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ABSTRACT 

HIGH-RESOLUTION SEQUENCE-FUNCTION MAPPING OF PROTEIN-PROTEIN 
INTERACTIONS FOR CONFORMATIONAL EPITOPE MAPPING 

By 

Caitlin Adele Stein 

Protein-protein interactions are essential for biological signaling, including the adaptive 

immune system, membrane transport and cell metabolism. A protein’s sequence defines its 

function; however, the relationship between a protein’s sequence and its function is not a well-

understood problem. Recent advances in DNA sequencing technologies have allowed the 

development of independent high-throughput methods to couple a protein’s sequence to its 

function.  These methods analyze the effect of individual mutations on a protein’s fitness. 

However, the methods lack standardization leading to many different experimental setups and data 

presentations.  In this dissertation we present a validated and standardized method to determine 

the sequence-function relationships of protein-protein interactions.  A series of equations was 

developed to model and optimize experimental conditions and to expand the accessibility of the 

technique.  The method was further used to characterize the effect on binding affinity of all single-

point mutations for two protein-protein interactions involved in biomass degradation.  Finally, we 

have utilized this method to introduce a novel platform technology for rapid determination of fine 

conformational epitopes. This technology involves deep sequencing of yeast displayed antigen 

libraries and analytical equations to identify epitope positions. We show the methods effectiveness 

by determining critical (and previously unknown) neutralizing epitopes for pertussis toxin and a 

breast cancer target. We further show the implications of this method for structural-based vaccine 

design.
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PREFACE 

 

Antibodies are a leading class of therapeutics with an excess of $80 billion in sales for 

2015. With about 4 new antibody therapies being approved every year the antibody market is 

expected to reach $125 billion in world-wide sales by 2020 1.  In addition to therapeutic uses 

antibodies are also used in diagnostic and research applications.  

Antibodies attach directly to antigens at specific epitopes to prevent pathogens from 

damaging or entering healthy cells.  Conformational epitopes consist of discontinuous stretches of 

amino acids that upon folding become adjacent.  Broadly neutralizing antibodies target 

conformational epitopes for a variety of well-known pathogens such as influenza and HIV.  

Knowledge of the conformational epitope aids in the understanding of the structural basis of the 

protein-protein interaction and may lead to improved vaccine designs and neutralizing antibody 

therapies for less studied pathogens. Recent technology advances have resulted in the rapid 

isolation of neutralizing antibodies for Ebola and Dengue viruses but structural vaccine design 

advances awaits the development of a high-throughput method to map the fine conformation 

epitopes.   In this thesis I present three major contributions to the field (1.) a high-throughput 

standardized protocol for probing the sequence-function relationships of protein-protein 

interactions; (2.) the ability to quantify the energetic contributions of protein mutations from deep 

sequencing data sets and (3.) utilizing sequence-function relationships in the context of a 

standardized epitope mapping protocol.    

Chapter 1 presents an introduction to protein-protein interactions and current methods of 

probing sequence-function relationships. We sought to develop a standardized protocol using deep 

mutational scanning for resolving the sequence determinants of function for full-length proteins, 
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given its demonstrated utility and growing popularity as a tool to understand and optimize protein 

function. In Chapter 2, we present experimental methods for mutant library creation, functional 

selections, and sequencing library preparation. We also develop equations that allow quantitative 

comparisons across different populations in growth-based selections and fluorescence activated 

cell sorting (FACS).  These advances enable optimal selection criteria to be determined for these 

versatile selection techniques. This work has been published in PLoS One. 

In Chapter 3, we use our deep mutational scanning pipeline to evaluate the effect of 

binding affinity to dockerin for nearly all-possible single point mutants on the type I cohesin 

domain for both Clostridium thermocellum and Clostridium cellulolyticum species, giving a 

comprehensive picture of one side of the affinity landscape for these protein-protein complexes. 

These advances allow for generation of deep mutational scanning benchmark sets where the 

change in binding affinity can be quantitatively evaluated for each point mutant in a given protein 

sequence. This work has been submitted for publication in PROTEINS. 

Chapter 4 shows an application of the deep mutational scanning method for rapid 

conformational epitope mapping. We develop analytical equations to identify epitope positions, 

and show the method effectiveness by mapping the fine epitope for different antibodies targeting 

TNF, Pertussis Toxin, and the cancer target TROP2. This work has been published in The Journal 

of Biological Chemistry. 

During the development of antibody therapeutics many candidate antibodies are screened.  

These antibodies will bind to many different epitopes, but not all will be neutralizing, or elicit the 

correct immune response.  Knowledge of both neutralizing and non-neutralizing epitopes would 

help with the design of antigens for vaccines.  In Chapter 5, we show a follow-up study done to 

show the applications of the conformational epitope mapping method by mapping the 
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conformational epitopes for a panel of antibodies against the Pertussis Toxin as well as discuss 

future improvements and applications of the method.  
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CHAPTER 1 

1. Introduction  

Protein-protein interactions are essential for biological signaling, including the adaptive 

immune system, membrane transport, and cell metabolism among many other functions.  The 

ability to design protein-protein interactions could lead to more successful vaccines and antibody 

therapies.  However, programming specific functions into proteins is difficult as proteins are only 

marginally stable and protein structure-function relationships are not well understood.  A better 

understanding of sequence-function relationships of protein-protein interactions would facilitate 

antibody-epitope mapping, rapid antibody-antigen maturation, and fine-tuning of computationally 

designed proteins 2-5.  

1.1 Background 

1.1.1 Probing sequence-function relationships of protein-protein interactions 

Protein-protein interactions are characterized by the combination of many weak 

interactions like hydrogen bonds, Van der Waals forces, electrostatic interactions and hydrophobic 

contacts from individual amino acids contribute to a binding affinity. Traditional methods for 

probing sequence-function relationships for protein-protein interactions are laborious and 

inefficient. One of the first methods of exploring these relationships is alanine scanning 2. In this 

approach, individual residues are mutated to alanine and the resulting activity evaluated. Simply, 

if a residue is mutated to alanine, removing its functional group without introducing 

conformational flexibility, and there is no change in binding affinity, the residue is not involved in 

the protein-protein interaction.  However, if upon mutation to alanine, there is a decrease in binding 

affinity, the residue is important, or a ‘hot spot’6, in the protein-protein interaction. Alanine 

scanning has been used in many applications including epitope mapping of human-growth 

hormone and its receptor 2, 7. However, this method requires the construction, expression and 
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characterization of each mutant protein separately, thus limiting the method to testing tens or 

hundreds of protein mutants.   

The ability to parallelize the expression and evaluation of each protein variant was 

introduced using phage display 8.  With phage display, researchers could construct a library of 

phage, with each phage displaying a different mutant protein.  The library could then be subject to 

a screen to isolate functional mutants.  Using phage display, Pal et al. provided a comprehensive 

look at all of the structural and functional effects of all possible mutations across a large protein-

protein interface, demonstrating a comprehensive and quantitative mapping of a protein’s energy 

landscape9. Protein libraries were created using saturation mutagenesis at multiple interface 

positions and screened to enrich the population in mutants with enhanced function at the expense 

of those with impaired function. Individual clones from the selection were sequenced to determine 

the occurrence of each amino acid residue. However, their method requires extensive sequencing 

and many selection experiments, thus limiting the method to selected residues at the interface. 

With the improved screening throughput using phage display, many other methods using 

combinatorial libraries such as saturation mutagenesis or limited representative amino acid 

libraries such as Look-Through Mutagenesis (LTM) have been developed to probe the sequence-

function space of proteins 10, 11. These methods have been instrumental and powerful in antibody 

and metabolic engineering.  However, like alanine scanning they are laborious and limited in scope 

and resolution, providing limited information about sequence-function relationships. 

1.1.2 Deep mutational scanning  

Next generation sequencing technologies allows millions of sequencing reads to be 

acquired inexpensively and in parallel. Linking this new technology with functional protein 

screens, entire libraries can be sequenced before and after a selection giving measurements of 
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function.  The combination of functional protein library screens linking genotype to phenotype 

with the sequencing capabilities of next generation sequencing has been deemed ‘deep mutational 

scanning’ 12, 13.   Deep mutational scanning has provided a high-throughput method to 

comprehensively map the energetic landscapes of protein-protein interactions 12, 13 (Figure 1).  In 

deep mutational scanning, a single site-saturation mutagenesis library representing all possible 

single residue amino acid substitutions is made. A high-throughput assay that couples the protein’s 

genotype to phenotype is used to screen the library.  For binding proteins, cell-based assays such 

as phage- or yeast-display systems are typically used. The protein library is put through this 

functional selection, enriching the library in beneficial mutations.  In a key step, deep sequencing 

is used to quantify the frequency of each mutant in the library before and after selection, resulting 

in an enrichment ratio. The ability to sequence millions of sequences in a library using next 

generation sequencing, allows quantification of thousands of protein variants in a single 

experiment. Deep mutational scanning has been independently applied to many protein 

engineering applications including affinity maturation, specificity switches and protein stability 

among others4, 14-18.  
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1.1.3 Quantifying Deep Mutational Scanning  

The ability to screen thousands of protein variants using deep mutational scanning has 

enabled researchers to determine the fitness of mutants by giving a score to each mutant based on 

its frequency in the population before and after a selection.  This score, or measure of activity is 

known as an enrichment ratio.  The enrichment ratio is calculated by taking the log2 ratio of the 

frequency of a mutant before and after selection.  An enrichment ratio of zero represents a neutral 

mutation, a positive enrichment ratio a beneficial mutation and a negative enrichment ratio a 

deleterious mutation.  The enrichment ratio is usefulness is limited as it can only be used as a proxy 

for affinity relative to the wild-type protein.  McLaughlin et al. have reported data suggesting that 

there is a correlation of enrichment ratios with binding affinities, but the exact relationship is 

 Figure 1- Schematic of deep mutational scanning.  
A single site saturation mutagenesis library is created.  The library is discriminated using a 
functional selection.  After selection mutants with enhanced function are present in the population 
more frequently then mutants with decreased function.  The library is sequenced before and after 
selection and the number of times a single mutant appears is counted.  The enrichment ratio is 
determined based on the frequency of each mutant in the population. Enrichment ratios are used as 
a proxy to measure the fitness of each mutation. (adapted from Ayara et al.19).     
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unknown 20.  These high-throughput deep mutational scanning characterization methods would be 

more useful if they could deliver accurate estimates of affinity.   

There have been many attempts to quantify the effects of mutations mostly resulting in 

rank ordering of binding characteristics.  Kinney et al. and Sharon et al. designed experiments that 

allowed the analysis of frequency distributions rather than enrichment ratios 21, 22. Reich et al. 

furthered their methods introducing their SORTCERY which combines cell sorting, and deep 

sequencing of protein libraries that semi-quantitatively determines the binding characteristics for 

large peptide libraries by producing a rank ordered list of 1000 peptide liginds23.  These methods 

however, require multi-bin sorts and high sequencing depth while only providing semi-quantitative 

results.   There remains to be a method that reconstructs quantitative energetics from deep 

sequencing data sets.  

1.2 Conformational epitope mapping  

 The epitope is the part of an antigen recognized by the immune system by an antibody.  

Epitopes can be linear or conformational.  A linear epitope consists of a continuous stretch of the 

amino acid sequence while conformational epitopes consist of discontinuous amino acid sequences 

that upon folding are adjacent.  Identification of the fine conformational epitope targeted by an 

antibody can give a basis for intellectual property protection, lead to improved therapies or give a 

better understanding mechanism of protection 4, 24-31.  

The gold standard in epitope mapping is co-crystallography, which provides an 

unambiguous high-resolution epitope.  High-quality crystals and structures however can require 

large amounts of purified protein as well as considerable effort and training often requiring the 

preparation of many antigen variants in order to find one compatible with crystallization 25. 

Methods linking hydrogen-deuterium exchange and mass spectrometry also identify 
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conformational epitopes to about 5 amino acid resolution but require large amounts of purified 

protein, specialized training and rigorous controls as well to obtain quality results 32, 33.     Recently, 

cryoelectron microscopy has emerged as an alternative to obtain conformational epitope maps 

requiring small amounts of sample and no time-limiting steps (cite).  However, without specialized 

training epitope maps obtained are low-resolution, not providing information on specific residue 

interactions.  Other conformational epitope mapping methods that have been developed include 

epitope binning which provide low-resolution information about relative locations of epitopes 

based off of competitive binding experiments in a high-throughput manner.   

In addition to conformational epitope mapping methods, many linear epitope mapping 

methods have been developed as they easily lend themselves to high-throughput platforms.  In 

these methods, libraries of short peptide sequences are immobilized using phage- or yeast-display 

technologies or on chips.  Antigens are allowed to bind to the libraries and the peptide sequences 

that bind to the antigen are identified.  These high-throughput methods provide high-resolution 

linear epitopes however, since a majority of epitopes are conformational the applicability of linear 

epitope methods is limited 34. 

A high-throughput method to identify high-resolution conformational epitopes has yet to 

be identified. Weiss and colleagues introduced the use of alanine scanning to map a proteins 

functional epitope by determining the alanine/wild-type ratio of DNA sequences at each mutated 

position.  The ratio was used to calculate the effect on the change in free energy each alanine 

mutation had.  Mutations with a change in free energy grater than 1.0 kcal/mol were considered to 

be part of the epitope35. In addition to alanine scanning epitopes have also been mapped by 

identifying escape mutants for dengue virus, hemagglutinin and hepatitis C36-38.  While alanine 

scanning and other mutation based methods provide detailed information about conformational 
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epitopes, their throughput is limited as each individual mutation is separately characterized. With 

the introduction next generation sequencing technologies again, larger comprehensive and 

representative libraries have been constructed and incorporated with display-based methods for 

epitope mapping39-41.  However these methods use many sorts39 or identify only partial epitopes40, 

41.
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CHAPTER 2 

2. High-Resolution Sequence-Function Mapping of Full-Length Proteins 

2.1 Abstract 

Comprehensive sequence-function mapping involves detailing the fitness contribution of 

every possible single mutation to a gene by comparing the abundance of each library variant before 

and after selection for the phenotype of interest. Deep sequencing of library DNA allows frequency 

reconstruction for tens of thousands of variants in a single experiment, yet short read lengths of 

current sequencers makes it challenging to probe genes encoding full-length proteins. Here we 

extend the scope of sequence-function maps to entire protein sequences with a modular, universal 

sequence tiling method. We demonstrate the approach with both growth-based selections and 

FACS screening, offer parameters and best practices that simplify design of experiments, and 

present analytical solutions to normalize data across independent selections. Using this protocol, 

sequence-function maps covering full sequences can be obtained in four to six weeks. Best 

practices introduced in this manuscript are fully compatible with, and complementary to, other 

recently published sequence-function mapping protocols. 

2.2  Introduction 

 The amino acid sequence of a protein defines its function, yet our understanding of the 

contribution of each amino acid to overall activity remains incomplete. As a result, current 

computational and experimental methods of designing functional proteins have success rates 

significantly less than 10% 1. Random directed evolution approaches provide activity 

improvements, but require high throughputs because about 98% of amino acid substitutions are 

either deleterious or neutral with respect to the desired function or specific fold 2. Traditional 

methods for probing sequence-function relationships, such as alanine scanning and site-saturation 
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mutagenesis, are laborious and inefficient 3-6. A systematic method to survey the sequence-

function space of large proteins would facilitate enzymatic efficiency improvements, antibody-

epitope mapping, rapid antibody-antigen maturation, and fine-tuning of computationally designed 

proteins 7-10.  

About a decade ago, Pal et al. introduced a quantitative scanning method to map the 

energetic landscapes of protein-protein interactions 11. Libraries were created using saturation 

mutagenesis at multiple positions and screened with phage display to enrich the population in 

mutants with enhanced function at the expense of those with impaired function. The complete 

library was sequenced before and after selection, and comparisons of these frequencies gave a 

measure of activity for each variant. More recently, Fowler et al. used a similar framework to 

develop deep mutational scanning 12, 13. In a key step, deep sequencing is used to quantify the 

frequency of each mutant in the library before and after selection, and the resulting enrichment 

ratio provides a fitness metric. The ability to sequence millions of sequences in a library allows 

quantification of thousands of protein variants in a single experiment. Independently, Hietpas et 

al. developed a similar technique termed EMPIRIC, which they applied to measure fitness effects 

of point mutations of regions of genes in yeast 14, 15. Since the introduction of deep mutational 

scanning, similar methods have been applied to characterize protein-ligand interactions and 

chaperone protein function 11, 16. In a recent report demonstrating the power of the approach, 

Firnberg et al. produced a comprehensive map of nearly all possible single mutations to a full-

length protein, TEM-1β-Lactamase 17. By combining comprehensive single-site mutagenesis with 

selection through antibiotic resistance they were able to assess the fitness of 5,760 different mutant 

protein sequences in a single experiment.  
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Deep mutational scanning methods were extended to protein engineering applications by 

Whitehead et al., who applied the deep mutational scanning technique to enhance the affinity and 

specificity of two designed influenza inhibitors 9. Deep mutational scanning has since been applied 

in many different areas of protein engineering including specificity switches and protein stability 

18, 19.  

Given the demonstrated utility and growing popularity of deep mutational scanning as a 

tool to understand and optimize protein function, we sought to develop a standardized protocol for 

resolving the sequence determinants of function for full-length proteins. In this contribution, we 

develop and validate experimental methods for mutant library creation, functional selections, and 

sequencing library preparation. We derive equations that allow direct, quantitative comparisons 

across different populations in growth-based selections and fluorescence activated cell sorting 

(FACS), enabling optimal selection criteria to be determined for these versatile selection 

techniques. We introduce a gene tiling technique which splits a long gene sequence into several 

independent libraries, each of which contain a mutated region short enough to be covered with a 

paired-end read 20. This approach, combined with the equations developed herein, allow for the 

unambiguous reconstruction of the sequence-function determinants of full-length proteins. Key 

considerations for each step in the process are discussed.  

2.3  Materials and Methods 

2.3.1  Strains 

E. coli strains used in this study: XL1-Blue (Agilent, Santa Clara, CA) recA1 endA1 

gyrA96 thi-1 hsdR17 supE44 relA1 lac [F’ proAB lacI1qZM15 Tn10 (Tetr)]; Tuner (Novagen, 

Billerica, MA) F- ompT hsdSB (rB- mB-) gal dcm lacY1; K12 CJ236 (NEB) F(HindIII)::cat (Tra+ 

Pil+ CamR)/ ung-1 relA1 thi-1 spoT1 mcrA 
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2.3.2 Plasmids 

The plasmid pJK_proJK1_LGK was created by inserting a codon-optimized gene encoding 

levoglucosan kinase (LGK) (Genscript, Piscataway, NJ) with LEHHHHHH as 95 the C-terminal 

tag into a pJK-series plasmid [20] using flanking NdeI/XhoI restriction sites. The plasmid 

pJK_proJK1_kanR_LGK was created by switching the ampR with a kanR resistance cassette using 

Gibson cloning 21. Full sequences of both plasmids are given in Kowalsky et al.22 pJK_eGFP-

series plasmids are from a previous study and are listed in Bienick et al.23 . 

2.3.3 Pfunkel Mutagenesis 

Single-site saturation mutagenesis primers containing an NNN degenerate codon were 

designed in one of two ways: (1.) the online QuikChange Primer Design module (Agilent, Santa 

Clara, CA); or (2.) primer-design software as detailed in Firnberg et al. 24, 25. Mutagenic libraries 

were generated from a ssDNA template using the Pfunkel method for comprehensive codon 

mutagenesis 25. A separate Pfunkel reaction was performed for each tile region. Protocols were 

performed as published except the reaction cycling conditions were 95°C for 2 min, followed by 

15 cycles of 95°C for 30 sec, 55°C for 45 sec, and 68°C for 15 min. Following the nuclease step 

the reaction was concentrated using the Zymo Clean and Concentrate kit (Zymo Research, Irvine, 

CA) and eluted in 6 μL of nanopure water. The entire volume was mixed with 40 μL of 

electrocompetent XL1-Blue cells (Agilent, Santa Clara, CA). Cells were transformed by 

electroporation at 1200 V in a 1 mm electroporation cuvette (Eppendorf, Hauppage, NY) with an 

Eppendorf Eporator. Transformed cells were grown overnight at 37°C on LB agar supplemented 

with appropriate antibiotic on Nalgene BioAssay plates (245mm x 245mm x 25mm, Sigma 

Aldrich, St. Louis, MO). Library plasmid DNA was recovered by scraping the BioAssay plate with 
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5 mL LB, centrifuging the solution to recover the cell pellet, and performing a plasmid midiprep 

(Qiagen, Valencia, CA) on the cell pellet.  

Cells were also plated in serial dilutions from 10-1 to 10-6 to assess transformation efficiency. 

Transformation efficiencies ranged from 3x105-1x106 cfu/transformation.  

2.3.4 Secondary Transformations 

E. coli Tuner (Novagen, Billercia, MA) was prepared to be electrocompetent by standard 

means 26. Plasmids pJK_proJK1_LGK and pJK_proJK1_kanR_LGK were mixed at a mass ratio 

of 100:1 respectively. 5-40 ng of the mixed plasmid DNA was transformed into 40 μL of culture 

by electroporation at 1200 V in 0.1 cm cuvettes (Eppendorf, Hauppage, NY). The reaction was 

split and plated on ampicillin, kanamycin and ampicillin/kanamycin resistant plates in serial 

dilutions from 10-1 to 10-6 and grown overnight. The colonies percentage of double transformants 

was calculated by dividing the number of CFU’s on the dual antibiotic plate by the CFU’s of the 

kanamycin plate. This procedure was repeated with library plasmid DNA in place of 

pJK_proJK1_LGK at a 100:1 ratio to determine the percentage of double transformants. 

2.3.5 Growth-based Selections 

Library cell stocks containing mixtures of pJK-series eGFP expression plasmids were 

thawed on ice and washed with M9 minimal media 23. Cultures were inoculated to an OD600 of 

0.03 in M9 minimal media supplemented with 4 g/L glucose and carbenicillin (50 μg/mL). 

Cultures were grown at 37°C and 250 rpm to an OD600 of 0.6. Cell growth was monitored every 

45 minutes by OD600 measured on a Genesys 20 spectrophotometer (Thermo Fisher Scientific, 

Waltham, MA). Cells were washed with M9 media. The cells were used to re-inoculate 2.5 mL of 

fresh media to an OD600 of 0.03. Cultures were again grown to an OD600 of 0.6 (8.6 total 

population-averaged generations). Following selection cells were stored in 1mL of M9 media and 
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7% (v/v) DMSO at -80°C until bacterial plasmid DNA was extracted using a Qiagen miniprep kit 

(Qiagen, Valencia, CA).  

2.3.6 Primer Design 

Two sets of primers were used to amplify stretches of DNA for sequencing. The inner set of 

primers was designed to be complementary to the regions of DNA at the 5’ and 3’ ends of the gene 

tile of interest. Forward and reverse primers were designed to have melting temperatures around 

55°C. Sequences for the outer, universal set of primers were taken from the TruSeq Small RNA 

Sample Prep Kit. The outer primers attach the Illumina barcodes and adaptors for sequencing and 

are listed in Kowalsky et al.22   

2.3.7 Gene tile amplification 

Gene tiles are amplified by two-step PCR. The contiguous region containing mutations is 

amplified using tile-specific inner primers using Phusion High Fidelity Polymerase (NEB M0530). 

The three different methods used to amplify the target region are described in Table 1. 5 μl of the 

PCR products were run on a 2% agarose gel and visualized with SYBR-GOLD (Invitrogen) to 

ensure the presence of a single band of the expected size (~250 bp). Agencourt AMPure XP beads 

(Beckman Coulter, Brea, CA) were used per the manufacturer’s protocol to purify the PCR 

product. Samples were multiplexed using index sequences on the outer primers.  

DNA concentrations were quantified using Quant-iT PicoGreen (Life Technologies, 

Carlsbad, CA) quantification and samples were mixed in equimolar quantities for sequencing. 

Library DNA was sequenced on an Illumina MiSeq with 150-bp PE reads.  
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Table 1- Reaction Conditions for Illumina Sequencing Prep 

 Method A Method B Method C 
Reaction 
Conditions 
(50uL)  

10µL 5x Phusion Buffer 
1µL 10mM dNTPs 
2.5µL 5µM inner F primer 
2.5µL 5µM inner R primer 
2.5µL 10µM outer F primer 
2.5µL 10µM outer R primer 
0.5µL Phusion HF Polymerase 
1ng template 
Water to 50µL 
 

10µL 5x Phusion Buffer 
1µL 10mM dNTPs 
2.5µL 10µM inner F primer 
2.5µL 10µM inner Rprimer 
0.5µL Phusion HF Polymerase 
1ng template 
Water to 50µL 

10µL 5x Phusion Buffer 
1µL 10mM dNTPs 
2.5µL 10µM inner forward primer 
2.5µL 10µM inner reverse primer 
0.5µL Phusion HF Polymerase 
1ng template 
Water to 50µL 

PCR 
Conditions 

98°C for 30s 
25 cycles of: 
    98°C for 5s 
    53°C for 15s 
    72°C for 15s 
72°C for 10 min 

98°C for 30s 
16 cycles of: 
    98°C for 5s 
    53°C for 15s 
    72°C for 15s 
72°C for 10 min 

98°C for 30s 
9 cycles of: 
    98°C for 5s 
    53°C for 15s 
    72°C for 15s 
72°C for 10 min 
 

Add N/A 
 
 
 

1.875µL 1:10 diluted ExoI 0.5µL Phusion HF Polymerase 
2.5µL 10µM outer forward primer 
2.5µL 10µM outer reverse primer 

PCR 
Conditions 

N/A 37°C for 30 min 
95°C for 5 min 

98°C for 30s 
14 cycles of: 
    98°C for 5s 
    53°C for 15s 
    72°C for 15s 
72°C for 10 min 
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Table 1 (Cont’d) 
Add N/A In new PCR tube: 

10µL 5x Phusion Buffer 
1µL 10mM dNTPs 
2.5µL 10µM inner F primer 
2.5µL 10µM inner R primer 
0.5µL Phusion HF Polymerase 
1µL product from prev. step  
Water to 50µL 

N/A 

PCR 
Conditions 

N/A 98°C for 30s 
16 cycles of: 
    98°C for 5s 
    53°C for 15s 
    72°C for 15s 
72°C for 10 min 

N/A 
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2.3.8 Data Analysis 

Enrich 0.2 software was used to compute enrichment ratios of individual mutants from the 

raw Illumina sequencing files 27. Forward and reverse reads obtained for each section were used 

as input. Modifications were made to Enrich 0.2 in order to accommodate shifted and shortened 

protein alignment sequences. Enrichment ratios that were obtained were normalized as detailed 

below using custom scripts.  

2.4 Theory 

2.4.1 Normalization for Growth Rate Selections 

When cells grow exponentially, the specific growth rate, μi, of any individual mutant i can 

be written as: 

1
ln fi

i
oi

x

x t


 
  

 
         (1) 

Where xfi is the final concentration of the mutant, xoi is the initial concentration, and t is the time 

difference between the initial and final concentration of cells. In this formulation we are explicitly 

neglecting the effect of lag phases for growth. The equation for calculating the enrichment ratio, 

εi, of the same mutant is: 

                     2log fi
i
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f

f

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Where ffi is the final frequency of the mutant in the library population and foi is the initial 

frequency. These frequencies can be converted to cell concentrations by the equations below: 
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Where Σxoi is the initial concentration of the culture and Σxfi is the final concentration. The 

enrichment ratio can be rewritten as: 

2 2log logfi fi
i

oi oi

x x

x x


  
         




    (5) 

Combining this equation with (1) leads to: 

  

i log2 e 
1

t
 i + log2

x fi
x

oi


















                                       (6) 

We can define the change in culture density between the initial and final conditions in terms 

of the number of average doubling periods (gp) according to:  

   
2log #fi

p
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x
of Doublings g
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                               (7)                                               

Similarly, we can remove time from (5) by redefining it as:  

ln 2p

p

g
t


      (8) 

where μp is equal to the bulk average growth rate of the population between the initial and final 

conditions.  

Combining (7) and (8) into (6) leads to a description of the growth rate of mutant i as a 

function of its enrichment ratio:   

        

  


i
 

p


i

g
p

+1








     (9)  

It is often helpful to express the fitness of mutant i, ζi, normalized to the growth rate of the 

starting construct (wild-type; μwt)  
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Since the starting construct is usually included in the population, fitness of each variant i can be 

normalized across different selection experiments given only the number of doubling periods as 

well as the enrichment ratios for the mutant and wild-type construct. 

We can also rewrite the enrichment ratio as a function of growth rate: 

1i
i p

p

g



 
   

 
     (12) 

The enrichment ratio will increase linearly with the number of doubling periods so long as a mutant 

is able to exceed the population-averaged growth rate.  

2.4.2 Theoretical effects of double transformation on enrichment ratios for growth-based 

selections.  

Consider a microorganism transformed with a plasmid variant i. When grown 

exponentially, the time-dependent concentration of the culture (xfi) can be written:  

     (13)  

where xoi is the initial concentration, μi is the specific growth rate, and t is time.  

Consider now a microorganism harboring two different plasmids: plasmid variant i and an 

unrelated plasmid variant j. For all variants 1 ≤ j ≤n in the population, the growth of microbes 

transformed with plasmid variant i and all other variants in the population (xfΦi) can be represented 

by: 

            (14) 
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Where fj represents the frequency of plasmid j in the sequenced population. The form of this growth 

equation is based on an assumption that a microbe double transformed with plasmids i and j will 

grow at an average of their individual growth rates (see below for further discussion). 

Taking the doubly transformed population into account, the time-dependent concentration 

of cells harboring plasmid i can be written as:   

x fia  1f( )x fi +fx ffi    (15) 

where ϕ is the fraction of the population that is doubly transformed. 

 

The actual, measured enrichment ratio can be represented by:  

    (16) 

and the true enrichment ratio, defined as the enrichment ratio obtained in the absence of double 

transformants, can be represented by:  

    (17) 

The measured enrichment ratio can also written as: 

  (18) 

Where  represents a correction factor to the true enrichment ratio because of the doubly 

transformed populations. We can further represent  as:  
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       (19) 

Substituting (13) and (14) into (19):  

   (20) 

Since 

                   (21) 

We can rewrite (20) as: 

 

   (22) 

As before, time can be represented in terms of population doubling periods, ݃௣, and the average 

growth rate of the population ( ):  

                 (23) 

Combining terms, we derive the following form for the correction factor:  

  (24)  

This correction factor is a function of the double transformation rate, the number of 

doubling periods, the average growth rate of the population, and the distribution of the starting 

growth rates in the beginning population. Because we do not know the distribution of growth rates 
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in a given population a priori, this correction factor cannot reliably be used. However, it can help 

illuminate conditions where the correction factor is expected to small.  

The main assumption in deriving this correction factor is that doubly transformed cells 

grow at an average rate of cells transformed with the individual plasmids. This assumption is likely 

to be correct for plasmids that are segregated evenly upon cell division, as well as where activity 

of an individual protein is linearly proportional to the growth rate of cells harboring its plasmid. 

More complicated growth models can be assessed using the framework laid out here.   

2.4.3 Normalization for Fluorescence-Activated Cell Sorting 

For comparisons of variants across different populations, we desire a method to reconstruct 

mean fluorescence for each mutant,  from its enrichment ratio εi. In fluorescence-activated cell 

sorting (FACS), populations are screened by collecting cells with fluorescence above a certain 

gating threshold. A clonal population of cells will exhibit a mean fluorescence with a certain 

variance according to cell size, surface density of displayed proteins, or other factors. Thus, only 

a fraction of cells for each variant will exceed the fluorescence threshold needed for collection. 

Since fluorescence measurements of clonal population of cells are log-normally distributed in flow 

cytometry, 
 
can be determined using regular statistical calculations:   

( )' ' 1ln 2 1 2 fi
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x
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    (25) 

Here,  is the mean of the natural log of the fluorescence for variant i, σ´ is the natural log of the 

standard deviation of the data, Fg is the fluorescence gating threshold for the experiment, and the 

ratio  is the fraction of variant i that is collected above the gating threshold.  can be 

determined from Fwt´ by: 
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'2
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It remains to find  in terms of experimentally measurable values. The flow cytometer used to 

analyze the culture records the percentage of the total population sampled that is collected, ϕ. This 

value can be written as: 
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From sequencing data, the enrichment ratio of each mutant, ε, is also known and can be 

written as: 
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Combining equations (26-28), we end up with: 
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Finally, combining this relation into equations (25-26) leads to: 

( ) ( )
'2

1' 1exp ln 2 1 2
2

i
i gF F erf   f +é ù
 +  ê ú

ë û
   (30) 

As with the growth-based selection, it is often helpful to express the fitness of mutant i 

normalized to the fluorescence of the starting construct (wild-type; ) 
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To normalize fluorescence measurements, ϕ is set by the experiment, and the enrichment 

ratios εi and εwt are obtained from analysis of the raw sequencing files. In this derivation we assume 
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that the log-transformed standard deviation is the same between the individual variant and the 

wild-type sequence. We have not rigorously tested this assumption. Note that the form of the 

fitness metric used in this work has the standard deviation as a scalar which is unlikely to vary 

much using the same cell type and flow cytometer; thus, ratios of fluorescence measurements can 

be related between populations using only the enrichment ratios and the gating threshold.    

2.5 Results and Discussion 

We have developed a standardized method to map the sequence-function relationships of 

entire gene sequences encoding full-length proteins. This process is applicable to a wide variety 

of proteins, including binding proteins, fluorescent proteins, and enzymes. With some 

modifications, the method can also be extended to membrane proteins and transcription factors. 

The protein class determines the selection method: binding proteins can be screened or sorted using 

phage or yeast display techniques, whereas growth-based selections are preferable for enzymes 9, 

12, 17, 28, 29. Regardless of the protein category, the initial sequence should encode some level of 

functional activity as a basis to distinguish active and inactive proteins.  

 Figure 2 outlines the basic steps covering target selection, gene tiling, library preparation, 

selection, deep sequencing library preparation, and data analysis and normalization. We have 

written custom scripts and modified published scripts to facilitate data generation and analysis. 

Additionally, we have formulated optimal selection criteria and derived equations governing the 

normalization of results across different selection conditions. Practical considerations for each step 

are listed in Supplementary Note S1 (Appendix A). In the following sections we consider each 

step in the overall process in detail.  
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2.5.1 Gene Tiling  

A protein of 250 residues is encoded by a gene of 750 bp, which is longer than high-quality 

read lengths of existing sequencing platforms. Previous approaches to map sequence to function 

for full-length proteins involved sequencing the entire gene as smaller amplified segments (Figure 

 

Figure 2- Overview of high-resolution sequence-function mapping process.  

Target Selection. Proteins of interest are selected for interrogation of sequence function 
relationships. A plasmid containing the gene-encoding sequence is generated. Gene tiling. 
Starting from this gene sequence, semi-overlapping tiles are generated to cover the entire gene. 
These tiles are either 150, 250 or 300 bp in length in order to be sequenced in paired-end mode 
on Illumina deep sequencing platforms. Library Preparation. The single-pot PFunkel method 
is used to generate a comprehensive single-site saturation mutagenesis library. Selections. 
Growth-based selections and FACS screens are used to resolve library populations; these 
selections should not completely converge on a few members of the population. It is important 
that the initial protein shows activity toward the selection method. Deep Sequencing and 
Library Preparation. After selection, cells are lysed and plasmid DNA is purified. The specific 
mutated tile region of the gene of interest is then amplified using overhang PCR, at which time 
Illumina sequencing primers and adaptors with selection-specific indexes are attached. Data 
analysis and normalization. Barcoded DNA is sequenced on a standard Illumina platform, 
analyzed, and normalized using custom scripts. The end result of this analysis is a 
comprehensive portrait of the effects of sequence on function for thousands of single point 
mutants in the gene of interest. These portraits can be used for various purposes such as 
improving protein binding affinity and specificity or improving enzymatic catalytic efficiency. 
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3a) 9. Because there should be only one mutation per gene, reads from amplified regions other than 

the one containing the mutation yield no information and are wasted. Figure 3b shows the 

percentage of total sequence reads that provide information as a function of gene length. As gene 

length increases, the percentage of usable sequencing data decreases and, consequently, more reads 

are needed to ensure proper coverage. For example, using this previous method results in usable 

information for only 33% of the sequencing reads in a gene of length 450 bp.  

We have improved the efficiency of scanning long genes by dividing the gene into multiple 

“tiles,” each of which is effectively treated as a distinct gene. Each tile is independently 

mutagenized, subjected to selection, and sequenced before our analysis pipeline normalizes and 

merges the count data to generate the sequence-function map of the full gene. Tile regions are 

designed to be slightly shorter than a sequencing read, and within each parallel mutagenesis 

reaction, mutations are restricted to the corresponding tile. For example, tiles designed for 150-bp 

read lengths would consist of a central 120-bp mutated region flanked by 15-bp constant regions 

for PCR primer annealing. Multiple, partially overlapping libraries are prepared for each gene to 

ensure full coverage of the protein. This approach eliminates excess wild-type sequencing because 

only the region containing the mutation is sequenced (Figure 3c). However, the tradeoff is that 

assessing the function of a full-length sequence requires multiple independent selections. Since 

population dynamics may vary among selections the enrichment ratios must be normalized to 

allow comparisons across tiles (see Theory section and below).  

2.5.2 Library Mutagenesis Preparation 

Our objective is to map the function of every single nonsynonymous (NS) mutation of a 

protein-encoding sequence. In an ideal system, 1) There would be exactly one NS mutation per 

protein-encoding sequence; 2) The library would contain complete uniform coverage of all 
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possible single NS mutations; 3) The library prep method would be as reliable, fast and inexpensive 

as possible; and 4) Each cell would harbor a single protein-encoding sequence.  

Numerous methods have been described for the creation of mutant libraries 30-33. Certain 

protocols, like QuikChange or Kunkel mutagenesis, introduce mutations at specified locations with 

specific primers. Because each residue targeted for mutation requires a separate primer and a 

separate reaction, creation of a single-site saturation mutagenesis (SSM) library for a 250- residue 

protein requires 250 unique primers and 250 separate reactions, limiting scalability. A newly 

developed method named Pfunkel incorporates the benefits of Kunkel mutagenesis while 

minimizing library preparation time by combining the individual SSM reactions into a single-pot 

25. 

To evaluate the performance of Pfunkel, we created a SSM library of the first forty residues 

on a codon-optimized gene encoding levoglucosan kinase (LGK) from L. starkeyi (GenBank: 

EU751287.1) 34. A SSM library incorporating NNN codons should theoretically contain 2520 (63 

codons at 40 positions) unique NS mutations. The mutagenesis primer set was manually designed 

using the  Agilent QuikChange  primer  design  calculator,  and  a  Pfunkel reaction was performed 

essentially as described in Firnberg et al. 24, 25. The resulting library was sequenced using 150-bp 

paired-end (PE) reads on an Illumina MiSeq. The quality of the mutagenesis procedure was 

evaluated based on the percent coverage of mutations at the DNA and amino-acid levels, the 

percentage of starting (wild-type) DNA sequences, and the percentage of sequences with more 

than one mutation in the coding sequence. 

Coverage analysis of the SSM library showed 99% of the 2520 possible codon mutations 

were incorporated into the SSM library. Additionally, we observed 100% coverage of single base 

mutations and coverage of two and three base substitutions higher than previously reported (Table 
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2). The number of transformed colonies in the Pfunkel procedure did not impose a bottleneck on 

library complexity since the number of transformed colonies exceeded the library size by seven-

fold, corresponding to a theoretical 99.9% library coverage 35. Based on this analysis, we 

independently conclude that Pfunkel can produce comprehensive SSM libraries. The single-pot 

reaction can produce high-coverage SSM libraries in two days with minimal hands-on time.  

 

Figure 3- Gene tiling increased the efficiency of deep sequencing for sequence-function 
mapping.  

a. Deep sequencing without using gene tiles. Gene sequences are represented by grey lines, 
mutations by red x’s, and sequencing primers by purple and green lines. Several previous 
methods to amplify target DNA (left) amplify both mutated and non-mutated regions. The latter 
result in wasted reads and increase the sequencing capacity necessary to resolve the entire 
library. b. Percent of usable reads as a function of gene length with (red line) and without (blue 
line) gene tiling. c. Gene tiling has the ability to reduce the number of DNA sequencing reads 
necessary by targeting the region with a mutation in PCR amplification for sequencing 
purposes. To implement gene tiling, separate libraries are prepared and sorted for each tile. d. 
Number of sequence reads required for 300-fold average coverage of nonsynonymous 
mutations with (red line) or without (blue line) gene tiling. The horizontal dashed line 
represents the average number of DNA sequences from a single MiSeq lane. e. In gene tiling, 
short contiguous stretches of DNA (tiles) are targeted for mutations. Gene tiles are indicated 
by the colored dashed lines and cover the entire gene sequence among the different libraries. 
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While Pfunkel is a simple and reliable method to create high-coverage SSM libraries, the 

costs associated with primer synthesis are not trivial. For a protein of length L, the cost of the 

primer set is $3.90*L ($0.10 per base and 39 bases per primer) (2014, Integrated DNA 

Technologies, Corralville, IA). Accordingly, we looked for ways to improve the Pfunkel method 

by reducing method cost. 1.) Shorter primer lengths would decrease cost. Our initial primer set 

was designed using a QuikChange calculator that suggested longer primer lengths than the custom 

primer design script provided by in the Pfunkel paper. 2.) Recovering plasmid DNA in liquid 

culture would reduce both cost and time. In the current procedure following transformation, cells 

are plated on expensive BioAssay plates.  

We hypothesized that shorter primers would produce SSM libraries with equally high 

coverage but a decreased percentage of reads containing exactly one mutation. To test this we 

produced a second primer set using the custom primer design script from Firnberg et al. (referred 

to as scripted Pfunkel primers) 25. This primer set averaged 27 bp in length while the QuikChange 

primers were, on average, 39 bp. We evaluated the two primer sets using three variables that 

contribute to inefficient sequencing: 1.) percentage of wild-type reads; 2.) fractional library 

coverage; and 3.) the number of double mutants. In comparison to the QuikChange primer set, 

libraries prepared with the scripted Pfunkel primers had a much higher rate of wild-type sequences 

(62.6%), lower library coverage (99.5%), but a lower rate of double mutants (3.3%) (Table 2). 

Although for the QuikChange primer set there is a higher rate of double mutants, all are accounted 

for in the sequencing and so do not influence later data analysis.  Thus, the cost of synthesizing 

longer QuikChange primers is more than balanced by the benefit of a high-quality SSM library, 

which requires fewer DNA sequencing reads for full library coverage. 
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In the original Pfunkel method, following transformation cells were plated on large 

BioAssay plates and grown at 37oC overnight. Recovering the library in solution without plating 

could save cost and time. To determine whether library quality suffers without plating, two parallel 

Pfunkel reactions were performed with the QuikChange or Pfunkel Scripted primer sets. Following 

transformation, half of the cells were plated on a selective plate while the other half was grown to 

an OD600 of 0.1 in a liquid culture. Cells were then harvested, and plasmid was recovered and 

sequenced. Cells recovered in liquid culture showed 73-93% coverage of all possible codon 

substitutions, much lower than the 98.3-99.3% observed for the libraries that were plated. The 

liquid culture data also showed a bias against NS mutations. For example, using the QuikChange 

primer set and plating the cells resulted in 70.6% of the reads containing exactly one NS mutation, 

whereas growing cells in culture resulted in only 40.0% of reads containing one NS mutation 

(Table 2). Based on these experiments, we conclude that plating cells following transformation is 

necessary to produce high-quality SSM libraries. 

Theoretically, mutational frequencies caused by saturation mutagenesis with NNN codons 

should be equal across bases. However, consistent with the results presented by Firnberg et al., we 

find that guanosine (G) bases are enriched relative to theoretical predictions (Table 2) 25. Since we 

see very little difference in the incorporation of single bases at the DNA level between the two sets 

of mutagenic primers, the artificial enrichment of G bases is likely the result of improper machine 

mixing of the NNN mutations in primer synthesis, as previously suggested 25. While hand mixing 

of the nucleotides during primer synthesis may reduce the bias, it would substantially increase 

primer cost.  Alternatively, the enrichment of G bases could be introduced by a bias in primer 

annealing as suggested by Jain and Varadarajan 36. Neverless, since in our protocols the average 

library member is counted at least 100 times, the observed level of bias is tolerable.  
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The plasmid DNA encoding the SSM library must be transformed into the host organisms used for 

selections. If multiple plasmids are transformed into a single cell, gain-of-function variants could 

potentially compensate for weaker variants. To account for this, we have derived a correction 

factor for the measured enrichment ratio as a function of percentage of double transformants (See 

Theory).  For libraries with less than 10% doubly transformed cells this correction can be neglected 

because its absolute magnitude correction is less than 0.35 (Figure 4), which is comparable to the 

experimental error in determining enrichment ratios from sequencing data for loss-of-function 

variants. However, at higher percentages of doubly transformed cells this effect may be significant 

(Figure 4) and controls must be run to minimize artifacts 37.  

 In our typical workflow we use E. coli for growth-based selections and S. cerevisiae for 

yeast display of binding proteins 38. The most common yeast display plasmid contains a 

CEN6/ARSH4 ori maintaining a low plasmid copy number, such that co-transformed plasmids are 

segregated well before FACS 39. For many E. coli-based systems however, plasmids of medium to 

high copy numbers do not efficiently segregate and the percentage of double transformants needs 

to be quantified. Goldsmith et al. suggested a strategy which we follow here 37. The starting 

plasmid pJK_proJK1_kanR_LGK was modified by changing the antibiotic resistance from 

kanamycin to ampicillin, forming the plasmid pJK_proJK1_LGK. These two plasmids were mixed 

at a mass ratio of 1:100, respectively, and 40 ng of this mix was transformed into 40 μL of 

electrocompetent Tuner cells. The reaction was plated on ampicillin, kanamycin and 
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ampicillin/kanamycin selective plates and grown overnight. The colonies were counted and the 

percentage of double transformants was calculated by taking the ratio of the number of dual 

antibiotic resistant colonies over the number of solely kanamycin resistant colonies (Table 3). 

Under these conditions, the rate of double transformants is on the order of 2%, well below the 10% 

 

Figure 4- Enrichment correction factor from double transformation artifacts. 

The enrichment correction factor is characterized by the true enrichment ratio (εt) minus the 
measured enrichment ratio (εm) for different, variant growth rates relative to the population growth 
rate.  a. The distribution of the individual growth rates in the population was assumed to be a 
bimodal-guassian with means of μi/μp = 0.2 and 0.9  and a standard deviation of 0.06, broadly 
consistent with individual variant growth rates observed for a library.  b. Here the assumed double 
transformation rate is assumed to be 10% and the correction factor is plotted for different numbers 
of population doubling periods. (2 red, 5 blue, 8 black,10 green). c. Here the assumed population 
doubling periods is 8 and the correction factor is plotted for different double transformation rates.  
If the double transformation rate is less than 10% and the population doubling periods is about 8 
the correction factor is negligible and does not need to be considered. 
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threshold. Additionally, in this specific case, we found that the number of solely ampicillin 

transformants is more than sufficient to support the degeneracy of a library size of 2,560. We 

recommend re-running this experiment for every library, as transformation conditions often vary.  

2.5.3 Selections  

Methods for selection are chosen based on protein function. Selections should be designed 

such that the widest range of activity levels can be resolved. Protein binding activity is usually 

screened/sorted by phage, bacterial, or yeast display platforms 40-43. The latter two methods resolve 

the population by FACS; in this section we derive equations governing the grouping of different 

variants by FACS and suggest optimal experimental parameters. We also show equations that 

govern the appropriate choice of experimental parameters for growth-based selections.  

To ensure proper coverage, selections are designed such that on average there is 200-500 

fold coverage of each variant in the unselected population. Sequencing to this depth requires on 

the order of 500,000 quality 150-bp reads.  The enrichment of an individual variant is described 

as the log2 ratio of its frequency in the selected population to the unselected population. For a 

library containing 2,500 members and sampled at 200-fold coverage, there is a lower enrichment 

limit of -7.5 for mutants counted once after selection and an upper bound of 11.3 for a variant that 

completely overtakes the population. Because intrinsic error (Poisson noise) is lowered when the 

counting threshold is set much higher than 1, and because allowing a single variant to overtake the 

population provides no data about the remaining positions, the practical dynamic range for the 

selection range spans enrichment values of -4 to 4. Selections should be designed to best span this 

range of enrichment values. The dynamic range will vary minimally with  
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Table 2 - Mutagenesis statistics for different experimental conditions. Comparisons to theoretical predictions and previous 
literature data are shown as reference 25. 

 
  

  Theoretical  Firnberg et al. results 25 QuikChange Primers Scripted Pfunkel Primers 

      Plated Plated Culture Plated  Culture 

Sequences (reads)   787,488  414,410  319,179  510,126  436,135  

NNN primer base composition             

T 25.0% 17.1% 15.2% 16.7% 22.8% 19.2% 

A 25.0% 18.3% 14.0% 15.7% 20.2% 19.7% 

C 25.0% 18.3% 17.5% 18.5% 16.8% 19.8% 

G 25.0% 46.3% 53.3% 49.0% 40.2% 41.4% 

Percent of possible codon substitiutions observed        

1-base substitution   99.6% 100.0% 100.0% 100.0% 100.0% 

2-base substitutions    97.7% 99.6% 96.4% 98.6% 83.7% 

3-base substitutions    95.3% 98.7% 88.3% 97.3% 54.4% 

All substitutions    97.0% 99.3% 93.5% 98.3% 73.5% 

Percent of reads with             

No nonsynonymous mutations  1.6% 26.2% 22.4% 55.0% 62.6% 87.0% 

One nonsynonymous mutation  98.4% 56.7% 70.6% 40.0% 34.1% 12.0% 

Multiple nonsynonymous mutations  0.0% 17.1% 7.0% 5.0% 3.3% 1.0% 

Coverage of possible single nonsynonymous mutations  99.9% 98.0% 99.5% 89.1% 
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Table 3- Experimental results used for determination of double transformation percentage. 

Mass of 
Plasmid 

(ng) 

Plasmid 
Antibiotic 
Resistance 

Number of CFU's on Plate % Double 
Transformants 

    Amp Plate Kan Plate Amp+Kan Plate  
0 - <10 <10 <10 N/A 

10 Amp 690,000 <10 <10 N/A 
5 Kan <10 250,000 <10 N/A 

40 100:1 
Amp:Kan 

2,200,000 16000 310 1.9% 

increasing library coverage: every 2-fold increase in coverage results in decreasing the lower 

bound of the enrichment ratio by 1 unit. Figure 5 shows a mutant with an enrichment ratio of -4 

and makes up 0.0024% of the selected population, while a variant with an enrichment ratio of 4 

and makes up 0.8% of the selected population. Among 500,000 sequence reads from the selected 

library, the former variant is observed 12 times and the latter 3,400 times.  

 

Figure 5- Enrichment ratio of a clone as a function of its abundance in the selected 
population.  

The dynamic range of the method lies between enrichment ratios of -4 to 4 (indicated by 
horizontal dashed lines) such that (i.) single clones do not dominate the selected population; 
and (ii.) loss-of-function clones are not completely removed from the population.  
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2.5.3.1 Enzymes: Growth selections  

The enrichment value (εi) of an individual variant i depends on the average growth rate of 

the library population ( ), the number of doubling times the culture is allowed to grow (gp), and 

the growth rate of the individual variant (μi): 

1i
i p

p

g



 
   

 
       (12)  

Growth selections should be designed such that the number of generations the culture is 

allowed to grow fits a reasonable time frame (under 2 days) and there is high resolution of fitness 

for the entire library. Figure 6 shows the enrichment ratios for a range of specific growth rates 

relative to the population-averaged growth rate for different numbers of doubling times. According 

to these results, the dynamic range of protein activities is maximized between five and ten doubling 

times. This range allows resolution of all variants with growth rates above 0.2 of the population-

averaged growth rate. Furthermore, limiting the number of doublings minimizes the effect of 

spontaneous mutations in the background strain 44.  

2.5.3.2 Protein Binders/Transcriptional Regulators/Membrane Proteins: FACS Screens 

FACS is used in many different screening scenarios including protein binding, 

transcriptional activation, gene silencing, and localization studies 9, 10, 45-47. In each of these screens 

the presence of cellular fluorescence corresponds to some underlying protein activity. In yeast 

p
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display, the binding affinity of a given protein-protein or protein-small molecule interaction is 

assessed by binding of a biotinylated protein or small molecule (present at a concentration near 

the dissociation constant for the interaction) to a surface-displayed protein, followed by labeling 

with fluorescently-conjugated streptavidin 38. In this case, higher fluorescence indicates increased 

binding affinity for the biotinylated protein.  

 The distribution of fluorescent intensity for individual cells is log normally distributed 

(Figure 2.6a) with a mean fluorescence  and a clone-independent standard deviation σ´. To sort 

populations, square (normal to one axis) or diagonal gates (normalizing for surface expression) are 

usually drawn (Figure 2.6b); these gates sort a specific fraction of the population, ϕ, that exceeds 

a gating fluorescence, Fg. Sorting cells using one-color (square gate) is most common. However, 

Fi '

 
Figure 6- Growth Selection Parameters.  

The parameters of growth-based selections should be chosen such that the range of enrichment 
ratios for the population lies between -4 and 4. a. Enrichment ratios as a function of the individual 
growth rate compared to the population growth rate. Following one generation of population 
growth (blue) the enrichment ratios remain around zero. Increasing the number of population 
generations the experiment is allowed to grow (1 generation, blue, 5 generations, red and 10 
generations, green) increases the experimental resolution in discriminating mutant growth 
phenotypes. b. Enrichment ratios as a function of average population generation (gp) for various 
μi/μp. For μi/μp values less than one (0.1, red; 0.5, blue; and 0.667, green) the enrichment ratios 
decrease with increasing population generations. Variants with values  μi/μp values above one 
(1.5, black) show enhanced enrichment with increasing population generations.  
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two-color sorting (diagonal gating) is often used to correct for intrinsic noise caused by 

distributions in cell size, among other factors 48. Similarly, two-color sorting can be used in protein 

display techniques to normalize for cell-to-cell variation in surface expression 49. Two-color 

sorting results in a log normal distribution for the transformed fluorescence but with a significantly 

reduced standard deviation. As such, these sorts can be described by the FACS equations derived 

in the Theory section. Gating the top fraction of the fluorescent distribution enriches the sorted 

population in variants with enhanced activity. The enrichment ratio of a single clone can be 

described by rearranging equation (18): 
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where εi is the enrichment ratio of an individual clone, σ´ is the standard deviation of the single-

clone log-normal fluorescence distribution,  is the mean fluorescence of an individual mutant, 

Fg is the gating fluorescence and ϕ is the gating percentage (Figure 2.6a). σ´ can be calculated 

independently for a clonal population of the starting variant using the fluorescence distribution.  

To determine optimal sorting parameters, we have plotted enrichment ratios as a function of the 

ratio of individual fluorescence to the gating threshold for fluorescence at different gating 

percentages (Figure 2.6c). It should be noted that the gating threshold is dependent on the fraction 

of cells that  will be  collected. A less-stringent  gate, with  ϕ equal  to  10%,  provides  a distribution 

of enrichment values for many of the clonal populations but will not resolve differences in binding 

above >1.3. A stringent gate at ϕ=1% enriches strong binders to a ratio of about 6, providing 

little information about poor binders. We find the optimal ϕ to be around 5%, where the enrichment 
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ratios of both poor binders and strong binders (relative to the original binding interaction) fall 

within the dynamic range of 4 to -4 (Figure 2.6c). FACS selections should be designed such that 

the ratio of the fluorescence for the starting construct relative to the anticipated gating threshold is 

less than 0.5. The actual gating threshold Fg, however, is governed by ϕ, the percentage of the cells 

that will be collected. Another parameter that can be modified is the log-transformed standard 

deviation of the fluorescent distribution. For example, this standard deviation can be decreased by 

drawing a diagonal gate so that the populations are sorted by two fluorescent parameters, which 

compensates for certain sources of noise.  

Figure 2.6d shows the enrichment ratio of clones as a function of the ratio of individual 

fluorescence to the gating fluorescence at a single gating fluorescence for different standard 

deviations. Populations with a smaller standard deviation show a smaller range for collection than 

those with a larger standard deviation. It is recommended that for applications where elucidation 

of gain-of-function and loss-of-function variants is desired, a square gate should be used. However, 

a diagonal gate should be used for enriching the population to uncover mostly improved variants.  

Finally, in the specific case of yeast surface display of protein binders we label the 

displayed proteins at levels approximately half of the dissociation constant for the starting protein-

ligand interaction. Optimal labeling concentrations can be calculated using parameters set by 
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Boder and Wittrup 50.  Higher activity variants are often isolated using multiple sorts from yeast  

display or other display-based methods. However, our normalization equations only allow 

 

Figure 7- FACS Selection Parameters.  

a. Individual fluorescence from a clonal population of cells is log-normally distributed with 
a log-transformed standard deviation σ´, log-transformed mean fluorescence  and mean 

fluorescence . Cells are collected based on the gating fluorescence, Fg, which controls the 
fraction of cells collected, φ. b. Sample FACS readout for yeast-surface display. The x-axis 
represents the fluorescence of the displayed population, whereas the y-axis represents the 
fluorescence of the binding activity of interest. Both square (solid line) and diagonal (dashed 
line) gates can be drawn around the population to be sorted. Diagonal gates will decrease 
the standard deviation of the transformed fluorescence distribution, narrowing the range of 
protein activities that can be resolved. c. The enrichment values as a function of the ratio of 
the individual fluorescence to the gating fluorescence for different gating percentages (1%, 
green; 5%, red; 10%, blue) for σ´=0.6. In more stringent sorts, resolution is lost in the 
enrichment ratios for poor binders. The dynamic range for the fraction of cells collected is 
between 5 and 10%. d. The enrichment values as a function of the ratio of the individual 
fluorescence to the gating fluorescence for different standard deviations (1.0, green; 0.6, 
red; 0.3, blue) for a gating percentage of 5%. Setting smaller standard deviations by two-
color sorting using diagonal gates narrows the dynamic range of enrichment values for the 
sorted populations.  
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quantitative comparisons between populations occurring during a single sort.  Theoretically using 

one sort is sufficient to resolve most of the population while minimizing time and down stream 

processing for FACS. As necessary, further sorting can be done to finely discriminate among the 

enhanced binding variants (Figure 2.6c).  In the specific case of yeast surface display, the labeling 

concentration for the second sort can be set at a much lower level than the first sort. Analysis of 

the population frequencies after the second sort compared to the first sort can be done using the 

same normalization equations as above. 

2.5.4 Deep Sequencing Library Preparation  

Deep sequencing was used to obtain count data of each variant in the population using an 

Illumina MiSeq in 150-bp paired end mode. Plasmid DNA was extracted using a Qiagen miniprep 

kit (for E. coli) or a modified smash and grab protocol (for S. cerevisiae)48. Following plasmid 

extraction, a modular two-step PCR method was used to amplify the gene tile and to add the 

Illumina sequencing, adaptor, and barcode sequences (Figure 2.7). The two-step PCR procedure 

involves two sets of primers. The first, inner, set amplifies out the gene tile using the gene sequence 

up- and downstream of the tile and attaches a segment of the sequencing primer. Inner primers are 

specific to each tile and can be designed using a custom script. The outer primers attach the 

Illumina adaptors and a barcode on the 3’ end of the gene. These primers are a universal set and 

can be used across different experiments. 

Three different PCR methods (Methods A, B, and C, Table 1) were used to attach both sets 

of primers to an unselected library of LGK variants, and frequencies of each variant were 

quantified by deep sequencing. If there were no differences in PCR bias among methods, the error 

in calculating the normalized amount (frequency) of each variant in the population would approach 

the Poisson limit. Comparisons of variant frequency between Method A and Method B show error 



 

 41

between methods approaching this theoretical minimum (Figure 9a). By contrast, Method C shows 

much larger differences with respect to Method A (Figure 9b) indicating a bias in the PCR method. 

Figure 10 shows the protein mutation distribution compared to the  

theoretical coverage for this unselected library following preparation for sequencing by each of 

the different methods. Amino acid mutations are enriched in proline (CCN), alanine (GCN), 

histidine (CAT, CAC) and arginine (CGN) most likely because of the overrepresentation of G 

bases in the NNN codons in the primer set as discussed above. While proline is grossly 

overrepresented in the library as a consequence (20% reads vs. 5% from theoretical expectation), 

 

Figure 8- 2-step PCR method for deep sequencing preparation of libraries. 

PCR reactions are shown for two separate gene tiles containing single mutations (orange and 
green). Primers are designed to be complementary to flanking regions (grey) of each tile, with 
encoded single mutations. The first set of primers includes the flanking regions and Illumina 
sequencing primers (purple). In the next step, outer primers add the Illumina adaptor (pink) and 
multiplexing index (teal) sequences to the gene. The PCR reaction is performed in a single tube 
using a 1:2 molar ratio of inner to outer primers and bead purified to remove primer dimer 
products. The purified library is ready for sequencing without further modifications. While the 
first set of primers is specific to a single gene tile, the outer primer set is universal. 
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this bias is tolerable because of oversampling of population members in sequencing. From these 

results we recommend Method A as it requires the least amount of hands-on and setup time.  

 

2.5.5 Normalization and Data Analysis  

The frequency of individual variants in selected and unselected populations is extracted from raw 

sequencing files using the Enrich software suite 27. Briefly, the forward and reverse reads are 

aligned, errors between reads are resolved, and the combined sequence is aligned to the starting 

DNA sequence. Each mutation is recorded and counted, these counts are normalized to 

frequencies, and the enrichment ratios are found by comparison of the frequency of a given mutant 

in the selected to the unselected population. To facilitate comparisons of variants across different 

selection conditions, we have derived normalization equations that transform these enrichment 

ratios (εi) to an objective fitness metric. If a variant is not present in the unselected library then we 

are unable to determine the fitness metric for that variant.  

For growth-based selections, this fitness metric is defined as: 
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This metric requires two additional pieces of information. First, the enrichment ratio of the starting 

or reference sequence must be known (εwt). Fortunately, this reference variant is generally present 

in the library, regenerated at each position by the appropriate NNN primer. Second, the number of 

doubling periods (gp) for the culture must be calculated from the initial and final optical cell 

density.  

To determine whether this relation could reproduce the fitness of individual variants in 

different populations, we grew populations of E. coli harboring plasmids expressing different 
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levels of eGFP expression 23. Differential expression results in growth differences among 

individual strains of nearly 2-fold (n=11; range 0.46 ≤ μi ≤ 0.76 h-1). Initially, we mixed these 

variants into a single population and determined individual fitness values after 8.6 average 

population doublings. Then, we mixed subsets of these variants into two different populations and 

again determined individual fitness values. Ideally, these fitness values would be exactly the same 

across the different populations. A best-fit regression line of the fitness values for individuals 

compared across the different populations gives a slope of 1.04 (R2=0.96), very close to the ideal 

case of 1 (Figure 11). Based on these results, we conclude that the derived relation is an effective 

way to normalize the fitness of individual mutants across different populations, thus allowing 

quantitative comparisons across different selected populations.  

In the case of FACS, fitness can be measured across populations according to the following 

relation: 

 

 

Figure 9- Errors introduced by different PCR methods.  

Identical mutant libraries were prepared for sequencing using three different PCR methods. 
The number of counts for each library member was compared across the different methods. 
Each point represents a specific mutant sequence. For each panel, dashed black lines 
represent the 95% confidence interval for the Poisson noise between different methods. a. 
Method B v. Method A. Above 10 counts, the data fall almost completely within minimal 
error predicted by Poisson noise. b. By contrast, Method C shows significant variance in 
counts relative to Method A.  
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Thus, the fitness of an individual variant ζi can be derived from its enrichment ratio (εi)  given the 

enrichment ratio of the wild type (εwt), the percentage of the entire population collected under the 

sorting gates (ϕ), and a log2-transformed standard deviation of fluorescence for a variant (σ') . Since 

this standard deviation is a scalar in the function, rank ordering of fitness across different 

populations can be done without directly measuring this quantity. By contrast, the gating 

percentage of the library is easily measured. Thus, experimentally measured parameters, combined 

with this relation, allow unambiguous comparisons of variants across different populations.  

 

Figure 10- Library amino acid distribution and PCR bias determination. 

The distribution of incorporated amino acids was used to determine any bias introduced 
by PCR methods to prepare the library for deep sequencing. The frequency of each 
mutation overall in the 40 residue region was compared to the theoretical frequency 
(orange) for each residue type. Method A (red) and Method B (blue) show little difference 
between the distribution of amino acid substitutions, while Method C (green) shows slight 
differences at some residue types. The artificial enrichment in proline, alanine and 
histidine occurs because degenerate primers used for mutagenesis contained an 
overabundance of guanine bases. The different PCR methods do not show a specific bias 
toward any single residue. 
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2.6 Conclusions 

In this paper we have presented a standardized method for producing the sequence function 

determinants for entire protein sequences. Furthermore, we have derived equations that allow users 

to identify optimal selection conditions for their target of interest and to directly compare variants 

across different populations. Using this method, users can create functional landscapes for full-

length genes quickly and efficiently. These landscapes can be applied to protein engineering, for 

antibody-epitope mapping, and for many different end uses. Additionally, these landscapes can be 

integrated with computational design methods, either by highlighting existing shortcomings of 

computational prediction software or as experimental data to guide computational trajectories in 

search algorithms 51.  

The best practices and a step-by-step protocol governing each step in the process are listed 

in Supplementary Note S2 (Appendix A). These guidelines add to the body of literature for recent 

sequence-function mapping protocols 13-15, 52, 53. Notably, many of the individual steps presented 

here are fully compatible with, and can enhance, these other published protocols. For example, the 

general fitness equations derived for growth-based selections can be used to optimize experimental 

set-up for the EMPIRIC approach 15. Additionally, the general gene tiling and primer design 

strategy can be applied for assessing full-length sequences with EMPIRIC.  

Because of the gene tiling approach, there is no practical upper limit on a gene sequence to 

be tested. In principle, this approach can be applied to targets much larger than single gene products 

like complete metabolic pathways. One downside of current approaches is that short read lengths 

inherent in existing sequencing platforms limit libraries to single mutants or coupled mutants that 

are proximal in a contiguous stretch of the gene. Resolving this limitation requires new sequencing 

methods able to resolve long reads with very low error rates. In the near future, perhaps 
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sequencing-function mapping of multiple simultaneous mutations can be used as a way to fine 

tune cooperation effects between different beneficial mutations or neutral mutations identified 

from a single-site saturation mutagenesis library.  

 

 

Figure 11- Experimental validation of growth rate normalization relation.  

E. coli harboring 11 different plasmids driving differential eGFP levels were grown in a 
single population or in two separate populations. The fitness from the separate populations 
(represented by blue and red open circles) and combined populations were evaluated and 
compared. Error bars represent one standard deviation from two independent experiments. 
The solid black line represents the theoretically ideal relationship between individual and 
combined fitness. 
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CHAPTER 3 

3. Determination of binding affinity upon mutation for type I dockerin-cohesin complexes 

from Clostridium thermocellum and Clostridium cellulolyticum using deep sequencing 

Abstract 

The comprehensive sequence determinants of cohesin to binding affinity towards type I 

dockerin from Clostridium thermocellum and Clostridium cellulolyticum was evaluated using deep 

mutational scanning coupled to yeast surface display. We measured the relative binding affinity to 

dockerin for 2,970 and 2,778 single point mutants of C.thermocellum and C. cellulolyticum, 

respectively, representing over 96% of all possible single point mutants. The interface ΔΔG for 

each variant was reconstructed from sequencing counts and compared with three independent 

experimental methods. The computational software packages FoldX and Rosetta were used to 

predict mutations that disrupt binding by more than 0.4 kcal/mol. The area under the curve of 

receiver operator curves was 0.82 for FoldX and 0.77 for Rosetta, showing reasonable agreements 

between predictions and experimental results. Destabilizing mutations to core and rim positions 

were predicted with higher accuracy than support positions. This dataset may be useful for protein 

engineering of orthogonal type I dockerin/cohesin interactions for designer cellulosomes. This 

benchmark dataset may also be useful for developing new computational prediction tools for the 

prediction of the mutational effect on binding affinities for protein-protein interactions.  

3.1 Introduction 

Protein-protein interactions are fundamental to biological life, including driving adaptation 

in the immune system and intercellular communications that regulate organismal development 

decisions. Given this outsized importance, a grand challenge in protein science is the quantitative 

prediction of affinity and specificity in protein-protein interactions. Numerous computational 
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prediction methods have been developed 78-83, but in many cases give poor predictions 84. One 

major contributor to improved prediction methods is the presence of robust, strong experimental 

benchmark datasets. Several such datasets have been compiled over the past fifteen years 82, 85, 86. 

These benchmarks are manually curated and contain mutants that have been validated through in 

vitro binding measurements. However, the majority of the mutations in these benchmark sets are 

of mutations to alanine. As such, the effect of all possible amino acid substitutions on binding 

affinity at a given position is under-represented. 

One major reason that the above benchmark sets are sparsely populated is that they rely 

predominantly on in vitro binding measurements, which can be laborious. Orders of magnitude 

more data can be generated by experiments measuring the relative binding affinities of entire 

populations using techniques such as phage display or yeast surface display 35, 87. In recent years, 

the ability to deep sequence an entire population has enabled such experiments to be performed 

routinely 4, 12, 13, 88, 89. The principle behind these deep mutational scanning experiments is simple: 

a protein library of mutational variants is passed through a selection or screen for binding affinity. 

The entire population is sequenced after the selection and compared with a reference population. 

The change of frequency of a given variant in the population can be calculated directly from deep 

sequencing counts, and this “enrichment ratio” gives a measure of fitness of that variant under the 

given selection condition. In previous deep mutational scanning experiments, it was not apparent 

that the enrichment ratios could be directly related to binding affinities 4, 84. Recently we have 

developed selection criteria and normalization relations in a yeast surface display experimental 

pipeline to unambiguously reconstruct the mean fluorescence of a clonal variant directly from 

sequencing counts 48. This approach was recently validated on several different protein-protein 

interactions 88. These advances allow for generation of deep mutational scanning benchmark sets 
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where the relative change in binding affinity can be evaluated for each point mutant in a given 

protein sequence.   

Some anaerobic bacteria degrade cellulosic biomass using extremely large enzyme 

complexes called cellulosomes 90-92.  The core of the cellulosome is formed from a protein scaffold 

that non-covalently links several enzymes at specific spatial locations. The scaffold is thought to 

be functionally important for several reasons: 1.) carbohydrate binding modules arrayed alongside 

the scaffold disrupt the intra-chain cellulose hydrogen binding, increasing the concentration of 

enzymatically labile 1-4 glycosidic bonds; 2.) the scaffold links the cellulose to the organism 

enhancing local concentration effects; and 3.) synergy between spatially constrained enzymes 

increase overall cellulase activity. The organization of the enzymes onto the cellulosome scaffold 

is composed of a modular protein-protein interaction recognition sequences. The first 

characterized interacting partners were type I dockerin/cohesin complexes, with a dockerin domain 

of approximately 60 residues genetically fused to the enzymes and cohesin domains of 140 

residues are dispersed throughout the scaffold. This modular framework results in many different 

potential enzymatic combinations, the placement of which has not necessarily been optimized for 

cellulase activity. Indeed, other groups have reconstituted designer cellulosomes comprising 

orthogonal dockerin/cohesin pairs isolated from diverse microorganisms, and have shown 

enhanced activity in vitro and in vivo compared to controls 92-96. Orthogonal type I 

dockerin/cohesin interactions have also found utility in disparate metabolic engineering strategies 

involving enzyme compartmentalization 95, 96.   

Type I dockerin/cohesin complexes are a useful model system to evaluate sequence 

determinants to specificity and affinity for several reasons. Structures of the complexes have been 

solved from Clostridium thermocellum (Ct) and Clostridium cellulolyticum (Cc) 97, 98. The 
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interactions for both involve a classical protein-protein interface involving buried hydrophobic 

surface area with a ring of polar and charged residues 99. The main interaction surface area is 

comprised of rigid secondary structural elements with a flat beta sheet surface on cohesin and two 

alpha helices on the dockerin side. One unusual feature of the interaction is that dockerin is able 

to bind the cohesin in two distinct binding modes 97, 100. These dual binding modes are thought to 

be biologically relevant 101. While several different studies have evaluated sequence determinants 

to affinity and specificity for Type I dockerin-cohesins 101-107, most have evaluated a handful of 

mutations to residues thought to be most important for binding affinity. Knowledge of the binding 

activity for every single amino acid mutation for the complex would improve knowledge of 

binding affinity and improve computational predictions.  

In this contribution, we use deep mutational scanning to evaluate the effect of binding 

affinity to dockerin for nearly all-possible single point mutants on the type I cohesin domain for 

both Clostridium thermocellum and Clostridium cellulolyticum species, giving a comprehensive 

picture of one side of the affinity landscape for these protein-protein complexes. We evaluate the 

ability of common computational prediction software packages Rosetta and FoldX to discriminate 

mutations that disrupt affinity from neutral or gain of affinity mutations. This sample set is, to our 

knowledge, the largest deep mutational scanning benchmark set with explicit calculations of 

affinity.  As such, these datasets will find utility in developing the next generation of computational 

prediction software. This manuscript also supplies a blueprint for designing completely orthogonal 

dockerin and cohesin proteins for use in designer cellulosomes.  

3.2 Materials and Methods  

3.2.1 Reagents  

All reagents were purchased from Sigma Aldrich (St. Louis, MO) except where noted.  
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3.2.2 Constructs  

3.2.2.1 Strains 

E. coli strains used in this study: XL1-Blue (Agilent, Santa Clara, CA) recA1 endA1 

gyrA96 thi-1 hsdR17 supE44 relA1 lac [F’ proAB lacI1qZM15 Tn10 (Tetr)]; BL21* (New 

England BioLabs, Ipswich, MA)  fhuA2 [lon] ompT gal [dcm] ΔhsdS.  Yeast strain used in this 

study: EBY100 (American Type Culture Collection, Manassas, VA) MATa AGA1::GAL1-

AGA1::URA3 ura3-52 trp1 leu2-delta200 his3-delta200 pep4::HIS3 prb11.6R can1 GAL.  

3.2.2.2 Plasmids 

The plasmid pETCON_ctCohesin was created by inserting a codon optimized gene 

encoding Clostridium thermocellum (Ct) cohesin 98 (GenScript, Piscataway, NJ) using NdeI/XhoI 

restriction sites.  The plasmid pETCON_ccCohesin was created by inserting a gBlock encoding 

Clostridium cellulolyticum (Cc) cohesin 100 (IDT, Coralville, IA) using NdeI/XhoI restriction sites.  

The plasmid pMAL-C5G_ctDockerin was created by inserting a gene encoding Ct Dockerin 98 

(GenScript, Piscataway, NJ) with His(x6) as the C-terminal tag using NdeI/BamHI restriction sites. 

The plasmid pMAL-C5G_ccDockerin was created by inserting a gBlock encoding Cc Dockerin 

100 (IDT, Coralville, IA) with His(x6) as the C-terminal tag using NdeI/BamHI restriction sites. 

All genes were codon optimized for S. cerevisiae or E. coli. All plasmids are deposited in Addgene 

(www.addgene.org).   

3.2.3 Protein Expression  

Ct- and Cc-dockerin protein domains were expressed as C-terminal fusions to maltose 

binding protein (MBP). pMAL–C5G_ctDockerin and pMAL–C5G_ccDockerin were transformed 

into E. coli BL21* (DE3) and protein produced by Studier auto-induction 108 by incubation at 37°C 

for 6 hours and then at 18°C overnight.  Protein was purified according to Bienick et al. 49 except 
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using a different loading buffer for Ni2+-NTA chromatography (50 mM Tris-HCl pH 8.0, 100 mM 

NaCl, 10 mM CaCl2 and 15 mM imidazole). Proteins were desalted using gravity flow PD-10 

desalting columns (GE Healthcare, Little Chalfont, Buckinghamshire, UK) into 3.5 mL 

Dulbecco’s phosphate buffered saline (+CaCl2, +MgCl2) (DPBS) (Life Technologies, Grand 

Island, NY), pH 7.5. The protein purity was at least 95% as determined by SDS-PAGE.  

Ct and Cc MBP-dockerin were biotinylated with the EZ-link Sulfo-NHS_Biotin 

bintinylation kit (Thermo Scientific, Waltham, MA) using a protein to biotin molar ratio of 1:20.  

MBP-CtDockerin protein was frozen in aliquots and stored at -80°C and thawed on ice when used.  

MBP-CcDockerin protein was expressed, purified, and biotinylated fresh when used in 

experiments.  

3.2.4 Yeast Clonal Titrations  

Yeast clonal titrations were done according to Chao et al. 63 to determine the binding affinity 

of individual mutants.  Point mutants were made by the method of Kunkel 56.   

3.2.5 Library Preparation  

Ct- and Cc-cohesin genes were segmented into 4 (150 bp paired end reads) or 2 (250 bp 

paired end reads) tiles, respectively, according to Kowalsky et. al.  48. Single-site saturation 

mutagenesis primers containing an NNN degenerate codon were designed using the online 

QuikChange Primer Design module 

(http://www.genomics.agilent.com/primerDesignProgram.jsp). For each tile Pfunkel mutagenesis 

51 was performed to create a site saturation mutagenesis library. After plasmid midiprep, EBY100 

cells were transformed with plasmid library according to Benatuil et.al. 64. The transformation 

efficiency ranged from 2.0-6.7x105 cfu/transformation.  Following transformation, cells were 

harvested by centrifugation, resuspended in 250 mL of SDCAA media, and grown overnight at 
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30°C and 225 rpm.  Cells were re-inoculated to an OD600 =1.0 in 250 mL and allowed to grow 

overnight at 30°C and 225rpm. 1x107 cells were stored at -80°C in 1 mL of yeast storage buffer 

(20 mM HEPES 150 mM NaCl pH 7.5, 20% (w/v) glycerol) until sorting.  

3.2.6 Yeast Display Selections  

1x107 cells were grown in 2 mL SDCAA for 6 hours at 30°C and re-inoculated at OD600 

=1.0 in SGCAA at 22°C for 18 hours. 3x107 cells were labeled with a biotinylated binding protein 

for 30 minutes at room temperature in DPBSF (DPBS with 1 g/L fraction V BSA). Experiments 

were performed to confirm that 30 minutes is sufficient labeling time for equilibrium binding. The 

binding concentration was set to half of the experimentally determined dissociation constant on 

the yeast surface. Displayed proteins were then labeled with anti-cmyc-FITC (Miltenyi Biotec, 

San Diego, CA) and streptavidin-phycoerythrin (Thermo Fisher, Waltham, MA).  Sorting was 

done on a Sony Biotechnologies SY3200 or a BD Influx Cell Sorter flow cytometer.  Three 

populations were collected: cells passing through the cell sorter, cells which displayed the protein 

on the surface and the top 5% of the cells in the fluorescence channel associated with binding. 

400,000-500,000 cells were collected of each population (~200x sampling of the theoretical 

diversity of the library, Table 4). Following the first day of sorting cells recovered populations 

were grown for 48 hours in SDCAA (pH4.5). 1x107 cells were stored in 1mL of yeast storage 

buffer at -80°C for each sorted population.  
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3.2.7 Deep Sequencing  

Yeast plasmid DNA was prepared for deep sequencing following the protocol in Kowalsky 

et. al. 48. Library DNA was sequenced using the 150x2 and 250x2 Illumina MiSeq kits (Illumina, 

San Diego, CA) at the Michigan State University Sequencing Core.  

3.2.8 Data Analysis 

A modified version of Enrich-0.2 as described in Kowalsky et al. 48, 53, 88 was used to 

compute enrichment ratios of individual mutants from the raw Illumina sequencing files. An 

Table 4- CtCohesin and CcCohesin Sorting Statistics 

 Tile 
Length 
(AA) 

Minimum 
Transformants  

for 99.9% 
Coverage 

Sort 
Labeling 

Conditions 
(nM) 

Events 
Collected 

for 
Binding 

Population 

Percent 
Sorted 

(Display) 

Percent 
Sorted 

(Binding) 

Ct 
Cohesin 
Tile 1  

40 17,920 0.5 500,000 57.0% 5.5% 

Ct 
Cohesin 
Tile 2  

40 17,920 0.5 500,000 58.9% 5.4% 

Ct 
Cohesin 
Tile 3  

41 18,368 0.5 500,000 55.0% 5.5% 

Ct 
Cohesin 
Tile 4 

41 18,368 0.5 500,000 43.3% 7.7 % 

Cc 
Cohesin 
Tile 1 

76 34,048 0.5 500,000 49.8% 4.4% 

Ct 
Cohesin 
Tile 2  

76 34,048 0.5 400,000 61.3% 5.9% 
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enrichment ratio of variant i (i) is defined as the log 2 transform of the frequency of variant i in 

the selected population relative to a reference population. 

To normalize the data across the multiple tiles we define the fitness metric for variant i 

 as the binary logarithm of the mean fluorescence of variant i ( ) to the mean fluorescence 

of the wild-type sequence 48:  

          (1)  

This results in the following equation in terms of experimental observables: 

 
z i  log2 e( ) 2 ' erf 1 1f2 wt+1( )( )  erf 1 1f2  i+1( )( )é

ë
ù
û
         (2)  

Where ϕ is the percentage of cells collected, σ’ is the log-normal standard deviation of a clonal 

population, and the subscript wt denotes the wild-type. 

Under the sorting conditions used in the experiment, the fitness values can be converted to 

the change in binding energy upon mutation (Gi) using the following relation 88:  
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Where R is the gas constant and T is temperature set to 300 K.  

A lower bound for the error on the energetic calculations can be estimated from Poisson 

noise of the sequencing counts and was calculated according to Kowalsky et al. 88. Positional 

Shannon entropy was calculated according to Kowalsky et al. 88.  Custom Python scripts used to 

calculate the fitness metric, Shannon entropy, and statistics are at Github [user: JKlesmith] 

(www.github.com). The full deep sequencing datasets are provided at figshare 

(www.figshare.com).  
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3.2.9 Computational Analysis and Evaluation 

Computational predictions were compared with experimental observations by area under 

the curve of a receiver operator curve according to Sirin et al. 86. Classification of positions in 

Cohesin sequence was done according to Levy 109.   

3.2.9.1 FoldX modeling.  

Structures of CtCoh-CtDock (PDB ID 1OHZ) and CcDock-CcCoh (PDB ID 2VN5) were 

downloaded from PDB and cleaned using the RepairPDB application within FoldX 81. G of 

individual mutants was assessed using the PSSM application within FoldX using the default flags.   

3.2.9.2 Rosetta modeling  

Rosetta 2015.38 was downloaded from rosettacommons.org and used for analysis. 

Structures of CtCoh-CtDock (PDB ID 1OHZ) and CcDock-CcCoh (PDB ID 2VN5) were 

downloaded from PDB and cleaned using the cleanpdb.py script in the Rosetta release.  Structures 

were prepared for the ddgmonomer application110 by performing a pre-minimization as follows:  

./rosetta_bin_mac_2015.38.58158_bundle/main/source/bin/minimize_with_cst.linuxgccre
lease  -in:file:l lst  -in:file:fullatom -ignore_unrecognized_res -fa_max_dis 9.0 -database 
./rosetta_bin_mac_2015.38.58158_bundle/main/database/ -ddg::harmonic_ca_tether 0.5 -
score:weights talaris2013 -ddg::constraint_weight 1.0 -ddg::out_pdb_prefix min_cst_0.5  -
ddg::sc_min_only false  > mincst.log 

G of individual mutants was assessed using the low-resolution ddgmonomer application using 

the following command line:  

./rosetta_bin_mac_2015.38.58158_bundle/main/source/bin/ddg_monomer.linuxgccrelease -
in:file:s /path/to/min_cst_0.5.[PDB]_0001.pdb -resfile ./path/to/mutations.res -ddg:weight_file 
soft_rep_design -ddg:minimization_scorefunction talaris2013 -database 
./rosetta_bin_mac_2015.38.58158_bundle/main/database -fa_max_dis 9.0 -ddg::iterations 50 -
ddg::dump_pdbs false -ignore_unrecognized_res -ddg::local_opt_only false -ddg::min_cst true -
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constraints::cst_file /path/to/input.cst -ddg::suppress_checkpointing true -in::file::fullatom -
ddg::mean false -ddg::min true -ddg::sc_min_only false -ddg::ramp_repulsive true -unmute 
core.optimization.LineMinimizer -ddg::output_silent true  -override_rsd_type_limit 

 

3.3 Results  

To map the sequence determinants to binding for the type-I cohesin dockerin complexes 

from Clostridium thermocellum (Ct) and Clostridium cellulolyticum (Cc) we followed a deep 

mutational scanning approach developed by Kowalsky et al. 88. We used yeast display63 to express 

CtCohesin (CtCoh) and CcCohesin (CcCoh) on the surface of S. cerevisiae (Figure 12b).     

Next, a comprehensive saturation mutagenesis library of all possible single non-synonymous 

mutations was made for the genes encoding cohesin 51. These libraries were displayed on the 

surface of yeast 63 and incubated with the dockerin domain at a labeling concentration of half of 

the observed dissociation constant. The libraries were sorted by fluorescence activated cell sorting 

(FACS) into three different populations: a reference population collected without applying a 

sorting gate, a population of all cells surface displaying cohesin variants, and a population 
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containing approximately the top 5% of the binding population (Figure 12c). Sorting statistics are 

listed in Table 5. Plasmid DNA from the collected populations was then prepared and deep 

sequenced. We filtered the sequencing counts to include data on a given mutation only if it was 

counted at least 10 times in the reference population 48.  

 

Figure 12- Method Overview.  

a. Yeast-surface display is used to monitor binding activity.  Both Ct and Cc cohesin domains are 
independently displayed on the surface of yeast. Dockerin domains are solubly expressed and 
chemically biotinylated. A C-terminal c-myc epitope tag is used to monitor protein display and a 
streptavidin-conjugated fluorophore is used to monitor cohesin-dockerin binding.  b.  Binding 
titration curve for the Ctcohesin-Ctdockerin interaction as determined by flow cytometry. Inset 
shows no display or binding activity (black), display only (green) and the binding activity of a 
clonal population at sorting conditions (purple). c. Populations are discriminated by three sorting 
gates. The reference gate drawn around forward and side scatter channels (left) captures all yeast 
cells passing through the flow cytometer. The displayed gate (middle) captures all yeast cells 
displaying the cohesin domain, while the bound gate captures approximately the top 5% of the 
binding population (right). Collected populations are grown overnight and the plasmid DNA 
containing Cohesin variants is extracted, deep sequenced, and analyzed.    
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Using this method we were able to evaluate 3133 out of 3240 (96.7%) and 2824 out of 2900 

(97.3%) possible single nonsynonymous mutations, including stop codons, in the protein encoding 

sequence for Ct and Cc cohesin domains, respectively. Statistics on the quality of the mutational 

libraries are given in Table 5.  We first addressed whether the yeast display system could identify 

mutations that disrupted the fold of the cohesin proteins. To evaluate this, we compared the 

frequency of each variant in the population gated by the fluorescence channel associated with 

binding to a C-terminal c-myc epitope tag (“display” population) compared to the reference 

population. Consistent with a previous experiment 4, almost every single point mutant in both Ct 

and Cc population displayed with near the same frequency as the reference population (Figure 13). 

These include mutations that are predicted to appreciably destabilize the protein fold (ΔΔGunfolding 

> 1.0 kcal/mol), including introduction of charged residues in the  

protein interior and mutations of small to large interior residues predicted to cause steric clashes. 

Notably, the sorting gate used on the displaying population was able to discriminate mutants not 

displaying the epitope tag as premature stop codons that remove the c-myc epitope tag used to 

identify the displaying populations are significantly depleted (p-value <10-16 using a one-tailed 

paired t-test).  

We next compared the frequency of the binding population to the frequency of the 

reference population. The new reference population was combined from the nearly identical 

displaying and the initial reference populations in order to lower the intrinsic counting error. We 

used a Shannon (sequence) entropy metric 88 to plot sequence conservation on the structures of Ct 

and Cc cohesin. Consistent with expectations, we find that the conserved residues map to the 

known binding modes of their respective dockerins (Figure 13). 
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Next, we converted the enrichment ratios in yeast display sorts to a fitness metric (ζi) 

representing mean fluorescence of a variant relative to mean fluorescence of the wild-type 

sequence 48. Variants with higher fluorescence in the binding channel will be selectively enriched 

in the population. Conversely, variants with lower fluorescence will 

 

Figure 13- Deep mutational scanning of CtCoh and CcCoh 

a.,b. Counts in the display population relative to counts in the reference population for CtCoh (a.) 
and CcCoh (b.). Black open circles represent a single point mutation to another amino acid, 
whereas red crosses indicate mutation to a premature stop codon. The counts were normalized to 
account for different depth of coverage by deep sequencing. c.,d. Cartoon showing the solved 
structures of CtCoh-CtDock (c; PDB ID 1OHZ) and CcCoh-CcDock (d; PDB ID 2VN5). The 
dockerin domain is shown in grey, while the cohesin domain is colored according to positional 
sequence entropy. The positions of low sequence entropy map to the binding interface. 

 

a. b. 

c. d. 

AA Muta+on 

Stop Codon x 

AA Muta+on 

Stop Codon x 

Increasing  Sequence Entropy Increasing  Sequence Entropy 
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be depleted. The fluorescence of any given cell depends on the number of molecules of target 

protein displayed on the surface, the number of fluorophores per capture protein that binds to the 

target protein, and the fraction of targets bound by the capture molecule. Under conditions of 

equilibrium binding, which we have validated in the present case, the fraction of bound targets is 

set by the labeling concentration of the capture molecule and the binding dissociation constant of 

the interaction. 

In the following step we converted the fitness metric to a change in binding energy (interface 

Gi) for each variant, i, using the following equation: 
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Table 5- Library Statistics 

 Ct Cohesin Cc Cohesin 
Tile 1 Tile 2 Tile 3 Tile 4 Tile 1 Tile 2 

Reads passing through 
enrich for reference 

library 

171600 451027 193222 741965 346198 736768 

Percent of possible codon  
substitutions observed  

1-base substitution 100.0% 99.4% 99.2% 100.0% 100.0% 100.0% 
2-base substitutions  95.6% 96.9% 96.4% 97.7% 96.7% 97.9% 
3-base substitutions  93.4% 96.4% 96.1% 97.6% 96.4% 96.1% 

All substitutions  95.3% 97.0% 96.7% 97.9% 97.1% 97.4% 
Percent of reads with  

No nonsynonymous 
mutations  

17.8% 17.1% 19.0% 28.1% 36.4% 23.9% 

One nonsynonymous 
mutation  

78.6% 78.5% 76.9% 60.4% 53.6% 58.6% 

Multiple 
nonsynonymous 

mutations  

3.6% 4.4% 4.2% 11.4% 9.9% 17.5% 

Coverage of possible 
single nonsynonymous 

mutations  

96.2%  97.5% 96.1% 98.4% 96.9% 97.8% 
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Where R is the gas constant and T is temperature set to 300 K. This deep sequencing-derived 

interface G is calculated using the above fitness metric representing the relative fluorescence 

of a variant at a single labeling concentration (Figure 14). This conversion results in a relatively 

narrow dynamic range arising from variants either at the maximum or minimum fluorescence value 

at the labeling conditions used (Figure 14). Given the sorting conditions used in the experiment, 

there is no discrimination among mutations with interface G greater than 0.5 kcal/mol 88. At the 

other extreme, this method can also detect stabilizing mutations, as we have designed the 

experiment such that no one variant takes over the entire selected binding population.  This gives 

an upper bound of interface G to -0.8 kcal/mol. 

There are several assumptions needed to derive interface G directly from sequencing 

counts, and any major deviations in these assumptions can substantially affect the validity of this 

reconstruction. These assumptions include that (1.) the maximum fluorescence is much greater 

than the minimum fluorescence in the binding channel on the cell sorter 88; (2.) the labeling 

conditions occur under equilibrium binding conditions; (3.) there is a 1:1 binding stoichiometry 

between the surface displayed protein and the protein in solution; (4.) The titration curve can be 

represented with a Hill coefficient equal to 1; (5.) the mean and variance of target molecules 

displayed on the surface is the same for each variant; and (6.) the number of sequencing counts of 

a variant accurately reflects its frequency in the population. While assumptions 1-4 can be 

externally validated or are otherwise reasonable for many protein-protein interactions, the latter 

two assumptions are known to be simplifications. For example, in certain cases protein variants 

have been shown to have very different average surface display 111, 112. Additionally, intrinsic 

counting error (also known as Poisson noise) decreases with increasing sequencing depth. 
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Accordingly, one would expect that the error in determining the frequency of a variant sequenced 

10 times in the reference population will be greater than that of a variant represented 1000 times. 

In order to test the above assumptions, we reasoned that assessing the interface G for all 

synonymous mutations to the wild type sequence would show an average interface G of zero, 

and that the distribution of calculated interface G at these positions would give a baseline error 

in the method. We evaluated the interface G for all synonymous mutations on CtCoh (Figure 

14). Of these 378 variants, the range of interface G is 0.33 to -0.55 kcal/mole, with an average 

of -0.02 kcal/mol and a standard deviation of 0.10 kcal/mol. The interface G is calculated based 

off sequencing counts, and lower counts will increase the intrinsic counting error. Accordingly, 

we hypothesized synonymous mutations with higher counts in the reference population would 

have a narrower distribution than lower counts. 

Figure 14 shows the distribution for variants with less than or more than 100 counts in the 

reference population. As predicted, those with less than 100 counts had a standard deviation of 

0.13 kcal/mol and more than 100 counts had a standard deviation of 0.07 kcal/mol. To test the 

assumption that the mean number of target molecules displayed on the surface is the same for each 

variant, we assessed interface G for surface positions on Ct Cohesin far from the interface.  

Figure 14 shows the distribution for variants with less than and more than 100 counts in 

the reference population. Similar to the synonymous mutants, those with less than 100 counts had 

a standard deviation of 0.16 kcal/mol and more than 100 counts had a standard deviation of 0.08 

kcal/mol. 

As a final test of the estimation of G values from deep sequencing counts, we measured 

the binding affinities of nine individual variants using yeast clonal titrations (Figure 14). The best-
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fit line of the relationship between G calculated from deep sequencing and clonal titrations has 

a correlation coefficient of 0.82 (Figure 14). Restricting the correlation to the identity line (y=x) 

Figure 14- Experimental estimates of error in interface DDG 

a. Theoretical titration curves for wild-type (black) and variant (red-blue) clonal titrations.  The 
deep sequencing method reconstructs for each variant the mean fluorescence at the labeling 
concentration, represented as a closed circle on the dashed vertical line. Deep sequencing interface 
G values are then reconstructed from these single-point titration curves. b. Histogram for deep 
sequencing-calculated interface G for synonymous mutations to wild-type CtCoh.  Mutations 
with less than 100 counts in the reference population are in black and mutations with more than 
100 counts in the reference population are shown as diagonal stripes. Dashed lines represent best-
fit Gaussian distributions for the different populations. Bin sizes are 0.1 kcal/mol and are centered 
on the axis markings. c. Histogram of calculated interface G for surface residues far from the 
interface. Bin sizes are 0.1 kcal/mol and are centered on the axis markings. The black bars are for 
all selected surface mutations with less than 100 counts in the unselected population and the striped 
bars are for greater than 100 counts in the unselected population. d. Scatter plot of interface G 
calculated by deep sequencing compared against clonal titrations. Literature values are shown as 
open circles, while yeast clonal titrations done in this work are represented with filled in circles 
with error bars shown as 1 s.d. of 3 independent measurements. Errors for literature values are not 
reported in the original references. The best fit line shown for yeast clonal titrations shows a R2= 
0.82. For all measurements, R2= 0.52. 
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still maintains a correlation coefficient of 0.77. Next, we compared our relative dissociation 

constants with literature values that span a wide range of G (Figure 14). As a final test of the 

estimation of G values from deep sequencing counts, we measured the binding affinities of 

nine individual variants using yeast clonal titrations.  The best-fit line of the relationship between 

G calculated from deep sequencing and clonal titrations has a correlation coefficient of 0.82 

(Figure 3.14). Restricting the correlation to the identity line (y=x) still maintains a correlation 

coefficient of 0.77. Next, we compared our relative dissociation constants with literature In this 

case, the correlation coefficient for the identity line was 0.52 106, 107, 113. We next asked which 

residues were energetically important using sequence entropy as a measure of conservation to the 

Ct Dockerin-Cohesin interface (Figure 15)88. Of all CtCoh residues within 8Å of CtDock, Asn37, 

Asp 39, Val41, Ala72, Tyr74, Val81, Leu83, Glu86, Gly122, Gly123, and Ala125 were found to 

 
Figure 15- Interface G reconstruction for Ct Cohesin – Dockerin interaction. 
a. Interface ΔΔG map for Ct Cohesin residues within 8Å of the interface. ΔΔG values for 
individual point mutations are shown for deleterious (blue), neutral (white) and beneficial (red) 
substitutions.  b.-d. Interface views of selected residues for the interaction between cohesin (dark 
grey cartoon) and dockerin (light grey cartoon and surface).  
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have the lowest sequence entropy, and therefore the highest conservation. These residues have 

been mapped on to the structure of Ct cohesin (Figure 15). Leu83 is located within a hydrophobic 

patch at the cohesin-dockerin interface, Asn37 and Asp39 are part of a hydrogen bond network 

previously found to be essential to the interaction, and Glu86 is part of a conserved salt bridge 107. 

Among these conserved positions, only 8/228 mutations have an interface G less than 0.1 

kcal/mol: Asn37Ala, Asn37Gly, Asn37Cys, Asn37Ser, Val81Ile, Gly123Ala, Ala125Gly, and 

Ala125Cys (Figure 15).  All of these are conservative, small-to-small mutations consistent with 

the positioning of these residues in the center of the interface.   

Consideration of all residues on Ct cohesin within 8Å of the bound dockerin domain 

revealed five residues of particular interest: Asp70, Arg77, Ile79, Asp87 and Leu129.  For Asp70 

all mutations except for those to positively charged Arg and Lys show interface G of less than 

0.2 kcal/mol (Figure 15). Indeed, substitutions to hydrophobic and aromatic amino acids are 

tolerated. We hypothesize that Arg and Lys are not tolerated at position 70 because the proximity 

of Lys18 and Arg19 on CtDock creates an unfavorable electrostatic interaction. We speculate that 

larger residue substitutions can be tolerated because the Asp70 C-C vector points away from 

the interface.  Arg77 makes hydrogen bonding contacts with Arg23 on CtDock, yet tolerates most 

substitutions except for Asn (Figure 15). Ile79 appears well packed in the crystal structure, yet 

readily tolerates substitutions to hydrophobic and/or aromatic amino acids. Another interface 

residue that accepts aromatic mutations with improved binding (interface G less than -0.15 

kcal/mol) is Leu129, which is at the periphery of the interface.  Finally, residue Asp87 accepts all 

amino acid substitutions with essentially no energetic penalty.   
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Reconstruction of interface G was less straightforward for the CcCoh-CcDock interface. 
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The protein was split into two libraries with one comprising residues 1-76 and the other containing  

mutations in residues 77-154. The library comprising residues 1-76 yielded results qualitatively 

Table 6- Interface ΔΔG comparison between clonal and deep sequencing data for 
CtCoh-CtDock interface. 

Mutation 
 

Clonal 
ΔΔG 

[kcal/mol] 

Deep Sequencing 
ΔΔG 

[kcal/mol] 

Experiment 
 

E120R 0.4 ± 0.3 >0.5 
 

I79F -0.2 ± 0.1 -0.19 

D70F -0.1 ± 0.1 -0.45 

R77E -0.1 ± 0.1 0.11 

R77N 0.2 ± 0.1 > 0.5 

D70H -0.2 ± 0.1 0.01 

N37A -0.1 ± 0.1 -0.14 

D39S 0.5 0.44 Miras et. al.40 

Y74A -0.1 > 0.5 

E86S 0.4 > 0.5 

A94L 0.5 0.07 

G97S 0.1 -0.05 

L83S 3.4 0.40 Slutzki et al.34 

 
N37A 0 -0.14 

N37D 2.5 0.25 

N37L >4 > 0.5 

D39A >4 0.49 

D39N >4 > 0.5 

E131A 1.8 0.10 

V41Y 0.7 > 0.5 

D70S -0.1 -0.11 

V81S 1.9 > 0.5 

A85L -0.1 -0.08 
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similar to the CtCoh results (Figure 13, Figure 16). However, the library comprising residues 77-

154 resulted in very strong gain of function for nearly all mutations at positions Asn81, Gly82, 

and Thr83 that are peripheral to the interface (Figure 16). These mutations overtook the selected 

population. We speculate that Asn81-Thr83 contains a yeast N-linked glycosylation site (NXT/S) 

not present in the native interaction that sterically occludes access of CcDock to CcCoh (Figure 

16). Removal of glycosylation by mutation results in unimpeded access to the CcCoh interface 

surface, resulting in large increases in binding affinity. Because of this complication we restricted 

our analysis to the first 76 residues of CcCoh only, although we note that the unmodified 

glycosylation site does exist and may potentially affect the resulting data for the first 76 residues 

as well.  In the first 76 residues, we found three highly conserved residues as determined by 

sequence entropy: Thr45, Asn47, and Tyr49 (Figure 16). These residues are found on an internal 

β-strand at the cohesin-dockerin interface.  Only 2/57 mutations at these positions had an interface 

G of less than 0.1 kcal/mol (Thr45Lue and Thr45Val). Two residues of additional interest are 

Asn74 and Ser76.  While not located in direct contact with the interface, any mutation to Asn74 

results in a destabilized interaction (G >0.2 kcal/mol).  This is because the side chain of Asn74 

has many contacts with backbone elements of nearby residues.  The other residue, Ser76, can 

accept neutral substitutions to Phe, Tyr, Ala, Gly, Asn, and Asp.  Ser76Asp shows an increase of 

binding affinity possibly because of the formation of a salt bridge interaction with the dockerin 

domain.   

We next evaluated the predictive ability of the computational software programs Rosetta 

and FoldX to discriminate among the affinity enhancing mutations. There was sufficient data for 

686 mutations on CtCoh & CcCoh that met the interface classification of Levy 109. According to 

classification of an interface by Levy, a protein interface can be classified into core, rim, or support 
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positions. Core positions are exposed in the monomer state but buried in the complexed state, 

support positions are those buried in both states, while rim positions maintain greater than 25% 

relative accessible surface area in both states. Of all interface positions, 242 (35.3%) were 

destabilizing by more than 0.4 kcal/mol. We first assessed whether these methods could 

discriminate the mutations experimentally determined to increase interface G by greater than 

0.4 kcal/mol. This was determined using receiver operator curves and evaluating the area under 

the curve (AUC). Mutations with a G greater than 0.4 kcal/mol were treated as positives and all 

others were negative. FoldX gave an AUC for the entire dataset of 0.82 (Figure 17), whereas the 

 

Figure 16- Interface G reconstruction for Cc Cohesin – Dockerin interaction.  

a. Interface ΔΔG map for selected interface residues of Cc Cohesin. ΔΔG values for individual 
point mutations are shown for deleterious (blue), neutral (white) and beneficial (red) substitutions. 
The dashed line demarcates the two separate libraries used for reconstruction of binding affinities. 
The right panel shows strong gains in binding affinity upon mutation of a predicted N-linked 
glycosylation site.  b. Interface views of selected residues for the interaction between cohesin (dark 
grey cartoon) and dockerin (light grey cartoon and surface). The predicted site for N-linked 
glycosylation at Asn81 is shown in orange.   
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Rosetta modeling suite afforded an AUC of 0.77 (). The AUC for the complete CtCoh dataset was 

0.80 for both FoldX and Rosetta. We next asked whether there was a difference in computational 

prediction of the interfacial positions according to these Levy interface classifications of core, rim, 

and support positions. Mutations at core (AUC 0.85, 0.75) and rim (AUC 0.80, 0.81) were 

discriminated with a higher accuracy than support (AUC 0.76, 0.61) positions for FoldX and 

Rosetta, respectively.  

Mutations at CtCoh residues Asn37, Asp70, Glu120, Asn127, and Leu129 and CcCoh 

position Cys46 gave particular disagreements between computational predictions and 

experimental results. While Rosetta predicts that directional hydrogen bonding on CtAsn37 

contributes considerably to the binding affinity (computational prediction for Asn37Ala shows a 

ΔΔG >0.5 kcal/mol), CtAsn37 can be replaced smaller residues Ala/Gly/Cys/Ser with no loss in 

binding affinity (Figure 15) as previously discovered 107. CtAsp70 is a rim position that tolerates 

most substitutions except for positively charged amino acids, whereas FoldX predicts strong 

conservation at that position. Rim position CtAsn127 is predicted to tolerate most mutations by 

FoldX yet pays a small energetic penalty for all substitutions except for mutation to Asp/Glu 

presumably because of electrostatic interactions with CtDock Arg53. Substitution of CtLeu129 

with aromatics Phe/Trp/Tyr results in an increase in binding affinity, and Rosetta predicts a 

favorable interaction for Leu129Phe only. 

Only 5/686 point mutations (0.7%) showed increased affinity greater than 0.4 kcal/mol: 

CtLys67Trp, CtAsp70Phe/Trp, CcPro66Trp, and CcLys69Cys.  Substitutions on Ct remove 

charged residues on the rim of the interface with aromatics that presumably increase van der Waals 

packing. FoldX was not able to identify any of these mutations. In fact, FoldX predicted that 

CtAsp70Phe/Trp would be appreciably destabilizing (ΔΔG >0.5). In contrast, while Rosetta 
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predicted all 3 beneficial mutations on CtCoh, the program also predicted gain of binding affinity 

for 76 other mutations at that interface.  

3.4 Discussion  

The comprehensive sequence determinants to binding affinity for type I dockerin-cohesin 

complexes from Clostridium thermocellum and Clostridium cellulolyticum were evaluated using 

yeast surface display coupled to deep mutational scanning. Interface G could be estimated from 

sequencing counts. The computational software packages FoldX and Rosetta could predict 

mutations that disrupt binding by more than 0.4 kcal/mol with reasonable accuracy. Destabilizing 

mutations to core positions were predicted with higher accuracy than rim or support positions.  

As with other systematic mappings of the sequence-function space of proteins, one must 

keep in mind certain limitations when interpreting results 114.  First, in the present work the 

effective interface G estimated from the deep sequencing data was limited to a narrow dynamic 

range of approximately 1.3 kcal/mol (approximately a 10-fold range of dissociation constants). 

Other reports have shown that one can sort yeast populations under different or multiple labeling 

Figure 17- Computational predictions of experimental interface G.  

Receiver operator curves for computational prediction of all interface mutants (cyan), Ct-only 
mutants (red), core positions (color), rim positions (color), and support positions (color) (a.) FoldX 
and (b.) Rosetta. The area under the curve (AUC) for each subset is in the inset.     
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concentrations or use multiple sorting gates in order to discriminate moderately destabilizing 

mutations from true hot spot residues 23, 115, 116, although such experiments significantly increase 

time and effort. Nevertheless, within this narrow range the deep sequencing estimated interface 

G had a correlation coefficient of 0.77 with yeast clonal titration data and 0.52 for all mutations 

found in literature. From our analysis of the fitness metrics of synonymous mutation we observe 

an intrinsic error around 0.1 kcal/mol, with lower intrinsic error found with positions that have 

higher depth of coverage. In light of these issues, care must be taken to estimate an energetic 

contribution especially for mutations that are predicted to enhance binding affinity. Enrichment of 

a variant can result from an increase in fluorescence resulting from higher surface expression, not 

from its effect on binding affinity. Scanning the entire protein sequence, rather than just the 

interface residues, allows one to quantify the error associated with this assumption for the given 

protein of interest.  

Second, as shown for the mutational library comprising residues 77-154 on CcCoh, binding 

sites on the yeast-displayed protein can be partially blocked by N-linked glycosylation. Removing 

that steric hindrance by mutation can perturb the energetic analysis for the other mutants in the 

library. Prescreening and removing N-linked glycosylation sites prior to sorting can prevent this 

issue.  

Finally, one critical assumption is that the energetics of binding determined from yeast 

surface display titrations is representative of binding affinities from the proteins in solution. While 

there has been some validation for this assumption, yeast surface display measurements yield 

worse correlations using computational prediction software compared with in vitro techniques like 

surface plasmon resonance 86.  
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In summary, we have used deep mutational scanning to determine the binding affinities for 

nearly every single point mutant in the CtCoh and CcCoh domains. The methodology used in this 

current contribution can be transferred to other protein systems. We anticipate a series of 

benchmark sets for many different protein-protein interactions in the near future.  
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CHAPTER 4 

4. Rapid fine conformational epitope mapping using comprehensive mutagenesis and deep 

sequencing. 

Abstract 

Knowledge of the fine location of neutralizing and non-neutralizing epitopes on human 

pathogens affords a better understanding of the structural basis of antibody efficacy, which will 

expedite rational design of vaccines, prophylactics, and therapeutics. However, full utilization of 

the wealth of information from single cell techniques and antibody repertoire sequencing awaits 

the development of a high-throughput, inexpensive method to map the conformational epitopes 

for antibody-antigen interactions.  Here we show such an approach that combines comprehensive 

mutagenesis, cell surface display, and DNA deep sequencing. We develop analytical equations to 

identify epitope positions, and show the method effectiveness by mapping the fine epitope for 

different antibodies targeting TNF, Pertussis Toxin, and the cancer target TROP2. In all three 

cases, the experimentally determined conformational epitope was consistent with previous 

experimental datasets, confirming the reliability of the experimental pipeline. Once the 

comprehensive library is generated, fine conformational epitope maps can be prepared at a rate of 

four per day. 

4.1 Introduction  

Pinpointing the fine conformational epitope targeted by a given antibody affords a better 

understanding of the structural basis of its mechanism of protection, which provides an intellectual 

property basis and can lead to improved prophylactic or therapeutic interventions against human 

diseases4, 24-31. Recent technical advances allow an unprecedented look at the adaptive immune 

response to an immunogen117-119. For example, single cell isolation methods coupled to deep 

sequencing have revealed the identification of thousands of patient-specific paired antibody heavy 
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and light chain sequences elicited in response to infection or vaccination, and such information 

has begun to be used in antibody discovery. While functional or neutralization assays can be used 

to determine the efficacy of individual members in these repertoires, a full utilization of this wealth 

of information awaits the development of a high-throughput method of determining 

conformational epitopes targeted by these antibodies120.  

Existing methods either do not identify conformational epitopes121, 122 or are labor-intensive 

and costly. Co-crystallization provides unambiguous epitope identification but can require 

considerable effort and generation of many antigen variants in order to identify one that is 

compatible with crystallization25. Mass spectrometry-based methods utilizing hydrogen/deuterium 

exchange identify epitopes to a ca. 5 amino acid resolution only under rigorous control experiments 

that limit throughput32, 33. Competing display-based methods use many sorts123, identify only 

partial epitopes40, 124, or are limited by restricting mutations to alanine7. 

Recently, yeast surface display63 coupled to deep mutational scanning13 was used to understand 

the sequence effects of binding for nearly every single point mutant for two computationally 

designed proteins targeting a conserved epitope on Influenza hemagglutinin4. This method was 

used to confirm the paratope for both small proteins, as validated by crystal structures. More 

recently, other approaches using yeast display and deep sequencing for the purposes of 

conformational epitope mapping have been demonstrated 123, 124. However, current 

implementations require several sorting steps that severely hinder throughput. Because additional 

inefficiencies exist at several stages in the deep sequencing and analysis workflow, we asked 

whether we could simplify the yeast display-deep sequencing pipeline to increase the method 

throughput, reduce cost, and improve the ability to resolve complete conformational epitopes for 

full-length proteins.  
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4.2 Materials and Methods 

4.2.1 Strains  

E. coli strains used in this study: XL1-Blue (Agilent, Santa Clara, CA) recA1 endA1 

gyrA96 thi-1 hsdR17 supE44 relA1 lac [F’ proAB lacI1qZM15 Tn10 (Tetr)]; BL21* (Life 

Technologies, Carlsbad, CA)  fhuA2 [lon] ompT gal [dcm] ΔhsdS; BL21(DE3) (New England 

BioLabs, Ipswich, MA) fhuA2 [lon] ompT gal (λ DE3) [dcm] ∆hsdS λ DE3 = λ sBamHIo ∆EcoRI-

B int::(lacI::PlacUV5::T7 gene1) i21 ∆nin5.  Yeast strain used in this study: EBY100 (American 

Type Culture Collection, Manassas, VA) MATa AGA1::GAL1-AGA1::URA3 ura3-52 trp1 leu2-

delta200 his3-delta200 pep4::HIS3 prb11.6R can1 GAL.  

4.2.2 Plasmids 

 The plasmid pETCON_TNF was created by inserting a codon optimized gene encoding 

the Gly57-Leu233 extracellular portion of tumor necrosis factor (TNF) (GenScript, Piscataway, 

NJ) into the pETCON plasmid using flanking NdeI/XhoI restriction sites. The plasmid 

pETCON_PTx-S1-220 was created by amplifying PTxS1-220 from pAK400_PTx-S1-200K125 

and inserting into pETCON at NdeI/XhoI sites. To create pETCOn_TROP2Ex, DNA was isolated 

from HeLA cells with the GenElute Mammalian Genomic DNA Miniprep Kit (Sigma-Aldrich, St. 

Louis, MO). This DNA was used as a template for amplication of the ectodomain of Trop2 

encompassing residues 27-274, which was then inserted into pETCON at Nde/XhoI sites.  

Polypeptide sequences of the variable regions for the heavy and light chains of Infliximab were 

obtained126 and used to generate codon optimized DNA sequences (GenScript Piscataway, NJ). A 

(Gly4Ser)3 linker was placed between the C-terminal residues of the heavy and N-terminal residue 

of the light chains. The plasmid pET29b_inflix_scfv was prepared by inserting the inflix_scFv 

gene into the pET-29b(+) vector (EMD BioSciences, Billerica, MA) using NdeI/XhoI restriction 
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sites. m7e6 heavy and light chains were subcloned into 293-6E expression vector pTT5 were 

custom ordered from Genscript (Piscataway, NJ). Plasmids for the yeast display constructs have 

been deposited in the AddGene plasmid repository (www.addgene.org). 

4.2.3 Preparation of inflix_scFv 

 pET29_inflix_scFv was transformed into chemically competent BL21*(DE3). Cultures 

were grown to an OD600 of 0.8 and where then induced with 1 mM IPTG and incubated with 

shaking at 18° C for ~18 hours. Inflix-scFv was isolated from inclusion bodies and refolded using 

existing protocols127, 128. After the refolding procedure the sample was centrifuged at 17,000 xg to 

remove precipitated protein. The concentration was determined using the Bradford method using 

BSA as a protein standard and was biotinylated at a molar ratio of 1:20 protein:biotin using the EZ 

link NHS-biotin kit following the manufacturers instructions (Life Technologies, Carlsbad, CA).  

4.2.4 Preparation of Trop2 and PTxS1 Fabs  

PTxS1 antibody hu1B7 was prepared according to previous reports129.  Anti-TROP2 

monoclonal antibody m7E6130 was produced in 293-6E cells and purified by protein A column by 

Genscript (Piscataway, NJ). Fabs were produced using the Pierce Fab Preparation Kit (Life 

Technologies, Carlsbad, CA). Concentrations were determined using A280 with the recommended 

estimated extinction coefficient (1 mg/mL) of 1.4 and was biotinylated at a molar ratio of 1:20 

protein:biotin using the EZ link NHS-biotin kit following the manufacturers instructions (Life 

Technologies, Carlsbad, CA).  

4.2.5 Dissociation Constant Determination 

 Equilibrium dissociation constants (KD) were determined using clonal population yeast 

display titrations according to Chao et al. 63.  Fab concentrations between 50 pM and 1 μM were 

tested.  
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4.2.6 Yeast Display Sorts   

1x107 cells were grown in 2 mL SDCAA for 6 hours at 30°C and re-inoculated at OD600 =1.0 

in 2 mL SGCAA at 20°C for 18 hours.  3x107 cells were labeled with biotinylated Fab or scFv for 

30 minutes at room temperature in DPBSF (Dulbecco’s Phosphate-Buffered Saline with 1 g/L 

BSA) at a concentration of half of the experimentally determined dissociation constant on the yeast 

surface. Cells were then secondarily labeled with anti-cmyc-FITC (Miltenyi Biotec, San Diego, 

CA) and streptavidin-phycoerythrin (SAPE) (Thermo Fisher, Waltham, MA).  Sorting was done 

on an Influx Cell Sorter (Becton Dickinson, Franklin Lakes, NJ). FSC/SSC (gate 1), FSC/FITC 

(gate 2), and PE/FITC (gate 3) gates were set. Three populations were collected: an unselected 

population satisfying gate 1, a displayed population satisfying gates 1 and 2, and a bound 

population satisfying all three gates.   The number of cells collected for each population was at 

least 100-fold higher than the theoretical library complexity. Sorting statistics for each population 

collected are listed in Table 7. Following the sort, recovered populations were grown for 48 hours 

in 10 mL SDCAA63, and 1x107 cells from this culture  cells were stored in 1mL of yeast storage 

buffer at -80°C. 

4.2.7 Deep Sequencing Preparation  

Yeast plasmid DNA was prepared for deep sequencing following the protocol in Kowalsky et al. 

131 5 μl of the PCR products were run on a 2% agarose gel stained with SYBR-GOLD (Thermo 
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Fisher, Waltham, MA) to ensure one band was obtained at the correct size (~250-350 bp). 

Agencourt AMPure XP PCR Purification (Beckman Coulter, Beverly, MA) was used per the 

manufacturer’s protocol to purify the PCR product.  Library DNA was sequenced on an Illumina 

MiSeq using the either the 300x2 or 250x2 Illumina MiSeq kits (Illumina, San Diego, CA) at the 

Michigan State University Sequencing Core.  

Table 7- Sorting Statistics 

 Tile 
Length 
(AA) 

Minimum 
Transformants  

for 99.9% 
Coverage 

Sort 
Labeling 

Conditions 
(nM) 

Events 
Collected 

for 
Binding 

Population 

Percent 
Sorted 

(Display) 

Percent 
Sorted 

(Binding) 

TNF-
Infliximab 
Tile 1  

60 26,880 32 200,641 46.0% 6.9% 

TNF-
Infliximab 
Tile 2  

60 26,880 32 200,437 43.0% 5.1% 

TNF-
Infliximab 
Tile 3  

57 25,536 32 206,251 31.9% 6.5% 

PTxS1-
hu1B7 
Tile 1  

72 32,256 3 400,000 43.0% 7.7 % 

PTxS1-
hu1B7 
Tile 2 

74 33,152 3 400,000 45.0% 6.1% 

cdPTxS1-
hu1B7 
Tile 3  

73 32,704 3 400,000 46.2% 6.4% 

Trop2-
m7E6  
Tile 1 

82 36,736 22 400,000 19.8% 6.6% 

Trop2-
m7E6  
Tile 2 

83 37,184 22 400,000 24.7% 6.7% 

Trop2-
m7E6 
Tile 3 

83 37,184 22 400,000 16.9% 6.6% 
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4.2.8 Data Analysis 

 A modified version of Enrich-0.2 as described in Kowalsky et al. 131 was used to compute 

enrichment ratios of individual mutants from the raw Illumina sequencing files. To normalize the 

data across the multiple tiles we define the fitness metric for variant i  as the binary logarithm 

of the fluorescence of variant i to the fluorescence of the wild-type sequence 131:  

            (1)  

This results in the following equation: 

                               (2)  

Where ϕ is the percentage of cells collected, εi is the enrichment ratio for variant I, σ’ is the log 

normal standard deviation of a clonal population, and the subscript wt denotes the wild-type. 

Custom python scripts used to calculate the fitness metric and statistics are at Github [user: 

JKlesmith] (www.github.com). The full deep sequencing datasets are provided at figshare 

(www.figshare.com). Sorting parameters needed for each tile normalization are listed in Table 7. 

Shannon (sequence) entropy values at a given position j in the protein sequence (Ej) were 

calculated by the following equation: 
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Where εij is the enrichment ratio of substitution i at position j, and Xj is the number of mutants 

with adequate sequencing counts in the unselected population at position j. The derivation for 

equation (3) is shown in the THEORY section. We excluded residues with an Xj<12 from analysis. 

Enrichment ratios for stop codons were not included in the Shannon entropy analysis.  
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4.2.9 Soluble expression of PTxS1  

BL21(DE3) cells containing pAK400_ PTx-S1-220K125 with an added C-terminal lysine 

residue were grown in TB at 25oC to an OD600 of 1.5, then induced with 1mM IPTG for 5 hours. 

Cell pellets were collected and the outer membrane lysed by osmotic shock. Lysate was purified 

by immobilized metal affinity chromatography, followed by size exclusion chromatography in 

PBS (S75, AKTA FPLC) as previously reported125.Yields were between 0.2-0.6 mg/L. 3 μg of 

PTx (26.1 KDa) or PTx-S1-220K (25.9 KDa) were run on a 12% poly-acrylamide gel at 130V and 

stained with GelCode blue. 

4.2.10 PTxS1 ELISA Binding Assay  

A high-binding 96-well plate (Costar, Corning, NY) was coated with either 4nM PTx or 

4nM PTx-S1-220k in PBS and incubated overnight at 4C. The plate was blocked with a solution 

of 5% nonfat dry milk in PBS with 0.05% Tween (PBSTM) for 1 hour at room temperature. hu1B7 

was serially diluted across the plate in duplicate with a starting concentration of 5 μg/mL in 

PBSTM and incubated for 1 hour at room temp. Secondary antibody was GαhFc-HRP prepared at 

1:2500 in PBSTM and incubated for 1 hour at room temp. Plate was developed with TMB, 

quenched with HCl, and absorbance read on a plate reader at 450 nm. 

4.2.11 PTxS1 Western Blot  

0.3 μg of PTx or PTx-S1-220K were run on a 12% poly-acrylamide gel at 130V and 

transferred to a PVDF membrane. The membrane was blocked for 1 hour at room temperature 

with PBSTM, then incubated for 1 hour at room temperature with 1 μg/mL of hu1B7A in PBSTM. 

The secondary antibody was GαhFc-HRP prepared at 1:10,000 in PBSTM and incubated for 1 

hour at room temp, followed by washing and development using SuperSignal West Pico 

Chemiluminescent Substrate (Pierce, Gran Island, NY) and a 30s exposure time to x-ray film. 
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4.2.12 Cell Culture and Transfection  

MCF10A human breast epithelial cell lines were obtained from Dr. Kathleen Gallo at 

Michigan State University. MCF10A cells were cultured in Dulbecco’s modified Eagles’s media 

(DMEM)/F12(1:1) (Life technologies, Grand Island, NY, USA) with 5% horse serum, 10 ug/ml 

insulin, 20 ng/ml EGF, 100 ng/mlcholeratoxin, 0.5 ug/ml hydrocortisone and 

penicillin/streptomycin (Invitrogen, Carlsbad, CA, USA). MDA-MB-231 human breast cancer cell 

lines were obtained from ATCC and cultured in DMEM with 10% fetal bovine serum (FBS), 2mM 

glutamine and penicillin/streptomycin (Invitrogen), as described132, 133. Cells were maintained at 

37°C and 5% CO2 environment. 

SiGENOMESMARTpool ON-TARGETplusTROP2siRNA and scramblesiRNA were 

purchased from Thermo Scientific (Asheville, NC, USA) and Ambion (Grand Island, NY, USA). 

The SMARTpoolsiRNAs and the transfection reagent Lipofectamine were diluted with Opti-MEM 

(Invitrogen, Grand Island, NY, USA), respectively as described134, 135. The diluted 

SMARTpoolsiRNAs were mixed with RNAiMAX to form siRNA-RNAiMAX complexes. The 

cell culture medium was replaced with antibiotic-free medium containing the siRNA-RNAiMAX 

complexes at a final concentration of 10nM siRNA. Media were changed after 12hr and the cells 

were incubated in fresh media.  

4.2.13 TROP2 Western Blot Analysis  

The protein concentrations of the cell extracts were measured by the Bradford method.  

Protein samples of 15-30 μg were subjected to Western blot analysis as previously described135, 136 

using TROP2 antibody (Abcam, Cambridge, MA), beta-actin (Sigma, St. Louis, MO, USA), anti-

mouse and anti-rabbit HRP-conjugated secondary antibodies (Thermo Scientific, Asheville, NC) 
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and donkey anti-goat IgG-HRP (Santa Cruz Biotech, Dallas, TX). The blots were visualized by 

SuperSignal West Femto maximum sensitivity substrate (Thermo Scientific, Asheville, NC). 

4.2.14 Total mRNA Extraction and Quantitative real time PCR   

Total mRNA from cells was extracted using the RNeasy Plus kit (QiaGen, Valencia, CA, 

USA) according to the manufacturer’s instructions. The total mRNA was reverse transcribed into 

cDNA using the cDNA synthesis kit (BioRad, Hercules, CA, USA) as previously described137, 138. 

The following primer sets (Operon, Huntsville, AL, USA) were used for PCR:human actin (5'- 

tggacttcgagcaagagatg-3' and 5'- aggaaggaaggctggaagag-3') and human TROP2 (5'-

gagattcccccgaagttctc-3' and 5'-aactcccccagttccttgat-3'). Quantitative real-time PCR was performed 

using iQSYBR Green Supermix and Real-Time PCR Detection System (BioRad, Hercules, CA). 

The cycle threshold values were determined by the MyIQ software (BioRad, Hercules, CA). 

4.2.15 Transwell Migration and Invasion Assays 

 Chemotactic migration or invasion was quantified using a Boyden chamber transwell 

assay (8 µm pore size; Corning Costar, Cambridge, MA, USA), with either uncoated or matrigel-

coated filters, respectively. Cells were deprived of serum overnight, trypsinized and introduced 

into the upper chamber. MitomycinC (Sigma Aldrich, St. Louis, MO) was added to the cultured 

media. The chemoattractant in the lower chamber was medium supplemented with 5% FBS. After 

8 hours incubation at 37°C, the cells were fixed and stained. Migrated cells in five randomly chosen 

fields were counted. The experiments were performed in triplicate wells and each experiment was 

performed three times as indicated. 

4.2.16 Wounding-Healing Assay  

MDA-MB-231 cells were grown to confluence. The growth medium was replaced with 

fresh medium containing 5% FBS and supplemented with mitomycinC (1 mg/ml) (Sigma Aldrich, 
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St. Louis, MO) and the monolayer of cells was subsequently scratched using a 200 µl pipette tip. 

Wound width was monitored over time by microscopy.  

4.2.17 Cytotoxicity and proliferation assays  

 Cytotoxicity and proliferation were assessed using LDH and AlamarBlue microplate 

assays, respectively. Cells were seeded in 96-well plates and treated with either PBS (control) or 

various concentrations of m7EG IgG or Fab for 48 hours. Cytotoxicity was detected using the 

LDH cytotoxicity detection kit (Roche, San Francisco, CA) following the manufacturer’s protocol. 

Proliferation was determined by AlamarBlue assay (Pierce, Waltham, MA) following the 

manufacturer’s protocol.  

4.2.18 Confocal microscopy  

MDA-MB-231 cells were seeded in glass-bottom 24-well plates (In Vitro Scientific, 

Sunnyvale, CA) and treated with either PBS (control), m7E6 IgG or Fab. After treatment, cells 

were washed 2x with ice-cold PBS, fixed with 3.7% formaldehyde for 15 min. at 37°C and washed 

3x with PBS. Next, the samples were incubated in blocking buffer (1% BSA, 0.5% TritonX-100 

in PBS) for 1 hour at 37°C. The cells were incubated with TROP2 intracellular domain-specific 

primary antibodies (EMD Millipore #ABC425, 1:500 dilution) in incubation buffer (0.5% BSA, 

0.5% TritonX-100) overnight at 4°C. The samples were then washed 3x with PBS and incubated 

in respective secondary antibodies (AlexaFluor 488) diluted in PBS for 1 hour at 37°C in the dark. 

Cells were washed 2x with PBS and incubated in nuclear counter stain Hoechst 3342 (Invitrogen) 

for 10 min. at room temperature. After the final incubation, cells were washed twice with PBS and 

covered with anti-fade solution for imaging. Images were recorded with an Olympus FluoView 

1000 Inverted IX81 microscope, using a 10X or 60X oil objective using identical exposure and 

PMT settings for each primary antibody-fluorophore pair across the different treatment conditions.   
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4.2.19 Statistical Analysis  

All experiments were performed at least three times. Representative results are shown as 

mean ± standard deviation. Statistical analysis were performed using an unpaired, two tail student 

t-test. * indicates p<0.05, ** indicates p<0.01 and *** indicates p<0.001. 

 

4.3 Theory 

4.3.1 Derivation of sequence entropy metric and calculation of estimated errors  

At any given position j in a protein sequence, Shannon entropy for that position (Ej) is 

defined as:  

௝ܧ =  − ∑ ௜ܲ௝݈݊ ௜ܲ௝
௒
௜ୀ஺       (4) 

Here, Pij is the probability of finding amino acid i at position j after sorting given an equal 

representation of all 20 amino acids in the starting population. To determine Pij, we first define pij 

for a single substitution at position j using the frequency of mutant i in the initial (fo,ij) and final 

(ff,ij) populations:  

௜௝݌ =
௙೑,೔ೕ

௙೚,೔ೕ
       (5) 

This can be written in terms of an enrichment ratio of a given substitution i at position j (εij), such 

that:  

௜௝݌ = 2ఌ೔ೕ       (6) 

pij gives the probability of a variant with a mutation i at position j passing through the sort. Because 

the summation of these probabilities will not necessarily sum to unity, we can normalize the 

probabilities over a single residue such that:  

            ௜ܲ௝ =
ଶഄ೔ೕ

∑ ଶഄೖೕೊ
ೖసಲ

                (7) 
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Combining with the definition of Shannon Entropy in (1):  

௝ܧ   =  − ∑ ଶഄ೔ೕ

∑ ଶഄೖೕೊ
ೖసಲ

݈݊
ଶഄ೔ೕ

∑ ଶഄೖೕೊ
ೖసಲ

௒
௜ୀ஺            (8) 

Because some positions do not have adequate sequencing counts for all 20 amino acids, the 

sequence entropy metric must be normalized by the maximum possible Shannon entropy: 

௝ܧ =  −
୪୬ (ଶ଴)

୪୬ (௑ೕ)
∑ ଶഄ೔ೕ

∑ ଶഄೖೕೊ
ೖసಲ

݈݊
ଶഄ೔ೕ

∑ ଶഄೖೕೊ
ೖసಲ

௒
௜ୀ஺     (9) 

Where Xj is the number of mutants with adequate sequencing counts in the unselected population 

at position j. Equation (6) is the final form of the sequence entropy metric used in the manuscript. 

In practice, we excluded residues with an Xj<12. This removed 13/647 (2.0%) positions tested in 

the present work.  

To estimate the expected error in Ej, we can define the variance in Ej as: 

ாೕߪ
ଶ = ∑  (݈݊ ௜ܲ௝ + 1)ଶ௒

௜ୀ஺ ௉೔ೕߪ
ଶ               (10) 

Similarly, the variance on Pij can be defined as: 

௉೔ೕߪ
ଶ = ൬

ଵ

∑ ଶഄ೔ೕೊ
೔సಲ

൰
ଶ

൤[ߪଶഄ೔ೕ
ଶ + ൬

ଶഄ೔ೕ

∑ ଶഄ೔ೕೊ
೔సಲ

൰
ଶഄ೔ೕ

∑ ଶഄ೔ೕೊ
೔సಲ

}ଶ(ቀߪ∑ ଶഄ೔ೕೊ
೔సಲ

ቁ ∑ߪ ଶഄ೔ೕೊ
೔సಲ

)ଶ൨           (11) 

Because the minimal error associated with counting sequences approximates Poisson noise4, 131, 

we can write the variance for the two unknowns as: 

ଶഄ೔ೕߪ
ଶ = ଶ൫logଶ(2݃݋݈) ݁൯

ଶ
(

ଵ

௫೑,೔ೕ
+

ଵ

௫೚,೔ೕ
)(2ఌ೔ೕ)ଶ  (12) 

Here, xf,ij and xo,ij are the raw sequencing counts of mutation i at position j in the final and initial 

population, respectively. We can write a similar derivation for the variance of the denominator in 

the probability term: 

∑ߪ) ଶഄ೔ೕೈ
೔సಲ

)ଶ = ଶ(logଶ(2݃݋݈) ݁)ଶ ∑ (2ఌ೔ೕ)ଶ௒
௜ୀ஺ (

ଵ

௫೑,೔ೕ
+

ଵ

௫೚,೔ೕ
)   (13) 
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Accurate calculation of the variance on the sequence entropy for a given position requires the raw 

sequencing counts for each position in the unselected and selected populations. Using these 

numbers, equations (12) and (13) can be solved, which can then be plugged into (10) and (11) to 

solve for the unknown. The variance on sequence entropy should be maximized when the raw 

sequencing counts are just above the inclusion threshold in the unselected populations. Even in 

this case, the standard deviation of sequence entropy metric is 0.02. Accordingly, we are justified 

in not including sequence entropy errors in the determination of the conformational epitope.  

4.3.2 Calculation of relative dissociation constants from sequencing counts 

For a clonal population of yeast cells displaying variant i and labeled with antibody at a labeling 

concentration of [Lo], we can write the mean fluorescence ( Fi ) as: 

పഥܨ =
(ி೘ೌೣିி೘೔೙)

಼೏
[ಽబሿశభ

+  ௠௜௡    (14)ܨ

Here Fmax and Fmin are, respectively, the maximum and minimum average fluorescence for clone i 

in the fluorescence channel used for antibody binding. Using the labeling conditions [Lo] = ½ Kd,wt, 

equation (14) becomes: 

పഥܨ  =
(ி೘ೌೣିி೘೔೙)

ଶ
಼೏

಼೏,ೢ೟
ାଵ

+ ௠௜௡ܨ     (15)  

Similarly, the mean fluorescence for the wild-type variant can be expressed as:  

௪௧തതതതതܨ =
(ி೘ೌೣିி೘೔೙)

ଷ
+  ௠௜௡        (16)ܨ

The ratio of mean fluorescence for a variant to wild-type can be written in terms of the fitness 

metric (ζi) derived from the sequencing data131: 

          (17) 
2z i 

Fi

Fwt
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Substitution of equation (16) into equation (17) leads to: 

௪௧തതതതതܨ  =

൫ಷ೘ೌೣషಷ೘೔೙൯

మ
಼೏

಼೏,ೢ೟
శభ

ାி೘೔೙

൫ಷ೘ೌೣషಷ೘೔೙൯
య

ାி೘೔೙

             (18)  

If we assume that Fmax >> Fmin, equation (18) simplifies to: 

 
௄೏

௄೏,ೢ೟
=

3

1+݅ߞ2 −
1

2
                  (19) 

This assumption is valid for the ratio of Fmax/Fmin typically seen in yeast display. The ratio depends 

on multiple factors, including the sensitivity of the fluorescent detection on the cell sorter, the 

quantum yield of the fluorescent dye used, the biotin labeling per antibody, and the surface 

expression of a given antigen. In our hands, we observe a range from 50-2000 for this ratio. Here 

the range of Kd values that we can see is relative to the interval of fitness metrics observed from 

the sequencing counts. Practically speaking, the range on the lower end of fitness metrics should 

be the average fitness metric for the stop codons (-1.1 to -0.75 depending on the percent collected), 

which gives a relative dissociation constant of approximately 2.7. This highlights the sensitivity 

of the method for differentiating small energetic changes in binding activity (ΔΔGbinding ~ 0.1-0.4 

kcal/mol). The drawback, however, is we are unable to discriminate smaller perturbations with 

larger energetic changes typically associated with interface “hot spots” ( ΔΔGbinding ~ 1-2 

kcal/mol).   

Another important consideration is the error associated with digital counting of variants from deep 

sequencing data as this will also introduce error on both the fitness metric and corresponding 

relative dissociation constants for variants with low numbers of counts in the unselected 
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population. We have previously shown that digital counting of variants from deep sequencing error 

using our methods result in minimal error associated with Poisson noise131.  

The variance on the fitness metric can be defined as: 

఍೔ߪ 
ଶ = ఌ೔ߪ

ଶ ቀ
డ఍೔

డఌ೔
ቁ

ଶ
+ ఌೢ೟ߪ

ଶ ቀ
డ఍೔

డఌೢ೟
ቁ

ଶ
    (20) 

Where εi is the enrichment ratio for variant i. The variance for εi ( ) can be estimated from 

Poisson noise as139: 

ఌ೔ߪ 
ଶ = ൫݈2݁݃݋൯

2
൬

1

݂݅ݔ
+

1

݅݋ݔ

൰                  (21) 

Where xoi and xfi are the number of counts in the unselected and selected populations respectively.  

For variants with many counts the error approaches zero, highlighting the importance of 

sequencing depth of coverage in these experiments. The fitness metric is defined as131: 

௜ߞ = ଵ(1ି݂ݎᇱ൫݁ߪ2√(ଶ݁݃݋݈) − ߶2ఌೢ೟ାଵ) − ଵ(1ି݂ݎ݁ − ߶2ఌ೔ାଵ)൯       (22) 

Where ϕ is the percentage of cells collected from the respective gate(s), σ’ is the log normal 

standard deviation of a clonal population, and the subscript wt denotes the wild-type. 

Combining these we can estimate the variance of the fitness metric as: 

఍೔ߪ
ଶ = ᇱଶߪଶ߶ߨ ൝ߪఌ೔

ଶ ቈ(2ఌ೔ା଴.ହ)݁݁1−݂ݎቀ1−߶21+݅ߝቁ
2

቉
ଶ

+ ఌೢ೟ߪ
ଶ ቈ(−2ఌೢ೟ା଴.ହ)݁݁1−݂ݎቀ1−߶21+ݐݓߝቁ

2

቉
ଶ

ൡ 

    (23) 

The error here is largest with variants with low fitness metrics and few counts in the unselected 

population. 

i

2
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The error for the relative dissociation constant is defined as: 

௄೏,೔ߪ
௄೏,ೢ೟

൘

ଶ = ݅ߞߪ
2 ൭

߲௄೏,೔
௄೏,ೢ೟

൘

݅ߞ߲
൱

2

    (24) 

Which can be written as: 

௄೏,೔ߪ 
௄೏,ೢ೟

൘

ଶ = ݅ߞߪ
2 ቀ

−3݈݊(2)

1+݅ߞ2 ቁ
2

    (25) 

4.4  

4.5 Results 

The streamlined method is shown schematically in Figure 18. In the first step, single site saturation 

mutagenesis (SSM) libraries for 250-300 nt contiguous sections of the gene of interest are prepared 

by PFunkel mutagenesis51 and transformed into yeast. These yeast libraries are labeled with a 

biotinylated Fab or scFv and sorted once by FACS. The labeling concentration and FACS gates 

are set such that the capture probability of any given variant is a monotonically increasing function 

of its binding affinity. Three distinct populations are collected: an unselected population of cells 

that pass through a cell size gate (unselected population), a displayed population of cells passing 

through the previous gate as well as a gate confirming display of the C-terminal c-myc epitope tag 

(displayed population), and a binding population of cells satisfying these two previous gates as 

well as a gate on the fluorescence channel associated with antibody binding (bound population). 

The DNA from each population is prepared and sequenced on an Illumina platform. Then, the 

frequencies of each variant in the population are compared and merged into a single fitness 

metric131  that allows direct, quantitative comparisons across different mutational libraries. 

Together, this approach allows for the rapid and comprehensive reconstruction of the sequence-

binding determinants of full-length proteins for a given antibody.  
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As a first test of our approach we chose to evaluate the binding of yeast-displayed Tumor 

Necrosis Factor (TNF; TNF) on the monoclonal antibody Infliximab (marketed by Johnson & 

Johnson as Remicade). A structure for this complex is known140, allowing assessment of the ability 

of the sequence-function method to demarcate discontinuous conformational binding epitopes. 

TNF is a homo-trimeric, multi-disulfide linked, marginally sTable protein and thus represents a 

 

Figure 18- Schematic of streamlined conformational epitope mapping process.  

(1.) SSM libraries are made for 250-300 nt contiguous sections along the gene of interest.  Each 
library contains mutations in a different section of the gene. (2.) Sorting conditions are 
determined such that there is a higher probability of capturing stronger binding cells.  (3.)Yeast 
libraries are labeled with biotinylated Fab and sorted by FACS.  Three different gates are drawn: 
a gate on light scattering parameters SSC/FSC (top; unselected population), a gate set on FSC 
and fluorescence channel corresponding to display of antigen (middle; displayed population) 
and a binding gate that collects the top 5-10% of cells by fluorescence corresponding to channel 
for bound antibody (bottom; bound population). (4.) DNA from each population is extracted 
and prepared for deep sequencing on an Illumina platform. The frequency of each variant in the 
bound and displayed populations is compared against the unselected population and used to 
calculate a fitness metric. For each residue, sequence entropy (bottom) for bound (black) and 
displayed (green) sorts is used to determine the degree of conservation. (5.)Sequence entropy 
is used to identify conserved and non-conserved residues that are used to determine the 
conformational epitope (orange).   
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stringent test of the ability of yeast to surface display complicated proteins. We ordered a codon-

optimized gene encompassing the Gly57-Leu233 extracellular portion of TNF and subcloned it 

into the yeast display plasmid pETCON29. Next, we created three single-site saturation mutational 

(SSM) libraries of TNF and induced yeast surface expression of library variants63. For each library 

we performed a single FACS sort using cells labeled with the biotinylated scFv of Infliximab 

(inflix_scFv) at 32 nM, which is half of the observed dissociation constant for the interaction. 

Approximately 200,000 cells from each library were collected for the unselected, displayed, and 

bound populations. Deep sequencing was used to determine the enrichment ratios of the bound 

and displayed populations compared to the unselected population. These enrichment ratios were 

then transformed to a fitness metric that allows direct comparisons across the different mutational 

libraries, allowing the sequence determinants of binding to be evaluated for nearly every possible 

single point mutant in the protein sequence (Figure 19). Overall, we observed 95.1% coverage of 

all possible single non-synonymous mutants in the extracellular TNF sequence (n=2985/3140) . 

To identify the conformational epitope, we reasoned that residues essential to the protein-protein 

interaction would be conserved in the bound population. Conversely, residues that do not 

participate at the protein-protein interface would be mostly non-conserved. To discriminate among 

these positions we introduced a positional Shannon (sequence) entropy metric that is calculated 

using the enrichment ratios of every variant at a given position (see THEORY section). Because 

sequence conservation will depend strongly on the stringency of the sorting conditions, we next 

asked for cutoffs to discriminate between a conserved and non-conserved position. We considered 

a position to be conserved if the sequence entropy in the bound population compared with the 

unselected population was less than or equal to the midpoint of the sequence entropy range. Even 

using this stringent cutoff, 56/177 TNF residues were identified as conserved. Many of these 



 

 94

residues are buried in the core of TNF, and presumably disrupt the fold of the protein. Positions 

located at the epitope can be partially discriminated from those that disrupt protein stability by 

calculating the sequence entropy of the displayed sort and using a cutoff of the midpoint of the 

sequence entropy range. This analysis removed 22 of the 56 residues from consideration as epitope 

positions. The removed residues were almost all buried, with a mean fraction solvent accessible 

surface area of 0.03 (range 0.00-0.22). The 34 remaining residues were a combination of surface 

Figure 19- TNF-Infliximab conformational epitope determination.  

a. A subset (41/177 residues) of the fitness-metric heat map for bound population of the TNF-
inflix_scFv interaction.  Sequence entropy for the display (green) and bound population (black) is 
plotted below with their respective cut-offs (dashed lines). b. Subtractive sequence entropy 
analysis for TNF-Infliximab interaction. Conserved residues (orange) are found mainly within the 
binding footprint of the TNF-Infliximab interaction (cyan).  Non-conserved residues (purple) can 
also be mapped onto structure and fall outside of the footprint (middle).  These non-conserved 
residues can be used to find regions where false positive conserved residues appear. For clarity, 
only one TNF monomer is shown. c. Close-up view of the structural interface between TNF 
(ribbon) and Infliximab (cyan surface). TNF residues are colored according to sequence 
conservation as in panel b.   
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positions (using a fraction accessible surface area cutoff of 0.10, n=18) and buried position (Figure 

19).  

The conserved surface positions clustered in three regions on TNF (all subsequent residues 

use PDB numbering): the AB loop (Asn19, Pro20, Gly24), the EF loop (Gln102, Glu104, Thr105, 

Glu107, Ala111), and the GH loop (Asn137-Tyr141). There are also a handful of noncontiguous, 

partially surface-exposed positions scattered throughout (Figure 19). To further discriminate 

epitope from non-epitope positions, we reasoned that the epitope would be depleted in non-

conserved positions. Identifying non-conserved positions as the upper quintile of the sequence 

entropy range removed 48/177 positions from consideration. Of these, only Glu110 was within 4Å 

of Infliximab in the bound complex. However, the C-C vector of Glu110 is pointed away from 

the interface and its side chain does not make significant interactions to Infliximab (Figure 19) 

suggesting that its mutation to other amino acids would not disrupt the affinity of the TNF-

Infliximab complex.  

Considering both the conserved and non-conserved positions highlights the EF loop and GH 

loop as essential to the interaction. The single most conserved section documented by sequence 

entropy analysis is on the EF loop between Asn137-Tyr141, and these residues map neatly to the 

center of the experimentally determined binding region (Figure 19). Additionally, conservation of 

several residues on the EF loop is consistent with the Infliximab-TNF structure, including Glu107 

that makes a salt bridge interaction across the interface. Furthermore, the importance of these two 

loops to the energetics of the interaction have been confirmed by mutagenesis140.  

Examination of non-conserved residues located at the interface identifies limitations in using 

a single metric for epitope determination. For example, Pro70, Ser71, and His73 on the CD loop 

and Thr77 in strand D are interface residues that are potentially energetically important but are 
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above the sequence entropy cutoff (Figure 19). For the CD loop residues the positions are 

conserved but the sequence entropy is just slightly above the cutoff. Proline at position 70 and 

serine 71 are the most favored amino acid, whereas a substitution of His73Lys is slightly favored. 

Thr77 is removed from consideration of the epitope as it is relatively conserved in the displayed 

population. Additional epitope residues that were not identified include the above-mentioned 

Glu110 and Gln67. However, neither is expected to be energetically significant as determined by 

alanine scanning mutagenesis and its position in the bound complex. Indeed, mutation of Gln67 to 

aromatic residue increases binding affinity for the Infliximab interaction (Figure 19). Based on 

this comprehensive mutagenesis dataset enabled by deep sequencing, we conclude that this 

improved yeast display-deep sequencing pipeline is effective in identifying fine conformational 

epitopes for antibody-antigen interactions.   

We next asked whether the automated identification of the epitope using sequence entropy 

can be used to map binding footprints of other antibody-antigen interactions. To accomplish this, 

we evaluated the binding of yeast-displayed Pertussis Toxin subunit 1 (PTxS1) against a single 

humanized neutralizing antibody. Whooping Cough, a respiratory disease caused by the bacteria 

Bordetella pertussis, remains a major cause of infant mortality in both the developing and 

industrialized countries despite widespread vaccination141. Recently, Nguyen et al. demonstrated 

the ability of a binary antibody cocktail to halt whooping cough disease progression in a baboon 

model129. Although one of the cocktail antibodies, hu1B7, is able to bind to the S1 subunit on a 

Western Blot indicating a linear component of the epitope, previous studies using 15-mer peptides 

covering the entire S1 sequence were unable to identify a peptide showing binding activity against 

murine 1B7 142. Further information about the epitope on S1 targeted by hu1B7, one of the cocktail 

antibodies, will help elucidate its neutralizing mechanism.   
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Following a similar procedure to that of TNF, we used PFunkel mutagenesis to create a SSM 

library of nearly all possible single point mutants in the Asp1-Gly220 fragment of PTxS1 (PTx-

S1-220) and performed a single FACS sort collecting 400,000 cells in each of the three 

populations. Soluble PTx-S1-220 can be expressed in E. coli and retains affinity for hu1B7 (Figure 

20). Positional Shannon entropy was used to determine the most conserved residues at  

the interface using the same cutoffs identified in the TNF test case conservation of buried residues 

Phe84, Gly86 and His149 near the identified epitope indicate that the hu1B7 binding affinity 

depends somewhat on the conformation in the PTxS1 folded state.   

As before, epitope residues were discriminated from residues that result in disruption of the 

protein fold by analysis of sequence conservation in the displaying population. Altogether, this 

procedure identified sixteen residues at the proposed antibody-antigen conformational epitope: 

 

Figure 20- A soluble version of the pertussis toxin S1 subunit can be expressed in E. coli and 
retains affinity for hu1B7. 

Truncated S1 in a pAK400 expression vector was produced in BL21(DE3), harvested by osmotic 
shock, and purified by immobilized metal affinity chromatography and size exclusion. a. SDS-
PAGE of truncated S1 (S1-220K, 25.9 kDa) and full length PTx (26.1 kDa), b. Western blot of 
S1-220K and PTx, probed by hu1B7 and GαhFc-HRP, and c. ELISA of hu1B7 on a 4nM coat of 
PTx or S1-220K, detected by GαhFc-HRP. 
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Glu75, Gly78-His83, Ile85-Tyr87, Ala93, Tyr148, Asn150-Ile152, and Asn163.  Mapping these 

residues onto the structure of the pertussis toxin (PTx)143 Figure 21 shows that fourteen of sixteen 

residues are located in a spatially contiguous location.  This proposed epitope is consistent with a 

previous alanine scanning dataset developed by Sutherland and Maynard125. The two conserved 

residues outside of this region, Ala93 and Asn163, are most likely of structural importance for the 

conformational epitope as they are buried in the protein core. The epitope surface is typical of 

antibody-antigen interactions with charged and aromatic residues along with hydrophobic patches 

(Figure 21).  

 

Figure 21- PTxS1 Conformational Epitope Determination. 

a. A subset (29/220 residues) of the fitness-metric heat map for the PTxS1-hu1B7 interaction.  
Sequence entropy for the unselected/display population (green) and unselected/bound population 
(black) is plotted below with their respective cut-offs (dashed lines). b. Subtractive sequence 
entropy analysis for PTxS1-hu1B7interaction. The light grey surface represents the S1 subunit 
and the dark grey represents other subunits of PTx. Conserved residues (orange) are found on the 
S1 subunit proximal to the S5 and S6 subunits.  Non-conserved residues (purple) are found over 
most of the solvent accessible surface area. c. Close up view of the conserved residues at the 
epitope interface. PTxS1 is represented with cartoon and sticks format, while the other subunits 
are represented as the dark grey surface. 
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In principle, relative dissociation constants (Kd,i/Kd,WT) for antibody-antigen interactions can 

be calculated directly from the digital counting7 (see Theory section). However, our method relies 

on counting individual sequences after a single cell sort, resulting in a limited dynamic range. To 

determine whether dissociation constants calculated from deep sequencing results are quantitative, 

we compared our results with an alanine scanning dataset for in vitro binding of PTx-S1-220 and 

murine 1B7125. Our results are consistent with scanning data for 16 of the 17 mutations (Table 8). 

The one discrepancy, Arg39Ala, is not in spatial proximity of the highlighted epitope, potentially 

indicating different long-range interactions between PTx-S1-220 and the murine and humanized 

1B7 antibodies used in the separate experiments. Consistent with the limited dynamic range of the 

deep sequencing method, the relative dissociation constants for hot spot residues Arg79, His83, 

Tyr148, and Asn150 are significantly underestimated in the deep sequencing datasets compared 

with in vitro measurements (Table 8). This limitation caused by digital counting a handful of 

sequences restricts the experimentally determined range of relative dissociation constants to 0.4-

2.5 (Figure 22).  

For further validation we tested four additional mutations identified from our deep 

mutational scanning datasets. PTxS1-220 variants T81K, T81H, I152M, and I152P were produced 

in E. coli and purified. A polyclonal anti-PTx antibody preparation was titrated against ELISA 

wells coated with 5 nM PTx S1 variants. Similar binding to all variants suggests that no variant 

has severe folding defects. Relative binding dissociation constants were calculated from observed 

EC50 by titration of the hu1B7 antibody on an ELISA plate coated with 5 nM of the truncated PTx 

S1 or each variant (Table 8). In vitro binding for variants T81H, I152M, and I152P were 

quantitatively predicted by deep sequencing data. In contrast and consistent with the limited 

dynamic range highlighted above, the relative binding for binding knock-out variant T81K is 
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significantly underestimated in the deep sequencing datasets. We conclude that while relative 

dissociation constants calculated directly from the deep sequencing data are consistent with in vitro 

Table 8- Comparison of fitness-metric based dissociation constant calculations with 
published experimentally determined dissociation constants.  
*Reported numbers are experimental relative EC50 values. 

 in vitro Binding Deep Sequencing Data 

 Kd,i/Kd,wt Kd,i/Kd,wt Fitness Metric 

WT 1.00 ± 0.10 1.00 0 

R146A 1.07 ± 0.10 1.08 ± 0.02 -0.074 

E155A 0.79 ± 0.09 0.97 ± 0.02 0.034 

T156A 0.79 ± 0.09 1.04 ± 0.04 -0.037 

T159A 1.00 ± 0.16 1.06 ± 0.03 -0.053 

Y161A 0.93 ± 0.43 0.88 ± 0.04 0.116 

N176A 0.79 ± 0.09 0.81 ± 0.03 0.199 

E210A 1.14 ± 0.16 1.05 ± 0.02 -0.052 

E16A 1.14 ± 0.11 1.30 ± 0.08 -0.266 

T81A 1.21 ± 0.65 1.19 ± 0.03  -0.168 

T158A 0.93 ± 0.16 0.98 ± 0.03 0.020 

Y166A 1.00 ± 0.16 1.10 ± 0.02 -0.094 

R39A 2.14 ± 0.32 0.84 ± 0.06 0.165 

T153A 1.43 ± 0.30 1.48 ± 0.03 -0.403 

R79A 17.9 ± 3.1 2.62 ± 0.25 -1.058 

H83A 7.1 ± 1.5 2.14 ± 0.14 -0.826 

Y148A 20.7 ± 4.5 1.69 ± 0.16 -0.546 

N150A 5.7 ± 0.8 1.89 ± 0.08 -0.670 

T81K no binding* 4.25 ± 0.88 -1.664 

T81H 1.51 ± 0.43* 2.55 ± 0.24 -1.025 

I152M 0.68 ± 0.23* 0.67 ± 0.11 0.359 

I152P 1.36 ± 0.46* 2.12 ± 0.06 -0.806 
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measurements, care must be exercised when calculating a quantitative energetic contribution. 

Next, we asked whether the method could be used to map the conformational epitope of an 

antibody targeting tumor-associated calcium signal transducer 2 (TACST2, a.k.a. TROP2), a 323 

amino acid, 36 kDa transmembrane glycoprotein. TROP2 is overexpressed in numerous human 

epithelial cancers144 and identified as an oncogene in colon cancer, with metastatic and invasive 

abilities137, 145. Studies have linked Trop2 to increased tumor growth, since ectopic expression of 

Trop2 in cancer cell lines causes them to become highly tumourigenic when implanted in mice, 

whereas silencing Trop2 inhibits cell proliferation in vitro146. Furthermore, silencing Trop2 in 

breast cancer cell line MDA-MB-231 decreases migration as observed by transwell migration and 

wound-healing assays (Figure 23).  

The extracellular portion of TROP2 (TROP2Ex) contains three domains: an N-terminal 

domain (ND), a middle TY domain, and a C-terminal domain (CD) (Figure 24). Like its close 

paralogue EpCAM (epithelial cell adhesion molecule), TROP2 is a nuclear signal transducer 

Figure 22- Fitness metric and relative dissociation constant error. 

 a. Relative dissociation constant as a function of fitness metrics.  The vertical dashed line 
represents the average fitness metric for stop codon positions.  b. Standard error as a function 
of fitness metric for different numbers of unselected counts (red, 10; blue, 20; green, 30; orange, 
50; purple, 100; black, 500) Fitness metrics associated with lower number of counts have higher 
error. c. Relative dissociation constant error as a function of relative dissociation constant for 
different numbers of unselected counts.  As the relative dissociation constant increases the 
amount of error increases. 
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activated by regulated intramembrane proteolysis (RIP)147, 148. TROP2Ex is first shed by 

proteolysis, followed by intramembrane cleavage to release intracellular TROP2 (TROP2IC). 

Because recombinant TROP2Ex forms a homodimer in solution149, it has been speculated that 

destabilization of the extracellular region by local environmental changes or an agonist leads to 

RIP. However, neither the proteolytic cleavage sites nor potential agonist(s) have been 

unambiguously identified. 

A recently developed mAb m7E6 (mouse7E6) targeting TROP2Ex inhibited tumor growth 

in the A431 xenograft model, and m7E6-drug conjugates induced long term regression in the 

BxPC3 xenograft model130. To investigate the structural basis of m7E6 efficacy, we prepared SSM 

libraries covering 95.8% of possible single non-synonymous mutations for the yeast-displayed 

TROP2Ex (residues Thr28-Thr274) and performed a single FACS sort against the biotinylated Fab 

of m7E6 at a labeling concentration of 22 nM. After the experimental workflow, the same sequence 

conservation analysis as above was used to determine residues contributing to the epitope. The 

subtractive sequence entropy measure completely removed most portions of TROP2Ex from 

consideration of the epitope, resulting in unambiguous determination of the binding footprint. In 

contrast to most previously described mAbs that bind at or near the N-terminal cysteine-rich 

domain, residues Asp171, Arg178, and the Ridge on CD (RCD) loop Gly241-Pro250 were 

identified as contributing to the m7e6- TROP2 interaction (Figure 24). This epitope is in agreement 

with m7e6 binding affinity results from domain swapping experiments130. Using a homology 

model of TROP2 guided by the structure of the paralogue epithelial cell adhesion molecule 

EpCAM150, these residues map to a membrane-distal region opposite to the face on the CD domain 

that putatively makes specific inter-dimer contacts with the TY loop (Figure 24). 
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 There are several reasons why targeting this epitope could be effective. For example, m7e6 

could partially block the agonist(s) binding site on TROP2, preventing activation. Alternatively, 

m7e6 could prevent destabilization of the extracellular region by sterically blocking proteolytic 

cleavage or by preventing dimer dissociation after proteolytic cleavage. Since 4.1 nm separates the 

centers of the proposed epitope between the dimer subunits (Figure 24), an IgG could occupy both 

subunits of the dimer. In this scenario, we speculate that the antibody could prevent destabilization 

of the extracellular region or prevent an agonist site by the steric bulk of the IgG. As a test of this 

hypothesis, we reasoned that, owing to its monovalency, m7e6 Fab would not be as effective as 

the corresponding IgG in preventing dimer destabilization. We performed Boyden’s chamber 

assays to investigate the influence of m7E6 IgG and Fab on migration rates in MDA-MB-231 cells. 

Whereas m7e6 IgG treatment inhibited migration (p =0.004) (Figure 24), m7e6 Fab was unable to 

inhibit migration (p=0.187) at the highest tested concentration (40µg/ml) (Figure 24). We 

confirmed that both m7e6 Fab and IgG were able to label breast cancer cell line MDA-MB-231 

(Figure 25). Additionally, we tested the influence of m7E6 IgG on inducing proliferation 

(metabolic activity) and cytotoxicity in MDA-MB-231 cells. We found that the treatment did not 

result in a statistically significant decrease in proliferation rates (One-way ANOVA p=0.384) or 

increase in cytotoxicity levels (One-way ANOVA p=0.141), indicating that the mechanism by 

which m7EG IgG resulted in reduced migration rates was IgG were able to label breast cancer cell 

line MDA-MB-231 (Figure 25). Independent of reduced proliferation or cell death (Figure 25).We 

further investigated the localization of the TROP2 intracellular domain in response to the IgG 

treatment using confocal microscopy. We found that nuclear expression levels of TROP2Ic were 

retained in both the IgG and Fab treated cells (Figure 26) This scenario suggests that the effect of 

m7E6 binding to TROP2 on reducing migration rates may be mediated by blocking the agonist 
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binding site or by influencing the downstream signaling cascade. Whatever the exact mechanism 

behind m7e6 efficacy, the conformational epitope uncovered by the present method was used to 

predict that m7e6 Fab could not inhibit migration.  

4.6 Discussion 

The sequence-function mapping pipeline using a yeast-displayed antigen can be used to 

elucidate conformational, discontinuous epitopes of complex proteins. As demonstrated with 

TROP2, a solved structure of the antigen is not essential for identification of the conformational 

epitope. The methodological improvements developed in this paper allow us to complete the 

pipeline using a single cell sorter in 14 days for 24 different antibody antigen complexes at an 

approximate material and supply cost of $330 per antibody-antigen epitope. The cost and speed of 

this method offer significant advantages compared with competing display-based protocols.  

Notably, our method requires only a few micrograms of the starting antibody and so can be used 

directly downstream of immortalized B cell or hybridoma screening. Additionally, the ability to 

comprehensively map sequence determinants to binding may help elucidate potential escape 

mutants and be used to predict whether the antibody will maintain affinity for antigen homologs 

from model organisms. The sequence-function maps may also be integrated into computational 

prediction software to improve the predictions of specific antibody-antigen structural contacts at 

the atomic level or improve computational predictions of individual mutations on protein-protein 

interactions151.  

There are minor limitations in the current protocol. For example, antigens requiring multiple 

subunits to fold may be difficult to express on the yeast surface. Additionally, conformational 

epitopes requiring heterogenous peptide-glycosyl surfaces will not be able to be mapped. 

Nevertheless, our results show that antibody-binding surfaces for complicated homodimer and 
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homotrimer human proteins TROP2 and TNF can be assessed, and we speculate that similar 

 

Figure 23- TROP2 expression in MDA-MB-231 cells enhances migration and invasion.  

a,b. MDA-MB-231 cells were transfected with scramble siRNA or siRNA targeting TROP2 for 
24hr. The (a.) mRNA and (b.) protein levels of TROP2 were measured by real-time PCR and 
Western blotting. n = 3. **: p < 0.01 and ***: p<0.001vs. control. c. Suppression of MDA-MB-
231 migration by silencing TROP2. MDA-MB-231 cells were transfected with scramble siRNA 
or siRNA targeting TROP2, and then subjected to a transwell migration assay. The cells were 
allowed to migrate toward serum for 8 h. Triplicate wells were used for each condition in three 
independent experiments. ***: p<0.001 vs. control. d. Silencing TROP2 reduced the migration of 
highly invasive breast cancer cells. MDA-MB-231 cells were transfected with scramble siRNA or 
TROP2 siRNA and subjected to a wound-healing assay. Representative photographs at the 
indicated time points from three independent experiments, with each performed in triplicate wells. 
Magnification: 10X. e. Suppression of MDA-MB-231 invasion by silencing TROP2. MDA-MB-
231 cells were transfected with scramble siRNA or siRNA targeting TROP2, and then seeded in a 
matrigel-coated Boyden chamber and subjected to a transwell invasion assay. The cells were 
allowed to migrate toward serum for 20 h. Triplicate wells were used for each condition in three 
independent experiments. ***: p<0.001 vs. control. 
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proteins can be mapped. While our approach can be used as is to interrogate antibody panels of 

10-50 members, further improvements in speed and cost must be addressed for integration of the 

method with other high-throughput or single cell technologies. Methodological advances should 

 

Figure 24- TROP2 Conformational Epitope Determination.  

a. The domains of membrane protein TROP2. The extracellular portion of TROP2 (TROP2Ex) 
contains an N-terminal domain (ND, green), TY domain (brick red), and C-terminal domain (CD, 
cyan). TM indicates the membrane spanning portion, and Trop2Ic is the intracellular domain. b.
Homology model of TROP2Ex homodimer shown in surface view. One subunit is colored by 
sequence entropy based on m7e6 binding (orange – conserved, purple – non-conserved, gray –
intermediate). The other subunit is colored by domain using the same coloring scheme as in panel 
a. The fine epitope is located on the membrane distal face of the CD. The center of the epitope on 
one subunit is separated by 4.1 nm from the epitope on the adjacent subunit. c. Bar graphs showing 
the number of migrating cells in MDA-MB-231 cells treated with PBS (control) or m7EG IgG  d. 
Representative bright field images of Boyden’s chamber inserts showing cells that migrated across 
the 8µm membrane after 24 hours of treatment. e. Bar graphs showing number migrating cells with 
control or m7E6 Fab treatment. f. Representative bright field images showing migrating cells 
across the membrane. P-values indicate significance of difference in mean (n=3) determined using 
Student’s two-tailed t-tests.    
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focus on replacing the bottleneck FACS step with a more high-throughput sorting technique and 

removing the need to prepare multiple libraries for each antigen.   

  

Figure 25- TROP2 Characterization.  

a. 105 MDA-MB-231 cells were labeled with 50 nM biotinylated m7e6 IgG (orange), 50 nM 
biotinylated m7e6 Fab (cyan), or nude (blue) in buffer PBSF for 30 min at room temperature. After 
washing, cells were secondarily labeled with streptavidin-phycoerythrin and processed by flow 
cytometry. b. Bar graphs indicating the average (n=3) AlamarBlue assay absorbance (570nm) in 
cells treated with PBS (control) or increasing concentration of m7E6 IgG (10 to 40 µg/ml). c. Bar 
graphs indicating the average (n=3) LDH absorbance (590nm) in control and m7EG IgG treated 
cells. P-values indicate the significance levels of the influence of increasing concentrations of the 
IgG treatment on proliferation or cytotoxicity levels determined using one-way ANOVA. 
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Figure 26- Confocal images showing expression and localization of TROP2 intracellular 
domain. 

Confocal images showing expression and localization of TROP2 intracellular domain represented 
by green fluorescence in MDA-MB-231 cells treated with PBS (control), m7E6 IgG or Fab with 
nuclear counter-staining indicated by blue fluorescence. The individual panels were recorded at 
60X magnification (scale bar = 50µm) with identical image acquisition parameters between 
different conditions. 
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CHAPTER 5 

5.  Conformational epitope mapping of pertussis toxin antibodies and future directions 

5.1 Introduction  

Knowledge of a fine conformational epitope can provide a basis for structural vaccine 

design. Structural vaccine design uses protein structure to design immunogens and has promise to 

provide new vaccines against traditionally difficult targets152. One general approach of structural 

vaccine design is to design an immunogen that contains a stabilized neutralizing epitope of interest 

that may also lack any immunodominant non-protective or undesirable epitopes. Approaches like 

this has been used for Lyme disease153, influenza154, 155 and respiratory syncytial virus (RSV)24. In 

the latter case, McLellan et al.24 designed over 150 immunogen variants containing a key 

neutralizing epitope, thus yielding stabilized versions of the RSV glycoprotein that maintained the 

antigenic site at extreme temperatures and pH. These stabilized versions were assessed for their 

ability to elicit protective responses and showed neutralizing activity. In this example the crystal 

structure used to identify the epitope of a neutralizing antibody with the RSV glycoprotein 

provided the basis for the rational design of a stabilized immunogen.  

Whooping cough infections, caused by the bacteria Bordella pertussis, continue to increase 

in incidence in the US and other industrialized countries, despite widespread vaccination141. 

According to the CDC, pertussis cases in the United States currently persist at levels 13-fold higher 

than in the 1970s156. A more immunogenic and effective pertussis vaccine is urgently needed. We 

recently identified the neutralizing epitope for monoclonal antibody hu1B788. Other neutralizing 

and non-neutralizing antibodies have been isolated from hybridomas and humanized or from 

vaccinated patients142. Nguyen et al.157 recently identified a cocktail of humanized anti-pertussis 

antibodies that showed efficacy when administered as a prophylactic. Using additional neutralizing 
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antibodies, we seek to identify a larger neutralizing epitope on the pertussis toxin that could be 

used as a basis for designing a better vaccine against the pertussis toxin.   

5.2 Materials and Methods  

Conformational epitope mapping closely followed the protocol described in Kowalsky et. 

al.48, 88. Anti-PTxS1 IgGs were chemically biotinylated at a molar ratio of 20:1 Biotin to IgG using 

the EZ link NHS-biotin kit following the manufacturers instructions (Life Technologies, Carlsbad, 

CA). Observed equilibrium dissociation constants (KD,obs) of each IgG to yeast displayed PTxS1-

220 (pETCON-PTxS1-220) were determined using clonal population yeast display titrations 

according to Chao et al63. IgG concentrations tested ranged from 8 pM to 600 nM. 

Yeast display sorts were conducted by fluorescence activated cell sorting on an BD Influx 

equipment (BD Biosciences, Franklin Lakes, NJ) using previously described PTxS1-220 site 

saturation mutagenesis libraries88 at an IgG labeling concentration of half KD,obs. 400,000 events 

were collected for each population (Table 9). Yeast plasmid DNA was prepared for deep 

sequencing following the protocol in Kowalsky et al48. Library DNA was sequenced on an Illumina 

MiSeq using a 250x2 Illumina MiSeq kit (Illumina, San Diego, CA) at the Michigan State 

University Sequencing Core. Sequencing data was analyzed following the procedure described in 

Kowalsky et al48. Because IgGs were used instead of Fabs as previously described significantly 

conserved residues cutoffs were benchmarked against a hu1B7 data set. For the IgG data 

significantly conserved residues were determined using a cutoff value of: 

                    (1) 

In addition to the cutoff value significantly conserved residues also had a solvent accessible surface 

area greater then 20%158.  

cutoff 
SEmax + SEmin

2
+ 0.25 SEmax  SEmin( )
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5.3 Results 

Antibodies A8 and E12 were obtained from the Maynard lab at the University of Texas, 

Austin. Following Kowalsky et. al.,48, 88 we determined the conformational epitope for A8 and E12 

against yeast displayed Pertussis Toxin subunit 1 (PTxS1). Using chemically biotinylated IgG we 

determined the observed dissociation constant for each interaction using yeast display clonal 

titrations63. We performed a single FACS sort on the libraries collecting 400,000 cells in each of 

the three populations. Positional sequence entropy was used to determine the most conserved 

residues at the interface using a relaxed criteria owing to use of IgG.  

In previous epitope mapping experiments88, IgGs were digested into Fabs to maintain a 1:1 

antibody to antigen binding ratio. We were interested in seeing if we could eliminate the Fab 

Table 9- Sorting Statistics 

  Tile 
Length 
(AA) 

Sort 
Labeling 

Conditions 
(pM) 

Events 
Collected 

for 
Binding 

Population 

Percent 
Sorted 

(Display) 

Percent 
Sorted 

(Binding) 

PTxS1-A8 Tile 
1 

72 64 400,000 63.02% 7.56% 

PTxS1-A8 Tile 
2 

74 64 400,000 66.89% 7.27% 

PTxS1-A8 Tile 
3 

73 64 400,000 63.84% 7.63% 

PTxS1-A12 Tile 
1 

72 150,000 400,000 60.30% 7.13% 

PTxS1-A12 Tile 
2 

74 150,000 400,000 64.58% 7.97% 

PTxS1-A12 Tile 
3 

73 150,000 400,000 63.48% 7.66% 

PTxS1-E12 Tile 
1 

72 140.5 400,000 57.58% 6.63% 

PTxS1-E12 Tile 
2 

74 140.5 400,000 62.27% 7.57% 

PTxS1-E12 Tile 
3 

73 140.5 400,000 63.11% 7.27% 
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preparation step and use full IgGs instead of Fabs. To facilitate this transition we benchmarked the 

epitope cutoff against the previous conformational epitope for PTxS1 and hu1B7. We performed 

this epitope mapping experiment using hu1B7 IgG for the residues 74-147 of PTxS1 and compared 

this to our Fab based experiments previously performed88. Using the same cutoffs as before we are 

only able to identify 3 of 11 epitope residues (Figure 27). We next asked whether there was a better 

cutoff that we could use to capture more of the epitope residues. To do this we increased the 

sequence entropy cutoff by adding 0.25(SEmax-SEmin) to the sequence entropy midpoint this new 

cutoff increase correctly captured 9 of 11 the epitope residues but also introduced 2 additional false 

epitope residues. To better capture the epitope residues we only considered residues that had 

solvent accessibility greater then 20% giving us 6 of 7 correct residues with no additional false 

epitope residues.  

Using this new cutoff for epitope determination, the method identified seven residues at 

the antibody-antigen interface for A8: Gly27, Arg58, Arg76, and Thr153-Thr156. Five of these 

Figure 27- Sequence-function heatmaps for PTxS1 and hu1B7 sorts with Fab and IgG.  

Heat maps are compared for epitope mapping experiments for a Fab (top) and IgG(bottom). 
Sequence entropy is plotted for Fab (black) and IgG (orange) with their respective cutoffs. 
Sorting with an IgG is less sensitive then when using a Fab. A new cutoff was introduced for 
the IgG sorts to accurately identify the epitope residues identified using a Fab.   
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six residues map to a contiguous location on the PTxS1 structure (Figure 28a) except for Gly27. 

The method also identified eight residues at the interface for E12 that map to a contiguous location: 

Thr153-Thr156, Thr158-Thr159, and Thr171 (Figure 28b). Using these residues sets we see that 

A8 and E12 target an overlapping but not identical epitope. These epitopes are located at a 

contiguous location adjacent to but distinct from the previously determined epitope for hu1B7 

(Figure 28c).  

 

5.4 Discussion and Future Directions 

Here we present multiple neutralizing epitopes from a panel of antibodies against the 

pertussis toxin subunit1. By screening a panel of neutralizing antibodies we were able to identify 

a larger neutralizing epitope that could be used as a basis for vaccine design. Epitope mapping can 

be extended to other health crises such as Dengue fever159 and Ebola160 to determine neutralizing 

epitopes from isolated neutralizing antibodies.  

In this project we used IgGs instead of Fabs to identify the conformational epitope. By 

comparison to a previously developed epitope map for huB17 Fab, huB17 IgG results in less potent 

discrimination of the conformational epitope. Still, we were able to determine contiguous epitope 

residues for neutralizing antibodies A8 and E12. Nevertheless, in future experiments it is 



 

 114

recommended to prepare Fabs instead of IgGs. Utilization of Fabs provides a higher resolution 

epitope map as well as maintains a 1:1 binding ratio to utilize binding affinity reconstruction from 

deep sequencing data. 

In addition to the epitope mapping and antibody panel mapping applications that has been 

presented for the experimental pipeline, there are some additional applications. The wealth of 

mutational data obtained in the current experimental pipeline can help to identify the specificity of 

an antibody. Important to the specificity of an antibody is whether or not the antibody would bind 

to any paralogs or homologs of the antigen and also help to identify escape mutants. Currently, 

 

Figure 28- Experimentally determined conformational epitopes for A8 and E12.  

a. Experimentally determined conformational epitope for A8. Significantly conserved epitope 
residues are indicated in orange and non-significantly conserved residues are colored purple.  
b. Experimentally determined conformational epitope for E12 colored like A. c. Rotated views 
of PTxS1 structure with hu1B7 (red), A8 (yellow), E12 (blue), and overlapping A8 and E12 
(green) epitope residues indicated. 
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only the antigen side of the interaction is mapped. By displaying an scfv or antibody on the surface 

of yeast instead of an antigen and using a soluble biotinylated version of the antigen, the method 

can be expanded to paratope mapping applications.  

Because of throughput issues, high-resolution epitope mapping is introduced after lead 

candidate generation during the antibody discovery process. The ability to obtain epitope maps for 

early stage panels of antibodies would both ensure large epitope diversity in preliminary antibody 

panels as well as eliminate any antibodies against known protected epitopes. In addition to these 

considerations, epitope mapping a panel of antibodies would give an in-depth look at the immune 

response if isolating the antibodies directly from hybridomas or immortalized B cells.  As the 

technology currently stands, epitope maps can be obtained in three to five weeks for less than 

$1500 for the first epitope map and about $500 for each additional epitope map (Table 10 and Note 

S6, Appendix I, for detailed break down).  The majority of the time is spent in the set up of the 

yeast display and preparation of the mutational library and each of these steps is parallelizable. 

The bottleneck of the method therefore rests in the sorting technique. Unless multiple FACS can 

be used in parallel, which is not practical, the method is limited to 3 antibody/antigen pairs per 

day. While this allows the method to be scalable to tens of antibody/antigen interactions, we are 

unable to analyze hundreds or thousands of interactions on a high-throughput time scale.  The 

introduction of a different selection method would allow the technology to compliments the recent 

advances in single sorting B-cell technology in antibody discovery platforms120, 161.  

The introduction of magnetic-bead assisted cell sorting (MACS) could help to parallelize 

the sorting methods. MACS is most frequently used in phage-display to sort strong binders from 

large libraries through many sorting steps162. MACS is often used because it is scalable to large 
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library diversity but it lacks the control over the sorted population that FACS affords. Sorting 

yeast-displayed libraries have using magnetic beads has previously been demonstrated63, 163 and 

we hypothesize that it could substitute for the current sorting method. Effectively this would reduce 

the time required to sort libraries by a factor of 10 and also reduce the cost and “barrier of entry” 

to the method by eliminating the need for a cell sorter.  

In order to implement magnetic beads as a sorting technique, many control experiments 

are needed. First, we will need to determine the capture probability of the yeast-displayed proteins 

as a function of labeling concentration using magnetic beads. Using this relation we can derive 

equations similar to those previously used to describe growth and FACS based selections to 

determine optimal sorting conditions and relations between the enrichment ratio obtained from 

deep sequencing and protein-protein binding affinity. It is likely that this equation is represented 

more closely by a stepwise function with a narrow dynamic range as opposed to a sigmoidal 

function that has a larger dynamic range. In this case we would need to determine what the correct 

Table 10- Cost and time for epitope mapping.  

Cost and time is determined for an antigen of 240 residues that would require three tiles. Cost 
does not include labor or the cost of the antigen gene.   

Step Cost Time 
Preparation yeast 

displayed 
mutational library 

$870 ($290/tile) 2-4 weeks 

Sorting libraries 
using FACS 

$200 ($66/tile) 
1 day (2-3 

interactions per day) 
Sequencing 
preparation 

$42 ($14/tile) 2 days 

Sequencing and 
data analysis 

$42 ($14/tile) 
2 days (+2-4weeks 

wait time for 
sequencing) 

TOTAL $1320 
3-5 weeks 

(+sequencing wait 
time) 
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labeling concentration is such that there is discrimination between epitope and nonepitope 

residues. To determine this labeling concentration we can use our FACS sorted libraries as a 

benchmark set.  

 In addition to increasing the throughput of the method, we would like to generate a bound 

structure of the antibody/antigen interaction by incorporating the dataset into computational 

protein modeling software. Incorporating this capability into the process would add value to the 

data set. Ideally we would be able to predict the docking trajectory of the antibody/antigen complex 

given an antibody sequence, mutational dataset and the structure of the unbound antigen.   An 

accurate model of the bound antibody/antigen structure would improve and aid in both therapeutic 

design and antibody affinity maturation.  

 To do this we would use the biomolecular protein modeling suite Rosetta164, 165. The 

RosettaDock166, 167 application takes two unbound structures and predicts their bound structure. 

RosettaAntibody168 is an application that predicts the structure of an antibody given the sequence.  

Combining these two applications we hope to obtain a properly folded antibody structure in the 

presence of the antigen. However, computational protein structure prediction requires sufficiently 

sampling the conformational space166. This often requires the creation of hundreds of thousands of 

docking trajectories leaving the researcher many predictions to sort through in order to find the 

correct one. We rely on the assumption that a lower energy gives a more sTable protein fold and 

therefore is the more likely conformation. To guide the sampling and providing a scoring metric, 

Rosetta includes an energy function that combines many energetic terms such as Van der Waals 

forces, electrostatic forces and hydrogen bonding energies among others164.  

The mutational data sets can be incorporated into the computational structure prediction. 

First, the mutational data set can be used to restrict or decrease the conformational space that needs 
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to be sampled. Ambiguous interface restraints169, 170 can be introduced into Rosetta as a means of 

restricting the interface of the antibody and antigen to identified epitope residues. By restricting 

the interface to epitope residues the conformational space can be sampled more efficiently. The 

restraints would also be introduced into the scoring function to penalize docking trajectories far 

from the defined interface. The second way that the data sets can be used is as a metric to filter 

low energy structures outputted from the program. In this case careful consideration should be 

taken when considering which mutations will be sampled as Rosetta and similar protein modeling 

software can more accurately predict hydrophobic energies over electrostatic interactions.   

Computational methods should be benchmarked against existing benchmark sets for protein-

protein interactions171 and experimental mutational data obtained previously85, 88.  For this 

application to be fully scalable, it would need to be efficient and accurate, producing of docked 

structures for dozens of antibody/antigen interactions in a single day.   

 The introduction of a parallel sorting technique to the conformational epitope mapping 

technique and improved computational antibody/antigen docking trajectories would further the 

field of structural vaccine design. The techniques would most importantly help to rapidly identify 

neutralizing epitopes from isolated neutralizing antibodies but could also be used to help identify 

mutations that remove immunodominant epitopes. We anticipate using these techniques to identify 

more develop sTable immunogens for vaccines.  
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Supplementary Note S1: Practical Considerations for High-Resolution Sequence-Function 

Mapping. 

Target Selection  

INPUT: Target protein 

OUTPUT: Selection conditions, Protein gene sequence 

At this step the most important consideration is that, for a given protein target, there are conditions 

under which more active variants can be selected over less active variants. In this paper we 

explicitly consider growth-based selections and fluorescence activated cell sorting (FACS) 

screening techniques.  

For growth-based selections, a common strategy is to identify conditions where growth 

depends on flux through a given pathway. For example, bacterial growth in the presence of beta-

lactam antibiotics requires a certain enzymatic flux of beta-lactamase. To allow determination of 

more active proteins than the starting sequence, conditions should be screened where the starting 

sequence does not support maximal growth in the host background. On the other hand, the growth 

rate should be significant enough that the selection experiment can be completed in 1-2 days. 

 FACS, in conjunction with cell display techniques like yeast-surface display, can be used 

to evaluate protein-protein binders, protein-small molecule binders, and even certain enzymes. In 

all cases, higher fluorescence (after labeling) is correlated with more potent activity. Conditions 

should be screened such that the starting sequence does not support maximum fluorescence. In the 

case of protein binders, one key parameter to vary is the labeling concentration relative to the 

dissociation constant of the interaction for the starting sequence. At labeling concentrations well 

above the dissociation constant, increases in binding affinity result in minimal fluorescence 
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increases. The set up and validation of the selection system is key to the efficiency and results of 

the experiment.  A poorly set up selection will yield poor sequence-function maps. 

Gene Tiling  

INPUT: Protein gene sequence, sequencing read length 

OUTPUT: Gene tiling scheme, “inner” primer sequences  

The gene sequence needs to be segmented into tiles for library preparation and selections to allow 

efficient mutation counting with Illumina sequencing reads. Genes are tiled in segments of lengths 

that are multiples of three and at least 20 base pairs shorter than the sequencing reads. Tiles are no 

longer than 126 bp for 150 bp paired-end (150bp PE) reads.  Each section should be at a length of 

a multiple of three (i.e., 117, 120, 123, etc.) as to not split an amino acid codon over multiple 

sections.  We have written a custom script (Script S2; GeneTiles.m) to facilitate tiling and design 

of the inner primers. The input into the program is the gene sequence (including 33 bp up and 

downstream of the gene sequence) and the read length for the next generation sequencing. The 

output from this program is spatial location of individual gene tiles, and the set of inner primers 

needed for sequencing preparation.   

To use GeneTile.m: 

1. Create a file named “genesequence.txt” in FASTA format with your gene sequence. 

Include exactly 33 bp upstream and downstream of your genesequence in this file.  

2. Load “GeneTile.m” and “genesequence.txt” into MATLAB and run the function 

GeneTile.m  

3. The output file containing the spatial location of the gene tiles and the inner primer 

sequences.  

Library Preparation  
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INPUT: Pfunkel Method, QuikChange Primer Sequences, Gene tiling scheme  

OUTPUT: Libraries for selection 

SSM libraries should be prepared using the Pfunkel Method essentially as described 51. As stated 

in the results section, we recommend using the Agilent QuikChange Primer Designer 

(http://www.genomics.agilent.com/primerDesignProgram.jsp?_DARGS=/primerDesignProgram.

jsp). Although it is much more labor intensive up-front, in our hands the longer lengths of the 

primers allow better library coverage than the primer design script provided by Firnberg et al. 51. 

It is important to prepare the library of each tile separately, as each tile needs to be selected 

independently. Library coverage statistics can be calculated following Boder and Wittrup 75; the 

number of transformants from each tiled library should exceed the theoretical library size by at 

least 7-fold (>99.9% coverage). The library for each tile is plated onto a separate Bioassay plate, 

and then plasmid DNA is recovered by Qiagen Midiprep.  

 This library plasmid DNA can then be transformed into the strain used for selection. In the 

specific case of S. cerevisiae, high efficiency transformations can be done following Benatuil et.al. 

64. The high number of transformants obtained from this method almost always supports the 

degeneracy of SSM libraries. For both S. cerevisiae and E. coli- based libraries, cell stocks can be 

stored at -80°C until used for selections.   

Double transformation artifacts do not need to be considered if transforming a low copy 

number plasmid (like in yeast surface display). Double transformation artifacts do need to be 

considered when transforming with medium or high copy number plasmids. Under the model 

developed in this paper, no correction needs to be made for growth-based selections using 10 or 

less average population doublings at double transformation percentages less than 10%. Our 

recommendation is that for growth-based selections you vary the transformation parameters (cell 



 

 124

density, amount of plasmid DNA, etc.) until the transformation efficiency can support the 

degeneracy of the library and the percentage of double transformants is less than 10%.  

Selections  

INPUT: Libraries, Selection Conditions   

OUTPUT: Selected Libraries 

Selections should be performed following the experimental conditions explained in the Results 

section. We recommend growth-based selections be run for 6-8 average population doublings. 

Growth-based selections should be performed on exponentially growing cells only (avoid lag 

phases and post-exponential growth phases). The initial inoculum density should be much larger 

than the number of variants in the library population. Following selection, cells can be stored in 

glycerol stocks at -80oC before library DNA is prepared for deep sequencing. For FACS, collecting 

the top 5% of the population using a square gate (one color sorting). To generate good counting 

statistics, at least 100x of the theoretical library size should be collected. For a library size of 2500, 

this means 250,000 cells collected (5,000,000 cells sorted). In the specific case of yeast-surface 

display, cells should be labeled with biotinylated antigen at 50% of the dissociation constant for 

the wild-type interaction. Following sorting, yeast should be recovered in selective media and 

stored in 20 mM HEPES 150 mM NaCl pH 7.5, 20% (w/v) glycerol in 1x107 aliquots at −80 °C 

until they are prepared for deep sequencing. 

Deep Sequencing Preparation 

INPUT: Selected Libraries, Unselected Libraries, Inner/Outer Primers    

OUTPUT: Libraries ready for next generation sequencing 

For next-generation sequencing we utilized the Illumina MiSeq 150-bp PE reads. This technology 

has recently been expanded to 300 bp pe reads, as using longer reads reduces the number of 
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libraries and selections. Inner primers are designed using the gene tiling script (Script S2). The 

inner primers follow the pattern:  

FWD: 5’- GTTCAGAGTTCTACAGTCCGACGATC<SEGMENT OVERLAP>-3’    

REV: 5’- CCTTGGCACCCGAGAATTCCA<SEGEMENT OVERLAP REV. COMP.>-

3’ 

Outer primers are taken from the Illumina TrueSeq Small RNA kit and can be ordered using the 

sequences listed in Table S2. The outer primers are meant to be universal: while the same forward 

primer is used for each library member, the reverse primers contain barcodes for multiplexing. 

Each library (sorted and unsorted) should use its own barcode to allow demultiplexing of 

sequencing reads. To append the primers, DNA is first extracted from the stored libraries. Plasmid 

DNA can be extracted from E. coli using a Qiagen miniprep, while for S. cerevisiae we use by a 

modified smash and grab protocol (Note S4). Primers are attached to the gene tile using PCR 

method A found in Table S3. PCR reactions are purified using AMPure beads and quantified using 

Quant-it PicoGreen dsDNA Assay on a plate reader. Libraries are mixed in equimolar amounts to 

ensure even sequencing before being delivered for sequencing.    

Data Analysis 

INPUT: Sequencing reads     

OUTPUT: Normalized fitness metrics for the sequence-function landscape 

 

A modified Enrich-0.2 program is used to interpret and analyze the sequencing data 53. 

Modifications to the Enrich-0.2 program were made according to Script S1.  Currently Enrich-0.2 

will only translate proteins from the first base pair of the dna sequence.  Using the gene-tiling 

method the protein sequence is not always in the same frame as the first base pair.  The 
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modifications to Enrich-0.2 allows for this capability.  Using a new <TRANSLATE_START> 

command into the config file  where you indicate the beginning of translation of the DNA to the 

protein sequence.  We also found it necessary to edit the length of the initial matching protein 

sequence to 10 bp over the standard 20 found in the Enrich program since the flanking sequences 

to the tiles are not usually longer than 20 base pairs.  The script for the enrich patch is called 

EnrichPatch.py to use the patch, move it into the main enrich directory and use the command line 

“python EnrichPatch.py” this should modify Enrich for your purposes.  To ensure proper execution 

of the patch, the ‘example_local_config’ file should contain a new <translate_start> command line 

in the read_aligner section.   

Enrich outputs “unlink_wild_counts” for both the selected and unselected populations, at both the 

dna and protein levels.  These files are populated frequency matrices the rows being residue 

position, relative to the beginning of translation for that section, and the columns are the different 

amino acid residues.  The frequency of each variant in the libraries are listed. These files can be 

used to determine the log2 enrichment ratio for each variant. Apart from the frequency matrices it 

is important to extract the wild-type enrichment ratio for each gene tile, from the “ratios_sel_PRO” 

file for the NA_NA variant to use in the normalization equations.  The normalization equations, 

for the fitness metric, that should be use are:  

     (11) 

For growth-based selections and,  

                  (20)  
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for FACS selections.  Note the need for the enrichment ratio of both the variant i and the wild-type 

along with the number of population doubling times for the growth-based selections and the log 

transformed standard deviation for the FACS based selections.  We use custom scripts to do the 

normalization of the data and import the normalized fitness metrics into Excel in order to visualize 

the fitness landscapes using the conditional formatting options. 
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Figure A1- TNF-Inflix_scFv Conformational Epitope Determination.  

Heatmap of fitness metric of bound vs. unselected population for all possible single non-synonymous mutations in the coding 
sequence for extracellular TNF. Sequence entropy for the unselected/display population (green) and unselected/bound population 
(black) is plotted below with their respective cut-offs (dashed lines). 
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Figure A1 (cont’d) 
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Figure A2- PTx-S1-220-hu1B7 Conformational Epitope Determination.  

Heatmap of fitness metric of bound vs. unselected population for all possible single non-synonymous mutations in the coding sequence 
for Asp1-Gly220 of PTx-S1. Sequence entropy for the unselected/display population (green) and unselected/bound population (black) 
is plotted below with their respective cut-offs (dashed lines). 
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Figure A2 (cont’d.) 
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Figure A3- TROP2-m7e6 Conformational Epitope Determination.  

Heatmap of fitness metric of bound vs. unselected population for all possible single non-synonymous mutations in the coding sequence 
for TROP2Ex. Sequence entropy for the unselected/display population (green) and unselected/bound population (black) is plotted below 
with their respective cut-offs (dashed lines). 
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Figure A3 (cont’d.) 
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