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ABSTRACT
DECOMPOSITIONS OF THE MAXIMAL IDEAL SPACE OF L
By
Pamela Beth Gorkin

Let L” be the Banach algebra of essentially bounded
measurable functions on the unit circle and let M(ﬁ”)
denote the maximal ideal space of L”. In this paper we

prove some results about M(L”).

In Chapter 2 we show the existence of one point
maximal antisymmetric sets for H +C, thus giving the
first example of a maximal antisymmetric set that equals
the sﬁpport set of some multiplicative linear functional on
H +C. We also show that each open set in a fiber contains
a QC level set that is not a maximal antisymmetric set for

H +C, extending a result due to D. Sarason [21].

In Chapter 3 using facts about the maximal ideal space
of H we prove some results about closed subalgebras of

- R R (-
L containing H .

[21] D. sarason, The Shilov and Bishop decompositions of

H +C, to appear.
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CHAPTER 1

A complex Banach algebra B is a Banach space which

is also a complex algebra such that the norm satisfies

I£gll < II£lllgll

for all functions £ and g in B. The space of essentially
bounded Lebesgue measurable functions on the unit circle,

d D, with normalized Lebesgue measure will be denoted

by L”(3 D, %%) or simply L”. The space L~ is a Banach
algebra when it is given pointwise multiplication and the
essential supremum norm. Let £ ¢ L”, We define £ in

the unit disc by

R m
£(rel®) = 711;1‘ £(£)P_(5 - t)dt
-T

l-r2

l-2rcosg+r

where Pr(e) = 5 The extended f is a

bounded harmonic function in the open unit disc and, as

r «+ 1 the functions fr(e) = f(reie) converge to £ in

the weak-star topology on L”. The space of continuous
complex valued functions on 3 D will be denoted by C

or C(3 D). We note that C is a uniformly closed subalgebra
of L°, hence is also a Banach algebra. The space of

bounded analytic functions on the unit disc D will be

1
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denoted by either H or H”(D). The space H  is a

Banach algebra when it is given the norm | f|| = sup |£(z)].
zeDD

By Fatou's Theorem, a bounded analytic function on D has
radial limits almost everywhere. By identifying each H
function with its boundary function, H® is isometrically
isomorphic>t6~a uniformly closed subalgebra of L*, This
space will also be denoted by H”. Once we have made this
identification, we can describe another closed subalgebra
of L, the algebra H +C = {f+g:£f ¢ H, g € C}.
Sarason [19] showed that H +C is a closed subalgebra of
A Finally, the largest C*-subalgebra of H +C will
be denoted by QC. Thus QC = H +C N H +C, where the

bar denotes complex conjugation.

The maximal ideal space M(B) of a commutative
Banach algebra B with a unit 1 is the set of
multiplicative linear functionals (nonzero complex algebra
homomorphisms) of B. There is a one to one correspondence
between maximal ideals of B and kernels of
multiplicative linear functionals on B, hence this space
is identified with the space of maximal ideals in B.

It is not difficult to show that for ¢ € M(B)

| o(£)] < ||£ll for all £ € B and @(l) = 1. Therefore
M(B) is contained in the dual space B* of B. We give
M(B) the weak-* topology, so a net {wa} converges to
¢ if and only if ¢ (f) -+ ¢(f) for all £ € B. With
this topology, M(B) is a compact Hausdorff space. For

f € B, the Gelfand transform of f is the complex valued
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function % € C(M(B)) defined by 2(¢) = ¢p(f) for all
@ € M(B). In the cases we are interested in here, the
Gelfand transform is an isometry and we will sometimes
write £ for %, since the meaning will be clear from

the context.,

We begin by mentioning some facts about M(H ).
Further information is available in [9], [10] and [11].
For each point ( € D there exists ¢C € M(H") such
that ¢C(z) = (, where 2z denotes the function £(z) = z.
In fact, the point ®c € M(H®) is uniquely determined by
the condition wg(z) = (. Hence (¢ - ¢C defines an
embedding of I into M(H"). This embedding is a
homeomorphism. By identifying (¢ with P we may regard
D as an open subset of M(H"). The Gelfand transform
of 2z defines a map Q :M(E") » D which is onto. Thus
we write M(H ) = D U (g € M(HE") : |p(z)| = 1}. The

Corona Theorem [5] states that DD is dense in M(H°).

We shall also be interested in M(L®). Since L” is
a C*-algebra, L” 1is isometrically isomorphic (via the
Gelfand transform) to C(M(L”)). In [9] and [11] it is
shown that M(L”) is a totally disconnected, in fact,
extremally disconnected, compact Hausdorff space. For
these and other relevant facts about the topology of M(L®)

the reader is referred to [9] and [1l1].

For each ¢ € M(H ), there is a unique positive

Borel measure “¢ on M(L”) such that



(-]

() = [ _ fau for all £ € H
M(L )

If o € M(H“a-c) the closed support of “w is denoted

supp Mo or simply supp «.

let B denote a closed subalgebra of L® containing
the constant functions which separates the points of
M(L”). A closed subset S c M(L”) is called a peak set
for B if there is a function £ € B such that g(w) =1
for 9 € S and l%(v)l <1 for § € M(L°) ~ S. The function
f 1is said to be a peaking function for S. A closed
subset S of M(L”) is called a weak peak set for B
if it is the intersection of peak sets. If S is a
weak peak set for B, then the restriction algebra B |S

is a Banach algebra [9, p.57].

Let B denote a closed subalgebra of L” containing
the function z. For A\ € 3 D we let MX(B) =
{p € M(B) : p(2) = A}, We call MX(B) the B-fiber over

A. It is not hard to show that M(L”) = U MX(LQ) and
: AED

ME) =D U U {9 € M(H”) :p(2) = A}. Furthermore,
AE€E3D

ME +C) = U (9 € M(H) :9(z) =) = M(H") ~ D.
A€’ DD

The L”-fiber over A is a weak peak set for H,
hence for H" +C. Note that 2z is constant on each fiber.
Therefore each polynomial is also constant on each fiber.
By the Stone-Weierstrass Theorem, we see that any continuous
function f is constant on each fiber and its value on the
fiber over )\ is simply £(\). Therefore H” +C |MX(L°) =
H” | M (L7).
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There are several other important decompositions
of M(L®). The first that we shall discuss here is the
Shilov decomposition of M(L”). For ¢ € M(L”) we let
E = (@ € M(L”) :9(q) = y(q) for all q € QC}. We call

¥

EW the QC 1level set corresponding to ¢§. For t € M(QC)

we may also write
E, = {p € M(L®) :p(q) = t(q) for all q € QC} .

In this case we call Et the QC 1level set corresponding
to t. Each QC 1level set is contained in some L° fiber.

We have the following theorem of Shilov ([22]:

Theorem 1l.l1. Let £ ¢ L. If for each QC 1level set,

E there exists a function g € H® such that

i’
£ |E\h =g ‘EW , then f ¢ H +cC.

The second decomposition is Bishop's decomposition
of M(L”). Before stating Bishop's theorem, we need to
define the notion of an antisymmetric set. A set
S € M(L”) is called an antisymmetric set for H  +C if
whenever f ¢ H +C and £ |S is real valued, then f | s
is constant. A maximal antisymmetric set for H +C

is a weak peak set for H +C.

Note that each antisymmetric set is contained in
some QC 1level set and it is easy to see that if {Sa}
denotes the set of maximal antisymmetric sets for H +C,

then M(L”) = U Sa. Bishop's theorem [3] says the following:
a
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Theorem 1.2. Let {Sc] denote the maximal
antisymmetric sets for H +C. If £ € L~ is such that
for each maximal antisymmetric set Sa there exists

g € H with £|S_=g|s,, then f ¢ H +C.

Sarason [21l] has given an example of a QC level
set that is not an antisymmetric set for H +C. Thus
Bishop's decomposition for M(L”) is strictly finer than

Shilov's decomposition for M(L”).

The third theorem along these lines is due to

Sarason [20].

Theorem 1.3. Let £ € L°. 1If for each ¢ € M(H" +C)

there exists g € H such that £ |supp ¢ = g | supp o,

then f e H +C.

The relationship of Sarason's theorem to the others is
not clear. However, one can say something about how Sarason's
theorem relates to Bishop's theorem. Each support set is
an antisymmetric_set for H +C. Thus Sarason's theorem
is a refinement of Bishop's theorem. In [20] and [21]
Sarason asked for the precise relation between support
sets and sets of antisymmetry for H +C. 1Is every
maximal antisymmetric set for H +C the support set
of a multiplicative linear functional on H +C? This
question is still open. In fact it was unknown whether any
maximal antisymmetric set equals the support set of a

multiplicative linear functional on H +C. We shall show



the existence of a maximal antisymmetric set consisting
of a single point. The relation of this result to

Sarason's question is indicated below.

Let ¢ € M(L”). Then point evaluation at ¢ is a
positive measure and is the unique positive measure

satisfying @(f) = [ _ fdu_ for all £ ¢ H . The closed
M(L )

support of this measure is ({gp}. Thus a maximal anti-
symmetric set for H +C consisting of a single point
must be a support set. We will give many examples of one
point maximal anitsymmetric sets and will show that many
of these are contained in QC level sets consisting of

more than one point.

In Chapter 3 we use some of these results to obtain

information about closed subalgebras of A containing

H .,



CHAPTER 2

The following theorem is the main result of this

chapter .

Theorem 2.1. Let {xn} be a sequence of distinct

points of 3 D ~ (1} with A = 1. Let y €M (L°) and
n

V€ {wn}M(LQ) N M (L"), Then (¢} is a maximal anti-

symmetric set for H" +C.

An unpublished result of K. Hoffman shows that
any point of M(L”) in the closure of a sequence of points
from distinct L° fibers is a maximal support set. Our
proof is independent of this fact, although Hoffman's result

follows easily from Theorem 2.1.

In order to prove Theorem 2.1, we need the result

given below.

Theorem 2.2. Let [xn} be a sequence of distinct

points of 3 D ~ {1} such that Ap ° 1. Let [In} be

a sequence of intervals of 3 D with I_n U I_=¢ and
n e m

kn € In. Then there exists q € QC satisfying:

(1) q 1is continuous except at A =1 ;



for all n

~e

Hl= 0

(2) |arg q(r)) -7| <

(3) largq(u\<-i- for X €3D~UI .

The proof will be in two parts. The first part is Lemma 2.3
given below. In what follows we let G denote the harmonic
conjugate of u. The space of continuous real valued
functions with continuous first derivatives will be

il' If uce¢ Cil'
continuous function [11, p.79].

denoted by C then u is a real valued

Lemma 2.3. Let I be an open interval contained

in 3 D and let w € I. Then given ¢ > O and xo € If',

there exists u ¢ C]il with [[ull_ < e, |u(z)| < ¢ for

Z€3D~1I and ﬁ(w)=xo.

Proof: By choosing § > O sufficiently small and

rotating, we may assume that w=1 and I = {ele =28 <8< 28},

1
R

vl < 1, |v(z)| <1 for z€ 3D ~1I and v(l)
ALV

It is enough to show that there exists v € C with
Ao
e

’

for then u =

m

satisfies |jul|_< e, lu(z)| <

v(l)
for z e 3 D~ I and ﬁ(l) = x0¢
1
1.x
l-(i)
It is not hard to show that lim.—-—jf——-= ln k¥ for
X =
X

k > O. We use this fact below. To find v, let ¢ > O

+ 2vlo
and 2o € R be given. Choose k so that 1ln k > —— .,

[
etan2

Choose an odd integer m satisfying
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1
- 271')\0

1
(1) m{1- )™ > —2—, (ii) L <6 and (iii) cos(z) >3 .

m
e:tan:Z

0 if zean~%

Let v(z) = 1

1 it

(-3 tan %)(mt)m if z=e 1s,

and extend v so that v ¢ Ci‘z, v(l) = O, v(els) < 0 for

og s, v(e'is) = -v(eis), and Hv\\a° < tan%g 1.

Writing v(q) for v(ele) we have [1l1l, p.79]

~ T w(=t)=-v(t) dt _ T y(-t) dt
v(0O) = J‘ T 2—71' = 2 ‘f _—

- 2 tan & Otanl:-z"

2 2
1
1 i 1 s m
m v(-t) dt _ 2 rm (2 tan 2)(mt) t dt
>2 t2r = 2 — T cos 3 or
1 tan 3 e
km km
11
1 &l | 1 1 1
2 1 t 2T 2 1 2T
m 2 km
1
(tan Sym® T I 1 1
= 2 [(;)m_ (l)m (l)m]
2T m k m
8 1
ML L U
2T e °
>‘O

Hence \7(0) > <

Suppose z = elf ¢ Since the (closed) support

I,
of Vv 1s contained in % we have

€ (e'%: fcs <)
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™
v(8) v(e+t) - v(g-t)| dt
| ‘ = ‘r-vr 2 tan-% 27

v(e+t)-v(e-t)| dat . f

)

t 21 t
|t|<s 2 tan 3 | s<|tlgm 2 'R
= v(8+t) -v(e-t)l dat vl
) I 2 tan £ I 2T £ tan & -
sg|tlgm an 2 2

Therefore |v(z)| < 1 if z € 3 D ~ I, as desired.

Proof of Theorem 2.2: Given intervals I with

n
N U 1 =¢, A, €I and A -+ 1 choose functions
m¥n
. 1 -~ 1
u €clk with Jul_ < =i la (z)] < P for
-]
z€dD~ I, and un“‘n) = (2n+ 1)7r. Let u = nE;l u .

Then u € Cr and since the map T : L2 -+ L2 defined by

2
n

- -]
T(f) = £ is continuous, u= 2 uU_ in L° norm. Since
n=1

l 3 ec

each un € C:R n R°

n=1

converge uniformly to u on compact subsets of 3 D ~ {1].

Hence u is continuous except possibly at A = 1.

let q = e™. Then q-= eu+1u e.u € H +C and

G =e % M % cg”+c. Therefore gq € QcC.

For any n we have

m
It is easy to see that {( 2 un]

v(e+t) —v(6-t)| dt

2T
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n)

ia(x, )
-7

iZua
n - m
arg e -m| = |arg e

|arg a(ny) - 7]

if(2m)r+ T ou (A )]

= |arg e myn - 7|
i 2 ou.(r))
m'*n
= |arg(-e m7n ) -T| < %
and if keaD~UIn, then
iz u (\)
|arg q(\)| = |arg e m | < % .

Before we present the proof of Theorem 2.1 we prove a

corollary of Theorem 2.2 that will be used frequently.

Corollary 2.4. Let t € Ml(QC) and {).n} be a
sequence of distinct points of 3 D ~ {1} such that t is
in the M(QC) closure of a sequence of points {tn},

® =™,
where t_ € M)‘n(L ) and )\ - 1. Then E, S g Mkn(L ).

Proof: Suppose ¢ € M(L”) ~ U M)‘ (L®). 1f
n “n

@ € M(L”) ~ Ml(La), then ¢ € M(L”) ~ E Therefore we

t.
may assume that ¢ € Ml(LQ). Since M(L”) has a basis of

clopen sets (sets that are both closed and open), we can

find a clopen set F < M(L”) with ¢ € F ¢ M(L”) ~ U M, ().
n “n

For each n, M, (L) € M(L”) ~ F and therefore
n

-]
U (o' € M(L?) : |o’(2)=A_| > ']*} D F. Since F is compact,
=1 n m
N - 1
there exists N such that N {9’ € M(L") : |p'(2) -xnl < 3]
m=1
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is contained in M(L~) ~ F. Thus there exists an interval
. N . @ -] -

I, with A €I, satisfying MX(L ) € M(L') ~F for all

A € i;. By choosing In sufficiently small we may assume

that InﬂmL;!ln I = . Note that (*)Lr'f(MX(L):)‘EIn}E

M(L”) ~ F. Thus there is a QC function q satisfying

conditions (1) - (3) of Theorem 2.2.
For any n and any | € MX (L) we have, by (1) and
n

(2) of Theorem 2.2, that |arg q(y) - 7| g_%-. Passing to

M(QC) we have larg q(t) -m| g_%- for any ¢t € Ml (Lﬂ).
n

Therefore for any ' € E_ we have J|arg q(y') -] S.%n

t
To see that ¢ € M(L") ~ E_ we shall show that

larg q(¢)| gg%. Choose ¢ > O and let Fe =

{n € M(L”) : |arg @(q) -arg n(q)| < €}. Then F,NF

is an open set in M(L”) containing ¢. We claim that

there exists )\, # 1 such that M (L") nF nF_#0.
o)

To establish this it is enough to show the following:
Claim Ml(Lw) has no interior in M(L%).

Proof of claim: Suppose F 1is a clopen subset of

M(L”) with F ¢ Ml(LQ). Then xp € C(M(L”)). Hence there
exists a measurable set E € 3 D of positive measure such
that Xp = QE‘ If £ is a nonconstant function in H
such that £ is continuous at 1, then f is constant
on Ml(L°). Therefore f is constant on F. Hence f

is constant on E. Since E has positive measure, £
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must be a constant function. This contradiction
establishes the claim.

Choose Ag €3 D satisfying Ao # 1 and

MX (L) NF N Fe # ¢. By (*), Ao €3 D ~U I . Hence
o
1 ©
|arg q(xo)l <7 Let y g€ MXO(L ) NF NF_. Then
|arg @e’o(q)| g}%. Therefore |arg (q)| g_%w—e. Since

tl
so M(L®) ~ (U MX(LQ)) c M(L”) ~ Et which implies the result.

¢ was arbitrary |arg @(q)| g.%. Therefore ¢ € M(L”) ~ E

Proof of Theorem 2.1. Choose ¢ € M(L®) with o # §

such that ¢ and § are in the same QC 1level set.

If no such ¢ exists, then Ew = {y} and hence the maximal
antisymmetric set containing G, S*' satisfies S¢ = (y]
and we are done. We assume then that such a ¢ exists.
Since ¢ ¥ §y, there exists a clopen set F with @ € F
and ¢ € M(L’) ~ F. Thus passing to a subsequence of

[wn} if necessary, we may assume that TW;T'E M(L”) ~ F.
By a theorem of Axler [l1l] for each n we can find

£ €H +C with ||[£ll =1 such that |y (£ )| =1 and
n(fn) = 0 for all n € F. Using an idea of Sarason we
let G, denote the open ellipse with major axis ([-1,1]
and minor axis [-i/n,i/n]. Let Tn denote a conformal
mapping of the open unit disc D onto G, such that
Tn(o) = O and by [18, p.309] we may assume Tn € C.
Choose z e‘I) with |zn| > E%T , Tn(zn) real and
Tn(zn) > E%T . By multiplying £ by a constant of

modulus one, we may assume that |z [y (£ ) = z .
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Since H°°+C|M)‘ (L) = HﬂlMX (L®), there exists an H”
n n( - M
function whose restriction to L) is £ L).
M n
Multiplying that function by a suitable peaking function

for Ml (L") we obtain a function 9, € H® such that
n

1 ® - ©®
g lle < Tz:l— and g_ | M)‘n(L ) = £ lMXn(L ). Thus
T, ° (Iznlgn) € H. Let n € M(L°). We claim that
n(Ty e |z lg,) = T (|2 |n(g,)). To see this, note that

T is a uniform limit of polynomials

n pm,n'

with [|f[|_ < 1, then n(T of) = n(limp_  (f)) =
m )

lim p (n(f)) = T_(n(f)). Therefore for each n we have
m m.n n

4 (Th e lznlgn) = Tn(lznl"’n(gn))
— n_
= Tn(‘znwn(fn)) = Th(Zn) > 557 -
If 1t €FN M)\ (L) for some n, then
n

T(Ty e |zn|gn) = Tn(‘zan(fn)) = Tp(0) = 0.

For each )‘n' choose intervals In centered at )‘n

with I N U I = ¢ where the Lebesgue measure of 1I_,
Do ™ n

. e 1
|1 |, satisfies |[I | <

2n+4

and 1eaD“'(UIn). Let
n

o(1) = (z€D:|z-r | <5} and let h  be a peaking

function for M)\ (L®). By raising hn to a sufficiently
n
large power we may assume that ”hn | D ~ O(In)\lo < n]-.|-4 .
2

Let Kn be a Mobius transformation such that
K (1) =0 and K (A ) =1. Let 4 =h (T |z |g )K.

Then
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(1) 4, |Mxn(L°°) = (T o |z lg)] M)‘n(LQ) for all n

and

(2) llzn |—]5 ~ C)(In)Ha° z_n-i-LZ .

m )
Let L = 2 4, and L= 2 4. .. It is easy to see that
m n=1 ° n=1 =

Lm converges to L uniformly on compact subsets of

D - {1}. Furthermore, ||Lm|l < 2 and thus L € H (D) .

To see that L |E_ is real valued, let ¢ > O be
@

L

given. Choose N such that X2 o

n=N 2
open interval of 3 D containing 1 such that

<-§-. Let I be an

max ||K. |1l <= . Then 2. |I| <= 3§ =1,2,...,N.
e g 1Tl < leg 12l < 55

Choose in the QC 1level set corresponding to {, E

Yo v
Let V= (n e M(L"):|n(L)-y )| <5} N xUI M (L7). Then
€

V is an open set about Voo By Corollary 2.4, there exists

an integer m satisfying m > max(N, %) and such that

VNM (L) # . Let gy € VN M)‘m(La). Since T £
m n

converges uniformly on I m’ e have

N
|Im @q(L) | = |Im§cpo(.¢.n)| = ‘n§1 Im g (Ly) + Im o (L)
+ Z  Imoa(L.)
n=MN1 %o n|
n¥m

N
< n§1 | Im ®g(L,) | + | Im 9Ty © (|zm|gm) )| +

+ llIm 9o(24,) |

n¥m
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N
€
< n§1 3Nt ‘Im(Tm ° (¢O(|zm‘gm))‘+
1
+ X —_—
n=M+1 274
n¥m
<%+ i-+ $<e .

Therefore |Im y,(L)| < 4—36- . Since ¢ was arbitrary,

\yo(L) must be real valued.

Recall that we chose ¢ to be a point in M(L®) with
¢ #¢ such that g and { are in the same QC level
set and F was a clopen subset of M(L°) with ¢ € F

Tn}M(L”)
{n € M(T”) = |n(L) = ¥(L)] < -]8=] is an open subset containing

and ¢ € c M(L”) ~ F. Since
Y, there exists n with n > 7 and b, € M)‘ (L) such
n

that H’n(L)-‘“L)‘<%‘ Thus
1
I“'n(L)l = l‘]’n(‘cl’l)-.-ugn wn("m)l 2;1%1-- 2428278

Therefore |y(L)| > %

To determine (L), note that
U= {ne ML) :|n(L)-0(L)]| < %} N F is an open set in
M(L”®) containing ¢. By Corollary 2.4 there exists m
[--} ®
such that Mxm(L ) N U¥ §. Let Py € M)‘m(L ) N U. Then

we have

1
log (L) | = |oy (4) + ngm P (4y) | < o (450 | + ngm‘q’m“n’ |<o+7
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Therefore |¢(L)|.g-% and 4§ (L) # (L).

The maximal antisymmetric set S, containing § is

¥

contained in E so L|S is real valued. Thus L |S

w'
is constant. Therefore ¢ ¢ S. Since ¢ was an arbitrary

point of E, distinct from §, S = {(y} and the proof

¥

is complete.

We will show that many of the points that are in the
M(L”) closure of a sequence of points from distinct L
fibers are contained in QC 1level sets consisting of
more than one point. We will also show that not every
QC 1level set contains such a point. Before proceeding
to the proofs of these results, some related results must

be presented.

We call a sequence {zj]j:1 of distinct points in D
@™
an interpolating sequence if whenever [wj}j=l is a
bounded sequence of complex numbers, there exists a function
f € H© with f(zj) = wj for all 3j. It is well known
zj}

if and only if there exists a constant 5 > O such that

[4] that a sequence { j=1

is an interpolating sequence

-z.
.H —ﬁi:r—l-‘z & >0 for k =1,2,3,... . A Blaschke
j#k 1-252
-
product with zeroes {zj] c D is a function b ¢ H (D)

=1~
of the form
-E% z-2,
b(z) = A1 [z, ] — for z e D
j j l-2.2
J
where |A| =1 and 2 (1-|z |) < . If the zeroes of

n
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b form an interpolating sequence, b is called an
interpolating Blaschke product. A Blaschke product is an
inner function, so that lb(eie)l =1 for almost all §.
A great deal of information has been obtained about
interpolating Blaschke products. In [14] P. Jones

showed that the interpolating Blaschke products separate
the points of M(H”). We will use the theorem stated

below. The proof of this theorem is given in [l11l, p.205].

Theorem 2.5. Let ({z.] ® be an interpolating

J =1
sequence and let b be the Blaschke product with zeroes
® ————M(K")
{z,}, . Then (z.,}. is homeomorphic to the
J j=1 J j=1

Stone-Cech compactification of {zj],°1 and every zero
J=
of b in M(H”) ~ D is in the M(H®) closure of

(-]
The following lemma was proven by K. Clancey and

J.A. Gosselin [7].

Lemma 2.6. Let u be an inner function. If
t € M(QC) with u |Et invertible in H” lEt' then u IEt
is constant. In fact (t € M(QC) :u lEt is constant} =
{t e M(QC) :u |Et is invertible in H" |Et] is an open

set in M(QC).

This was also proven by R.G. Douglas in [8]. Using
Lemma 2.6 together with the following result of D.E. Marshall

[16, p.15] , we prove a similar result about characteristic
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functions. In what follows Hm[f] denotes the closed

subalgebra of L” generated by H° and f.

Theorem 2.7. Let Xg be a nonconstant characteristic
function in L°. Then there is an inner function u such

that

H [xg] = H (U] .

Theorem 2.8. Let Xg be a nonconstant characteristic
function in L. If yx_|E_ € H |E for some QC level
E 'ty to

set Eto, then xg |Et0 is constant.

Sarason has given a proof of Theorem 2.8. Since
his proof is unpublished we include a proof below. Our

proof is different from Sarason's; his did not use Theorem 2.7.

Proof: By Theorem 2.7 there exists an inner function
u such that H“[XE] = H [u]. Therefore
M(E”[xg]) = M(E"[U]). Thus M(H" |E_ ) c M(H [xg]) =
0]
M(H [u]). Hence |p(u)| =1 for all ¢ € M(H | E.).
Therefore u |E_ is invertible in H | E.. By Lemma 2.6
there exists (¢ open in M(QC) containing t. with

o

ElEteH‘”\E for all t € 0. Let gq € QC with q(ty) =1,

t
q(s) = 0 for s € M(QC) ~0 and 0 q { 1. Choose

§ ¢ M(H +C). If supp ¢ < E, and s ¢ M(QC) ~ O, then
q |supp v+ = O and therefore IXg | supp ¥ = 0. If

supp y S E, and t € 0, then U |supp y € H | supp ¢

and hence ¥ | supp ¥ € H” | supp y. By Theorem 1.3
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axg € H +C. Since axg 1is real valued, qxg € QC.
A
Thus Qqxg IEt is constant. Since q(¢p) =1 for all
o)

¢ € E, we must have Xg |Et constant, as desired.

o) (o)
By the Shilov Idempotent Theorem we obtain the

corollary below, answering a question of R.G. Douglas in

[8].

Corollary 2.9. If t € M(QC), then M(H’IEt) is

connected.

It is a consequence of the following result of
T. Wolff [25] that any function f ¢ L® is constant on

~

some QC 1level set.

Theorem 2.10. Let £ ¢ L”. There exists an outer

function q € OCc N H® such that gf ¢ QC.

We will show that for any A € 3 D and any clopen
set F contained in MX(LQ) there exists a QC level

set contained in F.

We will make frequent use of the following [21]
and [24].

Theorem 2.11. ILet £ and g be functions in | A
If for each ¢ ¢ M(H"+C) either f |supp ¢ € H |supp ¢
or g |supp o € H |supp . then for each QC 1level set

E, either f|E_€H |E_ or g|E

t

-}

This theorem together with the following unpublished

result of K. Hoffman provides us with much more information
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about the points in M(L”) that are in the closure of

a sequence of points from distinct L” fibers.

Theorem 2.12. Let [zj]_wl be an interpolating
J=
sequence such that

zZ_ -z
lim I _J%:_EL
-+ -2z 2
n+> my¥n |1 2.2,

= 1 L]

--]
If ¢ € {zni (H7) and ¢ € M(E” +C), then supp ¢ 1is a

maximal support.

Theorem 2.13. Let E be a nonempty clopen subset

of Ml(L?). Then E contains a QC level set that is

not a maximal antisymmetric set for H +C.

We remark that Sarason [21] has shown that each L® fiber
contains a QC 1level set that is not a maximal anti-
symmetric set for H +C. Some of the ideas used to prove
Theorem 2.13 are similar to techniques communicated by

T. Wolff (private communication).

Proof: Let F be a clopen subset of M(L”) such that
E=FnN Ml(LQ). Then there exists a measurable subset G

A
of 3 D of positive measure such that Xp = Xg° Let ().}
ig,
be a sequence of distinct points of 3 D with kn=e |
isg
and 1lim xG(re n
r-1

= 1, We claim that there exists an

interpolating sequence {zm] with the following properties:

Z =2
(1) 1lim I L

n-o m¥#En —-EZ
?( 1 mn

]
-
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(2) {zm] is the disjoint union of interpolating
ig
™ n

sequences [zm'n}n=l such that Znon = Tm,n®

for suitable choices of Tm.n
[

and

(3) XG(zm) + 1 as m-o ,

We construct such a sequence as follows: Let 2y =2y 1=
ig .
1

_ _ ifo
rlﬁf where O rl,l < 1. Choose z, = 22,1 = rz'le
1 227% -2
such that XG(zz) >3 and |——=| > e . Choose
l-2z,2
. 271
18y 1
rl'ze such that XG(z3) > 1-3- and
1 .
- : 19
3+] L _ = - 2
2 j =1,2. We choose z, 22'2 r2'2e
_1
1 2, -2, 24+j
satisfying xG(z4) >1-7 and -——::—J- > e j=1,2,3.
l-2.2z
j 74
We continue to choose z satisfying (2) such that
-1
zZ -2z, n+j
xG(zn) > l-%' and IJLZT;L > e 2 for j < n. It
-2z.2
i“n

is not hard to see that (1) and (3) also hold.

o M(H®+C)
Let ¢1’1 € [zm,n]m=1

- Then ¢ € Mln(Ha)' Let
90 EWM(H‘&C) n Ml(Hm). By Theorem 2.12 we have that for
each n supp Pn is a maximal support set. Let b be
the interpolating Blaschke product with zeroes [zm].

Choose ¢ € M(H +C). If b |supp y ¢ H |supp §, then

|¢(b)] < 1. Since b |supp § is not invertible in
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H” | supp ¥, there exists T ¢ M(H |supp y) =

{n € M(K”) : supp n < supp §} with r(b) = 0. By

Theorem 2.5, € TE;T and hence by Theorem 2.12, supp T
is a maximal support set. Therefore supp T = supp {.
Since xg5(z;) =1 as m - =, we have T(XG) = 1. Thus
supp T € G, so supp §y € G. Thus for any ¢§ € M(E” +C)
either b |supp ¢ € H" |supp ¢ or Xp | supp ¥ € " | supp ¥.
By Theorem 2.1l on each QC 1level set E_ we have

t
FlEt € H |Et or g |Et € B | E.. Consider the ocC

level set Et containing supp Po* Since
o)
— (-]
b | supp ¢, ¢ H" | supp g, we must have xg |Eto € H |Et0.
By Theorem 2.8 Xy | E_  is constant. By (3) above,
(o]
we must have E c F.
to'—

Let {¢na} be a subnet of [@n] such that ¢na + 9g-

Choose § € supp ¢ . Then some subnet of {*n } converges.
a

We may assume without loss of generality that ¥p Vo

a
Therefore Yo | ac = %o | c. Hence Vo € Et . By Theorem 2.1,
(o)

{wo} is a maximal antisymmetric set for H® +C. Since
¥g € M(E") ~ M(L”), Supp @, consists of more than one point.
Since ¢, € Eto and supp %o S Eto ' Eto is not a maximal
antisymmetric set for H +C.

One may ask whether every QC 1level set contains a
point that is in the closure of a sequence of points from
distinct L° fibers. The answer to this question is no,

as we shall see. We first state a lemma due to Sarason

that will appear in [21].
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Lemma 2.14. Let b be an inner function. 1If
® € M(H+C) and b |supp ¢ is nonconstant, then

b(supp ¢) = 3 D.

Example 2.15. Let [zn} ml be an interpolating
n=

sequence with 2z -+ 1 and let ¢ ¢ izn} (H ).

® € M(H +C). Let E, denote the QC level set containing

supp 9. Then E, does not contain a point which is in

\

the closure of a sequence of points from distinct fibers.

Proof: Suppose not, that is, suppose %0 € EW and

9g € i¢nfM(L ) where ®, € MX (L”) and AL # A\, for
n
n ¥ m. Let b be the interpolating Blaschke product
with zeroes {zn] . By assumption z_-+ 1. Thus b
n=1 n
is continuous at )\ for )\ ¥ 1. Hence b |MX(L°) is
constant for \ # 1. Let U= {4 €M(L”) : [4(b) -py(b) | <3].

Then U is an open set in M(L”) containing Po-

Therefore %0 € {@n 2o, € U}H(L ). By Corollary 2.4,
o = M(L”)

E =E c L : L nuU . Hence
v on_U{M)n() mne%n() )

Ecp .g'ﬁ. If b |Ecp were nonconstant, then by Lemma 2.14
o o
we have b(Ecp ) = 3 D, Therefore there exists n € E

0 %0
with n(b) = -p,(b). Hence n ¢ U. Thus b |Ecp is constant.
o)
Therefore |p(b)| = 1 and hence ¢ cannot be in the

closure of the zeroces of b. This contradiction implies the

result.



CHAPTER 3

In this chapter we prove some related results about
closed subalgebras of L” containing H”. A closed
subalgebra B of L® containing H® is called a Douglas
algebra. Thus H 4+cC is a Douglas algebra; it is the
smallest closed subalgebra of L” properly containing H
[lOp.376]. S.~Y. A. Chang and D.E. Marshall proved the

following theorem about Douglas algebras ([6], [15].

Theorem 3.1l. (Chang-Marshall Theorem) Let B
be a closed subalgebra of L° containing H . Then B
is generated as an algebra by H® and the set B where

B =(b:b is an interpolating Blaschke product and b € B}.

This theorem was proven in two stages. Chang showed
that if B1 is a Douglas algebra and 32 is any other
closed subalgebra of L~ containing H with M(Bl) = M(Bz),
then B

= BZ' Marshall completed the proof by showing that

1
if B is a closed subalgebra of L* containing H,

then there is a set B of interpolating Blaschke products
such that M(B) = M(H [b:b € B]) where H b:b e B)
denotes the algebra generated by H° and (b:b € #A].
Marshall's half of the proof used the result stated below

[26].
26
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Theorem 3.2. Let u be an inner function. For

each a, O ¢ ac l, there exists an interpolating

Blaschke product €4 such that
1 .
(1) Jeg(2)| £ 75 if |u(z)| L a (z € D)
and
(2) There exists Ba < 1 such that if ca(z) = 0,

then |u(z)| < B, (z € D).

The proof of this theorem yields more information than

what was given above. In fact, the proof shows the following:

Theorem 3.3. Let [uy} be a family of inner functions.

For any a, O < a< 1, there is an interpolating Blaschke

product Cq such that

(1) \ca(z)l 5'1% if s:p |uY(z)i £ a (z € D)

and
(2) There exists B, < 1 such that if ca(z) = 0,
then sup |uy(z)| < B, (z€eD).
Y
Using this form of Marshall's result we prove a theorem
that was proven by D. Sarason (unpublished). Our proof is

different than Sarason's proof.

Theorem 3.4. Let [BY} be a family of closed

subalgebras of L” containing H . Then

M(N B)) =U M(B)) .
y Y y Y
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I1f Hw‘g BY' then the continuous map T :M(BY) -+ M(HQ),
defined by restricting each multiplicative linear functional
on BY to H, is a homeomorphism. Accordingly, we think
of M(BY) as a closed subset of M(H“). We also note
that if u is an inner function, then M(HQ[E]) =
{p € M(E") : |@(u)| = 1}. These remarks will be used
in the proof of Theorem 3.4. Before we proceed with the
proof of Theorem 3.4 we prove a lemma that will be used in

the proof of Theorem 3.4.

Lemma 3.5. Let @ € M(H +C) ~ U M(BYS and let (z_]
be a sequence of points of D such that

P € iznf.g MH) ~ U M(BY). Then for each vy, there exists
Y

a Blaschke product bY such that E& € BY and

sgp |bY(zn)| < 1.

Proof: Suppose not. Then there exists vy such
that whenever hY is a Blaschke product invertible in BY'
we must have sup lbY(zn)l = 1. For any Blaschke product
b let A = {wne M(HE" +C) : |¥(d)] =1} n
{y € M(H” +C) sy € T;;T}. Then Ay is a closed subset
of M(H +C) and if D € B s then Ay # ¢. We claim
that n [Ab :b is a Blaschke product and b € BY] # ¢.

b

By compactness it is enough to show that if bl'bz"’°' n

_ _ n
are Blaschke products and b,,b,,...,b € BY' then le Abj5!¢.

n =
Since b, € B for j=1,2,...,n, we have Il b, € B,. Therefore
J Y i=1 J Y
n =
Ap #¢. since A c N . we see that
Ob, qb, i=1 j

jalj = J
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n
n a ¥ ¢. Let n €N (A :b is a Blaschke product
=1 73

and D ¢ BY}. If S& € BY' then |n(b)| = 1. Therefore

n € M(B ). But n ¢ (z,J e mE") ~ U M(B,) and this
Y
contradiction implies the result.

Proof of Theorem 3.4. Clearly U M(BY) S M(N BY)'
Y Y
Suppose ¢ € M(E"+c) ~ U M(B ). Thus M(E") ~ UM(B) is
Y Y
an open subset of M(HE”) containing 9. The Corona

Theorem [5] asserts that the open unit disk D 1is a
dense subset of M(Hw). In fact, if ¢ € M(H +C), then
¥ is in the M(H”) closure of a sequence in D [12].
Thus there exists a sequence of points [zn].g D such
that o € TE;TM(HQ). Without loss of generality we may

assume that ¢ ¢ izni c M(H") ~ T M(BY). By Lemma 3.5
Y

for each y there exists a Blaschke product

bY such that sgp lbY(zn)l <1 and 3& € BY. By raising

bY to a sufficiently large power, we may assume that

sup lby(zn)| g.%u By Theorem 3.3 there exists an inter-
n

polating Blaschke product ¢ satisfying (1) and (2) of
Theorem 3.3 with « =-%. Let [wn} denote the zero sequence
of c. By (2) of Theorem 3.3, there exists B < 1 such

that if c(z) = O, then suplby(z)l‘g B. Hence
Y

sup ‘by(wn)l < B for all n. By (l) of Theorem 3.3,
Y

le(z )| < f%- for all n. We claim that
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(a]

ol

m
<D

w

and

[(b] ()| <1 .

since |c(z )| g,f% for all n and @ € iznf,
le(e)] g.f% . Thus [b] above holds. To establish [a],

suppose [a] does not hold. Then there exists such

Yo

. Therefore there exists n € M(BY ) with
o o)

n(c) = 0. By Theorem 2.5, n € iwn;. By the remarks

that c ¢ B,

made above, sup IbY(wh)|<g B for all n. Therefore

Y -
In(bYO)I { B<1l. Since b, € B, , n cannot belong to

Y Y,
0] o
M(BY ) which is a contradiction. Therefore [a] holds.
(0]
Now [a] and [b] imply that ¢ € M(H ) ~ M( N B,) and
Y

hence M( (N B ) =U M(B,) as desired.
Y Y Y Y
Theorem 3.1 implies that if £ € L® ~ H°, then H”[f]

is generated by H  and the complex conjugates of countably
many interpolating Blaschke products. C. Sundberg [23]
has shown that L° is not countably generated as an algebra

over H . We prove an extension of Sundberg's result below.

Theorem 3.6. Let B be a closed subalgebra of L”

containing H +C. If there exists an open set (¢ in
M(E®+C) such that ¢ # 6 N M(B) c M(L”), then B is not

countably generated as an algebra over ",

Proof: Suppose B is generated by H together

with countably many L” functions. By Theorem 3.1
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and remarks made above we see that B must be generated

by H together with the complex conjugates of countably
many interpolating Blaschke products {bj :j € N},

Following a method of Axler [l] we construct a single Blaschke
product b such that M(H [b]) < M(B). To do this, let

{z_ .} ® denote the zeroes of bj' Since the zeroes of

n,J] n=1

bj form a Blaschke sequence, there exists an integer Nj

such that Z (l-lznj|)<—]5-. Let b denote the
’ 2

n>N.
J ®
Blaschke product with zeroes jgl [zn.j}anN . If
® € M(H +C) ~ M(B), then there exists j, € N such

that |cp(bj )| < 1. Therefore bj |supp @ 1s not invertible
o (0]

in H" |supp ¢ and hence there exists t ¢ M(H” | supp @)

such that rt(b, ) = O. By Theorem 2.5 T € (z i
Jo n Jo n=1

and hence rt(b) = 0. Thus b |supp T is not constant.,
Since supp T C supp g, we see that b |supp ¢ is non-
constant. Therefore |g(b)| < 1 and

® € M(H +C) ~ M(H"[b]). Thus M(B) D M(H [bB]).

Let n € 0 N M(L”). Since M(L”) has no interior
in M(H +C), we can choose a net {na} c M(E”+cC) ~ M(L”)
with n € m. Since n € ¢ we may assume that
{ng] € 0. By a result of D.J. Newman [17], there exists
a Blaschke product c such that if ¢ € M(H  +c) and
le(b)| < 1, then @(c) = 0. Since ¢ N M(B) c M(L®), and
M(H”[b]) < M(B), we have ¢ N M(H"[b]) < M(L”). For

each a, n_€0 and ng € M(H +C) ~ M(L®). Hence
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Ing(®)| < 1. Therefore n,(c) = O for all o. Thus
n(c) = O. However n € M(L”) so |n(e)| = 1, which is
a contradiction. Therefore B cannot be countably

generated over H .

Many examples can be given of Douglas algebras that
are generated by H together with one L” function. For
example, H +C = HQfZ]. Donald Marshall showed in [16]
that if £ is a simple function, then there is an inter-
polating Blaschke product b such that H"[f] = HQ[E].

It is not known which algebras have the form H [b] for

a single interpolating Blaschke product b. We use the
following result of Sarason [21] to give two examples of
Douglas algebras that are not generated by H® and the
qomplex conjugate of just one Blaschke product. The first
is an example of a Douglas algebra which is generated by
H  and one function f € L~, but is not generated by

H  and the complex conjugate of one inner function.

Theorem 3.7. (Sarason [21]) There exists a function

f ¢ H such that f |M1(L°) is real valued and £ is

nonconstant on some QC level set contained in Ml(LQ).

Example 3.8. Let £ be the function given in

Theorem 3.7. Then HP[?] does not equal H“fﬁ] for any

inner function u.
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Proof: Suppose H [£] = H [u] for some inner
function u. By assumption £ IMl(Lw) is real valued,
hence f must be constant on the support set of every
multiplicative linear functional ¢ € Ml(Hw). Thus
Ml(Hm)‘g M(H [£]) = M(H [u]). Therefore for each
¢ € Ml(Hw), u|supp ¢ is constant. We claim that there
exists an open interval I c 3 D such that 1 € I and
such that for each A ¢ I and each ¢ € MX(HQ) we have
G'lsupp o € H | supp @. If not, there exists a sequence of
points (A} with A =+ 1, and o ¢ Mxn(Ha) with
¢n(u) = 0. By compactness there exists ¢ ¢ T;;TM(Hw)f\Ml(H°)
with ¢@(u) = 0. Since u |supp ¢ is constant, this is
a contradiction. Therefore there exists an open interval
Ic3D such that 1 € I and u|supp ¢ is constant for

all o € Mx(Hé) whenever \ € I. Let E_¢ Ml(LQ) be a

t
QC level set such that £ |E_ is nonconstant. Choose

a continuous function g such that the (closed) support of

g 1is contained in I and g(l) = 1. If o € Mx(Hé) and

A €I, then g |supp ¢ is constant and u |supp ¢ is
constant. Thus £ |supp ¢ is constant. Therefore

gf | supp 9 € K | supp . If A € 3D ~ I, then

gf | supp ¢ is identically zero. By Theorem 1.3

gf ¢ H +C. Since gf € H +C, we have gf € QC. Therefore
qf | E,
is a contradiction. Hence H°[§] does not equal HmfG]

is constant. Hence ?]Et is constant, which

for any inner function u.
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The second example shows that the intersection of

two algebras of the form H?ffl] and H“[sé], with bl

and b2 interpolating Blaschke products is not necessarily
of the form H’[E] where ¢ is an inner function. We remark

that if b, and b, satisfy lim max(\bl(z)l,lbz(z)l) =1,
|z|-+1

then it has been shown [2] that H (6,1 n H"[To'z] =H +C.

1

Our example shows that it is possible to have

lim max(|b,(2z)|,|by(2)|) = 1 (note that |[z| + 1 has been
z»]1

replaced by z -+ 1) and such that H“ffl] n HQ(EZ] is

not of the form HO[G] where u 1is an inner function.

The second example is similar to the first. We will

use the result of D. Marshall [15] stated below.

Theorem 3.9. Let S be a set contained in M(ﬂ”)

and containing more than one point. Then there exists an
interpolating Blaschke product b which is nonconstant

on S.

Lemma 3.10. Let Et be a QC 1level set containing

more than one point. Then U {s:s8 c Et}
S nontrivial

S maximal antisymmetric

is dense in Et’

Proof: If this is not the case, then there exists

a clopen subset F of E. with

U (8:8scEJ cFcCE_ .
S nontrivial
S maximal antisymmetric

Then M(H" |Et) = {p € M(H®) :supp ¢ < F} U (E_ ~ F).

t
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Therefore for each ¢ € M(H™ |Et), Xp lsupp ¥ € H |supp P
Thus xp € H |Et. This implies M(H lEt) is disconnected,

contradicting Corollary 2.9.

Example 3.11. There exist interpolating Blaschke
products bl and b2 such that for every antisymmetric
set S c Ml(Lm), either b, |S is constant or b, | s

is constant, but on some QC level set E. . c Ml(LQ) neither

b, | E. is constant nor b, | E_ is constant.

Proof: By Theorem 3.7 there exists f ¢ H® real

valued on M, (L") and a QC level set E g,MI(LQ) such

t
that £ |Et is nonconstant. Since the nontrivial maximal

antisymmetric sets contained in Et are dense in E.,

f must assume different values on two maximal antisymmetric

sets Sl and Sz contained in Et' Without loss of

generality we may assume that f(Sl) = 0 and f(Sz) = 1.
let 0, = (3 € M(E") : |p(£) -1| >3} and o, =

{p € M(E”) : lo(£) - 1] < %]. Then M(H |sj) goj for

j = 1,2. By Theorem 3.9, there exist interpolating Blaschke
products bl and b, such that bl |Sl is nonconstant

and b, |82 is nonconstant. Therefore there exists

queu(n‘”\sj) j = 1,2 with g4(by) =0 J = 1,2. Let

[--]
{z and (zn'z}n=l denote the zero sequences of b

} ®

and bz, respectively. Without loss of generality we may

(-]
assume that (z lfM(H ) g_ol and (z 2EM(H°) _C_Oz.

n' n'
Let S be a maximal antisymmetric set contained in

Ml(If). Then either M(H™ |S) g_oi » in which case
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b1 |S is constant (since for any blaschke product either
b(S) =3 D or b|S is constant) or M(H" |S) no; # ¢.
Since f ¢ H and f |M1(L°) is real valued, £ |Ss is

constant. Therefore we must have M(H™ |S) € 0,. Hence

b, | s 4is constant. Clearly neither b, nor b, is

2

constant on E and we are done,

t
We remark that Example 3.9 shows that Theorem 2.11
does not generalize to the case where £ |supp ¢ € H | supp o

or g |supp v € H | supp for all ¢ € M, (H" +C).
P ® 1

Example 3.12. There exist interpolating Blaschke

products b, and b, such that H“[Si] n H°f32] is not

2
generated by H and the complex conjugate of a single

inner function.

Proof: Choose bl' b2' E.. ®y and $, as in
Example 3.11. Suppose there is an inner function u such

that

H [u]

H [31] n H® ['Sz]

Then by Example 3.11 M, (H”) ¢ M(H™[b;]) U M(H” [b,]) cM(H [u]).
As was shown in Example 3.8, there exists an open interval

I c 3D containing 1, such that M)‘(H‘”) c M(E"[u]) =
M(H"’[Bl] N H“[Sz]) for all A\ € I. By Theorem 3.4,

MX(H”) c M(H"[(B;]) U M(H [b,]) for A € I. let g bea
continuous function such that supp g < I and g(l) = 1.

let o € M(H +C). If ® € M (H) and A €23D ~ I, then
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gsl | supp ¢ and dﬁz | supp ¢ are both identically zero.
If geM(H) and ) €I then g ¢ MH [B)]) UM(H (B,]).
Therefore either bl lsupp ¢ 1is constant or b2 | supp o
is constant. Hence for any ¢ € M(H +C) either

gb, | supp 9 € H | supp ¢ or gb,|supp ¢ € H | supp o.

By Theorem 2.11, we have either jﬂi lEt € H | E, or

gﬁé | E, € H | E.. Since g |M1(L9) is identically 1,
either '31 |E, € H | E, or '32 | B, € H | E, which is a

contradiction.
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