'—1_‘_‘ 100 (DLO—i WWWMl l W. I I SOME {ACTORS AFFECTING THE SOLUBIUTY OF PHOSPHORUS IN SOILS Thesis for Degree of M. 5. Russell Hayden Austin 1 9 2 5 MSU LIBRARIES ”- \m \\\\\\\\\g0;\§\9\\§\2\g\3\\\ 3 1293 RETURNING MATERIALS: Place in book drop to remove this checkout from your record. FINES wil] be charged if book is returned after the date stamped be1ow. This Opportunity is taken to acknowledge the many helpful suggestions from Dr. Li. M. EoCool C. H. Spurway and other rzmcbers of the 805.13 Department ' ~ - . . ‘ "V. ‘.\V .‘ -‘ r ." 'Y' ' . '. '. V ,“' LL“ 1&4L‘JN ALRHVLLU‘J Av.“ slbLL/Digl‘i OF .‘rliOal‘HOALu Li .90 IL.) Thesis for Legree of M. 5. Russell anuon Austin H ‘ 4b- N (51 THES‘S SOEE FACTOfio ArFaUTihG IRA oOLUfiLLlTY OE lHOJEBORLe LN oUILo The solution of the problem or insolubility of phosphorus in the soil and of ph09phorus applied, whether the soil is acid, neutral, or alkaline, would be of inestimatable value to the science of agriculture. Until more is known about these factors and also .he chemical constitu- tion of soils, the practice of phosphorus fertilization or, intact, any kind of fertilization will continue along the uncertain route of the past. shen soluble phtSphorus is apglied to the soil, it is subjected to all of the chemical and physical factors of that soil, which factors doubtless act along varying lines or directions of force. The resultant of these various soil factors, in reality, is the real determining factor of the solubility of the applied rhosphorus. Of the many contributing factors, those that have been considered as the most imyortant are the compounds of iron, aluminum, and silicon, organic matter, the lhenomena of adsorption, and the reaction of the soil. Until more is learned regariing the effect ani behavior of these contributing factors, little can be ascertained regarding the resultant of these factors. Consider- able work has been lone ugon the problem, although the greater part of the work has been hot-house and field plot worn interpreted in terms of crap resronse or yields. This is very geod, and in reality, is the 93809 nv' final objective of inve5ti5ationa1 Work in the field of agriculture, but such methOds add practically nothing to the too meager knowledge of the chemical constitution of soils. In the following studies, an attemlt was made to learn something regarding the chemical constitution of the soil. The studies and deter— minations have been of a chemical and physical nature. First a study was made of some chemical reactions between phOSphorus commounds and several alkalie and the resulting effect on the solubility of the phos- phorus in water solution was noted. in connection with these reactions, the effect of the presence of aluminum and iron as hydroxide was studied. Tests were made also regarding the effect of time upon the reaction. L microscopic study orlthe precipitates formed in all of the reactions studies revealed some imlortant information regarding the reversion of cid phosphate to di-calcium and tri-calcium IhosIhates. Following these studies, similar esperiments were conducted with Sell Bangles taken frOm the profile of a light and also a heavier tyre of soil. hyperinents were also conducted withlsilicic acid, rock flour, and the line portion of soils in order to determine if the acquired data would coincide with the adsorption isotherm grarh. heaction, character of preciyitates, and phosphorus content by analysis Were the Loints corsidereu in the inter- pretation of resultS. mil-er inental The behavior of acid Ihosphate, under a change of reaction only, is best made in water solutions. Time being a factor in such reactions, the first titrations were nade in a mininum Clause of time. Ehe hydrogen electrote (70) was usei in waging the readings of }H values. Additions Of altali (i or 1 cc.) were made at 5 minute intervals and the readings of pH values were made just Irior to each succeeding aidition of alkali, thus giving the reaction time to become sonewhat stabilised. To minimize any outside influences a corn cover was placed CHEF the container with Openings for the mechanica stiring device and the hydrogen electrode, and the colonel cell, containing a yorous llug in the salt arm to lrevent diffusion, was fitted into the corn and Kept in the solution throughout the titration. heutral distillei water was used in all of the work. The initial volume of these forSt titrations was LOO 00., but With the sev— eral additions of alkali the final Volume was about too cc. The ratio of CaH4(PO;)g to alkali was the same in all of these immediate titrations. The end points or equivalent points are on the points of 10, L0, and 60 cc. of alkali. The Specific concentration of phosphorus was varied and is given in the tables with the other data. The first titration of ea54(ro4), (table 1) was made with 0.1 normal KOH. Cahro, first appeared as a precipitate when 6.5 cc. of Koh had been aided at a pH value of 6.1. The depression of the pH value with the a precipitation of Cahir‘Cl1 is shown in curve A, fig. 1, table L and curve 3, fig. 1 contains the data of this titration repeatei with double the concentration of solution used in the first titration; table 3 and curve C fig.l with 4 times the concentration of solution; table 4 and curve D fig. 1 with 6 times the concentration of solution; and finally table 5 and curve 5 fig. 1 With 8 times the concentration of Solution as was used in the first titration. The point of precipitation of the CahiO4 was advanced by the increase in concentration of solution; the solubility product of CaHrO4 being exceeded earlier in the course of the titration. This earlier precipitation of CaHLO4 was accompanied by a lowering of the Table 1. Titration of CaHAIPCAIQ With 0.13.4KCH 0.2522 gms. CaH4(P04)2 (1.26 gms. per L) in 200 cc. neutral distilled water Time :cc. 0.1: pH : notes Tine oo.0.1 pH notes Hr.minc N. KOH: : Hr.hin. N. KOH O 2.94 2: 10 13 6.39 precipitate 5 3.08 2:15 14 6.48 " 10 3.23 &:L0 15 6.58 " 15 0.0 .29 2:L5 16 6.68 " 2~ 0.5 3.45 2:30 17 6.78 " 25 1.0 3.67 2:35 18 6.86 " 3) 1.5 4.07 2:40 19 6.98 " 35 2.0 4.77 2:45 30 7.08 " 40 2.5 5.2 2:50 21 7.L0 " 45 3.0 5.5 2:55 L2 7.32 " 50 3.5 5.75 3:00 L3 7.47 " 55 4.0 5.87 3:05 t4 7.66 " 1:80 4.5 5.97 3:10 L5 7.91 " 1:)5 5.3 6.07 3:15 26 8.L7 ” 1:10 5.5 6. 5 3:20 L7 8.83 " 1:15 6.0 6.20 3:;5 £8 9.65 " 1:20 6.5 6.2 3:50 39 10.30 " 1:15 7.0 6.3 3:35 30 10.62 " 1:30 7.5 6.39 3:4) 31 10.60 " 1:35 8.0 6.44 3:45 2 10.92 " 1:40 8.5 6.1 preciyitate 3:50 33 11.0; " 1:45 9.0 6.07 alfeared. 3:55 34 11.09 " :50 9.5 6.10 increased 4:00 35 11.17 " 1:55 10 6.14 with 4:05 36 ll.L4 " 2:)0 11 6.20 hos 4:10 37 11.L7 " 2:05 12 6.29 4:15 3 11.33 " 1H value 0 Cafi4ir04ig was also treated in line manner with Caiohiz and with the same rPOTOTtiOD of yhoslhorus to base, but in a less concentrated .L solution, as Ca(cfi)g is, at best, only about 0.04 nornal. The general trend of the curve (fig. L) is similar to that obtained by titrating CaH4(PC'4) g with K‘oii, the difference Iro‘oably be 111:; due 118.1111)! 150 the Table 2 Titration of CaE4(£04)9 with 0.2 fi.KDH 0.5044 gm. CaH4(104)2 (2.52 gm. ler L.) in L00 cc. neutral distilled water Time :cc 0.2: pH : notes ::?ime :cc 0.2: pH : notes Hr.Minx 3 K08: : ::Hr.;in: N HOE: ; 5 3.01 2:15 16 6.80 Ireoilitate 10 3.18 k:;0 17 6.95 " 15 3.23 2:15 18 7.08 " £0 0 3.L3 3:30 19 7.L4 " 25 1 3.63 2:35 L0 7.41 " 30 2 4.65 2:40 21 7.61 " 5 3 5.52 L:45 L: .93 " 40 3.5 5.68 L350 23 8.48 " 45 4 5.82 2:55 24 9.65 " 50 4.5 5.92 3:)0 25 10.45 " 55 5 5.91 tracipitate 3:05 36 10.50 " 1:03 5.5 5.60 formed. 3:10 27 11.02 " 1:05 6 5.55 increased 3:15 28 11.14 " 1:10 6.r 5.61 with} 3::0 £9 11.L3 " 1:15 7 5.65 KLH 3:;5 30 11.33 " 1:20 7.5 5.68 auditiona 3:30 31 11.39 " 1:25 8 5.71 " 3:35 32 11.46 " 1:30 8.5 5.75 " 3:40 33 11.51 ” 1:35 9 5.75 " 3:45 34 11.56 " 1:40 9.5 5.80 " 3:50 35 11.60 " 1:45 10 5.83 " 3:55 36 11.63 " 1:53 11 6.02 " 4:00 37 11.68 " 1:55 18 6.17 " 4:05 38 11.70 " 2:0) 13 6.35 " 4:10 39 11.73 " 2:05 4 6.51 ” 4:15 40 11.77 " £113 id 5.65 " lower Concentration of the latter solution. The lrecilitate of Cah104 (table 6) is later in allenring due to the sane factor. O) V" -\-."D +61U‘G 3 Titration of Cau4(£04)2 with 0.4 N hon 1.0088 gm.CaH4(104)g (5.04 gm. Ier L) in 2)) cc. neutra1 gistilleu water Time :00 0.4: pH : Hates : 2110 :00 0.4: pH : flutes Hr.Lin: N Kbfi: : : dr.gin: N Kth: : 5 L." 2:05. 10 5. 50 Bros 11; itate 10 3.11 2:13; 11 sues " 15 3.95 2315‘ 12; 6.15 n 20 3.09 2:20 13 6.41 " 25 3:11 2:25 14 6.69 " 30 3.12 2330 15 6.76 " 35 0 3.13 2:35 16 ‘.91 " 40 0.5 3.26 2:40 17 7.08 " 45 1 3.50 2:45 18 7.21 " 50 1.5 '.97 2:60 19 7.49 " 5 2 4.70 2:55 20 7.79 " 1:0) 2.5 5.19 ,‘3uu 2.1 8.60 " 1:05 3 5.41 '3:05 22 10,14 " 1:10 3.5 5.50 precipitate 3:10 23 10.22 " 1815 4 5. £9 Fil‘IeaI‘OJ 3315 2.4 11.05 " 1:20 4.5 5.0) increasing 3:;0 25 11.13 " 1:;5 5 4.92 with 3:L5 26 11.36 " 1:30 5.5 4.90 HUB 3:00 :7 11.46 " 1:35 6 4.9 additiund 3:37 28 11.65 " 1:40 6.5 4.90 " 3.40 251 11.61 " 1:45 7 4.92 " 3:45 30 11.68 " 1:50 7.5 4.95 " 3:50 31 11.73 " 1:55 8. 5.02 " 3:55 32 11.60 " 2:0) 9 5. 2.2-; " Table 4 Titration of 0364(104)g with ).6 Lurmal KOH 1.5132 gm.CaH4(PO4)2 (7.57 gm. per 1) in 100 cc. neutral distilled water Time :cc 0.6: pH : Notes : Time :00 0.6: pH flutes Hr.:in: N KLH: :6r.6in:: 5 £65: 5 2.84 2:00 12 6.17 lrccilitate 1) 2.94 2:05 13 6.4L ” 15 3.01 2:10 14 6.59 " 2.0 5.03 2:15 15 6.78 9 25 0 3.04 2:20 16 6.93 " 30 0.5-». 3.: 2:35 :7 7.10 " 35 1 3.45 2:30 18 7.27 " 40 1.5 3.94 2:35 19 7.51 " 45 2 4. 75 It. fern-.3 but 2.. 3-3.0 2.0 7. C4 ” 50 2.5 5.11 disallears 2.45 21 8.74 " 55 3 5.19 1t.10rsists. 2:50 22 10.43 " 1:0) 3.5 4.62 " 2:55 23 10492 " 1:05 4 4.46 " 3:0) 24 11.14 " 1:10 4.5 4.41 " 3:05 L5 11.31 ” 1:15 5 4.41 " 3:1) 26 11.43 " 1:20 5.5 4.43 2 3:15 L? 11.53 " 1:15 5 4.45 " 3: 53:) 2:8 1:. 51 " 1:30 6.5 4.48 " 3:25 29 11.68 " 1:35 7 4.n5 " 3:30 33 11.75 " 1:41 8 4.73 " 3:35 32 11.67 " 1:45 9 4.90 " 3:40 36 12.05 " 1:50 1) 5.L6 " 3:45 4) 1;.19 " 1:55 11 5.78 " Table 5 Titration of Cah4{kCQ)2 with 0.8 NUFLRl H05 2.0176 g1. Cufid(104}£ (10.)9 gm. per 1) in L1) cc. neutral distilled ther 3156 :cc 0.8: 3} : flutes : T050 :00 0.8: ya : flutes Hr.:in: N KVH: : : Er.gin: X ALL: : 5 2.82 2:45 13 6.37 precipitate 10 2.66 1:50 14 6.58 " 15 0 L.E9 1:55 15 6.73 ” 20 0.5 3.96 1‘ .fui’ LC) 360:2:0) 16 6.90 " £5 1 3.33 It.fur L5 sec. L:05 17 7.05 " 30 1.5 3.79 ” " J0 " 2:10 18 7.LL " 35 2 4.58 " ” 4) " 2:15 19 7.44 " 40 2.5 4.9 " LerSiSta. L:LO 2- 7.74 " 45 3 4.63 " 2:25 Ll 5.54 " 50 3.5 4.24 " £:L0 L2 10.33 " 55 4 4.18 " 2:35 53 10.67 " 1:30 4.5 4.16 " L:4J 24 11.12 " 1:05 5 4.16 " 2:45 25 11.59 " 1:10 6 .53 " L:5) 26 11.43 " 1:15 7 4.33 " L:55 L8 11.63 " 1:50 8 4.48 " 3:00 3) 11.80 " 1:25 9 4.70 " 3:05 32 11.9; " 1:30 10 5.04 " 3:50 36 12.14 " 1:35 11 5.67 " 3:15.) 4:0 12.2.7 " 1:40 1r 6. L " 5:50 50 12.56 " MICHIGAN COLLEGE 10 Tab1e 6 Titration of Cafi4(r0n)g with 0.04 Normal Ca(cu)2 0.09088 gm. CaH4(PO4)2 (2.016 gm. per L0 in 200 cc. neutral distilled water Time :cc 0.04: pH : Notes : Time :00 0.04: pH : hotee Hr.Lin: N K08 : : : Hr.Lin: N 202: : 5 3.01 1:55 10 6.70 . 10 3.28 8:00 11 6.76 , ‘ 15 3.40 2:05 12 6.83 Pt. iaint. 2 3.55 2:10 13 6.06 " increasing 25 0 3.60 2:15 14 6.83 " 30 0.5 3.79 2:20 15 6.49 " 35 1 4.06 2:25 16 6.42 " 40 1.5 4.53 2:30 17 6.44 " 45 2 5.07 2:35 18 6.46 “ 5O ‘45 5.46 2:40 19 6. 51 " 55 3 5.71 2:45 20 6.56 " 1:03 3.5 5.88 2:50 21 6.59 " 1:05 4 6.00 2:55 2; 6.63 " 1:10 4.5 6.09 3:0J 23 6.66 " 1:15 5 6.19 3:05 24 6.73 " 1:20 5.5 6.26 3:10 25 6.76 " 1:25 6 6.31 3:15 L6 6.83 " 1:30 6.3 6.36 3:20 27 6.88 " 1:35 7 6.42 3:25 28 6.93 " 1:40 7.5 6.46 3:30 30 7.10 " 1:45 8 6.51 3:35 34 7.61 " 1:50 9 6.61 3:40 40 5.39 " Time is a great factor in these chemical reactions,and the straigh- tening of the curves, and calls for the partia1-repeating or the titra- tions in such a manner to permit the reactions to approach equilibrium. These chemical reactions Probably would never come absolutely to an equilibrium, but it was thought feasible to select a time factoc of 14 Consequently several solutions were neeued in days for this work. I order to determine the points deSired in the titration curves. These MICHIGAN AGRICULTURAL COLLESE (”ado 17/} that] )1. CC. 13 . Table 7 Titration CaH4(}O4)3 with.0.l normal KUH. Time factor, 14 days. 0.2582 gm. CaH4(PO4)p in flank mace to a volune of 200 cc. Flask:cc 0.1 : IrH : i-Iotes : i‘lask:cc 0.1 : 1n : L'oted no. : N K68 : : lreciyitate : no. : 5 nos : : lreciritate O 0 3.30 :0 L0 6.78 Cazd‘tg) 2 2 2 .82 2 21 6.81 " 4 4 5.35 083104 pct. 22 2; 7.03 " 6 6 5.2 ” more L4 ;' 7.19 " 7 7 5.31 " most :5 25 7.41 w 8 8 5.36 " less 2' 27 7.69 " 9 9 5.21 " " 2 L8 7.98 " 10 10 5.53 Ca3(104)2 29 L9 9.23 " 11 11 5.58 in no. 4 30 a) 9.64 " 12 1: 5.55 witLl 5; 5; 10.18 " 14 14 5.83 increase 34 54 10.80 " 16 16 5.95 to no. 14, 35 so 13.95 n 18 18 6.49 then 40 40 11.26 " 19 19 6.63 decoreaacs. Kote: lrecilitate 111 not torn in flud&8 no. 4 to 7 until 1 or 2 hours after the ex}crihent was set up, ani UnfilO4 uii not £011 in the bottom of fla Ks until several cayd later. solutions were yregared and aiditiond naie in titrating as is shown in the table for each!titration. oome of the 1H values were determined with the h;;rogen electroie (70) EHJ some with the the guinhyirone electroqe (69). Dhe eerct ofimore time on the titra- tion of CaH4(P04)2 (table 3) is shown grayhically in fig. 3. Ihere is little difference between this curve and the curve of the same titration made immeiiately at this concentration, except that the former lies lower in the pH range. in more concentrated solutions, in which the break in the curve when the CaHEO4 preeilitate apyears V15 3 MICHIGAN AGRICULTURiL COLLEGE 0.! I1- kO/K 14 Titration of 0184(104)2 with 0.04 Normal CaiCh)2 . 2ime factor 14 days Irv—”r- up- ‘ 0.25 2 gm. 0884(P04)2 . Total volume 200 cc. CaiCH)2 used in quantity eoual to 0.1 K 108 in table 7 Flask:ec. 0.1 : pH : notes : Flask;cc. 0.1 : LH : motes no. : 8 K08 : : irooiyitatg no. : N K08 : : preciyitate 0 O .23 20 47.00 5.21 Ca3(104)2 Z 4.70 4.77 _ 21 9.35 5.21 ” 4 9.40 5.11 CaHPOA 22 51. 70 5.25 " 5 11.75 5.18 " more 24 56.40 5.30 " 6 14.10 5.16 " less 26 61.10 5.53 " 7 16.45 5.11 " " 033- 2 63.45 5.38 " 8 18.80 5.18 " "(10412 28 65.80 5.43 " 9 21.15 5.21 " " 2 2 68.15 5.45 " 10 £3.50 5.21 " " " 30 70.11) 5.50 " 11 £5.85 5.23 " " " 31 72.85 "5.52 " 12 28.20 5.20 ” " " 3; 75.20 5.50 “ 14 32.40 5 .18 Cagfi 0 ;)2 34 79.90 5.60 " 16 37.60 5.2) 36 84.60 5.76 " 18 42.30 5.18 " 40 94.0) 6.05 " 19 44.65 5.20 " is more marked , the time factor is more Lronounced as is shown by the straightening of the curve. The titration of 0384(104)2 with Ca( on): (table 8) in quantities equal to 0.1 normal K08 gives a curve much different in the range of 13 f¢0n that for the K08 titration (fib.4). fhe effect of time on this reaction is seen in centering the curve in fig. 2 with the curve B in fig. 4,by a straight ening of the i'ormer curve. Asvery small quana tity of a crystaline precipitate fonnad in flask n0. 4. This precipi- tate was slightly greater in quantity in no. 5 but gradually decreased in succeeding flasks until none was found in no. 14. 0215(104)9 first 5 MICHIGAN AGRICUL;URAL cnu E‘CE .0 W," . :- .L‘r kléstyao Titration of Cacoq with Cad4§~04)2. iimc factor 0 0.3009 gm. 03303 in cash tube. Total vaiume of L3 cc. each. 0584(E04), solstion contained 21.02 .n. :0; iiter. Tube ; Cah4(104)2;irclcrtion ; In ; .FLCl}itCtLJ no. 3 cc. ; C3007 t0 ; ; ; ; 05541104) 9;; ; c.1404 - 033(104) 2 1 3 38 3;- 80(25 Gl‘cateat £11115. 2 6 3: g: 8.49 less 3 9 3: Z 6.42 " 4 12 331 8.54 greatest agt. ” 5 15 3:13; (3.54 less " 6 18 3312 8.4 " " 7 2 3:13} 8.L3 ” “ 8 2 3:2 6.12 ” " 9 2 3:24 7.91 " " 10 3) 3:22 7.07 " " 11 33 3324- 4.67 " erStaline 23 5 c3 .5 3 .5 ‘1': . ‘18 81.381 1 aunt . " 13 39 3:35 4.13 “ 14 42 333: 3.94 " 15 45 333; 3.80 " 16 48 3;4 3.70 " ayleared in tube 7 and increased in cusitity with the increase in the aiditions of Ca(01)2. The effect of the solid materials as 03003, CaO, anc L50 upon CaH4(IC4)2 in water solution was stuiies by setting up a series of large test tubes each containing an equal amcunt of the solid material with aiditions of a solution of CaH4(P04)3 in in reasing increments and male to a total Volume of 50 cc. each. These tubes were allowed to,stani for 14 days with daily shaming, at the and of which thme the pH values were determinei with the gninhgirone electroce (59) and. a I? ?able 10 Titration of CaO with CaH4(}O4)9 . Tine factor of 1% days. 0.168 gm. 030 in each tube. Total vulume of each tube to co. 031841904)9 solution containei Ll.0; Um. per liter. Tube ; CaH4(IO4)2;Pr0yortion ; pH ; rrecipitates : ; 080 to z z a no a 3 CC. 3 CaH4(PO4) 2; ; Calif-O4 ; 08.31294) 2 1 3 3. g- 12.15 .. ea3(ro4)2 2 6 5: Q 11.83 Cafii 4 " 3 9 8: 4 6.24 " " 4 12 3:1 5.L6 " u 5 15 331:;- 5.09 " I! 6 18 331% 4.78 crystaline “ 7 21 3.1; 4.50 " " 8 24 3:2 4.;8 " ‘ ” 9 27 531;:- 4.03 H n 10 as Sng- a.“2 " " microscopic examination made of the solie material in each tube. There was an amoryhous precipitate in tubes 1 to 1; (table 9), and since it is probable that 03503 can not exist at a }h of 4.5, it must be Ca3(PO4)2. There is also a crgataline erCiyitEté in tubes e to 16 which must be either Cau4(IC4)9 or Cahi04. It is without doubt CaH204 in tubes 4 to 10 since Cad4tleé)g we 11 not exist at a pH of 7. It is thought that CafllOd exists in tubes 11 to 16 also and that the Ice T“ reaiing is due to the liberated CO? from C3303 which had r '1'. . 0 AV, ‘ ‘ n _ u "w‘ 1 _ ‘ ‘ ‘1‘ I... f ‘ ‘ ‘0” t reacted with H3£04 irsn the Jyllttihb ut oi Len4ii04)2 into Lahxo4 and LHVC 1"3‘ 4-. To ceniare with the C3301 results the titration was releated using Sea. The fonnsticn of Ir eciritetes of ()3th1 ans da1(ie4)g was very much as with the 03303, but the pH range is greater in the 18 Te 19 11 Titration of :50 With 0884(P04)2 . Tine factor of 14 hays. 0.121 gm. ago in each tube. Total volume of each tube 50 cc. CaH4(P04)g solution contained 21.0: gm. per liter. Tube ; Cafl4(P04)g;Pr0portion 3 ; irecipitaes ; .‘ 1 a; heO to : PH 8 ° no. ; cc. ; CaH4(P04)2; ; Canic4 ; 033(ro413 1 3 33.; 10.40 none none 2 6 3: 2 10.15 " " 3 9 33-; 9.50 " " 4—2 10 7.62 " ' 4 12 3.1 7.32 N " 5 15 3.1g- 7.03 " " 6 18 3:15 6.73 " ' 7 21 3:13— 6.58 " " 8-2 22 6.48 ' " 8-1 23 6.32 " " 8 24 3.2 6.64 " “ 841 25 6.24 " " 842 26 6.14 " " 9 27 3.2; 6.07 ' “ 10 31 3;2§- 6.07 " " 11 33 3:23 5.65 " " 12-2 34 5.68 " " 12-1 35 5.68 " " 12 36 3:3 5.21 n " 1241 37 5.23 " " 1242 38 5.46 " " 14 42 3.3% 4.87 " " 16 48 3,4 4.62 n " titration of the Ua0 (table 10 and fig. 5), changing from pH 12, at the beginning,to 6.3 with the addition of 9 cc. 0‘ the Solution of CaH4(P04}p, or a change in preportion from 5:§-to 83;. There was little change in pH until 27 cc. of the 0834(é04)? solution hao been aided th the Ca003 titration. Again the titration was repeated using MgO (table 11), but no precipitates were formed, which is probably due MICHIGAN AGRICULTLHAL COLLEGE 73625 + (4/3/2004); Table 12 Solubility of'PhOSphorus in‘yater Solution of 0884(104)2 When Titrated with Ca(03)2 I \ __.__ a \ 0.05916 gm. CaH4(?0412 in each flask (equiv. to 100 Lb. acid phosLhate per acre). Volume of each 250 cc. Tine factor 14 0333. Flask:Ca(0H)2:Proportion:P605 mgm. per : ; Precipitates no. 3 :CaH4(PO4)2; 4109 cc. ; 3 3 cc. :to Ca(0H)9; in g 3 pH ; ; : : :Solution:Loss : ; C8K104 : 083(FO4)2 x -- -- 13.50 --, -- -- -— 1 3.23 1: 4- 13.50 0500 5.57 none none 2 6.46 1,{ 13.43 0.07 -- " " 3 9.69 1: 3- 9.46 4.04 6.31 some " 4 12.92 1:1 7.62 5.88 6.23 “ some 5 16.15 1:13 5.42 8.08 6.31 " more 6 19.38 1.14 3.78 9.72 6.50 none “ 7 22.51 1:13- 2.11 11.39 6.79 " “ 8 25.85 1:2 1.16 12.34 -- “ " 9 29.07 1:24 0.17 13.33 -- u n 10 32.30 1:25 0.11 13.39 -- " " 11 35.53 1:2; 0.06 13.44 8.36 " " 12 38.76 1:3 0.03 13.47 8.60 " " 13 41.99 1:"; trace 13.50- 8.65 " " 14 45.22 1.3; " " 8.02 n 7 15 48.45 1:3; " " 9.)6 " " 1 51.68 1:4 3 ” 9.L1 " ” to the fact that the phoslhorus ceupounus of magnesium are more soluble than the phosphoaus compounus on calcium, and the solubility product of the magnesium Com unnas have not been exceeded in these titrations. The effect of the adoitions of Cafl4(104)2 on the pH is not as g. at as on the 080 but is greater than on the CaCOg(fig. 5). The apllication of discovered facts to fielu conuitions is the goal of the soil chemist an; in orier to aggroach this goal 1n'this work the assumption is maie that an acre 6-inches of soil contains 12 percent of moisture,on the weight basis of L,O)D,0)0 pounds, in which 21 Table 13 solubility of Phoslhcrus in Water solution of CaH4ilc4)9 when Titrated with Ca(CH)? . 0.1183: gm. CeH4(IO4)2 in each flask ( equit. to 200 1b. acid ghosyhate Ier acre}. Volume of eacn 250 cc. Tine factur l4 days. Flask;CBXOH)gzkroportion;P205 55m. per ; ; ; :CaH4(104)g; ,10J1QQ. ; ; ireciyitates no. 3 CC. :tO Ca(01i) 2; in ; PH 3 ; ;solutien;1oss ; ; 08.13204 03.311104) 2 x -- -- 27.00 -- -- -— -- 1 6.46 l: —“- £5.50 1.50 6.35 none 1010.0 9 12.9: 1:-§ L0.EO 6.19 5.99 some n 3 19.38 1: g 17.30 9.70 5. 2. uOubtiul some 4 £5.84 1:1 15.79 11.21 5.96 none here 5 3;.30 1:14 13.90 16.10 6.09 ' " 6 38.76 1.1; 2.24 19.76 6.31 " " 7 45.22 1:12- 4.54 22.76 6.58 - n 8 51.68 1:2 11.68 25.6‘ 6.88 . " 9 58.14 1:33 1.69 15.31 7.20 " n 10 64.60 1:55 0.25 28.75 8.34 " " 11 71.06 1:2? 0.25 26.75 8.78 " " 12 77.5: 1:3 0.20 26.80 9.01 " " 13 83.98 1:33 not 9.19 " " 14 90.44 1:35 ialyzeq 9.43 " " 5 96.90 1.3% 9.58 " " 16 103.36 1:4 9.58 n " the phosphorus of the soil, or applien phoslhorus, may become uissolVed. A series of titrations were naie on this basis with concentrations of CaH4(P04)2 ecuivalent to 100, £00, 300, and 400 Lounas of aciu Lhos- yhate per acre respectively. Ihe progortion of C&H4(}U;)2 to Ca(cu)g was the same in each series. urhlengeger flasks were usea in this exPeriment and the volumes were 5510 to Lb) cc. each. the time allowea for the chemical reactions in these series was also 14 days. The end goints or equivalent points in eachgof these series occur in flasks numbers 4, 8, and 12 of each series a;ike (tables 12 to 15). Table 14 solubility of lhcslhorus in water oolution of Cafl4(iu4)g when Titratei with Ca(oh)?. 0.17748 gm. Cafi4fiio4)2 in eachlflask (eouiv. to 300 lb. acid Lhoslhate Ler acrey. Volume of each);50 cc. Cine factor 14 0538. ElaéK;Ca{Ufi) g;1~1‘01;ortiun;l 2’05 135.21.1181‘ ; ; : :CaH4(PO&)2: 130 001. ; ; ireciyitates n0.; cc. ;t0 CaUTli) P3 in ; 1.11 ; ; 3 ;solution; loss; ; Cau104 ; 083(r04)2 x -— -- 40.6) —- -- -- ~- 1 9.69 : j— 36.20 4630 6.25 some none 2 19.38 1: g 31.10 9.53 5.89 none some 3 19.07 1: 3 26.00 14.50 5.79 - " 4 38.76 1:1 21.00 19.50 5.82 " " 5 48.45 1:1fi- 15.41 £6.09 5.96 " “ 6 58.14 1:15 10.19 30.31 5.45 n " 7 67.83 1.12 5.44 35.06 6.37 ' " 8 77.52 1:2 1.39 39.11 6.48 ” " 9 87.21 1:2;- 0.23 40.57 7.13 ” ' 10 96.9) :2; 0.06 40.44 8.68 ' " 11 106.59 1:23» trace 40.50- 9.11 ” " 12 11602. 133 N H 902.], I! II 13 125.97 1:34 " " 9.52 “ " 14 125.66 1:35 not analyzed 9.55 " " 15 145.35 1:32 9.60 " " 16 155.04 1:4 9.75 " " In flask number 4 the equivalent proPortion of CaH4(PO4)9 to Ca(0H)2 was 1 : 1, in no. 8 1:2, ans in no. 12 1:3. CaH?O4 was found in the bottom of flasks 3, 4, ani 5, aha Ca3(P04)2 in flasks 4 to 16 with the amounts increasing with the increase in the amount of auditions of Ca(CH)2, in the titration of CaH4(P04)? equivalent to 10) pounds of aciti phosphate per acre. If the concentrationisaoubled (table 13) very much the same results necesecureu except that the precipitateon even the greats r concentrations used occured earlier in the series. behaves in the Same manner (tables 14 ans 15). Table 15 Solubilflty of Bhosphcrus in deter oolution of CaH4(£O4)? ahen Pitrated with Ca(DH)2 . 0.25664 gms. CaHA(P04)2 in eachlflask (equiv. to 40) pounus acid phOSphate per acre). Volume orieach 250 cc. Tine factor 14 says F1ask;Ca(OH)2:ProP0rtion;P205 mgm. per : ; ; :CaH4(PO4)2: 130 c . g ; Precititates no. ; cc. .to ; in ; 3H : g ; Ca(CH)2 ;soluti0n; lose; ; CaHiO4 Ca3(£C4)2 X -- -- 54.03 -- -- -- ~- 1 12.92 13-; 41.38 12.62 5.79 some none 2 25.84 1. g 69.64 14.16 5.77 none acne 5 56.76 3 1 54.96 19.06 5.67 " more 4 51.68 1:1 26.19 27.81 5.70 " " Cn analyzing for 1hcfilhorus in solution in the clear liqui¢ in each flask of these 3 ries Large; iiirerenccs were found. The amount of Ihos;horu3 in solution decreasei with auditLons of oa(oa). ans the decrease is very maraei as the reaction aplroaohes the neutral goint, the Solubility being very 105 in the alaaline solutions. in the more concentratei solutions the earlier ayyearance of a 1recipitate was scoomfaniei by an earlier urn; in the curve or the LH values (fig. 6); while in the alkaline range, the 1H curve for the ucre Concentrates solutions was higher in the 13 Scale. Bhe reaction and the amount of Ihselhcrus in the solution was greatly inflaencel by the quantity of Ca(0§)9 aided. 11);: anti 10(L11)3 tU‘V'CtiLCI‘ “with 6&1lean the 7‘ In a titrat on of a( ,- . 010633 of EG(CH}3 ircsent nade the stuiy of Irecigitates aifficult. The uantity of yhoslhcrus taken from the solution increased with the audi- -. ~ ~ \ a . - . .. , . tions 01 0834(10472 but the increases were not in IYuLUFtion to the M‘CH'GAN AGRICULTURAL cm. LFGE Table 16 solubility of lhosphorus in water Solution when Ca( Ch)9 and 16(LH)3 Together‘are Titrated Jith a Solution of Cah4(E04)9 containing 6.5 gms. CaH4(P04)9 per Liter. 25. cc Ca(“H)9 and fr M3113 recilitatee 10(CH)5k in quantity equiv- a alent t0 2). Of 1:119 C&( UH) 2 Ti 3 placed. in 93.011118 “ (2111.0 1!; 115157;}. Fla :CaH4(1704)? Ir01_orticn; Lgu. 1305 Ler 100 cc. 3 110.; CC. :CBL VII) 0.. t0 3 ; ;Ie((;)3 t0; aided ; in 3108s ; pH ; :CaH4(104)2; ; solution; ; 1 5 1.93-4 7.10 0.20 6.90 6.93 2 10 1.5: g 14.10 0.56 13.64 6.71 3 15 1:9. j- 21.30 5.35 15.91 5.63 4 20 1:;gi 28.40 11.54 16.66 5.60 5 25 13;. 3— 35.50 19.46 16.04 5.55 6 30 1.9319 42.60 36.63 16.97 5.61 7 35 1.3: $6 ..70 30.06 19.66 5.56 8 4o 1:;.: 56.60 37.66 12.12 5.46 9 4 1.9.3; 63.90* 45.09 18381 5.39 10 6: 1.9.19 71. 0 51.6; 19.16 5.34 ‘ i magnituie of the aiiitions (table 16}. Ihe inrve of titration beains 4 at 1H of 6.9 and 610166 acenward with the 3111:1913 of oaa4ggo4)? (£15. .4 The titration of Cafi4ifo4)9 with CaCOS, in concentration qeuiVal- ant to 20) Ion: Hi of acii phosyhate yer acre, as biven in table 15, was peleated with the aisition of ie{tn)3,in amounts eguivalent to one-half of the Cah4(104)2 used, in one series and Al(.h)3 in the saz.e xrolor- tion in another series. These results showed the influence of the Iresence of Al(Ch)3 and 10(Ch)3 upon the solubility of the ghoslhorus Qt 010317 and 18) and ugsn the reaction (fig. 8). uhe re “1(01), "as present, 1633 Ca(oh)9 was reouirei to raise the ,5 of the solution to 26 MICHIGAN AGRICULTURAL COLLEGE in F/dsks 7+ ('4 f/v/qu/z. M'CHIGAN 97 ~ AGRICULTURAL COLLEGE cam/y. Flak: + fable 17 solubility of Ihceihorus in water solution of Cah41104)2 containing ‘ 1": I V-.V -1 ‘. .. ""‘ 7' "" -'.'1 c o a 1 18(Ch)3 5941’5403t to fi'vJL L"1““:(1'V‘1J2' Time 14 cage. 0.11832 gs. Cah4(104)2 (equiv. to 200 pounce of acii LhosLhatu ler "6 acre). fetal volume was 660 cc. 25.66 mgm. retoh)3 to each. ilask;Ca(0h)gglroportiongngm. 3205 yer 130 cc.; IE ; Ireciritates no.; cc. :Cah4(ic4)2; ; ;CaKiO4:Cas(iC4)2 ; ;Fe(0n)3 ; in solutiun; loss ; ; : ;Ca(0ulg ; a z : 000) 13930 2 000 . -" -- -- -- 0.0) 1:9:0 25.47 5.53 5.36 none none . 6.46 1:131; 21.86 5.14 6.;4 scue N 12.92 1.9:; 17.14 9.66 6.24 none Sume 19336 1:L:9- 13.65 13.17 6.0) " More 250 8'1 13:331. 9 0 99 170 01 60 10 H H 32-30 1 F:1§« 7.10 19.9) 6.60 w « C3u303~30301$>02hbhlc>§< 36.76 13;: g 4.33 2;.68 6.49 " " 45-25 .;.1; 1.66 25.04 6.81 " " 51.66 1.9:2 0.3: 26.68 6.95 n n 58.14 131153 0.12 26.68 7.57 " " 1 54950 1:1:25 -- --. 8.25 " " 11 71-16 1.9.2;— -- -- 6.77 " " 12 77.52 1:9:0 -- — 8.86 n n 15 85-98 132:0; 0.11 26:89 —- " " 14 93.44 1:9:51- 0.04 “6.: -— n n 15 96.90 1.;33g 0.06 26.94 -- '~ n 16 103.J6 1;;34 -- - -- M u the neutral Icint. 10(6L)5 hai sane influence ulon the }h of the mixture but the raise in {H 043 net as great as it was where the Altoh)3 has rrczent. In the presence of leioh)3 2 egnivalehts of Ca(Cfi)° were \ required to raise the 13 of the hixture as high as 19 eoulvqlents of Ca(Ch)2 raised the 1K in the Iresence cf 41(ch)3. After the reaction hai passed the Ioint 0f the acuition Of the seconi efiuivalent of the Ca( 2);, which is the £1011 of 95 where Ca3{164)2 exists in the greatest quantity, the effect of either Al(;h)1 or 16(6h), was not nearly so marked. Table 16 Solubility of Ehoeghorus in.water solution of Cafi4(iud)2 containing AltCH)3 Squivalent to one—half of the Ceh4iic4)2 . Bine 14 “£33. Iv 0.1183 gm. CaH‘(IO4)2 (equiv. to Le) yoxnds of acid ph061hnte Ier acre). Total Volume ass :03 cc. 0.15664 U16 Al(bL)3 to each. ileek;Ca(cH)2;Proyorticn; 653. 12D5 ter 13» cc; In ; rreci}itetes no.3 cc. ;Cafl4(fod)2; ; ; ; ;to 6616313; in z ; ; Casio4;Ca,,(io4)p ; ;to Ca(0h)?; solution ; loss ; 3 ” N ' X 0.00 1:030 27.00 3-]- -- -- ~- 0 .0.00 115:0 26.25 0.75 4.26 none none 1 6.46 l:fl:3 21.86 5.14 6.49 90me " 2 17.92 1r%r% 16.24 10.76 6.57 none some 3 19.36 1.6.4— 11.66 15.14 6.47 " " 4 250 84 13%;]. 8.71 18. 29 6o 78 I! H 5 32.30 1.§:14 4.60 22.20 6.76 H " 6 36.76 13%.1‘ 3.61 23.39 7.52 n n 7 45.22 1:6:12- .75 66.25 7.35 n u 9 56.14 16§=3% .62 26.36 7.69 n u 10 640 60 1 £15327% 0 31 26o 69 8. b7 " H 11 71.06 1.25.2.5 .30 26. 70 8.94 " " 12 77.52 1.6:3 .16 26.62 --- u n 13 63.96 1.4.3; .12 26.66 --- H n 14 90.44 1.§.3§ .15 26.65 --- n n 15 96.90 1r%:5£ trace 27.00- --- " " 16 103.36 17%:4 n u ___ n n The effect of Fe(CH)3 and Al(cH)3 upon the Solubility of CaH4(10;)o was studied in 8 series where each was used alone. The concentrations were reduced to an equivalent of 50 pounds of acid phosphate per acre, with the proportions of the CaH4(PO4)2 to the Ye(OH)3 or the Al(0h)3 of l to 0 up to l to 430 in tense of equivalents. In these series the Fe(0fi)3 was found to have a greater influence upon the solubility of the phosphorus, causing it to become less soluble , (tables 19 and 60), and also the Fe(OH)3 increased the pH of the solution more than the 8 Table 19 Effect of Fe(01i)q on the dolubility of PhOSphorus in a deter oolution 0f 0384(PO4)90 v 0.02958 gms. of CsHA(PO4)2 (equivalent to 50 pounds of ECid yhosphete Per acre). Total volume of each flask was 250 cc. Tine 14 days. Flask; 56(Ch)3 ;}r0portion; mjm. P605 per 100 cc. pH ; Irccipitaees 110. ; 37218. ‘ 0511141904) f: g ; (38.1110433- ; ;to Fe(0h)3; in solution; loss ; ; 063(10A)2 O 0 130 6.67 —- —- ----- 1 0005013 134 2.71 3,96 6009 i8<05)3 2 0.10)£6 138 1.67 5.40 6.88 obscured 5 0.20352 1:16 0.12 6.55 7.0) other 4 0.40114 1352 trace 6.67— -- lreciyitetes 5 6.60156 1:48 " " 7.19 6 0.80108 1364 " " -- 7 1.0026 1.3633 not 6115131161. -- Bee 8 2.005: 1:160 7.66 note 9 3.0078 lngO 8.04 10 4.0104 13520 8.07 11 5.0130 1:400 _- Kote : Tests were made for iron nith KCLJ, with very reint test Ior irtn in clear solution in no.4 an: Slightly increasing to no. ll, but there was only a shall smount even in no. 11. “(0103 did (£15. 9 ). In the foregoing 'titrations of 0634(104)2 with alkalies the 02121104 is formed when the pH is raised above 5.6 by additions of Ca(0h)?. in the next titration presented a nearly saturated solu- tion of C3fi204 was titrated with Ca((§)2 in the same manner as the 0984(EC;)2 in the 10) round sci; Ihcsihste equivalent PCtOTtCu in table 12. The titration of 06K304 with 06(Dh)2 forms 063(lc4)2 which is insoluble and precigitates fr0u the solution as is shown in table 21. The curve of :the 1H values of this titration rises tram 31 MICHIGAN AGRICULTURAL COLLEGE Alla/d. or Feb/l), ’VIV4/CI115 Table 23 Affect of A1(CH)3 on the dolnbility of ihosyhorus in a Water bolution 0f CaHdUO4 2. _ . n. oi C65 (104)“ (eosivalent to 50 pounds of acid lhosrhate 0.02958 g; g Ier acre). Tots volume of 250 cc. 'n each flame. Time 11 days. 112-6; Al(0£)3 ;lroportion; ugh. Egos Ier 100 cc; ;}reci}itates ; ;Ca}14(PC/.t) o; ; 1.111 ; _ no. ; gels. ; to Alfie-AT“ in ; ; ;'-.36.h'1’04 083(1‘04)? ; ; ; Svlutiun ; 1099 ; ; A X 0 1 z 0 6.67 -- -- -- 1 0.05656 1 3 4 5.50 1.17 5.64 excess cf 2 0.07512 1 3 8 6.55 2.12 5.59 A1(Lh)3 5 0. 462 1 3 16 5.45 5.24 6.55 mace 4 0.29248 1 3 52 1.53 5.14 7.57 other 5 0.65872 1 g 48 0.60 5.87 7.41 precipitates 6 .58496 1 x 64 6.40 6.27 7.51 obscure 7 0.7312 1 3 60 0.15 6.52 7.29 8 1.462 1 z 160 0.06 6.61 7.50 9 2.1556 1 g 24’ 0.05 6.62 7.66 10 2.9248 1 g 320 trace 6.67— -- 11 3.656 1 x 433 " " -... pH 6.5 rather abrultly upward to ebmve pH 10 (£15.10). As might be exyected the £5 curve for the titration of Ca"704 with Ca§oh)2 lies above the curve of 18 values in the titration of CaH4(EO4)2 with 06(08)?. The curves of IE values thus far presented have some goints of resemblance and each has Loints different. A 160 of the e are grou;ei together on the sane sheet for direct ocularisonifid. 11 ). Cd 01 fable 10 H Titration of Cahi0A with Ca(t§)2. 0.04358 Qua. Caflloa in solution in each flask. Total volume 250 cc. Thne factoe of 14 days. Bike factor 14 gaygo }1ask; Catohiz 3rr0portion; ham. P.05 per100 003 LB 3 irecipitates no. ; cc. 30(125'04 t0 ; g ; 3 ; Ca(tn)2 ; in ; ; ;Ca§204;CaSIP04)2 ; ;; geolution ; 1033 ; ; A 0 130 8.43 -— -- -- ~- 1 3.23 lgfi- 6.18 2.25 6.49 sone none? 2 6.46 1.; 3.83 4.60 6.52 nene some 3 9.69 135- 2.78 5.65 6.69 none more 4 12.92 1:1 0.80 7.63 6.86 " " 5 16.15 131% 0.15 8.68 6.89 " " 6 190U8 131g 0.12 8.51 7.65 " " 7 22.61 1:1? 0.15 8.88 8.57 " n 8 25.84 132 trace 8.46u -— " " 9 29.07 132% " " 1).£8 " " Two soil profiles and a very acii sandy surface soil were selected from which to secure samples of soil Ior a continued Study of {heaphorus fixation uyon a Soil medium. The procedure of study was as near as possible like the foregoing studies. The soil in 100 gram portions was placed in jelly glasres. The soil had been passed through a 2-mm. mesh.sieve. Bhese were given varying treatments of CaO and made to Optimum moisture content with neutral distilled water. These soil mixtures were stirred daily for 7 days, when equal additions were made to each of the soil samlles, at the rate or 200 pounds of acid ' 54 MICHIGAN AGRICULTURAL COLLEGE F/aJks + (4/0/97), o: 0: Table 22 Hater Joluble PhOSphorue in Acid -aan1y Loam when Treated with Acid Phoephate and 0&0. 5.68 fiEfih CaH4(}04)2I was added to each culture (equivalent to L00 pounds of acid phoSPhate yer acre). ‘ igau P29: 3 1‘205 3 Culture; CaO mgm.3 CaO lbs 3 mgm. P205 3 3 3Ler acre 3 aided 3 soluble in3increase3 pH no. 3 3 3 3 250 cc.HpO3 over 3 3 3 3 3 chBCk 3 X "" O 00 EUR ""“" 50 59 0 3.2 0.987 0.695 5.70 1 " 0.67) 0.068 6.13; E. " ‘r- -" 6.00 3 " 0.692 0.060 6.49 4 " 0.552 0.100 6.55 5 " 0.310 0.078 6.60 6 " 0.050 0.118 6.77 7 0.462 0.26) 6.69 8 . " 0.560 0.118 -- 9 J0 0613 “ 0.L70 0.008 7.05 10 1:13 3.570 " 0.386 3.155 7.1;; 11 110 39;? " 0.31) 0.078 7.;2 1: 120 4:85 " 0.085 0.160 7.54 13 100 4642 " 0.550 0.118 7.6; 14 140 1 4999 " 0.425 0.190 7.69 15 150 5.356 " 0.462 0.230 7. 76 16 16) 5714 " 0.1.1:. 0.:70 7.90 rhoslhate per acre, and the whole almowed to stand for another luriod of 7 days with stirring each day. At this tine they were transierred to wide mouth bottles w;th £50 cc. of neutral distilled water, Shaking for 1 hour on a mechanical shaker, and then allowed to stand for 7 days. The liguid was then careiully Jourud off, whirled in a centri- fuge to make clear, and llaced in erhlenneyer fia¢Ks to each of which water soluble IhOSrhorus in Liami Loam A; horizon when Treated with 4 Acid phosIhate and CEO. 5.68 8E5. Cnfi4iro4)2 was added to eaci’culture (ecuivalent t0 L00 younds cf acii Ihoslhate yer acre). Soil 3 CaO mgm.3 CaO lbs. 3 hwflh 1:05 3 mgu.1205 soluble 3 Culture; 318r acre 3 added 3 in 250 cc. 830 3 pH 3 3 3 3 3increase3 3 3 ; 3 3 over A 3 X 0 -- 0 0.115 -- 5.31 0 0 -- 3.2 0.507 0.092 5.01 1 10 357 3.2 0.247 0.132 5.3 2 2‘ 714 3.2 0.570 0.255 5.51 3 30 1071 3L2 0.347 0.232 5.49 4 40 1458 3.2 0.310 0.195 5.64 5 5 1785 3.2 0.547 .232 5.74 6 60 2142. .502 0.3110 00193 P'- 7 70 2499 3.2 0.232 0.117 5.93 8 80 285 3.2 0.155 0.040 5.98 9 90 3513 3.2 0.077 -- 5.91 10 103 3570 5.2 0.077 - 6.16 11 110 3927 3.2 0.170 0.055 6.26 12 120 4285 3.2 -——- -—- 6.24 13 100 46'2 3.2 0.140 0.025 6.56 14 140 4999 3,2 --- —— 6.49 15 150 5356 3.2 0.215 0.10) 6.55 16 150 5714 3.2 —-- --- --— which was added 1 cc. of a nearly saturated solution of 25004 to cemllete the clearing of the solution. After Stanging over night a a setermination of phOSIhUruG was made on the solution frog each flaSK. The reaction of each solution was determined with the guin- hydrone electrode (Ed). I The results with the acid sandy loan soil \tab1e LL) indicates in Liami Loam A3 Hurizén When fireated nith (I) hater ooluble 3hoaghoru Acii Ehoaghate and CeC. 5.683mga, CaH4(LOA)2 was auded to each culture (eiuivelent to L0) rounds Of 331:.phoayhate.per acre.). than. lgcs3iLcrcaee .5011 3 33.0 11.3... 3 0&0 1'08. 3 111.3111. iTD5 3 3 .. Cuiture; 3 ler acre 3 n dcd 3 cluble 3 ever 3 3 33 3 3in 250 CC3'check 3 a ; z ; Water 3 ; h 0 -- 0 J.156 -- 6r; 0 0 -- 3.2 0.115 - 6.23 1 10 357 3.2 0.077 - 6.45 2 20 714 3.2 ).170 3.015 OoUu 3 33 1771 3.2 ).l£5 0 6.06 4 40 14L8 3.2 0.207 ’.352 7.35 5 50 1785 3.2 0.277 0.112 7.25 6 6) 214; 3.2 0.24 0.092 7.37 7 70 2499 3.; 0.;0J 0.345 7.52 8 83 2857 3.2 0.170 0.015 7.65 9 93 3Ll3 3.2 0.12; —- 7.73 10 110 3570 3.2 0.155 0 7.83 11 110 392 3.2 O.L47 0.392 7.90 12 120 .285 3.2 9.232 0.377 7.98 13, 133 4542 3.2 -v- -- -- 14 140 4999 3.2” 0.155 0 7.99 15 15) £35 3.2 0.077 -- 6.07 l little excelt that the soil is Bktcemely retentive of aciu Ihosihate, unless it can be interpreted htat the auditions of 0&0 reduces the quentity of {hosrhorus in solution. The results iron the A; an; A3 horizors, which are ecid, and the o horizon, which is alkaline, of the ziani Loam'édll tenu to indicate a les degree of solubility of the phoelhorue in this 8011 than in the Other 30113 Studied (tabled 24.5 351254 and .25). 39 Fable 25 Hater Joluble lhoa; horus in Jim..i Loam C hcrizon "hen freoteo with Acid iMi sth to axii CaC. 5.68 men, CaH4(P04)n Jes adieu to eegh culture (eguivalent to 200 Iounis or acio IhosIhate Ier acre.). Soil 3 CaO man. 3 CaO 153. 3 rwwn £305 3 mam. P3053increase3 IR culture; 3 Ier acre; auded 3“oluole in; over 3 no. 3 3 3 3250 CC.n D3 check 3 X 0 --- O 0.088 -- 8.06 0 0 --- ".2 0.13; 0.044 8.10 6 60 2142 ".° 0.114 0.026 6.22 16 160 5356 3.2 0.191 0.103 8.41 The kox Joil profile was also selecteo for these stuuies. The results which are given in tables 26 to 30;are very much the same as in the other soils. The virgin surface released less of the IhosIhorus into solution than the cultivated surface. more Ih03phorus was found in solution in Yo: C horizon than in anv of th'e other. The reactions of these soils as treated are Ilotted in gig. 12. Dhe results obtained in this set of experiments with the Soil profiles do nor warrant any definate conclusions because of the fluctuations and small dii ‘fercnces aiwoi them. In oroer to aIIreach fielu condi- tions the ouantitiee cf Ihos‘ Ihoius taaen franLUuitmmemanatione were too small and hence the experimental error became IroIortionately too larg‘ e to be able to get satiSfectory results. The jhcory of ausertion in connection with Ihoslhorus 115a stion in soils is receiving much attznticn at the Iresent tine Iarticularly in the study of soil colmoids as well as ;n nan; other fielie of Table 26 hater Holuble lhosIhorue in 103 oaniy Loan Cultivated ourface “hen Treated filth Aciu Inuirhatu ani Can 5.68 mgm. Caiid(1~04)9 was aaied to each culture (eguivelent to 200 Iounis of acid IhesIlhate Ier acre}. Soil 3 030.;§i. 3 CaO lbs. 3 Lgm. 196 3 Lgiu 13053increaae3 13 culture; 3 Ier acre; aiuei 3 soluble in; ver 3 no. 3 3 3 325) cc. 830. check 3 X 0 —- 0 0.252 -- 5.89 0 0 —- 3.2 0.257 0.025 6.06 1 10 3:7 3.2 0.299 0.067 6.64 2 20 714 3.2 0.263 0.061 6.61 3 30 13"1 3.2 0.293 0.061 6.70 4 40 1428 3.2 0.291 0.159 6.72 5 50 1765 3.2 0.283 0.061 6.69 6 60 2142 3.2 0.267 0.025 6.99 7 70 2499 3.2 0.216 — 7.14 8 8 2657 3.2 0.227 0.125 7.09 9 90 3213 3.2 0.227 0.025 7.33 10 100 3570 3.2 3.25 0.025 7.39 11 110 3927 3.2 0.257 0.025 7.50 12 120 4265 3.2 0.690 0.068 7.46 14 140 4999 5.2 0.273 0.0é1 -- 15 150 5556 3.2 ~r- --- 7.78 16 160 5714 3.2 0.293 0.061 7.63 41 Table 27 Mater doluble Phosphorus in 103 dandy Loam Virgin ourface when Treated aith Aciu lhosphato ani CaO. $.68 mgm. CaHA(P0;)2 was audeu to each culture (equivalent to 200 pounds of acid ph02phate per acre.). Soil 3 Ca0 mgm. 3 CaO lbs. 3 mgm. 2205 3mgm. P205 3increae 3 pH culture; 3per acre 3 auded 3soluble in; over 3 no. 3 3 3 1250 00.8203 check 3 X 0 —— 0 2.780 -- 5.84 0 0 H— 3.2 0.880 - 6.35 2 20 714 3.2 1.293 - 6.50 4 40 1428 3.2 1.130 - 6.48 6 60 2142 3.2 0.720 - 6.54 . 8 so 2857 3. 2 0.177: — 6. 52 10 100 3570 3.2 0.620 - 6.61 12 120 4286 3.2 0.570 - 6.86 14 140 4999 3.2 0.770 - 6.94 16 ‘ 3 2 0.680 - 6.84 Table 28 Hater Soluble Phosphorue3Fox dandy Loam AZ Horizon uhen Treatea With Acid PhosPhate and Gao. 5.68 mgm. CaH4(r04)2 was squad to each soil culture (equivalent to 20) pounds of 8011 phosphate per acre.). Soil 3 CaO mgm. 3 CaO lbs. 3mgm. P305 3mgm. P905 3increase3 18 culture3 3per acre 3 addea 3soluble in; over 3 no. 3 3 3 3250 00.8203 check 3 X 0 -- 0 0.308 -- 6.80 0 O -- 502 00437 00129 6073 1 10 357 3.2 0.463 0.155 6.78 3 30 1071 3.2 0.386 0.078 7.11 4 40 1428 3.2 0.566 0.258 7.23 5 50 1785 3.2 0.463 0.155 7.38 7 70 2499 3.2 0.437 0.129 7.60 8 80 2657 3.2 0.453 0.145 7.63 9 90 3213 3.2 0.412 0.104 7.75 10 100 3570 3.2 0.412 0.104 7.86 11 110 3927 3.2 0.360 0.152 7.88 12 120 4285 3.2 0.720 0.412 7.93 13 130 4642 3.2 --- --- 7.96 14 140 4999 3.2 0.391 0.063 8.00 15 150 5356 3.2 -—- --- 8.08 16 16) 5714 3.2 0.350 0.042 8.18 43 Table 29 Hater Soluble Ehosphorus in Fox handy Loam B Horizon when Treated 31th Acid Encephato and CaO. 5.68 mgm. CaH4(PO4)9 was added to each Soil culture (equivalent to 201 pounds of acid phOSphate Ler acre). doLI 3 0&0 ngrq CaO lbs.3mgm. 1205 3mgm. 1705 3incrcase3 p5 culture; 3 per acre; added 3soluble in; over 3 no. 3 3 3 310) gm 90113 Check; K 0 -— 0 0.494 —— 7.16 0 0 -- 3.2 0.546 0.35; 7.10 1 10 357 3.2 0.463 -v- ‘ 7.23 2 2 714 3.2 0.628 0.134 7.40 3 so 1171 3.2; 0.579 0.155 7.55 4 40 1428 3.2 0. 72 0.278 7.67 5 50 1785 3.2 0.716 .222 7.70 6 60 2142 3.2 0.618 0.124 7.60 7 7) 2499 3.2 0.643 0.149 7.97 8 80 2657 3.2 0.705 0.211 7.87 9 9) 3213 3.2 0.443 -- 7.94 l) 103 3570 3.2 0.515 0.021 8.03 11 110 3927 3.2 0.463 - 8.07 12 120 1185 3.2 0.386 - 6.07 14 14.) 4993 3.2 Oo‘tl; " 801;) 16 160 5714 3.2 0.283 - 8.13 ‘ 44 Table 30 Jater boluble lhosphdrus in for gandy Loam C Horizon “hen Treated Jith Acid Ph09phflt6 and 0&0. 5.68 mgm. Cah4(PO4)2 was ad1ed to each soil culture (Qquivalent to :0) pounds of acii phosphate rer acre.). 13-011 3 0210 123,711; 08.0 lbs.3zx.gl.1. 1205 31.13111. 1:05 311131‘UaSO 3 PE culture 3 added 3 Ler acre. added 3soluble in3 over 3 no. 3 3 3 3100 53.8011; check 3 K 0 -- 0 0.154 -- 7.85 0 0 —- 3.2 0.459 0.335 7.7. 1 10 357 3.2 0.479 0.325 7.85 2 20 714 3.2 0.577 0.423 8.14 3 30 1071 3.2 0.469 0.335 8.17 4 40 1428 3.2 0.479 0.325 8.26 6 60 2142 3/2 0.607 0.453 8.26 8 80 285 3.2 0.592 0.483 8.2 10 130 357' 3.2 0.582 0.428 8.35 12 12 4285 3.2 0.668 0.514 8.31 14 140 4999 3.2 .* 0.62 0.474 8.43 16 153 5355 3.2, 0.649 0.495 8.29 771‘_—____——V__ 45 M'CH'GAN AGRICULTURAL COLLEGE M»? C9”? C40 46 Table 31 affect of H26103 on the qolubility of Phos;horus in water colution of 0aH4(IC4)2 of several Concentrations. Flask; mgm. P005 per 10) cc.3m*m.P2053 3 Ca per 250 cc. : ’ L 4. 31083 pbr3 pH : z : no. 3 original; final; 10393 flae'. 3 3original3fina1 31099 1 8 7.68 0.14 0.35 4.33 -- -- ~- 2 12 11.79 0.21 0.53 4.15 -- -- —- 3 2 23110 0.90 2.25 3.65 —— -— ~- 4 64 62.07 1.13 4.83 3.34 45.04 41.00 4.04 5 128 123.96 4.04 13.10 3.11 90.07 63.75 6.32 6 192 166.10 5.90 14.75 3.14 135.11 124.50 10.61 7 320 313.46 6.54 16.35 3.10 225.19 202.12 23.07 reaearch. The cauasion for the addorption 180th n1 for solutions is written (72), um“ : x3 in which A is the amount adsorbed by 3 units of solid adsorbing agent, C is the concentration of the solution, K is an adsorbent conStant and n is also an aieorbwnt constant. The approximate accuracy of the formula has been Shown by Ereundlich (73). A series of GbPEPLmGXLB were conducted with 523105 and a natural silicious deposit,cmmuomly called rock flour, which had a reaction of 4.9 pH. Ten gram samples of the solid were placed into ernlenneyer flasks containing 250 cc. oi.solutione of Ca34(}04)? of several difier— ent concentrations, shaken constantly and vigorously for 10 minutes and allowed to stan1 over night. fine final concentrations of phos- phorus were deternined and the results, A/M and C plotted and the 47 r"; Table 32 Effect of ”Rock Flour" on the Solubility of PhOSphorus in water 6 Solution of CaH4(P04)2 of deveral Concentrations. Flask31mm.1;2053rz.51r1..13?0531351111205 31:15:11. £20IS 3 12:31.1. 12053 1;}; no. 3per 100 3rer'250 31er 100 cc.3per 250 cc. 3per 10 31h; . cc. 3 cc. 3 final final 3rock flour; 3 I 3original3originalg loss 3 1 2 5 .95 2.38 2.62 4.28 2 4 10 2.09 5.24 4.76 4.16 3 8 20 5.50 13.74 6.26 4.08 4 12 30 9.02 22.54 7.46 3.84 5 16 40 12:30 30.76 9.24 3.96 6 24 60 20.02 50.05 9.95 ’ 3.76 7 32 80 27.79 61.47 10.53 3.59 8 64 160 56.98 142.45 17.55 3.47 9 128 320 118.22 295.55 24.45 3.34 10 192 480 179394 449.85 30.15 3.24 11 320 803 306.66 766.65 33.35 3.17 12 640 1610 614.80 1537.00) 63.00 -- 13 1280 3230 1247.60 3119.00 81.00 -- curves compared with the adsorption isotherm curve; The results from 826103 on the solubility ofiphosphorus in the water solution 01§CaH4(EO4)p , and also with the rock flour, (tables 31 and 32, and figs. 13 and 14) somewhat approach the adsorption isotherm curve. This study was repeated using soil particles as the adsorbing agent. A 500-grEm sanple oi the acid sandy loam was thoroughly shaken in water to cause deihoculatdon and,after standing for 1 hour, the suSpen— sion was poured off, continueing the process until the water remained 48 MICHIGAN AGRICULTURAL C01_LE"‘.E 3’3 .1 g E E Q s: i 3 MICHIGAN AGRICULTUQAL COLLEGE 1 \ y\$ 3’3 '25 {/1444 lflfi ¢C- 777M V10 6: [IS Table 33 sffect of Different size Soil Particles on the Uolubility of lhosphorus in Water Solution of CaHA(P04)2 from the stsndpoint of Adsorption. Sample no.3 size of 3Rate yer acre3 Lgm. ygos Ler 156 cc. water 3 particles 3on 53) an. 3 3 3 soil 3 added 3 final 3 loss flLL‘LJJlu S A 10 colloid 50' 40 13.55 26.45 11 clay 530 40 5.40 34.60 12 sand a silt 600 40 13.2“ 29.75 20 colloid 1)); 60 36.66 44.15 21 clay 1303 80 5.90 64.10 22 sand & silt leO 80 37.05 42.95 nearly clear. fihis soil suspension was passed through a super centri— fuge thus soIer ating the soil haterial which collected in the cylinder with the lirger size Lartgbles near the inteae, and the finest larticles, distributel along the sides of the cylinder. Ehe portions of the soil thus secured, namely, he finest particles from the centrifuge, termei colloid, the less fine yarticles from the centrifuge, termed clay, and the bulk oi'the SOD—gram sample, mostly hostly sand and silt, were placed in solutions of CaH4(P04)2 equivalent to 500 pounds of acid phosphate per acre. A second set was also set up in solutions of double this strength. These were shaken constantly and vigorously for 10 minutes, allowed to stand over night anl the Phosihorus concen— tratiins determined. ' There was a marked loss of phosrhorus from the solutions (table 53) in each case, but being much greater yer unit adsorbing agent for the Table 34 Adsorption Cf Phosghorus By The line lortion Cf A Very Acid dandy 3 3 3 3 ElaSK no. 3mgp.trfiQEL§er 3 lingl_concentrztiiugn.12063 3 1'30 CC. 3 25;) CC. 3.'"L;‘..1 :05 1.81‘ _ 15113301‘ {.50 3 1,11 3origdnal 3origihal 310) cc. 3 250 cc. 3cc. loss 3 3 3 3 3 3 3 l 24 60 9.9? £4.95 5.05 4.16 3 64 160 45.03 112.57 47.43 3.96 5 192 480 163.92 409.80 73.20 3.57 6 3:3 833 254086 71:015 67oé5 5.47 cclldil and clay as they Wuiu only a very shall iLrt of the original 513 grams of soil. There lrobably was not over £3 grass of the clay and colloid crtizns thus obta-ncd. IJ :7 0 *fi iner Iarticlesof the soil were scieratcd fr;: other Iortions r H: Y0 C H Fl 0‘ 4 1 (I) Dw— '.'- p" r‘. '. '3 ‘f‘ . "-" -v n-vt‘ “ . .~ '7‘], 4 asking icr a .rurt C-LO, using use brmld oi soil in 363 cc. V of water and allowing it to settle ior 2 ulnutcs and then louring off 25) cc. of the susLension , which contained about 5) grams of the fine soil {articles, into erhlenmcyer f133fis. To the_rlasgs thus yrerared was addwd CaH4(}04)g in varying amountS. «hen the Cafi4iiv4)2 had been given time to dissolve, the the flaszs were :hhgen constantly and vigorously for 10 minutes , allowed to stand over night and the final IhOEIhQFUS concentrations determined. The acid sandy loam soil, and the.32 hurl; n of the Liahi Loam soil, which wee acid, were uuei in this exlerinent. Jhe data (tables 3able 35 Adsorytion of Phosrhorus by he Fine portion 3f the AL Horizon of the Xiani Loam Flask; Original concentration3Einal concentration; Loss 3 no. 3 I332. I506 1,8? 3 £111. loDE 381‘ 3 1181‘ {.50 3 3 100 cc/ 3 L50 cc. 3 13) co. 3 L5J cc. 3 cc. 3 1 £4 60 10.33 25.82 24.18 2 32 80 11.86 29.65 50.35 3 64 160 35.36 88.43 71.63 4 128 3:0 88.14 220.35 99.65 5 192 483 133.48 333.70 146.30 6 330 810 £60.l0 650.25 149.75 34 and 35) were plotted a: shown in figures 15 and 16. flhey do not have any great resenplence to the a_sor}tion isotherm curve although a general resemblence in shape to that curve existS. The data in table 16 were ylotted to show the adsorption curve. This curve (fig. 17) also somewhat resembles the adsorption isotherm curve. to general conclusions can be drawn fr0m these curves in view of therfact that chemical reactions are probably present in many cases in these soil Studies, and any very close adherence to the adsorption isotherm probably would not be obtained in the presence of chemical reactions. However, where there is a solid- liquid interface there probably is adsorption and with reactible contounds'also present there Irobably is chenical reaction, both of which are aoubtless functior;ng in the soil. MICHIGAN AGRICULTURAL COLLEGE '1 .vufidV gIan 31%»: MU ,Q 5‘: ‘ m KEN N" r I ICH A uRlCULTURAL COLLEJE u.-.-¢-.£.... ...-3.. ....«-~--. .-.—--..~~v}~c-~~—ooul ....-r..-§.......... ..--..- . w......-¢ .... ....L- «42...... .--__,..' ..- ...; . ...- .. . ..,., . .. ... . ...-.-. ....--..3-.-- ....r.. -..... .-....... ....-._.9~H-..... ......- ..- .--. .. 3. .. .3 .. ..... . ..... . -... -. .-... ...-.... ...“..- . .. ..-... ....+......... ...-.. LN” .M.. ,. ..,.U., ..U.HHUM.HHHIWHHU ”mu. “m. “HHHHMHH. H n. >..-.-....3 . ...... . I. . ..i.. . . . .-...... ...., . ....... . 4....... . .. ......... ... .... . ..... ....--.-.......... 3... , . .... .-.... .,.. ..... .-....l .... ................ .. .. y——¢—---—‘-——.—- -.— . -— -——.— L . . - .. - .... —3 . ...... ... .s ~—— y- o—c—a—- <—-.—.—'.-a—a—.—--—-—- .->— . _——~—o—~ - — ._. ._-;.__.___——-._J . yo.---o...+ . . .. 3. .. .. . ..~.. .I -. 3.-4.. -. .. .... .-... .... ..l. ..... ...... p.-. ... 1.. . .. ........ . . .. .. .... . ...... .-. .... I. ... v.... ... -... ......- I l >---.<-. ,..-. .. . .. .-.. ._ . . ..... . .-..3 . ..-... .-. . . ... .-.. ., , .--... ....-. .A~ . .. . ”MH.J... . ....H _ H. .M.._.HH 1.-“ .u a)-.fl..- .,-wfl .MHMWHJMW r¢~~047-» , .. .L . . _. .. . .- - -.. . .. .. ... . ... ..._. 3. ..L... .- .. .5. .... ... . .. . .-«-. - .. . i I. . ., . . .. .....-.-. .. ...._ , .. ....-. -.......‘... . ...s -._.._. .1 .... -1... . .. L. ..-.... . , -.. , , . . .. . .. .. .. _. .. ... - ......-..--....... . .. . .. . . I .. . .-. . . ... ... .. . -..... .. . . . ... ,. w &4 , . .. _. . . . .. . ....,,_.. . ... . .. -.3 . . . -.- 3...... .. ...,..... y...--»--.. .... . v . .3. .. . ... .. .-.. ....-... . - .... -.. .... . ... - .. .... . . t......... ....... . ......... » -. -. A-I‘ ... ... . ... . ... .... .-......a .... .»». ...L- .. . ....... ....... . -......... ....¢...J ....-...- . . " .. .. . .. . . ~. .. ..f... .- L .-. ... [...... .. ...-..... .. ..-.. W...‘ . ...... .- ... .. . .... .... .. L .. . .i .. ... .. .........3... -.... .-. ..-... ...-..,.. .....34-3t..—..-....-3 ... , .... ..... .4. ., ..... . 5 .. .......... ........,......... . . , .... . .. .. ..... .. ....... . .. ..-.. .... . . , .... .. . .. ... . . .3.. ...-.. ._ _ . - -..-..3 - - i ...... .---.-M_L__-J--.-._. ....H-... ... --.—.... -0‘_-_.-_..___.... . . . .. -. . . ...... ..... ... ......s.. .. ...- .--.... L.. ....- ....... . ....... .........'. . ...»...4 ... i.. 1.... ...-... . -.... .. .... ... -.......,. - . ""¥"“"" .... -... -.-... ... .«e-qo-“Oo~h --..4 . ,. ... l . . .. . ... .. .. ..... .. .. ....... ... --.. .. ..-. .... .-.. ........- .... ... 3......- ... . . .. I . , . .. .. . .. . . .....-_-..,...,..- ....-_.. ..... . . .....-.. . ..7.- ... ...... .. .... .... .. VI .. .... ......... . ..... . ................... .-.....-._.~.- ..—.. .... .. . .. ..-. ......-. . ....... . .. .....- 4.2.. ... .... ..... . .. ...... ,.-.,..,. . 4...-..)Iu . ‘.-. ........ ..-..3. .... . .. . ...... . ... ,. ‘.... ......... .. .-... .... -.. .... ... ..... I.. .. . .. .. .i . ~. . .. ...... t. A A A; -— . . .. -..... . . . .. . . .-.. ., .... .. .-.. ... .. . -~~-I-< . .-.. .. ....,..... ....H p . .... . . .. . , ... ......... .....L... .. . .... . o ~-..-¥.....on.. ...-4. .. y-.A. --.. ......,¢ ...»...4. ..- oo-yvl ...-..k. , .H_ ,HUI.H.HNM.M..HW. --H.HMU.MWHH.MHH.W.HHHHNH-HHM.HHH.- p ...... . ... .. .. ... ....... . ......4.. .4. ..... ..... .».3.....~... ..-..... .... -.~- ~...-.-.. ..—~ .... .......4_.. ......3 -.... .. .... ........ ..... .. .... .. .3. .. -... .. . ... .. ---.--. ... .~—--- ---90>-.o -o--o-..~o ...¢$-~o. > . --~-~- .. .. . ... .... ...... ... ... .. . .. .1, .. . . ---... . . ... _ . .... -»—.. . ... ...L o ... .... ,. . , . I ... ..... ... .....L......-. ....-..£....-... ... .3... ..- ....--... ...........-.._i-. t. ._‘.... . t,...... L .... . v . ,. .‘ .. . . .. . .,.._ .. . t . . l , ... ..... . .. . . ......... .....3> . . .. . .. . ... ... ... -.... . . . ....... ... ..V L.-—...-4-. .......-- ¢... -..... .»4*‘ .>- >..... ....>—.-.. .~» +n‘. .. . .A .. s-.. . .‘....-r.>... .4 i I... .. o-Ou‘¢v ...t....... —~ ‘ o~-~- .. -..—«4.... .....-“y. ‘3» rvL.o.4...... ......rnp- ti “..-...1. . ... .. . ... -.. ... ... .....,.. . .L . ....-..-. .... ~. . . . - <- .3 ...-...-2 2.....—... )4»..-.-.’ I... . . .. . .. i.-. ...-.-... . ..... . ...4. . -..—.-.... .....-.. ........-[-..-»L.... .. ... -.........-.-- o-o~-¢.~.: ..- -.-. ~. ...-.... ..,.,,,, .......y.-.....I. .1. .....,. o.-.¢‘.—v-> ..._.<—. .-.:g.-..I. ......o—r»¢ 3.-~‘.>.o< y..¢-.....i . 9. . .. .-.... ... ..... ....v ... -.—-. . . ..—- r .. .3 .. ‘n.-. ...- o .J .7.>--3.3 .9--.H... .o'4a..-o ... -.. ---o .. . .. .... .. . -..-‘. ~ ....-.- .... . -...--3. ....-...-1.~..»or.. ,3--_.,.,__ ...-00A. L .........I ..... . .. ... ._ ..... .... . .. ......... . .--. ... r—o>-¢---o- . 0.... .~ - . -. 3 .- ..so .- . .. ..--~.-- [-o-~..o.~ -.>~...‘.- .~»H....-3 >‘5v“O‘-541 ..... .. -.~..t ...->- -.~.-o....‘»~> ~4--o -o~.v-.~oo I‘fio‘fiy“ -.+—354.—A.. ...... -... ....... -. . . ..... 5,. . ..... ..-.-. ~3) -.....-. .........' .--...4...[ LA...‘... . . ... «. .. 4....>.$..... -.. ......»o. ... . ... ......-.4 ....L... ~k+—.o.... .1.-.,4. .. .. ..... .. ... I... ~,. . I' .. .. ”...-.- ......... -....-.-...t >o.... ..I -. . .. . ...... .... . . . . . .. ...t-... ... ... 3.. ~.. -. L....... I . . . . .3. ... ... ...... ...... .. ...,1....l -.. ...... ...,._._-..I...._.J_I. .... -....-“M. .._.....-_...._..._. . A - A L n ......I. .. . f . ..... .. ..... ...,I.. .->..¢ .. ->.o.. ....A-.3.. "' ‘-‘""‘ ‘ ‘ " >7. I‘D -‘~' - -- ¢;QA ¢.I >0 0- 9“ .061. be too :I‘fiO-Oh‘vn .a.....-,»i ...-.. . ... .3 .. . . .- .. .1. . IA .- o- ~~stg -..-.....;. .. I .-....“ .. ........ ;..... .. ....1 ov-c---o»-33 -‘-- '~ -..-.0. .-~— .. ~ ~..-...' .... . . .... -. 3......... . ...... —..--o—« --.s. .........i -....'..,- ...- .-....... .. . . ...IH.....I....A.-.. . -....- bo-o.-».¢...;.- ..-..-A.. . ...l.... .- . ....... . ... ... .. .. .. .. . ... . ...o. -.a.-. . t. .. .. I. .. '... .....).... .. . .... -..... ........ ... ....3 A l A ~~- - »< o- 3 . 3~--' '3 -- >. .- .. .. .... ... ... 1.. ¢-.>- ..-... . b-J». —A~~-I- .-4-‘~~ . --l .... -. a. a '. . .. ..i -., I- .-I.-oc.-.- ...-..... >---.—. ...... ...... .. 3.....6..~.~-.... ....oo... ...--. ..a... .. .-....o... W. ...... fiO-‘o-‘~b—‘b»‘ .-.~~ .1 .....-l...--.A... . .II... .i....... .. ... .. ......... .-. ....-. LL: .-...+ . ......I . ..... 1...... .,... .......-.. ...... ....... .......,.£..-..‘.... ...-.... .- ~ ..~...... ---A..¢. ....-4HA'L...- -.... .......... , ....... .....WL .‘..l ........ ...-.... L . .l I . ...,. . .-..-.,_.l.... .... . .._.. - . c . - . . . .. - - . . - - - a c o A .~ ... .3 .-. . ~ . a. . -«7». >7. —- . . .. ... .-.. .. .-.._.....'......... .----...... . ...... . ...—... .. .....I. ...-... .-....4. ..........- >3..-... .. ...... .....--. ..».7...... .’.‘.§..V .5, p7; s-bkon...§t~o¢ COOV~ Oro>osqunu ... . .. . ........L. .-4.... ....... - h-) I-"._*A ‘ A ... . ........ - .......5......... -41.... ‘0. In. n-uq‘ Q.‘ .Ab...§4tI-....vs8t 4-‘Ofit’t‘ ..... . . - ..-.... ... -...-. --»--_. n .. ..I.. . ...... .. .. ........- .... .... --...._.... ..... ... .... .... ... ... .....o.». ..-...- .,... ... .. ...... ......_. .... ..... ..... ... ......... ... -. .. .-..-A...I...... .. .-.. .. .3 ..... . 17.. .. . L i- 3-........ ........, . ... . ... .... -.... ... ....-, ....<..c4 r“..- ... -.-...» .. -.....4 -¢_-r 3 —L .-. ~. ......_.. ._+_..._._...+..._..4 .>».y~. .--.- . ... . ..... .3 ........- «.... ... ...-...h. -....4.3-.>—»- ..... .,.l ..,,.-.. , . .. . ... ....-. ... ......1.. ......... I ...uv .—o.~.q.-..~n.-..~~ _......4- .--...oowc ..-»... .....-_...3 ..... .. kH...-. .-.. . ..... .,....... -... ...—.... . .-. , ..........3-... .-....... .......... A. .--. . .17..-. .. L...... -... .---l..--....- 1.. -. ...-..Hs,..-...-1- .-.—.--. . .-7» ... ...-.4..—.. ..-.... ... . -. ..-..._ I..b'h—§ 0.. . :‘....... ..... ... . .-....o.... “'I' ‘0-‘-‘.'. >§6044¢0-. ......... ...-.. -.3. ---—... JL fl LT ..... 3.. -.v.....,. . ...—.H. I .... . . ..........._........ ,.-.‘.. -.....).-.._i....... .,.¢---..— ~-- .4. ..93.- --’OIAOA>¢-A ..... .....-.... . .. . ..-.... ..... ..-.oo.-. o. ..».. I... -r. ....¢,. ... ...—-.. ....Hi. .. ... ....~ .-.... .. ..--. . . ----....- ...--.__. -..--......4 I v 3 3 I 4.... ...,_i...... . .. .... . 3 Cdlq‘u' -<..|I I v0. ....1 .....ot»..... . -.- .. 7». .- .....-$.. — I. ..... ........- .....h. }. ..... . ......... . . ... .......1 . .-1..-, .. j . -..3 ..... ... ....-.L...... . --....-...>..»-—.... ... .. 3 .. ... .. ..... ... ..... ...-.-..-. .....y... ... ... .I..».-...~ . IA . ....‘l --—- A—A A... ~.—._f--._._._... -~> ---.oo—q—u—m‘uy— . ...... ... ..... ... . . .i. '7 .D.I-¢O 30¢: » -. -~c n. .._.,a‘.. .. ...Ii... ‘...-..... .. ...i. >3~ .-....... ....-.s-.2- ... T". 3.... -- ......... ... ..-.. ........‘..... ..3..3. >0 ...o---- . .-.. ... ....o .o-I..-otv- b ‘.«—-—.o—_¢r.. v 3 yo- ......-. ....-.A.-t..¢. L...A.~»--_4.ol- -.... ¢Al‘. o >y4—o.¢—.¢- -. 0“ v owv—o-o-o- O‘Ht-O-Ot. o-+y—>v<-¢4o .¢->H++—47¢- ‘6‘OO+-Hr'—rvo~¢qqfi- .- -.«o.- ...-oo-oo-L-o~-v;o‘~ o-O-co-vooo 9 A- L; L LL A .1144; A A A A A; 11.1. i i A; A l A A A 1 AA A . 13 § '9: x. ‘Q ’3 ‘3 UtrmHIMhh-JQUI- M~.§I ’7 ‘ ... m (‘ §~ M \ \ § \ - ,N-l /d0 Cc. n3 Syhyu warn/”0 IO 1.4L. 55 AGRICULTURAL COLLEGE For 100cc. . 3-03’ 7n1m. (‘1 (I) Conclusions The 3011 reaction, if no other factors Prevailed, would uuubtless a: 3.: :3 C? :7 w I O C ’4 F1 0 be a very ingortcnt factor in the solubility of Ihosrhcru . rcvcrtee to CaLkO and (.4 J In the yresence of a base the Cad4\;04)2 i even to 033(EC4)2 eerenuing on the mnennt and nini of bases LTCRCDC or the reaction of the Leiiun. 4 is llLCQA at abeut tn of 5.6 or above The fornaticn Of Cnth doleniing on the censuntraticn of the Inoekhorus coulounds of calcium. niceseive concentration. force the Cafii04 out or soluticn by exceeding its solubility yrcinet. in an alnfiline sail this r‘vcrsicn cf lhoe- Ihcrts is r5111 {16)(39). flowever in terns of crop reslcnse, the reverted EHd lrecijiteted lhcslhetes are more available than the raw rocx Incarnate (LL).Theee results tend to show that CahiO4 Should be a more economical form of lhoslhorus fertilizer than the Cafi4ii04)? because of a probable lower cost of lroiuctien, as less H;u04 is reguired in its Ireyaration from roea lhosbhate, and hishcr percent of Incephorue. Lime an soil reaction can not be the deternining fcctor in the solubility of Ihospnorus in SuilS as is shown by the work on acid ‘orus. soils in which there was narkei retention of the aleiea thee U qurway (66) found some 5Cii Soils very retentive of allliea lhceth'us when alpleed as acid Thee hate. Comlcnnds of iron (11) ani aluninum (1;) have long been considered res onsible for the insolubility cf lhcslhurus in soils 3}“ earecially in acid soils. Very little wcrk hns been done to determine the chasi— cel behavior of these componnis tcward comlounde of phOSphorus as relation to the solubility of the phosphorus. The conclusions that have been commonly advanced (42) have been based on crop reopense. In the titr ations with Fe(CH)3 and dl(oh}3, he reaction changed. with the increase in lawn)3 or Al(oh)3 present, and there was a rise in the {H and a decrease in the phOSphorus in solution; in other words the applied phOSphorus is more soluble in acid solutions when ie(OH)3 or AHOH)3 are present. The adsorption curves secured in these esperinents do not conform chosely enough to the adsorption isotherm curve (721173) to warrant any positive conclusions. oince Chemical reactions are, without doubt, present in soils, and since their effect on adsorption is not known, but where there is a solid-liquid interface it is known that adsorption does take place to some extent, it is warranted to conclude that adsorption is one of the factors effecting the solubility of phOSphorus in soils. Lactors affecting the solubility of phosphorus in soils are not few in number. Those studied in this paper are active and there are probably many others. Further studies of these factors and their behavior under varying conditions will undoubtedly add much to the meager and much, needed knowledge of the chemical constitution of soils. (1) (4) (8) (9) Bibliography Listed in order of appearance in literature. Greaves,J.E. affects of insoluble salts on insoluble phosphates. J.Biol.Chem., 7,287-319. C.A. 5, 1966. fetit, A. Fixation of phosphoris acid by the organic matter of the soil. Coupt.rend., 15L, 1317-19. C.A. 5, £664. Iryanishnikov, D. the influence of calcium carbonate on the 7 action of different phoslhates. Landw.Vers.otat., 75, at 76. C.A. 6, 437. Vipond,H.J. The availability of phosphoric acid in the soil. Agr.J.Union oo.Africa, 2, 60L-ll. C.A. 6, 1648. retit,A. Kan-fixation of phosphoric acid by an acid forest soil. Compt.rend., 155, Ell-3. 0.3. 7, 857. Hartwell,B.L.& Iember,F.d. The effect of cow dung on the avail- ability of rook phosphate. h.l.ngr.n3pt.otat.,3ul. 151, 165- 74. C.A. 7, 1255. Nedokuchaev,N. The influence of calcium nitrate and ammonium sul- fate othhe assimilation of phOSphoris acid of raw phoSphates. Russ.J.uzpt.Agr.,l4, l-Zl. C.A. 6, 194. Gal'tsey,y.o.& iakushxin,I.V. The action of iron sulfide and its oxidation products in combination with phOSphorite. izv. Loskov.oelsk.nhoz.inst.(Ann.inat.Agron.noscow), 19, 225-32. Tottingham,5.n.& Hoffmann,C. Nature of the changes in the solu- bility and the availability of phOSphorus in fermenting’mix- tureS. W18.Ag1‘.i$3ptoutato, IleSo 3111., 219, 273-521. 0.44.. 8, 393. -.r-‘ -‘ ‘A‘ I l 0‘ "n‘» ....“- (1s) (11) (12) (185) (14) (15) (16) (17) (1s) (19) (20) 59 KcGeorgl, um. Adsorption of fertilizer salts by Hawaiian soils. Hawaii axpt. ota., Bul. 35. C.A. 8, solo. Davis, A. G. Action of certain soil constituents on mono-calcium IhOSPhate in sandy soils. Am.iert.,40,39. C.A. 8, 3703. de Jongh, A.C. The locking up of phOSPhate fertilizers in Java soils. Intern.L2itt.Bodenk. 4, 514-45. 0.x. 9, 116. Neuss, Oskar. 1914. The develoPment Oijsoil science from the earliest attempts to the beginning of the LOth. century. intern.Mitt. Bodenk. 4,453-95. C.A. 9, 1054. Dushachkin, A. 1914. Further investigations of the biological adsorption of phOSyhorie acid in the soil. nuss.J.hxp.Landw. 15, 467—503. C.A. 9, 1065. Hutin, A. 1915. Relations between total Lhosphoric acid and that soluble in "water and citrate" in acme soils of middle Peru. Ann.Chem.Ana1. 20, 51. C.A. 9, 1616. BraCKett, R. N. & Ereeman, B. 1915. Note on the formation of tri-calcium phOSyhate on mixing ground limestone with acid phOSphate. J.Ind.£ng.Chem.,7, 620. C.A. 9, 2280. Kolthoff, I. L. 1915. behavior of phosphoric acid with calcium hydroxide. Chem.aeekblad, 12, 662-6. C.A. 9, 2743. Conner, 5° Do 1916. Acid soils and the effect of acid phosphate and other fertilizers upon them. J.ind.nng.0hem., a, 55-40. 0' A. 10, 505. Praps. G. S. 1915. Affect of additions on availability of soil phOSyhates. Texas Agr.axp.ota.,Bul. 178, 5-15. C.A. 10,1595. Hagruder, E. a. 1917. The action of carbonate of calcium on acid phosyhate. J.ind.ang.0hem. 9, 155-6. C.A. 11, 518. in) (:51) okalkii, o. 1916. Conversion of soluble thflIhOriC acid into insoluble Ihosghoric acid in the soil under the influence of Lhysical, chenical, and biological factors. Agr.Gaxctte of oo.Luesia, 17., Bullhgr.intell., 7, 1364-6. C.A. ll, 1L57. Truog, a. 1916. Che utilization of Lhosghatcs by agricultural creps, including a new thetry regarding the feeding lower of Ilants. «18.3es.8u1.41, l—EO. C.A. ll. llo7. magruder, s. u. 1917. The action of calcium carbonate on acid {hosphate. J.Ini.ung.0hem.9, 155-6. C.A. 11, 1L40. Jegorov, L. A. 1916. fhe forms in which lhosghoric acid occurs in the soil. Bul.Agr.lntel. 7,1245-9. C.A. 11, 1508. stratmann, H. 1916. Adsorption and solution of ammonium and Ihosphate salts. Diss.bniv.Uiessen 62,1. 5.5.“. 55, 512. (3.13.. 11, 13110 Foyesco, Alin. detection of ferrous salts in body fluids by means of the phoeyhotungstic reagent. J.Am.Chem.ooc. 112, Ii, 44. sen,J. Kath. 1917. The influence of the presence of calcium carbonate on the determination of available phosphoric acid in soils by Lyer's method. Agr.J.india, 12, L58-65. C.A. ll, ZoSO. James, C. C. 1917. Reversion og acid phosphate. J.Ind.gng.Chem. 9, 682. C.;. 11, £581. Bassett, 8. L917. The phosphates of calcium. IV. The basic phos- phates. J.Chen.ooc. Lil, 620-42. C.A. 11, 2844. James, 0.0. 1918. Leverted phosPhates. J.ind.nng.Chem. 10, 35-5. C.A. 12, 598. Kelly, a. P. 1918. Affect of nitrifying bacteria on the solubil- ity of tri-calciun phOSphate. J.Agr.;es. lb, 671-85. (34} (35) ( 3.6) (37) (58) (39) (40) (41) (4:4) 61 Barbieri, Nicola Alberto. 1917. Criticism of the use of phOSpha— tea in agriculture. Gazz.Chim.ita1. 47, 1, 56-51. C.A. 1a, Drinkard, A. W. fixation of phOSphoric acid in soils. V8.Arg. Exp.8ta.Ann.Rpt. 1917-18, 10. C.A. 14,3491. ‘Wrangell, Margarete. 1920. Adsorption of phOSphoric acid and soil reaction. Landw.Versuchsst, 96, 209-55. C.A. 15, 567. Fraps, G. e. 1920. Relation of the phosphoric acid of the soil to pot experiments. TBxas Agr.nxp.ota.Bul.257. C.A.16, 607. BaskinS, H. D. 1921. Report on available phosphoric acid in pre- cipitated phosphates. J.Assoc.0fficia1 Agr.Chem. 5, 97-102. C.A. 16, 607. Flack, E. V. 1921. Factors influencing the solubility of phOSphoric oxide in mixed fertilizers containing superphOSphate. 6.Afr. J. Sci. 17, 268-74. C.A. 16, 608. Breast, Fr. 1921. Studies of phosphoric acid in soil and in water. internat.Mitt.BadenK. 11, 111-116. C.A. 16, 981. Harrison, d. H. and Das, S. 1961. Eetention of soluble phOSphates in calcarious and non-calcarious soils. Ben.;ept.Agr.India (Chem.Series) 5, 195—236. G.A. 16, 3558. Kuifner, Karl von. 1922. The phosphoric acid question. xitt.beut. Landw.ges. 37, 512-3. C.A. 17, 175. Riplel, August. 1922. Action of phosphoric acid on heavily and poorly lined land. iuehlings Landw.3tg. 71, L59-65. C.A. 17, 175. Brioux, Ch. 19:2. The comparative asshiilability of tri—calcium phosphate and the phosphates of aluminum and iron, Compt. (43) {44) (45 (46) (47) (48) (51) 62 rend. 175, 1386—9. C.A. 17, 607. lemmernann, C. and uiessmann, H. 19~2. offect of Silicis acid on crOp production in thepresence of insdificient amounts of PhOGLhuriC acid. 2.1f1anzencrnahr.Luengung (A) 1, 155-555. 0.1. 17, 1196. Rudolfs, a. 1922. Composting rock phosphate with sulphur in Slightly alkaline calcarious soilS. boil science 14, 37—59. C.A. 17, 1858. larais, J. o. 1922. lie comparative agricultural value of insoluble mineral phosphates of iron, aluminum, and calcium. ooil sci. 13, 555—409. C.A. 17, £162. Truog, x. 1925. Detornining the phosphorus needs of soils. J. Am.ooc.Agron. 15, 110-7. C.A. 17, 1163. Relson,h. & nachs, d.h. 1912. The availability of rocK phosphate in acid soils. Ark.Agr.aZp.ota. Bul. 181, 15-6. C.A. 17, £163. Kaschhaupt, J. G. 192'. hesearches on the availability of the phosphoric acid of basic slag and other phOSLhates by means pf sand cultures. Versl.Landbouwk.onderz.Rijkslandboquroef— stat. C.A. 17, £468. ochreiner, Cswald. 1923. Orpanic phosphorus in soils. J.Am.ooo. Agrcn. 15, 117-24. C.A. 17, £468. Brioux, Ch. 1922. Quantity of assimilable phosphoric acid And potashium in soill. Ann.de oci.Agron. 59, 82-100 . Bull. Agr.inte11. 13, love—21. C.A. 17, L468. hobertson, G. s. & Dickinson, F. 1925. The valuation of insolu- ble phoslhates by means of a modified citric acid test. J. l 1") bOCoChaK’lo 111d. ‘22., 59-246 1‘. Colt 17, £516 (60) (51) 63 Preys, 0.8. 1922. The fixation of IhOSLECFiC soil by the soil. Texas Agi‘.u;51,=.ota.5u1. 534. 0.11. 17, L526. leoncini, G. & Logai, E. A. 192;. histribution of the phosphorus ion in the upper layers of the soil in relation to vegeta- tion and the addition of various salts. Agr.ita1ina, 45,nos. 4-6, 109-24. Bul.Agr.lntell. 15, 1442-5. C.A. 17, L761. Hall, 1' L. & Vogel, J. C. 1925, Leversion of acid phoSphate in acid soils. ooil 501. 15, 567-9. C‘A. 17, 6223. Jiley, R. C. & Gordon, K. a. 19:5. Availability of adsorbed phosphorus. coil oci. 15, 571-3. 0.1. 17, 5:15. Gerlach, & Bolts, 0. 1925. Contribution to the knowledge of the action of phosphoris acid fertilizers. nitt.deut.1anuw. gee. as, zoo-c4. o.n. 17, 32.5. Bura,J. s. & hartin, J. C. 1923. rhosphate behavior in soils. r- . F!“ ‘1 ! An’f" 01-08 00, a: -8. Co “a 17, .2in- ..Ao do 0118, 1. L. & Carrero, J. C. 19gb. officiencies of phosphatdc fertilizers as affected by the liming and by the length of hates remain in Iorto necan Soils, J.Agr.hes. 25, 171-94. 0.5. 17, 5903. Easelhoff, a. 19:2. The solution of phosphoris acid by plants and fertilizers. Z.If1anzenernachr.Duengung I B. 257—82. C.A. 18, 1174. ualkoff, L. I. 1924. gelative availability of the phosphorus of raw rock and acid phosphate in soils. ooil oci. 17,59-56. C.A. 18, £575. McGeorge, a. T. 1924. The influence of silica, lime and soil reaction upon the availability of phosphates in highly ferruginous soil. soil-eel. 17, 465—8. C.A. 16, 5670. (64) (65) (65) (67) (68) (69) (70) (71) Hall, 2. g. dVogcl,J. c. 1924. The influence of the admixture of different grades of limestone on the solubility of rhos- Lhoric oyide in ShpGthQSphatOo J.oo.Afri.Uhem.inst. 7, no. 5, 14-25. 0.1. 1s, 3671. Jacobs, K. D. & Bra;hm, J. u. 19z5. Chemical changes occuring in calcium cyanamid-acid phosPhate mixtures.J.Ina.ang.Chem. 17, 64-8. C.A. 19, 694. otepheson, h. a. & Powers, s. 1. l9L4. Influence of sulfur oxidation on solubility of soil minerals. boil 001. 18, 317- 21, U. A. 19, 1467. Fcuassier, hare, & LfHoume, Jacques. 19L4. The solubility of tri calcium phospate‘ in the soil under the influence of an acid salt. Comp.rend.Agr.Erance 11, 95-8. C.&. 19, 1611. Uchuster, G. L. l 24. Lime and phosphate. Del.Agr.nzp.ota.Bul. 155. 0.4. 19, 1611. Kolaoff, n. I. 1924. affect of iron and aluminum salts on the phosphorus recovery frmn soils and quartz sand treated with Tennessee roch or double acid phOSphate. soil :01. 18, 469- 78. 0.5. 19, 1749. Spurway, C. H. less. some factors inftuencing the solubility of 5 phosphorus in soil-acid phOSphate mixtures. soil sci. 19, 399-405. Biilmann, Liner. 1924. On the measurement of hydr05en-ion concentrations in soil by means of the guinhyorone electrode. Jour.Agr.oci. 15, pt.2. Clark, w. M. 1924. The determination of hydrogen-ions. Official and provisional methods of analysis. Bureau of Chemis- try, Bull. 107, revised. 65 (72) Freundlichi 1909. Kapihlarchemie, 147. (75) Freundlicht 1907. Zeit.phys.Chem., 57, 385; 59, 263. "I7'11iiii'iiiiii’iiii