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ABSTRACT

DISCRIMINATION OF FOREST TYPES THROUGH DEVSITGEIRIC

ANALYSIS OF MULTIIEVEL IMAGERY IN

PARANA STATE, BRAZIL

By

Flavio Felipe Kirchner

This study investigated the technological potential for discrimina-

ting four forest types using spectral densities measured on large-scale

panchromatic and satellite imagery in Parana State, Brazil. Several

levels of imagery were used, aerial photos in 1:A0,000 scale, SKYLAB

imagery, LANDSAT imagery, and ratio forms of LANDSAT channels. Dis-

criminant analyses of densitometric measurements, supported by other

multivariate techniques, were used to distinguish between the forest

types at all imagery levels. Tests of the modeling process indicated

that, from the fifteen imagery scales tested, the color composite gave

the best results. Four variables were tested: (1) the arithmetic mean

of grey density variation; (2) the mean quadratic deviation of grey

density variations from the arithmetic mean of grey density; (3) the

moment coefficient of skewness of grey density variations from the

arithmetic mean of grey density; and (14) the moment coefficient of

kurtosis of grey density variations from the arithmetic mean of grey

density. Of the four, only the arithmetic mean and the mean quadratic

deviation were used in the model. The two other variables, when used,

accounted only for misclassification between the four forest types.

Discriminant analyses procedures indicated that 100 percent correct

classification for the four forest types was achieved using two

discriminant fimctions.
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CHAPTER I

INTRODUCTION

Problem.Statement

Forest resource planners require several types of information to

achieve optimal decisions. Such information is provided through re—

source surveys, which quantify the extent of the resource base, current

condition, and changes over time in terms of growth and loss. Such

data may be obtained through field surveys, from aerial photos, from

aerial photos supported by field surveys, or from satellite—based

sensors. Selection of a data-gathering system for resource inventories,

which utilize aerial photography or satellite photography, depends on

the importance of the information, quality of photography obtainable,

available analytical technology and cost considerations. In an exten-

sive area such as Parana State, Brazil, field surveys are too costly

and time consuming. The alternative survey methods, utilizing either

aerial photos, or LANDSAT multispectral scanner (MSS) imagery, or some

combination of the two, are evaluated in this study.

Tb inventory forest canopies by their reflectance properties,

either on aerial photographs or satellite imagery, requires knowledge of

spectral and spatial (e.g., horizontal and vertical structure) charac-

teristics and their respective phenologies, growth characteristics,

dependence on site conditions, as well as an understanding of how these

characteristics affect remote sensors signals. These various phenomena

can be investigated through direct observation, experimentation and



measurement, or mathematical modeling and simulation. Mathematical

modeling seems to have the greatest potential. Models that describe

forest canopy reflectance incorporate the interactions of various

characteristics with incoming radiation; this enables the calculation

of the resultant signal for a particular remote sensor. The study of

canopy reflectance offers the potential for identifying and assessing

different forest canopy situations.

Forest canopy reflectance may be examined by either digital or

analog analysis. Digital analysis requires relatively expensive hard-

ware and software as well as experienced technicians. Analog analysis,

in comparison, requires a lower level of hardware and supporting skills.

Software for digital analysis is based on tapes containing data from

LANDSAT MSS; such tapes are expensive and require special computer

programs in pattern recognition. Analog analysis employs aerial photo—

graphs, multispectral photography, space photography (SKYLAB), or multi—

spectral scanner frames (LANDSAT), which are relatively inexpensive in

comparison to the data tapes.

In Brazil, ready access to computers is difficult; the only institu-

tion which offers processing and analysis of remotely—sensed data is the

National Institute of Space Research (INPE), located in 350 Paulo State.

Therefore, for use in Brazil, the densitometer -- an instrument that

measures density of aerial or multispectral scanner imagery-m-used in

analog analysis is the most attractive solution for analysis of remotely

sensed imagery.



Objectives
 

The objective of this study is to develop a.method to distinguish

the four major forest types of Parana State, Brazil. The forest types

are: (1) Pines (Pinus taeda and Pinus elliottii); (2) Parana Pine
  

(Araucaria angustifolia (Bert.) O. Ktze.); (3) Hardwoods; and (A) Mixed
 

(Conifers and Hardwoods). In order to achieve this objective, consider-

ing the nature of the study area, the following analytical procedures

, were carried out:

a. determine the potential of LANDSAT MSS imagery to differentiate

forest types through densitometric and discriminant analysis of forest

canopy reflectance;

b. determine the potential for identifying forest types through

analysis of canopy reflectance from IOWA1eve1 photography (1:A0,000

scale), SKYLAB (1:950,000 scale), and LANDSAT MSS (1:1,000,000 scale)

imagery.

In developing this methodology, the main considerations are:

a. Spatial properties such as texture, size, and shape to dis-

tinguish between forest types;

b. the precise spectral interpretation of the density characteris-

tics of grey or color separation; and,

c. the use of spectral signatures to differentiate major forest

types.



Background on Parana State
 

The State of Parana is located in the south of Brazil. It's total

land area of approximately 201,203 square kilometers may be subdivided

in five natural geographic regions: coastal zone; sea-mountain range;

first plateau; second or Ponta Grossa plateau; and third or Parana

Trapp plateau.

In a study done by Maack, in 1968, the natural vegetation cover

types of Parana consisted mainly of pluvial tropical sub-tropical forest

and Araucaria angustifolia (Bert.) O. Ktze. forest, which corresponded
 

to 83 percent of the state's total land area. The other 17 percent

included fields, swamps, beaches, and bays. Table 1 shows these natural

vegetation cover types with their areas; and their distributions are

further delineated in Figure l and Table 2.

Since 1930, much of the primitive landscape of Parana has been

changed beyond recognition. Forest lands have been affected the most,

the Acungui Serie mountain region being one example. Its depletion,

which began in the early 1930's and still continues, was caused by the

exploitation of the forests for lumber, mainly of Araucaria angustifolia
 

(Bert.) O. Ktze. In Parana's third plateau the depletion has been more

intensive; it began in.l935 when coffee farmers moved west of the

Tibagi river to clear new areas for cultivation. In 1963, Parana had

approximately 6.1 million hectares of forest cover, comprising 30.27

percent of Parana's total land area. This resource was distributed

irregularly across the state, with large concentrations in the west and



 

Table 1: Natural vegetation of Parana Statea (Maack, 1968)

 

Cover Area (%)

 

Pluvial tropical sub-tropical forest “6.7A

Araucaria angustifolia (Bert.) O. Ktze.

in plateaus and in the sub—tropical

 

forest region 36.67

Fields 15.17

Swamp 0.88

Beach, islands vegetation 0.26

Bays with swamp strips areas 0.28

 

aParana State contains 201,203 square kilometers.



TafleZ:

6

Phytogeographic map convention

 

 

 

      

Tropical pluvial forest less exuberant

Coastal tropical pl vitl forest

Fields from the type of the savannas re: the

central region of Brazil

Secondary forest in the Araucaria zone

Fields with bushes

Araucaria angustifolia (Bert.) O. tze. fores:

region

 

Sub-tropical pluvial forest

Tropical pluvial forest from plateaus

Ilex paraguariensis region in the Araucaria region

Devastated secondary forest in the pluvial tropical

region

Devastated zone in the pluvial sub-tropical foresr
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southwest. In 1973, forest cover had decreased to 2.A million hectares,

or 60.93 percent of the 1963 forest cover was harvested in ten years.

In the coastal zone this harvesting was mainly for charcoal production.

These areas, including the coastal zone, have been replanted with

Pinus elliottii, Pinus taeda, Araucaria angustifolia (Bert.) O. Ktze.,
 
 

and Eucalyptus Spp (U:F.P., 197“).
 

However, the greatest impact in the forest sector has been caused

by the Fiscal Incentive Law (1966); this allows income tax deduction of

costs associated with forestation and reforestation. This law caused a

large jump in reforested areas. In 1967, 5,95“ hectares were planted;

from 1968 to 1977, however, an average of 54,5“5 hectares/year were

reforested. This increased reforestation has had a very significant

positive impact in the technical, social, and economic aspect of life,

as well as in the other sectors of the state economy.

Therefore, because of the various changes in the forest resource

base, forest resource planners need a method to quantify changes in

forest composition and forest cover over an extensive area. Remote

sensing techniques, using either aerial photos or satellite imagery,

can provide such information.

Definition of Terms
 

Since some readers may not be familiar with the terminology of

remote sensing, several terms basic to discussion of the study will be

defined. Densitometry or sensitometry involves the accurate measurement
  

of the sensitivity of a photographic emulsion to light. However, since



the effect of different exposures are apparent only after fiLm develop-

ment, sensitometry actually deals with both exposure and development

and their relation to one another.

Density is a measure of the degree of blackening of an exposed

film, plate, or paper after development, or of a direct image as in the

case of printout material. Density measurements in color films can be

divided into two general classes. One class, analytical density,

measures the amount of dye in each of the layers of a color material.

The use of analytical densities enables densitometric studies of cause-

and—effect relationships in color image formation. The second class is

integral densitometry, which is the measurement of the integrated effect

of the combined color images. Integral density measurements of color

films correspond to the same type of density measurements made on black

and white films.

The photographic tone_on black and white or on color photographs

is the brightness of a lighted and developed area of a photographic

layer. The size of the grey density value or of the color density is

expressed by the percentage of light which is absorbed by the affected

area (on prints or on films). Density (D) is generally defined as the

logarithm to base 10 of opacity (0), or as the logarithm to base 10 of

the inverse of transmittance in the film (T), or as the logarithm to

base 10 of the inverse of reflectance capability on a paper print (R):

D = loglO 0

= loglo 1/T

= log10 l/R

A grey density indicates a color density of l, or that 10 percent of



  

10

the incident or penetrating light is either reflected or transmitted.

Therefbre, density depends upon the total proportion of the illuminated

area that is obscured by the silver grains. Resolution, in this

sense, has been found to be a fairly good index of the detail-

reproducing capabilities of photographic emulsions. This is because

the image-forming characteristics are fairly similar, qualitatively,

despite the quantitative differences. On the other hand, the image-

forming properties of lenses vary from lens to lens because of

differences in the way the distortions are balanced against one

another. For a given lens, the distortions vary from one focal position

to another and across the lens field for a given focal position. The

result is that resolving power does not always indicate the relative

sharpness with which the edges of large details are reproduced.

Photographic texture can be regarded as an extension of photo-

graphic tone. Texture involves both the mean photographic tone of an

object or unit and the variation within this unit (the change of the

grey density or color in the smallest area). In small scale imagery

(e.g., LANDSAT MSS) where form.and especially details of single objects

can no longer be reproduced - the object being below the minimum

resolution limits - texture has great significance in object

identification.

Reflection refers to the reflected radiation by a surface, without
 

change of frequency of radiation's monochromatic component. While

reflectance is an expression of the ratio of reflected energy (in all

directions) to incidence energy, brightness refers to the radiant flux
 

per unit area of surface in a specified direction of observation.



CHAPTER II

LITERATURE REVIEW

Discriminant analysis in taxonomic problems began with Fisher

(1936), who stated that: "When two or more populations have been

measured in several characteristics, x1, ..., x5, special interest

attaches to certain linear fUnctions of the measurements by which the

populations are best discriminated." Sneath and Sokal (1973) pointed

out that the purpose of a discriminant function is to minimize the

probability of wrong assignment of unknown individuals (misclassifi-

cation) where there are clusters that group closely together between

which identification must be as certain as possible.

A major problem is that the usual methods of discriminant analysis

assume that the dispersion matrices of all the taxa are homogeneous

(that is, the clusters all have much the same size, shape, and orienta-

tion in phenetic space) and that the clusters or groups follow multi-

variate normal distributions. If the group dispersion matrices are

equal, then linear classification rules should be used. Otherwise,

quadratic rules should be employed (Sneath and Sokal, 1973).

The application of discriminant analysis in studies of density,

reflectance and or transmittance patterns on multilevel imagery of

ferest types requires some precautions when interpreting the imagery.

SaynAWittgenstein (1978) emphasized that the recognition of species

on aerial photographs depends on the scale of the photos.

Tree form characteristics such as crown shape and branching habit,

ll
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which are used for identification on large scale photographs, become

progressively indistinct as the scale is decreased. Eventually,

these features become so indistinct that they are replaced as key

characteristics by photographic tone, texture and shadow pattern.

These characteristics depend upon too many variables to make specific

rules of interpretation possible. Such variables include sun altitude,

length of exposure, method of printing and developing, atmospheric

haze, and of camera and lens characteristics. The sun altitude in-

volves the relationship between reflectance (in LANDSAT MSS) and

difference between slope azimuth and sun azimuth (Sadowsky and Malila,

1977). This relationship is very important because as reflectance

and azimuth decrease, so does percentage of reflectance. This can

result in a diminishing capability in separating conifers from hard—

woods. Species identification on small-scale aerial photographs is

more of an art than a science if it is pursued by conventional

interpretation methods (SaynéWittgenstein, 1978). Its success, to a

high degree, depends upon the interpreter's skill and knowledge of the

area. Interpretation remains a subjective procedure, even when using

advanced methods (e.g., density measurements by means of densitometric

analysis, computer-assisted pattern recognition) for the classification

of digital data.

With the increase of data to be analyzed, the present conventional

interpretation methods for analyzing and integrating the information

from aerial photos were surpassed. Ray and Risher (1960) found that

quantitative measurement of photographic tone, either in terms of
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optical density of film materials or in terms of light reflectance

from.paper prints, may also be useful in geologic research. Frequency

of tone changes, as well as the magnitude of tone measurements, are

useful in describing and comparing different terrain features. It is

important to note how tone and texture were quantified in terms of

density units.

Rosenfeld (1962) worked with oscilloscope photographs of video

traces, using only black and white conventional aerial photography

at a scale of 1:5,500. The specific terrain types investigated

included hydrographic features, cultivated and uncultivated land, and

various types of urban areas. Rosenfeld (1962a) discussed an approach

to the automatic identification of the images of targets on aerial

photographs. This approach involved the extraction from the photo-

graphic image of two basic types of information, one relating to the

presence of figures having given shapes and sizes, and the other to

the "textural" nature of the image. Goldstein and Rosenfeld (1964),

in order to obtain rapid, simple measurements of the "degree" to which

an image contains elements of a given shape, employed a simple two-

channel noncoherentl optical correlator. They used this optical

correlator for automating terrain type discriminations, to convert the

distribution of elements of the given shape in the original terrain

image into a correlogram.of brightness distribution. Doverspike

et_al_(1965) used blue, green and red color components at a scale of

 

lnoncoherent: having waves not in phase and of various wave-

lengths.
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1:1,188 to identify even—aged conifer stands, land use classes, and

other features through micrometric measurements.

Rib and Miles (1969) studied the identification of terrain features

based on the interpretation of form, tone and texture. Measurements

of tone and texture were performed with a densitometer adapted for

continuous scanning. The factors investigated included film types

and filters, seasonal effects, aperture size, and scale. Measurements

were also perfbrmed on multichannel imagery (ultraviolet through far

infrared), and spectral response signatures were developed for various

target materials. A technique was also developed for the preparation

of isochromal maps (maps showing uniform color zones) from densitometric

scans of color photography. The technique developed for isochromal

mapping offers a method for automatically mapping various tonal patterns

present on color photography. This has immediate application for the

identification of those terrain features which are directly related to

color tonal patterns. Efforts to develop diagnostic patterns for

various terrain features from measurements on a single film type were

not successful. Analysis of the spectral response curves developed

from multichannel imagery indicated that this approach offered greatest

potential for delineating terrain features.

'Von Steen et_al_(l969) studied the relationship of film optical

density to crop yield indicators. Cotton, grain sorghum, carrots,

cabbage, and onions were included in the study. Film densities of

the sample plots were obtained by scanning the transparencies with an
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isodensitracer. Densities for each of the three layers of film

were measured by using appropriate filters in the isodensitracer.

Average density readings were then related to plant counts and measure—

ments obtained from.ground sample plots. Statistically significant

relationships were found between the preharvested yield indicators

and film densities of aerial infrared film. Jackson et_al_(l97l)

used microdensitometer traces from 35 mm.false—color transparencies

to compare potato fields infected with various levels of late blight.

A significant linear relationship was developed between microdensito-

meter readings and field-disease ratings.

Driscoll et_al_(l97u) used color infrared photos to identify

plant communities and their components with a microdensitometer modified

to generate scan lines. They pointed out that image density differences

in color infrared aerial photos can be used to discriminate individual

shrub and tree species of a pinyion pine-juniper plant community. In

addition, inege density was successfully used to identify six general

plant communities. However, different sites and cultural treatments

'within native grasslands and ponderosa pine forests could not be

easily discriminated, even through visual differences were apparent

in the photos.

Akca (1971) conducted a study to identify land use classes and

forest types by means of microdensitometer and discriminant analysis.

The generated densograms2 were then described by the arithmetic mean

of grey density variation, mean quadratic deviation of grey density

 

2densograms: optical density readings drawn on millimeter-

paper.
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variations from the arithmetic mean of grey density (amplitude), and

mean spatial frequency of grey density variation per mm. The task

was to combine these three parameters into some measurement such

that the most advantageous separation of the individual groups was

achieved. This was accomplished through discriminant analysis.

Akca (1971) also described various studies (Steiner and Haefner,

1965; Naurer, 1965; Steiner, Maurer and Kilchenmann, 1966; and Baumberger,

1969) done at the Geographical Institute of tie University of Zurich.

These studies utilized black and white and color aerial photos to

identify agricultural crops through measurements of color components

and general density. These measurements were analyzed by discriminant

analysis to achieve differentiation between various agricultural crops.

Jordan et_al_(l978) demonstrated that manual densitometry was a

valuable tool for cover classification in areas of surfaceemining.

Manual spot densitometers were used to obtain cover signatures for 118

strata from multi-temporal 1:2A,000 scale color infrared and multi-

spectral aerial photographs. Linear discriminant analysis and multi-

seasonal imagery led to a reasonably accurate classification system.

Lillesand et_al_(l979) investigated stress levels in urban trees

on the basis of spectral densities measured on large-scale color and

color infrared photography. Factor analysis was used to develop

quantitative "stress indices" based on ground data. Multivariate

regression analysis was then used to develop a statistical model for

predicting stress indices on the basis of image density measurements.

Tests of the model indicated that the photo-based predictions were as



l7

reliable as ground estimators, particularly under drought conditions.

However, the timing of aerial photography with respect to rainfall

weighted heavily on the success of quantifying tree stress from density

measurements.

The use of remote sensing techniques has long been accepted in

forestry. At an early stage of development, aerial photography was

recognized as a valuable tool in land resource management, and

advantage has been taken of improvements in techniques. The launching

of LANDSAT - 1 in June 1972 and SKYLAB missions between May 1973 and

February 1974 introduced a new technology. The assessment of its

potential value to forestry became an urgent need.

High-resolution sensors such as those on SKYLAB may play an

important part in forest and rangeland surveys. Although conventional

aerial photographs have been utilized in resource surveys for several

decades, recent developments have moved toward more sophisticated

photographic and non—photographic remote sensors and computer-assisted

data analysis. The new technology is valuable for several reasons:

(1) costs of acquiring resource data are rapidly increasing; (2) more

resource data is required at shorter intervals to measure rapid changes

in land use that affect the environment; (3) urban and recreational

uses of land are encroaching upon available resources and alternate

sources must be planned and provided for; and (A) there is a continuing

need for up-to-date resource information for day-to-day land management

decisions and program planning.
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SKYLAB photography showed the possibilities of very small-scale

imagery. The U.S. Forest Service has carried out a series of experi-

ments (Francis, 1976) using microdensitometer evaluation of SKYLAB

photographic products for classifying plant communities. A two-tailed

t-test was used to determine presence of significant differences

between optical density sample means for both region3 and series”

level classifications. Visual interpretation of SKYLAB and support

aircraft photographic products could be used successfully for classifi-

cation and aerial mapping of native plant communities up to the

region level. Series level classifications were dependent on date,

scale, and film type.

In terms of LANDSAT scanners, data for forestry must be in a

useable form. The satellite's multispectral scanners (MSS) transmit

photometric data received from the earth's surface; the data must be

reconstructed for visual interpretation or densitometric measurements.

The raw data is then converted into photographic form as black-and-

white or color transparencies. Also, MSS produce magnetic tapes

which are capable of producing, through computed-assisted analysis

techniques, graphic representations of the earth as viewed by the

satellite. Both the transparencies and tapes have low detail resolution,

compared with conventional aerial photography.

 

3region: subdivisions of most general class of vegetation, associa—

ted regionally and therefore determined by sub-climates within continental

climates: Montane Grassland, Temperate Mesophytic Coniferous Forest,

Alpine Grassland, etc.

“series: a group of vegetation systems within the region category,

with a common dominant climax species: Ponderosa Pine Forest, Fescue

Grassland, Herbaceous Meadow, etc.
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Driscoll and Francis (1975) used LANDSAT-1 imagery to classify

plant communities in region and series level in central Colorado.

A scanning microdensitometer was used to evaluate the June and August

LANDSAT—l color composite for classifying the plant communities at a

scale of 1:1,000,000. Standard t-tests for unpaired plots with unequal

sample sizes indicated highly significant differences between all

vegetation combinations at two dates (July and August). Thus, it

appears possible to automatically scan a LANDSAT color composite and

relate density levels to regional level vegetation classes.

The LANDSAT study concluded that, with improved spectral and

spatial resolution, satellite imagery could provide the first-level

infbrmation required in extensive forest inventory sampling strategies.

SKYLAB data provided an opportunity to investigate and substantiate the

conclusion, using machine-assisted classification procedures in addition

to those dependent on human skill and judgement.



CHAPTER III

RESEARCH METHODS

Theoretical Model of Individual Decision-Making

The approach used to discriminate the four major forest types of

Parana State is based on texture type separation of density measurements.

However, the subdivision of a photograph into forest types is not always

easy for a human interpreter. In some cases the boundaries between

forest types will be sharply defined, while in other cases the transi-

tions between adjoining forest types may be quite gradual and difficult

to delineate. Fortunately, mathematical models for the detection of

subdivision points can be formulated using any of the textural variables

defined in the previous chapter. The model used in this study utilized

the following variables: (1) the arithmetic mean of grey density

variation; (2) the mean quadratic deviation of grey density variations

from the arithmetic mean of grey density; (3) the moment coefficient

of skewness of grey density variations from the arithmetic mean of

grey density; and (A) the moment coefficient of kurtosis of grey

density variations from the arithmetic mean of grey density.

This model is used to discriminate between forest types by

principal components analysis, multivariate analysis of variance,

discriminant analysis, and cluster analysis of canopy reflectance

characteristics.

20
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Research Hypothesis
 

The heart of remote sensing discrimination between objects is the

wavelength selectivity of the interaction of electromagnetic energy

with these objects. The amount of energy in different wavelengths

that is returned to the sensor from a given object defines a theoreti-

cally unique spectral signature, analogous to human fingerprints.

Figure 2 shows typical spectral signatures for hardwoods and conifers

, based upon reflectance in visible and near visible wavelengths.

It can be seen that the spectral signatures overlap through all visible

wavelengths, and particularly through the green region (0.5 to 0.6 um).

Therefore, both types of trees can display identical reflectances,

i.e., they have essentially the same color. In the infrared region,

however, reflective interactions are much greater for hardwoods than

for conifers. This property makes infrared photography extremely

useful for discriminating between these tree types. On infrared photos,

hardwoods are easily detected as being relatively brighter than conifers.

This model used spectral reflectance (density values) for forest types

between 0.“ micrometers (um) and 1.1 micrometers.

One weakness of this canopy reflectance model is its assumption

that canopy components are distributed within each canopy layer in a

simple random fashion. The model assumes that leaves are distributed

so as to be located equally in any position within a canopy layer in
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Figure 2: Spectral signature for hardwoods and conifers (Lillesand,

1976).
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accordance with their concentration in that layer. This random

distribution allows for the occurrence of occasional clumps of leaves

with a predictable frequency, a situation perhaps best represented by

grass canopies that contain.more or less uniformly distributed

components. However, it may not predict a situation that exhibits a

distribution.more clumpy than would be expected.by the equally likely

placement of a simple random distribution. A forest canopy represents

such a situation, in that leaves and branches are associated with

tree crowns as a clump with larger voids between crowns. In this way,

the influences of clumped component distributions on canopy reflectance

were believed to be properly represented by the radiometric effects

that affect the sensor, and not by changes in percent cover (Sadowsky

and Malila, 1977).

The study's hypothesis is that the spectral and spatial variations

of the forest canopies signatures (reflectance) will cluster separately

for each forest type in each, imagery, and that the optical densities

Of forest canopies signatures are sufficiently discrete to allow

discrimination between them”

Experimental Procedure
 

The study area for this research corresponds to a LANDSAT frame

(Figure 3) with coordinate points: #1 S523°55'26" - W60A8°45'10";

#2 823°39'27" - w050°29'29"; #3 s25°10'07" - w050°57'28"; #u 825°26'22" _

WOA9°ll'55". It was chosen for the following reasons: (1) restricted

 

5S: corresponds to latitude south of the Equator.

6W: corresponds to longitude west of Greenwich.
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availability of aerial photos regarding the date, scale, and coverage

in Parana State; (2) restricted quality and coverage of the SKYLAB

inagery; and (3) the area contains a good cross-section of the forest

type-terrain combinations (Figure C5).

Four different levels of imagery were used in the study (Table 3);

first, panchromatic aerial photos; second, color SKYLAB S—l90 B imagery;

third, subdivided in four sub-levels7, LANDSAT-2 MSS imagery; and

fourth, subdivided in nine sub-levels, were the ratio forms. Ratio

form is an important procedure not only for normalization8 but also for

its enhancement of features (forest types, variations in rock chemistry

in desert areas, etc.). N0te that the ratio forms are only ppssible

fer LANDSAT MSS imagery, since the density values measured, for

instance, in channel A were simultaneously neasured in channels 5

and 7. These channels pmeouce identical scales and formats in

different spectral regions. The aerial photos were taken in 1976,

SKYLAB imagery in August 1973, and LANDSAT MSS in September 1977.

The imagery for disparate dates were used as they were the only ones

available.

The forest types analyzed were: (1) Pines (Pinus taeda and
 

Pinus elliottii); (2) Parana pine (Araucaria angustifolia (Bert.)
  

 

7The fourth sub-level, color composite, is a composition of

channels A, 5, and 7.

8normalization: eliminates or reduces the influence of image

distortions involving scene radiation variations such as falloff in

light intensity away from the center of a photographic lens, cross-

field variations in lighting. Also,systematic variations in scene

illumination and developing and printing procedures, scan lines

variations arising from differences in viewing angle, and faulty

equipment biases.
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Table 3: Levels of imagery used in the study.

 

 

Levela Type of Imagery Spectral Coverage (um)

1. Aerial Photo Panchromatic 0.A - 0.7

(1:40,000)

2. SKYLAB (orbital) Color 0.A - 0.7

(1:950,000)

b

MS Scan — Channel A 0.5 - 0.6

3' LANDSégo(gggital) MS Scan - Channel 5 0.6 — 0.7

' ’ ’ MS Scan - Channel 7 0.8 - 1.1

Color Composite 0.5 - 1.1

Ratio 1: A/5c —

Ratio 2: A/7 -

Ratio 3: S/A -

Ratio A: 5/7 -

A. Ratio Ratio 5: 7/A —

Ratio 6: 7/5 -

Ratio 7: A/ A+5+7 -

Ratio 8: 5/ A+5+7 —

Ratio 9: 7/ A+5+7 -

 

a First and second levels are paper print products and third level

are film positive products.

b MS Scan - Multispectral scanner imagery.

c A/5 - represents Channel A divided by Channel 5, and so on.
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O. Ktze. ; (3) Hardwoods; and (A) Mixed (conifers and hardwoods).

These forest types were chosen for several reasons. Pines were chosen

because they are an exotic species introduced in Brazil and now contri-

buting significantly to forest coverage. Parana pine was chosen because

it is the only native commercial coniferous species. Hardwoods and Mixed

were chosen because they are both natural forest types (Appendix C).

Forest types were delineated on the imagery in the following

. manner. First, the forest types were identified and delineated through

photointerpretation of the aerial photography (l:A0,000 imagery) with

a mirror stereoscrope. These delineations were used as ground-truth

based on former photointerpretation and author's background on the area.

These forest types were then transferred to the SKYLAB imagery and to

the individual frames in the LANDSAT MSS imagery, using a magnifying

comparator. Since each level of imagery is independent, the sample

area is proportional to the size of the forest types delineated in the

1:A0,000 scale after photointerpretation.

Random sampling procedures were then used to select observational

units. Five areas for each forest type were delineated on the aerial

photos, SKYLAB imagery, and on the individual LANDSAT channels, and

25 density measurements were taken in each area. This procedure

provided 125 density measurements for each forest type in each scale

of imagery. These measurements were taken at random with the densi-

9 Past studies (Doverspike, 1965) suggested that a minimumtometer.

of 100 replicates are needed for each forest type in each scale of

imagery. For the ratio forms, caution is necessary when collecting

 

9
See Appendix A for description of the densitometer.
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such density measurements, because each density value taken in channel

A should also be taken in channels 5 and 7. Therefore, each channel

was enlarged in the densitometer until each individual line and pixellO

could be seen. After the density values were taken for each individual

channel, the ratio forms were obtained by dividing each individual

density value from one channel by its respective density value in the

other channels.

Statistical Parameters Used in Discrimination.

The mathematical model for the detection of subdivision forest

types uses statistical moments as texture variables. Specifically,

these moments are: the arithmetic mean of grey density variations,

the mean quadratic deviation of grey density variations from the

arithmetic mean of grey density, the moment coefficient of skewness

of grey density variations from the arithmetic mean of grey density,

and the moment coefficient of kurtosis of grey density variations from

the arithmetic mean of grey density.

For a given set of data {X1’ X2, ..., xh}, the first moment, the

mean, is defined as:

i=—.—l,—zx., (1)

which identifies the degree of Opacity of the photographic texture.

The second moment, variance, is defined as the square of the standard

deviation:

2 _

m,=—§1—z<x.-x2> (2)
l

 

lopixel - picture element - in a LANDSAT MSS imagery, each pixel

has 79 x 79 meters ground resolution cell and a nominal ground resolution

of 56 x 79 meters because of cell spacing.
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This study used the standard deviation (or mean quadratic deviation),

which distinguishes the contrast differences in the texture or the

smoothness of the texture:

s = mé (2a)

The third moment, skewness, is defined as the degree of asymmetry or

departure from symmetry of a distribution (Figure A), and,in our case,

Of differences in texture between samples. Skewness is defined as:

l 3 3" 2 3 <3)m3=—'I:1-— ZXi-——n—-XZX1+2x

In this study, the moment coefficient of sknewness was used, because

it is easier to calculate and is scaleless:

Y 3/2 (Ba)

 

The fourth moment, kurtosis, is defined as the degree of "peakedness"

of a distribution (Figure A). In this study, kurtosis defined the

differences in texture between samples. Kurtosis is defined as:

1 A 3 6 2 -A- A- - _.
Hm — ‘5” 2 xi - fi-x 2 xi + fi-x 2 xi 3x (A)

In this study, the moment coefficient of kurtosis was used, again

because it is easier to calculate and is in dimensionless form to

avoid particular units:

Y2 ‘ mu (ua)

For perfectly symmetrical curves, such as the normal curve, skewness

is zero and kurtosis has a value of three.
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The four parameters defined above were used in the discrimination

model. To illustrate its use, assume there are three distributions,

D1, D2, and D3, as in Figure 5. D1 has a high peak while D3 is almost

normal. Therefore, discrimination between D1 and D3 could be achieved

through the use of differences between means, or by kurtosis.

Comparing D2 and D3, D3 has larger skewness and different standard

deviation than D2. Therefore, discrimination could be achieved

through the use of differences in skewness and standard deviation.

Techniques fer Data Analysis
 

The statistical analyses that were used to discriminate between

forest types were principal component analysis, multivariate analysis

of variance, discriminant analysis and cluster analysis.

11 are linear combinations of random orPrincipal components

statistical variables which have special properties in terms of variances.

For example, the first principal component is the normalized (that

is, the sum of the squares of the coefficients being one) linear

combination with maximum variance.

The principal components are the eigenvectors of the covariance

matrix. Thus the study of principal components can be considered as

putting intomathematical terms the developments of eigenvalues and

eigenvectors (for positive semi-definite matrices). In many exploratory

studies the number of variables under consideration is too large to

handle. Since it is the deviations in these studies which are of

 

llSee Morrison 1976, Anderberg 1973, and Anderson 1958 for the

theory behind principal components.
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Figure 5: Illustration showing three hypothetical distributions.
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interest, a way of reducing the number of variables is to discard

those linear combinations which have small variaxumi and study only

those with large variation. In this study, we were interested in

describing and analyzing how density measurements of forest types

differ in the statistical moments as texture variables. Thus, we

wanted to know which statistical moments or combinations of moments

showed considerable variation.

12 (MANOVA), we are concernedIn.multivariate analysis of variance

with the study of group differences (e.g., forest types) in location

in a multi-dimensional space. The distinctive multivariate nature

of MANOVA is that the dependent variable is a vector variable. This

dependent vector variable is assumed to be multivariate normal in

distribution with the same dispersion, or variance-covariance matrix,

for each forest type. Equality of dispersion matrices is the MANOVA

extension of the assumption of homegeneity of variances in ANOVA

designs. The main concern of MANOVA is equality among the population

centroids, or mean vectors. That is, concern whether some or all of

the populations are centered at different locations in the measurement

space spanned by the dependent vector variable.

In discriminant analysis13 the objective is to examine how far

it is possible to distinguish between members of various groups (forest

types) on the basis of observations made upon them. Discriminant

 

l2See Morrison 1976 for the theory behind MANOVA.

l3See Morrison 1976, Green and Carroll 1976, Rao 1952, and

Anderson 1958 for the theory behind discriminant analysis.
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analysis is thus an extension to multivariate observations of the

ordinary analysis of variance within and between groups. A collection

of discriminant variables are selected by forming one or more linear

combinations in the form.of:

D1 = dilzl + d1222 + ... + dipr,

where Di is the score on discriminant function i, the d's are weighting

coefficients, and the Z's are the standardized values of the p

discriminating variables used in the analysis. The possible rank n

of the discriminating function (subspace) depends on the relative sizes

of g, the number of groups, and p, the number of discriminating variables.

Therefore, the maximum.number of functions possible is either one less

than the number of groups or equal to the number of discriminating

variables, if there are more groups than variables.

Discriminant analysis sometimes fails because the resulting

discriminant function separates the groups very poorly due to two

factors: either the groups overlap in the chosen measurement space,

or the groups cannot be separated by a function of the form adapted for

the analysis.

If discriminant analysis gives disappointing results because the

data set contains fewer identifiable groups than prior knowledge would

suggest, then cluster analysis should be in the first rank of diagnostic

tools.

1A
The purpose of cluster analysis is to divide the data into

groups in the hope of detecting some sort of natural grouping. Basic

 

1A

See Anderberg 1973, Sneath and Sokal 1973, Hartigan 1975, and

Dubes and Jain 1979 for the theory behind cluster analysis.
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to cluster analysis is the assumption that is reasonable to seek

clusters in the data characterized by possession of the properties of

compactnessls and isolationl6. The objective is to have clusters as

:much compacted and isolated as possible.

The choice of a precise definition of "cluster" is designed to

incorporate the idea that a grouping together of objects in terms of

measure of dissimilarityl7 always reflects some aspect of their

structure, but that there is a possibility of objects becoming separated

accidentally.

Cluster analysis consists of two methods; hierarchic cluster

methods, and nonehierarchic cluster methods. In hierarchic cluster

methods, the end point of the process is a dendrogram, or tree diagrm.

The kind of algorithm employed does not use the internal

structure of the groups fermed at each stage, but simply treats the set

of groups as a new set of objects. Because of this, it is necessary

to find a different kind of approach to make possible the description

of non-hierarchic (overlapping) cluster method.

The non—hierarchic cluster methods allow clusters at each level

to overlap. For a general system of subsets of a set we no longer

 

5compactness: number of internal edges.

l6isolation: number of linking edges.

l7dissimilarity: If x is a class of individuals known to be one

of A,B, then its identification as A or as B gives information about

the character states which describes it, further to the information

given by knowing simply that X is one of A,B, but not which one. The

amount of infermation given in this way is not well defined since it

may differ for the two outcomes of the identification. Dissimilarity

is a suitable typical value of the expected information gain for each

identification.
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have a convenient descriptive tool such as the equivalence relations,

if we were to ask that non-hierarchic cluster methods should be

completely general.

Computational Algorithmsl8
 

For discriminant analysis the following algorithms, available in

the Statistical Package for the Social Sciences (SPSS) Subprogram

DISCRTFENANT, were used:

(1) DIRECT - all independent variables are entered into the

analysis;

(2) WILKS - the criterion is the overall multivariate F—ratio

for the test of differences among group centroids;

(3) NMHAL - seeks to maximize the Mahalanobis distance between

the two closest groups;

(A) MAXMINF — maximizes the smallest F—ratio between pair of

groups;

(5) MINRESID - criterion which tends to separate groups that

are close together, which minimizes R, the

residual variation;

(6) RAO - is Rao's V, a generalized distance measure.

For hierarchical cluster, the algorithms used were:

(1) Single-Linkage - joins together the two closest objects to

form a cluster;

 

18

See Appendix B for description of algorithms and computer

programs used in this study.



(2)

(3)

(A)

(5)

(6)
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Complete-Linkage - characterized by the longest link needed

to connect every member of a cluster to every other member;

Average-Linkage within the new group - characterize a cluster

by the average of all links within it;

Average-Linkage between merged groups - consists of evalua-

ting the potential merger of clusters 1 and j in terms of the

average similarity for links between two clusters;

Centroid - merges at each state those two clusters with the

most similar mean vectors or centroids;

Ward - maximize an objective function based on the error sum

of squares.

For non-hierarchical clusters, the algorithm available was based on

a squared criterion. It searches for clustering with the smallest

squared-error.

The objective of testing all these algorithms was to find the

specific algorithm best suited to our unknown data structure.



CHAPTER IV

ANALYSIS AND DISCUSSION

Characteristics of the Sampled Population
 

This study develops a.methodology for the discrimination of four

forest types based on the reflectance levels (signatures) from.their

canopies through densitometric analysis. However, it is important

to understand how the sampled population behaves befbre going further

into the analysis. From the fifteen scales showed in Table 3, only

the five which gave the best discrimination were analyzed in the study.

The image types analyzed were: (1) Panchromatic, (2) LANDSAT: Channel 7,

(3) LANDSAT: Color composite, (A) LANDSAT: 7/5, and (5) LANDSAT: 7/ A+5+7 .

When analyzing density on a transparency or in a paper print,

the process normally involves placing the film.in a beam of light

that passes or reflects through it. The darker the images, the less

light is allowed to pass or reflect, the lower the transmittance or

reflectance, the higher the opacity, and the higher the density. Some

sample values of transmittance, opacity, and density are given in

Table A.

Table A. Sample transmittance, opacity, and density values

(Lillesand and Kiefer, 1979). 19

 

 

 

 

% Transmittance Transmittance Opacity Density

100 1.00 l 0.00

50 0.50 2 0.30

25 0.25 A 0.60

10 0.10 10 1.00

1 0.01 100 2.00

0.1 0.001 1000 3.00

19
See Chapter I for definition of terms.

38
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A primary advantage of measuring image densities is the ability to

quantify the radiometric dimension20 of photography to remove subjecti-

vity from the interpretation process. Therefore, a graphical analysis of

the sampled population (raw data) was done for each of the five scales.

These analyses were based on a cumulative frequency distribution in

which the shape of an observed distribution was examined for departures

from.normality. Also, such analyses permit estimation of the mean,

standard deviation, skewness and kurtosis, as well as the range of

, densities for each forest type.

In the image type, (l:A0,000 Figure 6) notice that the hardwoods

separate very well from the other three forest types. The others,

especially Araucaria and Mixed, have some overlapping of densities.

This is due to the fact that the Araucaria included in the Mixed forced

the densities to higher values. Pinus, being coniferous, has higher

density values (see Figure 2). Relating the frequency distributions

of Figure A to Figure 6, notice that Hardwoods, Araucaria and Mixed

have almost the same skewness configuration. Pinus, however, has a

skewness to the right. For kurtosis, again Pinus is the only one

which differs appreciably from the other forest types. In channel 7

(Figure 7) the shape of the distributions change. First, the range of

densities are lower because the reflectivity of the scene in channel 7

in the range of 0.8 um.to 1.1 um (reflected infrared) is generally more

uniform. Second, there is a better differentiation of the forest types,

even though the distributions have quite similar skewness and kurtosis.

 

20 Radiometric resolution is the smallest difference in exposure that

can be detected in a given film analysis. It is not a characteristic of

a film per se but is set by the ability of a given densitometer to dis-

criminate between density levels.
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Figure 7: Frequency distributions with their cumulative

distributions for channel 7.
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The best separation of the forest types is in the color composite

(Figure 8). The range of the densities is much larger (0.5 um to

1.1 um) due to the fact that channels A and 5 are in the chlorophyll

absorption region and channel 7 is in the reflective infrared region

(see Figure 2 and Table 3). Also significant is that Pinus and Araucaria

have very similar high density values (lower transmittance, Table A),

while Hardwoods and Mixed group together with lower density values

(higher transmittance). This grouping is due to the reflectance pro-

perties of coniferous needles and deciduous leaves. Conifer needles,

because of their internal structure, absorb more light while deciduous

leaves (Mixed and Hardwoods) reflect more light - especially infrared

light. Otherwise, the four forest types have similar distributions,

with Mixed having only a slightly skewness and kurtosis.

In ratios 6 and 9 the distributions are quite similar (Figures 9

and 10) with the forest types in the same order, starting with Hardwoods

in the lower density values, followed by Pinus, Mixed and Araucaria.

The only significant point is the difference in density ranges for

ratio 6 to ratio 9. The higher range of ratio 6 is because it is a

ratio of channel 7 by channel 5, which caused this broad range of

density values (channel 5 is in the chlorophill absorption band).

Planned Comparisons
 

In considering the different analyses used (principal components

analysis, multivariate analysis of variance, discriminant analysis, and

cluster analysis) for building a meaningful canopy reflectance model,
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the first step was to test for differences between.sample means within

the individual forest types for all levels and sublevels of imagery

(see Table 3). The ratio estimators were not included beacuse they are

only a manipulation of the data, not actually measured density values.

Table 5 shows the one-way analysis of variance for each scale of imagery

for each f0rest type. Almost all were significant,indicating that the

samples for each forest type are different. This is probably due to

the following properties: (1) Tone variations from sample to sample

causing differences in density readings; (2) pattern variations, especially

in 1:A0,000 scale and SKYLAB; (3) sun elevation, the main cause for tone

variations; (A) terrain slope; (5) texture variations, especially in

IANDSAT; and (6) crown (shape) differences between f0rest types. The

error mean square, a.measure of the accuracy of the sampling plan,

gives the average dispersion of the 5 (n=25) samples in each group

around the group centroid. In Table 5 we see that fer all scales for

all species the error mean square is very small, indicating that the

sample means group very closely around the group centroid.

The next step was to study the internal structure of the variables

used in the canopy reflectance model. This was accomplished by principal

component analysis. The purpose here was to remove intercorrelations

among the elements of a vector variable; if an uncorrelated vector

variable is desirable the data must be transformed. As the dispersion

of a standardized variable is a correlation matrix (R), the Sphericity

test (Bartlett's test criterion, Bartlett, 1950) was done to test the

null hypothesis that R was an identity matrix. That is, the null
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Table 5: One-way analysis of variance for individual species between

samples (to test differences in samples)

 

 

 

 

 

 

 

Scale Species Error Mean Square F-Valuea

1:A0,000 Pinus 0.001055 16A.95**

Araucaria 0.0068AA 31.A0**

Hardwoods 0.010202 6.79**

Mixed 0.013640 2.93*

SKYLAB Pinus 0.000581 253.93**

Araucaria 0.00036A 63.92**

Hardwoods 0.000851 6.A5**

Mixed 0.000276 8.89**

Channel A Pinus 0.001000 10.58**

Araucaria 0.001A96 39.95**

Hardwoods 0.000980 21.76**

Mixed 0.0011A1 10.A2**

Channel 5 Pinus 0.00266A 1.58

Araucaria 0.00167A 9.97**

Hardwoods 0.001A29 3.8l**

Mixed 0.003330 A.1A**

Channel 7 Pinus 0.0009AA 0.80

Araucaria 0.002592 6.15**

Hardwoods 0.002836 9.22**

Mixed 0.001683 1.7A

Color Pinus 0.00207A 7.99**

Composite Araucaria 0.002A73 6.36**

Hardwoods 0.001369 10.A7**

Mixed 0.00A7A6 1.73

 

* - significant at 0.05 level (95%).

** _ significant at 0.01 level (99%).

adegrees of freedom for test: numerator - A

denominator - 120
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hypothesis states that the elements of the standardized vector variable

Z are already uncorrelated, and that the observed correlations in R

differ from.zero only by chance. If so, the population shape in the

space of the standardized variables is spherical, thus the name of the

test. For any equi-density surface in a mapping of points in a space

of uncorrelated variables of unit variance, the shape is a sphere

(Anderson, 1958). If we let P stand for the population correlation

matrix, then for standardized variables in matrix Z, |P| is the general-

ized variance and [BI is its estimator. What Bartlett has devised

is an approximate chi-square test of Ho: |P| = 1. Of course, |P| = 1

only if P = I. Results of the test are shown in Table 6. Without

significant test results, interest in accounting for the relation among

these four variables (the four moments) would normally cease, since

we cannot reject the null hypothesis that P = I. In this case, we

continued the analysis.

Table 6: Sphericity test (Bartlett's test criterion)

 

 

Scale Chi-square

l:U0,000 l3.60*

Channel 7 10.53*

Color Composite 3l.u8*

Ratio 6 42.84*

Ratio 9 25.u3*

 

* — significance at 0.10 level (90%) based on 6 degrees

of freedom-

In the next step (Table 7) the percent of variation accounted

by each principal component was examined, to determine the dimensions
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of the data space. Mbst of the variation between densities resides

in the first three linear combinations or principal components, indi-

cating a three-dimensional space. That is, variations in density

values can be explained by means, standard deviations, and skewness

coefficients. The other linear combination, kurtosis, is relatively

constant from one density to the next; hence further study would

explain little of density variation between the forest types. Table 8

gives the correlation of the variables with the two first principal

components (loadings). In the 1:40,000 scale, the mean.and standard

deviation have the higher correlations. This indicates that the raw

data values do not require any manipulation or transformation. The

same thing happened in channel 7; however the skewness has a smaller

correlation than the mean. But, when the data is transformed, as in

the color composite and ratios, the higher moments have larger correla-

tions; the lower moments (mean and standard deviation) were therefore

used in the second principal component.

Until now, only the internal structure of the variables were

described or considered. The main objective was to study group differ-

ences (forest types) in a multidimensional measurement space. That is,

to study the effectiveness of density measurements in the separation of

the forest types. The distinctive multivariate nature of MANOVA is

that the dependent variable is in vector form. This dependent vector

(variable) is assumed to be multivariate normal in distribution with

the same dispersion, or variance-covariance matrix, for each population.

The purpose of the MANOVA is to test for differences among population
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Table 7: Percent of variation accounted by each principal component

 

 

 

 

 

 

Prin i a1 t Cum 1 ti

Scale Compgngnt Eigenvalue ogetggge (%) Pergegt %)

1 1.693714 42.34 42.34

1:40,000 2 1.209908 30.25 72.59

3 0.749285 18.43 91.32

4 0.347093 8.68 100.00

1 1.614126 40.35 40.35

Channel 7 2 1.200265 30.01 70.36

3 0.786391 19.66 90.02

4 0.399218 9.98 100.00

1 1.863771 46.59 46.59

Color Composite 2 1.010261 25.26 71.85

3 1.006755 25.17 97.02

4 0.119213 2.98 100.00

1 2.061248 51.53 51.53

Ratio 6 2 1.054201 26.35 77.88

3 0.809411 20.23 98.11

4 0.075140 1.89 100.00

1 1.813308 45.33 45.33

Ratio 9 2 1.302945 32.57 77.90

3 0.702530 17.45 95.46

4 0.181217 4.54 100.00
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Table 8. Correlation of variables with the two first principal

components (loadings).

 

 

 

 

 

 

Scale variables Principal Principal

Component 1 Component

Nban 0.7609 -0.1413

1:40,000 Standard Deviation -0.7413 -0.5498

Skewness -0.2088 0.9307

Kurtosis 0.7222 -0.1463

Mean 0.8909 -0.0101

Channel 7 Standard Deviation —0.3425 0.7549

Skewness 0.8074 0.0885

Kurtosis -0.2258 0.7889

Mean 0.0756 0.6189

Color Standard Deviation —0.0452 0.7916

Composite Skewness 0.9586 0.0079

Kurtosis 0.9680 —0.0l92

. Mean 0.5797 0.4954

Ratio 6 Standard Deviation 0.3064 0.7908

Skewness 0.9485 -0.2366

Kurtosis 0.8553 -0.3566

MEan 0.7288 -0.5237

Ratio 9 Standard Deviation -0.l710 0.7934

Skewness 0.9364 0.1510

Kurtosis 0.6130 0.6134
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centroids or mean vectors. Significant results would indicate that

the populations are centered at different locations in the measurement

space spanned by the dependent vector variable.

Let H2: “k = u be the null hypothesis that forest types have a

common mean vector. This test may be viewed as a test of the effects

of the treatments represented by the groups. In.app1ying the test,

significant results were found in all fifteen scales. This led to the

conclusion that there iflfiS a difference between the group centroids,

but it was not known which groups were different. This problem was

examined through discriminant analysis.

The Lambda test of the H2 hypothesis assumes that the four dis-

persion matrices are based on samples of four multivariate normal

population with the same dispersion matrices. A test criterion for

the null hypothesis (H1) of the equality of the four group dispersion

matrices, extended from a development of Bartlett's (1937), was

presented by Box (1949). When this test was applied, significant

results were found for all 15 scales. This indicated that the four

dispersion matrices were different, that they did not have the same

shape and fOrm.in multidimensional space. In this case, a quadratic

discriminant function should be used, but because of the lack of

quadratic discriminant algorithms and because the MANOVA H2 test is

fairly robust to unequal dispersion matrices, quadratic forms were not used.

We proceeded with the analysis using linear discriminant functions.

The first procedure in discriminant analysis is to apply the

overall test for discrimination of the four forest types. The test,
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Wilk's lambda criterion, was presented by Wilks (1932) and is based on

the discriminatory power between the group centroids. When the test

was applied for all fifteen scales, only ratio 1 and ratio 3 did not

produce significant results, indicating that the ratios of the spectral

regions from channels 4 and 5 were not appropriate for densitometric

analysis of forest types.

Before any discriminant fUnction was derived, the test for the

discriminatory power that exists in the variables being used was

applied. This procedure tests for the ability of the variables to

individually distinguish between group means, and was accomplished

by a oneaway analysis of variance (Table 9). The test is based on

Faratio with its associated lambda. The larger the lambda is, the less

discriminatory power is present. For the five scales in Table 9,

only the:mean.and standard deviation were each able to individually

distinguish between the group means. In addition, for ratio 9, skewness

was able to distinguish between group means. But, the above test does

not tell which group or groups are different.

Associated with this test, that is, based on the two variables

selected (mean and standard deviation) by the stepwise procedure used,

is the test for significance of the Nahalanobis distance between

groups (forest types). Thus, a matrix of F-ratios is generated under

the assumptions of random sampling and multivariate normal distributions.

Within each scale or imagery level, the 4 forest types were compared

to determine significant differences between their mean vectors. These

comparisons, composed of six total pairs, are shown in Table 10.
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Table 9: One—way analysis of variance for equality of group centroids

on a single discriminating variable.

‘Wilks

Lambda(A) variables

Standard

Scale F-Ratio (B)a NEan Deviation Skewness Kurtosis

. A .35 .15 .85 .77

1.40,000 B 9.75** 29.49** .94 1.56

A .03 .23 .70 .82

Channel 7 B 164.87** 17.67** 2.24 1.14

Color A .03 .36 .75 .79

Composite B 142.06** 9.16** 1.76 1.36

A .03 .41 .76 .90

Ratio 6 B 146.71** 7.43** 1.68 .55

A .03 .24 .56 .91

Ratio 9 B 128.67** 16.25** 4.15** .48
 

aF—table value for the F—ratio with 3 and

** - significant at .01 level (99%).

16 degrees of freedom.
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Table 10: Mahalanobis distance between forest types based on the

discriminant power of mean and standard deviation variables

(F-ratioa matrix for each pair of forest types to test

equality of mean vectors).

Scale Forest Types

Type lb Type 2 Type 3

Type 2 13.42n

l:40,000 Type 3 35.32** 7.53**

Type 4 37.49** 6.64** 8.78**

Type 2 67-“9**

Channel 7 Type 3 89.54** 24l.12**

Type 4 6.44** 36.34** 101.91**

Type 2 7.42**

Color Type 3 l47.ll** 219.99**

Composite Type 4 l67.07** 239.02** 12.10**

Type 2 52.80**

Ratio 6 Type 3 68.92** 216.21**

Type 4 9.36** 28.11** 88.43**

Type 2 54.91**

Ratio 9 Type 3 52.82** 173.24**

Type 4 l8.9l** l4.l4** 88.60**

 

aF-tabie value for the F—ratio with

bForest type 1 - Pinus

Forest type 2 - Araucaria

Forest type 3 - Hardwoods

Forest type 4 - Mixed

xx _ significant at .01 level (99%)-

2 and 15 degrees of freedom.
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There were significant differences of'mean vectors for all groups for

all five scales. This indicates that each group has a unique position

in the multidimensional space. The importance of this statistic is

shown where the discriminant functions were derived in the following

pages. This table can be related to Figures 6, 7, 8, 9, and 10 in

the sense of quantifying the distributions.

"Tb determine the number of discriminant functions, the maximum

InHMXn~ is one less the number of groups or equal to the number of

discriminant variables. The maximum number of dimensions needed to

completely describe a set of points is one less than the number of

points. In discriminant analysis, each group (as measured by its cen—

troid) was treated as a point and each discriminant function was an

orthogonal21 dimension describing the location of that group relative

to the others' (SPSS, page 442).

Table 11 reports the information necessary for selecting the

number of discriminant functions to be derived. "The first criterion

for selecting the number of discriminant functions was the relative

percentage of the eigenvalue associated with the function. It is a

measure of the relative importance of the function, as the sum of the

eigenvalues is a.measure of the total variance existing in the discrim—

inant variables. When it is expressed as a percentage of the total sum

of eigenvalues, the eigenvalue provides a measure of the relative

importance of the associated function. Since discriminant functions

were derived in the order of their importance, the process could be

 

21orthogonal: axes are right angle to each other.
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Table 11: Determination of the number of discriminant functions by

stepwise procedure with their associated statistics.

 

Scale D.F.a Eigen- Canonical Percent Wilks Chi- Degrees of

value Correlation of lambda square Freedom

 

 

 

 

 

trace (%)

l:40,000 1 6.5071 .93 83.6 .055 43.24** 12

2 1.1861 .73 15.2 .420 13.01* 6

3 .0891 .28 1.1 .918 1.27 2

1 34.6640 .98 89.0 .005 79.32** 12

Channel 7 2 4.2301 .89 10.9 .180 25.71** 6

3 .0612 .24 .2 .942 .89 2

Color 1 56.2121 .99 96.1 .004 80.46** 12

Composite 2 2.0353 .81 3.5 .267 19.76** 6

3 .2301 .43 .4 .812 3.11 2

1 32.1294 .98 92.4 .006 75.72** 12

Ratio 6 2 2.1441 .82 6.2 .212 23.22** 6

3 .4958 .57 1.4 .668 6.04 2

1 27.5882 .98 89.5 .007 72.91** 12

Ratio 9 2 3.1698 .87 10.3 .221 22.61** 6

3 .0829 .27 .3 .923 1.19 2

 

a D.F. - discriminant function

** - significant at .01 level (99%)

* - significant at .05 level (95%)
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stopped whenever the relative percentage of the new function was judged

to be too small" (SPSS, page 442). Thus, in Table 11, the third eigen-

value is quite small, hence the third discriminant function was disregarded.

The second criterion was associated with the canonical correlations.

"Canonical correlation is a.measure of association between the single

discriminant function and the set of (g—l) dummy variables which define

the "g" group membership. It indicates how closely the function and the

group variable are related, providing another measure of the function's

ability to discriminate among groups. The squared canonical correlation

can be interpreted as the proportion of variance in the discriminant

function explained by the groups" (SPSS, page 442). The first two

discriminant functions were highly correlated with the groups, but the

third function had a very low correlation (Table 11). Thus, the third

discriminant function was eliminated under this second criterion.

"The third criterion for eliminating discriminant functions was to

test for the statistical significance of discriminating information not

already accounted for by earlier functions. Wilks' Lambda (Wilks,

1932) was computed as each function was derived. Lambda is an inverse

measure of the discriminating power in the original variables; the

larger lambda is, the less information remaining in the data. Lambda

values can be transformed into chi-square statistics for an easy test

of statistical significance. From Table 11, it was clear that the third

function had little discriminating power. It would not be useful to

derive the third (and last) discriminant function, since it would
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not significantly add to our ability to discriminate between the

fOrest types" (SPSS, page 442). Consequently, the two first functions were

quite adequate for describing the four forest types.

Of course, the two first functions did not completely utilize

all of the information in the discrimdnating variables. But, as the

remaining information was not statistically significant, the third

function was ignored. This is often the case, the last function may

not mathematically disappear, due to sampling and measurement errors,

even though it did not actually exist as a separate dimension in

the population.

Table 12 gives the discriminant functions derived from Table 11,

with their standardized coefficients. Notice that only the mean and

standard deviation were selected as variables. They were used to

compute the discriminant scores for the standardized variables: the

sum of the product of each variable was multiplied by its corresponding

coefficient. The discriminant scores were used to produce a graphical

representation of the clustering produced by a discriminant function.

There will be a separate score for each observation for each forest

type on each function. The discriminant scores produced were in

standard fOrm - over all observations in the analysis, the score from

one fUnction will have a mean of zero and standard deviation of one.

Thus, any single score represents the number of standard deviations

that each observations is away from.the mean for all observations on

the given discriminant function. If there are several discriminant
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Table 12: Discriminant functions and number of variables in each

function as selected by stepwise procedure.

 

 

 

Scale Standardized discriminating function Percent ofb

coefficients (Di)a separation

1:40,000 D1 =-.52507 Z1 + 2.18655 Z2 85.00

D2 =l.45l64 Z1 + .84966 Z2

Channel 7 01 = 5.45278 21 + .52705 22 100.00

E? = .29471 21 + 1.93716 22

Color = 6.49041 2 - 1.43490 2 100.00

ComPOSite 3% = .30574 2% + 1.44722 2%

Ratio 6 81 = 5.15142 21 - .40466 22 100.00

2 = -.21819 Z1 + 1.43821 22

Ratio 9 D1 = 4.55198 Z1 - .28615 Z2 100.00

D2 = .66398 Z1 + 1.82388 Z2

a

21 - standardized mean

22 - standardized standard deviation

bpercent of separation between the forest types.
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functions, each observation will have a score for each function.

The group mean for a specific discriminant function was calculated

by averaging the scores for all observations within a particular group

(forest type). "For a single group, the means on all the functions are

referred to as the group centroid, the most typical location of an

observation from that group in the discriminant function space. A

comparison of the group means on each function tells how the groups

are spread along that dimension. But, more importantly, the functions

were arranged in order of decreasing importance, so that a given

difference between group means on the third function is not as meaning-

ful as the same difference on the first function" (SPSS, page 443).

Figures 11, 12, l3, l4, and 15 show the scores of the groups

plotted using the first and second discriminant functions. The boundary

lines delineate the region of each group defined by the linear dis-

criminant functions. Examination of the scores was particularly useful

in studying the separation of the group centroids and their relative

locations. In Figure 11, we see that Pinus and Mixed were very well

defined, but Araucaria and Hardwoods had some misclassification. In

Figures l2, l4, and 15 the groups fell into the same positions. Hence,

since channel 7 alone gave the same results as ratio 6 and ratio 9

(respectively, Figures 14 and 15), we could discard these two ratios.

Figure 13, the color composite discrimination, showed the best

classification. Pinus and Araucaria grouped closely, as did Hardwoods

and Mixed. And, as important, the two "pairs" were well separated.
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This is the most desired situation, because Pinus and Araucaria are

conifers and the other two groups are deciduous. Even with Pinus

and Araucaria at one extreme and Hardwoods and Mixed at the other the

separation of the close groups was perfect. Therefore, the color

composite is the best image for densitometric analysis of canopy

reflectance for forest types.

Table 13 shows a classification of the information for each

group for each scale. This complemented the information provided by

Figures ll, l2, l3, l4, and 15. Also, Table 13 gives the percent of

correct classification for each forest type. In Table 12, the percent

of separation corresponds to the overall average of correct classifi-

cation in each scale between the four forest types. At the l:40,000

scale, some misclassification occurred: two groups of Araucaria

were classified as Hardwoods and one group of Hardwoods was classified

as Mixed. This probably was caused by tone variations from sample to

sample, pattern variations, sun elevation, terrain slope, etc., as

explained previously. The other four scales achieved 100 percent

classification.

Normally, cluster analysis would be done prior to discriminant

analysis. The purpose of applying cluster analysis after discriminant

analysis was to show and describe how the technique should be carried

out and its effectiveness. A second purpose was to discover which

cluster algorithm best fitted densitometric analysis.
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Table 13: Classification information and prediction results for each

scale based on five cases.

 

 

 

 

 

 

Scale Group Predicted Predicted Predicted Predicted

Pinus (%) Araucaria (%) Hardwoods (%) Mixed (%)

1:40,000 Pinus 100.0 0 0 0

Araucaria 0 60.0 40.0 0

Hardwoods 0 0 80.0 20.0

Nfixed 0 0 0 100.0

Pinus 100.0 0 0 0

Channel 7 Araucaria 0 100.0 0 0

Hardwoods 0 0 100.0 0

Mixed 0 0 0 100.0

Pinus 100.0 0 0 0

Color Araucaria 0 100.0 0 0

Composite Hardwoods 0 0 100.0 0

Nfixed 0 0 0 100.0

Pinus 100.0 0 0 0

Ratio 6 Araucaria 0 100.0 0 0

Hardwoods 0 0 100.0 0

Mixed 0 0 0 100.0

Pinus 100.0 0 0 0

Ratio 9 Araucaria 0 100.0 0 0

Hardwoods 0 0 100.0 0

Nfixed 0 0 0 100.0
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The analysis started by standardizing the variables to a zero

mean and unit variance. Euclidean distance was then used as a.measure

of dissimilarity. From the six algorithms used for hierarchical

clustering, ward's method (based on error sum of squares as an

objective function) gave the best results. Figures l6, l7, l8, l9,

and 20 show the five resulting dendrograms for the five scales. In

Figure 16, three clusters were defined. In cluster 1, Hardwoods, one

Araucaria group was included. This follows from the discrimination shown

in Figure 11: in the Hardwood region one Araucaria group was closer to

the group centroid. In the second cluster (Figure 16), one Araucaria

and one Hardwood group were included in the Mixed group. Looking again

at Figure 11, we see that in the Mixed group one Hardwood and one

Araucaria group were located near the group centroid. In the third

cluster (Figure 16), the conifers clustered together. Thus, one reason to

run discriminant analysis after cluster analysis would be to discriminate

Pinus from Araucaria, and to check the validity of the clusters.

In Figure 17, four clusters were defined. Cluster 4 was considered

an outlier, that is, not belonging to any group. This is because ward's

method is based on error sum of squares and observations in cluster 4

had an error sum of squares too large in relation to each of their

group centroids, which caused them to form one separate cluster. Again,

referring to Figure 12, we see that the Mixed and Pinus groups clustered

together but still were well discriminated. In Figure 17, cluster 1

was defined by the Pinus and Mixed groups, cluster 2 defined as

Araucaria and cluster 3 as Hardwoods.
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Without doubt, the color composite again showed the best results

(Figure 18). Cluster 1 consisted of the conifer groups, Pinus and

Araucaria, cluster 2 contained Hardwoods, and cluster 3 included

Mixed. These were same results as in Figure 13.

As shown in Figures 19 and 20, both ratios produced the same

results. Cluster 1 consisted of Mixed and Araucaria groups, cluster 2

consisted of the Pinus group, and cluster 3 consisted of the Hardwoods

group. Since in cluster 1 Mixed and Aracaria grouped together, the

color composite (Figure 18), again proved to be the best to discriminate

between the four forest types. The association between cluster

analysis and discriminant analysis should now be clear. Discriminant

analysis checks for the validity of the clusters formed by clusters

analysis. Even though the two analyses have completely different approaches

and purposes, they have the same objective in achieving a classification

and discrimination of the densitometric measurements.

Since hierarchical clustering methods do not use the internal

structure of the groups formed, a non-hierarchical method was used to

study the internal structure of the groups by allowing the groups to

overlap. The approach employed was based on a squared criterion and

searched for clusters with the smallest squared-error. Several

statistics were applied to an analysis of variance for each feature

(dimension). One should note that the features used are the four

statistical moments. Hence, one can ask whether the clusters were

significantly different in a particular feature. Table 14 shows the

analysis of variance for each feature in each of the five scales.
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Table 14: Analysis of variance of each feature (dimension in the

 

 

 

 

 

 

clustering.

Scale Dimension Squared Between F—ratiob Critical

(Features)a Error Clusters Alpha

1 5.65 14.34 13.53** .075

1:40,000 2 6.71 13.28 10.54** .288

3 12.71 7.28 3.05 .575

4 5.84 14.15 12.92** .031

1 2.94 17.05 30.82** .004

Channel 7 2 11.76 8.23 3.73* .947

3 7.18 12.81 9.50** .663

4 7.99 12.00 8.00** .395

1 1.05 18.94 96.25** .718

Color 2 7.02 12.97 9.85** .258

Composite 3 6.02 13.97 12.36** .003

4 2.48 17.51 37.52** .000

1 3.09 16.90 29.10** .001

Ratio 6 2 7.35 12.64 9.17** .003

3 6.48 13.51 11.11** .001

4 7.11 12.88 9.65** .009

1 3.25 16.74 27.46** .060

Ratio 9 2 4.99 15.00 16.00** .033

3 4.15 15.84 20.32** .062

4 4.85 15.14 16.64** .000

 

a
Features: 1 - mean

2 - standard deviation

3 - skewness

4 - kurtosis

F—Ratio with 3 and 16 degrees of freedom

* - significance at .05 level (95%)

** - significance at .01 level (99%)

b



77

The analysis of variance tested whether the between-clusters

squared error (the part of the total error due to differences in the

clusters centers) was significantly larger than the squared error

(part of the total error due to effects) - if the variances fOr all

clusters were the same. The null hypothesis was that there was no

effect due to the clusters (squared error was due entirely to random

effects). From Table 14, it can be seen that the F-Ratio was signifi-

cant for almost all features in all scales, except for feature 3

(skewness) in scale l:40,000. Since the F—Ratio is not very robust,

the critical value of alpha (CRITICAL ALPHA in Table 14) played an

important role in checking the validity that variances for all clusters

were the same. A large value (> 0.2) of critical alpha infers that

there was no effect due to the clusters. In Table 14, even though we

had significant F-ratios for almost all features in all scales, this

did not occur with the CRITICAL ALPHA.

In the l:40,000 scale, standard deviation and skewness had values

greater than 0.2 In channel 7, only the mean had a value smaller than

0.2. In color composite, mean and standard deviation had values greater

than 0.2. In ratios 6 and 9, all the features had values smaller than

0.2. Table 15 shows the classification information based on the above

results. Thus, a listing of the group means from each forest type

that ended up in each cluster formed was provided. In l:40,000 scale,

considerable misclassification occurred for Pinus, Araucaria and

Hardwoods, although the Mixed group was reasonably well classified.
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Table 15: Listing of the group means from each forest type that ended

up in each cluster.

 

 

 

 

 

 

 

Forest Types

Scale Cluster Pinus Araucaria Hardwoods Mixed

l 0 2 4 0

l:40,000 2 4 3 0 0

3 l 0 0 l

4 0 0 l 4

l l 3 0 2

Channel 7 2 0 0 5 0

3 2 0 0 3

4 2 2 0 0

l 0 0 5 0

Color 2 l 0 0 0

Composite 3 0 0 0 5

4 4 5 0 0

1 0 0 5 0

Ratio 6 2 0 l 0 l

3 0 4 0 4

4 5 0 0 0

l 0 0 5 0

Ratio 9 2 0 l 0 0

3 0 3 0 5

4 5 l 0 0
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In channel 7, only the Hardwoods group was correctly classified. The

reason for this misclassification in these two scales was due to the

fact that the critical alpha was greater than 0.2 for skewness in

1240,000 scale and greater than 0.2 for standard deviation, skewness,

and kurtosis in channel 7. The two ratios, 6 and 9, both had the

same misclassification, grouping Araucaria and Mixed in cluster 3.

This was due to the fact that the critical alpha was smaller than.0.2

in all four variables. The best classification was achieved in the

color composite. Pinus and Araucaria were classified in cluster 4,

Hardwoods in cluster 1, and Nfixed in cluster 3. Cluster 2, with one

Pinus, was considered as an outlier (same situation as occurred in

Figure 17). The reason for this good classification was because of

a critical alpha greater than 0.2 for the two first variables, especially

for the mean (see Table 14), and a critical alpha smaller than 0.2 for

skewness and kurtosis. From this we concluded that the squared errors

in color composite were due to random effects.

In comparing Table 15 to Figures 16, 17, l8, l9, and 20, we

noticed that classification results were the same only in the color

composite. Both the methods comployed in Figure 18 and the one in

Table 15 were completely different in structure, but both based on

squared error. Therefore, equality of results means that the color

composite had a minimum squared error within clusters and a larger

squared error between clusters, a.most desirable situation. This also

means that the clusters are compact and isolated.
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From the cluster analyses, we concluded that the mean and standard

deviation variables should be used for forest classification based on

densitometric measurements. Skewness and kurtosis variables did

contribute only for misclassification of the four forest types. Thus,

the color composite was again selected for forest classification based

on densitometric measurements.

 



CHAPTER V

SUMMARY AND CONCLUSIONS

This analysis of forest canopy reflectance focused on the State

of Parana, located in southern Brazil. Since its forest lands have

undergone and are continuing to undergo rather drastic changes,

resource planners must have accurate data for effective management.

This requires the quantification of available resources (the resource

base), current conditions, and changes over time. In this sense a

photographic record would provide a rapid and accurate means of

acquiring information needed for management planning and operation.

Several alternatives were evaluated, from aerial photos through

satellite images.

Tb inventory forest canopies requires a knowledge of canopy

structure as well as growth, phenologic characteristics, and how they

affect remote sensor signals. One way to investigate such factors is

through mathematical models describing the interactions of these

various characteristics.

To analyze forest canopy reflectance, analog analysis was employed

since it requires a low level of hardware. The densitometer, an instru-

ment that measures density of aerial photos or multispectral scanner

imagery, was used in the study.

The objective of this study was to develop a methodology to dis-

tinguish major forest types in Brazil using aerial and space imagery. The

81
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forest types were Pinus elliottii and Pinus taeda, Araucaria angusti-
  

fgli§_(Bert.) 0. Ktze., Hardwoods and Mixed. The potential of

identifying these forest types from lowelevel photography through

satellite imagery was evaluated, as well as the potential usefulness

for forest classification of signatures of various forest canopy

components.

The approach used to discriminate between the forest types was

based on texture-type separation of density measurements. The model

developed uses as variables the four statistical moments: (l) the

arithmetic mean of grey density variations; (2) the mean quadratic

deviation of grey density variations from the arithmetic mean of grey

density; (3) the moment coefficient of skewness of grey density varia-

tions from the arithmetic mean of grey density; and (4) the moment

coefficient of kurtosis of grey density variations from the arithmetic

mean of grey density. The model was used to discriminate between forest

types by principal components analysis, multivariate analysis of

variance, discriminant analysis, and cluster analysis of canopy

reflectance characteristics. Spectral reflectance (density values)

for forest types between 0.4 micrometers and 1.1 micrometers were used.

The hypotheses for the analysis were that the spectral and spatial

variations of the forest canopies signatures (reflectance) would cluster

separately for each scale, and that the optical densities of the forest

canopies signatures were sufficiently discrete to allow discrimination

between them.
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Forest types were first photointerpreted in the 1:40,000 scale,

and then the same fOrest types transposed to the other levels of imagery.

Density measurements were then taken with the densitometer at each level

of imagery and within each forest type using random sampling procedures.

Five areas were chosen, and a total of 125 density measurements were

taken for each forest type in each scale of'imagery. From each set of

25 measurements considered as one sample, the variables were calculated,

resulting in 5 mean observation values per forest type per scale.

From the analyses, the following conclusions were reached:

1. Even with significant differences between samples within each

forest type, excellent discrimination between the forest types was

achieved.

2. LANDSAT MSS imagery proved to be useful for forest discrimina-

tion in color composite.

3. Density measurements are very effective for forest discrimination.

In discriminant analysis, only two discriminant functions were

used for classification, both functions using the mean and standard

deviation as variables. Skewness and kurtosis did not contribute to

discrimination. Also, in cluster analysis, these two variables

accounted only for misclassification. Even with different dispersion

matrices, perfect discrimination was achieved using linear discriminant

function. This proved that linear functions are relatively robust for

having well-separated group centroids.

In cluster analysis, success was achieved since the groups already

defined were obtained when the methodology was applied. .AIthUmxn
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squared error was achieved for the color composite, which showed that

the forest types formed compact and isolated clusters. Implications

are that texture type separation of density measurements provided

excellent discrimination between the fOrest types, and that the optical

densities of the fOrest canopies were sufficiently discrete to allow

discrimination between them,

Since success was achieved with this methodology, a suggested

procedure is to begin with principal component analysis, followed by

a cluster analysis, a MANOVA, and a discriminant analysis. This

sequence provides a procedure for reducing the number of variables to

be treated through principal component analysis. Those linear

combinations which have small variances are discarded and only those

combinations with large variances are studied.

Cluster analysis searches fOr natural groupings. When an image

is scanned, there are no pre-defined groups. Cluster analysis will

tell how those groups that occur are fOrmed. From this point, the

groups are labelled and discriminant analysis would be done to test for

actual group separation. One example, in the study, is related to

Figure 18 in cluster 1. Cluster 1 contains Pinus and Araucaria groups.

Therefore, after finding the number of clusters, discriminant analysis

separated well the Pinus from Araucaria (Figure 13).

From the fifteen ineges types studied (Table 13), the color com-

posite proved to be the best in densitometric studies of forest canopy

reflectance.
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It is also suggested that further research in reflectance be

directed at individual species, and not concentrate only on forest

types. Also, it is highly recommended that digital analysis of

LANDSAT MSS be conducted parallel to such a study to see the potential

usefulness of these two methods.

The techniques will be readily applicable to monitor changes

in forest composition in Brazil. Because they do not rely on computer

technology, they should be valuable as analytical techniques in other

countries without strong computer resources.
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APPENDIX A

INSTRUMENT FOR DATA COLLECTION

The densitometer used in this study basically combined analog

computer circuitry and closed circuit television techniques to pro-

duce both color enhancement and/or edge enhancement of photographic

transparencies and prints. The photographic image is illuminated by

a light table or by incident light and scanned by the density scanner.

The system then calculates the point density values or gradients over

the entire portion of the image being examined. When viewed in black-

and-white, the entire range of densities for a particular image can

be seen as shades of gray. However, when the transformed image is

viewed in color, the system takes the calculated density range and

assigns 12 colors to it. In essence, it divides the given density range

into 12 equal-interval classes where each color band represents an

equal band of film density. From the color display, one should be

able to make a reasonably accurate interpretation of the scanned image.

The system also has a planimetric capability for area measurement.

The system used is available in the Department of Geography

Densitometric Facility located at the Natural Science Building, Michigan

State University.
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APPENDIX B

ALGORITHMS AND COMPUTER PROGRAMS

The criteria by which independent variables are selected for

inclusion in the discriminant analysis are indicated by the following

methods. These methods are available in the Statistical Package for

the Social Sciences (SPSS) Subprogram DISCRIMINANT.

1. All independent variables are entered into the analysis. The

discriminant functions are created directly from the entire set of

independent variables, regardless of the discriminatory power of each

of the independent variables.

The alternative to this direct method is to use a stepwise

selection method. Independent variables are selected for entry into

the analysis on the basis of their discriminatory power. The process

begins by chosing the single variable which has the highest F—value on

the selection criterion. This initial variable is then paired with

each of the other available variables, one at a time, and the selection

criterion is computed. The new variable which in conjunction with the

initial variables produces the best criterion value is selected as the

second variable to enter the equation. These two are then combined

with each of the remaining variables, one at a time, to form triplets

which are evaluated on the criterion. The triplet with the best

criterion value determines the third variable to be selected. This

procedure of locating the next variable that would yield the best

criterion score given the variables already selected, continues until

87
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all variables are selected or no additional variables provide a

minimum level of improvement .

As variables are selected for inclusion, some variables

previously selected may lose their discriminatory power. This occurs

because the information that they contain about group differences is

now available in some combination of the other included variables.

Such variables are redundant and should be eliminated. Thus, at the

beginning of each step, each of the previously selected variables is

tested to determine if it still makes a sufficient contribution to

discrimination. If any are eligible for removal, the least useful is

eliminated. A variable which has been removed at one step may re-enter

at a later step if it satisfies the selection criterion at that time.

The five stepwise selection criteria are:

2. WILKS - The criterion used is the overall multivariate F—ratio

for the test of differences among the group centroids . The variable

which maximizes the F-ratio also minimizes Wilks' Lambda, a measure of

group discrimination. This test takes into consideration the

differences between all the centroids and the homogeneity within the

groups;

3. MAHAL - This algorithm seeks to maximize the Mahalanobis

distance22 between the two closest groups;

4. MAME - maximizes the smallest F—ratio between pairs of

groups ;

 

22Mahalanobis distance: D2 = ()11 - 22 )' S’l (I:L - If ) where

i and X are mean samples of N and N and S“1 is the sampled
l 2 1 2

covariance matrix from N .
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5. MINRESID — criterion which tends to separate groups that

are close together, which minimizes R, the residual variations;

6. BAD - is Rao's V, a generalized distance23 measure. The

variable selected is the one which contributes the largest increase in

V when added to the previous variables. This amounts to the grestest

overall separation of the groups. A variable which contains a large

amount of information already included in the previously selected

variables may actually cause a decrease in the value of V. This implies

a decline in discriminatory power since the groups are being brought

more closely together. One would not generally want to include such a

variable. When there are a large number of cases, the change in.V'has

a chi-square distribution with one degree of freedom so it can be

tested for statistical significance.

In cluster analysis the problem is to find natural groupings in

a data set, but in this sense we are obligated to define what we mean

by a natural grouping. In what sense are we to say that the samples

in one cluster are more like one another than like samples in other

clusters? This question actually involves two separate issues - how

should one measure the dissimilarity (or similarity) between samples,

and how should one evaluate a partitioning of a set of samples into

clusters?

 

23 -1

Rao's V statistic: V'= 2p 2 S 2

1 i,j=l

where S' is the common covariance matrix, N1, N2, ..., N , the sample

sizes, x11, x12, °-': Xi“, the mean values of the ith character in the

first, second, ..., uth, populations, and ii = (ZNu xi“) / (ZNu)'

NU(xiu' ii) (ijp- ij)
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In the first issue, the most obvious measure of the dissimilarity

(or similarity) between two samples is the distance between them,

One way to begin a clustering investigation is to define a suitable

distance function and compute the matrix of distances between all pairs

of samples. If distance is a good measure of dissimilarity, then one

would expect the distance between samples in the same cluster to be

significantly less than the distance between samples in different

2“ is used as a measureclusters. In our case, the Euclidean distance

of dissimilarity between the samples because it implies that the

feature space be isotropic. Consequently, clusters defined by Euclidean

distance will be invariant to translations or rotations-rigid—body

motion of the data points. However, they will not be invariant to

linear transformations in general, or to other transformations that

distort the distance relationships. Therefore, if clusters are to

mean anything, they should be invariant to transfbrmations natural to

the problem.

One way to achieve invariance is to normalize the data prior to

clustering. To obtain invariance to displacement and scale changes,

we translate and scale the axes so that all of the features have zero

mean and unit variance. Therefore, the Euclidean distance is used as

measure of dissinilarity because all of the measurements are of the same

type, and that they have been normalized.

 

2“Given two points x = (x , x2) and y = (y 3 Y2), the ordinary

distance between these oints is called the Euc idean distance defined

asz dE(X.y) = [(X1-y1) + (x2-y2)2]%.
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The second issue, evaluation of a partitioning of a set of samples

into clusters, the problem is to define a criterion function that

measures the clustering quality of any partition of the data. To

define hierarchical clustering in terms of the algorithm used to

generate the hierarchy is somewhat unfortunate because it equates a

method, but can be implemented in several ways, with a specific algorithm.

However, this approach to defining a clustering method is direct,

simple to understand, and is commonly used in much of the literature.

The algorithms used in the study are: l. - Single-Linkage algorithm

which joins together the two closest objects to form a cluster, then

the next two closest objects to fOrm.a cluster, then the next two

closest objects, and so on. If the two objects to be joined lie in

different clusters obtained in previous steps, the two clusters are

joined instead. The term single linkage is used because two clusters

are joined if any of the distances between the objects in the different

clusters is sufficiently small - that is, if there is a single link

between the clusters. 2. - Complete-Linkage algorithm is related

closely to the single—linkage method, only that each cluster is charac-

terized by the longest link needed to connect every member of a cluster

to every other member. 3. - Average-Linkage within the new group,

that instead of relying on extreme values as in the two cases above,

it may be of interest to characterize a cluster by the average of all

links within it. 4. - Average-Linkage between merged groups which

consists of evaluating the potential merger of clusters 1 and j in

terms of the average similarity fOr links between two clusters.
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5. - Centroid algorithm, that is, in statistical analysis the mean is

often the basic summary statistic for a set of data. The familiar

t-test and the analysis of variance technique both are used to identify

differences between groups by testing for differences between their

means. It then should be appealing to cluster hierarchically by

merging at each stage those two clusters with the most similar mean

vectors or centroids. 6. - The ward algorithm in which the merges at

each stage are chosen so as to maximize an objective function based on

the error sum of squares and the objective is to find at each stage

those two clusters whose merger gives the minimum increase in the total

within group error sum of squares.

In the case of non-hierarchical clustering the algorithm used

implements a clustering procedure that labels points (called patterns)

in a feature space. The objective is to mark all patterns which are

"close" to one another with the same label and to define different

labels for any two patterns which are not close. It is based on a

squared error criterion and it always searches for clustering with the

smallest squared-error.

The specific computer packages utilized (runs made on the CDC 6500

at the Computer Center, Michigan State University, East Lansing,

Michigan) are briefly discussed below.

MATRIX COMPUTING SYSTEM

MATRIX is a FORTRANebased computer system.designed for both ease

and versatility in.implementing any analysis, statistical or otherwise,
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that can be expressed in terms of albegraic operations on real matrices.

MATRIX was used to perform principal components analysis and manova

analysis. Documentation is available from the MSU Computer Laboratory.

STATISTICAL PACKAGE FOR THE SOCIAL SCIENCES (SPSS)

SPSS is an integrated system of computer programs designed for

the analysis of social science data. The system provides a unified

and comprehensive package that enables the user to perform many different

types of data analysis in a simple and convenient manner. SPSS allows

a great deal of flexibility in the format of data. It provides the

user with a comprehensive set of procedures for data transformation

and file manipulation, and it offers the researcher a large number of

statistical routines corrmonly used in the social sciences. SPSS

Subprogram.DISCRIMINANT was used for the discriminant analysis. Docu-

mentation is available from the MSU Computer Laboratory.

STORED SIMILARITY MATRIX APPROACH PROGRAM

This program was used to perform the hierarchical clustering

analysis. For a description of the program and program documentation,

see Anderberg, 1973.

CLUSTER PROGRAM

This program was used to perform the non-hierarchical clustering

analysis. For a description of the program and program documentation

contact Prof. Richard Dubes, Computer Science Department, MSU.
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Figure Cl: Sample of l:40,000 scale showing Pinus and Araucaria

forest types.

A - Araucaria

P - Pines
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Figure Cl: Sample of l:40,000 scale showing Pinus and Araucaria

forest types.

A - Araucaria

P - Pines
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Figure 02: Sample of l:40,000 scale showing Hardwoods forest type.

H - Hardwoods
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Figure C3: Sample of l:40,000 scale showing Mixed forest type.

M - Mixed
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Figure C4: Sample of LANDSAT imagery (channel 6: 0.7 um - 0.8 um)

in l:250,000 scale showing the four forest types.

A - Araucaria

P - Pines

H - Hardwoods

M - Mixed



 



102

Figure C5: Sample of LANDSAT imagery (color composite reproduction

in black and white) in l:250,000 scale showing the four

forest types.

A - Araucaria

P - Pines

H - Hardwoods

M - Mixed
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