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ABSTRACT 

 

DETECTION OF STATOR WELDING FAULTS IN END-TURN 

WINDINGS OF AC MACHINES 

By 

Arslan Qaiser 

 

Electric machines are the powerhouse of industrial plants and processes and play a very 

important role in their efficient and safe running. These machines operate under electrical, 

mechanical and thermal stresses making them prone to failing. Faults in the stator windings, due 

to a weak welding joint is one of the types of failures that can propagate and eventually lead to 

severe consequences. Timely detection of these types of faults is therefore crucial to avoid any 

damage to the machine.  

In this work, a framework has been put together for fault diagnosis, to detect and categorize a 

fault in the end turn windings of stators of PMAC and Induction motors. Feature extraction 

methods such as the Short Time Fourier Transform (STFT) and Wavelet Transform (WT) are 

implemented to extract the features by observing the energy densities. The features are 

categorized using classification methods like Nearest Neighbor Rule (NNR) and Linear 

Discriminant Analysis (LDA) to help classify the machine as either healthy or faulty, and 

identify the fault severity.  
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Chapter 1 

 

Introduction 

 

The main objective of this thesis is to detect a welding fault in the end-turn windings of AC 

motors.  

This document initially discusses literature that led to our approach to tackling the problem of 

fault analysis. The technique utilized are, time-frequency tools such as the Short Time Fourier 

Transform (STFT) and the Wavelet Transform (WT) to extract the features. Categorization 

methods such as the Nearest Neighbor Rule (NNR) and Linear Discriminant Analysis (LDA) are 

used to help detect, isolate and identify the fault. In the literature review, these methods are 

discussed in detail.  

We consider the winding to be similar to a transmission line, where a pulse sent at a terminal will 

reflect back, and the reflections indicate the characteristics of the discontinuities. In the 

Background section, a simulation of the Transmission Line model is presented. It is used to 

understand the concept of reflectometry and give an idea of what to expect in the actual stator 

windings.  

Problem Formulation and Proposed Solution section gives the similarity between a transmission 

line model and a machine model, since the two behave similarly under an impulse response.  
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The complete testing setup along with the equipment used and the testing method is discussed in 

the Experimental Setup section. Different fault severities and fault locations are considered for 

testing purposes and same experimental procedure is repeated to gather data. Resistors are used 

to simulate the fault severity and three different faults are created in the stator winding; fault at 

near the pulsing end, fault at center of the winding, and fault at quarter of a way into the winding. 

The Results section discusses the various analysis methods used for detection and classification 

of faults. The STFT and WT are implemented and the energy spectrum of varying fault severity 

at different locations is compared to that of no fault (healthy case). Features are selected based 

on the dominant frequencies present in the signal for all times. NNR and LDA are applied to 

these selected features and the results are discussed.  

Some suggestions for future work along with the conclusions are presented in the Conclusion 

section of this thesis.  
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Chapter 2  

 

Background 

 

2.1  Scope and Objective  

The motivation of the approach is the concept of reflectometry applied to motors. A Stator 

winding behaves similarly to a transmission line when an impulse is applied. In a transmission 

line, the impulse reflects back from discontinuities and the pattern of the reflected pulses can be 

used to detect a fault. Many diagnostic methods have been proposed in the literature for different 

types of fault detection. Each one of these requires the knowledge of some key concepts and this 

chapter will look into some of these types of fault detection methods. These concepts involve the 

study of transmission line theory, time-frequency analysis methods, pattern classification 

methods and feature extraction methods. 

This chapter is divided into several sections as follows: Section 2.2 gives a brief overview of the 

transmission line theory. Section 2.3 contains information about the methods that have been 

developed and applied to fault detection. Transformer Impulse Test is explained along with 

literature that applies this method. Section 2.4 gives details of the theoretical concepts that 

include feature extraction methods like Fourier Transform (FT), Short Time Fourier Transform 
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(STFT) and Wavelet Transform (WT). Section 2.5 discusses Classification Methods like Nearest 

Neighbor Rule (NNR) and Linear Discriminant Analysis (LDA). 

2.2  Transmission Line Theory 

A distributed parallel plate transmission line can be modeled as a lumped two-port network as 

shown in Figure 2.1. The values of the lumped parameters per unit length R, L, G, C can be 

calculated from the expressions given in Table 2.1. 

R L

G C
d

w

conductor

conductor

dielectric

(b)(a)

Figure 2.1: (a) Parallel plate transmission line in cross-section (b) Equivalent lumped model of a 

transmission line 

 

Parameter Expression Units 

R 
 

 
 

    
  

     

L  
 

 
     

G  
 

 
     

C  
 

 
     

 

Table 2.1: Parameters of lumped transmission line 
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where   is the width of the plate,   is the separation between the bars,   is the permittivity,   is 

the conductivity and   is the permeability of the dielectric material.    and    are the 

conductivity and permeability of the conductor.  

The transmission line model can be analyzed in steady-state or transient conditions. Steady-state 

operation occurs when the transmission line is excited with a sinusoidal source of fixed 

amplitude and fixed frequency. Transient condition occurs when the transmission line is excited 

with a pulse.  

The impedance of the transmission line is called the characteristic impedance, Z0 which is fixed 

by the geometry of the conductors. From the transmission line model parameters stated above, 

the characteristic impedance can be calculated as 

    
     

     
                                                                       

When the transmission line is terminated with a load impedance equal to the characteristic 

impedance, then any input current or voltage distributions on the line are exactly the same as 

though the line had been extended to infinity. Under this condition, there are no reflections 

produced. However when the load impedance is different than the characteristic impedance, then 

the source will see reflected waves produced by the transmission line. Different values of load 

impedances produce different reflected waves. The study of welding faults will use this idea by 

observing a change in the reflected waveform with the change of load impedance. The reflected 

waveform will be different for different resistance values. 

As an example, consider a transmission line of length l connected to a source of impedance 

   and a resistive load   . Refer to Figure 2.2. 
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Figure 2.2: Transmission line example terminated with load impedance  

The voltage and current in the transmission line are given as:
  

      
  
 

                                                                 

      
  

   
                                                                

Where 

                                                                    

   
  
  

                                                                             

  
     
     

                                                                        

   and    are the current and voltage measured at the load,   .     and      represent the 

incident and reflected wave component respectively.   is the reflection coefficient and the 

amplitude of reflected wave depends on the difference between    and   .  
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In Time Domain Reflectometry (TDR) test, the transmission line is excited by a narrow pulse. A 

reflected pulse is generated due to the unmatched impedance between the line and the load. In 

case of a faulty system, a second reflection will be produced from the discontinuity and travels 

back to the source. These incident and reflected waves are plotted against time, and the time 

difference between these pulses indicates the location of the fault.  

2.2.1 Simulation 

In this section, simulation results from the transmission line model are shown. A simple model of 

a healthy transmission line is shown in Figure 2.3. The four segments of the line are identical and 

connected together to form the transmission line. Each of these segments is made up of the 

lumped model given in Figure 2.1. The termination is variable impedance set to 100 Ω.  The 

parameters of the transmission line are defined as follows: 

Parameters: R = 0 Ω 

L = 0.0063 nH  

C = 0.0063 pF 

The characteristic impedance is calculated using,                  . The termination is 

set to 1 KΩ in order to have mis-matched impedance because in case of matched impedance, 

there will be no reflection. The source impedance    is set equal to    in order to have no 

reflection coming from the source end. Hence the pulse reflects only at the termination as seen in 

the plot below.  
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Figure 2.3: Model of healthy line (“For interpretation of the references to color in this and all 

other figures, the reader is referrred to the electronic version of this thesis.”) 
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In the first case, a fault exists in the middle of the line. The fault used here is a series resistance 

of 50 Ω. When a pulse is sent into the transmission line, it encounters two discontinuities: the 

termination and the fault. We would expect to see two reflections, one from each discontinuity. 

The simulation result in Figure 2.4 shows exactly this. The reflection from the fault is located at 

the center of initial pulse and the reflection from the termination.  

1
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3
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Faulty Winding

 

 

Figure 2.4: Model of faulty line (fault at center) 
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Next we consider a case in which the fault location is closer to the input end of the transmission 

line as seen in Figure 2.5. When a pulse is sent into the transmission line, it will again encounter 

the same two discontinuities. We can see from the output plot that the reflection due to 

termination is same as Figure 2.4. However, the reflection due to the fault is shifted and 

corresponds to the shift of the fault in the line. This confirms that the reflection pattern changes 

with the location of the fault. 
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Figure 2.5: Model of faulty (fault at beginning) 
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The proposed solution to the problem of detecting faults in a stator winding is to use the concept 

of reflectometry and apply that to the stator winding. The reflections observed in a transmission 

line can be used to determine the termination of a transmission line and also if there are any 

discontinuities in it. We extend the case of the stator windings to observe the reflections after 

sending an input pulse and aim to detect a fault from these reflections. 

2.3 Literature Review 

In this section, a literature review is presented for impulse test in motors and transformers and 

fault detection tests in transmission lines. These methods are different from the proposed method 

in this work, but the fault detection methods share similarities. Two types of pulse waveforms 

are typically used for fault detection, low rise time high voltage pulse and high frequency low 

energy pulse. The low rise time high voltage pulse is a standard 1.2x50 μs used for impulse test 

in transformer/motor.  

2.3.1 Transformer Impulse Test 

The voltage waveform that is used in transformer impulse test is called a full-wave lightning 

impulse [1]. This is a wave that has a rise time of 1.2 μs and decays to half of the peak value in 

50 μs, hence the name 1.2x50 μs wave. The waveform shape is shown in Figure 2.6 below. 
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Figure 2.6: Transformer Impulse Test waveform  
 

The time characteristics of the full-wave lightning impulse are explained as follows: 

Virtual Front Time (T1) 

The virtual front time (T1) of a lightning impulse is defined as the time it takes for the impulse to 

reach between 30% and 90% of its peak value, which corresponds to points A and B in Figure 

2.6 

Virtual Origin (O1) 

The virtual origin (O1) of a lightning impulse is the instant right before the time corresponding to 

point A given by 0.3 T1. This is obtained by drawing a straight line that joins points A and B and 

intersects with the time axis.  
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Virtual time to half value (T2) 

The virtual time to half value is the time from the virtual origin to the instant on the tail when the 

voltage reaches half of the peak value.  

A typical impulse test configuration is shown in Figure 2.7 below, where the detailed 

connections are shown in the following Figure 2.8 [2].  

 

Figure 2.7: Typical lightning impulse circuit 
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Figure 2.8: Typical transformer connection for routine impulse testing 

Fault detection schemes based on these impulse tests are developed and usually involve either 

measuring the input voltage or the neutral current and comparing it with those of non faulty cases. 

There are two types of neutral current detection methods, (a) the ground-current method and (b) 

the neutral-impedance method. It is the relative values of resistance and capacitance used in the 

shunts or connected across the output of the wide-band current transformers that qualify them as 

either of the detection methods. The ground current method uses lower values of resistances and 

capacitances that allows for lower time constant and higher bandwidth, rather than high value 

components used in the neutral impedance method. The following required characteristics of the 

measurement system were taken from the standard “IEEE Std C57.138-1998”. 

 The shunt elements, R and C are chosen to provide a peak voltage of 700 to 1000 V. 

These values can vary depending on the design of the transformer. 
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 The value of capacitor typically controls the peak voltage. It is used to limit the current 

during faults, thus the capacitor should be selected to produce good resolution in the 

oscilloscope under any conditions. Typical values of capacitance range from 0.05 μF to 

2.0 μF.  

 The value of resistor is chosen to achieve a voltage decay to half value in the 50 to 2000 

microsecond range. 

 The current transformer (CT) should be a precision wide-band type, with a rise-time of 

20 nanoseconds or less and a droop of less than 0.1% per microsecond. Rise-time is a 

measure of the CTs ability to respond to the high frequency components of current and 

droop is a measure of the response to the low frequency components.  

Several hardware configurations have been described in the standard “IEEE Std C57.138-1998” 

to automatically detect a fault, but the dependence on the tested transformer makes them 

irrelevant to the analysis presented in this work. 

2.3.2 Previous Work 

Several techniques have been developed for motors, transformers and transmission lines to detect 

faults in welding and insulation of the winding.  Some of these are mentioned below: 

 Mehdi et al. [3] discusses incipient faults in the windings of transformers that result due 

to the insulation breakdown during an impulse test. These faults are hard to detect since 

they are low amplitude and occur as transients. The ‘Arc Discharge method’ is discussed 

which uses the Transformer winding model as a basis. The model consists of a double 
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disc where each disc represents a series resistance, self inductance, shunt resistance, 

series capacitance and ground capacitance and the mutual inductance between the discs.  

I iI input

U input

I input

U outputL i R siR pi

K iC i

 
 

Symbol Description 

Rsi Series resistance 

Li Self inductance 

Rpi Shunt resistance 

Ki Series capacitance 

Ci Ground capacitance 

 

Figure 2.9: Detailed transformer model 

 

Since the arcing occurs between the discs of the transformer model, Mayr Equation is 

used to explain this phenomenon [4].  

 

 

  

  
 

 

 
   

   

  
                                                        

where R is the arc resistance,   is the arc voltage,   is the arc current,    is the momentary 

constant power loss and   is the time constant. Mayr Equation can be written in terms of 

the arc conductance,    
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In transformers, the gap between the two discs of the winding is typically low, so the 

power losses in the arc column are low. Also the arc between winding discs is a fast 

decaying and low energy phenomenon, thus the term      can be considered a constant. 

The variation of arc conductance is represented by 

 
    

  

  
                    

                                        

                                                             

where     is a conductance constant and      is the start time of the ignition phase.  

The arcing between the discs is represented by a non-linear time varying conductance, 

       , that increases as an impulse voltage is applied. 

 

Figure 2.10: Arc discharge model 

A lightning impulse, as used in transformer impulse tests, is applied to the input terminal 

and the input current in the case of arc discharge occurrence is recorded as shown in 

Figure 2.11 below. The arc discharge is most likely to happen at the peak of the input 

voltage. The fast changes in the input current can be attributed to the arc discharging 

phenomenon. 
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Figure 2.11: Simulated and measured disc-disc arc discharge, (a) full scale (b) zoomed 

 

 Essam et al. [5], [6] proposed a time-frequency analysis method to improve the fault 

detection in transformers under the impulse test. Frequency Response Analysis (FRA) 

method has been used widely to obtain transfer functions by using the input current and 

output voltages. Fast Fourier Transform was traditionally used as the standard technique 

in FRA, but the sensitivity of the fault detection can be improved by using Short Time 

Fourier Transform (STFT) for the evaluation of impulse tests on transformers. The FRA 

can be categorized in different frequency ranges: low, medium and high frequencies 

responses. The low and high frequency responses are significant in FRA for inter-turn 

faults in transformers. Various diagnostic criteria like the absolute sum of logarithmic 
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error (ASLE) and sum squared ratio error can be used to determine the fault in 

transformer. 

Relative changes in amplitude and resonant frequency location can help distinguish the 

various types of failures and provide an indication for test repeatability. The relative 

change in amplitude (DA) and relative change in resonant frequency location (Df) are 

computed as: 

   
     

  
                                                                   

 

   
     

  
                                                                     

 

where    and    are the magnitude and resonant frequency location for the fingerprint 

(normal conditions).    and    are the magnitude and resonant frequency location for all 

other simulated conditions. The use of STFT gives another useful factor, relative change 

in time (Dt) 

   
     

  
                                                                     

where    is the time at which the resonant  frequency of a fingerprint occurs, and    is the 

time  at which resonant frequency occurs for all other simulated conditions.  

The Short Time Fourier Transform (STFT) is used for time-frequency analysis. The 

STFT is simply a windowed FT that is applied for the complete duration of the time. 

Each windowed segment gives a time-frequency representation of the signal. The transfer 

function based on the STFT is the ratio of the input current (I1) to the output voltage (V2) 

called the trans-admittance transfer function. The STFT for each quantity is computed 

and the resultant transfer function is given as 
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The transformer under test had the following specifications: 25 kVA, 7200/12470Y, 

120/240, 60 Hz. The impulse wave shape is selected from the routine impulse testing of 

transformers to be the full-wave lighting impulse 1.2x50 μs. The test setup is shown in 

Figure 2.12 below with four types of faults.  

 

Figure 2.12: Four kinds of faults made to the transformer 

When the transformer windings are excited by an impulse, the voltage and current 

waveforms are non-stationary signals, i.e. signals that are aperiodic in nature. The 

primary current and secondary voltage signals were recorded using high-resolution 

oscilloscope for different cases of faults as shown in Figure 2.12 above. In time domain, 

some difference can be seen when comparing the current and voltage waveforms, but it is 

hard to tell apart a fault from healthy case, Figure 2.13. Time-frequency analysis such as 

STFT is used to identify certain frequencies that may be affected more due to the 

presence of a fault. Figure 2.14 shows the 3D STFT spectrograms. 
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Figure 2.13: Time domain representation  
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Figure 2.14: Spectrograms of (a) healthy , (b) faulty cases 

 

 Purkait et al. [7] used wavelet analysis to detect faults in transformers when an impulse 

test is applied. Winding current waveforms are used for wavelet analysis where the 
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pattern of the currents changes depending on the type of fault, and where it is located. 

Clustering analysis is used to classify the transformer faults. Electromagnetic Transient 

Program (EMTP) based models of transformers are used for this detection method. 

Known faults in the transformer winding were created which can be of two types: series 

or shunt fault. Series faults are characterized by insulation failures between the turns of 

the winding and a shunt fault is characterized by the insulation failure between the 

winding and ground. Different faults were created for the entire length of the winding and 

the time domain current waveforms were analyzed for each fault type. Wavelet analysis 

using the Morlet mother wavelet was applied and a 3D representation of the wavelet 

coefficients with respect to translation (time) and scale was obtained as shown in Figure 

2.15 below. 

Selected parameters were chosen from these 3D wavelet plots for classification purposes. 

Three parameters of interest are the predominant frequency component, its corresponding 

time of occurrence and the corresponding wavelet coefficient. The predominant 

frequency component is the one which has the highest value of coefficient for all times.  
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Figure 2.15: 3D surface plot of time domain current waveform 

These same three parameters are selected for the different types of faults created in the 

transformer winding and by using clustering, a unique pattern can be seen for the same 

types of faults. Each fault type has its own signature that makes it different in terms of its 

predominant frequency and the corresponding time and wavelet coefficient. The result of 

clustering can be seen in Figure 2.16 below, where a 2D plot of scales vs. wavelet 

coefficient is shown. Separate clusters are formed for each type of fault (shown for only 

series fault), and thus using wavelet analysis, impulse faults in transformers can be 

detected. 
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Figure 2.16: 2D plot of scales vs wavelet coefficients for series faults 
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2.4 Theoretical Background – Time-frequency Analysis 

Time domain analysis is used primarily for steady-state operation. It is insufficient to monitor 

small changes in transients. Frequency domain analysis like the Fast Fourier Transform (FFT) 

provides frequency components in a signal but does not contain the time information on when 

these frequency components occur. Time-frequency analysis is inherently used to detect small 

changes in transients. Techniques like the Short Time Fourier Transform (STFT) and Wavelet 

Transform (WT) provide a way to analyze both the time and frequency information 

simultaneously. This section provides a detailed theoretical background on both of these time-

frequency analysis methods.  

2.4.1 Short Time Fourier Transform 

The Fourier Transform of a signal      involves decomposing it into its constituent frequencies 

that can be written as a sum of sines and cosines. Mathematically it can be written as: 

                         
 

  
                                                   

The Fourier transform is valid for stationary signals only. However most signals are non-

stationary and the Fourier transform cannot be applied. For such cases, we make use of the Short 

Time Fourier Transform. It is defined as the Fourier Transform of a windowed section of the 

signal     .  Figure 2.17 shows the concept of ‘windowing’ a signal, which means to take a 

small segment of the signal, so that the signal is almost stationary in that window frame, and then 

applying the usual Fourier Transform to the windowed part. The window then slides across the 

whole signal, each time computing the Fourier Transform. In the end all the individual 
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windowed Fourier Transform are summed together to give the Short Time Fourier Transform. 

The tiling for the STFT is shown in Figure 2.18 below. 

window

 

Figure 2.17: FT of a windowed section of signal 
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Figure 2.18: STFT time-frequency tiling 

Mathematically the short time Fourier Transform is defined as follows: 

                           
 

  
                                                  

where,     frequency to be analyzed, 

       time signal 

       type of window 
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There are two key concepts in the STFT 

1. Time resolution 

2. Frequency resolution 

In order to explain these concepts, consider a window w(n) of length N, whose Fourier 

Transform is given by the sinc function, W(f) given below.  

 

Figure 2.19: Rectangular window (left), Sinc function (right) 

The sinc function has a cut-off frequency given by 
2 

 
.  Now consider a signal x(t) to which the 

window w(n) will be applied. 
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Figure 2.20: Signal x(t) 
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In order to achieve good temporal resolution, a short window length is required. This means that 

for small N, high frequency transients can be localized (as shown in Figure 2.20). The red circles 

indicate high frequency transients and the window length needs to be small enough to be able to 

detect these transients. However, by making N small, the cut-off frequency of the sinc function 

(also called a Low Pass Filter – LPF) increases. This results in a LPF with a large cut-off 

frequency. This means that the LPF will not be able to effectively reject all the low frequency 

content. We can say that if the window length N is small, the ability to distinguish between two 

adjacent frequency components goes down. Consider the other case when a longer window 

length N is chosen. This implies that the LPF will have a sharp cut-off frequency and the high 

frequency will be rejected more effectively, thus, giving good frequency resolution. However, a 

longer window also implies that high frequency transients will not be localized, resulting in bad 

temporal resolution. We can conclude from this discussion that both temporal and frequency 

resolution cannot be improved simultaneously.  

There are certain limitations to the use of the STFT. The most important one is that the ‘Time-

Frequency’ resolution is fixed, since choosing a fixed window length N fixes the bandwidth of 

the LPF. The time-bandwidth product is given by 

       ,  

where K is some constant 

     
 

  
 

This implies that good time resolution can only be achieved at the cost of poor frequency 

resolution and vice versa. 
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2.4.2 Wavelet Transform 

Wavelet analysis is also used for non-stationary signals. First some notation will be defined to 

understand Wavelets better. L
p
(R) is the Hilbert space for measurable integrable functions f(x) 

        
  

  
                                                                

L
2
(R) is the Hilbert space for square integrable functions, where           . (2.17) is a 

subset of (2.16): 

        
  

  
                                                                

Consider a vector space V where a set of linearly independent functions that span V is called a 

basis. That is, any function V can be written as a linear combination of the basis functions. This 

can be shown by the linear decomposition (2.18) where f(t) represents any function in the space 

V,       are the basis functions, and    are the scaling coefficients, 

        
 

                                                                    

A wavelet system is defined as a set of scaling functions and wavelet functions and is a basis for 

the set of functions belonging to L
2
(R) space. It is important to note that the scaling function, 

wavelet function and the basis function all have finite energy, which gives wavelets the ability to 

localize in time and frequency [8]. There are two types of wavelet transforms, namely 

Continuous Wavelet Transform (CWT) and the Discrete Wavelet Transform (DWT) 
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To define the CWT, consider a function  (x) which is said to be a wavelet if and only if its 

Fourier Transform       satisfies  

 
       

 

 

  

 
    

       
 

 

 

  
                                               

     
  

  
                                                                             

The continuous wavelet transform of a function is denoted by Wf(s,x), a function of both scale 

and position x (or time t). So the continuous wavelet transform is defined for the scale-space or 

scale-time plane. A wavelet function for a specific scale s can be defined as  

       
 

 
   

 

 
                                                                   

and the continuous wavelet transform of a function f(x) at scale s is given by 

                                                                              

Note that at scale = 1,       is often referred to as the mother wavelet.  

The discrete wavelet transform can be defined using the idea of multiresolution by starting with 

the scaling function and defining the wavelet function in terms of it [8]. A basic one-dimensional 

scaling function can be designed to translate a function in time (2.23) where Z is the set of all 

integers. 

                                                                  (2.23) 
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Wavelet systems are two-dimensional, so a scaling function         that both scales and 

translates a function      

                                                                     (2.24) 

Where j is the      of the scale and      represents the translation in time. A subspace of the 

L
2
(R) functions can be defined as the scaling function space  .         spans the space   , 

meaning that any function in    can be represented by a linear combination of functions of the 

form         [8]. 

When discussing scaling functions in terms of multiresolution analysis, the relationship between 

the span of scaling functions with different indices can be seen in (2.25-2.26) 

                                                             (2.25) 

                                                                               

Another subspace of L
2
(R) functions is the wavelet vector space  . A wavelet spans the space 

  , which represents the difference between two scaling function spaces,    and     . It can 

be seen that (2.27) extends to (2.28) 

                                                                               

                                                                       

The relationship between the scaling function and the wavelet vector space is illustrated in 

Figure 2.21. 
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Figure 2.21: Scaling Function and Wavelet Vector Spaces 

 

The scale of the initial space    can be chosen arbitrarily, but is usually chosen to be the coarsest 

detail of interest in a signal. It can even be chosen as      where L
2 

can be reconstructed only 

in terms of wavelet functions (2.29) 

                                                         

A very basic wavelet system with a scaling function and a wavelet function to make up the detail 

between one level of decomposition and the next is the Haar system shown in Figure 2.22. 
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0 0

0 1 0 1  

Figure 2.22: Haar scaling and Wavelet Functions 

Any function in L
2
(R) can be written as an expansion of a scaling function and wavelets (2.30), 

where        are the scaling function coefficients,          is the scaling function at the initial 

scale j0 ,       are the wavelet function coefficients and         are the wavelet functions 

spanning the space between     and L
2
. 
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2.5 Classification Methods 

Once the feature extraction is complete, the coefficients resulting from STFT or WT need to be 

processed to determine the location and severity of the fault. This involves categorizing or 

classifying the features based on a training algorithm. Classification methods are used to classify 

the features from a healthy winding as ‘healthy’, and those from a faulted winding as ‘faulty’.  

2.5.1 Nearest Neighbor Rule 

The Nearest Neighbor Rule (NNR) is one of the simplest algorithms used for classification. In 

simple terms, this algorithm or rule classifies x by measuring its distance to nearest samples and 

then assign x the label of the corresponding nearest samples. Using this idea, a better approach 

would be to measure the distance of test point x to the mean of all samples of each class; centroid 

of the class. The centroid represents the weighted average of all samples. In the case of two 

classes, there will be two centroids. The goal is to calculate the distance of x to each centroid and 

classifying based on the smallest distance. First the classifier has to be trained, which is done by 

taking 1 sample out (test sample), from each class, calculate the centroid of remaining samples, 

calculate the distance of the test sample from each centroid and then classify the test sample. The 

choice of distance measure is important and the most common one is Euclidean distance. 

Consider two classes and let               represent samples of class 1 and               

represent samples of class 2.  
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Other distance measures include the Manhattan or city-block distance, where the absolute values 

of samples are added up and Minkowski distance, where instead of square of distance, higher 

dimensions are used. In most cases, the Euclidean distance provides a good compromise and thus 

has been used as the distance measure for the classification method discussed here.  

In our analysis, the classifier is trained with 99 out of the 100 samples, with 1 sample left out, 

called the test sample. A different test sample is chosen until all samples have been considered. If 

the test sample is from a test with faulty winding, then the centroid of fault samples is computed 

from the remaining 49 samples while the centroid of healthy samples is computed from all 50 

samples. Vice versa, if the test sample is from a test with healthy winding. Once the classifier has 

been trained, the distance of every test sample (taken one at a time) to both faulty and healthy 

centroid is calculated. The test sample is classified into one of two classes; ‘faulty’, if the test 

sample lies close to fault centroid and ‘healthy’, if the test sample lies close to healthy centroid.  

2.5.2 Linear Discriminant Classifier 

Linear Discriminant Classifier (LDC) is trained based on the input feature vectors of a set of 

known faults or classes. If the feature space is divided into C sub regions, where C is the number 

of fault classes, then each region corresponds to a different fault severity. In order to separate the 

classes apart, the classifier iteratively computes weighting coefficients that maximize the linear 

discriminant function for that class. The linear discriminant function is defined as [9]: 
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where x is the k-dimensional feature vector and   are the weighting coefficients for the C-th 

class. A test vector belongs to a particular class, if the discriminant function for that class is 

greater than the discriminant function for any other class i.e. x belongs to class j if: 

             

for every k j.  

Young and Calvert [10] show that the training algorithm converges in a finite number of steps. If 

a sample is correctly classified, then no adjustment to the weighting coefficients is made, but if 

samples is incorrectly classified, 

             

where  

         
   

                 

adjustments are made to    and    only, 

                                                                             

                                                                             

where   is a gain constant. 
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Chapter 3 

 

Problem Formulation and Proposed Solution  

 

3.1 Problem 

The problem at hand is the detection of welding faults in the end turn windings of AC machines. 

These types of faults are attributed to a poor welding joint, a crack in the welding or simply 

deterioration of the welding over time. Early fault detection requires a good analysis tool so as to 

extend the life of the machine. In this work, the fault analysis of stator windings is concerned. 

3.2 Motivation and Proposed Solution 

The motivation of our approach is the similarity of a coil to a transmission line, and the use of 

the concept of reflectometry. An impulse sent at the beginning of a transmission line will cause 

reflections. These reflections depend on the type of termination of the line and the discontinuities 

in it. We will use this concept of reflectometry in the stator windings and by observing the 

reflections we hope to be able to detect the fault. 

The study of reflectometry is based on the transmission line model under the assumption that the 

machine is modeled as a transmission line. The windings are modeled as transmission lines with 

the end windings being lumped into series resistances as shown in the figure below: 
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Figure 3.1: Machine Model for Impulse Test 

Some assumptions that are made in the simplified model are the following: 

1. The coupling capacitance between the windings is neglected 

2. The mutual inductance between the phases is neglected 

3. The copper bars are approximated as parallel plate transmission lines 

Analyzing the windings under these assumptions makes the pulsed reflectometry easy to 

understand. Ideally an impulse input to the transmission line will only reflect from discontinuity 

in the winding. However, since the transmission line (windings) is lossy, the amplitude of the 

impulse is distorted and the waveform is dispersed. The reason for distortion is due to energy 

losses in the transmission line as the pulse propagates through it. Dispersion occurs because 

every end turn in the winding contributes as a small fault and causes the pulse to reflect at 

multiple locations. Fourier analysis of the pulse shows that there are certain frequency 

components that are affected more than the others. The components travel at different speeds 

through the winding and the initial pulse gets distorted and spreads out.  
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More specifically, the incident pulse reflects when it encounters a change of impedance. In a 

healthy transmission line, the only reflection is from the termination of the line where the load 

impedance is different from the characteristic impedance of the line. When a fault occurs, it acts 

like an additional impedance in the line. The input pulse will go through two reflections, one 

from the load and one from the additional discontinuity. Multiple reflections indicate the 

presence of a fault in a transmission line. The location of the fault can be predicted by calculating 

the time between incident and reflected pulses. The severity of the fault can be predicted by the 

attenuation in the amplitude of the input pulse.  

Diagnosis techniques include the analysis of feature extraction methods and classifiers. 

Algorithms are developed for each one of these and a top level down system is shown below 

Selection of 

Overall Analysis 

Approach

Feature Extraction

Diagnosis – 

Classification

 

Figure 3.2: Top level down system 
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3.2.1 Feature Extraction Methods 

Feature Extraction methods can be implemented in time domain, frequency domain or the time-

frequency domain. In time domain, the features will be the voltage amplitude of the reflected 

pulse. This may be suitable for steady-state but to monitor small changes in transients, time 

domain analysis is insufficient. In frequency domain analysis, frequency spectrum is used to 

diagnose a fault by comparing a healthy case with a faulted case. However in case of transients, 

the frequency spectrum cannot indicate a fault. Time–frequency domain analysis is used 

inherently to detect faults in transients. Features are represented in three dimensions: time, 

frequency and the amplitude. There are various feature extraction methods that have been used to 

detect transient faults such as Short Time Fourier Transform, Wavelet Transform, Wigner Vile 

Distribution, Choi Williams Distribution. In this work, only the STFT and WT will be 

considered.   

3.2.2 Classification Methods 

Once the feature extraction is done, the features are input to a classifier for fault classification. 

There are numerous classifiers, some that are based on prior knowledge of the data and some that 

assume no prior information. Here we will consider the latter case that includes methods like 

Nearest Neighbor Rule (NNR) and Linear Discriminant Analysis (LDA). Both of these methods 

have been used and a comparison will be listed detailing the performance of each classifier.  

 

 

 



43 
 

 

 

Chapter 4  

 

Experimental Setup  

 

4.1 Experimental Setup 

The experimental setup consists of the following 

 HP Agilent DSO-9064A Digital Oscilloscope 

 HP Pulse Generator 8012A 

 Desktop PC 

 SMA Cables (6” cables) 

 SMA to BNC connector 

 SMA ‘T’ connector 

 Stator winding under test 

A block diagram of the setup is shown in Figure 4.1. The 3 phase stator shown has the fault only 

in Phase A. Three different fault locations are considered: fault at near the pulsing end, fault at 

center of the winding, fault in between the near and center or fault at quarter way through the 

winding. Figure 4.1 shows a generic fault location. Channel-1 of the oscilloscope is connected 

together with the output of the Pulse Generator using a SMA ‘T’ connection ring which is then 
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connected to Phase A. This is the setup used to test Phase A. Similarly, to test Phase B, the BNC 

cable is removed from Phase A terminal and connected to Phase B terminal.  

Pulse Generator

Oscilloscope

Phase A

3 Phase Stator Windings

Phase B

P
h

a
s
e

 C

Fault
Fault

T

Channel-1

Output

Terminal A

Terminal C

Terminal B

 

Figure 4.1: Block Diagram of system 

The Pulse Generator is set to the following parameter values in Table 4.1. The width is set to the 

absolute minimum and the Rise Time is calculated using the Oscilloscope. Note that the scope 

introduces an error in the measurement that depends on its bandwidth, 600 MHz. To account for 

this error, the Rise Time of the scope needs to be calculated using: 

         
    

  
 

    

      
          

The measured Rise Time of the pulse is                . The actual Rise Time is given by: 
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Pulse Characteristics 
 

Magnitude 8.0 Volts 

Width 8.0 ns 

Rise Time           

 

Table 4.1: Pulse Characteristics from Pulse Generator 

4.2 Stator winding parameters 

The stator winding under test is a distributed 3-phase winding with the following parameters, 

followed by a cross-sectional view in Figure 4.2. Only Phase A is shown with the fault at near 

end (location 1). 

Parameter 
 

Winding type distributed 

Number of phases 3 

Winding connection     

Number of slots 60 

Number of conductors per slot 4 

Stator outer diameter        

Stator inner diameter        

 

Table 4.2: Stator winding parameters 

4.3 Calculations 

Length Approximation: 
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Area Approximation: 

                                     

Resistance Approximation: 

   
 

 
 

Where ρ =                

Using the above results, the resistance of the winding is approximated to be: 
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Figure 4.2: Cross sectional view of stator winding under test (Phase A shown) 
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4.4 Testing Procedure 

The testing procedure consists of the following steps: 

 Connect one end of the winding to the pulse generator  

 Use a SMA ‘T’ connector to connect the winding to channel 1 of the scope 

 Connect the other end of the winding to channel 2 of the scope 

 Set the pulse generator to ‘single pulse’ mode and trigger the scope at the rising 

edge of the input pulse 

 Record the data from the scope by doing repeated single pulse inputs and 

recording the reflected wave every time 

The pulse generator is connected to the input terminals of the stator windings, which contains a 

fault. Using a ‘T’ connection ring, a scope is also connected to the input of the windings to 

observe the reflections. Once the input pulse travels through the winding, it will be reflected 

back, hopefully from the fault but there are other discontinuities in the winding (end turns) that 

will give unwanted reflections. The assumption here is that most of the pulse will be reflected 

back from the fault in the winding. Each of the end turns contributes to a fault but the actual fault 

will have the largest contribution. Once the scope has recorded the data, it is saved to a PC which 

is then used to post-process this raw data, using feature extraction techniques and classification 

methods.  

Figure 4.3 below shows the setup of the windings. The figure on the left shows a healthy case, in 

which a clamp is used to hold together the open windings. The figure on the right shows a faulty 

case in which a terminal block is connected in series with the winding by welding it. The resistor 
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is used to simulate a fault in this case. Multiple resistor values have been considered: 1 Ω, 0.33 Ω, 

0.1 Ω and 0.027 Ω. 

 

 

 

Tests are conducted with windings both healthy and containing a fault. The faults are created in 

three separate regions of the winding. First is the fault located closest to the pulsing end that is 

referred to as “ ear End Fault”. Second is the fault located at the center of the winding or the 

“Fault at Center”. Third is the fault between the two prior faults or “Fault at Quarter”.  ote that 

these locations are relative to the pulsing end of the winding. Another fault location can be 

created if the pulsing end of the windings are interchanged. More specifically, the near end fault 

will now appear as a “Far End Fault” with respect to the pulsing end. The objective is to use the 

Figure 4.3: Testing healthy winding (left), faulty winding (right) 
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reflections resulting from an impulse applied to a terminal, to determine the state of health and in 

case of a fault, the fault severity/location. For each fault location, different fault severities are 

considered and the same test (sending a pulse and recording the reflection) is repeated fifty times 

to get a total of fifty samples per fault severity per location. It is expected that by changing the 

fault location, the reflected pulse pattern will also change. Further the fault from the pulsing end, 

the longer the delay in the reflected pulse to arrive back. Figure 4.4 below shows the stator with 

all three faults.  

 

Figure 4.4: Three fault locations in the stator winding. (clamps show the actual location) 
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Following Table 4.3 summarizes the different test cases. Only Phase A is considered in these 

tests. Several fault severities are considered as mentioned before, 1.0 Ω, 0.33 Ω, 0.1 Ω and 0.027 

Ω. Two test configurations are selected: Configuration 1 (C1) and configuration 2 (C2). C1 

refers to the configuration in which the pulsing end of the winding is at one terminal while C2 

refers  to the pulsing end interchanged. State represents the state of the winding during the 

testing, in this case four possible states. 

Case 1 is when there is no fault in the stator, or a healthy winding. To make a phase healthy, the 

fault locations in the winding were clamped to simulate a short. For each fault location, different 

fault severities were tested. Only one fault location and one fault severity is considered at a time, 

with the assumption being that the fault is present at only one location in the winding, during a 

test. This means that when testing for Fault at location 1, the other locations are clamped to avoid 

any unwanted reflections from other fault locations.  

Cases 2 – 5 represent the fault at location 1, or Near End Fault. Cases 6 – 9 represent the fault at 

location 2, or Fault at center. Cases 10 – 13 represent the fault at location 3, or Fault at Quarter.  
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Tests  Phase  Fault Severity (Ω)  Configuration  State  

Case 1  Phase A  -  C1  Healthy  

Case 2  Phase A  1.0 C1  Fault at Loc 1 

Case 3  Phase A  0.33 C1 Fault at Loc 1  

Case 4  Phase A  0.1 C1 Fault at Loc 1  

Case 5 Phase A  0.027 C1 Fault at Loc 1  

Case 6  Phase A  1.0 C1 Fault at Loc 2 

Case 7 Phase A  0.33 C1  Fault at Loc 2  

Case 8  Phase A  0.1 C1 Fault at Loc 2  

Case 9  Phase A  0.027 C1 Fault at Loc 2  

Case 10  Phase A  1.0 C1 Fault at Loc 3 

Case 11 Phase A  0.33 C1 Fault at Loc 3  

Case 12 Phase A  0.1 C1 Fault at Loc 3  

Case 13 Phase A  0.027 C1 Fault at Loc 3  

Table 4.3: 13 Test Cases 
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Chapter 5 

 

Results and Discussion 

 

5.1 Overview 

This section discusses the results that are obtained using the experimental setup and procedure in 

Chapter 4. The results are divided in several sections to provide a contrast between the different 

Feature Extraction Methods and Feature Classification Methods. Section 5.2 provides the time 

domain results that show the raw voltage waveform and the need to do time-frequency analysis. 

Voltage waveforms are shown for different fault severities and for couple of fault locations. 

Section 5.3 provides the frequency spectrum using the FFT analysis. Section 5.4 discusses the 

application of two different time-frequency analysis methods, Short Time Fourier Transform 

(STFT) and Wavelet Transform (WT). The time-frequency plots referred to as spectrogram for 

STFT and scalogram for WT are analyzed for healthy and various fault severities. Section 5.5 

briefly discusses the feature selection method. Section 5.6 shows the application of two 

classification methods, Nearest Neighbor Rule (NNR) and Linear Discriminant Analysis (LDA) 

on the extracted features.  
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5.2 Time Domain waveforms 

This section is concerned with the raw voltage waveform that is recorded at the pulsing end of 

the winding. Note that this waveform consists of multiple reflections occurring not only from the 

fault but from the end connections as well. In this section, several waveforms are shown for 

different fault severities and considering one fault location at a time. In this analysis, the 

assumptions are the following: known fault location and known fault severity. In practical sense, 

this assumption is void, but for initial analysis, it will suffice. The results and conclusions of this 

section determined the next course of action.  

First the fault at location 1 is considered, the near end fault. Fault severities of 1 Ω, 0.33 Ω, 0.1 Ω 

and 0.027 Ω are considered. Using the theory of transmission lines, the input pulse will reflect 

back from the fault and possibly from other discontinuities (end windings). Figure 5.1 shows this 

case. It can be seen that the initial pulse is the same for any fault severity but after sometime the 

reflection pattern changes slightly for each fault severity. It is hard to tell where exactly the fault 

is present because the pulse sees different winding impedance with different fault severities. This 

results in different reflected and transmitted coefficients leading to varying amount of reflected 

and transmitted pulses. The same explanation is applicable to the other two fault locations, 

waveforms for which are shown in Figures 5.2 and 5.3. 
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Figure 5.1: Voltage waveform for Fault at location 1 
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Figure 5.2: Voltage waveform for fault at location 2 
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Figure 5.3: Voltage waveform for fault at location 3 

It can be concluded from these preliminary results that the time domain waveforms do not 

provide much insight on (1) the location of the fault and (2) the severity of the fault. Based on 

these results, it was decided that the next approach to consider is frequency domain analysis and 

time-frequency analysis in which two methods are used, the STFT and the WT.  
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5.3 Frequency Domain waveforms 

It is useful to have information about the frequency content of the time domain waveforms. Fast 

Fourier Transform (FFT) is used to calculate the frequency spectrum for the three different fault 

locations. Only fault severities of 0.1 Ω and 0.027 Ω are shown in this section. Figure 5.4 shows 

the frequency spectrum when fault is at location 1 or fault at near end of the winding. Figure 5.5 

shows the frequency spectrum when fault is at location 2 and Figure 5.6 for fault at location 3.  

 

Figure 5.4: Frequency spectrum for fault at location 1 
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Figure 5.5: Frequency spectrum for fault at location 2 
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Figure 5.6: Frequency spectrum for fault at location 3 

These frequency spectrums show that the dominant frequencies are present at 114.4 KHz, 419.6 

KHz, 762.9 KHz and 2.289 MHz.  Any higher frequencies do not contain useful information 

about the fault. This will be shown to hold true with time-frequency analysis as well.  
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5.4 Time-frequency Analysis/ Feature Extraction 

The time domain waveforms alone are not enough to give a clear indication of a fault. Frequency 

domain waveforms only give the frequency content with no information about time. The fault 

information is imbedded in the measured voltage waveform but is not visible to the eye. Time-

frequency analysis provides a way to view both the time and frequency content simultaneously.  

5.4.1 STFT 

The STFT parameter selection is important because the window length determines the location 

(characteristics) of the fault. Once the window length is chosen, the ‘Specgram’ command on 

MATLAB is used to compute the STFT.  

[S,F,T] = Specgram(X,NFFT,FS,WINDOW,NOVERLAP) 

The parameter ‘S’ gives a matrix that consists of the ‘coefficients’ of the STFT. These 

coefficients represent the features of a healthy winding when X is the data from a healthy 

winding and those of a faulty winding when X is the data from faulty winding. These features are 

important in determining the presence of a fault. Features can also be defined as the information 

extracted from the raw signal that are unique to it. For example, the features extracted from a 

healthy sample would be the same as those of another healthy sample. But the features extracted 

from a faulty sample, we expect to be different from the healthy case.  It is of importance to note 

that in case of a fault, the fault is assumed to be at only one location at a time and it should 

ideally manifest itself in only that location. This means that the features of a healthy and faulty 

case should be the same for all time/frequencies except where the fault manifests itself. ‘F’ 

contains information about the frequency content of the signal while ‘T’ contains time 
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information. Different fault severities are used to simulate the severity of the fault at near 

(location 1), fault at center (location 2), and fault at quarter (location 3) of the winding. Most 

severe fault is represented by 1 Ω while least severe by 0.027 Ω.  

The energy of the initial pulse is the highest and decreases as the pulse travels through the 

winding and reflects from the fault and reaches back at the input terminal. This high energy 

masks any other signs of energy that can be due to the fault. To avoid this, the initial pulse is 

chopped out and the remaining signal is normalized with the energy that it contains. Figure 5.1 

shows the voltage waveforms for different fault severities. The initial pulse is the same for all 

fault severities so it is acceptable to chop this part of the signal. 

The need to normalize: 

Normalizing is done to have a common platform for measurement, so that any inconsistency is 

accounted for in the experimental procedure. In this setup, the initial pulse is generated using the 

single-shot mode in the pulse generator. It is possible that the pulses are not identical and one 

pulse might be stronger than the other. Stronger in the sense of having a higher amplitude. If a 

pulse is stronger, then all the features after extraction will be scaled up and show a higher energy 

density than the features extracted from a weak pulse. This can lead to features that could 

potentially be different for the same fault severity for a given fault location. It is expected that 

the features are identical between the samples of the same fault and different between the 

samples of a healthy and faulty case. To normalize, all the features of a sample are divided by the 

total energy of the signal. The same normalizing scheme is done for all the samples. In the end, 

even the features that were higher (due to uneven pulses) are normalized to the same energy as 
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the other features. This ensures that regardless of the input pulse, the features that are extracted 

from one fault location are all the same.  

Figure 5.7 shows the spectrogram of the healthy case. The red color shows a high energy density 

while from yellow to blue, the energy density decreases. Most of the energy is concentrated in 

the lower frequency region. 

Note that the spectrograms shown in this section only consider a fault severity of 0.027 Ω. 

 

Figure 5.7: Spectrogram of Healthy case 
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Figure 5.8 shows the spectrogram of fault at location 1 or near end of the winding. Compared to 

the healthy case, the spectrograms look quite similar except at the low frequency region, i.e. 

below 500 MHz.  

 

Figure 5.8: Spectrogram of Fault at near 
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Next, the STFT is applied to location 2 or center of the winding, to get another set of 

spectrogram. Same fault severity of 0.027 ohm is considered and the results are shown in Figure 

5.9 below. The pattern observed at low frequencies is the same as that of before. A similar 

spectrogram is shown for fault at location 3 or quarter of the winding in Figure 5.10.  

 

Figure 5.9: Spectrogram of Fault at center 
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Figure 5.10: Spectrogram of Fault at quarter 

 

The analysis based on spectrograms was only limited to observing the spectrograms. This 

analysis is not enough to give a clear indication of a fault in the winding. In the proceeding 

sections, classification methods will be discussed that use the features extracted from the STFT 

and classifies the winding as either healthy or faulty. But before that, Wavelet Transform is 

discussed next. 
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5.4.2 Wavelet Transform 

Similar to the STFT, the WT is also a time-frequency analysis tool that offers more flexibility by 

providing a varying time-frequency resolution, which is a major drawback of the STFT as 

discussed in section 2.4.1. With wavelets, an approach similar to the STFT is adopted where the 

scalograms (spectrograms in STFT) are analyzed.  

The selection of scales in WT is important, and it depends on the frequency content of the signal. 

Recall that scales are related to the inverse of frequencies. Since this work is concerned with 

using the Continuous Wavelet Transform (CWT), scales need to be converted to frequencies. 

Using the FFT, the dominant frequencies have been determined and the corresponding scales are 

calculated using: 

    
  
   

                                                                            

 where 

  = scale value 

   = center frequency of wavelet 

   = frequency corresponding to the scale value  , in Hz 

  = sampling period 

The wavelet used here is the Morlet wavelet shown in Figure 5.9 below. The center frequency is 

calculated from MATLAB using centfrq and comes out to be 0.8125. 
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Figure 5.11: Morlet wavelet 

 

Using (5.1) the scales that correspond to the dominant frequencies are calculated and listed in 

Table 5.1 below 

Dominant Frequency Corresponding Scale value 

114.4 KHz 35000 

419.6 KHz 9700 

762.9 KHz 5300 

2.289 MHz 1800 

 

Table 5.1: Scales corresponding to dominant frequencies 
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The scalograms shown in this section cover a wide range of frequencies not limited to those 

shown in Table 5.1 to provide a complete time-frequency representation of the signal. 

Note: The following figures show the scalograms for fault severity of 0.027 Ω at different fault 

locations. Recall that only one fault location at a time is considered during testing.  

Figure 5.12 gives the scalogram of the healthy case. Same as the spectrogram, the red color 

represents high energy density and from yellow to blue the energy density decreases.  
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Figure 5.12: Scalogram of Healthy case 
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Figures 5.13 to 5.15 show the scalograms for fault at near, center and quarter respectively. It is 

evident that the energy density at lower frequencies is higher for all three faults, compared to the 

healthy case. These scalograms provide a good way to observe the time frequency content and to 

point out any noticeable differences between healthy and faulty cases.   
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Figure 5.13: Scalogram of Fault at near 
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Figure 5.14: Scalogram of Fault at center 
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The feature extraction methods discussed so far provide a way to observe the features of the fault 

at different locations. It is shown that the pattern of the features (scalogram) changes with the 

presence of a fault. This is more obvious with the WT.  However, based on just observation, it is 

hard to detect the fault. This is where classification comes in and two popular methods have been 

implemented, the Nearest Neighbor Rule (NNR) and the Linear Discriminant Analysis (LDA).  
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Figure 5.15: Scalogram of Fault at quarter  
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5.5 Feature Selection Method 

Once the feature extraction is complete, the features need to be classified. However due to the 

dimension of the feature matrix being very large, only a few selected features that contain useful 

information about the fault, are chosen.  

The fault is present at three different locations. These locations do not correspond to a single 

time instant since the fault does not manifest itself at one time.  The total number of samples is 

21,500 and it is not possible to select all of them. Five epochs are created each one containing 

200 samples. From every epoch, 20 features are selected for a single frequency. Using the same 

criteria of selection for all five epochs, a total of 100 features are selected for every experiment. 

Each epoch corresponds to a time interval of     
 

    
 as shown in Figure 5.16 below.  
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Figure 5.16: Feature selection method 
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The dimension of the feature matrix is large so selecting few but the right features can reduce the 

dimension. In case of STFT, from the spectrograms, the features corresponding to high 

frequencies can be neglected and only some features are considered for each fault location. The 

same features are chosen from the healthy case in order to compare with the faulted case. In 

order to see if the features of a fault and that of healthy are distinct, a classification method has to 

be used. Nearest Neighbor Rule and Linear Discriminant Analysis are used to classify these 

features in section 5.6.1. The frequencies of interest are between 2.5 MHz and 5 MHz.   

In case of WT, the feature selection is based on selecting a fixed scale and all possible features 

corresponding to that scale. Since most of the information in the signal is carried in the lower 

frequencies (higher scales), only a few scales are selected, but for features that span the whole 

time range. The scales of interest are the same as given in Table 5.1 which are: 35000, 9700, 

5300 and 1800.  
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5.6 Results based on Classification Methods 

Classification uses the features obtained from feature extraction methods and classifies the 

features of a healthy winding as ‘healthy’ and those of a fault winding as ‘fault’. In the   R 

method, the mean of all healthy samples or the ‘centroid of healthy’ and the mean of all fault 

samples or the ‘centroid of fault’ are computed. It is expected that the centroids have the least 

overlap between classes. Recall that a class is defined as the samples belonging to a state of the 

winding. The state of the winding is healthy, fault at near end, fault at center or fault at quarter. 

Using Euclidean distance as a measure, samples are classified into a class based on which 

centroid it falls closest to. LDA however, classifies based on the discriminant function that is 

defined for each class during the training phase. A sample is classified into a class if the 

discriminant function for that class is greater than that of any other class. 

5.6.1 Nearest Neighbor Rule (NNR) 

5.6.1.1 NNR with feature extracted from STFT 

In each of the following cases, six different time intervals are considered, in which the fault 

manifests itself in only one of them. The reason different time intervals are chosen, is to show by 

the result of the STFT and NNR classifier, that the fault manifests itself in one interval while the 

other five show no (or little) sign of fault.  

Case 1 – 2:  ear End Fault (Location 1), Fault Severity = 10 Ω (most severe), 1 Ω (least severe). 

The fault manifests itself in the ‘Interval 1 (34 – 40 ns)’  
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 Case – 1 and 2: Fault is at location 1 with severity of 10 Ω and 1 Ω. Interval 1 (34 – 40 

ns) shows that all samples of fault are close to the fault centroid and all samples of 

healthy are close to healthy centroid. Interval 3 shows similar results probably because 

this interval was chosen after interval 1 so the fault might have ‘spilled over’. 

NOTE: *G/F: No. of fault samples close to fault centroid 

*B/F: No. of fault samples close to healthy centroid 

*B/H: No. of healthy samples close to fault centroid 

*G/H: No. of healthy samples close to healthy centroid 

Case Name Fault 

Severity 

Test Interval Result 

STFT NNR 

1 

Near End 

Fault 

(location 

1) 

10 Ω 

 

Interval 1  

(34-40 ns) 

 G/F* B/F* B/H* G/H* 

50 0 0 50 

Interval 2 

 (24-30 ns) 

 G/F B/F B/H G/H 

25 25 25 25 

Interval 3 

 (44-50 ns) 

 G/F B/F B/H G/H 

49 1 0 50 

Interval 4  

(78-84 ns) 

 G/F B/F B/H G/H 

36 14 11 39 

Interval 5 

 (84-90 ns) 

 G/F B/F B/H G/H 

39 11 9 41 

Interval 6  

(118-124 ns) 

 G/F B/F B/H G/H 

34 16 15 35 
 

Case Name Fault 

 Severity 

Test Interval Result 

STFT NNR 

2 

Near End 

Fault 

(location 

1) 

1 Ω 

 

Interval 1  

(34-40 ns) 

 G/F B/F B/H G/H 

48 2 0 50 

Interval 2 

 (24-30 ns) 

 G/F B/F B/H G/H 

25 25 22 28 

Interval 3 

 (44-50 ns) 

 G/F B/F B/H G/H 

16 34 19 31 

Interval 4  

(78-84 ns) 

 G/F B/F B/H G/H 

25 25 23 27 

Interval 5 

 (84-90 ns) 

 G/F B/F B/H G/H 

28 22 29 21 

Interval 6  

(118-124 ns) 

 G/F B/F B/H G/H 

34 16 17 33 

Table 5.2: STFT and NNR results for Cases 1 – 2  
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Conclusions: Based on Cases 1 – 2, the following can be concluded: 

Interval Comments 

1 Fault manifests itself in this interval. Difference in spectrogram is seen and NNR 

classifies majority of fault samples close to fault centroid and healthy samples close 

to healthy centroid.  

2 No fault  

3 The classifier classifies majority of the fault samples (49/50) close to F centroid and 

all of healthy samples (50/50) close to healthy centroid.  

Possible Reason: Interval 3 comes after interval 1, so it is possible that the effects of 

the fault were ‘spilled over’. 

4 No fault 

5 No fault 

6 No fault 

 

Table 5.3: Conclusions for Cases 1 – 2  

 

Case 3 – 4: Center Fault (Location 2), Fault Severity = 10 Ω (most severe), 1 Ω (least severe). 

The fault manifests itself in the ‘Interval 1 (78 – 84 ns)’  

 Cases 3 and 4: Fault is at location 2 with severity of 10 Ω and 1 Ω. For a fault severity of 

10 Ω, the fault can be seen manifesting itself in interval 1; majority of fault samples 

(41/50) are close to the fault centroid and majority of healthy samples (42/50) are close to 

healthy centroid. Similarly, for a fault severity of 1 Ω, majority of fault samples (30/50) 

are close to the fault centroid and majority of healthy samples (34/50) are close to healthy 

centroid. However, the classifier performance deteriorates as the fault severity decreases.  
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Case Name Fault 

 Severity 

Test Interval Result 

STFT NNR 

3 

Center 

Fault 

(location 

2) 

10 Ω 

 

Interval 1 

 (78-84 ns) 

 G/F B/F B/H G/H 

41 9 8 42 

Interval 2  

(84-90 ns) 

 G/F B/F B/H G/H 

25 25 23 27 

Interval 3  

(34-40 ns) 

 G/F B/F B/H G/H 

27 23 20 30 

Interval 4  

(24-30 ns) 

 G/F B/F B/H G/H 

31 19 24 26 

Interval 5  

(44-50 ns) 

 G/F B/F B/H G/H 

27 23 20 30 

Interval 6  

(118-124 ns) 

 G/F B/F B/H G/H 

29 21 24 26 
 

Case Name Fault 

 Severity 

Test Interval Result 

STFT NNR 

4 

Center 

Fault 

(location 

2) 

1 Ω 

 

Interval 1 

 (78-84 ns) 

 G/F B/F B/H G/H 

30 20 16 34 

Interval 2  

(84-90 ns) 

 G/F B/F B/H G/H 

23 27 24 26 

Interval 3  

(34-40 ns) 

 G/F B/F B/H G/H 

25 25 21 29 

Interval 4  

(24-30 ns) 

 G/F B/F B/H G/H 

26 24 24 26 

Interval 5  

(44-50 ns) 

 G/F B/F B/H G/H 

25 25 32 18 

Interval 6  

(118-124 ns) 

 G/F B/F B/H G/H 

29 21 24 26 

Table 5.4: STFT and NNR results for Cases 3 – 4  

Conclusions: Based on Cases 3 – 4, the following can be concluded: 

Interval Comments 

1 

Fault manifests itself in this interval. Difference in spectrogram is NOT 

seen but NNR classifies majority of fault samples close to fault centroid 

and healthy samples close to healthy centroid.  

2  o fault (for 10 Ω and 1 Ω case) 

3  o fault (for 10 Ω and 1 Ω case) 

4  o fault (for 10 Ω and 1 Ω case) 

5  o fault (for 10 Ω and 1 Ω case) 

6  o fault (for 10 Ω and 1 Ω case) 

Table 5.5: Conclusions for Cases 3 – 4  
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5.6.1.2 NNR with feature extracted from WT 

Case 1 – 2: Near End Fault (Location 1), Fault Severity = 0.56 Ω and 0.33 Ω. The fault 

manifests itself in the ‘Interval 1 (34 – 40 ns)’  

 Case – 1 and 2: Fault is at location 1 with severity of 0.56 Ω and 0.33 Ω. No indication 

of fault in any interval. 

Case Name Fault 

 Severity 

Test Interval Result 

WT NNR 

1 

Near End 

Fault 

(location 

1) 

0.56 Ω 

 

Interval 1  

(34-40 ns) 

 G/F B/F B/H G/H 

31 19 15 35 

Interval 2 

 (24-30 ns) 

 G/F B/F B/H G/H 

32 18 22 28 

Interval 3 

 (44-50 ns) 

 G/F B/F B/H G/H 

31 19 28 22 

Interval 4  

(78-84 ns) 

 G/F B/F B/H G/H 

29 21 15 35 

Interval 5 

 (84-90 ns) 

 G/F B/F B/H G/H 

33 17 18 32 

Interval 6  

(118-124 ns) 

 G/F B/F B/H G/H 

27 23 26 24 

 

Case Name Fault 

 Severity 

Test Interval Result 

WT NNR 

2 

Near End 

Fault 

(location 

1) 

0.33 Ω 

 

Interval 1  

(34-40 ns) 

 G/F B/F B/H G/H 

31 19 14 36 

Interval 2 

 (24-30 ns) 

 G/F B/F B/H G/H 

32 18 22 28 

Interval 3 

 (44-50 ns) 

 G/F B/F B/H G/H 

31 19 28 22 

Interval 4  

(78-84 ns) 

 G/F B/F B/H G/H 

31 19 17 33 

Interval 5 

 (84-90 ns) 

 G/F B/F B/H G/H 

27 23 27 23 

Interval 6  

(118-124 ns) 

 G/F B/F B/H G/H 

27 23 23 27 

Table 5.6: WT and NNR results for Cases 1 – 2  
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Case 3 – 4: Center Fault (Location 2), Fault Severity = 0.56 Ω and 0.33 Ω. The fault manifests 

itself in the ‘Interval 1 (78 – 84 ns)’  

 Cases 3 and 4: Fault is at location 2 with severity of 0.56 Ω and 0.33 Ω. No indication of 

fault in any interval. 

Case Name Fault 

 Severity 

Test Interval Result 

WT NNR 

3 

Center 

Fault 

(location 

2) 

0.56 Ω 

 

Interval 1  

(34-40 ns) 

 G/F B/F B/H G/H 

26 24 22 28 

Interval 2 

 (24-30 ns) 

 G/F B/F B/H G/H 

26 24 22 28 

Interval 3 

 (44-50 ns) 

 G/F B/F B/H G/H 

22 28 23 27 

Interval 4  

(78-84 ns) 

 G/F B/F B/H G/H 

26 24 21 29 

Interval 5 

 (84-90 ns) 

 G/F B/F B/H G/H 

28 22 24 26 

Interval 6  

(118-124 ns) 

 G/F B/F B/H G/H 

5 45 45 5 

 

Case Name Fault 

 Severity 

Test Interval Result 

WT NNR 

4 

Center 

Fault 

(location 

2) 

0.33 Ω 

 

Interval 1  

(34-40 ns) 

 G/F B/F B/H G/H 

24 26 24 26 

Interval 2 

 (24-30 ns) 

 G/F B/F B/H G/H 

30 20 19 31 

Interval 3 

 (44-50 ns) 

 G/F B/F B/H G/H 

27 23 26 24 

Interval 4  

(78-84 ns) 

 G/F B/F B/H G/H 

28 22 24 26 

Interval 5 

 (84-90 ns) 

 G/F B/F B/H G/H 

26 24 26 24 

Interval 6  

(118-124 ns) 

 G/F B/F B/H G/H 

26 24 29 21 

 

Table 5.7: WT and NNR results for Cases 3 – 4  
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Final Conclusions on NNR: 

Section 5.6.1.1 discusses the results of the NNR classifier with the feature extraction method 

being STFT. For fault located at near end, majority of the fault features are close to the fault 

centroid and same for the healthy case. When fault is located at center, the classifier performance 

deteriorates but there is still an indication of the fault, just not very pronounced. Using STFT for 

feature extraction of fault severity lower than 1 Ω was not very accurate, so WT was used instead 

for fault severities of 0.56 Ω and 0.33 Ω.  

Section 5.6.1.2 discusses the results of the NNR classifier with WT as the feature extraction 

method. In all the cases 1 – 4, there is no indication of the fault regardless of location. It was 

concluded that NNR classifier, though works well for 1 Ω and higher, does not produce a 

promising classification for lower than 1 Ω fault severities. 

This analysis was done knowing the location and severity of the fault. From a practical point of 

view, this method is not feasible since both the location and severity are unknown. However, this 

analysis helped in understanding the concept of reflectometry when applied to machines and to 

gain confidence in the approach. 
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5.6.2 Linear Discriminant Classifier (LDC) 

This section discusses the results of applying the LDC to the features extracted both from the 

STFT and WT. In STFT, the features are extracted from a band of frequencies in the range 2.5 

MHz – 5 MHz, while in WT features are extracted from four different frequencies. 

The procedure for this classification method follows. The winding can be in one of multiple 

states but only four states are considered. First is the healthy state, defined as class 0. Then fault 

in the winding at near end, defined as class 1. Fault in the center of the winding, defined as class 

2 and fault at quarter of the winding, defined as class 3. Total of four classes will be used in 

classifying the state of the winding, given a fault severity. Four fault severities of 1 Ω, 0.33 Ω, 

0.1 Ω and 0.027 Ω will be used to test the performance of the classifier. Each class has 50 

samples to get a total of 200 samples for all classes. The LDC computes the linear coefficients 

that are multiplied with the features of a class to give the discriminant of that respective class. 

Refer to Chapter 2, section 2.5.2 for details. If the total samples are limited then the number of 

features that can be used to represent a class are also limited. For example, with 200 samples, no 

more than 200 features per sample can be selected. This puts a serious restriction on this method 

due to the constraint on the number of samples.  

Based on the spectrograms in section 5.4.1, it is reasonable to assume that the useful features are 

present in the lower frequencies so a single frequency of 2.5 MHz is chosen. Based on the 

scalograms in section 5.4.2, it is reasonable to assume that the useful features are concentrated in 

the higher scales. Scale values of 1800, 5300, 9700 and 35000 are chosen one at a time. Ideally 

all the features (in time) for this particular scale are used to train the classifier but due to limited 
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samples, only a selected number of features are used. These selected features are obtained using 

the feature selection approach in section 5.5.  

For testing the LDC, the ‘Leave 1-out method’ is used. Out of the 200 samples, 1 sample is taken 

out and 199 are used for training. The 1 sample is used to test the classifier to see which class it 

belongs to. Then a different sample is taken out of the 200 and the procedure is repeated until all 

200 samples have been tested. This testing method is very convenient since the test samples are 

selected one by one from within the total number of samples.  

The following tables summarize the results obtained from LDC for both the STFT and WT for 

varying fault severities. For each fault severity, four scales (frequencies) are selected in case of 

WT, and a single frequency in case of STFT. The samples are classified for each scale/frequency 

value. The total number of misclassifications are shown for each class where C 0 is healthy state, 

C 1 is fault at location 1, C2 is fault at location 2 and C 3 is fault at location 3. The higher the 

number of misclassifications, the worse is the accuracy of the classifier and the ability to detect a 

fault goes down. 

Case 
Feature 

Extraction 
Frequency 

Fault 

Severity 
No. of Misclassifications per class 

1 STFT F = 2.5 MHz 

1 Ω 
C 0 C 1 C 2 C 3 Total 

12 11 0 0 23/200 

0.33 Ω 
C 0 C 1 C 2 C 3 Total 

2 8 0 0 10/200 

0.1 Ω 
C 0 C 1 C 2 C 3 Total 

14 6 0 0 20/200 

0.027 Ω 
C 0 C 1 C 2 C 3 Total 

0 0 1 0 1/200 

 

Table 5.8: LDC for multiple fault severities using STFT 
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Case 
Feature 

Extraction 

Fault 

Severity 
Frequency/Scale No. of Misclassifications per class 

2 WT 

 

1 Ω 

 

F = 114.4 KHz 

S = 35000 

C 0 C 1 C 2 C 3 Total 

21 20 7 5 53/200 

F = 419.6 KHz 

S = 9700 
C 0 C 1 C 2 C 3 Total 

0 0 1 1 2/200 

F = 762.9 KHz 

S = 5300 

C 0 C 1 C 2 C 3 Total 

0 0 0 0 0/200 

F = 2.289 MHz 

S = 1800 

C 0 C 1 C 2 C 3 Total 

0 0 0 0 0/200 

 

Table 5.9: LDC for fault of 1 Ω using WT 

Case Name 
Fault 

Severity 
Frequency/Scale No. of Misclassifications per class 

3 WT 

 

0.33 Ω 

 

F = 114.4 KHz 

S = 35000 

C 0 C 1 C 2 C 3 Total 

17 16 2 5 40/200 

F = 419.6 KHz 

S = 9700 
C 0 C 1 C 2 C 3 Total 

14 12 0 0 26/200 

F = 762.9 KHz 

S = 5300 

C 0 C 1 C 2 C 3 Total 

0 0 0 0 0/200 

F = 2.289 MHz 

S = 1800 

C 0 C 1 C 2 C 3 Total 

0 0 0 0 0/200 

 

Table 5.10: LDC for fault of 0.33 Ω using WT 

Case Name 
Fault 

Severity 
Frequency/Scale No. of Misclassifications per class 

4 WT 

 

0.1 Ω 

 

F = 114.4 KHz 

S = 35000 

C 0 C 1 C 2 C 3 Total 

12 12 0 0 38/200 

F = 419.6 KHz 

S = 9700 
C 0 C 1 C 2 C 3 Total 

5 6 0 0 11/200 

F = 762.9 KHz 

S = 5300 

C 0 C 1 C 2 C 3 Total 

0 0 0 0 0/200 

F = 2.289 MHz 

S = 1800 

C 0 C 1 C 2 C 3 Total 

0 0 0 0 0/200 

 

Table 5.11: LDC for fault of 0.1 Ω using WT 
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The winding resistance was calculated to be around 47 mΩ, using    
 

 
. Once the LDA was 

tested with fault severities of down to 0.1Ω and the results were promising, the next step was to 

test with a fault severity of less than the winding resistance, chosen to be 0.027 Ω in this case. 

The results for this case are shown in table 5.11 below. 

Case Name 
Fault 

Severity 
Frequency/Scale No. of Misclassifications per class 

5 WT 

 

0.027 Ω 

 

F = 114.4 KHz 

S = 35000 

C 0 C 1 C 2 C 3 Total 

12 12 0 0 24/200 

F = 419.6 KHz 

S = 9700 
C 0 C 1 C 2 C 3 Total 

0 1 2 1 4/200 

F = 762.9 KHz 

S = 5300 

C 0 C 1 C 2 C 3 Total 

0 0 0 0 0/200 

F = 2.289 MHz 

S = 1800 

C 0 C 1 C 2 C 3 Total 

0 0 0 0 0/200 

 

Table 5.12: LDC for fault of 0.027 Ω using WT 
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Chapter 6 

 

Conclusions and Future Work 

 

The objective of this work was to provide a framework to help detect welding faults in stator 

windings of AC motors. The motivation of our approach was to use the concept of transmission 

line theory and apply it to stator windings. Pulsed reflectometry explains that any discontinuity 

or fault gives a specific reflection pattern that is related directly to the location and severity of 

the fault. The ability to classify faults, into separate classes was part of the objective as well. 

Feature extraction and classification methods have been discussed along with supporting results. 

Certain fault severities were assumed along with specific fault locations that were created in the 

stator winding. The techniques developed in this work, though work for these specific cases, but 

can be generalized to fault at any location of any severity.  

Results based on the different methods have been discussed and compared. Among the two 

feature extraction methods, the STFT and WT, the energy density comparison showed that 

features from WT are more discriminative (between a healthy and faulty case). Categorization 

schemes such as NNR and LDA provide a way to classify the extracted features into one of the 

fault classes, or a healthy class when no fault is present. LDA proved to be a better and accurate 

classifier since fault severities as low as 0.027 Ω were distinguishable from a healthy case. 

Results based on LDA show that WT is the preferred extraction method since the features are 
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classified into respective classes with higher accuracy compared to those of the STFT.  Ideally, 

for a given fault severity, the classifier will be able to classify samples of fault from any fault 

location, however due to restrictions on computation, features from four classes were chosen to 

represent four different fault locations.  

Some possible improvements involve a systematic selection of features rather than creating 

epochs to select the features. A simple way is to use energy thresholds, where only features 

above a certain threshold will be selected. Implement other Feature Extraction methods like the 

Wigner Ville and Choi Williams Distributions and other Feature Classification methods that 

require fewer samples, less training and are more sensitive.  
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APPENDIX 

% Name:             FFT to find dominant frequencies 

% Author:           Arslan Qaiser 

% Last modified:    11/30/2012 

  

disp('================================================================== ') 

  

T = 2e-10;                        % Sampling Time = 1/Fs 

L = 100000;                       % Defines the resolution of FFT 

% Define the signals of which FFT is required 

V_f2 = f_27mohm_1(:,2); 

V_f1 = f_point1ohm_1(:,2); 

V_h = s_1(:,2); 

  

FS=1/T;                           % Sampling Frequency 

t=(0:L-1)*T;                      % Time scale 

NFFT=2^nextpow2(L);               % NFFT for the signal 

f=FS/2*linspace(0,1,NFFT/2+1);    % Frequency range for the signal 

                        

FFT_f1 = fft(V_f1,NFFT)/L;        % 0.1 mohm 

FFT_f2 = fft(V_f2,NFFT)/L;        % 0.027 ohm 

FFT_h = fft(V_h,NFFT)/L;          % Healthy 

FFT_Sf1=2*abs(FFT_f1(1:NFFT/2+1)); 

FFT_Sf2=2*abs(FFT_f2(1:NFFT/2+1)); 

FFT_Sh=2*abs(FFT_h(1:NFFT/2+1)); 

  

figure(1) 

    plot(f,FFT_Sh) 

    hold on; 

    plot(f,FFT_Sf1,'r') 

    plot(f,FFT_Sf2,'g') 

    title('FFT spectrum for fault at Quarter','FontSize',12) 

    xlabel('Frequency (Hz)','FontSize',12) 

    ylabel('Amplitude','FontSize',12) 

    h=legend('Healthy','0.1-ohm','0.027-ohm') 

    set(h,'FontSize',12) 

    xlim([0 2e7]) 
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% Name:             CWT Feature Extraction 
% Author:           Arslan Qaiser 
% Last modified:    11/15/2012 
% Case:     Near end 
%%%%%%%%%%%%%%%%%%%%%%%%%%    1    %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
vrb = cell(50,1);                     %   This defines the length of samples                                     
%%% For Loop to generate the fault data  
for i = 1:length(vrb) 
   vrb{i}=genvarname(strcat('sub_10ohm_',num2str(i))); 
   eval([vrb{i} '= f_1ohm_' num2str(i) '(1:24000,2);']); 
end 
%%% For Loop to generate the healthy data  
for i = 1:length(vrb) 
   vrb{i}=genvarname(strcat('sub_s_',num2str(i))); 
   eval([vrb{i} '= s_' num2str(i) '(1:24000,2);']);           
end 

     
%%%%%%%%%%%%%%%%%%%%%%%%%%    2    %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for i = 1:50 
eval(['cutf' num2str(i) '=sub_10ohm_' num2str(i) '(2501:24000);']) 
eval(['cuts' num2str(i) '=sub_s_' num2str(i) '(2501:24000);']) 
eval(['Es' num2str(i) '=sum(abs(cuts' num2str(i) '));']) 
eval(['Ef' num2str(i) '=sum(abs(cutf' num2str(i) '));']) 
eval(['normf' num2str(i) '=cutf' num2str(i) '/Es' num2str(i) ';']) 
eval(['norms' num2str(i) '=cuts' num2str(i) '/Es' num2str(i) ';']) 
end 
% 
clear cut* sub* 
%%%%%%%%%%%%%%%%%%%%%%%%%%    3    %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Feature Extraction 
for i = 1:50 
    eval(['feature_1ohm_' num2str(i) '_near = cwt(normf' num2str(i) ',[1800 

5300 9700 35000],''morl'');']) 
    eval(['feature_s_' num2str(i) ' = cwt(norms' num2str(i) ',[1800 5300 9700 

35000],''morl'');']) 
    disp(['done for near sample # = ' num2str(i) ]) 
end 
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% Name:             STFT Feature Extraction 
% Author:           Arslan Qaiser 
% Last modified:    12/12/2012 
% Case:             Near end 
%%%%%%%%%%%%%%%%%%%%%%%%%%    1    %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
vrb = cell(50,1);                                                  
%%% For Loop to generate the fault data  
for i = 1:length(vrb) 
   vrb{i}=genvarname(strcat('sub_10ohm_',num2str(i))); 
   eval([vrb{i} '= f_1ohm_' num2str(i) '(1:24000,2);']);         
end 
%%% For Loop to generate the healthy data  
for i = 1:length(vrb) 
   vrb{i}=genvarname(strcat('sub_s_',num2str(i))); 
   eval([vrb{i} '= s_' num2str(i) '(1:24000,2);']);           
end 

     
%%%%%%%%%%%%%%%%%%%%%%%%%%    2    %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for i = 1:50 
eval(['cutf' num2str(i) '=sub_10ohm_' num2str(i) '(2501:24000);']) 
eval(['cuts' num2str(i) '=sub_s_' num2str(i) '(2501:24000);']) 
eval(['Es' num2str(i) '=sum(abs(cuts' num2str(i) '));']) 
eval(['Ef' num2str(i) '=sum(abs(cutf' num2str(i) '));']) 
eval(['normf' num2str(i) '=cutf' num2str(i) '/Es' num2str(i) ';']) 
eval(['norms' num2str(i) '=cuts' num2str(i) '/Es' num2str(i) ';']) 
end 
% 
clear cut* sub* 
%%%%%%%%%%%%%%%%%%%%%%%%%%    3    %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Feature Extraction 
for i = 1:50 
    eval(['temp_' num2str(i) ' = specgram(normf' num2str(i) 

',2000,5e9,16,15);']) 
    eval(['feature_1ohm_' num2str(i) '_near = temp_' num2str(i) '(2,:);']) 
    clear temp* 
    eval(['temp_' num2str(i) ' = specgram(norms' num2str(i) 

',2000,5e9,16,15);']) 
    eval(['feature_s_' num2str(i) ' = temp_' num2str(i) '(2,:);']) 
    clear temp* 
    disp(['done for near sample # = ' num2str(i) ]) 
end 
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% Name:             Linear Discriminant Classifier 
% Author:           Arslan Qaiser 
% Last modified:    11/15/2012 
% 
% How to use: 
% =============================================  
% - Arrange the extracted features in a vector form 
% - Depending on the fault severity, change the variable name to 
%   appropriate fault severity. E.g fault = 0.027 ohm, name the  
%   variable 'feature_27mohm_i_near' where i=[1:50] 
% - FV_H, FV_F1, FV_F2, FV_F3 contain the features for the 
%   healthy and different fault locations 
% - Apply the LDC using Leave 1-out method by MATLAB function CLASSIFY 
%   - CLASS = CLASSIFY(SAMPLE,TRAINING,GROUP,TYPE)  
%   - Use this function repeatedly for all test samples. Each time 
%     CLASS gives a single number corresponding to the discriminant    
%     of the respective class that the test sample belongs to. 
%  
% ============================================= 
% 
% 
% Defining features for Class H,F1,F2,F3     
FV_H=[]; FV_F1=[]; FV_F2=[]; FV_F3=[]; 
num_sam = 200; 
% Creating the epochs for a total of 100 features 
col = [1001:10:1200 3001:10:3200 6001:10:6200 8001:10:8200 10001:10:10200]; 

  
for i=1:num_sam/4 
% %---------------------- 0.027 ohm ---------------------------------------        
eval(['A' num2str(i) '=feature_s_' num2str(i) '(1,[col]);']) 
eval(['B' num2str(i) '=feature_27mohm_' num2str(i) '_near(1,[col]);']) 
eval(['C' num2str(i) '=feature_27mohm_' num2str(i) '_center(1,[col]);']) 
eval(['D' num2str(i) '=feature_27mohm_' num2str(i) '_quarter(1,[col]);']) 

  
eval(['t = reshape(A' num2str(i) ',1,length(col));']) 
eval(['u = reshape(B' num2str(i) ',1,length(col));']) 
eval(['v = reshape(C' num2str(i) ',1,length(col));'])     
eval(['w = reshape(D' num2str(i) ',1,length(col));'])     
eval('FV_H = vertcat(FV_H,t);') 
eval('FV_F1 = vertcat(FV_F1,u);') 
eval('FV_F2 = vertcat(FV_F2,v);') 
eval('FV_F3 = vertcat(FV_F3,w);') 
end 

  
% Complete Feature Set that represents features from Class H,F1,F2,F3 
FV_all = [FV_H;FV_F1;FV_F2;FV_F3]; 
size(FV_all); 
l = length(FV_all); 
l=200; 
C=[]; 

  
% Applying the LDC 
for idx = 1:1:l; 
    sample = FV_all(idx,:); 
    test = FV_all; 
    test(idx,:) = []; 
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    training = test; 
    if idx<=l/4 
        group = [zeros(l/4-1,1); ones(l/4,1); 2*ones(l/4,1); 3*ones(l/4,1)]; 
    elseif idx>l/4 && idx<=l/2 
        group = [zeros(l/4,1); ones(l/4-1,1); 2*ones(l/4,1); 3*ones(l/4,1)]; 
    elseif idx>l/2 && idx<=l*3/4 
        group = [zeros(l/4,1); ones(l/4,1); 2*ones(l/4-1,1); 3*ones(l/4,1)]; 
    else 
        group = [zeros(l/4,1); ones(l/4,1); 2*ones(l/4,1); 3*ones(l/4-1,1)]; 
    end 
    [class err post logp coef] = classify(sample,training,group,'linear'); 
    test_class = class; 
    C = vertcat(C,test_class); 
%    pause 
end 
Final_Class = horzcat(C(1:l/4),C(l/4+1:l*(1/2)), C(l/2+1:l*(3/4)), 

C(l*(3/4)+1:l)) 
C_0=Final_Class(:,1); C_1=Final_Class(:,2); C_2=Final_Class(:,3); 

C_3=Final_Class(:,4); 

  
disp('----------------------------------------------') 
disp(['No. of samples misclassed in Class-0: ',num2str(l/4-sum(C_0==0)),' / 

50']) 
disp(['No. of samples misclassed in Class-1: ',num2str(l/4-sum(C_1==1)),' / 

50']) 
disp(['No. of samples misclassed in Class-2: ',num2str(l/4-sum(C_2==2)),' / 

50']) 
disp(['No. of samples misclassed in Class-3: ',num2str(l/4-sum(C_3==3)),' / 

50']) 
disp('----------------------------------------------') 
disp(['Total No. of samples misclassed: ',num2str(l-

(sum(C_0==0)+sum(C_1==1)+sum(C_2==2)+sum(C_3==3))),' / 200']) 
disp('----------------------------------------------') 

 

 

 

 

 

 

 

 

 

 



94 
 

 

 

 

 

 

 

 

 

BIBLIOGRAPHY 

  



95 
 

BIBLIOGRAPHY 

 

[1] “IEEE Guide for Transformer Impulse Tests”, IEEE Std C57.98-1993(R1999), pp.1 – 59, 

1994 

[2] “IEEE recommended practice for routine impulse test for distribution transformers”, 

IEEE Std C57.138-1998, pp. 1 – 50, 1998 

[3] M.  aderi, G. Gharehpetian, M. Abedi, and T. Blackburn, “Modeling and Detection of 

Transformer Internal Incipient Fault during Impulse Test”, IEEE Transactions on Di-

electrics and Electrical Insulation, vol. 15, no. 1, pp. 284 – 291, Feb. 2008. 

[4] S. Porkar, G. B. Gharehpetian and K. Feser, “A disc-to-disc breakdown and arc modeling 

method for fault diagnosis of power transformers during impulse testing”, Springer-

Verlag, Electrical Engineering Journal, ISSN: 0948-7921, Vol. 86, pp. 261-265, 2004. 

[5] E. Al-Ammar, G. Karady, and H, Sim, “ ovel Technique to Improve the Fault Detection 

Sensitivity and Transformer Impulse Test”, IEEE Transactions on Power Delivery, vol. 

23, no. 2, pp. 717 – 725, Apr. 2008. 

[6] E. Al-Ammar, G. Karady, “Transfer Function Analysis Using STFT for Improvement of 

the Fault Detection Sensitivity in Transformer Impulse Test”, IEEE Transactions on 

Power Delivery, 2005. 

[7] P. Purkait, “Pattern classification of impulse faults in transformers by wavelet analysis,” 

IEEE Transactions on Dielectrics and Electrical Insulation, vol. 9, no. 4, pp. 555 – 561, 

Aug. 2002. 

[8] C.S. Burrus, R.A. Gopinath, and H. Guo. Introduction to Wavelets and Wavelet 

Transforms: A Primer. Prentice Hall, 1998. 

[9] R. O. Duda, P.E. Hart, and D.G. Stork, “Pattern Classification”, 2
nd

 Ed, Wiley 

Interscience, Oct 2000 

[10] Young and Calvert, “Pattern Estimation and Classification” 

[11] Zanardeli, W. 2000, “The Use of Wavelet Analysis for the Prognosis of Failures in 

Electrical Machines”. Unpublished thesis (M.Sc), Michigan State University 

[12] Zaidi, S. 2010, “Failure Diagnosis and Prognosis of Electrical Machines”. Unpublished 

Thesis (PhD), Michigan State University 

 


