LIBRARY w Michigan State University é“ “”18 This is to certify that the thesis entitled COMMUNITY METABOLISM.IN THERMALLY AND ORGANICALLY ENRICHED WATERS OF WESTERN LAKE ERIE presented by Charles C . Warner hes been accepted towards fulfillment of the requirements for _L§L__degree in M93. §Hu onu um A49 coaumuwmmmu :moa pan AOV >ua>fiuo=coua humafiua mmoum can: .0 anomfim QNO— Gho- Nho— —NO— 050— zo... < 3 <2 _z.o.m.<.:_..z.<1 6.953221 _z.o.m.<.:_.._2.<_ 6.959322} “ I“ H” ”K“ rm 10— .ncao cotacum_0 un— rnvu n. I! nu / {Kin 4?. <_ a ... Tn nf e axon A lu— & In lu— co>_m .m- 23 to determine the percentage of production that occurred during the exposure period and the daily estimate was then calculated. The incubation times were chosen to correspond to periods of maximum pro- duction in order to minimize the variability occurring in the diurnal cycle. Primary productivity was highly variable from one sampling period to the next, even during the same season (Figure 6). This was due mainly to changes in available light, suspended solids in the water effecting the light penetration, algal biomass, and water temperature. Seasonal GPP was also variable (Table l). The lake station had the highest level of productivity in the summer season during the study period, with the exception of 1971 when the spring season was most productive. Discharge canal productivity maxima also occurred in the summer except for the fall of 1974. The maximum.productivity of the river was more variable with the summers of 1970, 1972, and 1974; fall of 1971; and spring of 1973 having highest rates. Yearly productivity values were more consistant. The lake had the highest GPP for all seasons except in 1970 where the discharge canal values were higher during the time it was not receiving the flow of cooling water. In 1971 the lake and discharge canal values were almost equal. The river had the lowest annual productivity in all years except 1974, when high summer values greatly increased the annual productivity. Productivity values varied greatly from.ane year to the next with- no apparent relationship. Annual productivity estimates for the lake ranged from 300 g C/m? (1970) to 852 g C/mé (1972). The discharge canal ranged from a low of 227 g C/m2 (1974) to a high of 786 g C/m2 (1971). 24 Table 1. Daily, seasonal, and annual mean GPP and respiration in g C/m2 by station for the Detroit Edison sites. (Discharge 9 (River) 3 (Lake) 8 Canal) Spring 1970 GPP R GPP R GPP R Daily 0.8 8.4 0.9 2.0 2.0 7.1 Seasonal 71.0 756.3 78 3 181.1 185.8 647.9 Summer 1970 Daily 1.5 4.3 1.7 2.4 2.7 4.4 Seasonal 141.2 392.2 159.2 214.8 250.7 404.0 Fall 1970 Daily 0.7 3.2 0.7 0.3 2.2 10.7 Seasonal 63.7 286.7 62.9 24.6 100.1 933.7 1970 Mean 275.9 1444.2 300.4 420.4 536.5 1985.6 274 days -Spring 1971 Daily 0.8 8.4 4.0 4.1 2.3 3.7 Seasonal 68.7 764.4 361.0 370.4 212.3 340.3 Summer 1971 Daily 1.0 7.3 2.9 4.0 3.6 6.7 Seasonal 94.4 668.0 261.6 361.3 323.1 611.5 Fall 1971 Daily 1.4 4.0 1.5 1.2 2.6 5.2 Seasonal 124.7 362.2 135.7 106.5 239.2 476.8 Winter 1971 ' Daily --- --- 0.3 1.3 -0.1 0.7 Seasonal --- --- 30.0 118.3 -6.8 64.6 1971 Mean 287.8 1794.5 788.3 956.4 767.8 1493.3 365 days Spring 1972 Daily 0.6 6.3 3.1 1.6 1.2 2.5 Seasonal 50.1 574.2 282.1 149.2 112.2 231.1 Summer 1972 Daily 1.5 8.0 3.7 2.4 1.9 2.9 Seasonal 139.0 723.5 331.7 220.2 176.1 261.2 Fall 1972 Daily 0.6 3.6 2.6 2.5 0.9 2.3 Seasonal 54.2 325.8 238.9 225.7 83.7 207.5 1972 Mean 243.2 1623.4 852.7 595.1 372.0 699.8 273 days 25 Table 1 (Con't.) Discharge (9) River (3) Lake (8) Canal GPP ‘ R GPP R GPP R Spring 1973 Daily 0.8 1.5 1.6 2.8 1.0 2.4 Seasonal 70.4 134.7 146.2 258.4 89.2 217.5 Summer 1973 Daily 0.6 1.7 3.2 2.0 1.1 3.5 Seasonal 56.6 155.6 287.7 184.7 101.8 316.7 Fall 1973 Daily 0.5 1.7 1.3 0.7 0.4 1.2 Seasonal 47.0 156. 119. 59.2 36.9 111.0 1973 Mean 174.0 446.8 553.1 502.3 227.8 645.2 273 days Spring 1974 Daily 0.4 0.4 0.8 1.2 0.2 0.8 Seasonal 34.3 36.4 69.8 112.0 19.1 76.4 Summer 1974 Daily 2.3 5.0 2.8 2.4 1.1 3.8 Seasonal 207.9 458.6 253.6 219.3 100.7 348.5 Fall 1974 Daily 1.0 7.1 2.2 2.2 1.2 4.2 Seasonal 91.9 649.7 151.7 198.4 107.1 385.0 1974 Mean 334.1 1144.8 475.0 529.6 226.9 810.0 26 River values were more constant, from 174 g C/m2 (1973) to 334 g C/m2 (1974). Temperature Effects Linear regression analysis yields a significant (p< 0.05) relation- ship between gross primary productivity and temperature in the spring and fall of the year at temperatures less than 20 C at stations 3, 8, and 9 (Figure 7). When all stations were combined the relationship was highly significant (p<=0.01). This trend was not evident during the summer periods when temperatures exceeded 20 C. This variability apparently is related to factors other than temperature alone. The lake and discharge canal showed approximately the same variability for the summer season while the river was highly erratic. This may be due to the presence of other factors which have a greater effect on production than temperature. The mean annual gross primary productivity was usually less in the upper discharge (station 12) than predicted from.the mixing of river and lake cooling waters (Table 2 and 3). The productivity of the water at station 12 more closely resembled that of the river (station 9) than of the lake (station 3), even.when the lake water was the major contributing component. Mean afternoon productivities averaged 332 less than.morn- ing samples. Evening samples showed negligible production, as expected for the dark hours. The inhibition of gross primary production in the upper discharge canal could have resulted from four possible factors, or a combination of them; mechanical damage from passage through the con- densers, thermal shocking as a result of a rapid temperature increase during passage, inhibiting factors in the river water from.apstream sources, or exposure to chlorine as a result of daily application to keep 27 1 6- River Spring+fall "2‘ r=o.74 go o... o D 0 Summer n 0 °_ El r=o.01 0.4 O D an ... 0 00 0000 00 0 ° . B r . . ‘6. Lake Summer 1.2‘ ”0.18 a pgjno b o. d f Fall :0. r=o.es ‘. 0 0- O C) E 0.0 I I I v r v v I v Spring+fall 1.6- Discharge Canal 0 o ”0.63 o D a 4 a 1'2 1'6 2'0 2'4 as 32 36 Temperature (C) 0.0 v . Figure 7. Mean surface gross primary productivity compared to temperature for the combined spring and fall season (K3) and summer season (E!) at the river, lake, and discharge canal stations, 1970 through 1974. 28 Table 2. Relative preportion of Raisin River and additional Lake Erie water pumped through the discharge canal. Season Mean River Lake Input Canal Discharge m3/sec m3/sec (Z of Discharge m3/sec (Z of canal flow) canal flow) Spring 1970 15.7 0.0 Summer 1970 11.3 0.0 Fall 1970 6.0 _ 0.0 Spring 1971 8.8 (42) 12.2 (58) 21.0. Summer 1971 1.6 ( 8) 19.4 (92) 21.0 Fall 1971 2.6 (12) 18.4 (88) 21.0 Winter 1971 9.1 (43) 11.9 (57) 21.0 Spring 1972 12.4 (34) 24.4 (66) 36.8 Summer 1972 4.1 (12) ’ 29.2 (88) 33.3 Fall 1972 33.0 (100) 0.0 ( 0) 31.5 Spring 1973 36.8 (78) 10.5 (22) 47.3 Summer 1973 11.6 (20) 46.2 (80) 57.8 Fall 1973 5.2 ( 8) 59.6 (92) 64.8 Spring 1974 33.7 (69) 15.3 (31) 49.0 Summer 1974 4.5 ( 6) 74.3 (94) 78.8 Fall 1974 4.4 ( 8) 49.9 (92) 54.3 29 Table 3. Mean gross primary productivity at the USEPA sites for cool (November-April) and warm (May-October) months of 1973-75 (mg Oz/liter/hour). Station Upper Middle Lower Period Lake River Canal Canal Canal Thermal plume Year-season 3 9 12 8 14 15 16 Morning 1973-cool 0.03 0.06 0.03 0.00 0.03 0.05 0.01 -warm 0.76 0.39 0.34 0.36 0.42 0.62 0.79 1974-cool 0.04 0.06 0.04 0.01 0.03 0.05 0.00 -warm 0.52 0.22 0.33 0.48 0.50 0.61 0.73 1975-cool 0.08 -0.02 0.08 0.07 0.02 -0.05 0.12 -warm 0.54 0.56 0.58 0.54 0.74 0.64 0.64 Grand mean-cool 0.05 0.03 0.05 0.03 0.03 0.02 0.04 Grand mean-warm 0.61 0.39 0.47 0.46 0.55 0.62 0.72 Grand mean-3 year 0.33 0.21 0.24 0.24 0.29 0.32 0.44 Afternoon 1973-cool -0.04 0.01 0.01 0.03 0.05 0.07 0.00 swarm 0.26 0.13 0.21 0.12 0.16 0.31 0.30 1974-cool 0.04 -0.01 0.04 -0.02 0.00 0.00 0.01 -warm 0.43 0.33 0.41 0.40 0.43 0.58 0.43 1975-cool -- -- -- -- —- -- -- ~warm 0.70 0.34 0.33 0.41 0.41 0.95 0.88 Grand meanvcool 0.00 0.00 0.02 0.00 0.02 0.02 0.00 Grand meandwarm 0.46 0.27 0.32 0.31 0.33 0.61 0.54 Grand mean-3 year 0.23 0.13 0.18 0.16 0.18 0.22 0.27 Evening 1973-cool 0.02 -0.02 0.00 0.00 0.00 0.01 0.00 -warm 0.02 0.02 -0.03 0.00 0.01 -0.06 —0.01 1974-cool -0.05 0.01 -0.01 0.03 0.01 -0.01 -0.03 -warm -0.01 0.02 -0.02 -0.08 -0.01 0.00 -0.01 l975-cool -0.04 -0.04 -0.03 -0.02 -0.04 0.00 -0.01 -warm 0.04 -0.04 -0.05 -0.10 0.07 0.04 0.03 Grand mean-cool -0.02 -0.02 -0.01 -0.00 -0.01 0.00 -0.01 Grand mean-warm 0.02 0.00 -0.03 -0.06 0.02 -0.01 0.00 Grand mean-3 year 0.00 -0.01 -0.02 -0.03 0.00 0.00 0.00 30 the condensers free of slime accumulation. However, no chlorination occurred during the afternoon sampling periods so the depression of productivity must have resulted also from other factors. As water passed through the discharge canal, there was a recovery of the depressed productivity. The three year grand mean for the morning sampling period showed a 21% increase in productivity, almost reaching the predicted values for the system based on the mixing of the water masses (Table 3). The afternoon productivity remained almost constant, slightly below predicted values. The productivity of the thermal effluent continued to increase as the water moved into the lake. Mid-plume productivities at station 15 usually exceeded those of the lake (station 3) prior to intake. Station 16 values averaged 332 above lake productivities, even though tempera- tures were only 1 to 2 C above ambient. .Suspended Solids Effects Suspended solids and algal density are the major factors that influence light penetration into the aquatic system. Due to the heavy “agricultural disturbance in the Lake Erie watershed, the levels of suspended solids were high. Concentrations were quite variable over the study period and no apparent annual trends were revealed (Table 4). Levels were generally highest in the spring, corresponding to high run- off rates and flow rates of the river, and lowest in the late summer. The near shore of the western basin of Lake Erie, being very shallow, is subject to remixing of settled bottom.materials during periods of high turbulence. The increasing proportion of lake water being taken for 31 Table 4. Seasonal and annual mean concentrations of suspended solids in mg/l by station for the Detroit Edison sites. Season . Station 9 (River) 3 (Lake) 9 (Discharge Canal) Spring 1970 42.0 41.6 66.4 Summer 1970 53.0 26.2 43.8 Fall 1970 37.0 17.5 20.7 1970 Mean 45.9 28.9 45.4 Spring 1971 67.5 35.1 61.1 , Summer 1971 29.6 21.1 33.2 Fall 1971 45,9 16.0 41.1 1971 Mean 45.9 23.1 43.7 Spring 1972 24.4 16.0 33.0 Summer 1972 23.7 8.8 19.3 Fall 1972 55.7 17.2 27.0 1972 Mean 31.0 13.3 26.3 Spring 1973 24.1 15.9 25.4 Summer 1973 43.1‘ 22.2 46.3 Fall 1973 21.2 17.8 28.9 1973 Mean 33.7 19.8 37.7 Spring 1974 56.8 37.9 73.5 Summer 1974 25.5 13.3 25.0 Fall 1974 66.3 16.5 29.3 1974 Mean 52.6 23.7 44.8 32 cooling after plant operation began, has resulted in a decrease in the annual concentrations of suspended solids in the discharge canal. The compensation point, where 1 percent of the surface light is available for photosynthesis, is generally accepted as the maximum depth where net primary production occurs. The compensation point in the river (station 3) averaged 1.7 m and the lake 3.1 m.(Table 5). The discharge canal average, during the first two years of the study, was similar to the lake. This occurred before the canal received the flow of cooling water. As pumping units came on line, the discharge canal received the input of river water, resulting in the decreased photic zone. Upon operation of all pumping units, the volume of intake water usually exceeded the total river flow and resulted in additional lake water being mixed with the river water.. This should have resulted in the discharge canal light penetration values being intermediate between the river and lake values, proportionally related to the percentage each contributed to the discharge waters. During 1973 and l974.the compen- sation depth of the river and discharge canal were the same (1.7 m). This implies the additional input of material causing a decrease in the light penetration, possibly the erosion of bottom sediments from the‘ discharge canal. A significant relationship exists between the depth of the compen- sation point (1% light) and the suspended solids concentration in the river (p< 0.05), lake (p<0.05), and the discharge canal (p<0.01) (Figure 8). Because of the relatively high suspended solids levels and a corresponding shallow depth of the euphotic zone, less than 3 m , 33 Table 5. Compensation depth (11 light) measured at the Detroit Edison stations, 1973 and 1974. Date River Lake Discharge Canal Depth (m) 2 of lake Depth (m) Depth (m) 2 of lake 1! light 12 light 12 light 11 light 12 light depth depth 1973 6-21 1.00 36 2.80 1.40 63 7-7 0.88 54 1.62 0.90 56 8-16 2.00 68 2.92 1.72 59 9-10 1.78 75 2.38 -- - 10-9 1.91 59 3.22 1.72 53 1974 7-16 2.00 48 4.18 2.21 53 7-31 - -- 3.45 -- - 9-27 1.27 43 2.93 -- -- 10-24 2.92 71 4.12 2.05 50 11-7 2.58 60 4.30 2.00 47 Mean 1.72 55 3.13 1.72 57 34 :6 '3 120— 0 River 0 A Lake no 0' 0 Discharge Canal ICNO 90 «‘8. .o‘. ’0 813-- 7¢I" t- 3 2 60 - \ 2’ ' - 50i- o a a 4° .. reek. o A 30 - 20 - o ,. :.° A A . A a, 4A 1¢)- .A 1 1 1 1 1.0 2.0 3.0 4.0 11.0 Depth (m) Figure 8. Mean depth of 1% surface light compared to mean suspended solids concentrations at the river, lake, and discharge canal stations, 1973 and 1974. 35 large portion of the near shore area does not contribute to the productivity of the system. I Suspended solids and GPP were inversely related but highly variable, with no significant (p<0.05) relationship for all stations (Figure 9). The lowest productivity rates and highest suspended solids levels were found in the river, while the inverse was true in the lake. The discharge canal showed a decrease in productivity over the study period, while the suspended solids concentrations increased and then slightly decreased. Nutrient Effects Productivity does not appear to be related directly to either total nongaseous nitrogen or total soluble phosphorus (Figures 10 and 11). At particular times they may exhibit a dominant role but no positive trends were observed. Free CO2 concentrations decreased from maximum spring levels to minimum.values in late summer and a gradual increase in the fall (Table 6). River values were consistantly highest, resulting from high respiration rates. On most occasions the concentration of free CO2 in the river water was above atmospheric saturation (0.70 mg/l), resulting in an export of CO from the water due to supersaturated conditions. 2 Lake values were the lowest, with unsaturated conditions existing, resulting in an import of atmospheric CO into the lake system. Dis- 2 charge canal values were usually intermediate. CO2 concentrations indicate levels low enough to limit productivity occasionally occurred in the lake and discharge canal. Summer and early fall values approaChed or fell below the 0.31 mg/l concentration that favors 36 0.0« River 0 r=OJO t! 0.64 D A r=0.16 D r=0.08 0.4- D .A 4A . ”é o m DDAD A 1:) C¥FEP E! 0.0 . . emu—MA .‘L. . 9.. (J 1.2-4 A ake 1.0' D L D o 1': 0.20 0.8. o D A r=o.oo r; o o o A c1 r=o.o7 g 0.6. on 2 A 7‘ 0°“ 95A A on 0 3"? a :1 '3 or A E A A a 0.0 I t I I I U I f 1 I r j 0 1.2- . 1.04 0 Discharge Canal A r=0.17 0‘” D r: 0.15 D O r=0.29 0.6.. U .. O D C1 Cl C! O.4~ O D ‘0 .,DH3 A. 0.2- A A A . o a A A {I 00 O E . a A ° 1'0 2? 3'0 410 5‘0 6‘0 7'0 8'0 9‘0 160 1101 o Suspended Solids (mg/I) Figure 9. Mean gross primary productivity at 0.5 m compared to mean suspended solids concentrations at temperature intervals 8-13 0 (0). 14-20 c (A), 21—27 c (:1), and 28-35 c (e) at the river, lake, and discharge canal stations, 1970 through 1974. 37 LGOJ River 0 r=0.2 I A |'=0.6 8 ”9‘ o r=o.1 a . '20.: AA A 61:: 0.80“ . A D A D 2 0A a 0.4 0" % ..A A o A D n A & D &. D o . A 0.00 . . .' . 9 Ar . . . . I32.8 1.608 Lake A 0 r=°e°‘ " A r=o.44 g d 2 1.20 A D 720.0. ‘N A e r=o.e 3 o 0.804 o A ' A s o - v d D A a. 0.40 O“ A 11 A00 0 0.00 .1 I I I I I l l I 1.60- 8 Discharge Canal 0 no.4 7 A 720.2 0 1.204 f: .30 D a E O I: ”3.1 6 .9 O A 0.8 0‘ 0 Do A A . oAA o g 0.4 0.. A A0 O 0 a A A n A ,- , :— °'° ° to 210 310 4.0 5.0 do 7Fo do 9.0 Total Nongaseous Nitrogen (mg/I) Figure 10. Total nongaseous nitrogen concentrations compared to mean surface gross primary productivity forApril-May (O), June-July (A), August-September (D), and October-November (0) at the river, lake, and discharge canal stations, 1970 through 1974. 38 ‘ River "6 o O no.6: m r: 0.03 A 7:0.07 0 7:0... 1,204 A t! ‘A o.ao« A . .. 3 ° 0 0.4 o- ' A A 8 0 o A g 0'80 an an“ A 0.00 I I I I I 4r I I I I l32‘] 1.60- Lake 0 r=0.05 A A 7:054 E'o’O" Or:°.75 \ A 0 7:0.26 \ 0.8 o. D” AA 0! a o C) 1K3 .1 .A E 0.4 0-1 A.A DA A04 § Q . . o. 0 6 o 0.00 j g I I I I I T r I 0 1.6 0-1 A Discharge Canal 0 r=0.74 1201 Ar=005 e a D . OA :1 o r=o.oe A Q 40 e - o a o- 0 e no.7: ° :1 C1 C] All one (D 1 8 2A0 A 8““ C! .A 0.00 . r T 9‘ ° .9 . . u . . 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 Total Soluble Phosphorus(mgll) Figure 11. Total soluble phosphorus concentrations compared to mean surface gross primary productivity for April-May (o), June-July (A), August-September (D). and October-November (0) at the river, lake, and discharge canal stations, 1970 through 1974. 39 aa.a ma.a aa.c ~a.~ ma.c me.~ am.m Ill nm.a o¢.n oe.o No.o ac.c n~.o ~a.~ N.» a.» n.» m.» m.~ a.m o.~ us: a.» a.“ h.m n.» a.» o.m «.w oua oaa «HM «ma oma una oma JHw wNa oma coa oaa moa woa oaa mama oooo mama coaN coca cmma ammo coco. cmau mmoa mama mama moco maau naoa Na.¢ ~m.o ~m.a «.mm m.aa 0a.: 35.» me.o eo.m sw.m mo.o mm.c eo.o am.c am.o m.n m.~ m.» a.c «.5 m.s n.n o.s s.~ o.“ o.m e.w o.w a.» o.» «ma «ma «ma oNa Nua oNa ~aa waa.l,o~a oaa aaa qoapl,~aa mo om caua mmwo once coaN oaea coma memo oomo cmau .ouea mmua ammo mace maau mama mc.m «.ma m.aa m.ma we.a we.~ o~.m mo.¢ mm.e mq.a am.o nm.a ~¢.o ”5.0 mm.o w.n «.5 m.~ «.5 N.@ a.» a.“ N.“ e.h N.» o.w a.m m.m e.w w.m oaa oNa waa «Na waa oaa eoa «ca Noa eaa ca O¢ ca «a we moma ammo memo mmow oeea oqaa mace mace moam ooua coma came nceo cmcu anea om.o om.o om.o wc.c om.o an.a om.a ms.~ om.a om.o mm.c mn.o mm.o on.o mm.o ~.m ~.m ~.m a.» s.m a.» ~.w m.s N.» c.w a.» m.m mum s.m o.m «ma oma ona oNa «ma MHH Naa Naa eoa eaa «a Nca emu «a mca caoa oaso comm mmsa coma mmaa mmso ma- omsa ocna oaaa ammo oqmm mafia Nana Auo>amv m Aamaou owuosomanv Adamav .chaa can anaa unauav mcowumuucoocou N aa\mev ovum «co ma aa\mevxa< OEfiH aaawav OQHM NOD ma aaawavxa< asap aa\wev 00km NOD mu aa\wavxa< QEHH aa\wav mung N8 In aaamsvxa< asap animalaa amINaIaa annealoa animaloa anlmlm annalm ahloalh animals mum: on menu new .mn .auaaaamxa¢ .o magma 40 aaawsv mo.o mo.N ww.o mm.o cw.a mn.c n~.o mm.c mm.o. a~.o a~.o en.o c~.o na.o mn.c ovum Nov o.w N.@ m.» w.m m.m m.m m.m w.» w.w o.m o.a w.w c.¢ a.m o.m ma mNa ona cma. moa msa caa eaa .Ibaa OHa eaa om Noa Na mm woa Aa\wvaa< ooaa cone coca occm coca coaa Gena ooam oocm coca ocaa coho coca ooou coca mafia aa\wavu ~a.o we.c mm.a me.~ em.o cm.o no.0 mm.o ea.c <~.o ae.o ac.a ms.o a~.c an.o ovum cu a.» w.w N.m o.w c.m o.» n.w e.m m.m <.m a.» m.m e.m w.m n.@ no maa mea eaa oNa oaa ooa Naa moa mm ma moa Noa om om cm Aa\wavxa< coca coco ooem scam occa coca coco ccem ooc~ coca coca oooc ooew ooo~ coca usak aa\mav ma. 0 cm.m mu.e we. a ma. e ma.~ me.a om.~ oh.a «a. m cm. a «e. o ma. a am. a Ne.a menu «00 w. w o.» o.w c. s o. m a.m N.m o.w ~.w m. n a. w a. m m. m c. w ~.w no mqa ona maa «ma uoa oma ama cea oea wmwl oaa oaa oaa «Ca «Ca Aa\wavxa< omoa coco coca coca ccca omca oooc poem ocom coca cmoa coca coqu oooN coca weak aaawee ea.m we.~ oc.n mo.n ca.s ma.e on.~ Nm.~ ca.~ ow. N mc.m we. a ¢o.a No. N ma.a menu «on o.w m.w m.u a.m m.n c.m N.m ~.m a.w a. w o.w m. m ~.m o. m a.m me can «ma «ma cow NMa .www moa «ma aha coa oua caa moa Noa mm Aa\wsvxa< coma ocmc coon coca coca ocua ocmo coon coca coca co~a oomc ooem coou coca uses Auo>auv m Aaocmo owuoSouanv m Auxoav m a.u.:oov ehlhwla eulomlm enlwmlw «mlswlw eulmalo emanate «Banana «steal: mum: .c macaw 41 blue-green algal production (King, 1970). Diurnal curves revealed the expected increase in 002 during the dark hours. Levels decreased in the morning hours but did not peak before maximum productivity occurred, indicating that CO was not limiting. 2 Respiration Depth Variation Vertical profiles indicated a decrease in the rate of respiration with increasing depth (Figure 12). All three stations; lake (3), discharge canal (8), and river (9), exhibited approximately a 40% decrease in respiration at 2.5 m relative to surface values. This decline is attributed primarily to the decreasing rate of photosynthesis, discussed below. Diurnal Variation Diurnal respiration rates generally paralleled the diurnal curves for productivity, although the changes were not as pronounced (Figures 5 and 13). Maximum rates corresponded very closely to the midday peaks in GPP. Lowest respiration occurred in the evening hours when agal productivity ceased (Table 7). The evening rates of respiration were found to be about 40% below the daytime rates. All stations exhibited similar trends. The decrease in respiration was slightly greater during water temperatures less than 10 C. Annual variation by Season Daily respiration rates were variable over the study period for all stations (Figure 6). Mean seasonal values were generally highest in the summer (Table 1). Spring and fall values were similarly lower. 42 0.0- 0.5q 1.5‘ 0.0-1 Lake 0.5- '5- C Depth (m) 2.5 0.0‘ 0.5- Discharge Canal 15" e 1" 2.5 I U 0.2 0.4 0.6 o. no 1T2 I'.4 1:6 133 2.0 212 mg Ozlllhr Figure 12. Depth profiles of mean annual respiration at the river, lake and discharge canal stations, 1970 through 1974. #3 .30. River .30. Lake mg 02/llhr Discharge Canal 'o o Time Figure 13. Diurnal mean respiration at the river, lake, and discharge canal stations on 1 July 1970 (A), 26 August 1971 (.0), 1 June 1972 (O), and 18 June 1974 (A). 44 Table 7. Mean respiration rate for the USEPA study sites for cool (NovembervApril) and warm (May-October) months of l973v75 (mg 02/11ter/hour). Station Upper Middle Lower Period Lake River Canal Canal Canal Thermal plume Year—season 3 9 12 8 14 15 16 Morning 1973-cool 0.00 0.05 0.01 0.02 0.05 0.02 —0.01 —warm 0.08 0.07 0.05 0.08 0.08 0.09 0.10 1974-cool 0.04 0.03 0.05 0.03 0.03 0.02 0.02 ~warm 0.10 0.05 0.08 0.08 0.09 0.09 0.09 1975-cool 0.00 0.06 0.10 0.12 0.06 0.02 0.00 —warm 0.10 0.06 0.14 0.13 0.10 0.03 0.05 Grand meanvcool 0.01 0.05 0.05 0.06 0.05 0.02 0.01 Grand mean-warm 0.09 0.06 0.09 0.10 0.09 0.07 0.09 Grand meanv3 year 0.05 0.05 0.07 0.08 0.06 0.05 0.05 Afternoon 1973-cool 0.10 0.05 0.07 0.11 0.12 -0.02 0.00 —warm 0.09 0.16 0.12 0.05 0.08 0.11 0.08 1974-cool 0.02 —0.01 0.05 0.03 0.02 —0.02 0.00 ~warm 0.03 0.04 0.13 0.14 0.13 0.13 0.12 1975-cool -- -- —- -— —- —- —- —warm 0.09 -0.02 0.10 0.13 0.11 0.12 0.17 Grand mean-cool 0.06 0.02 0.06 0.07 0.07 -0.02 0.00 Grand mean-warm 0.07 0.06 0.12 0.11 0.11 0.12 0.12 Grand mean-3 year 0.06 0.04 0.09 0.09 0.09 0.05 0.06 Evening 1973-cool ~0.02 -0.05 0.03 0.03 0.06 0.02 0.00 -warm 0.03 0.09 0.09 0,07 0.04 0.04 -0.04 1974-cool -0.01 -0.04 0.05 0.05 0.09 -0.02 -0.04 -warm 0.06 0.04 0.07 0.11 0.05 0.09 0.04 l975~cool -0.06 0.00 0.08 0.06 0.05 0.01 0.04 -warm 0.02 0.05 0.09 -0.05 0.09 0.08 0.09 Grand mean-cool -0.03 -0.03 0.05 0.05 0.07 0.00 0.00 Grand mean-warm 0.04 0.06 0.08 0.04 0.06 0.07 0.03 Grand mean-3 year 0.01 0.02 0.07 0.04 0.06 0.04 0.01 45 However, the maximum respiration rates during the study period occurred in the spring and fall at stations 3, 8, and 9: lake, spring 1971, 370 g C/mz; discharge canal, fall 1970, 933 g C/mz; and the river, spring 1971, 764 g C/mz, respectively. Winter data from.the Monroe demonstration sites were limited, but the USEPA entrainment data indicated winter respiration rates were the lowest of all seasons (Table 7). Mean annual river respiration remained constant from 1970 through 1972 and then significantly decreased in 1973 and 1974. These lower values coincided with improvements to the Monroe Sewage Treatment Plant and subsequent decrease in industrial and municipal sewage entering the Raisin River. Mean annual concentrations of organic carbon followed . similar decreases during the same period (Table 8). Mean annual GPP values over the study period remained constant from 1970 through 1972, decreased in 1973, and reached their maximum in 1974 (Table 1). Mean annual oxygen values for the river more than doubled in 1973 and 1974 from the three preceding years (Table 9). The decrease in respir- ation, due to decreased organic loading, along with relatively constant GPP rates, has resulted in significantly higher oxygen concentrations in the Raisin River during the last two years of the study period. Mean annual respiration for the lake station (3) remained almost constant, except 1971, which was almost double the average rate. The discharge canal exhibited its highest respiration rate during 1970, before it received thermal effluent from the power plant. The rate of carbon release greatly decreased as additional cooling water was pumped through the discharge canal. This led to the greater incorpor- ation of lake water into the canal as water demands exceeded the volume 46 ' Table 8. Seasonal and annual mean concentrations of total organic carbon in mg/l by station for the Detroit Edison sites. Season Station 9 (River) 3 (Lake) 9 (Discharge Canal) Spring 1970 21.3 13.4 14.0 Summer 1970 13.9 6.5 16.4 Fall 1970 16.3 7.4 10.5 1970 Mean 16.7 9.0 14.6 Spring 1971 16.3 6.5 15.3 Summer 1971 13.7 9.6 13.2 Fall 1971 22.4 12.1 17.4 1971 Mean 17.1 9.7 15.3 Spring 1972 12.2 4.9 9.8 Summer 1972 10.7 4.0 6.3 Fall 1972 9.9 5.4 7.1 1972 Mean 10.9 4.6 7.7 Spring 1973 10.8 5.9 9.3 Summer 1973 9.8 6.4 7.2 Fall 1973 7.5 4.8 5.7 1973 Mean 9.4 5.9 7.2 Spring 1974 10.4 5.5 10.0 Summer 1974 10.7 5.0 5.5 Fall 1974 9.2 5.3 8.2 1974 Mean 10.0 5.3 8.2 Table 9. Seasonal and annual mean oxygen concentrations in mg/l by 47 station and depth for the Detroit Edison sites. Station 3 (Lake) 8 (Discharge Canal) 9 (River) 0.5m 2.5m 0.5m 2.5m 0.5m 2.5m Spring 1970 9.6 8.5 9.5 8.1 4.5 4.4 Summer 1970 7.8 7.3 7.8 6.0 2.3 2.3 Fa11.1970 8.8 8.4 9.7 9.2 4.2 4.2 1970 Mean 8.7 8.0 9.0 7.8 3.7 3.6 Spring 1971 11.6 10.5 5.8 5.0 3.8 4.1 Summer 1971 9.8 8.1 4.8 4.1 0.3 0.1 1971 Mean 10.9 9.8 5.0 4.6 2.3 2.1 Spring 1972 11.3 10.3 8.1 8.1 2.0 0.8 Summer 1972 12.0 10.6 7.9 6.7 4.9 3.5 Fall 1972 14.1 13.9 7.5 6.7 3.0 2.1 1972 Mean 12.5 11.6 7.8 7.2 3.3 2.1 Spring 1973 11.2 11.0 8.8 8.7 7.5 7.5 Summer 1973 8.4 8.0 6.2 6.0 5.8 5.6 Fall 1973 10.2 10.2 10.2 0.2 8.1 8.0 1973 Mean 10.0 9.7 8.4 8.3 7.1 7.0 Spring 1974 11.4 11.4 9.6 9.8 10.0 10.0 Summer 1974 8.2 8.1 6.8 6.7 6.0 5.3 Fall 1974 9.9 9.8 8.7 8.3 8.2 7.6 1974 Mean 9.8 9.8 8.4 8.3 8.1 7.6 48 supplied by the river. Respiration rates of the canal fell predictably, resulting from the combined effects of the lower respiratory demand of the lake water and the decreasing organic carbon concentration of the river water. Tegperature Effects Respiration.was related to temperature seasonally, with significant (p<0.05) relationships occurring only in the river during August and September and in the discharge canal during June and July (Figure 14). Temperatures appeared to contribute more strongly during the cool seasons, than in the warm summer months. The lake showed the least variability when all seasons were combined and the discharge canal the greatest. The entrainment of the water mass through the power plant resulted in an elevation of the rate of respiration (Table 7). Mean annual water temperature elevation across the condensers averaged 7 to 8 C while the mean annual respiration rate in the upper discharge canal (station 12) almost doubled. This is in close agreement with the Q10 temperature increase. The stimulation of respiration was greatest, although variable, during the cool months, November through April. Mean annual rates for May through October increased about 50%. Diurnal comparisons indicated the greatest increase in respiration after entrainment occurred during the evening hours. Lesser increases were observed for the morning and afternoon sampling periods. A 12% summertime and a 16% wintertime heat loss were accompanied by a 25% decrease in mean annual respiration, regardless of season, as the water moved through the discharge canal. The respiration of the 49 4 r River . O l'=0.469 3 _ o o A A 7:0.041 ' . A o r=0.700 a. 2 _ A A A ,. r=0.119 A ' A ,0 combined r=0.217 O 0 2A 0 .1 . g“ A ,8 x a x 00 0.0 . l 1 x‘ X L l l l 04 l 1 1 .4 - Lake 0 r=0.265 .31. A A f=0.036 g A o r=0.083 .2 .2. 0 x r=0.180 E . 0 2 o combinedr=0.296 '5 .1 - ‘ 9 N O ‘ ... a 4A: a O o ’l 3 0 use a ‘ x . ‘ ‘ A E 0.0 1 11 1 1 1 44 1 1 L r: o 3 6 . ‘ Discharge é o r=0.356 .2 5 . A r=0.565 .. o f=0.160 4 1- X 7:0.359 combined r=0.120 .3 P o 2 x 0 1|: (P<0.05) . r- o‘ A A ‘ 2° 2 A .1 l- 0 0A 0 o . ‘ ,0 202 . 0 x g A e ‘ A 0 0 . 1 1 1 1 .L A L ‘ 1 1 1 ' 4 8 12 18 20 24 28 32 36 Temperature(°C) Figure 14. Mean respiration compared to mean temperature for March-May (e), June-July (A), August-September (O), and October-November (x) at the river, lake, and discharge canal stations, 1970 through 1974. 50 thermal plume, upon entering the lake, continued to decline as the temperature of the water decreased. Upon reaching station 16 (1-2 C over ambient) the mean respiration rate had recoveredtx>its initial rate before thermal stiumulation. This recovery was independent of seasonal temperature variation or diurnal changes in the productivity of the system. Cress Primary Productivity Effects Respiration rates were clearly related to gross primary productivity (Figure 15). Highly significant (p<0.01) relationships existed in the lake and discharge canal at temperatures above 20 C. Neither station exhibited a positive relationship at temeperatures less than 20 C, but with temperatures combined, a highly significant (p<0.01) relationship existed. In the river just the opposite was true, respiration being related to GPP at temperatures below 20 C (p<0.01) and unrelated above 20 C. The decomposition of allochthonous organic material may have been a major contributor to respiration at the higher temperatures, thereby confounding the relationship, but at lower temperatures its impact may have been minimal. Gross primary productivity emerged as the main contributor. Gross Primary Productivity/Respiration Season GPP/R ratios were based on mean seasonal averages of daily GPP and respiration (Table 10). Highest river ratios occurred in the springs of 1973 and 1974, the result of greatly reduced respiration due to decreased sewage input. In three of the five years, highest ratios for the lake occurred in the fall. Autotrophic conditions (GPP/R>l). 51 0,6- River 0 r:0.9 9* O.4< A ”0.63:”: ‘ . A o r:0.00 A 0.4 Lake 0 r:0.05 06‘ ar:0.40 0 r :0.6 9:1: :1: 0.4‘ . e . ‘— r:0,44** Respiration (mg 02 l l Ihr) O.8« Discharge Canal 0r:1.00 o.e« A ' Arzo,2e 0 r:0.35 04- D r:0.7 1 :1: :1: e a ' 02-1 ° . n r:0-55 ** o.o- =1! (p<0.01) *Ilt (P<0.05) fl ofo oh of: oi: 014 035 03 of 7 ofs 0.9 GPPUflgOz/l/hr) Figure 15. Mean respiration compared to mean gross primary productivity at temperature intervals 8-13 C (0), 14—20 C (A), 21-27 C (e ), and 28-35 C (a) at the river, lake, and discharge canal stations, 1970 through 1974. 52 Table 10. Seasonal and annual GPP/R ratios by station for the Detroit Edison sites. (Discharge 9 (River) 3 (Lake) 8 Canal) Spring 1970 0.09 0.43 0.29 Summer 1970 0.36 0.74 0.62 Fall 1970 0.22 2.56 0.11 1970 Mean 0.19 0.71 0.27 Spring 1971 0.09 0.97 0.62 Summer 1971 0.14 0.72 0.53 Fall 1971 0.34 1.27 0.50 Winter 1971 -- 0.25 -- 1971 Mean 0.16 0.82 0.51 Spring 1972 0.09 1.89 0.49 Summer 1972 0.19 1.51 0.67 Fall 1972 0.17 1.06 0.40 1972 Mean 0.15 1.43 0.53 Spring 1973 0.52 0.57 0.41 Summer 1973 0.36 1.56 0.32 Fall 1973 0.30 2.02 0.33 1973 Mean 0.39 1.10 0.35 Spring 1974 0.94 0.62 0.25 Summer 1974 0.45 1.16 0.29 Fall 1974 0.14 0.76 0.28 1974 Mean 0.29 0.90 0.28 53 occurring in eight of the sixteen seasons sampled, were found only in the lake. Discharge canal values were intermediate but more closely resembled those of the river. Maximum ratios occurred in the spring and summer. Annual GPP/R, calculated from mean annual GPP and respiration values, indicate heterotrophic (GPP/RS1) conditions existed for all stations except the lake in 1972 and 1973. Due to very limited winter data, annual ratios may have overestimated actual conditions. River values remained almost constant from 1970 through 1972, more than doubled in 1973 following increased sewage treatment, and slightly decreased in 1974. Lake and discharge canal ratios followed similar trends, although peaking in 1972 and decreasing the last two years. As successive generating units came on line and approached normal operating conditions in 1973 and 1974, discharge canal ratios fell below those of the river due to higher temperatures elevating respir— ation while algal productivity decreased. GPP/R ratios were calculated for the discharge canal and thermal plume stations using hourly GPP and respiration data from the upper photic zone. While greatly overestimating daily ratios, comparative analysis can be made as the water moved through the discharge system. Ratios in the upper discharge were usually less than expected from the mixing of the water masses, again the result of temperature elevated respiration and depressed algal production (Table 11). Ratios slightly increased with movement through the discharge canal and, near ambient temperatures, recovered to approach those of the original lake water as the respiration rates fell and productivity recovered. Table 11. 54 April) and warm (May-October) months of 1973.75. GPP/R ratios for the USEPA study sites for cool (November- Station Upper Middle Lower Period Lake River Canal Canal Canal Thermal Plume Year-season 3 9 12 8 14 —-13r-_' 16 Morning 1973-cool 1.20 3.00 0.00 0.60 2.50 -1.00 -warm 9.50 5.57 6.80 4.50 5.25 6.89 7.90 1974-cool 1.00 2.00 0.80 0.33 1.00 2.50 0.00 -warm 5.20 4.40 4.12 6.00 5.56 6.78 8.11 1975-cool -0.33 0.80 0.58 0.33 -2.50 -warm 5.40 9.33 4.14 4.15 7.40 21.33 8.00 Grand mean-cool 5.00 0.60 1.00 0.50 0.60 1.00 Grand mean-warm 6.78 6.50 4.67 4.60 6.11 8.86 8.00 Grand mean—3 year 6.66 4.20 3.43 3.00 4.83 6.40 8.80 Afternoon 1973-cool -0.40 0.20 0.14 0.27 0.42 -3.50 0.00 -warm 2.89 0.81 1.75 2.40 2.00 2.82 3.75 1974-cool 2.00 1.00 0.80 -0.67 0.00 -0.00 -warm 14.33 8.25 3.15 2.86 3.31 19.33 3.58 1975-cool -- -- -— -- -- -- —- -warm 7.78-JJ.00 3.30 3.15 9.09 7.92 5.18 Grand mean-cool 0.00 0.00 0.50 0.00 0.29 ~2.00 0.00 Grand mean-warm 6.57 4.50 2.67 2.82 3.00 6.78 4.50 Grand mean—3 year 3.83 4.00 1.85 1.78 2.00 5.50 4.50 55 CONCLUSIONS Primary production in the lake was highly variable over the study period. High levels of suspended solids, contributed by the Raisin River and resuspended by turbulence in the shallow depths, usually limited productivity to a depth less than 2.5 m.in the nearshore areas. Maximum production usually occurred in the summer months, with spring and fall values equally lower. Temperature was significantly related to productivity only in the spring and fall. Concentrations of total soluble phosphorus and total nongaseous nitrogen showed no individual relationship to productivity. Peak daily production occurred in the late morning hours, before maximum levels of solar radiation were encountered. Highest annual rates of production occurred in 1971 and 1972, returning to preoperational levels in 1973 and 1974, probably resulting from sewage clean up of Raisin River water. The Raisin River usually exhibited the lowest productivity rates of all stations measured. Annual variability was also lowest and showed no trends over the study period. Highest levels of suspended solids usually limited production to a depth less than 1.5 m. Maximum seasonal rates occurred in the summer, corresponding to trends exhibited by the lake. The river water was subjected to high levels of industrial and municipal sewage, along with.nutrient rich.runoff. Productivity rates were not noticeably effected by the completion of improvements to an upstream sewage treatment plant in 1972. As power generation increased, 56 larger amounts of river water were diverted through the discharge canal, thereby moving the river's flow southward into the lake, except during times of high discharge. Respiration was clearly related to gross primary production, with maximum daily rates occurring at nearly the same time as maximum pro- ductivity. Seasonal maximums of respiration and production occurred during the summer. Rates of respiration decreased about 402 at depths below the compensation point. Nighttime respiration showed a similar decrease from daytime values, implying that the rate of respiration remained almost constant for that portion of the aquatic community not engaged in photosynthesis. Respiration rates in the lake remained fairly constant over the study period. However, with the completion of the sewage treatment plant, and the corresponding decrease in organic carbon, the river respiration rates fell. Respiration was related to gross primary productivity at temperatures greater than 20 C in the lake but not in the river. At cooler temperatures (less than 20 C), there is a relationship to temperature in the river, possibly resulting from decreased decomposition of allochthonous material, which may have confounded the relationship in warm temperatures. The entrainment of the water mass through the power plant usually resulted in a depression of the productivity in the upper discharge canal waters. The resulting productivity rates of the water closely resembled those of the river water. This inhibition of productivity could have resulted from mechanical damage due to condenser passage, thermal shocking resulting from increased temperature, or the presence of inhibitors, possibly in the river water. As the water mass moved through the discharge canal, the depressed productivity recovered 57 partially. Movement of the thermal plume into the lake resulted in the stimulation of productivity, exceeding the lake values slightly. Respiration rates in the upper discharge canal almost doubled after passing through the power plant, as predicted by temperature elevations. The respiration rates decreased as water moved through the canal, until a recovery to pre-exposure rates was observed near the end of the thermal plume, as ambient temperatures were approached. The increase in respiration, along with a corresponding decrease in productivity, indicated the existance of a decomposing environment in the discharge canal waters. This precludes the possibility of photo- synthetic carbon biomass export into the receiving waters under existing conditions, a major concern of power plant designers utilizing once- through.cooling. Measurements of photosynthesis in western Lake Erie, first performed by Verduin (1962) and Saunders (1964), were limited to single stations and covered only certain seasons. Recent studies by Cody (1972) in the vicinity of the Bass Islands and the Canadian Centre for Inland waters (Glooschenko, 1974) lake wide have shown a general increase in the rate of productivity occurring in the western basin (Table 12). Preoperational productivity in the near shore vicinity of the power plant was approximately double that found in the open lake by Glooschenko. Nutrient enrichment from the Raisin River could have been responsible for this increased productivity, as the completion of new sewage treatment facilities was followed by declining productivity of the near shore area. Total soluble phosphorus concentrations were similar, 0.1-0.2 mg/l (Gachter et al., 1974 and Annett, 1977), for the near shore and open lake. However, inorganic nitrogen concentrations 58 Table 12. Comparison of productivity measurements in western Lake Erie, 1962-1974. Method g C/m2/day g C/mZIyear Data source pH—COZ-Oz 0.51 --- Verduin (1962) 14c 0.008-0.031 --- Saunders (1964) 14c 0.83 304 Cody (1972) 02 0.54 197 Cody (1972) 14C 1.13 310 (274 days) Glooschenko (1974) O 2.20 594 (274 days) warner 2 59 for the study area, 0.7-2.3 mg/l (Ecker, 1976) were significantly higher than in the open lake, 0.2-0.4 mg/l (Gachter et al., 1974). Much has been said about the advance of eutrophication in Lake Erie in recent years. Gross primary productivity/respiration ratios of 1.0 (Verduin, 1962) and 1.8 (Cody, 1972) indicate that the rate of production is increasing faster than respiration, a sign of increased lake enrichment. GPP/R ratios for the study area were almost 1.0 in the lake stations, reflecting a possible return to less eutrophic conditions or increased respiration from allochthonous inputs. As demand for cooling water increases in Lake Erie, the possibility exists for a negative impact from the thermal effluent upon the apparent recovery of the western basin. The Detroit Edison Power Plant, located near the mouth of the Raisin River, had little if any measurable impact upon the productivity of the receiving waters. The depressed produc- tivity and increased respiration of the light limited system have resulted in water of slighlty higher quality being released back into the lake. Hawever, continued monitoring of the productivity should be maintained at all power plants using once-through cooling to measure changing conditions that may lead to the thermal stimulation of algal production. Any changes resulting in the export of organic biomass into the aquatic system may adversely effect the present recovery of Lake Erie as a viable natural resource. LITERATURE CITED 60 LITERATURE CITED Annett, C.S. 1977. Phosphorus concentrations along the western shore of Lake Erie. M.S. thesis. Michigan State Univ., East Lansing, Mich. 82 pp. Anon. 1965. Standard methods for the examination of water and waste- water. 12th Edition. American Public Health Association, New York, New York. 769 pp. Anon., 1968. Lake Erie environmental summary, 1963-64. U.S. Dept. of the Interior, Great Lakes Region. Federal water Pollution Control Administration. Cleveland, Ohio. 170 pp. Anon. 1971. Methods of chemical analysis of water and wastes. U.S. Environmental Protection Agency, washington, D.C. 312 pp. Arnold, E.E. 1969. The ecological decline of Lake Erie. New York Fish and Game J. 16(1):27-45. Beeton, A.M. 1971. Chemical characteristics of the Laurentian Great Lakes, I3; Proceedings of the conference on changes in the chemistry of Lakes Erie and Ontario. Bull. Buffalo Soc. Nat. Sci. 25(2):l-21. Carr, J.F., V.C. Applegate, and M. Keller. 1965. A recent occurrence of thermal stratification and low dissolved oxygen in western Lake Erie. Ohio J. Sci. 65(6):319-327. ' Carr, J.F. and J.K. Hiltunen. 1965. Changes in the bottom fauna of western Lake Erie from 1930-1961. Limnol. Oceanogr., 10:551-569. Cody, T.E. 1972. Primary productivity in the western basin of Lake Erie. Ph.D. thesis. Ohio State University, Columbus, Ohio. 113 pp. Cole, R.A. 1972. Physical and chemical limnology along the western shore of Lake Erie. Tech. Rep. 13. Institute of Water Res., Michigan State Univ., East Lansing, Mich. 120 pp. Cole, R.A. 1973. Environmental changes in Lake Erie and their future impact on lake resources. Techn. Rep. 32.3. Institute of water Res., Michigan State Univ., East Lansing, Mich. 98 pp. 61 Cole, R.A. 1976. The impact of thermal discharge from the Monroe Power Plant on the aquatic community in western Lake Erie. Tech. Rep. 32.6. Institute of water Res., Michigan State Univ., East Lansing, Mich. 571 pp. Davis, C.C. 1964. Evidence for the eutrophication of Lake Erie from phytoplankton records. Limnol. Oceanogr. 9:275-283. Denison, P.J. and F.C. Elder. 1970. Thermal inputs to the Great Lakes 1968-2000. Internat. Assoc. Great Lakes Res. Proc. 13th Conf. Great Lakes Res. p. 811-828. Ecker, T.J. and R.A. Cole. 1976. Chloride and nitrogen concentra- tions along the west shore of Lake Erie. Tech. Rep. 32.8. Institute of Water Res., Michigan State Univ., East Lansing, Mich. 132 pp. Gachter, R., R.A. Vollenweider, and W.A. Glooschenko. 1974. Seasonal variations of temperature and nutrients in the surface waters of Lakes Ontario and Erie. J. Fish. Res. Board Can. 31:275-290. . Glooschenko, WkA., J.E. Moore,.and R.A. Vollenweider. 1974. Spatial and temporal distribution of chlorophyll a and pheopigments in surface waters of Lake Erie. J. Fish Res. Board Can. 31:265-274. Harlow, G.L. 1966. Major sources of nutrients for algal growth in western Lake Erie. Univ. Michigan. Great Lakes Res. Div. Proc. 9th Conf. on Great Lakes Res. Pub. no. 15. pp. 389-394. King, D.L. 1970. The role of carbon in eutrophication. J. water Pollut. Contr. Fed. 42:2035-2051. - Kovacik, T.L. 1972. Information on the velocity and flow pattern of Detroit River water in western Lake Erie revealed by an accidental salt spill. Ohio J. Sci., 72(3):81-86. Kreh, T.V. 1973. An ecological evaluation of a thermal discharge, Part VII: Postoperational effects of a power plant on phytoplankton and community metabolism in western Lake Erie. Tech. Rep. 32.1. Institute of water Res., Michigan State Univ., East Lansing, Mich. 92 pp. Marcus, M.D. 1972. The distribution of phytoplankton and primary productivity near the western shore of Lake Erie. Tech. Rep. 14. Institute Water Res., Michigan State Univ., East Lansing, Mich. 96 pp. Michigan State university. 1974. Mass transport of biological materials through a once-through cooling system on Lake Erie, November 1972-August 1974. Institute of water Res. and Michigan State Uhiv., East Lansing, Mich. 106 pp. 62 Morgan, R.P. and R.G. Stross. 1969. Destruction of phytoplankton in the cooling water supply of a stream electric station. Chesapeake Sci. 10:165-176. Munawar, M., J. Verduin, and I. Fatima. 1972. Primary production studies in shallow aquatic environments of Southern Illinois. Verh. Internat. Verein. Limnol. 18:113-120. Saunders, G.W. 1964. Studies of primary productivity in the Great Lakes. Proc. 7th Conf. Great Lakes Res., Inter. Assoc. Great Lakes Res., Ann Arbor, Mich. p. 122-129. Strickland, C.D. 1960. Measuring the production of marine phytoplankton. Bull. Fish. Res. Bd. Can. 122. 172 pp. Verduin, J. 1957. Daytime variation in phytoplankton photosynthesis. Limnol. Oceanogr. 2(4):333-336. Verduin, J. 1962. Energy flow through biotic systems of western Lake Erie. “Ig_Great Lakes basin, Amer. Assoc. Advance. Sci. Pub. Verduin, J. 1964. Changes in western Lake Erie during the period 1948-1963. Verb. Internat. Verein. Limnol. 15:639-644. Verduin, J. 1969. Man's influence on Lake Erie. Ohio J. Sci. 69(2):65-70. Verduin, J. 1972. Metabolism of the dominant autotrophs of the North American Great Lakes. Verh. Internat. Verein. Limnol. 18:105-112. Vellenweider, R.A., M. Munawar, and P. Stadelmann. 1974. A comparative review of phytoplankton and primary production in the Laurentian Great Lakes. J. Fish. Res. Board Can. 31:739-762. Vollenweider, R.A. and A. Nauwerck. 1961. Some observations on the C 14 method for'measuring primary production. Verh. Internat. Verein. Limnol. 14:134-139. wadelin, D. and M.G. Mellon. 1953. Extraction of heteropOly acids with application to determination of phosphorus. Anal. Chem. 25:1668- 1673. Westlake, D.F. 1969. Interpretation of results: units and comparability, pp. 113-117. .32; R.A. Vollenweider (ed.). A.manual on methods for measuring primary production in aquatic environments. Blackwell Sci. Pub., Oxford and Edinburgh, England. APPENDICES 63 Table A1. Sampling dates for the Detroit Edison study sites, 1970 through 1974. Seasons Year Spring Summer Fall 1970 5-1 6-23 9-29 5-15 7-7 10-27 5-27 7-21 6-10 8-4 8-24 9-1 1971 4-15 6-30 10-2 5-21 7-16 10-16 6-3 7-29 10-30 6-18 9-15 11-13 1972 5-12 6-28 9-13 6-1 7-12 10-13 6-14 7-25 8-30 1973 4-27 6-21 9-10 5-11 7-7 10-9 5-23 7-17 11-13 8-1 8-16 8-29 1974 3-15 7-16 9-27 4-17 7-31 10-7 5-22 8-27 10-24 64 Table A2. Sampling dates for the USEPA Study sites, 1972 through 1975. Date Morning Afternoon Evening November 1972 11-9 11-10 11-9 January 1973 1-26 1-25 1-18 March/April 1973 4-6 4-5 3-30 June 1973 6-13 6-12 6-11 August 1973 8-10 8-9 8-8 September/October 1973 10-1 9-29 9-28 December 1973 12-14 12-13 12-12 January/February 1974 2-2 2-1 1-31 April 1974 4-12 4-11 4-10 June 1974 6-13 6-12 6-11 August 1974 8-16 8-15 8-14 October 1974 ‘10-21 10-20 10-19 January 1975 1-25 1-25 1-24 March 1975 3-17 3-16 3-15 May 1975 5-18 5-17 5-16 July 1975 7-29 7-28 7-27 September 1975 9-17 9-16 9-15 Mean Gross Primary productivity and respiration in mg 0 Detroit Edison study sites. Table A3. 2/1/hr by station and date for the 2.5m. 1.5m 0.5m Station Surface (0.0m) Date GPP GPP GPP GPP 0.13 0.05 0.05 0.04 0.34 -0.10 0.04 0.33 5-1-1970 ‘83 00 CO 0.30 0.39 5-15-1970 O O O O 0.12 5-27-70 65 0.16 -0.08 0.09 0.01 6-10-1970 0.1 0.2 0.23 0.2 0.10 0.4 0.1 0.39 1.02 0.23 0.06 0.0 6-23-1970 0.15 -0.29 0.08 -0.01 0.08 -0.01 0.03 0.05 -0.04 7-7-1970 0.01 0.1 0.02 0.14 0.03 0.10 0.03 7-21-1970 0.0 0.23 0.00 0.10 0.14 0.09 0.53 0.05 0.93 0.15 0.27 0.96 0.55 2.75 0.96 8-4-1970 8-24-1970 0.07 0.05 0.14 0.04 0.12 0.48 66 ~c.e eo.o ~n.¢ an.c a~.o em.o ~o.o ae.o a aa.c ea.o eo.e ae.c ae.c ae.° n~.e ~m.c n No.o oo.o ne.o oe.o na.c ea.o em.o nn.o a aheauealk no.o ec.o ea.o n~.e aa.o na.a aa.c em.a m ma.o eo.c oe.o n~.c oe.o ~h.° a~.o en.o n aa.o ao.o l- u- u- i. ae.e ee.o e aeeaueala a~.o so.c oa.c so.o ~a.o ae.c ha.c aa.¢ m mo.e eo.c Na.o no.o ec.o en.o no.c en.o n ~o.o oo.o Ne.o cc.o eo.e no.e no.c a~.o e ahealom10 ea.o nc.o n~.c aa.e ea.o ee.o ~c.c ee.o a no.o ca.e ~a.c ne.o ae.e me.a «a.c ea.c n e~.o ee.ol -.o ao.o ~n.c na.ow nn.e ea.o a ahealmaue eo.e Ne.e- ca.e ~a.o na.o e~.o we.o mm.o a e~.o ao.o ea.o aa.o ea.o em.o as.o ee.c n «c.o ae.o- oo.o no.o- ao.e eo.o aa.o a~.o a ahealm1e ac.o- ao.o ~a.o ma.o ~o.o em.e ha.o ae.o m mo.o ao.c oa.o an.o ca.c o~.o oa.c ma.o n an.o ae.o a~.o co.o -.o e~.c n~.o me.e e aaeaua~un .mo.cu an.o no.o na.o ee.ou ae.o -.c w~.o a he.en o~.o- «a.ou oo.o no.o oe.c o~.c ne.o n oa.e oo.o mo.ci mo.eu eo.o- ao.o ma.ou a~.e e aaaalnale ae.c ao.c ee.o oc.o o~.o aa.a an.o en.e a II .l' 'I. .II I- I..- III .III M ao.e ec.o ea.o so.e ao.e no.c oa.c ae.o a oaealauloa oo.o wo.o ~e.o ec.o ao.c ea.o ~e.o- ea.c a ao.ol nc.o ee.c- ao.o- ao.o oa.o co.c e~.o n ~o.o nc.e no.o oo.o- no.e eo.o na.e m~.e a oeeaueuue .. n- wa.o No.e ea.o ee.c ma.o ea.a a ~a.o ~c.cu ao.o aa.o eo.o e~.o oc.e ee.o m aa.o ~o.o oa.e eo.o aa.e «a.o no.c an.o e oeeauale a emu a emu a emu a mac am.~ an.a am.o Aeo.oe uoeuuem eeaeeem meme a.u.eeov «a canoe 67 mo.o ec.o no.c eo.o mc.o aa.o oo.on aa.o a oo.o ea.o ao.c n~.o no.c ea.o eo.c o~.o n oa.o co.o ca.c ao.c mm.o an.c ao.o oe.o a Namaumuue no.¢ co.o ca.c cc.o ea.c mn.o ea.o ae.c a so.o aa.o eo.o ea.o oa.o c~.a mo.o ~c.a n o~.o cc.o oc.o oo.c me.o oo.o o~.o oo.o a «amaneaue ca.c ao.ou eo.o ~c.c nc.o n~.o nc.o ae.c a oc.c ao.o oc.o so.o eo.c on.c eo.o en.o n aa.c ao.ol na.o ec.o ac.o o~.c ec.o nn.c a «aaauaue eo.o ~c.c oo.c ao.o ea.c e~.o ac.o ec.o a II 'I ..I III II. II I III M :1 in .1 in in .1 in is a Namau~ann ec.o ~o.ol no.o oc.o no.ou eo.on eo.c oo.o m oa.o mo.o no.o ac.c ea.o ec.c ca.o ca.c n 11 in in u- a- ii u. .1 a Namaae~1~ III I' I..- -I 'I 'l 1' III w no.c no.c no.o aa.o oo.o aa.o wo.o aa.o n in u- u- in n- in in in e aaeannauaa ec.o no.o ea.c -.o ea.o em.c a no.cu so.c ac.o ea.a ~o.o ~e.o mo.o an.c n :1 in ~a.¢ ac.o no.o ea.o ea.o ne.o a aaaalonloa in in oo.c ao.c ea.o h~.o ea.o ce.o m u- in ca.c ao.o ~o.o c~.o eo.o na.o n in nu ~a.o no.o na.c ec.o aa.c ne.c a aaoaleauoa u- u- ea.c mo.o a~.c ee.o ea.o ee.a a a- in nc.c an.o mo.o ee.o oo.o en.c n -1 in oa.c ac.o mc.o mm.c eo.o ee.c a aheau~uoa a- -1 nn.c aa.c an.o ce.o o~.o aa.o a in in ac.o ma.o ea.o ee.o ~a.° «m.o n in u- e~.o ec.o a~.o ma.o em.ow e~.o e aaealmaue a mac a see a. mac a new ea.~ am.a am.o aao.ma «nausea eeaueem mean a.e.eoov n4 oases 68 99.9 99.9 99.9 «9.9 o9.9 a9.9 99.9 oN.9 9 99.9 «9.91 a9.9 a9.91 no.9 nN.o a9.9 9N.9 n 99.9 ~9.91 a9.9 «9.9 a9.9 9949 99.9 aa.9 9 nuaainiu a9.9 99.9 99.9 99.91 no.9 oa.9 no.9 na.9 9 99.9 no.9 o9.9 «9.9 9a.9 no.9 No.9 9h.9 n No.9 No.9 no.9 99.91 99.9 so.o no.9 no.9 9 MmoaiaNlo 99.9 99.9 99.9 9a.9 ma.9 99.9 no.9 nn.9 9 9a.9 «9.9 9a.9 no.9 -.9 9~.9 na.9 99.9 n no.9 No.9 99.9 No.91 59.9 99.9 aa.9 na.o 9 numalnwim No.9 no.91 «9.9 aa.9 eo.9 no.9 ma.9 un.9 9 99.9 «9.91 99.9 «9.9 99.9 9~.9 ~9.9 99.9 n 99.9 «9.91 no.9 «9.9 «9.9 oa.9 99.9 a~.9 9 nuaaiaain 99.9 99.9 99.9 99.9 99.9 59.9 9a.9 99.9 9 99.9 99.9 99.9 na.9 No.9 99.9 NN.9 mn.9 m no.9 «9.9 a9.9 No.9 11 aa.o 99.9 99.9 9 numalnuie 11 11 11 11 99.9 99.9 99.9 99.9 9 99.9 na.o no.9 no.9 an.o 99.9 99.9 no.9 n no.9 no.9 no.9 «9.9 na.9. oa.9 no.9 aa.9 9 «noainaioa 11 11 9a.9 aa.9 59.9 99.9 a9.9 99.9 9 11 11 «9.9 59.9 aa.9 sm.9 99.9 99.9 n 99.9 «9.91 ea.o Na.9 99.9 99.9 nN.9 99.9 9 Numalnaim ha.o na.9 o~.9 oa.o 9N.9 N9.a oa.9 ~a.a 9 99.9 oa.o aa.9 no.9 o~.o o~.a o~.o as.o m na.9 «9.9 na.9 aa.9 9a.9 9s.9 9a.9 99.9 9 Nemanoniw 11 11 “9.9 «9.9 ma.9 no.9 59.9 99.9 9 ha.9, N~.o no.9 99.9 a9.9 ~m.9 «9.9 an.9 m 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 9 «nmainmin a9.9 «9.91 «9.9 «9.9 aa.o on.9 no.9: 99.9 9 No.91 na.9 v9.9 ea.9 99.9 9N.9 aa.91 aa.9 n 9N.9 99.9 9a.o 99.9 nn.9 99.9 a~.9 99.9 a Numaiuais a who a moo a emu a one am.9 Alo.9Mluumuu=m soaunum ouao Cree": 9.. «38. 69 No.9 99.9- e9.9 ~9.9 a9.9- «9.9 ~a.9 ee.9 9 99.9 «9.9 99.9 99.9 ~9.9 n~.9 e9.9 am.9 n ua.9- a9.9- ae.9u “9.9- 9e.9- «9.9- e9.9- ee.9 e semaneeun a9.9 a9.9- ~9.9 ~9.9- e9.9 a9.9- "9.9 a9.9 9 no.9 «9.9 a9.9 99.9 a9.9 ~9.9- ~9.9 a9.9- n e9.9- a9.9 a9.9- a9.9 a9.9- ~9.9 a9.9- N9.9 e eeealeaue n9.9 99.9- «9.9 «9.9- e9.9 99.9 99.9 «9.9- 9 ea.9 "9.9 99.9 «9.9 ~9.9 aa.9 9a.9 na.9 n «9.9- 99.9 «9.9- «9.9- n9.9 99.9 «9.9 99.9 e eeeaunalm a9.9 n9.9 «9.9 a9.9- «9.9 99.9 99.9 «9.9 9 99.9 a9.9- a9.9 n9.9 no.9 ne.9 u- u- n 99.9 a9.9 e9.9 a9.9 99.9 a9.9- a9.9- 99.9 e neeaunauaa «9.9 a9.9- 99.9 99.9- 99.9 ee.9 e9.9 mn.9 9 99.9 99.9 «9.9 99.9 e9.9 ue.9 99.9 99.9 n a9.9- a9.9- ea.9 99.9 99.9 99.9 no.9 na.9 9 neeale.9a 1|- III I- " III l.‘ " ell. Q «9.9- a9.9- 9a.9 e9.9 «9.9- na.9 u- 9n.9 n 99.9 a9.9- no.9 no.9 «9.9 99.9 99.9 ea.9 e neeal9ale e9.9 no.9 ~a.9 e9.9 ea.9 nn.9 99.9 9e.9 9 ea.9 ea.9 99.9 an.9 99.9 nu.9 99.9 ne.9 e u9.9- a9.9 e~.9 «9.9 99.9 9n.9 99.9 em.9 e neeaueela 99.9 a9.9 9a.9 no.9 na.9 ue.9 ea.9 ee.9 9 e9.9 na.9 99.9 e~.9 99.9 e9.9 99.9 e9.9 n a9.9- a9.9- «9.9 «9.9 99.9 49.9 e9.9 a~.9 e neeaueasu 99.9 a9.9- 99.9 a9.9 99.9 aa.9 aa.9 an.9 a 99.9 ~9.9- 09.9 99.9 no.9 en.9 99.9 ee.9 n no.9 99.9 e9.9 «9.9 99.9 e9.9 99.9 99.9 9 neeauale na.9 e9.9 na.9 9a.9 aa.9 u~.9 na.9 an.9 u e~.9 9e.9 aa.9 ne.9 9a.9 ee.9 ea.9 9e.9 n a9.9 9a.9- na.9 99.9 ea.9 ne.9 ma.9 ue.9 e neeaueaue e eeu e eeu e eeu e eeu Bfi IN an oHaI . am 0° fig IOV QUQqu—m GOfluflum ”UGO ad .998 3 uaoua. 70 99.9 99.9 99.9 oa.o e9.9 99.9 99.9 9 9a.o a9.9 9a.o . 99.9 oa.o 99.9 99.9. 9 99.9 a9.9: 99.9 99.9 99.9 e9.9 99.9. 9 oeoaueeaoa 99.9 99.9 99.9 a9.9 ~a.9 99.9 9a.9 9 oo.o 99.9 ea.o 99.9 99.9 99.9 9a.9 9 ea.9n 99.9- «a.91 99.91 99.9: 99.91 99.9. 99.9 9 oeoaaeuoa ea.o aa.9 ea.9 99.9 9a.9 99.9 9a.o 9 99.9 9a.9 99.9 ea.o 99.9 99.9 99.9 9 99.9 99.9 99.9 e9.o 99.9 99.9 99.9 9 oe9aue~n9 99.9 99.9 oa.o 9a.o 99.9 9a.o 99.9 9 99.9 oa.o e9.o ea.o 99.9 99.9 99.9 9 a9.9 9a.o e9.9 99.9 a9.9 9a.9 99.9 9 oe9aue~u9 a9.9 oa.o No.9 oa.o 99.9 9a.9 99.9 9 oa.o 99.9 9a.o 99.9 99.9 99.9 99.9 9 in in :1 in .1 in in 9 oe9ana9ue 99.9 99.9 «9.9 99.9 9a.9 oa.9 99.9 9 99.9 eo.9 9a.9 oa.o 99.9 9a.9 99.9 9 99.9 «a.o 99.9 a9.9 99.9 99.9 99.9 9 999auoale eeu 9 eeu e eeu 9 eeu 99.9 am.a 29.9 aao.oo ouaoeem coauuum «999 a.o.eouo 99 eaoee 71 Table A4. Mean suspended solids, total nongaseous nitrogen, total soluble phorphorus, and total organic carbon concentrations in mg/l by station for the Detroit Edison study sites. Total Total Suspended Nongaseous Soluble Total Date Station Solids Nitrogen Phosphorus Organic Carbon 5-1-1970 3 54.7 3.73 0.19 11.0 8 63.3 3.71 0.15 12.7 9 38.3 3.74 0.26 18.7 5-15-1970 3 50.3 1.63 0.15 15.3 8 84.7 2.37 0.15 13.7 9 49.7 2.44 0.18 29.7 5-27-1970 3 “33.7 0.89 0.06 16.0 8 75.7 3.47 0.08 19.3 9 51.0 5.95 0.16 22.8 6-10-1970 3 27.7 2.25 0.07 11.5 8 42.0 2.34 0.09 10.3 9 29.0 2.08 0.22 14.0 6-23-1970 3 21.0 1.93 0.05 6.2 8 35.7 3.28 0.07 9.7 9 51.8 6.08 0.11 13.0 7-7-1970 3 25.7 0.88 0.07 5.5 8 62.8 1.77 0.12 15.5 p 9 66.7 1.89 0.24 5.8 7-21-1970 3 25.0 0.71 0.09 5.3 8 45.3 1.46 0.15 16.0 9 38.0 2.24 0.22 13.0 8-4-1970 3 33.7 0.75 0.08 6.2 8 52.0 1.83 0.12 17.3 9 68.3 1.91 . 0.24 17.2 8-24-1970 3 26.7 0.58 0.15 6.2 8 34.7 1.45 0.13 20.2 9 49.0 1.52 0.29 17.5 9-1-1970 3 25.0 0.71 0.10 9.8 8 32.3 1.39 0.17 19.7 9 44.0 1.27 0.35 16.7 9-29-1970 3 20.0 0.55 0.07 8.2 8 24.7 1.51 0.06 10.7 9 37.0 1.33 0.26 16.5 10-27-1970 3 16.3 0.99 0.08 6.5 8 18.7 1.61 0.12 10.3 9 37.0 1.69 0.20 16.0 5-21-1971 3 45.7 1.46 0.10 8.0 8 61.2 2.30 0.16 17.2 9 77.7 2.50 0.24 18.2 6-3-1971 3 31.7 0.74 -- 6.7 8 71.5 3.90 -- 18.3 9 73.5 4.74 -- 20.2 Organic Carbon Total Total Phosphorus 72 Nitrogen Suspended Total Solids Station Table A4 (Con't) Date 835285238ass-37885035055272 4mm8258m9.0228632947215684 11 11111121112112.1 231 451946076981 8861086 123. - .123023123024 1201202 coo-.-eeeeeeeeeeeeeeeeeeee 000 00000000000000000000 87375720737735305882333702 70123058928749.080030468265 25524432212213?- 2213525615 0.06 0.23 1.40 2.89 533850572072353 “32549067144148?- 1. 1. 1. 0.06 0.18 0.19 0.11 0.16 0.24 0.08 0.13 0.22 0.05 0.10 0.21 0.07 0.14 0.28 010 830304600149 604 20067670138 eeeeeeeeeeeee 098223324027111 32~Io255530o91928~d32 .0 0 143241122 11122 389389389389389389389389389389389389389389389 6-18-1971 6-30-1971 7-16-1971 7-29-1971 9-15-1971 10-2-1971 10-16-1971 10-30-1971 11-13-1971 2-29-1972 6-28-1972 7-12-1972 5-12-1972 6-14-1972 6-1-1972 Organic Carbon Total Total Phosphorus 73 Nitrogen Suspended Total Solids Station Table A4 (Con't.) Date 837877205523285570053300285830322530008235372 2454735505996045778815008696705704386504561465 111 1 01201201b011012011112122012012012012012012011 0.0000000000000000.0.0000000000000000...so... oooooooooooooooo0000000oooooooooooooooooooooo o o o o o o o o 011127123245134122234377 22124113011013012012 8.380148785828300582838777702507058325000720757 O C O O. ... “53328667773276932282941547344953218637171565 389389389389389389389389389389389389389389389 7-25-1972 9-13-1972 10-13-1972 4-27-1973 5-11-1973 6-21-1973 7-17-1973 8-16-1973 11-13-1973 3-30-1972 7-7-1973 8-1—1973 8-29—1973 9-10-1973 10-9-1973 74 Table A4 (Con't.) Total Total Suspended Total Solids Organic Carbon Phosphorus Nitrogen Station Date 332008382503500207328330 128512866999681932690504 121122011000002014002011 oooooooooooooooooooooooo oooooooooooooooooooooooo 954765245178953667242 coco-0000000000000... 852228785307303005538055 coco-00000900000000.0000 166610523518192273477338 27679615413211223n126121 389389389389389389389389 3-15-1974 4-17-1974 5-22-1974 7-16-1974 7-31-1974 9-27-1974 10-7-1974 10—24-1974 75 Mean temperature (C) by station for the Detroit Edison study sites. Table A5. DEPTH 0.5m 2.5m 1.5n 0.0m Station Date 13.9 13.9 13.8 13.8 5-1-1970 15.0 18.0 18.0 15.0 18.0 18.0 389 5-15-1970 389 7-7-1970 389 7-21-1970 8-4—1970 8-24-1970 26.0 23.5 23.0 23. 25.0 24. 24.0 23. 25. 9-1-1970 10-27-1970 4-15-1971 17.5 21.5 20.0 5-21-1971 6-3-1971 76 Table A5 (Con't.) DEPTH 1.5m 2.5m 0.5m 0.0m Station Date 22. 31. 24.0 23.5 32.5 24.0 6-18-1971 26.5 26.0 25.0 34.0 34.0 33.0 27.5 27.0 26.5 26.5 34.0 27.5 6-30-1971 7-16-1971 7-29-1971 '9-15-1971 21.5 20.5 20.0 26.0 26.0 25.0 22.5 22.0 21.5 21.5 26.0 23.0 10-2-1971 10-16-1971 10-30-1971 005 .0. 746 000 o o o 747 000 o o o 747 000 so. ll-l3-l97l 05 11 00 12 nus. 1.9. 00 13 2-29-1972 17.0 17.0 17.0 17.0 5-12-1972 6-1-1972 77 Table A5 (Con't.) DEPTH 0.5m 2.5m 1.5m 0.0m Station Date 389 6-14-1972 18.0 18.0 18.0 18.5 18.5 18.5 22.0 21.0 20.0 18.0 18.5 23.0 6-28-1972 21.5 26. 21. 22.0 26.0 22.0 7-12-1972 23.0 23.0 23.0 30.0 30.0 30.0 25.0 24.5 24.0 23.0 30.0 25.0 389 7-25-1972 23.0 23.0 23.0 31.0 31.0 31.0 26.0 25.5 25.0 23.5 31.0 26.0 8-30—1972 20.5 28.5 22.0 20.5 31.0 23.0 9-13-1972 10-13-1972 4-27-1973 16.0 16.0 16.0 24.0 24.0 24. 18.5 18.5 18. 16.0 24.0 18.5 5-11-1973 15. 25. 16. 15. 25. 16.5 5-23-1973 23.0 23.0 22.5 30.0 30.0 30.0 25.5 25.0 24.0 23.0 30.0 26.0 6-21-1973 7-7-1973 78 Table A5 (Con't.) DEPTH 1.5m 2.5m 0.5a 0.0m Station Date 7-17-1973 389 8-1-1973 8-16-1973 8-29-1973 23.5 23.5 23.5 23.5 9-10-1973 19.0 19.0 19.0 26.0 26.0 26.0 22.5 22.0 21.0 19.0 25.0 22.5 10-9-1973 500 o o o 679 ..uAunu O O O 770 11.. 050 so. 761 11.. 050 o o o 761 11 11-13-1973 000 .00 3-15-1974 050 so. 11 055 so. 11 000 .00 893 1.1 005 so. 893 11 4-17-1974 16.5 16. 26.0 26. 19.0 18.5 16. 26. 19.0 5-22-1974 24.5 24.5 24.5 30.0 30.0 30.0 27.5 27.0 27.0 24.5 31.0 28.0 7-16-1974 25.0 24.5 24.5 30.5 30.5 30.5 25.0 30.5 7-31-1974 79 Table A5 (Con't.) DEPTH 1.53 2.5m 0.5m 0.00 Station Date 27.0 27.0 27.0 36.0 36.0 36.0 29.0 29.0 27.0 27. 36. 29.0 8-27-1974 17.0 17.0 17.0 22.5 22.5 22.5 18.5 18.5 18.5 17.0 23.0 19.0 9-27-1974 14.0 14.0 14.0 230 2305 230 16. 16.0 15. 14.0 23.0 16.5 10-7-1974 11.0 11.0 11.0 20.5 20.5 20. 15.0 14.5 13. 11.0 20.0 14.5 389 10-24-1974 GPP Evening Temp. R lllhr and temperature (C) 2 GPP by station and date in the cooling system for the USEPA study sites. Afternoon Temp. GPP Morning; Temp. 3 Mean gross primary productivity and respiration in mg 0 Station 25/1973 Table A6. Date 11/9-10/1972 1/18-19 & 80 °N°°° o o o o o ”“0“” 28888 .000. 066°C ”COCO 006°C 0 O O O. OOOOO 00°C .0... Qflwfi’fi 12 8.0 0.00 0.00 10.0 - 4/5/1973 3130 5 0.02 0.03 0.0 0.0 0.0 0.00 0.03 0.09 16.0 13.0 11.5 14 15 16 0.03 0.03 0.03 0.03 -0.06 Evening GPP Temp. 27.0 0.06 GPP 0.15 0.06 Afternoon Temp. 26.0 26.0 0.09 0.06 0.03 GPP 0.36 0.45 0.09 Morning Temp. 22.0 24.5 25.0 Station 3 12 6/11-13/1973 Table A6 (Con't.) Date 0.03 0.09 0.18 27.0 26.5 24.0 0.03 26.0 25. 22. 0.00 0.1 0.0 0.03 21.0 18.5 0.03 0.06 0.18 0.36 21.5 26.5 18.5 0.09 50.75 1.86 1.86 0.06 0.72 1.62 0.7 1.3 0.12 21.5 26.0 28.0 26.0 18.0 16 3 15 16 3 8/8-10/1973 9/29—10/1/1973 «one COO 06.9 MOM GOO GOO. comm I O O InI-iO NNN 14 15 16 OflOMOOI-fi .0 0.. O. «newsman Flt-0H m0‘Nthfi‘O I-I HHH M h 0‘ H \ Q ...1 t N H \ N H GPP Evening; Temp. Afternoon GPP Temp. 0.03 -0.0 0.0 0.0 0.03 GPP 0.00 -0.03 0.03 -0.03 0.03 Morning?» COGNU‘ @HQNH Fit-0H Temp. 3 14 15 16 Station 12 1/31-2/2/1974 Table A6 (Con't.) Date 82 0.03 -0.03 0.06 0.06 0.04 0.03 -0.03 0.06 -0.06 0.12 0.03 0.03 nnnn C‘Owo 0.00 -0.01 0.06 0.06 -0.03 0.00 -0.03 0.06 0.06 -0.03 11.0 11.6 14.3 14.0 0.03 0.03 0.06 -0. 03 0.03 0.03 0.06 -0003 4/10—13/1974 15.0 14.5 14.0 14 -0003 -0003 FIG H' -00 03 -00 03 -00 03 -0003 HQ H 0.06 0.00 0.06 .00 GO coo H 15 16 0.03 21.5 0.33 23.0 ' 29.3 29.5 0.03 0.06 0.3 0.0 0.36 21.5 28.7 6/11-13/1974 8/14-16/1974 0.03 -0.01 0.08 -0.03 0.07 -0.04 GPP 0.01 -0.06 -0. 27 -0002 0.02 -0.02 Evening Temp. 12.0 12.5 21.2 20.2 19.5 15.5 13.0 0.00 0.07 GPP 0.12 Afternoon Temp. 10.2 GPP 0.13 0.40 Morning: Temp. 12.0 Station 3 10/19-21/1974 Table A6 (Con't.) Date 83 OHHQMOQ NOV‘MONM OOHOQOI‘ HOP-060°C OOOOOOO OOOHOHH 0000000 0000000 00000.. O GOOD OOOOOOO OOOOOOH 00000.. 0000000 0000000 OOOOOOO OOOOOOO OOOOOOO I I I I I I I I I I I NOMNIflNh MNONWNC O I-INONO 0.00000 000000. s so... HHMMNO‘Q NQOQNHI‘ WIG‘OMHI‘ I-IO-Iv-Iv-I v-INI-Iv-II-I I-I NNNNl—I :gln~or~l~~o<= ::::::: ::::::: °°°°°~ o o o o o o 0 0606600 {GOONQO ::::::: ::::::: *""~~“* o o o o o o o OOOOOOO lflONOONO NIhNONNO OOOOOOO ooooooo ooooooo ooooooo VONIH~¢MQQ NN‘OQWI‘l-fi NOQNNNO HI-IHI-I I-Iv-Iv-I HNNNNNN COOMN M I-INOQONN \DOO‘MGQ‘O OOHOOIO OOHHHOO I-IOv-Io-IOOv-I coo-0|. 0.00000 00.0000 NNHNN In NMQQNIHC HOMQ'gQ'I-I HOHOOIO COO—ICON acne #0 00000.. 0000000 0000000 Ciolvsh~oav\h- ooh-C>U\h-C>c> our-oaoan-«561 000000. 0000000 0000.00 @MQNNNM Nlfla\h@v-IP~ ”Oflh‘DNO FIF'Io-II-I HHI-II-II-I HNNNNNN 8 14 15 16 1/24-25/1975 3/15-17/1975 5/15-18/1975 84 In In o.aa n~.c on.d °.aa an In n.mH 0H I: In n.H~ ~H.° oe.u n.- us II c.- nu c~.° No.c s.e~ HH.° oo.c n.n~ II In o.m~ «A nc.ol cm.ot o.o~ H~.o on.o m.m~ it In o.n~ m «H.c co.cl N.o~ oc.c sm.o n.n~ I: u: o.o~ NH oo.c aH.oI 6.5” «A.cl o~.c o.ma u: it o.aH m uc.c| ao.c o.sH oa.o am.o N.mH it II c.- n mhm~\u~una\a Ac.o nc.on c.e~ a~.o ca.c m.wu oo.c mm.c o.n~ ca no.o no.0 n.w~ aa.c Hw.c o.om No.° no.o n.w~ nu no.9: Ho.o ~.Hn nH.o no.6 °.nn on.o eo.o w.~n «A cc.c H°.c n.nn NH.o He.o «.en nH.o mo.c m.nn a wc.o 00.0: n.nm mH.o an.o o.mn ou.o e~.c m.nm NA ca.o ec.o m.n~ ac.c In ~.o~ Na.c No.6 o.n~ a oc.c Ne.o c.<~ en.c ow.o h.c~ nc.o ow.o 5.0N n nnm~\m~nhw\h a $5 .95.... a $8 .93 a to .33. mouao>a moosuoum< LMchuoz sowuoum mum: A.u.aoov o4 manna "I7'E‘Tflfiiflfljflmfllii'1fiflfifl'fllfifliflr