,II;;,,1,\;;13 3,; 11,16; 11:11,,11,1?,,1‘;1,,1,,,,1; 11'”; . " '1'11' 11;;“111111 H; I, 1; ‘— 3H; ,1 1?)"; {In 11113 —.__.~ ufi-v ._. l gt? 9 _-y t —'_. 4—1‘2'23'7‘!‘— . ‘ .— -— .% u..- a... ~ -3 ' “‘—-‘r_- “n__ ’ ‘0 Wu- ‘. . - ‘ ‘2‘ ~ .‘ w“... .1, ”.h‘ n M my": 1 w- - W‘- .1? .¢ an 2. v - I- ~ . _ . . , . _ § G7 I -, ’- f- ~....._ ,. 3% ~— “fa-7???- . - p... —.. .‘- “~. , .. V C ~o W ‘— on. . . «2r ’3? . 1 - - M-‘ ‘ O . I; ~ - 11.- _. - ' I_ Jam 3 vmwo- ‘ — "“oc ._ . ‘. . n .43!- 3:3321‘ ..- «.3 v v .. -w- a - . o v rm: d—voun- . . -...—-. d h "L . -—. —‘ .1 w... v -c , . o < a ' u -fib—u '1‘ ’t'l . m2“. DH Lu .. . . " 15,13- .5}; III-Hi1; 4,313,, 11331 "1' 131273;" dfidérigfx I: IE 311‘? '75: “If? I "I 3:”! 1' III ,JI’I 111‘? 31g: 1 1;;1’ ~ . ”311111.111.“ I- 3.»: ,1... 3. - 1‘21;;.'YI32:!;;J;II51;11H¥ if "2* . 151.111.}. =11 511,111.} *1 $1» $211,115 ,a M . ., 1:1,.i,;,11. ,1 .“I? Q1111,,1§, 1,, 11 3"?1I1I35:£§:'.'§ 3 .1}; .2,,,.,.1;=‘,::. .1113.- "i.':‘“?%' . 1131",; .:3 .11.;1113; "‘ I'z' III-.I IIi. ‘SIIEI I: I ;~ '~’ ‘5‘). ‘1'1:v;:--: - 1‘11 11:1?111'111111155111512111231111;' "1":"1'5'1'I'I 1:31" ?"‘I' I "I'?"“"“” . i ‘i‘hf‘I'I1I1':'H'II1§I8-‘IHIIIII';I, . ,‘I..'I‘!'?i I571. 1-. '.,, , . #419; 111.1533. '11512'1151112 11111» 1n, ":..-1;'=.. ' “1 I III“ [.1111 11%;? 1.19133!“ ' ‘ 3'2" 1%,, Hg,” 1111;, H1. 1,11,;1 ’I‘ km .a 11”». 5.1.1.1111 “ ' ”#4,;1,I".':1'3"1W1 ' ' 11'§EIIIII1'IIII. ' .3 11 :. .. UNIS." ' 11;" 33' .. . . "' 3,1 '1‘? I113; 1‘ ‘ 1,13,11,13, 2.11.1.1" 1“..-'-I I“ * .3... 1111‘ ,"=1- .;,sII.,1 1 ‘115111121119111.1111!~11?‘ 31,-, 1 ,3 , 3.1;: .1 .3 ' ; .: 1,1 “'1‘ 11:51:11, ... :1!,=1 m I., Iz‘I'Iu .1; '12:;11‘“ .1. .I- if“ I2. W1 '1’1I111H“"”"1' WWW 1' “"1. ileHfH‘III” ‘ . ,3; ,;,; VI; 194,11, ,,1:,,11113,,;v;;;;;,;;,:;1 1-1' ,5 ;;,, , 1112; ;,',,;,,,,I .I. . , ‘1,"111 311111 111141.113!" '3‘ 1.111...:I.1...I'1“ I?" ' 351' “In“: " “‘;.‘;"I.111.1 . ' 'I‘: ; If 59; ,.I...r.'1,, . 1"; III-13' 1 “IIII‘IHIIf‘IHIIHHH, H, 11, 1;, 3;“: @1319, 'IJHI.‘ 1 . 1; ;.111,1{;;12h!1 ,,; ;,, ;IJ,::,1:;,,,; ’IHHII {3" 11111! [1:33; H3», ,5}, 3.1.; 'II~1..1I""'1.1 “111 "1““ 11.1111 '1..." .' 3111 11w: 2' .; ‘ 1.1;: 111.1111.1111.1...:11. W 1.1.111, ;,.I. ’1" "1 “11;,11111 "' I'? '11 1.3.3111 ,1;;,;,I;It.;l?;!.i 1,3; M; ';. I'II’I,I'IIHIII ,. 111111.1.,.,;;,,11 “HM!“ ;;J,11H,1,.1;1I, 111‘ ;f', 1,. H1; '1 " 11,111; I "l' "'1' 5; ' "1' ,'.'1,"1 1.1, ; 1 I 1‘ 1’“ 1111 1.11 1.1.1 1.1111111.111111'111. 1.1.1, 11111 1.11 2.. - .LI 3‘ 1‘11 :3,” ’3‘; 1"fi,f";“";:. - #1:; ; H11, ,H"1;I;I Ho, 1 1;;IHIIIIIHI11“! H11 III; 3111 IN!“ ,';1H;, N ”EH! ‘1, ’1 1. 111". 1 1 -......._:r~ ". W-N‘. . . :3“... —‘ -- ‘4- -— «n... w .___.-_ ... MN ._.. :— ——l~ .. _. —~ - '.~= on ‘ .‘_ _. ‘4" '-‘ __."-—‘__.__. “1-... ' "-—~__ ...._ “3:." __. par —~..:‘ .. M. H- «2.; 3. m.“ —.-—_—_..___ ..- .°.._. ~% '—~.. :22. .43‘ 1931‘: "H ;; ;I[;;1;1U ‘1 ‘1' J~_.:‘-' :? 1 “T ‘— :_;‘::;__ J. . if. '9 - , _ ~ "f? i} 'W Jud; ‘: -.'_.‘ . » “8 ‘0 ‘t' o [ mnzwawra'zxm This is to certify that the dissertation entitled Energy Efficiency and Grain Quality Characteristics of Cross-Flow and Concurrent-Flow Dryers presented by Juan Carlos Rodriguez has been accepted towards fulfillment of the requirements for Ph -D ' degree in whnology Major professor 4/5/21/ MS U is an Affirmative Action/Equal Opportunity Institution 0-12771 MSU LIBRARIES .—:—. RETURNING MATERIALS: Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below. FEB 0, '7' "isn‘t: a J E: cl ENERGY EFFICIENCY AND GRAIN QUALITY CHARACTERISTICS OF CROSS-FLOW AND CONCURRENT-FLOW DRYERS BY Juan Carlos Rodriguez A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Agricultural Engineering 1982 ABSTRACT ENERGY EFFICIENCY AND GRAIN QUALITY CHARACTERISTICS OF CROSS-FLOW AND CONCURRENT-FLOW DRYERS BY Juan Carlos Rodriguez An experimental and simulation study was conducted on the state-of-the art of US on-farm and off-farm corn drying technology. Experimental data was collected on four commercial cross-flow and one concurrent-flow dryers in four Midwestern states. Each of the dryers was analyzed in depth by simulation. Energy efficiency and grain quality were employed as the criteria for dryer evaluation. Recirculation of exhaust air in cross-flow dryers was found to save as much as 30 percent of the required energy at a cost of about 10-15 percent on dryer capacity. Reversal of the direction of airflow in the drying section . of a cross-flow dryer results in a significant decrease in the moisture content gradient of the outlet grain. Mixing the grain after partial drying in a cross-flow Juan Carlos Rodriguez dryer and tempering it before final drying/cooling, further decreases this moisture gradient. ' The most sophisticated cross-flow dryer combines grain mixing and air recycling with an option to vary the velocity of the grain on the two sides of the individual drying/cooling columns. This design leads to energy efficiency and grain quality characteristics which rival those of multi-stage concurrent-flow dryers. The energy consumption of a differential grain speed cross-flow dryer (DGSCF) is less than 50 percent of that of a conventional non-recycling cross-flow model. .The optimum grain speed ratio in a DGSCF dryer depends on the type of product, the initial product moisture content and the. inlet air temperature; the speed ratio varies from 2:1 to 4:1 with the drying product closest to the air inlet flowing at the greater velocity. A further advantage of the DGSCF dryer is the shorter time at which the product is kept at high temperatures compared to other types of cross-flow dryers. The multi-stage concurrent-flow dryer with counterflow cooler proved to be the best of the five dryers analyzed with respect to energy efficiency and grain quality characteristics. Due to the high inlet air temperatures of a concurrent-flow corn dryer (up to 550 F), the energy efficiency (even without air recycling) is as good that as of the DGSCF dryer. The grain. quality characteristics are the best of any dryer tested; both the Juan Carlos Rodriguez grain breakage increase and the exit moisture content gradient approach zero. Approved/{W Major Professor:£;é%;4éag Approved flaw @fil do DepartmenF—Chfi rman 5/‘7/YL ACKNOWLEDGMENTS I am deeply indebted to my guidance committee chairman, Dr. Fred W. Bakker-Arkema, who provided not only technical and moral support since 1979, but also friendship and examples that positively influenced my career and my way of life. Special thanks is given to Dr. Robert Wilkinson and his wife, Ellen, not only for their service, but also. for their friendship and spiritual and moral support. I am also indebted to the other members of my guidance committee, ‘Dr. Lawrence Copeland and Dr. Steve Harsh, for their assistance and friendship during this work. I Special thanks is given to the external examiners, Mr. Chris M. Westelaken, Dr. I.P. Schisler, and Mr. Steve Kalchik. For their moral support, two fellow graduate students and their families deserve special mention: Eliud Ng'ang'a Mwaura and Carlos Fontana. I am indebted to Pat Francek and Karen Dunn for their patience and help during the final writing of this work. ii Special thanks and appreciation is sincerely expressed to the Andersons Agricultural Research Fund, Columbus, Ohio; Blount, Inc., Montgomery, Alabama; and Fundacion Banco Ganadero Argentino, Argentina for financial support. The author is also indebted to the Argentinian Government and the Instituto Nacional de Tecnologia Agropecuaria, Argentina for providing the opportunity to obtain this advance degree in Agricultural Engineering and for the financial support for this work. The author is thankful to Mr. Dick Rastin and Mr. Ben Stevenson for their help during the experimental phase of this work. A very special thanks is given to Don Duilio Moglianesi for his moral support and friendship. I am indebted to the faculty, staff, and graduate and undergraduate students of the Department of Agricultural Engineering, at Michigan State University for their patience and friendship. Deepest appreciation goes to my wife, Carlota, and my daughters, Carlota Veronica and Carola Viviana, for their patience and tolerance. A special note of praise should be given to my wife, whose expert typing helped to facilitate the completion of this doctorate thesis. To them, I can only offer myself and my love. iii TABLE OF CONTENTS LIST OF TABLES . . . . . . . . . . . . . . LIST OF FIGURES LIST OF SYMBOLS Chapter 1. INTRODUCTION . . . . . . . . . . . . l.l. Units . . . 2. OBJECTIVES . . . . . . . . . . . . . 3. CORN IN ARGENTINA. . . . . . . . . . . . 3.1. Drying and Storage in Argentina LITERATURE REVIEW. 4. bbbbb U'luP-UJNl-J 6. Cross-Flow Drying Cascade Drying. . . Concurrent-Flow Drying. Tempering . Effects of Drying on Grain Quality. .5. 1. Test Weight. . .5 2. Stress Cracks and Broken Kernels .5 3. Predicting Susceptibility to . Breakage . . . . . . . . . tbzbnb Energy Efficiency Calculation DRYING SIMULATION. 5. 5. l. 2. Drying Simulation . . . . . . Thin- -Layer and Diffusion Equations. .2.l. Empirical Drying Equations 2 2 Diffusion Drying Equation and Diffusion Coefficients Comparison of Empirical and Diffusion Equations iv Page Vii xii xiv IO 10 l6 18 26 27 28 29 31 32 41 41 46 46 49 50 EXPERIMENTAL 6 1. Farm Fans AB- 88 . 6 2. Redex RX- 10 . . . . 6.3. Hart- Carter HC- 66 6 4. Blount 10-60. 6 5 Ferrell- -Ross CCF. 6 6 Instrumentation and Procedure .1. Redex RX-lO. . .2. Hart-Carter HC-66. 3. Blount 10-60 . . . 4. Ferrell-Ross CCF . . . RESULTS AND DISCUSSIONS. . 7.1. Experimental Results. . . . . 7.1.1. Automatic Batch. . . . 7.1.2. Continuous Flow Cross-Flow With Cooling-Air Recirculation. 7.1.3. Continuous Flow Cross-Flow With Partial Drying Air and Cooling-Air Recirculation. . . . 7.1.4. Continuous Flow Cross- Flow With Partial Drying Air and Cooling Air -Recirculation, With Differen- tial Grain Speeds, And With Tem- pering . 7.1.5. Three Stage Concurrent _Flow. 7.1.6. Dryer Comparison . . . 7.2. Standard Conditions for Dryer Simulation. 7.3. Model Verification. 7.4. Dryer Simulations 7 4 1. Farm Fans AB-8B. 7 4 2. Redex RX-lO. 7.4 3. HC- 66. . . . . . . 7.4.4. Blount 10- 6O . . . . . 7 4 5. Ferre11-Ross CCF 7 4 6. Dryer Comparison 7.5. Design Analysis of Blount 10-60 . Ratio. . . . .1. Effect of Initial Moisture Content 2 Effect of Differential Grain Speed Page 56 57 59 64 65 72 77 78 82 82 84 87 87 87 9O 92 94 96 98 100 101 103 108 113 119 124 130 135 141 141 145 Page 7 5 3. Effect of Column Thickness. . . . . 148 7 5 4. Effect of Airflow Rate. . . . . . . 150 7.5.5. Effect of Drying Temperature. . . . 152 7 5 6 7 5 7 Modified Design . . . . . . . . . . 154 Conclusions . . . . . . . . . . . . 157 8. SUMMARY AND CONCLUSIONS . . . . . .'. . . . . . 159 9. SUGGESTIONS FOR FUTURE STUDY. . . . . . . . . . 163 10. RELEVANCY OF RESULTS TO ARGENTINA . . . . . . . 165 REFERENCES . . . . . . . . . . . . . . . . . . . . . 167 APPENDICES . . . . . . . . . . . . . . . . . . . . . 173 A- PROGRAM XFLO. . . . . . . . . . 174 8- Standard Method for Determination of Breakage with Stein Breakage Testers . . . . . . . . . . 225 C- CONVERSION FACTORS. . . . . . . . . . . . 227 D- Sample Run of the Blount 10- 60. . . . . . . . . 229 vi LIST OF TABLES Table Page 1 WCrld export of corn, major countries in 1978 . . 2 4.1 Grades and Grade Requirements for Corn. . 27' 4.8 Proposed standard conditions for the performance evaluation of automatic batch and continuous flow grain dryers, drying shelled corn (From Bakker—Arkema, 1980. . . . . . . . . . . . . . . . . . 37 4.9 Drying parameters and performance charac- teristics of a continuous-flow grain dryer (From Bakker—Arkema, 1980). . . . 38 4.10 Drying parameters and performance charac- teristics of a batch type grain dryer (From Bakker—Arkema, 1980). . . . . . . 39 4.11 Standard conditions to be used for cor- recting the experimental results of the performance characteristics of a corn grain dryer (From Bakker-Arkema, 1980). 40 '5.1 ' Comparison of the final moisture content of corn (%, w.b.) during drying using empirical and diffusion equations . . . 53 5.2 Drying rate as influenced by the hybrid drying factor using the spherical dif- fusion equation at 120 F, 8% RH and 25% initial moisture content (D according to Sabbah, 1971). . . . . . . . . . . . 54 5.3 Drying rate as influenced by the hybrid drying factor using a thin-layer equa- tion at 120 F, 8% RH, and 25% initial moisture content (w.b.) . . . . . . . . 55 6.1 Dryer specifications of Farm Fans dryer model AB-8B . . . . . . . . . . . . . . 60 6.2 Dryer specifications of Redex dryer model RX-lO . . . . . . . . .'. . . . . . . . 63 vii Table Dryer specifications of Hart-Carter dryer model HC-66. . Dryer specifications of Blount/MES dryer model 10-60. Recommended drying air temperatures in multi-stage concurrent-flow dryers for (Blount, 1980) different crops Drying conditions during the testing of the RX-lO dryer. . . Drying conditions during the testing of the HC-66 dryer. Drying conditions during the Blount 10-60 dryer Drying conditions during the testing of the testing of the Ferrell-Ross CCF 3-12-12 dryer . Actual energy consumption and corn quali- ty parameters of the Farm Fans AB-8B, 1978 drying season; drying air tempera- ture 195 F . . Actual capacity energy consumption, and corn quality parameters of the RX-lO drying corn at Actual capacity, ity parameters at 210 F, 1979 Actual capacity, ity parameters drying season; 195-225 F. . . Actual capacity, ity parameters 200 F, energy of the drying energy of the drying 1980 drying season. efficiency and qual HC-66 drying corn season . . . efficiency and qual Blount 10-60, 1981 air temperatures energy efficiency and qual of the Ferrell-Ross CCF 3-12-12, 1979 and 1980 drying seasons; drying air temperatures: 550-450-350 F viii Page 67 69 76 81 83 85 86 88 93 95 97 Table 7.4.4-1 Experimental energy efficiency and quality parameters of five differ ent dryers . . . . . . . . . . . . . Experimental and simulated results for the Blount 10-60 dryer, Salem, KY. Experimental and simulated results for the Farm Fans AB-BB dryer, Bellaire, MI . . . . . . . . . . . . . Experimental and simulated results for the Redex RX-lO dryer, Bellaire, MI. Experimental and simulated results for the Hart-Carter HC-66, Carrollton, MI . . . . . . . . . . . . . . . . . Standard conditions used in dryer com- parison. . . . . . . . . . . . . . . The effect of initial moisture content (and grain flow rate) on the drying characteristics of the automatic batch Farm Fans AB-BB dryer at inlet air temperature of 200 F under stan- dard conditions; final MC = 15.5 +7: 0.2% . . . . . . . . . . . . The effect of initial moisture content (and grain flow rate) on the drying characteristics of the Redex RX-lO at the air inlet temperature of 200E operating under standard conditions; final moisture content 15.5 +/- 0.2%. The effect of initial moisture content (and grain flow rate) on the drying characteristics of the HC-66 dryer at inlet air temperature of 210 F under standard conditions: final moisture content 15.5 +7- 0.2% The effect of initial moisture content (and grain flow rate) on the drying characteristics of the Blount 10-60 at the air inlet temperature of ZOOF drying under standard conditions: final average MC 15.5 +/- 0.2% w.b.; grain speed ratio 1:2. . . . . . ix Page 99 102 104 105 106 107 109 114 120 126 Table ' Page 7.4.5-1 The effect of initial moisture content (and grain flow rate)on the operat- ing of the three stage Ferrell-Ross CCF concurrent—flow dryer at inlet air temperatures of 550-450-350 F, under standard conditions . . . . . 131 7.4.6-1 Comparison of five dryers operating under standard conditions; initial moisture content 20.5%, final mois- ture content 15.5 +/- 0.2%; inlet air temperature 200 F (for CCF 550- 450-350 F). . . . . . . . . . . . . 137 7.4.6-2 Comparison of five dryers operating under standard conditions; initial moisture content 25.5%, final mois- ture content 15.5 +/- 0.2%; inlet air temperature 200 F (for CCF 550- 450-350 F). . . . . . . . . . . . . 138 7.4.6-3 Comparison of five dryers operating under standard conditions; initial moisture content 30.5%, final mois- ture content 15.5 +/- 0.2%; inlet air temperature 200 F (for CCF 550- 450-350 F). . . . . . . . . . . . . 139 7.5.1 The effect of initial moisture content (and grain flow rate) on the operat ing conditions of the Blount 10-60 cross-flow dryer at 200 F air inlet, and 90 cfm/bu airflow; grains speed ratios 1:2 and 1:1. . . . . . . . . 142 7.5.2 Effect of the differential speed ratio (and grain flow rate) on the operat ing conditions of the Blount 10-60_ cross-flow dryer at 200 F air inlet, 90 cfm/bu airflow and 25.5% initial moisture content. . . . . . . . . . ' 146 7.5.3 Effect of the column thickness (and grain flow rate) on the operating conditions of the Blount 10-60 cross- flow dryer at 200 F air inlet, 90cfm/ bu airflow, and 25.5% initial mois- ture content. . . . . . . . . . . . 149 Table Page 7.5.4 Effect of the airflow rate (and grain flow rate) on the operating condi- tions of the Blount 10-60 cross-flow dryer at 200 F air inlet and 25.5% initial moisture content; grain speed ratio 1:2 . . . . . . . . . . . . . . 151 7.5.5 Effect of the drying air temperature (and grain flow rate) on the operat- ing conditions of the Blount 10-60 cross-flow dryer at 90 cfm/bu and 25.5% initial moisture content;grain speed ratio 1:2 . . . . . . . . . . . 153 7.5.6 Effect of the column length and loca- tion of tempering on the operating conditions of the Blount 10-60 cross- flow dryer at 200 F and 225 F air inlet, 90 cfm/bu and 25.5% initial moisture content. . . . . . . . . . . 156 xi LIST OF FIGURES Schematic of a conventional continuous flow cross-flow grain dryer (Brooker et a1., 1974) . . . Schematic of a cross-flow dryer with air—reversal and air-recirculation (Hart-Carter) . . . . . . . A multiple-column cross-flow dryer (Morey and Cloud, 1973) Schematic of a cascade grain dryer (Bakker-Arkema et a1., 1978). . . . . Block diagram of a single-stage concur- rent—flow dryer with a counterflow cooler (Brooker et a1., 1974) Air and product temperatures versus depth for a single-stage concurrent- flow dryer Block diagram of a two-stage concurrent- flow dryer with counterflow cooler. Schematic cut-away of the Farm Fans AB- 8B. . . . . . Schematic of the Redex RX-lO. Schematic of the Hart-Carter HC-66 dryer. Schematic of the Blount 10-60 dryer Schematic of a continuous flow two-stages concurrent-flow dryer (Ferrell-Ross CCF). . . . . . . . . . . . Schematic of the patented Westelaken Drying Floor. . . . . . ° Thermocouple locations in the RX-10 dryer. xii Page 11 14 17 19 21 22 25 58 62 66 70 73 75 79 Figure 7.4.1a. 7.4.1b. 7.4.1c. 7.4.2a. 7.4.2c. 7.4.3a. 7.4.3b. 7.4.3c. 7.4.4a. 7.4.4b. 7JL4c. 7.4.5a. 7.4.5b. 7.4.5c. Humidity ratio, kernel temperature and MC distributions of the AB-8B (ini- tial MC = 20.5%) . . . . . . . . . Humidity ratio, kernel temperature and MC distributions of the AB-8B (ini- tial MC = 25.5%) . . . . . . . . Humidity ratio, kernel temperature and MC distributions of the AB-BB (ini- tial MC = 30.5%) . . . . . . . . . Kernel temperature and MC distributions of the RX-lO (initial MC = 20.5%). Kernel temperature and MC distributions of the RX-lO (initial MC = 25.5%). Kernel temperature and MC distributions of the RX-lO (initial MC = 30.5%). . Kernel temperature and MC distributions of the HC-66 (initial MC = 20.5%) . . . . . . . . . Kernel temperature and MC distributions of the HC-66 (initial MC = 25.5%) . . . . Kernel temperature and MC distributions of the HC-66 (initial MC = 30.5%) . . . Moisture content and kernel temperature distri- butions of the 10-60 (initial MC = 20.5%). Moisture content and kernel temperature distri- butions of the 10-60 (initial MC = 25.5%). Moisture content and kernel temperature distri- butions of the 10-60 (initial MC = 30.5%). Air and kernel temperatures and.MC distribu- tions in the CCF (initial MC = 20.5%). [firimrikenxfl.tamxmahuesamthCcfistEHMr tions in the CCF (initial MC = 25.5%). Air and kernel temperatures and MC distribu- tions in the CCF (initial MC = 30.0%). xiii Page 110 111 112 115 116 117 121 .122 123 127 128 129 132 133 134 Me Mo Mt rh Pp LIST OF SYMBOLS constant specific product surface areas, ftZ/ft3 constant specific heat of air, BTU/1b F specific heat of product, BTU/lb F specific heat of vapor, BTU/1b F specific heat of water, BTU/1b F diffusion coefficient, ft2/hr degree farenheit dry weight flow rate of air, lb/hr ft2 dry weight flow rate of product, lb/hr ft2 humidity ratio, 1b/1b horsepower convective heat transfer coefficient,BTU/hr ft2 F heat of vaporization, BTU/lb local or average moisture content, dry basis decimal equilibrium moisture content, dry basis (decimal) moisture content at time t=o, dry basis (decimal) moisture content at time t, dry basis (decimal) kernel radial coordinate, ft relative humidity, decimal dry weight product density, lb/ft3 air temperature, F xiv time, hours product temperature, F bed-depth coordinate, ft bed-width coordinate, ft XV CHAPTER 1 INTRODUCTION In the last decade the world trade and consumption of feed grain has been rising steadily due mainly to the expansion of the beef, milk, and egg production. This is mainly attributed to a worldwide increasing demand of animal protein (Fernandez and Acuna, 1979). Of all the feed grain, corn is the most important in volume, representing 19 percent of the total traded in 1978 (Fernandez and Acuna, 1979). The United Statesfl is ranked number one in corn exports, with 73 percent of the world market (Table l). A significant reduction in postharvest losses in shelled cereal grains have been achieved by the widespred use of artificial grain drying. By rapidly lowering the harvest moisture content and maintaining it at a specified level, grain retains its storage quality through reduced senescent metabolism and increased resistance to fungal and insect infestations (Brooker et a1., 1974). A large variety the cr of grain dryers are commercially available, with oss-flow dryer the mos t widely used in North America (Gustafson and Morey, 1981). TABLE 1: World export of corn, major countries in 1978. COUNTRY BUSHELS PERCENT in 1,000 United States 1,967,979 73.24 : Argentina 235,086 8.75 E South Africa 109,961 4.10 : France 99,079 3.69 1 Thailand 68,339 2.58 Brazil 550 0.01 iOthers 205,032 7.63 . TOTAL 2,686,026 100.00 Source: Secretaria de Agricultura y Ganaderia de la Nacion, Junta Nacional de Granos. Corn is harvested when 20-35 percent wet basis. The f Publicacion No.70. the moisture content is inal moisture content from the drying operation is determined by the intended use of the grain, and whether short or long term storage is planned. Continuous-flow dryers utilize high air-temperatures and flow rates, and high grain flow rates in order to achieve a satisfactory final moisture content (Brooker et a1., 1978; Paulsen and Thompson, 1973; Holtman and Zachariah,l969). Until recently dryers were evaluated mainly by total drying capacity. However, due to rising fuel costs, dryer efficiency must likewise be considered. Bakker-Arkema et a1. (1978) suggested a standardized rating to be established for both dryer capacity and energy efficiency. Energy efficiency is improved by carefully compromising between air temperature and flow rates, grain column thickness and length, and grain flow rate (Brooker et a1., 1978). Computer models which simulate dryer performance have greatly aided both the design and evaluation of drying systems. The models are based upon mathematical equations which calculate the diffusion rate of moisture through the grain as a function of: 1) original moisture content, temperature, and physiology of the grain; 2) the relative humidity, temperature, and flow rate of the air; and 3) the configuration of the particular dryer (Shove and Olver, 1967). 1.1 Units Throughout this thesis English units are used. The main reason of this decision is based on the fact that the research carried out was paid by grants from the industry. These private companies asked to make the reports to them in English units. Hence, a conversion to SI units for this thesis was not made because it would be counter productive. Appendix C presents conversion factors from English to SI units. CHAPTER 2 OBJECTIVES The objectives of this study are: A. to evaluate the energy efficiency and grain quality of the following cross-flow dryers: a. b. an on-farm cross-flow batch dryer; an on-farm continuous flow cross-flow dryer with- cooling air recirculation, and air reversal; an elevator type continuous flow cross-flow dryer with heating and cooling air recirculation and with air reveral; an elevator type/on-farm continuous flow cross-flow dryer with heating and cooling air recirculation, with tempering, and differential column grain velocity-flow; B. to model and exhaustively compare the four basic cross-flow dryer configurations; to evaluate the energy efficiency and grain quality characteristics of a three-stage concurrentaflow grain dryer; and to compare the four cross-flow dryers with the concurrent-flow dryer. CHAPTER 3 CORN IN ARGENTINA The Argentine Republic occupies the southeastern portion of South America. It is 2,300 miles from north to south and 930 miles at its widest point. The country has a land mass of 1,072,750 square miles. It is the second largest Latin American Republic and is roughly one third the size of the United States. Argentina has a population of about 27,210,000 inhabitants, with the lowest growth rate in Latin America of 1.8 percent per year. Population density as given by The World Almanac and Book of Facts (1981), is also quite low at 24.62 inhabitants per square mile as compared to a density of 61.19 per square mile in the United States. Argentina has produced and exported grain for almost a century. The main crops are: wheat, corn, sorghum, barley, rice, rye, milo, sunflower, flax, soybeans, and peanuts. The production of these crops represents between 35 to 40 percent of the gross national product of the agriculture produce and between 35 to 40 percent of the exports (Fernandez and Acuna 1979). Although Argentina is known for its beef and wheat production, corn ranks first in total grain production with an average of 8.5 million bushels per year (1972/73 to 1977/78 seasons). About half of the corn is used internally and the other half is exported. Argentina ranks second in corn exports with about 9 percent of the total traded worldwide (Table 1). The corn produced in Argentina is of the "flint" type, which is richer in carotene and provitamin A than the "dent" type. Italy and Spain, with 44 and 15 percent, respectively, are the main importers of this type of corn. Their preference is based on the quality fadtors previous mentioned plus the high proportion of nutrient starch of the "flint" type corn. 3.1 Drying and Storage in Argentina More than 70 percent of the corn produced in Argentina is artificially dried (de Dios and Puig, 1981)., As in the United States the cross-flow dryer design is the most commonly used, although some grain terminals use a combination drying technique in order to improve the grain quality . About 80 percent of the storage facilities in Argentina are located within the production zones; only 20 percent of the corn is held at the export ports (Fernandez and Acuna, 1979). Although most of the grain is handled in bulk, 40 percent is still stored and handled in 132 1b bags. This practice requires excessive labor and capital. The yute bags can not be used more than twice; the associated costs of higher handling costs and lower storage capacities are further disadvantages of bag handling/storage. The Junta Nacional de Granos ( a government institution) owns 43 percent of the Argentinian storage facilities, the Agrarian Cooperatives 23 percent, private elevators 18 percent and the processing industry 16 percent. Although the total storage capacity has increased in the last five years from 1975 to 1980, Argentina still has a storage capacity deficit of more than 353.6 million bushels (Fernandez and Acuna, 1979). This problem is partially offset by the fact that there are about 137.5 million bushels of storage capacity at the farm level. If Argentina is to increase its grain production, the problem of storage should be considered the number one priority. It is obvious that no expansion in grain production can be (expected without first increasing the storage capacity. CHAPTER 4 LITERATURE REVIEW 4.1 Cross-flow Drying Commercial cross-flow dryers are often called, in the trade, screen-column dryers. The conventional models are non grain-mixing type dryers. .They‘ are simple in construction and in operation and they are generaly lower in first cost than most other dryer configurations. However, the operating cost of cross-flow dryers is detrimentally affected by the periodic replacement of the screens (Hawk et a1., 1978). In the cross-flow drying method, wet grain from the wet holding bin at the tOp flows down the columns, where it is dried to the appropriate moisture content, cooled and unloaded at the bottom (Figure 4.1). Drying and cooling are accomplished by transverse air flow, the.air acting as 10 COLUMN GRM . -\ 11 FAN AND A HEATER HEATED AIR »/ FILLING AUGER PLENUM FAN COOLING AIR COOLING 9A?¥itt.f99w§!8 ' PLENUM VVGRAIN METER y'UNLOADING . Schematic :f a con: cross-flow grain dryer ‘entional AUGER ..--....u. ._, _-V- Brooke: e: 31.,1974 . 12 a vehicle for carrying' heat to or from the grain and removing the evaporated moisture. The grain flow rate is regulated by a metering device at the lower end of the column; it responds to a temperature sensor located in the grain column near the lower edge of the drying section. One of the basic disadvantages of a cross-flow dryer is the development of a moisture gradient across the column as the grain flows down (Paulsen and Thompson, 1973). Grain nearest the inside of the column tends to overheat and over-dry in the drying section and to over-cool in the cooling section of the dryer while grain in the outer portion is under-dried and under-cooled (Gygax et a1., 1974). Gustafson and Morey (1980) quantified the moisture gradient across the drying column of some basic cross-flow dryers. Differences across the column as large as 20 percent for moisture, 120 F for temperature and 50 percent for breakage susceptibility were observed. The drying efficiency of the basic cross-flow dryers is less than desirable and is normally over 3000 BTU/1b (6978 kj/kg) of water removed (Bakker-Arkema et a1., 1979). In cross-flow systems the grain is mixed following the cooling stage in an effort to reduce the temperature and moisture gradient across the column. Thorough mixing has been shown to result in the dried grain to approach to within one percent of its equilibrium moisture content (White and Ross, 1971). 13 Reversing the air flow during a second drying stage minimizes overdrying by applying the heated air to the wettest grain. Converse (1972) discussed the first commercial. cross-flow dryer with reverse airflow and air recycling. This design (shown in Figure 4.2) became the model for a number of similar commercial dryers in the United States and has been modeled by Lerew et a1. (1972). It was determined by Morey and Cloud~(1973), and Paulsen and Thompson (1973) that the difference in moisture content was reduced by roughly 60 percent, at the cost of lowering the grain flow rate by 2 to 8 percent and the overall dryer efficiency due to lower average grain temperatures. A different cooling method has also aided in reducing the gradient in the grain column. The conventional cooling configuration forces ambient air across the grain and exhausts it, which causes the greatest thermal shock on the grain by bringing the coolest air in contact with the hottest grain. By drawing ambient air through the coolest grain, thermal shock is reduced and the air is warmed. This method not only yields better quality grain, but also enhances efficiency, as the preheated air is used in the burner (Brooker et a1., 1974). A modified cross-flow dryer (air recycling and reversing) was 50 percent more energy efficient than the comparative basic model ( Lerew et a1. , 1972 ) . 14 .Apoppouiupozv oz_eoplcflc SLAB c3>tt zcfleimm ez_xAz a" ale oto n Co ofloneocom .m.v ousmwm boo z_mo . 2051mmomu . No ozi>ea . mv 2041mmoeu cSo. m1< z~ z~sed alternately to inlet and outlet air. Considerable laterral mixing of the grain takes place resulting in a more 'CT 53* ' = 30% N / g ,/ .‘. ———————————— V ‘i 7 fi I I I . . , 0mm I ‘ I 3 E , I L 3.1? 240 F I I I ; .. 1% a in--. .I'. I 80 CfIh/ftz g I I I | ! ---~--*---- A m1 6 _... jg / ___________ / / / ,/ f 7 0M hm" 00 7 Moisture content (%) MC differential (%) . . Corn temperature (F) 50 70 136 Capacity (bu/hr-ftz) Figure 4.3. A multiple-column cross-flow dryer (Morey and Cloud, 1973) . 18 uniform air exposure and smaller moisture differential of the grain in a cascade dryer than in a Conventional cross-flow dryer. Rising manufacturing costs and clean air demands have decimated the number of rack type dryers manufactured (Westelaken and Bakker-Arkema, 1978). Figure 4.4 shows a schematic of a cascade dryer. 4.3 Concurrent-flow Drying Concurrent-flow dryers have recently become commercially available (Brook, 1977). In 1955 Oholm patented a concurrent-flow grain dryer (Hawk et a1., 1978). Since the early 1970's a United States company has manufactured on-farm concurrent-flow grain <3ryers,(Graham, 1970). Anderson (1972) designed the first cuommercial sized one-stage concurrent-flow dryer. Ten Luuits (each with a capacity of 1000 bushel per hour, five px>ints moisture removal) of the Anderson design have been Operational since the mid 1970's in Illinois (Hawk et 31- , 1978). Westelaken (1977) described the first conunercial multi-stage concurrent-flow grain dryer. Hawk 8t £11. (1978) reported that a number of Russian dryer deSiJgn have incorporated the concurrent-flow principle. 19 Figure 4.4. Schematic of a cascade grain dryer (Bakker-Arkema et a1., 1978). 20 In a concurrent-flow dryer, the air and the grain flow in the same direction through the dryer. An schematic of such dryer design is shown in Figure 4.5. In this dryer type the hottest air encounters the wettest kernels and therefore the drying air is cooled rapidly due to the high rate of evaporation (Brook, 1977). This permits the use of drying air temperatures much higher than in cross-flow dryers. This in turn results in a higher energy efficiency of concurrent-flow dryers (Bakker-Arkema et a1., 1972). The air and. product temperatures versus grain depth in a concurrent-flow drying section are illustrated in Figure 4.6. As can be seen (Figure 4.6) the kernel temperature remains considerably below the air temperature in the (top layers of the dryer. This is due to the fact that the kernels during this period of high evaporation are not exposed to the hot air inlet for a long period of time (Farmer et a1., 1972). As the grain and the air move through the dryer, their temperatures equilibrate (Figure 4.6). The cooling of the drying air, the increase in the relative humidity of the drying air, and the increase in the product equilibrium moisture content lead to a decrease in the driving forces of the drying process. In a concurrent-flow dryer every kernel is subject to the same treatment; therefore, the moisture and temperature gradients among kernels in a 21 GRAIN IN m , AIR \ I - m N LI \ \ HEATER Q I I .0» U CONCURRENTFLOW DRYING 1 DRYING 2 AIR OUT 3 COOLING fl AIR our COUNTERFLOW COOLING GRAIN AIR OUT IN FigUrse 4.5. Block diagram of a single-stage concurrent-flow dryer with a counterflow cooler (Brooker et a1., 1974). Tawmmnmt,°t 22 SSO - 500 ~ 450 400 350 p 300 L AIR 200 _ 150 _ PRODUCT 100 1 I 1 1 I I 1 4 l 1 2 3 DEPTH, feet .7:- Figure 4.6. Air and product temperatures versus depth for a single-stage concurrent~flow dryer. 23 cross-flow dryer are non existent in this type of design. Furthermore, the continuous decrease Of the grain temperature as the depth Of the drying bed increases (Figure 4.6), alleviates the drying stresses and reduces stress cracking and mechanical breakage during subsequent handling (Brook, 1977). The basic design Of a concurrent-flow dryer has one concurrent flow drying section with one counter-flow cooling section (Figure 4.5). This principle Of cooling has a high thermal efficiency and has also the advantage that the coldest air encounters first the coldest grain, thereby limiting the thermal stresses Of the grain and hence the development Of stress cracks (Gygax et a1., 1974). If moisture removal in a single-stage concurrent-flow dryer is over ten points (25.5 to 15.5 percent) the drying capacity is limited. Furthermore, due to the low grain velocities the drying product is subject to high product temperatures and a relatively severe drying treatment (Bakker-Arkema et a1., 1977). Bakker-Arkema et a1. (1972) reported that the air Inoved and exhausted through a cross-flow dryer is eight to ten times larger and the air velocities significantly Ihigher than of a comparable concurrent-flow dryer. .Thus, the pollution characteristics Of the concurrent-flow type iare better than Of conventional cross-flow configurations. 24 A more recent development in concurrent-flow dryers is the multi- stage design (Figure 4.7). This type permits the use Of higher grain velocities, and therefore higher inlet air temperatures can be used. It also incorporates, between two drying stages, a tempering or steeping zone. This type of dryer was the first to use this technique (Bakker-Arkema, 1982). Advantages of multi-stage dryers over single- stage models are (Westelaken and Bakker-Arkema, 1978): (1) increased capacity, (2) improved grain quality, (3) greater contralability, and (4) improved thermal efficiency. . Some commercial three-stage concurrent-flow dryers incorporate the recycling of the air from the second and third stages (Hawk et a1., 1978). The energy efficiencies in such recirculating dryers are well below 1700 BTU (3954 . kj/kg) per pound Of water removed (Bakker-Arkema et a1., 1978). Although concurrent-flow grain dryers have successfully dried corn, 'pea beans, wheat, soybeans, and rice, lOw-cost energy and less expensive dryer <:Onfiguratiions have delayed marketing Of the (concurrent-flow dryer (Dalpasquale, 1981). GRAIN IN - I IHEATER I‘-——-I FAN I""—"—'.-‘«1"IBI}_:.:\I"I‘ AIR CONCURRENT DRYING L——-—>EXHAUST i TEMPERING v 1HEATER d—w FAN 4——— AMBIENT AIR .__._I. CONCURRENT 1 DRYING 'P—-——I-EXHAUST COUNTER FLOW COOLING .__fl_ 4' FAN AG—-———AMBIENT AIR GRAIN OUT Figure 4.7. Block diagram of a two-stage concurrent-flow dryer with counterflow cooler. 26 4.4 Tempering High temperature drying systems. lead to moisture gradients and to a lesser extent temperature gradients within individual kernels during drying. Since the surface dries faster than the center Of the kernel, the outer portion can act as a barrier to outward moisture diffusion, slowing the drying rate and increasing grain damage due to stress cracking (Brooker et a1., 1974). Internal moisture ~gradients Of kernels are minimized by a treatment called tempering or sweating. During tempering the hot grain is held without air treatment, thereby allowing the moisture and temperatures tO equilibrate within the individual kernels prior to further drying or Cooling (Sabbah, 1971). Sabbah et a1. (1972) reported that increases in drying/cooling rate were proportional to increases in the length Of tempering time within a certain time/temperature range (at 140 F, 23.3 percent moisture content dry basis and 9.9 hours maximum tempering time). Thompson and Foster (1967) found that the maximum amount Of moisture was removed from grain at 140 F and 21 percent moisture content (dry basis) when the grain was tempered for eight hours. Emam et a1. (1979) found a significant reduction in 27 kernel breakage after tempering at 203 F. Corn which was not tempered displayed a breakage of 25.14 percent at 13.9 percent moisture content, while corn which was tempered for three hours had only 9.4 percent breakage. They found nO significant difference in grain quality between tempering times of l, 2 or 3 hours with grain temperature Of 203 F. When the final moisture content increased, the amount of grain breakage decreased. Corn at 18.3 percent moisture content showed only 4.8 percent breakage without tempering. Thus, the final moisture content desired will dictate the necessary steps to ensure maximum quality in the dried grain. The tempering time should be as short as possible tO achieve acceptable moisture equilibration, since prolonged exposure to the hot, humid conditions can deteriorate grain quality through increased respiration, chemical changes, and insect and microbial activity (Steffe and Singh, 1980). Shorter tempering also benefits the logistics Of drying. 4.5 Effects Of Drying on Grain Quality There are five factors that determine the Official <:Ommercial grade Of corn in the United States (Hill and Jensen, 1976). As can be seen from Table 4.1, the standand Table 4.1: 27' Grades and Grade Requirements for Corn} * F I I ‘ Maximum limits of — - I s I l i Damaged kernels GRADE f Minimum Broken 5 test icorn and Heat ; weight per Eforeign % b h 1 M ' t I t ' 1 damaged 5 us e 015 ure gma er1a Total kernels . ; n? j Pounds ;Percent Percent Percent Percent [1.8. No.1 ; 56.0 14.0 2.0 3.0 .l (1.5. No.2 I 54.0 i 15.5 3.0 5.0 .2 I 4 . “J.S No.3 ' 52.0 17.5 I 4.0 7.0 .5 I , l NJ.s. No.4 49.0 . 20.0 9 5.) 3? 0 1.0 I : VJ-C No.5 46.0 : 23.0 g 7.0 15,0 3.0 L.1___L I : I l ZXfter Hill and Jensen (1976) 28 grades for corn only consider test weight, moisture content, broken and foreign material and damaged kernels (total and heat damage kernels). Other grain properties such as millability, viability, and susceptibility to breakage which are quality related are presently not considered in the corn standards of the United States (Brooker et a1., 1974). Several of the factors included in the official grades do not provide any useful information on the feeding value of the corn (Hill and Jensen, 1976). 4.5.1 Test Weight Test weight of corn is defined as the weight of grain required to fill a bushel. Test weight is generally used as an indicator of grain quality. This is probably true for wheat because it serves as an index of the flour yield which may be expected (Bakker-Arkema et a1., 1978). However,test weight for corn is less important and does not serve as a quality indicator (Bakker-Arkema et a1., 1978). Test weight generally increases during the drying process. Hall and Hill (1973) found that the change in test weight during the drying process is affected by the drying air temperature, initial and final moisture content, grain variety, and mechanical damage. High drying 29 temperatures result in smaller test weight increased (Hill and Jensen, l973, Gustafson and Morey, 1979). Overdrying and using very high air temperatures lowers the final test weight (Hall and Hill, 1973). Machine harvested and artificially dried corn have a lower final test weight than field dried corn (Peplinski et a1., 1975). The rate of test weight increase due to artificial drying is decreased in proportion to the degree of mechanically damaged corn (Hall and Hill, 1973; Gustafson and Morey 1979). Higher initial moisture content corn will have higher final test weight if dried at the same temperature and to the same final moisture content (Hall and Hill, 1973). Combination drying results in a higher final test weight increase when compared to high temperature drying (Bakker- Arkema, 1982). 4.5.2 Stress Cracks and Broken Kernels Stress cracks are defined as the cracks in the starchy endosperm of the kernel which do not rupture the seed coat (Thompson and Foster, 1963). 30 Using hot air (140 F to 240 F) to dry grain will increase the percentage of stress cracking (Thompson and Foster, 1963, Bakker-Arkema et a1., 1978). Thompson and Foster (I963) found that the amount of moisture reduction as well as the speed of drying contributes to stress crack formation. If corn is not immedeately cooled after artificial drying but is tempered and cooled over a period of six hours, the breakage is independant of the drying rate (Katic, 1973). Rapid cooling of high temperature corn causes a high percentage of stress crack development (White and Ross, 1972). In a test conducted by Thompson and Foster (1963), corn was heated in an oven to 230 F. Due to the fact that no moisture was removed during the heating process, very little stress crack development was reported, even when the kernels were cooled rapidly. White and Ross (1972) found that slow cooling reduces the percentage of stress cracked kernels. Stress cracking decreases as corn is dried from a lower initial moisture content (Ross and White, 1972). 31 4.5.3 Predicting Susceptibility to Breakage The degree of stress cracking of the kernels which occurs during the harvesting and drying processes will influence the susceptibility of corn to breakage during handling (Brook, 1977). Hall (1974), reported that corn dried at an air temperature of 240 F showed two to three times more damage during subsequent handling than corn dried at an air temperature of 70 F. Artificially dried shelled corn, using heated air, is two to three times more susceptible to breakage‘ than corn dried with natural air (Thompson and Foster, 1963; Katic, 1973). Gustafson and Morey (1979) found that increasing the drying air temperature of a high temperature dryer leads to an amplification of the breakage susceptibility .increases associated with drying. Mensah et al. (1976) reported that corn dried at lower temperatures has a greater resistance to impact damage than corn dried at higher air temperatures. Breakage susceptibility changes for corn dried to a final moisture content- above 18 to 20 percent are small while for grain dried below 18 to 20 percent the breakage susceptibility increases rapidly (Gustafson et a1., 1978; Fortes and Okos, 1979; Gustafson and Morey, 1979; Gustafson 32 and Morey, 1981). Many attempts have been made to develop a testing device for predicting the susceptibility to breakage of grain. Thompson and Foster (1963) evaluated three breakage testers or testing methods. They found that the Stein breakage tester gave the most consistent measure of breakage susceptibility. Any breakage tester indicates only breakage susceptibility, the actual breakage will depend on the number and severity of the handling operations the grain is subjected to (Stephens and Foster, 1976). Breakage tests will show the relative breakage susceptibility of different lots of corn. Standardization of the testing procedure should be a must if the breakage tester is to be used in official grading procedures. Miller et a1. (1979) have developed a standard procedure .for measuring the breakage susceptibility of corn (Appendix B). 4.6 Energy Efficiency Calculation Grain dryers are usually rated by total drying capacity only (Bakker-Arkema et al., 1978b). Although some manufacturers advertise that their dryers are more efficient than others, the energy efficienCy is very seldom 33 listed. The energy efficiency of a grain drying process or grain dryer is defined (Bakker-Arkema et al., 1978b) as "the total energy required to remove a unit weight of moisture from the grain under standard conditions", and is usually expressed in BTU per pound of water removed (kj/kg). The energy efficiency of corn grain drying systems varies from 1300 (3020 kj/kg) to 3800 (8840 kj/kg) BTU per pound of water removed (Maddex and Bakker-Arkema, 1978). The variation in energy efficiency can be attributed to the following factors: 1) rate of airflow, 2) temperature and humidity of the drying air, 3) type of dryer, 4) management of the drying system, 5) conditions of the grain and weather, and 6) quality of design. Low airflows combined with limited additional heat usually yield good efficiencies but a reduced drying capacity. In the case of high-temperature drying, increasing the drying air temperature will result in the most efficient moisture removal (Aguilar and Boyce, 1966; Maddex and Bakker-Arkema, 1978). Aguilar and Boyce (1966) proposed a ratio termed the Total Heat Efficiency (T.H.E.) and an alternative ratio termed the Effective Heat Efficiency (E.H.E.). The T.H.E. ratio is defined as the ratio of sensible heat used in the drying process to the sum of the sensible heat in 34 the ambient air and the heat added; the E.H.E. ratio is defined as the ratio of the sensible heat used in the drying process to the sensible heat available in the drying air. Due to the fact that the T.H.E. ratio is a function of the ambient wet bulb temperature (which is not dependent on the dryer), it is not possible to compare driers through their T.H.E. values unless some fixed basis is established. The E.H.E. ratio in contrast considers the sensible heat in the drying air as being the effective heat available for drying. Consequently, the E.H.E. ratio can be used to compare directly the effect of variable drying parameters. Bakker-Arkema et al. (1973, 1978) proposed a standardized test procedure and a method for calculating energy requirements using the Dryer Performance Evaluation Index (DPEI). The DPEI is defined as the total energy required by a dryer to remove one pound of moisture from the grain under standard conditions. The total energy includes the energy required to heat the drying air, the energy to drive the drying and cooling fans, and the energy to move the grain. Temperature and relative humidity of the air, and moisture content and temperature of the grain are the conditions that are specified. 35 Morey et a1. (1976) proposed the following criteria to evaluate grain dryers: A. energy requirements a. energy to heat the drying air; — b. energy to move the drying air: i. energy to the fan motor ii. equivalent amount of fossil fuel energy required to generate electrical energy for the fan; c. total energy to heat the air and drive the fan; B. uniformity of final moisture content (the differential between the column inside and outside MC when the grain is dicharged from the dryer). None of the previously proposed standards or indexes has as yet been accepted by the United States grain drying manufacturing industry. Bakker-Arkema et al. (1978b) and Bakker-Arkema (1982) cooperated with the FIEI (Farm and Industrial Equipment Institute) and proposed that dryers should be tested experimentally under conditions approximating standard conditions. Tables 4.8 36 and 4.9 - 4.10 show the proposed standard conditions and the data to be determined for a dryer performmance evaluation for corn. The experimental test should be duplicated by simulation in order to determine the hybrid drying factor of the corn and the energy efficiency factor of the dryer. The hybrid drying factor is a factor build in the XFLO drying program, which would account for different drying characteristics of the different varieties or hybrids of corn. The energy efficiency factor is calculated by dividing the energy measured experimentally over the simulated by the drying model. Bakker-Arkema (1982) also proposed that the experimental results should be corrected to a set of standard conditions (Table 4. 11). 37 Table 4.8: Proposed standard conditions for the performance evaluation of automatic batch and continuous flow grain dryers, drying shelled corn (From Bakker-Arkema, 1980). Inlet corn moisture content, % w.b. 20.5 f 1. 25. f 1. Outlet corn moisture content, % w.b. drying 15.5 f l. dryeration 18.0 f l 0 combination drying 22.5 f 1. (Ambient air temperature, F I 60 f 15 Ambient relative humidity, % 60 f 30 Atmospheric pressure, inc. Hg 30 f 0.1 lnlet BCFM, % . 53.0 lnlet corn temperature, F 60 f 15 Test period, Number of dryer exchanges 3 38 Table 4.9: Drying parameters and performance characteristics of a continuous-flow grain dryer (From Bakker—Arkema, 1980). Conditions Units Test Type Ambient I Air Temperature F i . ! Relative Humidity % ' V ’ ‘Barometric Pressure in.Hg : Grain ; EType of Grain (variety of Grain Meisture Content of Wet Grain %, w.b. Meisture Content of Dried Grain %, w.b. Temperature of Wet Grain F Temperature of Dried Grain F I BCFM of Wet Grain % ! BCFM of Dry Grain % E ; Breakability Index of Wet Grain % i I Breakability Index of Dried Grain % Test Weight of Wet Grain lb/bu ; Test Weight of Dried Grain lb/bu i 1000 - Kernel Weight, Dried Grain 1b ; Dryer 3 E Dryer Holding Capacity ton . i 3 i g :Cooler Holding Capacity ton T ' f ; gDrying Air Temperature F ; ICooling Air Temperature F § LDryer Static Pressure in.WC _ g ; Cooler Static Pressure in.WC ; 1 i - Fuel Consumption Rate gal/hr * g ; Power Consumption Rate kW : g 3 Output Rate of Dried Grain ton/hr ; i j Standard Results 41* :2* 1 3* 4*? . 1 J Fuel Consumption Rate gal or ft3/ton i 5 ;Power Consumption Rate kWh/ton E . Output Rate of Dried Grain ton/hr : 5 ( Evaporation Rate 1b HZO//hr i i : Spec1f1c Energy Consumption} BTU/1b qu g i Specific Evaporation Rate lbs HZO/gal or ft3 of fuel i i i __1 - f l E *1 - Drying from 20.5 - 15.5% *2 - Drying from 25.5 - 15.5%' *3 - Dryeration from 25.5 - 18:0% *4 - Combination Drying from 25.5 - 22.5% 39 Table 4.10: Drying parameters and performance characteristics of a batch type grain dryer (From Bakker-Arkema, 1980). Conditions . Lbits Test Type Ambient i | Air Temperature F 1 Relative Humidity % f Barometric Pressure in. Hg 1 s Grain ; 5 Type of Grain ' variety of Grain Moisture Content of Wet Grain %, Moisture Content of Dried Grain %, w.b. (4 [*4 o 0" o Temperature of wet Grain F Temperature of Dried Grain F BCFM of Wet Grain % ’ BCFM of Dry Grain % Breakability Index of wet Grain % ? Breakability Index of Dried Grain % t Test weight of Wet Grain 1b/bu 9 Test Weight of Dried Grain lb/bu i .1000 - Kernel weight, Dried Grain 1b 3 l I : Dryer ; gDried Batch Weight . ton F Drying Air Temperature F E 5 Cooling Air Temperature F ; 3 Drying Static Pressure in.WC ? ‘ f Cooling Static Pressure in.WC ; ; Drying Time min ‘ , 1 3Cooling Time min 1 1 .Loading Time min 2 a ( unloading Time q min i 3 3 Fuel Consumption gal or ftD / batch i 3 ‘Power Consumption kWh / batch ? : ~Output rate of Dried Grain (incl. i loading and unloading) ton/hr i .Standard Results 1* f 2* 3* 4* :Fuel Consumption Rate gal or ft3 / batch ; EPower Consumption Rate kWh / batch i fOutput Rate of Dried Grain ton / hr 1 . fiEvaporation Rate 1b H20 / hr 3 Specific Energy Consumption BTU / 1b H20? Specific Evaporation Rate lbs HZO/gal or ft3 of fueB 3 | :1 ' Drying from 20.5 ’ 15°53) *3 - Dryeration from 25.5 - 18.0% 2 ' Drying from 25.5 ’ 15°56 *4 - Combination Drying from 25.5 - 22.5% 40 Table 4.11: Standard conditions to be used for correcting the experimental results of the performance characteristics of a corn grain dryer (From Bakker-Arkema, 1980). Inlet corn moisture content, % w.b. 20.5 25.5 Outlet corn moisture content, % w.b. drying 15.5 dryeration 18.0 combination drying 22.0 Ambient air temperature, F 60 Ambient relative humidity, % 60 Atmospheric pressure, in. Hg 29.9 Inlet BCFM, % o .-...t__.___ ___. ’Inlet corn temperature, F ' 60 CHAPTER 5 DRYING SIMULATION Computer models which simulate dryer performance have greatly aided both the dryer design and evaluation. The models are based upon mathematical equations which calculate the moisture loss of the grain as a function of: 1) original moisture content, temperature and physiology of . the grain;_ 2) the relative humidity, temperature and flow rate of the air; and 3) the configuration of the particular dryer. 5.1 Drying Simulation According to Bakker-Arkema et a1. (1974) several physical mechanismms have 'been proposed for predicting moisture transfer in individual grain kernels: a. liquid movement due to surface forces (capillary flow); 41 laws 42 liquid movement due to moisture concentration differences (liquid diffusion); liquid movement due to diffusion of moisture on the pore surfaces (surface diffusion); vapor movement due to moisture concentration differences (vapor diffusion); vapor movement due to temperature differences (thermal diffusion); water and vapor movement due to total pressure differences (hydrodynamic flow). Dryer simulation equations are based on the basic of heat and mass transfer (Bakker-Arkema et a1., 1978). The following assumptions are usually made in the development of grain dryer models: C. the temperature gradients within the individual particles are negligible, the particle to particle conduction is negligible, the airflow and grain flow are plug-type (uniform), d.<5T/bt and bH/bt are negligible compared to OT/bx and dH/ox, 43 e. the bin or dryer walls are adiabatic with negligible heat capacity, f. the heat capacities of the drying air and the grain are constant during short time-periods, and g. thin-layer drying and equilibrium isotherm equations are known for the grain to be dried. Bakker-Arkema et al. (1974) presented the four basic models for drying of beds of grain kernels: A. Fixed - Bed Model T”if-2:.- Th“ ’T—fl) (5.1) ax (2;.La "" (33L\Ii ‘. .39 __ ha / _ 4- hr; + C-.-(T — 6) ‘BH (5 2) at _ ppcp + ppcwM‘T 0) ' prep + me...“ C‘ ax .QE:_£_v 2:)! (5.3) at C, at ah! . . . = an appropriate thin layer equation. (5.4) .5— 44 B. Cross—flow Model a. four equation model 3T_ - ha ax GaCa “.- CaCxH (T-a1 (5.5) 39_ ha h.+c (T—(Q 3H E;\ —C-,_ 0,. 'T'thy. M (T — 6'3 C,1 ' *C,....\( 73— (5’6) _. - £2 .4 (5.7) 03‘ (J: C)’ ECO-t1: an .‘(pproprmte thin layer equation. (5,8) b. three equation model p(Cp+1~Cw) ST+G(Ca +Hcv)— c;[(cw - c (212 - T) 1 °H- =0 (5.5') V) ‘fg 8x ~BM + G §§-~ o (5 7') *3? Bx'. ‘ 8M . 45 C. Concurrent-Flow Model dT _ - ha E): _ CaCa + CanH (T _ 0) (509) C16 _ -. ha (T _ 0) _ hrs + C.-(T - 6) C Q}! (5.10) d; — C,,cp + CpcwM C,.c, -1.. CDC...“ 3 d: 9E: -92 d“ (5.11) dx Ca dx dbl _ - + 1' l . tio 1.1—x- : an appmpnam tun :1} er equa . n. (5.12) D. Counterflow Model 91:2- h“ (r—a) (5.13) Lb: ma'CIc-Tii 9.4: , ha- -(r—m+ 113.2%?) 3,51% (5.14) dx Coop + CpcwM ' (we, 1- CpcwM dx 911—92. 9.3)}. (5.15) dx -C. dx d!” ——— 2 an appropriate thin layer equation. (5.16) dx 46 Each of the above deep bed models requires a thin-layer or single- kernel diffusion equation for the grain of which the drying is going to be simulated. Because an analytical solution of the system of differential equations is not possible, numerical techniques have been used (Bakker-Arkema et a1., 1974). 5.2 Thin-Layer and Diffusion Equations In drying simulation, the drying zone or bed is assumed to consist of a series of thin layers. In order to be able to simulate a whole drying process, it is essential to have an accurate equation which describes the moisture loss of each layer. These equations are obtained from thin-layer experiments in which a small quantity of the product is dried. 5.2.1 Empirical Drying Equations Several empirical drying equations have been developed for shelled corn (Bakker-Arkema et a1., 1974). The equation proposed by Thompson et a1. (1968) for calculating the drying rate of shelled corn at temperatures ranging from 140 F to 300 F , and the equation developed by 47 Troeger and Hukill (1970) for corn in temperatures ranging from 90 F to 160 F, are used in the Michigan State University drying models used in this study. A. Thompson et al. (1968) for shelled corn, 140 5. 9 s 300 F: 2 t = A 1n MR + B (1n MR) (5.17) where: MR = Mt — Me Mo - Me A = -18.6l78 + 0.00488439 B = 427.3640 exp (-0.033019) 8. Troeger and Hukill (1970) for shelled corn, 90 5 0516017: = - q _ _ q s t/60 P (M Me) 1 Pl (MO Me) 1 for MO 2M ..MX1 (5.18) 1 _ _ q t/60-P2(M Me) 2-92 (1\4,,1-Me)‘?{2+(:X1 for MxleM e MX2 (5.19) t/60=P3(M-Me)q3-P3 (M,,2-M,_3)q3+tX2 for szeM eMe (5.20) 48 0 e e F ql 91 P1 (MXl-Me) - P1 (MO-Me) ] /60 F q2 <12 92 (sz-Me) - P2 (MXl-Me) :] /50 + txl exp (-2.45 - 6.42 Mo 1.25-3.15 rh+9.62MO\/rh+0.030§-0.12 Va) exp [2.82 + 7.49 (rh + 0.01)O°67 - 0.0179 9] (q - q -3.98 + 2.87 MO - [0.019/(rh’ 0.015)] + 0.0169 - exp (0.810 - 3.11 rh) -l.O 49 5.2.2 Diffusion Drying Equation and Diffusion Coefficients A diffusion type single kernel drying equation gives a more realistic representation of the drying process than the empirical equations. In addition to describing the drying process, a diffusion type equation allows a study in the tempering zone of a dryer of the moisture gradient inside the kernels. The following spherical diffusion equation is used to represent the change of moisture content over time during the drying process (Crank, 1976): __l_ A [D(M,Q)r2 fig] (5.21) r2 Cr 24. at 5r Note that the diffusion equation is a function of the moisture content and the temperature in the kernels. Equation (5.21) is a second order partial differential equation. It can be transformed in a set of coupled ordinary differential equations by the method of lines for numerical solution . on a digital computer (Brook, 1977). 50 Chu and Hustrulid (1968) developed an equation for the diffusion coefficient as a function of moisture content and temperature for corn assuming that the kernel can be represented by a sphere of equivalent radius: D = 1.629 x10"3 exp [(0.0459+ 6.806) M ”13°00 ] (5'22) 3. 9+273.l Sabbah (1971) predicted the diffusivity of the corn kernel as a function of temperature and moisture content using the following equations: 0 = (0.00057 Ma) exp [438$] (5.23) T + 460. Equations (5.22) and (5.23) are in English units (ftZ/hr). In both equation (5.22) and (5.23) the corn kernel is assumed to be a spherical body with a radius of 0.0161 ft. 5.3 Comparison of Empirical and Diffusion Equations 51 Table 5.1 shows a comparison of the drying rate of a single corn kernel as calculated by: l)the Thompson et al. (1968) equation for temperatures between 160 F to 200 F, 2)the Troeger/Hukill (T-H) (1970) equation for temperatures of 50 F to 140 F inclusive, and 3) the Crank (1976) diffusion equation using the diffusion coefficient of Chu and Hustrulid (C-H) (1968) and 4) the one developed by Sabbah (1971). It can be seen from the data in Table 5.1 that use of the Sabbah (PDE~SAB) diffusion coefficient results in ' close agreement with the T-H empirical equation in the 50 F to 140 F range. From 160 F and above use of the Sabbah coefficient results in underdrying compared to the‘ T-H equation. The C-H diffusion coefficient always leads to overdrying except at 200 F where the final moisture content is higher than the values calculated with the Thompson et a1. (1968) equation. The MSU cross-flow model can be run using thin-layer or diffusion equations. In the case of the thin-layer equation, the model uses the Troeger and Hukill (1970) empirical thin-layer equation in the 50 to 159 F temperature range; and. Thompson et a1. (1968) empirical thin-layer equation for temperatures of 160 F and above. For the diffusion option, the model utilize the Crank (1976) diffusion equation with two options: 1) with 52 the Sabbah (1971) diffusion coefficient; or 2) with the Sabbah (1971) diffusion coefficient in the 50 to 160 F temperature range, and the Chu and Hustrulid (1968) diffusion coefficient for grain temperatures of 161 F and above. The model also incorporates a hybrid drying factor. Tables 5.2 and 5.3 show the drying rate as influenced by the value of the hybrid factor for diffusion and thin-layer equations, respectively. The humidity ratio used for the calculations of the drying rate of Tables 5.1, 5.2 and 5.3 was 0.006 pounds of moisture per pound of dry air. 53 .:o_ue::o cox:_-:2;u .cu222ceo ”@532“ .2m no :Omceoge 2 250:9 va .comumsco soxn_-:_;u Hoo222250 acnodv ”222:2. ecu pouooue 2 __ 1co+ Amy 3520:2666 82522:. Sea: 26:253. 2.52 so 9: £22 6:58 82232:. $8: 2.5.6 U8: - E .ucowowuuooo :owmsuu2e n~na~2 :xnsxm 0;» so“: :o_u=::o :o_m:du2c acnmgv xcmcu 2m mmmaeémdzms :azmam man u cwnuw_ .Aomaa .uaaoanv cacao uaouuumwv new muohuu souuiuaouuauaou omauoiwuaaa a“ nouauuuonauu nan mafiauv voucoaaaoom . m.c manna 77 6.6 Instrumentation and Procedure The following parameters were utilized in the performance evaluation of the dryers tested: the grain moisture content before and after drying; the grain initial and final temperature; the grain initial and final test weight; the grain initial and final quality as determined by BCFM, resistance to breakage, and burned kernels; the drying capacity-dry bushels per hour; the ambient and drying air temperatures and relative humidities; the air flow rate; and the energy consumption (heating fuel and electricity). The approximate grain moisture content was determined during the drying operations at the test site with a "Motomco" moisture meter. Each sample was later checked by oven drying at 217 F for 72 hours (Brooker et 78 a1., 1974). Samples were collected before and after drying every half-hour during the tests. The samples were sealed in plastic bags and stored at 40 F for later analysis. The airflows were calculated from measured static pressure data and . fan curves supplied by the fan manufacturers. The data was checked against standard ASAE static pressure data (ASAE yearbook, 1981). The temperatures were measured with copper-constantan thermocouples and whenever possible recorded with a Texas Instrument datalogger. Relative humidities were determined from dry and wet bulb temperatures. The breakage susceptibility tests were conducted at the USDA Grain Marketing Laboratory, Manhattan, KS, employing the procedure developed by Miller et a1. (1979). The electricity consumption was measured with kwh-meters supplied by the local electric power company. Data taking for each test did not start before steady state had been reached in the dryer output. 6.6.1 Redex RX-lO Seventeen thermocouples were located in the heating section and four in the cooling .section (Figure 6.7). After the first test (10/16/80), some thermocouples were Front Dryer lsc 2nd Frame Frame 3rd 4tn Frame Frame Burner ® ll®12 7 ® (92‘; Cooling Section Discharge Side _ 5th 1 i 1 9 Frame eaC:::::I:::::>1 v10 "m . «r/ ”i. fix 69 @w o @14 15 .| I! (’1 Discharge Fro Side Fr_ Thermocouple =3 was outSLie of the dryer for ambient reoiings. Figure 6.7. Thermocouple locations in the RX-lO dryer. I!) '1 80 relocated in order to locate the hot spots in the dryer which were producing burned kernels. To reduce the number of burned kernels, two metal shields were installed. The drying capacity was determined by observing the time required to fill one-half bushel with grain. The average time for five observations was used to calculate the grain flow rate and hence the drying capacity. The observations were recorded every half-hour and averaged to give the average drying capacity. The liquid propane usage was estimated by observing the percentage readings on the LP tank gauge (and by checking these figures against the propane supply tickets)*. Table 6.6 lists the wet corn characteristics and the drying test conditions. The initial grain moisture content of the corn varied from 34.5 to 25.6 percent w.b. and the initial test weight from 49.8 to 53.0 1b/bu. The corn was cleaned in a rotary cleaner before drying. The drying inlet air temperature varied from 186 F to 200 F. * Accuracy of propane measurement +/- 5 percent. 81 Table 6.6: Drying conditions during the testing of the RX-lO dryer. WEt Corn Parameters: Moisture content, % w;b. 25.7 to 34.5 BCFM, % 0.3 to 0.9 Test weight, 1b/bu 49.8 to 53 Temperature, F 35 to 48 Air Parameters: Ambient temperature, F 35 to 52 Ambient relative humidity, % 60 to 100 Drying air temperature, F 185 to 205 Temp. increase through cooler, F 12 to 18 Static pressure, in 1.8 to 2.0 82 6.6.2 Hart-Carter HC-66 The dry bushel drying capacity was determined by observing the time required to fill a silo and weighing the dried grain. The tests lasted between 24 to 36 hours. The drying air temperature was monitored with a mercury bulb thermometer. The fuel consumption was measured with a calibrated gas meter. Table 6.7 lists the wet corn characteristics and the drying test conditions. 6.6.3 Blount 10-60 The grain moisture content at the outlet of each column (Figure 6.4H) was measured at different grain velocity ratios. The dry bushel drying capacity was determined by observing the time required to fill a truck and weighing the truck with and without the grain. The liquid propane usage was measured with a calibrated gas meter during each of,the tests; the readings were multiplied by the appropriate correction factors. 83 Table 6.7: Drying conditions during the testing of the HC-66 dryer. Wet Corn Parameters: Moisture content, % w.b. 26.9 to 29.0 Test weight, lb/bu 49.9 to 50.9 Temperature, F 46.0 to 47.0 Air Parameters: Ambient temperature, F 33 J to 31 3 Ambient relative humidity, % ‘5 n to 95 i ‘51 -1. U1 0 d O Drying air temperature, F g 30 84 Table 6.8 lists the wet corn characteristics and the drying test conditions. 6.6.4 Ferrell-Ross CCF The drying air temperature and grain temperatures, were monitored continuously with a potentiometer. The gas consumption was measured with recently calibrated flow meter. The dry bushel drying capacity was determined by observing the time required to fill a silo and weighing the dried grain. The tests lasted between 24 to '36 hours. Table 6.9 lists the wet corn characteristics and the drying test conditions. Table 6.8: Drying conditions during the testing of the Blount 10-60 dryer. Wet Corn Parameters: MOisture content, % w.b. 20.5 to 2 .1 BCFM, % 0.8 to 1.5 Test weight, lb/bu 50.0 to 58.2 Temperature, F 46.0 to 97.0 iAir Parameters: i Ambient temperature, F 35 9 to '7 3 Ambient relative humidity, 8 60 to 100 Drying air temperature, F 195 to 220 Temperature increase through cooler and second stage, F 16 to 50 86 Table 6.9 :Drying conditions during the testing of the Blount CCF- 5-12-12 dryer. third stage ; 550.0 . i ' 3 i eWet Corn Parameters: i ! . ! i I Mbisture content, % w.b. ; 24.5 to 26.5 ' Test weight, lb/bu I 50.2 to 50.9 Temperature, F I 48 0 to 70.0 t i iAir Parameters: 1 : Ambient temperature, F 55.0 to 55.0 I Ambient relative humidity, % 75.0 to 97.0 i Drying air temperature, F i i first stage , 500.0 to 550.0 i second stage 150.0 E I l CHAPTER 7 RESULTS AND DISCUSSION 7.1 Experimental Results The experimental results of the drying tests conducted with the four cross-flow dryers and with the concurrent-flow dryer are tabulated in Tables 7.1.1 through 7.1.5. 7.1.1 Automatic Batch The data of nine (9) experimental tests conducted with the Farm Fans AB-SB automatic batch dryer are given in Table 7.1.1. The experimental conditions are found in Silva (1980). 87 88 Table 7.1.1: Actual energy consumption and corn quality parameters of the Farm Fans AB-8B, 1978 Drying season; drying air temperature 195 F. é Energy Nbisture Test weight i efficiency stress- TEST content (lb/bu) é including cracks (1) NO' (% w.b.) i cooling (%) IN our IN our I (BTU/lb) 1 28.4 22.9 52.0 54.0 I 2,069 4.6 2 28.6 22.9 52.0 54.0 2,446 4.2 3 27.9 23.0 53.0 53.7 2,243 3.7 , 4 26.9 22.9 53.6 54.2 2,877 4.0 i 5 24.7 22.7 53.3 52.7 2,838 1.5 i 6 24.0 20.0 53.5 53.9 2,630 8.9 I 7 . 24.8 23.5 54.3 53.5 1 2,148 2.9 ; 8 5 26.0 15.5 54.0 55.0 2,830 87.3 E 9 35.7 18.3 50.0 55.5 2,238 76.0 I (1) Initial stress-cracks percentage equals zero. Source: Silva (1980) 89 In test no. 8 the corn was dried directly to a safe storage moisture content of 15.5 percent w.b. The corn in the other tests was dried to the intermediate moisture content of 18.0 - 23.5% as part of the combination drying process. ' The principal conclusions to be drawn from the experimental data in Table 7.1.1 are: a. the energy efficiency of a batch type dryer is dependant on 'the final moiSture content and the number of points of moisture removed; b. the energy efficiency of the Farm Fans automatic batch dryer~ in removing about ten points of. moisture from 26.0 to 15.5% is approximately 2830 BTU/lb of moisture removed; c. the grain quality deterioration in an automatic batch dryer is highly affected by the final moisture content and the degree of immediate cooling of the grain; drying to 18.0% moisture content without rapid cooling does not affect the grain quality; drying at high temperatures through the‘ 18.5 - 15.5 moisture content range followed by immediate cooling drastically increases the number of stress-cracks and thus, the breakage susceptibility of the dried grain. 90 7.1.2 Continuous Flow Cross-flow with Cooling-Air Recirculation The data of seven (7) experimental tests conducted with the Redex.RX-10 continuous flow cross-flow dryer with cooling-air recirculation are tabulated in Table 7.1.2. The experimental conditions are listed in Table 6.6. In tests 6 and 7 the corn was dried immediately to a safe moisture content level below 15.5%, in the other tests the corn was removed from the dryer at an intermediate moisture content for final drying in a bin under low airflow conditions. Several conclusions can be drawn from the experimental data in Table 7.1.2: a. the energy efficiency of a continuous flow cross-flow dryer appears to be less dependant on the final moisture content and the number of points of moisture removed than the automatic batch dryer discussed in Table 7.1.1; b. the energy efficiency of the Redex cross-flow dryer in removing ten points of moisture from about 25.0 to 15.0% is about 2200 BTU/lb of moisture removed; c. the grain quality deterioration in the Redex cross-flow dryer is much less in drying to 17.0% .n.3 .wmim ma coflumcflEHmuwp wwmu mmmxmwun cfimum up ucmucoo musumeoz 91 O H N.Hm mom.a med m.Hm H.Hm v.vH m.wm n m.wm moo.m Had m.Hm o.mm m.ea >.mm w m.mm mmm.m «Hm >.mm >.Hm m.mH m.mm m H.¢H . mom.m mum m.mm n.Hm m.mm 5.5N v m.ma mam.m mum «.mm o.mm m.mm w.bm m m.mm vvmtm vva n.om N.om n.mH m.wm m H.ma mma.m ema 6.me m.me «.mm . m.em A 990 ZH .BDO 2H .ch mmmmuoca AnH\Demc Aua\snv A.n.3 we Emma >uaaflnflummomsm >Ocmfloflmmm >uflommmo ASQ\QHV pcmucoo Hmmmxmmum xmumcm mmmuw>< ucmflmz umme whopmfloz .commwm mcfl>up owma .m com um CHOU asexup Odixm mcu wo mumqumumm >uHHmog CHOU can .GOHuQEsmCOO >mumcm xuflommmo Hmsuod "N.H.n magma 92 moisture content and above than in drying to moisture contents below 17.0%. 7.1.3 Continuous Flow Cross-flow With Partial Drying Air And Cooligg Air Recirculation The data of two (2) experimental tests conducted with the Hart-Carter HC-66 continuous flow cross-flow dryer with partial drying air and cooling air recirculation are tabulated in Table 7.1.3. The experimental conditions for these tests are given in Table 6.7. Unlike the first two dryers discussed in section 7.1 (the Farm Fans and the Redex models), the HC-66 is a commercial sized dryer with a ten point moisture removal of well over 1000 bushels per hour. The main conclusions to be drawn from the experimental data in Table 7.1.3 are: a. the energy efficiency of the HC cross-flow dryer in removing about 15 points of moisture from 28.0 to 13.0% moisture content is about 2100 BTU/lb of moisture removed; b. the grain quality deterioration of the HC commercial-sized cross-flow dryer appears to be similar to that of the farm-sized Redex cross-flow dryer. 93 .Q.3 .WNHIHH we coflumcflEuwump ummu mmmxmoun sebum um ucmucoo wuoumfloz H H.mm mmm.m mom N.mm mJom N.NH m.wm N m.mH omm.a omo.a m.am m.mv m.mH o.mm H 930 ZH BDO ZH . Awe dmmduoea Ana\samc Aue\snv A:n\nac A.n.3 we Emma Suflaflnfluamomsm wocmwowmmm wuflommmo ucmflm3 umme ucmucoo Hmomxmmum >mumcm mommm>¢ muzumwoz ecu mo mumumEmumm xuflamsg ppm mocmHOflmmm >mumcm .commwm mcflwup mead .m cam pm cuoo mcfl>up motor .>uflommmo Hmopom um.H.> magma 94 7.1.4 Continuous Flow Cross-flow With Partial Drying Air And Cooling Air-Recirculation , With Differential Grain Speeds , And With Tempering The data of five (5) experimental tests conducted with the Blount 10-60 continuous flow cross-flow dryer with partial drying air and cooling air-recirculation, with differential grain speeds in each grain column, and with tempering are tabulated in Table 7.1.4. The experimental conditions are listed in Table 6.8. Tests 1, 2 and 3 were conducted in Kentucky at initial moisture contents around 20.5%. Tests 4 and 5 were performed in Canada at much higher initial moisture contents (about 28.0%). The capacity of the Blount 10-60 falls between the Farm Fans and the Redex on-farm dryers and the commercial-sized HC dryer. The main conclusions to be drawn from the experimental data in Table 7.1.4 are: a. the energy efficiency of the Blount 10-60 cross-flow dryer appears to be independant of the number of points of moisture removed from the grain; b. the energy efficiency of the Blount 10-60 95 .n.3 .wmim we cofiumcflfiumump ummu mmmxmmun :Hmum um ucmucoo OHSbmHOZ a m.mm oomta mma o.mm 0.0m N.NH H.mm m e.em qu.H HMH o.mm o.om m.HH «.mm e w.bv eve.fi «mm m.mm m.om >.ea m.o~ m m.mm evm.a mmv H.mm N.mm m.ea m.om N v.om moo.H mmm w.bm m.om v.mH m.om a _ _ a _ 1 ago zH eoo zH Amy mmmwuocfl AQH\DEmV _ Aun\snv r Asn\nav A.n.3 my >uaaflcauawomsm >ucmfloflwwm _ muwommmo ~ unonB umme ucmucoo Emma Hmmmxmmum >mumcm w mommm>4 w musumfioz a .m mmmimma mmuzumuwQEmu Ham OCH>HU .cOmmmm mcflwup mea .ooioa\uason mcu mo mumumemumm wuflamsg cam augmHOHmmm amumcm .wuflommmo Hmsuo< "v.H.n manta 96 cross-flow dryer appears to be about 1600 BTU/lb of water removed regardless of the initial or final moisture content of the grain; c. the grain quality deterioration in the Blount 10-60 cross-flow dryer is larger than expected, probably due to damage caused by excessive auger friction in transporting the grain from the first to the second drying section. 7.1.5 Three Stage Concurrent-Flow The data of three (3) experimental tests conducted with the Ferrell-Ross three-stage concurrent dryer are tabulated in Table 7.1.5. The experimental conditions. are. listed in Table 6.9. In two tests the corn was dried about ten percentage points, from about 26.0 to 15.0% moisture content; during the third test only seven points of moisture were removed. The capacity of the Ferrell-Ross was the largest of any of the dryer tested, about 1,600 bushels per hour at ten point removal. The main conclusions to be drawn from the experimental data in Table 7.1.5 are: a. the energy efficiency of the Ferrell-Ross multi-stage concurrent-flow dryer is approximately .Q.3 .meiHH mH coHumcHEumqu umwu wmmxmmun chum um ucwucoo wuzumfloz 97 H H m.o- oam.H Hme.m N.Nm m.om _ e.sH m.em m _ m.m own.H . mnm.H m.Hm m.om m m.vH m.om m m.m mow.H mmm.H N.Nm m.om m.mH m.o~ H 930 2H BDO 2H Awe ommonocH AnH\oemv Huc\sbv A:n\nHv A.n.3 we >uHHHQHuQmOmsm >OcmHOHmw® quommmo uanQB umme ucmucoo Emma Hmmmxmmum xmuwcm mmmuw>< musumfloz .m ommiomVIomm “mmusumquEmu new mcH>up NmCOmmmm mcH>up ommH can mhmH .NHINHIm moo mmomiHHmuumm ecu mo muwumEmumm muHHmsg cam mocwHOmem wmumcw .xuflommmo Hmsuod um.H.n anme 98 1600 BTU/lb of water removed in removing ten points of moisture; b. the increase in grain breakage susceptibility in a concurrent-flow dryer is far less than in any I cross-flow dryer and can even be negative (signifying an improvement in the susceptibility to breakage during the concurrent-flow drying process). 7.1.6 Dryer Comparison The energy efficiency and breakage susceptibility data obtained experimentally with the five different dryers in three different states during three different harvesting seasons are summarized in Table 7.1.6. Although a direct comparison is not justified due to the different conditions encountered during the tests, certain trends appear evident. The main conclusions that can be drawn from Table 7.1.6. are: a. concurrent-flow drying is more efficient than cross-flow drying; b. air recirculation in cross-flow dryers results in substantial energy savings; 99 Table 7.1.6: Experimental energy efficiency and quality parameters of five different dryers. Energy efficiency Breakage susceptibility DRYER (BTU/1b) increase (%) 2 FF AB-8B 2,850 — 3,495 46.5 Redex R-lO 1,965 - 2,319 13.71 - 37.6 ' HC-66 1,950 - 2,223 17.52 - 28.1 g 3 Blount 10-60 1,506 - 1,842 34.41 - 47.8 I Ferrell-ROSS 1,270 - 1,760 -0 52 - 9 5 1 ; CCF I L J 1 2 Moisture content at Stein breakage test determination is 8-9%, w.b. Moisture content at Stein breakage test determination is 11-12%, w.b. 100 c. airflow reversal in cross-flow dryers results in improved grain quality; d. concurrent-flow dryers produce better quality corn than cross-flow dryers. 7.2 Standard Conditions For Dryer Simulation In order to make a valid comparison between the five dryers investigated in this study, standard conditions need to be defined. Bakker-Arkema (1980) proposed standard conditions for the testing of grain dryers with respect to grain and ambient conditions (see Table 4.8). These will be used in the simulations for the comparison of the five dryers. The dryers include: (1) the Farm Fans (FF) automatic batch dryer, (2) the Redex continuous cross-flow dryer with cooling lair recirculation, (3) the Hart-Carter (BC) with partial drying air and total cooling air recirculation, (4) the Blount continuous cross-flow dryer with partial drying air and total cooling air recirculation, with differential grain speed and tempering, and (5) the Ferrell-Ross three-stage concurrent-flow (CCF) dryer. 101 In addition to the ambient conditions plus the grain moisture contents and initial temperature, a standard hybrid factor has to be selected to make a meaningfull comparison between the dryers. In the experimental tests conducted with the Blount 10-60 in Kentucky, the test corn (see Table 7.3.1) had a hybrid factor of D-hybrid equal to 0.95 (K-hybrid 0.999). In the simulated comparisons (section 7.4) this value of the D-hybrid factor was used (rather arbitrarily) for the simulation of the five dryers. 7.3 Model Verification Two basic grain drying simulation models were used in this investigation: (1) the cross-flow model, and (2) the concurrent-flow model. Both are described in detail in section 5.1. The three stage concurrent-flow model was verified for corn by Brook (1977). Hence no further verification is necessary in this study to justify the use of the MSU concurrent-flow drying model. The MSU three equation and four equation cross-flow models as developed by Bakker-Arkema et a1. (1974) and Bakker-Arkema et al. (1977), respectively, have been modified by Schisler (1982). A listing of the Schisler 102 Table 7.3.1: Experimental and simulated results for the Blount 10-60 dryer, Salem, KY. Dryer Parameter Value I Experimenta15 Simulatedil)’ Drying air temperature, F 200.0 200.0 Airflow in dryer and cooler sections, cfm/bu 90.0 90.0 Static pressure, in. H20 2.7 2 7 D hybrid factor ____ 0.95 Feed roll speed ratio 2:1 2 1 Grain flow rate (burner side), bu/hr ft2 28.7 28.7 Grain flow rate (exhaust side), bu/hr ft2 14.4 14.4 fColumn width, in ’ 14.0 14.0 :Height first stage, ft 12.0 12.0 'Tempering time, hr : 0.45 0.45 Height second stage, ft I 6 7 6.7 'Height cooler,ft 1.6 1.6 [MC in, % w.b. 20.5 20.5 .MCout cooler, % w.b. 15.4 15.4 'Grain temp. out cooler, F ._‘_ ‘Specific energy consumption, BTU/lb 1,605.0 é 1,579.0 iDryer efficiency factor ____ i 1.015 I (1) 5 equation model. 103 versions of the MSU cross-flow dryer models are contained in Appendix A. The simulated results of the 3-equation Schisler model for the Blount 10-60 are compared with the experimental data (as obtained with this dryer in Salem, Kentucky) in Table 7.3.1. Table 7.3.1 shows excellent agreement between the experimental and simulated outlet moisture contents for the 10-60 cross-flow dryer. The dryer operated at 200 F at a differential grain velocity ratio of 2:1 in drying corn from 20.5 to 15.4% wet basis at an energy efficiency of 1603 BTU per pound of water removed. The D-hybrid of the corn was 0.95, the dryer efficiency factor 1.02. Similar agreement between the simulated and experimental data was obtained for the other cross-flow dryers analyzed in this study (see Tables 7.3.2, 7.3.3, 7.3.4 for the FF, Redex and HC, respectively). 7.4 Dryer Simulations In this section the five dryers investigated are compared under standard conditions in removing fifteen, ten and five points of moisture from 30.5, 25.5 and 20.5 to 15.5 +/- 0.2% wet basis. The standard conditions used in these comparisons are given in Table 7.4.1, the dryer dimensions and airflows for the different dryers can be 104 Table 7.3.2: Experimental and simulated results for the Farm Fans AB-BB dryer, Bellaire, MI. Dryer Parameter Value Experimental Simulatedl Drying air temperature, F 205.0 205.0 Airflow in dryer and cooler sections, cfm/bu 150.0 150.0 Static pressure, in. H20 4.2 4.2 D-hybrid factor - - 0.9 Drying time, min. 60.0 60.0 Column width,-in. 12.0 12.0 Column height, ft. 5.66 5.66 Cooling time, min. 15.0 15.0 MC in., % w.b. 26.3 E 26.3 Grain temperature out cooler, F 68.0 i 45.6 MC out cooler. % w.b. 15.5 15.5 -m‘ «- Specific energy consumption, BTU/1b 3,495.0 : 2,967.0 Dryer efficiency factor 3 - - 1.178 .__.....- .H- ._.._..— 1 3 equation model. 105 Table 7.3.3: Experimental and simulated results for the Redex RX-lO dryer, Bellaire, MI. Dryer Parameter Values Experimental Simulatedl Drying air temperature, F 200.0 200.0 Airflow in dryer and cooler sections, cfm/bu 100.0 100.0 Static pressure, in. H20 2.1 2.1 D-hybrid factor - - 0.95 Grain flow rate, bu/hr ft2 7 7 7.7 Column width, in. 11.0 ' 11.0 Height drying stage, ft 6.58 6.58 Height cooling stage, ft 3.29 3.29 MC in., % w.b. 25.6 25.6 MC out cooler, % w.b. 18.5 18.7 Grain temperature out cooler, F - - 45.9 Specific energy consumption, BTU/1b 2,225 2,048 Dryer efficiency factor - - 1.141 1 3 equation model. 106 Table 7.3.4: Experimental and simulated results for the Hart—Carter HC-66, Carrollton, MI. P 1 i Dryer Parameter Values Experimental Simulated I i Drying air temperature, F 210.0 210.0 ‘ Airflow in dryer and cooler . sections, cfm/bu 145.0 145.0 3 Static pressure, in. H20 3.9 3.9 D-hybrid factor - - 0.9 Grain flow rate, bu/hr ft2 21.0 21.0 I Column width, in. 12.0 12.0 Height first stage, ft 25.0 25.0 i Height second stage, ft 17.0 17.0 i Height cooling stage, ft 18.0 18.0 MC in., % w.b. 29.0 29.0 I Grain temperature out cooler, F 62.0 34.8 MC out cooler, % w.b. 13.9 13.9 : Specific energy consumption, : BTU/1b 3 1,950.0 1,869.0 Dryer efficiency factor ; - - 1.04 1 3 equation model. m_..._4>- 107 Table 7.4.1: Standard conditions used in dryer comparison. Parameter Value Ambient temperature, F 60. Ambient relative humidity, % 60. Inlet grain temperature, F 60. BCFM, % 3. Atmospheric pressure, in. Hg 30. 108 obtained from Tables 6.1 through 6.5. 7.4.1 Farm Fans AB-8B Table 7.4.1-1 contains the data in drying corn at 20.5, 25.5 and 30.5 percent moisture content to 15.5 +/- 0.2 percent in the Farm Fans automatic batch dryer. Figures 7.4.la, 7.4.lb, and 7.4.1c illustrate the three drying phases graphically. Some interesting observations can be made: a. the energy efficiency in removing fifteen moisture percentage points is 27 percent better (e.g. -802 fewer BTU's are required to remove a pound of water) than for five moisture percentage points; b. the moisture gradient in the dried/cooled grain varies from 3.0 percent in the five point removal case to 6.6 percent in the fifteen point case (without cooling, these numbers are 4.5 and 9.3 percent, respectively). c. the temperature gradient in the grain at the end of the drying cycle is about 30-35 F and is independant of the points of moisture removed; at the end of the cooling phase, these temperature gradientS'have decreased to 26 F for the S-points 109 «AH.N se6.~ eem.m mHH.m ena.m mHm.m AcHxsemc m . >OcmHOHmmw >muwcm ee.mm Ho.a sm.em em.e oo.em we.» chieaov demud>d mm meoo.o eeHo.o meoo.o eeHo.o meoo.o eeHo.o oHumn suHeH55a umSMSxm HH4 am mm me He me mm 1.:Hec nmzup CH mEHB e.Ha e.mmH N.me m.mmH 5.6m a.emH .xma e.me e.emH m.me n.6mH m.me m.emH .6>< Am C H.oe o.eeH «.06 v.66H m.oe m.meH .cHz .eedu choc e.mH m.H~ m.eH s.mH 6.6H H.mH .xdz m.mH H.0H m.mH m.mH m.mH e.mH .6>< A.c.3 we H.NH o.~H a.mH m.~H e.mH e.MH .cH: ucmbcoo oz HOHOOO HOHOOO HQHOOO HGHOOO HGHOOO HmHOOO aha: neocqu cqu usocqu coax unocqu m.om m.m~ m.om mmsHm> 1.6.3 we cH A.c.3 we cH A.n.3 we :H umumeduma #COHCOO QHSHmHOZ ucmucoo musumwoz ucmucoo musumHoz .wm.o I\+ wm.mH n US Hmcwm “mcoHqucoo cumpcmum Hops: m com mo musumquEmu uHm uchH um umwup Mwimm mcmm Emam cuumn oHumEousm mcu mo mowumHumuomumco mcH>uc mcu :0 Adam“ Bon :Hmuo pcmv ucwucoo musumfloe HmHuHcH mo powmmm was ”HIH.v.> wHQMB 110 M!P!W0H “emioam one: 056 owed Omod .Hfimdw u 05. its: mm.m< as. .0 30.25.sz US use 95.98353 .659. .032 3.25:... 22.: 65:. H ) ”mundane; om ON. om— EE US. 26 I 25 05. x2: 0.). SEQ L ”Eds «Sui N. ON (-q'M afieiuemed) iuoiuog amisgow 111 (lewioop) 0!!“ AupiwnH .§.m.mN u 02 33:: mw.m< 05 .0 25:35:55 05. new 05:22:23 .653. .22: 3:55.: 5.6.5 059”. $1. BE... O._ mO _.O q q I- q q H + q _ 1 SE US. mood r on 8 (ll r- / l 25 0.2 m. 26 I mad T m ow. a. W / n m .. u. ( . x2: US— omod .. cc. EEm A NN i ON OON GJHISQOW ('Q'M abewaaied) wewoo ll 7 newgoep) one: AigpgumH ACT: we; m .. 0.. m6 m.0.0 l. ON0.0 .I 63.21 (g ) amuuedulol Ov OO. q H 95 Us 25 z // //.\\ ..\ .85 us. / \ gem .Hgmdm HOS. 3.2:: mm-m< 9: .0 30.59.35 US. can 3392.53 .059. .22: 3.25:... "0.6.5 959“. mm (-q'M ebuueomd) iuaiuoa aimsgow 113 removal and to 11 F for the lS-points removal dryer; d. at the end of the drying cycle the humidity ratio and the relative humidity of the exhaust air are independent of the points of moisture removed (e.g. 0.0166 and 7%, respectively, for all three cases considered; e. the absolute humidity of the exhaust air is on the order of 0.010 to 0.025 with the higher values occuring in the 15-point removal drying process. 7.4.2 Redex RX-lO The operating data of the Redex Rx-lO in drying shelled corn at 30.5, 25.5 and 20.5 percent moisture content under standard conditions to 15.5 +/- 0.2 percent is tabulated in Table 7.4.2-1. A graphical presentation of the drying characteristics of the Rx-lO is given in Figures 7.4.2a, 7.4.2b, and 7.4.2c. The main conclusions to be drawn from the simulated data are: a. the energy efficiency of the RX-lO is greatly affected by the initial moisture content of the grain (i.e. 2,879 and 2,324 BTU/lb at initial MC values of 20.5 and 30.5%, respectively); recycling 114 .wmoum mcHHOOU m .mmmum mcflwup umuflm H AnH\:emv MMH.~ mmm.m Hee.m sccdaoauum smudge mo.m~ mm.mH mm.HH Amy Ho.~m Ho.om Hm.mm Absoc 666n6>m mm memoo.o mmeoo.o mmmoo.o oHumu suHcH55c HHmmo.o Hmmmo.o HHHmo.o umsdcxo uH< mmH OHH em H.cHev uw>up :H mEHB o.mm m.Hc m.ee .xcz m.om e.oe m.He .m>a Am C o.oe m.mm m.mm .cHz .dsou choc m.H~ H.om e.mH .xmz m.mH e.mH e.mH .m>< H.n.3 we e.oH m.HH m.mH .cHz ucmucoo oz H.n.3 we A.c.3 we 1.3.3 we mwsHm> uwuoEmnmm OE HMHHHCH wm.om US HMHUHGH wm.mm OZ HMHHHCH wm.om .wm.o I\+ m.mH ucmucoo muoumHOE Hoch muouoquEmu uchH HHm map on OHixm xmpmm may mo moHumHumuomumcu mcqup ecu co Hmumu Bon :Hmum ccmv ucmucou musumHOE HmHuHcH Ho Hommwm one "Him.w.n oHnme “mcoHqucoo Uncommon mecca mcHumquO m oom mo 115 (g ) aameiadwal OO. O! Om. I--- SE US 2.0 OS. -——_-——_——q I .35 0.2 .2000 .SmeNuU—z .050: O_.xm 05 *0 30:00:35 02 .05 0.30.0050. .053. naNéH 0.59". a: £55.. ON SEQ 0005 9.3.0 ('q'M afiewaomd) waiuoo amisgow 116 H ) ammodwel cc. OS cm. 6. .§m.m~ nos. 35:: 033. 2: .o 25:330.. 0.2 can 05.23%. .053. 30.: 2:9”. .5 £95.. 0 _ 5:. 0.2 0.5 US. . q _ q . 1 '-'-'-'“——-""""""“__T'-_-'“—F qu US. .2000 305 9.3.5 . mu '"---_—_"7 (-q-M 0693000100) wawog amugow 117 (:1) ammadwal OS om. 4&3.“de 0.2 .050: 92¢ 05 *0 «00:02:20 05. 0:0 05.0.0050. .050: ”uméfi 059“. E. 595.. a. m . .11 u . IJ _ a _ J — “ SE 05 _ _ _ . _ _ _ . . _ _ 0:0 US. .80. US. _ E50 .2000 -___.__.__.._____‘_..______. 0005 9.3.0 m. ON mN on (°q'M abnuaaaod) wowoa emugow 118 of the cooling air decreased the energy consumption compared to the Farm Fans AB-BB; the final moisture gradient of the cooled grain is large (i.e. 5.8% at MC initial: 20.5% and 10.8% at 30.5%) due to the relative small airflow rate (90 cfm/bu) of the Rx-lO; the overdrying of part of the grain at the air inlet side of the drying section is rather severe (i.e. to 10.7 percent for the case of MC initial - 30.5%); the average absolute and relative humidities of the exhaust air in the dryer sectiion are relatively low due to the small thickness (11 in.) of the grain column (this dimension 12 to 14 inches in the other cross-flow dryers tested in this study); the residence time in Rx-lo for five points removal is about one hour; the same amount of moisture is removed in 45 minutes in the automatic batch dryer (i.e. in the Farm Fans AB-BB). 119 7.4.3 HC-66 The pertinent drying data of the HC-66 drying 30.5, 25.5 and 20.5 percent moisture content corn under standard conditions is presented in Table 7.4.3-1. The moisture content and temperature distributions within the dryer are shown in Figures 7.4.3a, 7.4.3b. and 7.4.3c. The following conclusions are justified: a. the energy efficiency of the HC is better at high initial grain moistures than at lower initial values (i.e. 2,410 BTU/lb at MC initial= 20.5% and 1,752 BTU/lb at 30.5%). b. the moisture gradient in the dried/cooled grain is relatively small. due to the reversal of airflow between the first and second drying stages (i.e. 1.9% at MC initial= 20.5% and 2.6% at MC initial= 30.5%); c. the average absolute humidity of the exhaust air is relatively high due to the 120 .00000 m:H>0© 0:000m .00000 m:H>0© 00000 .00000 m:HHoou m N H mme.0 000.0 000.0 00:0000000 000000 o.HN o.mH 0.5 mm.ma mm.m0 ma.ma va Ho.mo Ho.mm Ho.mm A0000 00000>0 mm monoo.o mmnoo.o mmmoo.o Nnmmo.o mvmmo.o 00000 >0HUHEDQ Hommoé Hammo.o Hvao.o 0m:0:x0 00¢ NHH mm 00 A.:HEV 00>0© :H 0EHB m.Hw m.Ho m.no .xmz n.om 5.00 5.00 .0>¢ Am v 0.00 H.o0 0.00 .002 .0500 cuoo w.ba m.oa N.oa .xmz o.ma n.mH v.mH .0>< A.0.3 wv o.ma o.ma m.ma .:HE 0:00:00 02 A.n.3 my A.n.3 we A.n.3 WV 00:00> 000050000 02 H0H0HQH wm.om US H0H0flcfl wm.mm UZ H0H0H:fl wm.o~ I\+ m.ma 0:00:00 0::0mHOE H0:H0 .wm.o “0:000H©:o0 0000:000 000:: m cam 00 00000000500 000 000:0 00 00>0© colon 0:0 00 000000000000050 m:a>0© 0:0 :0 A0000 3000 :am:@ 0:0V 0:00:00 00000008 0000H:fl 00 000000 0:9 “Hum.v.w 0H009 121 (d ) amuuadwal O0 OO. O! OO. ONN .§m.o~uo_2 5:5. 00.0: 2.20 2259...... 0.2 0% 828852 053. ”8.: use“. .0. 59.3 O0 Om Ow OM ON O.. O . _ _ . _ _ . . _ _ _ _ 3.000 _ 0005 000000 _ 0005 02.”. _ _ _ F _ _ _ 0:: 05 I. _ _ _ F q‘ 25 0S. . 1 Pl 1‘ _ x05 05. . _ _ . 0:0 _ 0 _ _ . _ . _ _ _ _ . _ _ _ . v. ON ('q'M afieiuomad) iuoiuoo exnisgow (5 ) amienadwal 122 .333 u 0.2 .22.... 00-0: M:.. .0 2.0.39.3... 0.... .2... 2328.62 .053. 30.: 0:5: E. 59.3 8 cm 0.. on on c. c 8 . 1 _ / .0.000 n — 0005 000400...“ _ . 000mm 03.". . 5:. 0.2 . . _ m. 8. l . fl 0.6 05. F q! _ x05 02 _ c... _ M . m... . u . n _ w _ 2...... cm. I w: _ m 4 3 _ a .u. _ m M u w 8... l . . . . . _ . mu 123 (d ) amuuadwal Om OO. O! om. CNN E. 59.3 66 6? ON ON C. . a A a _ _ . . u _ 8.000 - 003m ucooom _ 003m 7...”. r1 . . 5E 05 - _ .85 US. O>flm m. ON mN .Samdm u 02 .050: 60.0... o... *0 30:00:35 02 0:0 05.0.00003 .050! "8.0K 0.59a— ('q'M aficzuamad) wowog unzsgow 124 recycling of the cooling air and part of the drying air but the relative humidity is low, indicating that the airflow in the HC-66 is high (145 cfm/bu); d. the humidity ratio of the exhaust air in the second drying stage is about the same as in the first drying stage; a surprising result since only the air from the second stage is recirculated; e. since the corn at all three initial moisture contents is dried to the ambient temperature (i.e. 60 F), the airflow rate in the cooling section appears to be overdesigned for the removal of 10 and 15 points of moisture. 7.4.4 Blount 10-60 Table 7.4.4-1 and Figures 7.4.4a, 7.4.4b, and 7.4.4c represent the drying of 30.5, 25.5 and 20.5 percent moisture content corn to 15.5 +/- 0.2 percent in the Blount 10-60 differential grain speed continuous flow cross-flow dryer. The important observations to be made are: 125 the inlet moisture content has a relatively small effect on the energy efficiency of the dryer (e.g. 1,278 BTU/lb at 30.5% versus 1,621 BTU/1b at 20.5% inlet moisture content); the moisture content gradient of the dried corn is small and varies from less than 1% in drying five moisture points to 3.2% in drying 15 points; the 2:1 grain velocity ratio leads to a fairly uniform moisture content distribution across the drying column (e.g. in the 5-point case the MC values across the dryer column at the grain exit are 15.1, 15.6, 15.9, 15.0, 15.5, 16.0%, respectively); the average outlet absolute humidity values in the two drying stages vary little with initial moisture content and are between 0.03 and 0.04; the average corn temperature of the faster flowing grain (e.g. on the air inlet side 126 .wmmum mowaooo .mmmum mcfl>up umuflm v N .mmmum mcfl>up pcoomm m .oEflu mmmum>¢ H 1!:II-uI- 11-1! me~.. mm¢.. HN®.. .naxsen. xocmfloflmmm woumcm am e we 0 vm m o.mH m.ma o.ma m . m . m . mo on mm on mo cm .w. .020. mmmum>m mm vhmao.o qhvao.o vmhao.o mvmmo o mmmmo o mmmmo.o oflumu wuwwflezn Nommo.o Nmmmo.c NNHMO.O HmDMwa Hfifi TI HNHN Homa Ham ..:flE. umwuo ca mEHE .Illlllulll.llullll |.I|l.l.nl.|.|t|| [nil I Ix o.mma v.5ma m.moH .xmz n.0m 0.5m 5.5NH .m>< Am . m.oo m.om m.mm .cwz .QEmu CHOU m.oH 0.0H o.oa .xmz «.mfi mama m.ma .w>¢ ..n.3 w. m.mH o.vH c.mH .CHZ ucwucoo 02 ..o.3 w. ..o.3 m. ..o.3 w. 02 Hmfiuflcfl wm.om oz amauflcfl wm.mm oz HMHUflQH wm.om mmSHm> Hmumfimumm ..Q.3 wm.o |\+ m.mH US mommm>m HMCHM m com mo ousumummewu umacfl Ham may um ooloa unson may we o=.>.o we. so .w... 30.. 3.... can. sumac .~"H oflumu wwwam :flmum .mco.u.ccoo ccmccmum .mucz ma.»~n mowumwnouomumco oo wusumflos HMHuHCw mo uowmmo 0:9 “Hiv.v.m manms 127 (d ) amieladwal cc. om. CON ...x.m.om u 0.2 .050: 00-9 0000.0 05 no 0003:0505 0.30.0050. .0500. 0:0 E00000 0.30.0.2 "aeéfi 050.". .5 50:0.— om mm c. m u u L 1 - V q . . . _ . 00.000" 0005 0.500% _ 0500050.: 0005 00...“. _ _ . . . _ n . . _ _ . . . .2.... 5.... 25 0s. . . . . . . _ . — . . . _ _ _ . . . . .00.... 00:05.0. 03¢ _ n . .020 00:05.0. 0: US. . .030 00:05.0. 05¢ .00.... :0: 05¢ .2... :8. 2.... 05. .030 «0005.0. 0:0 0.2 .020 :0: 03¢ m.m. ('q'M afleiueomd) iuaiuog aatnisgow (d ) amieladwal OO. Om. OON .2000. E. 505.. On mN s _ d 7 0005 3.000% _ 93.0050...— 36; E... 25 0.... .030 0000.30. 000 Us .030 «0005.0. 0>0® .030 :0: 03¢ O. m 0005 00.... .030 «0005.0. 000% .2... 5.. 2... us. .030 :0: 000$ .030 «0005.0. 000 Us. m. ON ON ...x.m.mN u 05. .330: OOO. .0005 0... .0 003.0330... 0.0.0.0050. .0500. 000 000.000 0.30.0.2 "006$ 0.0.0.”. ('Q'M ofinuooaad) 3001003 annisgow (:i ) amimadwal 129 ...x.m.Om u 02 .05.... O00. 2.005 05 .0 003003.10... 0.0.0.0900. .053. 0:0 E00000 0.30.0.2 .0¢.¢.h 0.00.”. .0. 50...... On 8 0. m b . .2000. q 0005 0000.5 . 03.0”th . 00000 «0.... 41 . . . . _ _ 0. .2... E... 2:. 0.2 _ . . . 8. I _ _ . _ _ . m .030 0005.0. 0.0 05. - m... . .. m - . ON 0 _ _ / .030 0000.30. 000m W _ . . w _ _ u \ .030 :0: 000m m. 00. .l _ _ _ m . . m . _ _ .M _ .030 «0005.0. 000$ _ mm mm _ // _ .030 00.. 0.6 0.2 _ _ .030 :0: 30¢ " m OON I _ _ _ _ _ _ _ _ . _ . . _ . .030 «0005.0. 0:0 02 l on 130 of a column) is about 180-190 F regardless of the number of points of moisture removed, and is about 150-170 F for the slower flowing corn at the air exhaust side; the cooler for the 10-60 is underdesigned especially for the case of five point moisture removal. 7.4.5 Ferrell-Ross CCF Table 7.4.5-1 and Figures 7.4.5a, 7.4.5b, and 7.4.5c contain the relevant simulation results in drying 30.0, 25.5 and 20.5 percent moisture content corn to 15.5 +/- 0.2 percent in a Ferrell-Ross CCF three-stage concurrent-flow dryer. Some interesting points can be observed: a. the inlet moisture content has a large effect on the energy efficiency; removing 5 percentage points requires . almost 23 percent more energy than drying fifteen points of moisture; the outlet grain temperature in the three stages is a function of the initial Table 7.4.5-1: 131 The effect of initial moisture content (and grain flow rate) on the operating conditions of the three stage Ferrell-Ross CCF concurrent flow dryer at inlet air temperatures of 550-450-350 F under standard conditions. Parameter Gp=21.0 bu/hr ft2 Gp=11.5 bu/hr ft2 Gp=8.0 bu/hr ft2 Values M(in) = 20.5% M(in) = 25.5% M(in) = 30.0% Stage 1 M(out),% 19.4 22.7 25.8 (out), F 112.3 110.6 108.5 H(out) .0404 .0609 .0703 RH(out),% 64.5 98.7 100.0 Stage 2 M(out),% 17.6 18.7 20.2 (out), F 133.9 122.6 116.7 H(out) .0507 .0647 .0688 RH(out),% 44.1 74.3 92.5 Stage 3 M(out),% 16.2 16.1 16.2 (out), F 133.6 123.1 114.9 H(out) .0471 .0486 .0512 L RH(out),% 41.5 56.6 74.4 ,1 Cooler D4(out),% 15.6 15.5 15.5 (out), F 104.9 88.4 77.4 fi(out) .0249 .0172 .0141 I1H(out),% 50.4 58.2 68.5 Grain speed l__‘_£j:t/hr) 30.4 16.6 11.6 Energy effi {ciency 1,921 1,591 1,487 BTU/lb) drYer 102 186 268 .Samdm n 02 35:: “.00 2: E 2.03.5.sz US. can $.32an3 3me new ._< ”nméfi 3:9". .5 £93.. me cc mm ON m . . é _ . T _ 022m PE; 9:8..th vacuum 035 acouow _ uEBQEmh .2.”. 33m 3:”. m... P--- ----- 132 (‘Q'M afiewamad) xuawog amwow ON mN . _ _ . . . . In _ . . . . . L . . 8m (5 ) amumdwol 133 m. ON mN .§m.m~ u o: 32...: moo 2: 5 2.2.3.5... us. :5 85.2852 .95.. =5 .2 names 2:9“. z: 59.... me Ov mN . ON m q 1 51 a 1 $1 1 . _ _ _ . . _ «93m .85... . acted—co... vacuum “ 35m vacuum " 9:5..th “EC . 093m «QC . _ . . . . _ . _ I . _ . . _ _ . . . . _ _ _ _ u _ __ m . _ . . _ . . . . _ h . _ . 4 . . . L . . _ . _ . 8m _ . . . _ \P’ d . US. 134 ('Q'M afieiuooiad) tuatuog amtsgow ~30 ‘25 O N I «I5 ' Third Stage _.--+_. -_..-.._ r---" Second Tempering fi I I I I I I i t I I Second Stage F" -_-..- First Tempering -1----___-_.._-_------J - -....-..-- MC First Stage § (5 ) omnnodwa J. IOO 500 45 40 25 20 Length (it) Air and kernel temperatures and MC distributions in the CCF (initial MC = 30.0%). Figure 7.4.5c : 135 moisture content and the grainflow speed; in general, the combination lower initial moisture content higher grainflow speed leads to a higher grain outlet moisture content ; c. the outlet air from the first stage is more fully saturated than of the second and third drying stages; d. the exhaust air absolute humidities in the three drying stages are on the order of 0.04-0.08, almost twice as high as in the Blount 10-60; e. most of the moisture in the three-stage concurrent-flow dryer is removed in the second stage; in the first stage a large percentage of the energy is used for heating up the grain. 7.4.6 Dryer Comparison In this section the five dryers discussed in the previous five sections are compared directly with respect to the energy efficiency, moisture content gradient and final kernel temperature in 136 removing 5, 10 and 15 points of moisture directly to 15.5 +/- 0.2 percent. Tables 7.4.6-1, 7.4.6-2 and 7.4.6-3 show the data. 0f the four cross-flow dryers the Blount 10-60 is in general the most energy efficient dryer; at 5 points removal this dryer uses only 47% as much energy as the Farm Fans, 57% as much as the Redex, and 66% as much as the Hart-Carter. The 10-60 is even more energy efficient as the present design of the Ferrell-Ross CCF concurrent-flow dryer. Tables 7.4.6-2 and 7.4.6-3 show that at 10 and 15 points removal equally favorable energy efficiencies are obtained by the Blount 10-60 in comparison to the three other cross-flow dryers. The principal reasons for the excellent energy efficiency of the 10-60 appear to be: a. the recycling of the cooling air; b. the partial recycling of the drying air; c. the relatively large thickness of the grain columns (i.e. 14 in. versus 12 in. in the Farm Fans, Redex and Hart-Carter models); 137 ma.ou cflunseuo .mcflao>oou new occ mcflaooo usonuflz m .Auouomm >ocofloflwwo poxuo moEHu >ocofioflwmo uo>uo Goudaseflmv wocofloflwwo nowuo oouoomxm H Hmm.H oo.H o.mo o.o NHINHIM moo m mmomlaaounmm mvo.a No.H n.ema m.o omloa ucson mvm.m vo.H o.Ho H.H owlom oom.m ao.H N.Ho w.m oalxm xmoom Nam.m mH.H m.oo o.m mmim<|mm AQH\DBmV Ammoacoflmcmeflov Am V va xocoflowmwo wmuoco uouomw .QEou Hocuox unmaomum . momma Hoouoflooum wocofloflmwm >mumcm Hmcflw mmmuo>¢ oz .xmz “mach .Am Ommlomvlomm moo HOMO .wN.o I\+ m.mH ucmucoo ousumwoe Hmcflm .wm.om m com ousumummfiou Han ucoucoo musumfloa HmHuHCH umcofluflocoo oumocmum Moos: mcflumuomo muomuo o>flw mo comwmeEOU u~r©.v.m mNQQE 138 ma.o ”manganuo .mcflao>oou new pan mafiaooo usocuflz N .Auouomw >ocoflofluwo uo>uo moEHu >ocofloflmwo umxuo ooumaseflmv xocofloflmwo uo>uo oouoodxm H mamm.a oo.H o.mw o.o NHINHIm moo mmomlaaouuom vow.a No.H w.hm m.N omloa uCDOHm mma.m vo.H m.om o.m moron mom.m mo.H o.Hw o.m oalxm xoomm voo.m ma.a m.mm m.v mmimdnhm lnH\oemv AmmmacoflmcmeHec la v Awe >ocoaoflwwo woumco HouUMm .QEmu Hocuox ucmflomum . uo>uo Hoouofloouc >ocoflofimwm >muocm HMCHM omnum>< oz .xmz “macfl .wm.o .Am ommuomquomm moo copy a com musumumasmu Ham I\+ m.mH acoucoo musumfloa Hmcflm .wm.mm pcoucoo musumflOE HMfluHCfl “mcofluflocoo Unmocmum woos: mcwumummo muo>up m>Hm wo GOmwMMQEoo "mlw.v.m wfinmE 139 ma.o ”encaszlo .mcHHo>oou uHm ocm mcHHooo ozonqu N .AMOuomM xocmHonmo uo>uo moEHu xocoHonmo Mowuo voomHseHmv xocoHonmo uo>uo wouommxm . H mwv.H oo.H o.Hw o.o NHINHlm moo m mmomIHHouuom vom.H No.H 5.0m N.m O©IOH ucson mmm.H wo.H n.0m o.v molom HHo.N mo.H m.oo N.e OHIxm xooom mom.m mH.H o.~o 0.0 marmanmm ADH\DBmv AmmoHconcoEHov Am v Amy >ocoHonwo >muoco Houomw .mEou Hmcuox ucoaomum . uo>po HoouoHooum >ocoHonmo >mnocm HMCHM ommuo>¢ oz .xmz uoHcH .wm.o r\+ m.mH ucoucoo monumHoE Hmch .Aa ommnomvnomm moo HOoV a com musumumasmu can .wm.om ucoucoo ououmHOE HmHuHcH “mcoHoHocoo oumocmum Moos: mcHumquo muowuo o>Hw mo QOmHHMQEoo "mlm.v.m GHQMB 140 d. the relatively low airflow rate (i.e. 90 cfm per bushel versus 100 (or more) cfm per bushel for ~the Farm Fans, Redex and Hart-Carter models); e. the tempering of the grain for 0.5 - 1 hour between the first and second drying stages. At five point moisture removal, the largest moisture content gradient among the cross-flow dryers is found in the Redex dryer and the smallest in the Blount 10-60. For ten and fifteen points removal, the Blount 10-60' and the 'Hart-Carter dryers have the smallest moisture gradient and the Redex has the largest. The air reversal in the Hart-Carter (between the two drying sections) resulted in a decrease in the moisture gradient, but air reversal between the drying and cooling sections of the Redex did not reduce the moisture gradient. This is due to the lower airflows that the Redex dryer uses. An inherent characteristic of concurrent-flow drying is the absolute uniformity between kernels of the final moisture content; in fact, in' properly operating Ferrell-Ross CCF units the moisture gradient is 141 zero, thus even better than for the Blount 10-60. The average temperature of the corn leaving the dryers is close to the ambient dry bulb temperature except for the Blount 10-60. Increasing the length of the cooling section or increasing the cooling airflow rate will alleviate this problem. 7.5 Design Analysis of Blount 10-60 This section will evaluate the effect of a number of parameters on the performance of the Blount 10-60 with corn with aa D-hybrid=0.95 7.5.1 Effect of Initial Moisture Content The effect of the initial moisture content on the operation of the Blount 10-60 operating under standard conditions is tabulated in Table 7.5.1. Several points are clear from the simulation results: a. the dryer efficiency is (as expected) greatly affected by the initial moisture content; 142 . 11.1.1335! ill-1!! -.l-------l--: :- 3... 2... :6 £6 26 25 a...) 2.5: .82: . 3 a S s. S a e. .89: :2 EN 5. m2 .5 a3 .23: _ 339:3 3.5.5 L_ ”.2. 35 :2 :5 0.3 :2 E L _ 5...... .92 :3: . W: 5.2 9.: «.2 .3. or: 7...: c _ H: .25. :5: r 2a.. 2:... a: m2; m2; .2.. ESE: 9.4—.2320 not: .a T: 9: as ~.2 ma 2: 9: cm.“ . 2.5: a. .59.? EEO I . TEE 35.7-3'3 03 NZ 3 m3 m3 2: 2. me 3 1:3 3ch E 8:... 9n 2 .3 m6 2 . m... .5 Sea c. 88... SE... 28.: RE... 28... £8... 22.83 “:9. . :2 2.: 3.: so: «.3 4.3. 3: we: 3...: .5. ._ 9:. we. I: :2 OS ~52 m... 92: 3a.: .03.. E 1 c mac :3 9.3 2... 33 ~42 .25 3.2 was .52 :23.» .989 9.: 9.: I: .3: 9.: or: 9.: 9.: 9m. .3. . 92 .2.: mg: .23 «.2 92 2: .92 0.2 .2.... 7...: c c 4.: n: 9: 9: T: 3. .3; 9.: 72 .52 .82....“ E 1 o.- Tc“. c.mH mg: 92 A: :52: H ammo.c mmm:.: mmmc.c «nmc.c m~mo.c ammc.c ._:=.ooeo :xx. a ._ 9:: 2.: 99.: I: “.8. Z: 3.: 9...: m we... .3. IE 2: .4: Ne: 32 2.: 3:: 9a.: 92: 53. E i e mam. 0.3. 9.2 9...: ca: 3.2 To: 22 Ne: .52 23:55. .Efl < 3: e: 9: ~.: g: c: c: .2: «.2 .52 ._. .4: 1.: 93 4.: 0.2 no. .3. ad. ”.2 .9... 7...: c n 9: “.2 9.: mi n: 9.: :4. ma. 3. .52 23.3.; E . l 98 93 93 92 98 98 8 See _ as... 38... :85 £8... 88... 28... 2.2.8353. ._ ”.52 5.8. 33 93. ~62 =5. 3.: .32 98. .5: :2 .2.: We: as: :2 .23— 92: 2.: :2 .9... a .L c as: :2 WS— 22 3.2 no: 1...: .5: me: .Ez 228:. .95 4. EN 92 NS 98 0.3 v.2 «a: 92 0...: .52 p 9: 3: 5.: 4.: 0.2 0.: a... 4.2 n: .93. on... S 92 e: 92 «.3 92 0.2 .2: 3: Na. .52 233...... E m .NC .23: $3 23: ANC 2: A} 23: {a a: $3 .536 a: £3: .Nc .23: .Nc 2:3,. .316 9.7.6 ~67 3.8 0.2 95.8 92...... 2.7.6 2.7.6 33s. on: “32.... on: 5.. 03“ ~35... 2.: 5a 8: ”325.... 8.... 5a 3.953.. . 2.8.2:! $3.23! 3.3.9:! 3.8 La: 9. 3.3 .2: 9. 3:8 .2: u. 1— 03% Beam .2 .5 2 as: so... 2.3 cf: :8; a: co 22:28 9.329.... a: .5 a 9a.. so: 5......» as: ”acct... 32.3 8 .5 “85 PE a SN 2.. the 36:-.305 Eon—Bo .8329: 33.2: we 33? .2:- SdH 93.: b. 143 the maximum moisture gradient at the 2:1 grain velocity ratio is larger for the higher initial moisture contents (i.e. 3.3% and 0.9% for the 30.5% and 20.5% initial moisture contents, respectively); the final grain temperature depends on the grain velocity in the dryer and thus, is lower at the higher initial moisture contents; at three times the moisture removal rate in terms of moisture percentage points (i.e. 15 versus 5 points), the dryer capacity is reduced by 63 percent (or expressing it differently, by increasing the initial moisture content of the grain by a factor of 2.0, the capacity decreases 2.7 fold); at the higher initial moisture contents the grain temperatures during the drying process to 15.5 +/- 0.2% are usually somewhat higher than at lower initial moistures (i.e. there is about a 2-10 degree F difference in grain temperature in the second drying stage between the 20.5 144 and 30.5 percent runs); f. the absolute humidity of the exhaust air in the first stage of the Blount 10-60 is higher at higher initial moisture contents, resulting in better energy efficiencies at higher initial moisture contents. In addition to the data on the Blount 10-60 operating at a certain grain speed ratio, Table 7.5.1 shows results of the Blount 10-60 without the differential grain speed option. The last three columns contain data for the three initial moisture contents of the Blount 10-60 with the grain speed ratio of 1:1. About the Blount 10-60 without the differential grain speed option, the following observations can be made: a. the higher the initial moisture content, the greater is the overdrying of part of the grain and the larger is the moisture gradient of the dried grain (i.e. 4.5% at MC initial= 30.5% and 2.4% at MC initial= 20.5%: b. the energy efficiency of the Blount 10-60 with or without differential grain speeds 145 is very good compared to other cross-flow dryers (i.e. at MC initial= 25.5%, about 1450 BTU per pound of water removed). 7.5.2 Effect of Differential Grain Speed Ratio The effect of the ratio of the grain velocity at the air-inlet side of the grain column to that at the air exhaust side of the column (e.g. the differential grain speed ratio) is illustrated in Table 7.5.2 for the Blount 10-60 operating under standard conditions with a corn inlet moisture content of 25.5 percent; the table includes also data on the Blount 10-60 without the differential grain speed option (1:1 ratio). The salient points in Table 7.5.2 are: a. the optimum differential grain speed ratio (i.e. when the average moisture content difference between the grain at the air inlet and air exhaust side is at a minimum at the dryer outlet) is a function of the inlet moisture content; b. differential grain velocities in the grain 146 NNN NoN NNN NNN NNN NNN .23.. b.2223 5...... N.NN. N.NN N.NN N...: N..NN N NN .... a. .93 N.NN... .22 .5... N.N. N.N. A..N. N.N. N.N. N.N. 7...: N. u. .92 .55 .NN . NNN . NNN . NNN . NNN.. NNN.. ESE: 3.3.3:: 50...... N.N. N.N. N.N. N.N N.NN N... ....N N.N N... .2}: 7.3% 5.5.: 75.... .:| 8. .N .N. .N NN. NNN N... N.NN N... N... N: .88 Nurses: .9»... E 9...... ..N Na N.N N... N.N S. .85. NNNN... .N.N... NN.N.N NN. .N NN....N NN N.N 2.2.39... .8: N N. N... N.NN. ..N... .4... N 3. ....N. N.NN. N. NN. N N: .3. N N. N... m. NN N. NN N.NN. .. NN N.NN. N.NN N. NN. N NN .2... E N. .. N. NN N.NN N. NN N.NN. N. .N N.NN. N... N. NN. N.NN .N... Eu...EN..._§.N C N.N. N5. 0.... . N... N. N. N4: N... N. N. N... .3. N.N. N.N. N.N. ..N. N. N. N.N. N.N. N. N. N.N. a... .....: N. .. o... N.N. N.N. N.N. N. N. N.N. N.N. N. N. ...N. a... £212.. 5 o N... ....N ..NN N.NN N.NN N... E .85. N m. NNNN... NNNN... NNNN... NNN .N NNNN... NNNN... :EE... :5: N.NN. N.NN. N.NN. N.NN. N. NN. N.NN. N.NN. N.NN. N.NN. .3. N. N.NN. N.NN. ..NN. N.NN. N. o... N.NN. N.NN. ..N... N.NN. .2... E .. N.NN. N.NN. N.NN. N.NN. N. NN. N.NN. N.NN. N.NN. ....N. .3... 23.53.95 N N. N. N.N. N.N. N.N. N.N. N.N. N. N. ..N.. ..N. .E. N N. N. N... .5. ..... .6. N... N .N. N..: N.N.. .3< N N... N.N. N.N. ..N. N.N. N.N. N.N. N... N4. .5: .No........a r: N.NN N.NN N.NN N.NN N.NN N.NN .N. .3... . NNNNN NNNNN NNNN... NNNN... NNNN... NNNN N 22:8... So: .. N.NN. N.NN. N.NN. ..NN. N.NN. N.NN. N.NN. N.NN. N.NN. .3. N N.NN. N.NN. N.NN. N.NN. N.NN. N.NN. N.NN. N.NN. N.NN. :5. E q. N.NN. N.NN. N.NN. N..N. N.NN. N.NN. N.NN. N.NN. N.NN. N... 5.12.795. < N.NN N.NN N.NN N.NN N.NN N.NN N.NN N.NN N..N .3. N N... N.N. N.N. N.NN N.N. N..N HI: N..N N.N_ .2.... .5... .. N N.N. N.N. N.N. N.N. N.N. N.NN N... N.NN N.N. .N... 22.5.... 9. .N... .52. .N... .53. . N: 5:3. N... 1... N.N. a... N... .. a... 9.3... 9. Nate... 9. N53... .5. .NC .53. . N: 2:3. . N: 3?... .NC 5:3. uN: Nos-h: o... ”5.2—Es cZIuENNXEBN 5.) o. m an... N... N. no... N. N an... ad. IE mo:_n> beam one v8.7. 25 Eon—m «.5 £3.» 7.325". MEN can. 25m 3:93. 2.7. S... «.va 3:2...”— mu? 5.; N39523— OCHL ~..— 029— —: Oauflh 1v 0:?— :m Omani —..N 33... N... _ NINEN .... 5...... .5... 11.3... _....=.N......:._. 9.: .2. #6:.— “Nn.m.._. .1....— ..NN.N8 23...... 5...: .N. N .N... .c. .5. .22... 2. cc 2 “:82 of .3 22:38 9.529% 05 .598... :9............... 7:... 2:: .59... .147 column result in less overdrying of the grain at the air inlet side (i.e. the 1:1 ratio dryer overdries the corn to 13.3%, the 3:1 only to 14.3%); the grain velocity ratio has little effect on the energy efficiency of the dryer; the mixing of the grain in the Blount 10-60 between the first and second drying stages has a larger effect on the moisture gradient of the dryer outlet grain sample than differential grain speeds in the columns (note the last column in Table’ 7.5.1 in which the minimum moisture content after non-mixing at a 1:1 speed ratio is 11.6 percent versus 13.3% after mixing); the maximum grain temperature is not. influenced much by the grain speed ratio; however, the length of time the same grain is at the maximum temperature is much less in the case of the differential speed models; the average absolute humidity values of the exhaust air in the two drying sections is practically independant of the grain speed 148 ratio; 9. the 10-60 dryer capacity is slightly (5%) higher for a differential speed model than an equivalent conventional unit. 7.5.3 Effect of Column Thickness The effect of the column thickness on the operation of the Blount 10-60 at an initial moisture content of 25.5 percent operating under standard conditions is illustrated in Table 7.5.3. The main conclusions to be drawn from the simulations are: a. an increase in the column thickness improves in general the energy efficiency (an exception is the 14" column for an unexplained reason); b. the maximum moisture content gradient in the grain column is not affected by the column width (a very surprising result); 149 £533 9.322 1.3:: S. NN .5.» .32 co...— ugo; 0.: No 2.65223 3595.... 95 ..o .o t... 22.. N.N..u t5: NN... 32.. NN... ...... N... ...u :5: 9.85 N.N.: N.N.: N.NN ....N N.NN ...oefi N.NN NNN m—N ..NN NNN :53. x2222... .....Cc .... a. 93 N.NN N.N. N.NN N.NN N.NN ES... .22 .2: N.N. ...m. ed. N.N. N.N. 7...: S N! .2.... .3: SN; NNN.. N..N.. NNN.. 8.... ....NE... 3:33.78 3...... N.N. ...N ...... N.N. N.N. N.N N.N. N... N.N., .....N... 32.1. ...-Eu 3.. 3...... .mm. ...... m: N... N: N... NN. ...:N: 25.8-...: .NN. ...: .... .NN. .NN. .NN. .NN. .NN. .NN. ...... SN... ... 8.... ...N N.N N.N N... N... S. 59.... N 8...... 1...... 3...... 2...... NN...... 2.35%... So: _. N.N.: N.N.: N.NN. ...... N.N.. N.NN. ...N: N.NN. .5. M N.NN N.NN. N.NN N.NN. N.NN N.NN. ...L N.NN. ...... .N... _ N.N.. N.N. N.N.. N.NN. N.N.. N.NN. N.N.. N.NN. ...... 25.1.5.9... .. j N... N.N. N.N. N.N. N.N. ...... ...... N. ... .5. c N.N. ....N. N.N. N.N. N.N. N.N. N.N. ...: .9... .....z ... N. ...N. ...N. N.N. N.N. ..N. N.N. N.N. N.N. ...... 25.15.22 u N..N N.N. N.N. N.N. N.NN .... 5...... N NNN..... NN N... NN N N N.NN... NNN...N 22.83 :5: H. ...N.... N. N... ...: N.NN. N.NN. N.NN. N.NN. .....N N.NN. .5: N. N.NN. N N... 1:: N.N.: N.NN. ..N... N.N.: N.N.: N.N.: .9... .... . , N.NN. N.NN. N.NN. N.NN. N.NN. N.NN. ...... N.NN. N.N. ...... 25.12... .98. .. N.N. I N. N. N.N. N. N. ..N. ..N. N.N. N.N .5: _ N.N. K... N .N. N.N. ... N. N... N.N. N.N. N.N. ...>< .....z N. r. N.N. N.N. N. N. N.N. N. Z. ...... ...N. .... N.N. ...... 23.5... .. . N.N.. N.NN N.NN N.N.. N.NN .N. :55. :2... N.NN... ...NN... NNNN... NNNN... 22.83 :6: . N.NN. N.NN. N c... N.NN. N.NN. N.NN. N.N.... N.NN. N.NN. .3. N.N.: ......N. N .N. N.NN. N.NN. N.NN. N.NN. N.NN. N.NN. .92 ... :. N.NN. N.NN. N. N. N.NN. N.NN. N.NN. N.N.: N.NN. ..NN. .Ez EEEE. ....EN ." N.NN N.NN .NN N.NN N.NN N.NN .....N N.NN N.NN is. ., N.N. ....N ..N. N..N ...... N..N N... N..N N.N. .....E ......J ... __ N.N. N.NN N.N. N.NN N.N. N.NN ...... N.NN N.N. ...... 2.2.5.... u. .z .. C .53“. N N. N." N . . . . t . u 2...... . N: ....Na... NNN ENE. .- c 2...... . t 5...... . N: 2...... . 30% NEC .... ..m..M\U...... .N .N..N...\H...... ...N. N am... Na. 2 ...—c .N. um... c.N. n.... c. N “...... N... N. E... 3.1.... .53.... ......» 3:55. 2.7. ...... 2.7. .2.—3x... 03w. :5 2.7. mag—...... ou... ...... 2.7. 532%.. up; ...... 7.39555; .... ... . 5.5.8 .... ... 5.5—8 .... c. 5.38 .... N. . 53.3.4 .... N. T L ...... Rack... N.N.... ...: _ NNN .... .95. :2... .395 N70.......... 5.5.3 o... ..o aunt. NN. N. N 2...... 150 c. the capacity of the Blount 10-60 is a direct function of the column thickness; of course, this larger capacity requires an equivalent increase in fan horsepower; d. column thickness has little effect on the grain temperatures and exhaust absolute humidities in a Blount 10-60 type dryer. 7.5.4 Effect of Airflow Rate The effect of the rate of airflow on the output characteristics of the Blount 10-60 operating under standard conditions is illustrated in Table 7.5.4. Several observations can be made about the simulated data: a. the energy efficiency decreases slightly at increased airflows between 70 and 110 cfm/bu for an initial grain moisture content of 25.5 percent; b. a twenty two percent increase in airflow rate results in a twenty percent increase 151 R .. ...... ...o ..8 30:48:... .... .n 8 $.82... .3 .5 m2 253. 5.32.5 .92: ......z ...3 .... A. o. .....5. .o>< .3... a... mi m... 7...: S H: .2.... :3... .5... mm... .3... SSE: ...-.33....» 3...: N... 1... ma ...: c... ...m. 2.5: .59... ......C An: ...: .3. A3. ...... ...... m: .... H... 2. m: on. .....5 Await—...... .1.... ...»... .... 9....— .. .... o... ... .8... .. 3...... 2...... 3...... 2:533 :5: N... ...... ...... ...... ...... .3. ._ A...... ...... ...... ...: ......E .92 ... .. .. ”in. ...: ...vu. ...—... ...;3... .:_2 25:5,... ...—.5... c ...: -..: ...... ...... «.... .3. . ...... ...... a... m... ...m. .22 .....z .. .. H... .... ...... ...: ...: ...... 25.2.... u. ...... ...... o.o~ .... :53. 2...... m2... .. ......Z. 22:8... :5: . ...”: .1.... ..n: .3... ...... .. 9...: .. ...: ...... 0...... .9... E a. ...... ...: .....m. ...... . ...... 23......“ .....5... _. N... ...: .... .... .5... < m... ...... ...: m... .2... .....x .. ...m. ..I ...... ...: ...... 25:5... ... .u 9.... m... ...... .... 50.... F. ...: mm ...c ..n ...: 2......63 :5: . ...... ...... ...... m..... n... ...q... ...... -... m. ...... ....m. .2.: ...q: ...E. .9... .. a. ._ ... m: ....c. ”...: .....c. ...N... ...... ...... ......122 .....E m. m.- ...: a... 9: ....fi ....” ...... < ...: m ... ...: a... ...: ...». .03.. .....2 c .. a...” ...... ...... e... ....N ...... ...... .55.... u. .. A- c ...}... . : ...}... .-.. ...}... A c ...}... AN .. ...}... . c 2...... rs... ... .. a... .. ... ...c . m: .& ... m. ...... v. .. .... . ...... Eric... ......r. amass... ...—...]. ...... 021. 7.: ..."...x. 03.» can. 037. 3:27:01? ...... 2 E U c: 3» E .4 cm _ ......4 x. .\ .. ...\ E. i. IIIL .N. . 08.... .597. 51.5.3038 23.29.. 1.2.... .....mM ....r. 3.... .2.. . cc. ... “5.0:. ...: ..o 25.2.1.8 uczfiifi a... ..o 3:. :0... 5...... 1...... c .0... . so...v..r.o..u 3.: 32...: ...... .o “3...... ....mé 2...; 152 in capacity; a twenty two percent decrease in airflow results in a 15 percent decrease in capacity; c. at higher airflow rates the moisture gradient in the dried grain is slightly lower than at low airflows (i.e. 2.0% at 110 cfm/bu versus 2.8% at 70 cfm/bu); d. the maximum grain temperatures are not affected by the airflow rate; e. at higher airflow rates the grain is maintained at the maximum temperature for a shorter period of time; f. the average final grain temperature is not affected by the airflow rate within the 70-110 cfm/bu range. 7.5.5 Effect of Drying Temperature The effect of the inlet air temperature on the operation of the Blount 10-60 is illustrated in Table 7.5.5. The main conclusions to be drawn 153 an a: N... :53. .3533 St: ....N. 93 was E .. ass... .22 .2: mg: .....m. ...: .... ... c .2 .o>< 22:. SN; 2.... E... 2.3:: 3:32.20 .53: 2. mg: as E: N... 3. ....E: .5on SE... 33 3m. 2m. :3 E. :5 n 55 a: a. N... E a: a: 3.5.9.5. 3... 2.3. ... 8.: .... ...o as S. 53... 2:: s 2...... ._ a... 295.53 .8: ..u 2...: ..3. :2 m 2. 3.: ...: .5. . ...: m. ca. 3.: m. E N.N.. ...3 .92 2 ... . :2 .....o :2 ..8 m... f... ....z E..:.....:. .as.: c ...: ...: ...... ...2 T: ...... .52 c ”:2 Wm. ...: p22 as. ....m. ...2 ...... ... u 7: u: I. ...: 3. N4. ...... ......_......... u. 93 . f: ...: .... :53. N :36... m mcé mm ...: 2.25.53 :6: A 3:: 2...: ...N: :2 as: ....N: .5. . _. .2: ......u ...... 0.2: .2.... ...B. .22 ... 1 a :2 2.: .....s... as: :2 .....c. ...... 2.2.2.... .95 < ...2 ...... .2. ..: .... ..: .5: J ....m. ...... ...: 2. N... ...m. .92 .....x ... m ..m. ...: ...... ...: ...... fl: ...... 2.22:... a... 9.: mac 92. . .... :55. 3.2.5 ammo... rim—.... 255.403 «so: _ N3. 3..” 2.5.. :2 as: ...: .5... as: ....a. Zn. 9:: ...2. mi: .22 E L M. .13.. 5...: 3.: .29: as: .13. ...... 23:52 .....E ... Ni ...2 EN ...: .....N ...8 .5... w. ..m 3: ...: ...: ...... ...... .22 .....z ... m, ..m ...: 98 ...: ...... mi ...... .52....“ u. A N: 23.. :a 2:3. .N: ...}... .N C 2:2. A c ...}... .- : ...}... a. a. ...... m .N .au m. a -ac Na. m. ...c a. m as a .a "a: 32.... 02v 312%“. 02m cs... 01?. “£55.". «Ev. Em. 02v. i=2: 92m cm... agave—ta; .asS .... 3.... a ...: ass .... 3.... aoafi .....EL... 3.... .....m: .N; ctr...— voogv. 55.5. .5033 3.5.1.9.. 1.5:: 5:... ...o...../.moau 90.3 “553 of ..o mcozfiéou acts—0L0 2: :0 Hanna :0: 5.. .u 1:... 0.5229 53 to E ... of ..o 95:: "mi.“ 025 154 from the simulations are: a. an increase of 50 F in the inlet air temperature increases the capacity by 115 percent (i.e. from 182 to 392 bu/hr); b. an increase of 50 F in the inlet air decreases the energy consummption by 25 percent (i.e. from 1677 to 1259 BTU/lb); c. the present cooler design of the Blount 10-60 is sufficient for an inlet air temperature of 175 F, but is underdesigned .for higher inlet air temperatures; d. the maximum moisture content gradient occurs at the lowest air temperature (i.e. 2.5% at 175 F versus 1.8% at 225 F); e. the maximum grain temperatures are within 8 F of the inlet air temperature. 7.5.6 Modified Design The effect of a change in dryer and cooler column lengths in the basic Blount 10-60 design is tabulated in Table 7.5.6. The original dryer (cooler column lengths of 12'-6.7'-l.6' were changed first 155 to 18'-7‘-4' with tempering between the two drying stages (as in the basic design). The results of these changes are: a. b. the energy efficiency is not affected; the dryer capacity increases 40 percent (i.e. increases from 276 to 386 bu/hr for l0 points moisture removal); the average kernel temperature is almost 30 F lower; the moisture gradient of the dried grain is slightly less; the longer dryer/cooler model results in slightly lower grain temperatures and longer residence times during the drying process. 156 £308 .v ‘3 .0330. E .n 5:29.33 £53m an...“ .3 “was c333 15965 "AN. .338 .0..— g Allan 5509. .56 .9335?!» £53.“ an»: .2 "13m“: an. suit HE. "A: u o c Q 2 o 2 a 3 o 8 BA... Q85. _ Q? «.2. 93 a. £85. P q a? 3n 2N $.38 _ 350860 .355 — ” Woo «.3 5.3 E ... L .95? .92 and: w 9: TS «.2 an... s 9.. .22 3.5m » w ~24 92; m3; EASE. , E3330 are A . M 2: «.2 5.2 5.8 is 5.2 2:): coo-E 53c Fl 4 8: 82 3.2 3.... a8 88 M . a: no 2: A n 1.55 «2 NS K. A ._ 58:995.“ 3:... union 5. 95% fl. ~.o Tm v.0 2: 25.2 x T1 a Illa .||\ 886 286 :85 :9583 use: a r n. -- --iill xiii!!! . 1...: 9:: ..S 92 «.35 “...”: ca: _ a.v~_ T: ~.~m 0.3 fix: “.2. .22 C ; o _.:_ 98 ”.2 ~.S TE; 58 .5: 5:23.... .959 V II. Ill 1 ..l o 1.: 1.: 5.2 5.2 0.3 0.2 :8: ...2 92 «.2 ...: 92 5.2 .92 1.2.: 2 o 5.2 9: ~.2 v.2 N5 ...: .5: 55:57 oz T --.! {tailWIul 92 9: mam: ...; 51% 2.85 286 £86 3583 ed: a ea: ~.:~ $62 M52 ca: 0.2; :3. c ~52 ogom oi: mg: 1:: 3:: .52 Z .. ..vfl 0...: 99.: 5&2 3.2 To: .5: 25:3: :35... < Till XIIIIII -l 6|--vl» |.ll| r 3: TS T: T: 5.: 1: ca: . 9.: 92 0.2 ....2 5.2. 92 £2 15.: t m ~..: 5.: or: T: or: 0.: .5: “52.8,. E ode 95 m6... 3 :55. 51,1- I: 5 385 286 386 32:82 So: Tl: ill). as: To: 955 963 of: mi; .xd: m ~62 92: ~.~.2 oi: 5.02 92: .22 E L o 93: v.2: Na: ~43 To: «.9: .5: 5883.. 5:3 flaii, < “.2 1- M23 «.3 v.2 ...: ..a: a. 5.2 9: 5.: Y: 0.: 0.: 55¢ 15.3 ,t T: 9: 5.2 «.1 98 ...: .5: 5563.. 9. .... J: 53.8 1%. 53.5 $3 53.8 {an 335. mt 53.8 $3 53.8 835 14 of use 0.2 Ac 2: ".8 9: AG ...; use .92 “8 Sim umfig hfimNN 8mm gum Qfldm “egg héfl fin 5L gfim umjgtnm thN Oflfim gm .3595th v-~-._.-2 a. v-5-a-2 .: 94-5.5-9-2 VI 1 1.. x 0' n.8l.l.1|.|, i1!!!l|’{|| 1|.-.l 'LIJ'IJE iI-Ilt I . I. . r. JEJCCU 95533: :Jud: «alum tad 383:0 cc .31: :c a. ..t4 :5 a CS. a... 5...Lt mac—Twat... cone €252 Q3 we gsqfififi. "£3395 as cc 3: 7.57. r. .523... 1:. 57:3 5515 :5 5 2.5:; "of... 911:. 157 7.5.7 Conclusions In the previous part of this section (7.5) the different parameters which influence the operation of the Blount 10-60, the most advanced cross-flow grain dryer on the market, were analysed. The main conclusions from this part of the simulation study are: a. the effect of grain mixing between the first and second drying stages (in order to minimize the moisture gradient in the dried grain) is more pronounced than the effect of differential grain speeds in the grain columns; b. the differential grain speed ratio contributes (along with the mixing of the grain before tempering) to the minimizing of the moisture gradients across the grain columns; the optimum value of the grain speed ratio is dependent upon the initial moisture content of the grain; c. the differential grain speed option does not significantly improve the energy efficiency of the dryer; 158 the tempering in the dryer does not significantly increase the drying capacity but appears to contribute to an improvement of the grain quality; the 14" column thickness in the present design can be increased to 16-18" in order to increase the dryer capacity without materially affecting the size of the moisture gradient in the dried grain (of course, the fan horsepower needs to be increased accordingly); increasing the airflow rate per bushel by about 20 percent is an wexcellent alternative for increasing the capacity by about the same value; the capacity of the dryer should be rated at 210-225 F rather than at 190-200 F since the capacity is 42 percent higher at the higher drying air temperature; the cooler length of the present Blount 10-60 design should be increased to 4-5 ft in order to ensure adequate cooling when low initial moisture content grain is dried at high inlet air temperatures. CHAPTER 8 SUMMARY AND CONCLUSIONS This grain drying investigation has been concerned with the evaluation of the state-of-the art on-farm and off-farm drying of shelled corn in the Midwestern United States in the early nineteen eighties. Although it was impossible to study all available dryer systems, the most prevalent dryers were included in this investigation. The two major criteria used in the evaluation were: (1) energy efficiency, and (2) grain breakage susceptibility increase. The energy efficiencies were obtained by measuring. or calculating fossil fuel usage in the drying process; the grain quality was either measured in terms of increase in grain breakage (or by calculating the moisture gradient in the dried grain). Five drying systems were analyzed. Experimental data on these dryers was obtained at farms and grain elevators in Michigan, Ohio, Kentucky and Ontario (Canada). The data was collected over a period of three drying 159 160 seasons (l979-1981). A total of well over one million bushels of corn was dried during this period. The five drying systems included: (1) an on-farm automatic batch dryer, (2) an on-farm continuous flow cross-flow dryer with recycling of the cooling air, (3) an elevator type continuous flow cross-flow dryer with drying/cooling air recirculation, (4) an on-farm/off-farm continuous flow cross-flow dryer with drying/cooling air recirculation, grain tempering and differential grain speeds, and (5) an elevator type three-stage concurrent-flow dryer. Each of the five dryers is commercially available. Proper engineering evaluation of the dryers required in addition to experimental data, an acceptable simulation model of each of the units. Modification of the existing MSU drying models constituted a major part of the study. The experimental and simulation data furnished the necessary information for the in-depth analysis of the five dryers investigated in this thesis. The major conclusions of the investigation are: a. Recycling of exhaust air in cross-flow dryers can improve the energy efficiency by 40-60 percent but also decreases the dryer capacity by 10-15 percent. b. Reversal of the airflow direction in a cross-flow 161 dryer decreases the moisture gradient from 4-10 percent to 2-4 percent, and the overdrying of part of the grain from ll-12% MC to 13-14% MC. Drying' the grain in two drying stages separated by a mixing/tempering stage decreases the moisture gradient of the dried grain in a cross-flow dryer from 4-10 percent to 1-3 percent. The principle of differential grain speeds in the columns of a cross-flow dryer contributes significantly to a lessening of the problem of overdrying of part of the grain. A differential grain speed dryer can be designed with wider grain columns (up to 18 in.) than a conventional cross-flow dryer. Products dried in a differential grain speed dryer maintain a high temperature for a shorter period of time than in conventional cross-flow dryers. The optimum grain speed ratio in a differential grain speed dryer depends on the initial product moisture content, the drying air temperature and the type of product. The “tempering of the grain in a differential speed cross-flow dryer contributes more to the i. 162 improvement of grain quality than to the increase of dryer capacity. The differential grain speed cross-flow dryer is the most technically advanced and potentially most successful cross-flow grain dryer as yet introduced commercially. The multi-stage concurrent-flow dryer out performs any cross-flow dryer with respect to energy efficiency and grain quality. CHAPTER 9 SUGGESTIONS FOR FUTURE STUDY Since this study was initiated a new commercial dryer has been introduced in the USA, the microwave dryer. The results of the four cross-flow dryers and one concurrent-flow dryer in this study should be compared to those obtained under standard conditions with the microwave dryer. In addition, a number of points need to be clarified about the five dryers investigated in this study. These include: a. How can a redesign of the internal auger system of the Blount 10-60 improve the grain quality characteristics of the dryer? b. Is the differential grain speed feature of the Blount 10460 justified for low value crops such as corn or should it only be implemented for such crops as rice and almonds? 163 C. .164 What type of control and internal product handling should be implemented on a differential speed cross-flow dryer to maximize its effectiveness and grain quality characteristics? Can the energy efficiency, dryer capacity and grain quality characteristics of the multi-stage concurrent-flow dryers be significantly improved by modifying (decreasing) the bed - depths and airflows? Is it necessary to develop non-steady state drying models for microprocessor control of cross-flow and concurrent-flow dryers? CHAPTER 10 RELEVANCY OF RESULTS TO ARGENTINA As mentioned in Chapter 3, 70 percent of the corn produced in Argentina has to be artificially dried. From the results obtained in this thesis the following recommendations are proposed in order to improve the drying systems in Argentina: a. For small on-farm operations, a dryer similar to the Redex RX-lO (i.e. continuous cross-flow with cooling air recirculation type dryer) appears tobe an excellent choice. This dryer type can save farmers abdut 20-30 percent of the fuel when compared to batch drying (the most commonly used at present in small farming operations in Argentina). b. For medium to large on-farm operations, the Blount l0-60 type dryer appears to be the preferred choice. This dryer not only saves fuel (around 46 percent), but will also yield better quality corn 165 166 than the conventional continuous cross-flow dryers at present in use at these farms in Argentina. For the large grain elevators the Ferrell-Ross multistage CCF concurrent-flow dryer is the best choice. This type of dryer is potentially the most efficient commercial dryer on the market today and the corn quality is not only maintained but in some cases improved. REFERENCES Aguilar, C.S., and D.S. Boyce. 1966. Temperature ratios for measuring efficiency and for the control of driers. J. Agr. Engng. Res. 11 (1): 19-23. Ahmadnia, A. 1977. The quality of soft wheat dried in a concurrent-countercurrent dryer. Unpublished M.S. thesis, Michigan State University:East Lansing, MI. ' Anderson, R.J. 1972, Commercial concurrent-flow heating, counter-flow cooling grain dryer. ASAE Paper No. 72-846. Am. Soc. Agr. Engr.: St. Joseph, MI. Bakker-Arkema, F.W. 1980. Performance evaluation of batch and continuous flow dryers. Preliminary report No. 2. Presented at the 1980 Fall Meeting FIEI-Crop Dryer Manufacturers Council: Baton Rouge, LA. Bakker-Arkema, F.w. 1982. Personal communication. Bakker-Arkema, F.W., R.C. Brook, and D.B. Lerew. 1978. Cereal Grain Drying. In; Advances in Cereal Science and Technology, Vol. II, Y. Pomeranz, Ed. Am. Assn. Cer. Chem. , Inc.: St. Paul, MN. Bakker-Arkema, F.W., D.B. Brooker, and C.W. Hall. 1972. Comparison evaluation of cross-flow and concurrent-flow grain dryers. ASAE Paper No. 72-849. Am. Soc. Agr. Bngr.: St. Joseph, MI. Bakker-Arkema, F.W., S.F. DeBoer, L.E. Lerew, and M.S. Roth. 1973. Energy conservation in grain dryers: I. Performance evaluation. ASAE Paper No. 73-324.Am.Soc.Agr.Engr.: St. Joseph, MI. Bakker-Arkema, F.W., S. Fosdick, and J.L. Naylor. 1979. Testing of commercial cross-flow _grain dryers. ASAE Paper No. 79-3521. Am. Soc. Agr. Engr.: St. Joseph, MI. Bakker-Arkema, F.W., L.E. Lerew, R.C. Brook, and D.B. 167 168 Brooker. 1978b. Energy and capacity performance evaluation of grain dryers. ASAE Paper No. 78-3523.Am.Soc.Agr.Bngr.: St. Joseph, MI. Bakker-Arkema, F.W., L.E. Lerew, S.F. DeBoer, and M. G. Roth. 1974. Grain dryer simulation. Michigan State University, Agr. Exp. Sta., Res. Bull.No. 224. Bakker-Arkema,—- F.W., and J.C. Rodriguez. 1982. Research report on the Blount/MFS 10-60 Continuous-Flow Recirculating Dryer. MSU-Blount, Inc. Cooperative Research Project. Michigan State University: East Lansing, MI. Bakker-Arkema, F.W., A.A. Sokhansaj, and R. Green. 1977. High temperature wheat drying. ASAE Paper No. 77-3527. Am. Soc. Agr. Bngr.: St. Joseph, MI. Bauer, W.W., L.P. Walker, and F.W. Bakker-Arkema. 1977. Testing of a commercial sized conventional cross-flow and modified cross-flow grain dryer. ASAE Paper No. 77-3014. Am. Soc. Agr. Engr.: St. Joseph, MI. Brook, R.C. l977. Design of multistage grain dryers. Unpublished Ph.D. thesis, Michigan State University: East Lansing, MI. Brooker, D.B., F.W. Bakker-Arkema, and C.W. Hall. 1974. Drying Cereal Grains. The AVI Publishing Company: Westport, CT. Chowdhury, M.R., and G.L. Kline. 1978. Stress cracks in corn kernels from compression loading. ASAE Paper No. 78-3541.Am.Soc. Agr.Engr.: St. Joseph, MI. Chu, S.T. and A. Hustrulid. 1968. Numerical solution of the diffusion equation. Trans. ASAE ll (5): 705-710,715. Converse, J.C. 1972. A commercial cross-flow grain dryer: The Hart-Carter dryer. ASAE Paper No. 72-828. Am. Soc. Agr. Engr.: St. Joseph, MI. Crank, J. 1976. The Mathematics_of Diffusion. Oxford University Press, Oxford, Great Britain. Dalpasguale, V.A. 1981. Drying soybeans in continuous-flow dryers and fixed-bed drying 169 systems. Unpublished Ph.D. thesis, Michigan State University: East Lansing, MI. de Dios, C.A., and R.C. Puig. 1981. Comparacion de dos sistemas de secado de maiz. EERA Pergamino, Buenos Aires, Argentina. Emam, A., M.R. Okos, G.H. Foster, and M. Fortes. 1979. Effect of tempering time on quality of dried corn. ASAE Paper No. 79-3532.Am.Soc.Agr.Engr.: St. Joseph, MI. Farmer, D.M., F.w. Bakker-Arkema, S.F. DeBoer, and M.G. Roth. 1972. Simulation and optimal design of a commercial concurrent-counter-flow grain dryer. The Anderson model. ASAE Paper NO. 72-847. Am. Soc. Agr. Engr.: St. Joseph, MI. Fernandez, V., and A.M. Acuna. 1979. Comercializacion de cereales y oleaginosas. FCA Balcarce, Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina. Fortes, M., and M.R. Okos. 1979. Changes in physical ' properties of corn during drying. ASAE Paper No. 79-3054.Am.$oc.Agr. Engr.: St. Joseph, MI. Graham, D.L. 1970. Concurrent-flow grain dryer design study and proposal. Special Report, M. and w. Gear Co.: Gibson City, IL. Gustafson, R.J., and R.V. Morey. l98l. Moisture and quality variations across the column of a .cross-flow grain dryer. Trans. ASAE 24 (6): 1621-1615. Gustafson, R.J., and R.V. Morey. 1979. Study of factors affecting quality changes during high temperature drying. Trans. ASAE 22 (4): 926-932. Gustafson, R.J., R.V. Morey, C.M. Christensen, and R.A. Meronouch. 1978. Quality changes during high-low temperature drying. Trans. ASAE 21 (I): 162-169. Gygax, R.A., A. Diaz, and F.W. Bakker-Arkema. 1974. Comparison of commercial cross-flow and concurrent-flow dryers with respect to grain damage. ASAE Paper No. 74-3021. Am. Soc. Agr. Engr.: St. Joseph, MI. ‘ Hall, 6.8. 1974. Damage during handling of shelled 170 corn and soybeans. Trans. ASAE l7 (2): 335-338. Hall, G.E., and L.D. Hill. 1973. Test weight as a grading factor for shelled corn. AERR No. 124. Department of Agricultural Economics: University of Illinois, Urbana, IL. Hawk, A.L., R.T. Noyes, C.M. Westelaken, G.H. Foster, and F.W. Bakker-Arkema. 1978. The present status of commercial grain grying. ASAE Paper No. 78-3008. Am. Soc. Agr. Engr.: St. Joseph , MI. Hill, L.D., and A.H. Jensen. 1976. The role of grades and standards in identifying nutritive value of grains. Presented at the fifth annual meeting of the Anderson Research Fund: Ohio State University, Columbus, OH. Holtman, J.B., and G.L. Zachariah. 1969. Continuous flow modeling for optimal control. Trans. ASAE 12(4):430-432,442. Katic, z. 1973. Maiskornbeschadigung bei kunstlicher Trocknung. Muhle and Mischfuttertechnik 110: 534-5390 ‘ Lerew, L.E., F.W. Bakker-Arkema, and R.C. Brook. 1972. Simulation of a commercial cross-flow dryer: The Hart-Carter model. ASAE Paper No. 72-829. Am.Soc.Agr. Engr.: St. Joseph, MI. Maddex, R.L., and F.W. Bakker-Arkema. 1978. Reducing energy requirements for harvesting, drying and storing grain. Extension Bulletin E-ll68, Michigan State University: East Lansing, MI. Mensah, J.K., F.L. Herum, J.L. Blaisdell, and K.K. Stevens.l976. Impact fracture resistance of selected corn varieties due to drying conditions. ASAE Paper No. 76-3042. Am. Soc. Agr. Engr.: St. Joseph, MI. Miller, B.S., J.W. Hughes, R. Rousser, and Y. Pomeranz. 1979. Standard method for measuring breakage susceptibility of shelled corn. ASAE Paper No. 79-3087. Am. Soc. Agr. Engr.: St. Joseph, MI. Morey, R.V., and H.A. Cloud. 1973. Simulation and evaluation of a multiple column cross-flow grain dryer. Trans. ASAE l6 (5): 984-987. 171 Morey, R.V., H.A. Cloud, and W.E. Lueschen. 1976. Practices for the efficient utilization of energy for drying corn. Trans. ASAE 19 (l): 151-155. Paulsen, M.R., and T.L. Thompson. 1973. Effects of reversing the airflow in a cross-flow grain dryer. Trans. ASAE 16 (3): 541-545. Peplinski, A.J., O.L. Brekke, E.L. Griffin, G.E. Hall, and L.D. Hill. 1975. Corn quality as influenced by harvest and drying conditions. Cereal Foods World 20: 145-149, 154. Pierce, R.C., and T.L. Thompson. 1981. Energy use and performance related to cross-flow dryer design. Trans. ASAE 24 (1): 216-220. Ross, I.J., and G.M. White. 1972. Discoloration and stress cracking of white corn as affected by overdrying. Trans. ASAE 15 (2): 327-329. Sabbah, M.A. 1971. Convective heat transfer and tempering effects on cooling rate of shelled corn. Unpublished Ph.D. thesis. Purdue University: West Lafayette, IN. Sabbah, M.A., G.H. Foster, C.G. Haugh, and R.M. Peart. 1972. Effect of tempering after drying on cooling shelled corn. Trans. ASAE 15(4):763-765. Schisler,I.P.l982.Personal comunication. Shove, G.C., and E.F.. Olver. 1967. Temperature gradients in drying grain. Trans. ASAE 10(2): 152-153-156. Steffe, J.F., and R.P. Singh. 1980. Theoretical and practical aspects of rough rice tempering. Trans. ASAE 23 (3): 775-782. Stephens, L.E., and G.H. Foster. 1976. Breakage tester predicts handling damage in corn. U.S. Agr. Res. Serv., ARS-NC-49, USDA, Washington, D.C., 6 pp. The World Almanac and Book of Facts. 1981. Published by Newspaper Interprise. Association, Inc. New York, NY. Thompson, R.A., and G.H. Foster. 1963. Stress cracks and breakage in artificially dried corn. USDA Marketing Research Report 631: Washington, D.C. 172 Thompson, T.L., R.M. Peart, and G.H. Foster. 1968. Mathematical simulation of corn drying-a new model. Trans. ASAE ll (4): 582-586. Troeger, J.M., and W.V. Hukill. 1970. Mathematical description of the drying rate of fully exposed corn. ASAE Paper No. 70-324. Am. Soc. Agr. Engr.: St. Joseph, MI. Westelaken, C.M. l977. Concurrent-flow commercial grain dryers. The Westelaken models. ASAE Paper No. 77-3016, Am. Soc. Agr. Engr.: St. Joseph, MI. Westelaken, C.M., and F.W. Bakker-Arkema. 1978. Concurrent flow grain dryind. CSAE Paper No. 78-0712. Annual Meeting of the Canadian Society of Agricultural Engineers: Regina, Saskatchewan, Canada. White, G.M., and I.J. Ross. 1972. Discoloration and stress cracking in white corn as affected by drying temperature and cooling rate. Trans. ASAE 15 (3): 504-507. White, G.M., and I.J. Ross. 1971. Moisture equilibrium in mixing of shelled corn. ASAE Paper No. 71-305. Am. Soc. Agr. Engr.: St. Joseph, MI. APPENDICES 173 174 APPENDIX A PROGRAM XFLO(INPUT.0UTPUT.TAPES=INPUT) COMMON/HELP/IHELP(I) DIMENSION KH(h) C***** MAIN PROGRAM FOR SIMULATION OF A CROSSFLOW DRYER C***** INPUT CONDITIONS OF DRYER TO BE SIMULATED C***** C R O S S F L O W G R A I N D R Y E R M O D E L C***** F.W.BAKKER-ARKEMA, PROJECT LEADER C***** R.C.BROOK AND V.A.DALPASQUALE AND MARK HARDING,PROGRAMMERS C***** C***** c***** M o D I F I E 0 C***** C***** By C***** c***** I.P. SCHISLER (1982) C***** C COMMON WITH LENGTH SET IN PAUXCYBER:=MAIN,PRESS.PRPRTY,HLATENT:: COMMON/LSM/ZKNT LOGICAL ZKNT COMMON/MElER/OTTEN,0M.0FLAG COMMON/MAIN/XMT,THT,RHT,DELT,CFM,XMO.KAB COMMON/BROOK/TOTEN,TOTH20.XMS,CHTC,UNMIX,TY,TB,IPROD.FM,HDF,NSTG COMMON/lNPT/BPH,GP,GVEL,INDI,DELX.YLENG.DBTPR,XWIDE.PDE COMMON/PRPRTY/SA,CA,CV,CW,RHOP,CP COMMON/HLATENT/HA,HB,HFG COMMON/IFLAGS/JFLAG,lCON,TH|GH,KVAD,JUAN,APR23 COMMON /PRESS/PATM COMMON/NAMES/MDOT(A,3) COMMON/VEL/FL,FLI,KK2.XREL,KSTG.THZIN,VREL COMMON/CYCLE/XMOUT.SUMZT,HAVER,THOUT,BTUH20 COMMON/ARRAYS/XM(IOO),RH(IOO),T(IOO,2).H(IOO,2),TH(IOO,2),GA COMMON//XY,IADJ.IXY,SXMD,ADJ(6,I) EXTERNAL 0PTH COMMON/HOPT/ REPNT,HI3,HIA,TI3,TIh,REUSE,TINE,HINE,VER|FY,FHIN,ATI IN,FATIN LOGICAL REUSE,REPNT.VERIFY,HELP,RMRK DATA TRN/0.00I/, REPNT/.FALSE./, VERIFY/.FALSE./ DATA KMZO/ - 20/ F(T) = T + h59.69 VERIFY 8 .FALSE. KAB = O ZKNT 8 .FALSE. DECODE (h.9IA,IHELP(kM20) )KH HELP = .FALSE. IPS 175 RMRK = .TRUE. . IF (KH(I) .EQ. IHH .ANO. KHIZ) .EQ. IHE .ANO. KH(3) I KH(A) .EQ. IHP) HELP = .TRUE. IF (HELP) RMRK = .FALSE. .EQ. IHL .ANO. IF (RMRK) CALL REMARK (AOHOPTIONS EXPLAINED IF: ATTACH,HELP.XFLO. U IF (RMRK) CALL REMARK (AOHATTACH,P,PAUXCYBER. LIBRARY,P. HELP. I) REUSE 8 .FALSE. CONTINUE DELX = 0.) DELT 8 0.002 THZIN = 0. THIGH 8 0.0 YADD = 0. NSTG 8 I .KSTG = I TOTEN = o. TOTH20 . O. TOTEN,TOTH20 ARE CUMULATIVE WRT STAGES AND SECMENTS FL - 0.0 IF (HELP) PRINT 960 IF (HELP) PRINT 933 PRINT 938 READ 926, STAGES PRINT 925. STAGES T8 = STAGES PRINT 9A6 READ 926, EQN PRINT 925, EQN IF (HELP) PRINT 950 PRINT 90I READ 926, POE OFLAG - 0. IF (PDE .LT. O.) OFLAG = I. IF (POE .LT. O.) POE = 0. PRINT 925, POE IF (TB .LT. 0.) GO TO IO PRINT 923 READ 926. PRODUCT PRINT 925. PRODUCT IPROO = INT(PRO0UCT) CALL DATA (IPROO) IF (OFLAG .EQ. I.) MOOT(3.2) - IOHOTTEN'SOYS IF (POE .EO. O.) PRINT 927. (MOOT(I.IPROO).I=I.A) IF (POE .NE. O.) PRINT 927. (MO0T(l.3).lfil,h) IF (HELP .ANO. POE .EQ. O.) PRINT 959 IF (HELP .ANO. POE .NE. 0.) PRINT 96I TB - O. CONTINUE IF (HELP .ANO. FL .EQ. I.) PRINT 902 176 KVAD = O PRINT 9I7, NSTG PRINT 935 READ 926, waDE IF (NSTG .EQ. I) XVAD - XWIDE IF (NSTG .GE. 2 .ANO. PDE .EO. I.) waDE . XVAD C NOTE VARIABLE waDE ADJUSTED IN CONVERT EXCEPT VAD(.,.) FOR PDE=I. PRINT 925, XWIDE XWIDE = waDE/Iz. - C SET KO AND ULI TO VALUE LAST PASS. SET KN KO = KN KN = I + INT((waDE+TRN)/DELx) IF (NSTG .GE. 2) ULI . FLI PRINT 936 READ 926, vLENG PRINT 925. vLENG PRINT 937 READ 926. DBTPR PRINT 925. DBTPR IF (HELP) PRINT 958 PRINT 903 READ 926, xv IF (xv .NE. I. .ANO. xv .NE. 2. .ANO. xv .NE. 3.) xv = 0. PRINT 925, xv IF (HELP) PRINT 90A PRINT 932 READ 926, BPH IF (BPH .LT. 0.) BPH = vLENG/(-BPH/60.)/I.2AA PRINT 925, BPH PRINT 93A READ 926. T8 PRINT 925. T8 GVEL - 8PH*I.24A GP = GVEL*RHOP IF (HELP) PRINT 95I PRINT 939 READ 926, FM C FM (FINE MATTER) EITHER DOMAIN (0.. O.I) OR RESET IN CRSFLWJ PRINT 925, FM IF (FM .GE. O.I .OR. FM .LT. 0.) PRINT 95I IF (HELP) PRINT 952 PRINT 9A0 IF (NSTG .EQ. I) READ 926, HDF IF (HDF .EQ. O.) HDF = I. C IN LAvEQ AND LAvEQSD HDF EITHER DOMAIN (0.99 TO I.) OR RESET TO I. PRINT 925, HDF IF (PDE .EQ. 0. .ANO. (HDF .GT. I. .OR. HDF .LE. 0.99)) PRINT 952 IF (PDE .NE. 0. .AND. HDF .NE. I.) PRINT 953 'IF (NSTG .GE. 2) PRINT 930 IF (NSTG .GE. 2) PRINT 9I8, THOUT IF (HELP .ANO. NSTG .GE. 2) PRINT 95h 177 PRINT 93D READ 926, THIN C DEFAULT WHEN ZERO INPUT IF (THIN .EQ. 0.) THIN = THOUT PRINT 925. THIN IF (NSTG .GE. 2) PRINT 931 IF (NSTG .GE. 2) XMO = IOO.*XMS/(I.+XMS) IF (NSTG .GE. 2) PRINT 9I8, XMO IF (HELP .ANO. NSTG .GE. 2) PRINT 95A PRINT 93) READ 926, XMOW C DEFAULT WHEN ZERO INPUT IF (XMOW .EQ. O.) XMOW = XMO PRINT 925, XMOW XMO . XMOW/(IOO.-XMOW) IF (NSTG .EQ. I) OTTEN - XMO XMS . XMO IF (NSTG .EQ. I) PRINT gzu IF (NSTG .EQ. I) READ 926, TAMB IF (NSTG .EQ. I) PRINT 925. TAMB IF (NSTG .EQ. I) PRINT 928 IF (NSTG .EQ. I) READ 926. RHAMB IF (RHAMB .GT. I.) RHAMB - RHAMB/(I0**(I+INT(ALOGIO(RHAMB)))) TY I RHAMB IF (NSTG .EQ. I) PRINT 925, RHAMB HI 8 HADBRH(F(TAMB),RHAMB) IF (NSTG .EQ. I) PRINT 9AA, HI XMTS 8 XMO IF (NSTG .EQ. I .ANO. PDE .NE. 0.) CALL DEPOT (5.0I,DZ,XMT5,Dh,05) PRINT 919 IF (HELP .AND. NSTG .GE. 2) PRINT 955 IF (NSTG .GE. 2) PRINT 920, TINI, TAMB READ 926, TIN IF (TIN .EQ. I. .ANO. NSTG .GE. 2) TINE 8 TAMB C ALTERNATE POINTER FOR FAN TEMPERATURE IF (TIN .EQ. 0. .AND. NSTG .GE. 2) TIN I TINI IF (TIN .EQ. I. .AND. NSTG .GE. 2) TIN 8 TAMB IF (TIN .EQ. 2. .AND. NSTG .GE. 2) TIN = SUMZT PRINT 925, TIN THIGH 8 AMAXI(THIN,TIN,THZIN) IF (NSTG .EQ. I) TINI 8 TIN (IFICI FROM LAST STAGE) IS NEEDED 3v WBDBHAS IN SOLVEh so THAT ROOT Is WITHIN GUESSES SENT TO ZEROIN.. IF (HELP .ANO. NSTG .EQ. I) PRINT 956 IF (NSTG .EQ. I) PRINT 9A3 IF (NSTG .EQ. I) READ 926. FUEL IF (FUEL .LT. O.) REUSE . .TRUE. IF (REPNT) REUSE - .FALSE. . . C RECYCLED IS 2 AND COOLED IS STAGE 3: IOP3 AND IOPh.. IOP3 - 2 IPS WHEN MULTIPLE STAGES THIS THIGH (SET ACCURATELY WITH THIN FROM 178 IDPA = 3 IF (NSTG .EQ. I) PRINT 925, FUEL IF (NSTG .EQ. I .AND. HELP) PRINT 905 IF (NSTG .EQ. I) CALL ABSH (HIN,TAMB.TIN,HI,FUEL) IF (NSTG .EQ. I) GTINE - TINE IF (NSTG .EQ. I) FHIN . HIN IF (NSTG .EQ. I) HINI a HIN IF (HELP .AND. NSTG .GE. 2) PRINT 955 IF (NSTG .GE. 2) PRINT 921, HINI, HI IF (NSTG .GE. 2) READ 926, HIN IF (HIN .EQ. I. .AND. NSTG .GE. 2) HINE = HI C ALTERNATE POINTER FOR FAN HUMIDITY IF (HIN .EQ. D. .AND. NSTG .GE. 2) HIN - HINI IF (HIN .EQ. I. .AND. NSTG .GE. 2) HIN - HI IF (HIN .EQ. 2. .AND. NSTG .GE. 2) HIN = HAVER IF (NSTG .GE. 2) PRINT 925, HIN APR23 . HIN PRINT 929 READ 926, CFMBU PRINT 925. CFMBU CFM - CFMBU*XWIDE/I.2hh FL = o. PRINT 9A7 READ 926, FLI PRINT 925. FLI . IF (FLI .EQ. O.) XREL = I. IF (FLI .EQ. o.) VREL - I. IF (FLI .EQ. I. .AND. FL .EQ. D.) VREL = I. TRY) = 5. c:INTERPOLATES IN SUBROUTINE SUB AT FEWER THAN (TRYI) COMPUTED POINTS IADJ = h + INT(YLENG/(DELT*GVEL*TRYI*DBTPR)) YADD = YLENG/FLOAT(IADJ-A) IF (xv .EQ. 0.) CALL SETFL (ADJ(6,IADJ)) IF (FLI .EQ. 0.0) GO TO A PRINT 9A8 READ 926. XREL PRINT 925, XREL waDEI - XWIDE*XREL waDEz a waDE - waDEI INDI = INT((waDEI+TRN)/DELX) + I KOI = INDI GO TO 5 3 FL . I. PRINT 9A9 KSTG - 2 READ 926. VREL PRINT 925, VREL INDI = INT((XNIDE2+TRN)/DELX) + I K02 . INDI ' GVEL = GVEL*VREL CALL UNMIxz (KO.KN,KOI,K02,ULI) 179 IF (xv .NE. 0.) ADJ(I,I+IADJ) = waDEI GO TO 8 INDI = INT((XHIDE+TRN)/DELX) + I 5 CONTINUE RHIN = RHDBHA(F(TIN),HIN) RHT a AMAXI(O.,AMINI(I..RHIN)) C SET AIR INLET VALUES THAT DO NOT DEPEND 0N UNMIx. DO IOI I . I, INDI H(I,2) . HIN H(I.I) = HIN RH(I) = RHT IOI CONTINUE IF (HELP .AND. NSTG .GE. 2) PRINT 957 IF (NSTG .GE. 2) PRINT 9A2 IF (NSTG .GE. 2) READ 926, RTvPE IF (NSTG .EQ. I) RTvPE = I. ITvPE . INT(RTvPE) IF (NSTG .GE. 2) PRINT 925, FLOAT(ITvPE) IF (NSTG .GE. 2) PRINT 906 IF (NSTG .GE. 2) READ 926, UNMIx IF (NSTG .GE. 2) PRINT 925, UNMIx IF (NSTG .EQ. I) UNMIx . 2. IF (NSTG .GE. 2 .AND. UNMIx .NE. I.) UNMIx = 2. c SET AIR INLET SIDE (DUAL) OR ALL TOP (SINGLE SPEED);AFTER INDISET IF (UNMIx .EQ. I.) GO TO 6 00 I02 I = I, INDI T(I,2) = THIN T(I,I) = T(I,2) I02 CONTINUE 6 CONTINUE . IF (UNMIx .EQ. 2. .AND. RTvPE .EQ. 2. .AND. NSTG .GE. 2) CALL UNMI Ix3 (KO.KN,KOI,K02,ULI) IF (NSTG .GE. 2) CALL UNMIXI (K0,KN,KOI,K02,ULI) IF (UNMIx .EQ. 2. .AND. NSTG .GE. 2 .AND. PDE .EQ. I. .AND. RTvPE I.EQ. I.) CALL DEPOT (8.DI.Dz.D3,DA,05) IF (UNMIx .EQ. 2. .AND. NSTG .GE. 2 .AND. PDE .EQ. I. .AND. RTvPE I.EQ. 2.) CALL DEPOT (A.DI,Dz.D3,DA,D5) IF (UNMIx .EQ. I. .ANO. NSTG .GE. 2 .AND. PDE .EQ. I. .AND. RTvPE I.EQ. 2.) CALL DEPOT (3.DI,D2,D3,DA.05) IF (UNMIx .EQ. I.) GO TO 7 c, SET VALUES NHEN MIXED (INCLUDES TOP OF FIRST STAGE) 00 I03 I = I, INDI XM(I) . XMO IF (EQN .EQ. I. .OR. EQN .EQ. 2.) TH(I,2) = T(I,2) = T(I,I) = TH I IN . IF (EQN .EQ. 3. .OR. EQN .EQ. A.) TH(I,2) = THIN TH(I,I) = TH(I,2) I03 CONTINUE 7 CONTINUE va - 2 + INT(vLENG/DDTPR) IF (xv .NE. 0.) CALL SETFL (ADJ(6,IADJ+IXY*INDI)) t“ 180 IF (xv .NE. 0.) ADJ(I,I+IADJ) = 0. IF (ITYPE .EQ. 2) CALL CONVERT (KO,KN,KOI,K02,ULI) NODE AT AIR INLET AFETER MIXING/AIRREVERSAL TH(I,2) . TIN TH(I,I) - TH(I,2) T(I,2) = TH(I,I) T(I,I) - T(I,2) CONVERT AIRFLON T0 LB/HR BEFORE VSDBHA(F(TAMB),HIN) GA - 60.*CFM/VSDBHA(F(TINE),HINE) C *********k CHTC . 0.363*(GA**0.59) IF (GA .LT. 500.) CHTC . 0.69*(GA**O.A9) C ********** C ESTIMATE FOR CHTC FROM MSUAESRR22A. 8 IF (xv .EQ. 0.) KADJ = IADJ IF (xv .NE. 0.) KADJ = IADJ + IXY*|NDI- PRINT HEADER PAGE OF CONDITIONS AND PROPERTIES PRINT 9AI, CFM, GA. XMD. BPH*VREL, BPH*VREL*XWIDE*XREL, GVEL IF (HELP) PRINT 907, IADJ, vADD, KADJ IF (INDI .GE. I00) PRINT 922, INDI CALL CRSFLwJ (TIN,THIN,HIN,YADD,TAMB,EQN) KVAD - INDI - I C SET Ckkkfifl ACTUALLY NEAR IO. C***** C IPS IF (FLI .EQ. 0.) FL - I. IF (FL .EQ. 0.) GO TO 3 IF (NSTG .EQ. IOP3) HLS - HI3 IF (NSTG .EQ. IOP3) HI3 - HAVER IF (NSTG .EQ. IOPA) FHIA = HIA IF (NSTG .EQ. IOPA) HIA = HAVER IF (NSTG .EQ. IOP3) FTI3 = TI3 IF (NSTG .EQ. IOP3) TI3 = SUMZT IF (NSTG .EQ. IOPA) FTIA = TIA IF (NSTG .EQ. IOPA) TIA = SUMZT IF (NSTG .GE. STAGES .AND. FL .EQ. I.) GO TO 9 KSTG . I NSTG = NSTG + I . SIMULATE NEXT SPEED OR SECOND SIDE OF Two-STAGE. GO TO 2 9 PRINT 9h5, KAB C *AAMAQPTIQNAAAAA ........................................... C OPTION= ZEROIN CALCULATES LOCKSTEP RECYCLED TEMPERATURE AND HUMIDTY IF (FUEL .LT. 0. .OR. HELP) PRINT 909, FTI3, TI3 IF (FUEL .LT. 0. .OR. HELP) PRINT 9II, HLS, HI3 IF (FUEL .LT. 0. .OR. HELP) PRINT 9I0, FTIA, TIA IF (FUEL .LT. 0. .OR. HELP) PRINT 908, FHIA, HIA VERIFY = .TRUE. IF (NSTG .GE. IOP3 .AND. .NOT. REPNT) CALL ABSH (HIN,TAMB,TIN,HI,F IUEL) VERIFY = .FALSE. IF (NSTG .GE. IOP3 .AND. .NOT. REPNT) PRINT 9I5, GTINE. ATIN IF (NSTG .GE. IOP3 .AND. .NOT. REPNT) PRINT 9I6, FHIN. HIN IF ( .NOT. REUSE .AND. .NOT. REPNT) STOP 181 IF (REPNT) STOP CALL ZEROIN (HLDH,HHI,EPS,0PTH) HIN = (HL0w+HHI)/2. PRINT 935,HIN,SAVE2.SAVEI _ DD IDA J = I, 5 . TI3 . O.5*(FTI3+TI3 FTI3 - TI3 HI3 . 0.5*(HLS+HI3) HLS . HI3 FTIA . O.5*(TIA+FTIA) TIA - FTIA FHIA = 0.5*(HIA+FHIH) HIA = FHIA DUMOBJ - 0PTH(HLS) IDA CONTINUE REPNT - .TRUE. REwIND 5 KAB - 0 GO TO I C ab'::b'::':0PT l 0N*:‘:a’::‘c* ------------------------------------------- c: OPTION- COMPARISON OF THINLAvER AND PDE MOISTURE REMOVAL I0 CONTINUE . DELT . 0.03 - PRINT 9A0 READ 926, HDF PRINT 925, HDF OFLAG = 0. C: DELT . HDF, AND OFLAG CAN BE SET TO OTHER VALUES PRINT 923 READ 926, PRODUCT PRINT 925. PRODUCT IPROD . INT(PRODUCT) CALL DATA (IPROD) PRINT 930 READ 926, THIN PRINT 925, THIN PRINT 93I READ 926. XMON PRINT 925, XMOH PRINT 928 READ 926, RHAMB PRINT 925, RHAMD XMT = XMON/(I00.-XMOH) XMT5 - xMT XMNON . XMTS XMO a XMNON C HLOW = O.5*HI3 C HHI = I.75*HI3 C EPS = O.3*HI3 C SAVEI-HHI C SAVE2=HLOw C C C 182 OTTEN = XMO RHIN = RHAMB CALL DEPOT (5,DI.02,XMT5,DA,05) TB = -TB/60. C HDF,RHT,THT,CFM,DELT (LAvEQ); JFLAG, FI, KVAD (DEPOT); GVEL (EMCPDE) TIME . 0. JFLAG = I KVAD . 0 . . GVEL . I. FI = DELx JFLAG . I RHT = RHIN THT - THIN CFM a 0. HI = HADBRH(F(THIN),RHAMB) XME = EMC(RHAMB,THIN) PRINT 9I2, THIN, xMT, RHIN, TB, HI, XME II TIME s TIME + DELT CALL DEPOT (6,RHIN,THIN,xMNON.XMC.Ds) CALL DEPOT (I0,DI.Dz,D3,DA,xMC) CALL DEPOT (II,FI,02,D3,DA,05) IF (IPROD .EQ. I) CALL LAvEQ IF (IPROO .EQ. 2) CALL LAYEQSO PDE = XMC/(I.+XMC) TROGER - XMT/(I.+XMT) PRINT 9I3, TIME. PDE. TROGER XMNOW = XMC IF (TIME .LE. TB) GO TO II STOP 90I FORMAT (IxAPDE THINLAYER: N=O Y=I SH=2 :A) 902 FORMAT (Ix* ------ IN SUMMARY TABLE*./,IX*BTU/LB-H20 FOR SEGMENTS R IELATES ENERGY T0 WIDTH*,/,IX*STATIC PRESSURE ONLY DEPENDS 0N HIDTH 2 FOR SOYBEANSA) 903 FORMAT (kaxv: N=O v=I, NODE=2, SCAN=3:*) 90A FORMAT (IX*IF BPH = NEGATIVE TIME (MIN) THEN BATCH CROSSFLOW*,/,5X I,*WITH Rows IN OUTPUT TABLE BEING ZERO TO TOTAL HOLDING TIME*) 905 FORMAT (IX*DOES DRYER? NsAMBIENT TO BURNER *./.5X*Y=STAGE 2 RECYCL IED AND STAGE 3 COOLER (EITHER ZERO LENGTH)*,/,IX*LENGTH (OR MORE C 20RRECTLv AIRFLON) OF THREE STAGES*) 906 FORMAT (IX*ARRAY AVERAGE THE TOP OF STAGE GRAIN MOISTURE ?*./.IX*I I-NO CHANGE: 2= MAKE MOISTURE UNIFORM :9) 907 FORMAT (IX*SETFL ADJ(6,*I3*) FOR EDGE EVERY*FIO.A* FT**; ADJ(6,*|3 1*) INCLUDING xv PRINTOUT*) 908 FORMAT (IXfiTAG ALONG: COOLER HUMIDITY*2(IX,EIO.A)) 909 FORMAT (IX*TAG ALONG: RECYCLE TEMPERATURE*2(IX,EIO.A)) 9I0 FORMAT (IX*TAG ALONG: COOLER TEMPERATURE*2(IX.EIO.A)) 9II FORMAT (IXATAG ALONG: RECYCLE HUMIDITY*2(IX,EIO.A)) 9I2 FORMAT (/////.IX,*TH(F) M(DB) RH(DEC) TIME(HR) H EMC*,6(IX.EIO.A)) 9I3 FORMAT (IX*TIME *EIO.A* M Bv PDE = *EIO.A* M Bv THINLAYER . *EIO.A I) . 2(DRY BASIS DECIMAL) 1183 9IA FORMAT (AAI) . 9I5 FORMAT (Ix TAG ALONG T TO BURNER ASSUMED:ACTUALA2(Ix,EI0.A)) 9I6 FORMAT (IxATAG ALONG H FROM BURNER ASSUMED:ACTUALA2(Ix,EIO.A)) 9I7 FORMAT (IXA INPUT FOR STAGE=AI5) 9I8 FORMAT (Ix,EIO A) 9I9 FORMAT (IXAINLET AIR TEMP. (SAY,FROM HEATER),F:A) 920 FORMAT (IXA(TIN) EITHER HEATER 0R AMBIENTA./.3(Ix,EIO.A)) 92I FORMAT (IXA(ABS.HUM.) EITHER HEATER 0R AMBIENTA,/,3(Ix.EI0.A)) 922 FORMAT (A WARNING ARRAYS TOO SMALL FOR x=x+DELx:MODE=I,INDI=AIA) 923 FORMAT (IXATYPE OF PRODUCT(CORN=I 0R SOYBEAN=2): ) 92A FORMAT (5XAINLET AMBIENT TEMP, F :A) 925 FORMAT (IH+,A0x,2FI0.A./.5(Ix,FI0.A)) 926 FORMAT (5FIO.2) - 927 FORMAT (AOCROSSFLON GRAIN DRYER SIMULATION /A USING THE AAIO,Ix,AI IOA EQUATION FOR AAIO/A AND EMC BY AAI0//) 928 FORMAT (5XAAMBIENT REL HUM, DEC :A) 929 FORMAT (5XAAIRFLOH, CFM/BU (AT FAN INLET):A) 930 FORMAT (5XAINLET GRAIN TEMP, F:A) 93I FORMAT (5xAINLET MOISTURE, WET BASIS PERCENT: ) 932 FORMAT (5XAGRAINFLOH (BU/HR/SQ FT):A) 933 FORMAT (IXAIF NO. STAGES . NEGATIVE DRYING TIME (MIN)A,/,A COMPARE IS PDE T0 TROGER:INITIAL M,THIN (SAY TIN) AND RHA) 93A FORMAT (IXARATIO VOL. TEMPER/VOL. INPUT;A) 935 FORMAT (5XACOLUMN WIDTH, IN:A) 936 FORMAT (5XACOLUMN LENGTH. FT:A) . 937 FORMAT (5XAOUTPUT INTERVAL; FT:A) 938 FORMAT (5xAN0.OF STAGES(DRYER+COOLER).NOT TEMPER:A) 939 FORMAT (5XAFINE MATERIALS,DECIMAL:A) 9A0 FORMAT (5xAHYBRID FACTOR,DEC :A) 9AI FORMAT (//A PRELIMINARY CALCULATED VALUESA//A AIRFLOW, CFM/SQ FT *F8.h/* DRY AIRFLOW RATE, LB/HR-FTZ *F8.h/* INLET MC *F8.A/* GRAIN FLOW RATE, BUSHELS/HR-FT2*F8. 3A./.IXABU PER HR PER FT 0F COLUMN wIDTHAF8.A,/A GRAIN FLow RATE, F AT/HR AF8.A,/) 9A2 FORMAT (IXAARRAY CONVERSION TO REVERSE AIRFLONA,/.IXA(I=NO CHANGES I 2=REVERSE AIRFLOH):A) 9A3 FORMAT (5XATYPE 0F FUEL USED (I=N0.2 FUELA/5X,A2=NAT.GAS, 3=L.P.GA IS) :*) 9AA FORMAT (5x,ACALCULATED AMBIENT ABS HUM=A9x,FIO.A) 9A5 FORMAT (5x,ATHIS IS THE END OF CROSSFLOW (N CON AB) AII6) 9A6 FORMAT (5x,ANUMBER 0F EQUATIONS IN THE SYSTEMA/5x,A(I= 3 EQ.-EXPL; I 2- 3 EQ.—IMPLA,/,5XA3= A EQ.-IMPL: A- A EO.-IMPL:x=G(X):A) 9A7 FORMAT (A IS THIS A TWO SPEED GRAIN FLOW STAGE2A/IOXA YES - I.0 I NO - 0.0: A) - 9A8 FORMAT (5XAFRACTIONAL WIDTH,(IN DEC OF IST SIDE)A) 9A9 FORMAT (5XA VELOCITY 2ND-SIDE/IST-SIDE(SAY DEC)*) 950 FORMAT (IXAPDE ZERO:THINLAYER TROEGER.THOMPSON (SABBAH)A./.IXAPDE IPOSITIVE: CRANK-LYKOV (HEAT EQN) FOR SPHEREA./.IXAPDE=2 THEN CORN 25ABBAH.LE.I6O CHU.GT.I60A./.IXAIF PDE NEGATIVE THEN OTTEN THIN LAY 3ER (FOR SOYS)A./.IXANITH PDE RESET TO ZEROA) 95I FORMAT (IxAFIND MATTER (0.,0.I) OR RESET 0.05 IN CRSFLwJA) 184 952 FORMAT (IX*EITHER HYBRID DRYING FACTOR (0.99,I.) OR *,/,IX*RESET T I0 I IN LAYEQ AND LAYEQSOA) 953 FORMAT (IX*ENTERED HDF MULTIPLIES DIFF(USIVITY) IN DEPOT*) 95A FORMAT (IX*ENTER PROMPT VALUE 0R ZERO WHICH SELECTS PROMPT*) 955 FORMAT (IX*ENTER ONE OF THREE PROMPTS 0R ENTER 0.,I.,2. POINTER*) 956 FORMAT (IX*FUEL (IF NEGATIVE ZEROIN; IF ZERO SPECIFY RECYCLED)*./) 957 FORMAT (IX*TYPICAL (REVERSE.UNMIX) FOR GRAIN PREVIOUS STAGE*./.IX* I(AUGER = 12) (GRAVITY 8 II) (GRAVITY-HG 8 ZI) (INVERT:22)*,/,IX*IN 2VERT: OTTEN I980 CAN J AG ENG,VOL 22 PP I63*) 958 FORMAT (IX*XY = I PRINTS AT EACH (X,Y); XY=2 ALSO INTERNAL M*) 959 FORMAT (IX*COMPOS|TE OF TWO LAYEQ P A9 RR ZAA*,/,IX*CORN: TROEGER I80 T0 I60 F; THOMPSON ABOVE I60 F*./.IX*SOYS: OVERHULTS 100 T0 220 2 F: 20 T0 33 NBA) 960 FORMAT (IX*NO. STAGES IS STAGES NEEDING DETAILED DESCRIPTION*./.IX IfiTEMPERING HOPPER ONLY NEEDS VOLUME, THETA AND RH(AMBIENT)*) 961 FORMAT (IXAINSTEAD 0F ANALYTICAL THIN LAYER SDLVES PDE SPHEREA./.I IX*USING METHOD BROOK:STEFFE AND DIFFUSIVITY SABBAH*./.IX.* (M) FRO 2M PDE EQUALS (M) FROM DH/DX=(-GP/GA)DM/DY *) END C 2’::‘n‘:Ain'takfiz‘ckz'cz'mitz'n'n'n':Azb'n'n'n'::‘Eiezka'cftka'n'cickin'n'n‘:3':A****:'::'::‘::'::':z‘n'n‘u'c:‘n'n'n'::‘n‘::‘n‘n’n‘n‘n’n‘n‘n‘: SUBROUTINE ABSH(H|N.TAMB.TIN.HI,FUEL) LOGICAL VERIFY,REPNT.REUSE COMMON/HOPT/ REPNT,HI3,HIA,TI3,TIA,REUSE,TINE,HINE,VERIFY,FHIN,ATI IN,FATIN DATA lNPT/O/ IF (INPT .EQ. 0) HTIN = TIN IF (VERIFY) ATIN 8 (A5*TAMB+B3*TI3+Bh*TIh)/A6 IF (VERIFY) AHI = (A5*HI+B3*HI3+BA*HIA)/A6 IF (VERIFY) HIN a AHI + A*(I.+AHI)*CP*(HTIN-ATIN) IF (VERIFY) RETURN g IPS MODEL OF HUMIDITY ADDED BY HEATER USED BY XFLO AND OPT. '5': 3': :‘cin': c:-::::::::: FUEL=I STANDS FOR No.2 FUEL Cfcz'n'dn': FUEL=2 STANDS FOR NATURAL GAS C**:‘::'dt FUEL=3 STANDS FOR LIQUID PROPANE GAS C3%**A:A IF (INPT .EQ. 0) TIA = TAMB IF (INPT .EQ. 0) MIA = HI IFUEL . IABS(INT(FUEL)) IF (IFUEL .EQ. O) A = 0. IF (IFUEL .EQ. I) A . 7.0IA3E - 5 IF (IFUEL .EQ. 2) A = 8.I75E - 5 IF (IFUEL .EQ. 3) A . 7.593E - 5 CP - 0.2A HFUEL = A*(I.+HI)*CP*(TlN-TAMB) HIN = HI + HFUEL IF (INPT .EQ. 0) PRINT 90I IF ( .NOT. VERIFY) READ 906. FLAG IF (INPT .EQ. 0) PRINT 905, FLAG IF (FLAG .NE. I.) TI3 = TINE = TAMB IF (FLAG .NE. I.) HI3 . HINE = HI C IF IF IF IF IF IF IF IF IF IF IF IF IF IF IF IF IF IF A5 8h A6 IF IF IF IF IF IF IF IF FLAG . ( (IFUE ( L FLAG . (FLAG . (INPT . (INPT . (INPT . (INPT . (INPT . (INPT . (INPT . (INPT . (INPT . (INPT . (INPT . (INPT . (INPT . (INPT s A5/A6 83 - B3/A6 - BA/A6 8 I. (INPT . (INPT . (INPT . (INPT . (INPT . (INPT-. (INPT . (INPT ATIN 8 ( IF ( .NOT. REPNT) HATIN 8 A5 .AND. A5 .AND. A5 .AND. A5 185 .AND. INPT .EQ. O) PRINT 903 READ 906, HINE, TINE .AND. INPT .EQ. 0) PRINT 906, HINE, TINE RETURN PRINT 909 READ 906, A6 READ 906, D PRINT 910 READ 906, B3 READ 906, D PRINT 9II READ 906, BA READ 906, 0 A6 = A6 + 83 A5 = A6 - B3 - BA .LT. 0.) BA = A6 - B3 .LT. 0.) PRINT 902 .LT. 0.) A5 = O. PRINT 908. HIN. HFUEL + H|*(I.-83)+0.025*B3 READ 906, HIN READ 906, D PRINT 907, TAMB, B3*TIN+(I.-B3)*TAMB READ 906, D READ 906, TINE TI3 8 (A6*TINE-A5*TAMB-BA*TIA)/B3 .AND. 0 .NE. LEGVAR(TI3)) TI3 = TAMB ATAMB+33*T|3+BH*Tlh)/A6 ATIN IF (REPNT) ATIN . HATIN TINE . ATIN IF (INPT .EQ. 0) HI3 - (A6A(HIN-AACPA(TIN-ATIN))/(I.+AACPA(TIN-ATI IN))-(A5AHI+BAAHIA))/B3 IF (INPT .EQ. 0 .AND. 0 .NE. LEGVAR(HI3)) HI3 = HI AHI - (A5AHI+B3AHI3+BAAHIA)/A6 HFUEL 8 A*(I.+AHI)*CP*(TIN-ATIN) IF ( .NOT. REPNT) HIN 8 AHI + HFUEL IF ( .NOT. REPNT) HHIN 8 HIN IF (REPNT) HIN 8 HHIN HINE 8 HIN IF ( .NOT. VERIFY) PRINT 903 IF ( .NOT. VERIFY) PRINT 906. HINE. TINE IF (INPT .EQ. O) PRINT 90h, 83. BA, A5 INPT 8 I RETURN 90] FORMAT (IX*DOES DRYER RECYCLE AIR ? I8Y O8N: *) 902 FORMAT (IX*WARNING RESET COOLER LENGTH AND DELETED AMBIENT*) 186 903 FORMAT (IX*--------*,/,IX,*ENERGY BALANCE BASED ON H AND T:*) 90A FORMAT (IXAFRACTION TO BURNER : RECYCLED. COOLER, MAKEUP*,/,ISX,3( IIx,FI0.2)) 905 FORMAT (IH+,A0x,2FI0.A,/,5(Ix,FIO.A)) 906 FORMAT (5FIO.A) 907 FORMAT (Ix,FI0.2.A TO SAY A,FI0.2,A T TO BURNER: A) 908 FORMAT (IX,FIO.A,* TO SAY*,FIO.A,* H FROM BURNER: *) 909 FORMAT (IXALENGTH STAGE AIR EXHAUSTED: A) 9IO FORMAT (IXALENGTH STAGE AIR RECYCLED: A) 9II FORMAT (IXALENGTH STAGE GRAIN COOLED: A) END AkflkfikkkflflfikflkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*fiflkkfifififlkkfiflkfikkfififi SUBROUTINE CONVERT(KO,KN,KOI,K02,FLI) IPS REVERSING SIDE HEATED AIR ENTERS STAGE REDUCES DMIX,Y)/DX IPS ASAE72-829 AND TASAE-IG-SAI-I973: CONVERT IS CALLED BY XFLO IPS I ASSUMED OLD DRIVER STORED VALUES AS IN UNMIXI AND UNMIXZ. FLI (8ULI) WHETHER PREVIOUS STAGE SINGLE OR DUAL SPEED KO PREVIOUS X-NODE TOTAL KN CURRENT X-NODE TOTAL KOI PREVIOUS AIR INLET X-NODE K02 PREVIOUS AIR OUTLET X-NODES AAAAA n nnnnnnnnn COMMON/ARRAYS/XM(IOO),RH(IOO),T(I00,2),H(I00,2),TH(IOO,2),GA COMMON/INPT/BPH,GP,GVEL,INDI,DELX,YLENG,DBTPR,XWIDE,PDE IT . INDI + I IN005 - INDI/2 DO IOI I . I, IN005 IT = IT - I TEMP = XM(IT) XM(|T) = XM(I) XM(I) . TEMP TEMP a RH(IT) RH(IT) a RH(I) RH(I) = TEMP TEMP = T(IT,I) T(IT,I) - T(I.I) T(I,I) = TEMP TEMP = H(IT,I) H(IT,I) = H(I.I) H(I,I) . TEMP TEMP s TH(IT,I) TH(IT,I) = TH(I,I) TH(I.I) = TEMP IOI CONTINUE RETURN ENTRY UNMIxz (I wHEN TWO SPEED STORE RESULTS FROM AIR INLETSIDE DO I02 I = I, K0] II - I00 — KOI + I <2 NOTE DIMENSION OF COMMON/ARRAYS/ IS I00 XMIII) = XM(|) 187 TH(II,2) = TH(I,2) 102 CONTINUE RETURN ENTRY UNMIXI IF (FLI .EQ. 0.) GO TO I IF ((KOI+K02) .GE. I00) PRINT 90I C STORE VALUES IN CASE GRAIN UNMIXED BETwEEN STAGES C IF LAST STAGE WAS TWO SPEED PUT AIR OUTLET DATA IN LARGE-INDEX C AND STORED AIR INLET DATA IN SMALL-INDEX POSITION OF PRODUCT ARRAYS. 00 I03 I = I, K02 II = I + KOI XM(|I) . XM(I) TH(II,2) . TH(I,2) I03 CONTINUE DO IOA I = I, KOI II = I00 - KOI + I xM(I) = xM(II) TH(I,2) - TH(II,2) IOA CONTINUE I 00 I05 I - I, KN C IPS ADJUST LOWER EDGE (NSTG-I) FOR NON-UNIFORM WIDTH COLUMN (NSTG) K - K0 + (KN-I)A(I-Ko)/(KN—I) RH(I) = XM(K) TH(I,I) . TH(K.2) I05 CONTINUE _ DO I06 I - I, KN XM(I) = RH(I) TH(I,2) . TH(I,I) I06 CONTINUE RETURN ENTRY UNMIx3 KIOO = I00 IF (FLI .EQ. 0.) KOI = KN IF (FLI .EQ. 0.) KIOO - KN IF (FLI .EQ. 0.) GO TO 2 AM a 0. AT . 0. 00 I07 I = I. K02 AM = AM + XM(I) AT = AT + TH(I,2) I07 CONTINUE AM = AM/FLOAT(K02) AT = AT/FLOAT(K02) 00 I08 I = I. K02 XM(|) = AM TH(I,2) = AT I08 CONTINUE 2 AM = 0. AT 8 0. DO I09 I 8 I, KOI II 8 KIOO - KOI + I I09 IIO C 90I 188 AM = AM + XM(II) AT = AT + TH(II,2) CONTINUE AM - AM/FLOAT(KOI) AT s AT/FLOAT(KOI) DO IIO I = I, KOI II = KIOO - KOI + I XM(II) a AM TH(II,2) = AT CONTINUE RETURN FORMAT (IX*WARMNING ARRAYS IN SUBROUTINE CONVERT OVERWRITTENfi) END CA*AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA*AAAAAAAAA*********************** SUBROUTINE CRSFLWJ(TIN,THIN,HIN,YADD,TAMB,EQN) C CRSFLWJ CONTROLS h-VERSIONS OF CROSSFLOW EQUATIONS (I TEMPERING) I DIMENSION REFT(2).LABT(2).PAST(A) COMMON/MEIER/OTTEN.0M,OFLAG COMMON/MAIN/XMT,THT.RHT.DELT.CFM.XMO.KAB COMMON/BROOK/TOTEN.TOTH20,XMS,CHTC,UNMIx,TY,TB,IPROD,FM,HDF,NSTG COMMON/lNPT/BPH,GP,GVEL,INDI,DELX,YLENG,DBTPR,XWIDE,PDE COMMON/PRPRTY/SA,CA,CV,CW,RHOP,CP COMMON/CYCLE/XMOUT,SUMZT,HAVER,THOUT,BTUH20 COMMON/ARRAYS/XM(IOO),RH(I00),T(I00,2),H(IOO,2),TH(100p2).GA COMMON//XY,IADJ,IXY,SXMD,ADJ(6,I) COMMON/HLATENT/HA,HB,HFG COMMON/IFLAGS/JFLAG,ICON,TH|GH,KVAD,JUAN,APR23 COMMON/PRESS/PATM LOGICAL VERIFY,REPNT,REUSE COMMON/HOPT/ REPNT,HI3,HIA,TI3,TIA,REUSE,TINE,HINE,VERIFY,FHIN,ATI IN.FATIN COMMON/VEL/FL,FLI,KK2,XREL.KSTG,THZIN,VREL EXTERNAL SOLVEA,SOLVE DATA PATM/IA.3/. RHC/0.9998/, TRN/O.OOI/. UT/2.326/ DATA HMIN/0.OOI/. TOTHP/0./ F(T) = T + A59.69 JUAN INT(EQN) IXYT = 0 IF (FLI .EQ. I. .AND. FL .EQ. I.) GO TO I ISTOP = 0 IF (TB .GT. 0.) ISTOP = I vL - 0. PRL - 0.0 YADJ = 0. IF (FL .EQ. 0.) STEN = 0. IF (FL .EQ. 0.) STH20 = 0. SGEN = 0. SGHzo . O. ITERCT = 0 SUMZT a o. C***** C***** C***** C***** C***** C***** C***** 2 189 IEXIT 8 O KKK 8 O HAVER 8 0.0 JFLAG 8 I BEGIN TIME LOOP DELY 8 GVEL*DELT BEGIN YrDEPTH LOOP YL 8 YL + DELY KAB 8 KAB + IOOOOOOOO COMPUTE MC FOR DEPTH8O IF (FL .EQ. I.0) GO TO 3 C BEFORE (XFOVEL) TH(I,I)=(5.ATH(I,I)+T(I,I))/6. FOR ALL Y. C BEFORE (XFLOSILVA) TH(I,I)=TIN ‘ C IPS TH(I,2) = TIN ALPHA - 2.AGA/SSS. ALPHA = AMINI(I.,ALPHA) TH(I,2) = ALPHAATIN + (I.-ALPHA)ATH(2,2) TH(I,I) . TH(I,2) THT TH(I,I) XMT = XM(I) RHT - RHDBHA(F(T(I,I)).H(I,I)) RH(I) - RHT IF (IPROO .EQ. I .AND. PDE .NE. I.) CALL LAYEQ IF (IPROO .EQ. 2 .ANO. PDE .NE. I.) CALL LAYEQSO JFLAG = I RHT5 = RHT THT5 = THT XMT5 = XMT IF (PDE .EQ. I.) CALL DEPOT (6.RHT5,THT5,XMT5,XMC.05) IF (PDE .EQ. I.) CALL DEPOT (IO,DI.Dz,D3,DA.XMc) IF (PDE .EQ. I.) XMT = XMC XM(I) = XMT H(I.2) = H(I,I) T(I,2) = T(I.I) TH(I,2) = TH(I,I) GO TO A INTERPOLATE TO GET INLET CONDITIONS ALONG EDGE OF SECOND SEGMENT. CALL SUB (KK2,YL-DELY,x,I,I) MSUB = INT(X) CALL SUB (MSUB,YL-DELY,XT,3,2) IF (YL .EQ. DELY) TIN = XT T(I.I) = XT CALL SUB (MSUB.YL-DELY.XTH,2,2) TH(I,I) = XTH CALL SUB (MSUB.YL-DELY.XH,5,2) H(I,I) - XH IF (YL .EQ. DELY) HIN = XH C C nnnnn C 190 CALL SUB (MSUB.YL-DELv.XRH.6,2) RH(I) = XRH CALL SUB (MSUB,YL-DELY,XXM,A,2) XM(I) a XXM CALL SUB (KK2,YL,X,I,I) MSUB - INT(x) CALL SUB (MSUB.YL.XT,3,2) T(I.2) = XT CALL SUB (MSUB.YL.XTH.2.2) TH(I,2) = XTH CALL SUB (MSUB.YL.XH,5,2) H(I.2) - XH IF (YL .GT. DELY) GO TO A NEED TO RESET AT LEAST TOP OF SECOND SIDE :OTHERwISE DEFAULTS T0 USING VALUES FROM BOTTOM FIRST SIDE OF STAGE. DO IOI J = I, INDI RH(J) s RH(I) TH(J.2) . TH(I.2) TH(J,I) . TH(I,I) T(J,2) - T(I,2) T(J.I) - T(I.I) XM(J) s XM(I) H(J,2) - H(I.2) H(J,I) - H(I,I) IOI CONTINUE A CONTINUE IF (JUAN .EQ. I) GO TO 7 IF (JUAN .EQ. A) GO TO 5 IF (JUAN .EQ. 2 .OR. JUAN .EQ. 3) GO TO 9 AAAAAOPTIONAAAAA ------------------------------------------- START CRSFLN2=(CRSFLHA IN OPTXFLO AND XFLOVEL) CROSSFLOW; A-EQUATION IMPLICIT, ONE ITERATION IN SOLVEA. METHOD USED XFLOVEL (PADUCAH), OPTXFLO AND 7JIMXLFO(SAGINAW) AAAAAOPTIONAAAAA ----------------------- ‘ -------------------- 5 00 I02 J - 2, INDI KAB - KAB + IOOOOOOOO JFLAG = J JM - J - I BEFORE TH(J,2)=TH(JM,2) BY x RATHER THAN USUAL Y (XFLOVEL) CONI = GAADELT CON2 . CW — CV HFG = HEATLAT(XM(J),TH(J,I)) CON3 = HFG + 2I2.A(Cw-CV) CONA - RHOPADELx TI - CONIA(H(J,I)-H(JM,I)) T2 . CONIAICA+CVAH(JM,I)) IF (IPROO .EQ. 2) CP = 0.39123 + O.A6057AXM(J) T3 - CONAA(CP+CHAXM(J)) T(J,2) - (-TIACON3+T2AT(JM,I)+T3ATH(J,I))/(-TIACON2+T2+T3) TH(J.2) - T(J,2) ESTIMATE OF HJ2 AS IN XFLOVEL nnnn nnnn 191 HJ2 = H(JM,2) DIFF = SOLVEA(HJ2) IF (ICON .NE. 0) GO TO 6 BEFORE ITERATED NITHIN SOLVEA RATHER THAN TNO CALLS FROM CRSFLNJ BY TNO CALLS FROM CRSFLNJ : SOLVEA CAN BE USED BY ZEROINA SUGGESTION: NENTON-RAPHSON SEARCH, LET HJ2=H,DIFF=D THEN H8(HI+H2)/2 - (Dz-DI)/(H2-HI)A(DI+02) CCON6 - GAADELT/(RHOPADELX) XMT = DIFF + XM(J) - (HJ2-H(JM,2))ACCON6 RESET XMT BECAUSE RESET IN SOLVEA BUT NOT IN ITERATIVE SOLVEA. . HJ2 . H(JM,2) + (XM(J)-XMT)/CCON6 DIFF . SOLVEA(HJ2) 6 XM(J) = XMT IF (ICON .NE. 0) KAB = KAB + IOOOO XTEM = XM(J) THT5 = T(J,2) RHT5 = RH(J) XMT5 = XM(J) IF (PDE .EQ. I.) CALL DEPOT (9,RHT5,THT5,XMT5,DA,XTEM) I02 CONTINUE GO TO 23 AAAAAOPTIONAAAAA ------------------------------------------- 3-EQUATION EXPLICIT (CRSFLNI) VALID LON AIR FLON METHOD USED UCRSOPT(TELPLAN), CCRS (PURDUE), SILVAXFLO (KJ/KG) *kfiAAOPTION****A -------------------- 8 ---------------------- 7 DO IO3 J = 2, INDI KAB = KAB + IOOOOOOO JFLAG . J JM = J — I THT T(J,2) XMT XM(J) HFG HEATLAT(XMT,THT) IF (H(J,I) .LE. 0.) H(J,I) = APR23 .IF (H(J,I) .GE. I.) H(J,I) = I. RHT = RHDBHA(F(T(J.I)),H(J,I)) C***** CALL SUBROUTINE CONTAINING M EQUATION (M IS GRAIN MOISTURE) IF (IPROD .EQ. 2 .AND. PDE .NE. I.) CALL LAYEQSO IF (IPROO .EQ. I .AND. PDE .NE. I.) CALL LAYEQ RHT5 = RHT THT5 = THT XMT5 . XMT IF (PDE .EQ. I.) CALL DEPOT (6,RHT5,THT5,XMT5,XMC,05) IF (PDE .EQ. I.) XMT = XMC C***** COMPUTE CONSTANTS USED BY EQUATIONS WITHIN LOOP CONI 8 GA*DELT CON2 8 CW - CV CONI2 8 CONI*CON2 CON3 8 HFG + 2I2.*(CW-CV) CONI3 8 CONI*CON3 CONA 8 RHOP*DELX CONS 8 CONA/CONI 3" ,‘n 40 ... Q'- 9 \ 0‘ I. l! CAAAAA 8 192 CON6 . CONI/CONA H EQUATION H(J,2) = H(JM,2) — CON5A(XMT-XM(J)) T EQUATION TI - CONIA(H(J,I)-H(JM,I)) T2 = CONIA(CA+CVAH(JM,I)) IF (IPROD .EQ. 2) CP . 0.39I23 + O.A6057AXMT T3 . CONAA(CP+CNAXM(J)) T(J,2) = (-TIAC0N3+T2AT(JM,I)+T3ATHT)/(-TIACON2+T2+T3) COMPUTE RH AND CHECK FOR CONDENSATION IF (H(J,2) .LE. 0.) H(J.2) = APR23 RH(J) . RHDBHA(F(T(J,2)).H(J,2)) ICON - 0 IF (RH(J) .LT. RHC) GO TO 8 CONDENSATION SIMULATOR ICON . I IF (ICON .NE. 0) KAB = KAB + IOOOO TS = T(J,2) HS - HADBRH(F(TS),RHC) DHDT . HS - HADBRH(F(TS)-I.,RHC) RE-EVALUATE M AND THETA USING MASS AND ENERGY BALANCES TI . HS - H(JM,2) - DHOTATS A . CONIzADHDT B - CONIzATI - T2 - T3 - CONI3ADHDT C - T2AT(JM.2) + T3ATHT - CONI3ATI T(J,2) a (-B-SQRT(BAB-A.AAAC))/(2.AA) H(J,2) . HS + DHOTA(T(J,2)-TS) IF (H(J,2) .LE. 0.) H(J,2) . APR23 IF (H(J,2) .GE. I.) H(J,2) = I. RH(J) = RHDBHA(F(T(J,2)).H(J,2)) XMT = XM(J) - CON6A(H(J.2)-H(JM,2)) XMT5 . XMT XTEM . XM(J) RHT5 . AMAXI(0.,AMINI(I.,RH(J))) THT5 . T(J,2) XM(J) - XMT TH(J.2) - T(J.2) C IPS ADDED THETA EQUATION ; EQUATED SINCE LOW AIR FLOW RATE (GA). RH(J) - AMAXI(0.,AMINI(I.,RH(J))) XMT5 . XM(J) RHT5 = RH(J) THT5 . TH(J.2) XTEM - XM(J) IF (PDE .EQ. I.) CALL DEPOT (9,RHT5,THT5,XMT5,DA,XTEM) I03 CONTINUE RHK 8 IOO.*RH(INDI) GO TO 23 9 CONTINUE C AkkflAOPTIONAAAAA ------------------------------------------- C EITHER 3-EQUATION IMPLICIT (CRSFLW3) OR A-EQUATION IMPLICIT (CRSFLWA) c AAAAAopTIONAAAAA ........................................... Ckfikkk C***** C***** C***** C***** C***** Ckkkflk CAAAAA CAAAAA IO C***** C***** C***** II C***** C***** C***** )2 CAAAAA C***** C***** I3 IA cAAAAA cAAAAA cAAAAA 15 cAAAAA cAAAAA cAAAAA DO IOA J 8 2, 193 INDI KAB = KAB + IOOOOOOOO JFLAG = J JM = J - I THT . TH(J.2) XMT = XM(J) HFG - HEATLAT(XMT,THT) IF (H(J,I) .LE. 0.) H(J,I) = APR23 IF (H(J,I) .GE. I.) H(J,I) = I. RHT = RHDBHA(F(T(J,I)),H(J,I)) USE PREVIOUS x-VALUE OF H AS INITIAL GUESS HJ2 . H(JM,2) IF (JUAN .EQ. 2) DIFF = SOLVE(HJ2) IF (JUAN .EQ. 3) DIFF . SOLVEA(HJ2) XM(J) . XMT 0M = XMT CHECK CONDENSATION FLAG IF (ICON) ID, ID, 22 SET LIMITS 0N H IF (DIFF) I5, 22. II CASE-I SOLVING FOR ABSORPTION CONDITIONS (NRT EQ-IA) RHLON = 0.95ARH(J) CHECK FOR FEASIBLE RHLON IF (IPROO .EQ. I) EQUIL = EMC(RHLON.THT) IF (IPROD .EQ. 2) EQUIL = SOYEMC(RHLON.THT) IF (XMT—EQUIL) I3, IA, IA DECREASE RHLON UNTIL XMT.GT.EQUIL RHLON = 0.95ARHLON GO TO I2 HLON = HADBRH(F(THT).RHLON) GO TO 2I CASE-2 SOLVING FOR DRYING CONDITIONS (NRT EQ-I3) HLON = H(J.2) CHECK FOR SUPERSATURATED CONDITIONS I6 I7 Cfiflflfik CAAAAA Ckflkfik I8 C***** C***** I9 20 C***** C***** CAAAAA 2) 194 SOYEMC(RHC,THT) EMC(RHC,THT) IF (IPROO .EQ. 2) EQUIL IF (IPROO .EQ. I) EQUIL IF (XMT-EQUIL) I7, I6, I6 HHI = HADBRH(F(THT),RHC) GO TO 2I RHHI . O.5A(I.+RH(J)) CHECK FOR (NON-SUPERSATURATION) FEASIBLE RHHI IF (IPROO .EQ. 2) EQUIL = SOYEMC(RHHI,THT) IF (IPROO .EQ. I) EQUIL . EMC(RHHI,THT) IF (EQUIL-XMT) I9, 20, 20 INCREASE RHHI UNTIL EQUIL.GT.XMT RHHI = O.5A(I.+RHHI) GO TO I8 HHI . HADBRH(F(THT),RHHI) INITIATE SEARCH FOR TH,H,XM IF (JUAN .EQ. 2) HLON - HLON/A. IF (JUAN .EQ. 2) CALL REFALSI (HLON.HHI,O.OOOI,SOLVE,H(J.2)) IF (JUAN .EQ. 3) CALL ZEROINA (HLON,HHI,O 00I,SOLVEA) C IPS CASE-3 ACCEPT INITIAL ESTIMATE (ICON CONDENSATION SOLVE:SOLVEA) 22 C***** C***** C***** XM(J) - XMT IF (ICON .NE. 0) KAB . KAB + IOOOO IF (H(J,2) .GT. I.) H(J,2) = I. IF (JUAN .EQ. 2) TH(J.2)-= T(J,2) END x-NIDTH LOOP XMT5 = XMT RHT5 = RHT THT5 - THT XTEM . XM(J) IF (PDE .EQ. I.) CALL DEPOT (9,RHT5,THT5,XMT5,DA,XTEM) 109 CONTINUE C *fiAAAEND 0PT|0NS***** ------------------------------------------- 23 CONTINUE C * * * * * CRSFLW-CRSFLWZ-CRSFLW3-CRSFLWA SOLUTIONS HAVE BEEN FOUND C AAAAAEND 0PTIONS***** ------------------------------------------- 00 I05 LM 8 I. INDI C IPS ADDED TH(J..)EQUATI0N TH(LM.I) = TH(LM.2) T(LM,I) . T(LM.2) H(LM.I) = H(LM.2) . IF (IEXIT .EQ. I) GO TO I0 IF (LM .EQ. INDI .AND. FL .EQ. 0.0) GO TO 2A GO TO I05 C IPS STORE FIRST PASS WHEN X-POINT IS AT TWO-SPEED INTERFACE. 2h IF (YL .GE. YLENG) GO TO 25 195 IF (YL .LT. YADJ) GO TO I05 25 KKK = KKK + I YADJ = YADJ + YADD ADJ(3,KKK) = T(LM.2) ADJ(2,KKK) = TH(LM,2) ADJ(I,KKK) = YL ADJ(5,KKK) . H(LM.2) ADJ(6,KKK) = RH(LM) ADJ(A,KKK) = XM(LM) I05 CONTINUE RHK = IOO.ARH(INDI) ITERCT . ITERCT + I SUMZT - SUMZT + T(INDI,I) HAVER . HAVER + H(INDI,I) Ckfifikfl CAAAAA CHECK IF LONG ENOUGH (0R DRY ENOUGH) OR TIME TO SAVE VALUES CAAAAA FOR PRINTING. IF NONE OF THESE GO TO THE BEGINNING OF THE LOOP CAAAAA IF (YL .GE. YLENG) GO TO 26 IF (YL-PRL) 2, 27. 27 C***** C***** SET FLAG IF EXIT CONDTION MET. C***** 26 IEXIT 8 I KK2 8 KKK C***** C AAAAA COMMON OPTION *flfiflfl --------------------------------------- C***** MAKE FINAL CALCULATIONS AND STORE APPROPRIATE VALUES. C *Akkk COMMON OPTION *kkfifi --------------------------------------- C***** 27 PRL = PRL + DBTPR IXYT = IXYT + I CALL CRSPR (YL,XMAVE,THAVE,RHK.XMEINN) IF (IEXIT .NE. I) GO TO-2 C IPS COMPUTES THERMAL ENERGY USAGE FOR SEGMENT OF STAGE IF (FL .EQ. 0.) EINPUT - GAA(CA+CVAHINE)A(TIN-TINE)AYLENG NATER . (XMS-XMAVE)ARHOPAGVEL ~ IF (FL .EQ. 0.) NATER = XRELAXNIDEANATER IF (FL .EQ. I.) NATER = (I.-XREL)AXNIDEANATER IF (FL .EQ. 0.) ENERGY = XRELAEINPUT ‘ IF (FL .EQ. I.) ENERGY = (I.-XREL)AEINPUT IF (NATER .NE. 0.) BTUH20 = ENERGY/NATER IF (NATER .EQ. 0.) BTUH20 . 0. SUMZT = SUMZT/FLOAT(ITERCT) HAVER . HAVER/FLOAT(rTERCT) TOTEN = TOTEN + ENERGY TDTH20 . TDTH20 + NATER TOTBTUN = TOTEN/TDTH20 STEN = STEN + ENERGY STH20 = STH20 + NATER SGEN = SGEN + ENERGY 196 SGH20 = SGH20 + NATER AI = STH20 - SGH20 A2 = STEN/STH20 A3 = SGEN/SGH20 IF (AI .EQ. 0.) AA . 0. IF (AI .NE. 0.) AA = (STEN-SGEN)/AI x22 a XMAVE/(I.+XMAVE) IF (AI .NE. 0.) XII = XMOUT/(1.+XMOUT) IF (AI .EQ. O.) XII - 0. IF (FL .EQ. I.) x12 2 (XMOUTAXREL+XMAVEA(1.-XREL)AVREL)/(XREL+(I.- IXREL)AVREL) C IPS XI28VOLUME AVERAGED MOISTURE CONTENT DRY BASIS. C IPS 28 29 3O 3] IF (FL .EQ. O.) X12 . XMAVE IF (FLI .EQ. 0.) XMS . X12 IF (FL .EQ. I.) XMS = X12 x12 = XIZ/(I.+XI2) IF (FL .EQ. 0.) THOUT = THAVE IF (FL .EQ. I.) THOUT (THOUTAXREL+THAVEA(1.-XREL)AVREL)/(XREL+(I I.-XREL)AVREL) IF (FL .EQ. O.) XMOUT IF (FL .EQ. 0.) XMAVG IF (FL .EQ. I.) XMAVG 1.-XREL)AVREL) IF (FLI .EQ. 1. .ANO. FL .EQ. 0.) C2 . THAVE IF (FL .EQ. 1.) C3 = THOUT IF (FLI .EQ. 0.) C1 . C3 . THOUT IF (FLI .EQ. 0.) C2 = 0. IF (FL .EQ. 1.) CI . THAVE IF (IPROD .EQ. 2) GO TO 30 QA = CFMAO.005075 COMPUTES STATIC PRESSURE AND RELATED MECHANICAL ENERGY USAGE IF (FM .LT. 0. .OR. FM .GT. 0.1) FM = 0.05 IF (CFM .LE. 0.) GO TO 30 IF (CFM-A0.) 28. 29, 29 SP - I.2239183E - 3A(20529.535AQAAA2/ALOG(I.+30.597AQA)+(1A.5566-2 I6.AI8AQA)AFM) GO TO 31 SP . I.2239183E - 3A(A36.667AQA+7363.038AQAAA2+22525.8I9AQAAFM) GO TO 31 SP = XNIDEA(CFM/75.2)AAI.A3I PONER = SPACFM/(6350.AO.5)AYLENG IF (FLI .EQ. 0.) TOTHP = TOTHP + PONER IF (FLI .EQ. I. .AND. FL .EQ. 1.) TOTHP . TOTHP + PONER IF ( .NOT. REUSE) PRINT 906. SUMZT, HAVER, NATER, XMEINN IF ( .NOT. REUSE .AND. (FLI .EQ. 0. .OR. (FLI .EQ. I .AND. FL .EQ. I I.))) PRINT 907, GA, SP, PONER, TOTHP IF ((FL .EQ. I. .OR. FLI .EQ. 0.) .AND. KSTG .EQ. I) XII = A1 . C2 1 a I.EI3 IF ((FL .EQ. I. .OR. FLI .EQ. O.) .ANO. .NOT. REUSE) PRINT 905, NS ITG, KSTG, X22, XII, X12, SGH20. AI, STH20, TOTHZO, A2, TOTBTUW, UT 2*A2.UT*TOTBTUW ‘ XMAVE XMAVE (XMAVGAXREL+XMAVEA(I.-XREL)AVREL)/(XREL+(1 197 IF ((FL .EQ. I. .OR. FLI .EQ. 0.) .AND. .NOT. REUSE) PRINT 9IA, EI INPUT. C1. C2. C3 C *AAAA COMMON OPTION AAAAY -------------------- . .................... IF (XY .EQ. 0.) GO TO 33 IF (REUSE) GO TO 33 C *AAAA COMMON OPTION ***** -------------------------------------- JXY 8 MINO(IXY,IXYT) C SCAN TO FIND EXPOSURE TIME TO TEMPERATURE THRESHOLDS (QUALITY) LABT(I) 8 IOHGERMINATE LABT(2) 8 IOHBREAKAGE REFT(I) 8 I00. REFT(Z) 8 I50. I5 8 h I6 8 2 DO II} II 8 I, I6 KI 8 0 K2 8 0 DO I07 I2 8 I. JXY ICLEAN 8 I2*INDI - INDI + IADJ DO I06 I3 8 I, INDI K2 8 K2 + I IF (REFT(II) .LE. ADJ(2,I3+ICLEAN)) KI 8 KI + I I06 CONTINUE I07 CONTINUE PRINT 9OI, IOO.*FLOAT(KI)/FLOAT(K2),REFT(II),LABT(II) DO 108 IA - I, I5 PAST(IA) = O. 108 CONTINUE DO 111 I3 = I, INDI K3 = 0 00 I09 12 = I, Jxv ICLEAN = IzAINDI - INDI + IADJ IF (REFT(II) .LE. ADJ(2.I3+ICLEAN)) K3 = K3 + I 109 CONTINUE DO 110 IA = I, 15 IF (K3 .GE. Ih*JXY/I5) PAST(IS-IA+I) 8 PAST(I5-IA+I) + I. 110 CONTINUE III CONTINUE DO 112 IA = I, 15 PRINT 902, FLOAT(IOOAKI)APAST(IA)/FLOAT(INDIAK2) I ,YLENG/(FLOAT(IA)AVRELAGVEL).(15-IA+I),I5 112 CONTINUE 113 CONTINUE IF (XY .EQ. 3.) GO TO 33 C XY-PRINTOUT OF T,TH,H,RH.M. PRINT 908, (ADJ(I,J+IADJ).J=I,INDI) DO IIA I = 1. Jxv ICLEAN . IAINDI - INDI + IADJ PRINT 913. (ADJ(3,J+ICLEAN),J8I,INDI) IIA CONTINUE IF (JUAN .EQ. 1 .OR. JUAN .EQ. 2) GO TO 32 198 PRINT 909, (ADJ(1,J+IADJ),J=I,INDI) DO 115 I = I, JXY ICLEAN . IAINDI - INDI + IADJ PRINT 9I3, (ADJ(2,J+ICLEAN),J=1,INDI) 115 CONTINUE 32 CONTINUE PRINT 9IO, (ADJ(I,J+IADJ),J8I,INDI) DO II6 I 8 I. JXY ICLEAN . IAINDI - INDI + IADJ PRINT 913, (ADJ(5,J+ICLEAN),J8I,INDI) II6 CONTINUE PRINT 9II, (ADJ(I,J+IADJ),J=I,INDI) DO 117 I a I, Jxv ICLEAN = IAINDI - INDI + IADJ PRINT 913. (ADJ(6,J+ICLEAN),J=1,INDI) 117 CONTINUE PRINT 912, (ADJ(I,J+IADJ),J8I,INDI) DO 118 l = 1, Jxv ICLEAN . IAINDI - INDI +;|ADJ PRINT 913. (ADJ(A.J+ICLEAN)/(I.+ADJ(A,J+ICLEAN)),Js1,INDI) 118 CONTINUE C X-PRINTOUT OF M NITHIN KERNEL FOR Y ACROSS BOTTOM OF STAGE. F1 = DELx DO 119 I - 1, INDI JFLAG - I IF (PDE .EQ. I .AND. XY .EQ. 2.) CALL DEPOT (II,FI,02,D3,DA,05) II9 CONTINUE 33 IF (ISTOP .EQ. 0 .AND. FLI .EQ. I .AND. FL .EQ. O.) RETURN IF (ISTOP .EQ. 1 .ANO. FLI .EQ. 0.) GO TO 3A IF (ISTOP .EQ. I .ANO. FLI .EQ. I. .AND. FL .EQ. I.) GO TO 3A RETURN C ***** COMMON OPTION AAAAA --------------------------------------- C SET PARAMETERS FOR END OF SECTION TEMPERING UNIT. C *flfikfl COMMON OPTION *kkkfi --------------------------------------- 3A CONTINUE ISTOP - 2 RHAMB . AMAXI(0..AMINI(TY,RHC)) IF (FL .EQ. O.) GVEL = BPHAI.2AA IF (FL .EQ. I.) GVEL = BPHAI.2AAA(XREL+(I.-XREL)AVREL) Tv = YLENG/GVEL C TY TIME INPUT, TB (NAS VOL,NON) TIME HOPPER,GVEL AVG FLON RATE INPUT TB = TBATY ABPH = GVEL/I.2AA IF ( .NOT. REUSE) PRINT 90A, ABPH, TB CFM - 0. GA = 0. INDS . INT((XNIDE+TRN)/DELX) + I HJ2 - MADBRH(F(THOUT),RHAMB) DO 120 J = 1. INDS T(J,I) = THOUT T(J,2) - THOUT I20 199 TH(J,I) = THOUT TH(J.2) = THOUT RH(J) = RHAMB XM(J) = x12/(1.-x12) H(J,I) = HJ2 H(J,2) . HJ2 CONTINUE IF (PDE .EQ. I.) GO TO 35 C MEIERING CAN AG ENG I9-A9'77; GRUNDL 27-I-77. C WET I2] 35 C XMT 36 OTTEN = XM(INDI) SIDE USED TO RESET OTTEN DO 121 J = I, INDI IF (XM(J) .GT. OTTEN) OTTEN = XM(J) CONTINUE RETURN CONTINUE XMT . x12/(1.-x12) IS M USED, THT IS THETA USED , RHAMB IS RH USED XME XMC - XMT CALL DEPOT (8.01.02.03.0A,05) KVAD - 0 JFLAG - 1 F1 . DELX vL = 0. N - 0 IF ( .NOT. REUSE) CALL DEPOT (II,FI,02,D3,DA,05) YL = vL + DELT N . N + 1 XMT5 = XMC CALL DEPOT (7.RHAMB,THOUT,XMT5,XMC,05) CALL DEPOT (10.01.02.03,DA,XMC) C PRINT AT EVERY 30-TH TIME USING MOD(N,30) 90I IF (XY .EQ. 2. .AND. .NOT. REUSE .AND. MOD(N,30) .EQ. O) PRINT 903 I, YL IF (XY .EQ. 2. .AND. .NOT. REUSE .AND. MOD(N,30) .EQ. 0) CALL DEPO IT (II,FI,02,D3,DA,D5) IF (YL .LT. TB) GO TO 36 IF ( .NOT. REUSE) PRINT 903, YL IF ( .NOT. REUSE) CALL DEPOT (II,FI,D2,D3.DA,D5) CALL DEPOT (I,DI,D2,D3,Dh,05) RETURN FORMAT (IX,FIO.2* PERCENT OF VOLUME ABOVE THRESHOLD OF *EIO.H* F; 1(AFFECTS AAIOA )A) 902 FORMAT (IOX,FIO.2* PERCENT FOR AT LEAST *EIO.A* HRS** (*II*/*II* 0 IF PASSAGE TIME)A) 903 FORMAT (IX,* TIME (HR) *EIO.A) 909 FORMAT (//.IX,FIO.A* BU/HR-FTZ ;TEMPER FOR *FIO.A* HR*) 905 FORMAT (IX*STAGE=*II,IH:,II* MAV FOR: SEGMENTS STAGE*3(IX,FIO.A), I/,IX*LB-H20/HR SEGMENTS,STAGE,CUMULATIVE*A(IX,FIO.A),/,I6X,*BTU/LB 2-H20 THIS STAGE AND CUMULATIVE*2(IX,FIO.I),/,I6X,*KJ/KG-H20 THIS S 200 3TAGE AND CUMULATIVE>‘=2 (IX, F I0. I) ) 906 I 2 907 I 2 908 909 9IO 9II 9I2 913 9IA I 2 C***** C IPS C***** I C***** IOI FORMAT (//A AVERAGE AIR EXHAUST TEMP, F:A,13x.F12.A/A AVERAGE AIR EXHAUST HUM.RATIO:A,IOX,F12.A/A NATER REMOVED, LB/HR PER FT OF COL UMN NIDTHAF12.A,/,A INLET MOISTURE EQUILIBRIUM, NB:A,IOX,F12.A) FORMAT (A DRY AIR FLON RATE, LB/HR-FT2:AIOX.F12.2/A STATIC PRESSUR E INCH H20:A,I6X.F12.A./.A HORSEPONER PER FT COLUMN NIDTH FOR STAG E AF12.A,/,A HORSEPONER PER FT COLUMN NIDTH CUMULATIVE AF12.A) FORMAT (/3OXAAIR TEMPERATUREA/,1XAX=AF8.A.IOFIO.A) FORMAT (/3OXAPRODUcT TEMPERATURESA/.IXAX=AF8.A.IOF10.A) FORMAT (/3OXAABSOLUTE HUMIDITIESA/.Ix X=AF8.A,IOF10.A) FORMAT (/3OXARELATIVE HUMIDITIESA/,IXAX=AF8.A,IOFIO.A) FORMAT (/3OXAMOISTURE CONTENTSA/,IXAX=AF8.A.IOFIO.A) FORMAT (11(FIO.A)) FORMAT (IXAFUEL BURNED ENERGY USED BY THIS STAGE BTU/HRAA PER FT C OLUMN NIDTH AG10.A,/.3XATHETA(OUTLET) SEGMENTS STAGEA,AX,3(1X,FIO. 2)) END *AAAflAAAAAAAAAAAAAA*AfikfiAAAAAAAAAAAAAAAAAAAAAA*AAAAAAAAAAAAAAAA SUBROUTINE CRSPR(YL,XMAVE,THAVE,RHK.XMEINN) X-PRINTOUT OF RESULTS AT SELECTED Y-LAYER FROM CRSFLNJ LOGICAL VERIFY,REPNT,REUSE COMMON/MEIER/DTTEN.OM.OFLAG COMMON/HOPT/ REPNT,HI3,HIA,TI3.TIA,REUSE.TINE.HINE.VERIFv,FHIN,ATI N,FATIN , . COMMON/ARRAvS/XM(IOO),RH(IOO).T(IOO.2).H(IOO.2).TH(100.2).GA COMMON/MAIN/XMT,THT,RHT,DELT,CFM,XMO.KAB COMMON/BROOK/TOTEN,TOTH20,XMS,CHTC,UNMIx,TY,TB,IPROD,FM,HDF,NSTG COMMON/INPT/BPH,GP,GVEL,INDI,DELX,YLENG,DBTPR,XNIDE.PDE COMMON/VEL/FL,FL1,KK2,XREL.KSTG,THZIN.VREL COMMON/CYCLE/XMOUT,SUMZT,HAVER,THOUT.BTUH20 COMMON//XY,IADJ,va,SXMD,ADJ(6,I) IF (YL .GT. GVELADELT) GO TO 2 IF (XY .EQ. 0.) GO TO I DO 101 | . 2, INDI ADJ(I,I+IADJ) = ADJ(I,I-I+IADJ) + DELX CONTINUE CONTINUE . OM = XM(I) IF (IPROO .EQ. 1) XMEIN I = -1 IF (IPROD .EQ. 2) XMEIN XMEINN a XMEIN/(1.+XMEIN) IF (FLI .EQ. 1.) KSIDE . KSTG IF (FLI .EQ. 0.) KSIDE = 9999 IF ( .NOT. REUSE) PRINT 901, NSTG. KSIDE CONTINUE IF (xv .EQ. 0.) GO TO 3 I = I + 1 DO 102 J = I, INDI EMC(RH(I) ,TH(I,I)) SOYEMC(RH(1).TH(1.I)) 201 ADJ(2.J+INDIAI+IADJ) = TH(J.2) ADJ(3,J+INDIAI+IADJ) = T(J,2) ADJ(A,J+INDIAI+IADJ) = XM(J) ADJ(5,J+INDIAI+IADJ) = H(J,2) ADJ(6,J+IND1AI+IADJ) . RH(J) 102 CONTINUE 3 CONTINUE TIME . YL/GVEL C NON 0=SUM=SUMRH8SUMT=SUMTH SO THAT AVERAGE Is BETNEEN MIN-MAX C BEFORE THESE . XM(I)8RH(I)=T(I,I)=TH(I,I) SUM = O. XMIN XM(I) XMAX XMIN TMIN T(2,I) TMAX = TMIN THMIN = TH(2.I) SUMRH = 0. THMAX s THMIN SUMT = 0. SUMTH = 0. DO 103 J - 2, INDI IF (XM(J) .GT. XMAX) XMAX - XM(J) IF (XM(J) .LT. XMIN) XMIN = XM(J) IF (T(J,I) .GE. TMAX) TMAX = T(J.1) IF (T(J,I) .LE. TMIN) TMIN . T(J,I) IF (TH(J,I) .GE. THMAX) THMAX = TH(J,I) IF (TH(J,I) .LE. THMIN) THMIN = TH(J,I) SUMT . SUMT + T(J,I) SUMRH = SUMRH + RH(J) SUMTH = SUMTH + TH(J,I) SUM = SUM + XM(J) 103 CONTINUE XMAVE = SUM/FLOAT(INDI-I) TAVE = SUMT/FLOAT(INDI-I) C BEFORE PRINTED TAVE INSTEAD OF TOUT THAVE = SUMTH/FLOAT(INDI-I) RHAVG = SUMRH/FLOAT(INDI-I) IF (FL .EQ. O.) THZIN . THMAX IF (FL .EQ. I.) THZIN . AMAXI(THZIN,THMAX) XMNB = XMAVE/(I.+XMAVE) XMINN = XMIN/(1.+XM1N) XMAXN = XMAX/(I.+XMAX) OM = XM(INDI) IF (IPROO .EQ. I) XMEOUT = EMC(RH(INDI),TH(INDI,I)) IF (IPROD .EQ. 2) XMEOUT = SOYEMC(RH(INDI).TH(INDI,I)) XMEOUTN = XMEOUT/(I.+XMEOUT) DELXM F (XM(INDI)/(I.+XM(INDI))) - (XM(I)/(1.+XM(I))) IF ( .NOT. REUSE) PRINT 902, TIME. YL, XMINN, XMNB, XMAXN, THMIN. ITHAVE. THMAX, H(INDI,I). RHK, XMEOUTN, T(INDI), DELXM RETURN 202 901 FORMAT (///*' TIME8DEPTH*AX=' FMOISTURE- -WB*6X=' wTEMPERATUREA6X WSTAGE8 I I2* SIDE=* I2, /, 3X=' HR FT XMIN MAVE XMAX THMIN THAVE THMAX** 2 HOUT RHOUT MEOUT TOUT M(OUT- IN) ) 902 FORMAT (2X,FA.2,F6.2,F6.A,2F6.h,3F6.I,F6.A,F6.2,F6.A,F6.I,F6.A) END C3' :3':3':3‘:3‘ ::3' 3':3':3 ':3‘:3' :':3 3': 3' 33':': 333' :':3 3':3':3': 3‘:3':3":3':3':3':3':3‘:3: 33": :':3 ':":3:3 33': ':'3: ."::3 3':':3 3':3: ':':3 3: 3':3':3' :3':3‘: 3': 3' 3': 3':3':3‘:3': 3':3': SUBROUTINE DATA(|PROD) C***¥Hf ' SUBROUTINE USED FOR INITIALIZING CONSTANTS FOR PRODUCTS COMMON/PRPRTY/ SA, CA, CV, CW, RHOP, CP COMMON/HLATENT/HA, HB, HFG C CHTC SET IN XFLO : MODEL/VALUES SEE BAKKER I97h AESZZA. C RO8RADIUS IS SET IN DEPOT C REFT SET IN CRSFLWJ. IF (IPROO .EQ. 2) GO TO I C***** INITIALIZE CONSTANTS FOR CORN SA 239. CA 0.2A2 CV 0.A5 CW I.0 RHOP 8 38.7] HA 8 b.3h9 HB . -28.25 CP 8 0.268 RETURN CAAAAA INTIALIZE CONSTANTS FOR SOYBEANS I SA 8 h6h.3 CA 8 0.2A2 CV 8 0.A5 CW 8 I.O O RHOP 57.99 HA 8 .2I62h HB 8 -6.233 C IPS NOTE CP FOR SOYBEAN IS MOISTURE DEPENDENT (DEFINED ELSEWHERE) C IPS CP IS USED I) T3 CRSFLWI, 2)CONI SOLVE. 3)CCON5 SOLVEA. RETURN END 3':3':3':3':3':3':3I:3':3':****3%3':3':3':3':3:3':3':3':3':3':3':3':3':3‘:3':3‘:3':3‘:3':3': SUBROUTINE DEPOT(ITFNL,RHAVG,THAVE,XMAVG,XMC,XTEM) MAX DIMENSIONED FOR IDE87 WHERE N8|DE SUB-DEPOT CONTROLS PDE FOR M: INITIALIZATION; ITERATIVE UNSET SOLUTION WHEN CALLED BY SOLVE-SOLVEA; RESET SOLUTIN WHEN CALLED BY CRSFLWJ; AVERAGE BETWEEN STAGES WHEN CALLED BY XFLO 0R CURRENT TEMPER MODEL IN CRSFLWJ. COMMON/MEIER/OTTEN.OM.0FLAG COMMON/EMCOP/IDE,IDEPOT,RADIUS,XME,DIFF,TEMPCO.MC.MRCB,RESET DIMENSION 0(10) COMMON/LSM/ZKNT LOGICAL PDE2.DEBUG. ZKNT COMMON/CNARRAY/CN(IO) DIMENSION CONE(9).VAD(IO.2O) EXTERNAL EMCPDE n nnnnn nn 203 REAL-MC,MRCB LOGICAL TEMPCO.RESET CDMMON/IFLAGS/JFLAG,ICON,THIGH,KVAD,JUAN,APR23 COMMON/MAIN/XMT,THT,RHT,DELT,CFM.XMO,KAB COMMON/INPT/BPH,GP,GVEL,INDI,DELX,YLENG,DBTPR.XWIDE,PDE COMMON/BROOK/TOTEN,TOTH20,XMS,CHTC,UNMIX,TY,TB,IPROD,FM,HDF,NSTG COMMON/NAMES/MDOT(3,3) DATA (MDOT(I,3).I=I,3)/IOH(M) BY PDE, IOH(D) SABBAH, IOHSOYS :CDRN I, IOHALAM:DEBOR/ DATA NVAD/2O/ G(U) . (U-32.)/I.8 DEBUG . .FALSE. IF (DEBUG) PRINT 90I. ITFNL, KVAD, JFLAG, RHAVG, THAVE, xMAVG, XMC I, XTEM IDE . 7 N . IDE IDEPOT = ITFNL DT = DELT NPI - N + I NP2 - N + 2 NP3 . N + 3 . 3NUMBERS3 ARE ITFNL POINTER IN COMPUTED GO TO STATEMENT. GO TO (7.7.3.3.6,I,I,3,I.2,8). ITFNL 3637393 DRY-TEMPER-RESET I 00 IOI I - I. NPI SET INTERNAL MOISTURE FOR EMCPDE 8CN(I) CN(I) - VAD(I,KVAD+JFLAG) I0I CONTINUE SET TOTAL MOISTURE (M) FOR EMCPDE = MRCB MRCB . VAD(NP2,KVAD+JFLAG) IF (ITFNL .EQ. 6 .OR. ITFNL .EQ. 9) TEMPCO = .FALSE. IF (ITFNL .EQ. 7) TEMPCO . .TRUE. RADIUS CORN - 0.19 INCH BAKKER I97I TASAE VOL I5 PP 863 TABLE. IF (IPROD .EQ. I) RADIUS - 0.00388 IF (IPROD .EQ. 2) RADIUS - 0.00357 SET 0M AND COMPUTE XME (FOR CONVERGENCE XME-I WHEN CONDENSATION) 0M - XMAVG IF (IPROD .EQ. I) XME - EMC(RHAVG,THAVE) IF (IPROO .EQ. 2) XME . SOYEMC(RHAVG,THAVE) IF (ICON .NE. 0) XME . I. CORN PDE82 ABOVE I60 CHU3HUSTRULID I968 TASAE VOL II P705 E02I WITH XM GIVEN DECIMAL INSTEAD PERCENT, AND 6.8 INCLUDING 0.0353273. IF (IPROO .EQ. I .ANO. PDE2 .ANO. THAVE .GT. I60.) DIFF a I.5I3E - I 33EXP((0.0353G(THAVE)+6.806)3XMAVG-25I3./(G(THAVE)+273.I3)) CORN PDE-I SABBAH 1972 TRANS ASAE VOL I5 PP763 E07. CORN SABBAH (D8FT2/HR BEFORE 3.28) D8M2/HR ,M8DEC. T8F. IF (IPROD .EQ. I .AND. .NOT. PDE2) DIFF = 0.0573XMAVG3ExP(-38I2./( ITHAVE+360.))/((3.28)3(3.28)) CORN PDE-2 BELow I60 SABBAH I972 TRANS ASAE VOL 15 PP763EQ7. IF (IPROD .EQ. I .AND. PDE2 .AND. THAVE .LE. I60.) DIFF = 0.0573XM IAVG3EXP(~38I2./(THAVE+360.))/((3.28)3(3.28)) n 204 SOYBEAN DALPASQUALE FORM OF SABBAH EQUATION IF (IPROO .EQ. 2) DIFF . 0.03693373EXP(-3337.I6/(G(THAVE)+273.I3)) HYBRID DRYING FACTOR (READ IN XFLO) USED TO ADJUST DIFF(USIVITY) DIFF . HDF3DIFF RESET PERMITS MULTIPLE CALLS T0 EMCPDE BY ZEROIN. RESET = .TRUE. IF (ITFNL .EQ. 9) MC = XTEM ZKNT = .FALSE. BRANCHES T0 EMCPDE T0 SOLVE DIFFUSION EQUATION FOR SPHERE AVG = EMCPDE(DT) IF (DEBUG) PRINT 902, MC, DT IF (ITFNL .NE. 9) AVG - 0. DELTA - 0.0003 IF (ITFNL .EQ. 9 .ANO. DEBUG) PRINT 902, AVG. DELTA M-PDE RESET T0 M-EQI3MSUAE5223 ONLY WHEN LOCKSTEP ERROR GREATER DELTA IF (ITFNL .EQ. 9 .AND. ABS(AVG) .LE. DELTA) GO TO 2 UNRESET SOUGHT TOTAL MOISTURE IS . XMC IF (ITFNL .NE. 9) XMC . MC IF (ITFNL .EQ. 6 .OR. ITFNL .EQ. 7) RETURN 33933 RETURN IF TEMPORARY ESTIMATE. ELSE RESET X-TRACK MC - XTEM TLOW - AMINI(-3.3DELT,35000.3DELT3(MRCB-XTEM)) EPS = 0.000I IF (RHAVG .GT. 0.98) EPS - 0.0000I THI a AMAXI(3.3DELT,5000.3DELT3(MRCB-XTEM)) IF (DEBUG) PRINT 903, MRCB, XTEM, TLOW, THI ZKNT - .TRUE. CALL ZEROIN3 (TLOW,THI,EPS,EMCPDE) ZKNT WHEN ZEROIN3 FAILS T0 CONVERGE ; HENCE ACCEPT CURRENT VALUES FOR VAD STORED IN EMCPDE. CALL EMCPDE AND RETRIEVE THESE VALUES. IF (ZKNT) AVG = EMCPDE(DT) IF (ZKNT) XTEM = VAD(NP2,KVAD+JFLAG) -IF (DEBUG) PRINT 903, ZKNT, TLOW, AVG ZKNT - .FALSE. STORE RESET INTERNAL M EITHER WITHIN DELTA 0R ZEROIN3 LOCKSTEP 2 DD 102 I - I. NPI VAD(I,KVAD+JFLAG) . CN(I) I02 CONTINUE VAD(NP2,KVAD+JFLAG) = XTEM SET NP3 THE x-PDSITION IS WITHIN DRYER FLAG. VAD(NP3,KVAD+JFLAG) = I. RETURN - 3333383 INVERT OR AVERAGE INTERNAL MOISTURE SCAN x-POSITION TO DETERMINE WHETHER NP3 IS WITHIN DRYER 3 00 I03 J . I. NVAD NN = J - I IF (VAD(NP3,J) .NE. I.) GO TO 3 I03 CONTINUE 3 CONTINUE IF (ITFNL .EQ. 8) GO TO 5 33333 REVERSE VAD As CONVERT DOES FOR VARIABLES IN COMMON/ARRAYS/. 205 IT a NN + I IN = NN/2 DO 107 I I, IT = IT - I DO 10h J = I, NP3 O(J) = VAD(J,IT) IOA CONTINUE DO I05 J = I, NP3 VAD(J.IT) = VAD(J.I) 105 CONTINUE DO 106 J = I, NP3 VAD(J,I) = 0(J) 106 CONTINUE I07 CONTINUE C *3* RETURN IF MERELY ANALOGOUS TO CALL TO CONVERT; REVERSE VAD ARRAYS. IF (ITFNL .EQ. 3) RETURN 5 CONTINUE C BAR AVERAGE EACH SIDE OF OTTEN INVERTER IF (ITFNL .EQ. A) KK . 2 C *8* AVERAGE AS SINGLE SIDE HHEN EITHER MIx BETWEEN STAGES C OR CURRENT UNIFORM TEMPER MODEL IN CRSFLWJ. IF (ITFNL .EQ. 8) KK . I O0 III K - I, KK IF (KK .EQ. I) JM - I IF (KK .EQ. I) JP - NN IF (KK .EQ. 2 .AND. K .EQ. I) JM - I I N IF (KK .EQ. 2 .ANO. K .EQ. I) JP - KVAD IF (KK .EQ. 2 .ANO. K .EQ. 2) JM - MIN0(NN,KVAD+I) IF (KK .EQ. 2 .ANO. K .EQ. 2) JP = NN DO IIO I . I, NP2 AVG = 0. DO I08 J = JM, JP AVG = AVG + VAD(|.J) I08 CONTINUE AVG . AVG/FLOAT(JP-JM+I) DO I09 J - JM, JP VAD(I,J) - AVG 109 CONTINUE IIO CONTINUE III CONTINUE D0 112 I = 2. NP2 CONE(I) = (FLOAT(|-I)8*3-FLOAT(l-2)**3)/FLOAT(NPI**3) II2 CONTINUE DO IIs K . I. KK IF (KK .EQ. 2 .ANO. K .EQ. I) JM'= I IF (KK .EQ. 2 .ANO. K .EQ. I) JP a KVAD IF (KK .EQ. 2 .ANO. K .EQ. 2) JM = MINO(NN,KVAD+I) IF (KK .EQ. 2 .ANO. K .EQ. 2) JP = NN MC . 0. DO I13 I - I, NPI IF (K .EQ. I) JK = I nnn 206 IF (K .EQ. 2) JK = NN MC = MC + CONE(|+I)*VAD(I,JK) 113 CONTINUE DO 11A J = JM, JP VAD(NP2.J) = MC 11A CONTINUE 115 CONTINUE RETURN **5** INITIALIZE FOR X-TRACK INLET CONDITIONS 6 DO 117 J = I, NVAD DO 116 I = I. NP2 VAD(I,J) a XMAVG 116 CONTINUE VAD(NP3,J) = 0. 117 CONTINUE SET FLAG (PDE2) FOR SAY TWO TEMPERATURE REGION DIFF(USIVITY). POE2 = .FALSE. IF (PDE .EQ. 2.) PDE2 = .TRUE. 1F (PDE .EQ. 2.) PDE = I. RETURN *I*Z* RESETS VAD AFTER TEMPERS (IF LOSS MOISTURE) (NOTE *2 NOT CALL) NOTE CURRENT TEMPER MODEL IN CRSFLNJ IS NON x-DEPENDENT USE VAD(NP2,1) 7 DO 118 J - I. NVAD VAD(NP2.J) = VAD(NP2,1) 118 CONTINUE DO 120 J . 1, NVAD DO 119 I = 1. NP1 VAD(I,J) . VAD(I,1) 119 CONTINUE 120 CONTINUE RETURN **II** PRINTOUT OF INTERNAL MOISTUE (M) wHEN XY=2. 8 F6 = RHAVG*FLOAT(KVAD) - RHAVG I = JFLAG . PRINT 905. F6 + I*RHAVG,VAD(NP2.KVAD+l)/(I.+VAD(NP2.KVAD+I)) I ,NP],(VAD(J,KVAD+l)/(I.+VAD(J,KVAD+I)).J=I,NPI) 90] FORMAT (6H DEPOT,3|2,S(IX,EIO.A)) 902 FORMAT (6H DEPOT,2(IX,EIO.A)) 903 FORMAT (6H DEPOT,h(IX,EIO.h)) 90h FORMAT (6H DEPOT,L2,2(IX,EIO.h)) 905 FORMAT (IX*X= *F8.h* ; MC= *F8.h* INTERNAL*|2* NODES =*,/.8(IX,F9. 13)) END 2': 2': i: 3': 3‘: 3': 3': :': :': :': :': :‘: 2': 3': :': :': :': '.’: :': :‘: :': :': :': :': :': :': :': :': :‘: :': :‘: :': :': :I: FUNCTION'EMCPDE(DT) SUB-EMCPDE DIFFUSION EQUATION FOR SPHERE (METHOD OF LINES) WITH BC EITHER XME OR INSULATED(TEMPERING) MAX DIMENSIONED FOR |DE=7 WHERE NPI=IDE+I COMMON/EMCOP/IDE,IDEPOT.RADIUS,XME.DIFF,TEMPCO,MC,MRCB,RESET COMMON/LSM/ZKNT nnnnnnn n 207 LOGICAL DEBUG. ZKNT COMMON/CNARRAY/CN(IO) RRRAR DT TIME INTERVAL (DELT) ***** RADIUS RADIUS OF SPHERE ***** XME. BOUNDARY CONDITION COMPUTED USING EMC OR SOYEMC AR RA DIFF DIFFUSION COEFFICIENT ***** TEMPCO, BOUNDARY CONDITION FLAG F)M=XME, T)M IS INSULATED ****R MC. MOISTURE VARIABLE IN PDE GIVEN IN MSU AES RR 22h. ***** CN, ARRAY NOW CN(5) FOR MOISTURE AT EACH INTERNAL NODE DIMENSION AI(8,8),B(8.8).C(8),CONA(9).CONE(9).CONB(9).D(8) DIMENSION DY(8).CND(8).Y(8) INTEGER STEP LOGICAL TEMPCO.RESET REAL MC.MRCB.MCJS DATA B, Al, C. CONA, CONB/Ish*0./ DEBUG = .FALSE. NODE = IDE NP1 a NODE + I NP2 = NODE + 2 wHEN RESET=FALSE EMCPDE BEING CALLED BY ZEROIN; ELSE CALLED BY DEPOT DO 101 I . I, NP1 IF (RESET) CND(I) - CN(I) IF ( .NOT. RESET) CN(I) = CND(I) 101 CONTINUE RESET . .FALSE. ZKNT: ACCEPT CURRRENT VALUES STORED IN CND HHEN ZEROINA FAILS TO CONVERGE NHEN ZEROINA IS CALLED BY DEPOT. 1F (ZKNT) RETURN STEP = 1 LAYER = NP1 . IF (LAYER .LT. 1) LAYER = 1 IF (LAYER .GT. NP1) LAYER = NPI LAYER IS NUMBER OF OUTER LAYERS 1N VOLUME AVERAGE FN = FLOAT((NPI**3)-((NPI-LAYER)**3)) DO 102 J a I, NP1 AI(J.J) = I. 102 CONTINUE OELR = RADIUS/FLOAT(NPI) PASSAGE TIME DT AND INTEGRATION TIME DTINT ARE USUALLY SAME (STEP=1) DTINT = DT/FLOAT(STEP) CONI = DIFF/(DELR*DELR) DO 103 IN = 2, NP2 CONA(IN) = FLOAT(IN)/FLOAT(IN-I) CONE(IN) = (FLOAT(IN-I)*83-FLOAT(IN-2)**3)/FN CONB(1N) = FLOAT(IN-2)/FLOAT(IN-I) 103 CONTINUE B(1,I) = -6.*CONI B(I.2) = 6.*CONl DO 10h J - 2, NODE B(J.J-I) = CONI*CONB(J) B(J.J) = -2.*CONI 208 B(J.J+1) = CONI*CONA(J) 10A CONTINUE IF (TEMPCO) GO TO 1 SET COEFFICIENTS FOR DRYING C(NPI) = CONI*CONA(NPI)*XME B(NPI.NPI) = -2.*CONI B(NPI.NODE) = CONB(NPI)*CONI AI(NP1.NODE) = 0. AI(NP1,NP1) = 1. GO TO 2 1 CONTINUE SET COEFFICIENTS FOR TEMPERING C(NPI) - CONI*CONB(NODE)*CN(NODE) B(NPI.NPI)=-8.*CONI/3. B(NPI,NODE)=8.*CONB(NPI)*CONI/3. AI(NP1,NP1) . 1. AI(NPI,NODE)=-CONB(NP1)/3. B(NPI.NPI) = ~2.*CON1 B(NPI.NODE) = CONI*CONB(NPI) SYMMETRIC MODEL OR STEFFE MODEL FOR TEMPERING 2 CONTINUE OLD = 0. DO 105 l = I. LAYER 1N . NP2 - I OLD . OLD-+ CN(IN)*CONE(IN+I) 105 CONTINUE SOLVE THE ODE ( A DY/OT = B Y + C ) BY EULER'S METHOD D0 106 I = 1, NP1 DY(I) . O. 106 CONTINUE DO 113 IDT DO 108 I SUM = 0. JM - I - 1 JM . MAx0(JM,1) JP . l + I JP = M1N0(NP1,JP) DO 107 J = JM, JP SUM = SUM + B(|,J)*CN(J) 107 CONTINUE USE Y AS STORAGE FOR (BY + C) IN EULER'S METHOD Y(I) = SUM + C(I) 108 CONTINUE DO 110 I = 1, NP1 SUM . 0. JM =_| 1F (TEMPCO .AND. I .EQ. NPI) JM = I - I JP 2 I DO 109 J = JM, JP SUM = SUM + AI(I,J)*Y(J) 109 CONTINUE I. STEP I. NPI 209 0(1) = SUM IIO CONTINUE DO 111 I = I. NP1 DY(I) = DY(I) + 0(1) Y(I) = CN(I) + DTINT*D(I) III CONTINUE C SET CN TO THE COMPUTED MOISTURE VALUES DO 112 I = I, NP1 C THE MINIMUM VALUE OF CN IS ZERO; ELSE FAILURE TO CDNVERGE ZEROINA. IF (OT .GE. 0.) CN(I) = AMAXI(O.,Y(I)) IF (DT .LT. O.) CN(I) = AMAXI(O.,Y(I)) 112 CONTINUE 113 CONTINUE MCJS . 0. 00 11A 1 a 1. LAYER IN = NP2 - I MCJS = MCJS + CN(IN)*CONE(IN+I) IIh CONTINUE MCJS . MRCB + (MCJS-OLD) MCJS - AMAXI(MCJS.O.) DO 115 I - I, NP1 DY(I) . DY(I)/FLOAT(STEP) 115 CONTINUE C *6*7*9* DRY-TEMPER-RESET (*9*EMCPDE IS COST FUNCTION FOR ZEROINA) IF (IDEPOT .EQ. 6) MC = MCJS IF (IDEPOT .EQ. 7) MC . MCJS IF (IDEPOT .EQ. 9) EMCPDE = MC - MCJS RETURN END C********************flkfikfifi***k********k**fi******fifikflfifikfifikkfikfifififlkkfi*“fi FUNCTION HEATLAT(XMC,TH) C***** C***** FUNCTION USED FOR COMPUTING THE LATENT HEAT OF VAPDRIZATION C*****OF NATER IN THE GRAIN. c FUNCTIONAL FORM GALLAHER 1951 AG ENG PP5A USED BY SPENCER C J1972 J AGRIC ENGNG RES VOL 17 PP 189. C***** COMMON/HLATENT/HA.HB.HFG HEATLAT = (IOBh.-O.S7*TH)*(I.+HA*EXP(HB*XMC)) IF (HEATLAT .LE. 1000.) HEATLAT = 1000. RETURN C END C******************************fi**k***fikflkkkfikflkflkkflkfikflkkflfik*fiflflkfifikfiflk SUBROUTINE LAYEQ C IPS USED BY CRSFLw, CRSFLN3. CRSFLHA;EQN5+6+7 IN MSUAESRR22A. C***** DESCRIPTION C***** SUBROUTINE TO FIND THE MOISTURE CONTENT BASED ON EQUA— C***** TIONS BY J.M. TROEGER AND P.M. DEL GIUDICE c LISTED IN BAKKER 197A AE522A AS EQ7 FROM ASAE PAPER70-32A BY TROEGER C THIS CODE IS A COMPOSITE OF LAYEQ BY TROEGER AND LAYEQ BY 210 C THOMPSON BOTH 0N PP #9 RR 2AA. Ckfikfik . Cfikfikfl USAGE C***** USED IN THE FIXED BED AND CROSSFLOW MODELS WITH GRAIN C***** TEMPERATURES BETWEEN 80 F AND 160 F C***** COMMON/NAMES/MDOT(A,3) COMMON/MAIN/XMC,THT.RH.DELT.CFM,XMO.KAB COMMON/BROOK/TOTEN,TOTH20.XMS.CHTC,UNMIx,TY,TB,IPROD,FM,HDF.NSTG DATA (MDOT(I,I),I=1,A)/10HTROE+THOMP, IOH(M)BYLAYER, IOHCORN=MAIZE I, IOHDEBR+THOMP/ PI(XM,R,T) = EXP(-2.h5+6.h2*XM**I.25-3.15*R+9.62*XM*SQRT(R)+.O3*T- I.OOZ*CFM) P2(R.T) a EXP(2.82+7.h9*(R+.OI)**.67-.OI79*T) P3(P,Q) = -(.IZ*(XMO-XME))**(Q+I.)*P*Q QI(XM.R,T) = -3.98 + 2.87*XM - (.019/(R+.015)) + .OI6*T Q2(R) . -EXP(.81-3.II*R) TF(P.Q,X0,XF,TO) = P*(XF-XME)**Q — P*(X0-XME)**Q + T0 XMN(P.Q,X0,TI.TD) = ((Tl-TO)/P+(XO-XME)**Q)**(I./Q) + XME C***** CALL READYTH FOR PRELIMINARY CHECKS AND CALCULATIONS IF (HDF .GE. 0.99 .ANO. HDF .LE. I.) HDRY . HDF C SEE) BAKKER LEREH BROOK BROOKER ASAE 78-3523 CRS 0.99 BATCH 0.998 IF (HDF .LT. 0.99 .OR. HDF .GT. 1.) HDRY . 1. CALL READYTH (TXMO,DELM,XME.IDOPS,XMR) C***** CHECK ABSORPTION FLAG...IF SET GO TO ABSORPTION SIMULATION IF (IOOPS-I) 1. 6. 1 1 IF (THT .GT. 1A0.) GO TO 7 C***** COMPUTE TRANSITION M,P1,QI, AND FIRST TRANSITION TIME x1M = .h*DELM + XME ' x2M . .IZ*DELM + XME TINC = DELT*60. P = PI(TXMO.RH,THT) Q = QI(TXMO.RH,THT) Tx . TF(P,Q.TXMO.XIM,0.0) C***** CHECK 1F PRESENT M IS IN FIRST REGION...IF IS IS COMPUTE C***** EQUIVALENT TIME AND ADD TINC IF (XMC .LT. x1M) GO TO 3 T1 = TF(P,Q,TXMO.XMC,0.0) + TINC C***** CHECK IF EQUIVALENT TIME+TINC Is LESS THAN TRANSITION TIME.. C***** IF IT IS COMPUTE NEH M AND RETURN IF (TI .GT. Tx) GO TO 2 XMC = HDRY*XMN(P,Q,TXMO,TI,0.0) RETURN - C***** EQUIVALENT TIME+TINC IS IN SECOND REGION--COMPUTE P2. 02 AND C***** NEH M THEN RETURN 2 P = P2(RH,THT) 'Q = Q2(RH) XMC = HDRY*XMN(P,Q,XIM,TI,TX) RETURN - C***** M IS NOT IN FIRST REGION--COMPUTE P2. Q2 AND SECOND C***** TRANSITION TIME 211 3 P 8 P2(RH,THT) Q = Q2(RH) TXI = TX Tx = TF(P,Q,x1M,x2M,Tx1) C***** CHECK IF PRESENT M IS IN SECOND REGION...|F IT IS COMPUTE C***** EQUIVALENT TIME AND ADD TINC IF (XMC .LT. XZM) GO TO 5 TI - TF(P.Q,XIM,XMC,TXI) + TINC C***** CHECK IF EQUIVALENT TIME+TINC IS LESS THAN TRANSITION TIME.. C***** IF IT IS COMPUTE M AND RETURN IF (TI .GT. TX) GO TO A XMC . HDRY*XMN(P,Q,XIM,TI,TXI) RETURN C***** EQUIVALENT TIME+TINC IS IN THIRD REGION--COMPUTE P3, Q3 AND C***** NEW M THEN RETURN h P = P3(P,Q) Q . -1.0 XMC = HDRY*XMN(P,Q,X2M,TI,TX) RETURN , C***** M IS NOT IN SECND REGION--COMPUTE P3, Q3, EQUIVALENT TIME+ C***** TINC AND NEW M THEN RETURN S P ' P3(P-Q) Q - -1.O TI 8 TF(P,Q,X2M,XMC,TX) + TINC XMC 8 HDRY*XMN(P,Q,X2M,TI,TX) RETURN C***** C***** ABSORPTION SIMULATION C***** FIND NEW M AND INCREMENT COUNTER (KAB) 6 DIV 8 -.625*PSDB(THT+h59.69)**(.h66*RH)*RH*RH*RH XMC = HDRY*((XMC-XME)*EXP(DIV*DELT)+XME) KAB = KAB + I RETURN 7 ALMR = ALOG(XMR) A a -I.86I78 + 0.00h88h3*THT B = h27.36h*EXP(-0.0330I*THT) C**** FIND EQUIVALENT TIME BASED ON CURRENT TEMP AND MC C**** ADD DELT AND SOLVE FOR NEW MC TI 8 ALMR*(A+B*ALMR) + DELT ALMR = (-A-SQRT(A*A+L.O*B*TI))/(2.0*B) XMC = HDRY*(DELM*EXP(ALMR)+XME) RETURN END C*****************************fikflflkfl*****************fikfikfikfikkfifikfikflfi SUBROUTINE LAYEQSO C IPS USED BY CRSFLW,CRSFLW3,CRSFLWA. Ckfikflk V.A.DALPASQUALE C*****DESCRIPTIDN Cfiflkfifi SUBROUTINE USED TO FIND THE MOISTURE CONTENT BASED ON C*****EQUATION BY OVERHULTZ AND EQULIBRIUM MOISTURE CONTENT BY ROA C CH FIGI AND CK FIGZ OVERHULTS 1973 TASAE VOL I6 PP II2. 212 Cfififikfi COMMON/NAMES/MDOT(A,3) COMMON/MAIN/XMC,THT,RH,DELT,CFM.XMO.KAB COMMON/BROOK/TOTEN,TOTHZO,XMS,CHTC,UNMIX,TY,TB,IPROD.FM.HDF,NSTG DATA (MDOT(I,2),I=I,h)/IOHOVERHULTZ., IOHIM)BYLAYER. IOHSOYBEAN... 1, IOHSILVA+ALAM/ F(T) = T + h59.69 IF (HDF .GE. 0.99 .AND. HDF .LE. I.) HDRY = HDF C SEE) BAKKER LEREW BROOK BROOKER ASAE 78-3523 CRS 0.99 BATCH 0.998 IF (HDF .LT. 0.99 .OR. HDF .GT. I.) HDRY = I. C***** C***** CALL SOYREAD FOR PRELIMINARY CHECKS AND CALCULATIONS CALL SOYREAD (TXM0.0ELM,XME.IOOPS,XMR) IF (IOOPS .EQ. 1) GO TO 6 XMOH . XMO/(I.+XMO) IF (XMOH .LE. 0.20) GO TO 1 IF (XMOW .GT. 0.20) GO TO 2 I CK 8 EXP(II.752-79I2.7/F(THT)) GO TO A 2 IF (XMOH .GT. 0.25) GO TO 3 CK 8 EXP(I0.906-7357.0/F(THT)) GO TO A 3 CK = EXP(I0.375-6779.3/F(THT)) h CN 8 0.3529 + 0.00I36*THT IF (CK .LE. 0.0) CK - 0.000I IF (TXMO .EQ. XMC) GO TO 5 T1 = (-ALOG(XMR))**(I./CN)/CK + DELT XMC = HDRY*((XMO-XME)*EXP(-((CK*TI)**CN))+XME) RETURN 5 XMC . HDRY*((XMO-XME)*EXP(-((CK*DELT)**CN))+XME) RETURN 6 DIV 8 -.625*PSDB(F(THT))**(.h66*RH)*RH*RH*RH XMC = HDRY*((XMC-XME)*EXP(DIV*DELT)+XME) KAB 3 KAB + I RETURN END C*fik*********k*******kfikkflflkflflfiflflkflkflfikflkfifl************************** FUNCTION OPTH(HLS) C 0PTH IS CALLED BY ZEROIN TO FIND LOCKSTEP HUMIDITY WHEN AIR IS C RECYCLED IN SUBROUTINE ABSH. C SAME AS XFLD BETWEEN C ----- EXCEPT PRINTS DELETED COMMON/MEIER/OTTEN.OM.OFLAG COMMON/MAIN/XMT,THT,RHT,DELT,CFM,XMO,KAB COMMON/BRODK/TDTEN,TOTHZO,XMS,CHTC,UNMIX,TY,TB,IPROD,FM.HDF,N$TG COMMON/INPT/BPH,GP,GVEL,INDI,DELX.YLENG,DBTPR,XWIDE.PDE COMMON/PRPRTY/SA,CA,CV,CW,RHOP,CP COMMON/HLATENT/HA.HB,HFG COMMON/lFLAGS/JFLAG,ICON,THIGH,KVAD,JUAN,APR23 COMMON /PRESS/PATM COMMON/NAMES/MDOT(A.3) COMMON/VEL/FL,FLI,KK2,XREL.KSTG.THZIN,VREL 213 COMMON/CYCLE/XMOUT.SUMZT,HAVER,THOUT,BTUH20 COMMON/ARRAYS/XM(IOO),RH(IOO),T(IOO,2).H(IOO.2).TH(I00,2),GA COMMON//XY,IADJ.IXY,SXMD,ADJ(6,I) LOGICAL REUSE.REPNT,VERIFY COMMON/HOPT/ REPNT,HI3,HIA,TI3,TIA,REUSE,TINE,HINE,VERIFY,FHIN,ATI IN,FATIN DATA TRN/O.OOI/. REPNT/.FALSE /. VERIFY/.FALSE./ F(T) = T + A59.69 REHIND s VERIFY = .FALSE. C ----- MODIFY REHIND 5 INSTEAD OF REUSE FALSE ---- KAB - O . OELx a 0.1 DELT . 0.002 THZIN = O. THIGH = 0.0 YADD = O. NSTG = 1 KSTG = I TOTEN . 0. TOTH20 = 0. FL . 0.0 READ 907. STAGES READ 907. EQN READ 907, PDE IF (PDE .LT. O.) PDE = 0. IF (PDE .NE. 0.) PDE = 1. READ 907. PRODUCT 1 CONTINUE KVAD = O READ 907. XHIDE IF (NSTG .EQ. I) XVAD - XHIDE IF (NSTG .GE. 2 .AND. PDE .NE. 0.) XHIDE = XVAD XHIDE = XHIDE/Iz. READ 907._YLENG READ 907. DBTPR READ 907, xv IF (PDE .EQ. 0. .AND. xY .EQ. 2.) XY = 1. IF (XY .NE. 1. .ANO. XY .NE. 2.) XY = O. READ 907. BPH READ 907, TB GVEL = BPH*I.2hh TRYI = 5. IADJ . A + INT(YLENG/(DELT*GVEL*TRYI*DBTPR)) YADD - YLENG/FLOAT(IADJ-A) IF (XY .EQ. 0.) CALL SETFL (ADJ(6,IADJ)) GP = GVEL*RHOP KO 8 KN KN = I + INT((XWIDE+TRN)/DELX) ULI ' FLI IF (NSTG .GE. 2) CALL UNMIXI (KO,KN,KOI,K02,ULI) 214 READ 907, FM IF (NSTG .EQ. 1) READ 907, HDF 1F (HDF .EQ. O.) HDF = I. READ 907. THIN IF (THIN .EQ. O.) THIN = THOUT IF (NSTG .GE. 2) XMO . IOO.*XMS/(I.+XMS) READ 907; XMOH IF (XMOH .EQ. 0.) XMOH = XMO XMO . XMOH/(100.-XMOH) XMS = XMO IF (NSTG .EQ. 1) OTTEN - XMO IF (NSTG .EQ. 1) READ 907, TAMB IF (NSTG .EQ. 1) READ 907. RHAMB IF (RHAMB .GT. 1.) RHAMB . RHAMB/(IO**(I+INT(ALOGIO(RHAMB)))) TY = RHAMB A XMT5 = xMO IF (NSTG .EQ. 1 .ANO. PDE .EQ. 1.) CALL DEPOT (5,D1,D2,XMT5,DA,O§) READ 907, TIN IF (TIN .EQ. 1. .ANO. NSTG .GE. 2) TINE = TAMB IF (TIN .EQ. 0.) TIN - TINI IF (TIN .EQ. 1.) TIN - TAMB IF (TIN .EQ. 2.) TIN = SUMZT THIGH a AMAXI(THIN,TIN,THZIN) IF (NSTG .EQ. I) TINI = TIN IF (NSTG .EQ..I) READ 907, FUEL 1F (FUEL .LT. O.) REUSE = .TRUE. IOP3 = 2 IOPA = 3 HI - HADBRH(F(TAMB).RHAMB) IF (NSTG .EQ. 1) HI3 = HLS IF (NSTG .EQ. I) CALL ABSH (HIN,TAMB.TIN,HI,FUEL) IF (NSTG .EQ. I) GTINE = TINE IF (NSTG .EQ. 1) FHIN = HIN 1F (NSTG .EQ. 1) HINI . HIN IF (NSTG .GE. 2) READ 907. HIN IF (HIN .EQ. 1. .AND. NSTG .GE. 2) HINE = HI IF (HIN .EQ. O.) HIN . HINI IF (HIN .EQ. 1.) HIN = HI IF (HIN .EQ. 2.) HIN . HAVER READ 907, CFMBU CFM = CFMBU*XHIDE/I.2AA FL . 0. READ 907, FL1 IF (FLI .EQ. 0.) XREL = 1. IF (FLI .EQ. O.) VREL a 1. IF (FLI .EQ. 0.0) GO TO 3 READ 907. XREL _ XHIDEI = XWIDE*XREL XHIDE2 - XHIDE - XHIDEI INDI = INT((XHIDE1+TRN)/DELX) + I KOI = INDI C SET IOI C SET 102 5 215 GO TO A FL = 1. KSTG = 2 READ 907, VREL INDI = INT((XHIDE2+TRN)/DELX) + 1 K02 = INDI GVEL = GVEL*VREL CALL UNMIx2 (KO.KN.K01.K02.UL1) , IF (XY .NE. 0.) ADJ(I,I+IADJ) = XHIDEI GO TO 7 INDI = INT((XHIDE+TRN)/DELX) + 1 RHIN = RHDBHA(F(TIN).HIN) RHT = AMAXI(0..AMINI(I.,RHIN)) AIR INLET VALUES THAT DO NOT OEPEND ON UNMIx. DO 101 I - 1, INDI H(I.2) = HIN H(I,I) = HIN RH(I) = RHT CONTINUE 1F (NSTG .GE. 2) READ 907. RTYPE IF (NSTG .EQ. 1) RTYPE . 1. ITYPE . INT(RTYPE) IF (NSTG .GE. 2) READ 907. UNMIx IF (NSTG .EQ. I) UNMIx a 2. IF (NSTG .GE. 2 .ANO. UNMIx .NE. 1.) UNMIx - 2. AIR INLET SIDE (DUAL) OR ALL TOP (SINGLE SPEED);AFTER INDISET 1F (UNMIx .EQ. I.) GO TO 5 DO 102 I = 1, INDI T(I,2) a THIN T(I,I) 2 T(I,2) CONTINUE CONTINUE IF (UNMIx .EQ. 2. .ANO. RTYPE .EQ. 2. .ANO. NSTG .GE. 2) CALL UNMI 1x3 (KO.KN.KOI,K02,UL1) I I I IF (NSTG .GE. 2) CALL UNMIXI (KO.KN.KOI,K02,UL1) IF (UNMIx .EQ. 2. .AND. NSTG .GE. 2 .ANO. PDE .EQ. I. .ANO. RTYPE .EQ. 1.) CALL DEPOT (8.0I.D2,D3,DA,D5) IF (UNMIX .EQ. 2. .AND. NSTG .GE. 2 .AND. PDE .EQ. I. .AND. RTYPE .EQ. 2.) CALL DEPOT (A.DI,D2,D3,DA,D5) IF (UNMIx .EQ. I. .ANO. NSTG .GE. 2 .ANO. PDE .EQ. 1. .AND. RTYPE .EQ. 2.) CALL DEPOT (3.D1.D2.D3,DA,D5) 1F (UNMIx .EQ. 1.) GO TO 6 C SET VALUES WHEN MIXED (INCLUDES TOP OF FIRST STAGE) I I03 6 DO 103 I = 1, INDI XM(I) . XMO IF (EQN .EQ. 1. .OR. EQN .EQ. 2.) TH(I,2) IN IF (EQN .EQ. 3. .OR. EQN .EQ. A.) TH(I,2) TH(I,I) = TH(I,2) - CONTINUE CONTINUE T(I,2) = T(I,I) = TH THIN 216 IXY = 1 + INT(YLENG/DBTPR) IF (XY .NE. 0.) CALL SETFL (ADJ(6,IADJ+IXY*INDI)) IF (XY .NE. 0.) ADJ(I,I+IADJ) = O. ULI = FLI IF (ITYPE .EQ. 2) CALL CONVERT (KO,KN.K01,K02.ULI) C SET NODE AT AIR INLET AFETER MIXING/AIRREVERSAL TH(I,2) = TIN TH(I,I) = TH(I,2) T(I,2) TH(I,I) T(I,I) T(I,2) GA = 60.*CFM/VSDBHA(F(TINE),HINE) CHTC . O.363*(GA**O.59) 1F (GA .LT. 500.) CHTC . 0.69*(GA**0.A9) 7 IF (XY .EQ. O.) KADJ a IADJ 1F (XY .NE. 0.) KADJ = IADJ + IXY*INDI CALL CRSFLHJ (T1N,THIN,HIN,YADD,TAMB.EQN) KVAD - INDI - 1 IF (FLI .EQ. 0.) FL 2 1. IF (FL .EQ. 0.) GO TO 2 IF ((NSTG .EQ. IOP3)) HI3 - HAVER IF (NSTG .EQ. IOPA) FHIA - HIA IF ((NSTG .EQ. IOPA)) HIA = HAVER IF (NSTG .EQ. IOP3) FTI3 - TI3 IF ((NSTG .EQ. IOP3)) TI3 - SUMZT IF (NSTG .EQ. IOPA) FTIA a TIA IF ((NSTG .EQ. IOPA)) TIA . SUMZT 1F (NSTG .GE. STAGES .AND. FL .EQ. 1.) GO TO 8 KSTG . 1 NSTG = NSTG + 1 GO TO I C ------------ MODIFY BY EXTRA PRINTOUT --------- 8 0PTH = (HLS-HI3)*(HLS-HI3) PRINT 906, HLS, HI3 PRINT 903, FTI3, TI3 PRINT 902, FHIA, th PRINT 90h, FTIh, Tlh VERIFY = .TRUE. CALL ABSH (HIN,TAMB.TIN,HI,FUEL) VERIFY = .FALSE. PRINT 90I, GTINE, ATIN PRINT 905, FHIN, HIN 901 FORMAT (IX*TAG ALONG: T TO BURNER*2(IX,EIO.A)) 902 FORMAT (IX*TAG ALONG: COOLER HUMIDITY*2(1x.E10.A)) 903 FORMAT (IX*TAG ALONG: RECYCLE TEMPERATURE*2(1x,E10.A)) 90A FORMAT (IXATAG ALONG: COOLER TEMPERATURE*2(IX.EIO.A)) 905 FORMAT (IX*TAG ALONG: H FROM BURNER*2(IX,EIO.A)) 906 FORMAT (IxfiLOCKSTEP HUMIDITY ASSUMED:ACTUAL*2(IX,EIO.A)) 907 FORMAT (5FIO.2) - END C**************************************fikfififl**********flkfiflkfikkkfifikflfifl 217 SUBROUTINE REFALSI(HLOW,HHI,EPS,FUNCT,XNPI) C IPS USED BY CRSFLH3=CRSFHJ C***** SUBROUTINE FINDS ZERO OF FUNCT ON (HLOH,HHI) BY FALSE POSITION DIMENSION FLOH(25).FHIGH(25),FN(25),HACT(25) KK - I FN(I) = 0. 1 FXL = FUNCT(HLOH) FLOW(KK+I) = FXL IF (FXL .LT. 0.) GO TO 2 HLOW = HLOW*3./b. GO TO I 2 FXR = FUNCT(HHI) FHIGH(KK+I) I FXR IF (FXR .GT. 0.) GO TO 3 HHI = HHl*h./3. GO TO 2 3 TEST = FXL*FXR IF (TEST .GT. 0.) PRINT 90], FXL, FXR GO TO 6 h FXL = FXNPI FLOW(KK+I) = FXL GO TO 6 5 FXR = FXNPI FHIGH(KK+I) . FXR Q 6 XNPI = (HLOW*FXR-HHI*FXL)/(FXR-FXL) HACT(KK+I) - XNPI IF (KK .GT. 25) GO TO 8 FXNPI = FUNCT(XNPI) FN(KK+I) = FXNPI KK = KK + I IF (ABS(FN(KK)-FN(KK-I)) .LT. EPS) RETURN IF (FXL*FXNPI .LT. 0.) GO TO 7 HLOW = XNPI GO TO A ' 7 HHI = XNPI GO TO 5 8 PRINT 903 PRINT 902 DO IOI J = I, KK PRINT 90h, J, FLOW(J), FHIGH(J), FN(J), HACT(J) 101 CONTINUE RETURN C 90] FORMAT (IOX.*W A R N I N G : POSSIBLY NO ROOTS*//* THE FUNCTION VA ILUE AT LOWER GUESS IS:*,EIS.8/* THE FUNCTION VALUE AT HIGHER GUESS 2 IS*.EI5.8//) 902 FORMAT (I3X,5HF-LOW,I3X,6HF-HIGH,9X,5HF-MID,9X,5HX-MID) 903 FORMAT (IOX,*NO ROOTS FOUND AFTER 50 ITERATIONS*) 90h FORMAT (IX,I3,2X,EI5.8,3X,EI5.8,3X,EIS.8,3X,EIS.8) END ' C*****************k******Ak*************************************fififikfl 218 FUNCTION SOLVE(HJ2) IPS USED BY CRSFLW3 AND REFALSI TO COMPUTE XM=XMT, TH=THT, RH=RHT IPS SOLVE IS ZERO WHEN (EQNIb-MSUAESRRZZA) IS SATISFIED AND IPS AND WHEN SOLVE IS ZERO H IS FOUND; ENGLISH UNITS IPS EQUATIONS DEVELOPED FOR LOW CFM SOLAR HENCE THETA(X,Y) IPS = T(X,Y) ASSUMPTION MADE SEE BAKKER,HAIGHT,ROTH ASAE76-3200. C***** C***** COMMON/ARRAYS/XM(IOO).RH(IOO).T(IOO,2),H(IOO,2),TH(IOO,2),GA COMMON/MAIN/XMT,THT,RHT,DELT,CFM,XMO,KAB COMMON/BROOK/TOTEN.TOTHZO,XMS,CHTC.UNMIX,TY,TB.IPROD,FM,HDF,NSTG COMMON/PRPRTY/SA,CA,CV,CW,RHOP,CP COMMON/INPT/BPH,GP,GVEL,INDI,DELX,YLENG,DBPTR,XWIDE,PDE COMMON/IFLAGS/JFLAG,ICON.THIGH,KVAO,JUAN,APR23 COMMON/HLATENT/HA.HB,HFG COMMON/PRESS/PATM DATA PATM/IA.696/. RHC/O.9998/. HMIN/0.001/ F(T) = T + A59.69 J = JFLAG JM = J ~ I ICON 8 O C***** C***** EVALUATE THE CONSTANTS CONI....CON6 AND SET THE INITIAL C***** GUESS FOR H C IPS PERHAPS, ROTH BAKKER 1973 SIMULATION OF HEAT AND MASS TRANSFER C IPS IN BEDS OF BIOLOGICAL PRODUCTS, AE8I2 SUMMERI973;USES 212 IN CONA Ckfikflfi H(J,2) = HJ2 C IPS BEFORE H(J,2) WAS RESET T0 TENTH. IF (H(J,2) .GT. I.) H(J,2) = I.O IF (J .EQ. 2) GO TO I CONSS = H(J,2) - H(JM,2) CON2 = DELT*GA*(CA+CV*H(JM,2)) GO TO 2 I CON55 = H(2,2) - H(I.2) CON2 8 DELT*GA*(CA+CV*H(I,2)) 2 CONTINUE 1F (IPROD .EQ. 2) CP = 0.39123 + O.h6057*XM(J) nonnn CONI = DELX*RHOP*(CP+CW*XM(J)) CON3 = CW - CV CONA = CON3*ZIZ. + HFG CONS = DELT*GA*CONH CON6 = RHOP*DELX/(OELT*GA) C ASSUME C3=0 HHICH CHANGES CA BY UNDER 2 PERCENT: SUBSTITUTE C BAKKER 197A AES 22A RHS E0 12 INTO RHS EQ 13 THEN LET THETA=T YIELDS C (CI+C2)*T(J,2)=CI*T(J,I)+C2*T(JM,2)+C5*CON55 HHERE C DT/DY=(T(J.2)-T(J,1))/DY AND DT/DX=(T(J,2)-T(JM.2))/DX. C NOTE SECOND TERM EQI3 HAS HRONG OPPOSITE SIGN.HENCE SIGN CON55 TERM . T(J,2) = (CONI*T(J.I)+CON2*T(JM.Z)-CONS*CON55)/(CONI+CON2-DELT*GA* ICON3*CON55) IF (T(J,2) .LT. 32.1) GO TO 3 219 C***** C***** COMPUTE RH AND CHECK FOR CONDENSATION Cfikfififi 1F (H(J,2) .LE. 0.) H(J,2) = APR23 RH(J) = RHDBHA(F(T(J,2)).H(J,2)) 1F (RH(J) .GE. RHC) GO TO A C***** C***** FIND XM ACCORDING TO THE THIN-LAYER DRYING EQUATION. Cfikfiflfi XMT = XM(J) IF (T(J,2) .GT. THIGH) T(J,2) = THIGH THT = T(J,2) RHT = AMAXI(0..AMINI(1.,RH(J))) IF (PDE .NE. 1. .AND. IPROO .EQ. I) CALL LAYEQ IF (PDE .NE. 1. .ANO. IPROD .EQ. 2) CALL LAYEQSO RHT5 . RHT THT5 = THT XMT5 . XMT IF (PDE .EQ. 1.) CALL DEPOT (6,RHT5,THT5,XMT5,XMC,D5) IF (PDE .EQ. 1.) XMT - XMC 3 CONTINUE IF (T(J,2) .LT. 32.1) T(J,2) = 32.1 C***** C***** SOLVE SHOULD CONVERGE TO ZERO UPON INTERATION IN ZEROIN. Ckkkkk SOLVE = XMT - XM(J) + (HJ2-H(JM,2)I/C0N6 C***** C ACTUAL(AESRR22&:EQIA) MOISTURE CONTENT IS XMT:SOLVEh ONLY NEAR ZERO C***** C IPS EQN-1A MSUAESRR22A DM/DY=(GA/GP)DH/Dx XMT = XM(J) - (H(J,2)-H(JM,2))/CON6 RETURN C***** C***** CONDENSATION SIMULATOR. Ckkflflk C***** CALCULATE THE WET-BULB TEMPERATURE OF THE PREVIOUS POINT. C***** THIS IS THE DESIRED DRY-BULB TEMPERATURE AT THE SATURATION Cfiflkkk POINT, C***** h GSLOW = T(JM,2)/3. T(J,2) = -A59.69 + HBDBHAS(F(T(JM.2)),H(JM,2),F(GSLOH),F(TH1GH).0. IOI) TH(J.2) = T(J,2) H(J,2) = HADBRH(F(T(J.2)).RHC) RH(J) = RHC ICON = I GO TO 3 END C***********fiflk******************************kfikflkflkfikfikflfl**k*flk*kflkk FUNCTION SOLVEA(HJ2) C IPS SOLVEA USED BY BOTH ZEROINA AND CRSFLWA;SIGN 2ND TERM EQNI3 PLUS! 220 C0MMON/ARRAYS/XM(100).RH(100).T(100,2).H(100.2),TH(100.2),GA COMMON/MAIN/XMT,THT,RHT,DELT,CFM,XMO,KAB COMMON/BROOK/TOTEN,TOTH20.XMS.CHTC.UNMIx,TY,TB,IPROD,FM,HDF,NSTG COMMON/PRPRTY/SA.CA,CV,CH,RH0P,CP COMMON/INPT/BPH,GP,GVEL,INDI,DELX,YLENG,DBPTR,XWIDE.PDE COMMON/IFLAGS/JFLAG,ICON,THIGH,KVAD,JUAN,APR23 C0MMON/HLATENT/HA,HB.HFG COMMON/PRESS/PATM DATA PATM/IA.696/. RHC/0 9998/. HMIN/0.00I/ - F(T) = T + A59.69 J = JFLAG JM . J - I ICON = 0 C***** C***** EVALUATE THE CONSTANTS CONI... CON6 AND SET THE INITIAL C***** GUESS FOR H. C***** C HJ2=AMINI(1.,AMAx1(0..HJ2)) H(J,2) = HJ2 CCONI = GA*(CA+CV*H(J,2)) C IPS CCONI H(J,2) INSTEAD OF AVG. AS MSUAES-63. CC0N2 = DELX*CHTC*SA CCON3 = (CCONZ-GA*CV*(H(J.2)-H(JM,2)))*DELT C UNLIKE MSUAESRR22A+EQN13 CCON3 HAS MINUS GA INSTEAD OF PLUS GA. CCONA = DELT*HFG*GA*(H(J,2)-H(JM,2)) IF (IPROD .EQ. 2) CP = 0.39123 + O.h6057*XM(J) CCON5 = DELX*RHOP*(CP+CW*XM(J)) CCON6 = GA*DELT/(RHOP*DELX) - . T(J,2) = (CCONI*T(JM.2)+CCON2*TH(J.2))/(CCONI+CCON2) C T(J,2) FROM (TJ2-TJM2)CI=C2(THJ2-TJ2) FIND TJ2 AS MSUAES+12 TH(J.2) = (CCON3*T(J,2)-CCONh+CCON5*TH(J,I))/(CCON5+CCON3) C UNLIKE MSUAESRR22A+EQNI3 CCONA HAS MINUS INSTEAD OF PLUS C TH(J.2) FROM (THJ2-THJI)C5=C3(TJ2-THJ2)-CA FIND THJ2 AS MSUAES+EQNI3. Ckkkkk C***** COMPUTE RH AND CHECK FOR CONDENSATION Ckkflkfl IF (H(J,2) .LE. 0.) H(J,2) = APR23 RH(J) = RHDBHA(F(T(J,2)).H(J,2)) IF (RH(J) .GE. RHC) GO TO 2 C***** 0'"???wa FIND XM ACCORDING TO THE THIN-LAYER DRYING EQUATION;THT,RHT C***** XMT = XM(J) C RR22A USES THT=(TH(J.2)+T(J.2))/2.: THIS INCREASES DRYER EFFICIENCY THT = (TH(J.2)+T(J.2))/2. RHT = AMAXI(0..AMIN1(1.,RH(J))) IF (PDE .NE. 1. .ANO. IPROO .EQ. I) CALL LAYEQ IF (PDE .NE. 1. .ANO. IPROD .EQ. 2) CALL LAYEQSO RHT5 = RHT THT5 = THT XMT5 = XMT 221 IF (PDE .EQ. 1.) CALL DEPOT (6,RHT5,THT5,XMT5,XMC.05) IF (PDE .EQ. I.) XMT = XMC C***** 1 CONTINUE C IPS ESTIMATE OF H BY IMPLICIT ITERATION TILL SOLVE=2ERO. Cflfiflfik SOLVEA = XMT - XM(J) + (HJ2-H(JM,2))*CCON6 C***** C ACTUAL(AESRR22A:EQ1A) MOISTURE CONTENT IS XMT:SOLVEA ONLY NEAR ZERO XMT = XM(J) - (H(J,2)-H(JM.2)I*CCON6 RETURN C***** C:'::'::'::'::‘: CONDENSATION SIMULATOR C***** C***** CALCULATE THE WET-BULB TEMPERATURE OF THE PREVIOUS POINT. C***** THIS IS THE DESIRED DRY-BULB TEMPERATURE AT THE SATURATION Ckkfikk POINT, ‘ C***** 2 T(J,2) = -A59.69 + HBDBHAS(F(T(JM,2)).H(JM,2).F(32.1).F(THIGH),O.O 11) H(J,2) . HADBRH(F(T(J.2)).RHC) CCONI = GA*(CA+CV*H(J,2)) C IPS CCONI H(J,2) INSTEAD OF AVG. AS MSUAES-63. CCON3 . (CCONZ-GA*CV*(H(J,2)-H(JM.2)))*DELT C UNLIKE MSUAESRR22A+EQNI3 CCON3 HAS MINUS GA INSTEAD OF PLUS GA. CCONA = DELT*HFG*GA*(H(J,2)-H(JM,2)) TH(J.2) . (CCON3*T(J.2)-CCONA+CCON5*TH(J.I))/(CCON5+CCON3) C UNLIKE MSUAESRR22A+EQN13 CCONA HAS MINUS INSTEAD OF PLUS RH(J) = RHC ICON = 1 GO TO I C END C********************************************kflflkfikfi***************** FUNCTION SOYEMC(RH,T) COMMON/MEIER/OTTEN.OM,OFLAG C IPS USED BY SOYREAD.DEPOT.CRSPR.CRSFLHJ. C***** C***** FUNCTION SUBROUTINE T0 COMPUTE EQUILIBRIUM MOISTURE CONTENT C*****OF SOYBEANS FROM A RELATIVE HUMIDITY AND TEMPERATURE,USING C*****EQUATION BY SILVA C SILVAXFLO (UP2182)USES HENDERSON—THOMPSON AND SABBAH. Ckkkflk 1F (T .LT. 32.) T a 33. IF (RH .LT. 0.55) GO TO 1 T = 5./9.*(T-32.) RH = RH*IOO. SOYEMC = 6.20806*EXP(RH*0.027377)/ALOG(T) SOYEMC = SOYEMC/100. IF (OFLAG .EQ. I.) SOYEMC = SOYEMC*((OM/OTTENI**3) RH = RH/IOO. 222 T = 9.*T/5. + 32. RETURN I CONTINUE RH = RH*IOO. T = 5./9.*(T-32.) IF (RH .LT. I.) RH = I. SOYEMC = 3.96I83*RH**O.A9I88/ALOG(T) SOYEMC = SOYEMC/I00. IF.(OFLAG .EQ. 1.) SOYEMC = SOYEMC*((OM/0TTEN)**3) T = 9.*T/5. + 32. RH = RH/IOO. RETURN END CfiAk*********************fl****************kkflfikfi*kkflfikfififikkfikkfifikfikfifi SUBROUTINE SOYREAD(TXMO,DELM,XME,IOOPS.XMR) COMMON/MEIER/OTTEN,OM.OFLAG C IPS USED BY LAYEQSO COMPARABLE T0 READYTH=CORN USED BY LAYEQ. C***** C***** C*****DESCRIPTION C***** SUBROUTINE TO MAKE PRELIMINARY CHECKS AND CALCULATIONS FOR C*****SOYBEAN THINLAYER EQUATIONS AND TO CALCULATE EQUILIBRIUM MOISTURE C*****CONTENT FOR SOYBEANS USING ALAMS EQUATION Ckflfikfl COMMON/MAIN/XMC,THT,RH,DELT,CFM,XMO,KAB COMMON/BROOK/TOTEN,TOTHZO,XMS,CHTC,UNMIX,TY,TB,IPROD,FM,HDF,NSTG OM = XMC ' IOOPS = O C*****COMPUTE EQUILIBRIUM MOISTURE CONTENT, COMPARE TO PRESENT MOISTURE C*****CONTENT...IF GREATER SET IOOPS=I XME 8 SOYEMC(RH,THT) IF (XME-XMC) 2, I, I I IOOPS = I C*****COMPARE PRESENT MOISTURE CONTENT TO INITIAL MOISTURE CONTENT. SET C*****TXMO EQUAL TO THE LARGER VALUE 2 IF (XMO-XMC) 3. A. A 3 TXMO = XMC GO TO 5 A TXMO = XMO C*****COMPUTE MOISTURE RATIO 5 XMR . (XMC-XME)/(TXMO-XME) DELM = TXMO - XME C IPS DELM NOT USED BUT CONSISTENT WITH READYTH;USED IN SUBROUTINE QUAL. RETURN . END C*kflk*kkkkflkfltfi**********************************fifikfikfikfikflkfififlkflflfifik SUBROUTINE SUB(KPT,Y,DEPNT,IV,IFLAG) C CONCEPT BY MARK HARDING I98I; MODIFIED SLIGHTLY BY IP SCHISLER I98I. C IPS USED BY CRSFLWJ TO INTERPOLATE ADJ-ARRAY; WHEN TWO GP IN CROSSFLOW COMMON//XY,IADJ,|XY,SXMD,ADJ(6,I) IF (IFLAG .EQ. 2) GO TO 1 223 C FIND ARRAY INDEX CORRESPONDING TO Y-POSITION KPTMAX 8 KPT DO IOI I 8 I, KPT DEPNT = FLOAT(I) IF (Y .LT. ADJ(I,I)) RETURN IOI CONTINUE RETURN C DEPENDENT VARIABLE (DEPNT) IS BETWEEN ADJ(.,LPT) AND ADJ(.,LPT+I) I LPT 8 KPT - I LPT 8 MAXO(I,KPT) LPT 8 MINO(LPT,KPTMAX-I) DEPNT - (((Y-ADJ(I.LPT))/(ADJ(I,LPT+I)-ADJ(I,LPT)))*(ADJ(IV,LPT+I) I-ADJ(IV.LPT))) + ADJ(IV,LPT) RETURN END C*********fl**********************************fikkfififififikkfikfiflfifififi*fikkkfi SUBROUTINE ZEROINA(A,B.EPS,FUNC) C IPS USED BY CRSFLHA.SEARCHES FOR DOMAIN CONTAINING ZERO AND FINDS ZERO COMMON/LSM/ZKNT LOGICAL ZKNT,ZPNT LOGICAL IPS REAL I.M IPS 8 .FALSE. C ZPNT: PRINTS FAILURE TO CONVERGE UNLESS CALLED BY DEPOT. ZPNT 8 .TRUE. IF (ZKNT) ZPNT 8 .FALSE. IF (ZKNT) ZKNT = .FALSE. N 8 I SI 8 A $2 8 B I FA 8 FUNC(A) FB 8 FUNC(B) FC 8 FA C 8 A IF (IPS) GO TO 3 IF (SIGN(I.,FB) .NE. SIGN(I.,FC)) GO TO 2 SI 8 A $2 8 B N 8 N + I IF (ZPNT .AND. N .GE. 25) PRINT 90I, A, B, N IF (N .GE. 25) C 8 (A+B)/2. IF (N .GE. 25) A 8 C IF (N .GE. 25) B 8 C ~ C FAILURE TO CONVERGE TEST: FLAG IS ZKNT IN COMMON/LSM/. IF ( .NOT. ZPNT .AND. N .GE. 25) ZKNT 8 .TRUE. IF (N .GE. 25) RETURN IF (A .GE» 0.) A 8 A/2. IF (A .LT. O.) A 8 3.*A/2. C IPS A AND 8 SET WIDER UNTIL FUNC CHANGES SIGN UNLIKE ZEROIN FIXED B-A. B 8 B*3./2. GO TO I 224 2 IPS = .TRUE. IF (A .EQ. 51 .AND. B .EQ. 52) GO TO 3 IPS USE RESULTS OF SEARCH HHEN SET A AND 8; BEFORE DID NOT. FSI = SIGN(I.,FUNC(SI)) F52 = SIGN(I.,FUNC(52)) FA = SIGN(I.,FUNC(A)) FB = SIGN(I.,FUNC(B)) IF (FA .NE. FSI .ANO. FB .EQ. F52) B = 51 IF (FB .NE. F52 .AND. FA .EQ. FSI) A . 52 IF (FA .NE. FSI .ANO. FB .NE. F52) B = 51 IPS SELECT SMALLEST ROOT WHENEVER MULTIPLE ROOTS GO TO 1 3 IF (ABS(FC) .GE. ABS(FB)) GO TO A C = B B - A A = C FC = FB FB = FA FA = FC A IF (ABS(C-B) .LE. 2.*EPS) GO TO 8 I - (B-A)*FB/(FB-FA) J . LEGVAR(I) M 8 (C+B)/2. IF (J .NE. 0) GO TO 5 I = -1 + B CHINT = (B-I)*(M-I) IF (CHINT) 6. 6. 5 5 I M 6 IF (ABS(B-I) .GE. EPS) GO TO 7 I SIGN(I..(C-B))*EPS + B 7 A B B I FA = FB FB . FUNC(B) IF (SIGN(I.,FB) .NE. SIGN(I.,FC)) GO TO 3 C . A FC = FA GO TO 3 B A = (c+B)/2. FA = FUNC(A) IF (SIGN(I.,FA) .EQ. SIGN(I.,FB)) B = C RETURN 901 FORMAT (IX*ZEROINA (A,B)*2(IX,EIO.A)* NO ROOT8I5* EXPANSION TRIES* 1) END 225 APPENDIX 8 Standard Method for Determination of Breakage with Stein Breakage Testers b. d. Clean a 350-g sample using standard dockage procedure. Do no hand-picking except to remove large pieces of foreign material not removed by dockage equipment. Measure and record moisture content. If cultivars are Ito be compared, adjust them to a common moisture basis and measure them at the same temperature.For routine work involving a large number of samples, they can be placed either in open ice cream containers fitted with a bottom screen or in paper sacks and kept in a cabinet equipped with a blower at 30 C and 60% R.H. for 7-10 days (Miller et al. 1979). Samples in marketing channels need not be adjusted for moisture content because information on susceptibility to breakage under actual conditions is desired. Subdivide sample with a Boerner divider. Weigh three 100 +/- 0.1-g samples. 226 Pour each subsample into the Stein breakage tester and run for exactly 4 minutes. Remove cup. Place subsample on a Game: shaker (Dean Gamet Mfg. Co., Minneapolis, Minn.) and remove dust and small pieces of corn with a round-hole (lZ/64-inch) grain-dockage sieve during a sieving time of 30 seconds (30 strokes). Weigh coarse material remaining on the lZ/64-inch sieve. Make no attempt to assess breakage other than by loss in weight. Kernels with cracks and large pieces of corn remaining on the sieve are regarded as whole grain. Average results from three subsamples and report results as the percentage of sample passing through the round-hole, grain dockage sieve (breakage, %). 227 APPENDIX C CONVE RS ION FACTORS Temperature Difference Thermal Conductivity 1 deg 1“ (deg R) 1 BTU/h ftz ("E/ft) Unit Conversions English or Metric SI Area _ 1 ft2 9290:16sz Convective Heat-Transfer 1 BTU/h ftz ”P 5.678 IY'/m2°C Coefficient Density 1 lb/ft3 1.602xlOkg/m2 Energy 1 Real 4.187x103J 1 B’IU 1.055xlO“J Enthalpy, specific 1 B'IU/lb 2.320x103J/kg Force 1 lbf 4.448 N Heat Flux 1 kcal/h m2 1.163 W/m: 1 B’IU/h ft2 3.155 1171:: Heat Release Rate (mass) 1 B'IU/h 1b 6.461x10‘11v/kg - Length 1 ft 3.048x10‘1m Mass 1 1b 4.535x10’1kg l tonne 1.000x103kg 1 ton 1.016x103kg Pouer 1 B’IU/h 2.931x10'11v 1 hp 7.457x10 Pressure 1 standard atmosphere 1.013Xlog‘I/mg 1 bar 2 1.000x10 01/1112 1 lbf/in 6.895x103N/m2 1 in water 2.491x102N/DL) 1 11m Hg 1.333x102N/m“ Surface per Unit Volume 1 ftz/ft:3 3.280 mz/ma Specific Heat 1 BTU/1L F 4-.187x103J/kg' 5/9 deg C (deg K) 1.731 W/mz (“C/m) Unit Convcrzs ions Velocity Viscosity, absolute (or dynamic) Viscosity, kinematic Volume Airflow 228 English or Metric HHH HHI—Ira ft/h lb/ft h ft2/b bu (volume) ft3 U.S. gal cfm cfm 2 cfm/ft2 cfm/ft SI . 46 7x10'5m/s . 134x10-4kg/m s . 58 Lao-émz/s . 5:23;:10’3111‘533 .832xlO_ . 785x10 m 3m3 .BBZXIijg/min . 719x10_ 111 /sec .O48x10_3m/min 080x10 m/ sec 229 APPENDIX, D Sample Run of the Blount lO-60 OPTIONS EXPLAINED IF: ATTACH,HELP.XFL . ATTACH,P,PAUXCYBER. LIBRARY.P. HELP. N0.0F STAGESIDRYER+COGLER),NOT TEMPER: 3.0000 NUMBER OF EQUATIONS IN THE SYSTEM (1: 3 EO.-EXPL; 2: 3 EO.-IMPL 3= 4 EO.-IMPL: 4: 4 EO.-IMPL(DEBUG): 1.0000 PDE THINLAYER; N=0 Y=1 SH=2 : 2.0000 TYPE OF PRODUCT(CORN=I OR SOYBEAN=2I= 1.0000 CROSSFLOU GRAIN DRYER SIMULATION USING THE (M) BY PDE (D) SABBAH EQUATION FOR SOYS AND EMC BY ALAM:DEBOR I :CDRN INPUT FOR STAGE= 1 4 14.0000 COLUMN NIDTH, IN: COLUMN LENGTH, FT: 12.0000 OUTPUT INTERVAL: FT: 1.0000 XY; N80 Y=1, NODE82, SCAN=3= 0.0000 GRAINFLDU (BU/HR/SO FT): 15.0000 RATIO VOL. TEMPER/VOL. INPUT; 1.0000 FINE NATERIALS,DECINAL: .0300 HYBRID FACTOR,DEC : 1.0000 INLET GRAIN TEMP, F: 60.0000 INLET MOISTURE, NET BASIS PERCENT: 25.5000 INLET AMBIENT TEMP, F : 60.0000 AMBIENT REL HUM, DEC : .6000 CALCULATED AMBIENT ABS HUM= .0066 INLET AIR TEMP. (SAY,FROM HEATER),F: 200.0000 TYPE OF FUEL USED (I8NO.2 FUEL 2=NAT.GAS, 3=L.P.GAS): 3.0000 DOES DRYER RECYCLE AIR ? 1=Y 0=N: 1.0000 LENGTH STAGE AIR EXHAUSTED: ' LENGTH STAGE AIR RECYCLED: LENGTH STAGE GRAIN COOLED: .0091 TO SAY .0157 H FROM BURNER: 60.00 TO SAY 110.16 T TO BURNER: ENERGY BALANCE BASED ON H AND T: .022? 110.1000 FRACTION TO BURNER : RECYCLED, COOLER, MAKEUP .36 .09 .56 AIRFLOU, CFM/BU (AT FAN INLET): 90.0000 IS THIS A TUO SPEED GRAIN FLOU STAGE? YES - 1.0 NO - 0.0: 1.0000 FRACTIONAL NIDTH,(IN DEC OF IST SIDE) .5000 PRELIMINARY CALCULATED VALUES AIRFLOU, CFM/SD FT 04.4051 DRY AIRFLDH RATE, LB/HR-FTZ 340.1440 INLET HCIDRY BASIS DECINAL) .3423 GRAIN FLON RATE, BUSHELS/HR"FT2 15.0000 BU PER HR PER FT OF COLUHN NIDTH 8.7500 GRAIN FLON RATE, FT/HR 18.6600 TIME=DEPTH HR .00 .05 .11 .16 .22 .27 .32 .38 .43 .48 .54 .59 .64 FT .04 1.01 2.02 3.02 4.03 5.00 6.01 7.02 8.02 9.03 10.00 11.01 12.02 MOISTURE-NB XMIN .2524 .2178 .2011 .1898 .1812 .1745 .1685 .1633 .1587 .1546 .1510 .1476 .1444 MAVE .2548 .2507 .2429 .2351 .2272 .2205 .2137 .2070 .2010 .195' .1894 .1841 .1789 XMAX .2556 .2621 .2610 . 57 .2537 .2496 .2452 .2409 .2367 .2326 .2288 .2249 .2195 AVERAGE AIR EXHAUST TEMP, F: AVERAGE AIR EXHAUST HUM.RATIO: 230 TEMPERATURE THMIN THAVE THMAX 60.0 91.3 103.8 121.9 132.6 138.2 143.4 146.4 150.1 153.4 154.7 158.5 160.4 85.7 130.6 147.6 157.7 162.6 167.0 170.0 172.3 175.4 177.5 178.9 181.2 182.9 71.4 162.0 172.0 179.8 184.7 187.8 190.1 191.7 192.8 193.7 194.4 195.0 195.5 STAGE8 1 SIDE8 1 HOUT RHOUT MEOUT TOUT .0110 .0324 .0349 .0341 .0360 .0345 .0330 .0340 .0327 .0342 .0325 .0314 .0305 133.6153 NATER REMOVED, LB/HR PER FT OF COLUMN UIDTH INLET MOISTURE EQUILIBRIUM, NB: PRELIMINARY CALCULATED VALUES AIRFLOU, CFM/SQ FT DRY AIRFLOU RATE, LB/HR-FT2 INLET MC(DRY BASIS DECIMAL) GRAIN FLOU RATE, BUSHELS/HR- F12 VELOCITY 2ND-SIDE/IST-SIDEISAY DEC) 84.4051 340.1440 342 3 7. 5000 DO PER HR PER FT OF COLUMN NIDTH 4.3750 GRAIN FLON RATE, FT/HR TIME=DEPTH NR .00 .11 .22 .32 .43 .54 .64 .75 .86 .97 1.07 1.18 1.29 FT .02 1.01 2.02 3.00 4.01 5.00 6.01 7.02 8.01 9.01 10.00 11.01 12.02 MOISTURE-0B XMIN .2549 .2595 .2611 .2571 .2511 .2447 .2384 .2323 .2266 .2209 .2156 .2105 . .2055 MAVE .2550 .2611 .2622 ‘.2604 .2565 .2515 .2461 .2407 .2356 .2304 .2255 2207 .2157 XMAX .2550 .2625 .2628 .2627 .2616 .2579 .2532 .2484 .2434 .2385 .2336 .2288 .2241 9.3300 .0328 52.4075 .0053 .5000 TEMPERATURE 59.9 80.9 94.2 96.9 101.9 108.2 114.3 120.2 124.6 129.1 133.4 136.4 140.3 59.9 87.5 96.6 106.1 115.8 122.7 128.6 133.3 137.2 141.4 144.2 147.3 150.7 59.9 91.0 97.9 113.1 125.3 131.8 137.5 141.3 144.8 148.9 150.5 154.0 157.0 99.98 99.97 73.49 42.83 33.72 27.99 23. 45 22.44 19.72 18.97 17.47 15.44 14.36 .2474 .2279 .1281 .0826 .0695 .0610 528 .0502 .0443 .0418 .0387 .0336 .0309 STAGE= 13510E= 2 THMIN THAVE THMAX HOUT RHOUT HEDUT TOUT .0005 .0229 .0356 .0374 .0406 .0396 .0302 .0391 .0376 .0309 .0369 .0357 .0347 77.32 99.90 99.90 96.43 09.02 72.88 59.07 51.07 43.66 39.85 33.89 30.36 26.66 .1579, .2345 .2260 .2084 .1762 .1248 .1041 .0916 .0823 .0769 .0694 .0645 .0585 60.0 91.3 103.8 121.9 132.6 138.2. 143.4 146.4 150.1 153.4 54.7 158.5 160.4 59.9 00.9 94.2 96.9 101.9 100.2 114.3 120.2 124.6 129.1 133.4 136.4 140.3 AVERAGE AIR EXHAUST TEMP, F: 111.6810 AVERAGE AIR EXHAUST HUM.RATIO: .0358 UATER REMOVED, LB/HR PER FT OF COLUMN NIDTH 14.1586 INLET MOISTURE EQUILIBRIUM. VB: .2475 DRY AIR FLOU RATE, LB/HR-FT2: 340.14 STATIC PRESSURE INCH H20: 2.2368 HORSEPOUER PER FT COLUMN NIDTH FOR STAGE .7136 HORSEPOUER PER FT COLUMN UIDTH CUMULATIVE .7136 STAGE=1:2 MAV FOR: SEGMENTS STAGE .2157 .1789 .1916 LB-HZO/HR SEGMENTS,STAGE.CUMULATIVE 14.1586 52.4075 66.5661 66.5661 BTU/LB-H2O THIS STAGE AND CUMULATIVE 1390.3 1390.3 NJ/KG-HZO THIS STAGE AND CUMULATIVE 3233.9 3233.9 FUEL BURNED ENERGY USED BY THIS STAGE BTU/HR PER FT COLUMN UIDTH .9255E+05 THETATOUTLET) SEGMENIS STAGE ' 150.72 182.85 172.14 11.2500 BU/HR-FTZ :TEMPER FOR .8574 HR X= 0.0000 ; MC= .1932 INTERNAL 8 MODES = .253 .253 .252 .248 .241 .225 .192 .130 TIME (HR) .8580E+00 X= 0.0000 ; MC= .1763 INTERNAL 8 NODES = .233 .231 .225 .216 .203 .186” .168 .148 INPUT FOR STAGE= 2 COLUMN UIDTH, IN: 14.0000 COLUMN LENGTH, FT: 6.7000 OUTPUT INTERVAL; FT: 1.0000 XY; N=0 Y=1, NODE=2, SCAN=3: 0.0000 GRAINFLOU (BU/HR/SO FT): 15.0000 RATIO VOL. TEMPER/VOL. INPUT; 0.0000 FINE MATERIALS,DECIMAL: .0300 HYBRID FACTOR,DEC : .1.0000 INLET GRAIN TEMP, F: .1721E+03 INLET GRAIN TEMP, F: 172.1430 INLET MOISTURE, UET BASIS PERCENT: .1916E+02 INLET MOISTURE, UET BASIS PERCENT: 19.1563 INLET AIR TEMP. (SAY,FROM HEATER),F: (TIN) EITHER HEATER OR AMBIENT .2000E+03 .6000E+02 200.0000 (ADS.HUM.1 EITHER HEATER OR AMBIENT .2270E-01 .6576E-02 .0227 . AIRFLOU. CFM/DU (AT FAN INLET): 90.0000 IS THIS A TUO SPEED GRAIN FLOU STAGE? YES - 1.0 NO - 0.0: 1.0000 FRACTIONAL UIDTH.(IN DEC OF 1ST SIDE) .5000 ARRAY CONVERSION TO REVERSE AIRFLOU 11=NO CHANGES 2=REVERSE AIRFLOU): 1.0000 ARRAY AVERAGE THE TOP OF STAGE GRAIN MOISTURE ? 1=NO CHANGE; 2: MAKE MOISTURE UNIFORM 2.0000 232 PRELIMINARY CALCULATED VALUES. AIRFLOU, CFM/SO FT DRY AIRFLOU RATE, LB/HR-FT2 INLET MC(DRY BASIS DECIMAL) GRAIN FLOU RATE, BUSHELS/HR-FTZ 15.0000 BU PER HR PER FT OF COLUMN NIDTH GRAIN FLOU RATE, FT/HR TIME=DEPTH HR .00 .05 .11 .16 .22 .27 .32 .36 FT .04 1.01 2.02 3.02 4.03 5.00 6.01 6.72 MOISTURE-VB XMIN .1758 .1672 .1603 .1547 .1500 .1460 .1424 .1400 MAVE .1810 .1778 .1738 .1693 .1649 .1610 .1572 .1547 XMAX .1910 .1895 .1878 .1850 .1812 .1774 .1735 .1709 AVERAGE AIR EXHAUST TEMP, F: AVERAGE AIR EXHAUST HUM.RATIO: 84.4051 340.1440 .2370 .7500 18.6600 TEMPERATURE 170.0 140.5 152.6 163.7 169.0 172.1 174.6 176.1 176.5 164.4 176.8 182.3 184.9 186.6 187.9 188.6 174.4 185.8 191.6 193:2 194.2 195.0 195.5 195.9 STAGE= 2 SIDE= 1 THMIN THAVE THMAX HOUT RHOUT MEOUT TOUT .4322 .0274 .0290 .0295 .0291 .0287 .0282 .0280 163.3246 HATER REMOVED, LB/HR PER FT OF COLUMN NIDTH INLET MOISTURE EQUILIBRIUM. UB: PRELIMINARY CALCULATED VALUES AIRFLOU, CFM/SO FT DRY AIRFLOU RATE, LB/HR-FT2 INLET MC(DRY BASIS DECIMAL) GRAIN FLOU RATE, BUSHELS/HR-FT2 VELOCITY 2ND-SIDE/1ST-SIDE(SAY DEC) 84.4051 340.1440 .2370 7.5000 BU PER HR PER FT OF COLUMN UIDTH 4.3750 GRAIN FLOU RATE, FT/HR TIME=DEPTH HR .00 .11 .22 .32 .43 .54 .64 .72 FT .02 1.01 2.02 3.00 4.01 5.00 6.01 6.72 MOISTURE-U8 XMIN .1911 .1855 .1831 .1812 .1754 .1695 .1638 .1600 MAVE .1914 .1864 .1843 .1819 .1783 .1743 .1699 .1667 XMAX .1917 .1888 .1876 .1852 .1813 .1774 .1736 .1713 9.3300 .0306 99.8 19.78 16.50 12.85 11.24 10.30 9.59 9.18 2.7558 .0053 .5000 TEMPERATURE THMIN THAVE THMAX HOUT RHOUT MEOUT TOUT 171.6 145.3 140.0 144.3 152.4 155.6 157.8 158.9 171.7 149.4 144.2 154.0 159.8 162.8 165.4 167.1 17') 155.0 147.6 159.9 164.1 167.8 170.7 172.4 STAGE .4553 .0296 .0306 7 .0316 .0323 .0322 .0316 .0315 =25 99.89 15.91 2 .72 22.09 18.41 16.94 15.78 15.32 .1736 .0471 .0377 .0269 .022 .0197 .0178 .0167 IDE= 2 .1727 .0357 .0545 .0504 .0412 .0374 .0345 .0332 170.3 143.2 152.6 163.7 169.0 172. 174.6 176.1 171.6 155.0 140.2 144.3 152.4 155.6 157.8 158.9 AVERAGE AIR EXHAUST TEMP, F: 152.4371 AVERAGE AIR EXHAUST HUM.RATIO: .0325 UATER REMOVED, LB/HR PER FT OF COLUMN NIDTH 7.7620 INLET MOISTURE EQUILIBRIUM, VB: .2290 DRY AIR FLOU RATE, LB/HR~FT2: 340.14 STATIC PRESSURE INCH H20: 2.2368 HORSEPONER PER FT COLUMN UIBTH FOR STAGE .3984 HORSEPONER PER FT COLUMN NIDTH CUMULATIVE 1.1120 STAGE=2:2 MAV FOR: SEGMENTS STAGE .1667 .1547 .1587 LB-H20/HR SEGMENTS,STAGE,C JULATIVE 7.7620 22.7558 30.5178 97.0839 BTU/LB-H2O THIS STAGE AND CUMULATIVE 1693.2 1485.6 NJ/KG-HZO THIS STAGE AND CUMULATIVE 3938.4 3455.4 FUEL BURNED ENERGY USED BY THIS STAGE BTU/HR PER FT COLUMN NIDTH .5167E+05 THETAIOUTLET) SEGMENTS STAGE 167.07 188.65 181.45 INPUT FOR STAGE= 3 COLUMN UIDTH, IN: 14.0000 COLUMN LENGTH, FT: 1.6000 OUTPUT INTERVAL; FT: 1.0000 XY; N=0 Y=1, NODE=2, SCAN=3: 0.0000 GRAINFLOV (BU/HR/SQ FT): 15.0000 RATIO VOL. TEMPER/VOL. INPUT; 0.0000 FINE MATERIALS,DECIMAL: .0300 HYBRID FACTOR,DEC : 1.0000 INLET GRAIN TEMP, F: .1815E+03 INLET GRAIN TEMP, F: 181.4534 INLET MOISTURE, VET BASIS PERCENT: .1587E+02 INLET MOISTURE, UET BASIS PERCENT: 15.8729 INLET AIR TEMP. (SAY,FROM HEATER),F: (TIN) EITHER HEATER OR AMBIENT .2000E+03 .6000E+02 60.0000 (ABS.HUM.) EITHER HEATER OR AMBIENT .2270E-01 .6576E-02 .0066 AIRFLOU, CFM/BU (AT FAN INLET): 90.0000. IS THIS A THO SPEED GRAIN FLON STAGE? YES - 1.0 NO 7 0.0: 1.0000 FRACTIONAL UIDTH,(IN DEC OF 1ST SIDE) .5000 ARRAY CONVERSION TO REVERSE AIRFLOV (1=NO CHANGES 2=REVERSE AIRFLOV): 1.0000 ARRAY AVERAGE THE TOP OF STAGE GRAIN MOISTURE ? 1=NO CHANGE; 2: MAKE MOISTURE UNIFORM 1.0000 234 PRELIMINARY CALCULATED VALUES AIRFLOU, CFM/SQ FT 84.4051 DRY AIRFLOU RATE, LB/HR-FT2 382.5031 INLET MC(DRY BASIS DECIMAL) .1887 GRAIN FLON RATE, BUSHELS/HR-FT2 15.0000 BU PER HR PER FT OF COLUMN UIDTH 8.7500 GRAIN FLOU RATE, FT/HR 18.6600 TIME=DEPTH MOISTURE-VB TEMPERATURE STAGE= 3 SIDE= 1 HR FT XMIN MAVE XMAX THMIN THAVE THMAX HOUT RHOUT MEOUT TOUT .00 .04 .05 1.01 .09 1.60 AVERAGE AIR AVERAGE AIR .1400 .1546 .1709 159.0 145.8 168.8 .0304 14.82 .0322 159.0 .1408 .1554 .1696 81.3 105.1 148.8 .0237 14.93 .0359 148.8 .1413 .1572 .1692 81.3 90.6 122.1 .0231 29.30 .0687 122.1 EXHAUST TEMP, F: 148.9719 EXHAUST HUM.RATIO: .0257 HATER REMOVED, LB/HR PER FT OF COLUMN NIDTH .9184 INLET MOISTURE EQUILIBRIUM, HB: .2475 VELOCITY 2ND-SIDE/1ST-SIDE(SAY DEC) .5000 PRELIMINARY CALCULATED VALUES AIRFLOU, CFM/SO FT 84.4051 DRY AIRFLOU RATE, LB/HR-FT2 382.5031 .INLET MC(DRY BASIS DECIMAL) .1887 GRAIN FLON RATE, BUSHELS/HR-FTZ 7.5000 BU PER HR PER FT OF COLUMN NIDTH 4.3750 GRAIN FLOU RATE, FT/HR 9.3300 23S TIME=DEPTH MOISTURE-VB TEMPERATURE STAGE=_3_SIDE= 2 HR FT XMIN MAVE XMAX THMIN THAVE THMAX HOUT RHOUT MEOUT TOUT .00 .02 .1600 .1667 .1712 158.9 158.9 158.9 .2158 81.91 .1156 158.9 .11 1.01 .1582 .1650 .1696 145.2 150.5 154.3 .0251 17.33 .0419 145.2 .17 1.60 .1573 .1639 .1692 130.0 137.3 147.0 .0241 15.93 .0385 147.0 AVERAGE AIR EXHAUST TEMP, F: 146.9071 AVERAGE AIR EXHAUST HUM.RATIO: .0290 HATER REMOVED, LB/HR PER FT OF COLUMN NIDTH -1.5614 INLET MOISTURE EQUILIBRIUM, UB: .0324 DRY AIR FLON RATE, LB/HR-FT2: 382.50 STATIC PRESSURE INCH H20: 2.2368 HORSEPONER PER FT COLUMN NIDTH FOR STAGE .0951 HORSEPONER PER FT COLUMN NIDTH CUMULATIVE 1.2071 STAGE=3:2 MAV FOR: SEGMENTS STAGE .1639 .1572 .1594 LB-H20/HR SEGMENTS,STAGE,CUMULATIVE -1.5614 .9184 ‘.6430 96.4409 BTU/LB-HZO THIS STAGE AND CUMULATIVE 0.0 1495.5 KJ/KG-H2O THIS STAGE AND CUMULATIVE . 0.0 3478.4 FUEL BURNED ENERGY USED BY THIS STAGE BTU/HR PER FT COLUMN UIDTH 0. THETAIOUTLET) SEGMENTS STAGE 137.32 90.58 106.16 THIS IS THE END OF CROSSFLOU TAG ALONG T TO BURNER ASSUMED:ACTUAL .1101E+03 .1006E+03 TAG ALONG H FROM BURNER ASSUMED:ACTUAL .2270E-01 .1964E-01 STOP 037300 ‘ FINAL EXECUTION FL. 7.457 CP SECONDS EXECUTION TIME.