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ABSTRACT 

A SCORE-TYPE TEST FOR HETEROGENEITY IN CURE RATE MODELS IN 

A STRATIFIED POPULATION 

By 

Shitong Gu 

In oncology research, with the advent of new therapeutic agents, many long-term 

survivors are deemed permanently cured. The cure rate survival model is a popular model that 

has been used to represent data generated from cancer studies where a substantial fraction of the 

population does not experience the event of interest even after a sufficient long observation time. 

This model is primarily used to evaluate the cure fraction in view of observed data.  Existing 

testing methods have relied on the so-called constancy assumption that neglects potential 

covariate effect on the cure fraction under the alternatives to no cure.  In this thesis, I extend the 

literature by proposing a score-type test that incorporates information from categorical covariates 

in detecting cure. I show that the limiting null distribution of the proposed test statistic is a 

mixture chi-squared distribution which, in practice, can be well approximated by a resampling 

method that uses normal variates to perturb the associated influence function. The numerical 

simulations show that the proposed test can greatly improve efficiency over the classical score 

test that neglects covariate information under heterogeneity, in settings where the true cure 

fraction depends on covariates.  Ovarian cancer data collected in Los Angeles from the SEER 

registry is used to illustrate the real life application of the methodology. 
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KEY TO SYMBOLS 

 

 

All English and Greek letter-based symbols used for mathematical expressions in this thesis are 

listed here in alphabetical order. 

�  Potential Censoring Variable; 

ℎ�  Baseline Hazard Function; 

ℎ()  Hazard Function; 

�()  Influence function; 

�  Fisher Information matrix; 

�  Dimension of Categorical Variable 
;  

�  Sample Size of Data; 

��  Baseline Survival Function; 

�()  Survival Function; 


  Follow-up time of the Study; 

�  Survival Time; 

�()  Average Score Function; 

�()  Score Function; 

�, �, � and � Unknown Parameters; 

X and Z Covariates or Known Data; 

�()  Uncured fraction Function; 

ℓ  Log-likelihood function; 

ℒ  Likelihood function; 

�  Limiting distribution. 
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Chapter 1  

Introduction 

1.1 Ovarian Cancer research 

Ovarian cancer is one of the leading causes of death among women due to its high 

potential for metastasis and high relapse rate (Engel et al., 2002). The associated mortality rate 

varies greatly by the stage of cancer and age, with younger women exhibiting higher survival 

rates (Ries, 1993; Yancik, 1993). Albeit being largely fatal, recent studies have reported a rapid 

increase in five year survival for ovarian cancer, due to the development of modern therapeutic 

agents (Jemal et al., 2005). As a result, a non-negligible proportion of patients, especially those 

at the early stage of the disease, do not experience relapse or related death even after a sufficient 

follow-up time and may be regarded as “cured”. Empirically, data generated from studies on 

ovarian cancer will typically exhibit heavy censoring and survival functions that do not 

degenerate to zero after a reasonably long period of time.   

1.2 Mixture Cure Rate Models and Evaluation of Cure 

A popular statistical approach to represent time to event data with a heavy censoring rate 

and a non-decaying survival function is the cure rate model which views censoring as mixture of 

a true censoring and cure, even though this dichotomy is unobservable. This class of models was 

originally developed by Boag (Boag, 1949), Berkson and Gage (Berkson and Gage, 1952). 

Earlier formulations of these models relied on parametric assumptions (Cantor and Shuster, 1992; 

Denham et al., 1996; Ghitany et al., 1994). Semiparametric models (Kuk and Chen, 1992; Wang 
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et al., 2012), and nonparametric mixture models (Peng and Dear, 2000) have also been discussed. 

An earlier application of these models in cancer research is due to Farewell (1986). 

In real applications of cure rate models, one is often interested in evaluating the cure 

fraction. The existing methodology, for the most part, has relied on the restrictive assumption 

that neglects potential covariate effect on the cure fraction under the alternatives to homogeneity 

(Klebanov and Yakovlev, 2007; Li et al., 2007; Zhao et al., 2009). This approach is important 

but has limitations. A general limitation is that it may fail to detect cure in the population when 

the cure rate depends on covariates. 

Using time to death data from ovarian cancer in the SEER registry in the Los Angeles area, 

the overall Kaplan-Meier estimate (Figure 1) gives an indication of cure with an obvious plateau 

occurring at around 180 months, consistent with the 10-year mark that has been reported in the 

literature Tai et al. (2005). Our analysis based on the classical approach that neglects covariate 

information under alternative failed to detect cure for these data. However, an additional analysis 

that stratifies the Kaplan-Meier curve by age-group shows non-overlapping confidence bands for 

the survival curves, leading to the conjecture that the cure rate may depend on age group. More 

importantly, the estimated survival rate in the younger-age group is much higher and levels off 

more quickly than that of other age groups. These preliminary works imply that cure, if it exists, 

is mainly in the younger age group. Thus, if there is a substantial portion of older post-

menopausal women as is the case in the source sample, cure may be hard to detect. This then 

necessitates the need for a statistical methodology that incorporates covariate information to 

detect cure. 
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Figure 1: Overall Kaplan-Meijer estimates for ovarian cancer data from SEER registry of Los 

Angeles with 95% confidence bands (blue areas).  
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Figure 2: Stratified Kaplan-Meijer estimates for ovarian cancer data from SEER registry of Los 

Angeles with 95% confidence bands. Four age strata contain 172, 780, 885 and 625 patients 

respectively in age-groups 1 to 4 going from younger to older groups.  

1.3 Method of Silvapulle and Silvapulle 

In this thesis, I consider the evaluation of cure when the cure fraction depends on a 

categorical covariate under the alternative hypothesis. Incorporating covariate information in the 

evaluation of cure is nontrivial, owing to the multiplicity of constrained (non-negative) 

parameters resting on the boundary of the support space under the null hypothesis. Silvapulle and 

Silvapulle (1995), using the asymptotic normality of the partial score function coupled with the 

likelihood ratio test approach, have proposed a generalized score test for this testing problem. I 
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apply this method to detect a cure fraction for ovarian cancer using surveillance data from the 

SEER registry.        

1.4 Organization of This Thesis 

The remainder of this thesis is organized as follows. Chapter 2 provides a brief introduction 

to the class of cure rate models and specifies the associated likelihood function. I also show that 

the evaluation of the cure fraction when the latter depends on categorical covariate can be 

conducted using the generalized one-sided score-type test proposed by Silvapulle and Silvapulle 

(1995). In Chapter 3, I conduct numerical studies to evaluate the finite sample performance of 

the proposed testing procedure. I used the ovarian cancer data from the SEER registry to 

illustrate the real life applications of this methodology. In Chapter 4, I summarize and discuss 

further extensions of the methodology. 
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Chapter 2  

Testing Procedure Method 

2.1 Cure Rate Model 

Suppose � is the survival time, e.g. the time since diagnosis of ovarian cancer, and � the 

potential censoring variable, e.g. the duration of study or death results from other causes. 

Empirically only the follow-up time 
 = min (�, � ) and the censoring indicator � =  �(� =

) are observed. The mixture cure rate model (Berkson and Gage, 1952) postulates an 

heterogeneous population, among which proportion 1 − � are deemed cured and proportion π 

are not cured. Specifically, the mixture cure rate model assumed that the overall survival is 

�#$#(
|&) = 1 − � + ��(
|&)  with 0 < � ≤ 1  where &  is a potential covariate, �#$#(
|&) 

denotes the population (overall) survival function and �(
|&) denotes the survival function for 

the uncured population. The survival function �(
|&) for the uncured population degenerates to 

zero when 
  goes to infinity that is lim,→.�(
|&) = 0 , unlike the overall survival function 

�#$#(
|&) which converge to the fraction 1 − �  at infinity. In the initial formulation of this class 

of models, the cure fraction 1 − �  was assumed constant and the baseline intensity assumed to 

be fully parametric. Farewell (1982) extended this class of models by allowing the cure fraction 

to depend on covariates through a logistic transformation. Based on these works, Kuk and Chen 

(1992) proposed a flexible class of semiparametric cure models that only imposes the 

proportionality assumption of the hazard function for the failure time distribution of uncured 

patients coupled with a nonparametric estimation of baseline hazard.  
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In this thesis, I entertain the class of cure survival models in the finite dimensional setting. 

I consider the Cox-type model  ℎ(
|&) = ℎ�(
)exp(&2�) for the uncured population with ℎ� 

denoting the baseline hazard function of the uncured and �  represents the vector regression 

coefficients for covariate vector &. I assume that the baseline intensity ℎ� is the two-parameter 

Weibull model and further assume that the cure fraction 1 − � depends on a categorical variable 

say 
, taking � plausible values. I denote �(
) to highlight the dependence on 
.   

2.2 Likelihood of Cure Rate Model 

For the 3th individual, 3 =  1, 2, . . . , n,  the follow-up time is specified as 
6, the covariates 

(e.g. number of primary tumors) related to the uncured survival function are specified as &6, the 

categorical covariates (e.g. age-groups) associated with cure fraction are specified as 
6, and the 

censoring indicator is denoted by �6.  In general, we will assume that & contains 
. Suppose that 

each observation is random independent copy from the quantity {
, &, 
, �} . The conditional 

likelihood (given covariates &, 
) for two component survival data is  

 

ℒ = 9:(1 − �(
6) + �(
6)�(
6|&6));<=> × (�(
6)ℎ(
6|&6)�(
6|&6))=>@
A

6B;
 

 

where �(
6|&6) and ℎ(
6|&6) represent the survival and hazard function for subject 3 respectively. 

If the two-parameter Weibull model is assumed as the baseline intensity, the associated 

conditional log likelihood of the data is then  
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ℓ(C) = D E(1 − �6)log H1 − �(
6) + �(
6){��(
6)}IJ#:KL<M>NOP@ Q
A

6B;

+ �6log H�(
6)exp{�(−&62�)}{ℎ�(
6)}{��(
6)}IJ#:KL<M>NOP@QR 

 

where ��(
6) = exp(−(
6K))IJ# {K(<S)}  and ℎ�(
6) = �
6K<;(T<S)K , � > 0, denote the baseline 

survival function and the baseline hazard function respectively for subject 3. Here � and � are 

parameters for the two-parameter Weibull distribution. Assume that the population under the 

study consists of � distinct strata and let � = V�;, �W, … , �YZ2 be a � dimensional vector such 

that the uncured fraction is parameterized as �(
6) = ;
;[∑ ]^�(_>B`)ab  where 1 ≤ c ≤ �, �` ≥ 0 

and �(
6 = c) is the indicator function for the event that subject 3  belongs to stratum k with 

∑ �(
6 = c) = 1Y; . Let C = {�, �, �, �} be the collection of all model parameters. 

2.3 Score Function and its Variance 

Suppose � is the main parameter vector of scientific interest and let  f = {�, �, �} denote 

the collection of nuisance parameters, yielding C = {�, f}. The score function �A(C)  of the 

sample with � observations can be partitioned into two partial score functions H�A](C), �Ag(C)Q 

that in turn are consistent with the partition {�, f} of C. Let C∗ = {�∗, f∗} be the true value of C 

with iL�A(C∗)P = 0 . The observed Fisher information �(C)  can be partitioned as follows 

H�]](C), �]g(C), �g](C), �gg(C)Q. �(C∗) is the true information matrix, which cannot be obtained 

in closed form in practice. Some conditions should be assumed in advance. 

Condition A: 

A1: �(C∗) is a nonsingular Fisher information matrix.  
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A2: As n → ∞, �<b
k�A(C∗) l→  m(0, �(C∗)). 

A3: For any � > 0 , sup‖q‖rK E�<b
k s�A HC∗ + �<b

ktQ − �A(C∗)u + �(C∗)tR = vw(1) , 

where vw(1) represents the convergence to 0 in probability as n→∞. 

The conditions above ensure that the asymptotic normality of the ‘single’ observation 

�](C∗) = �<b
k�A](C∗) has the variance-covariance matrix 

 

x]](C∗)<; = �]](C∗) − �]g(C∗)�gg<;(C∗)�g](C∗). 
 

Let C�y denote the estimator of C under the null hypothesis and C�y converges to C�∗, which is not 

necessarily C∗ . Instead of x]](C∗)<; , the observed variance under the null is x]](C�∗)<; =
�]](C�∗) − �]g(C�∗)�gg<;(C�∗)�g](C�∗). However, the estimator x]]LC�yP<;

 sometimes may be non-

positive definite if the alternative is true and C�∗ is far away from global maximum C∗ (Freedman, 

2012).  

Instead of using the observed variance of the score function, another approach is to use 

the influence function to obtain a more accurate estimation of the variance for score function, 

Λ(C�∗), where  

 

Λ(C�∗) = {|}L�](C�y)P = i(�;(C�∗)�;(C�∗)2). 

 

�6(C�∗) = �6](C�∗) − �]g(C�∗)�gg<;(C�∗)�6g(C�∗)  is defined as the influence function of �6](C�y) 

(proof see Appendix), where �6](C�∗) and �6g(C�∗) are the contributions of subject 3 to the partial 

score function �A](C)  and �Ag(C) evaluated at C�∗, respectively. A basic Taylor expansion can 



10 

 

be applied to infer that the average partial score function �](C) evaluated at C�y converges to the 

influence function �;(C) evaluated at C�∗. That is �]LC�yP = �;(C�∗) + tA(0), where �;(C�∗) =
�<b

k ∑ �6(C�∗)A6B;  and tA(0) w→  0  as � → ∞ . It implies that �]LC�yP  converges to a centered 

normal distribution with asymptotic covariance matrix i(�;(C�∗)�;(C�∗)2).  

2.4 Asymptotic Property 

The information matrix can be defined as �(C) = ;
A ∑ {�6(C)2�6(C) − ~6(C)}A6B;  where 

~(C) = ;
ℒ

�k
����N ℒ(C). It can be known that 

 

�LC�yP → 1
� i�∗{�A(C�∗)�A(C�∗)2 − ~(C�∗)} = �(C∗, C�∗) 

�LC�P → 1
� i�∗{�A(C∗)�A(C∗)2 − ~(C∗)} = �(C∗). 

 Only when the null is true, C�y converges to C∗, i�∗{~(C�∗)} is equal to zero for any C, and 

therefore, the above two information matrices are equivalent, i.e.,  �(C∗, C�∗) = �(C∗) . The 

estimate of the Fisher information matrix under the null will be accurate and positive definite. 

However, when the alternative holds, although i�∗{�A(C�∗)�A(C�∗)2}  is positive definite, 

i�∗{~(C�∗)} is no longer equal to zero and �(C∗, C�∗) may be non-positive definite with some 

negative eigenvalues. Therefore, �LC�yP may not be consistent with �LC�P and will be less robust. 

When estimating the observed variance  x]]LC�yP<; = �]]LC�yP − �]gLC�yP�gg<;LC�yP�g]LC�yP , 

�]]LC�yP, a block matrix of �LC�yP, may also have negative eigenvalues which will make the 

observed variance non-positive definite and inconsistent with the true covariance matrix 

(Freedman, 2012). Nevertheless, Λ(C�∗) is always positive definite because of its quadratic form, 

and thus retains consistency. 
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2.5 A Categorical Cure Rate Score Test to Evaluate Heterogeneity 

To derive a score-type test in evaluating the homogeneity under each stratum, I consider 

the following hypotheses: 

 

��: �(
) = 1  for all 
    ��.    �;: �(
) < 1  for some 
 

                                            

According to the model of �(
6) = ;
;[∑ ]^�(_>B`)ab , the hypothesis above can be transformed as 

follows: 

 

��: �` = 0  for all c    ��.    �;: �` > 0  for some c 

 

Silvapulle and Silvapulle used the likelihood ratio approach to derive the general one-sided score 

statistic on the basis of the asymptotic normality of the single realization of �(C) = �<b
k�A(C), 

�A = �(C)2�<;(C)�(C) − 3��{(�(C) − �)2�<;(C)(�(C) − �): � ≥ 0}  (Silvapulle and 

Silvapulle, 1995). Due to the elements of �  being non-negative (on the boundary of the 

parameter space), the Silvapulle test statistic can be applied to evaluate these hypotheses. It takes 

the form  

 

�A = �]LC�yP2Λ(C�∗)� <;�]LC�yP − inf]� �� EL�]LC�yP − ��P2Λ(C�∗)� <;L�]LC�yP − ��PR  
 

with �� = V��;, ��W, … , ��YZ2  and �� ≥ 0  interpreted elementwise, that is ��̀ ≥ 0, c = 1, 2, … , �. 
Here Λ(C�∗)�   represents the estimate of variance for partial score function �]LC�yP , Λ(C�∗)� =
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;
A ∑ H�6LC�yP�6LC�yP2Q .A6  When the population is not stratified, � = 1, the test statistics has a 

simple form �A = s�]LC�yP2Λ(C�∗)� <;�]LC�yP u �L�]LC�yP > 0P  where �L�]LC�yP > 0P  is an 

indicator function.  The statistic �A  has a limiting distribution � = �2Λ(C�∗)<;� − inf]� ��{(� −
��)2 Λ(C�∗)<;(� − ��)} with �~mL0, Λ(C�∗)P  for large �  and is asymptotically equivalent to a 

simple mixture chi-squared distribution 
;
W (��W + �;W) when the dimension of parameter � is 1. If 

� is not a scalar, the limiting distribution would be a mixture of chi-squared distributions from 0 

to � degree of freedom. The associated mixing weights cannot be derived analytically but can be 

approximated using numerical methods (Shapiro, 1988).  
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Chapter 3  

Numerical Results 

3.1 Simulation Studies  

A numerical study is conducted to evaluate the empirical size and power for the proposed 

score test. This performance is further compared with that of the classical score test that assumes 

constancy of the cure rate. Throughout the study, a Weibull model ℎ�(
) = �
K<;(T<S)K =
0.8
<�.WT<�.�×�  with scale parameter � = 0.8 and intercept � = 3 is imposed on the baseline 

hazards function. Consistent with the real data setting, four strata roughly of equal size are 

generated. More specifically, for each subject one uniform random variate on interval (0, 1) is 

generated and the subject is assigned to stratum, say c taking values in the set {1, 2, 3, 4}, if the 

generated random value falls in the interval  V(c − 1) ⁄ 4, c ⁄ 4Z. The non-cure fraction is set at 

(1 + �`)<;  for each stratum k under the group dependent model and (1 + �)<; for the constant 

non-cure fraction model. The regression component of the hazards function for the uncured 

population ℎ(
) =  ℎ�(
) exp{�(−&2�)},  where & = (&;, &W, &�, &�) , in which (&;, &W, &�)  are 

indicator variables for the first three stratum memberships (treating the last stratum as a reference) 

and &� is an independently generated variate from a truncated standard normal distribution on the 

interval [-1, 1]. Coefficient vector (�;, �W, ��, ��)  takes the value (0.05, 0.1, 0.15,0.5).  An 

exponential survival model with hazards rate ��, taking values in the set {0.0075, 0.015, 0.031} 

representing a light, moderate, and heavy censoring scheme, is used to generate the censoring 

variable �6.  
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These censoring mechanisms empirically yield censoring rates of about 15%, 25% and 

40%.  Varying the censoring rate aims at evaluating the impact of censoring on the proposed test. 

One thousand Monte Carlo (MC) replicates of sizes, n=400, 600, and 800 were generated.  

Under the working covariate dependent cure fraction model, the observed test statistic for 

the |,� (| = 1, 2, … , 1000)  MC sample is �A(�) = �] HC�y(�)Q2 ΛLC�∗(�)P� <;�] HC�y(�)Q −

inf]� �� �H�] HC�y(�)Q − ��Q2 ΛLC�∗(�)P� <; H�] HC�y(�)Q − ��Q .   Under the working constant cure 

fraction model, this test statistic simply reduces to �A(�) =
�] HC�y(�)Q2 ΛLC�∗(�)P� <;�] HC�y(�)Q � H�] HC�y(�)Q > 0Q.  The limiting null distribution of both 

test statistics is approximated by the following resampling method.  

For � =  1,· · · , ¢ replicates; 

Step 1: Generate {£;(¤), . . . , £A(¤) } from standard normal N(0,1); 

Step 2: Perturb the influence function �]� (¤)LC�yP = �<b
k ∑ �6LC�yP£6(¤)A6B; ; 

Step 3: Calculate the resample test statistic �A¦(¤) = �]� HC�y(¤)Q2 Λ(C�∗)� <;�]� HC�y(¤)Q −

inf]� �� �H�]� HC�y(¤)Q − ��Q2 Λ(C�∗)� <; H�]� HC�y(¤)Q − ��Q . 

According to the Glivenko–Cantelli theorem, if ¢ is large enough, the p-value of the test 

could be approximated by 
;
§ ∑ �§¤B; H�A¦(¤) > �AQ  where �A  is the observed value of the test 

statistic. Here I set ¢ to 1,000. The empirical power of the test statistic at 5% significance level is 

the proportion of rejections of the null when the alternative is true. Likewise, the empirical size 

of the test statistic at 5% significance level is the proportion of rejections of the null when the 

null is true.  
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To investigate if the classical test and the stratum dependent cure rate test maintain their 

size, the cure rate was set to zero. Results from these analyses (see Table 1) show that the two 

tests have a very conservative behavior in that they tend to reject the null less often than 

anticipated. And this behavior did not recede with increasing sample sizes. I observe however 

that the tests can be forced to converge to the 5% nominal level by drastically increasing the 

censoring rate. Indeed, when there is no cure and a substantial censoring rate, some of the 

censored observations may be misclassified as cured. This is unrealistic in real many applications 

where the censoring rate is typical kept at the minimum level.       

 

Table 1: Empirical size of the score test statistics at 5% significance level.  ¨∗ = © 

censoring 0.0075 (light) 0.015 (moderate) 0.031 (heavy) 

Sample 

size 

400 600 800 400 600 800 400 600 800 

Constant 

Cure Rate 

Test 

0.0007 0.0005 0.0008 0.0037 0.0032 0.0038 0.0090 0.0095 0.0088 

Categorical 

Cure Rate 

Test 

0.0003 0.0006 0.0005 0.0024 0.0028 0.0033 0.0102 0.0097 0.0093 

 

I further investigate the empirical power of both the classical test and the stratum 

dependent cure rate test, when the true cure rate does and does not depend on the covariate. 

Table 2 shows the results of this analysis when the true cure rate depends on the covariate. As 

expected, when the true cure fraction is a constant, the classical approach exhibits more power 

than its stratum dependent counterpart. In contrast, when the true cure rate depends on 

stratification variable, the proposed score test clearly outperforms the classical test in detecting 

cure (Table 3). 
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Table 2: Empirical power of the score test statistics at 5% significance level under constant 

alternative. ¨∗ = ©. � 

censoring 0.0075 (light) 0.015 (moderate) 0.031 (heavy) 

Sample 

size 

400  600 800 400 600 800 400 600 800 

Constant 

Test 

0.614 0.771 0.824 0.564 0.707 0.779 0.251 0.458 0.602 

Categorical 

Test 

0.341 0.738 0.802 0.214 0.555 0.730 0.050 0.168 0.305 

 

 

Table 3: Empirical power of the score test statistics at 5% significance level under categorical 

alternatives. ¨∗ = (©, ©. ©ª, ©. «, ©. ¬) 

censoring 0.0075 (light) 0.015 (moderate) 0.031 (heavy) 

Sample 

size 

400 600 800 400 600 800 400 600 800 

Constant 

Test 

0.237 0.451 0.626 0.151 0.277 0.383 0.066 0.104 0.148 

Categorical 

Test 

0.582 0.905 0.974 0.491 0.869 0.960 0.147 0.415 0.658 

 

Overall, if the sample size gets large, the power of the test with the same settings will 

increase. However, increasing censoring rates negatively impact the power of the tests. This last 

result implies that if the censoring rate is minimal after a long enough follow-up, there is a 

greater power in detecting cure. 

3.2 Real Data: Ovarian cancer data from SEER registry database 

The proposed score-type test is performed to detect cure for ovarian cancer in the 

population with the first malignant ovarian tumor diagnosed between 1992 and 2009 in Los 

Angeles. The population consists of 2462 patients with survival status and diagnosis information 

collected by the SEER registry database. To evaluate whether the follow-up time (time since 

diagnosis) for ovarian cancer is long enough, a nonparametric test proposed by Maller and Zhou 
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(1994) is performed.  With sample size �, let ­A∗  denote the largest uncensored survival time, ­A 

the largest survival time and mA the number of uncensored patients between the time 2­A∗ − ­A 

to time ­A∗ . According to Maller and Zhou (1994), if �Ay = (1 − mA/�)A  is below 0.05, the 

follow-up time would be considered sufficient. For the Los Angeles ovarian cancer data, the 

estimate of �A is much lower than 0.05, which gives some evidence that the follow-up time in 

these data satisfies this condition. 

To perform the proposed test for the cure fraction, a Cox-type model of the form ℎ(
) =
 ℎ�(
) exp{�(−&2�)}, was entertained for the hazards function of the uncured population. Here 

& = (&;, &W, &�, &�, &¯) represents the vector of covariates with &;, &W, &� denoting the indicator 

variables for the age groups 0-30, 30-51, 51-65 (treating the age group 65+ as a reference),  &� 

the number of primary tumors detected at diagnosis, and &¯ the number of lymph nodes detected. 

We assume that the baseline intensity ℎ�(
)  for the uncured population is a two-parameter 

Weibull model. The limiting distribution of the proposed test was approximated using 10,000 

resamples. 

  

Table 4: The score-type test statistics(p-values) for ovarian cancer data 

 Constant Cure Rate Test Categorical Cure Rate Test 

Test Statistics 1.885293 11.01644 

P value 0.0832 0.0062 

 

Using the classical test that assumes a constant �  across all the age groups, the null 

hypothesis failed to be rejected at 5% significance level (Table 4). In contrast, the proposed test 

that incorporates the age-group information into the testing procedure, gives a strong evidence of 

cure for at least one of the age groups. Further analyses (results not shown) show that the 

evidence of cure is primarily due to the younger population, as anticipated form the preliminary 
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analysis in Figure 2. The failure to detect cure in the classical testing procedure is consistent with 

the preliminary analysis in that the cure depends on age. This analysis is an excellent example 

where covariates information can improve power of detecting heterogeneity in the population.  
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Chapter 4  

Discussion 

The evaluation of the cure fraction in the cure survival models has attracted considerable 

attention in the statistical literature, but the existing testing procedures have relied on a restrictive 

assumption. Typically the working model entertained in these methods assumes that the cure 

fraction being evaluated does not depend on covariates. In this thesis, I considered the realistic 

situation where the cure fraction depends on a categorical covariate. Under this assumption, the 

null hypothesis results in multiple parameters resting on the boundary of the parameter space. To 

accommodate this complication, the Silvapulle and Silvapulle generalized score-test was 

performed. The limiting null distribution of this test was rigorously approximated by a 

resampling procedure which does not require the null model to be fitted repeatedly. The result 

from the simulation studies showed that, if the true cure fractions are stratum-specific, ignoring 

this information may have a negative impact on the power of the test. However, the constant cure 

fraction based test may outperform the proposed test when the true cure fraction does not depend 

on covariates. The key contribution of this thesis is that in real life applications, a conservative 

approach that assumes heterogeneity of the cure fractions should be entertained given that the 

true model is unknown to the analyst.  

If heterogeneity of the cure fraction is suspected, one trivial approach would be to 

conduct a constant cure fraction based test within each stratum. This approach is important but 

has limitations. While it is theoretically feasible to conduct a constant cure rate test within each 

specified stratum, it is not practical to do so. In the proposed test, all the parameters but � 
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throughout strata are constant and are estimated jointly under the null hypothesis. If patients in a 

particular stratum represent a small component of the overall sample as is the case of younger 

pre-menopausal patients for ovarian cancer data, the parameter estimated under the null in this 

particular stratum would be less reliable which may result in loss of efficiency. 

The main limitation of the proposed test is that I assume that the cure fraction depends on 

a categorical covariate with a finite number of levels. However, in practice the cure fraction may 

also depend on a categorical covariate with an infinite number of levels consistent with a 

continuous covariate. This then begs for a testing procedure that can accommodate both 

categorical and continuous covariates. Since the true model for the cure fraction is usually 

unknown to the analyst in real applications, a conservative approach would be to entertain a 

more general specification of the working model. This recommendation has been proposed in 

earlier work by (Cao et al., 2014). 
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Appendix A:  Details in Observed Covariance Matrix 

The observed Fisher information �(C)  can be partitioned as 

H�]](C), �]g(C), �g](C), �gg(C)Q. 

�(C) = �(�, f) = °�]](C) �]g(C)
�g](C) �gg(C)±  where the elements �]], �]g = �g]2  and �gg  are, 

respectively, 

 

− ²W
²�²�2 ³(C), − ²W

²�²f ³(C), − ²W
²f²f2 ³(C). 

 

 �<;(C) = ´x]](C) x]g(C)
xg](C) xgg(C)µ  where x]] = L�]] − �]g�gg<;�g]P<;.  Condition A ensure that 

the asymptotic normality of the ‘single’ realization �;]  has the variance-covariance matrix 

{x]]}<; = �]] − �]g�gg<;�g]. 
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Appendix B:  Proof of Influence Function Theorems 

A basic Taylor expansion is applied to �A]LC�yP around the true value C�∗ to get �A]LC�yP ≈
�A](C�∗) + �

�g �A](C�∗){f· − f∗}. Similarly, we can apply Taylor expansion to �AgLC�yP around 

the true value C�∗  to have �AgLC�yP = 0 ≈ �Ag(C�∗) + �
�g �Ag(C�∗){f· − f∗} . These two Taylor 

expansion could lead to �A]LC�yP ≈ �A](C�∗) − �
�g �A](C�∗) E �

�g �Ag(C�∗)R<; �Ag(C�∗) which can 

be rewritten as �A]LC�yP ≈ �A](C�∗) − �]g(C�∗)�gg<;(C�∗)�Ag(C�∗). Define function �(. ) evaluated 

at C�∗  is �A(C�∗) = �A](C�∗) − �]g(C�∗)�gg<;(C�∗)�Ag(C�∗) and the contribution of subject 3  to this 

function is the influence function of average partial score function �;]LC�yP which is �6(C�∗) =
�6](C�∗) − �]g(C�∗)�gg<;(C�∗)�6g(C�∗). Based on these, we then can have �;]LC�yP ≈ ∑ �6(C�∗)A6B; . 

Notice that, unlike �6]LC�yP, influence function �6(C�∗) is independent with covariance Λ(C�∗) =
;
A ∑ i(�6(C�∗)�6(C�∗)2)A6 .  
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