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PIECEWISE LINEAR INVOLUTIONS

ON P2 x S1

BY

Muhammad Arafat Natsheh

This thesis is to classify the PL involutions on

P2 x 81. The main technique used is the P-equivariant

surgery developed by Tollefson [10] and Tollefson and

Kim [5]. If h is an involution on a 3-manifold M: we

look for an appropriate surface S properly embedded in M

for Which h(S) = S or h(S) n S = ¢, and then cut M along

S U h(S) to get a manifold M' and an induced involution

h': M’ -—> M', where h' is easier to classify than h.

Pasting back what we cut help us to classify h.

In this thesis our manifold M is P2 x_S1 and the

surface we are looking for is an embedded P2 in P2 x 51.

Lemma 1: Let h.:P2-——> P2 be a PL involution.

Then F ¥ ¢, moreover F = a U {a}, where d is a non-

separating simple closed curve in P2.

Lemma 2: Let th'2 x Sl-—-> Pz'x S1 be a PL

involution. Then there exists a projective plane P embedded

in p2 x s1 such that h(P) = p or h(P) n p = ¢.
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Theorem 3: Up to PL equivalence there are 3 PL

involutions on P2 x I with fixed point sets homeomorphic

to (i) a projective plane, (ii) a disjoint union of a simple

closed curve and a single point, or (iii) a disjoint union

of an annulus and a simple arc.

Theorem 4: Up to PL equivalence there are six PL

involutions on P2 x S1 with fixed point sets homeomorphic

to (1) P2 u 92, (ii) p2 u s1 u *, (iii) 51 x s1 u 51,

(iv) K u 51, (v) s1 u s1 u s0 or (vi) ¢.
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INTRODUCTION

In this thesis we will classify the piecewise linear

(PL) involutions on P2 x 81. Tollefson [10] showed that

up to PL equivalence there is only one free PL involution

on P2 x 81, which is the obvious one.

Since S x S1 is the orientable double covering of

P2 x S1 we will make use of the PL involutions on 82 x S1

which was classified by Tao [9], KWun [8], Fremon [3], and

Tollefson [10]. Moreover, we will use the P-equivariant

surgery developed by Tollefson[10] and Tollefson and Kim [5].

The idea is if h : M ——-> M is an involution on a 3-manifold

M, then we look for an appropriate surface S properly

embedded in M for which h(S) = S or h(S) n S = ¢ and

then cut along S U h(S) to get a manifold M’ and an

induced involution h1 : M’ —-> M’ which is easier to handle

than M.

In case h.:P2 x Sl-—-5 P2 x S1 we will be able to find

a P2 embedded in P2 x S1 such that either h(PZ) = P2

in case F ¥ ¢ or h(P2) 0 P2 = ¢ in case F = ¢: and

cutting along P2 U h(Pz) we get M' w P2 x I and

hl.:P2 x I-—> P2 x I. In theorem 2.2 we classify all

involutions h and this leads to the classification of the

1

. . 2 l 2 l .
involutions h : P x S —> P x S where it turns out that



there are up to PL equivalence five PL involutions with

nonempty fixed point set homeomorphic to (i) P2 U P2,

(ii) 92 u s1 u *, (iii) 81 x s1 u sl, (iv) K u 31, or

(v) S1 U S1 U SO. This together with Tollefson's result

of the free case completes the classification of all involutions

on P2 x 31. Thus up to PL equivalence there are six

PL involutions on P2 x 81.



CHAPTER I

INTRODUCTORY REMARKS AND P-EQUIVARIANT SURGERY

We work in the PL category, all manifolds are assumed

to have a piecewise linear structure and all maps are to be

piecewise linear maps unless otherwise stated.

Sn will denote the n—sphere, Pn the real projective

n—space, K the Klein bottle, and I the closed unit interval

[0,1]. We will use "s.c.c." for a "simple closed curve",

x(M) for the Euler characteristic of M, and if 11:bd-——> N

is a map then l(h) will denote the Lefschetz number of h.

If M is an n-dimensional manifold, then a map h :M.-—€>b4

is an involution if h is not the identity and hoh = the

identity map on M: F(h) will denote the fixed point set of h.

A surface S in a 3-dimensional manifold M is properly

embedded in M if F H BM = BF: two surfaces S and S
l 2

properly embedded in M are called parallel if there is an

embedding of Sl><[-l,l] in M such that 81 = S1 x -l and

S = S1 X 1. A surface S properly embedded in M is two—

2

sided if there is a neighborhood of S in M of the form

S x [-1,1] with S = S x O and S x [-1,1] n BM = as x [-1.1].

A surface S properly embedded in M is one-sided if S does

not separate any connected neighborhood of S.

Definition 1.1: Let S be a 2-sided surface in a

3-manifold M. The manifold M’ obtained by splitting M at
 

S



4

is the manifold whose boundary contains two copies of S

81 and 82 such that there is a natural projection

p: (M’,S U82) ——> (M, S) with PM - (SIUSZ) is a homeo-
1

morphism onto M-S and M’ is homeomorphic to M - (S x(-1,1)).

If S is one-sided, the manifold N obtained by splitting M

at S is the manifold whose boundary contains S a double
1

cover of S and N—S1 is homeomorphic to M-S.

Definition 1.2: Let h be an involution on a manifold
 

M. The quotient space M/h of M which is obtained by iden-

tifying x in M with h(x) is called the orbit space of h

and the quotient map q:lM-——- M/h is called the orbit map.

Definition 1.3: Let hl, h2 : M —-—> M be two homeomorphisms.

h1 and h2 are equivalent if there is a PL homeomorphism

T : M --> M such that th = Th2, in such a case T is called

PL equivariant with respect to h1 and h2.

Definition 1.4: [Tollefson [10] and Tollefson and Kim [5]]

Let h.:M.-—e>bd be a PL involution on the 3-manifold M,

with fixed point set F. Let S be a surface properly embedded

in M. S is said to be in h-general position modulo F if
 

(i) bOth (S, as) and (h(S), 311(5)) are in general position

with respect to F, (ii) S-F and h(S)-F are in general position,

and (iii) all cuts among S, h(S) and F are locally

piercing cuts.

‘We observe that any properly embedded surface in M can

be put into h-general position modulo F by a series of arbi-

trarily small isotopies, and if S meets F at a nonpiercing

point or curve then S and h(S) can be simultaneously pulled



away from F at this place. This can be done by restriction

of h to a small invariant regular neighborhood of F.

Let h:P2 XSZ"-—->P2 xSl, let 2 be the set of all

projective planes embedded in P2 x S1 which are either invariant

and in general position with respect to F or in h-general

position modulo F. For any P 6 EL define the complexity of
 

P, C(P) = (a,tn, where a = the number of components of

[Pflh(P)] - F and b = the number of components of P H F; we

order the complexities in a lexigraphical order.

Remarks 1.5: Any simple closed curve in P2 either bounds
 

a disk and separates P2 or does not bound and is nonseparating.

A nonseparating s.c.c. in P2 is covered by a s.c.c. in S

(the orientable double cover of P2) which is invariant under

the covering transformation; hence any two nonseparating simple

closed curves in P2 has a nonempty intersection.

Any P2 embedded in P2 x S1 does not separate,for P2

does not bound any manifold.

Any embedded P2 C P2 x S1 is two-sided and P2 x S1 - P2

is homeomorphic to P2 x (0,]J. For if p :S2 x Sl’-—+§ P2 x S1

is the orientable double covering then p-1(P2) = S* c S2 x 81.

where 8* is a two sphere which does not bound a 3-cell:

and S* x [-1,]J is a 2-sided regular neighborhood of S*

which double cover P2 x [-1, l]: moreover, S2 x S1 - S* is

homeomorphic to 82 x (0,1) which double cover P2 x S - P .

hence szsl-PzzP2 x (0,1). Let i:P2 -———B PZXS1

be an embedding then 1*:‘W1(P2)-——> r1(P2)(Sl) is a

monomorphism, j*:‘r1(P2)-——§.WI(P2)(I) is a monomorphism too,

where j is an embedding.



Lemma 1.6: Let h :P'2 -——C>P2 be a PL involution with

Fix (h) = F. Then F ¥ ¢; moreover, F = a U {a} where a

. . . 2

is a nonseparating s.c.c. in P .

Proof: Since x(h) = 1 ¥ 0, then F ¥ ¢, and since F

is a submanifold of P, F is a finite number of disjoint simple

closed curves and points.

By Conner [l], x(F) = x(h), hence x(F) = l: and by Floyd [2]

EdimHi(F:Zz) _<_Z‘dim Hi(P2:Z = 3. Hence F has to contain a2)

single point a and may have at most one s.c.c.

If a is a s.c.c. in F then a cannot bound a disk

because if so then the disk is invariant and its boundary in

F hence the whole disk is contained in F, which cannot happen.

So if a c F, it has to be a nonseparating s.c.c.

Let J be any nonseparating s.c.c. in P2 such that

a t J and .L,h(J) are in general position. J 0 h(J) ¥ U

and either J C F or J n h(J) is an odd number of points,

for by considering the commutative diagram:

2 2

2 21 1
H (P ’ZZ) ® H (P :22)

if [J] generates H1(P2,ZZ), 3 its dual and 22 is the

- *—

generator of H2(P2;zz) then <[J]LJ[hJJ, 22) = 1 E Z2, 'hence

the intersection number of J and h(J) 5 1 (modin, i.e. an

odd integer.



h acts as a permutation of order 2 on the points

J n h(J) whose number is odd, hence there is a fixed point

x E J n h(J).

Therefore there is a nonseparating s.c.c. a C F such that

x 6 a and F = a U {a}.

Lemma 1.7: (P—equivariant surgery) Let

h:P2 x Sl-——> P2 x S1 be a PL involution. Then there exists

2 l 2
a p2 c p x s such that h(Pz) = p or h(PZ) n p2 = 95.

Iggggfi: Let ’Z) be the set of all projective planes embedded

in P2 x S1 which are invariant and in general position with

respect to F, or in h-general position modulo F. If there is

a P2 E Z disjoint from F, then we choose P such that its

complexity is minimal among all such P's in. 23 which are

disjoint from F. If every P EIZ) meets F then choose an

arbitrary P E E with minimal complexity.

We argue that C(P) = (0,0), for if C(P) > (0,0) we can

obtain P’ 6:} of the same type with lower complexity by

performing P-equivariant surgery once on P. Hence our original

choice of P must satisfy h(P) = P or h(P) n P = ¢.

Choose P 618 of minimal complexity and suppose c(P) \ (0.0).

In P n h(P) we have the following types of intersection curves:

(a) an isolated point which is in F, (b) a s.c.c. in P-F.

(c) a s.c.c. with one point in F, (d) a s.c.c. in F, (e) a

simple arc with its end points in F.

First, we rule out case (a) using Tollefson argument

[10, lemma 2]. If x is isolated in F then we move P and

h(P) simultaneously off x. If X is a point of a one-dimen-

sional component of F, then let N be an invariant 3-cell



neighborhood of x such that N n F is an arc. Then th

is simply a rotation about this arc,we adjust P and h(P)

slightly so that P U h(P) is in general position with respect

to EN. There are simple closed curves in P n N and h(P) n N

that bound innermost disks (containing x) R<C P and Q C h(P).

R U Q separates N into three components U, V, W, where

RC 8U, h(U) = V and h(W) = W. Clearly F 0 UC W.

Let D be a disk close to and parallel to R such that

IntDC U and SD = BR. Define P’ = (P-R) U D. The only

difference between P 0 h(P) and P’ n h(P’) is that we have

removed the point x, but because of our choice of P this

case cannot appear.

Second: There is a s.c.c. J in P n h(P) of type (b),

(c), (d) or a simple arc d of type (e): since a ¥ h(d),

a U ha is a s.c.c. in P n h(P).

Case I: There is a s.c.c. J'C P n h(P) which bounds an

innermost disk E in h(P): where a surface E is innermost

in h(P) if E n P = ¢ and AB C P U h(P). There always exists

an innermost disk, for if J bounds the disk E in h(P) which

is not innermost we can find a s.c.c. J” C E where

J” C P n h(P) and bounds an innermost disk E’ in h(P).

Hence J'C P n h(P) bounds an innermost disk E in h(P).

J 0 F may be one of the following: U, J, a single point, or

a couple of points.

2
Since J bounds E in h(P), it bounds a disk in P X S1

and hence it bounds a disk in P, for i* and j* are

monomorphisms in:

1* 2 1 3*
vrl<P)-————>vr1<p XS )<———-——rr1(h(p))
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Hence J separates P into two components E and E let
1 2’

E be the disk. we have either h(J) = J or h(J) ¥ J in
1

either case let U be a small regular neighborhood of E. In

U find a disk E’ parallel to E and such that:

(i) E’ n h(P) = F n J, (ii) BE’ U J bounds a semi-degenerate

annulus A contained in P, which is pinched along J n F,

(iii) the interior of the 3-cell bounded by E U A U E’ is

disjoint from P U h(P). Take P = E’ U (E-A). If P is

not already in general position with respect to F along the

curve J then move P slightly off J where necessary to

achieve this general position. Then P’ 6'2) and c(P’) < c(P).

Repeating the last process we can assume that there are no

s.c.c. d in P n h(P) such that d bounds a disk in h(P):

and hence we can assume all s.c.c.'s in P 0 h(P) do not

bound in h(P) and intersect in a single point x, otherwise

we are going to find a s.c.c. which bounds an innermost

disk in h(P).

Case II: Let E be an innermost surface in h(P) bounded

by two such nonseparating s.c.c.'s d and B. E is a pinched

annulus pinched at x. Now a U 8 ~ 0 in h(P) and this

implies that h(d) U h(B) ~ 0 in P. So h(d) U h(B) bounds

a pindhed annulus in P.

Subcase (a): h(E) 0 E = x a single point. Let U be

a small regular neighborhood of E. In U find a pinched

I

annulus E (pinched at x) which is parallel to E and such

that: (i) E’ H h(P) = x, (ii) aE’ U a U B bounds two pinched

annuli (each pinched at x) A A both in P, (iii) the
1’ 2

interior of the pinched solid torus (pinched at x) that is
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bounded by E U E’ U A1 U A2 is disjoint from P U h(P).

Now a U 6 separate P into two components E1 and E2

let 12:2 contain h(a) u h(s). Take 9’ = E’ u [32- (AIUA2)],

in this way we get rid of a, B, h(a), h(B) in P n h(P).

Subcase (b): h(E) 0 E = B, h(a) 0 a = x
 

Let U be a small regular neighborhood of E. In U find a

I

pinched annulus E (pinched at x) parallel to E and such

that (i) E’ n h(P) = 5, (ii) aE’ U a bounds a pinched annulus

A.C P, (iii) the interior of the pinched solid torus which is

bounded by E U A U E’ is disjoint from P U h(P). a U B

separate P into two components E and E2 ,let E contain
1 2

h(d). Take P’ = E’ U (E2-A), hence we get rid of a and

h(a) in P 0 h(P).

Subcase (c): E U h(E) = a U B where h(a) = B we get

rid of a and B the same way as in subcase (a).

Subcase (d): Now we can assume that every s.c.c.

a C P n h(P) is nonseparating in h(P) and so in P and

h(a) = a. We have two cases: (i) there exists more than one 0

(ii) there is only one a.

(i) If E is an innermost surface in h(P) which is

bounded by a U B where h(d) = a, h(S) = 6, let h(E) = E1

in P. E U E is either a projective plane which is invariant

1

and we are done (finding invariant projective plane embedded

in P2 x 81) or E U E bounds a pinched solid torus T

l

which is invariant under h. Hence there exists a pinched annulus

E’ c T such that as’ = u. u a and h(E’) = E’. If

h(P) = E1 U E --- U En, h(di) = ai where every ai 18 a
2
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simple closed curve in BEi, then let P’ = E 1 U E 2 U --- U E’n

P’ 62 and h(P’) = P’.

(ii) P f) h(P) a a single nonseparating s.c.c. in P

(and so in h(P)). Split P2 x 81 along P we get a space

homeomorphic to P2 x I and the following two cases:

(a) F’ (I (é/ V ‘9"

‘ 0 W1 ‘ 0‘ am

Since P - d z Intlfz, an open disk (a) cannot happen because

h(P) - a is an annulus, (b) only may happen and in this case

P and h(P) does not cross each other. Now a 0 F = ¢,

a or 2 points. a n F = ¢ cannot happen since P is in

h-general position modulo F. In case a C F we move P and

h(P) simultaneously off a, to get P n h(P) = d. So if

a 0 F = [x,y} let U be a small regular neighborhood of

a pinched along x and y. Let A be the semi-degenerate

annulus contained in BU such that BA = BU n P and

Anh(P) =¢. Let A’=Unp andput P’=AU(P-A’).

If P’ is not in general position with respect to F along

a, move P’ slightly off a 0 F to achieve the general position.

P’ E Z) and c(P’) < c(P). Hence in all cases we can achieve

the conclusion of the theorem, i.e. there is a P 6‘23 such

that h(P) = p or h(P) n P = ¢.



CHAPTER II

PL INVOLUTIONS ON P2 X S1

In this chapter we will prove the main theorem of the

classification of PL involutions on P2 x 81. First we

classify the PL involutions on P2 x I, then using this we

prove our final theorem. We will use for P2 the more convenient

one of the two notations: (i) P2 = SZ/~ where x ~ -x V x E 82.

or (ii) P2 = D2,/~ where D2 = {szC (z)=1, ogpgl} and

z ~.-z.

Lemma 2.1: Let h:P2 x I —-> P2 x I be a PL involution. Then

there is an annulus A_C P2 x I, whose boundary components are

non-separating simple closed curves in P2 x o and P2 x l

and such that h(A) = A.

3322:: Let a be a non-separating s.c.c. in P and let

S=axI. (de,axodel) canbe deformed in

(P2 x I, P2 xoU P2 x 1) so that S w a x I is either invarient

and in general position with respect to F (and hence we are

done) or inh-generalpositionmodulo F.

Let Z) be the set of all annuli S c P2 X I. which are

in h-general position modulo F and such that the boundary

components of every S are non-separating simple colsed curves

in P2 x o and P2 x 1. Define the complexity c(S) as before

and choose S EEZ) of minimal complexity.

12
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Again as in lemma 1.7 we choose E an innermost surface

in h(S). ‘We have the following cases:

Case I: E is a disk in Int(h(S)). Let J = BE. J 0 F

may be one of the following : ¢, J, a simple arc, a point,

two or more components each is a point or a simple arc.

J separates A into two components E and E and
l 2

since J c int(h(S)), J c intss. If E1 and B2 are annuli

then J is homotopic in P2 x I to one of the boundary com-

ponents of S, but each of the boundary components of S is

not null homotopic in P2 x I, hence J is not null homotopic

in P2 x I, a contradiction since J = 8E, E is a disk in

h(S) and so in P2 x I. Hence one of E1, E2 has to be a

disk, let E be the disk. We handle this case the same way
1

as in Lemma 1.7 Case I.

Case II: E is a disk in h(S) which meets one boundary

component ofh(S). Let J=SflE, B=Enah(S). JflF is

the same as in case I. Let U be a small regular neighborhood

of E. In U find a disk E’ parallel to E and such that

(i) E’ U h(S) = J 0 F, (ii) BE’ U J U B bounds a semi-degenerate

annulus A.C S pinched along J 0 F, (iii) the interior of the

I

3-cell bounded by E U A U E is disjoint from S U h(S).

Now J separates S into two components a disk E1 and an

U (E2-A). If S’ is not in gen-
I

annulus E2. Let S’ = E

eral position with respect to Falong J, move 8’ slightly off

J to achieve this general position.

Case III: Now we can assume that S U h(S) is a finite

number of disjoint simple arcs each one of them starts at a
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point in P2 x o and ends at a point in P2 x l. The number

of these simple arcs is odd because the number of components

of S n h(S) equals 1(mod 2), (same reasoning as in lemma 1.6).

If the number of these simple closed curves is greater

than one, let E be an innermost disk in h(S) bounded by

two arcs J1 and J2, J1 U J2 = E n 3.

Let Bo=h(S)flP2xo

2 .
and let do — S n P x o — CO U Yo’ Where Yo U Bo 18 a non-

Bo U 50’ Where B0 = 60 n E,

separating simple closed curve in P2 x 0 (this is possible

since both do and 60 are non-separating simple closed curves

2 x o).in P

Let U be a small regular neighborhood of E. In U

choose a disk E’ parallel to E such that

(i) E’ U h(S) = (JlLJJZ) n F, (ii) BE U BE’ bounds a semi—

degenerate annulus A pinched along J n F, (iii) the interior

of the 3-cell bounded by E U E’ U A is disjoint from

S U h(S). J1 U J2 separates S into two disks E1 and E2.

= E’ U (E1-A). If S’ is notlet YO<C E1 then take 8’

in general position with respect to F along J1 U J2, move

8’ slightly off F 0 (JlLJJZ) to achieve this general position.

Repeating this process one finally gets h(S) n S = J

a simple arc, since we cannot get rid of all of them for

h(S) n s 5:! ¢.

Now let P : 52 x [0,1] -——> P2 x [0,1] 'be the covering

map, S n h(S) = J a simple arc. P-1(S) = 8* an annulus in

52 x I which is invariant under the covering transformation.

Same for p‘1(h(s)). s" n P-1(h(S)) = ’31 u 32 two copies of

2
J. Cut along 8 we get a manifold M’ z D x [0.1] and the
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disk h(S)’ c M’ is h(S) cut along J to get J1, J2 two

copies of J in ah(S)’. Cutting again along h(S)’ we get

2 x I and 8D2 x I istwo manifolds each homeomorphic to D

homeomorphic in each one of these to h(S)’ U S’ which are

pasted along two copies of J.

Now P2 x I - (Sth(S)) consists of two components A

and B. If h(A) = B then P C J' and either F = J or

F is a point in Inth. If F = J then h(P2)<o) = P2 x 0

such an involution h[P2 x 0 has fixed points other then that

in J (by lemma 1.6) hence F = J cannot happen. If

F = a point in InthI: then we rule this out too.

Let B be a small invariant 3-cell around the fixed

point such that B 6: int P2 x I. Let X = P2 x I - int B.

h acts freely on X, let M be the orbit space and

q : X -—> M the quotient map, q is a 2 - 1 covering map.

32

32 P1

ql ’ on
x M X g,

2 2

L S 82

M
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2

’X = S x [0,1] - (BllJBZ) is the covering space of X,

Where each of B1 and 32 are mapped onto B by the covering

82 x I -—+> P2 x I; Let M, be the orientable double covering

of M.

Since K is simply connected it is a universal cover of

M hence there is a covering P1 :3? —-> M such that the

diagram commutes i.e. PP1 = qql.

X — S - (BlLJBZLJB3LJB4) and P1 15 2-1 covering

projection. P1(Sz)(0) = P1(Sz‘xl) = Si C BM. and

~ 2 ~

P1(BBI) - P1(BB2) — S1 C M, hence P1 can be extended to a

covering projection of S3

3

which implies that

M w P - (BiLJBg). The covering transformation on M is a

free involution with both Si and s: are invariant spheres.

This involution can be extended to P3 w M U B? U B3 such

that T(Bl’ = B1 and T(B2) = 32 and T is free on M: hence

the fixed point set of T (in P3) consists of a couple of

points one in Int B1 and the other in Int 82 , such an in-

volution cannot happen, see [KWun 6, 7 and Kim 4].

Hence h(A) = A. Cutting along 8 U h(S) we get two

manifolds A and B each homeomorphic to 02 X [0.1]. Now

BAD (S-J)’ U J1 U J2 U (h(S) -J)’ = L where (S-J)’ comes

from S - J after the cutting, and the same for (h(S)-J)’:

J1 and J2 are two copies of J. 'h: P2 xil-——§ P2 x I

induces h’ : A -—> A defined as follows:

for x 6 A - L let h’(x) = h(x)’

for x’ e (S-J)’ u (h(S) -J)’ let h’(x’) = [h(xH’

for x 6 J let h’(x) = h(x)’ in J
1 2
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and for x 6 J2 let h’(x) = h(x)’ in J1.

h’ :A -—> A is an involution with h’ (J1) = J2 and

h’((S-J)’) = (h(S)-J)’, hence there exists a disk DC A

Which is invariant under h’ and J1 U J2 C BD. Pasting

back what we cut we get P2 x I and D goes back to an in-

variant annulus S.

Hence always there is an invariant annulus S C P2 x I

whose boundary components are non-separating simple closed

curves in P2 x o and P2 x l, and S is in general position

with respect to F.

Theorem 2.2: Let h: P2 x I —-> P2 x I be a PL in—
 

volution, then h is equivalent to one of the following

involutions:

(i) h1([pz, t1)

(ii) h2([pz,t]) x I U I

(iii) h3([pz, t]) = [-pz, l-t] with F e S1 U *'

[p2,] -t] with F m P2

1
[-pz, t] with F e S

Egggfi: Since x(h) = 1 ¥ 0, then F ¥ D. By Conner [l]

x(h) = x(F), so x(F) = 1. By Floyd [2]

Zdim Hi(F: 22) gZdim Hi(P2 XI: Z2) = 3. Hence a component of

F may be P2, an annulus, a mobius band, a simple arc, a s.c.c..

or a point.

Since x(F) = 1 and ZdimHi(F: Z2) 5 3, so if we have

a mobius band we have both of P2 x o and P2 x l invariant

and hence F will contain 3 components or more which violates

one or more of the above conditions. Hence this case can-

not happen.
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2 . .

Case I: P C F, then Since ZhiunHi(P2:Zz)= 3 we have

F = P2 C Int (P2 x I), for F is a properly embedded submanifold

of P2 X I. Now F separates P2 x I into two components

A and B each homeomorphic to P2 x I and h(A) = B. Let

t be any homeomorphism from A onto P2 x [0, -21-] such that

£0”) = P2 x-é- and let h1 : P2 X I ——> P2 X I be defined by

2
h1([pz,t]) = [pz,l-—t]. Define T:.P x1I-——> P2 x I as

follows: for u E A, let T(u) = t(u), and for u E B, let

T(u) = hlth(u). Then hT = Th1 and hence h is equivalent

to hl'

Case II: There exists a simple arc component J’C F, then

h(P2><o) = P2 x o and h(P2)<l) = P2 x 1. Hence Edi a non-

separating curve in P2 x i, i = 0,]. such that do U d1 C F.

and since ZdimHi(F:z2) _<_ 3 there is an annulus A C F

with BA = do U d1. A U J = F because we can not have any—

thing else in F. Cut along A to get D2 x I and consider

the following diagram:

 

 

D2 x I h > D2 x I

q 1’ JL g

h

P2 x I > P2 x I

1

Define h(z,t) to be equal to q- hq(z,t) for (z,t) t BD2 x I

and for (z,t) 6 BD2 X I let h be the covering transformation.

Suppose h’ :P2 X I -—+> P2 xil be any other involution with

2
F’ = A’ U J’ then define h’ : D x I -—-> D2 x I as above.
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Since h.~ h’ on D2 x I there exists t:D2 X I--> D2 x I

such that fit = th’. Consider the following diagram:

 

 

  
 

  
 

D2 X I h ' > D2 X I

"'I

D2 X I h > D x I

q q

q’ q’

2 I h 2 \)

P X I > P X I

tI

I

P2 X I h > P x I

. , 2 2

Define t :‘P x I-——§ P x I as follows:

2
for [z,t] e P x I - A let t’([pz,t]) = q't’q‘1([pz,t])

for u 6 A let q-1(u) = [ul, “2} we have h(ul) = 112 and

since h't(u 1) = t(uz) then q’(t(u1)) = q'(t(u2)),)
1

define t’(u) = q’(t(u1)) = q’(t(u2))

the last diagram commutes and hence h ~ h’ ~ h2 where

h2<rpz.t1) = [-pz.t1.

Case III: There is an isolated point a E F. As in lemma 2.1

F ¥ a and we cannot have an annulus as another component of

F because then there would be more components in F which

violates Zdim Hi(F’ZZ’ g 3. Hence the only possibility is

to have d a s.c.c. in F and hence F = d U {a}.
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Let x €,d and P-1(x) = {x1,xé} C S1 x I then there

exists a unique involution B such that the diagram commutes

 (82x1, x1) > (3x1,x1)

2 ’ h 2
(P XI, x) > (P XI,x) 

If d ~ 0 in P2 x I then p-1(d) = d1 U d2 C F(h) and

there is no such involution with d1, d2 as components of the

fixed point set [5, lemma 6.3] and hence d'/ o in P2 X I.

By Lemma 2.1 there is an invariant annulus AkC P2 x I Whose

boundary components are non-separating s.c.c.'s in P x o

and P2 x 1. A 0 F ¥ ¢ otherwise hlP2><I-(ALJP2)<{o,l})

is an involution of the open 3-ce11 with fixed point set

d U {a}, such an involution does not occur. We have either

d C A, or d n A = x and a E A. (A n d has an odd number

of components and fix(h]A) is either a circle or a couple

of points.)

 

Subcase I: d C A. Let P-1(a) = {a1,a2}. There is a

unique involution E that makes the following diagram

commute:

 

2 h A 2

l P 1’13

2 h 2

(P XI, a) A; (P xI, a)
 

-1 * , - * * *

P (A) = A an annulus for which h(A ) = A and T(A ) = A

where T is the covering transformation.
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Let P-1(d) = d*, ii(d*) = d* and T(d*) = d*

2 * - - 2

SxI-A—KlUK2,K1~K2~DXI,
let

a1€K1,a2€K2.

h(Kl’ = K1 and since h(al) = a1 we have h1(a2) = a2 and

F(h) = {a1,a2}. Now h[K1 is an involution with d* invariant

and d*<: BK and has fixed point set [a1], hence there is

1

an invariant disk D with BD = d* and a1 6 D.

SLet s = D U T(D) then T(S) = s and 3(3) = for

ET = Th. p(S) = P2 invariant in P2 x S1 and d U {a} C P2.

Subcase 1!: Let d n A = x. Choose y 6 d -A, and left
 

h to h, as before the diagram commutes:

 

 

2 _

(S xI,y) h >(SZXIiy)
1 1

P] [.
(P2XI, y) h a (P2xI,y)

... * ..

h(A) = A* and T(A*) = A . Let P 1(d) = d* and let

2 * - - 2 ..

S x I - A - K1 U K2, so K1 m K: m D x I and h(Kl) — K1

* . - * .-

T(K1) — K2 hence d — FIXIL Let d 0 K1 = d1 and

-1 * -— . . . -

P (a) — {a1,a2} C A . h[K1 is an involution on Kl'~ D2 x I

with fixed point set = d1 a simple arc. Since h(A*) = A*

3 a s.c.c. B such that (dlflA*) U {a1,a2} C B and T(B) = B.

B consists of two simple arcs B and B2 where

1

T(Bl) = 62 = h(Bl) where the end pOints of B1, B2 are

'k -

d1 n A . Let E be any disk in K with BB = d1 U 61.

h(E) is a disk with Bh(E) = dl U 62 and let E,h(E) be

in general position. E D h(E) = d1 U a finite number of

simple closed curves each bounds a disk in h(E) we can pull
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E and h(E) apart along these s.c.c.'s by performing

P-equivariant surgery once on each s.c.c. to get E such

that h(E) n E = d1. Let D = E U h(E) and S = D U T(D)

2 2
then T(S) = S h(S) and P(S) = P C P x I an invariant

projective plane such that d U [a] C P2. Hence in any case

there exists P2<: P2 x I such that d U {a} C P2 and

2 . . . .

h(PZ) = P . 'We can define an equivariant homeomorphism

2
tzlP XII-—> P2 x I as we did in case II to get th = h t,

3

where h3([pz,s]) = [-pz,l-S].

Corollary 2.3: If h : 92 x s1 —-> p2 x s1 is a PL

involution with fixed point set F ¥ ¢, then there exists a

projective plane P<Z P2 x S1 such that h(P) = P.

Proof: By lemma 1.6 there exists a PC P2 x S1 such

that h(P) = P or h(P) n P = U. If h(P) n P = ¢, cut along

P U h(P) to get two manifolds A and B each homeomorphic

to P2 x I. h(A) = A, otherwise if h(A) = B we have F = 0.

By theorem 2.2 there is an invariant projective plane P*<: intzx.

Paste back A and B we get P2 x S1 and P* C P2 x S1 is

the invariant projective plane.

Remark 2.4: If g: P2-—§ P2 is a homeomorphism then

we can get P2 x S1 from P2 x I by the identification

[pz,o] ~ [g(pz),l]. In theorem 2.5 we will use the following

types of identifications (i) P2 x S1 = P2 x I/[Pz,o] ~ [p2,1],

(ii) P2 x s1 = P2 x I/[pz,o] ~ {-92.1}.

(iii) P2 x s1 = P2 x I/[pz,o] ~ [p2,1].

Theorem 2.5: Let h:P2 x S1 -——> P2 x S1 be a PL
 

involution with fixed point set F. Then h is equivalent
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to one of the following six involutions:

(i) h1([pzl,22]) [pzl,-22] with F z ¢,

2 2
(ii) h2([pzl,22]) = [p21,22] with F a P U P ,

(iii) h3([pz,t]) = [pz,l-t] with F m P2 U S1 U *,

. - . 1

(iv) h4([pzl,zz]) = [-pzl,22] With F m S U S1 U So,

(v) h5([pzl,zz]) = [p21,22] with F m S1 X S1 U 81,

(vi) h6([pzl,t]) = [-pzl,t] with F e K u 51.

Where in (iii) P2 x I/[pz,o] ~ [-pz,l] and in

(Vi) P2 x S1 = P2 x I/[pz,o] ~ [p2,1].

Proof: By Tollefson [10], there is only one free involution

on P2 x 81, the obvious one, and case (i) is settled. By

Cor. 2.3 there exists a projective plane P C P2 x S1 such

that h(P) = P. Split P2 x S1 along P to get a manifold

homeomorphic to P2 x I and an induced involution

2XI—5P2XI.h! :P

By Lemma 2.2 h’ is equivalent to one of the three

involutions: (i) hi([pz,t]) = [pz,l-t],

(ii) h§([92.t) = [-pz,1-t]. (iii) h§([pZ.t]) = [-pz,t]-

2 l 2 1
In P x 5 let M+— [[pzl,zz]€P xS [Re2220}, and let

M_ = C1(P2)<Sl-M+), then M+ w M; w P2 x I, also let

P1 = P2 X l C P2 x S1 and P2 = P2 x{-1}C P2 x 81. Now we

have the following cases:

Case (I): h’ leaves P2 X %- invariant and interchange

2
P x o and P2 x 1. In this case after pasting back we get

two invariant projective planes P’ and P” and

P2 X S1 - (P’LJP”) = N U N2 where N N N m P2 X I and

l 1 2

h(Nl) = fiz.
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Subcase (a): P’ U P” = F. Let t be any homeomorphism

from N1 onto M+ . Define T: P2 x 81 —-> P2 x 81 as

follows: T(x) = x for all x 6 N and T(x) = hzth(x) for
1

Subcase (b): F = P’ U d U {a}, where d U {a} C P”. Let

x 6 N2. Then hT = Th

f be any homeomorphism from N1 onto P2 x [o,%-] which

takes P’ onto P2 x-gé- and d onto [[z,o]]z€P2,[z\=l}

and a to [0,0]. Define

T: P2 x S1 -—> P2 X 81 = P2 x I/[PZ,0] ~ [-pz,1] as follows:

T(x) = t(x) for x 6 N1 and T(x) = h3th(x) for x 6 N2.

Then hT = Th3 and h ~ h3.

Subcase (c): F = d U [a] U B U {b} where d U {a} C P’

and B U {b} C P”. Let t be any homeomorphism from N1 onto

M+, Which takes P’ onto P1 and P” onto P2 and F onto

Fix(h4). Define T as in the last subcase and conclude

hT = Th4 and hence h ~ h4.

Case (II): h’([pz,t]) = [-pz,t]. Let
 

Fix(h’) = F’ a S1 X I U I and let

E = {[92]€P2|o<p<l} ‘8 51 x I. Let g:P2 -—> P2 be a

homeomorphism such that g([—pz]) = -g([pz]). glE is either

orientation preserving, or orientation reversing. Let

q : P2 X I -—-> P2 x SI be the quotient map where

q([pz,o]) = q([g[pz],l]). In case g is orientation

preserving on E we have q(F’) N S1 x S1 U S1 and in

case 9 is orientation reversing we get q(F’) m K U 81.

Subcase (a): Let ‘h: P2 X S1 -—e> P2 x S1 be a PL
 

involution with F = T U d m S1 x S1 U 81.
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1

Let q : (P2 X 81, d) -—-é> (D2 X S , d) be the projection map

2

onto the orbit space. Let h :P2 x S1 ——5 P X S1 be

5

. . 1 l 1

defined h5([pzl,22[) = [-pzl,22[: F1X(h5) = S x S U S ,

l 1 l2

let q1 : (P2 xS , $1) —-> (D XS , S ) be the projection

map onto the orbit space.

1

Now let t :S -—€>c1 be any homeomorphism. Extend

t to a homeomorphism t : (D2 x SI, 81) -—> (D2 x 51, d) and

define t: P2 x S1 -—€> P2 x S1 as follows:

Choose a i 81 x S1 U 81, and let q-ltq1(a) = [u,v}.

Let t be the unique lefting of

1 1U51)),a)-—>(szsl-(q(T)Ua).tq1(a))

which takes a to u. For y E S1 X S1 U S1 let

tq1:((P2xS -(Sle

t(y) = q-ltq1(y). Then t is well defined and qt = tql.

and hence ht = ths, by the commutativity of the diagram:

 

 

  
 

  

P2 x s1 _ h > P2 x s1 _

\ t ‘ \t

\ \\\

\2‘) 1 hs $2 1
P X S > P X S

ql ql [

q q

W W

132 x 31 1d ,‘2 I)2 x s1

w . >
1

132 x81 id > 132 x s 
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Spbcase (1)): Let h : P2 X S1 --> P2 x S1 be a PL

involution with fixed point set K1 U d, K1 is a Klein

bottle. Then from what we discussed before the orbit space

is N the non-orientable disk bundle over 81. Let

q: (P2><Sl,cn -——> (N,d) be the projection onto the orbit

space. Let h, :P2 x Sl«—--->P2 x S1 be defined as in the

6

theorem, Fix(h6) = K U S"l and let q1 : P2 x S1 -—> (N,Sl)

be the projection map onto the orbit space. Now let

t.:S1 -—€>c1 be a homeomorphism and extend t to a homeo-

. . ~ 2 2

morphism t : (N,Sl) ——->> (N,d) . Define t : P x S1 -—-?> P x S1

exactly as we did in subcase (a) and using a similar argument

we get h N h6.
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