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ABSTRACT

ABELIAN VARIETIES ASSOCIATED TO CLIFFORD ALGEBRAS

By

Casey Machen

The Kuga-Satake construction is a construction in algebraic geometry which associates

an abelian variety to a polarized K3-surface X. This abelian variety, A, is created from

the Clifford algebra arising from the quadratic space H2(X,Z)/torsion with its natural co-

homology pairing. Furthermore, there is an inclusion of Hodge structures H2(X,Q) ↪→

H1(A,Q) ⊗ H1(A,Q) relating the cohomology of the original K3-surface with that of the

abelian variety. We investigate when this construction can be generalized to both arbitrary

quadratic forms as well as higher degree forms. Specifically, we associate an abelian vari-

ety to the Clifford algebra of an arbitrary quadratic form in a way which generalizes the

Kuga-Satake construction. When the quadratic form arises as the intersection pairing on

the middle-dimensional cohomology of an algebraic variety Y , we investigate when the co-

homology of the abelian variety can be related to that of Y . Additionally, we explore when

families of algebraic varieties give rise to families of abelian varieties via this construction.

We use these techniques to build an analogous method for constructing an abelian variety

from the generalized Clifford algebra of a higher degree form. We find certain families of

complex projective 3-folds and 4-folds for which an abelian variety can be constructed from

the respective cubic and quartic forms on H2. The relations between the cohomology of the

abelian variety and the original variety are also discussed.
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Chapter 1

Introduction

The construction of the Jacobian variety associated to a complex projective curve is classical

in algebraic geometry. Geometric questions about projective algebraic curves can often be

translated to Jacobian varieties. This is attractive because various tools developed for abelian

varieties can be used in addressing these questions. In fact, Torelli’s Theorem tells us that

two curves are isomorphic if and only if their Jacobian varieties are isomorphic. Rephrased in

terms of Hodge structures, we have that two curves C1 and C2 are isomorphic if and only if

there is an isomorphism of integral Hodge structures H1(C1,Z) ∼= H1(C2,Z) which respects

the intersection pairing. For higher dimensional algebraic varieties, it is thus desirable to

have naturally associated abelian varieties which retain some geometric information of the

initial variety. The Albanese variety associated to a surface is such an example. However,

very often the Albanese variety is a point, and not too useful. Other constructions of this

flavor are the intermediate Jacobian for cubic 3-folds [CG72], and the Kuga-Satake variety

associated to a K3 surface [KS67]. In this paper, we study the extensions of the Kuga-Satake

construction to arbitrary quadratic forms and higher degree forms.

Let V be an integral, weight 2 polarized Hodge structure with dimV 2,0 = 1. The Kuga-

Satake construction associates an abelian variety A (which we call the Kuga-Satake variety)

to such a V . Furthermore, there is an inclusion of weight 2 Hodge structures

V ⊗Q ↪→ H1(A,Q)⊗H1(A,Q). (∗)
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This was applied to V = H2(X,Z)/torsion for a polarized K3 surface X. However, it works

in general for complex projective surfaces with h2,0 = 1.

We briefly explain this construction, see Chapter 2 for more detail. Recall that there is

a Clifford algebra associated to the intersection form q on V = H2(X,Z)/torsion. The even

Clifford algebra C+
q (VR) over R can be given a complex structure, and this has a full lattice

given by the inclusion of the even Clifford algebra C+
q (V ) over Z into C+

q (VR). Thus the

quotient is a complex torus. This complex torus admits a very ample line bundle, and hence

an embedding into projective space, making it an abelian variety. This construction relies

heavily upon the fact that dimV 2,0 = 1 (see [KS67] or [vG00, Proposition 5.9] for a modern

treatment).

The Kuga-Satake construction has helped a great deal in studying questions related to K3

surfaces. Deligne used this construction to prove the Weil conjectures for K3 surfaces [Del72].

Furthermore, there is a Torelli-type theorem for K3 surfaces due to Pyatetskii-Shapiro and

Shafarevich [IIPS71]. It says that two polarized K3 surfaces X1 and X2 are isomorphic if

and only if there is an isomorphism of Hodge structures H2(X1,Z) ∼= H2(X2,Z) which is

compatible with the intersection pairing. In other words, the Kuga-Satake variety completely

determines the K3 surface.

This construction has been generalized beyond the K3-surface case. In [Mor85], Morrison

notes that the middle dimensional cohomology of abelian surfaces satisfies the hypothesis

of the Kuga-Satake construction, and computes the abelian variety associated to an abelian

surface. Voison [Voi05] provides an alternative viewpoint of the Kuga-Satake construction

by noting that the Kuga-Satake variety can be obtained from the weight 2 Hodge structure

on the exterior algebra
∧∗ V .

The basic ingredient of the Kuga-Satake construction is a quadratic form on a free Z-
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module of finite rank V . When V is as in the Kuga-Satake construction, the signature of q

is (dimV − 2, 2). Noting this, we consider the following questions: can we create an abelian

variety A from the Clifford algebra of an arbitrary quadratic form in a meaningful way? If

so, can we recover the Kuga-Satake variety when q has signature (dimV −2, 2)? Finally, are

there other polarized Hodge structures on V for which we can construct an abelian variety

with an inclusion of Hodge structures of the form (∗) above?

Chapter 3 provides an affirmative answer to these questions. Namely, in Theorem 3.2.8

we show that for a quadratic form in two or more variables with signature other than (1, 1),

we can create an abelian variety from the Clifford algebra. Furthermore, Proposition 3.4.4

discusses an inclusion of Hodge structures as in (∗). Finally, Proposition 3.4.3 shows that we

do in fact recover the Kuga-Satake variety when the quadratic form is as in the Kuga-Satake

construction.

In Chapter 4, we show that our construction works in families. We begin with a contin-

uously varying family of polarized Hodge structures (variation of Hodge structure), instead

of just a single polarized Hodge structure. In Theorem 4.2.2 we prove, under some hy-

potheses, that the corresponding abelian varieties obtained from our construction also vary

continuously in a family. Theorem 4.2.8 provides a situation in which the hypotheses are

satisfied, and we conclude with geometric examples, including a proof that the Kuga-Satake

construction works in families.

The remainder of the paper applies our techniques to higher degree forms. The Lefshetz

Hyperplane Theorem suggests that for a complex projective variety of dimension n, the

most interesting cohomology resides in Hn. For K3 surfaces this is certainly the case, as

only H2 contains nontrivial information. On the other hand, intermediate Jacobians can

be constructed from any Hk for k odd, so interesting information can be found outside
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the middle-dimensional cohomology groups. Our idea is to consider higher degree forms

associated to a variety from the intersection form on H2. For example, consider a complex,

projective 3-fold Y . Then the (trilinear) intersection form

H2(Y,Q)⊗H2(Y,Q)⊗H2(Y,Q)→ Q

yields a cubic form on the vector space H2(Y,Q). In general, the intersection form on H2

of a d-dimensional complex variety yields a degree d form. The question we ask is: can

we construct an abelian variety from a degree d form in a manner similar to that of the

Kuga-Satake construction? And can we say anything meaningful in regards to the Hodge

structure?

There is a notion of a “generalized” Clifford algebra Cf for an arbitrary degree d form

f which has been studied by various authors including Roby [Rob69], Revoy [Rev77], and

Childs [Chi78]. It is the Z/dZ-graded associative algebra

Cf (K) = K〈x1, . . . xn〉/
(
(a1x1 + · · ·+ anxn)d − f(a1, . . . , an) : ai ∈ K

)
A similar scenario to the Kuga-Satake construction would be to say that C0

f (Z) is a full

lattice in C0
f (R), put a complex structure on C0

f (R) so that the quotient is a complex torus,

and show that the complex torus is in fact an abelian variety. Unfortunately, when d ≥ 3 and

the form has two or more variables, the generalized Clifford algebra is infinite dimensional

(this is well-known, see for example [BHS88, Theorem 1.8]). This idea needs modification

since we don’t want an infinite dimensional torus.

To remedy this, we will take a finite dimensional, graded representation of Cf (C) into

MN (C) for some N , and look at the induced representations on Cf (R) and Cf (Z). We denote

the images by cf (R) and cf (Z), respectively. Since we have chosen a graded representation,

c0f (R) and c0f (Z) will play the roles of the vector space and lattice, respectively.
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The idea of considering finite-dimensional representations of Cf is not new. Van den

Bergh [VdB87] shows that there is a one-to-one correspondence between finite dimensional

representations of Cf and certain vector bundles (called Ulrich bundles) on the hypersurface

Xf = Z(wd− f). There is an automorphism σ of Xf defined by w 7→ ζw for a primitive dth

root of unity ζ. Under Van den Bergh’s correspondence, graded representations correspond

to vector bundles which are invariant under the automorphism σ of Xf . Representations of

Cf and their properties are also discussed in [HT88, CKM12].

Chapter 5 first discusses background material and existence of graded representations

of Cf . The initial question is whether or not c0f (R) can be given a complex structure

for which the quotient c0f (R)/c0f (Z) is an abelian variety. Section 5.2 puts conditions on

the representation which allow for the construction of an abelian variety. Under a finite-

dimensional, graded representation of the Clifford algebra, there is no guarantee that c0f (Z)

is a full lattice inside of c0f (R). We discuss this in Section 5.3. This is the reason we restrict

to cubic and quartic forms. Section 5.4 provides several examples of 3-folds and 4-folds

for which an abelian variety can be constructed from the intersection form on H2. Section

5.5 specializes to 4-folds with are products of surfaces. We discuss how the abelian variety

associated to H2 of a surface relates to the abelian variety associated to H2 of the 4-fold.

In particular, we show that the Kuga-Satake variety of a K3 surface is a subquotient of the

abelian variety associated to the product of K3 surfaces. We conclude with a discussion of

when this construction works in families.
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Chapter 2

Background Material

This chapter contains the background information which will be used throughout paper. We

discuss Hodge structures and the way in which they arise in geometry. We then treat abelian

varieties and Clifford algebras. The chapter concludes with the Kuga-Satake construction.

2.1 Hodge Structures

Definition 2.1.1. Let V be a free Z-module of finite rank. A (pure) Hodge structure of

weight k on V is a decomposition

VC =
⊕

p+q=k V
p,q

of VC := V ⊗Z C into subspaces V p,q with V p,q = V q,p, where v ⊗ z := v ⊗ z̄.

Given such a decomposition, we define the Hodge filtration

VC ⊃ · · ·F p ⊃ F p+1 ⊃ · · · ⊃ 0

by F p =
⊕

r≥p V
r,r−p. Note that V p,q = F p ∩ F k−p+1, so that equivalent data is obtained

from either a Hodge structure or a Hodge filtration.

In the case where V is a finite dimensional Q-vector space, the definition is similar. To

distinguish between the two cases, we will say integral Hodge structure when V is a free

Z-module of finite rank, and rational Hodge structure when V is a Q-vector space. We say

a Hodge structure is of type T = {(p1, q1), . . . , (pn, qn)} if V r,s = 0 unless (r, s) ∈ T . When
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we don’t specify the type T of a Hodge structure, we assume that the pi, qj ≥ 0. This

assumption is due to the following example.

Example 2.1.2. Let X be a smooth, complex projective variety. Thus X can be considered

as a nonsingular complex manifold. The singular cohomology group VQ = Hk(X,Q) has

a natural Hodge structure of weight k with V p,q = Hq(X,Ωp) where Ωp be the sheaf of

differential p-forms. This is the example of a Hodge structure that we will have in mind

throughout the paper. Similarly, VZ = Hk(X,Z)/torsion has an integral Hodge structure of

weight k.

We now list several important notions which pertain to Hodge structures.

(i) The Tate structure Z(k) is defined to be the free Z-module V = (2πi)kZ ⊂ C with

V −k,−k = VC. This is a Hodge structure of type {(−k,−k)} and weight −2k. We

define Q(k) analogously, by replacing Z with Q. For our purposes, we will not need

the factor of (2πi)k in the definition of Z(k), so we will drop it to simplify notation.

(ii) If V has an integral Hodge structure of weight k, we define a weight −k integral Hodge

structure on V ∨ = HomZ(V,Z) by setting (V ∨)−p,−q = HomC(V p,q,C).

(iii) If V and W have Hodge structures of weight n and m, respectively. Then V ⊗W has

a Hodge structure of weight n+m given by

(V ⊗W )p,q = ⊕(V p1,q1 ⊗W p2,q2) where p1 + p2 = p and q1 + q2 = q.

Since Hom(V,W ) ∼= V ∨ ⊗W , we see that Hom(V,W ) has a natural Hodge structure

of weight m− n. We write V (k) for V ⊗ Z(k), which has weight n− 2k for any k. In

particular, V (0) = V .
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(iv) We define a morphism of Hodge structures to be a linear map f : V → W such that

the C-linear extension satisfies fC(V p,q) ⊂ W p,q. Such a morphism is necessarily 0,

unless V and W have the same weight. If V has weight n, W has weight n + 2k, and

we have a linear map f : V → W satisfying fC(V p,q) ⊂ W p+k,q+k, then we obtain a

morphism of Hodge structures V → W (k) given by v 7→ f(v).

Definition 2.1.3. An algebraic representation of C∗ on V is defined to be a morphism of

real algebraic groups ρ : C∗ → GL(VR).

Proposition 2.1.4. There is a bijection between rational Hodge structures of weight k on

V and algebraic representations ρ : C∗ → GL(VR) with ρ(t) = tk for t ∈ R∗. The Hodge

structure defined by ρ is the decomposition V p,q := {v ∈ VC : ρ(z)v = zpz̄qv}.

Proof. See [vG00, Proposition 1.4].

Using this correspondence, we now translate (i)-(iv) above:

(i) The Tate structure Z(k) corresponds to V = Z ⊂ C with ρ(z)(v) = (zz̄)−kv, for

v ∈ Z(k).

(ii) If V has representation ρ : C∗ → GL(VR), V ∨ has representation ρ∗ : C∗ → GL(V ∨)

defined by ρ∗(z)(ϕ) : v 7→ ϕ(ρ−1(z)(v)), for ϕ ∈ V ∨ and v ∈ V .

(iii) If V and W have ρV and ρW , respectively, then V ⊗W has representation ρV ⊗ ρW .

(iv) A morphism of Hodge structures (of same weight) f : V → W means

f(ρV (z)(v)) = ρW (z)(f(v))

Definition 2.1.5. Let V be an integral Hodge structure of weight k with corresponding

representation ρ : C∗ → GL(VR). A polarization is a morphism of Hodge structures

8



Q : V ⊗ V → Z(−k)

such that Q(v, ρ(i)w) is a symmetric, positive definite form on VR. The pair (V,Q) is called

a polarized Hodge structure.

Note that Q(ρ(z)v, ρ(z)w) = (zz̄)kQ(v, w) for all v, w ∈ VR by definition of a morphism

of Hodge structures (see (iv) above). When k = 1, the definition of polarization translates

to the Riemann bilinear relations. Furthermore, a polarization gives an isomorphism of the

weight −k rational Hodge structures V (k) ∼= V ∨ via v ⊗ 1 7→ Q(v,−).

Example 2.1.6. Let X be a complex, projective variety of dimension n as in Example

2.1.2. Denote by ω the class in H2(X,Q) corresponding to an ample divisor on X. For

α, β ∈ Hk(X,Q) with k ≤ n, define

Q(α, β) =
∫
X ωn−k ∧ α ∧ β.

This is a bilinear form on Hk. Then the primitive cohomology groups P k(X,Q), together

with Q, form a polarized Hodge structure of weight k (this is well-known, see for example

[VS02, Theorem 6.32]). As before, identical statements hold with Hk(X,Q) replaced by

Hk(X,Z)/torsion.

When X is a projective surface, let ω be the divisor corresponding to OX(1) relative to

some projective embedding. Then P 2(X,Q) is the orthogonal complement of ω in H2(X,Q)

and the polarization is the intersection pairing on H2.

Lemma 2.1.7. Let (V,Q) be a polarized Hodge structure of even weight 2k. Then Q is

(−1)k−p-definite on the subspace VR ∩ (V p,q ⊕ V q,p).

Proof. Let ρ denote the representation corresponding to the Hodge structure on V . Recall

that ρ(i) acts as ip−q on the subspace V p,q by Proposition 2.1.4. Since V has weight 2k,
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ip−q = ip−(2k−p) = i2p−2k = (−1)p−k = (−1)k−p.

Similarly, iq−p = (−1)k−p. Since Q is a polarization, we know that Q(v, ρ(i)v) > 0 for all

v ∈ VR. Hence Q(v, ρ(i)v) = (−1)k−pQ(v, v) > 0 on the subspace VR ∩ (V p,q ⊕ V q,p).

If (V,Q) is a polarized Hodge structure of weight 2k, we can apply the following lemma

to the polarized weight 0 Hodge structure on V (k).

Lemma 2.1.8. Let (V,Q) be a polarized Hodge structure of weight k = 0. Let SO(V )

denote the special orthogonal group with respect to Q. Then the image of the corresponding

representation ρ : C∗ → GL(VR) lies in SO(VR).

Proof. We have that Q(ρ(z)v, ρ(z)w) = (zz̄)kQ(v, w) = Q(v, w) since k = 0. Therefore, the

image lies in O(VR). Since C∗ is connected, the image lands in SO(VR).

2.2 Abelian Varieties

We recall some basic facts about complex abelian varieties. All the statements here can be

found in [BL04].

Let V be a complex vector space of dimension n and Λ ⊂ V a full lattice. This means Λ

is a free Z-submodule of V of rank 2n and Λ⊗R = V . The lattice Λ acts on V by addition

and we define a complex torus to be the quotient

X := V/Λ

Addition in V defines an abelian group structure on X. We note that

Λ ∼= π1(X) ∼= H1(X,Z),

since π1(X) is abelian. The Universal Coefficient Theorem gives

10



H1(X,Z) ∼= Hom(H1(X,Z),Z) ∼= Hom(Λ,Z).

Furthermore, the Kunneth formula tells us that

Hn(X,Z) ∼= ∧nH1(X,Z).

Definition 2.2.1. For two complex tori X and X ′, a homomorphism is a holomorphic map

f : X → X ′ which is also a group homomorphism. We say two complex tori X and X ′ are

isogenous if there is a surjective homomorphism X → X ′ with finite kernel. Such a map is

called an isogeny. Isogenies induce an equivalence relation on the set of complex tori.

We recall the definition of the first Chern class of a line bundle. Associated to the

exponential sequence

0→ Z→ OX
e2πi·−−−→ O∗X → 0

is the long exact sequence in cohomology

· · · → H1(X,OX)→ H1(X,O∗X)
c1−→ H2(X,Z)→ · · ·

Identifying H1(X,O∗X) with Pic(X), we define the first Chern class of a line bundle to be

its image in H2(X,Z) under the map c1.

Since H2(X,Z) ∼= Hom(Λ,Z) ∧ Hom(Λ,Z) from above, we can identify the first Chern

class of a line bundle on X with a Z-valued alternating form on the lattice Λ.

Proposition 2.2.2. Let E : V ×V → R be an R-linear alternating form. Then E represents

the first Chern class of a line bundle if and only if

• E(Λ,Λ) ⊂ Z, and

• E(iv, iw) = E(v, w) for all v, w ∈ V .
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We call a line bundle on X positive definite if E(v, iv) > 0 for all v ∈ V , where E is the

alternating form associated to the line bundle as in Proposition 2.2.2.

Definition 2.2.3. A polarization on a complex torus X is the first Chern class of a positive

definite line bundle on X. In particular, a polarization is an alternating form E : Λ×Λ→ Z

whose R-linear extension E : V × V → R satisfies

• E(iv, iw) = E(v, w)

• E(v, iv) > 0

for all v, w ∈ V . These are called the Riemann bilinear relations.

Proposition 2.2.4. On a complex torus X, a positive definite line bundle is equivalent to

an ample line bundle. The third power of such a line bundle is very ample, and hence defines

an embedding of X into projective space. Therefore, a polarization on X has a corresponding

line bundle whose third power is very ample.

Definition 2.2.5. An abelian variety is a complex torus with a positive definite line bundle.

The above discussion shows that an abelian variety is a complex, projective variety which is

also an algebraic group.

Lemma 2.2.6. There is a bijection between the set of isomorphism classes of complex tori

and the set of isomorphism classes of integral Hodge structures of weight 1.
Complex

Tori

 1-1←−−−→


Integral Hodge structures

of weight 1


Furthermore, under this correspondence, abelian varieties correspond to polarized, integral

Hodge structures of weight 1.
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
Abelian

Varieties

 1-1←−−−→


Polarized, integral Hodge structures

of weight 1


Proof. Let X = V/Λ be a complex torus. Then Λ⊗ R = V has a complex structure J . Let

Λ1,0 and Λ0,1 be the subspaces of Λ⊗ZC = V ⊗RC on which J acts as i and −i, respectively.

This defines an integral Hodge structure of weight 1 on Λ. Convsersely, suppose VZ has a

weight 1 Hodge structure with VC = V 1,0 ⊕ V 0,1. Then we can project VZ isomorphically

into V 1,0 and V 1,0/VZ is a complex torus.

Note that the definition of a polarization on a complex torus and that of a polarization

on a weight 1 integral Hodge structure are identical. The correspondence between abelian

varieties and polarized, integral Hodge structures of weight 1 follows immediately.

Remark 2.2.7. We note that if we change “integral” to “rational” in the previous lemma,

we recover complex tori (and abelian varieties) up to isogeny.

2.3 Clifford Algebras

Definition 2.3.1. Let q(X1, . . . , Xn) be a quadratic form with coefficients in Z. We define

the Clifford algebra associated to q to be the associative algebra

Cq(Z) = Z〈x1, . . . xn〉/
(
(a1x1 + · · ·+ anxn)2 − q(a1, . . . , an) : ai ∈ Z

)
where Z〈x1, . . . xn〉 denotes the tensor algebra in n variables.

For notational convenience, we use capital letters for the variables of the form q and

lowercase letters for the corresponding generators of the Clifford algebra. We will often

consider Cq(K) ∼= Cq(Z) ⊗ K where K ∈ {Q,R,C}. The tensor algebra is Z/2Z-graded

(into even and odd degree pieces), and since the two-sided ideal defining the Clifford algebra
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is generated by even degree elements, the grading descends to a Z/2Z-grading on the Clifford

algebra:

Cq(Z) = C+
q (Z)⊕ C−q (Z)

These summands are called the even and odd Clifford algebras, respectively.

For some situations in which we are interested, we will have a quadratic form q on a free

Z-module V of finite rank. In this case, the Clifford algebra is

Cq(V ) = T (V )/
(
v ⊗ v − q(v) : v ∈ V

)
where T (V ) is the tensor algebra on V . The original definition of Cq(Z) is recovered by

choosing a basis of V . We have Cq(VK) ∼= Cq(V ) ⊗ K where VK = V ⊗ K. We also deal

with V a finite dimensional vector space over Q.

For a quadratic space (V, q), we have an anti-involution of the tensor algebra ι : T (V )→

T (V ) which swaps components: v1 ⊗ · · · ⊗ vn 7→ vn ⊗ · · · ⊗ v1. Since ι preserves the ideal

defining the Clifford algebra, it descends to an anti-automorphism, still denoted ι, of the

Clifford algebra (and also the even Clifford algebra).

The Clifford group is the algebraic group CSpin(VR) = {g ∈ C+
q (VR) : gVRg

−1 = VR}.

In this definition, we identify VR with its image in Cq(VR). Note that CSpin(VR) naturally

acts on VR by conjugation. This defines a map CSpin(VR) → O(VR) into the orthogonal

group on VR, and the image lies in SO(VR).

2.4 The Kuga-Satake Construction

We now outline the classical Kuga-Satake construction from [Sat66, KS67]. This construction

was created with K3-surfaces in mind, since the middle dimensional (primitive) cohomology

of a K3-surface satisfies the assumptions listed below.
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Let V be a free Z-module of finite rank n. Suppose V has a weight 2 Hodge structure

such that dimV 2,0 = 1. Such a Hodge structure is said to be of K3-type. Furthermore,

suppose −q polarizes this Hodge structure. We have that the signature of q is (n − 2, 2).

Then there is a basis of VR such that q = −X2
1 − X

2
2 + X2

3 + · · · + X2
n. Let xi represent

the generators of the Clifford algebra corresponding to Xi. Then J := x1x2 has J2 = −1,

and so left-multiplication by J induces a complex structure on C+
q (R). It is easily verified

that J (up to sign) is independent of the choice of orthonormal basis for VR. The quotient

C+
q (R)/C+

q (Z) is then a complex torus. Equivalently, C+
q (Z) has a weight 1 Hodge structure

determined by J .

We are now left with showing that this complex torus is an abelian variety. In other

words, the weight 1 Hodge structure on C+
q (Z) defined above is polarized. By diagonalizing

q over Q, one sees that there exists a t > 0 such that tJ ∈ C+
q (Z). Let α = tJ for the

smallest such t. Then the map

C+
q (Z)⊗ C+

q (Z)→ Z(−1) defined by x⊗ y 7→ tr(αι(x)y)

defines a polarization of the weight 1 Hodge structure on C+
q (Z). Here tr(L) means trace of

the endomorphism of C+
q (Z) which is left-multiplication by L. We summarize these results

in the following theorem

Theorem 2.4.1. Let (V, q) be an integral, polarized Hodge structure of K3-type. Then C+
q (R)

can be given a complex structure for which the quotient C+
q (R)/C+

q (Z) is an abelian variety.

We call this quotient the Kuga-Satake variety of (V, q).

One may wonder how the weight 1 Hodge structure on C+
q (Z) is related to the original

weight 2 Hodge structure on V . We have the result mentioned in the introduction:
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Proposition 2.4.2. Let V be a rational, polarized Hodge structure of K3-type with polar-

ization q. There is an inclusion of weight 2 Hodge structures

V ↪→ C+
q (V )⊗ C+

q (V ).

Furthermore, the Hodge structure on V can be recovered from that of C+
q (V ).

Proof. For a constructive proof, see [Huy15, Proposition 4.2.4].

There is an equivalent viewpoint of the Kuga-Satake construction taken by Deligne

[Del72] which we outline now. By an abuse of notation, we say a Hodge structure is of

K3-type if some Tate twist of it is a weight 2 Hodge structure of K3-type. For (V, q) a

rational, polarized weight 0 Hodge structure of K3-type, there is a commutative diagram

CSpin(VR)

C∗
h
>

h̃
>

SO(VR),
∨

where h is the map defining the Hodge structure on V from Lemma 2.1.8, h̃(a+ bi) = a+ bJ

where J = x1x2 was defined above, and the vertical map is the orthogonal representation

defined by conjugation of CSpin(VR) on VR.

Since CSpin(VR) acts on C+
q (VR) by left-multiplication, this gives rise to a map σ :

CSpin(VR) → GL(C+
q (VR)). The composition σ ◦ h̃ defines a Hodge structure on C+

q (V )

by Proposition 2.1.4. This Hodge structure on C+
q (V ) is both polarized and of weight 1

[Del72, Proposition 4.5]. By the equivalence in Lemma 2.2.6, the result is an abelian variety.

Furthermore, Deligne shows that this construction works in families (see Definition 4.1.4 for

the definition of a variation of Hodge structure):

Theorem 2.4.3. Let (V , ψ) be a polarized variation of Hodge structure of K3-type over a

smooth and connected scheme S of finite type over C. Then there is a finite étale extension
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π : S′ → S and an abelian scheme A over S′ satisfying: for s ∈ S′, the fiber As is the

Kuga-Satake variety associated to the polarized Hodge structure on Vπ(s).
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Chapter 3

Abelian Variety from the Clifford

Algebra

In this chapter, we show that we can construct an abelian variety from the Clifford algebra

of an arbitrary quadratic form in a way that generalizes the Kuga-Satake construction,

provided the signature of the form is other than (1, 0), (0, 1), or (1, 1). Our construction

involves viewing the Clifford algebra as a subalgebra of a matrix algebra. This approach

allows us to build an analogous theory for cubic and quartic forms in the final chapter of

this paper.

3.1 Representations of Clifford Algebras

We now discuss representations of Clifford algebras starting with the diagonal form q =∑n
i=1X

2
i . The construction is as follows: set

ε1 =

 0 1

−1 0

 ε2 =

1 0

0 −1

 ε3 =

0 1

1 0


Notice that ε2 = ε1 · ε−13 and that ε3 · ε1 = −ε1 · ε3. When n is even, we define a map

Cq(C)→
n/2︷ ︸︸ ︷

M2(C)⊗ · · · ⊗M2(C) ∼= M
2n/2

(C)
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by

x1 7→ ε3

x2 7→ i · ε1

x3 7→ ε2 ⊗ ε3

x4 7→ i · ε2 ⊗ ε1
...

xn−1 7→ ε2 ⊗ · · · ⊗ ε2 ⊗ ε3

xn 7→ i · ε2 ⊗ · · · ⊗ ε2 ⊗ ε1,

where ε3 means ε3 ⊗ 1 ⊗ · · · ⊗ 1 inside of the (n/2)-fold tensor product. For simplicity, let

E1, . . . , En denote the images of x1, . . . , xn, respectively. It is easily verified that EjEk =

−EkEj for any j < k and that E2
i = I. Hence

(c1E1 + · · ·+ cnEn)2 = f(c1, . . . , cn) · I

so the map is well defined. Since ε1 and ε3 generate all of M2(C), this map is an isomorphism

for dimension reasons.

Remark 3.1.1. This matrix representation comes from the unique (in the sense of [BHS88,

Theorem 3.9]) indecomposable matrix factorization of X2
0 + q over C constructed in [BHS88,

Example 3.12].

Now when n is odd, Cq(C) is not isomorphic to a matrix algebra. However, by considering

the representation of Cg(C) where g = q + X2
n+1 constructed above, we realize Cq(C) as a

subalgebra of the matrix algebra M
2(n+1)/2(C). We summarize the above discussion in the

following proposition:
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Proposition 3.1.2. Let n > 0 be arbitrary, set N = b(n+1)/2c, and suppose q =
∑n
i=1 aiX

2
i

is a quadratic form with ai nonzero integers. Let αi be a root of X2 − ai. The map

Cq(C)→M
2N

(C) defined by xi 7→ Fi := αiEi (3.1)

is an isomorphism of algebras when n is even and is a faithful algebra representation when

n is odd. Under this representation, the image of C+
q (K) is

K
〈 n∏
i=1

F
mi
i

∣∣∣ mi ∈ {0, 1},
n∑
i=1

mi is even
〉

(3.2)

where K ∈ {Z,Q,R,C}.

3.2 Construction of the Abelian Variety

In this section, we show that we can obtain an abelian variety from the Clifford algebra

of any quadratic form q in ≥ 2 variables, as long as the signature of q is not (1, 1). The

restriction on the signature comes from the following lemma.

Lemma 3.2.1. Let a, b both be positive integers. Consider the binary quadratic forms

q1 = aX2 + bY 2 q2 = −aX2 − bY 2 q3 = aX2 − bY 2

Then

1. Up to sign, there is a unique element J ∈ C+
q1

(R) with J2 = −1. The same result holds

for C+
q2

(R).

2. There is no element of C+
q3

(R) with square −1.
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Proof. Part 1: To prove the first part, we note that

Cq1(R) = R[x, y : x2 = a, y2 = b, yx = −xy].

so that C+
q1

(R) = 〈1, xy〉R. Suppose we have J = c+ dxy ∈ C+
q1

(R) with c, d ∈ R such that

J2 = −1. Computing, we get

J2 = c2 + d2(xy)2 + 2cd(xy) = (c2 − abd2) + 2cd(xy) = −1

since (xy)2 = −x2y2 = −ab. Equating both sides, we get c2− abd2 = −1 and 2cd = 0. This

can only happen if c = 0 and d = ± 1√
ab

. Thus, we get up to sign

J = 1√
ab
xy.

Now when we look at C+
q2

(R), we again let J = c+ dxy and compute J2 = (c2− abd2) +

2cd(xy) because (xy)2 = −ab as before. In order to have J2 = −1, we must have the same

conditions on c and d, so again J = 1√
ab
xy.

Part 2: This time, however, we will show that there is no element J ∈ C+
q3

(R) with

J2 = −I. Suppose we have J = cI + dAB ∈ C+
q3

(R). Then

J2 = (c2 + abd2) + 2cd(xy)

since (xy)2 = −x2y2 = ab. If J2 = −I, we are to solve the equations c2 + abd2 = −1 and

2cd = 0. This is impossible since a, b are positive. Therefore, there is no such J .

Remark 3.2.2. Consider case (1) from the lemma. Left multiplication by J on C+
q (R)

defines a complex structure; furthermore, C+
q (Z) is a full lattice inside the complex vector

space C+
q (R), and so the quotient C+

q (R)/C+
q (Z) is a complex torus.

Recall from Lemma 2.2.6 that abelian varieties (respectively, abelian varieties up to

isogeny) are equivalent to polarizable, integral (resp. rational) Hodge structures of weight

1. As we proceed to show this complex torus is an abelian variety, our assumption that f is
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diagonal is a very minor hypothesis. We work with a diagonal quadratic form with coeffi-

cients in Z and construct an abelian variety. However, any quadratic form with coefficients

in Z can be transformed, via a Q-linear change of variables, into a diagonal form with coef-

ficients in Q. This amounts to passing from an integral Hodge structure to a rational one,

which means instead of creating an abelian variety on the nose, we are creating an isogeny

class of abelian varieties. In what follows, all statements remain true if we replace Z by Q.

Lemma 3.2.3. Let n be arbitrary, N = b(n+ 1)/2c, and q =
∑n
i=1 aiX

2
i with ai ∈ Z. Let

v :=
∏n
i=1 F

mi
i ∈M

2N
(C) and w :=

∏n
i=1 F

li
i ∈M2N

(C)

for mi, li ∈ {0, 1} with
∑n
i=1mi and

∑n
i=1 li even, as in (3.2) of Proposition 3.1.2. Let Tr

denote the trace of a matrix and let ∗ denote conjugate transpose of a matrix.

(a) Tr(v) =


2N if mi = 0 for all i (i.e. v = I)

0 else.

(b) Tr(x∗) = Tr(x) for all x in the image of C+
q (R) under the map in (3.1).

(c) vv∗ =
∏n
i=1 |ai|mi · I.

(d) Tr(vw∗) =


2N
∏n
i=1 |ai|mi if v = w

0 otherwise.

Proof. (a) Recall from Section 3.1 that

Tr(ε1) = Tr(ε2) = Tr(ε3) = 0.

If v 6= I, then choose the largest i such that mi = 1. Then the b(i+ 1)/2c-th element of the

tensor product that makes up v is a constant multiple of
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

ε1 if i is even and mi−1 = 0

ε2 if i is even and mi−1 = 1

ε3 if i is odd

from the construction in Section 3.1. Since the trace of a tensor product of matrices is the

product of the traces of the matrices that make up the tensor product, this makes Tr(v) = 0.

In the case v = I, Tr(v) = 2N , since I is a 2N × 2N matrix.

For (b), note that conjugate transpose and trace are both R-linear, so it suffices to prove

the claim for basis elements of the form in (3.2) of Proposition 3.1.2. So we will show

Tr(v∗) = Tr(v). But

F ∗i =


Fi if ai is positive

−Fi if ai is negative.

Since FiFj = −FjFi for i 6= j and (AB)∗ = B∗A∗, we find that v∗ is either v or −v. If

v∗ = v, then Tr(v∗) = Tr(v). If v∗ = −v, then part (a) implies that Tr(v) = 0, and hence

Tr(v∗) = Tr(v).

For (c), note that EkE
∗
k = I for all k, since εiε

∗
i = I for i = 1, 2, 3. So FkF

∗
k =

(αiᾱi)EkE
∗
k = |ai| · I. Therefore,

vv∗ =
(
F
m1
1 · · ·Fmnn

)(
(F ∗n)mn · · · (F ∗1 )m1

)
=
∏n
i=1(αiᾱi)

mi · I =
∏n
i=1 |ai|mi · I.

Finally, (d) is just a combination of (a) and (c).

Remark 3.2.4. It is preferable to have a basis-independent anti-involution defined on the

Clifford algebra which, under the representation (3.1), agrees with the conjugate transpose

of a matrix. For the diagonal form q =
∑n
i=1 aiX

2
i with ai nonzero integers, let xi denote
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the generators of Cq corresponding to Xi. Under (3.1), xi 7→ Fi. As noted in the proof of

Lemma 3.2.3 part (b),

F ∗i =


Fi if ai is positive

−Fi if ai is negative.

Define ϕ : Cq → Cq by ϕ(xi) =
ai
|ai|

xi. Then ϕ ◦ ι is an anti-involution of Cq, where ι is

the anti-involution of the Clifford algebra from Section 2.3. This clearly agrees with ∗ under

the representation (3.1). Unfortunately, by assuming the form is diagonal, we are implicitly

choosing a basis. The following lemma gives a situation in which this issue is resolved.

Lemma 3.2.5. Let (V,Q) be an integral, polarized Hodge structure of even weight 2k. Then

there is a basis-independent anti-involution on CQ(V ) which, under the representation (3.1),

agrees with the conjugate transpose of a matrix.

Proof. We have that Q is (−1)k−p-definite on the subspace V ∩ (V p,q ⊕ V q,p) by Lemma

2.1.7. Define ϕ : V → V by

v 7→ (−1)k−pv for v ∈ V ∩ (V p,q ⊕ V q,p).

Then ϕ extends to a map of the Clifford algebra CQ(V ). To get a diagonal form, we

diagonalize QQ on the subspaces VQ ∩ (V p,q ⊕ V q,p). Once we have a diagonal form, we

apply Remark 3.2.4, which shows that ϕ ◦ ι agrees with ∗ on CQ(V ), where ι is the anti-

involution of the Clifford algebra from Section 2.3.

Remark 3.2.6. It is also preferable to discuss “trace” of an element of C+
q without referring

to the trace of a matrix under the representation (3.1). For x ∈ C+
q , we could consider the

trace of the endomorphism Lx of C+
q defined by left-multiplication by x. In the case that q is
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as in the Kuga-Satake construction, Lemma 3.2.3 agrees with the Kuga-Satake construction

(see [vG00, Lemma 5.8]) upon replacing 2N with 2n−1.

More generally, let (V,Q) be an integral, polarized Hodge structure of even weight 2k,

and suppose the rank of V is n. Let ∗ denote the anti-involution of CQ(V ) guaranteed by

Lemma 3.2.5. Then the results of Lemma 3.2.3 hold for trace of a matrix replaced by the

trace of the endomorphism Lx (with 2N replaced by 2n−1).

We now arrive at the main result of this section:

Theorem 3.2.7. Let q =
∑n
i=1 aiX

2
i be a quadratic form with coefficients in Z. Suppose

there is an element J ∈ C+
q (R) satisfying the following properties:

1. Left-multiplication by J induces a complex structure on C+
q (R), i.e. J2 = −I.

2. J∗ = −J (once we identify the Clifford algebra with matrices via (3.1)).

3. α := tJ ∈ C+
q (Z) for some t > 0.

Then the bilinear form

Q : C+
q (R)× C+

q (R)→ R, Q(v, w) := Tr(αvw∗)

satisfies the Riemann bilinear relations (2.2.3), and hence C+
q (R)/C+

q (Z) is an abelian va-

riety with polarization Q.

Proof. First, we note that Q is R-bilinear since the trace map and taking conjugate transpose

of a matrix both are. By Lemma 3.2.3 part (a), the restriction of Q to C+
q (Z)×C+

q (Z) takes

values in Z. Note that Q(Jv, Jw) = Q(v, w):

Q(Jv, Jw) = Tr(α(Jv)(Jw)∗)
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= Tr(αJvw∗J∗)

= −Tr(JαJvw∗) J∗ = −J and Tr(AB) = Tr(BA)

= Tr(αvw∗) J commutes with α and J2 = −I

= Q(v, w).

The bilinear form (v, w) 7→ Q(v, Jw) is also symmetric:

Q(v, Jw) = Tr(αv(Jw)∗)

= Tr((αvw∗J∗)∗) Lemma 3.2.3 part (b)

= Tr(Jwv∗α∗)

= −Tr(αwv∗J) α∗ = −α and J commutes with α

= Tr(αwv∗J∗) J∗ = −J

= Tr(αw(Jv)∗)

= Q(w, Jv).

It remains to check that Q(v, Jv) > 0 for all v ∈ C+
q (R), v 6= 0. We first check this for

the basis element v =
∏n
i=1 F

mi
i with F 2

i = ai, mi ∈ {0, 1} and
∑n
i=1mi even. We have

Q(v, Jv) = Tr(αv(Jv)∗)

= −Tr(Jαvv∗)

= t T r(vv∗) since Jα = −t, recall t > 0

= 2N t
n∏
i=1

|ai|mi > 0
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by Lemma 3.2.3 part (d), where N = b(n + 1)/2c. Since Q(x, Jx) = t T r(xx∗), by the

R-linearity of Tr and Lemma 3.2.3 part (d), we have positive definiteness for all x ∈ C+
q (R).

Theorem 3.2.8. Let q =
∑n
i=1 aiX

2
i be a quadratic form in n ≥ 2 variables with signature

not (1, 1). For a choice of l and m with alam > 0, there is a unique (up to sign) ele-

ment J in C+
q (R) with square −1. Furthermore, the complex structure defined by J makes

C+
q (R)/C+

q (Z) an abelian variety of complex dimension 2n−2.

Proof. As long as the signature of q is not (1, 1), we are able to find l,m ∈ {1, . . . , n}

with alam > 0. We may then apply Lemma 3.2.1 to get J = 1√
alam

FlFm. Verifying the

assumptions of Theorem 3.2.7 is straight-forward: J2 = −I, J∗ = −J , and t =
√
alam.

3.3 Maps Between Abelian Varieties

In this section we discuss how maps between Clifford algebras preserving the complex struc-

ture give rise to maps between abelian varieties. We begin with a map between vector spaces

(or free Z-modules of finite rank) preserving the quadratic form, and show how it defines a

map of Clifford algebras.

Suppose we have quadratic forms qV and qW on free Z-modules of finite rank, V and

W , respectively. Furthermore, suppose we have a linear map L : V → W which satisfies

qV (x) = qW (Lx) for all x ∈ V . Let iV and iW denote the inclusions of V and W into their

respective Clifford algebras. Then in CqW (W ) we have

(iW (Lx))2 = qW (Lx) = qV (x)

so by the universal property of the Clifford algebra, there is a unique map, which we also

denote by L, from CqV (V ) to CqW (W ) which makes the following diagram commute
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V ⊂
iV > CqV (V )

W

L
∨
⊂ iW > CqW (W )

L
∨

More concretely, CqV (V ) is generated by products v1 · · · vk with vi ∈ V , and the map takes

v1 · · · vk 7→ L(v1) · · ·L(vk). This makes it clear that L preserves the grading, so that the

map restricts to L : C+
qV

(V )→ C+
qW

(W ).

Suppose there exists a JV ∈ C+
qV

(VR) so that left-multiplication by JV defines a complex

structure on C+
qV

(VR). Then J2V = −1 implies L(JV )2 = −1, so that left-multiplication by

JW := L(JV ) defines a complex structure on C+
qW

(WR). We have the following commutative

diagram

C+
qV

(VR)
JV > C+

qV
(VR)

C+
qW

(WR)

L
∨

JW > C+
qW

(WR)

L
∨

In such a situation, we get a map of complex tori

C+
qV

(VR)/C+
qV

(V )→ C+
qW

(WR)/C+
qW

(W ).

When L is injective, this map is an inclusion of complex tori. If furthermore, JW satisfies the

hypotheses of Theorem 3.2.7, then AW := C+
qW

(WR)/C+
qW

(W ) is an abelian variety. Since a

complex subtorus of an abelian variety is itself an abelian variety, AV := C+
qV

(VR)/C+
qV

(V )

is also an abelian variety. In this way, there is an inclusion of abelian varieties AV ↪→ AW .

For the remainder of the section, we will assume that L injective and that V and W are

vector spaces over Q or R. Note that if we assume qV and qW are nondegenerate bilinear

forms preserved by L, then L is automatically injective, for if Lx = 0, then qV (x, y) =

qW (Lx, Ly) = 0 for all y, which means x = 0 since qV is nondegenerate.

For the quadratic form qV , we have the associated bilinear form, also denoted qV , which

is defined by
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qV (x, y) = 1
2(qV (x+ y)− qV (x)− qV (y)),

and similarly for qW . The condition qV (x) = qW (Lx) implies qV (x, y) = qW (Lx, Ly),

which means that orthogonal elements in V are mapped to orthogonal elements in W . If

we choose a basis {v1, . . . , vn} of V for which qV is diagonal, then qW restricted to the

subspace spanned by {Lv1, . . . , Lvn} will also be diagonal. Choosing a basis of orthogonal

complement of L(V ) in W for which qW is diagonal, we may assume that qV and qW are

diagonal and qV (x) = qW (Lx) for all x ∈ V . We summarize the above discussion in the

following proposition:

Proposition 3.3.1. Let q =
∑k
i=1 aiX

2
i and g = q+

∑n
i=k+1 aiX

2
i be quadratic forms with

coefficients in Z. Suppose J ∈ C+
q (R) ⊂ C+

g (R) defines a complex structure on both C+
q (R)

and C+
g (R). Furthermore, suppose J satisfies the hypotheses of Theorem 3.2.7 for C+

g (R).

Then we have an inclusion of abelian varieties C+
q (R)/C+

q (Z) ↪→ C+
g (R)/C+

g (Z).

Example 3.3.2. Let ϕ : X → Y be a map between n-dimensional complex projective vari-

eties. Consider the intersection forms qV and qW on V = Hn(Y,Q) and W = Hn(X,Q),

respectively, with L = ϕ∗ : V → W . Then L is injective since qV and qW are nondegenerate.

If these intersection forms have signatures other than (1, 0), (0, 1), (1, 1), then by Theorem

3.2.8 we can find a J satisfying the hypotheses of Proposition 3.3.1. We obtain an inclusion

of abelian varieties AY ↪→ AX .
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3.4 Examples and Applications

3.4.1 Examples

Example 3.4.1 (Cubic Surface). Let X be a cubic surface in P3. Since X is obtained by

blowing up 6 points in the plane, we know that Pic(X) ∼= Z7 = 〈H,E1, . . . , E6〉 with H2 = 1,

E2
i = −1, H · Ei = 0, and Ei · Ej = 0 for i 6= j. Here H is the strict transform of a line

not passing through any of the blown up points, and Ei are the exceptional divisors. The

primitive cohomology P 2(X,Z)/torsion is spanned by the classes of the Ei. The intersection

form on P 2(X,R) is q = −x21 − · · · − x26, where the xi correspond to the Ei. Let ei be

the elements of the Clifford algebra corresponding to xi. Then J = e1 · · · e6 satisfies the

hypotheses of Theorem 3.2.7, and so makes C+
q (R)/C+

q (Z) an abelian variety.

In this case, J is central in C+
q (R). Furthermore, the weight 2 Hodge structure on

P 2(X,Z)/torsion is of type {(1, 1)}. We can get a weight 0 Hodge structure V of type

{(0, 0)} by taking the twist P 2(X,Z)(1)/torsion. This gives a commutative diagram as in

Section 2.4:

CSpin(VR)

C∗
h
>

h̃
>

SO(VR)
∨

where h̃(a+ bi) = a+ bJ .

In general, let V be an integral, polarized Hodge structure of weight 0 and type {(0, 0)}

with rank(V ) = 2n, n odd. Then J = e1 · · · e2n is central in C+(R) and satisfies the condi-

tions of Theorem 3.2.7. Additionally, the diagram of the previous example above commutes

with h̃(a+ bi) = a+ bJ .
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Example 3.4.2 (K3 Cover of Enriques Surface). Let f : X → Y be the double cover of

an Enriques surface by a K3 surface X. Then H2(Y,Z)/torsion is isometric to a sublattice

inside of H2(X,Z)/torsion (see [BHPVdV04, p.350]). Upon choosing an appropriate J ,

Proposition 3.3.1 gives an injective map of abelian varieties AY → AX , where the complex

structure on AX is induced from the complex structure on AY as above. Note that the

induced complex structure on AX is not the same as the complex structure defined via the

Kuga-Satake construction for K3-surfaces, because h2,0(Y ) = 0.

3.4.2 Relation to Kuga-Satake Construction

We now describe how the construction of Section 3.2 generalizes the Kuga-Satake construc-

tion [KS67]. As an application of Theorem 3.2.8, we get

Proposition 3.4.3. When q has signature (n − 2, 2), we recover the Kuga-Satake variety,

up to isogeny.

Proof. Recall Remark 3.2.2 regarding abelian varieties up to isogeny. We may write q =∑n
i=1 aiX

2
i with ai ∈ Q and a1, a2 < 0 and all other coefficients positive. Let J be the

unique complex structure created from the negative coefficients as in Lemma 3.2.1. This is

the same complex structure as in the Kuga-Satake construction. If n is even, the polarization

(2n−1/2n/2)Q(v, w) takes the exact same values as the polarization from the Kuga-Satake

construction [vG00, Proposition 5.9]. In the case that n is odd, (2n−1/2(n+1)/2)Q(v, w) does

the trick. See also Remark 3.2.6.

Now if we begin with a polarized Hodge structure V with polarization q, for which

C+
q (VR)/C+

q (V ) is an abelian variety, we would like to know if we can recover the Hodge

structure on V from the Hodge structure on C+
q (V ). We have:
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Proposition 3.4.4. Suppose V is a polarized, rational Hodge structure of type {(k, k)}

with polarization q. Also suppose dimV ≥ 2, so that there is J ∈ C+
q (VR) for which the

conditions of Theorem 3.2.7 are satisfied. For any such J , we have an inclusion of weight 2

Hodge structures

V ⊗Q(k − 1) ↪→ C+
q (V )⊗ C+

q (V )

Further, the Hodge structure on V can be recovered from the Hodge structure on C+
q (V ).

Proof. Since V has a Hodge structure of type {(k, k)}, we know that the quadratic form

defined by q is definite, this is why dimV ≥ 2 allows us to apply Theorem 3.2.8 to get an

abelian variety C+
q (VR)/C+

q (V ). The complex structure given to C+
q (VR) corresponds to a

weight one Hodge structure on C+
q (V ) via Lemma 2.2.6.

Note that (C+
q (V ))∗⊗C+

q (V ) ∼= End(C+
q (V )) and so the weight zero Hodge structure on

(C+
q (V ))∗⊗C+

q (V ) gives End(C+
q (V )) a Hodge structure of weight 0. The Hodge structure

is determined by an action of C∗ on End(C+
q (V )). Explicitly, it is given by

(z · ϕ)(w) := z(ϕ(z−1w)) (3.3)

where ϕ ∈ End(C+
q (V )), w ∈ C+

q (V ), and the action of z = a+ bi on the right hand side is

given by left-multiplication by a+ bJ on C+
q (V ).

We know that the polarization gives an isomorphism of weight −1 Hodge structures

C+
q (V ) ⊗ Q(1) ∼= (C+

q (V ))∗, as mentioned in Section 2.1. We will show that V ⊗ Q(k) ↪→

End(C+
q (V )), then

End(C+
q (V )) ∼= (C+

q (V ))∗ ⊗ C+
q (V ) ∼= C+

q (V )⊗ C+
q (V )⊗Q(1)
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Tensoring by Q(−1) will then yield the proposition. In the process, it will be clear that the

Hodge structure on C+
q (V ) determines the Hodge structure on V .

Fix an element v0 ∈ V which is invertible in Cq(V ). Define V ⊗ Q(k) → End(C+
q (V ))

by v 7→ fv where fv(w) = wv0v. This map is clearly linear. To show injectivity, note that

since v0 is invertible, v20 = q(v0, v0) 6= 0. Given v, we can find a v1 ∈ V with q(v1, v) 6= 0.

Set w = v1v0, then fv(w) = q(v0, v0)v1v 6= 0 in C+
q (V ). Thus, the map is injective.

To show that this is a morphism of Hodge structures, we just need to show that the map

v 7→ fv commutes with the action of C∗. So we need to show

fz·v = z · fv, (3.4)

where z · v is the action of z on V ⊗Q(k), and the action of z · fv is the action described in

(3.3). Since the action of C∗ on V is given by z · v := (zz̄)kv, C∗ acts trivially on V ⊗Q(k).

This means fz·v = fv. Now,

(z · fv)(w) = z(fv(z
−1w)) = z(z−1wv0v) = wv0v = fv(w)

so z · fv = fv and equation (3.4) holds. The Hodge structure on V can be trivially obtained

from the Hodge structure on C+
q (V ).

Combining Proposition 3.4.4 with the analogous one for Hodge structures of K3-type,

we get the following:

Corollary 3.4.5. Suppose V and W are rational, polarized weight 2 Hodge structures

(with polarizations q and r, respectively) of either K3-type or of type {(1, 1)}, and with

dimV, dimW ≥ 2. Then we have an inclusion of weight 4 Hodge structures

V ⊗W ↪→ C+
q (V )⊗ C+

q (V )⊗ C+
r (W )⊗ C+

r (W )
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and furthermore, we recover the Hodge structure on V ⊗W from that of C+
q (V ) and C+

r (W ).

Of course, there is an analogous inclusion if we instead take tensor products of three such

weight 2 Hodge structures, etc. Here is the geometric example we have in mind:

Example 3.4.6. Let X and Y be nonsingular complex, projective surfaces with Hodge struc-

tures on H2 as in Corollary 3.4.5. Let AX and AY be the abelian varieties arising from the

vector spaces H2(X,Q) and H2(Y,Q), respectively. Then the corollary shows that there is

an inclusion of Hodge structures

H2(X,Q)⊗H2(Y,Q) ↪→ H1(AX ,Q)⊗H1(AX ,Q)

⊗H1(AY ,Q)⊗H1(AY ,Q)

⊂ H2(AX × AY ,Q)⊗H2(AX × AY ,Q).

In particular, this applies to the product of two K3-surfaces, a K3-surface with an En-

riques surface or a cubic surface, etc. (cf. Examples 3.4.1 and 3.4.2).
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Chapter 4

Families of Abelian Varieties

The goal of this section is to show that, under certain hypotheses, our construction from the

previous chapter works in families. We also provide examples of when the hypotheses are

satisfied. First, we discuss some linear algebra preliminaries.

Let V ∨ = HomK(V,K) denote the dual vector space of V . Then since End(V ) ∼= V ⊗V ∨,

we may define the trace of a linear map as follows. For v ∈ V and φ ∈ V ∨, define tr(v×φ) =

φ(v). Clearly, tr defines a map tr : V ⊗ V ∨ → K, and so the trace (still denoted tr) of a

K-linear endomorphism of V is defined by the composition

End(V )
∼=−→ V ⊗ V ∨ tr−→ K.

Upon choosing a basis for V , this agrees with the usual notion of trace of a matrix.

The above discussion carries over to vector bundles. For a vector bundle V → X, we

have the dual bundle V ∨ → X which is the same as the Hom-bundle Hom(V,K ×X)→ X

of bundle homomorphisms (over X) of V into the trivial bundle K ×X. Furthermore, there

is a canonical isomorphism of vector bundles End(V ) ∼= V ⊗ V ∨. This allows us to define

the trace of an endomorphism of vector bundles as the composition

End(V )
∼=
> V ⊗ V ∨ tr

> K ×X

X
∨
<>

Note that on fibers, this agrees with the classical notion of trace of a matrix.
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Recall the anti-automorphism ι of the even Clifford algebra from Section 2.3. This map

also carries over to vector bundles. Specifically, if we have a vector bundle equipped with a

quadratic form (V, ψ) over a base X, then we can form the tensor bundle, Clifford bundle,

and even Clifford bundle as vector bundles over X. The map ι : C+(V, ψ) → C+(V, ψ) is

globally defined as a morphism of bundles over X and on fibers it agrees with the ι defined

before.

4.1 Variations of Hodge Structure

The notion of a variation of Hodge structure is due to Griffiths [Gri68, Gri70]. This section

recalls some of the necessary definitions.

Definition 4.1.1. Let G be an abelian group and let X be a topological space. A sheaf G on

X is called a local system if it is locally isomorphic to the constant sheaf with stalk G.

For E → X a vector bundle, we denote by O(E,U) the set of sections over an open

subset U ⊂ X. We let Ω1(U) denote the 1-forms over U .

Definition 4.1.2. A connection on a vector bundle E → X is a linear map

∇ : O(E,U)→ Ω1(U)⊗O(E,U) U ⊂ X open

which satisfies the Leibniz rule

∇(f · σ) = df ⊗ σ + f · ∇σ

for f ∈ O(U) and σ ∈ O(E,U).

We say that a section σ ∈ O(E,U) is flat if ∇σ = 0. The connection is called flat if

there is a cover of X for which the corresponding local frames consist of flat sections. We
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say a vector bundle E → X is flat if it has a flat connection. As illustrated by the following

proposition, flat vector bundles have constant transition functions.

Proposition 4.1.3. The following three categories are equivalent

• Local systems of stalk Cn over a connected complex manifold X.

• Representations of the fundamental group π1(X, x)→ GLn(C).

• Flat, holomorphic vector bundles E → X of rank n.

Under this correspondence, locally constant sections, π1(X)-invariant sections, and flat sec-

tions are all equivalent.

Proof. This is well-known, see for example [Cat14, §1.3].

Definition 4.1.4. Let X be a connected complex manifold. A variation of Hodge structure

(VHS) of weight k on X consists of the following ingredients:

• A local system VZ of free Z-modules on X.

• A decreasing filtration of the associated holomorphic vector bundle

VC ⊃ · · · ⊃ Fp ⊃ Fp+1 ⊃ · · · ⊃ 0

by holomorphic subbundles which satisfy:

(i) For each point x ∈ X, the fibers Fpx form a Hodge filtration of the weight k Hodge

structure on the fiber VC,x.

(ii) ∇O(Fp) ⊂ Ω1
X ⊗ O(Fp−1) where ∇ is the flat connection on VC guaranteed by

Proposition 4.1.3.
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Note that when k = 1 and the filtration is VC ⊃ F1 ⊃ 0, condition (ii) in the definition

of VHS is automatically satisfied.

Definition 4.1.5. The rank of a VHS is the rank of the corresponding vector bundle. The

type of a VHS is defined to be the type of the Hodge structure of a fiber (see Section 2.1).

We assume X is connected so that these definitions are independent of the choice of fiber.

Definition 4.1.6. We say that the VHS is polarized if there is a flat, non-degenerate bilinear

form ψ on VZ satisfying the following properties. First, this form is required to be symmetric

or skew-symmetric (if k is even or odd, respectively). Second, we require that ψx polarizes

the Hodge structure of the fiber VC,x for each x ∈ X.

By definition, a bilinear form on a vector bundle E → X is a section of E∨ ⊗ E∨. To

say a bilinear form is flat means the corresponding section of E∨ ⊗ E∨ is flat.

Example 4.1.7. Let f : Y → X be a proper, smooth morphism of smooth and connected

schemes of finite type over C. Then Rkf∗Z is a local system on X by Ehresmann’s Theorem.

Furthermore, the local systems Rkf∗R and Rkf∗C can also be viewed as C∞ and holomorphic

vector bundles on X, respectively. In the holomorphic case, the sheaf of holomorphic sections

is simply Rkf∗C⊗COX . The flat connection on the vector bundle Rkf∗C is called the Gauss-

Manin connection. The stalks of these sheaves over any x ∈ X are the cohomology groups of

the fiber Yx = f−1(x): Hk(Yx,Z), Hk(Yx,R), and Hk(Yx,C), respectively. Each Hk(Yx,C)

has a Hodge filtration, and these glue together to give holomorphic subbundles Fp ⊂ Rkf∗C

which satisfy the conditions of the definition above. Hence we have a VHS of weight k.

Furthermore, suppose f is projective, i.e. f factors through a closed immersion followed

by projection as in the diagram
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Y ↪→ PNX

X
∨f >

Then the fibers of f come equipped with projective embeddings. This allows us to define

primitive cohomology on each fiber, which gives rise to the local systems P kf∗Z and similarly

with R and C. The polarizations on each fiber define a polarization on P kf∗Z. This is the

geometric setting that yields a polarized VHS of weight k.

4.2 Families of Abelian Varieties

From a polarized VHS (V , ψ), we can construct a local system C(V , ψ), whose complex,

real, and integral bundles are bundles of Clifford algebras. Additionally, we have the local

system C+(V , ψ) whose bundles correspond to the even Clifford algebras. We outline the

construction below.

Since (V , ψ) is a VHS on X, VZ is a local system of free Z-modules on X, and hence

comes equipped with a flat connection ∇. The tensor bundle T (VZ) is then a local system of

free Z-modules on X, and ∇ extends to a flat connection on T (VZ). Since we are assuming

(VZ, ψZ) is polarized by ψ, we have that ψ is flat with respect to ∇. This compatibility

guarantees us that the Clifford bundle C(VZ, ψZ) is flat as well (the same holds for the even

Clifford bundle). Thus, C+(VZ, ψZ) is a local system of free Z-modules on X. This also

applies for R and C.

Proposition 4.2.1. Let (V , ψ) be a polarized variation of Hodge structure of weight k over a

smooth scheme X of finite type over C. Let C+(V , ψ) be the associated even Clifford bundle

over X. Suppose there exists a locally-constant section J of C+(VR, ψR) such that for every
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x ∈ X, left multiplication by Jx defines a complex structure on the fiber C+(VR, ψR)x. Then

C+(V , ψ) defines a weight 1 variation of Hodge structure on X.

Proof. The fact that C+(VZ, ψZ) is a local system of free Z-modules on X has been discussed

above. For x ∈ X, we have a decomposition

C+(VR, ψR)x ⊗ C =
(
C+(VR, ψR)x

)1,0 ⊕ (C+(VR, ψR)x
)0,1

into the eigenspaces on which Jx acts by i and −i, respectively. Since J is a global section

of the even Clifford bundle, this decomposition defines

C+(VR, ψR)1,0 and C+(VR, ψR)0,1

as holomorphic (since JC is holomorphic) subbundles of C+(VC, ψC).

Set F1 = C+(VR, ψR)1,0. Then we have a decreasing filtration

C+(VC, ψC) ⊃ F1 ⊃ 0

and the fibers of F1
x define a Hodge filtration of the weight 1 Hodge structure on the fiber

C+(VC, ψC). This last part is by construction, as Jx defines the weight 1 Hodge structure

on the fiber over x ∈ X. As noted above, condition (ii) in the definition of VHS is automatic

for weight 1.

Let (V , ψ) be a polarized VHS of weight k over a base X . We define C∞-subbundles of

VC by Vp,q = Fp ∩ Fq, where complex conjugation is taken relative to VR. Then there is a

decomposition

VC =
⊕

p+q=k Vp,q

as C∞-vector bundles [Sch73, 2.15]. Set

40



VpR =


(
Vp,q ⊕ Vq,p

)
∩ VR if p 6= q

Vp,p ∩ VR if p = q

Then we have VR =
⊕

p V
p
R. We can analogously define VpZ.

We define an automorphism of C∞-vector bundles

VC
ϕ

> VC

X
<

>

which acts on Vp,q as ik(−1)−p. When k is even, we can define ϕ : VR → VR by (−1)k/2−p

on VpR, and this agrees with the above ϕ map. This map can also be defined on VZ in an

analogous fashion.

From here on, we assume k is even, so that we can freely mention ϕ without specifying

C,R, or Z. This map extends to an automorphism, which we still denote by ϕ, of the tensor

bundle T (V). The polarization ψ is orthogonal with respect to (Vp,q ⊕ Vq,p) and therefore

ϕ descends to an automorphism of the even Clifford bundle

C+(V , ψ)
ϕ

> C+(V , ψ)

X
<

>

We define an anti-automorphism of the even Clifford bundle as the composition ∗ := ϕ ◦ ι.

When (V , ψ) is a VHS of even weight k, this is just the global version of the anti-involution

from Lemma 3.2.5.

Theorem 4.2.2. Let (V , ψ) be a polarized variation of Hodge structure of even weight k

over a smooth scheme X of finite type over C. Suppose there is a locally-constant section J

of C+(VR, ψR) which satisfies the following properties: J 2 = −1, J ∗ = −J , and tJ is a

section of C+(VZ, ψZ) for some t > 0. Then C+(V , ψ) defines a weight 1 polarized variation

of Hodge structure on X.
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Proof. We may think of the section J as an endomorphism of C+(V , ψ) because of the

algebra structure. Thus, Proposition 4.2.1 already tells us that C+(V , ψ) defines a weight 1

VHS on X. The new part here is that it is polarized.

We define the polarization as a section σ of the bundle

C+(VZ, ψZ)∨ ⊗ C+(VZ, ψZ)∨

X

σ
∧

π
∨

by

σ(x) :=
(
α⊗ β 7→ tr(LtJxαβ∗)

)
where α, β ∈ C+(VZ, ψZ)x, and the trace occurs in the fiber C+(VZ, ψZ)x. Recall that

tr(Lf ) means the trace of the endomorphism which is left-multiplication by f . Since σ is

continuous, it is automatically locally-constant, since we are considering it as a section of a

bundle of Z-modules.

We would like to make this map more explicit. Identify sections α and β of C+(VZ, ψZ)

with their images α(X) and β(X), respectively. We have the map

C+(VZ, ψZ)⊗ C+(VZ, ψZ)→ End(C+(VZ, ψZ))

α⊗ β 7→ LtJαβ∗

Then the map described above is the composition

C+(VZ, ψZ)⊗ C+(VZ, ψZ) > End(C+(VZ, ψZ))
tr
> Z×X

X
∨
<>

which on fibers polarizes the Hodge structure by Lemma 3.2.5, Remark 3.2.6, and Theorem

3.2.7. We see that σ is both alternating and nondegenerate by the same theorems.
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Lemma 4.2.3. A weight 1 polarized VHS over a smooth scheme X over C is equivalent to

an abelian scheme over X.

Proof. See [Del72]. One direction is easy: if A
f−→ X is an abelian scheme, then R1f∗Z is a

weight 1 polarized VHS. In the other direction, we can see this by looking at the fibers. The

fiber over x ∈ X has the structure of an integral weight 1 Hodge structure which is polarized.

The category of such Hodge structures is equivalent to the category of abelian varieties over

C. The fact that the Hodge structure, polarization, etc. are all globally defined means that

these abelian varieties glue together to give a projective family of abelian varieties over X.

Furthermore, an application of Bailey-Borel shows that this is an abelian scheme over X.

4.2.1 Examples

Theorem 4.2.4 (Riemann Existence Theorem). Let X be a scheme which is locally of finite

type over C and let Xan denote the corresponding complex analytic space. The functor

Y 7→ Y an gives an equivalence of categories between the category of finite étale coverings

Y/X and finite covering spaces Y an/Xan.

Let X be a smooth scheme which is locally of finite type over C. Let (V , ψ) be a polarized

variation of Hodge structure on X. Choose a base-point x ∈ X. The topological fundamental

group π1(X, x) acts on the fiber VZ,x of VZ above x. This action extends to an action on

VR,x and VC,x by scalar extension. Since the action preserves the polarization, we get a map

π1(X, x)
ρ−→ O(VZ,x),

where O(VZ,x) = {g ∈ Aut(VZ,x) | ψZ,x(gv, gw) = ψZ,x(v, w) for all v, w ∈ VZ,x}.

Lemma 4.2.5. After a possible finite étale extension of X, we may assume that the image

of ρ lies in SO(VZ,x).
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Proof. Indeed, if the image does not lie in SO(VZ,x), then the kernel of the composition

π1(X, x)
ρ−→ O(VZ,x)

det−−→ Z/2Z = {±1}

defines an index 2 subgroup H E π1(X, x). Let Y be the double cover of X corresponding

to H and let W denote the variation of Hodge structure on Y obtained by pulling back V

under the map f : Y → X. Then f is a finite étale morphism and we have a map

π1(Y, y)→ SO(WZ,y)

by construction. Furthermore, Y is a smooth scheme which is locally of finite type over C

by the Riemann Existence Theorem.

We will need the following to prove Theorem 4.2.8 below.

Proposition 4.2.6. Let n ≡ 2 mod 4. Let V be a real vector space of dimension n with

positive definite quadratic form q. Then in C+
q (V ) there is a unique (up to sign) central

element J with J2 = −1. Furthermore, for any T ∈ SO(V, q), T (J) = J .

Proof. Choose a basis {e1, . . . , en} of V so that q = x21 + · · · + x2n, where ei corresponds

to xi. Then a basis for C+
q (V ) is given by {ei1 · · · ei2j | 0 ≤ j ≤ n/2}. We will show that

J = e1 · · · en (or J = −e1 · · · en) is the desired element. First, J is central since

(eiej)J = (−1)n−1eiJej = (−1)n−1(−1)n−1Jeiej = J(eiej)

and similarly for the other basis elements of C+
q (V ). We also have

J2 = (e1 · · · en)(e1 · · · en) = (−1)
n(n−1)

2 e21 · · · e
2
n = −1

since n is even and n/2 is odd.
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Now for uniqueness: the structure theorem for Clifford algebras shows that C+
q (V ) is a

central simple algebra over C, hence there is a unique (up to sign) central element which

squares to −1. As we have shown, J is that element.

Finally, we show that T (J) = J . For any T ∈ SO(V, q), T defines a map on C+
q (V )

by the universal property of Clifford algebras. In particular, T (J) = T (e1) · · ·T (en). Since

eiej = −ejei for i 6= j, we have that

T (J) = T (e1) · · ·T (en) = (detT )e1 · · · en = J.

Proposition 4.2.7. Let n ≡ 2 mod 4. Let (V , ψ) be a polarized variation of Hodge structure

of even weight k, of type {(k2 ,
k
2 )}, and rank n over a smooth scheme X of finite type over

C. Then (after possibly replacing X by a finite étale extension) there is a locally-constant

section J of C+(VR, ψR) which defines a complex structure on each fiber.

Proof. Upon applying Lemma 4.2.5 above, we may assume that the action of π1(X, x) on

(VZ, ψZ) lands in SO(VZ, ψZ). By the universal property of the Clifford algebra, the action

of π1(X, x) on the fiber VZ,x extends to an action of π1(X, x) on C+(VZ, ψZ)x and similarly

for R and C.

Choose a trivializing cover {Uα} of the local system C+(VR, ψR) over X. Over Uα, the

local system is trivial, and we write this as

Uα × C+(VR, ψR)α.

There is a unique (up to sign) Jα ∈ C+(VR, ψR)α guaranteed by Proposition 4.2.6. Note

that the type of the VHS guarantees that ψ is positive definite. When Uα ∩ Uβ 6= ∅, we

obtain an automorphism
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ϕαβ : C+(VR, ψR)α → C+(VR, ψR)β .

This automorphism is constant (doesn’t depend on points in Uα ∩Uβ), since we are dealing

with a local system. This automorphism preserves the center and the algebra structure,

and hence Jβ = ϕαβ(Jα) is the unique (up to sign) element of C+(VR, ψR)β guaranteed by

Proposition 4.2.6.

For γ with Uα ∩ Uβ ∩ Uγ 6= ∅, we have two elements of C+(VR, ψR)γ which are central

and square to −1:

Jγ = ϕαγ(Jα) and J ′γ = ϕβγ(ϕαβ(Jα)),

and hence Jγ = J ′γ or Jγ = −J ′γ . Checking that these two elements are the same is equivalent

to checking that for x ∈ Uα∩Uβ∩Uγ , the action of π1(X, x) on a fiber C+(VR, ψR)x preserves

Jx. Since we are assuming the action of π1(X, x) lands in SO(VR,x, ψR,x), Proposition 4.2.6

assures us that Jγ = J ′γ . Hence there is a consistent choice of Jα which yields a locally-

constant section J of C+(VR, ψR). By construction, J defines a complex structure on each

fiber.

Theorem 4.2.8. Let n ≡ 2 mod 4. Let (V , ψ) be a polarized variation of Hodge structure

of even weight k, of type {(k2 ,
k
2 )}, and rank n over a smooth scheme X of finite type over

C. Then (after possibly replacing X by a finite étale extension) we can define a weight 1

polarized VHS on C+(V , ψ).

Proof. We need to show the assumptions of Theorem 4.2.2 are satisfied. Proposition 4.2.7

gives us the section J which satisfies J 2 = −J . Choose a basis for VR,x for which ψR,x is

diagonal. Using the notation of the proof of Proposition 4.2.6, we have that Jx = ±e1 · · · en.

Now (e1 · · · en)∗ = (−1)k/2−k/2(en · · · e1) = −e1 · · · en. Hence J∗x = −Jx. Therefore, J ∗ =

−J since it holds on fibers.
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It remains to show that tJ is a section of C+(VZ, ψZ) for some t > 0. Using the notation

from the proof of Proposition 4.2.7, we know that tJα ∈ C+(VZ, ψZ)α for some t > 0 as

discussed in Section 2.4. For x ∈ Uα, the action of π1(X, x) on the fibers lands in SO(VZ, ψZ),

and hence the same argument as in the proof of Proposition 4.2.7 shows that the choice of t

is consistent and yields a global section tJ of C+(VZ, ψZ).

Example 4.2.9. A smooth, projective family of cubic surfaces Y
f−→ X satisfies the assump-

tions of Theorem 4.2.8 with VZ = P 2f∗(Z) and ψ the intersection pairing, as in Example

4.1.7 (upon possibly replacing X by a finite étale extension X ′ and Y by the fibered product

Y ×X X ′). Therefore, we obtain an abelian scheme A → X whose fibers are the abelian

varieties corresponding to the fibers of f (which are cubic surfaces, see Example 3.4.1).

Example 4.2.10 (Kuga-Satake Construction in Families). Theorem 2.4.3 shows that the

Kuga-Satake construction works in families.
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Chapter 5

Abelian Varieties Associated to

Higher Degree Forms

In this chapter, we apply the techniques of Chapter 3 to construct abelian varieties from

the Clifford algebras of higher degree forms. Due to the fact that these generalized Clifford

algebras are infinite dimensional, we consider their finite-dimensional representations. This

is the reason we took the representation-theoretic viewpoint when investigating the Clifford

algebras of quadratic forms. We give criteria for which a representation of a generalized

Clifford algebra yields an abelian variety. This is done in a manner which parallels the

Kuga-Satake construction. It turns out that cubic and quartic forms are the best candidates

for this construction. We provide geometric examples of 3-folds and 4-folds for which we

can create an abelian variety from the cubic and quartic forms, respectively, on H2. This

includes 4-folds which arise as the product of two surfaces. Finally, we study when this

construction is natural enough to work in families as in Chapter 4.

5.1 Generalized Clifford Algebras

We begin by discussing graded algebras over C (the discussion works just as well for arbitrary

fields). We say an algebra A is Z/dZ-graded if there is a decomposition into subspaces

A = A0 ⊕ · · · ⊕ Ad−1 with AjAk ⊂ Aj+k, where the subscript is taken mod d. An element
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a ∈ Ak is called homogeneous of degree k. A map ϕ : A → B of Z/dZ-graded algebras is

called a graded homomorphism if it is a homomorphism with ϕ(Aj) ⊂ Bj .

Example 5.1.1. The matrix algebra Md(C) can be given a Z/dZ-grading for which the

homogeneous elements of degree k are those matrices whose (i, j) entry is 0 unless j − i ≡ k

mod d. When d = 4, we have

grade 0:

( ∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

)
grade 1:

( 0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗
∗ 0 0 0

)
grade 2:

( 0 0 ∗ 0
0 0 0 ∗
∗ 0 0 0
0 ∗ 0 0

)
grade 3:

( 0 0 0 ∗
∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0

)

When d | N , we can give MN (C) a Z/dZ-grading as follows. Since MN (C) ∼= Md(C)⊗· · ·⊗

Md(C), declare an element of MN (C) to be homogeneous if its tensor components under this

decomposition are homogeneous. The degree of a homogeneous element of MN (C) is the sum

(taken mod d) of the degrees of its tensor components.

Let f be a degree d homogeneous polynomial in n variables over K, where K is either Z

or is a field. We define the generalized Clifford algebra of f to be

Cf (K) = K〈x1, . . . xn〉/
(
(a1x1 + · · ·+ anxn)d − f(a1, . . . , an) : ai ∈ K

)
,

where K〈x1, . . . xn〉 denotes the tensor algebra in n variables. If we instead have a degree d

form on a vector space V of dimension n, the definition is:

Cf (V ) = T (V )/〈vd − f(v) : v ∈ V 〉,

where T (V ) is the tensor algebra on V and vd means v ⊗ · · · ⊗ v (d-times). Choosing a

basis for V recovers the first definition. The tensor algebra is Z/dZ-graded by degree, and

since the ideal defining the Clifford algebra preserves this grading, we find that Cf (K) is

Z/dZ-graded:
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Cf (K) = C0
f (K)⊕ C1

f (K)⊕ · · · ⊕ Cd−1f (K).

It is well-known that when d ≥ 3 and n ≥ 2, this is an infinite-dimensional algebra.

5.1.1 Graded Representations

We now discuss graded representations of Clifford algebras. For a representation Cf (C) →

MN (C), where f is a form of degree d, we necessarily have that d | N [HT88]. A graded

representation is just a graded homomorphism between a graded algebra and a matrix algebra

(which we will take to be graded as in Example 5.1.1). We first consider diagonal forms,

then discuss the general case.

Throughout, we let ρ ∈ C be a primitive dth root of unity. Suppose we have a diagonal

form of degree d

f(X1, . . . , Xn) = a1X
d
1 + · · ·+ anX

d
n.

Let xi denote the generators of the Clifford algebra corresponding to Xi. For each integer

n ≥ 1, we will construct a representation of the Clifford algebra Cf (K). Set N = dn and

write

MN (C) =

n-times︷ ︸︸ ︷
Md(C)⊗ · · · ⊗Md(C) .

Define a representation ϕf : Cf (K)→MN (C) by setting

ϕf (xj) = Aj :=

j−1︷ ︸︸ ︷
Ω⊗ · · · ⊗ Ω⊗A⊗ I · · · ⊗ I

where Ω ∈Md(C) is

Ω = diag(1, ρ, . . . , ρd−1),
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and

A =



0 1 · · · 0

...
...

. . .
...

0 0 · · · 1

ai 0 · · · 0


. (5.1)

It is easily verified that ρAkAj = AjAk for j < k. The fact that this map is a representation

of Cf follows from repeated use of the next lemma. This representation is graded since each

Aj has grade 1 (see Example 5.1.1 for grading on matrix algebras) and because the relation

ρAkAj = AjAk for j < k preserves the grading.

Lemma 5.1.2. Let A be an associative C-algebra and let ρ be a primitive dth root of unity.

Suppose x, y ∈ A satisfy ρyx = xy. Then (x+ y)d = xd + yd.

Proof. We give the proof for d = 4, and sketch the general case. By expanding, we get

(x+ y)4 = x4 + (x3y + x2yx+ xyx2 + yx3)

+ (x2y2 + xy2x+ xyxy + yxyx+ yx2y + y2x2)

+ (y3x+ y2xy + yxy2 + xy3) + y4

= x4 + y4,

where we have noted that, because of the assumptions on x and y, the sum of the three

middle terms is 0.

For the general case, upon expanding (x + y)d, we find elements xk ∗ yd−k (monomials

with k x-terms and (d− k) y-terms in any order) for each k, 1 ≤ k < d. The monomials of

(x + y)d can be partitioned into sets whose elements are obtained by cyclically permuting

the variables. For example, in the d = 4 case, we have that x2 ∗y2 splits up into the two sets
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S1 = {x2y2, xy2x, y2x2, yx2y} and S2 = {xyxy, yxyx}. Cyclically permuting the variables

amounts to multiplying by a power of ρ. Choosing a representative of each partition set, we

write each other element of the set as ρ to some power times the representative. Now we

sum each partitioned set and find that the coefficient is just 1 + ω + · · · + ωm−1 for some

primitive mth root of unity ω where m|d. Thus the sum of each partitioned set is 0, and

hence xk ∗ yd−k = 0 when 1 ≤ k < d.

Now we construct a representation of the Clifford algebra of an arbitrary degree d form

using the method of Chapman [Cha13]. Suppose we have a form

f(X1, . . . , Xn) =
∑
ij≥0 ci1···inX

i1
1 · · ·X

in
n

of degree d =
∑
j ij . Let I be the set of indices i = i1 · · · in corresponding to the nonzero

ci1...in ’s of the form f . Fix an ordering of the set I. Define

MM (C) =
⊗

i∈IMi

where Mi is a copy of Md(C). For i = i1 · · · in ∈ I and fixed k ∈ {1, . . . , n}, define the

matrices B, B̃ ∈Md(C) as follows:

• B has ci1···in in the (d, 1)-entry, 1 in the entries (1, 2), . . . , (ik−1, ik), and 0 elsewhere.

• B̃ has 1 in the entries (i1+· · ·+ik−1, i1+· · ·+ik−1+1), . . . , (i1+· · ·+ik−1, i1+· · ·+ik)

and 0 elsewhere.

For i = i1 · · · in ∈ I and fixed k ∈ {1, . . . , n}, we define matrices Bk;i ∈MM (C) by:

• If ik = 0, set Bk,i = 0, the zero matrix.

• If ik 6= 0 and i1 = · · · = ik−1 = 0,
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Bk,i = Ω⊗ · · · ⊗ Ω⊗B ⊗ I · · · ⊗ I,

where B is in the ith component of the tensor product.

• Otherwise,

Bk,i = Ω⊗ · · · ⊗ Ω⊗ B̃ ⊗ I · · · ⊗ I,

where B̃ is in the ith component of the tensor product.

Define a map ϕf : Cf →MM (C) by

ϕf (xk) =
∑
i∈I

Bk;i. (5.2)

Note that when f is diagonal, this agrees with the previous definition of ϕf from the

beginning of this section. To see what is happening, we give a non-diagonal example:

Example 5.1.3. Let f(X, Y ) = X4 + 2X3Y + 5XY 3 + Y 4. Then the representation is

ϕf (x) =

( 0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)
+ Ω⊗

( 0 1 0 0
0 0 1 0
0 0 0 0
2 0 0 0

)
+ Ω⊗ Ω⊗

( 0 0 0 0
0 0 0 0
0 0 0 0
5 0 0 0

)
and

ϕf (y) = Ω⊗
( 0 0 0 0

0 0 0 0
0 0 0 1
0 0 0 0

)
+ Ω⊗ Ω⊗

( 0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

)
+ Ω⊗ Ω⊗ Ω⊗

( 0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)
where we leave out the trailing ⊗I, for example( 0 1 0 0

0 0 1 0
0 0 0 1
1 0 0 0

)
means

( 0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)
⊗ I ⊗ I ⊗ I

Since (ax + by)4 = f(a, b) in the Clifford algebra, that relation better hold in the image for

this to be a representation. To check this, notice that ax+ by maps to
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( 0 a 0 0
0 0 a 0
0 0 0 a
a 0 0 0

)
+ Ω⊗

( 0 a 0 0
0 0 a 0
0 0 0 b
2a 0 0 0

)
+ Ω⊗ Ω⊗

(
0 b 0 0
0 0 b 0
0 0 0 b
5a 0 0 0

)
+ Ω⊗ Ω⊗ Ω⊗

(
0 b 0 0
0 0 b 0
0 0 0 b
b 0 0 0

)

Now using Lemma 5.1.2, it is easy to see that the fourth power of this matrix is f(a, b) · I.

We now prove in general, that the map (5.2) is well-defined, and is a graded representation

of the Clifford algebra.

Proposition 5.1.4. The map ϕf : Cf →MM (C) defined above is a graded representation.

Proof. In order for ϕf to be a representation, we need to show that

(
a1ϕf (x1) + · · ·+ anϕf (xn)

)d
= f(a1, . . . , an) · I.

By definition,

(
a1ϕf (x1) + · · ·+ anϕf (xn)

)d
=
(∑

i∈I a1B1;i + · · ·+ anBn;i

)d
But by Lemma 5.1.2 and the above construction,

(∑
i∈I

a1B1;i + · · ·+ anBn;i

)d
=
∑
i∈I

(
a1B1;i + · · ·+ anBn;i

)d
=

∑
ci1···in 6=0

ci1···ina
i1
1 · · · a

in
n · I

= f(a1, . . . , an) · I

We are now left with showing that this representation is graded. By construction, the

nonzero Bk;i are homogeneous of degree 1. For each xk ∈ Cf corresponding to Xk of the

form f , ϕf (xk) contains at least one nonzero Bk,i and hence is homogeneous of degree 1.

By construction, the relations among the Bk,i are such that the grading is preserved, hence

the representation ϕf is graded.
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Although this representation is graded, one may find representations which are not

graded. Since we are interested in graded representations of the Clifford algebra, we call

upon a result from Childs [Chi78, Lemma 6, p. 274]. It says the following

Lemma 5.1.5. If ϕf : Cf →MM (C) is a representation sending xi to Ai, then

Cf 7→MM (C)⊗Md(C) defined by xi 7→ Ai ⊗

( 0 1 0
...

. . .
...
1

1 ··· 0

)

is a graded representation.

5.2 Abelian Varieties

One of the things that makes the Kuga-Satake construction work is the existence of the anti-

involution ι of the (quadratic) Clifford algebra defined by flipping basis elements: x0 · · ·xn 7→

xn · · ·x0. Thus, for x = x0 · · ·xn, ι(x)x is in the center of the Clifford algebra since x2i is

central. This plays a key role in showing that the Kuga-Satake complex torus is an abelian

variety (see [vG00, Lemma 5.8 and Proposition 5.9] and Lemma 3.2.3). However, for the

Clifford algebras of higher degree forms, we do not have that x2i is central. For degree

d ≥ 3 forms, the “flipping” anti-involution seems to be of little use, since for example

ι(x0x1)x0x1 = x1x
2
0x1, which is unlikely to be central in the Clifford algebra. The purpose

of Theorem 3.2.7 was to show that once we view the Clifford algebra of a quadratic form as

a matrix algebra, the conjugate transpose ∗ is a terrific substitute for ι. We will show that

the same idea carries over to higher degree forms.

We first fix some notation. Fix a degree d form f . Suppose we have a Z/dZ-graded

representation ϕf : Cf (C) → MN (C). We may consider the induced representations on

Cf (K) for K ∈ {Z,Q,R} via the natural inclusion Cf (K) ⊂ Cf (C). Let cf (K) denote the
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image of Cf (K) under this representation. Since the representation is graded, we let c0f (K)

denote the degree 0 part of the image. Let ∗ denote the conjugate transpose of a matrix in

MN (C). We make the following assumption:

1. There is a J ∈ c0f (R) so that left multiplication by J on c0f (R) defines a complex

structure, and α := tJ ∈ c0f (Z) for some t > 0. Further J∗ = −J .

As a start toward constructing an abelian variety, we define

Q : c0f (R)× c0f (R)→ R

by

Q(v, w) = Re(tr(αvw∗))

where α is a positive multiple of J which is in c0f (Z) as in assumption (1). Note that Q is

R-bilinear since taking Re, tr, and ∗ all are. We now prove some facts about Q.

Proposition 5.2.1. Q(Jv, Jw) = Q(v, w) for all v, w ∈ c0f (R).

Proof.

Q(Jv, Jw) : = Re(tr(α(Jv)(Jw)∗))

= Re(tr(αJvw∗J∗))

= Re(tr((−J)αJvw∗)) J∗ = −J and tr(AB) = tr(BA)

= Re(tr(αvw∗)) J commutes with α, and J2 = −I

= Q(v, w)
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Proposition 5.2.2. Q(v, Jw) is a positive definite, symmetric form.

Proof. First note that for any square, complex matrix A = (ai,j), we have Re(tr(A)) =

Re(tr(A∗)) since

Re(tr(A)) = Re
(∑

i ai,i

)
= Re

(∑
i ai,i

)
= Re(tr(A∗)).

Now we compute

Q(v, Jw) = Re(tr(αv(Jw)∗))

= Re(tr((αvw∗J∗)∗)) since Re(tr(A)) = Re(tr(A∗))

= Re(tr(Jwv∗α∗))

= −Re(tr(αwv∗J)) α∗ = −α and J commutes with α

= Re(tr(αwv∗J∗)) J∗ = −J

= Re(tr(αw(Jv)∗))

= Q(w, Jv)

so we get the symmetric part.

Finally, we need to check that Q(v, Jv) > 0 for all nonzero v ∈ c0f (R). We have

Q(v, Jv) = Re(tr(αv(Jv)∗))

= −Re(tr(Jαvv∗))

= t Re(tr(vv∗)) since Jα = −t, for some t > 0

But tr(AA∗) > 0 for any complex matrix A = (ai,j), since tr(AA∗) =
∑
i,j |ai,j |2.
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Theorem 5.2.3. Let f be a degree d form such that c0f (Z) ⊂ c0f (R) is a full lattice and

assume the existence of a J as in (1). Furthermore, suppose that Q restricted to the lattice

c0f (Z)× c0f (Z) takes values in Z. Then c0f (R)/c0f (Z) is an abelian variety.

Proof. The assumption that Q restricted to the lattice takes values in Z combined with

Propositions 5.2.1 and 5.2.2 show that Q satisfies the Riemann bilinear relations. Hence the

complex torus c0f (R)/c0f (Z), with complex structure defined by J , is an abelian variety.

Although there are several assumptions for Theorem 5.2.3, the remainder of the paper

shows that there are cases in which the assumptions are satisfied.

5.3 Lattices

We now justify the restriction to the case of cubic and quartic forms made in the introduction

to this chapter. Proposition 5.1.4 gives a graded representation of the Clifford algebra Cf

(over C,R,Q, and Z) into matrices over C. As before, let c0f (K) denote the degree 0 part

of the image of the representation of Cf (K) for K ∈ {C,R,Q,Z}. If we have any hope of

getting a complex torus out of this, we will need c0f (Z) to be a full lattice inside of c0f (R).

Of course, this means that c0f (Z) is a free Z-module of finite rank equal to dimR c
0
f (R) and

that c0f (Z)⊗ R = c0f (R). We show the following:

Proposition 5.3.1. If f is a cubic or quartic form, then c0f (Z) is a full lattice in c0f (R)

under the representation of Section 5.1.1. This fails if deg f > 4.

Proof. For a cubic form, the elements of c0f (Z) are matrices with entries in Z[ω] where ω =

1+i
√
3

2 is a primitive cube root of unity. Hence c0f (Z) lives in MN (Z[ω]) for some N , which is a

free Z-module. Since submodules of free Z-modules are themselves free, we have that c0f (Z) is
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a free Z-module. We must show that the rank of c0f (Z) is the same as the dimension of c0f (R).

But clearly the R-span of c0f (Z) is c0f (R), which shows rank c0f (Z) ≥ dim c0f (R). Conversely,

since {1, ω} is a linearly independent set over R, any Z-linearly independent set of matrices

in MN (Z[ω]) will be R-linearly independent as well. This shows rank c0f (Z) ≤ dim c0f (R),

and hence c0f (Z) is a full lattice in c0f (R) when f is a cubic form.

When f is a quartic form, the argument is identical, just replace ω with i everywhere.

For higher degree forms, the last part of the argument breaks down. As an example, with

f a quintic form and ξ a primitive 5th root of unity, the elements of c0f (Z) are inside of

MN (Z[ξ]) just as before. However, the set {1, ξ, ξ2} is Z-linearly independent, but not

R-linearly independent.

Corollary 5.3.2. Let f be a cubic or quartic form. Suppose that under the representation

of Section 5.1.1, there is an element J ∈ c0f (R) satisfying the properties in (1). Then

c0f (R)/c0f (Z) is an abelian variety.

Proof. By the construction of the representation in Section 5.1.1, c0f (Z) for f quartic (re-

spectively cubic) consists of matrices with entries in Z[i] (resp. Z[ω]). This tells us that Q

(resp. 2Q) restricted to the lattice c0f (Z)× c0f (Z) takes values in Z. Proposition 5.3.1 shows

that c0f (Z) ⊂ c0f (R) is a full lattice. Thus, c0f (R)/c0f (Z) is an abelian variety by Theorem

5.2.3.

5.4 Applications

This section deals with situations in which we can find an element J satisfying the condition

(1). Suppose f(X1, . . . , Xn) is a cubic form with coefficients in Z of the shape

a1X
3
1 + a2X

3
2 + g(X3, . . . , Xn)
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Let x1, . . . , xn be the corresponding generators of Cf . Then under the representation con-

structed above with xi 7→ Ai, we have

J := 1√
3

(
2

a1a2
A1A2A

2
1A

2
2 − I

)
= 2ω−1√

3
I = iI

With t = |a1a2|
√

3, J clearly satisfies the requirements for condition (1) above. Proposition

5.3.1 and Theorem 5.2.3 tell us c0f (R)/c0f (Z) is an abelian variety. This works in particular

with diagonal cubic forms (in ≥ 2 variables).

Similarly, suppose f(X1, . . . , Xn) is a quartic form with coefficients in Z of the shape

a1X
4
1 + a2X

4
2 + g(X3, . . . , Xn)

Let x1, . . . , xn be the corresponding generators of Cf . Then under the representation con-

structed above with xi 7→ Ai, we have

J := 1
a1a2

A1A2A
3
1A

3
2 = iI

Then J (with t = |a1a2|) clearly satisfies the requirements for Theorem 5.2.3 above, and

hence c0f (R)/c0f (Z) is an abelian variety. This works in particular with diagonal quartic

forms (in ≥ 2 variables).

Remark 5.4.1. In the case that f(X, Y ) = aX4 + bY 4 is a binary diagonal from of degree

4, the graded representation Cf →M16(C) constructed above is not surjective. However, the

image is the cyclic algebra

(a, b)4,C = C〈x, y : x4 = a, y4 = b, iyx = xy〉.

Since we have (a, b)4,C ∼= M4(C), this gives a minimal-dimensional, surjective, graded repre-

sentation of Cf . According to an unpublished result of Rajesh Kulkarni, such a representation

is unique (up to conjugation). Hence, the abelian variety we construct is unique in this sense.

The above discussion holds as well for binary diagonal forms of degree 3.
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5.4.1 Example

Consider the blowup of P5 at a point. Note 4H − E is very ample (where H is the strict

transform of a hyperplane in P5 and E is the exceptional divisor). Let X be a hyperplane

section under this embedding. Then H2(X,Z)/torsion is two dimensional with intersection

form f = 4x4 − y4, and we may apply the above construction to get an abelian variety.

5.4.2 Example

This example is similar to the varieties considered in [Lan98]. Let Y be a degree d hyper-

surface in P4 (including d = 1). Define

X = P(E)

where E = OY (n)⊕OY (−n) for n ≥ 1. Let π : X → Y be the projection, h be a hyperplane

section of Y , let H denote π∗h, and let ξ be the class of the divisor corresponding to OX(1).

We note that h4 = 0 and so H4 = 0. Furthermore, since OX(1) restricted to a fiber over

any point of Y is OP1(1) and h3 = d[p] (where [p] represents the class of a point in Y ), we

see that H3.ξ = d.

We show that the intersection form on H2(X,Q) is diagonalizable. Note that H2(X,Q) =

〈H, ξ〉 and that the intersection theory on X is defined by the Leray-Hirsch formula (see

[Har77, Appendix A §3] and [Hat02, Theorem 4D.1])

ξ2 − (π∗c1).ξ + (π∗c2) = 0 (‡)

where c1 and c2 are the first and second Chern classes of the sheaf E .
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Since E is a direct sum of line bundles, its Chern classes are straight-forward to calculate.

The Chern polynomial is

ct(E) = (1 + (nh)t)(1− (nh)t) = 1− (n2h2)t2

Therefore, c1 = 0 and c2 = −n2h2. Equation (‡) then becomes ξ2 = n2H2. Intersecting

this with:

• H2 gives H2.ξ2 = n2H4 = 0

• H.ξ gives H.ξ3 = n2H3ξ = n2d

• ξ2 gives ξ4 = n2H2ξ2 = 0

Letting U and V correspond to H and ξ, respectively, the intersection form is

f(U, V ) = d
[
U3V + n2UV 3

]
The linear change of variables U 7→ nU+nV and V 7→ U−V sends f to the form 2dn3(U4−

V 4), which is diagonal. Hence, the representation constructed above gives an abelian variety,

A. This abelian variety is unique in the sense of Remark 5.4.1. Furthermore, we have an

inclusion of Hodge structures

H2(X,Q) ↪→ H1(A,Q)⊗H1(A,Q)

which is proved in the same way as Proposition 3.4.4.

5.4.3 Example

We now construct 3-folds whose intersection form on H2 is diagonal. It parallels the previous

example, so we will use analogous notation. Let Y be a degree d hypersurface in P3. Define
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X = P(E)

where E = OY ⊕ OY (n) any n ∈ Z. Then ct(E) = 1 + nht, so c1 = nh and c2 = 0. The

intersection theory on X is again defined by (‡) which now looks like

ξ2 = nH.ξ

Intersecting this with:

• H gives H.ξ2 = nH2.ξ = nd

• ξ gives ξ3 = nH.ξ2 = n2d

since H3 = 0 and H2.ξ = d as before. Letting U and V correspond to H and ξ, respectively,

the intersection form is

f(U, V ) = d
[
U2V + nUV 2 + n2V 3

]
The linear change of variables U 7→ U + V and V 7→ nU − 2nV sends f to the form

3dn2(U3 + V 3) which is diagonal. Hence, the representation constructed above gives an

abelian variety, A. This abelian variety is unique in the sense of Remark 5.4.1. Furthermore,

we have an inclusion of Hodge structures

H2(X,Q) ↪→ H1(A,Q)⊗H1(A,Q)

which is proved in the same way as Proposition 3.4.4.

5.5 Products of Surfaces

We now look at the case of 4-folds which are products of surfaces. The Künneth isomorphism

gives
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H2(X × Y,Q) ∼=
⊕

p+q=2H
p(X,Q)⊗Hq(Y,Q)

and the cup product is determined by

(a⊗ b) ∪ (c⊗ d) = (−1)deg bdeg c(a ∪ c)⊗ (b ∪ d).

If we suppose that h1(X) = 0, then H2(X × Y ) ∼= H2(X)⊕H2(Y ) and the negative sign in

the cup product formula is killed. Therefore, we see that the intersection (quartic) form on

H2(X × Y ) is just the product of the intersection (quadratic) forms on H2(X) and H2(Y ).

This leads us to consider quartic forms which are products of quadratic forms. We recall

a proposition from Childs [Chi78, Theorem 8, p. 274]

Proposition 5.5.1. Let f = gh where g and h are quadratic forms. If Cg and Ch have

finite-dimensional representations, then so does Cf .

Proof. We give a sketch of the proof: we may suppose that Cg and Ch have representations of

the same size (otherwise tensor the representations with appropriately sized matrix algebras),

say Cg →Mn(C) sending generators xi to Ai and Ch →Mn(C) sending generators yj → Bj .

Then we obtain a representation of Cf defined by the block matrices

xi 7→

(
0 Ai 0 0
0 0 Ai 0
0 0 0 0
0 0 0 0

)
and yj 7→

 0 0 0 0
0 0 0 0
0 0 0 Bj
Bj 0 0 0


This is a representation of size 4n. Note that we abusively write xi and yj for generators of

Cf , corresponding to the generators of Cg and Ch, respectively.

Of course this proposition is true for the product of arbitrary degree forms, we just gave

the proof for the product of quadratic forms since that’s all we will need. We now specialize

to the case where f = q2 for a quadratic form q. Geometrically, we are thinking of 4-folds

of the form X ×X for a surface X.
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For the next theorem, we first fix some notation. Recall that if we have a graded rep-

resentation of Cf , we write c0f (R) to denote the degree 0 part of the image of Cf (R). If

furthermore the degree of f is even, we write c+f to denote the subalgebra of the image of Cf

consisting of even-graded elements. All of our previous theorems are valid with c0f replaced

by c+f .

Theorem 5.5.2. Let X be a complex surface with h1 = 0, h2 ≥ 2, and with intersection

pairing of signature other than (1, 1). Let f denote the quartic intersection form on H2(X×

X). Then there exists a graded representation of Cf for which c+f (R)/c+f (Z) is an abelian

variety.

Proof. By the discussion above, we have that f = q2, where q is the intersection form on

H2(X). We may suppose that q = a1W
2
1 + · · · + anW

2
n is diagonal with coefficients in Z.

Therefore,

f = (a1X
2
1 + · · ·+ anX

2
n)(a1Y

2
1 + · · ·+ anY

2
n )

As usual, we will write xi and yi and wi as the generators of the Clifford algebra, corre-

sponding to Xi and Yi and Wi, respectively. We have the representation of Cq from Section

3.1 which we briefly recall here:

w1 7→ A1 =
√
a1

0 1

1 0



w2 7→ A2 =
√
a2i

 0 1

−1 0


...
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wn 7→ An =

1 0

0 −1

⊗ · · · ⊗
1 0

0 −1

⊗√ani
 0 1

−1 0



for n even. When n is odd use the representation for (n + 1)-terms and forget wn+1. This

map is injective. We may assume that a1a2 > 0 (due to the restriction on the signature of

q). Then in Cq(R), the element J = 1√
a1a2

A1A2 satisfies J2 = −1 and J∗ = −J . Under the

representation in Proposition 5.5.1, we see that

1√
a1a2

(x1 + y1)(x2 + y2) 7→

(
0 0 J 0
0 0 0 J
J 0 0 0
0 J 0 0

)
Call the image element J ∈ c2f (R). Then J 2 = −I, J ∗ = −J , and

√
a1a2J ∈ c+f (Z).

Thus, left-multiplication by J defines a complex structure on c+f (R) satisfying (1).

Since under the representation of Cq, Cq(Z) is a full lattice inside Cq(R), we immediately

have that c+f (Z) ⊂ c+f (R) is a full lattice because it is obtained by taking blocks of the

representation of Cq.

Finally, Q restricted to the lattice takes values in Z. Note that the only elements of cf

with nonzero trace must live in c0f . Elements of c0f are block diagonal matrices where the

matrices in each block come from the representation of Cq. But the only basis elements of Cq

with nonzero trace are the constant integer multiplies of I (see Lemma 3.2.3). This tells us

that under the representation of Proposition 5.5.1, Q restricted to the lattice takes values in

Z. Therefore, Theorem 5.2.3 says that the quotient c+f (R)/c+f (Z) is an abelian variety.

Recall in Theorem 3.2.8, we created an abelian variety C+
q (R)/C+

q (Z) from a quadratic

form q in two or more variables of signature other than (1, 1).
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Theorem 5.5.3. Let X be a complex surface with h1 = 0, h2 ≥ 2, and with intersection pair-

ing q of signature other than (1, 1). Let f denote the quartic intersection form on H2(X×X).

Then the abelian variety C+
q (R)/C+

q (Z) is a subquotient of the abelian variety c+f (R)/c+f (Z)

from Theorem 5.5.2.

Proof. Let f = q2 for a quadratic form q = a1W
2
1 + · · · + anW

2
n with integer coefficients.

We first show that the image of Cf under the representation from Proposition 5.5.1 (which

we again denote by cf ) contains a subalgebra which surjects onto Cq.

Let wi denote the generators of Cq, and let xi and yi denote the generators of Cf each

corresponding to wi (as in the previous theorem). The map wi 7→ Ai discussed in the proof of

the previous theorem identifies Cq with a subalgebra of a matrix algebra. The representation

ϕ of Cf from Proposition 5.5.1 has

ϕ(xi + yi) =

 0 Ai 0 0
0 0 Ai 0
0 0 0 Ai
Ai 0 0 0


Now the map

ψ :

 0 Ai 0 0
0 0 Ai 0
0 0 0 Ai
Ai 0 0 0

 7→ Ai

defines a surjective map from the subalgebra B = 〈I, ϕ(xi + yi)〉 ⊆ cf onto Cq. We don’t

specify the field over which the Clifford algebra is defined, since this is surjective when we

consider the Clifford algebras over C,R,Q, or even Z (we include I in the generating set

of the subalgebra, since it may be necessary for surjectivity when considering the Clifford

algebra over Z). We write BR to denote the algebra spanned by the elements of B with

coefficients in R, and similarly for C, Q, and Z.

Assuming a1a2 > 0 and the complex structure on C+
q (R) is defined by left-multiplication

by J = 1√
a1a2

A1A2, the complex structure on c+f (R) is then defined by J ∈ c2f (R). We

67



see that J ∈ BR and J 7→ J , so the map ψ is compatible with the complex structures.

Therefore, we have a surjective map of complex tori BR/BZ → C+
q (R)/C+

q (Z). Since

BR/BZ is a complex subtorus of an abelian variety, it is itself an abelian variety. This

finishes the theorem.

Example 5.5.4. In particular, when X is a K3 surface, we get that the Kuga-Satake abelian

variety associated to X is a subquotient of of the abelian variety associated to H2(X × X)

as in Theorem 5.5.2.
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5.6 Construction in Families

We now examine our construction for cubic and quartic forms works in families. Sup-

pose V is a variation of Hodge structure of weight k on X with a flat multilinear form

f , of degree d (we assume d = 3 or 4 throughout). Then we can form the local system

of Clifford algebras C(V , f) as in the quadratic case, and we have its graded components:

C0(V , f), . . . , Cd−1(V , f).

The setup for performing our construction in families is the following. Suppose we have

W a local system of complex vector spaces on X for which End(W) is Z/dZ-graded. Consider

a graded morphism of local systems C(VC, fC) → End(W) and consider the induced maps

on C(VR, fR) and C(VZ, fZ). We let c(V , f) denote the image of C(V , f). Assume that

c0(VZ, fZ) is a full lattice inside of c0(VR, fR). Furthermore, suppose there is a locally-

constant section J of c0(VR, fR) such that for each x ∈ X, left multiplication by Jx defines

a complex structure on the fiber c0(VR, fR)x. The following is a restatement of Proposition

4.2.1.

Proposition 5.6.1. With the above assumptions, c0(V , f) is a VHS on X of weight 1.

The major difficulty is in finding conditions for which this is a polarized VHS of weight

1. The issue is being able to globally define conjugate transpose of a matrix. If End(W)

is a unitary bundle, we are able to globally define conjugate transpose. By unitary bundle

we mean there is a cover {Uα} of X which trivializes the bundle End(W) for which the

transition functions are given by conjugation by a unitary matrix. In this case, we can

define the “conjugate transpose” as a map ∗ : End(W) → End(W) of C∞-vector bundles.

To do this, let Uα and Uβ be two open sets in X in the trivializing cover of End(W). We

write Uα ×MN (C) and Uβ ×MN (C) for the open sets above Uα and Uβ , respectively, with
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transition function ϕαβ . Above Uα ∩ Uβ , consider the following diagram

MN (C)
ϕαβ

>MN (C)

MN (C)

∗
∨ ϕαβ

>MN (C)

∗
∨

By assumption, ϕαβ is given by conjugation by a unitary matrix S (i.e. S∗ = S−1), hence

we have

ϕαβ(A)∗ =
(
SAS−1

)∗
= (S−1)∗A ∗ S∗

= SA∗S−1

= ϕαβ(A∗)

so the diagram above commutes. Therefore, conjugate transpose is a globally-defined map

which is R-linear on fibers.

Proposition 5.6.2. Assume the hypotheses of Proposition 5.6.1 and that End(W) is a uni-

tary bundle. Suppose tJ is a section of c0(VZ, fZ) for some t > 0 and that J satisfies

condition (1) on fibers. Furthermore, if Re(tr(αxvw
∗)) ∈ Z for any v, w ∈ c0(VZ,x, fZ,x),

then c0(V , f) is a polarized VHS of weight 1 on X.

Proof. This is just a global version of Theorem 5.2.3. All of the assumptions we have made

make the result immediate.
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