into equation (2.1.18) we have:

s = k 1n z + k 2 Pj(B'Ej)
b

J

= k 1n Z — k P. 1n P. — k P. 1n Z
b 2 j j Z 3

J 3

= k P. 1n P. . (2.1.21)

b E J J

The above equation is identical to equation (2.1.9), the

Boltzman entropy, divided by N.

In spite of the obvious similarities between the

Gibbsian approach and that of Boltzman, there are also

pertinent differences. Boltzman's entropy is a measure

which does not consider interparticle forces, and thus

neglects the effects of potential energy and the effect

of interparticle forces on pressure; Gibbs' entropy takes

into account all the energy and total pressure (16). The

question then arises, what is the true thermodynamic

entropy of a system?

The current thought on this question tends to the

Viewpoint that true thermodynamic entropy is difficult
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to define because the partitioning or experimental con-

ditions of the system depend upon the human element (17).

This "anthropomorphic" aspect of entropy imparts a con—

siderable degree of arbitrariness, making a definition

of true thermodynamic entropy essentially impossible.

However, it should be remembered that irrespective of

the manner in which the system's partitioning is accom-

plished, the partition-dependent behavior is not arbi—

trary but follows a course dictated by the Second Law.

Consequently, when studying the entropic behavior of a

system the most difficult problem is to state what ques-

tions we want to resolve and to formulate entropic

measures which allow their resolution.

2.2 Entropy and Information Theory
 

An important aspect of the entropy concept not

usually accounted for in traditional thermodynamic

approaches to entropy is its information attribute.

The first to recognize the relationship between

entropy and information was Szilard (18) in 1929, who

related the usage of information to the production of

entropy. This was approximately twenty years before

the development of information theory by Shannon (19) in

1948, and its value has only recently been recognized.

Shannon's contribution to science was significant, since

for years investigators had tried to formulate a useful
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measure of information for communication engineering

(20). Several names stand out in the early years:

Hartley (21) with his theory on information transmission,

using the logarithm of number of symbols as an informa—

tional measure, and Gabor (22), working on time-frequency

uncertainty and the logon concept. However, it was

Shannon who clarified the confused situation with his

theory.

Like Hartley, Shannon used a logarithmic measure

of the number of symbols as his measure of information.

Formally, Shannon's information measure for the jth sym—

bol, h., is defined as the negative logarithm of the

J

symbol's probability:

h. = - 1n P. . (2.2.1)

3 3

Shannon recognized his measure determined not the quan-

tity of information the symbol conveyed, but rather the

uncertainty of information. The Shannon measure can

also be applied to messages; this is accomplished by

determining the expected value of all symbols in the

message:

H = Z -Pj 1n 9. . (2.2.2)

The H-function has an absolute maximum when the proba-

bilities for all the symbols are equal (23):
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H = - 1n P. . (2.2.3)

max 3

Using equations (2.2.2) and (2.2.3) we can explore more

deeply the meaning of Shannon's information measure.

The notion of uncertainty is easily deduced, for as H

increases, the symbols become more equiprobable and the

ability to distinguish their information content

decreases, or alternatively, our uncertainty about them

increases. Another way to regard uncertainty is as a

measure of the number of degrees of freedom. The lower

the uncertainty the fewer degrees of freedom or the

greater the uncertainty the more degrees of freedom the

system has. The degrees of freedom concept also denotes

the idea of capacity and usually "information capacity"

is what Shannon's measure of information is called.

Information capacity means "message variety" to the com—

munications engineer, a useful parameter in designing

communication systems.

Given the measure of information in equation

(2.2.2), it is now much easier to see the relationship of

entrOpy, in equations (2.1.9) and (2.1.21), to informa—

tion.

The progression from information theory to thermo-

dynamics is accomplished by first relating information

theory to statistical mechanics, via the partition func-

tion, and thus to the various statistical-mechanical
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analogs of the laws of thermodynamics. This was first

done by Jaynes (24, 25) and his conclusions have since

been verified by others (26, 27, 28). The agreement

between information theory and thermodynamic entropy has

become such a well—accepted relationship that many cur—

rent textbooks on thermodynamics and statistical

mechanics rely heavily on the concept of information

when presenting these subjects (29, 30, 31). Perhaps

the following quote of J. von Neumann can best summarize  
the roles of information and thermodynamic entropy (32):

The thermodynamical methods of measuring

entropy were known in the mid—nineteenth cen-

tury. Already in the early work on statistical

physics it was observed that entropy was

closely connected with the idea of information:

Boltzman found entropy proportional to the loga—

rithm of the number of alternatives which are

possible for a physical system after all the

information that one possesses about the system

macroscopically (that is, on the directly,

humanly observable scale) has been recorded.

In other words, it (entropy) is proportional to

the amount of missing information.

Current investigations employing information theory

methodology in the study of the thermodynamics of open

systems (33) and chemical systems (34) have begun to

assess the use of information—entropy in engineering

disciplines other than telecommunications—related areas.

Both theoretical developments and wide application of

the information theory methodology came about during the

1950s (35) and brought the subject out of its infancy.

The 3rd London Symposium on Information Theory is an
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excellent illustration of the diversity of subjects

examined using the new concepts (36). The topics for

papers given ranged from studies on computers, elec-

tronics, statistics and mathematics to those on animal

welfare, political theory, psychology, anthropology,

economics, and anatomy, which are subjects divorced from

traditional communication applications. This period also

smntherise of coding theory (37, 38), an important step

increasing the utility of information theory for solving

the problems of a rapidly expanding telecommunications

industry.

The sixties provided less innovation than the

fifties, and more time for reflection on the theory's

fundamental concepts and tenets (39). Emphasis was

placed on coding theory, in particular on decoding

algorithms (40), and these studies have remained the

basic thrust of its mathematical development (41). In

addition to direct telecommunication applications,

information theory began to be firmly established in

several other disciplines. Psychology proved a fertile

area for the application of information theory, where the

individual was regarded as an information processing

device (42).

The economic adaptations of the theory also found

acceptance. The theory of information-entropy was used

as a mathematical tool for analyzing industrial
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concentration (43), the future prices of stocks (44), and

as an accounting methodology (45). Utilization of this

concept has become so widespread that an entropy law for

general economic processes has been proposed (46).

Interesting, but perhaps esoteric, is the application of  
an information theory observer—critic to evaluation of

the philosophical arguments of Aristotle (47), and the

application of the theory to detective work in crimi—

nology (48). However, an important new application of  
information theory was in the field of biology, where

many interesting new facts were discovered about the

information transcription of the genetic code onto the

protein space (49, 50).

To understand the information concepts which will

be employed in this work, it is necessary to discuss addi—

tional terminology and theorems pertinent to the study.

The best place to begin is with the extension of Shan-

non's information capacity, equation (2.2.2), to nth order

Markov processes or multivariate analysis. The idea

behind this extension is that the possession of an infor-

mation measure based on the joint probability of B and E

could be used to construct the entropy of the word BE,

that of B and E and T, the word BET, and so forth.

Shannon called such information calculations n-gram

entropies (51). Used in this manner the joint probability

has a multivariate connotation, but this would change if
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we considered the same message or word coming along a

telegraph wire. Such a message is different because it

is dynamic and can be thought of as a stochastic process.

Because outcomes (words) in such a process would be dis-

crete the formulation of H in a Markovian sense is pos—

sible (19).

Let us first look at the bivariate case involving

a pair of events and define the joint probability of the

ith and jth elements:

P(ij) = P(i) P(j/i) (2.2.4)

where P(ij) is the joint probability, P(i) the proba—

bility of i and P(j/i) the conditional probability of 1

given 1. The bivariate information capacity, H2, equals

the following (52):

H = —Z 2 P(ij) 1n P(ij)

1 J

2 Z P(j/i) 1n P(i)P(j/i) (2.2.5)

1.J

and if P(i) and P(j) are independent, H2 becomes

—2 Z P(i)P(j) 1n P(i)P(j)

1 3

N
H

= -Z P(i) 1n P(I) — 2 P(j) 1n P(j). (2.2.6)

1 1

Note that by subtracting H2 from Hi we get a new measure,

. . s

the divergence from Independence or a measure of 1 t—order
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Markov memory. Extending this to multivariate analysis

th .
or an n -order Markov chain we have

Hn = -2 ; ... 2 P(i)P(j/i) ... P(n/N-l) 1n P<i>P<j/i>
1 j n

... P(n/n-l) (2.2.7)

and if all the probability sets are independent:

H: = —Z P(I) 1n P(i) - Z P(j) 1n P(j)

1 J

— -Zp(n)1n P(n) . (2.2.8)

n

The difference between H: and Hn would be the same as an

nth-order measure of Markov memory.

The information-entropy measure expresses a

capacity for freedom or variety and is sometimes referred

to as "potential" information. Often, it is desirable

to speak in terms of the order or "stored" information,

15' of a system. Logically, the order or stored informa-

tion is the difference between the maximum disorder or

entropy of the system and its actual entropy:

I = H - H . (2.2.9)

Obviously, the notion of stored information can be

extended to any of the multivariate cases, giving a

measure of order for each case of dependence.
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The idea of "stored information" in information

theory terminology is usually conveyed by the concept

of redundancy, R. Redundancy, as explained by Weaver

(53), reflects that fraction of the message which is

ordered or repetitive:

R = IS/Hmax = l - H/Hmax (2.2.10)

The error in communicating a message is reduced as the

redundancy increases. Thus, the redundancy concept pro-

vides an indication of the reliability of the system.

Noise and channel capacity are two other common

terms. The channel capacity, C, is the maximum rate at

which information or entropy flows through a channel (the

physical medium of information transmission). Channel

capacity has the units symbols per unit time (54):

C = 1n (n)/t , (2.2.11)

where 1n n is sometimes referred to as the entropy of one

channel. Noise is one of the limiting factors in the

efficiency of transmission through a channel; it is the

error between the message sent and that received. The

processes of encoding and decoding the message are the

pertinent factors determining the noise of a channel.

One of Shannon's more important theorems describes the

potential for reducing the noise of a channel (19):
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Let a discrete channel have the capacity 9

and a discrete source the entropy per second H.

If H i 9 there exists a coding system such that

the output of the source can be transmitted over

the channel with an arbitrarily small frequency

of errors (or an arbitrarily small equivocation).

If H 3 9 it is possible to encode the source so

that the equivocation is less than H — g + e

where s is arbitrarily small. There is no

method of encoding which gives an equivocation

less than H - g.

The theorem implies that we cannot eliminate noise in the

channel but we can "learn to live with it."

A question generally addressed in information

theory concerns the capacity of a set of symbols (words)

in a code (language) to transfer information based on

their respective durations (lengths). The duration or

length of a word is related to its cost, because the more

symbols needed to convey a bit of information, the greater

the cost and the less efficient such a transfer becomes.

One might suspect then that the frequency of a word in a

language would be related to its cost; the longer words

being less frequent and the shorter ones more frequent.

An analysis by Mandelbrot (55) showed the most efficient

coding scheme per unit cost satisfied the aforementioned

suspicion. However, the result achieved by Mandelbrot

by an information theory approach had already been

realized years before by Zipf (56, 57) through empirical

analyses of language. The principle or law discovered

by Zipf and rationalized by Mandelbrot can be expressed

either by:
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a) a relation between the frequency of occur-

rence of an event and the number of different

events occurring with that frequency, or

b) a relation between the frequency of occur-

rence of an event and its rank when the

events are ordered with respect to frequency

of occurrence.  
Zipf's law is a power law which can be linearized by

employing its logarithmic form. Mathematically, the law

states that the logarithm of a word's rank in a language

or code equals the negative of the logarithm of its fre—

quency plus a constant equal to the logarithm of the

frequency of the word with rank one.

Mandelbrot's method for deducing Zipf's law

began by calculating the best probability rule for words

of a varying cost, cj. The idea for obtaining this rule

was very similar to Boltzman's for finding the maximum

of 1n P or the maximizing of the number of microstates,

yielding the most probable distribution. H was inter-

preted here as the total number of different messages

from H words:

1np=-N2 P. 1n P. (2.2.12)

j J J

and was maximized by the Lagrange's multiples method with

the constraints that the sum of the Pj's equals one and

that the total cost of the message of H words, CN, equals

the sum of the costs for each jth symbol:

C = n.c. = N P.c. . 2.2.13

N E J J g 3 J ( )
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{The result was that probability of the jth word must be

;re1ated exponentially to the jth cost to get the maximum

trumber of different words for a given cost:

Pj = exp (—bcj) (2.2.14)

 
“filere H is a constant.

The next step was to find the number of words

rJ(cj) of cost cj. This problem boiled down to a finite

difference problem:

 

N(c.) = 2 nj k kNk(cj - Ck) (2.2.15)-

Mfllich states that any one of the nk words can be used to

(nonstruct a message of cost (cj — ck) to build a word of

txatal cost cj. For a stable code, the finite difference

sc>1ution of equation (2.2.15) is:

= I
N(cj) Al exp (b cj) + A2 (2.2.16)

hfllere Al’ A2, and b' are constants, and where inverse b'

tiJmes the logarithm of Al equals the negative of the cost

Of the initial condition, cl.

By solving both equations (2.2.14) and (2.2.16)

fOr'cj, assuming A2 equals zero and sorting by increasing

cost or rank, the order of N(c.) as determined by its

cost is:
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9— ln (Rank [N(c )1) = 9— ln A — ln p (2 2 17)bl j l l j 0 -

9— 1n (Rank [N(c )]) = -bc - 1n P

b' j 1 j

= 1n P1 — 1n Pj (2.2.18)

which is a generalized form of Zipf's law and dictates an

ordering for the number of words of cost C3. in a message

of H words, which maximizes total message variety

(efficiency).

Recently, Kozachkov (58) showed that a ratio of

b/b' equal to one maximized the total message variety.

He stated that the overall number of different messages

is:

P=ZP.P=P2P. (2.2.19)

3' j

and by determining Pj from equation (2.2.18) and substi-

tuting he got:

-(b/b')
PlN(cj)

t
h
q

_P=P

j l

J _ .

p' 2 N(c.) (b/b ) . (2.2.20)

j=1 3

Then he calculated the sum over J different words for

three cases: b/b' greater than one, equal to one, and

less than one:



 



 

 

 

3o

_ p' 1-(b/b') .
P - l-—(bW)_ J , b/b < l

= p' ln J , b/b' = 1

= P_'.___ b/b- > 1 (2 2 21)
(b/b') - l ’ ' ° '

The maximum P clearly is for b/b' equal to one as J

approaches infinity, and we can thus write Zipf's law:

 

1n P. = 1n P — 1n Rank. . 2.2.223 1 ( 3) ( )

Kozachkov said that when a hierarchical structure or sys—

tem followed Zipf's law with a slope of minus one, its

organizability was maximum because the information

capacity at every level in the hierarchy was maximized

relative to the overall information capacity. This prin—

ciple was recently used as an indicator of national city-

size integration (59).

The far—reaching expressions of Zipf's law in

nature are very striking phenomena. Zipf himself expanded

the scope of his studies beyond that of word distribution

to distribution of interval frequency in classical music,

city-size frequency, product-manufacturing frequency,

retail store frequency, job-occupation frequency, newspaper

circulation frequency, charge account frequency in depart-

ment stores, frequency of telephone messages through

interchanges, and other examples which obeyed his rule (57).
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Many empirical laws developed by others are Zipfian;

Pareto's law of income distribution (60) being one of

the more notable, has often been cited as instrumental

in formulating the graduated income tax structure of today.

The Lotka distribution law (61) deals with the frequency

of scientific writing. The biologist's law of allometric

growth, and allometry in general (62), are good examples

of the organization of parts within the organism work-

ing through self-regulation for the benefit of the whole.

The dose-response curves (63) demonstrate the inherent

ability within an organism to interpret an incoming

coded chemical message and elicit a response dependent

upon the message magnitude (chemical frequency). Zipf's

law is a powerful tool for assessing the organizability

of various physical, biological or social systems.

The importance of information-entropy criteria

in statistical inference was demonstrated by Tribus

(64). He utilized the principle logically set forth by

Jaynes (65) and Cox (66) that the maximum entropy formal-

ism elicits the minimally prejudiced probability distri-

bution. This is true since the maximum entropy state is

achieved when the hypothesis favors no inference more

than another. Tribus then proposed a method for calcu—

lating the probability distribution which would maximize

the entropy function under the constraints imposed by

the standard statistical distributions such as uniform,
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exponential, gaussian, gamma, beta, etc. He then stipu-

lated that the particular probability density distribu-

tion which maximizes the entropy function yields the

minimally prejudiced probabilities. On this basis he

formulated an entropy inference test:

AS = N12 P(i) ln p(1) + 2 P(J) 1n P(J)

i j

- Z Z P(ij) ln P(ij)] (2.2.23)

1 J  
which, if one recalls equations (2.2.5) and (2.2.6), is

the difference between the maximum bivariate entropy,

Hg, and the distribution bivariate entropy, H2, quantity

multiplied by N. Thus, this entropy inference test

measures the independence between two distributions where

independence between the two sets implies that there is

no information difference between them. If one of the

distributions is prejudiced, then equation (2.2.22) mea-

sures the bias in our observed distribution. Tribus

showed that if the information difference between the

two distributions was small, the quanity -AS/N equals

the Chi-square statistic.

The importance of Tribus' work and other informa-

tion theory applications is that they demonstrate the

role of information in our world. The individuals men-

tioned in this section have uncovered that role: for
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example, Jaynes in statistical mechanics, Mandelbrot in

Zipf's law, and Tribus in statistical inference. In sub—

sequent chapters, I will expand the perspective on

information into the area of nutrition to more fully

examine the utilization of information by the living

system.

2.3 Entropy, Information and Biology

The validity of applying information theory  methodology to other fields, aside from those directly

related to communication systems, was a point of some

debate after Shannon's inception of the approach (67).

Some felt that information theory was an approach which

could only be justifiably used in telecommunication

applications. However, such a viewpoint defines the

theory's value only in terms of its immediate success.

One cannot deny communication engineers their well—

deserved credit for laying the sound mathematical founda—

tions of the methodology, but such limited range for

application unduly restricts information theory develop—

ment to the parochial aspirations of this discipline.

Unlike the communication engineers, physical, biological,

and societal scientists could not as easily put their

encoders and decoders on the table and confirm the the-

oretical predictions of the theory. Because the

biophysicist could not take the cell's DNA and examine
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its sequence nor the psychologist take a brain apart to

examine its neuron network, these early ventures of

information theory often resulted in frustration. This

frustration led to a decline in interest that has slowly

begun to be reversed with the determination of biochemical

and biophysical structures and functions of living systems.

The biological field is intimately associated with

the field of thermodynamics, and the important roles

played by entropy, information, order and control are

recognized throughout the discipline (68, 69, 70, 71).

The state of knowledge in several biological fields has

reached the level where application of the information-

entrOpy concept can have and has had a significant impact

on the interpretation of experimental studies.

A significant area of information theory applica-

tion in biology is in the field of neurophysiology. The

theoretical basis for applying information theory to the

nervous system was put forth by von Neumann in the mid-

fifties (72). His approach drew analogies between an

information synthesis of a reliable system's unreliable

components and neurological systems. Since this work,

experimental studies have tended to support the utility

of information analysis in neural systems. These appli-

cations have studied the encoding mechanism (73), trans-

mission and multiplexing of neural information (74, 75),
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and the general physiology of nervous cells (76) and

systems (77).

Another prime arena of biological information

theory applications is genetics, and I would like to pre-

sent one of the major works on the subject as an illus-

tration of the potential the entropic approach possesses.

At the beginning of the last decade, a new understanding

arose concerning the relationship between the structure

of DNA and that of proteins (78). The genetic code, as

this relationship is commonly called, a universal

biological language for the storage and transmission of

cellular information essential to metabolism and behav—

ior, was deciphered (79). Code words are formed by a

sequence of three nucleic acids which link together

forming a strand of DNA. Each sequence translates into

an amino acid which during transcription of the code is

catalytically joined to others to form proteins.

An impressive study on the genetic code has been

done by Gatlin (80). Her work examined the univariate

and bivariate information capacities,eqpations(2.2.2),

H, and (2.2.5), H2; the stored information, equation

(2.2.9), I and redundancy, equation (2.2.10), R, ofS;

nucleic acid sequences in DNA. The results of her

examination have led to new insights not only on the

grammar aspect of the genetic code but also on the evo-

lutionary process in nature.
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Recall that Is, stored information, is our

entropic measure for divergence from equiprobability or

equality in the univariate case or divergence from inde-

pendence in the bivarate case. Let us denote ISl as

univariate divergence and I$2 as bivariate divergence.

Both these measures have a special meaning with regard

to language. 151’ the divergence from symbol equality,

is the main determinant in a language of its message or

word variety. The frequency of a language's symbols  
thus dictates the available vocabulary. 152, the diver-

gence from independence, is the lSt—order measure of a

language's grammar. The degree of dependence imparts

redundancy or fidelity into the message by dictating the

symbols' relationships to each other (i.e., grammar).

Gatlin calculated I81 and 152 based on the per—

centage of guanine and cytosine, for phage, virus,

bacteria, plant, insect, and vertebrate organisms. Of

course, univariate information-entropy studies had been

done on DNA before, but not bivariate. The union of

univariate and bivariate information—entropy concepts pre-

sented in the format of a language study is a significant

advance in genetics, for it gives a new methodology for

interpreting the biochemistry of cellular information

storage which would not be possible without information

theory.
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How much further this new methodology might be

applied was also demonstrated by Gatlin in this study in

her application of the results to the evolutionary

process. [Such an application of information theory had

been previously suggested (81).] She was able because

of her application of information-entropy measures to

hypothesize a new theory about the course of evolution in

nature. The name given to this theory was Shannonian

evolution. Using the measures Isl and I52, Gatlin made

several important observations. One was that the nonver—

tebrate species showed considerable variation in the

frequency of guanine plus cytosine, whereas the verte-

brates displayed little variation. Also, it was noted

that the invertebrates had a significantly greater vari-

ation in both I81 and I82 than the vertebrates. After

extensive analysis of the situation her conclusion was

that the evolution from invertebrate to vertebrate life

forms has proceeded in two phases. The first was where

Is decreased; the second, where I52 increased.

2

Such an evolutionary course is significant in the

context of information theory because the I52 governs the

relative degrees of variety and fidelity in a code. If

we assume that the overall redundancy or order in the

code increases consistently as one advances up the evo-

lutionary hierarchy, then, the first phase of decreasing

IS can be regarded as the period when ISl is increasing.

2
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151 affects the message variety of the code and conse-

quently this first evolutionary phase can be looked on

as a search for an optimal alphabet for message variety.

The second phase of increasing 182 depicts an increase

in the grammar or dependence of symbols in the code.

This evolutionary process is similar to a child learning

how to read and write. First, the alphabet is taught

with simple spelling (a form of grammar). After the

alphabet has been mastered (end of evolutionary phase  
one), the development of reading and writing skills

involves learning increasingly more grammar, I52, as

advanced spelling, syntax, etc. (evolutionary phase two).

Gatlin's explanation of evolution through the

information theory allows us to understand Darwin's

theory in the context of modern evidence in genetics.

Other biological information systems amenable to

information—entropy analysis exist. If the genetic

system is a living information storage system, the meta-

bolic or nutrition system can be regarded as the main-

tenance system of an organism. Such a nutritional system

operates by encoding information (food) it receives, and

channeling it for use in growth. Although simply stated,

the control of the various metabolic information processes

is very complex and the information messages are not as

neatly visualized here as in the genetic system. However,

by employing an information—entropy analysis of nutritional
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systems, an integrated format uniting information stor-

age by the genes and information transmission in the

metabolic control process can begin to be understood.

2.4 Entropy, Information and Nutrition
 

The aim of this thesis is to employ the concept

of entropy in the context of information theory and to

use this measure, information-entropy, to analyze various

metabolic processes. The first question to be addressed

is whether Second Law principles hold for living systems.

Schrdedinger (82) stated that Second Law behavior does

hold for these systems, but qualified this statement by

claiming life to be a steady—state process which preserves

the entropy of the individual organism at the expense of

increasing the entropy of its environment. Essentially,

the organism maintains itself by consuming low entropy

substances and transforming them into higher entropy com—

pounds. Given that such thermodynamic behavior is valid

for biosystems, can we extrapolate from what could be

called an energy—entropy basis to an information—entropy

basis?

A direct translation of the phenomenological laws

of the thermodynamic branch to the information branch was

thought by von Neumann to be consistent and a logical

step. He expressed this opinion in the following

manner (83):

 



_._
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There is reason to believe that the general

degeneration laws, which hold when entropy is

used as a measure of the hierarchic position of

energy, have valid analogs when entropy is used

as a measure of information. On this basis one

may suspect the existence of connections between

thermodynamics and new extensions of logics.

Fong (84) also perceives congruency between the thermo-

dynamic and information behaviors of biologically active

systems, finding the laws for the creation and dissipa—

tion of information consistent with those of Prigogine's

(85) thermodynamic theory of structure, stability and

fluctuations.

A biological dissipative process can best be

understood in processes such as catabolism. By studying

the complete catabolism of alanine in the mammalian body,

it can be demonstrated through the use of an information-

entropy approach that a dissipation of information occurs

during catabolism as one would expect a dissipation or

increase in entrOpy to happen. The formula for the

complete respiration (catabolism) of alanine is (86):

4 CH3CH(NH2)COOH + 12 O + 10 C0 + 10 H O
2 2 2

+ 2 CO(NH2)2 . (2.4.1)

Using equation (2.2.2) to calculate H, our information-

entrOpy measure, the molecular information in the above

process will be dissipated if H(products) is greater than

H(reactants). The molecular probability on each side of

 

 



 I)
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the equation can be equated, using the respective mole

fractions of each compound. The following information—

entropy measures can be calculated from equation (2.4.1):

 
H(reactants) = -0.25 k 1n 0.25 — 0.75 k 1n 0.75

= 0.811 bits/molecule, (2.4.2)

and

H(products) = -0.454 k 1n 0.454 — 0.454 k ln 0.454

- 0.092 k 1n 0.092  = 1.351 bits/molecule (2.4.3)

where H is a constant factor for converting from natural

logarithms to base 2 logarithms. Results in information

theory are typically expressed as the number if binary

digits, termed "bits."

The amount of information present or stored in

the system is given by equation (2.2.9), and Hmax can be

calculated when the five different molecular species in

the above catabolic reaction are equiprobable (i.e.,

equal mole fractions). The informations of the respective

systems are:

I (reactants) = H - H(reactants) = 2.322 — 0.811
s max

= 1.511 bits/molecule, (2.4.4)

and

Is(products) = Hmax — H(products) = 2.322 — 1.351

= .971 bits/molecule. (2.4.5)
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The information change in going from reactants to products

is IS(reactants) minus Is(products), which equals 0.54

bits/molecule and indicates that information is being

dissipated.

Supposing that the basic dissipative laws of

thermodynamics can be transferred to those of information,

a detailed inspection of other information—entropy proc-

esses is necessary. Coding of information is an attribute

commonly seen in biological systems. An example of a

biological code is the genetic code.

However, information coding is not as readily

seen in nutrition as in genetics, the reason being that

the nutritional control system is a complex information

hierarchy. There is not a universal code such as that

in genetics which translates through a well-defined gene-

protein channel, but rather, many different codes and

channels make up the nutritional system. Perhaps the

most obvious code of relevance to nutritional studies is

that which can be termed the "protein code" (87). The

term "protein code" arises from the relationship between

the genetic code and proteins. If one assumes that DNA

is a coded sequence of nucleic acids, it logically fol-

lows that the amino acid sequence generated by the gene

itself is coded in some manner. Therefore, the protein

code can be envisioned as providing the basis for the

creation of chemical informational molecules whose
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function is dependent upon protein structure (e.g.,

enzymes).

Whether a protein can be formed from a nucleic

acid message depends upon the availability of amino acids

within the organism. Those amino acids which cannot be

synthesized by the cell must come from the diet, and the

proportion of such essential amino acids in the diet, as

well as quantities of nonessential amino acids, will

affect synthesis of cellular protein. This interrelation-

ship provides a basis for justifying application of

information-entropy to nutrition and for relating it to

previous work on information theory in biology.

Of course,theprotein system is but one system

for metabolic transformations. However, the above dis—

cussion allows one to visualize how entropy and informa-

tion concepts can be incorporated into an analysis of

nutritional systems. In the following chapters, I will)

present more detailed discussions and analyses of the

relationship of amino acid nutrition to overall protein

metabolism, and of some aspects of carbohydrate bio—

chemistry, with the aid of information theory. Through

these studies I hope to elucidate the importance of the

concept of information—entropy in nutritional systems.

 



  



 
 

CHAPTER III

INFORMATION AND THE QUALITY OF PROTEINS

Nutritionists have developed many concepts over

the years, both qualitative and quantitative, to express

the value or worth of a food protein. These standards

have been formulated by using combinations of chemical

and biological analyses. This chapter will present an

information—entropy approach for ascertaining a nutritive

protein code and then show the relationships among the

various indicators of protein quality and the information-

entropy of the diet.

3.1 Indices of Protein Quality
 

Before applying the principles of information the-

ory to protein quality, a description of the most common

indices of protein quality is in order. The following

concepts will be discussed: biological value, digesti-

bility, net protein value, net protein utilization,

protein efficiency ratio, chemical score, and essential

amino acid index. Although it is not a complete or

exhaustive list of concepts for assessing protein quality,

this set of indices is representative of the more com—

monly used parameters.

44
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The "biological value" (BV) is one useful estimate

of protein quality, involving a nitrogen balance approach.

This measure was defined in 1909 by Thomas (88) as the

fraction of absorbed nitrogen retained within the organism

for maintenance and growth. It may be expressed mathe-

matically as (89):

N - (F-F ) - (U—U )
_ I k k 

where NI is the nitrogen intake, F is fecal nitrogen, Fk

is endogenous fecal nitrogen, U is urinary nitrogen, and

Uk is endogenous urinary nitrogen. The endogenous fecal

and urinary nitrogen can be determined by finding a

nitrogen—free diet or one containing a small amount of

high quality protein (90). Estimates of biological value

which do not correct for endogenous nitrogen losses are

termed "apparent biological values."

"Digestibility" (D) is probably one of the oldest

qualitative indicators used in nutritional studies. It

denotes the fraction of the food nitrogen which is

absorbed, and is calculated (89):

N - (F-F )

D = _———————Ik (3.1.2)

NI

Like biological value, digestibility is a nitrogen bal-

ance index, and is classified as "true" or "apparent"
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depending upon the inclusion or exclusion of endogenous

nitrogen losses in its determination.

Another nitrogen balance method which is a com-

bination of the previous two indices was put forth by

Bender and Miller in 1953 (91). Essentially, this new

index, originally called "net protein ‘value" (NPV), is

equivalent to biological value times digestibility, and

expresses the amount of nitrogen retained divided by the

total nitrogen intake:

N - (F-F ) - (U-U )

NPV = I k k . (3.1.3)

NI

Several years later, Bender and Miller proposed

a shortened method for determining what is effectively

the same quantity as net protein value. The difference

was that this new index was approached through a carcass

analysis method rather than by nitrogen balance; the name

coined for this parameter was "net protein utilization"

(NPU) (92). Net protein utilization was defined:

B - (B —N )

NPU = ____N_k__13f_ , (3.1.4)

I

where B is the body nitrogen of the animals fed the test

protein, and B and NI are the body nitrogen and nitro-
k k

gen intake of the group fed the nonprotein diet.
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All the aforementioned tests for protein are

usually noted as being conducted either under "standard-

ized" or under "operative" conditions (89). Standardized

measurements are those made under maintenance conditions,

whereas operative ones are those made under other defined

conditions. Sometimes a suffix indicating the percentage

of protein in the diet is used (e.g., NPUlO). These are

important constraints to recall when interpreting these

tests, for the quality of the protein depends greatly on

the purpose for which it is required (e.g., growth or

maintenance).

Typically, net protein utilization and net pro-

tein value are taken as measurements of the same quantity,

and are not distinguished between in the literature (93).

However, for my purposes a distinction will be made. The

term "net protein value" will refer to those measures

calculated by multiplying digestibility times biological

value (i.e., those done by a balance method), while "net

protein utilization" will denote measures determind by

a carcass analysis method.

The final biological estimate of protein quality

to be presented here is the "protein efficiency ratio"

(PER). It is a parameter proposed in 1919 by Osborne

g£_§l. (94), and defined as the "gain in body weight

divided by weight of protein consumed." This is a very

popular index, primarily because of the ease with which
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it can be determined. Previously, the determination of

this ratio was conducted at several levels of nitrogen

intake. In this manner, an optimal level of protein

intake could be identified for a maximum gain in weight.

Generally, good correspondence between gain in body weight

and gain in body protein exists, however PER is not always

an acceptable evaluation procedure (95), and is not as

reliable an indicator of protein quality as the other

indices.

Although these indices are determined experi—

mentally in quite different ways, biological value, net

protein value, and net protein utilization are based

upon the same criterion, retained nitrogen, and should

measure essentially the same thing (96). The protein

efficiency ratio would be an approximate measure of this

criterion, also. Table 3.1.1 gives a listing of 21 dif—

ferent food proteins taken from an FAO compilation of

biological data (97), for which the scores of the above

four indices were found (protein level of diets from

which scores were derived was 10%). The table includes

both the actual score and a ranking of the proteins

based upon their respective scores. Table 3.1.2 lists

linear correlation coefficients (98) which were calcu-

lated using paired scores of the indices, and all

regressions are significant at P < 0.01. This cross-

correlation analysis shows a very good relationship
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firfirn-‘r ”‘7"

TABLE 3.1.1.——Listings of Biological Value, Net Protein Utilization,

Net Protein Value, and Protein Efficiency Ratio Scores

with their Respective Rankings (Source: FAO).

 

 

 

Biological Net Protein Net Protein Eigiziigcy

Value Utilization Value Ratio

Score Rank Score Rank Score Rank Score Rank

Egg, whole 93.7 1 93.5 1 90.9 1 3.92 1

Wheat, whole 64.7 14 40.3 20 58.8 11 1.53 18.5

Maize 59.4 18 51.1 17 54.5 15 1.18 20

Casein 79.7 4 72.1 4 76.8 3 2.86 5

Fish, meal 81.1 3 65.8 7 76.2 4 3.42 3

Soybean 72.8 8 61.4 8 65.9 6 I 2.32 7

Groundnut 54.5 20 42.7 19 47.2 19 1.65 15

Sunflower 69.6 10 58.1 9 57.0 12 2.10 13

Lentil 44.6 21 29.7 21 37.9 21 0.93 21

Rice, polished 64.0 15 57.2 10 62.7 9 2.18 11

Wheat, germ 73.6 7 67.0 5 64.9 7 2.53 6

Cottonseed 67.2 11 52.7 14 53.5 16 2.25 9

Linseed 70.8 9 55.6 11.5 59.8 10 2.11 12

Sesame 62.0 17 53.4 13 50.7 17 1.77 14

Milk, whole 84.5 2 81.6 2 81.9 2 3.09 4

Beef, muscle 74.3 6 66.9 6 73.8 5 2.30 8

Lima beans 66.5 12.5 51.5 16 47.9 18 1.53 18.5

Peas 63.7 16 46.7 18 55.8 14 1.57 16.5

Pigeon peas 57.1 19 52.1 15 44.4 20 1.57 16.5

Brewer's yeast 66.5 12.5 55.6 11.5 56.1 13 2.24 10

Fish, muscle 76.0 5 79.5 3 64.6 8 3.55 2

 

._ --.;J
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TABLE 3.1.2.--Matrix of Correlation Coefficients Relat-

ing Biological Value, Net Protein Utiliza—

tion, Net Protein Value, and Protein

Efficiency Ratio Scores.

 

 

BV NPV NPU

NPV 0.942 1.000 0.881

NPU 0.924 0.881 1.000

PER 0.906 0.859 0.918

 

TABLE 3.1.3.—-Matrix of Correlation Coefficients Relat-

ing Biological Value, Net Protein Utiliza-

tion, Net Protein Value, and Protein

Efficiency Ratio Ranks (Spearman's ps).

 

 

BV NPV NPU

NPV 0.911 1.000 0.865

NPU 0.901 0.865 1.000

PER 0.893 0.839 0.928

 

between raw scores of the various indices. On the other

hand, Table 3.1.3 has Spearman's rho (ps) (99) correla-

tion coefficients for the ratings (P < 0.01). Basically,

p can be regarded as a regression coefficient for two
3

ranked variables. Spearman's index additionally tells

us that not only are the scores highly correlated, but

so are the relative rankings ‘we derive from them. This
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lends support to the contention that all these tests are

a measure of the same variable.

The previously mentioned measures of protein

quality all involve a combination of biological and

chemical methods of analysis. Nutritionists have ardu-

ously sought a simple chemical procedure for determina-

tion of protein quality which would be as accurate as

the experimental measure of biological value. The

incentive is that biological tests are expensive and

time-consuming.

One of the first attempts to minimize biological

testing utilized chemical score (CS). Employing the

principle of the limiting essential amino acid as a

justification for their method, Mitchell and Block (100)

calculated a mathematical regression between their chemi-

cal scores and the biological values of 23 different

proteins.

Chemical score is represented by the minimum

amino acid ratio of amino acids in a test protein to

those in a standard protein; it was first advanced as:

min (ax.)

_______1_cs = asj , (3.1.5)

h . .
essential aminowherenu11(axj) is the content of the jt

acid which is most limiting in a test protein and asj is

the content of the jth essential amino acid in the
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standard protein (usually egg), expressed in units of

milligrams of amino acid per gram protein-N or grams per

16 grams protein-N.

However, the chemical score method considers

only one amino acid in the protein, so a scoring method

was sought that would include more amino acids of the

food protein.

A variation of the above approach, which incor-

porates all the essential amino acids of a protein into

an index of quality, was conceived by Oser (101) and has

come to be known as the Essential Amino Acid Index (EAAI).

This index has been used to estimate the biological

value of a food protein relative to that of a standard

protein.

The EAAI is basically a determination of the

geometric mean of a set of ratios. These ratios are the

same as those used in the chemical score procedure (i.e.,

the ratio of essential amino acid concentration in an

arbitrary food protein 5 relative to its concentration

in a standard protein). The standard protein used is

egg and Oser assigns to egg the biological value of 100.

The following mathematical formula is used to

calculate the index:

1/10
ax2 3X10

X100. (3.1.7)
   

asl asz aslo
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Oser had two additional rules he employed in determining

the EAAI: (l) the maximum value of the ratio for any

essential amino acid will never exceed 1.0, and (2) the

minimum ratio will never be less than 0.01.

The first of these assumptions is based on the

view that any quantity of an amino acid in excess of that

possessed by the standard is not needed by the organism

for growth. Thus, the surplus may be disregarded. In

the second assumption, the justification is that there

always exist certain endogenous sources of protein (e.g.,

intestinal enzymes, tissue degradation) which will supply

some of any essential amino acid.

The limitations of amino acid scoring methods

involve the factors which influence the digestibility of

the protein. For example, when the essential amino acids

arerun:completely available for metabolism, due to malab-

sorption or some other factor, the tendency of any index

based solely upon their content is to overestimate the

real biological value. Consequently, these indices are

most accurate for those proteins which are more completely

digestible and lose accuracy as the protein digestibility

decreases.

A closing observation concerns the accuracy of

these indices in assessing protein quality. In a recent

appraisal of protein quality, Bender considered it suf-

ficient to classify proteins as poor, moderate and good,
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and thought that Oser's EAAI or Mitchell's chemical score

were as good indices as any to use in assessing the multi-

plicity of protein needs (102). Thus, the salient point

seems to be that the amino acid content of the food pro—

tein may be one of the best indices of protein quality

available, and most certainly is a major determining

factor of the biological methods presented in this

section.

3.2 An Information—Entropy Model

of Protein Quality

 

 

The purpose of this section is to view protein-,

or more specifically, amino acid—nutrition with an

information—entropy lens. The study of protein nutri—

tion is extremely complex, but the main criteria for

nutritional well-being are dictated by the organism's

growth and maintenance requirements. As noted previously,

various indices judge protein quality by estimating that

fraction of the protein which is retained for growth or

maintenance, depending upon experimental constraints.

Consequently, any model which addresses the problem of

protein quality must consider the disparity between pro-

tein needs during growth and those of maintenance, and

the ways in which such variation affects protein quality.

I wish to begin my development of an information-

entropy model in a discussion of the information flow

from the genetic space to the protein space. My objective
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is not to extensively discuss the transcription of DNA

into protein, but rather to outline the processes

involved. The following sequence depicts the transcrip-

tion of the information from DNA (103):

(1) transcription from nuclear DNA template

to messenger RNA (mRNA)

(2) mRNA to cytoplasm

(3) attachement of 30S and 50S ribosomal

RNA (rRNA) subunits (called ribosomes)

to mRNA

(4) activation of amino acid by reaction

with transfer RNA (tRNA) forming

aminoacyl-tRNA

(5) aminoacyl—tRNA is directed to appro-

priate codon on mRNA

(6) synthesis of peptide bond by rRNA—

mRNA—aminoacyl-tRNA-protein complex

(7) termination of peptide chain by chain-

terminating codon.

This sequence is graphically illustrated in Figure 3.2.1.

The above relates how information coded on the

DNA template passes to a protein through RNA intermedi—

aries. As was previously mentioned in sections 2.3 and

2.4, the information present in the DNA can be defined

by an information—entropy measure, Hn’ based on the DNA's

nucleic acid frequency and sequence. This idea can be

further refined to stipulate that each protein-generating

DNA template has its own individual information-entropy

content. If these templates can each be assumed to be

structurally unique, then their information-entropy
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contents would also be unique. Given the information

transfer of protein synthesis, the information-entropy

level of the DNA template determines the amino acid com-

position of the protein. From the information theory

viewpoint, such a nuclear DNA template can be regarded  
as an information—entropy message source, and the gen-

eration of protein structure can be accomplished by a

biological communication system through which the message

is sent.  Five basic components make up this information

communication system: (1) a message for transmission,

(2) an encoding device, (3) a channel, (4) a decoding

device, and (5) a message transmitted or received. The

message sent over this system must be derived from a DNA

template in the genetic structure of the organism. The

encoding device should consist of enzymes such as RNA

polymerase, which encode the DNA message into messenger

RNA. I define the messenger RNA as the channel for this

system, for it carries the nucleic acid message from the

nucleus to the cytoplasm, where synthesis or decoding

occurs. Decoding devices for the channel are the ribo—

somal RNA subunits, aminoacyl—tRNA, and various protein

initiating factors. The decoding process seems to be the

most complex step of all, involving many phases; it could

be viewed as a highly redundant process to ensure accu—

rate decoding of the message. The message is received
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by the growing peptide chain, which upon completion

results in the protein—coded molecular form of the nucleic

acid message. The relationships described among these

biological phenomena and the information communication

system are illustrated in Figure 3.2.2.

One aspect of an information system thus far

ignored in the discussion of a gene-protein communication

system is the notion of noise. Because of the high speci—

ficity of the encoding and decoding devices (e.g.,

enzymes, tRNA, etc.), virtually error—free translation

from the DNA to protein occurs (103). Such noiseless

transmission in the system allows the information-entropy

content of the DNA template to be equivalent to the

information—entropy content.ofthe protein, for with

error-free transmission in communication systems, the

entropies of input and output are identical (104).

The above conservation principle between source

and receiver information-entropies is very important,

because we can now use it to explain the changes in

protein pattern requirements during growth. A rapid rate

of accretion of protein begins at birth and decreases as

the animal grows older (105). This rapid protein reten—

tion results both in a higher amino acid intake require—

ment, and in alteration of the pattern of amino acid

requirements between young organisms and adults. The

higher amino acid intake requirement is easily
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rationalized by observation of the increased demand for

these compounds in protein synthesis. However, the

alterations in duapattern requirements of amino acids

during growth are not so readily explained.

During growth, a phasic development of various

organs (e.g., liver, brain, skeletal muscle, etc.) occurs,

and each organ's growth has its own particular amino acid

pattern (105). The development of these various organ

systems must be caused by the expression of a particular

genetic region on the chromosomes of the organism. If

the assumption, previously put forth, that each such

region possesses a unique information-entropy content,

is valid, then our "conservation of information-entropy"

principle dictates that for the gene-protein channel the

information-entropy content of the corresponding protein

must also be unique. Recall that uniqueness can be

defined as a particular set or pattern of symbol fre—

quencies in information theory, meaning that each unique

protein has a distinct pattern of amino acid frequencies.

Thus, the differences in the pattern requirements between

young and adult organisms can be understood to result

from the differences in the information-entropy levels

of genetic expression taking place during the early and

later stages of development.

The "conservation of information-entropy" princi-

ple explains how protein metabolism and amino acid
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requirements can be affected by genetic expression. Now

II wish to relate the gene-protein communication systems

model depicted in Figure 3.2.2 to amino acid consumption

by the organism. The description of protein synthesis

illustrates the importance of amino acids within the

cytoplasm (called the "amino acid pool"). The presence

of many amino acids in the pool results from membrane

transportcflfthe plasma amino acids into the cell (106).

The primary source of plasma amino acids is the diet  
(107). Consequently, the decoding of the genetic message

is greatly dependent upon dietary amino acids, and par-

ticularly upon the essential amino acids, because they

affect the amino acid pool composition and size.

Let us momentarily review the physiological phe-

nomena involved in transmitting dietary amino acids to

the tissue cell. Most dietary amino acids are found in

the polymer form. The peptide bonds linking the amino

acids must first be broken to free them for absorption

and utilization by the organism. This bond-breaking proc-

ess is termed "hydrolysis," and begins in the stomach and

is completed in the small intestine (108). The freed

amino acids, coming from endogenous as well as exogenous

sources, and also occasionally some small peptides, are

taken through the intestinal wall by several transport

systems, with each system transporting only a certain
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set of amino acids. After absorption the amino acids

enter the portal blood.

The first major organ the dietary amino acids

encounter is the liver, which plays a central role in

 allocating these compounds to the other body tissues

(109). Approximately 70% to 100% of the absorbed amino

acids are taken up by the liver. Four possible fates

await the acids absorbed here: (1) catabolism, (2) syn-

thesis into plasma proteins, (3) release as free amino  acids, and (4) storage as a part of the liver's labile

amino acid reserve. The last three play important roles

in supplying remaining body tissues with amino acids,

although complete mechanisms for accomplishing this, par-

ticularly for the plasma proteins, are not fully under-

stood. However, free amino acids in the plasma are

transported into the cell and affecttfluaintracellular

amino acid pool. Thus, the role of the liver is that of

a regulator which temporarily stores the dietary amino

acids until they are required by other organs.

The overall effect of the above is that the

capacity of a cell to carry on protein synthesis is

directly dependent upon the ability of the diet to fulfill

the anabolic requirements of the organism.

From the information perspective, the above proc-

esses can be explained in terms of a communication system.

First, we have an information source, the food protein,
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which contains a coded message of amino acids. The

message possesses a certain information capacity deter-

mined in this case by its word frequency (or amino acid

frequency). The message is then encoded (i.e., protein

is digested and transported) for transmission through the

communiation channel (i.e., circulatory system), then

decoded (i.e., transported into cell) and directed to

some final destination (i.e., cellular amino acid pool).

With the inclusion of the "noise" concept in the system  (i.e., those inefficiencies such as the incomplete diges-

tion of the dietary protein or poor absorption of amino

acids from the gut), an essentially complete communica-

tion system has been described for the transmission of

the nutritive information in a food protein to the recep-

tor amino acid pools in the organism. Figure 3.2.3 is a

representation of this system relating the aspects of

nutrition and information theory.

Out of this basic concept of a communication sys-

tem, will be developed some nutritional information-

entropy measures. The first question concerns the nature

of our measures of information. Informational units are

amino acids, of which there are approximately twenty.

In the cellular pool, each of these amino acids indepen-

dently maintains a particular level or concentration as

a function of various metabolic outlets (106).
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The combinatorial approach proposed by Kolmogorov

(110), a maximum entropy formalization of Shannon's

method, is very appropriate for this system. In this

approach we assume that a variable, i! containing H ele-

ments, has an information-entropy content, H(x), equal

to k 1n N. Note this formulation for the information-

entropy of variable E is exactly the same as Shannon's

maximum entropy expression, equation (2.2.3), where all

the Pj's are equivalent and equal to l/N. Kolmogorov

expanded this approach for a set of variables, x1' ...,

xj, ..., xn, each capable of taking on values, N1, ...,

Nj’ ..., Nn' such that the information-entropy of this

set is defined:

H(xl,...,xj,...xn) H(Xl) + --- + H(xj) + ---H(xn)

k 1n N + --- + k 1n N. + ...

l J

+ k 1n Nn . (3.2.1)

Thus, for my nutritive amino acid communication

system, the variables are the twenty different amino

acids present in the cellular pool, where each possesses

a particular magnitude dependent upon the overall meta-

bolic state of the cell. A similar situation holds for

the dietary amino acids, but the magnitude of each of

these variables is characteristic of the protein fed.

Now, let's formalize this communication system into the

 



66

above combinatorial format. Starting with our information-

entropy source, we stipulate that a given amino acid vari-

able, aaj, has a magnitude, cxaxj, for food protein H,

where cx is the concentration of protein in the diet

(based on molar units of protein), and axj is amino acid

content of the protein (based on molar units of aaj per

molar unit of protein). The resultant magnitude of the

amino acid variable is calculated on the basis of moles

of aaj input to the system. Therefore, the total

information-entropy of the jth variable is defined:

t x

H o = k l aXI ’ 3.2.2X(aaj) n (C J) ( )

and a characteristic protein information-entrOpy, which

is based upon the typical or characteristic amino acid

spectrum of the dietary protein, as:

H aa. = k 1n ax. . 3.2.3x( J) < j) < )

For the message source, the channel transmission rate,

I(aaj), can be defined:

I(aa ) = SL-k ln (cxax.) (3 2 4)j At 3 . . .

The amino acid variable at the receiving end of

the communication system has magnitude amj for the jth

amino acid variable. This quantity is also mole—based.

If we were to consider a value for amj based on a single

cell it would be that amount of amino acid necessary to
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provide for all the cellular metabolic needs. However,

the total nutrition of the organism must be considered,

and not only one cell. Hence, the value of amj will be

that amount necessary to fulfill the metabolic require-

ments of all the cells in the organism. The information-

entropy for the receiving end is:

H aa. = k ln am. . 3.2.5r< j) J < )

Having defined the information-entropies of the

source and receiver, the next aspect of the amino acid

nutritive communication system to be viewed is the notion

of "channel capacity." The theorem on page 26 states

that to minimize transmission errors (noise), the channel

capacity must be greater than or equal to that of the

source. Ability to minimize transmission error is highly

desirable for any organism and nature would probably not

design a system which violated conditions allowing error

minimization. To minimize transmission error, the rela-

tionship which holds for the entrOpy of the source and

the channel capacity must also hold between the entropy

of encoder and decoder. That is, entrOpy of the decoding

device must be greater than or equal to that of the

encoding device. Also, the information-entrOpy capacity

of the source cannot be greater than that of the encoder.

If channel capacity is much greater than that of the

decoder, then decoder entrOpy becomes the determinant of



68

low error transmission. Assuming this is the case, the

decoder entropy determines the channel capacity for

error-free transmission. As was previously mentioned,

the decoder entropy's jth variable is determined by the

metabolic requirements of the receiving end of the system

for that amino acid. Consequently, the jth channel

capacity, ij, can be taken to be the information—

entropy of the respective receiver:

—1 _iC . — XE Hr(aaj) — At k 1n amj . (3.2.6)

Both the channel transmission rates and channel

capacities are measures of amino acid frequencies of our

system. These amino acid frequencies are very much like

word frequencies in any spoken language. That amino

acids are words and not symbols can be argued along

genetic lines. From the genetic code we know that amino

acids are coded by a combination of nucleic acid symbols,

as we similarly use letters to code words. In this vein,

amino acids can be regarded as words. The importance of

interpreting amino acids as words is that this interpre-

tation offers the opportunity to utilize Zipf's law and

obtain a cost—frequency ranking or ordering scheme.

The main proposition of Zipf's law is that the

total cost for a message of N words, C equalsNI

c = 2 n.c. . (3.2.7)

3'
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For our system we sum over only one i value because we

are transmitting through a one-word channel. Therefore,

equation (3.2.7) reduces to:

C = n c. (3.2.8)

Before proceeding further, let us define more

fully what is meant by "cost." The total cost, CN’ can

be visualized as the total time available for the jth

amino acid to do an appointed number of metabolic tasks

for the best growth or maintenance performance by the

organism. The number of metabolic tasks which can be

performed during CN is nj. Associated with each nj is

an individual cost, Cj’ which is the average performance

time for each task in the time period CN' Now, if there

is some ideal number of tasks the jth amino acid must

perform during CN and nj is less than the ideal, an

inefficiency arises. The degree to which the system is

inefficient is measured by cj, the average task perform-

ance time.

Given the above definition, let us proceed to

deduce Zipf's law as Mandelbrot did. Fortunately, com-

binatoric information—entropy formulation is much easier

to handle than a probabilistic form. Thus, the finite

difference approach is not needed to obtain the cost-

frequency relationship. We begin by setting CN equal to

At, the time duration of our channel. By definition, the
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ideal number of metabolic tasks required of aaj over the

time At is amj, and the number which can be supplied by

food protein E is cxaxj. Substituting these values into

equation (3.2.8) we get:

_ _ x

At — (amj)(cmj) - (c axj)(cxj) , (3.2.9)

which becomes:

c a .

ll= —m3—— . (3.2.10)

ij c axj

where cxj and cmj are the individual metabolic performance

costs of source aaj and receiver aaj, respectively. The

left side of equation (3.2.10) is a ranking or ordering

function of the ability to perform the ideal number of

metabolic tasks relative to the number permitted by

dietary limitation. The ranking is absolute if cxj is

restricted only to integer multiples of cmj' and the

readily identifiable integer sequence results. The rank-

is any other real multiple of c ..ing is relative if c

m]xj

The above formulation is exactly equivalent to

Zipf's law if we use an absolute ranking condition,

arxj ° cmj = ij' Making the above substitution, and

taking the logarithms of both sides, we obtain:

ln
 

(arx.)(cm.) x
J 3 = 1n ar . = 1n am. - ln c ax. , (3.2.11)

X] J J



ll
l
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where arX. is the absolute rank—order of protein H and

and amj is the maximum aaj frequency of the system, and

cxaxj is the aaj frequency of protein H. Equation (3.2.

11) is an exact formulation of Zipf's law.

However, because there is not sufficient evidence

to assume that cxj is always some integer multiple of

ij, the relative ranking form of Zipf's law will be

used:

C

—§i = ln r . = 1n am. — 1n chx. , (3.2.12)
ij X] J 3

where rXj is the relative rank—order.

Terms in the above formula should look familiar,

because after multiplying by a constant factor, k/At, the

formula becomes the difference between channel capacity

and the transmission rate. This allows one to see the

continuity between the operation of the nutritive amino

acid communication system and a metabolic cost—frequency

ranking dictated by Zipf's law. The objective now is to

utilize this concept of relative rank—order to relate our

information—entropy analysis to some of the indices of

protein quality discussed in the previous chapter.

We start by taking the antilogarithm of equation

(3.2.12) and shifting around some terms:

X

c ax. = a . r . . 3.2.13

3 m3/ X3 ( )
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Recall that cxaxj is the greatest possible quantity of

the jth essential amino acid from food protein H that can

be utilized by the organism. For the time being, let us

assume that all of the jth amino acid content of protein

H is utilized for protein synthesis by the organism, and

is thereby retained. If we divide equation (3.2.13) by

a factor which we assume constant over At, the total pro-

tein nitrogen intake, N expressions for both the
II

biological value of the jth amino acid of H, BV(xj), and

the net protein value, NPV(xj) (or, similarly, net protein

utilization) result:

  

C ax. amj 1

EV X. = NPV X.) = = ° . 3.2.14( J) ( ] —lNI N1 rxj ( )

This states that biological value and net protein value

for a single amino acid are inversely proportional to the

relative rank—orders.

x

By taking c axj and csasj for two different food

proteins, H and g, and dividing them, we get:

rs. chx.

r—3—= Tl . (3.2.15)

xj c asj

The following identity is seen from equation (3.2.14):

rsj BV(Xj) NPV(X.)

ix—j = _BV—_(sj) = N—JTPV(Sj , (3.2.16)
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and equation (3.2.15) becomes:

BV(x ) NPV(x.) cxaxj

BV(sj) = NPV(sj) = 5 ~ (3.2.17) 

The above equation isaacombined form of Zipf's law for

two variables of different rank. The important point here

is that under our constraint of complete absorption and

retention of the aaj, two protein quality indices have

been generated from our information-entropy rule, Zipf's

law.

Before removing some constraints from equation

(3.2.17) and seeing what happens to BV and NPV, I wish

to demonstrate an invariance of these indices when the

protein concentrations of two proteins are identical.

Letlusassume cS equal to cx. The first thing which we

notice is that:

BV(x.) NPV(X.) ax.

_ 3-3 x

BV(sj) ‘ NPV(sj) ' SE; ' (3°2°18)

or the relationship betweentflmaprotein quality indices

remains unchanged. This allows us to approximate the

total source entropies by the characteristic information-

entropy of the food protein inputted to the system.

The first constaint I will remove is that of 100%

digestibility. Removing this constraint changes equation

(3.2.18) to:
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D(x.)-BV(x.) NPV(x.) ax.

= = —l , (3.2.19)
D(sj)°BV(sj) NPV(sj) asj

where D(sj) is the digestibility of protein g and D(xj)

is that of protein H. Removing the digestibility con-

dition causes no change in our NPV relationship, but

does alter our BV, leading us to conclude that NPV is an

index more amenable to information-entropy analysis than

BV.

From the previous equation, the chemical score

index is readily derived. First, we limit consideration

of amino acids to those which are essential. Then, we

make protein 3, usually egg, our standard protein,

against whose essential amino acid levels we will compare

those of protein H. The minimum axj/asj ratio will be

equal to the chemical score (CS). By taking the loga—

rithm of equation (3.2.19) the information-entropy

explanation of chemical score is made obvious:

NPV(X.)

k 1n [c5] = min kln —1—

NPV(s.)

3

ax.

=min kln ——3 . (3.2.20)
asj

The chemical score is a measure of the amino acid channel

which transmits the least information.
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The essential amino acid index also can be

deduced from my information—entropy analysis. Instead

of searching through the essential amino acid channels

for the one with the minimum unknown/standard ratio, we

take the average of all the essential aaj channels:

1 E NPV(X.)

k 1n EAAI = —— k 1n

10 j EAA NPV(sj)

l E axj

= —— k 1n . (3.2.21)

10 j EAA asJ

The essential amino acid index is, thus, an average

essential amino acid transmission rate through the sys—

tem and if we neglect Oser's condition for rejecting that

fraction.of axj greater than asj, the EAAI is equivalent

to the average entropy over the essential amino acid set

(EAA) as defined by equation (3.2.1).

Now I will summarize the material presented thus

far in this section. First, a foundation for a nutritive

amino acid communication system was developed, by relat-

ing a schematic of an idealized communication system to

protein metabolism. Next, the type of information flow—

ing through the system (i.e., amino acids) was discussed.

The concept of "channel“ was defined separately for each

amino acid, the basis of this approach being the highly

specific decoding mechanisms of the cell, and a
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mathematical formulation of maximum and actual channel

transmission was developed. The point was then made that

the actual information transmission over a channel, after

encoding and decoding had completely taken place for one.

message, reflected the amino acid frequency in the

source protein message. It was then shown that the word

frequency in the channel was associated with a cost in

the same way that cost is reflected by word frequency in

any other code. A Zipfian distribution betweeen the

word frequencies of the source protein and order with

respect to their costs was shown to hold. The relation—

ship between biological value, net protein value, and

rank was deduced, and resulted in general log—linear

relations among word frequency, biological value and net

protein value. On the assignment of various (experi-

mentally controlled) values to the terms of our Zipfian

equation, the nutritional indices of biological value,

net protein value, chemical score, and essential amino

acid index were obtained with the proper constraints.

This section has proposed a theoretical model for

a nutritional protein communication system with analysis

by information theory. The results of the analysis can

be shown to correspond to some experimental and empirical

protein quality indices. Such an analysis of protein

nutrition is significant because it illustrates that

information—entropy measures of protein nutrition can be
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rec0gnized as relevant indicators of quality. Informa-

tion theory complements these chemical indices by pro-

viding them with a causal relation to nutritional protein

evaluation. An analysis with experimental data of the

concepts thus far presented follows.

3.33 Analysis of Information-

Entropy Approach

 

 

An analysis of the information-entrOpy model will

be undertaken in this section. Specifically, the model

predicts correspondence between amino acid content of

proteins and experimental measures of their protein

quality, namely, biological value and net protein value,

and this will be investigated. This analysis will be

accomplished using published data on the amino acid

contents of proteins and on their respective biological

data.

Three information—entrOpy measures will be

studied. Two utilize the notion of the average

information-entropy of the essential amino acid set.

Using equation (3.2.1) we define this variable for pro-

tein H as:

HX(EAA) = 110- . X k ln axj . (3.3.1)

3 EAA

The characteristic protein form is used because the level

of protein in the experimental diet was constant. In the
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previous section Oser's essential amino acid index

was derived from this information—entropy measure and

related to a log-average of the aaj net protein values.

I shall denote the log—average of the net protein

values for protein H as NPVX(EAA), and for protein E as

NPVS(EAA). Equation (3.2.21) becomes:

NPVX(EAA) - NPVS(EAA) = HX(EAA) - HS(EAA) . (3.3.2)

If the assumption is made that the NPV for each aaj in

the standard is equal to 1.00, NPVS(EAA) equals zero and

NPVX(EAA) becomes:

NPVX(EAA) = Hx(EAA) - HS(EAA) . (3.3.3)

The above is a logarithmic form of the EAAI, discounting

Oser's rules. The antilog form of equation (3.3.3)

should be an approximation of the true experimental NPV.

This antilog form will be defined as IX(NPV) if Oser's

conditions are not utilized, and as I:(NPV) with his

conditions intact. Both are information-entropy indices.

The other information—entropy measure is one

found in equation (3.2.20) which generates the chemical

score index. The antilog form for the left side of that

equation will be denoted as IX(CS).

To avoid the hazards involved with collecting

values from widely scattered literature citations, I have
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primarily selected data from a single extensive investi-

gation of the amino acid content of proteins and of their

effect on protein quality. The work to which I refer is

that of Bjorn O. Eggum (111) in studies carried out at

the Institute of Animal Science, Department of Animal

Physiology, Copenhagen. However, utilizing one source

also has its risks and to take into account various

peculiarities or errors in Eggum's work another source

on the amino acid content of proteins was employed.

These data are presented in an FAO compilation of amino

acid data, entitled The Amino Acid Content of Foods and

Biological Data of Proteins (97).
 

Sixteen different protein diets were studied in

Eggum's experiments. The essential amino acid contents

of these test diets are given in Table 3.3.1 for Eggum's

study, while Table 3.3.2 lists the amino acid contents

for similar food proteins found in the FAO report.

Unfortunately, Eggum's study did not include tryptophan

values. It is readily seen by comparison that the other

amino acids values in Tables 3.3.1 and 3.3.2 are very

similar. Therefore, I am going to use the FAO tryptophan

values with Eggum's other amino acid values in subsequent

calculations of information—entropy indices. Some com-

promises had to be made: FAO "meat and bone meal" data

was utilized in place of "meat and bone scraps"; "oatmeal"

was substituted for "oats" and "dehulled oats" in the



ill  



T
A
B
L
E

3
.
3
.
l
.
-
A
m
i
n
o

A
c
i
d

C
o
n
t
e
n
t

(
m
i
c
r
o
m
o
l
e
s
p
e
r
g
r
a
m

N
)

o
f

F
o
o
d
P
r
o
t
e
i
n
s

(
S
o
u
r
c
e
:

E
g
g
u
m
)
.

 

euIqu

eureqsxg g

euruorqqew

euruoelqm

eurIeA

auroneIosI

euroneq

g euruete

-rKueua

eursozxm

surprusrn

eututfixv

 B
a
r
l
e
y

O
a
t
s

W
h
e
a
t

R
y
e

M
a
i
z
e

S
o
r
g
h
u
m

C
a
s
e
i
n

F
i
s
h
,

m
e
a
l

M
e
a
t

a
n
d
b
o
n
e

s
c
r
a
p
s

S
o
y
b
e
a
n
,

m
e
a
l

G
r
o
u
n
d
n
u
t
,

m
e
a
l

S
u
n
f
l
o
w
e
r
,

m
e
a
l

S
k
i
m
m
e
d
m
i
l
k

p
o
w
d
e
r
,

5
0
%
,

+
d
e
h
u
l
l
e
d

o
a
t
s
,

5
0
%

S
o
y
b
e
a
n

m
e
a
l
,

5
0
%
,

+
d
e
h
u
l
l
e
d

o
a
t
s
,

5
0
%

P
i
g
p
r
e
s
t
a
r
t
e
r

E
g
g

1
,
5
7
7

1
,
7
2
3

1
,
0
9
0

1
,
5
6
9

1
,
1
6
7

7
8
3

3
,
5
0
6

3
,
3
7
8

2
,
3
0
9

2
,
5
5
7

1
,
3
6
4

1
,
4
9
7

2
,
1
8
5

1
,
9
0
7

2
,
5
2
3

2
,
8
4
3

1
,
3
6
6

1
,
5
2
9

1
,
2
3
4

1
,
2
1
9

1
,
5
7
6

1
,
0
4
6

1
,
4
7
4

1
,
4
2
8

7
7
6

1
,
0
8
0

7
6
2

1
,
3
1
4

1
,
3
6
9

1
,
3
0
3

1
,
1
9
0

1
,
8
6
7

1
,
8
8
9

1
,
9
0
5

1
,
5
7
8

1
,
7
7
7

2
,
0
9
9

1
,
8
9
4

2
,
2
6
2

2
,
6
2
3

1
,
7
2
1

1
,
9
5
7

1
,
4
3
8

2
,
1
2
5

1
,
9
2
1

1
,
7
3
7

2
,
1
3
6

2
,
6
9
7

2
,
8
4
3

2
,
7
3
2

2
,
4
4
4

2
,
4
3
8

2
,
6
7
3

2
,
8
8
6

3
,
5
1
6

3
,
0
6
8

2
,
2
0
9

2
,
6
7
9

2
,
0
9
1

2
,
7
2
1

3
,
1
3
2

2
,
7
5
3

3
,
1
5
3

4
,
0
2
3

1
,
7
5
3

1
,
8
9
7

1
,
6
1
0

1
,
4
8
2

1
,
7
9
6

2
,
1
4
5

2
,
9
7
3

2
,
2
7
8

1
,
3
9
1

2
,
1
5
8

1
,
6
6
3

2
,
2
4
0

2
,
1
2
5

1
,
9
6
8

2
,
1
9
6

2
,
7
4
5

3
,
3
8
3

3
,
3
6
9

3
,
2
3
6

2
,
8
4
4

5
,
0
5
1

5
,
5
4
2

5
,
7
0
3

3
,
7
8
4

2
,
9
4
5

3
,
5
6
4

2
,
9
4
0

3
,
1
2
6

3
,
9
3
6

3
,
4
5
4

4
,
7
5
6

4
,
2
4
1

LOH

('10

HO

mm

I

2
,
7
5
1

2
,
6
8
0

3
,
1
4
1

3
,
3
5
7

3
,
1
5
6

3
,
0
4
3

2
,
1
5
8

3
,
0
1
6

3
,
2
9
9

2
,
8
9
5

3
,
1
7
5

2
,
8
3
0

3
,
4
2
2

3
,
7
8
3

00

9
8

8
9
0

3
9
2
2

9
3
5

1
,
0
6
0

8
0
6

1
,
3
6
2

8
9
5

7
8
2

1
,
3
5
3

8
5
0

1
,
1
5
2

8
9
8

1
,
0
0
3

9
3
1

1
,
0
2
4

1
,
9
3
0

2
,
1
7
8

1
,
6
6
8

2
,
0
2
7

1
,
5
5
3

1
,
2
1
6

1
,
2
7
7

2
,
0
7
4

2
,
3
0
7

2
,
5
6
5

3
,
0
2
1

2
,
8
7
8

1
,
5
6
1

2
,
2
6
4

1
,
6
0
0

2
,
2
0
7

 

80

 





T
A
B
L
E

3
.
3
.
2
.
—
-
A
m
i
n
o

A
c
i
d

C
o
n
t
e
n
t

(
m
i
c
r
o
m
o
l
e
s
p
e
r

g
r
a
m

N
)

o
f

F
o
o
d
P
r
o
t
e
i
n
s

(
S
o
u
r
c
e
:

F
A
Q
)
.

 

eursfiq

eureqsxo 5

euruorqqew

SUTUOQILLL

QUTIPA

euronetosI

euroneq

eursoxfim s

auruete

-r£ueQd

surpr1srn

eururfixv

 B
a
r
l
e
y

O
a
t
m
e
a
l

W
h
e
a
t

R
y
e
,

w
h
o
l
e

m
e
a
l

M
a
i
z
e

S
o
r
g
h
u
m

C
a
s
e
i
n

F
i
s
h
,

m
e
a
l

M
e
a
t

a
n
d

b
o
n
e

m
e
a
l

S
o
y
b
e
a
n

G
r
o
u
n
d
n
u
t

S
u
n
f
l
o
w
e
r

M
i
l
k

p
o
w
d
e
r
,

5
0
%

+
o
a
t
m
e
a
l
,

5
0
%

S
o
y
b
e
a
n
,

5
0
%
,

+
o
a
t
m
e
a
l
,

5
0
%

P
i
g

p
r
e
s
t
a
r
t
e
r
:

M
i
l
k

p
o
w
d
e
r
,

6
0
%

+
o
a
t
m
e
a
l
,

4
0
%

E
9
9

1
,
4
8
0

1
,
6
3
6

1
,
2
7
9

1
,
4
4
7

1
,
1
3
9

8
6
5

3
,
5
4
1

3
,
3
1
6

2
,
2
4
3

2
,
7
2
8

1
,
5
1
1

1
,
5
4
0

2
,
3
6
9

2
,
1
8
2

2
,
5
1
5

2
,
9
8
6

1
,
2
8
6

1
,
4
5
4

1
,
2
9
5

1
,
1
0
4

1
,
2
0
7

9
7
4

2
,
1
5
2

1
,
4
6
5

7
9
4

8
7
6

8
0
9

1
,
1
8
8

1
,
1
6
5

1
,
3
9
0

1
,
3
7
7

2
,
0
3
9

1
,
7
3
9

1
,
7
6
2

1
,
5
3
6

1
,
7
5
2

1
,
8
8
9

1
,
5
8
8

2
,
4
9
2

2
,
2
2
2

1
,
6
2
4

2
,
0
2
3

1
,
3
6
7

1
,
9
2
8

1
,
9
8
5

1
,
8
9
3

2
,
0
3
0

2
,
6
8
7

2
,
6
9
1

2
,
7
3
9

2
,
3
5
6

2
,
5
3
5

2
,
5
8
8

2
,
6
7
6

3
,
6
6
8

2
,
7
1
6

2
,
3
7
5

2
,
5
5
9

2
,
2
3
1

2
,
7
0
3

3
,
0
8
5

2
,
6
4
9

3
,
1
5
4

3
,
6
5
8

1
,
7
1
1

1
,
8
0
8

1
,
5
5
5

1
,
6
6
8

1
,
7
5
5

1
,
8
6
6

2
,
6
3
5

2
,
0
5
2

1
,
3
6
2

2
,
1
7
0

1
,
6
1
2

2
,
0
4
0

1
,
9
8
9

2
,
1
5
8

2
,
2
2
8

2
,
9
9
8

3
,
1
7
8

3
,
4
5
8

3
,
1
7
9

2
,
9
3
6

5
,
9
7
1

6
,
3
4
7

4
,
6
2
8

3
,
4
5
0

2
,
8
5
5

3
,
7
0
5

3
,
0
5
0

3
,
0
6
1

4
,
0
9
2

3
,
5
8
2

4
,
2
1
9

4
,
2
0
5

L!)

H

0

§

('1 3
,
0
2
7

2
,
7
4
1

2
,
3
3
8

3
,
1
6
6

2
,
7
7
3

4
,
0
7
3

2
.
5
2
6

2
,
0
6
4

2
,
9
5
6

3
,
2
3
1

2
,
3
2
0

3
,
2
8
8

2
,
9
9
2

3
,
3
4
0

3
,
6
0
0

NF

Lnfi'

COCO 9
2
2

8
9
0

1
,
0
9
7

8
6
1

1
,
1
9
8

1
,
0
3
8

7
2
0

1
,
0
2
1

9
5
4

9
3
7

1
,
0
0
0

9
3
4

1
,
0
3
0

9
8
2

1
,
6
9
4

2
,
2
7
0

1
,
6
5
3

1
,
6
4
2

1
,
5
0
2

1
,
1
0
5

1
,
3
7
1

2
,
2
0
2

2
,
4
9
3

2
,
5
9
5

4
,
0
0
7

2
,
8
6
9

1
,
7
4
6

2
,
4
3
3

1
,
6
4
1

2
,
1
8
6

ueqdoqdfixm 5

Oh

CD

0") 3
3
3

2
2
6

2
1
8

3
7
4

5
0
5

2
9
4

2
6
7

3
9
2

3
1
2

4
1
4

3
9
1

4
1
8

4
5
4

 

81

 



 



82

50:50 mixed diets of dehulled cats with skim milk powder

and soybean meal; whole meal rye for rye; soybean,

groundnut, and sunflower seed for the respective meals;

milk powder for skim milk powder; and a 60% milk powder

+ 40% oatmeal mixture for the pig prestarter.

The results of Eggum's biological tests are

listed in Table 3.3.3. Two of the protein quality indi-

ces discussed in section 3.1 were measured, biological

value and net protein value. Two different test animals

were used: rats, each initially weighing 75 grams, and

baby pigs, about 16 days old. The rats were fed 150 mg N

once daily. The balance period was 5 days, and the feed-

ing regimen was initiated 4 days before. The baby pigs

were fed 6 times daily, and the protein level in their

diets was 3.84% N of dry matter. The Pigs were condi—

tioned for 6 days before the balance period, which was

4 days long.

Table 3.3.4 lists the information model's three

predicted values for the experimental net protein values,

which reflect various constraints upon the model (results

are given on a scale of 0 to 100). IX(NPV) is the uncon-

strained EAAI, whereas 13(NPV) employs Oser's rules, and

IX(CS) takes account of the limiting amino acid con-

straint in chemical scoring. The subscripts e and f

denote Eggum's and FAQ data sources, respectively. A

linear regression analysis (98) was done between the
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experimental biological values and net protein values of

both rats and pigs and the three information-entrOpy

indices. Table 3.3.5 lists the correlation coefficients

(98) of this regression analysis. All correlations

between the information-entropy indices and biological

evaluations are highly significant (P < 0.005 for all

regressions). Because the digestibility oftfluaprotein

affects the model's ability to predict this parameter

the correlation of the information-entropy indices is

somewhat poorer for biological value than for net protein

value. This was anticipated, however, and a reasonable

correlation still exists between the model's predictions

TABLE 3.3.5.--Matrix of Correlation Coefficients for Information-

Entropy Measures Versus Net Protein values and

Biological Values of Rats and Baby Pigs (based on

amino acid content of dietary protein).

 

Net Protein Biological Net Protein Biological

Value (Rats) Value (Rats) Value (Pigs) Value (Rats)

 

Ix(NPVé) 0.843 0.706 0.795 0.673

I:(NPVe) 0.898 0.794 0.817 0.729

Ix(CSe) 0.914 0.896 0.702 0.675

Ix(NPVf) 0.856 0.704 0.786 0.634

I:(NPVf) 0.880 0.748 0.806 0.677

0.951 0.916 0.777 0.729Ix(CSf)
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and biological value. The two information indices,

Ix(NPV) and 13(NPV), in which were considered the total

essential amino acid contents of the proteins, gave a

more consistent interspecies correlation than did the

chemical scoring estimate. This seems to suggest that a

total entropy criterion based on all essential amino acid

channels gives better results than relying on the entropy

of a single channel.

A ranking of the sixteen proteins based on their

respective scores was done. Spearman's rank correlation

coefficients (99) were then computed. The correlations

TABLE 3.3.6.--Matrix of Spearman's Rank Correlation Coefficients for

Ranks of Information-Entropy Measures versus Net Pro-

tein Values and Biological Values of Rats and Baby

Pigs (based on amino acid content of dietary protein).

 

Net Protein Biological Net Protein Biological

Value (Rats) Value (Rats) Value (Pigs) Value (Pigs)

 

Ix(NPVé) 0.824 0.629 0.546 0.513

I:(NPVe) 0.859 0.685 0.615 0.582

Ix(CSe) 0.854 0.848 0.476 0.499

Ix(NPVf) 0.888 0.727 0.594 0.526

I:(NPVf) 0.897 0.747 0.641 0.538

Ix(CSf) 0.950 0.906 0.553 0.582
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among the rank-orderings, Table 3.3.6, as dictated by

biological testing and information—entropy, were sig-

nificant (P < 0.05) for all regressions). This analy-

sis shows that not only does the information-entropy

model generate significantly correlated scoring, but

the rankings of these scores are also consistent.

Eggum determined the individual amino acid avail—

abilities for the food proteins, and thus performance of

the model was tested using quantities of available amino

acids as information sources. Each of the information-

entropy indices was recalculated using the fraction of the

protein amino acids which was available. A linear regres-

sion analysis and rank correlation were again done, and

the resultant correlation coefficients are given in

Tables 3.3.7 and 3.3.8, respectively. The results of this

analysis indicate that the model predictions are rela—

tively uninfluenced by the use of the original amino acid

content of the protein as opposed to the use of their

respective availabilities. Only the IX(CS) index, based

on the chemical scoring assumption, exhibits a consistent

improvement.

The final analysis undertaken in this section

was an examination of the use of Zipf's law in the model.

If a Zipfian relationship is present, a log-log plot of

our measure of information frequency versus the ranking



 



TABLE 3.3.7.--Matrix of Correlation Coefficients for

Information-Entropy Measures Versus Net

Protein Values and Biological Values of

Rats and Baby Pigs (based on available

amino acid content of dietary protein).

 

 

IX<NPV) 13(NPV) Ix(CS)

Negaifigtfiigts) 0.832 0.887 0.944

Bigiigicfifiats) 0.643 0.700 0.866

Nesaifigtigggs) 0.811 0.864 0.805

Bi°1°9ical 0.675 0.817 0.705
Value (Pigs)

 

TABLE 3.3.8.--Matrix of Spearman's Rank Correlation

 

Coefficients for Ranks of Information-

Entropy Measures Versus Net Protein Values

and Biological Values of Rats and Baby Pigs

(based on available amino acid content of

dietary protein).

 

 

IX(NPV) I:(NPV) IX(CS)

Nesaifigtjigts) 0.782 0.812 0.918

()

Biological 0.551 0.700 0,589

Value (Pigs)
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function should be linear. The information frequencies

for our information variables are given as follows: for

IX(NPV) the logarithm of the information frequency is

fix(EAA), while for I:(NPV) the log frequency is fix(EAA),

which, modified by Oser's rules, will be denoted fi:(EAA),

and that of IX(CS) is min Hx(aaj). The ranking function

is the inverse of the experimental net protein value or

biological value index (scaled to 1.0), as stipulated in

section 3.2. The amino acid frequency for the chemical

scoring method was calculated by multiplying IX(CS) by

the log-average amino acid frequency for egg protein,

anti-log fix(NPV) of egg. The logarithmic form of the

resultant frequency is denoted min H:(aaj). This stan-

dardization procedure is done to remove the variation which

would occur in the analysis if raw min HX(CS) were used.

The results of a correlation and regression analysis are

presented in Tables 3.3.9 and 3.3.10. Table 3.3.9 gives

the correlation coefficients. All correlations are at

least significant at the P < 0.01 level and these results

tend to support the cost-frequency behavior of Zipf's law.

However, the most interesting aspect of the analy-

sis is found in Table 3.3.10, which lists the slopes of

the Zipfian regression analyses. The information-entropy

model would predict a lepe of -l.00, but except for sev-

eral values, our regression analyses yield slopes of

approximately -0.50. Figure 3.3.1 illustrates this result
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Net Protein Value
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Figure 3.3.l.--fig(EAA), the Average Information-Entropy,

Versus Zipfian-Rank—Ordering for Net

Protein Value for Rats.
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for the information-entropy model of the net protein

value rank-ordering of rats. This apparent error in the

model is due to a constraint we still have operating,

namely, total retention of all amino acids fed into the

system. This effect will be explored more fully in the

discussion when the model is assessed in light of all

evidence.

In general, the information—entropy model cor-

relates with both scores and rankings of such indices as

biological value and net protein value. These results

tend to indicate”that information theory could provide

a causal interpretation for underlying biological phe-

nomena and serve as an aid in rationalizing observed

nutritional behavior.





 

CHAPTER IV

INFORMATION AND THE HYDROLYSIS OF

CARBOHYDRATE POLYMERS

The release of simple sugars from complex glucose

polymers is directly related to the nutritonal values of

these substances. A relationship between chain length

and hydrolysis can be deduced by an information-entropy

analysis. The organization of carbohydrate information

is related to the polymer's length, and this structural

information affects the rate of hydrolysis. The following

presents an information-entropy approach for discerning

the above relationship and verifies the analysis with

experimental data on such degradative processes.

4.1 Aspects of Carbohydrate Structure,

Hydrolysis and Metabolism
 

Unlike protein structure, carbohydrate structure

is usually based on the frequency of only one type of

chemical information, namely, glucose (112). Glucose is

a hexose or six-carbon sugar. Glucose is commonly found

in polymer forms of which there are two main linear

classes, amyloses and celluloses. The difference between

amylose and cellulose is structural: the way the glucose

94
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monomers are bonded into chains differs. In carbohy-

drates the general. picture is.of a single information

unit linked together in different ways, whereas in protein

nutritions there are many different information units

linked together in one way (i.e., peptide bond).

An amylose bond originates at the d-position on

the asymmetric carbon of glucose (113) and the cellulose

at the B-position (114). Primarily, the linkages go from

the C-1 to the carbon at the C-4 position in the adjoin-

ing molecule when the linear polymers are formed. Aside

from these linear bonds branching ones also exist; the

most common being the a-l,6. This discussion will be

limited to the linear 1-4 linkages. 1

Both amylose and cellulose must be degraded, so

their glucose can be made available in monomer form,

before these substances possess nutritional value.

Degradation is accomplished by bond-specific enzymes.

Those glucan hydrolase enzymes which react with the

a-l,4 linked glucose of amylose are known as amylases

(115), while those which react with the B-l,4 linkages of

cellulose are called cellulases (116). These glucan

hydrolases operate in two different ways. The exo-enzyme

mechanism attacks the nonreducing end of the polymer,

cleaving off disaccharides in an endwise fashion. The

endo-enzyme mechanism attacks the internal linkages of

the polymer, randomly breaking it down, initially into a
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mixture of di- and tri—saccharides, and finally into a

mixture of mono- and di—saccharides.

The residual di-saccharides and the few tri-

saccharides produced by polymer degradation are readily

hydrolyzed into glucose by an enzymatic class known as

the glucosidases. These enzymes are specific for the

(r-orB-bonds of two or three unit glucose chains and

react poorly or not at all with polymers of greater chain

length. Maltase is the common name of the glucosidase

degrading the a-linked di-saccharide, maltose, whereas

cellobiase is the enzyme acting on the B—dimer of glucose,

cellobiose.

Once glucose is obtained from the digestion of

carbohydrate polymers, one of its metabolic functions is

to provide the organism with energy. This energy is

obtained by the breakdown of glucose into carbon dioxide

and water. Two metabolic pathways are needed to derive

the nutritional energy from glucose (117). The Embden—

Meyerhopf pathway takes glucose and converts it into two

molecules of pyruvate with some generation of biochemical

energy (ATP). The pyruvate is then oxidized, with the

loss of a carbon, into an acetyl group which enters the

tricarboxylic acid cycle and is completely oxidized into

Carbohydrate and water with significant generation of ATP.

Given the above metabolic role of carbohydrates,

how is their nutritional value measured? Digestibility
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is the main criterion for ascertaining the value of car—

bohydrate. In the routine analysis of feeds, the nutri—

tional benefit of carbohydrate results from the

digestibility of two fractions, the crude fiber fraction

and the nitrogen—free extract. The chemical procedure for

this fractionation of feeds was developed over 100 years

ago and is known as the Weende method (118). The crude

fiber fraction consists basically of cellulose, lignin,

and other structural polysaccharides. The nitrogen-free

extract consists of amylose, sugars, lignin, and material

known as hemicellulose. Generally, then, the digesti-

bilities of cellulose and amylose components of the feed

are studied. Once the digestibilities of crude fiber

and nitrogen-free extract fractions are known, the contri-

butions to digestible and metabolizable energy of the

cellulosidic and amylosidic components can be determined

(119). The conversion factor for carbohydrates used in

calculating the digestible energy from the digestible

crude fiber and nitrogen—free extract fractions is

4 kcal/g. Also, if only the crude fiber and nitrogen-

free extract fractions are considered, the digestible

energy equals the metabolizable energy.

A chemical analysis of the feedstuff ingested by

an animal will give the necessary data on the quantity of

carbohydrate in the diet. The energy contribution of

these carbohydrates to the organism's metabolism is
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ascertained by experimentally determining the digesti-

bility of this fraction. Given the polymeric nature of

carbohydrates and the role these polymers have in nutri-

tion, their structure—function behavior could be patterned

after an information—entropic behavior similar to that in

the previous analysis of proteins. Just what information—

entropic rules are followed in carbohydrate metabolism

will be examined in the following section by analyzing how

the polymeric structure of carbohydrates affects the rate

and extent of their hydrolysis.

4.2 An Encoding Model for

Carbohydrate Information

 

 

In Chapter III the information-entropy approach

was used to analyze the transmission of nutritional pro—

tein information. The capacity of the decoder was

important in the previous analysis because it reflected

the optimal metabolic requirement for amino acids or

protein information. This demand had to be uniquely

satisfied for each essential word (amino acid), because

each was missing information required for development.

The information requirements in carbohydrate nutrition

differ from those for protein nutrition.

First, a carbohydrate requirement does not exist

per se, but rather, an energy requirement does. The

primary function of carbohydrates is to satisfy the energy

requirement, a requirement also fulfilled by proteins and

 



 

99

lipids. Therefore, carbohydrates do not supply essential

information as proteins do. The channel and decoding

capacities are not as relevant information-entropy

parameters for carbohydrates as they are for proteins.

This is because the excessive carbohydrate storage capa—

bility of the organism places no limit upon the trans—

mission of the carbohydrate message once it enters the

channel. Consequently, the carbohydrate information

encoded (i.e., transported) into the organism identifies

the carbohydrate nutritional contribution.

In the previous section the main carbohydrate

messages, amylose and cellulose, and their basic informa-

tion unit, glucose, were discussed. To be properly

encoded, a carbohydrate polymer message must be reduced

to the monomer form. This encoding process is analogous

to the enzymatic digestion of the polymer and we can

think of the amylase and cellulase enzymes as encoding

devices. Typically, the efficiency of the encoding proc-

ess is related to the length of the message to be encoded.

The longer the message, the greater the cost of encoding

and the lower the efficiency.

Message length in carbohydrate chemistry is

ssynonymous with the degree of polymerization, DP. Con-

ssider a carbohydrate source which is monodisperse (i.e.,

5111 molecules have the same degree of polymerization)

(120). If Ng equals the total number of glucose units in
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this source, the frequency of messages, m(DPj) with length

DPj, equals Ng divided by DPj. Given the relationship

between message length and encoding efficiency, Zipf's

law will order message length with respect to encoding

cost. Equation (2.2.22) gives this rank-frequency

relation:

k 1n m (DPj) = k 1n Ng - k ln (Rankj) , (4.2.1)

or, alternatively,

k l N DP. = k l N — k 1 R k. . 4.2.2n(g/ 3) ng n(anj) ( )

Solving equation (4.2.2) for Rankj yields the relation—

ship:

k 1n Rank. = k ln N - k 1n N DP.( j) g (g/ j)

= k In DPj . (4.2.3)

Equation (4.2.3) gives both the logarithm of the

rank and the absolute redundancy, which, if divided by

k 1n Ng' becomes the relative redundancy. The encoding

efficiency, EF., equals one minus the relative redundancy,

J

and for carbohydrates has the following form:

k ln DP. k 1n (N /DP )

g 1
 

EFj = 1 ' k 1n N = k ln N
g g

k 1n (Rank.)

= _ ____J_1 k M N . (4.2.4)

9
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The above equation is identical to Reza's definition of

encoding efficiency (121): the entropy of the original

message ensemble, k 1n (Ng/DPj), divided by the maximum

information, k ln Ng, times the average length of the

encoded message (equal to one for monomers). The inter-

pretation of the encoding process for a carbohydrate

message, then, is that as the cost of encoding increases

(i.e., as the ranking of messages with respect to their

degree of polymerization increases) the efficiency of

the encoding process decreases.

Now comes the question of relating the above

result from our information-entrOpy analysis to a rele—

vant nutritional index. Let us begin by defining the cost

associated with encoding further. Equation (2.2.13) gives

the total message cost which can accommodate an

information-entrOpy analysis. By considering a mono-

disperse carbohydrate message where the frequency, nj,

of words can be determined by dividing the total number

of symbols (monomers) present, Ng’ by the message length

or degree of polymerization, DPj, the total cost, CJ,

becomes:

N

C = n.c. = ——— c (4.2.5)
9

J 33 DP]. j.

An expression for the degree of polymerization based

upon the above variables is:
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c. . (4.2.6)

The variable cj is, in the context of our defi-

nition, the cost (i.e., time) per word. The total

activity of an enzyme is defined as the substrate con-

sumed per unit time (122). Consideration of the dimen-

sions of these two variables indicates that they are

inversely related; cj is equal to the inverse of the total

enzymatic activity. It is also logical that the enzymatic

activity is a determinant of the cost of encoding because

the encoding device for the carbohydrate message is an

enzyme. Given that this relationship is correct, a link

between a physical measure of carbohydrate hydrolysis

(i.e., enzyme activity) and information encoding can be

established. Substituting the total enzymatic activity,

a., for a carbohydrate polymer of degree of polymerization

J

l, we obtain:

(4.2.7)

Let us now consider two monodisperse systems of different

degrees of polymerization, each with a total of N9 mono-

mers. The total costs, CJ and CI’ of each system are

equal, but the individual message cost, cj and Ci’ will

be different. This is logical because the message
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frequency of the system possessing the lower degree of

polymerization increases proportionally as its individual

message cost decreases. Now, by taking the logarithm of

equation (4.2.7) for the jth and ith polymer systems and

calculating the difference between them, the following

is seen to be true:

k 1n DPj - k 1n DPi = k 1n (ai/aj) . (4.2.8)

Note that a similar result is obtained by computing the

difference between the jth and ith systems using equa-

tion (4.2.3), and results would be identical if the

inverse total enzymatic activity were equal to the rank.

Assuming that the enzymatic activity does have

such a relationship to rank, what is the significance?

Firstly, equations (4.2.7) and (4.2.3) imply that as rank

of DPj increases, the total enzymatic activity will

decrease, or alternatively, the respective polymer cost

will increase. Then, if we assume DPi to be greater

than DPj, the ratio ai/aj measures the relative rate of

hydrolysis as the more highly polymerized ith system is

degraded to a less polymerized state, the jth system.

This activity ratio is also known as the yield or recovery

(122) of the activity at the nth step of a reaction, com—

pared with some reference level. Since as the polymer is

degraded, it attains a lower degree of polymerization,
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the activity increases proportionally; the activity

recovered by the polymeriJIbeing degraded can be thought

of as proportional to the degree to which it has been

hydrolyzed. Therefore, the activity ratio ai/aj,

measuring the proportion of the activity recovered by

the molecule during degradation, can be viewed as an

estimate of a hydrolysis coefficient, Di' Setting

ai/aj equal to Di’ the degree of hydrolysis the ith poly-

mer system has undergone when it possesses a degree of

polymerization of i, and substituting into equation

(4.2.8), yields:

k 1n DP. = k 1n DP. + k ln D. , (4.2.9)
3 1 1

which relates the information-entropy measure, message

length, to the degree of hydrolysis. The hydrolytic mea—

sure of equation (4.2.9) is identical to the ratio of the

encoding efficiency of the jth system to that of the ith

system. Using equation (4.2.4) to determine EFi and EFj,

the ratio equals:

EFi _ k 1n (Ng/DPi) k 1n (Ng/DPi)

_EF._ klnN ’ klnN

J g g

 

k 1n (DP./DPi)

= _______l_____k 1n Ng , (4.2.10)
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which is proportional to the extent of hydrolysis, Di’ in

equation (4.2.9).

Thus, the cost-efficiency reasoning encompassed

by Zipf's law has led to ordering of the hydrolyses of

carbohydrate messages based on their lengths. This rela-

tionship in turn has been shown to be identical to the

encoding efficiency of the carbohydrate message, which

is probably the most sensitive variable in the trans—

mission of carbohydrate information. The agreement

between this approach and experimental data will be

demonstrated in the following section.

Before assessing the information—entropy method

for estimating the hydrolysis of amylose, a modification

is necessary because when activities of enzymes are

determined, the experimental conditions are constrained

so the concentration or word frequency, nj, instead of

N9, the total monomer concentration, is constant. Thus,

equation (4.2.7) becomes:

N .

DP. = 93

J

l
__ I

(4.2.11)
CJ aj

fivhere Ngj is the number of glucose monomers in the jth

System, equal to DPj times nj. Given equation (4.2.11),

the difference between the jth and ith polymer systems

is:
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k 1n DP. - k 1n DP.

3 1

+ k

In order to see how equation (

tion (4.2.8), both the relationships between N

and those between C

N Jgi

If we denote DPi as greater than DPj, the experi-

mental constraint of nj being

N e uals N

g 9]91

ratio of CI to CJ

shown by first changing N

is equal to

91

ratio and substituting it into equation

allows a solution of DPj in terms of CI'

equation (4.2.7) gives a solution of DPj

N .

k ln _El .

and CI must be known.

times the ratio of DPi to DPj.

to N

93

 

 

J

1n (ai/aj) . (4.2.12)

4.2.12) differs from equa-

gj and

equal to ni implies that

 

That the

that of DPi to DPj can be

times the DPi/DPj

(4.2.11), which

Alternatively,

in terms of CJ.

Equating these two expressions for DPi shows the ratio of

CI/CJ equal to aj/ai, and the

equation (4.2.8) equal to the

together these relationships,

(4.2.12) becomes:

I

the logarithm of which equals

  

gi

 

activity ratio given by

ratio DPi/DPj. Putting

the ratio term of equation

 

DPi

DP = l , (4.2.13)

zero. Therefore, the

(experimental modification of making the initial
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concentrations (i.e., word frequencies) equal necessi-

tates no adjustment of the information-entropy relation-

ship and equation (4.2.9) is valid.

The remaining question concerns the validity of

this information-entropy approach in determining an

experimental value such as enzymatic activity. If the

mathematical relations previously developed can be con-

firmed by experimental means, then more faith can be

placed in the viability of the information approach as a

 

methodology for understanding enzyme hydrolysis. The

following section will assess the agreement of experi-

mental data with information-entropy theory.

4.3 Assessment of the Carbohydrate

Information-Entropy Analysis

 

 

Because the conditions of the information-

entropic analysis were based upon a very selective type

of experimental situation, the first part of this assess-

ment will focus on monodisperse systems. However, the

approach will later be modified so that hydrolyses of

polydisperse systems can be calculated. The total

activity of the enzyme will be determined from velocity

of the reaction (moles/unit time) as given by the

Michaelis-Menten equation (123), and using the kinetic

constants characteristic of the enzyme under study.

The data for amyloses were taken from a paper by

Husemann and Pfannemuller (124), who experimentally



 

L
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determined the kinetic constants Vm' maximum reaction

velocity, and Km’ the Michaelis-Menten constants for two

amylases, B-amylase and phosphorylase synthetase (sources

of the enzymes in the studies were not discernible). Both

are exo-enzymes: B-amylase cleaves off maltose units

from the non—reducing end of the polymer, while phos-

phorylase cleaves or adds glucose-l-phosphate units to the

ends of polymers (125). The experiment was done with

amylose having degrees of polymerization from 750 to

3,815 where the molecular weight distribution for each

polymer was narrow (i.e., approximating a monodiSperse

solution). These amylose chains served as sites of

degradation for B-amylase action or sites of synthesis

for phosPhorylase. The substrate concentration used in

calculating the total activities of the enzymes was 0.060L

Table 4 . 3. 1 (page 111) presents the experimental kinetic data

for these enzymes while a graphic display of these rela-

tionships to DPj for B-amylase can be found in Figure

4.3.1 (page 109). The results of a correlation and

regression analysis (P < 0.05) between total enzymatic

activity and degree of polymerization are found in Table

4.3.3 (page 112).

Data on monodisperse solutions of carboxymethyl

cellulose for four different cellulase complexes, after

an experiment by Almon and Eriksson (126), were used to

investigate the chain length—activity relationship for
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Activity (10_6 moles/sec)
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Figure 4.3.l.-—The Degree of Polymerization Versus
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Activity (10.9 moles/sec)
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TABLE 4. 3.1.--Degree of Polymerization and Enzyme

Kinetic Data of Amylose.

 

  

 

B-Amylase Phosphorylase

DPJ' Km* vm* * aj * * Km1L vmfl aj H

750 66.6 10.3 10.29 19.0 22.2 22.19

1,775 39.4 6.25 6.25 13.0 14.7 14.70

2,875 29.6 4.0 3.99 6.75 8.04 8.04

3,815 23.3 3.45 2.92 3.25 4.50 4.50

 

*micromoles maltose.

**micromoles maltose/sec.

*micromoles glucose.

+micromoles glucose/sec.

TABLE 4.3.2.--Degree of Polymerization and Activity Data

of Cellulose, with activity in (moles/

sec.) x 10'

 

 

DP Cellulase Cellulase Cellulase Cellulase

j A* B** CT DTT

112 124 109 126 90

118 85 68 66 68

128 158 185 248 156

211 58 60 80 86

291 69 57 57 60

323 42 ‘ 25 35 30

351 37 16 _ 31 29

625 17 10 19 12

871 6.2 6.2 7.3 7.1

885 8.0 5.9 5.9 5.5

988 14.3 6.5 8.9 11.2

 

*Cellulase purified from Penicillium Chrysogenim Notatum.

**Cellulase dialyzed from Aspergillus Oryzae Niger.

1’Cellulase partially purified from Aspergillus Oryzae Niger.

I+Cellulase purified from Stereum Sanguinolentum.
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TABLE 4.3.3.—-Correlation and Regression Analysis of

Activity Data Versus Degree of Polymeriza-

 

 

tion.

Correlation .

Enzyme Coefficient Slope x-intercept

B-Amylase 0.99 -l.33 14.41

Phosphorylase 0.95 -0.97 14.21

Cellulase A* 0.95 -0.72 12.09

Cellulase B** 0.99 -0.65 11.46

Cellulase c”r 0.93 -0.57 11.26

Cellulase D++ 0.97 -0.70 11.85

 

*Purified from Penicillium C. Notatum.

**Dia1yzed from Aspergillus O. Niger.

+Partially purified from Aspergillus O. Niger.

IIPurified from Stereum Sanguinolentum.

 

 

 

 

cellulose. The carboxy-methyl-substituted cellulose was

used because samples with a narrow molecular distribution

were more readily attainable. The degree of substitution

on the cellulose had a range from 0.8 to 1.0. The

activity was calculated by relating the changes in vis—

cosity to enzymatic degradation and the enzymatic

activity was calculated through the number of bonds

broken per unit time; refer to the above paper if addi-

tional information on determination of the enzymatic

activity is necessary.

The cellulases employed are from three sources:

Penicillium Chrysogenim Notatum, Aspergillus Oryzae Niger,
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and Stereum Sanguinolentum. These cellulases are all

complexes of exo—enzymes and endo—enzymes (116), and

random as well as endwise degradation occurs. The rela—

tionship between enzymatic activity and degree of poly—

merization is given in Table 4.3.2 (page 111). A

graphical presentation for the Penicillium Notatum com—

plex, illustrating the respective activity versus chain

length behavior, is found in Figure 4.3.2 (page 110).

The results of correlation and regression analysis

(P < 0.0005) on the cellulases' enzymatic activities are

given in Table 4.3.3 (page 112).

The activity—degree of polymerization data indi—

cate that the log—linear correlation between DPj and aj

based on equation (4.2.7) is good for both the amyloses

and celluloses. This is an important confirmation of my

approach, because equation (4.2.7) was derived from an

information analysis of carbohydrate encoding, and also

is the foundation for subsequent equations relating the

information approach to enzyme hydrolysis. The regression

analysis yields a considerable variation from the pre-

dicted slope of minus one, a necessary condition for

maximal information ordering in the system. Only one

enzyme, phosphorylase, has a slope close to unity——the

others differ. This behavior does not detract from the

information—entropy approach but rather implies that these

other systems are not most effectively organized. The
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carboxymethyl celluloses are certainly not, because sub—

stitution of the cellulose polymer is known to have

unpredictable effects on the enzyme-substrate reaction

(126), which could account for the cellulose-cellulase

deviations from unity. The deviation for B-amylase can

perhaps be attributed to its mode of enzyme action.

Phosphorylase adds glucose monomers to the chain, where

B-amylase cleaves off maltose, a glucose dimer; there-

fore, B—amylase acts on only about half the bonds as.

would an enzyme cleaving monomers. Thus, a lepe between

—2 and -1 should be expected because B-amylase's action

is relatively quicker. The information-entropy activity

relation holds both in the synthesis and degradation of

carbohydrate polymers.

The relationship between hydrolysis, Dj’ and

degree of polymerization, DPj, of carbohydrate molecules

in vitro, can be shown for amyloses (127, 128). Four
 

different hydrolyses were conducted on narrowly distribu-

ted amylose polymers with B-amylase, using substrates with

different initial degrees of polymerization. The results

of these experiments are summarized in Table 4.3.4.

Hydrolysis, Dj’ is expressed on a scale of 100 instead

of 1, and the logarithm of zero is designated as equal to

zero. The correlation and regression analysis (see Table

3.3.5) shows a lower degree of correlation and signifi-

cance than that seen in previous analysis (P < 0.1 for
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TABLE 4.3.4.--Hydrolysis of Amylose Polymers with B-Amylase, and

Degree of Polymerization.

 

   
  

 

Test 1 Test 2 Test 3 Test 4 Natural

Amylose

55. D. 53. D. 53. D. 53. D. 55. D.

J J J 3 J J 3 J J 3

3,150 0% 1,230 0.0% 800 0.0% 795 0.0% 2,600 0.0%

2,050 20% 730 47.5% 560 29.5% 575 24.5% 2,500 35.5%

2,110 40% 525 68.0% 350 84.0% 280 78.0% 2,580 53.5%

1,550 70% 350 91.0% —- -— -- -- 2,200 72.0%

 

Table 4.3.5.--Corre1ation and Regression Analysis of

Hydrolysis and Degree of Polymerization.

 

 

Correlation

Coefficient Slope y-Intercept

Test 1 0.85 -0.14 11.72

Test 2 0.89 -0.22 10.33

Test 3 0.92 -0.17 9.71

Test 4 0.89 -O.21 9.74

 

test 1 and 2; P < 0.15 for 3 and 4). However, the paucity

and limited range of data could considerably bias the

results of this analysis. Note that as the range for a

particular experiment increases, so does the correlation

coefficient.

the theoretical line of minus one.

The slopes of all the lines also differ from
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This deviation of slopes from -1.0 is perhaps best

understood after the influence of the reaction order in

the encoding process is ascertained. Typically, enzyme

reactions are viewed as lSt order; substrate and enzyme

reacting on a one-to-one basis. However, B-amylase

reacts with an average of 4.3 linkages per encounter

(129), by a multichain mechanism, yielding a reaction

order of 4.3. Such a situation necessitates a revised

definition of enzyme activity. If we denote the enzy-

matic activity for a reaction between the enzyme and one

substrate bond as alj’ then the total enzymatic activity

equals the nth product because alj reflects the proba-

bility of reaction at one reaction site on the enzyme

molecule, and the joint probability that 3 sites will

react determines total enzyme activity and equals the

n + 1 product of the activities. Therefore, assuming

that the activity at each site is identical, the total

enzymatic activity equals:

a . =3 (alj)n . _ (4.3.1)

The cost function, cj, which was initially thought to be

equal to the total enzymatic activity, is now seen to be

equal to the site activities, a Hence, cj must be
lj'

redefined in terms of site activities:

= l/n
Cj (aj) , (4.3.2)
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which substituted into equation (4.2.7), gives:

_N 1
DP. — i . (4.3.3)

3 CJ (aj)17n

This equation dictates a generalized equation for

NI)
k 1n Di . (4.3.4)

hydrolysis:

u

U
I
H

0
1
p
m

k 1n DP. — k 1n DP.

3 1

I

U
I
H

Using this result for a reaction order, 3, equal to 4.3

B-amylase, a slope of -0.232 is expected, closer to the

average lepe -0.185 which results from experimental

data. Why does the previous analysis of DPj versus

activity not exhibit similar behavior? The reason is that

the regression analysis done on the activities listed in

Tables 4.3.1 and 4.3.2 was effectively a comparison of

the rank orders of the enzymatic activities. The rank

ordering of activity for a particular enzyme will be the

same for k 1n a or for some constant multiple of it,

lj

n k 1n alj equal to k 1n aj. The digestion data were a

part of the dynamic analysis of the relative rates of

hydrolysis, which are dependent Iqxn1 reaction order.

The behavior of monodisperse carbohydrate polymers

differs from that of natural or polydisperse polymers.



118

The information analysis can be modified to encompass

polydisperse systems. We begin by defining the contri-

bution of the DPj polymer fraction to the polydisperse

activity of system i as k 1n DPj times its probable

occurrence, Pj’ and do likewise for the DPi polymer.

Thus, the proportional change in the degree of poly—

merization of the system is:

X P. k 1n DP. - Z P. k 1n EP.

average

= k 1n chain length

ratio

. (4.3.4)

 

In Table 4.3.4, the degree of polymerization appears

independent of the degree of hydrolysis. Can equation

(4.3.4) predict such behavior?

Husemann and Pfannemuller (128) studied the dis-

tribution of polymers in polydisperse systems as a func—

tion of hydrolysis. Table 4.3.6 presents the chain

length distribution<mfthe polydisperse amylose used in the

experiment at various stages of hydrolysis. Table 4.3.7

summarizes the above results by giving the expected

degree of polymerization, DPj, at each stage of hydroly—

sis for the synthetic and natural amylose. The propor-

tional change is somewhat higher for the synthetic than

the natural polymer. The basic chain length behavior of



TABLE 4.3.6.--Chain Length Fractionalization of a Polydisperse
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Carbohydrate System as a Function of Its Degradation.

 

 
   

 

0% Digestion 41% 62.5% 85%

Frac-

tion Pj DPj Pj DPj Pj DPj Pj DPj

1 0.0093 4,950 0.0419 5,000 0.0474 4,800 0.0093 4,900

2 0.0262 4,500 0.0252 4,460 0.0198 4,560 0.1231 4,200

3 0.0322 4,400 0.0315 4,250 0.0937 4,100 0.0526 3,700

4 0.0193 4,200 0.0557 3,800 0.0651 3,650 0.1038 3,300

5 0.0438 3,860 0.0842 3,410 0.0367 3,360 0.0980 2,850

6 0.0229 3,650 0.0720 3.020 0.1093 3,000 0.0765 2,550

7 0.0764 3,200 0.0774 2,700 0.0887 2,650 0.0666 2,300

8 0.0705 2,850 0.1051 2,350 0.0669 2,350 0.0571 2,100

9 0.0437 2,550 0.0777 2,070 0.0678 2,100 0.0474 1,900

10 0.0712 2,350 0.0684 1,840 0.0419 1,950 0.0565 1,700

11 0.0352 2,200 0.0639 1,650 0.0615 1,750 0.0422 1,030

12 0.0875 1,980 0.0526 1,400 0.0540 1,570 0.0585 1,400

13 0.0748 1,680 0.0526 1,250 0.0421 1,410 0.0451 1,210

14 0.0569 1,420 0.0404 1,100 0.0474 1,230 0.0434 1,080

15 0.0562 1,260 0.0543 940 0.0422 1,100 0.0397 900

16 0.0422 1,120 0.0333 730 0.0251 960 0.0292 725

17 0.0361 970 0.0209 620 0.0323 820 0.0293 580

18 0.0400 840 0.0175 520 0.0137 710 0.0222 430

19 0.0459 700 0.0251 195 0.0120 600 -- --

20 0.0532 420 ~- -- 0.0299 440 -- —-

21 0.0572 175 -- -— -- —— —— —-
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TABLE 4.3.7.--Chain Length Behavior of Polydisperse Carbohydrate

 

  

 

 

 

Systems.

Polydisperse Synthetic Amylose Natural Amylose

6"" .c: .a .2
c o

o ‘6» ‘65 8 ‘6»
-H c a c.« wI a
u H 41%. 42% u m
m A o A o m A 0
0) A4 'H -:-I Q) ...;

m a u 8 c u m c u
-H. wn « -H g % -H a -a. -H m
Q a. m‘l‘t g 94.” g Q -I-\ (U as

d? w'n G U I Q U 69 g 6

0 10.660 1,619 1.00 2,180 1.00 0 2,600 1.00

41 10.918 - 1,934 1.19 2,300 1.06 35.5 2,500 0.96

62.5 11.058 2,131 1.31 2,550 1.17 53.5 2,580 0.99

85 11.011 2,062 1.27 2,350 1.08 72.0 2,220 0.85

 

*Theoretical estimate.

**Experimenta1 measurement.

polydisperse systems appears consistent with that pre-

dicted by information-entropy analysis.

If the chain length behavior of the system can

be predicted by a calculation of the expected chain

length, why is the proportional change in degree of

polymerization not reflected by the experimental change

in hydrolysis? Inspection of the DPj data in Table 4.3.6

shows that within each fraction the degree of polymeri-

zation remains fairly constant, which can be explained

by the constant cascade of higher polymers into lower

levels, a result of their degradation. Such analysis

does not, however, generate the prOper information for

 



121

application of an information-entropy analysis. What is

required is knowledge of the individual behavior of the

change in chain length of each amylose polymer in the

system, and not the aggregate chain length behavior.

Such a study would require uniformly marking the indi-

vidual polymer (e.g., with a radioactive tracer) so that

its degree of polymerization could be studied as its

degradation progresses.

In this chapter the viability of information-

entropy analyses for rank-ordering enzymatic aCtivities

(or encoding costs) of amyloses and celluloses on the

bases of their degrees of polymerization has been shown.

Also, the utility of this rank—order behavior in calcu-

lating the degree of hydrolysis relative to polymer

size for monodisperse systems has been put forth. An

extension to polydisperse systems was undertaken, and

a method for estimating the chain length behavior of

these systems was presented. The evidence indicates a

great degree of consistency between information-entropy

expectations of the encoding behavior of carbohydrate

polymers, and the biochemical eXpression of such

behavior.



  



CHAPTER V

DISCUSSION

The goal of this chapter is to provide some addi—

tional perspective on the nutritional information-entropy

studies undertaken in this work. A review of the main

points of each study and of the interrelationships

between biological phenomena and model performance will

be presented. Also, some discussion of the general

ramifications of the information-entrOpy approach to

future studies will be undertaken.

5.1 Nitrogen Retention and

Information-Entrgpy

 

 

Recall that the model development began with two

assumptions: complete digestibility and complete nitrogen

retention. An inverse relationship was then seen to exist

between two protein quality indices, biological value and

net protein value, and rank. These measures were then

shown to be related to the entropies of the source and of

the decoder. Then the digestibility assumption was

dropped and the information-entrOpy relationship was seen

to hold consistently only for net protein value. I now

wish to remove the complete nitrogen retention assumption

from the model.

122
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As was seen in section 3.2, one of the four meta-

bolic fates of amino acids taken up by the liver is

catabolism. The main end product of amino acid catabolism

is urea, and the liver acCounts for most urea production.

The liver, by virtue of its anatomical position, is also

the first organ which encounters the amino acid after

its encoding into the channel. The most logical route

for the catabolic loss of nitrogen appears to be through

the liver. It has been experimentally determined for

dogs that the liver catabolizes approximately 56% of

incoming amino acids, and that the liver is the primary,

if not only, organ responsible for the catabolism of

essential amino acids (130).

From the information theory vieWpoint, this loss

of amino acids from the communication system results in

a decline of its organizability because each channel is

experiencing a loss of informational units. The lack of

organizability causes the relative values (i.e., cost)

of the system's informational units to change. As you

may suspect, this causes an alteration in the expected

Zipfian rank-ordering. (Kozachov (58) (see page 29)

showed that the measure of organizability in information

(theory was the regression coefficient, slope, for the

rank-frequency function. The organizability is maximum

when b/b' equals one, and this condition holds when the

information capacity at every level is maximized relative
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to the overall information capacity. Therefore, an

alteration of amino acid frequency in the system affects

the information-entropy level, or alternatively, the

information capacity. This is exactly what happens when

 
essential amino acids are catabolized in the liver.

Interpreting the Zipfian slope, we see that when

b/b' equals one every jth channel information transmis—

sion rate equals that of the maximum or rank 1 channel  
transmission rate, which maximizes the information trans-

fer through the system. As Kozachov would say, the system

is maximally organized. A value of b/b' less than one

means the jth channel transmission rate is not equal to the

maximum (rank 1) transmission rate for some i, implying

that information is being lost because transmission through

the system is less than maximal. For b/b' greater than

one the jth channel transmission rate is greater than

that of rank 1, indicating that the system is exceeding

its channel capacity and losing information. Since the

system is maximally organized when b/b' is equal to one,

the system can be regarded as "underorganized" when b/b'

is less than one and "overorganized" when b/b' is greater

than one. "Underorganized" systems can be regarded as

"leaking" systems since the transmitted information is

being lost, while "overorganized" systems can be thought

of as "overcompensating" systems because they are
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attempting to transmit more information than the system

 
can handle.

A closer inspection allows us to better picture

what occurs when the slope deviates from minus one. The

mathematical formula for the slope is b/b' where b and

b;_are proportionality factors between probability and

cost (see page 28), such that:

"
U ll exp (-bcj) (5.1.1)

 

and

'
0 ll exp (-b'cl) . (5.1.2)

Solving equations (5.1.1) and (5.1.2) for b and b', we

 

get:

1n P. 01

b/b' = —7;—1 - In P . (5.1.3)

j 1

Now, the jth channel transmission rate is:

1n (n.) - 1n P.

_____J_. ______l
I. = = . (5.1.4)
3 tj cj

Therefore, the lepe b/b' may be expressed in terms of

channel transmission rates:

 

1n P. (fi_ :1

I _ .1 , =
b/b> - Cj ln P1 Il . (5.1.5)
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A deviation from maximum organizability was noted

in the Zipfian analyses conducted in section 3.3, where

the slopes differed greatly from unity. Both the "under—

organized" and "overorganized" systems are present.

Since the organizability of the protein information sys-

tem is dependent upon the amounts of amino acids flowing

through the channels, an underorganized system having

b/b' values less than one reflects the loss of organiza-

tion in the system resulting from catabolism. The over-

organized systems, those with b/b' greater than one,

reflect the conservation of amino acids in the protein

information system; that is, the information transmission

rate of the jth channel is increased so more information

can pass through this channel.

Introduction of the catabolic concept into our

system effectively allows rejection of the complete

retention hypothesis. The Zipf's law equation for a

single amino acid becomes:

k 1n ax. = k 1n am. - f k 1n r . , (5.1.6)

3 J C X]

or, fOr the entire essential amino acid set:

(5.1.7)HX(EAA) = Hm(EAA) - fC k 1n rx ,

where rx is the rank of protein x, Hm(EAA) is the rank

one log-frequency, and fC is a catabolism factor
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accounting for the loss of organization in the system

due to amino acid destruction by the liver.

The regression analyses done in section 3.3 give,

fortfluainformation-entropy measures based on the essen-

tial amino acid set, a range for fC of -0.517 to -0.608

for rats, and -0.601 to -0.700 for pigs. The interpreta-

tion of this result is that between 40% and 50% of the

essential amino acids in the diets of rats are catabolized,

and between 30% and 40% of those in the diets of baby pigs

are converted to urea. Both of these values are compar-

able to the experimentally determined value for mature

dogs of approximately 56%. Younger animals such_as the

experimental pigs and rats could be expected to have a

higher nitrogen retention.

If these urea production figures for baby pigs

and rats are correct, a new use for the information-

entropy model has arisen. In addition to being able to

predict protein quality indices, the model can in turn be

used to estimate the degree of catabolism of essential

amino acids for various species of animals. The experi-

mental method for measuring this phenomenon is very

difficult, and the information-entropy model may quite

possibly provide an adequate alternative.

The interpretation of an overorganized system as

overcompensating and thusreflecting essential amino

acid conservation is supported by the regression analyses
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in section 3.3. A formula similar to equation (5.1.7)

can be employed to reflect amino acid conservation:

min Hx(aaj) = min Hs(aaj) - fO - k ln rxj " (5.1.8)

where fO is a conservation factor which represents the

overcompensation in the system due to essential amino

acid conservation, and min HS(aaj) is the log frequency

for the standard protein.

Returning to the regression analyses in section

3.3, the range for fO for rats is -1.287 to -1.487, while

the range for pigs is -1.097 to —l.460. These results

imply a conservation of the limiting essential amino acid.

The degree to which it is conserved is not readily evi-

dent: whereas the slope for underorganized systems can

range from 0.0 to 1.0, that for overorganized systems

goes from 1.0 to infinity. Nonetheless, the information-

entropy model conforms to the rule that the most limiting

amino acid is conserved by the organism.

The question now arises as to how the inclusion

of fg will affect the ability of the information-entropy

model to predict net protein value, the protein quality

index. The mathematics involved are quite simple and for

the essential amino acid set, the logarithm of NPV,

NPVX(EAA) is:

_ l - _ _ -
NPVX(EAA) — E— H (EAA) HS(EAA) . (5.1.9)
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The predicted NPV resulting from utilizing fc will be

denoted IX(EAAR) and known as the "essential amino acid

retention index":

_. 1- __1_-
IX(EAAR) — antilog f; HX(EAA) fc HS(EAA) (5.1.10)

when based on log-frequency HX(EAA), or Ig(EAAR) for

log-frequency H:(EAA).

Utilizing equation (5.1.10) with fc = 0.5,

 

,.
W

Ix(EAAR) and I:(EAAR) were determined from the data in g

section 3.3. Table 5.1.1 lists the correlation coeffi-

cients among IX(EAAR) and I3(EAAR), and the experimental

net protein values for rats and pigs. Table 5.1.2 lists

the slopes of a linear regression analysis for the above

variables and Table 5.1.3 lists the corresponding

y-intercept Values.

The correlation coefficients are not very dif-

ferent from those obtained by regression without fc.

However, the regression analysis shows a much improved

picture in the ability of the model to accurately pre-

dict the true score of net protein value for rats but the

results for pigs indicate an fc = 0.5 may be too high a

catabolism factor. This is graphically illustrated in

Figures 5.1.1 and 5.1.2 for rats and_pigs, respectively.

These graphs show the relationships of the model's

information-entropy measures, I:(EAA) and I:(EAAR), to
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TABLE 5.1.l.--Correlation Coefficients Among Essential

Amino Acid Retention Indices and Experi-

mental Protein Values of Rats and Pigs.

 

Net Protein

Value (Pigs)

Net Protein

Value (Rats)

 

FAO Data:

Eggum Data:
 

IX(EAARf) 0.854 0.806

0
Ix(EAARf) 0.879 0.826

IX(EAARe) 0.851 0.819

IO(EAAR ) 0.910 0.842
X e

 

TABLE 5.1.2.

 

--Linear Regression Coefficients Among the

Essential Amino Acid Retention Indices and

Experimental Net Protein Values of Rats and

 

 

 

Pigs.

Net Protein Net Protein

Value (Rats) Value (Pigs)

FAO Data: Ix(EAARf) 0.642 0.533

0
Ix(EAARf) 0.657 0.543

Eggum Data: Ix(EAARe) 0.678 0.573

IO(EAAR ) 0.800 0.650
x e

 

TABLE 5.1.3. --Slopes for Regression Analysis Among Essen-

tial Amino Acid Indices and Experimental

Net Protein Values of Rats and Pigs.

 

Net Protein

Value (Pigs)

Net Protein

Value (Rats)

 

FAO Data:

Eggum Data:
 

Ix(EAARf) 23.7 35.5

0
IX(EAARf) 24.0 .35.8

IX(EAARe) 20.7 32.3

1°(EAAR ) 15.1 29.1
X e
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the experimental net protein values. It is readily seen

that for rats there is a much better one-to-one corre-

 spondence for the Essential Amino Acid Retention index

than for the traditional Essential Amino Acid Index, for

the latter does not account for liver catabolism of amino

acids. However, the shift of the data points on the pig

graph suggest that a lower fC would yield a better one-

to-one correspondence.

 

The information-entropy model is thus capable of

predicting indices of protein quality and other physi-

olOgical behavior associated with protein metabolism

(e.g., urea production and conservation of the limiting

amino acid). The utilization of the information-entropy

:model is justified, I believe, by such performance, and

holds promise for still other applications.

5.2 The Information-Entropy Model for

Protein Metabolism: Summary

In this section, I wish briefly to present the

.major mathematical relationships utilized in my

:hmformation-entropy model. First, it should be recog-

nized that the model works on two levels. The first

levwal is that of a single amino acid channel. For the

Sinrgle channel model, the outcome-generating form is:

k - = . - . . 5.2.11nNPV(xj) klnNPV(sj) Hx(aa]) Hs(aaj) ( )
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The significance of the single channel model is that

when protein g possesses a net protein value of one,

the essential amino acid channel which minimizes equation

(5.2.1) is taken to predict the net protein value of

protein x. This is a method identical to the chemical

-scoring of amino acids.

The other level used by the model is the multi-

channel level. Here, an average of the information-

entropy levels of the essential amino acid channels

generates the outcome. The following equation is

employed for multichannel calculations:

NPVx(EAA) - NPVS(EAA) = HX(EAA) - HS(EAA) . (5.2.2)

The multichannel form is also used to predict the net

protein value of food protein x when the NPV of protein

g is known. If the net protein value of protein 5 is

one, and Oser's rules are employed, the method is the

same as calculating the essential amino acid index.

The multichannel model was adapted in the pre-

vious section to account for catabolism of essential

amino acids by the liver. This involved introducing fc,

the uncatabolized fraction of amino acids. The mathe—

matical form for this application of the information-

entropy approach is:

_ 1 - _ 1 -
NPVX(EAAR) NPVS(EEAR) —-f—c-:—HX(EAA) f—C-HS(EAA). (5.2.3)
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Once again, we assume net protein value to be the index

of protein quality predicted by the antilogarithmic form

Of equation (5.2.3) when the NPV of protein §_is known.

irhis formulation is not similar to any measure of protein

quality based upon the amino acid composition of the food

proteins involved. It has been termed the "essential

amino acid retention index" and may be determined with

or without Oser's rules. A value of fc equal to 0.5 may

be assumed for the rat, the standard test animal.

This discussion presents the major functional

forms of the model. With the appr0priate assumptions,

we can obtain any index of protein quality given in this

thesis.

5.3 Information-Entropy and

' Polymers: An Appraisal

 

 

The use of an entropic concept to study polymer

behavior is most logical. Entropy is usually associated

with order, and the chain length of a polymer is one of

the most obvious examples of order on a molecular scale.

This study, like the previous one, emphasizes the impor-

tance of cost-frequency behavior. The most important

develOpment was the derivation of the idea that the cost

of hydrolysis of the polymer message was equal to the

inverse of the enzyme activity.
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This result from information-entropy analysis can

be confirmed by the Michaelis—Menten enzyme kinetic

model. The reaction velocity, 3, is defined:

V S'

m

K+S

m

 v = aj(enzyme activity) = (moles/sec.) (5.3.1)

where S' is substrate concentration, which for a mono-

disperse polymer solution, may be defined Ng/DPj. If

Km << 8', then aj equals Vm and enzyme activity is

invariant with change in degree of polymerization.

From the information—entropy perspective, this condition

overloads the encoding channel, exceeding its capacity,

and because of this the encoding device does not exhibit

cost—frequency behavior.

Alternatively, if Km >> S‘, then equation (5.3.1)

has the following form:

m m g
_ I — __. _—

a _ _S _ (5.3.2)

m m

or

aocl/DPj . (5.3.3)

This is the exact conclusion of the information—entropy

analysis. Thus, a valid analog to the encoding model

presented in this chapter can be found in a special appli—

cation of enzyme kinetics. Extension of the model to

predict digestibilities had questionable results. From
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my VieWpoint, this was due to the lack of adequate data.

However, the regression analysis did not indicate that

the log-log relationship between degree of polymerization

and digestibility had complete merit. Rather, the level

of significance of the results did not offer sufficient

Cause for acceptance.

The most pertinent notion gleaned from this

analysis is the inverse proportionality between enzyme

activity and degree of polymerization. It indicates that

introduction of an information-entropy formalism may be

possible for the study of enzyme kinetics.

 



CHAPTER VI

CONCLUSIONS

1. The information-entrOpy model of protein

metabolism can be employed to assess the nutritional

quality of proteins. This is accomplished by relating

 

the amino acid content of proteins in the diet to net

protein value. The model's output is similar to other

amino acid scoring approaches such as Oser's essential

amino acid index and chemical score.

2. A new index, the "essential amino acid reten-

tion index," was postulated from the information—entropy

model. It was as well correlated to net protein value as

other chemical scoring methods, and permitted the catabo-

lism of ingested amino acids to be accounted for.

3. An information-entrOpy analysis of polymer

length versus the activity of enzymatic hydrolysis, by a

cost—frequency analysis of encoding, was well correlated

with experimental data on the subject.

4. The extension of the information-entropy study

for the estimation of a hydrolysis coefficient could not

be adequately correlated with experimental data.
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