REAL-TIMEMULTIMODALSENSINGINNANO/BIOENVIRONMENTByBoSongADISSERTATIONSubmittedtoMichiganStateUniversityinpartialtoftherequirementsforthedegreeofElectricalEngineering-DoctorofPhilosophy2016ABSTRACTREAL-TIMEMULTIMODALSENSINGINNANO/BIOENVIRONMENTByBoSongAsasensingdeviceinnano-scale,scanningprobemicroscopy(SPM)isapowerfultoolforexploringnanoworld.NeverthelesstwofundamentalproblemstacklethedevelopmentandapplicationofSPMbasedimagingandmeasurement:slowimaging/measurementspeedandinaccuracyofmotionorpositioncontrol.Usually,SPMimaging/propertiesmeasuringspeedistooslowtocaptureadynamicobservationonsamplesurface.Inaddition,BothSPMimagingandpropertiesmeasurementalwaysexperiencepositioninginaccuracyproblemscausedbyhysteresisandcreepofthepiezoscanner.ThisdissertationwilltrytosolvetheseissuesandproposedaSPMbasedreal-timemultimodalsensingsystemwhichcanbeusedinnano/bioenvironment.First,acompressivesensingbasedvideoratefastSPMimagingsystemisshownasantmethodtodynamicallycapturethesamplesurfacechangewiththeimagingspeed1.5frame/swiththescansizeof500nm500nm.Besidestopographyimaging,anewadditionalmodalofSPM:vibrationmode,willbeintroduced,anditisdevelopedbyustoinvestigatethesubsurfacemechanicalpropertiesoftheelasticsamplesuchascellsandbacteria.AfollowedupstudyofenzymatichydrolysiswilldemonstratetheabilityofinsituobservationofsinglemoleculeeventusingvideorateSPM.AfterthatwewillintroduceanothermodalofthisSPMsensingsystem:accurateelectricalpropertiesmeasurement.Inthiselectricalpropertiesmeasurementmode,acompressivefeedbacksbasednon-vectorspacecontrolapproachisproposedinordertoimprovetheaccuracyofSPMbasednanomanipulations.Insteadofsensors,thelocalimagesareusedasboththeinputandfeedbackofanon-vectorspaceclosed-loopcontroller.Afollowedupstudywillalsobeintroducedtoshowntheimportantroleofnon-vectorspacecontrolinthestudyofconductivitydistributionofmulti-wallcarbonnanotubes.Attheendofthisdissertation,somefutureworkwillbealsoproposedtothedevelopmentandvalidationofthisreal-timemultimodalsensingsystem.ACKNOWLEDGMENTSIwouldliketoexpressmymostsincereappreciationtomyadvisor,Dr.NingXi,andDr.LixinDongfortheirexpertguidance,generousencouragementandsupportformyresearch.Inaddition,IwouldliketothankallmyPhDcommitteemembers:Dr.HassanK.Khalil,Dr.DonnaH.WangandDr.XiaoboTan.Theymetimelyhelpandunfailingsupportthatimprovethetechnicalsoundnessandthepresentationofthisdissertation.Furthermore,Iwouldliketoexpressmygratitudetoallmycolleagues,especiallytoDr.KingWaiChiuLai,Dr.CarmenKarManFung,Dr.HongzhiChen,Dr.RuiguoYang,Mr.ZhiyongSun,Mr.LiangliangChen,Mr.AndyTomaswick,Dr.YongliangYang,Dr.JianguoZhao,andDr.YunyiJia,fortheirsupportintheexperimentsanddiscussion.Lastbutnottheleast,IwanttothankmywifeLinRen,mydaughterMeeyaSongandmyparents.Thisdissertationwouldnothavebeenpossiblewithouttheiryearsofencouragementandcontinuoussupport.Withloveandgratitude,Idedicatethisdissertationtothem.ivTABLEOFCONTENTSLISTOFFIGURES...................................viiiChapter1Introduction...............................11.1BackgroundandMotivation...........................11.1.1VideoRateImagingSystem.......................31.1.2SensingofElectricalPropertiesinNanoEnvironmentwithAccuratePositionControl..............................61.1.3SurfaceMechanicalPropertiesCharacterizationusingAFM111.2ObjectivesandChallenges............................141.3Contributions...................................151.4OutlineofthisDissertation...........................16Chapter2CompressiveSensingforReal-timeSensinginNano/BioEn-vironment.................................182.1Introduction....................................182.2TheoreticalFoundationofCompressiveSensing................212.2.1GeneralIdeaofCompressiveSensing..................212.2.2SignalSparseRepresentation......................232.3DesignofMeasurementMatrixforCompressiveScanninginReal-timeSensing242.4KnowledgebasedCompressiveSensing.....................272.4.1KnowledgebasedMeasurementMatrixDesign.............272.4.2ImageReconstruction...........................292.5SystemImplementationforSPM........................302.6ExperimentalTestingResults..........................302.6.1StaticObservation............................322.6.2DynamicObservationusingKnowledgebasedCompressiveScan...352.7Conclusions....................................36Chapter3SensingofMechanicalPropertiesinNano/BioEnvironment.383.1Introduction....................................383.2TheStateofArtofVibrationModel......................413.3MathematicModelforVibrationMode.....................423.4HardwareImplementationofVibrationModelonSPMSystem........503.5ExperimentalResult...............................523.5.1TopographyImageComparisonbetweenVibrationModeandConven-tionalTappingandContactModes...................523.5.2CompressiveSensingInvolvedTopographyandLocked-inAmplitudeImagingTestinVibrationMode.....................57v3.5.3SubsurfaceStructureorMechanicalPropertiesMeasurementUsingVi-brationMode...............................603.6Conclusions....................................63Chapter4VideoRateImaginginBiologicalEnvironment.........654.1Introduction....................................654.2VideoRateAFMImagingofCelluloseandCellulase(TrCel7A)Interaction674.3ExperimentalSetupandResults.........................684.3.1PreparationofCelluloseCrystalandTrCel7AforAFMImaging..................................684.3.2InSituVisualizationandImageAnalysis................694.4ResultsandDiscussion..............................704.4.1SizeandShapeofCelluloseNanoCrystalandTrCel7A.704.4.2TrCel7ABindstoCelluloseandMoves.................734.4.3Time-lapseofDensityandDistributionofTrCel7AMoleculesonCel-luloseSubstrate..............................744.4.4CelluloseSubstrateChangesIndicatesEnzymaticHydrolysisRate..794.4.5TheHydrolyticRateisDependentontheDensityofTrCel7AMoleculesontheCelluloseSubstrate........................814.5Conclusions....................................87Chapter5Real-timeSensingofElectricalPropertiesinNanoEnvironment885.1Introduction....................................885.2AccuratePositionControlinNanoEnvironment................925.2.1Non-vectorSpaceControlbasedonLocalImage............925.2.1.1EssentialsofMutationAnalysis................945.2.1.2MutationAnalysisforNanomanipulation...........965.2.2CompressiveSensingforVisualServoing................985.2.3Non-vectorSpaceControlbasedonCompressiveFeedback......1005.2.3.1ControllerDesignbasedonCompressiveFeedback......1015.2.3.2StabilityAnalysis........................1025.3ExperimentalImplementationandSetup....................1045.3.1ExperimentalImplementationonAFM.................1045.3.2ExperimentonNon-vectorSpaceControlwithCompleteImageasFeedback..................................1055.3.3ExperimentonCompressiveSensingwithRandomSampling.....1075.3.4ExperimentonCompressiveFeedbackNon-vectorSpaceController.1085.3.5ExperimentonTrackingSWNTbasedonCompressiveFeedbackNon-vectorSpaceController..........................1095.3.6PerformanceAnalysisofNon-vectorSpaceControllers.........1125.4CarbonNanotubeLocalElectricalPropertyCharacterization.........1135.5MeasurementResultsandAnalysis.......................1165.6ControllableElectricalBreakdownofMultiwallCarbonNanotubes......1175.6.1Introduction................................1175.6.2JouleHeatingandThermalDissipationofMWNTbasedCircuit...120vi5.6.3ExperimentalDetails...........................1235.6.4ResultsandDiscussion..........................1245.7Conclusions....................................130Chapter6ConclusionsandFutureWork....................1316.1Conclusions....................................1316.2FutureWork....................................1326.2.1QuantitativelyAnalyzeTrCel7AMoleculesInvolvedEnzymaticHy-drolysisProcess..............................1326.2.2SubsurfaceStructureorMechanicalPropertiesMeasurementUsingVi-brationModeforCellMigrationStudy.................133REFERENCES................................135viiLISTOFFIGURESFigure2.1Generalideaofcompressivesensing..................22Figure2.2RandomsamplingpointsandTSPtrajectory(800randompointsin5050pointsareawithtotaltraveldistance981.1645)........25Figure2.3Thehardwarearchitectureofthenanomanipulationsystem.....31Figure2.4StaticcompressivescanexperimentresultsonHaCaTcellssample(5050pixels)(a):OriginalAFMimage(scansize:55)(b):Reconstructedimagebyminimizingl1(c):Reconstructedimagebyminimizingtotalvariance........................32Figure2.5StaticcompressivescanexperimentresultsonDNAsample(5050pixels)(a):OriginalAFMimage(scansize:500nm500nm)(b):Reconstructedimagebyminimizingl1(c):Reconstructedimagebyminimizingtotalvariance........................33Figure2.6DynamicobservationofDNAonlooselyboundsurfaceusingknowl-edgebasedcompressivescan(5050pixels)(a):Firstframeimageobtainedbyconventionalscan(scansize:800nm800nm)(b)-(h):Reconstructedimageobtainedbyknowledgebasedcompressivescanwithminimizingtotalvariance.....................34Figure3.1SchematicofthesetupforthevibrationAFM............41Figure3.2SchematicofthesetupforthevibrationAFM............42Figure3.3Modelillustration............................44Figure3.4SchematicofthesetupforthevibrationAFM............51Figure3.5Topographyinformationofcalibrationgridformconventionaltapingmode(a):Topographyimgaeformconventionaltapingmode(b):cross-sectionanalysisfromtopographyimage.............53Figure3.6Topographyinformationofcalibrationgridformconventionalcontactmode(a):Topographyimageformconventionalcontactmode(b):cross-sectionanalysisfromtopographyimage.............53viiiFigure3.7Topographyinformationofcalibrationgridformvibrationmode(a):Topographyimageformvibrationmode(b):cross-sectionanalysisfromtopographyimage.........................54Figure3.8Amplitudeandphaseimagesofcalibrationgridformconventionaltapingmode(a):Amplitudeimageformtapingmode(b):Phaseimageformtapingmode........................54Figure3.9Topographyinformationofgoldandsilicondioxidemicro-electrodesformconventionaltapingmode(a):Topographyimageformconven-tionaltapingmode(b):cross-sectionanalysisfromtopographyimage55Figure3.10Topographyinformationofgoldandsilicondioxidemicro-electrodesformconventionalcontactmode(a):Topographyimageformcon-ventionalcontactmode(b):Cross-sectionanalysisfromtopographyimage...................................56Figure3.11Topographyinformationofgoldandsilicondioxidemicro-electrodesformvibrationmode(a):Topographyimageformvibrationmode(b):Cross-sectionanalysisfromtopographyimage..........56Figure3.12Amplitudeandphaseimagesofgoldandsilicondioxidemicro-electrodesformconventionaltapingmode(a):Amplitudeimageformtapingmode(b):Phaseimageformtapingmode...............57Figure3.13Mechanicalpropertiesmappingofvibrationmodeoncalibrationgrid(a):Lockedinamplitudeimage(b):espringconstantmap.58Figure3.14Mechanicalpropertiesmappingofvibrationmodeonmicrochip(a):Lockedinamplitudeimage(b):espringconstantmap...58Figure3.15Experimentalresultsofcompressivevibrationmodeleft:Vibrationlockedinamplitudeimagebyfullscan,middle:espringcon-stantmapcalculatedbyfullscandata,righespringconstan-tmapcalculatedbycompressivescanwithcompressionratioof(a)50%,(b)10%...............................59Figure3.16PDMScoatedmicroelectrodeschip..................60Figure3.17ExperimentalresultsofvibrationmodeonPDMScoatedmicrochipsample(a):Topographyimageusingconventionaltappingmode,(b)Vibrationamplitudeimage.......................61ixFigure3.18Experimentalresultforthemechanicalpropertiesmeasurementus-ingcompressivesensingbasedvibrationmode.(a)TopographyimageofsamplesurfacebeforePDMScoatingusingregulartappingmode.(b)TopographyimageofsamplesurfaceafterPDMScoatingusingregulartappingmode.(c)Tappingamplitudeimageofsamplesur-faceafterPDMScoatingusingregulartappingmode.(d)TopographyimagesofsamplesurfaceafterPDMScoatingusingcompressivesens-ingusingregulartappingmode.(e)MechanicalpropertiesimagesofsamplesurfaceafterPDMScoatingusingcompressivesensingbasedvibrationmode..............................62Figure3.19ExperimentalresultforthemechanicalpropertiesmeasurementofliveHacaTcellusingvibrationmode.(a)TopographyimageofliveHacaTcellusingregulartappingmode.(b)VibrationamplitudeimageofliveHacaTcellusingvibrationmode............63Figure4.1Visualizationofcellulosenanocrystal(a)Amplitudeimageofcellulosenanocrystal(scanbar:800nm),(b)Zoomedinamplitudeimageofcellulosenanocrystal(s-canbar:220nm),(c)Zoomedinamplitudeimageofcellulosenanocrystal(scanbar:100nm),(d)Heightanalysisofcellulosenanocrystal.........................71Figure4.2VisualizationofTrCel7Aenzyme.(a)and(b)AFMamplitudeimageofTrCel7Aoncellulosenanocrystalsurface(scanbar:70nm),(b)Amplitudeimageofcellulosenanocrystal(scansize:2.2m),(c)HeightanalysisofcellulosenanocrystalblackcurveforTrCel7Ainimage(a),redcurveforTrCel7Ainimage(b)....................................72Figure4.3InSituvisualizationofdynamicinteractionsofcellulaseandcellu-losemolecules,(a)TrCel7A(labeledwitharrows)boundtoCellulose(scansize:180nm500nm),(b)TimelapseamplitudeimagesofanindividualTrCel7Amovingontheasinglecellulosenanocrystal(scansize:180nm180nm)...............75Figure4.4Video-rateAFMObservationsofTrCel7A(50m)moleculesboundoncellulosesubstrate.(a)ContinuouslycapturedAFMframesofmovingTrCel7Aoncellulosesubstrate(twotlocations:(a1)and(a2))in50mMsodiumacetatewithpH5.0.Imagingframerate:0.5frames/s.(b)HistogramofaveragemovingvelocityofTrCel7A.ThevelocitieswerecalculatedbythemodistanceandbyPoissondistribution(Detailedinsupplementedmaterial).(c)TrCel7AmoleculescountingbasedonAFMimages.PositionsofeachTrCel7Amoleculearelabeledwitharrows......76xFigure4.5TimecourseofthesurfacedensityofactiveTrCel7A(50M)moleculesboundoncellulosesubstratein50mMsodiumacetatewithpH5.0at25C.ThesurfacedensityofactiveTrCel7Ahasbeencalcu-latedbyaobservationarea15050nm2.(A)ObservedsurfacedensityofactiveTrCel7AdecliningduringthecontinuouslyAFMob-servationandtheaveragenumbersofactiveTrCel7AwerecalculatedastheexpectedvalueofPoissondistribution(Eq.1and2).Errorbarsshowstandarddeviation(SD)fromthethreeindependentmea-surements.Theexperimentaldatawasbyanempiricaldecayfunction(Eq.3).(B)ExampleofAFMdynamicobservationsondif-ferentreactiontimepoints:3min(B1),23min(B2),46min(B3)and76min(B4),respectively.ThenumbersofactiveTrCel7AoneachAFMframewerecountedmanuallyandusedastherawdataforcalculatetheparameterofPoissondistribution..........80Figure4.6Timecourseofthedensity(number)ofthetopographicheightchangesofcellulosesubstrateinteractedwithTrCel7A(50M)in50mMsodi-umacetatewithpH5.0at25C.(A)Observedheightofcel-lulosesurfacedecliningduringthecontinuouslyAFMobservation.Errorbarsshowstandarddeviation(SD)fromthethreeindependentmeasurements.(B)and(C)ExampleofAFMdynamicobservationsoncellulosesurfacemonitoringduring480seconds.(B)isthecross-sectionof(C)atvarioustimespots.Thepositionofcross-sectionismarkedwithdashlineon(C)......................82Figure4.7TimecoursecomparisonofthesurfacedensityofactiveTrCel7Amolecules(A)andthetopographicheightchangesofcellulosesubstrate(B)dur-ingthecontinuousadditionofTrCel7A.50MofTrCel7Awasaddedattimepoint0min,120minand240min.Boththecellulosesubstrateandimaging(50mMsodiumacetatewithpH5.0at25C)werestayedthesamethroughoutthelengthofentiretimeperi-od.ThesurfacedensityofactiveTrCel7AhasbeencalculatedastheexpectedvalueofPoissondistribution(Eq.1and2).Errorbarsshowstandarddeviation(SD)fromthethreeindependentmeasurements.85Figure5.1Controldiagramofthenon-vectorspacecontrolsystemwithcom-pressivefeedback(AFMasanexample)................91Figure5.2Basicworkingapproachofnon-vectorspacecontrol.........93Figure5.3Experimentsetupandresultsofnon-vectorspacecontrolbasedoncompressivefeedback(a):Experimentalsetupforthenon-vectors-pacecontrol(b):Experimentresultsofnon-vectorspacecontrolwithimageasfeedback:Errorinxandydirections............106xiFigure5.4ExperimentresultsofAFMimagesreconstructionbasedoncompres-sivesensing(a):OriginalAFMimageof5050pixels(b):Recon-structedimageobtainedbycompressivesensing...........107Figure5.5Experimentsetupandresultsofnon-vectorspacecontrolbasedoncompressivefeedback(a):Experimentalsetupforthenon-vectors-pacecontrolbasedoncompressivefeedback(b):Experimentresultsofnon-vectorspacecontrolwithcompressivefeedback:Errorinxandydirections.............................110Figure5.6ExperimentresultsoftrackingSWCNTusingnon-vectorspacecon-troller,(a):OriginalAFMimageof10241024pixels,(b):Trackingpath,(c):Asequenceofimagefeedback,(d):Positionerrorduringtracking.................................111Figure5.7Testingplatform(A):I-Vcurveobtainbycurvetracer(B):Dimension3100AFM(C):Conductiveprobe...................115Figure5.8Schematicdiagramofexperimentalsetupforcharacterizinglocalcon-ductivity(a):experimentalsetup(b):Usingconductivetiptoprobelocalconductance(c):AFMimageoftestingsample.........116Figure5.9MWNTelectricpropertycharacteristics(a):I-Vcharacteristicsfromsourcetodrainelectrodes(b):Totalresistanceasafunctionofchan-nellength................................118Figure5.10DiagramofthermaldistributionofMWNTintconditions,(a)AsuspendedMWNT,(b)AnMWNTwithanduniformcon-tactwithsubstrate,(c)AnMWNTwithdefectcontactedanduniformlywithsubstrate,(d)AnMWNTwithnonuniformcontactwithsubstrate..............................122Figure5.11Experimentalsetup:MWNTonelectrodesandmoveableAFMprobeforconductancecharacterization....................123Figure5.12ElectricalbreakdownofanMWNTwithuniformconductancedis-tribution,(a)TheAFMimagesbefore(left)andafter(right)theelectricalbreakdown,(b)Thetotalresistancerespecttothechannellengthbeforeandaftertheelectricalbreakdown,measuringdirection:fromthebottomendtotheupperendoftheMWNTin(a)....125Figure5.13ElectricalbreakdownofanMWNTwithnonuniformconductancedistribution,(a)TheAFMimagesbefore(left)andafter(right)theelectricalbreakdown,(b)Thetotalresistancerespecttothechannellengthbeforeandaftertheelectricalbreakdown,measuringdirection:fromthebottomendtotheupperendoftheMWNTin(a)....126xiiFigure5.14ElectricalbreakdownofanMWNTwithnonuniformconductancedistributionandcontactconsition,(a)TheAFMimagesbefore(left)andafter(right)theelectricalbreakdown,(b)Thetotalresistancerespecttothechannellengthbeforeandaftertheelectricalbreak-down,measuringdirection:fromthebottomendtotheupperendoftheMWNTin(a)............................128xiiiChapter1Introduction1.1BackgroundandMotivationThenanoworldwasrevolutionizedtherecentadvancementoftechnology,enablingimag-ing,manipulationandmeasurementfromnanoandmolecularlevel.Targetednanoparticleimagingandsensinghaveintroducednanotechnologytothebiomedicine,materialscienceandphysicsstudies.Thelaboratory-leveltestingandexperimentofnanoscalerequiresin-strumentsthatcanprovidenanoscaleimagingandoperation.Asoneofthecenterpiecesinnanotechnology,Thescanningprobemicroscopy(SPM)isasuitablecandidateforsuchneedsasitcouldscanandmanipulatenanoparticlesorsinglemolecularatnanoscale.Thescanningprobemicroscopies(SPMs)suchasatomicforcemicroscopy(AFM)andscanningtunnelingmicroscopy(STM)havebeenfrequentlyusedtoimageandmanipulatenanomat-ters[1][2].Usuallythiskindofmicroscopyareequippedwithaprobewhichhasaverysharptip(tipapexisapproximately10nmorless)anditcandelicatelyscanontopofsamplesurfacetogetthetopographyimage.Besidesimaging,thesharptipcanbeconsideredasanendofnano-robotwhichiscapableofmanipulatingnano-objectsandmodifyingsamplesurfaces[3][4].AlthoughAFMhasmanyadvantagesinimaging,itstillhasaverytnegativepointandthatistheslowimagingspeed.ThisisduetotheworkingprincipleofAFM.UnlikeothermicroandnanolevelobserversuchasScanningElectronMicroscope(SEM),1AFMobtainstheimagesbyscanninglinebylineonthesurfaceofsample.Usuallyittakesseveralminutestoscanhundredslinestogenerateahighresolutionimage.Thereforetheframerateisabouttenframesperhour.However,withthedevelopmentofbiologyandphysic,moreandmoreresearchershavethewillingtoobservethedynamicchangeinsamplesuchasthedeformationchangeofcell,DNAshapechangeandsoforth[5][6].AlthoughthereareotheravailableobservationssuchasSEMwhichmayalsobeusedinmanyexperiments,itdemandsthevacuumworkingenvironmentwhichwouldmakethelivesamplessuchascelldead.AFMhasthenatureabilitytoworkinavacuumfreecondition,buttheissueisthelowimagingframerate.Therefore,thereisanincreasingdemandsontheAFMbasedfastimagingsystemthatcouldobservethecontinuallychangehappensinseconds.BesidesimagingAFMalsoplaysanimportantroleofprovidingaccuratetopographyimageandmechanicalpropertiesmeasurementinthenanoscale.AFMenablesthebiomedicalstudieshaveatremendousdevelopmentfrombullexperimenttosinglemoleculestudies.Mechanicalpropertiesofsinglecellhavebeenknownasanimportantindicatororreportertoestimateorpredictthestateofthecells.Numerousmethodshavebeenintroducedtoobtainsamplepropertiessuchaselasticity,viscosityandenergydissipation[7][8][9].Regularly,thecontactmodeinAFMisalsousedastheindentationmeasurementinthe"forcecurvefunction".Duringthismeasurement,awellcontrolledindentationisgeneratedbyAFMprobe,andthetip-sampleinteractionforceisrecordedthroughthePSDsensor.ThroughthecalculationbasedonHertzmodel,aneYoung'smodulescanbeestimateasthemechanicalpropertiesofthemeasuredmartial.Sincemechanicallyindentationisnec-essaryinthismode,themechanicaldamagemayhappenduringthemeasurementprocess.Inaddition,becausethetip-sampleindentationonlyemphasizethepropertiesofthematerial,theinternalmechanicalpropertiesareoutofscopeduringthetraditionalforce-2curvemeasurement.Thismaynotbeaseriousissueforhomogenousmaterial,however,forbiologicalsamplessuchascellandbacterial,theinternalstructuresarequitecomplicat-ed,andthepropertiesisverylikelytobettwiththeinternalones.Therefore,aandnoninvasivemechanicalmechanicalpropertiesmeasurementmethodisneededtotlymapthemechanicalpropertiesofsamples.Besidesimagingspeed,conventionalscanningprobemicroscopy(SPM)basednanoma-nipulationsalwayshavetofacescanneraccuracyproblemssuchashysteresis,nonlinearityandthermaldrift.Althoughsomescannersconsistofinternalpositionsensors,thesensitivi-tyisnothighenoughtomonitorhighresolutionnanomanipulations.Additionally,oncethescansizedecreasestonanolevelsuchaslessthan100nm,thenoisebroughtbysensorsislargeenoughtotheperformanceoftheclosed-loopmotioncontrolsystem.Inthisstudy,weproposedanovelsensingmethodinnano/bioenvironmentforAFM(whichisoneofmostusefulSPMswithatomicresolutionimagingandmanipulatingabilities)basedfastimagingandelectrical/mechanicalpropertiesmeasurement[3][4],whichaimstoprovidetheoperatorwithvideoratevisualizationinformationaboutsamplesurfacechangesinmolecularlevel,aswellastheabilitytopreciselycharacterizesurfacepropertieswithhighspatialaccuracy.Throughthismultimodalsystem,AFMcouldserveasamulti-functionalnanomanipulationsystem.Ithasmanyapplicationssuchasnano-surgeryonalivecell[2],nano-devicefabrication[10][11][12],fastimagingondynamicchange[13],andsoforth.1.1.1VideoRateImagingSystemIn1993,thescanspeedlimitofAFMwasdescribed[14].Althoughwefoundnopublications,somestudiesaimingatincreasingtheAFMscanspeedmusthavebeeninitiatedatleastbefore1995.Infact,westartedtodevelophigh-speedscannersin1994andsmallcantilevers3in1997.Hansmasgroupalsostartedtodevelopdevisesforhigh-speedAFMaround1995.Theypresentedthereportonshortcantilevers(23mby12m)in1996[15]andthenareportonfastimagingin1999,inwhichsmallcantileversandanopticaldetectordesignedforthesmallcantileverswereusedtotakeaDNAimagein1.7s.Nextyear,theyimagedtheformationanddissociationoftheGroES-GroELcomplexes[16].However,duetothelimitedfeedbackbandwidth,thismolecularprocesswastracedbyscanningthesamplestageonlyinthexandzdirections.Amorecompletehigh-speedAFMsystemwasreportedbyusin2001and2002[17],inwhichahigh-speedscannerandfastelectronicswereintroducedinadditiontosmallcantilevers(resonantfrequencies600kHzinwater)andanopticaldetectorforthesmallcantilevers.Theimagingrateof12.5frames/swasachievedandthereforetheswinginglever-armmotionofmyosinVmoleculeswasassuccessiveimageswithascanrangeof240nm.Thisstudyinspiredthestudyonhigh-speedAFMandseemedtobringaboutagroundswelltowardsthefull-scaledevelopmentofhigh-speedAFManditsapplicationtobiologicalissuesthatweretosolvebyothertechniques.DevicesforHigh-speedAFMA.SmallCantilevers:Foragivenspringconstant,theresonantfrequencyincreaseswithdecreasingmassofthecantilever.Thetotalthermalnoisedependsonlyonthespringconstantandthetemperature.Therefore,acantileverwithahigherresonantfrequencyhasalowernoisedensity.Intappingmode,thefrequencyregionusedforimagingistheimagingbandwidth(itsmaximumisthefeedbackbandwidth)centeredaroundtheresonantfrequency.Thus,acantileverwithahigherresonantfrequencyislessbythermalnoise.B.High-speedScanner:4Thescanneristhedevicemosttooptimizeforhigh-speedscanning.High-speedscanofmechanicaldeviceswithmacroscopicdimensionstendstoproduceunwantedvibrations.Threetechniquesarerequiredtominimizeunwantedvibrations;(a)atechniquetosuppresstheimpulsiveforcesthatareproducedbyquickdisplacementoftheactuators,(b)atechniquetoincreasetheresonantfrequencies.Theissuewassolvedbyacounterbalancingtechnique[17].Forexample,forthez-scannerthatmovesatmuchhigherfrequenciesthanthexandy-scanners,twoidenticalpiezoactuatorsareplacedtotheirsupportingbaseinthecounterdirectionsanddisplacedsimultaneouslywiththesamelength.AnalternativewayistosupportapiezoactuatoratboththeendswithThiswaywasappliedtothex-scannerandworkedverywell(unpublisheddata).Theresonantfrequencyofapiezoactuatorisdeterminedalmostsolelybyitsmaximumdisplacement(inotherwords,byitslength).However,itcanbeelyextendedbyaninversecompensationmethodasdescribedlater.ThestructuralresonantfrequencyisenhancedbytheuseofacompactstructureandamaterialthathasalargeratiooftheYoungsmodulustothedensity.However,acompactstructuretendstoproduceinterferencesbetweenthethree-scanaxes.Aball-guidestage[18]isonechoicetoavoidtheinterferences.Analternativewayistouse(bladesprings)thatareenoughtobedisplacedbutenoughinthedirectionsperpendiculartothedisplacementaxis[19].Itshouldbenotedthatthescannermechanicsexceptforpiezoacutatorshastobeproducedbymonolithicprocessinginordertominimizethenumberofresonantelements.Anasymmetricalx-yhasbeenemployedtogainahighresonantfrequencyforthex-scanner(thefastscandirection)[20].However,asymmetricalx-yhasanadvantageofbeingcapableofrotatingthescandirection[19].Asamaterialforthescanner,aluminum5orduraluminisoftenused.1.1.2SensingofElectricalPropertiesinNanoEnvironmentwithAccuratePositionControlWiththedevelopmentofsynthesistechniquesofnano-materials,includingnanotubsandnanowire[21],nanopolymers[22],quantumwellsandquantumdots[23],theelectricalchar-acterizationofthesematerials,albeitmorechallenging,attractedstrongattention.Nano-materialshaveuniqueelectricalpropertiesduetoquantumt.Notonlydotheelectricalcharacterizationsrevealtheunderlyingphysical,mechanical,andelectricalprop-ertiesofthenano-materials,buttheycanalsobeutilizedtofabricatehighperformancesensorsanddevices,suchastransistors(FETs)[24][25],infraredsensors[26],gassensors[27],andsolarcells[28].Theconventionalelectricalcharacterizationsetupfornanotubeswasmeasuringglobalresistancebyconnectingananotubetotwometals[29].However,suchasetupisonlycapabletomeasuretheoverallresistanceofthedevices,whichcannotdistinguishtheconductanceofcontactsandnano-materials.Whatismore,itlacksthecapabilitytoinvestigatethelocalconductance,whichunderlyingpropertiesofthenano-materials.SPMs,conventionalimagingtoolswithnanometer-resolution,havebeenproposedtostudythelocalconductanceofnano-materials.TheyemployedtheconductiveSPMprobeasamovableelectrodetoconductlocalconductancemeasurements[30][31][32][21].Despitethefeasibilityofthismeasurementtechnique,onlyafewattemptshavebeenimplemented,letalonethelowreliabilityandresolution.ThereasonistheinaccurateSPMtipmotionandforcecontrolduringthemeasurement.6AlthoughtheimagingprecisionwithSPMscanbeuptosubnanometer[33],itischal-lenging,ifnotimpossible,toachievesuchaprecisionfornanoscalemotioncontrolduetothespatialuncertaintyoftheprobe'stip[34].ThemainreasonforsuchaisthepiezoelectricactuationmethodforSPMsystems.Theinherentnonlinearitiesofpiezoactu-atorssuchashysteresis,creep,vibration,andthermaldriftmakeprecisepositioncontrol(inthenanometer)extremely[35].Additionally,themodelingerrorsincludeparametervariation,unmodeleddynamics,andcouplingalsoexertextrainpositioncontrol[36].Theaccuratepoint-to-pointpositioncontrolormotioncontrolinnanoscaleisacriticalrequirementforSPMbasednanomanipulationsbecausetheyrelyonpreciselymovingtheprobetipfromonepositiontoadesiredposition.Forexample,inAFMbasednano-sensorfabrication,carbonnanotubeswerepushedtoadesiredpositionbyanano-manipulatortoformphotodetectors[37].Thepositionaccuracyofthemanipulationshouldbewith-insub-10-nanometerstofacilitatetheintegrationtoanano-antennathathasagapof30nanometers[38,39].TheaccuracyofAFMmeasurementandmanipulationhighlydependsonaccuratemotioncontroloftheprobe(whichisequippedattheendofthepiezo-tubescanner).Thepiezo-tubescannerwithadvantagesofnanometerscaleresolution,highandfastresponse,hasbeenwidelyusedinnano-manipulationtocontroltherelativepositionbetweentheprobeandsamples.Nevertheless,thetdrawbackstheprecisionofpiezoactuatorsaretheinherenthysteresis,creepandsystemdriftcharacteristics[40].Thecreepcanthemagnitudeoftheoutputoftheactuatorswhichcanbecompensatedbythelinearmethod.Thehysteresisproblemisanonlinearonewhichcancauseseriouspositionerrorduringnanomanipulation.Thehysteresisproblemmightbesustainablefor7AFMimagingwithascanpattern.However,itisfatalforAFMbasedarbitrarymanipulation.Todate,thehysteresisandcreepproblemsinpiezoactuatorshavebeenstudiedbymanyresearchers,andvarioussolutionshavebeenproposed.TypicalcompensationmodelsuchasthePreisachmethod[41][42]whichincludeafeed-forwardcontrollerforsolvinghysteresisproblem.Itcannot,however,reducetheon-lineerrorbecauseoflackingfeedback.APreisachoperatorbasedhysteresiscompensatorwasdevelopedwithanindirectfeed-backadaptivecontrollerinordertoreducethepositioningerrorinAFMimagingsystem[43];acontrolstrategywhichintegratestheKalmanobserveraswellasavibrationcompensatorwiththeLQGcontrollerwasproposedtoalleviatethehysteresis,creep,vibrationandcrosscoupling[44].Thesemethodsabovebelongtothecategoryoffeedbackcontrollers,whichweredesignedtousesensorstocapturethereal-timeoutputinformationofthesystem.Basedontheinformation,spcontrolstrategiescanbedevelopedtoachieveprecisemotionpositioningduringnanomanipulations.However,theprecisionoftheclosed-loopscannerhasbeenlimitedbytheperformanceofthesesensors(suchasstraingauge[45],capacitivesensor[46],andopticalsensor[47]).Forsensors,highaccuracyandbandwidthusuallymakethemexpensiveandbulky.Moreover,integratedsensorsarehighlysensitivetonoises[48].ThisisthereasonwhyhighresolutionAFMsareusuallyequippedwithopen-looppiezotubescanners.Theyhaveseveraldrawbacksneededtobesolved.First,sensorsusuallyincreasethesystemnoise.Second,thedisplacementmeasuredbysensorsistheoutputofpiezo-tubewhichisnottheexactpositionofthetip(attheendofprobe),becausethecantileverofprobemightbebendingduringnanomanipulations.tfromthetraditionalapproaches,weproposeanimagebasedclosed-loopcontrol8methodtoaddressthenanoscalemotioncontrolproblem.Thetipcanbeconsideredasasinglepixelcamerawithtwotranslationaldegreeoffreedoms.Bymovingthetiplocallyinasmallarea,alocalscanimagecanbeobtained[49].Sincetheimageisobtainedfromthelocalscan,itcanaccuratelythetip'strueposition.Ifadesiredlocalscanimagearoundadesiredtippositionisgiven,thenacontrollercanbedesignedtosteerthetippositiontothedesiredpositionbasedontheimagefeedback.Theadvantageofsuchanimage-basedcontrolmethodisthatiteliminatesexternalsensorsforpositionfeedback.Theimagebasedcontrolmethodpresentedinthisresearchbelongstotheliteratureofvisualservoing,whichutilizesvisioninformationtocontrolthemotionofamechanicalsystem.Fortraditionalimagebasedvisualservoingmethods,prominentfeaturesareextractedfromtheimage,andthenacontrollerisdesignedtomakethevectoroffeaturepositionsconvergetoadesiredvalue[50].Twopossibleissuesassociatewiththisfeaturebasedvectorcontrolmethod.Ontheonehand,robustfeatureextractionandtrackingareinnaturalenvironments.Infact,mostvisualservoingexperimentsarebasedonmarkers[51].Ontheotherhand,featureextractionfrominformationlossbecauseonlythefeatureinformationisusedforcontrol.Recently,thedirectorfeaturelessvisualservoingmethodisproposedtoaddresstheabovetwoissues.Forsuchmethods,thefeatureextractionandtrackingareeliminatedbecausethecontrollersaredesigneddirectlybasedonalltheimageintensitiesinsteadofsomefeaturesextractedfromtheimage.Threevariationsexistforsuchdirectservoingmethods.Thevariationprocessestheoriginalimagewithaspatialsamplingfunctiontoderiveakernelmeasurement.Acontrollerisdesignedtomakethemeasurementerrorconvergetozero[52].Thesecondvariationformstheerrorastheofintensitiesbetweentwoimages,andthenmakesthiserrorapproachzero[53,54].Thethirdvariationemploys9aninformationtheoreticalapproachtocomparethedistributionoftheinformationbetweentwoimagesanddesignthecontrollawtomaximizethemutualinformation[55].Insuchacondition,theexperimentalresultsoflocalconductancemeasurementfrompreviousstudiesshowedalargemeasurementvariance[32][21],andthiswaspossiblyduetoinaccuratetippositioncontrolwhichmeansduringthemeasurement,theconductiveprobemaynotreachthedesiredmeasurementpoints.Next,thespatialresolutionofmeasurement(typical100nmintraditionalmeasurementmethods)isnotenoughtoinvestigatelocalelectricpropertiesinnanoscale[31].Additionally,contactresistancebetweenconductiveprobeandnanowiresisload-dependent[30].Inotherwords,inordertocharacterizethelocalconductanceuniformlyateachlocation,constantcontactforceshouldbemaintainedwhichisanotheryinpractice.Thenon-vectorspacecontrolstrategyhasthepo-tentialtoovercomethesebyimprovingthespatialresolutionofprobemotioncontrolthroughwhichthepositionerrorcanbecontrolledwithinseveralnanometers.Inaddition,contactforcebetweenconductiveprobeandsamplesurfacecanbecontrolledbytheforcefeedbacksystem[56]andthatensurestheconstantcontactresistancebetweentheprobeandsample.Therefore,thenon-vectorspacecontrolsystemhasthepotentialtocon-ductdelicateandcomplicatedmanipulationandmeasurement.Inthisstudy,weillustratetheofthenon-vectorcontrolstrategybyintegratingthenanomanipulationwithelectricalcharacterizationsystemtostudylocalelectricalpropertyofacarbonnanotube.101.1.3SurfaceMechanicalPropertiesCharacterizationusingAFMMorphologicalandmechanicalpropertiesanalysisinnanoscaleofcellisbecomingincreasing-lyimportantinvariousbiomedicalstudies.intopographyandbetweennormalandmaligncellswerefoundandestablishedasamarkerforthechangeinmetastaticpotential.Thechangesincellularandmorphologyalsorevealsthetstatusofcellmigration,whichbthestudiesoftheprogressionofvariousdiseasesincludingcancer,atherosclerosisandarthritis.Todate,ithasbeenextremelychallengingtostudythemorphologyofcellsbystandardlightmicroscopyinlivingcellsbecauseoftheirsmallsizeandcomplexstructure.Whileimmandelectronmicroscopyhaveprovidedinsightintothestructureofcelladhesionmolecules,amodelsystemforaddressingdynamicchangesduetophysiolog-icalmechanismshasbeenlacking.AFMtheadvantageofrequiringminimalsamplepreparation,sothatbiomolecularstructurescanbedirectlystudiedinsituonviablesamplesthatrecapitulatebiologicalconditions.AFMprovidesthree-dimensionalimagesofsurfacetopographyandquantitativemeasuresofbiologicalproperties(e.g.inunparalleledresolutionallowingfortheilluminationofstructuralmoafterantibodytreatmentatascalethatcannotberevealedbystandardlightmicroscopy.Regularcontactmodeandnon-contactmodeprovidetopographyimages,andnon-contactmodeisalsousedastheindentationmeasurementinthe"forcecurvefunction".Duringthismeasurement,awellcontrolledindentationisgeneratedbyAFMprobe,andthetip-sampleinteractionforceisrecordedthroughthepsdsensor.ThroughthecalculationbasedonHertzmodel,aneYoung'smodulescanbeestimateasthemechanicalprop-11ertiesofthemeasuredmartial.Sincemechanicallyindentationisnecessaryinthismode,themechanicaldamagemayhappenduringthemeasurementprocess.Inaddition,becausethetip-sampleindentationonlyemphasizethepropertiesofthematerial,theinternalmechanicalpropertiesareoutofscopeduringthetraditionalforce-curvemeasurement.Thismaynotbeaseriousissueforhomogenousmaterial,however,forbiologicalsamplessuchascellandbacterial,theinternalstructuresarequitecomplicated,andtheproper-tiesisverylikelytobettwiththeinternalones.RecentdevelopmentofultrasonicAFM(UAFM)seemsprovideanalternativewaytosolvethisissue.TheUAFMisamooftheoriginalAFMset-upworkingincontactmodeandconstantnormalforce[57].ThemainideaistoworkatfrequenciesfarabovethecantileverprimaryresonanceintheinertialregimeofanAFMcantileverandsensethenonlinearityofthetipsurfaceinter-action.Inpreliminarystudies,UFMhasalreadydemonstratedsensitivitytosurfaceelasticpropertiesofmaterialsandalsotosubsurfacedefects[58].UFMisbasedonastandardAFMoperatinginCMwiththeadditionalapplicationofanultrasonicvibrationtothesubstrate,wellabovetheAFMcantileverresonance.Inthisway,thefrictionforcecanbeeliminatedbecausethetip-samplecontactisbrokenseveraltimeswhilethetipislaterallymovedduringtheimagingprocess.Anypossibledamagetothesampleorthetipisthusminimized[59].Anotheralternativemethodtomeasuretheinternalstructureofsamplesisusingquartzcrystalmicrobalance(QCM).QCMisananogramsensitivetechniquethatutilizesacousticwavesgeneratedbyoscillatingapiezo-electric,singlecrystalquartzplatetomeasuremass.ThebasisofQCMoperationrelatestoquartz'sinherentpropertyofpiezoelectricity.QCMsbecamewidelyusedasmassbal-ancesonlyafterthetheoryandexperimentsrelatingafrequencychangeoftheoscillatingcrystaltothemassadsorbedonthesurfacewasdemonstratedbySauerbreyin1959[60].12LiquidapplicationofQCMtechnologyexpandedthenumberofpotentialapplicationsdra-maticallyincludingbiotechnologyapplicationsandinparticularbiosensorapplications.Inpracticalbiomolecularapplicationsthedissipationparameterandthesubsequentlyextractedviscoelasticparametersarecriticalformanyapplications.Incellularadsorptionapplication-s,thesimpleQCMfrequencyandSauerbreyrelationshipwouldgreatlyunderestimatetheadsorbedmassofcells,sincetheshearwaveoftheoscillatingquartzisdampenedoutbeforeevenreachingthemiddleofthecell.Thefrequencypenetrationdepth(inthezdirectionawayfromthesensorsurface)dependsonthematerialinquestionandtypicallyisontheorderof250nminwater(rigidmaterialsmaystronglycoupletothesensorsurfaceandthuspermitmonitoringthickerbutviscoelasticmaterialswillbelimitedtowithinthisrange).Whentheadsorbedmassisviscousandtlysoftthatitdoesnotfollowthesensoroscillationperfectly(suchasinthecaseofcelladsorption),thisleadstointernalfriction(duetothedeformation)intheadlayerandthustodissipation.Thismassisthedynamicmass(incorporatingassociatedwater)andnottherestmass.Themoreviscoustheadsorbatethemoretheoscillationwillinducedeformation,andthusthecoupledmasswilldeviatemoreandmorefromtherestmass.Therefore,monitoringcelladsorptionrequiresusingthedissipationparametertofullycharacterizetheadsorptionofaviscoelasticcellularstructure.Ontheotherhand,theadsorptionofasmall,rigidproteinmaybeaccuratelymeasuredbymonitoringonlyfrequencychangesandthesetotheSauerbreyrela-tion,althoughassociatedcoupledwatermayagaingiveanunderestimationoftheadsorbedmass.AlthoughtheQCMhastheabilityofmonitoringmass/adhesionchanges,thespatialdetectionisthemainlimitationofthistechniquewhichmakesthequantitativeanalysisisimpossible.131.2ObjectivesandChallengesTheobjectivesforthisdissertationaretodevelopamultimodalAFMsystemwiththeabilityofreal-timesensinginnano/bioenvironment.Themainchallengescanbesummarizedinthreeaspects.First,inordertomakethesystemhavethefunctionoffastimaging,avideo-ratefastscansystemisneeded.Thevideo-ratesystemshouldbeabletoworkattheaverageframerateof1frame/second,suchthattherapidchangesinbiomedicalsamplescanbecapturedininsituobservations.Second,TheaccuracyoftheAFMtipmotionandpositioningshouldbewellcontrolledwithincouplenanometers,whichassuretheaccuratemanipulationinnanoscaleandmolecularlevel.Thelastoneisthefunctionofsubsurfaceimaging/mechanicalpropertiesmappingability.Sincemostofreactionorinteractionofmoleculesinbiomedicalstudyhappensinsidethecellorbacteria,thereisanincreasingdemandsontheAFMwiththeadditionalfunctionofsubsurfaceimagingandmeasurementotherthanregulartopographyimagingandsurfacemechanicalpropertiescharacterization.Inordertomeetthechallengeabouttheimagingspeed,acompressivescanningisdevelopedbasedoncompressivesensingtheory.Thegoalistominimizescanningtrajec-tory/timebyeliminatingunnecessaryscanning.TherearethreemajorstepsinapplyingcompressivesensingtoAFMimaging:tomodelanimageforcompressivesensing,toob-taincompressivescanningpatternbyameasurementmatrixincompressivesensing,andtoreconstructoriginalimagebasedoncompressivedata.Forthesecondchallenge,anon-vectorspacepositioncontrolmethodispresentedinthisstudy.Thegeneralideaistoformasetfromanimageandformulatetheimagedynamicsinthespaceofsets.Thisspaceiscalledthenon-vectorspacebecausethelinearstructure14inthevectorspacedoesnotexist.Basedonthedynamicsformulation,acontrollercanbedesigneddirectlyontheimagesetsforvisualservoing.Thisnon-vectorspacecontrolmethodistfromexistingdirectvisualservoingmethodsbecausetheproblemformulationist.Forthelastchallenge,weplantouseaspecialdesigned"vibrationmode"AFMtosolvethecurrentissueofsubsurfacemeasurement.Thevibrationmodehasacombinationoftheadvantageofconventionaltappingmodeimagingwithnanoscaleresolution,andthenanomechanicalmappingusingtheadditionaldeformationinducedbyvibratingneartheresonancefrequencyofthemeasuredsampletorecoverythespringconstantmapoftheinternalstructureofthesample.1.3ContributionsThecontributionsforthisthesiscanbesummarizedintwoaspects:designanddevelopmentforreal-timemultimodalsensingsystem;followupapplicationresearchtostudythephysicsandmechanismsbehindthephysicalandbiomedicalphenomenalusingthissystem.First,acompressivesensingbasedvideoratefastAFMimagingsystemhasbeende-signedasantmethodtodynamicallycapturethesamplesurfacechangewiththeimagingspeed1.5frame/s.weproposedaconceptcalled"compressivescan",inwhichthecompressivesensingisusedtocompressthescantrajectoryandreconstructedoriginalAFMimageframes.ThevideoratefastAFMimagingsystemdoesnotrequireanyhardwareupgradesbutalsocanachievethehighimagingspeedwithcommerciallyfastscanAFMinthesamelevel.AfollowedupstudyofenzymatichydrolysisdemonstratedtheabilityofinsituobservationofsinglemoleculeeventusingvideorateAFM.Second,acompressive15feedbacksbasednon-vectorspacecontrolapproachwillbeproposedinordertoimprovetheaccuracyofAFMbasednanomanipulations.Insteadofsensors,thelocalimagesareusedasboththeinputandfeedbackofanon-vectorspaceclosed-loopcontroller.Thepositionerrorofthisnon-vectorspacesystemcanbecontrolledwithintwonanometers.Afollowedupstudywillalsobeintroducedtoshowntheimportantroleofnon-vectorspacecontrolinthestudyofelectricalbreakdownofmulti-wallcarbonnanotubes.Moreover,anewadditionalfunctionofthenanorobot:vibrationmode,willbeintroduced.twithconventionalpointandshootingsignalmeasurement,vibrationmeasurementisamoremethodtoevaluatethemechanicalpropertiesofinternalstructureofelasticmaterial.ThebasicideaofthismethodistovibrateverticallyusingtheAFMscannertodrivethemeasuredsamplevibrateupanddown.Theadditionalvibrationamplitudeontheuppersurfaceofsample,otherthanthedrivingvibrationcanbeconsideredastheresultofsampledeformationwhichdependsonthemechanicalproperties,suchasthespringconstant.Vibrationmodeispo-tentiallyausefulAFMfunctiontoinvestigatethesubsurfacemechanicalpropertiesoftheelasticsamplesuchascellsandbacteria.1.4OutlineofthisDissertationThedissertationcanbemainlydividedintotwoaspects:systemdesignandapplicationstudy.Chapter2,3discussthesystemdesignaboutvideorateAFMandreal-timesensingofelectrical/mechnicalproperties;Chapter4and5presentfollowupapplicationresearchusingthismultimodalsensingsystem.Chapter2presentsthetheoreticalfoundationofreal-timeimaging:compressivesensing.16Themathematicalmodelofcompressivesensingwillbediscussed.Afterthat,thedesignforthemeasurementmatrixandscantrajectorywillbeelaborated.Thenaknowledgebasedimagerecoveralgorithmtoobtainthebestreconstructedimages.Finally,wepresenttheimplementationdetailsandexperimentalresults.Chapter3introducesdesignanddevelopmentofvibrationmodeAFMwhichisusedformechanicalpropertiesmeasurementinnano/bioenvironment.Firstofall,wewillintroduc-tionofsubsurfaceimagingandmechanicalpropertiesmeasurement.Afterthat,amathe-maticmodelofelasticobjectisdiscussed.Finally,weusecompressivesensingtoincreasethesamplingtimetomeasurethesubsurfacemechanicalpropertiesmapusingvibrationmode.Chapter4discussesthefollow-upstudyusingvideorateAFMtoinvestigatesinglemoleculebehaviorofenzymatichydrolysis.First,insitusinglemoleculeobservationofcellulaseusingvideo-rateAFMispresented.Then,weperforminsituobservationofcellu-losesurfacechangesasanindicatorofhydrolysisrate.Finally,weplantodiscussthedataandinvestigatethemechanismofenzymaticinactivationduringhydrolysisinteraction.Chapter5introducesthereal-timesensingmethodforelectricalpropertiesmeasurementinnanoenvironment.Firstofall,anewtechniquenamed"non-vectorspacecontrol"isproposedinordertoincreasethespatialpositioningaccuracyofAFMprobingability.Af-terthatafollowedupstudyofcarbonnanotubelocalelectricalpropertycharacterizationexperimentisgiventobothvalidatethesystemandbetterunderstandingthemechanismofelectrontransportinmultiwallcarbonnanotube.Chapter6concludesthemainresultsandofthisstudyandproposalsthefuturework.17Chapter2CompressiveSensingforReal-timeSensinginNano/BioEnvironment2.1IntroductionAtomicForceMicroscopyisapowerfulinstrumentforstudyingandexploringnanoworld[61].AFMcanobtainultrahighresolutionimageinsub-nanoscale.ThebasicworkingprincipleofAFMisaccuratelyscanninglinebylineonthesamplesurface.AFMhasanoutstandingperformanceonimagingbothinairandliquid.Inaddition,withthehelpoftheAFMsharptip,itcouldalsobeservedasameasuringtooltomeasurethemechanicalpropertiessuchas,Young'smodulusandroughness[62][63].However,AFMhasaverysig-tnegativeaspect-theslowimagingspeed.ItisduetotheworkingprincipleofAFM.Usuallyitscanshundredslinestogenerateahighresolutionimage.Thereforetheframerateistlylowatetotenframesperhour.Thisisimpossiblefordynamicobservationinstudyingbiologicalandphysicalbehaviorssuchasthedeformationandroughnesschangeofcells,carbonnanotubeshapechangeandsoforth[5][6].Inaddition,forAFMbasedmanipulations,thelowframeratemakeittorealizearealtimevisualguidemanipu-lationsystem.Duetothelowimagingspeed,operatorsnormallyhastowaitseveralminutestovisualizethemanipulatingresults.AlthoughsomeothermicroscopessuchasSEMmightalsobeusedinmanyapplications,theydemandvacuumobservationenvironmentwhichis18notsuitableforlivesamplessuchascells.AFMnaturallysuitsforworkinginavacuumfreecondition,buttheissueisthetlowimagingframerate.Therefore,thereisanincreasingdemandsonfastimagingAFMsystemwhichcouldcapturethecontinuouslychangesoccurringinseconds.Inordertosolvetheproblemoflowframerate,hardwareupgradeisonepossibleoption.Usinguncoupledpiezoactuatorstodrivethemovementineachdirectionseparatelyisonewaytospeedupthescanspeed.Currently,afastscanimagingAFMnamedFastscanDimension(BrukerNano,SantaBarbara,CA)couldreachashighas3frameperminute.ForconventionalAFM,hardwareupgrademightnotbeanoption,thisisnotonlyeconomicproblembutthenewscannersandcontrollerscannotbedirectlyimplantedonaconventionalAFM.Anothersolutionforimagingspeedproblemisnotjustgearingupthescanspeedbutalsousenovelscanstrategy-compressivescan.ForconventionalAFM,thescannerscanstheentireareaforanimage,butforcompressivescan,arandomscanpatternisdelicatelydesignedtoachieveashorterscantrajectorywhichdecreasesthetimespentonscanning.OncetheAFMgetsthepartialtopographyinformation,anotherissueishowtousethiscompressivedatatoreconstructtheoriginalimage.Consideringacompressiblesignal(image),therearesomemethodstodirectlysamplethecompresseddatainsteadofthehugeonewithlessinformation.Compressivesensingcametosolvethisproblem.In2006,thefundamentalmathematicproofforrecon-structingsparsesignalusingfewermeasurementshadbeenestablished[64].Compressivesensingrealizescompressinginsamplingstep.Insteadofsamplingoriginalsignalpointbypoint,compressivesensingonlysamplesasumofrandomprojectionsfromoriginalsignaltoaprojectionmatrix(measurementmatrix).Afterafewmeasurementswhicharefewer19thantraditionalsamplingmethod,theoriginalsignalcanbereconstructedbysignalrecon-structionalgorithm[65].Becausethenumberofmeasurementsarefewerthanthedimensionoforiginalsignal,ifthesignalissparseandthemeasurementmatrixhasbeenwellselect-ed,thecompressivesensingcouldreconstructtheexactoriginalsignalwithoverwhelmingprobability.ForAFMbasedcompressivescan,itlargelydecreasesthetimespentonscanning,andthereconstructedimageisobtainedafterimagerecoveringalgorithmshavebeenapplied.Inaddition,inordertoobtainabetterreconstructedimagewithevenlessmeasurements,andrealizeAFMbaseddynamicobservation,aspecialcompressivescanbasedonpreviousknowledgeisproposed.Itcouldmergetheinformationobtainedbypreviousframeimageandthecompressivedataobtainedbycurrentframe.ThisapproachcouldlargelyincreasetheAFMimagingrate,enhanceimagequalityandrealizedynamicobservation.Inthisstudy,weproposeanewapproachforusingcompressivescantoachieveafastimagingAFM.Forthisapproach,therearefourstepsasfollows:(1)Theoreticalanalysisofcompressivescanbasedoncompressivesensing.(2)RandommeasurementmatrixdesignforAFMimplementation.BecauseoftheworkingprincipleofAFM,randommeasurementmatrixcannotbedirectlyapplied,themethodologytoimplementrandommeasurementmatrixintoAFMscantrajectorywillbediscussed.(3)Imagereconstructionalgorithmsinvestigation.Duetospecialdesignedmeasurementmatrix,timagereconstructionmethodswillbediscussed.(4)Inordertodynamicallycapturecontinuoussurfacechange,aknowledgebasedcompressivescanstrategyisdevelopedforAFMdynamicobservation.202.2TheoreticalFoundationofCompressiveSensingIntroducingcompressivesensingintoAFMimagingsystemisaconvenientandtwayforreducingtimespentonscanning.Thegoalistodecreasethescantrajectorywhichsam-plesfewerthanconventionalmeasurements.Therearethreemajorsectionsincompressivesensing:signalsparserepresentation,measurementmatrixdesignandsignalreconstructionalgorithms.Compressivesensingprefersthesparsesignal.Althoughmostsignalsarenotsparsenaturally,itisnottothetsparserepresentationmethods.ThetransformssuchaswaveletandFourierhavetheabilitytomakesignalsparsefromtimedomainintofrequencydomain.Inthissectionwewillintroducethebasicideaofcompressivesensingandthesignalsparsifyapproaches.Thedesignofmeasurementmatrixandsignalreconstructionalgorithmswillbediscussedinnextsections.2.2.1GeneralIdeaofCompressiveSensingGivenanunknownsignalxwhichx2RN,anduseMtimeslinearmeasurementstosampletheoriginalsignalx(asshowninFig.2.1).IfM=N,theoriginalsignalxwillbeperfectlycapturedbysolvingthelinearalgebraequations.However,itbecomesinterestingwhenM˝N,andinwordsfewermeasurementsmightbeenoughforsamplingandreconstructingtheoriginalsignal.y=x(2.1)whereiscalledmeasurementmatrix.Everymeasurementisasumoflinearprojectionfromtheoriginalsignalxtomeasurementmatrixyisthemeasurementresultswhichy2RM.Eq.(5.11)isobviouslyanunder-determinedequation.Thereisnouniquesolution21Figure2.1Generalideaofcompressivesensingforthisequation.Howeverifitisundersomeconstraintssuchasthattheoriginalsignalissparseandmeasurementmatrixisproperlydesigned,wecananoptimizationsolutionforxbysolvingtheminimizationl0problem[64].^x=argminjjxjj0s.t.x=y(2.2)Sincesolvingl0+minimizationproblemisaNP-hardquestion,peoplewouldliketousel1minimizationinstead[66].ThentheEq.(5.12)couldbemoas^x=argminjjxjj1s.t.x=y(2.3)where^xisthereconstructedsignal.222.2.2SignalSparseRepresentationAsignaliscalledsparseifonlyasmallamountofelementshavethetvaluewhilealltheothersarezero.HenceK-sparsemeansthesignalonlyhasKtvalues.Oneoftheassumptionsforthecompressivesensingisthattheobservedsignalmustbesparse.Actuallymostsignalsarenotsparseintimedomain.Thereforewemustthesignalsparserepresentationinotherdomainsorbasissuchasx=s(2.4)wheresisthesparserepresentationofsignalxinbasisManytransformbasissuchaswavelet,curveletandFourierhavetheabilitytomakesignalsparsebytransformingitfromtimedomaintothefrequencydomain.Underthesebasis,Eq.(2.4)becomesy=s(2.5)y=~s(2.6)Nownewmeasurementmatrixcanbeconsideredasandhereweuse~=todenotethisnewmeasurementmatrix.Thenunderthesamebasis,Eq.(5.13)becomes^s=argminjjsjj1s.t.s=y(2.7)where^sisthecotsunderbasisoftheoriginalsignal.Obviously,thetransformbasis=Iiftheoriginalsignalisalreadysparse.23Becausecompressivesensingcouldusefewermeasurementstoobtainahighqualityrecoveryimage,weareinterestedinintegratingcompressivesensingwithAFMscanningstrategytodecreasethetimespentonscanning.Thechallengeofintegrationishowtodesignapropermeasurementmatrix.UsuallyrandomGaussianandBernoullimatrixesaregoodchoicesbuttheyforapplyingtheserandommeasurementmatrixestoAFMisthattheAFMobtainsthetopographythroughscanninglinebyline.Itistosamplerandompointssimultaneously.Therefore,specialdesignedrandommeasurementmatriximplementationonAFMshouldbediscussed.2.3DesignofMeasurementMatrixforCompressiveScanninginReal-timeSensingForcompressivesensingthemeasurementmatrixisanessentialpartduetotherelationshipbetweenthemeasurementmatrixandmeasurement.Wellandproperlydesignedmeasurementmatrixusuallyleadtofewermeasurementsbuthighqualityreconstructionimage.HoweverthechallengeincompressivesensinginAFMishowtoimplementmea-surementmatrixontoAFMscantrajectory.ThephysicalmeaningofmeasurementmatrixinthisapplicationistheAFMtipscanningtrajectory.Inotherwords,givenadesignedmeasurementmatrix,thetipmovingandscanningtrajectoryisalsodetermined.BecauseofthespecialworkingprincipleofAFMwhichusesasharptiptoscanontopofsamplesurfacelinebyline,itisreallyhardtouseconventionalrandommeasurementmatrixwhichsamplesrandompointsintheentiresamplesurfacesimultaneously.Insteadofrandommea-surementmatrix,continueandsmoothAFMtrajectoryrepresentedbymeasurementmatrixmightbeabetterchoice.Thereforesomespecialdesignedmeasurementmatrixeshavebeen24studiedinpreviousresearch[13].Moreover,howtocontrolthemovementofAFMtipisanotherissue.Fortunately,thesystemwedevelopedforAFMbasednano-manipulation,hastheabilitytomakeAFMtipscanalongdesignedmeasurementmatrixandobtainthetopography.Duringthetestinpreviousstudy,althougheachoneofthesematrixeshasagoodperformanceondatasamplingandimagerecoveryfortheAFMsamplesurface,onepotentialproblemofthesemeasurementmatrixesisthatnoneofthemisrandom.FromtheviewoftheRestrictedIsometryProperty(RIP)[64],thesemeasurementmatrixescannotguaranteealltheinformationoforiginalimagetobetotallyreconstructed.Inthissection,were-designthemeasurementmatrixwhichisarandomsamplingmatrixwhenitassociateswithFourierorwaveletbasis,ittheconditionsofRIP.Theoriginalimagewillbefullyreconstructed.Figure2.2RandomsamplingpointsandTSPtrajectory(800randompointsin5050pointsareawithtotaltraveldistance981.1645)25Givenameasurementmatrix,thescanningtrajectoryisalsodetermined.Inthisresearchweprefertherandomsamplingintimedomain(asshowninFig.2.2).However,theworkingprincipleofAFMisusingasharptiptoscanlinebylineontopofsamplesurface.Thereforeacontinuoustrajectorywhichwillcoveralltherandompointsshouldbedeveloped.Itisthetypicaltravelingsalesmanproblem(TSP)whichisNP-hard.Beforesolvingthisproblem,severalconditionsmustbetipmustscaneachpointexactlyonceandreturntothestartingpoint.HereweuseGeneticAlgorithm(GA)whichisapopularcomputingparadigmbasedoncrossoverandmutationtothenearoptimalsolutionforthistrajectory[67].Thisalgorithmconnectseachofthetwopointsandthenrandomlychoosesonepositiontocuttheconnectionoftwopoints.Byusingprocessesofrecombination,mutationandselection,GAeventuallysearchesanewgenerationpointswhichisbetter(shorterdistance)thanitsformertrajectory.Herewesettheimagingareawiththesizeof5050pixelsandthetrajectoryisshowninFig.2.2.TheredlinedenotesthetrajectoryofAFMtipwhichwouldvisiteverypointonlyonce.Thetotaldistanceisaround989(thedistancebetweentwoneighborpointsissetasone)whichismuchshorterthanconventionalscanstrategy(totaldistanceis2500inrasterscan).Withshorterscantrajectory,wecandirectlysavethetimespentonscanningandincreasetheAFMimagingrate.Oneimportantthingshouldbenotedhere,forcompressivesensing,ithastwobasicconstraints:themeasurementmatrixshouldsatisfytheRIPcondition;second,theobservedsignalshouldbesparse.Forthisapplication,neitherofthemcouldbeGoodthingiswecanonebasiswhichcouldtransformthenon-sparsesignalintimedomainintofrequencydomain(asmentionedinprevioussection).Abouttheconstraint,onceweapplythebasisthenewmeasurementmatrixbecomes~=which26theRIPandimpliesthatwerandomlysampledintimedomainbutreconstructtheimageinfrequencydomainandtransferitbacktotimedomain.2.4KnowledgebasedCompressiveSensingIntheprevioussection,weproposedtherandommeasurementmatrixdesignforcompressivescan.Throughthetheoreticalanalysis,thissamplingmethodcoulddealwiththeconditionwhenthesignalissparseinfrequencydomain.Ifthesignalisnotsparseinfrequencydomain,inotherwords,iftheobservedimageissparseintimedomain,thissamplingmethodcouldnotguaranteetheobservedimagebewellsampledandexactlyreconstructed.Actually,forAFMbasedmanipulationsandobservations,theobservedimageisquitepossibletobesparseintimedomain.Accordingtouncertaintyprinciple,Ifthesignalissparseinfrequencydomain,itcannotbesparseattimedomain.Inthiscasetherandomsamplingintimedomainmightnotcoverallthetopographyinformation.Onesolutionofthisissueistobuildupaknowledgebasedcompressivescanstrategy.Inthedynamicobservation,AFMcontinuouslyscansandobservesthedynamicchangeofsamplesurface.Inthiscasewecandevelopanapproachtodesignthemeasurementmatrixbaseonlastframeinformation,andsimultaneouslyusetheinformationoflastframeasapartofcurrentmeasurements.Now,theproblembecomeshowtousethepreviousinformationandhowtodesignthenewmeasurementmatrixforthecurrentframe.2.4.1KnowledgebasedMeasurementMatrixDesignForcontinuouslyobservation,ifthecapturefrequencyishigherthannanoparticledynamicchangefrequency,wecanassumethattheimageintimetiissimilarwiththepreviousone27ti1kxtixti1k2(2.8)whereisapositivenumber.Inthiscase,wecanfurtherassumethatforcurrentframexti,itconsistsoftwopartsamongwhichoneisfrompreviousframexti1andtheotheroneisfromcurrentsamplingtixti.xtiˇti1xti1tixti=xti(2.9)whereti1andtiarethemeasurementmatrixesofxti1andxtirespectively.Inwords,theycouldbeconsideredastheprojectionmatrixeswhichti2RMN:RN!RMandti12R(NM)N:RN!R(NM)InEq.(2.9),tixtiistherandomsamplingresultsofcurrentframeimage.BecausethelengthofthismeasurementsisMwhichM0ifXisnotthesamewithY;d(X;X)=0;(2)Symmetry:d(Y;X)=d(X;Y);(3)TriangularInequality:d(X;Z)(X;Y)+d(Y;Z)foranyothersetZ.94Anysetdistancewhichthesethreeconditionscouldbeappliedinnon-vectorspacecontrolsystem.Inthisresearchweusedistanceasanexampletodiscussthecontrollerdesignandstabilizationproblem.GivenasetofpointsP2Rn,thesetdistancebetweenthesetPandapointx2RnisdP(x)=miny2Pjjyxjj.TheprojectionfromxtoPisdenotedasP(x)=fy2P:jjyxjj=dP(x)g.ThedistanceoftwosetsPandQisas:dh(P;Q)=maxfmaxp2Pminq2Qjjpqjj;maxq2Qminp2Pjjqpjj)g(5.1)Followsaresomeextraforthesetdynamics.AtubeK(t)ˆRnisamapping:K:R+7!2Rn,where2RnisthepowersetofRn.Let':E7!RnwithEˆRnbeaboundedLipschitzfunction.DenotethesetofallsuchfunctionsasBL(E;Rn).Thetransitionfor'2BL(E;Rn)isas:T'(t;K0)=fx(t):_x='(x);x(0)2K0g(5.2)whichcanbeconsideredasatubeevolvingundertheruleof'.Thederivativeofthetube,basedonmutationanalysis,mustsatisfythefollowingcondition:limt!0+1tdh(K(t+t);T't;K(t)))=0(5.3)K(t)=f'(x)2BL(E;Rn):Eq.(5:3)isg(5.4)95Therefore,thesetdynamicsmutationequationisasfollows:'(x)2K(t)(5.5)Inaddition,thecontrolledmutationequation(letUbethesetofallthepossiblecontrolsu)isas:'(x(t);u(t))2K(t)withu(t)=(K(t))(5.6)where':EU7!BL(E;Rn)isamappingprocessfromastatetoaboundedLipschitzfunction.:2Rn7!UisthefeedbackmapfromcurrentsetK(t)tothecontrolinput.5.2.1.2MutationAnalysisforNanomanipulationMutationanalysisisanalternativewaytosolveavisualservoingproblem:designacontrolleru(t)=(K(t))basedoncurrentimages^K(t)sothatdh(K(t);^K)!0ast!1,whereK(0)and^Kareaninitialcurrent)andgoal(desired)imagesetsrespectively,Infact,ifthefunction'inEq.(5.6)islinearinu(t),wehavethefollowingtheorem[133,134]:ForthesystemdescribedbymutationequationL(x)u2K(t)withx2Rm,L(x)2Rmn,u2Rn,andK(t)ˆRm,thefollowingcontrollercanbelocallyexponentiallystabilizedat^K:u(t)=(K)=A(K)+V(K)(5.7)where>0isagainfactor.A(K)+istheMoore-PenrosepseudoinverseofA(K)2R1n96by:A(K)=ZKd2^K(x)mXi=1@Li@xidx+2ZK[x^K(x)]TL(x)dx2Z^K[xK(x)]TLK(x))dxwhereLi(i=1;2;:::;m)istheithrowvectorsinmatrixL.V(K)istheLyapunovfunctionas:V(K)=ZKd2^K(x)dx+Z^Kd2K(x)dx(5.8)Innanomanipulations,theSPMcanbeconsideredasanimagingdevicewithtwotrans-lationaldegree-of-freedom(verticalmotionisusedtoobtainthesampletopography).Ifthecontrolinputisu=[ux;uy]T,themutationdynamicequationis:Lu2K(t)(5.9)whereL=26666641001003777775isaconstantmatrix.Inthiscase,thecontrollercanbeobtainedfromEq.(5.7):u(t)=2fZK[x^K(x)]TLdx+Z^K[xK(x)]TLdxg+V(K)(5.10)975.2.2CompressiveSensingforVisualServoingInthenon-vectorspacecontrolsystem,SPMimagesareusedastheinput.Theinputimagehereisnottheentireimagewhichcoststoomuchtimeonscanningbutthelocalimagewhosedimensionismuchsmallerthantheentireimage.Thelocalscanstrategy[2]wedevelopedcouldmakethescannerscaninasmalllocalareaandgetitstopographyimage.However,itstilltakeseveralseconds(actualtimedependsonlocalimagesize)toobtainalocalimagewhichistooslowforprovidingfeedbackforthenon-vectorspacecontroller.Inordertosolvethelowfeedbackproblem,compressivesensingisintroduced.Consideringanunknownsignalx2RN,ifMlinearmeasurementsaretakenaccordingtoameasurementmatrix(asshowninEq.(5.11),inthecaseofM=N,theoriginalsignalxcouldbewellsampled.However,wearemoreinterestedintheconditionwhenM˝N:fewermeasurementsmightbeenoughforreconstructingtheoriginalsignal.y=x(5.11)whereisthemeasurementmatrixandyisthemeasurementresultswhichy2RM.Eq.(5.11)isanunder-determineequationifM˝N-impossibletoauniquesolution.However,ifaddingsomeconstraintsuchasthatxissparseandhasbeenproperlydesigned,theoptimizationsolutionofxcanbefoundbysolvingthe0-normminimizationproblem[64].^x=argminjjxjj0s.t.x=y(5.12)Becausesolvingthe0-normminimizationproblemisNP-hard[66,139],1-normmini-98mizationisusedtoinsteadof0-norm.ThentheEq.(5.12)couldbewrittenas^x=argminjjxjj1s.t.x=y(5.13)where^xisthereconstructedsignal.Besidesthe1-normminimizationalgorithm,minimizationtotalvariationmethod(Eq.(5.14))isusedforsignalreconstruction.Itcanthesparestsolutioninintensitygradientleveltoobtainacontinuousandsmoothreconstructedimage.^x=argminTV(x)s.t.x=y(5.14)whereTV(x)=Pi;jq(xi+1;jxi;j)2+(xi;j+1xi;j)2.Becausecompressivesensingcanfewermeasurements,wecanuseitassociatedwithourlocalscanstrategytoincreasethefeedbackratebyfurtherdecreasingthescanningtime.HowtodesignapropermeasurementmatrixisachallengefacingtotheimplementationofcompressivesensingintoSPM.UsuallycompressivesensingusesrandommeasurementmatrixessuchasrandomGaussianandBernoullimatrixes.ItistoapplytheserandommeasurementmatrixestoSPMduetothespecialworkingprincipleofSPM.TheworkingprincipleofSPMisusingatiptoscanontopofsamplesurfacelinebylinewhichisatimeconsumingwork.Themeasurementmatrixincompressivesensingisanessentialpartduetotherela-tionshipbetweenthemeasurementmatrixandmeasurement.AccordingtotheRestrictedIsometryProperty(RIP)[64],randommatrixesusuallyleadstothetotallyre-constructedoriginalsignal.InordertodesignarandommeasurementmatrixforSPM,thephysicalmeaningofthe99measurementmatrixinSPMimagingshouldbestudiedMeasurementmatrixistheSPMscanningtrajectory.Thetipscanningtrajectoryisdeterminedbymeasurementmatrix.However,becauseoftheworkingprincipleofSPM,wehavetoacontinuoustrajectoryforrandomsamplingpointswhichcanconnectallthepointsandonlyvisitonce.Thisisatypicaltravelingsalesmanproblem(TSP)whichisaNP-hardproblem.Inordertoanearoptimalsolutionforthistrajectory,theGeneticAlgorithm(GA)whichisaparadigmbasedoncrossoverandmutationisusedforsolvingthisproblem[67].Theworkingprincipleofthisalgorithmisthatitconnectseachofthetwopointsandthenrandomlyselectsthepositiontocuttheconnectionbetweentwopoints.Throughthemethodsofrecombination,mutationandselection,GAcouldsearchanewgenerationpointswhichisbetter(shortertravelingdistance)thantheformertrajectory.Forexample,wesetthelocalareawith5050points,andafterGAwasapplied,thetrajectoryisobtainedasshowninFig.2.2.TheredlinedenotesthetrajectoryoftheSPMtipwhichvisitseachpointonceandeventuallyreturnstotheinitialpointwiththetraveldistance981.1645(assumethedistancebetweentwoneighborpointsisone).Itismuchshorterthanrasterscanningtheentirelocalarea(totaldistanceis2500).Bymeansofcompressivesensing,wecandirectlysavethetimespentonscanningwhichcanincreasetheimagefeedbackrate.5.2.3Non-vectorSpaceControlbasedonCompressiveFeedbackAlthoughcompressivesensingdecreasesthetimespentonscanning,itstillneedsextratime(approximate0.5secondfor3030image)forimagereconstruction.Inordertofurtherin-creasethefeedbackrate,weextendedthenon-vectorspacecontrollertocompressivefeedbackcaseinsteadofcompleteimagefeedback.Thederivationissimilartothecaseofcompleteimagebasednon-vectorspacecontrol100methodologywhichusesregularstatefeedback.Theonlyfromtheapproachinsection5.2isthetypeoffeedback.Thefeedbackforformercontrollerisacompleteimagerecoveredfromcompressivescanning.Incontrast,forcompressivefeedback,thecompressivedataobtainedbycompressivescanningisuseddirectlyasthefeedbackwithoutrecoveringprocess.Inotherwords,theSPMscanneronlyscanspartialpointsoflocalarea.Basedonthiscompressivedata,acontrollerisdesignedtocontroltheSPM'stiptowardsthedesiredpositionwhichisachievableifthisprocessisperformedrepeatedly.Italsoshouldbenotedthatinsteadoftheprocessofimagerecovering,wedirectlyuseitforfeedbackwithoutrecovery.Inthiscase,thefeedbackratecanbeincreased.5.2.3.1ControllerDesignbasedonCompressiveFeedbackBecausethemutationequationisthesameandthecompressivefeedback(data)isalsoaset,thecontrollerinsection5.2stillworksanditcanbeslightlymoasfollows:LetKcand^Kcbethesetsobtainedbyrandomscanning/samplingfromthecurrentimageandthedesiredimagesetsK,^K,respectively.FollowingcontrollercanlocallyexponentiallystabilizeKcat^Kc.u(t)=2fZKc[x^Kc(x)]TLdx+Z^Kc[xK(x)]TLdxg+V(Kc)(5.15)whereV(Kc)=RKcd2^Kc(x)dx+R^Kcd2Kc(x)dx,andtheothervariablesarethesameasprevioussection.Thiscontrollermightnotmeetthegoalofdh(K;^K)!0ast!1.ItpossiblyexistsanotherseteKwhere^KcˆeK,ifthecardinalityof^Kcismuchfewerthanthatof^K.Topreventsuchcondition,wehavetoprovethatwhendh(Kc;^Kc)!0,dh(K;^K)!0,if101Kcsatisfysomecertainconstrains.Theseconstrainscomefromthecompressivesensingtechnique.Intuitively,thereshouldbeauniqueKgivenarandomlysub-sampledKcˆK.AssumethattheimageisSsparseinthefrequencydomain(Fourierdomaininthisresearch,thenumberofnonzerocotsisS).Ifwesampletheimagepixelintensityinuniformrandom,theimagecanbeexactlyreconstructedbyl1minimizationalgorithmifthenumberofsamplesisattheorderofO(Slogn).5.2.3.2StabilityAnalysisAssumethattheelementsofsetKisobtainedinorderfromtheimage.Forexample,forannnimage,thenelementsinKaretherow(orcolumn)oftheimage.Letxkbethek-thpixelofalltheintensitiesofimagesetK,andtheelementsinxkareobtainedusingthesameorderinK.Similarly,let^xk,xkc,and^xkcbethevectorofalltheintensitiesof^K,Kc,and^Kc,respectively.Thefollowinglemmaisusedtoprovethestabilityofthecontroller.Lemma1dh(K;^K)!0ifandonlyifjjxk^xkjj!0(1)Firstofall,let'sshowdh(K;^K)!0)jjxk^xkjj!0.Bytheofdistance,ifdh(K;^K)!0,thenforanyp=[p1;p2;p3]TinsetK,wehaveminq2^Kjjpqjj!0.Letq=[q1;q2;q3]Tbetheelementin^Kwhentheminimumisachieved,then(p1q1)2+(p2q2)2+(p3q3)2!0.Becausethetwocoordinatesinpandqarethepixelindices,(p1q1)2+(p2q2)2cannotapproachzeroiftheindicesaret.Therefore,p1=q1andp2=q2whichmeanstheorderofpandqarethesameinKand^K,respectively.Moreover,wehave(p3q3)2!0.Consequently,wehavejjxk^xkjj!0sincejjxk^xkjj2isthesumofallthesquareofintensityforthesamepixelindicessuchas(p3q3)2.102(2)Second,let'sshowjjxk^xkjj!0)dh(K;^K)!0.Letp=[p1;p2;p3]TinsetKandq=[q1;q2;q3]Tinset^Kbetwoarbitrarilyelementswiththesamepixelindices,i.e.,p1=q1andp2=q2.Sincejjxk^xkjj!0,wehave(p3q3)2!0.Thenforp2K,wehaveminq02^Kjjpq0jjjjpqjj!0.ForanyotherelementsinK,wealsohavesimilararguments.Therefore,maxp02Kminq02^Kjjp0q0jj!0.Similarly,wehavemaxq02^Kminp02Kjjq0p0jj!0.Therefore,dh(K;^K)!0.Besidesthelemma,anotherequation(RIP)fromthecompressivesensingliteratureisusedtoestablishourresult.Firstofall,weintroducetheRIPconditionforamatrixformally.1AmatrixA2RmntheRIPconditionoforderSifthereexistsaS2(0;1)suchthat:(1S)jjxjj22jjAxjj22(1+S)jjxjj22(5.16)foralltheSsparsevectorsx2Rn.TotestamatrixwhetherRIPconditionisaexponentialcomputationalcom-plexityproblem.ButrandommatriceshaveshowntosatisfytheRIPconditionwithveryhighprobability.Infact,wehavethefollowinglemma:Lemma2[140]Let2Rnnbethespikebasisand2RnnbetheFourierbasis.ThenthematrixA=R1whereR2Rmnextractsmrowsin1uniformlyinrandom.ThenAsatisfytheRIPconditionoforderSwithveryhighprobabilityifmCSlog4n,whereCisaconstant.Basedonthetwolemmas,wecanhavethefollowingpropositionwhichvthecor-rectnessofusingcompressivefeedback.103Proposition1Assumexk2Rnand^xk2RnareSsparseinthefrequencydomain,xkc2Rmand^xkc2RmbeobtaineduniformlyatrandomfromtheimagesetKand^K.Ifm2CSlog4n,whereCisaconstant.Thenwithhighprobability,wecanhavedh(K;^K)!0ifdh(Kc;^Kc)!0.Fromtherandomsampling,wehavexkc=Axkand^xkc=A^xk.Itisnotedthatbasedontheassumption,therandomsamplingmatrixisthesameasLemma2.Therefore,fromLemma2,A2RmntheRIPconditionwithorder2S.LettheRIPconstantbe2S.Usinglemma1,wehavejjxkc^xkcjj!0fromdh(Kc;^Kc)!0.FormtheRIPcondition,wehavejjxkc^xkcjj22=jjAxkA^xkjj22(12S)jjxk^xkjj22.Since12S>0,wehavejjxk^xkjj!0.BasedonLemma1again,wehavedh(K;^K)!0.ThispropositionsshowthatifcertainconditionsarethesamecontrollerinEq.(5.15)canbeusedunderthethecompressivefeedback.5.3ExperimentalImplementationandSetup5.3.1ExperimentalImplementationonAFMInordertovalidatethenon-vectorspacecontrollerdesignandtesttheperformanceofthiscontrolsystem,weimplementeditintoourAFMbasednanomanipulationsystem(asshowninFig.2.3).AnAFM(Multimode,Bruker-nano,CA)isusedinthisexperiment.Acomputerwithahapticdevice,areal-timeLinuxsystemandDAQcardsareusedinthisnanomanipulationsystem.Inaddition,asignalaccessandcontrolboxisdevelopedforacquiringthesignaloftopographyinformationandinputtingthecontrolsignalintothe104AFMcontroller.5.3.2ExperimentonNon-vectorSpaceControlwithCompleteImageasFeedbackInthisexperiment,wevalidatethenon-vectorspacecontrollerwithcompleteimageasfeedbackusingnanomanipulationsystem.Inthisexperiment,aconventionalAFMwasusedtoobtainanimageof10241024pixelsonsinglewallcarbonnanotube(SWNT)sample(scansizeis1.61.62).Thisistheworkingareaofthenon-vectorspacecontroller.WenamethisAFMimagewith"originalimage".ThenAFMscannedlocallytogetasmallpitchimageofcurrentposition.Afterthat,apositionclosetocurrentposition(approximate56nmaway)waschosenasthedesiredposition.Thedesiredimagecanbeeasilyselectedintheoriginalimage.Aftercalculationsthenon-vectorspacecontrollerprovidesthetranslationalvelocityuxanduy.Thecurrentanddesiredimages,withsizeof3030pixels,arelabeledinoriginalimageinFig.5.3(a).ResultsareshowninFig.5.3(b),wheretheiterationmeansthestepsthatAFMtiptravelstothedestination.Atapproximate50stepstheAFMtipeventuallyreachedthedesiredpositionwhenthedistanceapproachedzero.Anotherthingshouldbenotedhereisthattheerrorinsteadystate.Theoretically,theerrorshouldconvergetozeroastimegoingtohowever,inAFMapplicationbecausethethermaldriftandnoise,thenon-vectorspacecontrolhastominimizetheerrorprovidedbythermaldriftandnoise.Thisisthereasonforwhysteadystateerrordoesnotapproachzerobothinxandydirections.105(a)(b)Figure5.3Experimentsetupandresultsofnon-vectorspacecontrolbasedoncompressivefeedback(a):Experimentalsetupforthenon-vectorspacecontrol(b):Experimentresultsofnon-vectorspacecontrolwithimageasfeedback:Errorinxandydirections1065.3.3ExperimentonCompressiveSensingwithRandomSam-plingInthepreviousexperiment,non-vectorspacecontrolsystemobtainedtheimagefeedbackbyscanningtheentirelocalareawhichspentmuchtime.Inordertoreachahighersamplingrate,imagingspeedmustbegearedup.Thatisthereasonwhycompressivesensingisinvolved.TheexperimentresultsofcompressivescanningandimagereconstructionareshowninFig.5.4(a)(b)Figure5.4ExperimentresultsofAFMimagesreconstructionbasedoncompressivesensing(a):OriginalAFMimageof5050pixels(b):ReconstructedimageobtainedbycompressivesensingThesetwoimagesinFig.5.4are5050pixelsandthescansizeineachimageis112ofDNAsample.Aftercompressivesensingwasapplied,thescanningtimedecreasedinto1.25second(comparedwith6.98secondsinconventionalrasterscan).Compressivesensingcanlargelydecreasesthetimespentonscanning.However,forcompressivesensing,itstillconsumestime(approximate1secondsaccordingtoTV-normreconstructionmethod)107toreconstructtheoriginalimage.Inordertosolvethisnewissue,wegetridofimagereconstructionstep,andusethecompressivesamplingdataasthefeedbacktonon-vectorspacecontrollerdirectly.5.3.4ExperimentonCompressiveFeedbackNon-vectorSpaceCon-trollerFromthepreviousexperiment,itisshownthatcompressivesensingcouldincreasethesam-plingratewithoutlosingimportantdatainformation.However,itsdisadvantageisalsoobvious:compressivesensinghastoreconstructtheoriginalimage.Achallengecomesout-whetherwecandirectlyusethecompressivedatawhichisnotanimagebutasetofrandomchosendata(compressivedata)toserveasthefeedback.InSectionIV,weshowedthethe-oreticalproofofthisapplication.Inthissection,anexperimentwassetupfortestingtheperformanceofthiscontrolsystem.Theexperimentalprocedureissimilartotheexperimentwithcompleteimageasfeedback.Theonlybetweenthesetwoexperimentsisthatinthisexperimentweusesthecompressivedataobtainedbycompressivescanninginsteadofcompletelocalimageasthefeedback.Weusedthesameinitialanddesiredlocationswiththeexperiment.Thedistancebetweencurrentpositionanddesiredpositionis40nminverticaldirectionand-41nminhorizontaldirection.Thefeedbackusedinthisexperimentisasetof350elements(theonesinside3030pixelsasshowninFig.5.3(a)).Theexper-imentresultisshowninFig.5.5(b).Inthisexperiment,initialanddesiredpositionsarejustthesameastheexperiment,butthecalculationtimespentoncompressivefeedbackcontroller(0.152s)ismuchsmallerthantheoneusecompleteimageasthefeedback(0.322s)ineachstep.Thatmeansthenon-vectorspacecontrollerbasedoncompressivefeedback108canlargelyreducethetimespentonbothscanningandcalculating.5.3.5ExperimentonTrackingSWNTbasedonCompressiveFeed-backNon-vectorSpaceControllerThegoalofthisexampleisusingAFMtiptotrackalongSWNT.BeforewestartedtheAFMtipmotioncontrol,ahighresolutionAFMimageintheareaofinteresthadbeenscannedastheoriginalimage(asshowninFig.5.6(a))Thescansizeofimageis1.251.252andtheresolutionis10241024pixels.Oncethehighresolutionimagewasobtained,thepathplannermodulesstartedworking.TheoperatorcouldselecteitherautomaticallyidentifytheSWNTandgeneratethetippathormanuallydesignthearbitrarypath.Inthisexamplethepathwasselectedmanuallybyusingthehapticdevice,andthetrackingpathisshowninFig.5.6(b).Oncethepathwasselected,thesystemautomaticallygeneratedasequenceofimagesabouttheinterimstepsbetweenstartandendpoints(showninFig.5.6(c)).Withtheguidanceofnon-vectorspacecontrollertheAFMtiptrackstheSWCNTandeventuallyreachesthegoalposition.Inaddition,thepositionerrorisshowninFig.5.6(d).Theerrorishighlyrelatedtotheimagescansizeandresolution.Generally,thesmallerscansizewithhigherresolution,thelesspositionerror.Inordertoachieveultrahighaccuracypositionandmotioncontrol,wewanttomakethescansizeassmallaspossible.However,thisisachallengewhenthescansizedecreaseintohundredsnanometers,especiallyforthelocalimageorcompresseddatausedforfeedback.Inthiscasethenoiseinimagemighttheperformanceofcontroller.Typicaldistanceisverysensitivetothenoise;therefore,inthisapplication,weusemodistanceinstead.Themodistanceisasfollows.109(a)(b)Figure5.5Experimentsetupandresultsofnon-vectorspacecontrolbasedoncompressivefeedback(a):Experimentalsetupforthenon-vectorspacecontrolbasedoncompressivefeedback(b):Experimentresultsofnon-vectorspacecontrolwithcompressivefeedback:Errorinxandydirections110(a)(b)(c)(d)Figure5.6ExperimentresultsoftrackingSWCNTusingnon-vectorspacecontroller,(a):OriginalAFMimageof10241024pixels,(b):Trackingpath,(c):Asequenceofimagefeedback,(d):Positionerrorduringtracking111GivenasetofpointsP2Rn,thedistancebetweenapointx2RnandthesetisdP(x)=miny2Pjjyxjj.TheprojectionfromxtoPisthesetofpointsdenotedasP(x)=fy2P:jjyxjj=dP(x)g.ConsidertwosetPandQ,theMoDistance(MHD)isas:dh(P;Q)=1mXfmaxp2Pminq2Qjjpqjj;maxq2Qminp2Pjjqpjj)g(5.17)TheMHDisrobusttothenoise,whichissuitableinthisexample.AfterMHDwasappliedintothenon-vectorspacecontroller,theerrorrangewascontrolledwithin4nm.Themethodtoverifypositionerrorinallexperimentsisthetemplatematching.Becausethereisnopositionordisplacementsensorinthisopen-loopAFMscanner,thewaytocalculateabsoluteerrorisusingeachcurrentlocalimageasatemplatetomatchwithaccuratepositioninoriginalimage.Thisisthemethodtoverifyerrorbutnottheoneweusedinnon-vectorspacecontrolstrategywhichusedMHDtotheerrorbetweencurrentanddesiredimages.5.3.6PerformanceAnalysisofNon-vectorSpaceControllersCurrently,therearetwottypesofnon-vectorspacecontroller-imagefeedbackandcompressivefeedback.Fromtheexperimentalresultitshowsthatthesteadystateerrorofcompleteimagefeedbackcontrollerapproachestozero(errorisapproximate1nm)inbothinxandydirectionswhichprovesthatdh(K(t);^K)!0ast!1.However,inthecaseofcompressivefeedback,theerrorisnotalwaysconvergingtozero.ThisisbecauseoffollowingPropositionincompressivefeedbackcontroller.Proposition2Supposebothxand^xobeythepowerlawdecay.Withoutlossofgenerality,112assumeweusethelargestS=dn=2eelementstoapproximatetheoriginalsignals,whereistheceiloperator.IfmatrixARIPconditionwithorder2Sandconstant˙2S,thenwehavedh(K;^K)2R(p1+˙2S+p1˙2S)=pS(1˙2S)ifdh(Kc;^Kc)!0.Thispropositionindicatesthatifdh(Kc;^Kc)!0,thesetdistancebetweenthetwocom-pressivesetscanbebounded.Therefore,insteadofasymptoticalstability,onlythestabilitycanbeguaranteed(thedetailedproofcanbefoundin[141]).Inotherwordsthereexistsansteadystateerrorinthecompressivefeedbackcontroller.AsshowninFig.5.5(b)thesteadystateerrorisapproximate2nm.Althoughsteadysteaderrorexistsincompressivefeed-backcontroller,itsadvantageisstillobviouswhichislesscalculationtimeandhighfeedbackratewhichisusefulforrealtimecontrol.Itisnotedthattheaccuracyofthisnon-vectorspacecontrollerdependsontheoriginalimageresolutionandscansizewhichisusedforvisualservoing.Ifa10241024pixelsAFMimagewiththescansizeof600nmisused,theaccuracyofthisnon-vectorspacecontrolsystemwillreachashighas1nmaccordingtothisexperimentresult.5.4CarbonNanotubeLocalElectricalPropertyChar-acterizationFornanomanipulations,oneofthemostessentialpartsisthehighaccuracymotioncontrol.Withthehelpofnon-vectorspacecontroller,itenablesthenanomanipulationsystemtohavetheabilitytoconductdelicateandcomplicatednanoparticlesmanipulationandnanosurgery.Inthisresearch,anexamplesofthenanomanipulation:carbonnanotubelocalelectricalpropertycharacterizationbasedonnon-vectorspacemotioncontrolareprovided113toillustratetheapplicationofthiscontrolstrategy.Carbonnanotubeisaquasi-one-dimensionalmaterialwhichhasbeenfrequentlyusedforbuildingnanodevices.Itisessenstialtounderstandtheelectronicpropertiesofthiskindofbuildingblocksbeforedesignnanodevices.Allseveralmethodscanbeusedforstudyingthepropertiesofcarbonnanotube,employingaconductiveSPMprobeasamov-ableelectrodetoconductlocalconductivitymeasurementsisamosttanddirectapproach[30][31][32][21].UsingSPMconductiveprobetomeasuretheconductivitycanbeconsideredasmeasuringtransportpropertiesasafunctionofchannellength.Despitethismeasurementtechniqueissuitableforstudyingelectrontransportproperty,onlyafewat-temptsavebeenmadeinpractices.Thereasonforthatistheyinaccurateprobemotioncontrolduringthemeasurement.Thereisnosuitablewaytoaccuratecontrolcon-ductiveprobemotionuntilthenon-vectorspacecontrolstrategyhasbeenproposed.Inthissection,weuseAFMasaexampletoillustratetheapplicationofusingnon-vectorspacetomapmulti-wallcarbonnanotubelocalconductivity.Inthisexample,aMWNTlocatedontwoelectrodeswasusedasthesample.Thesamplewasfabricatedusingopticallithography.Here,ametalelectrodeconsistingofTi30nm/Au50nmlayerswasdepositedontopofanIn2O3nanowireusinganelectronbeamevaporator,followedbyaprocess.TheMWNTs,arepurchasedfromBuckyUSAinpowderyform.TheseMWNTshavediametersrangingfrom20to200nm,andlengthesfrom0.5to10m.TheSWCNTspowderwasputintoethanolalcoholtoformSWCNTssuspensionafter10-20minutesultrasonica-tion[142][143].AsingleSWCNTwasdepositedtodesiredlocationsusingdielectrophoresis(DEP)depositionsystem:adropletofSWCNTssuspensioninethanolalcoholwasdispersedbetweenpre-fabricatedelectrodes,andanACvoltageof1Vppand10kHzfrequencywas114Figure5.7Testingplatform(A):I-Vcurveobtainbycurvetracer(B):Dimension3100AFM(C):ConductiveprobeappliedtoattracttheSWCNTstothevicinityoftheAuelectrodes.TheAsymmetricAu-MWNT-Ausamplewasusedinthisexampleasakindofnanowirewhosediameterissmallenoughfortestingtheperformanceofnon-vectorspacemotioncontrol.Beforeconductivitymapping,ametallicI-Vcharacteristicwasobserved(asshowninFig.5.9(a)).ThetotalresistanceofthisMWNTis11.0kInordertolocallycharacterizetheelectricalproperties,thesamplesareplacedinanAFM(Dimension3100,Brukernano,CA)basednanomanipulationsystemoperatingatroomtemperature(asshowninFig.5.9.A115diamond-coatedconductiveprobe(DDESP-FM-10,Brukernano,CA)wasusedasamovabledrainelectrodewhenitwasphysicallycontactedwiththeMWNT(asshowninFig.5.7).ThechannellengthListhedistancefromtheconductivetiptothesourceelectrode.Webeginbyusingtheconductivetipasasourcecurrentcontact.Inthisexperimentwemeasuredthecurrenttransferthroughthechannelwith20nmintervalevenlybyplacingthetipabovetheMWNTatsplocationthroughnon-vectorspacecontrollerandthenlowereduntilthephysicalcontactwasbetweentipandMWNT.Thenthecurrentwsfromtheconductivetiptothedrainelectrodeisrecordbycurvetracer.Theresistancehasplotasafunctionofchannellength(asshownschematicallyinFig.5.9(b)).Figure5.8Schematicdiagramofexperimentalsetupforcharacterizinglocalconductivity(a):experimentalsetup(b):Usingconductivetiptoprobelocalconductance(c):AFMimageoftestingsample5.5MeasurementResultsandAnalysisInthisapplication,weusenon-vectorspacecontrolmethodtoprobeaccuratepositionofconductivetipasamovableelectrodetoinvestigatethescalingandelectrontransport116properties.TheseresultsareessentialforusesofMWNTintransistorapplications.BesidesMWNT,otherkindsofnanowirecanbealsousedassamples.Non-vectorspacecontrolmethodisatwaytoaccuratecontrolSPMtipmotionduringnanomanipulations.5.6ControllableElectricalBreakdownofMultiwallCar-bonNanotubes5.6.1IntroductionWiththedevelopmentofnano-materials,suchasnanotubesandnanowires,theelectricalcharacterizationofthesematerials,attractedstrongattentionbecauseoftheiruniqueelec-tricalandthermalpropertiesduetoquantumt[112][113].Asatypicalnanoma-terial,multiwallnanotubes(MWNTs)haveintrinsicthermalandelectricalproperties[114],whicharebeingconsideredaspotentialcandidatesforthenextgenerationofcircuitwiresandnanoelectronicdevicessuchasnanotransistors[115][116],andsensors[26][25][29].Thecarbonnanotubescanholdacurrentdensityashighas109A=cm2(whichismorethan1000timesgreaterthancopper)[117],andthethermalconductivitiesishigherthan3000Wm1K1[118].However,thethermalandelectricalpropertiesoftheMWNTsarenotfullyunderstood,especiallyfortheelectricalbreakdown.AnMWNTconsistsofmanylayersofsingle-wallnanotubes,andeachofthemhasavariousmechanical,electricalandthermalproperties.ElectricalbreakdownispossibletobewellcontrolledtopeeltheouterlayersofMWNTortailoritsstructure,inordertochangethepropertiesofMWNT[119].TheelectricalbreakdowndeterminesthemaximumcurrenttransportthroughtheMWNTscircuit,anditisalsoconsideredasanapproachto117(a)(b)Figure5.9MWNTelectricpropertycharacteristics(a):I-Vcharacteristicsfromsourcetodrainelectrodes(b):Totalresistanceasafunctionofchannellength118fabricatehighperformancesensorsandtransistors.Itisessentialtounderstandtheelectronicpropertiesofthematerialpriortodesigningahighperformancenanodevice.Generally,theelectricalbreakdowniscausedbyJouleheatingproducedbytheelectronwinthelayersofMWNT[120][121].Inpractice,however,thereasonsforelectricalbreakdownbecomevariousifenvironmentalconditionsareconsidered,suchasenergydissipationtotheelectrodes,heatsinkofsubstrate,localheatingandoxidation.Althoughelectricalbreakdownisknownasanissuefortheapplicationsofinterconnects,italsocanbeconsideredasanapproachtochangelocalmechanicaland/orelectricalpropertieswhichcouldbemorevaluablethanregularMWNTsfortheapplicationsofMWNTsbasedsensorsandtransistors.IthasbeenwidelyacceptedthattheelectricalbreakdowniscausedbyJouleheating[122].Inwords,theelectricalbreakdownisexpectedtobehappenedinthecenterofasuspendedMWNT.However,somestudiesobservedconverseresults:electricalbreakdownsarenotalwayshappenedinthecenter,sometimeitlocatesapartquitalongdistancetothemid-dle[123].Insuchacondition,thestructuraldefectofMWNT(whichcouldreducethelocalconductivity)wasconsideredasthemajorreasonthatleadstotheelectricalbreakdown[124].Besidesstructuraldefect,localconductancechange,suchasdiametervariationfromoneendtotheother,alsodeterminesthepositionofelectricalbreakdown[125].Themotivationofpresentresearchistothecrucialfactorsthatelectricalbreakdown,andmaketheelectricalbreakdowncontrollable.Controllableelectricalbreak-downisstudiedutilizingatomicforcemicroscopy(AFM)basednanorobot.TheAFMbasednanorobotisaspecialandusefultechnologicaldevicetoimagethenanostructures,andtoconductlocalmanipulationsonnanomaterials[70][69][71].ThesharpAFMtip(apexisap-proximately10nmorless)canbeconsideredasanendofthenanorobot,whichcanmeasureandmanipulatesamplesinnanoscale.InthisresearchanAFMbasednanorobot119isusedtomeasurethelocalconductivityofMWNT,andmanipulateitsspatialstructuretocontrolthelocationoftheheatsink,whichmakeselectricalbreakdowncontrollable.5.6.2JouleHeatingandThermalDissipationofMWNTbasedCircuitInthispaper,westudythedeterminantswhichcontrolthepositionofelectricalbreak-down.AfterhighbiasvoltageappliedonbothendofMWNT,itcanbebrokendownbyoxidationcausedbyJouleheating.Todate,muchattentionhasbeenpaidonsustainablemaximumcurrentdensitiesinnanotube,however,electricalbreakdownisamuchcompli-catedphenomenonbecauseofthenonuniformheatdistribution.JouleheatisgeneratedbythecurrentandthedissipatedbyheatexchangefromMWNTtotheair,electrodesandsubstrate.Thetemperature(T)distributionofMWNTcanbedescribedasfollowingonedimensional(alongxaxis)heattransportequation[144].d2Tdx2+T=q(5.18)whereisthethermalconductivityoftheMWNT,isthethermalcouplingwithsubstrateandenvironmentrespecttoposition,andqisthegeneratedheatperunitvolume[145].AssumedthatthepowerishomogeneouslygeneratedalongtheMWNT,q=jF(5.19)wherej=I=AiscurrentdensitythroughtheecrosssectionA,andFistheelectrical120FromEq.(5.18)and(5.19),itcanbefoundthat,thelocaltemperatureisdeterminedbyMWNTthermalconductivity,thermalcouplingwithsubstrateandthegeneratedheat.Inordertoillustratethat,wetaketheMWNTonelectrodesasanexample(asshowninFig.5.10).ConsideredasuspendedMWNTwithuniformresistancedistribution(uniformdiameterandnodefectinstructure),accordingtotheheattransportequation,thehigh-esttemperaturelocatesinthecenterofMWNT(asshowninFig.5.10(a)).However,inpractice,fortheMWNTbasedcircuitandsensors,wehavetotakesubstrateandnonhomogeneousMWNTstructureintoaccount.Therefore,thetemperaturedistributionisdeterminedbythelocalconductivityofMWNTandlocalcontactconditionbetweenMWNTandsubstrate.Inpresentresearch,werevealthatifMWNTshaveauniformandcontactwithsub-strate,localresistancedistributionisthedominantfactorforelectricalbreakdown.Insuchcondition,iftheMWNThasauniformconductancedistribution(asshowninFig.5.10(b)),thebreakdowncouldbehappenedrandomlyatanylocationalongtheMWNTsurface.Be-yondtheuniformconductancedistribution,electricalbreakdownhappensatthepositionwhichhasasuddenchangeoflocalresistance(asshowninFig.5.10(c)).ThisisbecausetheheatgeneratedinthisareaisbiggerthantheotherpartsofMWNT.However,iftheMWNTdoesnothavetheuniformcontactwiththesubstrate,theresistancedistributionofMWNTisnolongerconsideredasthecrucialofelectricalbreakdowncomparedwithheatexchangeInthiscondition,theheatexchangeisthedeterminatefortheelectricalbreakdown.Sincethesubstratecanbeconsideredasalargeheatsink,theJouleheatcanberapidlydissipatedtothesubstrateatthecontactarea,whileinotherareatheheatisslowlydissipatedtotheair.Therefore,electricalbreakdownismostlikelyhappenedattheposi-tionwithoutsubstratecontact.Inordertoverifyourelectricalbreakdowntheory,weused121(a)(b)(c)(d)Figure5.10DiagramofthermaldistributionofMWNTintconditions,(a)Asuspend-edMWNT,(b)AnMWNTwithanduniformcontactwithsubstrate,(c)AnMWNTwithdefectcontactedanduniformlywithsubstrate,(d)AnMWNTwithnonuniformcontactwithsubstrate122anAFMbasednanorobottomeasurethelocalconductivitydistributionandmechanicallychangethecontactbetweenMWNTandsubstrate.5.6.3ExperimentalDetailsFigure5.11Experimentalsetup:MWNTonelectrodesandmoveableAFMprobeforcon-ductancecharacterizationInordertocomparetheofthedeterminedbreakdownfactors,andwhichtheeoneis,wedesignaserialofcomparisonexperimentsoflocalconductivityandthermaldissipation.Thefabricationprocessofthetestingdevice(asshowninFig.5.11)startedfromfabricatingtwoAuelectrodesonthesubstratethroughphotolithography,ther-malevaporation,andAfterthat,asingleMWNTwasdepositedinthecentertobridgetwoelectrodesusingdielectrophoresis(DEP)depositionsystem:MWNTpowder,purchasedfromBuckyUSA,wasimmersedintoethanolandultrasonicated10-20minutestoformMWNTsuspension;adropletofthesuspensionwasdispersedbetweentheelectrodes,andanACvoltageof1Vppand10kHzfrequencywasappliedtoattractanMWNTtobridgetheelectrodes.AuniformPMMAlayerwasspin-coatedontopofthedevice.ThePMMAbetweentwoelectrodeswasremovedafterelectronbeamexposureandphotoresist123development,andtwostripsofthePMMAatthecontactswaslefttopinanMWNTonthesubstrate.Beforeconductinglocalconductancemeasurement,theglobalI-Vcharacteristicsofthedevicesweremeasuredbyapplyingbiasesbetweentheelectrodes,andthecurrentwasmea-suredusingasemiconductorparameteranalyzer(4156c,AgilentTechnologies,CA).Acom-puterwithahapticdevice,areal-timeLinuxsystemandDAQcardsareusedinthisnanoma-nipulationsystem.Inaddition,asignalaccessandcontrolboxisdevelopedtoacquirethesignaloftopographyinformationandinputthecontrolsignalintotheAFMcontroller.Inordertolocallycharacterizetheirelectricalproperties,sampleswereplacedinanAFM(Dimension3100,Brukernano,CA)basedcompressivefeedbackbasednon-vectorspacenanomanipulationsystemintegratingwithanelectricalmeasurementsystem.Adiamond-coatedconductiveprobe(DDESP-FM-10,Brukernano,CA)wasusedasamovabledrainelectrode(asshowninFig.5.11).ThechannellengthListhedistancefromtheconductivetiptothesourceelectrode.5.6.4ResultsandDiscussionTheresistancedistributionofMWNT,whichisakeyparameterofelectricalbreakdown,wasaccuratelymeasuredbyanAFMbasednanorobotandanon-vectorspacecontrolstrategywereused,andthepositionerrorinthemeasurementwascontrolledwithinseveralnanometers.Intheexperiment,thelengthdependentlocalconductanceoftheMWNTwasmeasuredwithalengthincrementof20nm.TheconductivetipofthenanorobotwaspositionedabovetheMWNTatasplocation,andfollowedbyloweringthetiptocontactwiththeMWNT.Thecurrentwsfromtheconductivetiptotheelectrodewererecorded,andthetotalresistancewasplottedasafunctionofchannellength.124Intheexperiment,weusedanMWNTwithuniformconductancedistribution(whichwaspre-selectedaccordingtotheresistancedistribution)asshowninFig.5.12(a).Fromtheresistancemap(Fig.5.12(b)),itcanbefoundthat,theresistanceincreasesgraduallyandcontinuouslywiththeincensementofthelengthofMWNT,andthatmeanstheconductanceofthisMWNThasauniformdistribution.Afterthat,weusedthenanorobottomakeMWNTandsubstratehaveacontact(Fig.5.12(a)).ThecontactwasdoublecheckedbyusingAFMtopographyimage.TheMWNTsweusedinthisexperimenthasbeencarefullyexaminedbyscanningelectronmicroscopy(SEM),tomakesureeachonehastheuniformdiameterdistribution.(a)(b)Figure5.12ElectricalbreakdownofanMWNTwithuniformconductancedistribution,(a)TheAFMimagesbefore(left)andafter(right)theelectricalbreakdown,(b)Thetotalresistancerespecttothechannellengthbeforeandaftertheelectricalbreakdown,measuringdirection:fromthebottomendtotheupperendoftheMWNTin(a)125Insuchacondition,afterbridgedontwoelectrodes,topographychangesthethreedimensionalstructureofMWNT.Thelocationwithhigherpositioninverticaldirection(respecttotheplaneofsubstrate)meansthat,atthispoint,MWNTisapartfromthesubstrate.FortheMWNTintheexperiment,becausethetopographyhasnotchange,thecontactbetweenMWNTandsubstratewasestablished.Inthiscondition,thebreakdowncouldhappenatanylocationrandomly,andasaresult,thebreakdownhappenedatthelocationoftheupperpositionoftheMWNT(circledwithgreencolorinFig.5.12(a)(right)).(a)(b)Figure5.13ElectricalbreakdownofanMWNTwithnonuniformconductancedistribution,(a)TheAFMimagesbefore(left)andafter(right)theelectricalbreakdown,(b)Thetotalresistancerespecttothechannellengthbeforeandaftertheelectricalbreakdown,measuringdirection:fromthebottomendtotheupperendoftheMWNTin(a)126Inthenextexperiment,wechoseanMWNTwithdefect,whichmeansthelocalcon-ductancecouldhaveasuddenjumpataspposition.WefoundthissuddenjumppositionaftercarefullymeasuringtheresistancedistributionusingourAFMsystem(theresistancedistributionisshowninFig.5.13(b)).AccordingtoEq.(5.18)and(5.19),inthiscase,thegeneratedheathasanonuniformdistribution:themaximumtemperaturelocatesatthepositionwithasuddenjumpofconductance,wherethebiggestlocalresistancewasfound.Wepredictedthat,thebreakdownwouldhappenatthepositionwherethebiggestlocalresistancewasfound.Thisissupportedbytheexperimentalresults(thelocationofbreakdownislabeledbygreencircleintherightimageofFig.5.13(a),whichisthepositionwithasuddenjumpofresistance).Fromtheanalysisabove,wemayconcludedthat,fromtheviewofheatgeneration,localresistancedistributionisthekeyparameterfortheelectricalbreakdown,ifthethermaldissipationisnottakenintoaccount.However,inpracticeofMWNTbasedcircuitwireortransistorsystem,thethermaldissipationisamoreessentialparametercomparedwiththelocalconductancedistribution.Inordertotheevidencewhichcansupportthetheoryabove,inthelastexperiment,wechoseanMWNTwithnonuniformconductancedistribution(asshowninFig.5.14(b)).AftermeasuringtheresistancedistributionofthisMWNT,weusedtheAFMprobetopushoneendofthisMWNT(theotherendisbyathinlayerofPMMA)tomakesomepartsofthisMWNTapartfromthesubstrate.Afterthat,wecoveredthepushingendofthisMWNTwithPMMAtomaintainitsthreedimensionstructure,andatopographyimagewasobtainedusingAFM(asshowninFig.5.14(a)left).Fromthetopographymap,wepredictedthatelectricalbreakdownisverylikelytobehappenedatthehighestposition(theplacehasthemaximumverticaldistancefromthe127(a)(b)Figure5.14ElectricalbreakdownofanMWNTwithnonuniformconductancedistributionandcontactconsition,(a)TheAFMimagesbefore(left)andafter(right)theelectricalbreakdown,(b)Thetotalresistancerespecttothechannellengthbeforeandaftertheelectricalbreakdown,measuringdirection:fromthebottomendtotheupperendoftheMWNTin(a)128substrate).ThepredictionismadeaccordingtoEq.(5.18)and(5.19),thetemperatureisdeterminedbyboththeconductivitydistributionandthenonuniformthermaldissipation.Fromtheexperimentalresults,thebreakdownismostlikelytobehappenedatthepositionwhichhasafurthestdistanceapartfromthesubstrate(labeledbygreencircleinFig.5.14(a)right)withtheminimumthermaldissipation.Fromtheresistancemeasuringandbreakdownresultswecanthat:althoughthemaximumconductancechangelocatedinthelowerpartofthisMWNT,theelectricalbreakdownhappenedintheupperpartoftheMWNT,wheretheMWNThastheminimumthermaldissipation.Wemayconcludethat,thethermaldissipationisthedominateparameterforMWNTbasedcircuitwire.AlthoughinEq.(5.18)and(5.19),conductancechangeisalsoapa-rameterregradingtothermalgenerating,sincetheconductancedistributioninMWNTisunlikelytohavesuchatchangethatgeneratingenoughthermalenergyforbreak-down.Therefore,comparedwithconductancedistribution,thermaldissipation(thecontactconditionbetweenMWNTandsubstrate)isthemostimportantparameterforelectricalbreakdown.Ingeneral,fromtheviewofnanocircuit,contactbetweenMWNTandsubstratecanassurearapidthermaldissipationfromMWNTtothesubstrate,whichworksasaheatsink.Insuchacondition,theMWNTcanholdlargerelectrondensityandre-ducetheprobabilitythatelectricalbreakdownhappened.FromtheperspectiveofMWNTengineering,theelectricalbreakdowniscontrollablebymeansofcontrollingthecontactconditionbetweenMWNTanditssubstrate.ThisisanalternativewaytotailortheMWN-Tandchangeitslocalmechanicalandelectricalpropertiestofabricatehighperformancetransistorsandsensors.1295.7ConclusionsFromafundamentalperspective,thenon-vectorspacecontrolmethodhastheabilitytomakehighaccurateSPMbasednanomanipulationseasier,andsimultaneouslythecompres-sivefeedbackcanmakeareal-timenanomanipulationpossible.TheintegratingofthesetwoapproachescanachieveahighaccuracyandhighspeedmotioncontrolforSPMbasednanomanipulation.Furthermore,thetheorydevelopedinthisresearchcanbeappliedtonanoassembly,nanoimaging,nanomanipulationandsoforthwhicharetheareawewillconsiderinthefuture.Asanapplicationresearch,westudiedtheparameterswhichcontrolthelocationwheretheelectricalbreakdownofMWNThappened.Thecontactconditionwastookintoconsiderationasadominateparametertowardselectricalbreakdown.Weconcludethatcomparedwiththermalaccumulation(forsuspendedMWNT),resistancedistribution(thestructuraldefect),thethermaldissipation:thecontactconditionbetweenMWNTandsubstrate,contributesmoreinthermaldynamicsintheprocessofelectricalbreakdown.Theexperimentalresultswellsupportthisconclusion.Theelectricalbreakdowncouldbemechanicallycontrolledbyanadditionalheatsink,whichcouldbethesubstrateofMWNTdevice.Therefore,theelectricalbreakdownprocessiscontrollablethroughcontrol-lingJouleheatingandthermaldissipation.ManipulatingthethreedimensionalstructureofMWNTtochangethepositionofheatsinkisanalternativewaytocontrolthelocationthatelectricalbreakdownhappened.Moreover,theconclusionofthisresearchalsoprovidesasuggestionforthefabricationofnanocircuit,contactbetweenMWNTandsubstrateassuresthattheMWNTcanholdlargerelectrondensityandreducetheprobabilitythatelectricalbreakdownhappened.130Chapter6ConclusionsandFutureWork6.1ConclusionsInthisstudy,weproposedasystematicmultimodalsensingapproachinthenano/bioen-vironment.WeusedcompressivesensingtechniquetoincreasetheimagingrateofSPM/AFMtomakeitsuitabletodynamicallyobservethesamplesurfaceinreal-time.Afollowedupapplicationstudyshowsthat,thisfastimagingtechniquecanleadbetterunder-standingofenzymatichydrolysisprocess.OurexperimentalresultandanalysissuggestthatthesurfacedensityofactiveTrCel7A,isthedominatefactorthatcausedtheinactivationofenzymeduringthehydrolysisprocess,whichmaybeanusefulinformationforproteinengineeringstudytoincreasetheofenzymatichydrolysisrate.Wealsoproposedabrandnewmechanicalpropertiesmeasurementmethodcalled"vibra-tionmode".twithconventionalpointandshootingsignalmeasurement,vibrationmeasurementisamoremethodtoevaluatethemechanicalpropertiesofinternalstructureofelasticmaterial.Thebasicideaofthismethodistovibrateverticallyandtheadditionalvibrationamplitudeontheuppersurfaceofsample,otherthanthedrivingvibrationcanbeconsideredasthesampledeformationwhichdependsonthemechanicalproperties.Ourexperimentalresultsshowthat,vibrationmodecanprovidefasterimagingspeed,andmulti-channelinformationfromnoninvasivebiologicalpropertiesmeasurementsthanconventionalAFMbasedimagingandmeasurements.131OtherthanimprovingtheperformanceofSPMimagingandmeasurement,wealsopro-posedanewcontrolmethodcalled"non-vectorspacecontrol"toincreasethepositioningaccuracyofSPMbasedmanipulationandmeasurement.IthastheabilitytorealizehighaccurateSPMbasednanomanipulationsandsimultaneouslythecompressivefeedbackcanmakeareal-timenanomanipulationpossible.Furthermore,thetheorydevelopedinthisresearchcanbeappliedtonanoassembly,nanoimaging,nanomanipulationandsoforth.Inafollowupapplicationresearch,westudiedtheparameterswhichcontrolthelocationwheretheelectricalbreakdownofMWNThappened.Thecontactconditionwastookintoconsiderationasadominateparametertowardselectricalbreakdown.Weconcludethatcomparedwiththermalaccumulation(forsuspendedMWNT),resistancedistribution(thestructuraldefect),thethermaldissipation:thecontactconditionbetweenMWNTandsubstrate,contributesmoreinthermaldynamicsintheprocessofelectricalbreakdown.6.2FutureWork6.2.1QuantitativelyAnalyzeTrCel7AMoleculesInvolvedEnzy-maticHydrolysisProcessThedensityofTrCel7AonsubstrateisanimportantsinceitindicatestheeadsorptionofcellobiohydrolasesandismediatedbytheCBD.Theadsorptionofthefamily1CBDoncrystallinecelluloserequiresthreearomaticaminoacids,andthebindingsitestocellulosecrystals.Duetotheprocessivecharacteristicsofhydrolysis,thebindingofTrCel7Aandcellulosethehydrolysisrate.Generally,tenzymatichydrolysisrequireshighbindingdensity,highmovingvelocityandlowdissociationrate.Inthefuture,weplanto132useramanmicroscopyandHPLCtoquantitativelyanalyzetheparametersofenzymatichydrolysisprocess,suchastheconcentrationofsubstrate,enzymeandtheproduct,andassociatedwithourprevioussinglemoleculeexperimentalresulttobuildakinematicmodeltobettertheunderstandingtheslowrateofhydrolysis.6.2.2SubsurfaceStructureorMechanicalPropertiesMeasure-mentUsingVibrationModeforCellMigrationStudyVibrationmodemeasurementisnaturallysuitabletoevaluatethemechanicalpropertiesofinternalstructureofelasticmaterial.Previoussectionillustratestheideaofsubstructuremechanicalpropertiesmeasurementworkingprinciple.Inthefuturewewilluseourvibrationmodetostudythemechanicalpropertieschangesduringthecellmigration.Cellmonolayermigrationisanimportantphysiologicalphenomenoninvolvedinembry-odevelopment,woundhealing,andcancerinvasion,butitsgoverningprincipleisastillmystery.Themonolayermigrationdynamicsisrelatedwithsubstrateviscosity,topography,cellulartractionforce,freespaceandcelldamageandthegeometryofcellmonolayer.Atindividualcelllevel,cellularstronglyimpactscellularinvasionandintegrityinkeratinocytes.Thus,thereisacriticalneedtoestablishtheroleofcellularnessincollectivecellmonolayermigration.Withoutthisknowledge,thegoverningprincipleofcollectivecellmigrationmaybemisunderstood,thushinderdevelopingnewtherapiesforwoundhealingandcancermetastasis.Insuchacondition,ourvibrationmodemechanicalpropertiesmeasurementsystemwillbeaperfectcandidatetostudythemechanicalprop-ertieschangesduringthecellmigration,andusetheexperimentaldatatobuildaphysicalmodelofcellmigrationwhichwillbridgethegapoftheunderstandingofbasicmigration133mechanismandcoulddirectthedevelopmentofdrugforfasterwoodhealing.134REFERENCES135REFERENCES[1]R.Yang,N.Xi,K.C.M.Fung,K.W.C.Lai,andA.A.Sinha,\Analysisofkeratinocytesafterdesmosomedisruptionusingatomicforcemicroscopybasednanomanipulation,"inProc.IEEEInt.Conf.Nanotechnology,Genoa,Italy,2009,pp.640{643.[2]B.Song,N.Xi,R.Yang,K.W.C.Lai,andC.Qu,\On-linesensingandvisualfeedbackforatomicforcemicroscopy(afm)basednano-manipulations,"inProc.IEEEInt.Conf.NanotechnologyMaterialsandDevices(NMDC),Monterey,California,USA,2010,pp.71{74.[3]G.Li,N.Xi,andD.H.Wang,\Insitusensingandmanipulationofmoleculesinbiologicalsamplesusingananoroboticsystem,"Nanomedicine,vol.1,no.1,pp.31{40,2005.[4]G.Li,N.Xi,M.Yu,andW.-K.Fung,\Developmentofaugmentedrealitysystemforafm-basednanomanipulation,"Mechatronics,IEEE/ASMETransactionsonMecha-tronics,vol.4,no.9,pp.358{365,2004.[5]M.Lastella,M.Lasalvia,G.Perna,P.Biagi,andV.Capozzi,\Atomicforcemicroscopystudyonhumankeratinocytestreatedwithhgcl2,"JournalofPhisicsconferenceseries,vol.61,2007.[6]R.Yang,N.Xi,C.Fung,C.Qu,andJ.Xi,\Comparativestudiesofatomicforcemicroscopy(afm)andquartzcrystalmicrobalancewithdissipation(qcm-d)forreal-timeidenofsignalingpathway,"IEEEConferenceonNanotechnology,2010.[7]N.A.Burnham,R.J.Colton,andH.M.Pollock,\Interpretationissuesinforcemi-croscopy,"JournalofVacuumScience&TechnologyA,vol.9,no.4,pp.2548{2556,1991.[8]A.Rosa-Zeiser,E.Weilandt,S.Hild,andO.Marti,\Thesimultaneousmeasurementofelastic,electrostaticandadhesivepropertiesbyscanningforcemicroscopy:pulsed-forcemodeoperation,"MeasurementScienceandTechnology,vol.8,no.11,p.1333,1997.[9]Z.ParlakandF.Degertekin,\Combinedquantitativeultrasonicandtime-resolvedinteractionforceafmimaging,"ReviewofInstruments,vol.82,no.1,p.013703,2011.136[10]H.Chen,N.Xi,K.Lai,C.Fung,andR.Yang,\Developmentofinfrareddetectorsusingsinglecarbon-nanotube-basedtransistors,"Nanotechnology,IEEETransac-tionson,vol.9,no.5,pp.582{589,2010.[11]H.Chen,N.Xi,K.Lai,C.Fung,L.Chen,andJ.Lou,\Analysisanddesignofcarbonnanotubebasedtransistorsfornanoinfraredsensors,"inProc.IEEEInt.Conf.NanotechnologyMaterialsandDevices(NMDC),Monterey,California,USA,2010,pp.164{168.[12]H.Chen,N.Xi,K.Lai,C.Fung,andR.Yang,\Analysisanddesignofcarbonnan-otubebasedtransistorsfornanoinfraredsensors,"inProc.IEEEInt.Conf.NanotechnologyMaterialsandDevices(NMDC),TraverseCity,Michigan,USA,2009,pp.91{95.[13]B.Song,N.Xi,R.Yang,K.W.C.Lai,andC.Qu,\Videorateatomicforcemicroscopyimaging,"inProc.ANSEPRRSD-13thRoboticsandremoteSystemsforHazardousEnvironmentsand11thEmergencyPreparednessandResponse,Knoxville,TN,USA,2011,p.ToAppear.[14]H.-J.Butt,P.Siedle,K.Seifert,K.Fendler,T.Seeger,E.Bamberg,A.Weisenhorn,K.Goldie,andA.Engel,\Scanspeedlimitinatomicforcemicroscopy,"Journalofmicroscopy,vol.169,no.1,pp.75{84,1993.[15]D.Walters,J.Cleveland,N.Thomson,P.Hansma,M.Wendman,G.Gurley,andV.Elings,\Shortcantileversforatomicforcemicroscopy,"ReviewofInstru-ments,vol.67,no.10,pp.3583{3590,1996.[16]M.B.Viani,L.I.Pietrasanta,J.B.Thompson,A.Chand,I.C.Gebeshuber,J.H.Kindt,M.Richter,H.G.Hansma,andP.K.Hansma,\Probingprotein{proteininter-actionsinrealtime,"NatureStructural&MolecularBiology,vol.7,no.8,pp.644{647,2000.[17]T.Ando,N.Kodera,D.Maruyama,E.Takai,K.Saito,andA.Toda,\Ahigh-speedatomicforcemicroscopeforstudyingbiologicalmacromoleculesinaction,"JapaneseJournalofAppliedPhysics,vol.41,no.7S,p.4851,2002.[18]T.Ando,N.Kodera,E.Takai,D.Maruyama,K.Saito,andA.Toda,\Ahigh-speedatomicforcemicroscopeforstudyingbiologicalmacromolecules,"ProceedingsoftheNationalAcademyofSciences,vol.98,no.22,pp.12468{12472,2001.137[19]J.H.Kindt,G.E.Fantner,J.A.Cutroni,andP.K.Hansma,\Rigiddesignoffastscanningprobemicroscopesusingelementanalysis,"Ultramicroscopy,vol.100,no.3,pp.259{265,2004.[20]T.Ando,T.Uchihashi,N.Kodera,A.Miyagi,R.Nakakita,H.Yamashita,andM.Sakashita,\High-speedatomicforcemicroscopyforstudyingthedynamicbehaviorofproteinmoleculesatwork,"Japanesejournalofappliedphysics,vol.45,no.3S,p.1897,2006.[21]Z.FanandJ.G.Lu,\Electricalpropertiesofznonanowiretransistorscharacterizedwithscanningprobes,"AppliedPhysicsLetters,vol.86,no.3,p.032111,2005.[22]S.Desbief,N.Hergue,O.Douheret,M.Surin,P.Dubois,Y.Geerts,R.Lazzaroni,andP.Leclere,\Nanoscaleinvestigationoftheelectricalpropertiesinsemiconductorpolymer-carbonnanotubehybridmaterials,"Nanoscale,vol.4,pp.2705{2712,2012.[23]X.Michalet,F.Pinaud,L.Bentolila,J.Tsay,S.Doose,J.Li,G.Sundaresan,A.Wu,S.Gambhir,andS.Weiss,\Quantumdotsforlivecells,invivoimaging,anddiagnos-tics,"Science,vol.307,no.5709,pp.538{544,2005.[24]S.J.Tans,A.R.M.Verschueren,andC.Dekker,\Room-temperaturetransistorbasedonasinglecarbonnanotube,"Nature,vol.393,no.6680,pp.49{52,1998.[25]H.Z.Chen,N.Xi,K.W.C.Lai,L.L.Chen,R.G.Yang,andB.Song,\Gatedependen-tphoto-responsesofcarbonnanotubephototransistors,"Nanotechnology,vol.23,no.38,p.385203.[26]H.Chen,N.Xi,B.Song,L.Chen,J.Zhao,K.W.C.Lai,andR.Yang,\Infraredcamerausingasinglenano-photodetector,"SensorsJournal,IEEE,vol.13,no.3,pp.949{958,March.[27]Y.-J.Choi,I.-S.Hwang,J.-G.Park,K.J.Choi,J.-H.Park,andJ.-H.Lee,\Novelfabricationofansno2nanowiregassensorwithhighsensitivity,"Nanotechnology,vol.19,no.9,p.095508,2008.[28]H.Chen,N.Xi,K.Lai,L.Chen,C.Fung,andJ.Lou,\Plasmonic-resonantbowtieantennaforcarbonnanotubephotodetectors,"InternationalJournalofOptics,vol.2012,p.1,2012.138[29]H.Chen,N.Xi,K.Lai,C.Fung,andR.Yang,\Developmentofinfrareddetectorsusingsinglecarbon-nanotube-basedtransistors,"Nanotechnology,IEEETransac-tionson,vol.9,no.5,pp.582{589,2010.[30]T.K.Ghanem,E.D.Williams,andM.S.Fuhrer,\Characterizationoftheelectri-calcontactbetweenaconductiveatomicforcemicroscopecantileverandacarbonnanotube,"JournalofAppliedPhysics,vol.110,no.5,p.054305,2011.[31]G.Jo,J.Maeng,T.-W.Kim,W.-K.Hong,B.-S.Choi,andT.Lee,\Channel-lengthandgate-biasdependenceofcontactresistanceandmobilityforin2o3nanowiretransistors,"JournalofAppliedPhysics,vol.102,no.8,p.084508,2007.[32]X.Zhou,S.A.Dayeh,D.Aplin,D.Wang,andE.T.Yu,\Directobservationofballisticanddriftcarriertransportregimesininasnanowires,"AppliedPhysicsLetters,vol.89,no.5,p.053113,2006.[33]S.M.SalapakaandM.V.Salapaka,\Scanningprobemicroscopy,"IEEEControlSystemMagazine,vol.28,no.2,pp.65{83,2008.[34]B.MokaberiandA.A.G.Requicha,\CompensationofscannercreepandhysteresisforAFMnanomanipulation,"IEEETrans.onAutomationScienceandEngineering,vol.5,no.2,pp.197{206,2008.[35]D.Croft,G.Shed,andS.Devasia,\Creep,hysteresis,andvibrationcompensationforpiezoactuators:Atomicforcemicroscopyapplication,"ASMEJournalofDynamicSystems,Measurement,andControl,vol.123,no.1,pp.35{43,2001.[36]S.DevasiaandE.E.S.O.R.Moheimani,\Asurveyofcontrolissuesinnanoposition-ing,"IEEETransactionsonControlSystemTechnology,vol.15,no.5,pp.802{823,2007.[37]H.Chen,N.Xi,K.Lai,C.Fung,andR.Yang,\Cntinfrareddetectorsusingschottkybarriersandp-njunctionsbasedfets,"inIEEENanotechnologyMaterialsandDevicesConference,TraverseCity,Michigan,USA,2009,pp.91{95.[38]H.Chen,N.Xi,K.W.C.Lai,L.Chen,C.K.M.Fung,andJ.Lou,\Plasmonic-resonantbowtieantennaforcarbonnanotubephotodetectors,"InternationalJournalofOptics,vol.2012,pp.582{589,2012.[39]H.Chen,N.Xi,K.W.C.Lai,L.Chen,R.Yang,andB.Song,\Gatedependentphoto-responsesofcarbonnanotubephototransistors,"Nanotechnology,vol.23,no.38,p.385203(8pages),2012.139[40]R.V.Lapshin.,\Analyticalmodelfortheapproximationofhysteresisloopanditsapplicationtothescanningtunnelingmicroscope,"ReviewofInstruments,vol.66,no.9,pp.4718{4730,1995.[41]K.KuhnenandH.Janocha,\Inversefeedforwardcontrollerforcomplexhystereticnonlinearitiesinsmart-materialsystems,"ControlIntelligencesystem,vol.29,no.3,pp.74{83,2001.[42]P.KrejciandK.Kuhnen,\Inversecontrolofsystemswithhysteresisandcreep,"IEEProceedings-ControlTheoryandApplications,vol.148,no.3,pp.185{192,2001.[43]P.-L.Yen,M.-T.Yan,andY.Chen,\Hysteresiscompensationandadaptivecontrollerdesignforapiezoceramicactuatorsysteminatomicforcemicroscopy,"AsianJournalofControl,vol.14,no.4,pp.1012{1027,2012.[44]H.Habibullah,H.Pota,I.Petersen,andM.Rana,\Creep,hysteresis,andcross-couplingreductioninthehigh-precisionpositioningofthepiezoelectricscannerstageofanatomicforcemicroscope,"Nanotechnology,IEEETransactionson,vol.PP,no.99,pp.1{1,2013.[45]A.J.FlemingandK.K.Leang,\Integratedstrainandforcefeedbackforhigh-performancecontrolofpiezoelectricactuators,"SensorsandActuatorsA-Physical,vol.161,no.1-2,pp.256{265,2010.[46]Y.Zhu,S.O.R.Moheimani,andM.R.Yuce,\Simultaneouscapacitiveandelec-trothermalpositionsensinginamicromachinednanopositioner,"IEEEElectronDeviceLetters,vol.32,no.8,pp.1146{1148,2011.[47]S.Gonda,T.Doi,T.Kurosawa,Y.Tanimura,N.Hisata,T.Yamagishi,H.Fujimoto,andH.Yukawa,\Real-time,interferometricallymeasuringatomicforcemicroscopefordirectcalibrationofstandards,"Reviewofinstruments,vol.70,no.8,pp.3362{3368,1999.[48]M.Rakotondrabe,\Bouc{wenmodelingandinversemultiplicativestructuretocom-pensatehysteresisnonlinearityinpiezoelectricactuators,"AutomationScienceandEngineering,IEEETransactionson,vol.8,no.2,pp.428{431,2011.[49]L.Liu,Y.Luo,N.Xi,Y.Wang,J.Zhang,andG.Li,\Sensorreferencedreal-timevideolizationofatomicforcemicroscopyfornanomanipulations,"IEEE/ASMETrans.Mechatronics,vol.13,no.1,pp.76{85,2008.140[50]F.ChaumetteandS.Hutchinson,\VisualservocontrolpartI:Basicapproaches,"IEEERobot.Autom.Mag.,vol.13,no.4,pp.82{90,2006.[51]E.MarchandandF.Chaumette,\Featuretrackingforvisualservoingpurposes,"Robot.Auton.Syst.,vol.52,no.1,pp.53{70,2005.[52]V.Kallem,M.Dewan,J.P.Swensen,G.D.Hager,andN.J.Cowan,\Kernel-basedvisualservoing,"inProc.IEEE/RSJInt.Conf.Intell.RobotsSyst.,SanDiego,CA,USA,2007,pp.1975{1980.[53]C.CollewetandE.Marchand,\Photometricvisualservoing,"IEEETransactionsonRobotics,vol.27,no.4,pp.828{834,2011.[54]S.Han,A.Censi,A.D.Straw,andR.M.Murray,\Abio-plausibledesignforvisualposestabilization,"inProc.IEEE/RSJInt.Conf.Intell.RobotsSyst.,Taipei,Taiwan,2010,pp.5679{5686.[55]A.DameandE.Marchand,\Mutualinformation-basedvisualservoing,"IEEETrans-actionsonRobotics,vol.27,no.5,pp.1{12,2011.[56]G.Li,N.Xi,H.Chen,C.Pomeroy,andM.Prokos,\"videolized"atomicforcemi-croscopyforinteractivenanomanipulationandnanoassembly,"Nanotechnology,IEEETransactionson,vol.4,no.5,pp.605{615,2005.[57]F.Dinelli,H.Assender,N.Takeda,G.Briggs,andO.Kolosov,\Elasticmappingofheterogeneousnanostructureswithultrasonicforcemicroscopy(ufm),"Surfaceandinterfaceanalysis,vol.27,no.5-6,pp.562{567,1999.[58]O.V.Kolosov,M.R.Castell,C.D.Marsh,G.A.D.Briggs,T.Kamins,andR.S.Williams,\Imagingtheelasticnanostructureofgeislandsbyultrasonicforcemi-croscopy,"Physicalreviewletters,vol.81,no.5,p.1046,1998.[59]F.Dinelli,C.Albonetti,andO.V.Kolosov,\Ultrasonicforcemicroscopy:Detectionandimagingofultra-thinmoleculardomains,"Ultramicroscopy,vol.111,no.4,pp.267{272,2011.[60]G.Sauerbrey,\Verwendungvonschwingquarzenzuragungdunnerschichtenundzurmikroagung,"ZeitschriftfurPhysik,vol.155,no.2,pp.206{222,1959.[61]G.Binning,C.F.Quate,andC.Gerber,\Atomicforcemicroscope,"PhysicalReviewLetters,vol.56,no.9,pp.930{933,1986.141[62]R.Yang,N.Xi,K.W.Lai,B.Zhong,C.K.Fung,C.Qu,andD.H.Wang,\Nanome-chanicalanalysisofinsulinomacellsbyatomicforcemicroscopyafterglucoseandcapsaicinstimulation,"ActaPharmacologicaSinica.,vol.32,no.6,pp.853{860,2011.[63]C.K.Fung,K.K.W.Lai,R.Yang,D.Panyard,J.Zhang,N.Xi,andA.A.Sinha,\Investigationofhumankeratinocytecelladhesionusingatomicforcemicroscopy(afm),,"INanomedicine:Nanotechnology,Biology,andMedicine.,vol.6,no.1,pp.191{200,2009.[64]E.Candes,J.Romberg,andT.Tao,\Robustuncertaintyprinciples:exactsignalreconstructionfromhighlyincompletefrequencyinformation,"IEEETransactionsonInformationTheory,vol.52,no.2,pp.489{509,2006.[65]D.L.DonohoandY.Tsaig,\Extensionsofcompressedsensing,"SignalProcessing,vol.86,no.3,pp.533{548,2006.[66]D.L.Donoho,\Formostlargeunderdeterminedsystemsoflinearequations,themin-imall1normsolutionisalsothesparsestsolution,"CommunicationsonPureandAppliedMathematics,vol.59,no.6,pp.797{829,2006.[67]S.V.Ann,S.V.Ann,C.J.Yong,andC.J.Kiat,\Evolutionaryalgorithmsforsolvingmulti-objectivetravellingsalesmanproblem,"FlexibileServicesandManufacturingJournal,vol.23,no.2,pp.207{241,2011.[68]O.KolosovandK.Yamanaka,\Nonlineardetectionofultrasonicvibrationsinanatomicforcemicroscope,"Japanesejournalofappliedphysics,vol.32,no.8A,p.L1095,1993.[69]B.Song,R.Yang,N.Xi,K.C.Patterson,C.Qu,andK.W.C.Lai,\Cellular-levelsurgeryusingnanorobots,"JournalofLaboratoryAutomation,vol.17,no.6,pp.425{434,2012.[70]B.Song,J.Zhao,N.Xi,H.Chen,K.W.C.Lai,R.Yang,andL.Chen,\Compres-sivefeedback-basedmotioncontrolfornanomanipulation:theoryandapplications,"Robotics,IEEETransactionson,vol.30,no.1,pp.103{114,Feb2014.[71]N.Xi,B.Song,R.Yang,K.W.C.Lai,H.Chen,C.Qu,andL.Chen,\Videorateatomicforcemicroscopy:Useofcompressivescanningfornanoscalevideoimaging,"NanotechnologyMagazine,IEEE,vol.7,no.1,pp.4{8,March2013.142[72]K.Igarashi,T.Uchihashi,A.Koivula,M.Wada,S.Kimura,T.Okamoto,M.Pena,T.Ando,andM.Samejima,\Tjamsreducehydrolyticofcellulaseoncellulosesurface,"Science,vol.333,no.6047,pp.1279{1282,2011.[73]L.R.Lynd,M.S.Laser,D.Bransby,B.E.Dale,B.Davison,R.Hamilton,M.Himmel,M.Keller,J.D.McMillan,J.Sheehanetal.,\Howbiotechcantransformbiofuels."Naturebiotechnology,vol.26,no.2,2008.[74]M.E.Himmel,S.-Y.Ding,D.K.Johnson,W.S.Adney,M.R.Nimlos,J.W.Brady,andT.D.Foust,\Biomassrecalcitrance:engineeringplantsandenzymesforbiofuelsproduction,"science,vol.315,no.5813,pp.804{807,2007.[75]V.Arantes,J.N.Saddleretal.,\Accesstocelluloselimitstheofenzymatichydrolysis:theroleofamorphogenesis,"BiotechnolBiofuels,vol.3,no.4,2010.[76]B.D.Solomon,J.R.Barnes,andK.E.Halvorsen,\Grainandcellulosicethanol:History,economics,andenergypolicy,"BiomassandBioenergy,vol.31,no.6,pp.416{425,2007.[77]R.WolfendenandY.Yuan,\Ratesofspontaneouscleavageofglucose,fructose,su-crose,andtrehaloseinwater,andthecatalyticofinvertaseandtrehalas,"JournaloftheAmericanChemicalSociety,vol.130,no.24,pp.7548{7549,2008.[78]P.Bubner,J.Dohr,H.Plank,C.Mayrhofer,andB.Nidetzky,\Cellulasesdigdeepinsituobservationofthemesoscopicstructuraldynamicsofenzymaticcellulosedegra-dation,"JournalofBiologicalChemistry,vol.287,no.4,pp.2759{2765,2012.[79]S.-Y.Ding,Q.Xu,M.Crowley,Y.Zeng,M.Nimlos,R.Lamed,E.A.Bayer,andM.E.Himmel,\Abiophysicalperspectiveonthecellulosome:newopportunitiesforbiomassconversion,"CurrentOpinioninBiotechnology,vol.19,no.3,pp.218{227,2008.[80]J.Wang,A.Quirk,J.Lipkowski,J.R.Dutcher,C.Hill,A.Mark,andA.J.Clarke,\Real-timeobservationoftheswellingandhydrolysisofasinglecrystallinecelluloseercatalyzedbycellulase7bfromtrichodermareesei,"Langmuir,vol.28,no.25,pp.9664{9672,2012.[81]B.Song,N.Xi,R.Yang,K.W.C.Lai,andC.Qu,\Videorateatomicforcemicroscopy(afm)imagingusingcompressivesensing,"inNanotechnology(IEEE-NANO),201111thIEEEConferenceon.IEEE,2011,pp.1056{1059.143[82]K.Igarashi,A.Koivula,M.Wada,S.Kimura,M.Pena,andM.Samejima,\Highspeedatomicforcemicroscopyvisualizesprocessivemovementoftrichodermareeseicellobiohydrolaseioncrystallinecellulose,"Journalofbiologicalchemistry,vol.284,no.52,pp.36186{36190,2009.[83]A.Nakamura,H.Watanabe,T.Ishida,T.Uchihashi,M.Wada,T.Ando,K.Igarashi,andM.Samejima,\Tbetweenprocessivityandhydrolyticvelocityofcellobio-hydrolasesatthesurfaceofcrystallinecellulose,"JournaloftheAmericanChemicalSociety,vol.136,no.12,pp.4584{4592,2014.[84]T.T.Teeri,\Crystallinecellulosedegradation:newinsightintothefunctionofcel-lobiohydrolases,"TrendsinBiotechnology,vol.15,no.5,pp.160{167,1997.[85]B.K.Barr,Y.-L.Hsieh,B.Ganem,andD.B.Wilson,\Idenoftwofunc-tionallytclassesofexocellulases,"Biochemistry,vol.35,no.2,pp.586{592,1996.[86]C.Divne,J.Stahlberg,T.Reinikainen,L.Ruohonen,G.Pettersson,J.Knowles,T.T.Teeri,andT.A.Jones,\Thethree-dimensionalcrystalstructureofthecatalyticcoreofcellobiohydrolaseifromtrichodermareesei,"Science,vol.265,no.5171,pp.524{528,1994.[87]K.Kipper,P.ae,andG.Johansson,\Processiveactionofcellobiohydrolasecel7afromtrichodermareeseiisrevealedasa,"BiochemicalJournal,vol.385,pp.1{9,2005.[88]S.Ahola,X.Turon,M.Osterberg,J.Laine,andO.Rojas,\Enzymatichydrolysisofnativecelluloseandothercellulosemodelofsurfacestructure,"Langmuir,vol.24,no.20,pp.11592{11599,2008.[89]S.Ahola,J.Salmi,L.-S.Johansson,J.Laine,andM.Osterberg,\Modelfromnativecellulosepreparation,swelling,andsurfaceinteractions,"Biomacro-molecules,vol.9,no.4,pp.1273{1282,2008.[90]Y.-S.Liu,J.O.Baker,Y.Zeng,M.E.Himmel,T.Haas,andS.-Y.Ding,\Cellobio-hydrolasehydrolyzescrystallinecelluloseonhydrophobicfaces,"JournalofBiologicalChemistry,vol.286,no.13,pp.11195{11201,2011.[91]N.Sugimoto,K.Igarashi,M.Wada,andM.Samejima,\Adsorptioncharacteristicsoffungalfamily1cellulose-bindingdomainfromtrichodermareeseicellobiohydrolaseioncrystallinecellulose:NegativecooperativeadsorptionviaastericexclusionLangmuir,vol.28,no.40,pp.14323{14329,2012.144[92]J.Leho,J.Sugiyama,M.Gustavsson,L.Fransson,M.Linder,andT.T.Teeri,\Thebindingspyandydeterminantsoffamily1andfamily3cellulosebindingmodules,"ProceedingsoftheNationalAcademyofSciences,vol.100,no.2,pp.484{489,2003.[93]J.Jung,A.Sethi,T.Gaiotto,J.J.Han,T.Jeoh,S.Gnanakaran,andP.M.Goodwin,\Bindingandmovementofindividualcel7acellobiohydrolasesoncrystallinecellu-losesurfacesrevealedbysingle-moleculeimaging,"JournalofBiologicalChemistry,vol.288,no.33,pp.24164{24172,2013.[94]C.MulakalaandP.J.Reilly,\Hypocreajecorina(trichodermareesei)cel7aasamolec-ularmachine:Adockingstudy,"Proteins:Structure,Function,andBioinformatics,vol.60,no.4,pp.598{605,2005.[95]A.Quirk,J.Lipkowski,C.Vandenende,D.Cockburn,A.J.Clarke,J.R.Dutcher,andS.G.Roscoe,\Directvisualizationoftheenzymaticdigestionofasingleerofnativecelluloseinanaqueousenvironmentbyatomicforcemicroscopy,"Langmuir,vol.26,no.7,pp.5007{5013,2010.[96]S.PerezandK.Mazeau,\Conformations,structures,andmorphologiesofcelluloses,"Polysaccharides:Structuraldiversityandfunctionalversatility,vol.2,2004.[97]T.Eriksson,J.Karlsson,andF.Tjerneld,\Amodelexplainingdecliningrateinhy-drolysisoflignocellulosesubstrateswithcellobiohydrolasei(cel7a)andendoglucanasei(cel7b)oftrichodermareesei,"Appliedbiochemistryandbiotechnology,vol.101,no.1,pp.41{60,2002.[98]J.JalakandP.ae,\Mechanismofinitialrapidrateretardationincellobio-hydrolasecatalyzedcellulosehydrolysis,"Biotechnologyandbioengineering,vol.106,no.6,pp.871{883,2010.[99]S.G.Allen,M.Tanchak,A.Quirk,A.N.Raegen,K.Reiter,R.Whitney,A.J.Clarke,J.Lipkowski,andJ.R.Dutcher,\SurfaceplasmonresonanceimagingoftheenzymaticdegradationofcelluloseAnalyticalMethods,vol.4,no.10,pp.3238{3245,2012.[100]A.V.GusakovandA.P.Sinitsyn,\Atheoreticalanalysisofcellulaseproductinhibi-tion:ofcellulasebindingconstant,enzyme/substrateratio,and-glucosidaseactivityontheinhibitionpattern,"Biotechnologyandbioengineering,vol.40,no.6,pp.663{671,1992.145[101]A.O.Converse,R.Matsuno,M.Tanaka,andM.Taniguchi,\Amodelofenzymeadsorptionandhydrolysisofmicrocrystallinecellulosewithslowdeactivationoftheadsorbedenzyme,"BiotechnologyandBioengineering,vol.32,no.1,pp.38{45,1988.[102]F.XuandH.Ding,\Anewkineticmodelforheterogeneous(orspatiallyen-zymaticcatalysis:contributionsfromthefractalandjamming(overcrowding)AppliedCatalysisA:General,vol.317,no.1,pp.70{81,2007.[103]P.ae,V.Sild,A.Nutt,G.Pettersson,andG.Johansson,\Acidhydrolysisofbacterialcelluloserevealstmodesofsynergisticactionbetweencellobiohydro-laseiandendoglucanasei,"EuropeanJournalofBiochemistry,vol.266,no.2,pp.327{334,1999.[104]S.E.Levine,J.M.Fox,H.W.Blanch,andD.S.Clark,\Amechanisticmodeloftheenzymatichydrolysisofcellulose,"Biotechnologyandbioengineering,vol.107,no.1,pp.37{51,2010.[105]N.Cruys-Bagger,H.Tatsumi,K.Borch,andP.Westh,\Agraphenescreen-printedcarbonelectrodeforreal-timemeasurementsofunoccupiedactivesitesinacellulase,"Analyticalbiochemistry,2014.[106]H.Guo,A.Ma,G.Zhao,J.Yun,X.Liu,H.Zhang,andG.Zhuang,offarnesolonpenicilliumdecumbenssmorphologyandcellulaseproduction,"BioResources,vol.6,no.3,pp.3252{3259,2011.[107]M.LinderandT.T.Teeri,\Thecellulose-bindingdomainofthemajorcellobiohy-drolaseoftrichodermareeseiexhibitstruereversibilityandahighexchangerateoncrystallinecellulose,"ProceedingsoftheNationalAcademyofSciences,vol.93,no.22,pp.12251{12255,1996.[108]H.Palonen,M.Tenkanen,andM.Linder,\Dynamicinteractionoftrichodermareeseicellobiohydrolasescel6aandcel7aandcelluloseatequilibriumandduringhydrolysis,"Appliedandenvironmentalmicrobiology,vol.65,no.12,pp.5229{5233,1999.[109]A.Ma,Q.Hu,Y.Qu,Z.Bai,W.Liu,andG.Zhuang,\Theenzymatichydrolysisrateofcellulosedecreaseswithirreversibleadsorptionofcellobiohydrolasei,"EnzymeandMicrobialTechnology,vol.42,no.7,pp.543{547,2008.[110]A.Kyriacou,R.J.Neufeld,andC.R.MacKenzie,\Reversibilityandcompetitionintheadsorptionoftrichodermareeseicellulasecomponents,"Biotechnologyandbioengi-neering,vol.33,no.5,pp.631{637,1989.146[111]W.Sattler,H.Esterbauer,O.Glatter,andW.Steiner,\Theofenzymeconcen-trationontherateofthehydrolysisofcellulose,"Biotechnologyandbioengineering,vol.33,no.10,pp.1221{1234,1989.[112]Z.Yao,C.L.Kane,andC.Dekker,electricaltransportinsingle-wallcarbonnanotubes,"PhysicalReviewLetters,vol.84,no.13,p.2941,2000.[113]D.Yang,S.Wang,Q.Zhang,P.Sellin,andG.Chen,\Thermalandelectricaltransportinmulti-walledcarbonnanotubes,"PhysicsLettersA,vol.329,no.3,pp.207{213,2004.[114]Y.-H.Lee,J.-H.Lee,S.Chung,S.Lee,andB.Ju,\Carriercarryingcapacityofone-stepgrownsuspendedcarbonnanotubebridgewithcarbonnanotubecontactelectrodes:Forpracticalone-dimensionalelectronics,"Appliedphysicsletters,vol.89,no.7,p.073109,2006.[115]S.J.Tans,A.R.Verschueren,andC.Dekker,\Room-temperaturetransistorbasedonasinglecarbonnanotube,"Nature,vol.393,no.6680,pp.49{52,1998.[116]M.-S.Wang,D.Golberg,andY.Bando,\Interfacedynamicbehaviorbetweenacarbonnanotubeandmetalelectrode,"AdvancedMaterials,vol.22,no.1,pp.93{98,2010.[117]S.HongandS.Myung,\Aapproachtomobility,"NatureNanotech,vol.2,pp.207{208,2007.[118]P.Kim,L.Shi,A.Majumdar,andP.McEuen,\Thermaltransportmeasurementsofindividualmultiwallednanotubes,"Physicalreviewletters,vol.87,no.21,p.215502,2001.[119]C.Santini,P.Vereecken,A.Volodin,G.Groeseneken,S.DeGendt,andC.VanHae-sendonck,\Astudyofjouleheating-inducedbreakdownofcarbonnanotubeintercon-nects,"Nanotechnology,vol.22,no.39,p.395202,2011.[120]K.M˝lhave,S.B.Gudnason,A.T.Pedersen,C.H.Clausen,A.Horsewell,andP.B˝ggild,\Transmissionelectronmicroscopystudyofindividualcarbonnanotubebreakdowncausedbyjouleheatinginair,"Nanoletters,vol.6,no.8,pp.1663{1668,2006.[121]M.Tsutsui,Y.-k.Taninouchi,S.Kurokawa,andA.Sakai,\Electricalbreakdownofshortmultiwalledcarbonnanotubes,"Journalofappliedphysics,vol.100,no.9,p.094302,2006.147[122]A.Javey,J.Guo,M.Paulsson,Q.Wang,D.Mann,M.Lundstrom,andH.Dai,quasiballistictransportinshortcarbonnanotubes,"PhysicalReviewLet-ters,vol.92,no.10,p.106804,2004.[123]Y.Wei,K.Jiang,L.Liu,Z.Chen,andS.Fan,\Vacuum-breakdown-inducedneedle-shapedendsofmultiwalledcarbonnanotubeyarnsandtheiremissionapplica-tions,"NanoLetters,vol.7,no.12,pp.3792{3797,2007.[124]J.Huang,S.Chen,S.Jo,Z.Wang,D.Han,G.Chen,M.Dresselhaus,andZ.Ren,\Atomic-scaleimagingofwall-by-wallbreakdownandconcurrenttransportmeasure-mentsinmultiwallcarbonnanotubes,"Physicalreviewletters,vol.94,no.23,p.236802,2005.[125]G.K.GoswamiandK.K.Nanda,\Electricalbreakdownofcarbonnanotubedevicesandthepredictabilityofbreakdownposition,"AIPAdvances,vol.2,no.2,p.022129,2012.[126]J.P.Aubin,MutationalandMorphologicalAnalysis:ToolsforShapeEvolutionandMorphogenesis.auser,1998.[127]T.Lorenz,\Aviabilitytheoremformorphologicalinclusions,"SIAMJ.ControlOpti-m.,vol.47,no.3,pp.1591{1614,2008.[128]||,\Morphologicalcontrolproblemswithstateconstraints,"SIAMJ.ControlOp-tim.,vol.48,no.8,pp.5510{5546,2010.[129]||,\Set-valuedmapsforimagesegmentation,"ComputVisualSci,vol.4,no.1,pp.41{57,2001.[130]L.Doyen,\Mutationalequationsforshapesandvision-basedcontrol,"JournalofMathematicalImagingandVision,vol.5,no.2,pp.99{109,1995.[131]A.Goradia,N.Xi,Z.Cen,andM.W.Mutka,\Modelinganddesignofmobilesurveil-lancenetworksusingamutationalanalysisapproach,"inProc.IEEE/RSJInt.Conf.Intell.RobotsSyst.,Alberta,Canada,2005,pp.3003{3008.[132]E.MarchandandF.Chaumette,\Featuretrackingforvisualservoingpurposes,"Robot.Auton.Syst.,vol.52,no.1,pp.53{70,2005.[133]L.Doyen,\Mutationalequationsforshapesandvision-basedcontrol,"JournalofMathematicalImagingandVision,vol.5,no.2,pp.99{109,1995.148[134]J.Zhao,B.Song,N.Xi,andK.W.C.Lai,\Mutationanalysismodelsforvisualservoinginnanomanipulations,"inProc.IEEEInt.Conf.ControlDecision,Orlando,Florida,USA,2011,p.ToAppear.[135]C.Collewet,E.Marchand,andF.Chaumette,\Visualservoingsetfreefromimageprocessing,"inProc.IEEEInt.Conf.Robot.Autom.,Pasadena,CA,USA,2008,pp.81{86.[136]A.DameandE.Marchand,\Improvingmutualinformation-basedvisualservoing,"inProc.IEEEInt.Conf.Robot.Autom.,Anchorage,Alaska,USA,2010,pp.5531{5536.[137]J.L.Barron,D.J.Fleet,andS.S.Beauchemin,\Performanceofwtech-niques,"InternationalJournalofComputerVision,vol.12,no.1,pp.43{77,1994.[138]W.Rudin,PrinciplesofMathematicalAnalysis,ThirdEdition.NewYorkCity,U.S:McGraw-HillScience/Engineering/Math,1976.[139]C.HegdeandR.G.Baraniuk,\Samplingandrecoveryofpulsestreams,"IEEETrans-actionsonSignalProcessing,vol.59,no.4,pp.1505{1517,2010.[140]E.J.CandesandJ.Romberg.,\Sparsityandincoherenceincompressivesampling,"InverseProblems,vol.23,no.3,pp.969{985,2007.[141]J.Zhao,N.Xi,L.Sun,andB.Song,\Stabilityanalysisofnon-vectorspacecontrolviacompressivefeedbacks,"in2012IEEE51stAnnualConferenceonDecisionandControl(CDC).IEEE,2012,pp.5685{5690.[142]H.Chen,N.Xi,K.Lai,C.Fung,andR.Yang,\Developmentofinfrareddetectorsusingsinglecarbon-nanotube-basedtransistors,"Nanotechnology,IEEETransac-tionson,vol.9,no.5,pp.582{589,2010.[143]K.W.C.Lai,N.Xi,C.K.M.Fung,jiangboZhang,H.Chen,Y.Luo,andU.C.Wejinya,\Automatednanomanufacturingsystemtoassemblecarbonnanotubebaseddevices,"InternationalJournalofRoboticsResearch,vol.28,no.4,pp.523{536,2009.[144]M.A.Kuroda,A.Cangellaris,andJ.-P.Leburton,\Nonlineartransportandheatdissipationinmetalliccarbonnanotubes,"Phys.Rev.Lett.,vol.95,p.266803,Dec2005.[145]M.Suzuki,Y.Ominami,Q.Ngo,C.Y.Yang,A.M.Cassell,andJ.Li,\Current-inducedbreakdownofcarboners,"JournalofAppliedPhysics,vol.101,no.11,pp.173110{173110,2007.149