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ABSTRACT

DECOMPOSITIONS OF THE MAXIMAL IDEAL SPACE or E”

BY

Pamela Beth Gorkin

Let Lan be the Banach algebra of essentially bounded

measurable functions on the unit circle and let M(fi”)

denote the maximal ideal space of L”. In this paper we

prove some results about M(flm).

In Chapter 2 we Show the existence of one point

maximal antisymmetric sets for Hai-C, thus giving the

first example of a maximal antisymmetric set that equals

the support set of some multiplicative linear functional on

Had-C. we also Show that each Open set in a fiber contains

a QC level set that is not a maximal antisymmetric set for

Had-C, extending a result due to D. Sarason [21].

In Chapter 3 using facts about the maximal ideal space

of HP we prove some results about closed subalgebras of

a: , , a:

L containing H .

[21] D. Sarason, The Shilov and BishOp decompositions of

Hm4-C, to appear.
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CHAPTER 1

A complex Banach algebra B is a Banach space which

is also a complex algebra such that the norm satisfies

llfgll .<. llfll ll 9“

for all functions f and g in B. The space of essentially

bounded Lebesgue measurable functions on the unit circle,

BID, with normalized Lebesgue measure will be denoted

by LP(BID,«%%) or simply L". The space L? is a Banach

algebra when it is given pointwise multiplication and the

essential supremum norm. Let f E L". we define f in

the unit disc by

. Tr

f(rele) = 31;;f f(t)Pr(q-t)dt

-77.

2

where Pr(e) = l-r . The extended f is a

1-2rcose+r

bounded harmonic function in the Open unit disc and. as

r a l the functions fr(9) = f(reie) converge to f in

the weak-star tOpology on L”. The space of continuous

complex valued functions on BID will be denoted by C

or C(aID). We note that C is a uniformly closed subalgebra

of LS, hence is also a Banach algebra. The space of

bounded analytic functions on the unit disc I) will be

1



2

denoted by either H” or H9(]D). The space H” is a

Banach algebra when it is given the norm Hf“ = sup |f(z)|.

zen)

By Fatou's Theorem, a bounded analytic function on I) has

radial limits almost everywhere. By identifying each Ha

function with its boundary function, Ha is isometrically

isomorphic to a uniformly closed subalgebra of LP. This

space will also be denoted by H9. Once we have made this

identification, we can describe another closed subalgebra

of L", the algebra H°°+C = {f+g :f 6 H”, g 6 C}.

Sarason [19] showed that Had-C is a closed subalgebra of

LP. Finally, the largest C*-subalgebra of Hmi-C will

be denoted by QC. Thus QC = H°°+C n m, where the

bar denotes complex conjugation.

The maximal ideal space M(B) of a commutative

Banach algebra B with a unit 1 is the set of

multiplicative linear functionals (nonzero complex algebra

homomorphisms) of B. There is a one to one correspondence

between maximal ideals of B and kernels of

multiplicative linear functionals on B, hence this space

is identified with the space of maximal ideals in B.

It is not difficult to show that for a e M(B)

l¢(f)l g Hf" for all f E B and m(l) = 1. Therefore

M(B) is contained in the dual space 3* of B. we give

M(B) the weak-* t0pology, so a net {ma} converges to

T if and only if ma(f) 4 ¢(f) for all f 6 B. With

this topology, M(B) is a compact Hausdorff Space. For

f 6 B, the Gelfand transform of f is the complex valued
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function f 6 C(M(B)) defined by 2(a) = m(f) for all

m 6 M(B). In the cases we are interested in here, the

Gelfand transform is an isometry and we will sometimes

write f for f, since the meaning will be clear from

the context.

we begin by mentioning some facts about M(Hm).

Further information is available in [9], [10] and [11].

For each point C e I) there exists ”g E M(H‘) such

that ¢g(z) = g, where 2 denotes the function f(2) = 2.

In fact, the point ”g e M(H”) is uniquely determined by

the condition ¢g(z) = g. Hence Q 4 cc defines an

embedding of 1) into M(Hm). This embedding is a

homeomorphism. By identifying g with eg, we may regard

I) as an cpen subset of M(HQ). The Gelfand transform

of '2 defines a map Q :MKHP) 4‘35 which is onto. Thus

we write M(H") = I) U {T e M(Hé) :|¢(z)| = l]. The

Corona Theorem [5] states that I) is dense in M(Hm).

we shall also be interested in M(Lm). Since La is

a C*-algebra, L? is isometrically isomorphic (via the

Gelfand transform) to C(M(LQ)). In [9] and [11] it is

shown that M(L”) is a totally disconnected, in fact,

extremally disconnected, compact Hausdorff space. For

these and other relevant facts about the tepology of M(L”)

the reader is referred to [9] and [11].

For each m E M(H”), there is a unique positive

Borel measure uw on M(Lm) such that



¢(f) = f a fdp for all f 6 H

M(L )

If m e M(Had-C) the closed support of n¢ is denoted

supp pm, or simply supp e.

Let B denote a closed subalgebra of Lan containing

the constant functions which separates the points of

M(La). A closed subset S g M(Lm) is called a peak set

for B if there is a function f e B such that 2(a) = 1

for w E S and |f(¢)| < l for W e M(L”) ~ S. The function

f is said to be a peaking function for S. A closed

subset S of M(L”) is called a weak peak set for B

if it is the intersection of peak sets. If S is a

weak peak set for B, then the restriction algebra B [S

is a Banach algebra [9, p.57].

Let B denote a closed subalgebra of Lco containing

the function 2. For k G Bib we let Ml(B) =

[m 6 M(B)::¢(z) = l}. we call MA(B) the B-fiber over

x.- It is not hard to show that M(L”) = LJ MX(L”) and

' keen

M(Ha) = I) U lJ {e 6 M(Hm) :¢(z) = l}. Furthermore,

1661)

M(H°°+C) = U [ca 6 M(H‘”) :cp(Z) = x} = M(H‘”) ~ In.

X651)

The LP-fiber over A is a weak peak set for H”,

hence for Hmdbc. NOte that z is constant on each fiber.

Therefore each polynomial is also constant on each fiber.

By the Stone-Weierstrass Theorem, we see that any continuous

function f is constant on each fiber and its value on the

fiber over A is simply f(l). Therefore Hm4-C IMX(L°) =

H°°lM,‘(L°°).
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There are several other important decompositions

of M(L”). The first that we shall discuss here is the

Shilov decomposition of M(Lm). For t 6 M(L”) we let

E = {m E M(L") :¢(q) = ¢(q) for all q 6 QC}. We call

W

Ew the QC level set correSponding to W- For t E M(QC)

we may also write

Et = hp 6 M(L”) :cp(CI) = th) for all q e QC} -

In this case we call Et the QC level set corresponding

to t. Each QC level set is contained in some La fiber.

we have the following theorem of Shilov [22]:

Theorem 1.1. Let f E L". If for each QC level set,

E there exists a function g 6 H? such thatW,

f |E¢ = 9 ‘EW , then f e Ha4-c,

The second decomposition is BishOp's decomposition

of M(La). Before stating BishOp's theorem, we need to

define the notion of an antisymmetric set. A set

S E M(L”) is called an antisymmetric set for HQ+C if

whenever f E Hal-C and f |S is real valued, then f |S

is constant. A maximal antisymmetric set for Hm4-C

is a weak peak set for Ha4-C.

Note that each antisymmetric set is contained in

some QC level set and it is easy to see that if {Sc}

denotes the set of maximal antisymmetric sets for Hm4-C,

then M(Lm) = lJ SO. Bish0p's theorem [3] says the following:

a
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Theorem 1.2. Let {Sc} denote the maximal

antisymmetric sets for HP-PC. If f 6 LG is such that

for each maximal antisymmetric set Sc there exists

geH with f|Sa=g|Sa, then fEH+C.

Sarason [21] has given an example of a QC level

set that is not an antisymmetric set for Had-C. Thus

BishOp's decomposition for M(L”) is strictly finer than

Shilov's decomposition for M(L”).

The third theorem along these lines is due to

Sarason [20].

Theorem 1.3. Let f E L”. If for each m E M(Hmi-C)

there exists 9 E H? such that f [supp m = g lsupp e,

then f e H°°+C.

The relationship of Sarason's theorem to the others is

not clear. However,one can say something about how Sarason's

theorem relates to Bish0p's theorem. Each support set is

an antisymmetric set for Had-C. Thus Sarason's theorem

is a refinement of Bish0p's theorem. In [20] and [21]

Sarason asked for the precise relation between support

sets and sets of antisymmetry for Hwi-C. Is every

maximal antisymmetric set for Had-C the support set

of a multiplicative linear functional on Hm4-C? This

question is still cpen. In fact it was unknown whether any

maximal antisymmetric set equals the support set of a

multiplicative linear functional on Ha4-C. we shall show



the existence of a maximal antisymmetric set consisting

of a single point. The relation of this result to

Sarason's question is indicated below.

Let a e M(L”). Then point evaluation at w is a

positive measure and is the unique positive measure

satisfying a(f) = f a fdpm for all f e H“. The closed

M(L )

support of this measure is [m]. Thus a maximal anti-

symmetric set for Hmi-C consisting of a single point

must be a support set. We will give many examples of one

point maximal anitsymmetric sets and will show that many

of these are contained in QC level sets consisting of

more than one point.

In Chapter 3 we use some of these results to obtain

information about closed subalgebras of L" containing

H .



CHAPTER 2

The following theorem is the main result of this

Chapter .

Theorem 2.1. Let {In} be a sequence of distinct

points of a 2D 5' [1] with "n .. 1. Let [n :- Mxn(L¢) and

\l E {\VniMu' ) n M1(LQ). Then {[1] is a maximal anti-

symmetric set for Hai-C.

An unpublished result of K. Hoffman Shows that

any point of M(La) in the closure of a sequence of points

from distinct L? fibers is a maximal support set. Our

proof is independent of this fact, although Hoffman's result

follows easily from Theorem 2.1.

In order to prove Theorem 2.1, we need the result

given below.

Theorem 2.2. Let {In} be a sequence of distinct

points of 62D ~ {1] such that An 4 1. Let {In} be

a sequence of intervals of 32D with '3 fl lJ I = Q and

1“main!“

Kn 6 In. Then there exists q 6 QC satisfying:

(1) q is continuous except at l = l :



4
3
]
!
“

O

(2) [arg q(xn)-n| < for all n ;

 

(3) lar9q(>.)l<%; for xeaJD~UIn

The proof will be in two parts. The first part is Lemma 2.3

given below. In what follows we let u denote the harmonic

conjugate of u. The Space of continuous real valued

functions with continuous first derivatives will be

1 1

Re If 116ch

continuous function [11, p.79].

denoted by C then u is a real valued

Lemma 2.3. Let I be an Open interval contained

in 52D and let w E I. Then given 6 > O and x0 6 n9',

there exists u e Ciz with ”qun < e, |u(z)| < e for

zeaD~I and u(w)=xo.

Proof: By choosing 5 > O sufficiently small and

rotating, we may assume that w = l and I = {elez-26<:e<:26].

l with

R x

“VH0° < l. |V(Z)| g,l for z E BID ~ I and 6(1) =-1? ,

l v

It is enough to show that there exists v E C

 for then u = satisfies Hun” < e, |u(z)| < (
'
3

6(1)

for z 6 52D ~ I and 3(1) = l0.

x
n
a

l

l-[—

It is not hard to show that lim ———TE—— = 1n k for

den -

X X

k > O. we use this fact below. To find v, let 6 > O

+ Zvl

and x0 6 It be given. Choose k so that 1n k >
6

etan:2

Choose an odd integer m satisfying
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1
- 2wk

l

(i)m[1- (3%)m] > ——9—5- , (ii) Elfi< a and (iii) cos(7lfi) > -2- .

e tan-5

r . I
0 if z 6 52D ~'§

Let v(z) = <

and extend v

o 3.3 g'w, v(e-

Writing v(e) for v(e

3(0)

Hence

Suppose z = e19 ¢

of v

1

U -% tan 92-) (mt)m if z = e1t 6 [e'l'S 
1 1

= k7<8<ml

1

11' V

) = -v(eis), and HVHco < tan %-g_l.

so that v E C (l) = O, v(els) g 0 for

19) we have [11, p.79]

 

 

 

 

is contained in

In v(-t)-v(t) .QE.= 2 f” vg-t] Qt

-v 2 tan-% 2” 0 tan-% 2”

1.

l l 1 6 m
- _ - (- tan -)(mt)

2 1m v tt %% = 2 1m 2 2t °°8 §“%%
4L; tan-3 _1_ sin 5

km km

.1 .1

.1 .i m m 1 .1 .1
l m tan 2 m t dt _ 5 m m m 1 dt

El 27; - (tan 2"“ *- '57;
.JL .1 .JL

m 2 km

1

2 Hi)“- <-1-)‘“ <i "‘1
2w m ‘k m

.i .1

(tan 2) [1- (WW > 319-
2? k e '

Xo
6(0) >‘1r .

Since the (closed) supportI.

I
2 we have
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11'

We) V(e+t) -V(6-t) Q1;

l ‘ S I-w 2 tan-E- 2n

= .l V(6+t)-V(e-t)| gg+ l A6+t)-v(6-t_1 g;
  

 

 

 

 

 

.3 I 2v ‘5 27
[tlgp 2 tan 2 5<1t13F 2 tan 2

_ vte+t) -V(e-t)l _d_r-_ HVH,

- I 2tan£ |21r$tan§_$
égltlgr 2 2

Therefore |v(z)| g_l if z 6 52D ~ I, as desired.

Proof of Theorem 2.2: Given intervals In with

In n lJn Im = ¢, 1n e In and In a 1 choose functions

. 1 ~ 1

un 6 C11 with Hun“a < 2n+3 , lun(z)| < 25:3. for

~ a:

z 6 62D ~ In and un(xn) = (2ni-l)v. Let u = SEE un.

Then u 6 CR and since the map T :L2 4 L2 defined by

~ A: Q ~ 2

T(f) = f is continuous, u = Z) un in L norm. Since

n=1

1 ~
m .

each un e Clt' un 6 Clt’ It is easy to see that [#2: un]m

converge uniformly to u on compact subsets of 62D ~ [1].

Hence a is continuous except possibly at 1 = 1.

Let q = e1“. Then q = eu+1u e"‘1 6 Hmi-C and

'q = e-u":Lu eu E Hmi-C. Therefore q E QC.

For any n we have
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n)1260.
m

m ‘7‘
ifiun) ,

arg e ‘ -1r| = [arg elarg qun) -4]

i[(2n+1)1r+ Z Emunll

= [arg e m7ln -1r|

i 23 {'10. )
m n

_ main .1.
- larg(-e )-1r[ < 4»

and if xeam~uin, then

123 u (A)

m m 1
|arg q().)| = |arg e |< Z .

Before we present the proof of Theorem 2.1 we prove a

corollary of Theorem 2.2 that will be used frequently.

Corollary 2.4. Let t EM1(QC) and [An] bea

sequence of distinct points of a D ~ [1} such that t is

in the M(QC) closure of a sequence of points {tn},

 

C (D

where tn 6 “kn“; ) and )‘n 4 1. Then Et _C_ It: Mln(L ).

 

Proof: Suppose cp e M(Lm) ~ U 145‘ (La). If

n n

cp 6 NHL”) ~ M1(L°°), then cp 6 ML”) ~ E . Therefore we

d
-

may assume that T e M1(Lm). Since M(Lm) has a basis of

clOpen sets (sets that are both closed and Open), we can

.____.5_

find a clopen set F g M(L‘”) with cp e F g M(L‘”) ~ U Mx (L ).

n n

For each n, M). (La) 53 M(Lm) ~ F and therefore

n
a

U “9' 6 ML”) : lcp’(z)-). I >-]‘} 2F. Since F is compact,

m=l n m

N a 1

there exists N such that f] [cp’ E M(L ) : [cp’(z) -1 | SEE}

m=l n



13

is contained in M(L") ~ F. Thus there exists an interval

. . . 09 Q ~

In with kn E In satisfying M1(L ) g_M(L ) F for all

1 E 3;. By choosing In sufficiently small we may assume

that -I_n U I = . Note that (*)U{ (Lmlzlé-I—LE

M(L”) ~ F. Thus there is a QC function q satisfying

conditions (1) - (3) of Theorem 2.2.

For any n and any t 6 M1 (La) we have, by (l) and

n

(2) of Theorem 2.2, that [arg q(¢)-wi g_% . Passing to

M(QC) ‘we have larg q(t)-nl g_%- for any t 6 M1 (La).

n

Therefore for any w’ 6 E we have larg q(¢')-—w| $_%u
t

To see that m e M(L‘) ~ Et we shall Show that

|arg q(¢)|‘g_%u Choose 6 > O and let Fe =

[n E M(LQ) :|arg T(q)-arg n(q)| < 6]. Then Fe n F

is an Open set in M(LQ) containing m. We claim that

there exists x0 7! 1 such that Mk (L°°) n F n Fe 9‘ (l).

0

To establish this it is enough to show the following:

Claim M1(Lm) has no interior in M(L”).

Proof of claim: Suppose F is a c10pen subset of

M(L‘”) with F _c_ M1(L°°). Then XE e C(M(L°°)). Hence there

exists a measurable set E _c:_ a D of positive measure such

A

that XF = x If f is a nonconstant function in HaE.

such that f is continuous at 1, then f is constant

on Ml(L°). Therefore f is constant on F. Hence f

is constant on E. Since E has positive measure, f
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must be a constant function. This contradiction

establishes the claim.

Choose *0 E a I) satisfying 10 # l and

a —

MXO(L ) n F n Fe #’¢. By (*), 10 E a I) lJ In' Hence

1 m
|arg q(xo)| $.35 Let 13,0 6 MXO(L ) n F 0 Fe' Then

1 l .
|arg $6,0(q)| 3-3“ Therefore |arg m(q)| g_Z~+e. Since

6 ‘was arbitrary |arg ¢(q)| S_%u Therefore T E M(Lm) ~ Et'

so M(L”) ~ (U MX(LP)) E M(L") " Et ‘which implies the result.

Proof of Theorem 2.1. Choose m e M(L”) ‘with T #'w

such that T and t are in the same QC level set.

If no such w exists, then ET = [w] and hence the maximal

antisymmetric set containing w, 5*, satisfies SW = {W}

and we are done. we assume then that such a m exists.

Since m #'w, there exists a c10pen set F with a e F

and w e M(L”) ~ F. Thus passing to a subsequence of

Mn} if necessary, we may assume that U: _c_:_ M(L”) ~ F.

By a theorem of Axler [l] for each, n we can find

fn e H”+c with “full“ = 1 such that Wn‘fn)‘ = 1 and

n(fn) = O for all n E F. using an idea of Sarason.we

let Gn denote the Open ellipse with major axis {-1.1}

and minor axis [-i/n,i/n]. Let Tn denote a conformal

mapping of the Open unit disc 1) onto Gn such that

Tn(0) = 0 and by [18, p.309] we may assume Tn e C.

Choose zn ell) 'with |zn| > 321 , Tn(zn) real and

Tn(zn) > 321 . By multiplying fn by a constant of

modulus one, we may assume that |zn|wn(fn) = zn.
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Since H""+C|Mk (La) = HWIMx (La), there exists an Hm

function whose restriction to (L ) is f L ).
“in n M'kn

Multiplying that function by a suitable peaking function

forMx (I?) ‘we obtain a function 9n 6 H" such that

n
1 a _ a:

”gnu“n < TE;T and gn |M1n(L ) - fn |Min(L ). Thus

Tn<:(|zn|gn) 6 HS. Let n 6 M(L”). we claim that

n(Tn<:|zn|gn) = Tn(|zn|n(gn)). To see this, note that

Tn is a uniform limit of polynomials

with [[th < 1, then n(Tnof) = nu? pm'n(f)) =

pm,n'

lim p (n(f)) = T (n(f)). Therefore for each n we have
m m,n n

¢n(Tn"‘znlgn) = Tn(‘zn1wn(gn))

_ _ .JE.
- Tn(lzn|¢n(fn)) - Tn(zn) > n+1 -

If T E F n M1 (La) for some n, then

n

T(Tn<:|zn|gn) = Tn([zn|T(fn)) = Tn(0) = 0 .

For each Xn' choose intervals In centered at kn

with I n {J I = ¢ where the Lebesgue measure of I ,
n min m n

. . l
[In|, satisfies |In| <

2n+4

 

and leaJD"(UIn). Let

n

0(In) = {z 6 JD : |z-xn| < E511] and let hn be a peaking

function for M1 (Lm). By raising hn to a sufficiently

n

l

2n+4

 large power we may assume that th |i§ " CHInlllm <

Let Kh be a Mgbius transformation such that

Kn(l) = o and Kn(xn) = 1. Let hn = hn(Tn..|zn[gn)Kn.

Then
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(l) in ‘Mkn(L ) = (Tncalzn‘gn)l Mln(Lm) for all n

and

‘- 1
(2) “in | 1D ~ (3(InllLJD 27);: .

m a:

Let Lm= 2 1n and L= Z 1.

n=1 n=l

n' It is easy to see that

Lm converges to L uniformly on compact subsets of

35-{l}. Furthermore, HLmu‘g,2 and thus L E H°(In .

To see that L [Et is real valued, let 6 > 0 be

given. Choose N such that Z '%<% . Let I be an

n=N 2

cpen interval of 52D containing 1 such that

max K. IQ<-§-—. Then M.|IHG<-§- j=1.2,...,N.19,911 31 n 3,. l , 3,.

Choose in the QC level set correSponding to w, EW.
“‘0

Let V = {n E M(La) : |n(L)- ¢O(L)| < %} n xU M)‘(L¢). Then

GI

V is an cpen set about 10' By Corollary 2.4, there exists

an integer m satisfying m > max(N,-%) and such that

on Q ,

van(L);!<[>. Let chEVnMx(L).SlnceZLn

m m n

converges uniformly on ‘fm ' we have

N

|Im cpo(L)| = |Im ETOUnH = [nil]- Im cpo(Ln)+Im comm)

+ 23 Im m (L )

rde 0 n‘

n¢m

N

S n§1 |Im (p0(14n)‘ + |Im cpo(Tm o (‘zm‘gm))‘+

+ Z Imcp (z )

n=N+1‘ O n ‘

nan
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N

-§— 0SnEJ, 3N+ lIm(Tm (qpo(|zm[gm))l+

1
+ Z) ———-

=N+1 2n+4

nfm

Therefore |Im wo(L)| < %§-. Since 6 was arbitrary,

¢O(L) must be real valued.

Recall that we chose T to be a point in .M(L°) with

T #’¢ such that m and w are in the same QC level

set and F was a clOpen subset of M(L?) with T e F

and t 6 {tn} (L ) g M(L‘”) ~ F. Since

in E MKL?) :[n(L)-¢(L)| <-%} is an cpen subset containing

t, there exists n with n12 7 and w 6 M1 (La) such

n n

that |uyn(L)-¢(L)| <-é—. Thus

1

l1’11”")I = Wn("'n)+m§5lll>n ‘VnumH 23%]:- 323- Z: 5

Therefore IW(L)[.2-%.

To determine ¢(L), note that

U = [n e M(Lm) :|n(L)-¢(L)| <‘%] n F is an Open set in

M(L") containing o. By Corollary 2.4 there exists m

such that Mxm(L°°) n Ual’ q). Let cpm e Mxm(L°) n U. Then

we have

1

|c"111(1‘) 1 = Wmum) + ngm c"m“n’ l S 1ch(‘¢'m)| + ngmlcpmun) l 30+;
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3 .

Therefore |¢(L)|lg.§- and ¢(L) #’¢(L).

The maximal antisymmetric set S containing w is

W

contained in E so L [S is real valued. Thus L IS*0

is constant. Therefore c Q S. Since T was an arbitrary

point of E distinct from t, S = {w} and the proof

W

is complete.

we will show that many of the points that are in the

M(L”) closure of a sequence of points from distinct L?

fibers are contained in QC level sets consisting of

more than one point. we will also show that not every

QC level set contains such a point. Before proceeding

to the proofs of these results, some related results must

be presented.

we call a sequence [23.)]:1 of distinct points in I)

Q

an interpolating sequence if whenever {wj}j=l is a

bounded sequence of complex numbers, there exists a function

for all j. It is well knownin“ 'thf.=.6 ‘w1 (zj) 'wJ

[4] that a sequence { is an interpolating sequencezj}

if and only if there exists a constant 5 > 0 such that

i=1

-2,

H :3£:T_J. 2:6 > O for k = l,2,3,... . A Blaschke

J#k 1"szk

C

product with zeroes {zj}j-l _<:_ ]D is a function b e H°(]D)

of the form

-'2. z-z.

b(z)=).1'ITz—1|-—_—-1 for 261D

j j l-z.z

3

where Ill = 1 and Z)(l-|zn|) < m. If the zeroes of

n
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b form an interpolating sequence, b is called an

interpolating Blaschke product. A Blaschke product is an

inner function, so that |b(eie)| = l for almost all e.

A great deal of information has been obtained about

interpolating Blaschke products. In [14] P. Jones

showed that the interpolating Blaschke products separate

the points of M(Hm). We will use the theorem stated

below. The proof of this theorem is given in [11, p.205].

Theorem 2.5. Let [2.] a be an interpolating
 

3 j=1

sequence and let b be the Blaschke product with zeroes

a '-——-s-'M(H°)

{2,}. . Then {2,}. is homeomorphic to the

J J=l J j=1

Stone-Cech compactification of [zj].°°l and every zero

3:

of b in M(H”) ~ I) is in the .M(H”) closure of

{ 13.;z.

3

The following lemma was proven by K. Clancey and

JuA. Gosselin [7].

Lemma 2.6. Let u be an inner function. If

t 6 M(QC) ‘with u IEt invertible in HQ |Et' then u lEt

is constant. In fact {t E M(QC) :u [St is constant] =

{t e M(QC) :u |Et is invertible in H" |E is an Opent}

set in M(QC).

This was also proven by R.G. Douglas in [8]. using

Lemma 2.6 together with the following result of D.E. Marshall

[16, p.15] , we prove a similar result about characteristic
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functions. In what follows H°[f] denotes the closed

subalgebra of L? generated by H0° and f.

Theorem 2.7. Let XE be a nonconstant characteristic

function in LS. Then there is an inner function u such

that

H“ [XE] = 3‘15]

Theorem 2.8. Let XE be a nonconstant characteristic

function in L“. If x |E 6 Ha IE for some QC level
E t0 t0

set Et , then XE |Et is constant.

0 O

Sarason has given a proof of Theorem 2.8. Since

his proof is unpublished we include a proof below. Our

proof is different from Sarason's: his did not use Theorem 2.7.

Proof: By Theorem 2.7 there exists an inner function

u such that H¢[XE] = Haffi]. Therefore

M(H°°[XE]) = M(H°°[T1']). Thus M(H°° [ 1i:t ) _<:_ M(H°°[XE]) =

0

.M(H"[E]). Hence |¢(u)| = l for all T E M(Ha |Et)°

Therefore u lEt is invertible in H9 lEt' By Lemma 2.6

there exists 0 open in M(QC) containing t. with

0

3|}: EHmlE forall tee. Let qEQC with q(t0)=l,
t t

q(s) = O for s e M(QC) ~ 0’ and O g_q g 1. Choose

1] e M(H"+C). If supp w 5 Es and s e M(QC) ~ 0, then

q |supp m = O and therefore qu |supp t = 0. If

supp t 5 Et and t 6 G, then '11 l supp l” 6 Ho |supp x];

and hence XE |supp W e H" |supp w. By Theorem 1.3
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QXE E Hmi-C- Since qXE is real valued, qu 6 QC.

A

Thus qu [Eto is constant. Since q(m) = 1 for all

T 6 Et we must have XE [Et constant, as desired.

0 0

By the Shilov Idempotent Theorem we obtain the

corollary below, answering a question of R.G. Douglas in

[8].

Corollary 2.9. If t E M(QC). then M(Ho[Et) is

connected.

It is a consequence of the following result of

T. wolff [25] that any function f c L? is constant on
\

some QC level set.

Theorem 2.10. Let f E L”. There exists an outer

function q E QC n H” such that qf 6 QC.

we will show that for any 1 e 61D and any clOpen

set F contained in M1(LQ) there exists a QC level

set contained in F.

we will make frequent use of the following [21]

and [24].

Theorem 2.11. Let f and g be functions in LS.

If for each T e M(Hmd-C) either f [supp T e H" [supp T

or g [supp T 6 H? [supp e, then for each QC level set

E either f [Et 6 H? [E
co

t or g [Et 6 H [Et'
t

This theorem together with the following unpublished

result of K. Hoffman provides us with much more information
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about the points in M(L”) that are in the closure of

. . a .

a sequence of points from distinct L fibers.

a

Theorem 2.12. Let [zj]. be an interpolating

J=1

sequence such that

Z-Z

lim :1 “=1.

n‘kn mn -Ez

9* 1 mn

G

If m e {zni (H ) and T E M(Hai-C), then supp T is a

maximal support.

Theorem 2.13. Let E be a nonempty clOpen subset

of M1(L°). Then E contains a QC level set that is

not a maximal antisymmetric set for Hoi-C.

We remark that Sarason [21] has shown that each L6° fiber

contains a QC level set that is not a maximal anti-

symmetric set for Hai-C. Some of the ideas used to prove

Theorem 2.13 are similar to techniques communicated by

T. Wolff (private communication).

Proof: Let F be a clopen subset of M(L”) such that

E = F n M1(LO). Then there exists a measurable subset G

A

of 52D of positive measure such that XF = XG‘ Let [A ]

is n
be a sequence of distinct points of a D with 1n=e n 4 1

is

and lim xG(re n)

r41

= 1. We claim that there exists an

interpolating sequence {2m} with the following prOperties:

2-2

(1) lim n J—J =1

n4cn mn l-E'z
# m n
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(2) {2m} is the disjoint union of interpolating .
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an _ n

sequences {2mm}n=1 such that zm,n - rm'ne

for suitable choices of rm,n

and

(3) XG(Zm) 4 l as m 4 m ,

we construct such a sequence as follows: Let 21 = 21 1 =

is ' .

1 _ _ 162
r1,le where O < rl,l < 1. Choose 22 - 22,1 — rz'le

1 22-21 '2
such that XG(22) >-§ and -—-1:——- > e . Choose

l-z z
. 2 1

161 1
- rl'ze such that xG(23) > l-§- and

- 1 ie

3+j ._ _ _ 2
2 j - 1,2. We choose 24 - 22,2 — r2'2e

l

1 24-2. 24+j

satisfying xG(z4) > l-Z- and “"TZTTL ‘2 e j = 1,2,3.

l-z.z

j 4

We continue to choose zn satisfying (2) such that

-;

z -z. n+j

'xG(zn) > l-% and 13-2—1- )e 2 for j< n. It

-z.z
j n

is not hard to see that (1) and (3) also hold.

°° my“). Then cpn e M)‘ (Hm). Let

n

 

Let' wn E {zmrn}m:l

flM Hfic ..
:90 6 ‘pn ( ) n M1(H ). By Theorem 2.12 we have that for

each n supp mn is a maximal support set. Let b be

the interpolating Blaschke product with zeroes {2m}.

Choose u 6 M(Hmi-C). If 45 [supp ¢ ¢ Ha [supp h, then

[¢(b)[ < 1. Since b [supp W is not invertible in
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H"D [supp w, there exists 7 E M(Hm [supp ¢) =

{n E M(Hm) : supp Tl g supp u] with T(b) = 0. By

Theorem 2.5, T E‘TE;T and hence by Theorem 2.12, supp T

is a maximal support set. Therefore supp r = supp t.

Since xG(zm) 4 l as m 4 m, we have T(XG) = 1. Thus

supp 'r _c:_ G, so supp (i _C_ G. Thus for any h 6 M(Hm+C)

either '5 [supp W 6 H? [supp t or XF [supp w E H? |supp t.

By Theorem 2.11 on each QC level set E we have
t

b [Et 6 H? [Et or XF [Et 6 H [Et. ConSider the QC

level set Et containing supp ”0‘ Since

0

b [supp $0 ¢ H9 [supp $0 we must have XF [Eto E H [Et0.

By Theorem 2.8 XF [Et is constant. By (3) above,

0

we must have E c.F.
to.-

Let {mnc} be a subnet of {en} such that who 4 ”0'

Choose [n 6 supp en. Then some subnet of {an ] converges.

d

we may assume without loss of generality that 1n 4 to.

a

Therefore to [QC = no [QC. Hence [0 6 Et . By Theorem 2.1,

O

{to} is a maximal antisymmetric set for H°4-C. Since

$0 6 M(Hm) ~ M(LQ), supp m0 consists of more than one point.

Since [0 6 Eto and supp mo E Eto , Eto is not a maximal

antisymmetric set for Hm4-C.

One may ask whether every QC level set contains a

point that is in the closure of a sequence of points from

distinct L” fibers. The answer to this question is no,

as we shall see. We first state a lemma due to Sarason

that will appear in [21].
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[Lemma 2.14. Let b be an inner function. If

m E M(Had-C) and b [supp T is nonconstant, then

b(supp cp) = a 13.

z ] a be an interpolating

n n=l

Example 2.15. Let [

sequence with 2n 4 1‘ and let T e [zn]H(H ),

¢ 6 M(Hwi-C). Let EV denote the QC level set containing

supp T- Then B does not contain a point which is in

W

the closure of a sequence Of points from distinct fibers.

Proof: Suppose not, that is, suppose mo 6 E1 and

$0 6 [muffllL ) 'where ”n 6 M1 (Lo) and xn #’xm for

n

n #’m. Let b be the interpolating Blaschke product

with zeroes [Zn] a . By assumption 2 4 1. Thus b

n=l n

is continuous at 1 for l # 1. Hence b [Mx(Lm) is

constant for 1 7! 1. Let U = {¢EM(L°°) : [(;(b) -cpo(b)[<-]2'-}.

Then U is an Open set in M(Lm) containing m0.

1.:(L°° ) 
Therefore e0 6 {¢n.:¢n E U] By Corollary 2.4,

= e . .. M(L‘”)
Ed, Ech g u {Mxn(L ) .cpn e Nan(L ) n U] . Hence

Ecp 9 TI. If b [ Ecp were nonconstant, then by Lemma 2.14

0 O

we have b(Em ) = 52D. Therefore there exists n e E

 

o c"o

with n(b) = -¢O(b). Hence n é'fi. Thus b [Ecp is constant.

0

Therefore [¢(b)[ = l and hence w cannot be in the

closure Of the zeroes Of b. This contradiction implies the

result.



CHAPTER 3

In this chapter we prove some related results about

closed subalgebras of LCD containing H”. A closed

subalgebra B Of Lon containing H“" is called a Douglas

algebra. Thus qu-C is a Douglas algebra: it is the

smallest closed subalgebra of Lon prOperly containing ff’

EHDp.376]. S.-Y. A. Chang and D.E. Marshall proved the

following theorem about Douglas algebras [6], [15].

Theorem 3.1. (Chang-Marshall Theorem) Let B

be a closed subalgebra Of L” containing HF. Then B

is generated as an algebra by HP and the set E where

B = [b- : b is an interpolating Blaschke product and '5 6 B}.

This theorem was proven in two stages. Chang showed

that if B1 is a Douglas algebra and B2 is any other

closed subalgebra Of LP containing H? with M(Bl) = M(BZ)'

then B1 = 32‘ Marshall completed the proof by showing that

if B is a closed subalgebra Of L” containing HP,

then there is a set 6 Of interpolating Blaschke products

such that M(B) = M(H‘”[E : b e 6]) where Hm[b : b E 6]

denotes the algebra generated by H” and [B : b 6 B}.

Marshall's half Of the proof used the result stated below

[26].

26
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Theorem 3.2. Let u be an inner function. For

each O, O < a < 1, there exists an interpolating

Blaschke product (:a such that

l .
(1) [ca(z)[ $16- If [u(z)[ g a (z 6 JD)

and

(2) There exists Ba < 1 such that if ca(z) = 0,

then [u(2)[ 3 Ba (z e D).

The proof Of this theorem yields more information than

what was given above. In fact, the proof shows the following:

Theorem 3.3. Let {uY] be a family Of inner functions.

For any a, O < O < 1, there is an interpolating Blaschke

product Ca such that

(1) [ca(2)|g-f15 if 83p luY(z)l g a (z e D)

and

(2) There exists Ba < 1 such that if ca(z) = 0,

then 53p [uY(z)[ g Ba (2 6 D).

Using this form Of Marshall's result we prove a theorem

that was proven by D. Sarason (unpublished). Our proof is

different than Sarason's proof.

Theorem 3.4. Let {BY} be a family Of closed

subalgebras Of Lon containing Ha. Then

M(flB)=L_J—M_(—B—)'.

YY Y Y
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If Hco E:BY' then the continuous map F :MKBY) 4 M(Ha),

defined by restricting each multiplicative linear functional

on BY tO H”, is a homeomorphism. Accordingly, we think

Of M(By) as a closed subset Of M(H”). we also note

that if u is an inner function, then M(H°[E]) =

{T 6 M(H") :[¢(u)[ = 1]. These remarks will be used

in the proof Of Theorem 3.4. Before we proceed with the

proof Of Theorem 3.4 we prove a lemma that will be used in

the proof Of Theorem 3.4.

Lemma 3.5. Let cpeM(H°°+C) ~ u M(BY) and let (2n)

be a sequence Of points Of I) such that

cp E [zni _c._' M(Hm) ~ U M(BY). Then for each y, there exists

Y

a Blaschke product bY such that 'S§ 6 BY and

33p [bY(zn)[ < l.

lggggf: Suppose not. Then there exists Y such

that whenever bY is a Blaschke product invertible in BY,

we must have sup [bY(zn)[ = 1. For any Blaschke product

b let Ab = [the M(Hai-C) :[V(b)| = 1] n

{W 6 M(Hai-C) :¢ 6 TE;7]. Then Ab is a closed subset

Of M(H”+C) and if 36 BY, then Ab #4). We claim

that n [Ab :b is a Blaschke product and [5'6 By} #’¢.

bBy compactness it is enough to show that if b b
l' 2'°'°’ n

n

are Blaschke products and b1,b2,...,bn 6 BY' then jCH Abj5¥¢.

n -

Since bj 6 BY for j = l,2,...,n, we have n bj 6B .Therefore
.=1

n 3

An #4). Since An 5 0 Ab , we see that

j:]_3 J
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n

(1 Ab #’¢. Let n 6 0 [Ab :b is a Blaschke product

i=1 3

and [3'6 BY]. If IE; 6 BY' then [n(b)[ = 1. Therefore

n e M(BY). But 11 6 [2n] 5 M(B") ~ U M(BY) and this

Y

contradiction implies the result.

Proof Of Theorem 3.4. Clearly U M(B ) E M( 0 BY).

Y Y Y

Suppose cp eM(H°°+C) ~ U M(BY). Thus M(H”) ~ U M(BY) is

Y Y

an Open subset Of M(H") containing m. The Corona

Theorem [5] asserts that the Open unit disk I) is a

dense subset Of M(HQ). In fact, if W 6 M(Hmi-C), then

t is in the M(H”) closure Of a sequence in I) [12].

Thus there exists a sequence Of points [zn] c_:_ :D such

that T E'TE;TM(HQ). Without loss Of generality we may

assume that cp 6 [2n] _c_:_ M(H") ~ U M(BY). By Lemma 3.5

Y

for each y there exists a Blaschke product

b h th t b ' 1 and ‘5’ B . ra' 'Y suc a 33p [ Y(zn)| < Y 6 Y By iSing

bY to a sufficiently large power, we may assume that

sup [by(zn)[ g.%u By Theorem 3.3 there exists an inter-

n

polating Blaschke product c satisfying (1) and (2) Of

Theorem 3.3 with a =-%. Let [wh] denote the zero sequence

Of c. By (2) Of Theorem 3.3, there exists B < 1 such

that if C(z) = 0, then sup[bY(z)[ g_B. Hence

Y

sup [bY(wh)[ g.B for all n. By (1) Of Theorem 3.3,

Y

[C(Zn)[ < f%- for all n. we claim that
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and

[b] [T(Cll < 1 .

. 1
Since [C(Zn)[ 3-1-5 for all n and cp E [zni ,

[m(c)[.ggf% . Thus [b] above holds. TO establish [a],

suppose [a] does not hold. Then there exists Y0 such

that E'¢ BY . Therefore there exists n E M(BY ) ‘with

0 O

q(c) = 0. By Theorem 2.5, n G [wh[. By the remarks

made above, sup [bY(wh)['g.B for all n. Therefore

Y .—

[n(bYO)I g.B < 1. Since b E B . n cannot belong to
Y Y
O O

M(BY ) which is a contradiction. Therefore [a] holds.

0

New [a] and [b] imply that m 6 M(H”) ~ M((W BY) and

Y

hence M((W B ) =lJ M(B ) as desired.

Y Y Y Y

Theorem 3.1 implies that if f e L” ~ H”, then E”[£]

is generated by H? and the complex conjugates Of countably

many interpolating Blaschke products. C. Sundberg [23]

has shown that L" is not countably generated as an algebra

over H”. 'We prove an extension Of Sundberg's result below.

Theorem 3.6. Let B be a closed subalgebra of Lon

containing HSA-C. If there exists an Open set 0- in

M(H°°+C) such that «p 7! o n M(B) g M(L‘”), then B is not

countably generated as an algebra over Ha.

Proof: Suppose B is generated by H“0 together

with countably many L? functions. By Theorem 3.1
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and remarks made above we see that B must be generated

by H“ together with the complex conjugates of countably

many interpolating Blaschke products {bj :j 6 ll].

Following a method Of Axler [l] we construct a single Blaschke

product b such that M(Hmfbl) g M(B). TO do this, let

{zn,j}n:1 denote the zeroes Of bj' Since the zeroes Of

bj form a Blaschke sequence, there exists an integer Nj

such that Z (l-[zn j[) <—lj- . Let b denote the

' 2nzn.

3 a

Blaschke product With zeroes J31 [zn,j]nj2N . If

cp e M(H°°+C) ~ M(B), then there exists j() 6 N such

that [cp(bj )[ < 1. Therefore bj [supp T is not invertible

O O

in H? [supp m and hence there exists T 6 M(Hé [supp m)

such that T(b. ) = 0. By Theorem 2.5 T 6 [z i:

and hence T(b) = 0. Thus b [supp T is not constant.

Since supp T E supp m, we see that b [supp T is non-

constant. Therefore [m(b)[ < l and

c9 6 M(H°°+C) ~ M(H°°['13]). Thus M(B) _O_ M(Hafii] ).

Let n E G n M(L”). Since M(La) has no interior

in M(Ha-l-C), we can choose a net {no} 55 M(H”+C) ~ M(Lm)

with n E Tfigj. Since n 6 0- we may assume that

{ha} 5:0. By a result Of D.J. Newman [17], there exists

a Blaschke product c such that if T 6 M(HQT-c) and

|e(h)[ < 1. then e(c) = 0. Since 0 n M(B) _c_: M(L‘”), and

M(H°[B]) g M(B), we have 0 n M(H"[S’]) g M(L‘”). For

each a, n0 6 O and no 6 M(Hmi-C) ~ M(Lm). Hence
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[na(b)[ < 1. Therefore na(c) = O for all a. Thus

q(c) = 0. However n E M(La) so [n(C)[ = l. which is

a contradiction. Therefore B cannot be countably

generated over Hm.

Many examples can be given Of Douglas algebras that

are generated by Ha together with one L? function. For

example, Hai-C = Hafz]. Donald Marshall showed in [16]

that if f is a simple function, then there is an inter-

polating Blaschke product b such that Half] = Han-5] .

It is not known which algebras have the form Hmffi] for

a single interpolating Blaschke product b. we use the

following result Of Sarason [21] to give two examples Of

Douglas algebras that are not generated by H" and the

complex conjugate Of just one Blaschke product. The first

is an example Of a Douglas algebra which is generated by

H? and one function f 6 L7, but is not generated by

Han and the complex conjugate Of one inner function.

Theorem 3.7. (Sarason [21]) There exists a function

f e H" such that f [M1(L°) is real valued and f is

nonconstant on some QC level set contained in M1(L°).

Example 3.8. Let f be the function given in

Theorem 3.7. Then Hmff] does not equal Héffi] for any

inner function u.
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.gggggz Suppose Hoff] = Haffi] for some inner

function '3. By assumption f [M1(L°) is real valued,

hence f must be constant on the support set Of every

multiplicative linear functional T E M1(H”). Thus

M1(H°°) g M(H°[-f-]) = M(HQ [11]). Therefore for each

m e M1(H"), u [supp m is constant. we Claim that there

exists an Open interval I g a D such that l e I and

such that for each 1 6 I and each T E MX(H°) we have

3 [supp m 6 HQ [supp m. If not, there exists a sequence Of

points {in} with in 4 l, and wn 6 M1n(H¢) with

¢n(u) = 0. By compactness there exists m e E;;TM(H°)rlM1(H°)

with ¢(u) = 0. .Since u |supp T is constant, this is

a contradiction. Therefore there exists an Open interval

I g a D such that l 6 I and u [ supp q; is constant for

all cpEMX(H°°_) whenever I E I. Let E EMl(L°°) bea
t

QC level set such that f [Et is nonconstant. Choose

a continuous function g such that the (closed) support Of

g is contained in I and 9(1) = 1. If m 6 MX(HS) and

1 e I, then 9 |supp m is constant and u [supp ¢ is

constant. Thus f |supp T is constant. Therefore

gf [supp m 6 Ha [supp T- If 1 E 62D ~ I, then

gf [supp m is identically zero. By Theorem 1.3

gf e Hmi-C. Since ET 6 Hmi-C, we have g? E QC. Therefore

gf [Et is constant. Hence If [Et is constant, which

is a contradiction. Hence Huff] does not equal H°f51

for any inner function u.
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The second example shows that the intersection Of

two algebras of the form H?[Bi] and H°[Sé], with b1

and b interpolating Blaschke products is not necessarily
2

Of the form HS[E] where c is an inner function. we remark

that if b1 and b2 satisfy lim max([b1(z)[,[b2(z)[) = 1,

IZl"1

then it has been shown [2] that H" ['51] n Hafiz] = H°°+C.

Our example shows that it is possible to have

lim max([b1(z)[,[b2(z)[) = 1 (note that [z[ 4 1 has been

241

replaced by z 4 l) and such that Ha[5i] n H°[Sé] is

not Of the form H°[E] where u is an inner function.

The second example is similar to the first. we will

use the result Of D. Marshall [15] stated below.

Theorem 3.9. Let S be a set contained in M(La)

and containing more than one point. Then there exists an

interpolating Blaschke product b which is nonconstant

on S.

Lemma 3.10. Let Et be a QC level set containing

more than one point. Then U {S : S _c_ Et]

S nontrivial

S maximal antisymmetric

is dense in Et'

Proof: If this is not the case, then there exists

a clopen subset F of Bt with

 

I
n E_<:_E .U {S:SEEt] t

S nontrivial

S maximal antisymmetric

Then M(H‘” [Et) = hp 6 M(H‘”) :supp Cp 5 F} u (E:t ~ F).
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Therefore for each T E M(Hco [Et), XF [supp m E H? [supp m.

Thus XF 6 Ha [Et' This implies M(HaD [Et) is disconnected,

contradicting Corollary 2.9.

Egampge 3.11. There exist interpolating Blaschke

products b1 and b2 such that for every antisymmetric_

set S ELM1(L°), either bl [S is constant or b2 [3

is constant, but on some QC level set E ‘E;M1(L°) neither
t

b1 [Et is constant nor b2 [Et is constant.

Proof: By Theorem 3.7 there exists f e H0° real

valued on M1(L°°) and a QC level set E EM1(L°°) such
t

that f [Et is nonconstant. Since the nontrivial maximal

antisymmetric sets contained in Et are dense in Et’

f must assume different values on two maximal antisymmetric

sets S1 and 82 contained in Ft. Without loss Of

generality we may assume that f(Sl) = 0 and f(82) = 1.

Let 01 = [cp e M(H‘”) : (um -1| >1) and c2 =

to e M(H‘”) : lens) -1[ < 31;}. Then Mm” |sj) goj for

j = 1,2. By Theorem 3.9, there exist interpolating Blaschke

products b1 and b2 such that b1 [S1 is nonconstant

and b2 [S2 is nonconstant. Therefore there exists

ejemsmlsj) j=1,2 with cpj(bj)=0 j=1.2. Let

Q Q

{zn,l}n_1 and {zn,2}n=1 denote the zero sequences of b1

and b2, respectively. Without loss Of generality we may

or") 7—1401“)
assume that zn,l E 01 and zn'2 E 02.

Let S be a maximal antisymmetric set contained in

Ml(L°). Then either M(Hm [ S) E 0: . in which case
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b1 [S is constant (since for any blaschke product either

b(S) = 52D or b [S is constant) or M(H0° [5) n 01 #’¢.

Since f E H? and f [M1(Lm) is real valued, f [S is

constant. Therefore we must have M(H°° [S) E 01. Hence

b2 [S is constant. Clearly neither bl nor b2 is

constant on Et and we are done.

we remark that Example 3.9 shows that Theorem 2.11

does not generalize to the case where f [supp m 6 H? [supp m

or g [supp T 6 Ha [supp T for all m E M1(H"4-C).

Example 3.12. There exist interpolating Blaschke

products b1 and b such that Hé[hi] n Hmffié] is not
2

generated by Han and the complex conjugate of a single

inner function.

Proof: Choose b1, b2, Et' ml and T2 as in

Example 3.11. Suppose there is an inner function u such

that

11°51] 0 11°52] = H°°[Ti]

Then by Example 3.11 M1(H°°) 2 ms” [751]) U M(H”['152] ) EM(H°°[E]).

As was shown in Example 3.8, there exists an Open interval

I g; a 13 containing 1, such that Mxm‘”) _<_:_ ma" [3]) =

M(H°°['b'l] n Hafiz—2]) for all 1 E I. By Theorem 3.4,

M101“) 5; M(H‘”[Bl]) u M(H°[Bz]) for x e I. Let g be a

continuous function such that supp g E_I and 9(1) = 1.

Let cp€M(H.+C). If eeMxm‘”) and >. €6D~I, then
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9-51 [ supp :9 and 932 [ supp cp are both identically zero.

If e e MX(HQ) and x e I then cp e M(H°°[Bll) UM(H°°[‘152]).

Therefore either bl [supp T is constant or b2 [supp m

is constant. Hence for any cp 6 M(H°°+C) either

gBi [supp m 6 HS [supp m or gfié [supp m e H" [supp m.

By Theorem 2.11, we have either gEi [Et 6 H? [Et or

gSé [Et 6 H9 [Et. Since 9 [M1(LP) is identically 1,

. ._ a - 5’ . .

either b1 [Et 6 H [Et or b2 [Et 6 H [Et which is a

contradiction.
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