MULTI-WAVELENGTHOBSERVATIONSOFGALAXYCLUSTERS:POPULATIONEVOLUTIONANDSCALINGRELATIONSFORINTERMEDIATE-REDSHIFTCLUSTERSByThomasPatrickConnorADISSERTATIONSubmittedtoMichiganStateUniversityinpartialentoftherequirementsforthedegreeofAstrophysicsandAstronomy-DoctorofPhilosophy2016ABSTRACTMULTI-WAVELENGTHOBSERVATIONSOFGALAXYCLUSTERS:POPULATIONEVOLUTIONANDSCALINGRELATIONSFORINTERMEDIATE-REDSHIFTCLUSTERSByThomasPatrickConnorGalaxyclustersarekeysignaturesoftheformationofstructureintheUniverseduetotheirpositionsatthenodesofthecosmicweb.However,theseprivilegedpositionsfeaturetamountsofactivityasaconsequenceoffrequentaccretionandcollisionswithothergalaxiesandclustersofgalaxies.Thus,arigorousunderstandingofclusterevolutionconstrainsnotonlycosmologicalstructureformationbutalsogalaxydynamicsinthemostextremeenvironments.Here,weexaminetheevolutionofclustersintwosituations:howthepropertiesofthehotintraclustergaschangeswiththetotalmassesoftheclustersattheobservationalfrontiersofmassandredshift;andhowclustergalaxiesevolvewithredshiftinsomeofthemostmassiveclustersintheUniverse.InChapter2weexamineapopulationofmoderate-luminosityclustersatintermediateredshiftsusingtheXMM-Newtontelescopewithwell-determinedmassesfromHubbleSpaceTelescope(HST)observations.Wethatthesesystemsdonotdeviatefromscalingrelationsbetweenmass,luminosity,andtemperaturederivedfrommoremassiveclusters,implyingthat,evenattheredshiftsandmassesprobedhere,gravitationalenergeticsstilldominateoversupernovae.InChapter3weutilizenewtechniquestomaximizeamulti-wavelengthdatasetfromHSTof25massivegalaxyclusters.Wepresentnewmethodsfordetectionandphotometryofgalaxiesinthepresenceofinconsistent,background.Usingthesetechniques,weconstructaphotometriccatalogdowntoM*+4-5forclustersatredshiftz˘0:2toz˘0:9,whichwevalidatewithcomparisonstospectralobservationsandasimilarcatalog.Wealsoconsidertheluminosityfunctionfortheseclusters;wedainthefaint-endslopewhenonlyselectingredsequencegalaxies.Finally,inChapter4,weexploitournewphotometriccatalogstostudytheevolutionoftheredgalaxies,the\redsequenceofgalaxies,"inthesemassiveclustersofgalaxies.Withthecombinationofresolution,depth,andspectralcoverageavailableinthiswork,weareabletousespectraltoexaminetheofmetallicityandageinshapingthephotometricpropertiesofclustergalaxies.Weseeevidenceofametallicitygradientalongtheredsequenceandminimalevolutionintheslopewithredshift,implyingitisaconsequenceofthemass-metallicityrelationinplaceatz˘2.However,wealsoseesecondaryindicatorsthattheredsequenceisbeingsteadilypopulatedatthefainterendafteritsinitialformation.CopyrightbyTHOMASPATRICKCONNOR2016Tomymother;letthescienrecordshowthatIamyourfavoriteson.vACKNOWLEDGMENTSAftermyself,noonehashadabiggerpartinthecompletionofthisthesisthanMeganDonahue.Notonlydidsheprovidethefundingthatletmecontinuetoworkonresearch,shealsohelpedguidemethroughtheproblemsofresearch.Furthermore,sheprovidedmefreetimeonSOARandaccesstotheCLASHcollaboration,withoutwhichthisdissertationwouldbentlyshorter.AlongwithMegan,Iwouldliketothankmyothercollaborators.AndishehMahdaviandHenkHoekstrawereinstrumentalinthesuccessofmyX-rayanalysis.DanCoe,DanKelson,andMarcPostmanprovidedmonetary,scienandtechnicalsupportandguidancetohelpmeshapetheCLASHportionofthisthesis.JohnMoustakashasbeenvitalinthesuccessofthatanalysis.NorbertWerner,KevinFogarty,andGrantTremblaywerenotinvolvedinanythesiswork,buttheyhavebeenexcellentcollaborators.Finally,MarkVoitandMingSunhavebothbeenexceptionallyhelpfulandencouraging.IwouldnotbeherewereitforChrisMihos,VeronicaStrazzullo,MaurilioPannella,PaulHarding,ColinSlater,TimAtherton,antSjouwerman,EarleLuck,HeatherMorrison,andAgnesTorontali.Theirguidanceandsupportbothgavemetheabilitytobeacceptedintoagraduateprogramandthefoundationtosucceedthere.AtMSU,Aaronwasanexcellentmentorwhotaughtmehowtoobserve.Lookingforward,IextendmythankstoJohnMulchaeyforgivingmeanimmovabledeadlinetomotivatemywriting.FiveyearsinLansingwouldnothavebeenpossiblewithoutallofthefriendsandcol-vileaguesIhavesharedthattimewith.Therearetoomanypeopletoname,butIwouldliketothankAlexDeibel,TomHettinger,RyanConnolly,andBrianCrosby,inparticular,forbridgingthegapbetweencoworkerandfriend,andAubreyThompsonforgivingmeareasontolookforwardtoweekends.Finally,manythankstomyfamily.Mybrothers,AndrewandMatthew,whopavedthewayformetomovepastafouryeardegree,inspiredmetoaimforaPhDbeforeIhadevenhighschool.Mygrandmothersupportedmethroughoutmychildhood,butwillnotbeabletoseemeearnonelastdegree.And,withoutdebatingnaturevs.nurture,IamtthatIwouldnothaveaccomplishedhalfofwhatIhavewithouttheparentsIhave.Thankyou.viiTABLEOFCONTENTSLISTOFTABLES....................................xLISTOFFIGURES...................................xiKEYTOSYMBOLSANDABBREVIATIONS.................xviiiChapter1Introduction...............................11.1TheGrandDichotomy..............................11.2TheRedSequenceinGalaxyClusters......................51.3CLASH:TheClusterLensingandSupernovaSurveywithHubble......81.4X-rayScalingRelations..............................13Chapter2X-RayScalingRelationsforModerateLuminosityGalaxyClus-tersatIntermediateRedshift.....................222.1Introduction....................................232.2DataandAnalysis................................272.3Analysis......................................362.4Results.......................................382.4.1Flux....................................382.4.2X-ray...............................412.4.3ScalingRelations.............................422.5Discussion.....................................522.5.1ComparisonwithPreviousX-rayObservations.............522.5.2ComparisonwithOtherScalingRelations...............532.5.3ComparisontoLow-RedshiftGroups..................562.5.4ComparisonbetweenGroupsandClusters...............572.6Conclusions....................................57Chapter3OptimizedPhotometryofClusterGalaxiesinCLASH.....613.1Introduction....................................623.1.1StatisticalBackgroundLightEstimators................643.2DataSet......................................673.2.1DetectionImages.............................693.2.2SourceDetection.............................703.3Photometry....................................743.3.1UVSystematicUncertainties.......................773.3.2PhotometricRedshifts..........................793.4ComparisontoSimilarWorks..........................81viii3.5OpticalScalingRelations.............................883.5.1Mass-RichnessRelation..........................903.5.2LuminosityFunction...........................913.5.3StellarMass................................973.6Summary.....................................101Chapter4GalaxyProperties,Membership,andRedSequenceEvolutioninCLASHClusters...........................1044.1Introduction....................................1044.2Data........................................1084.2.1SEDFitting................................1104.3ClusterMembership...............................1154.3.1AlternativeSelections...........................1174.4RedSequenceFitting...............................1194.5IndividualGalaxies................................1254.6Mass-to-LightRatios...............................1294.7Discussion.....................................1314.8Summary.....................................137Chapter5Summary.................................1395.1RevisitingtheLuminosityFunction.......................1415.2WhichRedSequence...............................1435.3BringtheBackgroundtotheForeground....................1445.4PublicRelease...................................144APPENDICES.................................146AppendixAAppendicesforChapter2.......................147AppendixBAppendicesforChapters3and4..................152REFERENCES.....................................168ixLISTOFTABLESTable1.1PropertiesofCLASHClusters.....................8Table2.1SampleProperties............................26Table2.2ObservationsofClusters........................27Table2.3MaskedSources.............................31Table2.4SpectralFittingPropertiesWithinr2500................37Table2.5ScalingRelations............................44Table2.6CCCPClusterPropertiesWithinr2500................46Table3.1SourceExtractorDetectionParameters................71Table3.2CLASHScalingProperties.......................88Table3.3CLASHLuminosityFunctionFit....................91Table3.4CLASHr2500values...........................98Table4.1CLASHRedshiftedFilterAnalogs...................109Table4.2RedSequenceFits............................122TableB.1ACSDataProperties{Exposuretime(s),Zeropoint(ABMag),andA(Mag).................................156TableB.2WFC3(UVIS/IR)DataProperties{Exposuretime(s),Zeropoint(ABMag),andA(Mag)........................158TableB.3MaskedStarsinCLASH(R>200)................162xLISTOFFIGURESFigure1.1grcolor-magnitudediagramfor500000extendedgalaxiescatalogedfromtheSloanDigitalSkySurvey.Thesegalaxiesarethe500000inthe13thDataReleasewithgandrmagnitudesbrighterthan25andwithnoconstraintsonposition.Twogalaxypopulationsarevisible:thebluecloudandtheredsequence.Incolor-magnitudediagramspresentedinthisdissertation,bluercolorsareloweronthey-axis,whilebrightergalaxiesaretotheleftoffaintergalaxies....2Figure1.2Fractionalthroughputsofthe17usedbyCLASH.Theyare,frombluetored,F225W,F275W,F336W,F390W(allUVIS);F435W,F475W,F555WF606W,F625W,F775W,F814W,F850LP(allACS);F105W,F110W,F125W,F140W,F160W(allWFC3-IR)......9Figure1.3DistributionofphotometricredshiftsfromCLASHclusterphotom-etryforMACS1423.Datafromtheoriginalcatalogspublishedby(Postmanetal.,2012b)isshowninorange,whiledatafromthepho-tometrywepresentinthisworkareshownindarkblue.Thespectro-scopicredshiftoftheclusterisindicatedbythepurplebar.WeonlyconsiderthosegalaxieswithF814Wmagnitudesbrighterthan25.5.12Figure1.4X-rayscalingbetweenX-raytemperatureandX-rayluminosityforasampleofclusters(purple,Wuetal.,1999)andgroups(orange,Xue&Wu,2000).Bothsamplesshowself-similarscalingcharacterizedbyapower-law,butthetslopesofthatscalingbetweengroupsandclustersisevidenceofapossiblebreakinself-similarity......14Figure2.1Gaussian-smoothedX-rayemissioncontoursoverlaidonHubbleSpaceTelescopeimagesofthefourclustersweobservedinthiswork.Con-toursarespacedatintervalsof106counts1arcsec2,withthemin-imumlevelforeachclusterdescribedinSection2.2..........29Figure2.2ComparisonbetweenourmeasuredusingXMM-NewtonandthosereportedbyVikhlininetal.(1998)usingROSAT.ROSATwereadjustedtocorrespondtotheinner300h170kpcofthecluster,asdescribedinthetext.Thesolidlineistheidentityline,whiletheshadedbandindicatesagreementtowithin10%.......39xiFigure2.3DistributionoftoBCGpositionsmeasuredbyHoekstraetal.(2011)fromX-raycentroidmeasurementsusingXMM-Newton(thiswork,hashesrisingtotheright)andROSAT(Vikhlininetal.,1998,hashesloweringtotheright).Dataarebinnedtoincrementsof5arcseconds.................................41Figure2.4Plotofweak-lensingmassMWLasafunctionofbolometricX-rayluminositywithinr2500.MassesandluminositieshavebeenrescaledbyE(z)toaccountfortherangeofredshiftcoveredbythesamples.Dataanalyzedinthisworkareshownascircles,whileclusterproper-tiesfromtheCCCPareshownassquares.RXJ0826.1+2625wasnotincludedinthisOurbesttoEquation(2.2)fortheM-Lrela-tionisshownbythesolidline.Ourbestwhenincludingintrinsicscatterisshownbythedashedline.Botharetothecombinedsampleof160SDandCCCPclusters..................45Figure2.5PlotofX-raytemperatureasafunctionofbolometricluminositywithinr2500.LuminositieshavebeenrescaledbyE(z)toaccountfortherangeofredshiftcoveredbythesamples.Dataanalyzedinthisworkareshownascircles,whileclusterpropertiesfromtheCCCPareshownassquares.OurbesttoEquation(2.2)fortheT-Lrelationisshownbythesolidline.........................50Figure2.6PlotofMasafunctionofX-raytemperaturewithinr2500.MasseshavebeenrescaledbyE(z)toaccountfortherangeofredshiftcoveredbythesamples.Dataanalyzedinthisworkareshownascircles,whileclusterpropertiesfromtheCCCPareshownassquares;botharederivedfromweaklensing.RXJ0826.1+2625wasnotincludedinthisWealsoincludeasampleofnearbygalaxygroupsfromSunetal.(2009)asdiamonds,wheremassesarederivedfromhydrostaticequilibrium.OurbesttoEquation(2.2)fortheM-TrelationfromtheclustersanalyzedinthisworkandfromtheCCCPisshownbythesolidline.OurbesttotheM-Trelationusingthepropertieswithinr2500ofthegroupsfromSunetal.isshownasadashedline.51Figure3.1ThecentralregionofAbell383aftersubtractingalocalbackgroundfoundusingthePearsonapproximationforthemode.Backgroundregionsusedare:left:4pixels(0.2600);middle:16pixels(1.0400);andright:128pixels(8.3200).Largerstructuresarevisiblewhenalargerbackgroundradiusisused,whilesmallerobjectsaremoreclearlyresolvedwithamorelocalizedbackgroundregion...........69xiiFigure3.2AportionoftheMACSJ0717seeninF125W(red),F814W(green),andF555W(blue).Detectedobjectsareoutlinedinwhiteellipsescorrespondingtotheregionusedforphotometry.Alsoshownareobjectsasstarsinthiswork,whicharemarkedbyblueellipses.Thisimageisapproximately4500wide.............73Figure3.3Aschematicrepresentationofthephotometrytechnique.Ontheleft,thegalaxyofinterestisshowninred,withasuperimposedgridrep-resentingthepixelsoftheimage.Startingwithapixelontheoutsideofthegalaxy{markedhereinred{weidentifyacircularbackgroundregion.Pixelscontaininggalaxylight(blue)arerejected,whilethosewithonlybackground(yellow)createourbackgroundsample.Inthemiddleframe,weshowthedistributionofsanduncertaintiesforthosepixels.ByconvolvingeachmeasurementwithaGaus-siankernel(sizedaccordingtotheuncertaintyofeachpoint'sandsumming,wecreateahistogramofvalues,suchasshownontheright.Thepeakofthatdistributionisconsideredthemode;thewidthofthebackgrounddistributionisfoundbytracingdownfromthepeakuntilreachingavaluewithafrequencyofˇ0:608timesthepeakfrequency............................75Figure3.4TheofourbackgroundmodelingandsubtractiontechniqueforAbell209.ImagesarefromtheF814Wter:theoriginal(left),aftereverygalaxyhasbeenphotometered(center),andafterthesub-tractedimagehasbeenresampledright.................77Figure3.5Comparisonofphotometricredshiftsmeasuredinthisworktospec-troscopicredshifts.Thethinbandtracestheregionwherej(zpzs)=(1+z)j<0:05.Thefullredshiftcoveragefromz=0toz=3.0isshownontheleftpanel;azoom-intojustz=0toz=1.0isshownontheright.Pointsarebinnedintohexagons,withthetotalden-sityofpointsscaledlogarithmicallyfrom1to100countsperhex,asindicatedbythecolorbar.........................80Figure3.6Comparisontospectroscopicredshiftsbetweenthephotometricred-shiftsmeasuredinthiswork(orange)andthosefromthepreviouslyreleasedCLASHphotometriccatalogs(purple).Onlygalaxieswithspectroscopicredshiftswithinjzspeczclusterj<0:05areshown.Alloutlierswithjzphotzspecj>0:2areshownatjzphotzspecj=0:2.Theoverlapbetweenbothhistogramsisshowninpink.Ourtech-niquebettermatchesmeasuredspectroscopicredshiftsandhasasig-tlyreduced(˘65%)fractionofoutliers.............81xiiiFigure3.7ComparisonbetweenF814WmagnitudesmeasuredbytheASTRODEEPCollaborationandthisworkforMACS0416.Pointsarebinnedintohexagons,withthetotaldensityofpointsscaledlogarithmicallyfrom1to30countsperhex.Detailsoftheareprovidedinthetext.Acomparisonoftheisprovidedinthelowerpanel........84Figure3.8ComparisonbetweenmeasuredcolorsforMACS0416intheASTRODEEPcatalogandthiswork.Pointsarecoloredaccordingtothedeviationofthephotometricredshiftmeasuredinthisworkandtheclusterredshift,asindicatedbythecolorbarontheright...........85Figure3.9ComparisonbetweenredshiftsmeasuredbytheASTRODEEPCol-laborationandthisworkforMACS0416.Pointsarebinnedintohexagons,withthetotaldensityofpointsscaledlogarithmicallyfrom1to30countsperhex,asindicatedbythecolorbar.Detailsoftheareprovidedinthetext.Azoom-intojustmatchesbelowredshift1.0isprovidedontherightpanel.Theclusterredshiftisindicatedbytheverticalandhorizontallines;thediagonallineistheidentityline.....................................87Figure3.10ComparisonbetweenmeasuredvaluesofE(z)N2500andE(z)M2500fromthiswork(purple)and(Hoekstraetal.,2011,orange).Wealsoshowourblineinblack,andabesttoourdataaloneinpink.DetailsoftheselectionofN2500areprovidedinthetext....89Figure3.11Thek-correctedi-magnitudeluminosityfunctionsforall25CLASHclusters.Galaxiesareshownbinnedinhalf-magnitudeintervals.ThebSchechterluminosityfunctionisshowninorange(purple)forX-rayselected(highclusters.Galaxiesareplottedinorderofincreasingredshift.Best-valuesof,M*,and˚areprovidedinthatorderoneachplot.Detailsoftheareprovidedinthetext.................................92Figure3.12Themeasuredslopesoftheluminosityfunctionsforall25CLASHclusters.Weshowtheresultsforallclustermembersinpurpleandforonlythosealongtheredsequenceinorange.Asaslope"inmagnitude-spaceisgivenby=1,valuesgreaterthanthatshowaluminosityfunctionwithfewerfaintgalaxiesthangalaxiesatM*.Weseeacleartrendforasteepeninginthefaintendslopewhenonlyincludingredsequencemembers.....................95xivFigure3.13ThemeasuredvaluesofM*fori-bandluminosityfunctionsofCLASHclusters.Showninpinkandorangearefori-bandM*valuesforall(orange)andonlyred(pink)galaxies,withevolutionparametersfromLovedayetal.(2012),althoughassumingthevaluesofM*foradouble-power-lawasdiscussedinthetext............95Figure3.14Comparisonbetweenstellarmassesandtotalmasseswithinr2500.Clustersarecolor-codedbyredshift.TotalmassesaremostlydrawnfromlensingmeasurementsbyMertenetal.(2015)andUmetsuetal.(2016),butalsoincludeX-raymassesfromDonahueetal.(2014).Stellarmassesarederivedfromtotalclusterluminositymeasure-ments,asdescribedinthetext,adjustedasneededtoaccountforapertureShownarelinescorrespondingtoM=0:01MTot(solid),M=0:02MTot(dot-dashed),andM=0:04MTot(dotted).100Figure4.1ModeledSEDtoagalaxyintheofMACS1423(z=0:545).Inthisparticularrun,theredshiftwasallowedtovary.Upperlimitsaremarkedwithdownwardpointingarrows.TheemptyboxcorrespondstotheF555Wnodataweretakenusingthatforthiscluster.Theparametersoftheshownbspectrumarelistedontheleft..................................110Figure4.2Bestparameters(orange)anduncertainties(purple)fromourSEDtformistheageoftheUniverseatthecluster'sredshiftminustheSFR-weightedage.Onlygalaxiesasclustermembersareshownhere.Derivationoftheseparametersisexplainedinthetext.114Figure4.3TheanaloggrCMDforall25clusters.Shownontheleftarethosegalaxieswecallmembers,whilethosedasnon-membersareplottedontheright.Hexbinsarescaledlogarithmicallywiththenumberofgalaxiescontainedinside...................117Figure4.4Thek-correctedgrCMDforall25clusters.Shownontheleftarethosegalaxieswecallmembers,whilethosedasnon-membersareplottedontheright.Apotentialredsequenceselectionregionisshownasashadedbox.Hexbinsarescaledlogarithmicallywiththenumberofgalaxiescontainedinside...................118Figure4.5Thegrvs.rcolormagnitudediagramsforgalaxiesascolormembersusinganalogmagnitudesideninTable4.1.Clustersareplottedinincreasingredshiftorder,startingintheupperleftandinthelowerright;thesecond-lowest-redshiftclusteristhesecondframeinthetoprow.Clusternamesforallclustersex-ceptCLJ1226.9+3332aredisplayedfollowingtheconventioninTable1.1.....................................120xvFigure4.6Thegrvs.rcolormagnitudediagramsforgalaxiesascolormembersusingk-correctedmagnitudes.ThedetailsofthisplotareotherwisethesameasforFigure4.5................121Figure4.7Measuredredsequenceslopesforthe25CLASHclustersasafunc-tionofredshift.K-correctedvaluesareshowninorange;observedvaluesareinpurple.Theeclusterschosenfortheironpropertiesaremarkedwithboxes,whilethe20X-rayselectedclustersaredenotedwithcircles.AbestofjusttheX-rayselectedclustersforbothsetsofmagnitudesisshownwithsolidlines;thosesamewhenincludingthestronglenssourcesareshownbydashedlines..123Figure4.8Measuredredsequenceinterceptsforthe25CLASHclustersasafunctionofredshift.Theeclusterschosenfortheirpropertiesaremarkedwithorangeboxes,whilethe20X-rayselectedclustersaredenotedwithpurplecircles.AbestofjusttheX-rayselectedclustersisshownwithasolidline;thesamewhenincludingthestronglensingsourcesisshownbyadashedline.TheexpectedbehaviorofapopulationwithmetallicityZˇ0:5Zformedatz=2isshownbythedottedblackline................124Figure4.9Themetallicityfunctionofclustermembers,givenbyfromandpositionalongtheredsequence.Hexbinsarecoloredaccordingtotheirmedianmetallicity,asindicatedbythecolorbar.Forlegibility,onlythosebinswithatleasttwocountsareshown.gandrmagni-tudesarek-corrected.Themedianmetallicityinonemagnitude-widebinsisshownatthebottomoftheplot,whilethemedianmetallicityin0.05magnitude-widecolorbinsisshownontheleft.........126Figure4.10TheSFR-weightedformationagefunctionofclustermembers.Hexbinsarecoloredaccordingtotheirmediantform,whichisdescribedinthetext,asindicatedbythecolorbar.Forlegibility,onlythosebinswithatleasttwocountsareshown.gandrmagnitudesarek-corrected.Themedianagein9colorbandsareshownontheleftoftheandin6magnitudebinsatthetop............127Figure4.11Stellarmasstoi-bandlightratiosforallclustermembers.Inthebottompanel,weshowthedistributionofmass-to-lightratioswithrespecttooverallluminosity,inSolarunits.Onlyhexbinswithatleastonecountareshown.Intheupperpanel,weshowthedistri-butionofmass-to-lightratios;purpleisallgalaxies,fuchsiaisthosegalaxiesgrcolorswithin0.1magnitudesoftheredsequence,andorangeisthosegalaxieswithgrcolorswithin0.05magnitudesoftheredsequence.Thedistributionoflowmass-to-lightratiogalaxiesisdominatedbylow-luminositygalaxiesoftheredsequence....130xviFigure4.12Measuredslopesofthegrredsequenceforthe25CLASHclustersasafunctionofredshift.Measuredslopesareshowninpurple.Weshowtwotoymodels:ametal-drivenslopemodel(orange)andanage-drivenslopemodel(pink),bothofwhicharedescribedinthetext.Neitherisabletocompletelymodelthebehavioroftheredsequence..................................134Figure4.13Color-colorplotsshowinghowgalaxiesoftmetallicitiesandagesoccupysimilarspacesincolor-colorplotsthatcanbebrokenapartbyfurtherphotometricinformation.Inthetoppanel,tracksshowlinesofconstantmetallicity,whilethebottompanelshowsisochrones.ColorsarefromJohnson/CousinInthetop(bot-tom)panel,linesarecoloredbyincreasingmetallicity(age),withthebluestlinesbeingthemostmetal-poor(youngest).Squaresdenotetheyoungest(mostmetal-poor)partofeachtrack,whilecirclesde-notetheoldest(mostmetal-rich).ThesetracksaretakenfromtheMILESstellarlibrary...........................136Figure5.1Luminosityfunctionsforthe25CLASHclustergalaxies,takingonlythosewithinjgr)j<0:2ofthemeasuredredsequence.ThisisotherwisethesameasFigure3.11..............140Figure5.2Thegivs.icolormagnitudediagramsforgalaxiesascolormembersusingk-correctedmagnitudes.ThedetailsofthisplotareotherwisethesameasforFigure4.6.Thevalueofthegrslopeisstillshowntoillustratethechangebetweensets........142xviiKEYTOSYMBOLSANDABBREVIATIONS2000.......................RightAscensioninJ2000CoordinatesA..............................Angstrom,1A=1108cmACS................AdvancedCameraforSurveys,anHSTinstrumentAGN.........................ActiveGalacticNucleus/NucleiBCG..............................BrightestClusterGalaxy2000.........................DeclinationinJ2000CoordinatesE(z)EvolutionFactorfortheHubbleExpansionParameter,E(z)=pM(1+z)3+H0..........CurrentValueoftheHubbleConstant,H0˘70kms1Mpc1G................GravitationalConstant,G=6:67108ergcmg2HST.............................TheHubbleSpaceTelescopeICM.....IntraclusterMedium,hotintergalacticgasboundbygravityinaclusterkB..................BoltzmannConstant,kB=1:3811016Ergs1keV...........KiloelectronVolt,1keV=1:6109erg=1:16107Kk1B......Cosmologywithanon-zerocosmologicalconstantanddarkmatterL..................LuminosityoftheSun,L=3:831033ergs1M2500............................MassEnclosedInsideR2500M.........................MassoftheSun,M=1:9891033g.....RatioofDensityofDarkEnergytotheCriticalDensityc2,˘0:7M...........RatioofDensityofMattertotheCriticalDensity,M˘0:3pc.............................Parsec,1pc=3:091018cmxviiiR2500...........RadiusInsideWhichAverageMatterDensityis2500ˆcˆc.................CriticalDensityoftheUniverse,ˆc˘1029gcm3SED.............................SpectralEnergyDistributionTX..................................X-RayTemperatureWFC3....................WideFieldCamera3,anHSTinstrumentXMM.........X-rayMulti-mirrorMission,XMM-Newton,anX-rayTelescopez..........................................RedshiftxixChapter1Introduction1.1TheGrandDichotomyIndividualgalaxies,whetherinagalaxyclusterorinthemakeuptwoseparatepopu-lations,bycolorasbeingineithera\bluecloud"ora\redsequence"(Baldryetal.,2004;Belletal.,2004;Wyderetal.,2007).Theseclascationsalsohavemorphologicalbasis,asredsequencegalaxiespreferentiallyshowearly-typemorphology(ellipticalgalaxies)whilebluecloudmembersaredominatedbylate-type(spiral)morphology(Stratevaetal.,2001),althoughcolordoesnotalwaysactasaproxyformorphology(Lintottetal.,2008).Thispopulationbimodalityextendeventolargeredshifts(Belletal.,2004).Weshowthecolorsofapproximately250,000galaxiesselectedfromtheSloanDigitalSkySurvey(SDSS)inFigure1.1;thetwopopulationsarevisibleinthisimage.Analysisofthephysicalpropertiesofindividualgalaxiesshowsthattheredsequenceandbluecloudcorrespondtoquiescent(undergoingverylittletonegligiblestarformation)andstar-formingpopulations,respectively(Schiminovichetal.,2007).Thiscolordistinctionisaconsequenceofongoingstarformationcausingastellarpopulationtobeblue.Whenitisactivelyformingstars,brightblueOandBstarsdominatethelightofagalaxy,makingitappearblue.However,theirshortlifespans(ontheorderof10'sto100'sofmillionsofyears,Hansenetal.,2004)meansthat,withoutconstantreplenishmentoftheOandBstarpop-1Figure1.1grcolor-magnitudediagramfor500000extendedgalaxiescatalogedfromtheSloanDigitalSkySurvey.Thesegalaxiesarethe500000inthe13thDataReleasewithgandrmagnitudesbrighterthan25andwithnoconstraintsonposition.Twogalaxypopulationsarevisible:thebluecloudandtheredsequence.Incolor-magnitudediagramspresentedinthisdissertation,bluercolorsareloweronthey-axis,whilebrightergalaxiesaretotheleftoffaintergalaxies.2ulation,galaxieswillbecomeredfairlysoonaftertheirmostrecentburstofstarformation.Theredsequenceisnedbyatightbunchingincolorspace(Baum,1959;Visvanathan&Sandage,1977),yetitextendsacrossarangeofluminosity,suchthatitappearsasaridgelineinFigure1.1.Redsequencegalaxieshavearangeofluminosities,frombrighttofaint(e.g.,Gelleretal.,2012),sothatthelengthoftheredsequenceimpliesthatbothlargeandsmallgalaxiesarehavingtheirstarformationshutAlthoughtheredsequenceistightlydistributedincolor,itisnotcenteredonauniformcoloracrossallluminosities;instead,theredsequenceexhibitsaslope,suchthatlowerlumi-nositygalaxiesarebluerthantheirbrightercounterparts.Onepossibleoriginforthisslopeisthatitiscausedbymetallicity,wherebylessmassiveobjectsaremoremetal-poorthanbrighterredsequencemembers(Kodama&Arimoto,1997;Stanfordetal.,1998;Ferrerasetal.,1999;Gallazzietal.,2006).Metalscanmakeastellarpopulationredderintwoways:lineblanketingandswelling.Metalswillcreateabsorptionlinesinastar;whentheyareathigherenergies,theywillabsorbbluelight(andthenre-emititatredderwavelengths),therebyreddeningthestar(Milne,1928;Chandrasekhar,1935;Sandage&Eggen,1959).Also,anenhancementinmetallicitycausesabuildupofradiationpressure,swellingastarandtherebyreducingitsetemperatureandmakingitredder(Conroy,2013).Duetohowmetallicitythecolorsofastellarpopulation,ametal-richgalaxywillberedderthanametal-poorgalaxy(Faber,1973;Worthey,1994;Bruzual&Charlot,2003;Maraston,2005).Iftheredsequenceslopeiscausedbymetallicitys,thenthemassivegalaxiesarethereforemoremetal-richthanlessmassivegalaxies.Aqualitative3originforthisrelationisthatsupernovae-drivenwindejectmetalsfromgalaxies,andtheenessofthisprocessisinverselycorrelatedwiththedepthofthepotentialwellofthegalaxy(Larson,1974;Arimoto&Yoshii,1987;Matteucci&Tornambe,1987;Lillyetal.,2013;Voitetal.,2015).Becausetheyhavelessgravitationalpull,lessmassivegalaxiesmayhavehadmoremetalsejected,andarethereforelessmetal-enrichedthanmassivegalaxies,whichcanretainmetalsinspiteofsupernovawinds.Matchingthisbehaviorwithsimula-tions,however,hasproventobeatask(DeLuciaetal.,2004a;deRossietal.,2007;Mouhcineetal.,2008).Antoriginoftheredsequenceslopecouldcomefromfaintergalaxieshavingtheirstarformationquenchedatalatertime.Evenafterseveralbillionyears,oldergalaxiesarestillsomewhatredderthantheiryoungercounterpartswithsimilarmetallicity.Asageandmetallicitybothobservedcolorsofgalaxies(thisiscalledthe\age-metallicitydegeneracy,"Worthey,1994,1999),disentanglingtheoriginoftheslopecannotbedonebycoloralone.Theorigincanbeeasilytested,however,byinvestigatingtheredshiftevolutionoftheredsequence;wereitcausedbyage,theslopewouldbecomemorepronouncedastherelativeagediscrepancybetweenmassiveandlessmassivegalaxiesbecamemoret.Observationsoftheredsequenceexistingbeyondevenmoderateredshifts(zˇ0:3)showsthatthetrendmustbedrivenbymetallicity(Kodama&Arimoto,1997;&Char-lot,1998;Kodamaetal.,1998).Nevertheless,whilemetallicityappearstobetheprimarycomponenttotheredsequenceslope,agevariationscanstillhavean(Ferrerasetal.,1999;Terlevichetal.,1999;Trageretal.,2000;Poggiantietal.,2001;Rakos&Schombert,2004).4Onefurtherclueabouttheoriginoftheredsequencecomesfromtheintrinsicscatter,thedispersionaboutthenominalredsequencelinebeyondthatcausedbyphotometricmea-surementuncertainties.Zeroscattermeansthatallgalaxiesofagivenluminositystoppedformingstarsatthesametime,whilealargescattermeansthatstar-formationceasedoverarangeoftimesforgalaxiesofthesamesize.Whileearlyworksontheredsequencefoundatightscatter(Boweretal.,1992;Ellisetal.,1997;Stanfordetal.,1998;Boweretal.,1998;Andreon,2003;McIntoshetal.,2005),whichimpliesthattheshtimewasconsistentforgalaxiesofagivensize,recentstudieshaveseenthatthemeasuredscattergrowsandevolveswithredshift(Hiltonetal.,2009;Papovichetal.,2010;Foltzetal.,2015).Asthecolorbetweentwostellarpopulationsoftagesdecreasewithtime,relativetothesizeoftheiragegap,themeasurementofscatteranditsevolutionconstrainsbothwhenandoverhowlonggalaxiesofacertainsizestoppedformingstars.Otherworkshaveshownthattheintrinsicscatterislargeratthefaintendoftheredsequence(Conseliceetal.,2002;Gallazzietal.,2006),implyingthatfaintergalaxiesareeitherquenching(ceasingstarformation)lateroroveralargerdistributionoftime.1.2TheRedSequenceinGalaxyClustersWhileredgalaxies{andtheredsequence{occurinthetheyaretlymorecommonindenseenvironmentssuchasgalaxyclusters(Baloghetal.,2004;anchez-Janssenetal.,2008).Clustersarethereforethebestwaytostudytheformationmechanismsoftheredsequence;notonlyisaclustergalaxymorelikelytobered,buttheenhancedgalaxydensitymeanswecanobservemoregalaxies.5Hubble&Humason(1931)notedthetendencyforellipticalgalaxiestobemorecom-moninclustersthaninthe(seealsoMorgan,1961),whichwasstatisticallybyDressler(1980).Spitzer&Baade(1951)consideredtheimplicationofthisdiscrepancyanditsrelationtoclusterformationandevolution;aclusterenvironmentispronetogalaxycollisions,whichwouldconvertspiralstoellipticals.Onecomplicatingfactoristhatclustersarenotstaticobjects,butgrowandmergeovertime.Infallinggalaxiesexperienceaburstofstarformationastheycrossthecluster'svirialradius(Porteretal.,2008),whichappearstobesustainedforˇ0:52:0billionyears(Hainesetal.,2015).Baheetal.(2013)showedthatgalaxiesfallingthroughtsareshowingsignsofhotgasstrippingouttoaroundetimesthevirialradius,asopposedtothoseequidistantfromclustercentersbutfallinginthroughvoids.Asclustersarecontinuallyaccretinggalaxiesthroughoutcosmichistory(Berrieretal.,2009),thesewillhaveamajorimpactontheobservablepropertiesofthebulkpopulationofclustergalaxies.Despitetheseconcerns,galaxyclustersstillactasafantasticlaboratoryforstudyingtheredsequence.Hoggetal.(2004)foundthatforbrightellipticalgalaxies(withi-bandabso-lutemagnitudesMi<20),galaxycolorsweremostlyindependentofthedensityoftheirenvironments.However,Tanakaetal.(2005)showedthatthefaintendoftheredsequenceisnotasdistinctforgalaxiesasitisforclustergalaxies,implyinga\downsizing"scenarioinwhichmoremassivegalaxiesandgalaxiesindenserregionsquenchtheirstarformationearlier.6Iffaintergalaxiesaremovingontotheredsequenceatalatertime,buttheoverallslopeoftheredsequenceiscausedbymetallicity,then,tostudytheredsequence,wewillneedawaytomeasuretheagesandmetallicitiesofindividualgalaxies.Thepreviously-mentionedage-metallicitydegeneracymeansthatindividualcolorsalonecannotconstrainonepropertywithoutassumingtheother.However,whileolderpopulationsandmoremetal-enrichedgalaxiesarebothredderthantheiryoungerormetal-poorcounterparts,theydonotreddeninthesameway.Bysamplingmultiplecolors,wecanbreaktheage-metallicitydegeneracyforindividualgalaxies.Intheastronomicalcontext,colorsaretheinmagnitudesmeasuredintwoSincemagnitudesarelogarithmicmeasureoftheinmagnitudesisauxratio.Conventionally,thebluererisplacedinthece,sothelargerthecolor,thereddertheobject.Additionally,tostudythefaintgalaxypopulation,werequireasamplewithbothexcel-lentangularresolution(toresolvegalaxiessmallerinsize)andtdepthtoobservefaintgalaxies.Toobtainsuchobservations,previousstudieshavemostlyusednearbyclus-ters,whichareaccessibletoground-basedobservations(e.g.,Edwards&Fadda,2011;Liuetal.,2011;Zhangetal.,2011;Tianetal.,2012;Ferrareseetal.,2016).However,tostudytheevolutionoftheredsequence,wealsoneedtemporalcoverage.Basedonthesecon-straints,theidealsurveyisahighresolutionsurveyofmultipleclustersspanningalargerangeofredshiftswithtcoveragetobreaktheage-metallicitydegeneracy.Wedescribesuchasurveyinthenextsection.7Table1.1.PropertiesofCLASHClustersFullNameCluster2000120002z3TX4LX4;5M25006(keV)(1044ergs1)(1014h170M)X-raySelected:Abell209A20901:31:52.5413:36:40.40.2067:30:5412:70:32:490:36Abell383A38302:48:03.4003:31:44.90.1876:50:246:70:21:420:07MACSJ0329.60211m032903:29:41.5602:11:46.10.4508:00:5017:00:62:240:24MACSJ0429.60253m042904:29:36.0502:53:06.10.3996:00:4411:20:52:490:57MACSJ0744.9+3927m074407:44:52.82+39:27:26.90.6868:90:8029:11:22:340:24Abell611A61108:00:56.82+36:03:23.60.2887:90:3511:70:23:200:35MACSJ1115.8+0129m111511:15:51.90+01:29:55.10.3558:00:4021:10:43:300:42Abell1423A142311:57:17.36+33:36:37.50.2137:10:657:80:21:820:17MACSJ1206.20847m120612:06:12.0908:48:04.40.43910:80:6043:01:04:590:68WARP1226.9+3332c122612:26:58.25+33:32:48.60.89013:82:8034:43:013:62:90MACSJ1311.00311m131113:11:01.8003:10:39.80.4945:90:409:40:41:800:30RXJ1347.51145r134713:47:30.6211:45:09.40.45115:50:6090:81:09:140:45MACSJ1423.8+2404m142314:23:47.88+24:04:42.50.5456:50:2414:50:42:700:50MACSJ1532.8+3021r153215:32:53.78+30:20:59.40.3625:50:4020:50:93:000:15MACSJ1720.2+3536m172017:20:16.78+35:36:26.50.3876:60:4013:30:52:400:29Abell2261A226117:22:27.18+32:07:57.30.2247:60:3018:00:23:240:23MACSJ1931.82635m193119:31:49.6226:34:32.90.3526:70:4020:90:62:740:12RXJ2129.6+0005r212921:29:39.96+00:05:21.20.2345:80:4011:42:02:670:25MS2137.32353ms213721:40:15.1723:39:40.20.3135:90:309:90:31:780:12AbellS1063r224822:48:43.9644:31:51.30.34812:40:6069:50:17:190:79HighMagnif.:MACSJ0416.12403m041604:16:08.3824:04:20.80.3977:50:8016:00:93:81:4MACSJ0647.8+7015m064706:47:50.27+70:14:55.00.58413:31:8032:52:16:53:2MACSJ0717+3745m071707:17:32.63+37:44:59.70.54812:50:7055:81:15:40:5MACSJ1149.6+2223m114911:49:35.69+22:23:54.60.5448:70:9030:21:23:10:8MACSJ21290741m212921:29:26.0607:41:28.80.5709:01:2022:61:54:71:71Rightascension.2Declination.3RedshiftsarefromPostmanetal.(2012b),exceptm0416,whichwasupdatedbyEbelingetal.(2014).4FromPostmanetal.(2012b).5Bolometricluminosity(from0.1-100keV).6ChandraHSEmassesfromDonahueetal.(2014).1.3CLASH:TheClusterLensingandSupernovaSur-veywithHubbleMuchofthisworkisbasedonobservationsconductedaspartoftheClusterLensingandSupernovasurveywithHubble(CLASH),aHubbleSpaceTelescope(HST)Multi-CycleTrea-suryprogram(foranoverviewofthesurvey,seePostmanetal.,2012b).TheCLASHsampleconsistsof25galaxyclusters:20(16fromAllenetal.,2008)selectedduetotheirdynami-8Figure1.2Fractionalthroughputsofthe17usedbyCLASH.Theyare,frombluetored,F225W,F275W,F336W,F390W(allUVIS);F435W,F475W,F555WF606W,F625W,F775W,F814W,F850LP(allACS);F105W,F110W,F125W,F140W,F160W(allWFC3-IR).callyrelaxedX-raymorphology,inordertoquantifythedistributionofdarkmatterwithinclusters,and5selectedduetotheirstrengthasstronggravitationallenses,forexploringthehighredshiftUniverse.These25systemswerechosenfromtheMassiveClusterSurvey(MACS,Ebelingetal.,2001,2007,2010)andtheAbellcatalog(Abell,1958;Abelletal.,1989).AllCLASHclustershaveX-raytemperatureskT5:0keV.Coordinatesandob-servedpropertiesofthe25clustersareprovidedinTable1.1.CLASHobservationsconsistof524orbitsofHubbletimedividedamongthe25clustersusing16(withanadditionalusedinarchivalobservations).TheseshowninFigure1.2,spanˇ2000Atoˇ1:7micronsandtheWFC3/UVIS,ACS,andWFC3/IRinstruments.Filterswerechosentomaximizephotometricredshiftresults,basedonthe9resultsofasimulatedre-observationofspectralenergydistribution(SED)templateswiththeHSTset.Thisselectionwasmadesothat80%ofobjectswithABMag<26intheF775Wbandwouldhaveaccuratephotometricredshifts<0:02(1+z)).Inaddition,forallACSandWFC3/IRthe5˙detectionthresholdwasasfaintorfainterthanABMag=26.7foracircularaperture0:400indiameter.Foreacheachclusterwasobservedforˇ1toˇ2orbits,withthetotalobserva-tionsforeachclustertotaling20orbits.Only476orbitsofnewobservationswererequiredforthis,asarchivalimageswerealsoused.Asanadditionalreserve,50orbitsoffollowupobservationswereallottedtosupernovaesearches,drawnfromapoolof200additionalorbitssharedwiththeCosmicAssemblyNear-IRDeepExtragalacticLegacySurvey(CANDELS;Groginetal.,2011;Koekemoeretal.,2011).Combiningthreetinstrumentspresentstheproblemofofview.Thelargestdetector,ACS,has220484096pixeldetectors,providingacoverageareaof2020020200.WFC3/IR,however,hasonlya10141014pixeldetectorandanangularcoverageof1360012300.Finally,WFC3/UVIShas220514096CCDsandaofviewof1620016200.Theseareasareexpandedbythetwoseparatepointingsbeingturned30apart,butthiscomesatreduceddepthforobjectsonlyintheofviewforonepointing.ObservationsarereducedbytheMosaicDrizzlepipeline(Koekemoeretal.2011,basedonFruchter&Hook2002;Koekemoeretal.2003).ACS/WFCdataarecorrectedforbiasstripingandchargetransferdegradation(Anderson&Bedin,2010).Thepipelinethenalignseveryvisitandeveryontothesamegrid,providingastrometric10accuracyontheorderofonemilliarcsecond.Badpixelsandcosmicraysarerejected,which,alongwithreadnoise,statisticaluncertainty,andaccumulateddarkcurrent,areusedtopro-duceaninversevariancemapforeachandcluster.Theoutputimagesarebinnedtoseveralscales,butthroughoutthisworkweonlyusethoseimagesbinnedto0.065"perpixel.Sinceobservationsbegan,theCLASHdatahavebeenwidelystudied.Coeetal.(2013),Bradleyetal.(2014),Bouwensetal.(2014),andMcLeodetal.(2016)havefoundextremely-highredshiftgalaxiesinthelensedbackgroundsoftheseclusters.Numerousstudieshavebeenmadeofthelensingofgalaxyclusters(Zitrinetal.,2011;Limousinetal.,2012;Umetsuetal.,2012;Zitrinetal.,2012b;Gruenetal.,2013;Medezinskietal.,2013;Zitrinetal.,2013;Umetsuetal.,2014;Zitrinetal.,2015;Umetsuetal.,2016).Meneghettietal.(2014),Mertenetal.(2015),andSerenoetal.(2015)haveusedtheCLASHdatatotheconcentration-massrelationforgalaxyclusters.Individualgalaxieshavebeenstudiedataphotometric(Jouveletal.,2014)andspectroscopic(Bivianoetal.,2013;Annunziatellaetal.,2014;Girardietal.,2015;Fogartyetal.,2015)level.Donahueetal.(2014)andDonahueetal.(2016)exploredtheX-raypropertiesofthe25clusters.CLASHclustersarebeingfurtherstudiedbytheHubbleFrontierFields(Coeetal.,2015)andtheGrismSurveyfromSpace(Schmidtetal.,2014).PhotometriccatalogsoftheCLASHclustergalaxieswerepublishedbyPostmanetal.(2012b),butthesewerenotsuitabletostudytheclusterpopulations.Weshowthedistribu-tionofphotometricredshiftsderivedfromthiscatalogforoneoftheclusters,MACS1423,inorangeinFigure1.3.Notonlyistheclusternotapparentinthedistribution,butmuchofthedetectedgalaxypopulationappearstonotbeassociatedwiththecluster,contraryto11Figure1.3DistributionofphotometricredshiftsfromCLASHclusterphotometryforMACS1423.Datafromtheoriginalcatalogspublishedby(Postmanetal.,2012b)isshowninorange,whiledatafromthephotometrywepresentinthisworkareshownindarkblue.Thespectroscopicredshiftoftheclusterisindicatedbythepurplebar.WeonlyconsiderthosegalaxieswithF814Wmagnitudesbrighterthan25.5.12whatavisualinspectionoftheHubbleimagewouldindicate.TostudytheCLASHclusterpopulation,wethereforeneededtoperformourowndetectionandphotometryinawaythatavoidstheissuesoftheoriginalcatalog.AstheCLASHclustersarecrowdedweusemode-basedbackgroundsubtractiontodetectgalaxiesofallsizeswithonlyaminimalamountofsourcedecomposition;usingasimilartechnique,weestimatethebackgroundsofallthegalaxiestophotometerthemindividually.Thistechnique,aswellasourphotometricresults,arepresentedinChapter3.TheimprovementinphotometryisseeninFigure1.3,wherethenewdataareshownindarkblue.WecharacterizeourdetectionlimitasatleastM*+5formostoftheclusters.InChapter4,weuseourmeasuredphotometrytoinvestigatetheredsequence.StartingwithSEDtomeasureagesandmetallicitiesforeachgalaxy,weobserveametallicitygradientalongtheredsequence.Furtherinvestigation,however,showsevidenceforapop-ulationevolvingontotheredsequenceatfaintmagnitudes.1.4X-rayScalingRelationsGalaxyclustersareassumed,atleasttotobeself-similar;thatis,smallerclustersarejustscaled-downversionsoflargerclusters.Statistically,thismeansthattherelationshipbetweenmassandotherparametersisoftenrepresentedbypower-laws(Giodinietal.,2013),which,inturn,meansthoseotherparametershavetheirownself-similarscaling.Weshowanexampleofself-similarscalingforclusterX-raypropertiesinpurpleinFigure1.4;the13Figure1.4X-rayscalingbetweenX-raytemperatureandX-rayluminosityforasampleofclusters(purple,Wuetal.,1999)andgroups(orange,Xue&Wu,2000).Bothsamplesshowself-similarscalingcharacterizedbyapower-law,buttheentslopesofthatscalingbetweengroupsandclustersisevidenceofapossiblebreakinself-similarity.dataforthispartofthearefromWuetal.(1999).Inscience,weseektocomparenaturewithourmodelsfornature.Forclusters,thefundamentalpropertiespredictedbyourcosmologicalmodelsaretotalgravitatingmasses(otherwiseknownasvirialmasses),or,lesscommonly,velocitydispersion(whichisrelatedtothedepthofthegravitationalpotentialM/R).Intheeraoflargesurveys,well-calibratedscalingrelationsareavitallinkinconnectingeasily-observedquantities(suchasLXorYSZ)withmoreeasily-predictedbuttougher-to-measureparameterssuchasvirialmass.Clusterofgalaxiesareextendedastronomicalsources,madeupofanaggregateofindi-vidualgalaxies,or,intheX-rayregime,agiantcloudofhotgaswithnow14edge.Evenassigningsomethingassimpleasaluminosityrequirescarefulofthesizeoftheregionoverwhichthemeasurementismade.Scalingrelationscanassistinsuchregions(usuallysomefractionofavirialradiusoraradiusinsidewhichthetotalmassrepresentssomescaledoverdensitycomparedtothecriticaldensity)byallowinganestimateofthevirialmassandthevirialradiuswithoutdirectlymeasuringeither.Anumberofstudiesusescalingrelationstomaximizetheutilityoftheirdatasets,evenwhenthederivedparametersarenottheendgoal.ohringeretal.(2013)usedtheX-rayluminosity-massscalingrelationtoiterativelyluminositymeasurementsbycorrectingforinderivedr500apertures.ohringer&Chon(2015)usedscalingrelationstoconvertamatterdensityation-derivedclustermassfunctionintoanX-rayluminosityfunction.ToruleoutastatisticalinSunyaev-Zeldovich(SZE)datafromacatalogofdetectedclusters,vanderBurgetal.(2016)usedascalingrelation.Forthesereasons,amorethoroughunderstandingofscalingrelationsallowsformoreaccurateestimationoftheseparameters.Anotheruseforstudyingscalingrelationsistoseewheretheydeviatefromexpectations.Deviationsfrombehaviorpredictedbyasimplemodelcanbeusedtoadjustthatmodel(e.g.,Kaiser,1991),and,byextension,furtherunderstandthebehaviorofgalaxyclusters.Addi-tionally,breaksfromscalingrelationsattheextremesofclusterenvironments(particularlyatthetransitionbetweenclusterandgroup,e.g.,Ponmanetal.,1996;Helsdon&Ponman,2000;Mulchaey,2000;Osmond&Ponman,2004;Sunetal.,2009;Eckmilleretal.,2011;Kettulaetal.,2013;Connoretal.,2014)revealthescaleatwhichtprocesses{suchasAGNheating(Puchweinetal.,2008;Fabjanetal.,2010;McCarthyetal.,2010;Gasparietal.,2014)andsupernovafeedback(Baloghetal.,1999;Loewenstein,2000;Kay,2004){15dominateinacluster;howpropertiesscalebelowthisthresholdisalsousedtoquantifytheoftheseevents.WhileasimplemodelpredictsthatLX/T2E(z),whereE(z)isacorrectionforcos-mologicalevolution,numerousstudieshaveobservedaluminosity-temperature(L-T)rela-tionshipbetterbyLX/T3E(z)(Mushotzky,1984;Edge&Stewart,1991;Davidetal.,1993;Maughanetal.,2012).Theimplicationofthisdiscrepancyisthatsomethingotherthangravitationalcollapsealoneisheatingclusterbaryons.OnemechanismtoproducetheobservedL-Tscalingistoincreasethecentralgasentropyofclusters(Evrard&Henry,1991;Kaiser,1991;Ponmanetal.,1999;Tozzi&Norman,2001),whichcanbeaccomplishedthroughenergeticevents,heating,and,indirectly,throughcooling(andthereforethere-movaloflow-entropygastomakestarsornon-X-rayemitting\cold"gas;Baloghetal.,1999;Bryan,2000;Boweretal.,2001;Voit&Bryan,2001;Voitetal.,2002;Muanwongetal.,2006).Thiscentralentropyormakesittoughertocompressgas,therebyimposinganupperlimitoncentraldensity.AsX-rayluminosityisproportionaltodensitysquared(seeEquation1.8),thisdensitylimitreducestheclusterluminosity,suchthatthehigherthebaselineentropyor,thelowertheX-rayluminosity.Alongwiththeluminosity-temperaturerelation,wealsoconsiderthemass-temperature(M-T)andluminosity-mass(L-M)relations.TheM-Trelationsteepensslightlyforlow-massclustersandgroups(Arnaudetal.,2005),butotherwisedisplayssmallintrinsicscatter(e.g.,Mantzetal.,2010a),whichisbelievedtoappearasaconsequenceofsubstructure(O'Haraetal.,2006;Yangetal.,2009).MuchliketheL-Trelation,theL-Mrelationissteeperthanthatpredictedbygravityalone(e.g.,Reiprich&ohringer,2002;Eckmilleretal.,2011),16andpreviousstudieshaveseenlargeintrinsicscatter(Prattetal.,2009;Vikhlininetal.,2009).Notonlydoclusterscalingrelationsfollowaslopetfromwhatisexpectedbypredictionsbasedsolelyongravity,butanumberofpreviousstudieshavefoundevidencefor\breaks"inthepowerlawrelations,suchthatlow-massgroupsfollowarentpowerlawthanmassiveclusters(Ponmanetal.,1996;Xue&Wu,2000;Eckmilleretal.,2011;Stottetal.,2012).WeshowanexampleofsuchabreakinFigure1.4;groupobservations(orange)fromXue&Wu(2000)arebbyatpower-lawthanclusterobser-vations(purple)fromWuetal.(1999).Thesebreaksinself-similaritycanbetiedtothemechanismthatraisestheclusterentropy;if,e.g.,supernovaeandactivegalacticnuclei(AGN)areraisingtheclusterentropy,theseeventswillhavealargerongroups,whichhaveshallowergravitationalpotentialwells.Characterizingthelocationandmagnitudeofbreaksfromself-similarity,aswellasthedeviationfromgravity-onlyscaling,isimportanttoconstraintheastrophysicsofclusters.Breakscanalsobecausedbyinconsistentchoicesfortheregionsoverwhichluminosity,temperature,andmassaremeasured.Finally,breakscanalsobecausedbybiasesinthesampleselectionandchangesintheintrinsicscatterasafunctionofclustersize(soa\break"inapower-lawrelationmightnotbeabreakatall).Therefore,inthisworkwehavetobecarefulinourof\luminosity,"\tempera-ture,"and\mass,"inthesensethatthevolumeoverwhichthosequantitiesaremeasuredmustbespandconsistentfromclustertocluster.Tothepredictedbehaviorofscalingrelations,webeginwithawaytorelatemass17toradius.Ifr1(suchasr2500)istobetheradiusinwhichtheaveragedensityofasystemisˆc,whereˆcisthecriticaldensity,thenM=4ˇ3ˆcr3:(1.1)WecanthensubstitutethecriticaldensitywithE(z)usingˆc=3(H0E(z))28ˇG/E(z)2;(1.2)whereH0istheHubbleconstantandGisthegravitationalconstant.RearrangingEquations1.1and1.2,wehaveanexpressionfortheradiusR/E(z)2=3M1=3:(1.3)Withthisexpression,wecansubstitutetheradiusoutofanyexpressionandreplaceitwithobservablequantities.Next,weconsidertheequationofhydrostaticequilibrium,dPdr=GM(r)ˆ(r)r2:(1.4)Weassumethatthemassinhydrostaticequilibriumcanberepresentedbyanidealgas,sothatthepressureisgivenbyP=ˆmkBT;(1.5)1Throughoutthiswork,wedenotevalueswithsubscripts\2500"and\500";thesecorrespondtovaluesmeasuredwithinradiigivenbythisformula,ortotheradiithemselves.18wheremisthemassofaparticle,notofthesystem.BymultiplyingEquation1.4byr/P,usingEquation1.3tosetM=r/(ME(z))2=3,andusingEquation1.5tosetˆ=P/T1,wedlnPdlnr=G(M(r)=r)(ˆ(r)=P)/(ME(z))2=3T1:(1.6)Wethereforecomeuponascalingrelationbetweenmassandtemperature:M/T3=2=E(z):(1.7)Undertheassumptionthatthehotclustergasisinhydrostaticequilibriumandfollowstheidealgaslaw,thismodelallowsustoconvertobservedgastemperaturestomassesandviceversa.ToextendtheserelationstoX-rayluminosity,weassumethatalloftheemissionofthehotgascomesfrombremsstrahlung.Inthatcase,weuseaversionoftheequationofbremsstrahlungemission,LX/MˆT1=2X:(1.8)WeconvertthedensitytermtoanevolutiontermwithEquation1.2andreducethisex-pressiontotemperaturealoneusingourconversionfrommasstotemperature,Equation1.7.ThisleavesuswithascalingrelationbetweentheX-rayluminosityandgastemperature,LX/T2E(z):(1.9)19BycompletingthetrianglecreatedbyEquations1.7and1.9,wehaveLX=E(z)/M2=3E2=3(z);(1.10)awaytoconnecteasily-obtainedredshiftandluminositymeasurementsofclusterstoesti-matesoftheirmass.Oneoftheimportantpredictionsofthegravity-onlymodelisthattheserelationshipshaveadependenceonredshift,causedbytheevolutionofthecriticaldensityoftheUni-verse(Equation1.2).Incontrast,non-gravitationalshouldhaveamoretredshiftdependenceiftheydependontheevolutionoftheastrophysicalprocesses,suchastheAGNluminosityfunction(Georgakakisetal.,2015;Fotopoulouetal.,2016).Duetotheyinobtaininggoodmeasurementsforhigher-redshiftclusters,previousstudieshavebeeninconclusiveaboutthecharacterizationofevolution(e.g.,Ettorietal.,2004;Kotov&Vikhlinin,2005;O'Haraetal.,2006;Pacaudetal.,2007;Reichertetal.,2011).InChapter2weinvestigateasampleof15galaxyclusterswithweak-lensingmassesde-rivedfromHSTdata;weusenewandarchivalobservationsfromXMM-NewtontomeasureX-rayluminositiesandtemperaturesforthesesystems.Duetohowtheseclusterswereran-domlyselectedforsnapshotHSTobservationsfromacomplete,X-rayx-limitedsampleofclustersofgalaxies(Vikhlininetal.,1998;Mullisetal.,2003),theyareelyanX-raysample,withX-raypropertiesconsistentwithbeingattheboundarybetweengroupsandclustersandwithredshiftscovering0:310keV)in100-secondbins;timeperiodswherethoseexceeded0.35counts1(MOS)or0.40counts1(pn)2http://xmm.esac.esa.int/sas/28Figure2.1Gaussian-smoothedX-rayemissioncontoursoverlaidonHubbleSpaceTelescopeimagesofthefourclustersweobservedinthiswork.Contoursarespacedatintervalsof106counts1arcsec2,withtheminimumlevelforeachclusterdescribedinSection2.2.29wereexcluded.OneexceptiontothiswastheobservationofRXJ1354.20221,0112250101,whichhadanabnormallyhighhigh-energybackground.Toavoidovthedata,weincreasedthecountratelimitsto0.5counts1(MOS)and0.65countss1(pn)forthisobservationonly.Forallobservationsthelevelswerescrutinizedtoensurethatpe-riodsoftwereentirelyremoved.Whennecessary,wemadethehigh-energycountratethresholdsmorestringent.Pointsourcesweredetectedusingtheindividualtasksthatmakeupedetectchain.Thistaskuseseboxdetecttoperformaslidingboxdetectionofsourceswithalocalback-ground,thenhasesplinemapgenerateasource-correctedglobalbackground,whichasecondrunofeboxdetectusestosourcesagain.Sourceswereselectedfromthesedetectionsbyhandafteravisualinspection.Table2.3liststhecoordinatesandradiiofourmasks.Allidensourceswereexcludedfromthespectralextractionregions.Wethenextractedspectrafromtheobservationsinthreetaperturesusingstan-dardoptions("#XMMEAEM"forMOSdataand"#XMMEAEP"forpn).Forallcamerasweselectedsingleanddoubleevents,with"PATTERN<12"forMOSand"PATTERN<4"forpn.Ouraperturewas300h170kpc,whichwaschosentocompareourmeasuredagainstthoseofVikhlininetal.(1998).Oursecondaperturewasacirclewithradiusequaltothevalueofr2500giveninTable2ofHoekstraetal.(2011).r2500istheradiusinsidewhichtheestimatedmeanmassdensityis2500timesthecriticaldensityattheredshiftofthecluster3.Weaklensingmassmeasurementsusedinthisworkwerederivedforr2500for3Similarly,r500istheradiuswhereaveragedensityis500timesthecriticaldensity.Throughoutthiswork,weusethesubscripts2500and500todenotethatquantitiesaremeasuredinsidetheseradii.30Table2.3:MaskedSources20002000radius(00)0h57m04:704s2740m23:52s21.462100h57m04:103s2741m11:52s21.462100h57m09:219s2739m39:49s20.513700h56m49:649s2740m07:55s25.768000h56m48:444s2740m59:54s12.873001h10m11:496s1938m56:76s26.308201h10m11:448s1940m27:12s22.245701h10m28:704s1938m41:64s23.602901h10m22:008s1939m32:40s21.236401h10m09:960s1936m50:76s23.417701h10m09:048s1938m22:92s23.375801h10m08:640s1938m55:68s27.936201h10m14:287s1935m16:84s19.309401h10m13:831s1936m17:04s19.309405h22m23:736s3625m22:08s26.332105h22m14:424s3624m33:48s19.663805h22m20:328s3622m15:24s24.540405h22m12:792s3623m14:28s23.980205h22m12:168s3621m46:44s21.6200031Table2.3(cont'd)20002000radius(00)5h22m15:216s3623m37:68s22.725605h22m12:978s3625m42:22s10.154608h26m05:760s2627m40:32s24.862008h26m13:920s2626m16:44s20.450408h26m10:320s2626m27:60s20.612208h26m04:080s2626m33:00s21.489508h26m15:120s2625m18:12s22.790608h26m03:360s2622m56:64s19.136108h26m18:823s2624m48:31s16.963308h26m13:824s2627m41:13s16.963308h26m00:960s2623m28:32s16.963308h46m59:280s3448m24:12s22.651608h47m09:840s3449m18:84s17.035208h47m11:520s3447m16:44s23.746608h47m07:622s3449m46:84s14.866708h47m14:376s3446m54:03s14.866708h47m03:209s3447m03:63s21.506008h47m07:622s3447m38:84s19.707909h57m57:360s6535m25:08s17.8906032Table2.3(cont'd)20002000radius(00)11h17m40:080s0744m11:22s24.4514011h17m35:040s0743m35:04s28.2048011h17m32:880s0741m46:57s24.7282011h17m29:280s0746m31:84s25.1226011h17m37:200s0742m44:96s24.5163013h54m14:751s0220m28:26s16.0979016h42m32:640s3934m50:52s18.5573020h59m44:880s4244m57:84s47.3436020h59m57:840s4242m24:12s22.9939020h59m57:600s4242m57:96s18.6188020h59m49:920s4244m53:88s15.6008021h08m40:800s0518m10:51s21.5971021h39m51:286s4307m57:00s19.1551021h40m14:022s4305m11:40s21.8693021h46m08:880s0424m03:92s19.9797021h46m08:160s0424m42:95s19.2458021h46m05:280s0420m22:74s16.2882022h02m39:120s1903m17:28s15.9197022h02m48:240s1903m47:52s21.8367033Table2.3(cont'd)20002000radius(00)22h02m39:600s1900m05:76s22.4937022h02m43:200s1904m33:96s22.5322022h02m48:480s1904m27:84s20.5257022h02m36:720s1903m32:04s26.1011022h02m42:960s1900m28:08s21.2601022h02m52:268s1901m08:05s14.6214023h28m43:680s1453m35:16s18.7016023h28m52:800s1450m02:76s21.4418023h29m03:360s1452m01:20s36.0000023h28m48:372s1454m11:16s18.70160eachcluster.Thisradiuswastypicallybetween40-6000.Forbackgroundregions,weusedannulicenteredontheclusterwithinnerradiiof1.20andouterradiiof1.80.Wechosetousethissizetoobtainaslocalabackgroundonthedetectoraspossiblewithoutanydetectableclusteremissionpresent.Fortypicalrangesofbparameters(Vikhlininetal.,1998)weestimatethatourchoiceofbackgroundannulimayslightlyover-subtracttheat<1%level,wellbelowourstatisticaluncertainties.Thisestimateisconservativebecauseasingle34beta-modeltendstoover-predicttheX-raysurfacebrightnesswhenextrapolatedtolargeradii(e.g.,Ettori&Brighenti,2008).Withoneexception,whenchoosingacenterforourapertures,weusedtheBrightestClusterGalaxy(BCG)coordinatespresentedinHoekstraetal.(2011).Thispositionisthecenteraroundwhichtheyestimater2500andM2500,andadirectcomparisonbetweenthemassandX-raypropertiesofaclustershouldbewithinthesamearea.Theexception,RXJ0826.1+2625,wewillshowinSection2.4.1,isanexamplewheretheROSATcenterisinerrorduetopointsourcecontamination.Hoekstraetal.(2011)idenaBCGwithareported\quality"oftheBCGdetectionof0,implyinganambiguousidenFur-thermore,theirreportedvalueofM2500=0:8+2:12:1impliesapoordeterminationoftheclustermassaroundthatlocation.AsthecenteroftheX-rayemissiondetectedinXMM-Newtonisbarelywithinr2500ofthereportedBCGposition,weinsteadrepositionedouraperturearoundthecenteroftheX-rayemission.ThecoordinatesaroundwhichwelocatedouraperturesareprovidedinTable2.1.Becauseofthecenteringissues,RXJ0826.1+2625wasnotincludedinofweak-lensingmassscalingrelations.SpectrawereextractedusingtheSAStaskevselect,whileredistributionmatrix(RMF)andancillaryresponse(ARF)weregeneratedwithSAStasksrmfgenandarfgen,respectively.Thetaskbackscalewasusedtodeterminetheusablearea(cor-rectingforbadpixelsandCCDedges)foreachspectrum.Photonspectra,RMF,andARFwereallbinnedfrom0.4to8.0keVwithbinsofsize0.038keV.352.3AnalysisOurextractedspectrawereanalyzedusingXSPECversion12.8.0andPyXspecversion1.0.1.Foreachcluster,threeindependentspectrafromMOS1,MOS2,andpnweresimultane-ouslywiththesamemodel.InallthreeobservationsofRXJ1117.4+0743,theclusteraperturewechoseextendedoutsideoftheofviewfortheMOS2camera.Asthiswouldbiasourresultstowardthepropertiesofthecenterofthecluster,wedidnotusethoseMOS2dataforanyofthethreeobservations.Asidefromthespectralbinningperformedinthespectralgeneration,nobinningwasperformed.Becauseofthat{andthelownumberofcountsforourobjects{weusedthemoC-statistic(amaximumlikelihoodfunction;Cash,1979;Wachteretal.,1979)fordeterminingthebestanduncertaintiesforourmodelparameters.Ourspectraweremodeledwithacombinationofemission(APEC,agasemissionspectrum)andabsorption(phabs,aphotoelectricabsorptionmodel)componentsfrom0.7-8.0keV.APECusestheATOMDBv2.0.24codetocomparetheobserveddatatomodelsofcollisionallyionizedgasemissionspectra.Itrequirestheredshift(fromMullisetal.,2003)andmetalabundancestoanormalizationandplasmatemperature.Weusedtheangrabundancetable,whichcomesfromAnders&Grevesse(1989).ForallmodelweusedXSPECtoderivevaluesfrom0.5-2.0keV,thesamerangeusedbyMullisetal.(2003).Wealsocalculatedluminositiesfrom0.1-2.4keV(therangepresentedinHoekstraetal.,2011),0.5-2.0keV(tomatchMullisetal.,2003),and0.1-50keV(a\bolometric"luminosity).4http://atomdb.org/3637Table2.4.SpectralFittingPropertiesWithinr2500NameMassakTAbundanceNorm.FluxbLcLbLdh17010131041014h2701044h2701044h2701044MkeVZAPECeergs1cm2ergs1ergs1ergs1RXJ0056.927405:2+4:23:03:51+0:910:49<1:03f1:97+0:160:194:59+0:260:360:524+0:0440:0320:437+0:0360:0311:05+0:080:10RXJ0110.3+19385:0+3:42:62:95+0:720:620:56+0:500:320:98+0:190:163:64+0:200:080:119+0:0030:0060:102+0:0020:0060:219+0:0160:015RXJ0522.236257:2+4:23:15:32+0:420:370:37+0:130:122:11+0:080:096:11+0:130:100:454+0:0120:0120:371+0:0100:0091:19+0:040:03RXJ0826.1+26250:8+2:12:11:52+0:200:270:13+0:120:080:31+0:060:050:80+0:050:020:035+0:0020:0020:031+0:0010:0020:045+0:0020:003RXJ0847.1+344924:2+8:97:64:17+0:590:400:29+0:180:162:02+0:130:135:20+0:110:100:568+0:0120:0120:467+0:0090:0091:31+0:030:05RXJ0957.8+65344:3+3:22:62:88+0:210:170:23+0:100:081:65+0:090:093:95+0:090:070:393+0:0090:0110:330+0:0090:0090:745+0:0120:019RXJ1117.4+07435:2+3:42:84:31+0:690:390:40+0:190:191:01+0:070:062:90+0:060:040:224+0:0040:0040:184+0:0040:0030:527+0:0120:015RXJ1354.2022120:2+6:45:67:55+1:861:210:38+0:340:272:55+0:180:196:89+0:250:190:679+0:0250:0200:547+0:0210:0242:12+0:090:09RXJ1642.6+39352:8+2:81:83:01+0:410:380:43+0:260:200:95+0:100:103:43+0:160:080:147+0:0050:0060:127+0:0040:0050:264+0:0110:012RXJ2059.942454:4+3:32:42:58+0:100:100:53+0:100:081:93+0:090:097:25+0:120:090:250+0:0030:0050:216+0:0040:0040:424+0:0070:008RXJ2108.805161:8+2:21:42:34+0:900:49<2:67f1:16+0:100:292:89+0:130:320:097+0:0090:0080:082+0:0090:0030:161+0:0180:014RXJ2139.943055:3+3:72:63:06+0:230:220:32+0:120:101:86+0:100:106:13+0:110:160:297+0:0060:0080:255+0:0050:0060:542+0:0100:013RXJ2146.0+042321:0+6:75:75:02+0:410:380:41+0:140:122:98+0:130:137:87+0:180:170:739+0:0170:0210:601+0:0180:0201:97+0:060:04RXJ2202.719020:8+2:00:83:91+0:790:630:77+0:590:390:37+0:060:061:29+0:070:040:084+0:0050:0050:071+0:0040:0050:186+0:0080:012RXJ2328.8+14534:0+3:72:63:12+0:280:230:38+0:160:120:59+0:040:041:58+0:040:020:135+0:0030:0030:113+0:0030:0030:269+0:0070:005aWeaklensingmassesfromHoekstraetal.(2011).b0.5-2.0keV.c0.1-2.4keV.dBolometric.e10144ˇ[DA(1+z)]21RnenHdV:DAhasunitscm.neandnHhaveunitscm3:f3˙upperlimit.2.4ResultsTheresultsofourspectralaresummarizedinTable2.4.Massestimatesbasedonweak-lensinganalysesarethosereportedinHoekstraetal.(2011).Ourreportedluminositiesaretheunabsorbedluminosities.Forallmeasurements,thereportederrorsareatthe1˙level.2.4.1FluxOneofouraimswastoinvestigatehowimprovedXMM-Newtonimagingwouldthemeasurementsofthesefaintclusters.Alongwithimprovedspectralresponseandcalibra-tions,theimprovedresolutionallowedustoidentifyandmaskoutcontaminatingpointsources.Tothisend,wecompareourmeasuredstothosereportedintheinitial160SDpaperofVikhlininetal.(1998),V98hereafter.Intheoriginalwork,V98wereunabletouseawideaperturetointegrateduetothelargestatisticaluncertaintyintroducedbytheROSATbackground.Instead,theyestimatedthefromthenormalizationofa-model(Cavaliere&Fusco-Femiano,1976),I(r;rc)=I0(1+r2=r2c)3+0:5:(2.1)Theyestimatedcoreradiibya=0.67modeltotheirsurfacebrightnessthen,theyextrapolatedtoobtainthebasedonthenormalizationandshapeoftheb-model.Theirreportedwasactually(f0:6+f0:7)=2,wheref0:6andf0:738Figure2.2ComparisonbetweenourmeasuredusingXMM-NewtonandthosereportedbyVikhlininetal.(1998)usingROSAT.ROSATwereadjustedtocorrespondtotheinner300h170kpcofthecluster,asdescribedinthetext.Thesolidlineistheidentityline,whiletheshadedbandindicatesagreementtowithin10%.39aretheobtainedassuming=0:6and=0:7,respectively.Fordirectcomparisonwiththeseresults,weintegratedcountsinsideaaperture.Inordertoavoidbiasingtheseresultsbyoursomewhatuncertainestimationofr2500,weadoptedametricapertureofradius300h170kpc.FortheequivalentweusedthemodelparametersfromV98toinfertheestimatedROSATinside300h170kpc.Theerrorsonthesewerekeptatthesamepercentastheoriginallyreportedvalues.DetailsofthisprocedurearegiveninAppendixA.ThecomparisonbetweenourresultsandV98isshowninFigure2.2.Ourmeasuredagreetowithin1˙withthemoofV98inallbutsixcases.ForRXJ0847.1+3449,includinganXMM-Newtonpointsourceblendedwiththeclus-tercausesthemeasuredtoagreewithintheircombined1˙errors.TomatchourmeasurementofRXJ0056.92740withthatofV98,weonlyneededtocenterourapertureonthesameposition.RXJ2146.0+0423,whichwetobeslightlylowerinthanallowedbyV98'suncertainty,matchesperfectlywhenweshifttotheV98coordinatesandexpandtheaperturetoincludeanearbyXMM-Newtonpointsource.Toaccountforourex-pandedaperture,werederivedanew,correctedV98tocompareinthiscase.Similarly,repositioningouraperturearoundRXJ0522.23625andusingalargeraperturebringsthetwomeasurementsintoagreement.Finally,RXJ0826.1+2625andRXJ2328.8+1453wereoriginallymeasuredatatpositionalfromV98(ˇ3700and4500,respectively).Inbothcases,itappearsasiftheROSATimagesblendedinnearbypointsources.ByrecenteringouraperturearoundtheV98coordinatesandexpandingtheregiontoincludetheneighboringobjects,weagreementbetweenthetwosetsofmeasurements.40Figure2.3DistributionofsetstoBCGpositionsmeasuredbyHoekstraetal.(2011)fromX-raycentroidmeasurementsusingXMM-Newton(thiswork,hashesrisingtotheright)andROSAT(Vikhlininetal.,1998,hashesloweringtotheright).Dataarebinnedtoincrementsof5arcseconds.WehavereproducedtheROSATX-rayestimatesfromV98anddemonstratedthatblendedpointsourcesandteraperturestheestimatesoftheseclustersoverandabovetheuncertaintybasedoncountingstatisticsandbackgroundsubtractionalone.2.4.2X-rayInTable2.1welistcoordinatesforeachclustertwice.ThecoordinatesfromHoekstraetal.(2011)aretheirbestestimateofthepositionofeachcluster'sBCG.ThenewcoordinatesareofanX-raycentroidperformedondatafromtheMOS1cameraaroundeachcluster's41X-rayemission.Centroidswerecomputedineiterationsofcentroidinganaperturewithradius1600,ofimagesbinnedto1.600perpixel.TwelveoftheX-ray-determinedpositionsarewithin500oftheBCGposition,andtheonlypositionmorethan1200fromtheBCGisforRXJ0826.1+2625,wheretheBCGidenmaybequestionable.Weplotourresults,alongwiththeusingX-raypositionsfromROSAT,inFigure2.3.TheseXMM-NewtonobservationsprovideatimprovementintheabilitytoproperlydetecttheclusterpositionovertheoriginalROSATdetectionpositions.2.4.3ScalingRelationsWeourmeasurementsofbolometricluminosity,temperature,andmassinsider2500totherelationlogYY0=logXX0+CX:(2.2)X0andY0arepivotvalues,whichwere1044ergs1,4keV,and1014Mforluminosity,temperature,andmass,respectively.Luminosityandmasswerecorrectedforredshiftevo-lutionbyincludingthefactorE(z);werethereforeofL/E(z)andME(z).Toextendthedynamicrangeofoursampleandtocompareourlowmasssamplewithahighermasssampleatsimilarredshift,wealsoincludeddatafromtheCanadianClusterComparisonProject(Hoekstraetal.,2012;Mahdavietal.,2013,hereafterCCCP).Thissampleof50galaxyclustersspansredshifts0.153keV.CCCPdatawasacquiredthroughtheonlinedatabase5.Inanerratum(Mahdavietal.,2014)thesedatahavebeenupdatedsinceoriginalpublicationto5http://sfstar.sfsu.edu/cccp42anerrorinthebolometricluminositycorrectionfactor.WethereforepresentalloftheclusterpropertiesusedforinTable2.6.Individualarediscussedbelow,buttheresultsaregiveninTable2.5.Fitsincludingdatainthisworkarelabeled\160SD,"whilethoseincludingCCCPdataaremarkedassuch.Exceptwherenoted,uncertaintiesinvalueswerederivedthrough50,000bootstrapresamplings.FitswereperformedusingtheWLSandBCESmethodsdescribedbyAkritas&Bershady(1996).WhereluminositywasservingastheXvariable,weusedtheWLSandBCES(YjX)methods,whichminimizedtheresidualsintheotherparameter.Conversely,whenluminositywastheYvariable,weusedtheBCES(XjY)method.Whenthemass-temperaturerelation,weusedtheBCESBisectorandOrthogonalmethods,whichconsiderstheresidualsinbothvariables.Toaccountforasymmetricerrorbars,weestimatedasingle,logarithmicerrorforavalueX+udtobe˙=0:43430:5(u+d)X:(2.3)Forclarity,whendescribingarelationbyEquation(2.2),wecallittheY-Xrelation,whereXistheindependentvariable.Ourwasoftheluminosity-massrelationwithinr2500.Whenthisrelation,wedidnotincludeRXJ0826.1+2625,asitsmasswasnotwelldetermined(asdiscussedinSection2.2).Wethisrelationshipwithoutassumingintrinsicscatter;theresult-ingbslopewas=0:4350:047.Thisresultshowsnotfromtheresultforthe50CCCPclustersalone,butitdoesnotagreewiththeresultfora43Table2.5.ScalingRelationsXYSampleLogSlopeLogInterceptBootstrappedNotesL/E(z)ME(z)CCCP+160SD0:3050:0420:1340:043NOWLS,˙log(MjL)=0:100L/E(z)ME(z)CCCP+160SD0:4350:0470:0390:049YESBCES(YjX)L/E(z)ME(z)CCCP0:2910:0750:1350:082YESWLS,˙log(MjL)=0:1370:028L/E(z)ME(z)CCCP0:3790:0810:0050:091YESBCES(YjX)L/E(z)ME(z)160SD1:020:170:1950:076YESBCES(YjX)ME(z)L/E(z)CCCP+160SD2:330:270:0790:111YESBCES(XjY)ME(z)L/E(z)CCCP2:780:730:0710:311YESBCES(XjY)ME(z)L/E(z)160SD1:010:2250:1860:066YESBCES(XjY)L/E(z)TCCCP+160SD0:2290:0160:0050:015YESWLS,˙log(TjL)=0:0730:009L/E(z)TCCCP+160SD0:2250:0160:0120:015YESBCES(YjX)L/E(z)TCCCP0:2570:0290:0260:029YESWLS,˙log(TjL)=0:0700:009L/E(z)TCCCP0:2610:0290:0280:028YESBCES(YjX)L/E(z)T160SD0:3000:0550:0520:030NOWLS,˙log(TjL)=0:066L/E(z)T160SD0:2930:0640:0630:039YESBCES(YjX)TL/E(z)CCCP+160SD4:470:330:0570:072YESBCES(XjY)TL/E(z)CCCP3:880:450:0980:100YESBCES(XjY)TL/E(z)160SD3:290:570:2250:090NOBCES(XjY)TME(z)CCCP+160SD1:880:210:0580:049YESBCESBisectorTME(z)CCCP+160SD1:930:240:0660:053YESBCESOrthogonalTME(z)CCCP1:650:240:0050:061YESBCESBisectorTME(z)CCCP1:800:330:0290:077YESBCESOrthogonalTME(z)160SD1:980:920:0960:100NOBCESBisectorTME(z)160SD1:790:960:1030:101NOBCESOrthogonalME(z)TCCCP+160SD0:5370:0590:0290:024YESBCESBisectorME(z)TCCCP+160SD0:5250:0650:0320:024YESBCESOrthogonalME(z)TCCCP0:6220:0970:0080:040YESBCESBisectorME(z)TCCCP0:5740:1110:0090:044YESBCESOrthogonalME(z)T160SD0:5060:2350:0490:066NOBCESBisectorME(z)T160SD0:5590:3000:0580:079NOBCESOrthogonal44Figure2.4Plotofweak-lensingmassMWLasafunctionofbolometricX-rayluminositywithinr2500.MassesandluminositieshavebeenrescaledbyE(z)toaccountfortherangeofredshiftcoveredbythesamples.Dataanalyzedinthisworkareshownascircles,whileclusterpropertiesfromtheCCCPareshownassquares.RXJ0826.1+2625wasnotincludedinthisOurbesttoEquation(2.2)fortheM-Lrelationisshownbythesolidline.Ourbestwhenincludingintrinsicscatterisshownbythedashedline.Botharetothecombinedsampleof160SDandCCCPclusters.45Table2.6:CCCPClusterPropertiesWithinr2500NameMassE(z)L/E(z)kBTRedshifth1701014Mh2701045ergs1keV3C2953:300:8600:780:016:430:350.464Abell00682:870:6450:960:027:250:340.255Abell0115N0:680:4600:470:014:840:100.197Abell0115S0:840:5300:320:015:600:240.197Abell02092:050:4300:970:017:140:340.206Abell02221:750:6200:230:014:350:270.207Abell0223S1:110:5300:230:015:550:180.207Abell02672:300:4800:760:016:900:250.231Abell03704:621:0300:940:027:600:460.375Abell03830:790:4500:700:014:240:060.187Abell05202:270:4700:960:018:190:210.199Abell05211:510:7800:530:016:000:350.253Abell05861:330:5300:830:025:700:370.171Abell06112:080:8000:940:026:360:380.288Abell06972:970:6701:910:0510:600:670.282Abell08513:730:5600:410:016:050:360.407Abell09593:650:7200:370:016:980:790.286Abell09631:410:4500:990:016:420:120.206Abell16895:220:7402:830:018:880:140.18346Table2.6(cont'd)NameMassE(z)L/E(z)kBTRedshifth1701014Mh2701045ergs1keVAbell1758E3:170:6000:890:027:780:370.279Abell1758W3:020:5500:690:028:210:530.279Abell17633:300:6001:090:027:590:230.223Abell18353:570:6003:580:017:040:070.253Abell19142:360:3602:110:039:410:160.171Abell19421:920:3700:210:014:870:280.224Abell21042:360:6000:830:016:140:230.153Abell21112:290:4800:570:026:630:570.229Abell21633:230:8203:590:0110:800:160.203Abell22043:460:6402:920:016:530:060.152Abell22182:600:6800:900:016:960:190.176Abell22193:160:7302:620:059:190:390.226Abell22590:750:3100:490:014:690:540.164Abell22614:310:6701:700:027:280:290.224Abell23903:350:5403:040:048:600:210.228Abell25373:770:6200:870:026:420:440.295CL0024.0+16524:150:9400:210:014:840:510.390MACSJ0717.5+37457:701:9803:150:0611:500:770.548MACSJ0913.7+40561:971:0501:420:036:350:180.44247Table2.6(cont'd)NameMassE(z)L/E(z)kBTRedshifth1701014Mh2701045ergs1keVMS0015.9+16096:071:2902:010:058:870:530.541MS0440.5+02041:360:6000:270:013:940:280.190MS0451.603052:330:8601:980:0610:200:930.550MS0906.5+11101:950:4100:530:015:590:230.174MS1008.112242:350:6200:540:026:520:510.301MS1231.3+15420:510:2700:160:014:980:260.233MS1358.1+62452:410:5700:800:016:340:290.328MS1455.0+22321:550:4001:440:014:580:060.258MS1512.4+36470:860:4400:320:013:270:160.372MS1621.5+26402:941:1800:450:024:960:640.426RXJ1347.511453:590:9807:300:1212:200:410.451RXJ1524.6+09571:290:8000:190:014:000:390.520onlyofthelow-masssamplepresentedhere.Wecautionthatthisdiscrepancyisnotnec-essarilyindicativeofabreakinthescalingrelation,forreasonswewilldiscussinSection2.5.Whenallowingforintrinsicscatter,thebvalueofis0:3050:042,withanintrin-sicscatterof˙log(MjL)=0:100.Figure2.4showsbothalongwiththeclusterproperties48forbothsamples.Foradirectcomparisonofthereducedscatter,wetheM-LrelationusingluminositiesfromtheoriginalworkbyHoekstraetal.(2011).Withthese,theintrinsicscatterwas˙log(MjL)=0:262.Nextwethetemperature-luminosityrelationwithinr2500,thistimeusingallnclustersstudiedhere.Wefoundthatthebestfortheentiresamplewas=0:2290:016withanintrinsicscatterof˙log(TjL)=0:0730:009,consistentwiththeforthetwoindividualsamples.ThisisshownalongwiththedatainFigure2.5.Whenwedidnotallowforintrinsicscatter,wefoundthebslopewasrelativelyunchanged,becoming=0:2250:016.Wealsoinvestigatedthescalingbetweenmassandtemperaturewithinr2500.Again,RXJ0826.1+2625wasexcludedfromthisForthecombinedsample,thebwiththeBCESBisectorwas=1:880:21,whichwasconsistentwithforthesub-samplesalone.ThisisshowninFigure2.6.Inaddition,weincludedatatakenfromSunetal.(2009).Massesfromthatstudyarenotbasedonweaklensingmeasurements,butwereinsteadde-rivedfromanassumptionofhydrostaticequilibrium.Thesedatawerenotincludedinourhowever.Inordertomoreeasilycompareourworktootherstudies,wealsotheinverseofthesethreerelations.UsingBCES(XjY),theL-MrelationfortheCCCP+160SDsam-pleis=2:330:27.Incontrast,forBCES(YjX),theinverseoftheM-Lrelationis1=2:30.OurBCES(YjX)ofL-Tis=4:470:33,whilethecorrespondingfromtheT-Lrelationis1=4:36.WhenT-M,thebestfromBCESBisectorwas49Figure2.5PlotofX-raytemperatureasafunctionofbolometricluminositywithinr2500.LuminositieshavebeenrescaledbyE(z)toaccountfortherangeofredshiftcoveredbythesamples.Dataanalyzedinthisworkareshownascircles,whileclusterpropertiesfromtheCCCPareshownassquares.OurbesttoEquation(2.2)fortheT-Lrelationisshownbythesolidline.50Figure2.6PlotofMasafunctionofX-raytemperaturewithinr2500.MasseshavebeenrescaledbyE(z)toaccountfortherangeofredshiftcoveredbythesamples.Dataanalyzedinthisworkareshownascircles,whileclusterpropertiesfromtheCCCPareshownassquares;botharederivedfromweaklensing.RXJ0826.1+2625wasnotincludedinthisWealsoincludeasampleofnearbygalaxygroupsfromSunetal.(2009)asdiamonds,wheremassesarederivedfromhydrostaticequilibrium.OurbesttoEquation(2.2)fortheM-TrelationfromtheclustersanalyzedinthisworkandfromtheCCCPisshownbythesolidline.OurbesttotheM-Trelationusingthepropertieswithinr2500ofthegroupsfromSunetal.isshownasadashedline.51=0:5370:059,whichagreeswiththeBCESBisectorofM-T,1=0:532.2.5Discussion2.5.1ComparisonwithPreviousX-rayObservationsWecomparedourresultstopreviouslypublishedindividualXMM-Newtonresultsforfourclusters(RXJ0110.3+1938,RXJ0847.1+3449,RXJ1117.4+0743,andRXJ1354.20221).Toinvestigatethewereplicatedtheanalysisofpreviousobservations,includingtheiraperturesizesandcosmology.Wewereabletoreasonablyreproducepreviousresults.Thediscrepanciesarisingfromsystematicssuchasinbackgroundchoicesorparticlebackgroundscreeningcriteriaaresmallerthanthestatisticaluncertainty.Wethatanyapparentbetweenourresultsfortheseclusterswithpreviousresultsarisebecauseofrencesinaperturesizes,andrarely,choiceofaperturecenters.ThedetailsofthiscomparisonarereportedinAppendixA.Ourmostobvioussourceofpossiblediscrepancywithpreviousworksisourchoiceofapertures,whichhavearadiusr2500motivatedbyweak-lensingestimatesfromHoekstraetal.(2011)thatwereunavailabletomostoftheotherstudies.AnotherpotentialsourceofX-raytemperaturediscrepancyisthechoiceofbinningspectraldata.Somepreviousworksbinnedspectraldatatoasfewas12countsperspectralbin.WeleaveourspectraunbinnedandwiththeC-statistic.Asthisworkisfocusingonfaintclusters,wearelimitedbylowphotoncounts.Ifdataarebinnedsuchthatonlyafewcountsareineachbin,eachbinwillhavenon-Gaussianbehavior.Sincethe˜2statisticisforGaussian-distributed52data,itwillnotbeavalidgstatisticinthiscase.Alternatively,datacanbebinned,butdoingsopotentiallydegradesspectralresolution.Alongwithproducingbetterforlowcounts(Nousek&Shue,1989;Tozzietal.,2006),useoftheC-statisticcanalsoavoidbiasesinthehigh-countregime(Humphreyetal.,2009).Useofentthermalmodelsforspectradidnotcausemajordeviationsinourresults.AswewereabletoreproducetheearlierresultswhilestillusinganAPECmodel,thisshouldnotthereforebiasourresultstly(seealsoBelsoleetal.,2005;Matsushitaetal.,2007).Wedemonstratedindetail(seeAppendixA)thatwecanrecoverresultsofpreviousworks,whichvtheirresultsandours.HoweverwecautionthatthechoiceofapertureandcenteratheestimateofL,T,andMforanycluster,andthatresultsfromtanalysescannotbeblindlycombined.2.5.2ComparisonwithOtherScalingRelationsWehavemeasuredscalingrelationsbetweenweaklensingmass,X-rayluminosity,andtem-peratureforasampleofclusterswithmassandluminosityaroundthecluster/groupbound-aryandatredshifts0:3200inTableB.3.Second,weidenanycatastrophicerrorsinourdetections;theseconsistedofdoubledetectionsofthesameobjectorofover-detectionofspiralgalaxies,particularlyofspiralarms.Thislast72Figure3.2AportionoftheMACSJ0717seeninF125W(red),F814W(green),andF555W(blue).Detectedobjectsareoutlinedinwhiteellipsescorrespondingtotheregionusedforphotometry.Alsoshownareobjectsasstarsinthiswork,whicharemarkedbyblueellipses.Thisimageisapproximately4500wide.73stepwasontheorderofahandfulofsourcesexcisedforeachcluster.ThedetectionregionsforasectionofMACSJ0717areshowninFigure3.2.WhilethistechniquewassuccessfulindetectinggalaxiesofallsizesacrosstheCLASHithastwocharacteristicsthatneedtobeconsideredbeforeapplyingittofutureworks.AscanbeseeninFigure3.2,largegalaxiesarenotdetectedtotheirfullextent;thisisnotice-ableinthisworkduetothecombinationofIRandopticalimaging.Additionally,duetothistechnique'sabilitytodetectsmallstructureembeddedinlargergalaxies,low-redshiftspiralgalaxieswithlargeangularsizecanbeover-dividedintonon-physicalregions.Therefore,tousethesemeasurementstoestimatethetotalamountoflightfromlargergalaxiesortostudyresolvedspiralsinthisadditionalcarefulworkisnecessary.3.3PhotometryForeachweworkedthrougheachdetectedgalaxy,beginningwiththesmallestandworkingtothelargest(asrankedbysemi-majoraxis).Eachgalaxywasphotometeredonapixel-by-pixelbasis,startingfromtheouteredgesandworkingin.Backgroundswerefoundlocally,and,oncephotometered,pixelswerereplacedwiththemeasuredoftheirback-grounds.Notethatforasmallgalaxybeingphotometeredagainsttheprojectedlightfromalargergalaxy,thisprocedurereplacesthesmallergalaxy'simagewithlightestimatesthataredominatedbythelargergalaxy.ThisprocessisshownschematicallyinFigure3.3andexplainedbelow.74Figure3.3Aschematicrepresentationofthephotometrytechnique.Ontheleft,thegalaxyofinterestisshowninred,withasuperimposedgridrepresentingthepixelsoftheimage.Startingwithapixelontheoutsideofthegalaxy{markedhereinred{weidentifyacircularbackgroundregion.Pixelscontaininggalaxylight(blue)arerejected,whilethosewithonlybackground(yellow)createourbackgroundsample.Inthemiddleframe,weshowthedis-tributionofanduncertaintiesforthosepixels.ByconvolvingeachmeasurementwithaGaussiankernel(sizedaccordingtotheuncertaintyofeachpoint'sandsum-ming,wecreateahistogramofvalues,suchasshownontheright.Thepeakofthatdistributionisconsideredthemode;thewidthofthebackgrounddistributionisfoundbytracingdownfromthepeakuntilreachingavaluewithafrequencyofˇ0:608timesthepeakfrequency.Whenphotometeringeachgalaxy,wecreateanellipticalaperturebasedontheSourceExtractordetectionparameters.Thisregionisblocky;pixelsareeitherintheapertureoroutofit,withnopartialassociations.Wethenassignanorderofphotometrybytakingaone-pixel-wideannuluswithouterradiusequaltothegalaxy'ssemi-majoraxis,andallofthegalaxypixelsinsidethatring.Weshrinktheannularradiuspixel-by-pixel,notingtheorderofgalaxypixelstofallwithinit,untilwehavereachedthecenter-mostpixel.Wethenphotometerthegalaxyfollowingthatorder.Tomeasuretheofapixel,wemustcomputethebackgroundvalue.Weconsideracircularaperturearoundthatpixel,withradiusequalto1:5b,wherebisthesemi-minoraxisofthegalaxy.Thisvalueisconstrainedtoliewithin3and12pixels(0:19500and0:7800,respectively);theformertoensureenoughbackgroundpixelscanbefoundandthelattertokeepthebackgroundlocaltothegalaxy.Weexcludefromthisapertureanypixels75containedwithinthegalaxyitselfthathavenotyetbeenphotometered.Fortheremainingpixels,wepasstheirmeasuredanduncertaintiestoourbackgroundmeasuringroutine.ThisroutineconvolveseachmeasurementwithaGaussiankernelthathasastandarddeviationgivenbythatmeasurement'suncertainty(initiallydrawnfromthevariancemapoftheimage,butincreasedforpixelsthathavealreadyhadabackgroundreplacementperformed).Thesedistributionsarethensummedtocreateasingleprobabilityfrequencycurveforthebackgroundx(asgiveninEquation3.2).Thenominallocationofthebackgroundintensityisdeterminedbythepeakofthisdistribution;todothis,weemployarootonthederivative(giveninEquation3.3)toallmaxima.Asthesedistributionscanbemulti-modal,itisimportanttoallmaxima.Wethereforestepthroughtheorderedrangeofmeasurements.Ifthesignofthederivativechangesfrompositivetonegative,weusetheseboundstoaroot.Ifthederivativeiszeroatanymeasurement,weaddittothelistofroots.Weignoreanychangesfromnegativederivativetopositive,asthosemarkminima.Oneimplicitassumptionisthatmaximacannotoccurboundedbytwomeasurementsatwhichthederivativesarethesamesign{thesewouldnotbefoundbyourrootwhichrequiresboundaryvaluesofoppositesigntofunction.Aswehaveboundsofthemaxima,weusedthebrentqalgorithminthescipypack-age,whicharootusingtheBrent(1973)intervalbisectionmethod.Werequiredtherootdetectortoaroottowithinavalueof106countss1(theprecisionofourimages).Intheeventofanerrorinthisprocess,ourcodewillthemodeusingtheNewton-Raphsonmethod;asthismethodisunbounded,weseededitwithaninitialguessofthemedianofthebackgrounddistribution.Inbothcases,theuncertaintyontheback-76Figure3.4TheeofourbackgroundmodelingandsubtractiontechniqueforAbell209.ImagesarefromtheF814Wtheoriginal(left),aftereverygalaxyhasbeenphotome-tered(center),andafterthesubtractedimagehasbeenresampledright.groundvalueisfoundbythevalueinbothdirectionsatwhichtheprobabilitydistributiongivenbyEquation3.2isequalto0:606531,whereisthemeasuredmode.ThisvalueistherelativeheightofaGaussiandistributionat1˙attheprecisionofourimages.Havingdeterminedthebackgroundvalueforapixel,theexcessisassignedtothegalaxy,whilethepixelvalueisreplacedwiththebackgroundvalueandthewidthofthebackgroundprobabilitydistributionisincludedintotheweightmap.Weworkfromtheoutsideofthegalaxyin,sothattheconditionsattheoutsideofthegalaxyarepropagatedinward.Aftertheentirehasbeenphotometered,wealsoproduceresampledimagesusingtheweightmaps;thisstepmaintainsthenoisepropertiesofthegalaxy-subtractedimage.Weshowthebefore,after,andresampledimagesofasectionofAbell209inFigure3.4.3.3.1UVSystematicUncertaintiesUVISphotometry,atleastwithintheCLASHsample,isbothnoisyandsensitivetoscat-teredlight.SincethecountrateoftheUVimagesissolow,thesystematicnoiseacross77theimageoftenexceedsthestatisticalnoisefromaperturephotometry.Inordertoproperlydeterminedetectionthresholds,wehadtoaccountforthesystematicuncertaintiesofeachimage.Donahueetal.(2015)measuredsystematicuncertaintiesofUVphotometryforCLASHBCGsbymeasuringtheinseemingly-blankskyareasaroundtheimageandcomput-ingthedeviationinthosemeasurements.However,thosemeasurementswerelimitedtoapertureswiththesameradiusandannularbackgroundsizeastheapertureusedtopho-tometertheBCG.Inthiswork,wemeasuregalaxiesofarangeofsizes,whichwillallhavetheirownsystematicuncertainty,soourtechniquemustaccountfortheareaoftheaperture.Westmadeamaskimageofeachcluster,blankingoutareasnotcoveredbytheCCD(suchaschipgapsandpixels)andareaswithdetectedsources(asdeterminedbyrunningSourceExtractorontheF390Wimage).Wethenrandomlydistributed1,000pointsacrosstheimage,andmeasuredthephotometryofcircularaperturescenteredoneachofthem,withradiiincreasingfrom0.19500to5.2000.Photometrywascorrectedfortheamountofeachaperturecoveringmaskedpixels.Foreachandclusterpair,wethemeasuredstandarddeviationasafunctionofradiustoanequationoftheformF(r)=k0r2+k1,wherek0andk1arebpoly-nomialcots.Foreachobject,whendeterminingitsUVphotometry,weincludedasystematicerrorbasedonthisresult.Sincetheobjectswereallparameterizedasanellipse,weusedapseudo-radius,p=pab.Whenthiswasgreaterthan20pixels,thesystematicuncertaintywascomputedfromthet.Whenthepseudo-radiuswaslessthan20pixels,78weusedalinearinterpolationbetweenthetwonearestmeasurements,asthewaslessaccurateatsmallradii.3.3.2PhotometricRedshiftsWeusedBPZ3(Ben,2000;Benetal.,2004;Coeetal.,2006)toestimateredshiftprobabilitiesforeachgalaxyinourcatalog.BPZdeterminesredshiftprobabilitiesforeverygalaxyusing˜2minimizationandThiscodehasbeenusedpreviouslyfortheCLASHclusters(Postmanetal.,2012b;Jouveletal.,2014),andisthedefaultredshiftestimationtoolusedintheCLASHpipeline.Ourdeterminationofredshiftprobabilitiescoverstherangeofredshiftsfromz=0:01toz=12:0instepsofz=0:001.Weuse11templatespectra,includingbothellipticalandspiralgalaxies.Fromthese,weinterpolate9additionaltemplatesforeveryintervalbetweenoriginaltemplates,foratotalof101templates.Toaccountforvariationsbetweengalax-iesandzero-pointuncertainties,weenforceaminimumphotometricerrorof0.03magnitudes.Tocharacterizetheaccuracyofourredshifts,wecompareasampleofgalaxieswithspectroscopically-derivedredshiftstoourvalues.ThesevaluescomefromtheCLASH-VLTcollaboration(Bivianoetal.,2013;Balestraetal.,2016;Monnaetal.,2016)aswellasworksbyCohen&Kneib(2002),Mercurioetal.(2008),Guzzoetal.(2009),Holdenetal.(2009),Richardetal.(2010),Sternetal.(2010),Coeetal.(2012),omezetal.(2012),Rinesetal.(2013),andEbelingetal.(2014).Additionally,weuseasampleofunpublishedVLT-VIMOS3http://www.stsci.edu/dcoe/BPZ/79Figure3.5Comparisonofphotometricredshiftsmeasuredinthisworktospectroscopicred-shifts.Thethinbandtracestheregionwherej(zpzs)=(1+z)j<0:05.Thefullredshiftcoveragefromz=0toz=3.0isshownontheleftpanel;azoom-intojustz=0toz=1.0isshownontheright.Pointsarebinnedintohexagons,withthetotaldensityofpointsscaledlogarithmicallyfrom1to100countsperhex,asindicatedbythecolorbar.redshiftsforfourcluster(PieroRosatiandMarioNonino,privatecommunication).Aftercombiningthespectralredshiftcatalogsandremovingduplicates(anytwoobjectswithpositionswithin100ofeachother),wecross-matchedthiscatalogwithourowncatalogofdetectedobjects.Foreachspectroscopicredshift,wematcheditwithanyobjectwithin1.500ofthereportedcoordinates.Intheeventofmultipleobjectswithinthisregion,wematchedwiththebrightestobject;ifmultipleobjectswerewithin0.5magnitudesofthisobject,wematchedtotheobjectclosesttothespectroscopicposition.Fromthismatchedcatalog,wereport1306objectswithspectroscopiccounterparts.54(4.13%)arecatastrophicoutliers(j(zpzs)j=(1+zs)>0:5),41(3.14%)aresubstantialoutliers(0:5j(zpzs)j=(1+zs)>0:15),145(11.10%)areminoroutliers(0:15j(zpzs)j=(1+zs)>0:05),andtheremaining1066(81.62%)arewell-matched(j(zpzs)j=(1+zs)0:05).Acomparisonbetweenour80Figure3.6Comparisontospectroscopicredshiftsbetweenthephotometricredshiftsmeasuredinthiswork(orange)andthosefromthepreviouslyreleasedCLASHphotometriccatalogs(purple).Onlygalaxieswithspectroscopicredshiftswithinjzspeczclusterj<0:05areshown.Alloutlierswithjzphotzspecj>0:2areshownatjzphotzspecj=0:2.Theoverlapbetweenbothhistogramsisshowninpink.Ourtechniquebettermatchesmeasuredspectroscopicredshiftsandhasatlyreduced(˘65%)fractionofoutliers.photometricredshiftsandspectroscopically-derivedmeasurementsisprovidedinFigure3.5.3.4ComparisontoSimilarWorksOnewaytoverifyourtechniqueistocompareourresultstootherphotometricstudiesoftheseclusters.However,theonlypreviousstudyusingCLASHphotometry(Postmanetal.,2012b)wasnottailoredforoptimizingclustergalaxyphotometry;ratheritwasageneral-purposeattempttomeasureeverythingintheincludingbackgroundgalaxies.Nevertheless,itprovidesanimportantcheckofourresults.Wematchthepubliclyavailablephotometricredshiftcatalogs4tospectroscopicredshifts4https://archive.stsci.edu/prepds/clash/81followingthesametechniqueasweusedtomatchournewresults.Usingthesamestan-dardsasinSection3.3.2,ofthe1398totalmatches,77(5.51%)arecatastrophicoutliers,59(4.22%)aresubstantialoutliers,186(13.30%)areminoroutliers,andtheremaining1076(76.97%)arewell-matched,analmost-5%decreasefromourwork.Forgalaxieswithspectroscopicredshiftszs1:0andweightedz=j(zpzs)j=(1+zs)<0:2,thestandarddeviationoftheweightedis˙=0:0531inthisworkand˙=0:0612intheoriginalcatalogs.Inthewell-matchedcasewherez<0:05,˙=0:0438inthisworkand˙=0:0513intheoriginalcatalog.Acomparisonofredshiftforthosegalaxieswithinjzspeczclusterj<0:05oftheirassociatedclusterisshowninFigure3.6.Aswellasmoreaccuratelytheredshiftsofthosegalaxiesinclusters,wealsogreatlyreducetheoutlierrateforclustergalaxies.Incomparisontotheearliercatalog,ourimproveddetectionroutinecombinedwithmoreaccuratephotometricredshiftsshouldproduceamorepuresampleforclusteridenTotestthis,weconsiderthephotometricredshiftsofeveryobjectinthese25Con-sideringonlythoseobjectswithmF814W22,2008of3484(57.6%)objectsinthiscatalogcomparedto2129of6608(32.2%)intheoldcataloghavej(zpzc)j=(1+zc)0:05.Thesenumbersmoveto3772outof10302(36.6%)and3866outof17051(22.7%)formF814W24andto5217outof27694(18.8%)and6287outof46157(13.6%)formF814W26.AnothercomparisonforourworkisthatoftheHubbleFrontierFields(HFF)catalogsproducedbytheASTRODEEPcollaboration(Merlinetal.,2016;Castellanoetal.,2016).TheyanalyzedHSTimagingofMACS-J0416(aswellasAbell2744,whichisoutsidethescopeoftheCLASHobservations)usingHFFHSTdataaswellasground-basedKand82SpitzerIRACobservations.HFFobservationsachieveasubstantialdepth,nominallyˇ2magnitudesfainterthanCLASHdata.TheASTRODEEPcatalogsarecreatedthroughaseriesofstepsinvolvingmaskingbrightobjects,theICL,andtingbrightgalax-ies,withintermediatestepsinvolvingsubtractionofeitherICLorgalaxies.Theymakeanexcellentcomparisonsampleforourwork;theirobservationsaredeeper,theirresultshavebeenrefereed,andtheircatalogiscompiledunderentassumptions(galaxyandICLmodel-basedvs.model-agnostic).TocompareourresultsforMACS0416withthoseofASTRODEEP,wematchourcatalogsgalaxy-by-galaxy.Aftersortingourcatalogfrombrightesttofaintest(usingF814Wmagnitudes),weabestmatchforeachgalaxyusingthefollowingprocess:ifonlyonegalaxyintheASTRODEEPcatalogiswithin0:6500(10pixels)ofourtarget,thatgalaxyismatchedwithours.Ifmorethanonepossiblematchiswithinthatangularradius,wecon-sideronlythosegalaxieswithF814Wmagnitudesmmb+0:5,wherembisthebrightestgalaxyinthatangularrange.Wetakethegalaxywithsmallestangulartothetargetinthatsubsettobethematch.Asacheck,wecompareourmeasuredF814WmagnitudestothosemeasuredforthesamegalaxiesbyASTRODEEPinFigure3.7.Thisvisparticularlyimportant,asitissensitivetowhetherouraperturesareabletowell-sampletheentireofgalaxies.WethatwereportfainterthanASTRODEEPforthebrightestgalaxies,butoth-erwiseareabletoreproducetheirresultsforalmostallofthegalaxiesinthecombinedsample.OurnextvstepistocompareourmeasuredcolorstothoseofASTRODEEP.83Figure3.7ComparisonbetweenF814WmagnitudesmeasuredbytheASTRODEEPCol-laborationandthisworkforMACS0416.Pointsarebinnedintohexagons,withthetotaldensityofpointsscaledlogarithmicallyfrom1to30countsperhex.Detailsoftheareprovidedinthetext.Acomparisonoftheisprovidedinthelowerpanel.84Figure3.8ComparisonbetweenmeasuredcolorsforMACS0416intheASTRODEEPcatalogandthiswork.Pointsarecoloredaccordingtothedeviationofthephotometricredshiftmeasuredinthisworkandtheclusterredshift,asindicatedbythecolorbarontheright.85WhiletheHFFobservationsaredeeperthanthoseofCLASH,theyonlyhave7HSTsoourcolorcomparisonislimited.ThecomparisonisshowninFigure3.8.WeseeaslighttrendforgalaxiesinoursampletobebluerinF435WthanintheASTRODEEPcatalog,butthatcolordiscrepancyisdiminishedforalloftheredderNumerically,themedianbetweencolorsis0:0430:233(F435W-F606W),0:0490:182(F606W-F814W),0:0440:178(F814W-F105W),and0:0130:150(F105W-F140W),wherethereporteduncertaintiesarethestandarddeviationofForgalaxieswithjzpzcj<0.1andredmagnitude<25,thesevaluesare0:1110:235,0:0130:107,0:0040:160,and0:0020:139,respectively.Forthesameredshiftandmagnitudelimitedsubsample,wealsocomparethemedianbetweencolorsmeasuredinthisworkandbyASTRODEEPtothemediancoloruncertaintyforourphotometryalone;inthesamecolororderasbefore,wecolortocoloruncertaintyratiosof-0.111to0.127(uncertainty),-0.013to0.028,-0.004to0.017,and0.002to0.011,whereallvaluesareinmagnitudes.Theslightforbluecolorsisthereforewithintheuncertaintiesofourphotometry.AsMACS0416isatredshiftz=0:397,F435Wiswellbelowthe4,000Abreakforclustergalaxies,whileF606Wstraddlesthebreak;wethereforedonotexpectthecolortermtocausetvariationsinSEDtingbetweenthetworesults.Onewaytocheckthatistocompareourmeasuredphotometricredshifts.Here,AS-TRODEEPusedmultiplemethodsforredshiftestimationandcombinedthemallforaanswer,whileweonlyconsiderourredshiftestimatesfromBPZ.WeshowinFigure3.9acom-parisonbetweenourreportedphotometricredshiftsandthephotometricandspectroscopicredshiftsreportedbytheASTRODEEPcollaboration.Whenconsideringtheuncertaintiesonthesemeasurements,wegoodagreementbetweenourreportedredshiftsandthecom-86Figure3.9ComparisonbetweenredshiftsmeasuredbytheASTRODEEPCollaborationandthisworkforMACS0416.Pointsarebinnedintohexagons,withthetotaldensityofpointsscaledlogarithmicallyfrom1to30countsperhex,asindicatedbythecolorbar.Detailsoftheareprovidedinthetext.Azoom-intojustmatchesbelowredshift1.0isprovidedontherightpanel.Theclusterredshiftisindicatedbytheverticalandhorizontallines;thediagonallineistheidentityline.parisonsample.Forgalaxieswithphotometricredshiftszp<0:8ineitherofoursamples,themedianredshiftbetweenourcatalogsis-0.007,whilethemedianabsoluteredshiftis0.099.ThiscomparisonservestovalidatebothourresultsandthoseoftheASTRODEEPcol-laboration.Bothtechniques{iterativebackgroundmodelingandstatisticalbackgrounddecomposition{producesimilarresultsforthesameclusterofgalaxies,and,dependingonthetimeconstraintsandpurposesoffuturestudies,canbothbeusedtomeasureclustergalaxypopulations.Nevertheless,asourtechniqueonlymakesbasicassumptionsaboutbackgroundlightdistributions,wewouldrecommenditsusefordeterminingthepropertiesofclusterswithonlyminimalpriors.87Table3.2.CLASHScalingPropertiesClusterNamersM2500r2500N2500Source(h170Mpc)(h1701014M)(h170Mpc)Abell2090:6600:1003:1400:7100:5900:210588aAbell3830:4700:0603:7100:7100:6100:150507aAbell6110:5900:0903:0000:5700:5300:1809310aAbell14230:2800:0501:8200:1700:4700:010517cAbell22610:7300:1604:8601:7100:6600:3109010aCLJ12260:5000:0706:1401:0000:5500:16018117aMACS03290:4700:1102:8600:8600:5200:20014813aMACS04160:6500:1802:2100:5300:4100:0309210bMACS04290:5900:1102:7101:5700:5300:240809aMACS06470:4800:2103:7200:9800:4200:04011212bMACS07171:3100:3103:4200:8700:4200:04019916bMACS07440:4000:0602:8600:4300:4800:12016015aMACS11150:8900:1602:1400:7100:4400:190749aMACS11491:1200:3503:7301:1100:4300:04016715bMACS12060:4400:0903:5701:1400:5300:23015514aMACS13110:3400:0402:0000:2900:4500:1008910aMACS14230:3400:0902:5701:1400:4800:28010211aMACS17200:4400:0903:1400:8600:5300:23010411aMACS19310:5900:1002:2900:4300:4700:130578aMACS21290:6500:3504:7001:7000:5600:06016214dMS21370:6900:0703:2900:5700:5500:140598aRXJ13470:5400:1104:4301:8600:6000:28015213aRXJ15320:5600:1401:5700:7100:4500:230608aRXJ21290:4300:0702:5700:4300:5100:180527aRXJ22480:6900:1003:8601:0000:5500:21014313aars,R2500,andM2500fromMertenetal.(2015).brs,R2500,andM2500fromUmetsuetal.(2016).crs,R2500,andM2500fromDonahueetal.(2014).dR2500,andM2500fromDonahueetal.(2014).3.5OpticalScalingRelationsAswellasstudyingtheindividualclustergalaxies(seeChapter4),ourcatalogandoutputphotometricresultsenableustobetterunderstandthescalingrelationsoftheseCLASHclusters,particularlytheamountofintrinsicscatterpresent.Tofacilitatetheseanalysis,weutilizepreviousobservationsofrs,R2500,andM2500frompreviousCLASHstudies,wherersisthescaleradiusoftheclusterdensityFor19oftheseclusters,weusethevalues88Figure3.10ComparisonbetweenmeasuredvaluesofE(z)N2500andE(z)M2500fromthiswork(purple)and(Hoekstraetal.,2011,orange).Wealsoshowourblineinblack,andabesttoourdataaloneinpink.DetailsoftheselectionofN2500areprovidedinthetext.presentedinMertenetal.(2015).Forfourofthestrongclusters,weusethepropertiesfromUmetsuetal.(2016),assumingc=1,asinthatwork.Twoclusters,Abell1423andMACS2129,didnothavemeasurementsreportedineitherofthoseworks;weinsteadusevaluesfromDonahueetal.(2014).AsMACS2129didnothaveanyvalueofrsinanyliterature,wesetittors=0:650:35Mpc,whichisconsistentwithclustersofsimilarmassandR2500values.ThepropertiesforeachclusteraregiveninTable3.2.Tominimizebiasintheserelations,weonlyconsiderclustermembers;theprocessweusetoselectmembersisdescribedinSection4.3.893.5.1Mass-RichnessRelationWeconsidertherelationbetweenmassandclustermembercounts.WeconsiderthesameclustersamplediscussedinChapter2,25moderate-luminosityclusterswithweaklensingmeasurementsfromHoekstraetal.(2011).ThatworkalsoreportedmeasurementsofN2500,theoverdensityofgalaxieswithrestframeB-bandabsolutemagnitude2225:5.Wecombinethephotometry,photometricredshiftpa-rameters,SEDvalues,k-correctedmagnitudes,andspectroscopicredshiftmeasurementsforallofthesegalaxiesintoonecatalog.Foreachgalaxy,weusethediscreteprobabil-115itydistributionsproducedbyBPZtodetermineatotalprobabilityofthatgalaxybeingwithinsomeredshiftrangeofthenominalclusterredshift.Here,weconsiderjzj<0:03,jzj<0:05,jzj=(1+zc)<0:03,andjzj=(1+zc)<0:05;welabelthesummedprobabili-tieswithinthoserangesP03,P05,P103,andP105,respectively.Foreachgalaxyinthiscatalog,weconsiderspectroscopicredshifts.Anygalaxywithjzj=(1+zc)<0:03isconsideredaclustermember;thosewithjzj=(1+zc)>0:10areconsiderednon-members.Therestofthegalaxies{eitherthosewithindeterminatespectro-scopicredshiftsornospectroscopicredshifts{arethencharacterizedbytheirphotometricredshiftprobabilities.Asapass,thosegalaxieswithtotalprobabilityP03>0:8areassignedasmembers,whilethosewithP105<0:1areasnon-members.Wenextconsideredtwopossiblewaystoidentifyclustermembers:awSEDorabphotometricredshiftsolution.Galaxieswith˜2<1:5and˜2>0:7(toavoidselectinggalaxieswithpoorly-constrainedsthroughthiscut)intheSEDattheclusterredshiftwereasclustermembers,aswerethosewithamostlikelyorbestredshiftdeterminationfromBPZwithinjzj=(1+zc)<0:05.Fortheremainingobjects,weexam-inedthedistributionsofP03,P05,P103,andP105;weonlyclassifythoseremaininggalaxieswithP103>0:2andP105>0:6asmembers,whiletherestareasnon-members.Ourcatalogcontainsalloftheinformationusedtomakethisdecision,soalternativecutscanbetested.116Figure4.3TheanaloggrCMDforall25clusters.Shownontheleftarethosegalaxieswecallmembers,whilethosecasnon-membersareplottedontheright.Hexbinsarescaledlogarithmicallywiththenumberofgalaxiescontainedinside.4.3.1AlternativeSelectionsSelectingclustermembersfromtheredsequenceisacommontaskinclusterscience(e.g.,Koesteretal.,2007b;Haoetal.,2009;Ryketal.,2014,2016,amongmanyothers).Asthisprojectleveragesover500hoursofHSTobservationsandacoordinatedspectroscopicfollowupcampaigntodetermineclustergalaxyproperties,ourclustermembercatalogscangreatlysurpassthoseusingonlyground-based,few-colorobservations.Tobetterenablethesciencefromthoseobservations,wequantifytheofredsequenceselectiononourmorerigorouslycompiledmembershipdeterminations.ShowninFigure4.3isaplotofgranalogcolorsvs.rmagnitudeusingtheanalogslistedinTable4.1.Ontheleftpanelisshownthosegalaxiesasmembers;ontherightarethoseasnon-members.Readilyapparentinthisimageisasecond117Figure4.4Thek-correctedgrCMDforall25clusters.Shownontheleftarethosegalaxieswecallmembers,whilethoseasnon-membersareplottedontheright.Apotentialredsequenceselectionregionisshownasashadedbox.Hexbinsarescaledlogarithmicallywiththenumberofgalaxiescontainedinside.redsequence.Thisisanoftheanalognotexactlymatchingtherest-framebandpassesfromclustertocluster.Thus,severaljumpsarevisiblebetweenclusters,andwecautionagainstusingevenbest-matchedanalogsinlieuofk-correctedmagnitudes.Nevertheless,wefurtherexaminetheofredsequencefor\best-matchedinSection4.4.Similarly,inFigure4.4weshowaplotofgrcolors,thistimeusingk-correctedmag-nitudes.Bymitigatingtheof(thatis,interpolatingtoauniformsetofrest-framemagnitudes),weseetheredsequencesareallatsimilarlocations.Here,weaselectionregion,countingthosegalaxieswith0:510,thisbecomeslog(MM)=(LL)=0:480:12.3http://www.sdss.org/dr13/algorithms/ugrizVegaSun/129Figure4.11Stellarmasstoi-bandlightratiosforallclustermembers.Inthebottompanel,weshowthedistributionofmass-to-lightratioswithrespecttooverallluminosity,inSolarunits.Onlyhexbinswithatleastonecountareshown.Intheupperpanel,weshowthedistributionofmass-to-lightratios;purpleisallgalaxies,fuchsiaisthosegalaxiesgrcolorswithin0.1magnitudesoftheredsequence,andorangeisthosegalaxieswithgrcolorswithin0.05magnitudesoftheredsequence.Thedistributionoflowmass-to-lightratiogalaxiesisdominatedbylow-luminositygalaxiesoftheredsequence.1304.7DiscussionInthiswork,wehavecharacterizedtheredsequencepropertiesfor25massivegalaxyclusterscoveringaredshiftrangeofzˇ0:2tozˇ0:9.Welittle(<2˙)evidenceforanevo-lutionintheslopewithredshiftouttoredshiftz=0:89;themagnitudeofthisevolutionisreducedwhenexcludingthe5higclustersintheCLASHsample.Weobservethereddeningoftheredsequencegetsredderwithage,herepresentedinrest-framecolors.And,whilelimitedbythescaleofphotometricerrors,weseeanincreaseintheintrinsicscatterabouttheredsequenceforincreasingredshift.Incombinationwiththese,weuseSEDtostudythepropertiesofredsequencegalaxies.Weatrendofincreasingmetallicitywithincreasingbrightnessaswellasatendencyforgalaxiesbluerthantheredsequencevaluetohaveformedlater;however,wealsoafaintagegradientalongtheredsequenceitself.Here,weconsiderhowtheseresultsfactorintoourunderstandingofclusterevolution.Ceruloetal.(2016)littleevolutionintheredsequenceslopefromz=1:5toz˘0,apicturesupportedbynumerousotherworks(e.g.,Lidmanetal.,2004;Ascasoetal.,2008;Lidmanetal.,2008;Meietal.,2009;Snyderetal.,2012).Incontrast,Stottetal.(2009)aslopeevolutionfromz=0:5toz˘0:1.Others,suchasHaoetal.(2009)evidenceofasmallamountofslopeevolution,comparabletothiswork.Constrainingthisevolutioniscriticalforuncoveringtheoriginoftheredsequence(Kodama&Arimoto,1997).Determiningtheexactformationepochoftheredsequenceisanongoingchallenge.Whileproto-clustershavebeendiscoveredbeyondz>3(Deyetal.,2016),detectionofthe131redsequenceitselfistougher.Katoetal.(2016)identifyanenhancementofstar-formationdensityaround2.z.3protoclusters.Francketal.(2015)idenaredsequencepre-cursorinagalaxyclusteratz=1:83,althoughtheredsequencewasnotwelldeveloped.Andreonetal.(2014)observedaComaprogenitoratz=1.803withamassfunctionsimilartolow-redshiftclusters.However,Eisenhardtetal.(2008)ainthepopulationofcolor-magnitudeidenclustersataroundzˇ1:5,despitethesebeingwithinthelimitoftheirsurvey.Theoriginofmetalsingalaxiesacrosscosmologicaltimescaleshasbeenpreviouslystud-ied.Dave&Oppenheimer(2007)usedcosmologicalsimulationstoshowthatgalaxieshavemetalsearlyon{atz˘6,starsalreadyhavemeanmetallicitiesof0:1Z.Similarly,Hop-kins&Beacom(2006)foundthatthemetalmassbuild-upratepeaksbetween11=6.Fromthis,thetotalthatwouldbemeasuredinsideaapertureofradiuscanbecomputedforagivenvalueofusingfx()=2fROSAT2c(x+1)1x0:6+1+1x0:7+11"(2c+2)22c+1x2c#:(A.5)TocomparetheROSATtoourown,wesolvethisfortheangleequivalentto300kpcfor=0:6and=0:7,averagingthetworesults.ReplicationofPreviousXMMAnalysesRXJ0110.3+1938Bruchetal.(2010)analyzedthisclusterwiththesameobservationusedinthispaper.Whiletheiranalysisfollowedasimilarpathtoourown,theirreportedresultsarenotthesameasours.Ourreportedbolometricluminosityissimilartotheirs(2:19+0:120:14and2:08+0:220:221043ergs1,respectively),buttheirreportedtemperatureisnoticeablylowerthanourown(1:46+0:260:19keVcomparedto2:95+0:720:62keV).Theintheresultmayarisefrom148theirlessstringentcutforselectinggoodtimeintervals,theirgroupingoftheirdataintoenergybins,theiruseofasmalleraperture,andtheirlackofpnobservations,whichsupplyaround50%ofthecountsbutwereoftenproblematictocalibrate5yearsago.Ifwealsomakethesechoices,wemeasureanewtemperatureof1:27+0:060:11keV,whichagreeswiththeearlierresult.However,whenwereduceouraperturesizeandbinthespectraldata,weanevenlowerluminosity;ournewbolometricluminosityis0:79+0:040:051043ergs1.AfterprivatecommunicationwithS.Bruch,wediscoveredthatthesamespectralttingresultswereobtainedbutnotpublishedforanapertureof0.5Mpc.Usingthe4.647kpcarcsec1scaleprovidedintherefereedpaper,weextractspectrafroma107.6000aperture.Whenlettingtheabundancevary,weTX=1:50+0:450:32keVandLbolo=1:83+0:100:191043ergs1.Inaddition,we252and219netcountsforMOS1andMOS2,respectively.Theseresultsareinagreementwiththeearlierresult,whichfound231and205countsforthetwocameras.WethereforeconcludethattheirreportedX-rayapertureradiusof3200isincorrectlyreported,andtheactualapertureusedwas0.5Mpc.Usingthisaperture,weobtainsimilarresults.RXJ0847.1+3449Lumbetal.(2004)originallylookedatRXJ0847.1+3449usingXMM-Newtonobservation0107860501.Theyreportedhighervaluesforandbolometricluminosity,butacoolertemperature.Onesourceofthiscemaybethelargerspectralextractionareatheyused{itwas12000,whileourswasˇ7000.Thereforeweattemptedtoreproducetheirresultsbyusingthesameapertureandmasks,asthatworkincludedimagesofwherepointsourceswereexcluded.BolometricluminositiesreportedbyLumbetal.(2004)arenotforthe12000apertures.149Rather,theyareforaperturesscaledtotheentirevirialradius,asfoundbyusingthetemperaturesandtheT{rvrelationofEvrardetal.(1996).Inaddition,theyincreasedtheestimatedphotoncountratetoaccountforlackofspatialcoverageduetochipgapsormaskedpointsources.WeacomparableluminositybyaMEKALmodeltotheparametersspinTable5ofLumbetal.(2004).Unlikethereportedluminosity,theseparametersareforthebestofthespectrumwithin12000andarethebestmeasureofwhatasimilarapertureluminositywouldbefromthatwork.InordertoallowforchangesinMEKALoverthepasttenyears,welettheabundancevarybutmatchthereportedintheoriginalwork.Whentodatafromthelargeraperture,ourtemperatureestimatechangesfrom4:16+0:580:39keVto3:72+0:510:41keV,whichagreeswiththereportedvalueof3:62+0:580:51keV.Similarly,ourestimatechangesfrom5:20+0:120:141014ergs1cm2to6:77+0:140:121014ergs1cm2,inagreementwiththepredicted7:040:31014ergs1cm2.Forbolometricluminosity,ourvaluewithinr2500is1:31+0:040:031044h270ergs1,whileinsidea12000apertureitis1:70+0:060:051044h270ergs1.Theexpectedluminosityinsidethatapertureis1:751044h270ergs1.RXJ1354.20221RXJ1354.20221wasalsooriginallyinvestigatedbyLumbetal.(2004),and,asbefore,theyahigherhigherluminosity,andalowertemperaturethanwedo.AswithRXJ0847.1+3449,theirtechniquedeviatedinaperturesize,binning,andoflumi-nosity.Additionally,wethisdataforintervalsofrentlythantheydid,whichweadjustforinourreanalysis.Weagainadropintemperature,whichchangesfrom7:60+1:921:22keVto3:88+0:930:59150keVwhenexpandingtheaperture,incomparisontotheoriginallyreportedvalueof3:66+0:60:5keV.Likewise,theincreasesfrom6:90+0:150:191014ergs1cm2to10:17+0:180:221014ergs1cm2,whichmatchestheearlierresultof9:80:51014ergs1cm2.Finally,ourluminosityrisesfrom2:11+0:100:121044h270ergs1to2:47+0:090:061044h270ergs1,whichagreeswiththepredictedexpectationof2:411044h270ergs1.Asbefore,weareabletoreproducetheearlierresults.RXJ1117.4+0743Carrascoetal.(2007)usedthesameobservationsanalyzedheretolookatRXJ1117.4+0743.Theirreportedtemperature(3:3+0:70:6keV)isslightlylowerthanourown(4:30+0:700:38keV),buttheylargerluminositiesfrom0.5-2.0keV(4.190.35toour1:84+0:030:03,inunitsof1043ergs1)andinabolometricband(11.80.9toour5:27+0:080:16inunitsof1043ergs1).Thereareafewinouranalysisthatcanbringthoseresultsintocloseralignment.Alongwithusingalargeraperture{6600toourchoiceof4700{thepreviousworkbinneditsdatatoaminimumof12countsperenergybin.Makingthoseadjustmentsisnotenoughtomatchthepreviouswork,however,withoutalsousingatbackground.Intheinitialpaper,thebackgroundwasdescribedonlyas\alargerextractionregionnearthedetectorborderwithoutanyvisiblesources."Tothatend,weusedabackgroundcenteredaround2000=11h17m40s,2000=+0755m10sthatwas7200insize.Withthisbackground,werecoversimilarresultstotheoriginalreporting:TX=3:13+0:300:29keV,F[0:52:0keV]=5:29+0:120:131014ergs1cm2,L[0:52:0keV]=3:90+0:180:141043ergs1,andLbolo=8:90+0:470:371043ergs1.Evenwithoutknowingtheirexactbackgroundregion,wereproducetheresultsofCarrascoetal.(2007).151AppendixBAppendicesforChapters3and4DescriptionofparametersinPhotometryTableThefollowingparametersaretobeincludedinourcataloguponpublicrelease:1.GALID{Auniqueidenforeachgalaxy2.2000{TherightascensioninJ2000coordinates3.2000{ThedeclinationinJ2000coordinates4.X{XpixellocationonCLASHmosaicedimages5.Y{YpixellocationonCLASHmosaicedimages6.a{Semi-majoraxisofphotometricellipse,inpixels(0.06500/pix)7.b{Semi-minoraxisofphotometricellipse,inpixels(0.06500/pix)8.PA{Positionangle,measuredeastofnorth,indegreesForthefollowingmagnitudes,valuesof-99indicatethattheobjectwasnotobservedinthatwhilevaluesof99indicateitwasnotdetectedaboveerrorvalues9.mF225W{ABapparentmagnitudeinF225Wafterextinctioncorrection10.mF275W{ABapparentmagnitudeinF275Wafterextinctioncorrection15211.mF336W{ABapparentmagnitudeinF336Wafterextinctioncorrection12.mF390W{ABapparentmagnitudeinF390Wafterextinctioncorrection13.mF435W{ABapparentmagnitudeinF435Wafterextinctioncorrection14.mF475W{ABapparentmagnitudeinF475Wafterextinctioncorrection15.mF555W{ABapparentmagnitudeinF555Wafterextinctioncorrection16.mF606W{ABapparentmagnitudeinF606Wafterextinctioncorrection17.mF625W{ABapparentmagnitudeinF625Wafterextinctioncorrection18.mF775W{ABapparentmagnitudeinF775Wafterextinctioncorrection19.mF814W{ABapparentmagnitudeinF814Wafterextinctioncorrection20.mF850LP{ABapparentmagnitudeinF850LPafterextinctioncorrection21.mF105W{ABapparentmagnitudeinF105Wafterextinctioncorrection22.mF110W{ABapparentmagnitudeinF110Wafterextinctioncorrection23.mF125W{ABapparentmagnitudeinF125Wafterextinctioncorrection24.mF140W{ABapparentmagnitudeinF140Wafterextinctioncorrection25.mF160W{ABapparentmagnitudeinF160Wafterextinctioncorrection26.zb{BPZmostlikelyredshift27.zbmin{BPZ95%lowerlimitonbestredshift28.zbmax{BPZ95%upperlimitonbestredshift15329.tb{BPZbestspectraltype30.˜2BPZ{BPZgoo31.M0{PrimarymagnitudeusedbyBPZ32.zs{Spectroscopicmagnitude;=-1ifnomatch33.uanalog{ABapparentmagnitudeinu-analog34.uanalog{ABapparentmagnitudeing-analog35.uanalog{ABapparentmagnitudeinr-analog36.Yanalog{ABapparentmagnitudeinY-analogr37.Kanalog{ABapparentmagnitudeinK-analogr38.uk{K-correctedabsolutemagnitudeinu39.gk{K-correctedabsolutemagnitudeing40.rk{K-correctedabsolutemagnitudeinr41.ik{K-correctedabsolutemagnitudeini42.zk{K-correctedabsolutemagnitudeinz43.P03{Integratedphotometricredshiftprobabilitywith0:03200)20002000radiusCluster(00)1:31:53.938-13:35:58.122.467Abell2091:31:47.744-13:37:24.032.048Abell2092:48:05.482-3:30:58.992.223Abell3832:48:00.143-3:31:34.712.004Abell3832:47:58.373-3:31:46.082.173Abell3832:47:59.301-3:30:57.462.245Abell3838:00:55.966+36:03:55.392.218Abell6118:01:01.746+36:03:31.902.019Abell6118:00:53.077+36:05:21.712.712Abell6118:00:59.310+36:04:49.792.128Abell6118:01:05.045+36:04:25.202.394Abell6118:01:02.811+36:04:08.192.742Abell6118:01:04.748+36:04:00.513.112Abell6118:01:03.745+36:03:44.432.461Abell6118:01:00.700+36:02:12.822.239Abell61111:57:25.503+33:36:52.942.816Abell142311:57:14.500+33:35:13.272.824Abell142317:22:26.566+32:08:51.682.351Abell226117:22:30.646+32:08:50.852.496Abell226117:22:23.255+32:08:37.202.302Abell226117:22:28.732+32:08:34.292.418Abell226117:22:26.414+32:07:44.612.292Abell226117:22:31.752+32:07:42.202.756Abell226117:22:22.004+32:07:39.362.388Abell226117:22:22.702+32:07:18.102.366Abell226117:22:26.461+32:07:15.102.270Abell226117:22:28.701+32:07:02.652.432Abell226117:22:29.668+32:06:54.042.657Abell226117:22:26.000+32:06:50.592.240Abell226117:22:26.715+32:06:49.762.058Abell226117:22:24.348+32:09:43.622.137Abell226117:22:34.834+32:08:53.882.602Abell226117:22:34.272+32:07:11.322.513Abell226117:22:23.040+32:06:17.222.256Abell226117:22:22.437+32:06:06.142.859Abell226112:26:59.747+33:33:31.342.010CLJ122612:26:58.996+33:33:12.473.096CLJ122612:26:56.518+33:33:12.102.023CLJ122612:26:58.195+33:31:49.792.779CLJ12263:29:40.192-2:11:58.002.502MACS0329162TableB.3(cont'd)20002000radiusCluster(00)3:29:44.866-2:10:19.272.918MACS03293:29:45.807-2:10:27.062.076MACS03293:29:48.030-2:12:37.463.408MACS03293:29:47.153-2:13:14.592.841MACS03293:29:38.482-2:13:25.043.002MACS03294:16:10.089-24:05:10.084.046MACS04164:16:03.772-24:02:58.022.576MACS04164:16:15.565-24:03:43.223.554MACS04164:16:06.967-24:05:42.512.025MACS04164:29:36.659-2:51:50.592.542MACS04294:29:39.676-2:52:53.132.479MACS04294:29:38.960-2:53:03.392.372MACS04294:29:40.023-2:53:26.192.806MACS04294:29:32.624-2:53:43.722.799MACS04294:29:33.989-2:53:52.352.586MACS04294:29:37.282-2:54:06.142.353MACS04294:29:35.863-2:51:26.502.683MACS04294:29:33.347-2:51:52.812.059MACS04294:29:42.013-2:53:06.822.570MACS04294:29:37.370-2:54:21.082.347MACS04296:47:38.640+70:14:48.922.172MACS06476:47:39.959+70:14:48.602.180MACS06476:47:46.323+70:14:25.942.720MACS06476:47:39.875+70:14:29.952.189MACS06476:47:51.066+70:13:45.622.014MACS06476:47:44.684+70:12:49.742.650MACS06476:47:57.864+70:16:30.592.174MACS06476:47:42.894+70:16:27.082.651MACS06476:48:01.146+70:16:21.202.714MACS06476:48:01.227+70:13:59.012.145MACS06477:17:25.932+37:45:18.772.421MACS07177:17:37.044+37:45:01.742.030MACS07177:17:34.425+37:44:14.912.328MACS07177:17:33.642+37:43:46.662.125MACS07177:17:34.634+37:46:40.442.714MACS07177:17:40.790+37:46:16.302.736MACS07177:17:42.875+37:44:15.922.944MACS07177:17:26.522+37:44:11.743.032MACS07177:17:28.085+37:43:13.562.921MACS07177:44:50.660+39:28:41.722.449MACS0744163TableB.3(cont'd)20002000radiusCluster(00)7:44:55.141+39:28:29.712.255MACS07447:44:55.204+39:28:14.082.029MACS07447:44:59.384+39:27:57.192.882MACS07447:44:49.728+39:27:52.022.397MACS07447:44:55.316+39:27:45.622.748MACS07447:44:57.299+39:27:26.172.546MACS07447:44:53.177+39:26:12.322.323MACS07447:44:58.033+39:28:23.152.789MACS07447:44:51.012+39:28:52.433.014MACS07447:44:56.250+39:28:36.724.060MACS07447:44:48.332+39:25:49.142.727MACS07447:44:52.036+39:25:43.712.469MACS074411:15:52.740+1:30:11.052.921MACS111511:15:52.895+1:29:18.372.276MACS111511:15:47.699+1:29:06.372.896MACS111511:15:57.631+1:28:16.352.422MACS111511:49:38.832+22:24:23.382.934MACS114911:49:32.707+22:24:08.692.534MACS114911:49:35.330+22:23:37.462.953MACS114911:49:40.629+22:23:35.882.414MACS114911:49:32.156+22:23:26.962.681MACS114911:49:39.579+22:23:21.852.624MACS114911:49:42.479+22:25:38.872.659MACS114911:49:45.077+22:24:15.892.687MACS114911:49:30.635+22:22:41.762.200MACS114911:49:35.910+22:22:12.662.654MACS114912:06:06.232-8:46:24.872.336MACS120612:06:05.031-8:48:01.422.066MACS120612:06:05.136-8:49:40.172.582MACS120613:11:03.609-3:09:48.512.803MACS131113:11:01.906-3:09:56.022.346MACS131113:10:58.724-3:10:27.502.362MACS131113:11:02.523-3:10:30.652.206MACS131113:11:00.729-3:08:49.573.003MACS131113:11:04.761-3:09:21.512.562MACS131113:11:06.025-3:09:32.102.306MACS131113:11:03.823-3:12:09.352.555MACS131114:23:46.627+24:05:18.892.448MACS142314:23:50.123+24:04:21.722.455MACS142314:23:45.444+24:03:43.632.593MACS1423164TableB.3(cont'd)20002000radiusCluster(00)14:23:55.542+24:03:43.472.298MACS142317:20:19.823+35:37:32.342.531MACS172017:20:12.998+35:37:29.072.909MACS172017:20:16.042+35:37:02.742.046MACS172017:20:13.036+35:36:32.462.094MACS172017:20:12.922+35:35:48.283.094MACS172017:20:18.557+35:35:48.672.337MACS172017:20:19.769+35:35:25.682.598MACS172017:20:17.492+35:35:18.172.510MACS172017:20:15.871+35:35:15.182.495MACS172017:20:15.102+35:38:37.482.736MACS172017:20:13.104+35:38:14.212.438MACS172017:20:24.181+35:36:48.832.853MACS172017:20:26.990+35:36:27.752.030MACS172017:20:27.567+35:36:06.683.295MACS172017:20:08.116+35:35:56.132.547MACS172017:20:25.281+35:35:42.042.252MACS172019:31:53.021-26:33:37.022.500MACS193119:31:54.476-26:33:48.412.118MACS193119:31:44.427-26:34:25.832.820MACS193119:31:52.496-26:34:33.912.302MACS193119:31:44.440-26:34:40.642.510MACS193119:31:49.075-26:34:44.272.092MACS193119:31:49.161-26:34:47.612.140MACS193119:31:46.201-26:34:43.462.274MACS193119:31:46.391-26:34:56.832.357MACS193119:31:47.359-26:34:58.842.649MACS193119:31:53.706-26:35:05.892.878MACS193119:31:46.249-26:35:05.482.151MACS193119:31:52.953-26:35:18.132.657MACS193119:31:52.630-26:35:27.882.092MACS193119:31:48.850-26:35:48.512.078MACS193119:31:51.263-26:32:50.274.281MACS193119:31:54.879-26:33:23.672.653MACS193119:31:56.886-26:33:29.272.110MACS193119:31:54.527-26:33:39.222.521MACS193119:31:57.454-26:33:41.182.261MACS193119:31:57.717-26:33:45.082.110MACS193119:31:55.965-26:33:49.732.094MACS193119:31:43.941-26:33:57.252.514MACS1931165TableB.3(cont'd)20002000radiusCluster(00)19:31:43.982-26:34:10.332.538MACS193119:31:43.255-26:34:37.152.030MACS193119:31:56.659-26:34:51.652.166MACS193119:31:55.991-26:34:52.112.780MACS193119:31:55.074-26:35:09.382.906MACS193119:31:43.908-26:35:15.422.334MACS193119:31:58.446-26:35:20.602.508MACS193119:31:55.150-26:35:22.422.779MACS193119:31:53.941-26:35:28.202.326MACS193119:31:45.744-26:35:36.272.084MACS193119:31:57.344-26:35:49.852.353MACS193119:31:55.475-26:35:52.672.322MACS193119:31:42.393-26:35:56.222.532MACS193119:31:49.650-26:36:03.562.831MACS193119:31:54.493-26:36:02.532.450MACS193119:31:45.645-26:36:18.692.483MACS193121:29:27.213-7:40:31.322.859MACS212921:29:22.338-7:40:55.862.638MACS212921:29:29.118-7:41:13.542.212MACS212921:29:27.712-7:41:18.712.464MACS212921:29:23.572-7:41:43.732.705MACS212921:29:28.434-7:42:28.142.276MACS212921:29:27.703-7:39:08.912.098MACS212921:29:27.070-7:39:44.662.621MACS212921:29:20.697-7:40:47.172.442MACS212921:29:21.333-7:40:55.362.555MACS212921:29:31.184-7:42:20.052.502MACS212921:29:30.485-7:42:36.602.507MACS212921:29:33.191-7:42:38.062.565MACS212921:29:23.636-7:42:49.542.285MACS212921:29:30.730-7:42:54.602.913MACS212921:29:23.007-7:43:11.322.310MACS212921:40:17.670-23:38:59.262.996MS213721:40:14.094-23:39:59.622.367MS213721:40:17.522-23:40:33.322.622MS213721:40:07.770-23:39:07.192.918MS213721:40:20.674-23:39:48.822.028MS213721:40:15.278-23:41:29.033.024MS213721:40:17.614-23:41:31.902.709MS213713:47:34.344-11:44:30.072.916RXJ1347166TableB.3(cont'd)20002000radiusCluster(00)13:47:27.362-11:45:08.452.133RXJ134713:47:28.584-11:45:36.972.831RXJ134713:47:32.518-11:46:01.792.245RXJ134713:47:27.808-11:43:52.032.944RXJ134713:47:34.858-11:44:01.042.186RXJ134713:47:33.412-11:46:53.162.607RXJ134715:32:59.519+30:20:50.702.515RXJ153215:32:48.512+30:20:44.252.523RXJ153215:32:56.525+30:22:59.462.327RXJ153215:32:58.078+30:19:52.872.293RXJ153221:29:36.235+0:06:18.152.230RXJ212921:29:44.089+0:05:59.022.215RXJ212921:29:44.792+0:05:55.152.385RXJ212921:29:42.193+0:05:15.154.314RXJ212921:29:43.597+0:05:04.822.440RXJ212921:29:40.542+0:04:42.772.012RXJ212921:29:39.536+0:04:32.552.976RXJ212921:29:44.260+0:06:47.852.895RXJ212921:29:46.893+0:06:07.202.403RXJ212921:29:33.738+0:05:28.132.842RXJ212921:29:34.948+0:04:42.232.440RXJ212921:29:34.857+0:04:32.272.342RXJ212922:48:44.045-44:30:47.962.978RXJ2248167REFERENCES168REFERENCESAbell,G.O.1958,ApJS,3,211Abell,G.O.,Corwin,Jr.,H.G.,&Olowin,R.P.1989,ApJS,70,1Agulli,I.,Aguerri,J.A.L.,anchez-Janssen,R.,etal.2016,MNRAS,458,1590Aird,J.,Coil,A.L.,Moustakas,J.,etal.2013,ApJ,775,41Akritas,M.G.,&Bershady,M.A.1996,ApJ,470,706Allen,S.W.,Evrard,A.E.,&Mantz,A.B.2011,ARA&A,49,409Allen,S.W.,Rapetti,D.A.,Schmidt,R.W.,etal.2008,MNRAS,383,879Anders,E.,&Grevesse,N.1989,Geochim.Cosmochim.Acta,53,197Anderson,J.,&Bedin,L.R.2010,PASP,122,1035Andreon,S.2003,A&A,409,37Andreon,S.2008,MNRAS,386,1045Andreon,S.,Dong,H.,&Raichoor,A.2016,ArXive-prints,arXiv:1606.03996Andreon,S.,Newman,A.B.,Trinchieri,G.,etal.2014,A&A,565,A120Annis,J.,Kent,S.,Castander,F.,etal.1999,inBulletinoftheAmericanAstronomicalSociety,Vol.31,AmericanAstronomicalSocietyMeetingAbstracts,1391Annunziatella,M.,Biviano,A.,Mercurio,A.,etal.2014,A&A,571,A80Arimoto,N.,&Yoshii,Y.1987,A&A,173,23Arnaud,M.,Pointecouteau,E.,&Pratt,G.W.2005,A&A,441,893Arnaud,M.,Pointecouteau,E.,&Pratt,G.W.2007,A&A,474,L37Ascaso,B.,Moles,M.,Aguerri,J.A.L.,anchez-Janssen,R.,&Varela,J.2008,A&A,487,453Bahcall,N.A.,&Fan,X.1998,ApJ,504,1Bahe,Y.M.,McCarthy,I.G.,Balogh,M.L.,&Font,A.S.2013,MNRAS,430,3017Baldry,I.K.,Glazebrook,K.,Brinkmann,J.,etal.2004,ApJ,600,681Balestra,I.,Mercurio,A.,Sartoris,B.,etal.2016,ApJS,224,33Balogh,M.L.,Babul,A.,&Patton,D.R.1999,MNRAS,307,463169Balogh,M.L.,Baldry,I.K.,Nichol,R.,etal.2004,ApJ,615,L101Baum,W.A.1959,PASP,71,106Bell,E.F.,&deJong,R.S.2001,ApJ,550,212Bell,E.F.,McIntosh,D.H.,Katz,N.,&Weinberg,M.D.2003,ApJS,149,289Bell,E.F.,Wolf,C.,Meisenheimer,K.,etal.2004,ApJ,608,752Belsole,E.,Sauvageot,J.-L.,Pratt,G.W.,&Bourdin,H.2005,A&A,430,385BenN.2000,ApJ,536,571BenN.,Ford,H.,Bouwens,R.,etal.2004,ApJS,150,1Bernardi,M.,Sheth,R.K.,Nichol,R.C.,Schneider,D.P.,&Brinkmann,J.2005,AJ,129,61Berrier,J.C.,Stewart,K.R.,Bullock,J.S.,etal.2009,ApJ,690,1292Bertin,E.,&Arnouts,S.1996,A&AS,117,393Bhattacharya,S.,Heitmann,K.,White,M.,etal.2011,ApJ,732,122Biviano,A.,Rosati,P.,Balestra,I.,etal.2013,A&A,558,A1Blakeslee,J.P.,Franx,M.,Postman,M.,etal.2003,ApJ,596,L143Blanton,M.R.,Hogg,D.W.,Bahcall,N.A.,etal.2003,ApJ,592,819Bohlin,R.C.2016,ArXive-prints,arXiv:1606.01838[astro-ph.IM]Bohlin,R.C.,Gordon,K.D.,&Tremblay,P.-E.2014,PASP,126,711ohringer,H.,&Chon,G.2015,A&A,574,L8ohringer,H.,Chon,G.,Collins,C.A.,etal.2013,A&A,555,A30Bouwens,R.J.,Bradley,L.,Zitrin,A.,etal.2014,ApJ,795,126Bower,R.G.1997,MNRAS,288,355Bower,R.G.,Benson,A.J.,Lacey,C.G.,etal.2001,MNRAS,325,497Bower,R.G.,Kodama,T.,&Terlevich,A.1998,MNRAS,299,1193Bower,R.G.,Lucey,J.R.,&Ellis,R.S.1992,MNRAS,254,601Boylan-Kolchin,M.,Springel,V.,White,S.D.M.,Jenkins,A.,&Lemson,G.2009,MNRAS,398,1150Bradley,L.D.,Zitrin,A.,Coe,D.,etal.2014,ApJ,792,76170Brent,R.P.1973,AlgorithmsforMinimizationWithoutDerivatives(PrenticeHall)Brodwin,M.,Stanford,S.A.,Gonzalez,A.H.,etal.2013,ApJ,779,138Brown,M.J.I.,Dey,A.,Jannuzi,B.T.,etal.2007,ApJ,654,858Bruch,S.,Donahue,M.,Voit,G.M.,Sun,M.,&Conselice,C.J.2010,ApJ,724,608Bruzual,G.,&Charlot,S.2003,MNRAS,344,1000Bryan,G.L.2000,ApJ,544,L1Bryan,G.L.,&Norman,M.L.1998,ApJ,495,80Butcher,H.,&Oemler,Jr.,A.1978,ApJ,219,18Carrasco,E.R.,Cypriano,E.S.,Neto,G.B.L.,etal.2007,ApJ,664,777Cash,W.1979,ApJ,228,939Castellano,M.,AmorR.,Merlin,E.,etal.2016,A&A,590,A31Cavaliere,A.,&Fusco-Femiano,R.1976,A&A,49,137Cerulo,P.,Couch,W.J.,Lidman,C.,etal.2016,MNRAS,457,2209Chandrasekhar,S.1935,MNRAS,96,21Charlot,S.,&Fall,S.M.2000,ApJ,539,718Coe,D.,BenN.,anchez,S.F.,etal.2006,AJ,132,926Coe,D.,Bradley,L.,&Zitrin,A.2015,ApJ,800,84Coe,D.,Umetsu,K.,Zitrin,A.,etal.2012,ApJ,757,22Coe,D.,Zitrin,A.,Carrasco,M.,etal.2013,ApJ,762,32Cohen,J.G.,&Kneib,J.-P.2002,ApJ,573,524Connor,T.,Donahue,M.,Sun,M.,etal.2014,ApJ,794,48Conroy,C.2013,ARA&A,51,393Conroy,C.,&Gunn,J.E.2010,ApJ,712,833Conroy,C.,Gunn,J.E.,&White,M.2009,ApJ,699,486Conselice,C.J.,Gallagher,III,J.S.,&Wyse,R.F.G.2002,AJ,123,2246Cool,R.J.,Eisenstein,D.J.,Johnston,D.,etal.2006,AJ,131,736Crawford,S.M.,Bershady,M.A.,&Hoessel,J.G.2009,ApJ,690,1158171DaRocha,C.,&MendesdeOliveira,C.2005,MNRAS,364,1069Darvish,B.,Mobasher,B.,Sobral,D.,etal.2016,ApJ,825,113Dave,R.,&Oppenheimer,B.D.2007,MNRAS,374,427David,L.P.,Slyz,A.,Jones,C.,etal.1993,ApJ,412,479DeLucia,G.,G.,&White,S.D.M.2004a,MNRAS,349,1101DeLucia,G.,Poggianti,B.M.,Aragon-Salamanca,A.,etal.2004b,ApJ,610,L77DeLucia,G.,Poggianti,B.M.,Aragon-Salamanca,A.,etal.2007,MNRAS,374,809DePropris,R.,Phillipps,S.,&Bremer,M.N.2013,MNRAS,434,3469deRossi,M.E.,Tissera,P.B.,&Scannapieco,C.2007,MNRAS,374,323Delaye,L.,Huertas-Company,M.,Mei,S.,etal.2014,MNRAS,441,203DeMaio,T.,Gonzalez,A.H.,A.,Zaritsky,D.,&Bradac,M.2015,MNRAS,448,1162Dey,A.,Lee,K.-S.,Reddy,N.,etal.2016,ApJ,823,11Donahue,M.,&Voit,G.M.1999,ApJ,523,L137Donahue,M.,Voit,G.M.,Mahdavi,A.,etal.2014,ApJ,794,136Donahue,M.,Connor,T.,Fogarty,K.,etal.2015,ApJ,805,177Donahue,M.,Ettori,S.,Rasia,E.,etal.2016,ApJ,819,36Dressler,A.1980,ApJ,236,351Ebeling,H.,Barrett,E.,Donovan,D.,etal.2007,ApJ,661,L33Ebeling,H.,Edge,A.C.,&Henry,J.P.2001,ApJ,553,668Ebeling,H.,Edge,A.C.,Mantz,A.,etal.2010,MNRAS,407,83Ebeling,H.,Ma,C.-J.,&Barrett,E.2014,ApJS,211,21Eckmiller,H.J.,Hudson,D.S.,&Reiprich,T.H.2011,A&A,535,A105Edge,A.C.,&Stewart,G.C.1991,MNRAS,252,414Edwards,L.O.V.,&Fadda,D.2011,AJ,142,148Eisenhardt,P.R.M.,Brodwin,M.,Gonzalez,A.H.,etal.2008,ApJ,684,905Eke,V.R.,Cole,S.,&Frenk,C.S.1996,MNRAS,282,263172Ellis,R.S.,Smail,I.,Dressler,A.,etal.1997,ApJ,483,582Erfanianfar,G.,Popesso,P.,Finoguenov,A.,etal.2014,MNRAS,445,2725Ettori,S.,&Brighenti,F.2008,MNRAS,387,631Ettori,S.,Tozzi,P.,Borgani,S.,&Rosati,P.2004,A&A,417,13Evrard,A.E.,&Henry,J.P.1991,ApJ,383,95Evrard,A.E.,Metzler,C.A.,&Navarro,J.F.1996,ApJ,469,494Faber,S.M.1973,ApJ,179,731Fabjan,D.,Borgani,S.,Tornatore,L.,etal.2010,MNRAS,401,1670Ferrarese,L.,C^ote,P.,anchez-Janssen,R.,etal.2016,ApJ,824,10Ferreras,I.,Charlot,S.,&Silk,J.1999,ApJ,521,81Fitzpatrick,E.L.1999,PASP,111,63Fogarty,K.,Postman,M.,Connor,T.,Donahue,M.,&Moustakas,J.2015,ApJ,813,117Foltz,R.,Rettura,A.,Wilson,G.,etal.2015,ApJ,812,138Ford,H.C.,Clampin,M.,Hartig,G.F.,etal.2003,inProc.SPIE,Vol.4854,FutureEUV/UVandVisibleSpaceAstrophysicsMissionsandInstrumentation.,ed.J.C.Blades&O.H.W.Siegmund,81Fotopoulou,S.,Buchner,J.,Georgantopoulos,I.,etal.2016,A&A,587,A142Franck,J.R.,McGaugh,S.S.,&Schombert,J.M.2015,AJ,150,46Fruchter,A.S.,&Hook,R.N.2002,PASP,114,144Gal,R.R.,Lopes,P.A.A.,deCarvalho,R.R.,etal.2009,AJ,137,2981Gallazzi,A.,Charlot,S.,Brinchmann,J.,&White,S.D.M.2006,MNRAS,370,1106Gaspari,M.,Brighenti,F.,Temi,P.,&Ettori,S.2014,ApJ,783,L10Geller,M.J.,Diaferio,A.,Kurtz,M.J.,Dell'Antonio,I.P.,&Fabricant,D.G.2012,AJ,143,102Georgakakis,A.,Aird,J.,Buchner,J.,etal.2015,MNRAS,453,1946Giodini,S.,Lovisari,L.,Pointecouteau,E.,etal.2013,SpaceSci.Rev.,177,247Girardi,L.,Bressan,A.,Bertelli,G.,&Chiosi,C.2000,A&AS,141,371Girardi,M.,Mercurio,A.,Balestra,I.,etal.2015,A&A,579,A4173Gladders,M.D.,&Yee,H.K.C.2000,AJ,120,2148Gladders,M.D.,Yee,H.K.C.,Majumdar,S.,etal.2007,ApJ,655,128omez,P.L.,Valkonen,L.E.,Romer,A.K.,etal.2012,AJ,144,79Gonzalez,A.H.,Sivanandam,S.,A.I.,&Zaritsky,D.2013,ApJ,778,14Graham,A.W.,&Driver,S.P.2005,PASA,22,118Grogin,N.A.,Kocevski,D.D.,Faber,S.M.,etal.2011,ApJS,197,35Grossi,M.,Dolag,K.,Branchini,E.,Matarrese,S.,&Moscardini,L.2007,MNRAS,382,1261Gruen,D.,Brimioulle,F.,Seitz,S.,etal.2013,MNRAS,432,1455Guzzo,L.,Schuecker,P.,ohringer,H.,etal.2009,A&A,499,357Haines,C.P.,Pereira,M.J.,Smith,G.P.,etal.2015,ApJ,806,101Hansen,C.J.,Kawaler,S.D.,&Trimble,V.2004,Stellarinteriors:physicalprinciples,structure,andevolutionHao,J.,Koester,B.P.,Mckay,T.A.,etal.2009,ApJ,702,745Hao,J.,McKay,T.A.,Koester,B.P.,etal.2010,ApJS,191,254Helsdon,S.F.,&Ponman,T.J.2000,MNRAS,319,933Hicks,A.K.,Pratt,G.W.,Donahue,M.,etal.2013,MNRAS,431,2542Hilton,M.,Stanford,S.A.,Stott,J.P.,etal.2009,ApJ,697,436Hoekstra,H.,Bartelmann,M.,Dahle,H.,etal.2013,SpaceSci.Rev.,177,75Hoekstra,H.,Donahue,M.,Conselice,C.J.,McNamara,B.R.,&Voit,G.M.2011,ApJ,726,48Hoekstra,H.,Mahdavi,A.,Babul,A.,&Bildfell,C.2012,MNRAS,427,1298Hogg,D.W.,Blanton,M.R.,Brinchmann,J.,etal.2004,ApJ,601,L29Holden,B.P.,Franx,M.,Illingworth,G.D.,etal.2009,ApJ,693,617Holder,G.,Haiman,Z.,&Mohr,J.J.2001,ApJ,560,L111Hopkins,A.M.,&Beacom,J.F.2006,ApJ,651,142Hubble,E.,&Humason,M.L.1931,ApJ,74,43Humphrey,P.J.,Liu,W.,&Buote,D.A.2009,ApJ,693,822174Ichinohe,Y.,Werner,N.,Simionescu,A.,etal.2015,MNRAS,448,2971Jenkins,A.,Frenk,C.S.,White,S.D.M.,etal.2001,MNRAS,321,372Jouvel,S.,Host,O.,Lahav,O.,etal.2014,A&A,562,A86Kaiser,N.1986,MNRAS,222,323Kaiser,N.1991,ApJ,383,104Kalberla,P.M.W.,Burton,W.B.,Hartmann,D.,etal.2005,A&A,440,775Kato,Y.,Matsuda,Y.,Smail,I.,etal.2016,MNRAS,arXiv:1605.07370G.,&Charlot,S.1998,MNRAS,294,705Kay,S.T.2004,MNRAS,347,L13Kettula,K.,Finoguenov,A.,Massey,R.,etal.2013,ApJ,778,74Klypin,A.A.,Trujillo-Gomez,S.,&Primack,J.2011,ApJ,740,102Kodama,T.,&Arimoto,N.1997,A&A,320,41Kodama,T.,Arimoto,N.,Barger,A.J.,&Arag'on-Salamanca,A.1998,A&A,334,99Koekemoer,A.M.,Fruchter,A.S.,Hook,R.N.,&Hack,W.2003,inHSTCalibrationWorkshop:HubbleaftertheInstallationoftheACSandtheNICMOSCoolingSystem,ed.S.Arribas,A.Koekemoer,&B.Whitmore,337Koekemoer,A.M.,Faber,S.M.,Ferguson,H.C.,etal.2011,ApJS,197,36Koester,B.P.,McKay,T.A.,Annis,J.,etal.2007a,ApJ,660,239Koester,B.P.,McKay,T.A.,Annis,J.,etal.2007b,ApJ,660,221Kotov,O.,&Vikhlinin,A.2005,ApJ,633,781Kravtsov,A.V.,&Borgani,S.2012,ARA&A,50,353Krick,J.E.,Bernstein,R.A.,&Pimbblet,K.A.2006,AJ,131,168Kron,R.G.1980,ApJS,43,305Kroupa,P.2001,MNRAS,322,231Lampton,M.,Margon,B.,&Bowyer,S.1976,ApJ,208,177Lan,T.-W.,Menard,B.,&Mo,H.2016,MNRAS,459,3998LaRoque,S.J.,Bonamente,M.,Carlstrom,J.E.,etal.2006,ApJ,652,917Larson,R.B.1974,MNRAS,166,585175Lemaux,B.C.,Gal,R.R.,Lubin,L.M.,etal.2012,ApJ,745,106Lidman,C.,Rosati,P.,Demarco,R.,etal.2004,A&A,416,829Lidman,C.,Rosati,P.,Tanaka,M.,etal.2008,A&A,489,981Lilly,S.J.,Carollo,C.M.,Pipino,A.,Renzini,A.,&Peng,Y.2013,ApJ,772,119Limousin,M.,Ebeling,H.,Richard,J.,etal.2012,A&A,544,A71Lin,Y.-T.,Stanford,S.A.,Eisenhardt,P.R.M.,etal.2012,ApJ,745,L3Lintott,C.J.,Schawinski,K.,Slosar,A.,etal.2008,MNRAS,389,1179Liu,S.-F.,Yuan,Q.-R.,Yang,Y.-B.,etal.2011,AJ,141,99Loewenstein,M.2000,ApJ,532,17Loveday,J.,Norberg,P.,Baldry,I.K.,etal.2012,MNRAS,420,1239Lu,T.,Gilbank,D.G.,Balogh,M.L.,&Bognat,A.2009,MNRAS,399,1858Lumb,D.H.,Bartlett,J.G.,Romer,A.K.,etal.2004,A&A,420,853Mahdavi,A.,Hoekstra,H.,Babul,A.,etal.2013,ApJ,767,116Mahdavi,A.,Hoekstra,H.,Babul,A.,etal.2014,ApJ,inpressMahdavi,A.,Hoekstra,H.,Babul,A.,&Henry,J.P.2008,MNRAS,384,1567Mancone,C.L.,&Gonzalez,A.H.2012,PASP,124,606Mancone,C.L.,Baker,T.,Gonzalez,A.H.,etal.2012,ApJ,761,141Mantz,A.,Allen,S.W.,Ebeling,H.,Rapetti,D.,&Drlica-Wagner,A.2010a,MNRAS,406,1773Mantz,A.,Allen,S.W.,Rapetti,D.,&Ebeling,H.2010b,MNRAS,406,1759Maraston,C.2005,MNRAS,362,799Markevitch,M.1998,ApJ,504,27Marshall,H.L.,Tananbaum,H.,Avni,Y.,&Zamorani,G.1983,ApJ,269,35Martinet,N.,Durret,F.,Guennou,L.,etal.2015,A&A,575,A116Matsushita,K.,ohringer,H.,Takahashi,I.,&Ikebe,Y.2007,A&A,462,953Matteucci,F.,&Tornambe,A.1987,A&A,185,51Maughan,B.J.2007,ApJ,668,772176Maughan,B.J.,Giles,P.A.,Randall,S.W.,Jones,C.,&Forman,W.R.2012,MNRAS,421,1583McCarthy,I.G.,Schaye,J.,Ponman,T.J.,etal.2010,MNRAS,406,822McIntosh,D.H.,A.I.,Rix,H.-W.,&Caldwell,N.2005,ApJ,619,193McLeod,D.J.,McLure,R.J.,&Dunlop,J.S.2016,MNRAS,459,3812Medezinski,E.,Umetsu,K.,Nonino,M.,etal.2013,ApJ,777,43Mei,S.,Holden,B.P.,Blakeslee,J.P.,etal.2009,ApJ,690,42Meneghetti,M.,Rasia,E.,Vega,J.,etal.2014,ApJ,797,34Mercurio,A.,LaBarbera,F.,Haines,C.P.,etal.2008,MNRAS,387,1374Merlin,E.,AmorR.,Castellano,M.,etal.2016,A&A,590,A30Merten,J.,Meneghetti,M.,Postman,M.,etal.2015,ApJ,806,4Mihos,J.C.,Harding,P.,Feldmeier,J.,&Morrison,H.2005,ApJ,631,L41Milne,E.A.1928,TheObservatory,51,88Monna,A.,Seitz,S.,Balestra,I.,etal.2016,ArXive-prints,arXiv:1605.08784Morgan,W.W.1961,ProceedingsoftheNationalAcademyofScience,47,905Mouhcine,M.,Gibson,B.K.,Renda,A.,&Kawata,D.2008,A&A,486,711Moustakas,J.,Coil,A.L.,Aird,J.,etal.2013,ApJ,767,50Muanwong,O.,Kay,S.T.,&Thomas,P.A.2006,ApJ,649,640Mulchaey,J.S.2000,ARA&A,38,289Mullis,C.R.,McNamara,B.R.,Quintana,H.,etal.2003,ApJ,594,154Murphy,D.N.A.,Geach,J.E.,&Bower,R.G.2012,MNRAS,420,1861Mushotzky,R.F.1984,PhysicaScriptaVolumeT,7,157Muzzin,A.,Wilson,G.,Demarco,R.,etal.2013,ApJ,767,39Nantais,J.B.,vanderBurg,R.F.J.,Lidman,C.,etal.2016,ArXive-prints,arXiv:1606.07832Nastasi,A.,ohringer,H.,Fassbender,R.,etal.2014,A&A,564,A17Navarro,J.F.,Frenk,C.S.,&White,S.D.M.1997,ApJ,490,493Nemmen,R.S.,Georganopoulos,M.,Guiriec,S.,etal.2012,Science,338,1445177Nousek,J.A.,&Shue,D.R.1989,ApJ,342,1207Oguri,M.2014,MNRAS,444,147O'Hara,T.B.,Mohr,J.J.,Bialek,J.J.,&Evrard,A.E.2006,ApJ,639,64Osmond,J.P.F.,&Ponman,T.J.2004,MNRAS,350,1511Pacaud,F.,Pierre,M.,Adami,C.,etal.2007,MNRAS,382,1289Papovich,C.,Momcheva,I.,Willmer,C.N.A.,etal.2010,ApJ,716,1503Pearson,K.1895,PhilosophicalTransactionsoftheRoyalSocietyofLondonA:Mathemat-ical,PhysicalandEngineeringSciences,186,343,pertinentmaterialonpage375Poggianti,B.M.,Bridges,T.J.,Mobasher,B.,etal.2001,ApJ,562,689Ponman,T.J.,Bourner,P.D.J.,Ebeling,H.,&ohringer,H.1996,MNRAS,283,690Ponman,T.J.,Cannon,D.B.,&Navarro,J.F.1999,Nature,397,135Porter,S.C.,Raychaudhury,S.,Pimbblet,K.A.,&Drinkwater,M.J.2008,MNRAS,388,1152Postman,M.,Lauer,T.R.,Donahue,M.,etal.2012a,ApJ,756,159Postman,M.,Coe,D.,BenN.,etal.2012b,ApJS,199,25Pratt,G.W.,Croston,J.H.,Arnaud,M.,&ohringer,H.2009,A&A,498,361Puchwein,E.,Sijacki,D.,&Springel,V.2008,ApJ,687,L53Rakos,K.,&Schombert,J.2004,AJ,127,1502Reichert,A.,ohringer,H.,Fassbender,R.,&Muhlegger,M.2011,A&A,535,A4Reiprich,T.H.,Basu,K.,Ettori,S.,etal.2013,SpaceSci.Rev.,177,195Reiprich,T.H.,&ohringer,H.2002,ApJ,567,716Richard,J.,Smith,G.P.,Kneib,J.-P.,etal.2010,MNRAS,404,325Rines,K.,Geller,M.J.,Diaferio,A.,&Kurtz,M.J.2013,ApJ,767,15Rosati,P.,Borgani,S.,&Norman,C.2002,ARA&A,40,539Rozo,E.,Wechsler,R.H.,RykE.S.,etal.2010,ApJ,708,645Rudick,C.S.,Mihos,J.C.,Harding,P.,etal.2010,ApJ,720,569Rudnick,G.,vonderLinden,A.,Po,R.,etal.2009,ApJ,700,1559Rudnick,G.H.,Tran,K.-V.,Papovich,C.,Momcheva,I.,&Willmer,C.2012,ApJ,755,14178RykE.S.,Evrard,A.E.,McKay,T.A.,etal.2008,MNRAS,387,L28RykE.S.,Rozo,E.,Busha,M.T.,etal.2014,ApJ,785,104RykE.S.,Rozo,E.,Hollowood,D.,etal.2016,ApJS,224,1Salpeter,E.E.1955,ApJ,121,161ancazquez,P.,Peletier,R.F.,Jimenez-Vicente,J.,etal.2006,MNRAS,371,703anchez-Janssen,R.,Aguerri,J.A.L.,&Mu~noz-Tu~on,C.2008,ApJ,679,L77Sandage,A.R.,&Eggen,O.J.1959,MNRAS,119,278Schechter,P.1976,ApJ,203,297Schiminovich,D.,Wyder,T.K.,Martin,D.C.,etal.2007,ApJS,173,315ScE.F.,&Finkbeiner,D.P.2011,ApJ,737,103Schlegel,D.J.,Finkbeiner,D.P.,&Davis,M.1998,ApJ,500,525Schmidt,K.B.,Treu,T.,Brammer,G.B.,etal.2014,ApJ,782,L36Sereno,M.,Giocoli,C.,Ettori,S.,&Moscardini,L.2015,MNRAS,449,2024Sirianni,M.,DeMarchi,G.,Gilliland,R.,etal.2003,inBulletinoftheAmericanAstro-nomicalSociety,Vol.35,AmericanAstronomicalSocietyMeetingAbstracts#202,722Smith,R.J.,Marzke,R.O.,Hornschemeier,A.E.,etal.2008,MNRAS,386,L96Snyder,G.F.,Brodwin,M.,Mancone,C.M.,etal.2012,ApJ,756,114Spitzer,Jr.,L.,&Baade,W.1951,ApJ,113,413Springel,V.,White,S.D.M.,Jenkins,A.,etal.2005,Nature,435,629Stanford,S.A.,Eisenhardt,P.R.,&Dickinson,M.1998,ApJ,492,461Stern,D.,Jimenez,R.,Verde,L.,Stanford,S.A.,&Kamionkowski,M.2010,ApJS,188,280Stott,J.P.,Pimbblet,K.A.,Edge,A.C.,Smith,G.P.,&Wardlow,J.L.2009,MNRAS,394,2098Stott,J.P.,Smail,I.,Edge,A.C.,etal.2007,ApJ,661,95Stott,J.P.,Hickox,R.C.,Edge,A.C.,etal.2012,MNRAS,422,2213Strateva,I.,Ivezic,Z.,Knapp,G.R.,etal.2001,AJ,122,1861Strazzullo,V.,Rosati,P.,Pannella,M.,etal.2010,A&A,524,A17179Struder,L.,Briel,U.,Dennerl,K.,etal.2001,A&A,365,L18Sun,M.,Voit,G.M.,Donahue,M.,etal.2009,ApJ,693,1142Tanaka,M.,Kodama,T.,Arimoto,N.,etal.2005,MNRAS,362,268Taylor,E.N.,Hopkins,A.M.,Baldry,I.K.,etal.2011,MNRAS,418,1587Terlevich,A.I.,Kuntschner,H.,Bower,R.G.,Caldwell,N.,&Sharples,R.M.1999,MNRAS,310,445Thanjavur,K.,Willis,J.,&Crampton,D.2009,ApJ,706,571Tian,J.-T.,Yuan,Q.-R.,Zhou,X.,etal.2012,ResearchinAstronomyandAstrophysics,12,1381Tinker,J.,Kravtsov,A.V.,Klypin,A.,etal.2008,ApJ,688,709Tozzi,P.,&Norman,C.2001,ApJ,546,63Tozzi,P.,Gilli,R.,Mainieri,V.,etal.2006,A&A,451,457Trager,S.C.,Faber,S.M.,Worthey,G.,&alez,J.J.2000,AJ,120,165Tremonti,C.A.,Heckman,T.M.,G.,etal.2004,ApJ,613,898Turner,M.J.L.,Abbey,A.,Arnaud,M.,etal.2001,A&A,365,L27Umetsu,K.,Zitrin,A.,Gruen,D.,etal.2016,ApJ,821,116Umetsu,K.,Medezinski,E.,Nonino,M.,etal.2012,ApJ,755,56Umetsu,K.,Medezinski,E.,Nonino,M.,etal.2014,ApJ,795,163vanderBurg,R.F.J.,Aussel,H.,Pratt,G.W.,etal.2016,A&A,587,A23Vazdekis,A.,ancazquez,P.,Fon-Barroso,J.,etal.2010,MNRAS,404,1639Vikhlinin,A.,McNamara,B.R.,Forman,W.,etal.1998,ApJ,502,558Vikhlinin,A.,Burenin,R.A.,Ebeling,H.,etal.2009,ApJ,692,1033Vomez,R.1999,inAstronomicalSocietyofthePConferenceSeries,Vol.170,TheLowSurfaceBrightnessUniverse,ed.J.I.Davies,C.Impey,&S.Phillips,349Visvanathan,N.,&Sandage,A.1977,ApJ,216,214Voit,G.M.2005,ReviewsofModernPhysics,77,207Voit,G.M.,&Bryan,G.L.2001,Nature,414,425Voit,G.M.,Bryan,G.L.,Balogh,M.L.,&Bower,R.G.2002,ApJ,576,601180Voit,G.M.,Bryan,G.L.,O'Shea,B.W.,&Donahue,M.2015,ApJ,808,L30vonderLinden,A.,Best,P.N.,G.,&White,S.D.M.2007,MNRAS,379,867Wachter,K.,Leach,R.,&Kellogg,E.1979,ApJ,230,274Wall,J.V.,&Jenkins,C.R.2012,PracticalStatisticsforAstronomersWeinmann,S.M.,vandenBosch,F.C.,Yang,X.,&Mo,H.J.2006,MNRAS,366,2Williams,B.F.,Ciardullo,R.,Durrell,P.R.,etal.2007,ApJ,656,756Worthey,G.1994,ApJS,95,107Worthey,G.1999,inAstronomicalSocietyofthePConferenceSeries,Vol.192,Spec-trophotometricDatingofStarsandGalaxies,ed.I.Hubeny,S.Heap,&R.Cornett,283Wright,E.L.2006,PASP,118,1711Wu,X.-P.,Xue,Y.-J.,&Fang,L.-Z.1999,ApJ,524,22Wyder,T.K.,Martin,D.C.,Schiminovich,D.,etal.2007,ApJS,173,293Xia,L.,Zhou,X.,Yang,Y.,Ma,J.,&Jiang,Z.2006,ApJ,652,249Xue,Y.-J.,&Wu,X.-P.2000,ApJ,538,65Yang,H.-Y.K.,Ricker,P.M.,&Sutter,P.M.2009,ApJ,699,315Yuan,T.-T.,Kewley,L.J.,&Richard,J.2013,ApJ,763,9Zeimann,G.R.,Stanford,S.A.,Brodwin,M.,etal.2013,ApJ,779,137Zhang,L.,Yuan,Q.,Yang,Q.,etal.2011,PASJ,63,585Zibetti,S.,Charlot,S.,&Rix,H.-W.2009,MNRAS,400,1181Zibetti,S.,White,S.D.M.,Schneider,D.P.,&Brinkmann,J.2005,MNRAS,358,949Zitrin,A.,Broadhurst,T.,Coe,D.,etal.2011,ApJ,742,117Zitrin,A.,Moustakas,J.,Bradley,L.,etal.2012a,ApJ,747,L9Zitrin,A.,Rosati,P.,Nonino,M.,etal.2012b,ApJ,749,97Zitrin,A.,Meneghetti,M.,Umetsu,K.,etal.2013,ApJ,762,L30Zitrin,A.,Fabris,A.,Merten,J.,etal.2015,ApJ,801,44181