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ABSTRACT 

ADVANCED DATA ANALYSIS FRAMEWORK FOR DAMAGE IDENTIFICATION IN 

CIVIL INFRASTRUCTURE BASED ON SELF-POWERED SENSING 
 1 

By 

Amir Hossein Alavi 

This interdisciplinary research proposes an advanced data analysis framework for 

civil infrastructure/structural health monitoring (I/SHM) based on a pioneering self-powered 

sensing technology. The current work characterizes the performance of a fairly new class of 

self-powered sensors for specific application problems with complex behavior. The proposed 

health monitoring systems are established through the integration of statistical, artificial 

intelligence and finite element methods. Different infrastructure systems with various damage 

types are analyzed. A new probabilistic artificial intelligence-based damage detection 

technique is developed that hybridizes genetic programming and logistic regression 

algorithms. The proposed multi-class classification system assigns probabilities to model 

scores to detect damage progression. A probabilistic neural network method based on 

Bayesian theory is further introduced to improve the damage detection accuracy. Data 

obtained from the finite element simulations and experimental study of hybrid sensor 

networks is used to calibrate the data interpretation algorithms. The network architecture 

comprises self-powered sensors that use the electrical energy directly harvested by 

piezoelectric ceramic Lead Zirconate Titanate (PZT) transducers. The beauty of this so-called 

self-powered monitoring system is that the operating power for the smart sensors directly 

comes from the signal being monitored. An advantage of using these sensors is that there is 

no need to directly measure the absolute value of strain in order to estimate damage. In fact, 

the proposed self-sustained sensing systems use the sensor output to relate the variation rate 

of strain distributions to the rate of damage. The proposed data analysis framework consists 



 
 

of multilevel strategies for structural/infrastructure damage identification through: (a) 

analysis of individual self-powered strain sensors, (b) data fusion in a network of self-

powered strain sensors, and (c) data analysis in a hybrid network of self-powered 

accelerometer and strain sensors. For each of these levels, several damage indicator features 

are extracted upon the simulation of the compressed data stored in memory chips of the self-

powered sensors. A new data fusion concept based on the effect of group of sensors, termed 

as "group effect", is proposed. The goal is to improve the damage detection performance 

through spatial measurements over structures. Moreover, combination of the data from a 

network of accelerometer and strain sensors results in developing an integrated global-local 

damage detection approach. The investigated cases are crack growth detection in steel plates 

under a uniaxial tension mode, distortion-induced fatigue cracking in steel bridge girders, 

continuous health monitoring of pavement systems, failure of simply supported beam under 

three-point bending, and failure of gusset plate of the I-35W highway bridge in Minneapolis, 

Minnesota. 3D dynamic finite element models are developed for each of the cases. The 

experimental studies are carried out on a steel plate subjected to an in-plane tension, a steel 

plate with bolted connections, and on asphalt concrete specimens in three-point bending 

mode. PZT-5A ceramic discs and PZT-5H bimorph accelerometers are placed on the surface 

of the plates to measure the delivered voltage in each damage phase. For the asphalt 

experiments, a new miniaturized spherical packaging system is designed and tested to protect 

the PZT ceramic discs embedded inside the specimen. Uncertainty analyses are performed 

through the contamination of the damage indicator features with different noise levels. The 

results indicate that the proposed I/SHM systems are efficiently capable of detecting different 

damage states in spite of high-level noise contamination.  
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CHAPTER I 

INTRODUCTION 

1.1 Background and State of Knowledge 

Infrastructure/structural health monitoring (I/SHM) is an emerging field in civil 

engineering for continuous damage assessment and safety evaluation of civil infrastructure. 

As a result of notable developments in the signal analysis and information processing 

techniques, numerous I/SHM approaches are developed (Lee et al., 2005). In this context, one 

of the most widely-used approaches is vibration-based method (Doebling et al., 1996; Zou et 

al., 2000). Signal and model-based techniques are the main classes of the vibration-based 

method. The first category is based on defining the damage by indices and comparing the 

structural responses before and after damage (Huang et al., 1999; Hou et al., 2000; Quek et 

al., 2001). The signal-based methods are generally appropriate for detecting the damage 

locations (Lee et al., 2005). On the other hand, a major feature of the model-based methods is 

that they can detect both the damage locations and severities by improving the structural 

mathematical model (Shi et al., 1998; Stetson et al., 1981). An advantage of using such 

methods is that they require a relatively small number of sensors. Furthermore, they are 

highly effective for monitoring catastrophic events. However, a notable limitation of these 

techniques is that they are not sufficiently sensitive for detecting long term minor fatigue 

damage. A comprehensive review about the existing structural damage detection techniques 

can be found in (Farrar et al., 2006; Sohn et al., 2004; Farrar, 2001; Fan and Qiao, 2011). 

Another class of the damage detection methods, called nondestructive testing and evaluation 

(NDT&E) or nondestructive inspection has been the focus of many studies. NDT&E is the 

structural condition assessment without removing the individual structural components (Zong 

et al., 2002; Lynch, 2005). The NDT&E technology is commonly classified as a local-based 
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damage detection approach. Some of the well-known NDT&E techniques are acoustics, 

emission spectroscopy, fiber-scope, hardness testing, leak testing, magnetic perturbation, X-

ray, pulse-echo, and radiography (Zong et al., 2002). Different type of sensors can be used in 

this domain such as pressure cell, deflectometer, strain gauge, thermocouple, moisture sensor, 

fiber-optic sensors, etc (Lynch, 2005; Lynch et al., 2003; Lynch et al., 2004; Spencer et al., 

2004; Spencer, 2003).  

In the last decade, significant attention has been devoted to the utilization of new 

sensing technologies for instrumentation within the structural systems. A major drawback of 

using traditional wired sensors pertains to the difficulties in deploying and maintaining the 

associated wiring system. Moreover, managing huge amount of data generated by a dense 

array of wired sensors is very challenging and costly (Sundaram et al., 2013). To cope with 

these limitations, wireless sensor networks (WSNs) are increasingly utilized as alternatives to 

traditional structural engineering monitoring systems. The significant capability of WSNs for 

sensing the physical state of the structural systems has attracted considerable attention in 

recent years (Lynch, 2005; Lynch et al., 2003). In addition to the conventional monitoring 

applications of WSNs, they are autonomous data acquisition nodes providing valuable spatio-

temporal information of the structure (Watters et al., 2003; Lynch and Loh, 2006). Dense 

arrays of low-cost smart wireless sensors can offer useful data about the structural 

deterioration. Such information can be efficiently used to enhance the performance of the 

SHM systems (Sundaram et al., 2013). Recent development and applications of smart sensors 

and sensing systems are comprehensively introduced by Sundaram et al. (2013) and Yun and 

Min (2011). However, a major concern for the application of wireless sensors is related to the 

difficulties of powering them. To tackle this issue, harvesting ambient energy seems to be an 

attractive solution (Sirohi and Chopra, 2001; Roundy et al., 2002; Rahimi et al., 2003; Elvin 

et al., 2001, 2003; Lajnef et al., 2011; Lajnef et al., 2008; Lajnef et al., 2013; Huang et al., 
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2010). Energy harvesting is the possibility of converting mechanical energy into electrical 

energy (Elvin et al., 2001). Among various self-powering energy sources, piezoelectric 

transducers are proved to be one of the most efficient choices (Elvin et al., 2001, 2003; 

Lajnef et al., 2011; Lajnef et al., 2008; Lajnef et al., 2013; Huang et al., 2010). For SHM, 

piezoelectric transducers can be used for the self-powering of wireless sensors through 

harvesting energy from the mechanical loading experienced by the structure (Lajnef et al., 

2013).  

Recently, a new class of self-powered wireless sensors (SWS) has been developed by 

the authors at Michigan State University (MSU) based on “smart” pebble concept (Lajnef et 

al., 2008; Lajnef et al., 2013; Huang et al., 2010). The “smart” pebble generally refers to a 

battery-less sensor having a size comparable to the grain size of the construction material. By 

embedding these sensors inside the structure, it is possible to monitor the localized strain 

statistics. The recorded information can be used for early damage detection and future 

condition evaluation. The designed SWS is a small size battery-less sensor. The prototype of 

this miniaturized strain-senor is shown in Figure 1.  

 

Figure 1. The prototype of the SWS system 

This unique piezo-floating-gate (PFG) sensor is based on the integration of 

piezoelectric transducers with an array of ultra-low power floating-gate computational 

circuits (Lajnef et al., 2008). The sensor is fabricated using a p-channel floating-gate metal-

D = 12mm 
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Electronics 
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Board 
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oxide-semiconductor (pMOS) transistor (Huang et al., 2010; Lajnef et al., 2011). The 

transistor is connected to a constant current source powered by the piezoelectric transducer. 

The piezoelectric transducer harvests the energy that will be used to inject electrons from the 

transistor channel onto the floating-gate. The impact-ionized hot-electron injection (IHEI) 

model can be used to derive the change/droppage of the floating-gate voltage with respect to 

time and drain current. Subsequently, for long-term monitoring, the cumulative duration for 

which the injector is operational can be obtained using the measured floating-gate voltage 

(Huang et al., 2010; Lajnef et al., 2011). However, the prototypes of the sensor can have 

floating-gates with constant and variable electron injection rates. The floating-gate injection 

rate is a property of the gate that controls the injection of the electrons into the gate. This 

parameter is correlated with the voltage droppage rate across the gate. Note that the 

cumulative time at specific pre-defined strain/voltage thresholds is proportional to the voltage 

droppage across the memory gate. The output of the memory cells can be reported in the 

form of a histogram where each bin represents the cumulative time of occurrences at a 

predetermined load level. This can be done for sensors with either constant or variable 

injection rates. The recorded data are stored on-board the sensor from the time it is installed, 

and can be periodically read using a Radio Frequency Identification (RFID) scanner (Lajnef 

et al., 2011; Alavi et al., 2016a,b). One of the main advantages of this sensing system is the 

fact that it is “response-based”. All the effects due to variations in load location, load 

magnitude, traffic wander, environmental effects such as temperature and moisture, and 

material aging and degradation, are aggregated in the strain response recorded by the sensor 

over time. This feature makes the sensor suitable for long-term I/SHM. Most of the other 

existing solutions evaluate the condition of the system at a given instant. These methods 

present only a snapshot at the time where the measurements are taken. Thus, the obtained 

results are highly influenced by the environmental conditions. Since the developed SWS 



5 

 

records each and every event all the time, it will aggregate all these short-term fluctuations. 

Thus, if long-term shifts are observed in the results, they are most probably correlated with 

condition degradation. Herein, the whole methodology is based on relative damage as the 

sensor does not directly measure the absolute value of strain. The rate of variation of strain 

distributions is related to the rate of damage. Research in the previous Federal Highway 

Administration (FHWA) funded project revealed the applicability of the SWS for continuous 

monitoring of infrastructures (Lajnef et al., 2013). That project is basically focused on the 

manufacturing of the sensor electronics, and design of a packaging system to withstand 

loading and environmental conditions for the pavement implementation. A limited study is 

done on developing a method for predicting remaining fatigue life of pavement and 

generating missing data from a set of measurements by a classical statistical technique 

(Lajnef et al., 2011, 2013).  

Despite several advantages of using SWS, there would be a considerable loss of 

information. In fact, a part of the sensed information is compressed as a function of 

cumulative time at each load level. This drawback results in a notable difficulty in the 

interpretation of the data generated by SWS. However, no efficient method has yet been 

proposed for SHM using the valued information offered by this smart sensor technology. 

Accordingly, this interdisciplinary research is aimed at developing innovative data 

interpretation frameworks for I/SHM based on the data provided by networks of SWSs. To 

this aim, extensive analyses are performed utilizing statistical, AI and FE methods. Moreover, 

a new AI-based damage detection approach, called GPLR, is proposed that hybridizes genetic 

programming (GP) and logistic regression (LR) algorithms. The sensor-specific data 

interpretation algorithms are calibrated using the data from FE simulations and experimental 

studies. The self-sustained sensing systems use the sensor output to relate the variation rate of 

strain distributions to the rate of damage. The proposed data interpretation framework for 
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structural/infrastructure damage identification is established upon the multilevel analysis of 

individual self-powered strain sensors, data fusion in networks of self-powered strain sensors, 

data fusion in hybrid networks of self-powered accelerometer and strain sensors, and FE 

model updating using strain data. Several infrastructure systems are analyzed with different 

type of damages. The investigated cases are continuous health monitoring of pavement 

systems, failure of simply supported beam under three-point bending, crack growth detection 

in steel plates under a uniaxial tension mode, distortion-induced fatigue cracking in steel 

bridge girders, and failure of gusset plate of the I-35W highway bridge in Minneapolis, 

Minnesota. In order to verify the robustness of the systems, uncertainty analyses are carried 

out through the contamination of the damage indicator features with different noise levels.  

 

1.2 Research Objectives  

Self-powered sensors use only self-generated electrical energy directly harvested by 

piezoelectric transducers from the structure under vibration. In fact, the sensed signal is used 

for both I/SHM and empowering the sensor. This concept can be referred to as “self-powered 

monitoring”. The sensors have a series of memory cells that store the load history profiles at 

a specific preset level. The output is reported in the form of a histogram where each bin 

represents the cumulative time of occurrences at a predetermined load level. Despite several 

advantages of using this type of self-powered sensors, there is a considerable loss of 

information. A part of the sensed information is compressed as a function of cumulative time 

at each load level. This drawback results in a notable difficulty in the analysis of the data 

generated by the self-powered sensors. One of the major obstacles in successful application 

and development of the self-powered sensors is lack of an advanced framework for the 

interpretation of the limited but valued information offered by this smart technology. The 

main goal of the present study is to address this gap by introducing a comprehensive data 
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interpretation framework for the battery-less health monitoring of civil infrastructure based 

on the data provided by hybrid networks of self-powered sensors. The general hypothesis 

behind the proposed research is that damage in civil infrastructure can be identified using 

compressed data stored on-board the memory cells of the self-powered sensors and advanced 

data analysis methods. The proposed health monitoring systems are established through the 

integration of statistical, AI and FE methods. Advanced probabilistic algorithms are 

developed and evaluated during this project. The other main objective is to characterize the 

performance of the sensing system for specific application problems such as detecting and 

classifying different stages of damage in a structural/infrastructure component, tracking of 

damage accumulation in a fatigue sensitive detail, etc. As the sensing system can be used for 

different modalities of monitoring, other application cases are also considered during this 

project as more testing is conducted and feedback is obtained. 

 

1.3 Research Significance 

Figure 2 shows a typical Smart City sensor model. As seen in this figure, wireless 

sensors develop the foundation for Smart Cities. WSNs adopt a spatially distributed network 

of autonomous intelligent sensors to measure a variety of physical or environmental 

parameters. While the concept of Smart City has been recently receiving significant attention 

from the public authorities and private developers, there are some technical challenges to 

develop a successful Smart City project. In this context, two major issues are to establish data 

analysis frameworks for the interpretation of heterogeneous data being produced by these 

sensors and to develop innovative power solutions for supplying energy for WSNs.   

This research work partially addresses both of these challenges through development 

of innovative data mining and data fusion systems that embrace state-of-the-art signal 

processing and NDT&E techniques, as well as an energy harvesting approach. From a data 
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analysis perspective, the proposed systems are based on knowledge discovery in databases 

(KDD) and data mining processing methods to make full use of single and multi-sensor data 

(see Figure 3). KDD and data mining are multidisciplinary areas including several paradigms 

such as machine learning, pattern recognition, statistics, intelligent databases, knowledge 

acquisition, data visualization, high performance computing, expert systems, etc. Besides, the 

NDE technique used in this research is based on a pioneering energy scavenging paradigm in 

which the operating power of a sensor is harvested directly from the signal being sensed. 

Accordingly, the proposed I/SHM system not only tackles the limitations associated with the 

deployment and maintenance of the traditional wired sensors but also possesses major 

advantages over conventional energy scavenging approaches, as well as over nearly all of the 

commercially viable wireless sensors for I/SHM that require an external power source (either 

battery or solar power). On the other hand, fusion of the data provided by heterogeneous self-

powered sensors leads to more informative global and local damage diagnostic information, 

and eventually improved safety and reduced maintenance costs of important infrastructure. 

On this basis, the proposed framework is an integral part of the next generation of 

smart civil infrastructure that is capable of self-diagnosis of damage before the occurrence of 

any failure. More, such integrated sensing systems can be modified to become building 

blocks of future medical, mechanical, civil, transportation, and aerospace long-term sensing 

technologies in Smart Cities. Taking into account different aspects of the project, it will serve 

as an excellent educational platform to educate and train the next generation researchers and 

engineers in domains of data mining, data fusion, and self-powered sensing technology. 
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Figure 2. A Smart City sensor model 

 

Figure 3. Knowledge discovery and data mining processing methods for civil infrastructure 

damage identification 
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1.4 Chapter Overview 

The study will be guided by three major tasks for the identification of damage in civil 

infrastructure based on the self-powered sensing technology.  An overview of each chapter is 

shown below, which delineates the specific objective, body, and conclusion.  

Chapter II deals with the development of a data interpretation system for 

structural/infrastructure damage identification using point self-powered strain sensors. The 

goal is to discover a reasonable relationship between the damage indicator features of point 

sensors and damage progression. A number of probability distributions are considered to 

characterize the sensor output. The functionality of the proposed damage detection approach 

is evaluated on specific infrastructure systems with complex behavior. Extensive numerical 

and experimental studies are performed to achieve this goal. The cases analyzed in this 

chapter are continuous health monitoring of pavement systems, crack growth detection in 

steel plates under a uniaxial tension mode, and distortion-induced fatigue cracking in steel 

bridge girders. For the asphalt pavement experiments, a new installation procedure is 

proposed to address the major limitations of the installation of conventional H-shaped 

sensors. Based on the envisioned installation procedure, the sensors are embedded within a 

small-scale spherical packaging system that can be tossed into the paving materials during 

construction. However, the obtained results show that there is a sound relationship between 

the damage progression and features from the entire memory cells of the sensor.  

A major limitation of analysis with point sensors is that they give only partial 

information about the health status of the structures. On this basis, Chapter III outlines the 

development details of a new approach defined for data fusion in a network of self-powered 

strain sensors. The goal is to use the information provided by a group of sensors, termed as 

"group effect". Statistical and AI approaches are used to fuse the data. Based on the statistical 

analysis, standard deviation of the extracted damage indicator features of group of sensors is 
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positively correlated with the progression of damage. For the cases where the statistical 

approach fail to provide decent detections, a new probabilistic AI-based damage detection 

technique, called GPLR, is developed. This method hybridizes the GP and LR algorithms to 

assign probabilities to model scores for the detection damage progression. The application of 

this multi-class classification system is not limited to this study and can be extended to 

discover the patterns in a network of sensors or other classification problems in engineering 

domain. Further, a PNN analysis is performed for more verification of the results. A set of 

predictor features, termed as Z-functions, are defined and fed into the AI algorithms to 

enhance the damage detection accuracy. Besides, uncertainty analyses are carried out to 

assess the effect of noise and enhance the reliability of the proposed methods. 

Chapter IV is focused on fusion of the data from a network of accelerometer and 

strain sensors to develop an integrated global-local damage detection approach. To this aim, 

PZT cantilever-based accelerometers and PZT strain sensors are designed. To illustrate the 

sensing scheme and decision fusion in a self-powered WSN, both numerical and 

experimental studies are conducted. An aluminum fixture with bolted connections is 

fabricated for the experimental study. A new type of damage is considered based on the 

changes in boundary condition. On this basis, different damage states are obtained by 

loosening (or removing) one bolt at a time from the plate. When all bolts are fully tightened, 

the structure is healthy. A bolt loose condition corresponds to a damaged state. Damage 

localization requires identification of which of the bolts is loose or missing. Based on the 

results, most of the PZT accelerometers are sensitive to the changes in the system and can be 

used to monitor changes in the characteristics of the overall structure. On the other hand, the 

damage details and its approximate location can be identified by the PZT strain sensors.  
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Finally, Chapter V summarizes the work performed under this project, outlines the 

main research products developed, and presents the main findings of the study. Some 

directions for future research are also presented.  
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CHAPTER II 

DAMAGE IDENTIFICATION USING POINT SELF-POWERED 

STRAIN SENSORS 

2.1 Characterization of the Working Mechanism of the SWS  

Damage detection algorithms are one of the main parts of the I/SHM systems. These 

algorithms are developed to analyze raw sensor data and provide a precise diagnosis of the 

damage state. Apparently, quality and quantity of raw sensor data have a direct effect on the 

accuracy of damage detection (Singh and Joshi, 2009). The new SWS studied in this research 

is capable of continuously heath monitoring of the host structure based on the piezoelectric 

energy harvesting technology. It is known that the piezoelectric transducers have the ability 

to convert the mechanical applied charge to an electrical charge using the direct 

piezoelectricity effect. The open source voltage (V) generated across the piezoelectric 

ceramic Lead Zirconate Titanate (PZT) transducer material is given by the following 

equation: 

𝑉 =  
𝑆 𝑌 𝑑31 ℎ

𝜀
                                                                   (1) 

where S, Y, d31, h and 𝜀, are the applied strain, Young’s modulus of the piezoelectric 

material, piezoelectric constant, thickness, and the electrical permittivity, respectively. The 

sensor can be economically attached to the structures either during construction, or anytime 

during routine maintenance operations. The communication between the sensor and a service 

vehicle is done using the RFID technology. The convertible electrical power levels in 

structures are typically less than 1 μW. The sensor also uses novel analog signal processing 

circuits that require less than 1 μW of power (Rhimi et al., 2012). These sensors have a series 

of memory cells that record the cumulative time of the voltage harvested by the piezoelectric 
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transducer attached to the structure. In fact, they measure the duration of events when the 

amplitude of the input signal, coming from the piezoelectric transducer, exceeds different 

thresholds. Figure 2 presents a schematic representation of the level crossing cumulative time 

counting implemented by the SWS.  

 

Figure 4. The level crossing cumulative time counting implemented by the SWS 

The cumulative voltage time can be extracted for the sensors with either constant or 

variable injection rates by measuring of the voltage droppage in the memory cells (floating-

gates) after a periodic excitation. The recorded time reflects the cumulative duration for 

which the floating-gate injector is operational. Referring to the IHEI model (Chakrabartty 

2013), the change in floating-gate voltage (VPFG) with respect to time and drain current (I0) 

can be expressed as: 

𝑉𝑃𝐹𝐺(𝑡) =
1

𝐶2
 𝑙𝑜𝑔(𝐶1𝐶2𝑡 + 𝑒−𝐶2𝑉𝑃𝐹𝐺0)                                           (2) 

where  

VPFG0: Initial floating-gate voltage 

t: Total duration for which the injector is operational.  

C1 and C2: Device parameters that can be written as:  

 𝐶1 =
𝛽𝐼0

𝐶𝑐
 (

𝐼0

𝐼𝑠
)

𝑉𝑇
𝑉𝐼𝑛𝑗                                                 (3) 

S1 

S2 

S3 

S5 

S6 

S4 

Δ1(3) Δ1(2) 

Δ2(2) 

Δ3(2) 

Δ6(1) 

Δ5(1) 

Δ4(1) 

Δ3(1) 

Δ2(1) 

Δ1(1) 

Time 

A
m

p
li

tu
d

e 

Δ6(i) 

Δ5(i) 

Δ4(i) 

Δ3(i) 

Δ2(i) 

Strain Level 

Δ1(i) 

S6 

 

S1 

S2 

 S3 

 
S4 

 S5 

 
C

u
m

u
la

ti
v
e 

L
o
a
d

in
g
 T

im
e 



15 

 

𝐶2 =
𝜅

𝑉𝐼𝑛𝑗
                                                         (4) 

in which 

β and Vinj: Constant injection parameters that are a function of the transistor size and 

the process parameters.  

IS: Pre-exponential current 

κ: Floating-gate efficiency 

VT: Thermal voltage (26 mV at room temperature) 

CC:  Total capacitance of the floating node. 

Finally, for long-term monitoring, the cumulative duration can be estimated using the 

following equation: 

𝑡 =
𝑒−𝐶2𝑉𝑃𝐹𝐺(𝑡)

𝐶1𝐶2
                                                      (5) 

In this context, more details on the derivation, initialization and calibration of the 

procedures can be found in (Lajnef et al. 2008; Huang et al. 2010; Lajnef et al. 2011). 

However, as can be observed from Figure 4, the only information that can be extracted from 

the sensor is the cumulative duration of voltage/strain events. Accordingly, the sensor does 

not provide information about the normally distributed strain histograms induced by the 

service loads every reading period. In other words, the sensor does not directly measure the 

absolute value of strain in order to estimate damage. The rate of variation of strain 

distributions is related to the rate of damage. The whole methodology is based on relative 

damage. That is why interpreting the data generated by SWS is a complicated task and highly 

desired. Different probability distributions may be used to analyze the sensor output. In order 

to develop a damage detection algorithm based on the interpretation of such limited data, a 

new approach is considered in this research. It is well-known that the service load in 

structures is usually defined by a Gaussian distribution and thus the induced local strain. With 
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a Gaussian distributed load, the sensor output is the summation of the cumulative time strain 

distributions. Since the summation of Gaussian distributions can be assumed by a Gaussian 

distribution, this study rationally assumes that the sensor output can be characterized by the 

following cumulative density function (CDF) (Alavi et al., 2016a,b,c): 

𝐶𝐷𝐹Gaussian(𝜀) =
𝛼

2
[1 − 𝑒𝑟𝑓 (

𝜀−𝜇

𝜎√2
)]                                         (6) 

where, μ, σ and α are mean of distribution, standard deviation accounting for the load and 

frequency variability, and total cumulative time of the applied strain measured by the entire 

gates. In fact, μ and σ can be considered the only viable tools to define the SWS output data. 

These parameters can be obtained by a curve fitting of the sensor output distribution collected 

from the entire memory cells (Alavi et al., 2016). Consequently, the damage state is logically 

considered to be a function of μ and σ. In order to obtain these parameters, the cumulative 

time of occurrences at predetermined strain levels are first determined. Then, the 

corresponding μ and σ values for each damage scenario are obtained through the fitting of a 

CDF (Eq. (6)) to the cumulative duration of strain events. Then, the CDF function is 

converted into probability density function (PDF) using the following equation:  

𝑃𝐷𝐹(𝜀) =
1

𝜎√2𝜋
𝑒

−
(𝜀−𝜇)

2 𝜎2                                                        (7) 

Figure 5 illustrates the transformation from the CDF form to the PDF form. More in-

depth analyses are conducted to find the relationship between the PDFs and damage growth 

in the investigated structures. The major advantage of the proposed method is that it is based 

on relative variations in the strain response distributions. This means that there is no need to 

measure damage directly. The effect of damage is “sensed” by the sensors, and it is evaluated 

based on relative shifts of PDFs over time. This is schematically shown in Figure 6. When the 

sensors are deployed in a network, the sensors that are closer to critical locations will 
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experience more prominent shifts in the distributions compared to other sensors. Knowing the 

exact location of these sensors gives the locations of the critical damage areas.  

                                 

Figure 5. Transformation scheme from CDF to PDF 

 

Figure 6. A schematic representation of the PDF shifts due to damage progression  

 It is worth mentioning that in addition to the Gaussian CDF given in Eq. (6), a 

number of other probability distributions are considered to characterize the sensor output as 

follows: 
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Rayleigh distribution: 

𝐶𝐷𝐹Rayleigh(𝜀) = 1 − 𝑒
−𝑥2

2𝜎2                                                 (8) 

where σ > 0, is the scale parameter of the distribution. 

 

Shifted Gompertz distribution: 

𝐶𝐷𝐹Gompertz(𝜀) = (1 − 𝑒−𝑏𝑥)𝑒−𝜂𝑒−𝑏𝑥
                                                (9) 

where b > 0 is the scale parameter and 𝜂 > 0 is the shape parameter of the shifted Gompertz 

distribution. 

Weibull distribution: 

𝐶𝐷𝐹Weibull (𝜀) = {1 − 𝑒−(
𝑥

𝜆
)

𝑘

      𝑥 ≥ 0
0                       𝑥 ≥ 0

                                                (10) 

where k > 0 is the shape parameter and λ > 0 is the scale parameter of the distribution. 

Fréchet distribution: 

𝐶𝐷𝐹Fréchet (𝜀) = 𝑒−(
𝑥−𝑚

𝑠
)−𝛼

                                                (11) 

where α > 0 is a shape parameter, m (the minimum) is a location parameter and s > 0 is a 

scale parameter.  

On the basis of a series of preliminary simulations, the Gaussian CDF provides a 

much more better and consistent fit to the to the cumulative duration of strain events 

compared to the Rayleigh, Shifted Gompertz, Weibull, and Fréchet CDFs. Thus, this function 

is considered for the characterization of the SWS data.  

 

2.2 Performance Evaluation of the Self-Powered Monitoring System  

The performance of the proposed damage identification system is evaluated on 

different infrastructure systems. The performance analysis is based on extensive numerical 
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and experimental studies. The cases investigated for this phase are crack growth detection in 

steel plates under a uniaxial tension mode, distortion-induced fatigue cracking in steel bridge 

girders, and continuous health monitoring of pavement systems The last case is studied 

numerically.  

 

2.2.1 Detection of Crack Growth in Steel Plates 

According to FHWA, there are thousands of fracture-critical bridges throughout the 

U.S. that are susceptible to failure of their critical members. In case of failure of these certain 

members, the bridge will collapse, e.g., case of I-35W Bridge in Minnesota (FHWA, 2004; 

NTSB, 2008; Liao et al., 2011). Most of the failures that occur in bridges are related to the 

fracture of steel members. Fatigue cracking in steel bridges is known as the cause of the 

majority these failures. The fatigue cracking phenomenon occurs progressively until reaching 

the fracture limit of specimen. Evidently, an early detection of the damage location and size 

is crucial to prevent catastrophic failures. This issue has been the focus of many studies for 

the last decades (Malekzadeh et al., 2015). Numerous studies have used the vibration-based 

techniques to detect and locate damage (Doebling et al., 1996). Structural damage could be 

detected, located, and characterized through the examination of the change in the structural 

vibration response (Doebling et al., 1996). When damage occurs to a structure, the natural 

frequencies of the system change as the structural properties deviate from its original state. 

Then, the damage event can be detected based on the vibration frequencies. The information 

provided by the SWS is completely different with what provided by conventional vibration-

based sensors. Accordingly, this phase presents the performance of the proposed system on 

crack growth detection in steel plates. In order to analyze the response of sensors, a series of 

laboratory tests are conducted on a steel plate under uniaxial tensile loading configuration. 

Also, different FE models of a steel plate are developed to extract the strains in different 
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damage states. For the experimental and numerical analyses, different damage scenarios are 

introduced to the steel plate. The main goal is to detect the crack growth using the data 

provided by the SWS.  

 

2.2.1.1 Numerical Study 

The performance of the sensors is studied through a numerical study. To this aim, 

different 3D FE models are developed for each damage state to analyze the dynamic response 

of the plate under a similar cyclic loading condition to the experimental study. 

ABAQUS/CAE 6.11 is used for the modeling and post-processing of the results. Dynamic 

implicit procedure is used for the FE modeling. The length, width, span and thickness of the 

plate are 406.4 mm (16''), 304.8 mm (12''), 152.4 mm (6''), and 0.8 mm (1/32''), respectively. 

10 sensor locations are introduced by making circular partitions with a diameter similar to 

PZTs (D = 12 mm). Those locations are then called by software to extract the average strain 

in each partition. Figure 7 shows the assembly of the plate and the meshed geometry. 

Damage is introduced by defining a notch at the middle of the plate. The notch size is 

increased in each damage state to define Intact, Damage 1, 2 and 3 modes. Cyclic 

displacements are applied to one edge of the plate while the other side is fixed. The plate is 

modeled using 19068 linear hexahedral elements of type (C3D8R) in ABAQUS. Mesh 

refining is adopted for the meshing strategy in order to capture high stresses and strains 

concentration around the crack tip. The used material for the plate is steel with elastic 

modulus (E), Poisson’s ratio (ν) and density equal to 200 GPa, 0.3 and 7800 kg/m3, 

respectively. 

Figure 8 shows the FE results for different damage states. The maximum strain at 

crack tip increased from 729 microstrain to 1100 microstrain between the first damage state 

(17 mm) and the last damage state (45 mm). As shown in Figure 8, the strain field expands 
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around the crack region as the notch length increases. Accordingly, Sensing nodes 4-7 are 

subjected to higher deformations and will deliver higher voltage when damage progresses. 

 

 

 

 

 

Figure 7. Assembly and meshing of the plate 
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                                     (a) Intact plate                                          (b) Damage 1 

             

                                        (c) Damage 2                                     (d) Damage 3 

 Figure 8. The FE results for different damage states introduced to the plate 

2.2.1.2 Experimental Study 

The second step of this work is focused on determination of the time history of the 

voltage for different damage states in order to calculate the cumulative time distribution 

given by an actual SWS. In this study, the specimen is tested under a uniaxial tension mode. 
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The experimental setup is schematically shown in Figure 9. The steel plate had 406.4 mm 

(16'') length, 304.8 mm (12'') span, 152.4 mm (6'') width, and 0.8 mm thickness (1/32''). The 

material used is the A-32 steel grade. As seen in Figure 26, all the degrees of freedom are 

constrained on the top edge of the plate and displacement is applied to the lower edge. The 

horizontal displacements and the in-plane rotations are also constrained. In order to satisfy 

the boundary conditions, four thick steel plates, 50.8 mm × 152.4 mm (2'' × 6''), are installed 

at the top and bottom of the plate. Six bolts, each 9.5mm (3/8'') diameter, are used to restrain 

the degree the horizontal and rotational degree of freedoms (Figure 9). 

 

Figure 9. Uniaxial tension test setup 

Ten PZT ceramic transducers are installed on the plate in two directions: along the 

crack and perpendicular to the crack direction (Figure 10). The PZT devices use the 

piezoelectric effect to convert the applied mechanical strain to electrical charge. The sensor 

locations are determined based on an FE analysis. On this basis, 3D FE models are developed 

to find the regions with maximum stress and strain concentration and to explore the size of 

the crack-induced stress zone. The FE simulations are performed using ABAQUS/CAE 6.11. 

Applied  

Displacement 

Fixed boundary conditions 
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Evidently, higher voltage delivered by the PZT indicates a higher strain at the sensor location. 

According to the principles of fracture mechanics, the maximum stress concentration is 

located at the crack tip. Thus, PZTs 5 and 6 are placed along the direction of the crack. The 

rest of the sensors are placed in different positions from the crack area to test their resolution. 

The term resolution refers to the distance from the crack zone that the sensor can detect 

changes in voltage due to damage progression. Figure 11 shows the stress distribution on the 

plate for a 30 mm crack. As it is seen, the maximum stress field is located near the tip of the 

crack. Therefore PZTs 4, 5, 6 and 7 are expected to detect higher voltage compared to other 

PZTs. The rest of the PZTs are placed in other parts of the plate to check their sensitivity to 

damage growth.  

The tests are performed at 2 and 5 Hz loading frequencies for 0.05 and 0.08 mm 

amplitudes. Herein, the results for 2 Hz and 0.08 mm displacement are presented. For the 

experiments, an MTS servo hydraulic machine is used in a displacement control mode. 

Before starting each test, a pre-load equal to 4 kN is applied to the plate to ensure that it is 

seated on the fixture. Thereafter, a cyclic displacement is applied to the edge of the specimen 

as shown in Figure 12. The PZTs outputted voltage is read on NI 9220 data acquisition 

system (with 1 GΩ impedance) in parallel with a resistor with impedance similar to the 

SWSs. The module is controlled through a LabView program to generate the required signal. 

Damage is introduced by making a notch at the middle of the plate. The damage states 

are defined by increasing the notch size (2a) as follows:  

 Intact: 2a= 0 mm (Intact plate) 

 Damage 1: 2a = 17 mm (Initial notch) 

 Damage 2: 2a = 30 mm 

 Damage 3: 2a = 45 mm 
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(a) Intact plate 

        

(b) Notched plate 

Figure 10. Test setup and sensors locations for the plate 
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Figure 11. FE simulations for the determination of approximate sensor locations on the plate 

  

Figure 12. The applied cyclic displacement amplitude 

The chosen PZTs are PZT-5A ceramic discs with a 12 mm diameter. The PZT 

properties are shown in Table 1. In order to attach to the PZT discs to the steel plate, different 

adhesive are tested. Among different adhesives tested (e.g. HBM X-60 cement paste, J-B 

SteelStik Epoxy, and CC-33A adhesive), CC-33A epoxy is found to perform better.   

Table 2 shows the maximum voltage outputted by PZTs for different damage states. 

According to the results, PZTs 5 and 6 deliver the maximum voltage followed by PZTs 4 and 

7. For these cases, the voltage increases as the damage progress. This is more evident for 

PZTs 5 and 6 that are located near the crack tip. As mentioned before, the stress 
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concentration around the crack tip increases as the crack length increases. The voltage 

delivered by PZTs 1-3 and 8-10 does not have a clear trend. This is because they are far from 

the damage or the stress distribution at these nodes does not have a steady increasing or 

decreasing trend. However, the maximum voltage is delivered by PZTs 5 and 6 for Damage 

state 3. For these cases, the outputted voltage is equal to 10.46 volts which is the maximum 

voltage input range of the data acquisition system.   

Table 1. The PZT properties 

Parameter 
 

Value 

Diameter  
 

12 mm 

Thickness  
 

0.6 mm 

Piezo material  
 

PZT-5A 

Resonant frequency  
 

3.4MHz±5% 

Static capacitance (Cs)  
 

2.5nF ±30% 

Piezoelectric constant  
d33  450 ×10-12m/v 

d31  -190 ×10-12m/v 

Density  
 

7.8g/cm3 

Electromechanical 

coupling coefficient 

Kp   0.63 

Kt    0.42 

K31  0.35 

 

Table 2.  Maximum voltage delivered by the PZT discs installed on the plate for 0.08 mm 

displacement and 2 Hz loading frequency 

Sensor # 

 Maximum voltage (volt) 

 
Intact Damage 1 Damage 2 Damage 3 

PZT 1  6.90 6.85 6.94 6.35 

PZT 2  6.68 6.92 7.47 6.09 

PZT 3  6.53 6.49 6.35 4.78 

PZT 4  5.58 5.92 7.16 7.25 

PZT 5  7.21 8.15 9.73 10.46 

PZT 6  6.40 7.04 8.93 10.46 

PZT 7  5.75 6.46 7.21 7.79 

PZT 8  6.85 7.19 6.36 5.30 

PZT 9  5.62 5.84 6.06 5.46 

PZT 10  5.48 5.41 6.33 6.42 
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2.2.1.3 Damage Growth Detection Based on the FE Results 

The performance of the sensor is verified using the FE simulations followed by the 

laboratory test results. It should be noted that the voltage supplied by piezoelectric 

transducers is proportional to experienced strain (Sirohi and Chopra, 2001). Consequently, 

using voltage or corresponding strain values does not affect the damage analysis trends. For 

the analysis, the voltage delivered by PZTs and the strains extracted from the FE simulations 

are recorded and analyzed.  

For the FE simulations, the results are obtained for 2 Hz and 0.08 mm displacement. 

A smart pebble wireless sensor has a series of memory cells (gates). Each of these gates 

cumulatively stores the duration of strain events at a preselected levels, experienced at the 

sensing node location. In general, the number of gates is dependent on the nature of the 

problem and the material. In this study, 7 strain levels are defined to efficiently cover the 

lower and upper limits of the extracted strain values. The minimum level of strains to be 

captured by piezoelectric transducers is about 20.00 . On the other hand, the maximum of 

the strain value extracted from the FE simulations is about 315 . Considering a reasonable 

value of 7 strain levels for the gates, the difference between the strain levels is 50 . Table 3 

presents the preselected strain levels for the plate. Using the strain histories of all elements, a 

script is written in MATLAB to perform the following tasks: 

a) Takes the strain-time data from ABAQUS and measures the duration of events at 

the strain levels defined in Table 3.  

b) Fits CDF given in Eq. (6) to the cumulative time of occurrences at predetermined 

strain levels obtained from the first step. 

c) Reports the μ and σ for the data acquisition nodes for the intact and damaged 

models 
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Using the μ and σ values, the PDF plot corresponding to each sensing node is 

obtained and shown in Figure 13. As seen in Figure 13, the values of μ and σ, and 

accordingly the shape of PDFs change due to the damage progression. Sensors 5 and 6 

provide the most reasonable results. In fact, the PDFs for these sensors shift to the left (µ 

decreases) and they expand (σ increases) as damage progresses. The same is true for Sensors 

4 and 7 (Figure 14). Since these sensors are not as close as Sensors 5 and 6 to the crack zone, 

the change in PDF is less obvious.  

Table 3.  The preselected strain levels considered for the plate FE analysis 

Gate number Strain Level () 

1 20 

2 70 

3 120 

4 170 

5 220 

6 270 

7 320 

 

 

 

Figure 13. Change of PDFs curves due to damage progression based on the plate FE analysis 
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Figure 13. (cont’d) 
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Figure 13. (cont’d) 

 

 

 

(a) Sensor 4 

 

 

(b) Sensor 7 

Figure 14. High resolution illustrations of PDFs for Sensors 4 and 7 based on the plate FE 

analysis 
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levels for the plate. The PDF plot corresponding to each sensor is obtained and shown in 

Figure 15.  As seen in this figure, the shapes of PDFs have changed due to damage 

progression. This indicates that damage growth can be monitored by the changes of PDFs 

even outside of the high stress concentration region. Referring to Figure 15, it can be seen 

that PZTs 4 to 7 are good indicators of the damage progression. In these cases, μ decreases 

and σ increases by transitioning from intact to damaged mode. Accordingly, the PDFs shift to 

left, their width increases and their height decreases due to damage progression. This is in 

agreement with the trends previously observed from the numerical study. For the sensors that 

are not located along the crack, the PDFs change but they do not have a clear trend.  

Table 4. The preselected voltage levels for the plate experimental study 

 

 

 

 

 

 

 

 

Gate number Voltage Level (volts) 

1 4.00 

2 5.00 

3 6.00 

4 7.00 

5 8.00 

6 9.00 

7 10.00 
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Figure 15. Change of PDFs curves due to damage progression based on the plate 

experimental study 
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Figure 15. (cont’d) 

 

 

2.2.2 Distortion-Induced Fatigue Cracking in Bridge Girders  

A major concern in maintenance and preservation of steel bridges is cracking of 

structural members. Fatigue cracking is one of the most important phenomena affecting the 

structural integrity and performance of welded steel bridges (Fisher et al., 1980; Fisher, 

1984). Occurrence of fatigue cracks is specifically of great importance for the steel bridges 

built before the 1970s. This is because the fatigue design specifications are not appropriately 

defined until 1970s and 1980s (Zhao and Roddis 2004). In general, fatigue cracks can occur 

in welded steel bridges due to low fatigue resistance structural members, members with large 

initial defects, members subjected to out-of-plane distortion, and details at end restraints and 

0.0

0.1

0.2

0.3

0.4

-25 -20 -15 -10 -5 0 5 10 15 20 25

P
D

F

Mean (µ)

Sensor 7

Intact
Damage 1
Damage 2
Damage 3

(g)

0.0

0.1

0.2

0.3

0.4

-25 -20 -15 -10 -5 0 5 10 15 20 25

P
D

F

Mean (µ)

Sensor 8

Intact
Damage 1
Damage 2
Damage 3

(h)

0.0

0.1

0.2

0.3

0.4

-25 -20 -15 -10 -5 0 5 10 15 20 25

P
D

F

Mean (µ)

Sensor 9

Intact
Damage 1
Damage 2
Damage 3

(i)(i)

0.0

0.1

0.2

0.3

0.4

-25 -20 -15 -10 -5 0 5 10 15 20 25

P
D

F

Mean (µ)

Sensor 10

Intact
Damage 1
Damage 2
Damage 3

(j)



35 

 

flange terminations (Fisher and Menzemer, 1990). However, out-of-plane distortion is known 

as the major source of fatigue cracks leading to severe structural deficiency. Distortion-

induced fatigue is more about the detailing issue and needs much fewer stress cycles to 

develop compared to other crack types (Zhao and Roddis, 2004). Different factors can cause 

out-of-plane distortion such as impact of vehicles on an expansion joint not perpendicular to 

the traffic flow, thermal forces on skewed and horizontally curved bridges, differential 

deflection of the adjacent beams, etc (Juntunen 1998). The mechanism of fatigue crack 

formation is schematically shown in Figure 16. A feature of the diaphragms and cross frames 

is primarily to distribute loads among main elements (Figure 16a).  These elements are 

fastened to transverse stiffeners welded to the girder web. For many of the bridges designed 

before 1989 AASHTO Standard Specifications (AASHTO, 1996), no connection is 

considered between the stiffeners and the steel girder flanges. Consequently, out-of-plane 

fatigue cracks are developing at small web gaps at the girder flanges, webs, and stiffener 

plate connections due to out-of-plane bending of the girder web (Fisher, 1984). Accordingly, 

stress state increases in the web near the weld and fatigue cracks initiate in the heat-affected 

zone of the weld near its toe. Such distortion-induced fatigue cracks may occur as horizontal 

or horseshoe cracks at the top or bottom of girder diaphragm connections (Figure 16c). The 

cracks usually propagate away from the weld. The direction of the crack propagation changes 

as the crack grows in length (Fisher et al., 1985; Elewa, 2004).  
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(a) 

 

(b)                                      (c) 

Figure 16. Distortion-Induced Fatigue Cracking: (a) web distortion due to differential 

displacement between two girders; (b) out-of-plane distortion; (c) fatigue cracks 

Several retrofitting methods have been proposed to deal with this type of damage 

(Elewa, 2004). However, selection of an appropriate repair strategy is complicated and 

depends on many factors.  On the other hand, there are no major predictive models to assess 

the damage caused by distortion-related cracking (Elewa, 2004). Distortion-induced fatigue 

cracking is a progressive phenomenon. Thus, from a SHM perspective, it is crucial to detect 

the damage progression at early stages so that severe damage to the bridge structure can be 

prevented. This study presents new results on detection of fatigue cracking of steel bridges 

based on the SWS data. A 3D FE analysis is performed to obtain the structural response of 

the girder. The fatigue life of the girder is determined based on J-integral concept and Paris 

Law. Several damage states are defined by extending the fatigue crack propagation lengths. 

Thereafter, features extracted from the strain data for individual and a group of sensing nodes 

are used to detect various damage scenarios.  
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2.2.2.1 Numerical Study 

For the analysis, a girder structurally similar to an existing highway steel bridge girder 

(I-96/M-52) in Webberville, Michigan, is chosen. The I-96/M-52 bridge is typical of many 

bridges in Michigan. There are several reasons behind using the FE method for the distortion-

induced fatigue analysis. While current design specifications cannot be used for the 

estimation of the secondary stresses over the girder web caused due to out-of-plane 

displacement of the web gap, FE can be considered as an efficient tool to achieve this aim. 

The FE numerical simulations are much less costly than performing cumbersome field or 

laboratory investigations. Also, it is possible to update the mathematical models in FE based 

on the changes of the geometry or loading environment (Bhargava and Roddis, 2007). 

However, a series of FE simulations are conducted for this case and the derived models are 

considered as representatives of the real structure. Static strain measurements at different 

locations are used to extract the damage detection features. Herein, the structure under 

consideration is assumed to be linearly elastic and is analyzed as 3D FE models using 

ABAQUS Version 6.12-3.  

Geometry, loading, and boundary conditions: The length of the modeled girders is 

considered 7.62 m (300''). The girders spacing is taken 1.943 m (76''). The thickness, width 

and length of the stiffeners plates are 12.7 mm (0.5''), 140 mm (5.5''), and 812 mm (320''), 

respectively. The web gap length is taken 57 mm (2.25''). The loading is applied at the cut 

edge of the lower flanges. The loading is a vertical displacement of 5 mm (3/16") for the left 

outer girder and 15 mm (9/16") of the right outer girder. The geometry and loading of the 

girders are shown in Figure 17. The steel girders are modeled as simply supported beams. 

The translations along the x and z directions at the cut edge flange nodes and the rotation 

with respect to the x-axis are restrained. For the top and lower flanges, the displacement in x 

and z direction and the rotation around the x-axis are also fixed. 
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Figure 17. Geometry and loading of the girders 

Material: The used material for the girders, diaphragms and stiffeners, is steel with E, 

ν and density equal to 200 GPa, 0.3 and 7800 kg/m3, respectively.  

Model meshing: For the model developed in this work, linear quadrilateral shell 

elements of type S4R are used. At the web gap area, the mesh size is refined to below 4 mm 

to capture the effect of the stress concentration (Figure 18). Further refinement is also 

required to confirm the convergence of the model. 

 

 

Figure 18. Meshed geometry of the girders 

Determination of the Fatigue Life of the Girder: The FE results are further refined and 

extended to include fatigue damage accumulation, crack initiation and crack propagation. 

Different damage states are defined by increasing the crack length. Then, features extracted 

from the strain data for individual and groups of sensing nodes are used to detect various 

damage scenarios. Previous studies showed that the top flange web gap area is more 



39 

 

susceptible to distortion-induced fatigue than other regions in existing welded plate girder 

bridges (Bhargava and Roddis, 2007). Therefore, a horizontal crack is considered in this 

region at a distance of 25.4 mm (1'') from the upper flange of the central girder. The model 

assembly and crack location is given in Figure 19. The initial crack length is taken 10 mm. 

 

 

                                   (a)                                                            (b) 

Figure 19. (a) Assembly of the girder model for the fatigue analysis (b) crack location and 

properties 

The crack length is changed between 10 mm to 100 mm with 10 mm steps. The J-

integral concept is used to estimate the energy release rate for each crack state (or length). 

The relation between crack length, energy release rate and number of cycles is given by Paris 

Law as follows: 

∆𝑎

∆𝑁
= 𝑐 ∆𝐾𝑛                                                                   (12) 

where a is the crack length and N is the number of load cycles. 
∆𝑎

∆𝑁
 is known as the crack 

growth rate and denotes the infinitesimal crack length growth per increasing number of load 

cycles. C and n are material constants taken as 2.50E-12 and 3.3, respectively. ∆𝐾 is the 

range of the stress intensity factor, i.e., the difference between the stress intensity factor at 

maximum (𝐾𝑚𝑎𝑥) and minimum (𝐾𝑚𝑖𝑛) loading. Then, the number of cycles based on Paris 

Law is given by: 

Crack Location 



40 

 

𝑁𝑓 − 𝑁𝑖 =  
𝑎𝑓− 𝑎𝑖

𝑐 ∆𝐾𝑛                                                          (13) 

where 𝑁𝑓 is the remaining number of cycles to fracture, 𝑎𝑓 is the critical crack length at 

which instantaneous fracture will occur, and 𝑎𝑖 is the initial crack length at which fatigue 

crack growth starts for the given stress range ∆𝜎. The nature of applied loading is cyclic (half 

sine) and therefore the R-ratio (𝐾𝑚𝑖𝑛/𝐾𝑚𝑎𝑥) is equal to zero because 𝐾𝑚𝑖𝑛= 0. Table 5 

presents the analytical results for different crack lengths. The number of cycles to propagate 

the crack from one stage to another stage can be found in this table. The maximum principal 

strains for typical crack lengths of 20, 70 and 90 mm are presented in Figures 20-22. As it is 

seen, the maximum strains are located at the crack tip.  

Table 5. The girder fatigue analytical results for different crack lengths 

a (mm) J
ave

 ∆𝑲 ∆𝒂

∆𝑵
 

∆𝑵 N 

10 0.580888 340.8483 6.39E-09 0 0 

20 0.793691 398.4197 1.07E-08 1565338 1565338 

30 0.932375 431.8274 1.39E-08 935267 2500605 

40 1.03625 455.2472 1.66E-08 717028 3217633 

50 1.15125 479.8437 1.98E-08 602343 3819977 

60 1.277398 505.4498 2.34E-08 506326 4326303 

70 1.287184 507.3823 2.37E-08 426503 4752806 

80 1.414595 531.9013 2.77E-08 421166 5173973 

90 1.5 547.7226 3.06E-08 360427 5534400 

100 - - - 327197 5861597 
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Figure 20. The FE results for the girder with 20 mm crack (Maximum principal strain = 2753 

με) 

 

Figure 21. The FE results for the girder with 70 mm crack (Maximum principal strain = 3192 

με) 

 

Figure 22. The FE results for the girder with 90 mm crack (Maximum principal strain = 3404 

με) 
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2.2.2.2 Damage Detection Using the Smart Sensing Technology 

For the definition of fatigue damage, 10 damage states (DS) are defined as follows: 

DS1 (Crack =10 mm), DS2 (Crack =20 mm), DS3 (Crack =30 mm), DS4 (Crack =40 mm), 

DS5 (Crack =50 mm), DS6 (Crack =60 mm), DS7 (Crack =70 mm), DS8 (Crack =80 mm), 

DS9 (Crack =90 mm), and DS10 (Crack =100 mm). As described before, the Paris Law and J 

integral concept are used to determine the number of cycles to propagate the crack from one 

stage to another stage (Intact to crack length equal to 100 mm) (see Table 5). Based on the 

results shown in Table 5, a 100 mm crack will occur after about 6 million cycles. 

Accordingly, the life span of the girder is divided into 6 different stages (D1 (0-1 million 

cycles) to D6 (5-6 million cycles)) each correspond to the condition of the girder after 1 

million cycles (Figure 22). Then, the number of cycles in a specified damage state is obtained 

to extract the cumulative duration of strain events for that stage (Table 6). As an example, it 

can be observed from Table 6 that a 10 mm crack propagates to 20 mm after a 1565338 

cycles. Thus, for the first million cycle shown in Figure 23, we have only damage state 1 

(DS1) (Crack =10 mm). After 2 million cycles, only damage states 1 (DS1) and 2 (DS2) are 

occurring because 2500605 cycles are required to propagate to a 30 mm crack. Out of these 2 

million cycles, 1565338 cycles correspond to DS1 and 434662 cycles to damage state DS2. 

These values were rounded to 565000 and 435000 as shown in Table 6. Subsequently, the 

duration of the strain events for 565000 cycles in DS1 and 435000 cycles in DS2 are used to 

extract the μ and  parameters for the case of 1-2 million cycles (D2). This procedure is 

followed to obtain the features for all of the 6 million cycles.  

The next stage is to define the location of data acquisition nodes (potential sensors). 

To this aim, 400 sensing nodes are located around the upper half of the stiffener to web 

contact region. Given the girder’s dimensions and at this specific resolution, 20 by 20 sensor 

locations with 20 mm spacing are defined in the horizontal and vertical directions. For these 
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initial runs, the maximum number of sensing nodes is 400. The locations of the sensing nodes 

are illustrated as black dots in Figure 24. The diameter of the sensing nodes is equal to 10 

mm. Bedsides, 10 strain levels are defined for the girder (Figure 25).  

Table 6. The number of cycles corresponding to each damage state in girder fatigue analysis 

 
No. of Cycles in Damage State 

Cycles 

(Million) 

DS1  

(10mm) 

DS2  

(20mm) 

DS 3  

(30mm) 

DS4  

(40mm) 

DS5   

(50mm) 

DS6 

(60mm) 

DS7 

(70mm) 

DS8 

(80mm) 

DS9 

(90mm) 

DS10 

(100mm) 

0-1 (D1) 1000000 0 0 0 0 0 0 0 0 0 

1-2 (D2) 565000 435000 0 0 0 0 0 0 0 0 

2-3 (D3) 0 501000 499000 0 0 0 0 0 0 0 

3-4 (D4) 0 0 218000 602000 180000 0 0 0 0 0 

4-5 (D5) 0 0 0 0 326000 427000 247000 0 0 0 

5-6 (D6) 0 0 0 0 0 0 174000 360000 327000 138000 

 

 

Figure 23. Schematic representation of the damage states (DS) for the girder fatigue analysis  

 

(a)                                                      (b) 

Figure 24.  Configuration of the sensing nodes for the girder 
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Figure 25. The preselected strain levels considered for the girder fatigue analysis 

The selected sensing nodes are schematically shown in Figure 26. As it is seen, a 

higher density is considered around crack. In order to evaluate the information provided by 

the sensing nodes, the μ and  values for all of the 400 sensing nodes for different damage 

scenarios are calculated. Out of the available data, the PDF graphs are plotted for some of the 

selected sensing nodes distributed throughout the girder. The PDF plots for some of the 

selected nodes are shown in Figures 27 to 34.  As seen in these figures, for the sensing nodes 

located at the corners and far from the damage location (e.g. Sensing nodes 1, 20, 41, 60), 

there is no notable sense of damage as the PDFs are fairly identical. By getting closer to the 

damage zone, the strain patterns remarkably change and therefore the shape of the PDFs 

transforms from D1 (0-1 million cycles) to D2 (5-6 million cycles). It is seen that the mean of 

the distribution, i.e. μ, decreases and the standard deviation, i.e. σ, increases. The important 

observation is that the PDFs shift to left and their width increases due to damage progression. 

However, this is not completely clear for all of the sensing nodes. Only those that are at a 

specified distance from the crack (e.g. Sensing nodes 8, 14, 48, 53) generate sound results. 

For the sensing nodes adjacent to the crack (e.g. Sensing nodes 10, 12), there are no rational 

trends due to the singularities at those locations. The interesting point that can be concluded 

from the results is that the PDFs give a good insight into the location of damage. If there is no 

sense of damage, they do not change. But if the sensors are very close to the damage zone, 

the outcomes are becoming chaotic. On the other hand, if the sensors are not too far from the 
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damage nor adjacent to the crack zone, the graphs shift backward and expand due to damage 

progression.   

 

Figure 26. A schematic representation of the sensing nodes configuration for the girder 
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Figure 27. The PDF plots for the selected sensors (1 to 20) obtained from the girder fatigue  

analysis 
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Figure 27. (cont’d) 
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Figure 28. The PDF plots for the selected sensors (41 to 60) obtained from the girder fatigue  
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Figure 28. (cont’d) 
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Figure 29. The PDF plots for the selected sensors (61 to 80) obtained from the girder fatigue 

analysis 
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Figure 30. The PDF plots for the selected sensors (101 to 120) obtained from the girder 

fatigue analysis 

 

 



52 

 

 

Figure 31. The PDF plots for the selected sensors (161 to 180) obtained from the girder 

fatigue analysis 
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Figure 32. The PDF plots for the selected sensors (221 to 240) obtained from the girder 

fatigue analysis 
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Figure 33. The PDF plots for the selected sensors (301 to 320) obtained from the girder 

fatigue analysis 

 

Figure 34. The PDF plots for the selected sensors (381 to 400) obtained from the girder 

fatigue analysis 
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Evidently, there are limitations for detecting damage with the individual sensor 

approach. Only sensing nodes at specified locations provide reasonable trends. Also, the 

exact relationship between the PDF parameters and decrement or increment of strains or 

damage progression is not clear. Thus, a statistical analysis is performed to find the changes 

of μ and σ with variations of strain patterns due to damage progression. The strain patterns 

changes with damage progression. It is observed from Figures 27 to 34 that the PDFs 

generally shift to left and their width increases as a consequence of damage progression. The 

damage progression usually results in higher strains throughout the system. However, this 

might not be the dominant case for the sensors that are not along the direction of crack 

propagation. Hence, the focus of this step is placed on calculating the percentage of the 

sensors of which μ decreases and σ increases with increases of strain and damage 

progression. Figure 35 presents the result of the statistical analysis for the girder with fatigue 

cracking. The comparison is carried out between the D1 and the two other typical damage 

states (e.g. D4 and D6) for brevity. In these figures, the vertical axes demonstrate the 

percentage of the sensors that their μ decreases and σ increases with increases of strain and 

damage progression. The black lines shown in these figures represent the results for all of the 

sensors and the red lines denote the results for the sensors that measure above a particular 

threshold. Figures 35 (a), (b) and (c) indicate that for about 70% of the sensors, μ decreases 

and σ increases with increasing strain. In general, the relationship between μ and strain is 

more reasonable than that of σ and strain. On the other hand, it is not always the case that a 

sensing node would experience higher strain due to damage progression. For instance, if the 

crack propagates to a direction opposite of the sensing location, the stress concentration will 

decrease at the node resulting in reduction of strains. This issue complicates the interpretation 

of the data. As seen in Figure 35d, the percentage of the sensors of which μ values decrease 

with damage progression is fairly low (maximum of 61%). The main reason for considering 
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the thresholds is to deal with this issue. Referring to Figure 25, it is seen that second strain 

level for the memory gates is 82 με. Based on the FE simulation results, a fairly high 

percentage of the sensors (near half of the sensors) experienced strains below this threshold. 

In other words, Sensing nodes 200 to 400 mostly sensed strains lower than 80 με. This is 

while only one 30 με gate is considered to record the data for these sensors. Thus, a notable 

amount of data is missing for the analysis. By ignoring the sensors with strains lower than 82 

με, remarkably better results are obtained. As shown in Figure 35 by red lines, there is a very 

good correlation between the decrease of μ, increases of σ, increases of strain, and damage 

progression. Specifically, it can be claimed that if sufficient levels are defined for the 

memory gates for low strains, the damage progression can be detected by assessing the 

decrements of μ and increments of σ with good accuracy.  
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Figure 35. Changes of μ and σ with variations of strains due to damage progression for the 

girder with fatigue cracking 
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2.2.3 Failure Analysis of Pavement Systems 

Pavement health monitoring plays a key role in pavement management systems. Early 

repair and maintenance scheduling increase the safe operation and in-service performance of 

pavement. This can be achieved through an accurate and consistent monitoring of pavement 

condition. In general, the existing approaches for pavement health monitoring can be divided 

into external evaluation technologies and in situ pavement sensors (Xue et al., 2014). The 

external evaluation methods have been commonly used for the evaluation of surface 

distresses. Typical examples in this context are using image analysis techniques to analyze 

the pavement distress (Mohajeri and Manning, 1991; Koutsopoulos and Downey, 1993), or 

stereo-imagery for measuring pavement deformation (Mills et al., 2001). Besides, there are 

numerous nondestructive evaluation (NDE) methods for the assessment of assess the 

behavior of pavements and other infrastructures (Goel and Das, 2008; Plati et al., 2014). The 

in-situ pavement sensing methods have been the focus of many studies for the last decades as 

alternatives to the traditional monitoring (Potter et al., 1969; Badr  and Karlaftis, 2013; Badr 

and Karlaftis, 2012). There are several full-scale test studies to measure the in situ pavement 

responses under traffic load (Al-Qadi et al., 2004; Rollings and Pittman, 1992). However, this 

section presents a new system for the continuous long-term health monitoring of pavement 

structures based on the SWS data. A 3D FE analysis is performed to obtain the pavement 

responses under moving tire loading. The main goal is to detect the fatigue cracking due to 

excessive tensile strain at the bottom of the asphalt concrete. A quasi-static approach is used 

for the simulation of movement of the load at the desired speed. In order to analyze the 

response of sensors embedded within the asphalt layer, a series of tests are conducted on an 

asphalt concrete beam under a three point bending configuration. A new miniaturized 

spherical packaging system is designed and tested to protect the sensors embedded inside the 
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specimen. The possibility of localizing the damage and quantifying its severity is investigated 

and discussed. 

2.2.3.1 Numerical Study 

A 3D FE model is developed to analyze the dynamic response of the pavement under 

a moving truck tire loading. ABAQUS is used for the modeling and post-processing of the 

results. A series of acquisition (sensing) nodes are considered at the bottom of the asphalt 

layer as the potential sensors. The studied pavement is composed of 3 layers: asphalt, base 

and subgrade layers. The FE model is shown in Figure 36. 

 

 

Figure 36. The 3D FE Model for the pavement structure  

Geometry: The model has a dimension of 6200 mm (244'') along the direction of 

traffic and 4170 mm (164'') along the transverse direction (the width of one lane). A model of 

such size is used to minimize any edge effect errors, especially on the longitudinal tensile 

strain.  

Material properties and thickness of layers: Table 7 shows E, ν, and thickness of 

layers of the pavement system. 
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Table 7. Material properties and layer thickness 

Layer  E  ν  Thickness  

Asphalt layer  2757.9 MPa (400 ksi)  0.35  152.4 mm (6'') 

Base  344.7 MPa (50 ksi)  0.35  127 mm (5'') 

Subgrade  34.55 MPa (5 ksi)  0.48  4826 mm (190'') 
 

Mesh: A schematic illustration of the FE mesh is illustrated in Figure 37. The model 

is idealized with linear hexahedral element of type (C3D8R). On the basis of a sensitivity 

analysis, the mesh dimensions are considered about 12.7 mm (0.5'') in the loading area and 

25.4 mm far from the contact zone. The total number of elements is 615076 elements of type 

C3D8R. Due to the high number of degrees of freedom of the model, a supercomputer is used 

to run the ABAQUS simulations for both the intact and damaged models. The available 

servers with high performance computing at Division of Engineering Computing Services 

(DECS) at MSU are used for this aim. Using a server with 384 GB RAM and 72 logical 

RAM, the simulation time for the intact configuration took around 42 hours.  

 

 

Figure 37. The FE mesh for the pavement model  

Boundary conditions: The vertical or horizontal movements at the bottom of the layer 

are restrained. Also, there is no horizontal displacements perpendicular to the perimeters of 

the pavement while the rotation is free. Furthermore, to simulate a new pavement condition, 

the interface between different layers had no relative movement.   
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Loading: To simulate the movement of the load at the desired speed, a quasi-static 

analysis is adopted (Al-Qadi and Wang, 2010). The location of the load and its amplitude are 

gradually shifted over the loading path at each step until a single wheel pass is completed 

(Figure 38). Based on the concept of a continuously moving load, an element is increasingly 

loaded when the load approaches and then unloaded as the load leaves it (Al-Qadi and Wang, 

2010; Yoo and Al-Qadi, 2007). The traffic speed and the length of the element can be used to 

calculate the step time. In this study, it is supposed that the vehicle runs at a constant speed of 

6 mph (about 10 km/h). The tire pressure is taken 0.69 MPa (100 psi). The load is moved a 

76.2-mm (3'') in each increment over 6 elements. The total number of increments (locations 

of the load) required to achieve one full passage of the tire over the entire model is 32. More 

details about the procedure followed in this study to simulate the moving load can be found in 

Al-Qadi and Wang (2010). 

 

 

Figure 38. A schematic representation of the moving load modeling  

Location of sensors and damage zone: Figure 39 shows the location of the sensing 

nodes. As it is seen, the sensing nodes are located at a distance of 50.8 mm (2'') from the 

bottom of the asphalt layer. Figure 40 illustrates the layout of the sensing nodes inside the 

pavement. The distance between two consecutive sensing nodes is 304.8 mm (12''). Also, 

distance of Sensing nodes 1 and 9 from vertical boundaries is equal to 1880 mm (74''). In this 

analysis, 55 sensing nodes are used to measure the longitudinal and transversal strains. Based 

on the FE simulations, the strain values for the sensing nodes far from the loading path are 

Moving Direction Step 3 

Step 1 

Step 2 

Tire 
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very low. Thus, it is not feasible for the sensors to detect the change. Consequently, out of the 

available sensing nodes, only those along the loading path which experienced strains higher 

than 20 µε are kept for the analysis. These are Sensing nodes 1 to 9 located under the loading 

path. Since the tire loading imprint area is started from the location of Sensing node 1 and 

terminated by Sensing node 9, only the results for Sensing nodes 3 and 7, located at an 

adequate distance from loading points, are included in the analysis. Later, a new FE model is 

developed with a damage zone at the bottom of the asphalt layer. The length of the crack 

zone is 0.5'' from the bottom of the asphalt layer (Figure 39). The location of the sensing 

nodes is the same as the intact model. Sensing node 5 is above the damaged area. 

 

 

Figure 39. Crack zone and measurement location 
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Figure 40. Layout of data acquisition (sensing) nodes  

FE simulation results: Figure 41 show the transverse strains for the intact and 

damaged pavements. As it is seen, the damaged pavement experiences higher strains in all 

sensing nodes. This is more evident for Sensing node 5 which is located above the damage 

zone.  
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                         (a) Sensing node 3                                      (b) Sensing node 4 

      

                         (c) Sensing node 5                                      (d) Sensing node 6 

 

(e) Sensing node 7                                

Figure 41. Comparison of the transverse tensile strains for the intact and damaged pavement 
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2.2.3.2 Experimental Study  

The performance of the sensors is tested through an experimental study on an asphalt 

concrete specimen. The sample is tested under a three point bending configuration (Figure 

42). The test fixture is similar to that of Single Edge Notched Beam SE(B) Test which is one 

of the most documented methods to determine fracture properties (ASTM E1820-09, 2009; 

Marasteanu et al., 2012). However, the size of the sensor packaging (about 1'') limits the use 

of recommend by ASTM E1820-09 (2009) for the beam geometry in the SE(B) method. In 

this study, the fixture is developed for an asphalt concrete sample with a span length of 381 

mm (15''), thickness of 165.1 mm (6.5'') and a width of 152.4 mm (6'') (Figure 42). The 

rollers have a diameter of 30 mm (1.2'') and are setup to be free in rotation. The slab is built 

using the HMA, 4E1 mixture type provided by Michigan Department of Transportation 

(MDOT). The sample is compacted using PReSBOX Asphalt Shear-box Compactor. The 

temperature is around 150 °C (302 °F). The weight of the hot mix asphalt (HMA) is 25 kg 

and the length of the slab is equal to 450 mm (17.75''). The center load point is designed to 

provide a uniform loading. The three point bend tests are carried out using an MTS machine. 

All tests are conducted under constant axial displacement rate control. The tests are done at 2 

and 5 Hz loading frequency for 0.1, 0.15 and 0.2 mm amplitudes. Before starting the test, a 

preload equal to 0.5 kN is applied to the sample to ensure it is seated on the fixture. 

Thereafter, the cyclic displacements are applied.  

The main goal is to evaluate the response of the embedded piezoelectric transducers 

due to damage progression. Damage is introduced by making a notch at the bottom of the 

asphalt layer using a circular saw. The damage states are defined by increasing the notch size 

(a) as follows:  
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 Intact: Intact plate (a= 0 mm) 

 Damage 1: a = 22.2 mm (7/8'') 

 Damage 2: a = 31.75 mm (1 1/4'') 

For this stage, different damage states are defined to evaluate the sensitivity of the 

sensors to the damage severity. After introducing the second damage phase, the displacement 

is increased to 0.3 mm to evaluate the behavior of the sample for higher amplitudes. After a 

number of cyclic loadings, a crack propagation phenomenon is observed. The crack length is 

12.7 mm (0.5''). This new damage phase is considered as Damage 3. Accordingly, the total of 

length of crack for Damage 3 is 44.45 mm (1 3/4''). Figure 43 illustrates the captured crack 

growth in the test.  

 

(a) Three point bending configuration 

 

(b) A typical notched specimen representing Damage 2 

Figure 42. Test setup and sensor locations 
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Figure 43.  The crack propagation phase during the test (Damage state 3) 

Design and implementation of a small scale packaging system: Current installation 

procedures demand considerable care during construction. This is to insure that the 

commonly-used H-gages are properly bonded to the pavement surface layer, and are properly 

aligned in both horizontal and vertical directions. For the purpose of this study, the packaging 

system is miniaturized so that it can be tossed in the pavement material during construction or 

can be used within a mesh network distributed over the base layer (Figure 44). The size of the 

designed spherical packaging system is of the same order of a coarse aggregate particle. All 

the electronics already have a small size and the antenna can be miniaturized to fit the desired 

size. The spherical packaging systems are designed using SolidWorks software and built by a 

3D printer. The top part has an opening to put epoxy into the mould. The two parts combine 

together as a sphere with six anchor legs in three directions.  

0.5'' 
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Figure 44. The designed sensing system in a spherical casing 

The RFID, antenna and electronics are fragile and sensitive parts. They also have very 

low melting temperature. As a result, they cannot survive alone in asphalt pavement because 

asphalt pavement is under high pressure and temperature during constructions. Epoxy 

materials have relatively high melting temperature and excellent flexibility. Thus, epoxy 

materials can be used as the protectors for the sensor electronics. On the other hand, when the 

epoxy is strained, an induced axial loading is applied to the piezo. Therefore, choosing an 

appropriate epoxy resin to manufacture the spherical casing is an important issue. There 

should be stiffness compatibility between the epoxy and the host material (HMA).  Stiffness 

compatibility can be achieved using epoxy with a lower stiffness than the host material. Also, 

nonmetallic materials should be used so that it allows for wireless communication. Among 

different epoxies tested (e.g. Araldite® GY-6010 and EPIC S7514), Conathane® TU-981 

epoxy is found to perform better. The robustness of the Conathane® TU-981 epoxy to 

withstand harsh environmental conditions has been already verified (Lajnef et al., 2013). 

Thus, this epoxy is used for encasing the proposed spherical packaging system. Conathane® 

TU-981 is a two-component liquid casting system that produces a 65-Shore D elastomer of 

exceptional toughness and extraordinary processing flexibility.  
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The elastic modulus of the Conathane® TU-981 epoxy is obtained through an 

experimental study. The MTS machine is to this aim. The dimension of the Epoxy TU-981 

sample is 40 × 35 × 16 mm (length × width × height). The tests are done using cyclic loading 

on two directions of epoxy specimens. The measured elastic modulus of Epoxy TU-981 is 

258.8 MPa. Besides, the survivability of the epoxy in high pressure and temperature during 

asphalt pavement compaction is verified using the Asphalt Shear-box Compactor. For 

brevity, the results for this phase are not presented.  

Figure 45 presents the manufacturing process of the packaging system with embedded 

piezoelectric transducers. The epoxy resin is cured for 24 hours at room temperature. A series 

of 3 PZT ceramic transducers with spherical packaging are embedded within the asphalt layer 

in slab compactor. The PZT ceramic transducers are manufactured by Steiner & Martins Inc., 

USA. The PZT properties are shown in Table 8. The spheres are located at a distance of 

approximately 2'' from the bottom of the layer. The first PZT is placed at mid-span and the 

remaining ones are located at a distance of 76.2 mm (3'') from the middle PZT. The layout of 

the PZTs is shown in Figure 46. After compaction, a similar module to the plate study is 

utilized to measure the PZT outputted voltage. 
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Figure 45. Manufacturing process of spherical packaging 

 

Table 8. The properties of PZTs  

Parameter 
 

Value 

Diameter  
 

20 mm 

Thickness  
 

3 mm 

Piezo material  
 

SM111 (PZT-4) 

Resonant frequency  
 

690 KHz ± 3%  

Resonant impedance (Zm)  
 

≤3.6 Ω 

Static capacitance (Cs)  
 

1265pF±10% 

Piezoelectric constant  
d33  320×10-12m/v 

d31  -140×10-12m/v 

Density  
 

7.9g/cm3 

Electromechanical coupling 

coefficient 

Kp   0.58 

Kt    0.45 

K31  0.34 
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Figure 46. Layout of the spherical packaging in the compactor 

Comparison of the maximum voltage delivered by PZTs for different damage states: The 

preliminary tests showed that PZT 1 located at the middle of the slab is not delivering 

voltage. A probable reason is failure of the PZT or the connection wires during the 

compaction process. Accordingly, the results for the other PZTs are recorded and presented 

in Figures 47 and 48. As can be observed in these figures, the PZTs are experiencing higher 

strains and therefore outputting higher voltage by increasing the notch size.  

 

 

 

 

PZT 2 PZT 1 PZT 3 

3'' 
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      (a) Displacement: 0.1 mm                         (b) Displacement: 0.15 mm 

 

(c) Displacement: 0.2 mm 

Figure 47.  A comparison of maximum delivered voltage by PZT discs for 2 Hz loading 

frequency 

 

 

 

 

 

 

 

 

 

 

 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Intact Damage 1 Damage 2 Damage 3

V
o

lt
a

g
e 

(v
o

lt
)

PZT 2

PZT 3

(a)

-0.10

0.10

0.30

0.50

0.70

0.90

1.10

1.30

1.50

Intact Damage 1 Damage 2 Damage 3

V
o

lt
a

g
e 

(v
o

lt
)

PZT 2

PZT 3

(b)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

Intact Damage 1 Damage 2 Damage 3

V
o

lt
a

g
e 

(v
o

lt
)

PZT 2

PZT 3

(c)



73 

 

 

       (a) Displacement: 0.1 mm                        (b) Displacement: 0.15 mm 

 

 

(c) Displacement: 0.2 mm 

Figure 48.  A comparison of maximum delivered voltage by PZT discs for 5 Hz loading 

frequency 

2.2.3.3 Damage Detection Based on the FE Results  

As discussed before, a series of sensing nodes is considered near the bottom of the 

asphalt layer to detect the damage progression. Fatigue cracking is one of these distresses and 

it is caused by excessive tensile strain at the bottom of the asphalt concrete (Hafiang, 2001; 

Ghuzlan and Carpenter, 2006). Considering the importance of tensile strain in the prediction 

of fatigue cracking, this type of strain is measured for the analysis. Referring to Section 

2.2.3.1, the results for sensors with a reasonable distance from loading points are included, 

i.e., Sensing nodes 3 and 7. 10 strain levels are defined to cover the lower and upper limits of 
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the strain values extracted from the FE simulations. The minimum level of strains to be 

captured by piezoelectric transducers is about 20.00 . On the other hand, the maximum of 

the strain value extracted from the FE simulations is about 97 . Considering a reasonable 

value of 10 strain levels for the gates, the difference between the strain levels is 8.56 . 

Table 9 presents the preselected strain levels for the pavement layer. The μ and σ values are 

used to plot the PDFs corresponding to each sensor (Figure 49). As seen in Figures 49 (a)-(e), 

μ decreases and σ increases by transitioning from intact to damaged mode. Accordingly, the 

PDFs shift to left, their width increases and their height decreases due to damage progression. 

It is evident that for Sensing node 5 which located above the crack, there is a distinct change 

in the PDF shape. It is worth mentioning that even for sensors far from the damage, the PDFs 

still shift to left and expand due to damage progression.  

Table 9.  The preselected strain levels considered for the pavement FE analysis 

Gate number Strain Level () 

1 20.00 

2 28.56 

3 37.11 

4 45.67 

5 54.22 

6 62.78 

7 71.33 

8 79.89 

9 88.44 

10 97.00 
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Figure 49. Changes of PDFs due to damage based on the pavement FE analysis 
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2.2.3.4 Damage Detection Based on the Experimental Results 

The damage detection results are provided for amplitude of 0.2 mm and loading 

frequencies of 2 and 5 Hz. In this study, 7 voltage levels are taken for the gates. The 

minimum and maximum voltage thresholds are set to 0.2 and 2 volts, respectively. 

Accordingly, the difference between the strain levels is 0.3 volt. Table 10 presents the 

preselected voltage levels for the pavement layer. As discussed before, the voltage supplied 

by piezoelectric transducers is proportional to experienced strain (Sirohi and Chopra, 2000). 

However, the recorded voltage histories of PZTs 2 and 3 are inputted into a script in 

MATLAB to find the μ and σ of the strain distribution in the intact and damaged models. The 

μ and σ values are then used to plot the PDFs corresponding to each sensor (Figures 50 and 

51).  

For brevity, the cumulative time versus gate numbers and the fitted CDF curves are 

not presented. Also, since there are merely 2 sensors are involved, performing the group 

effect analysis is not done. As can be seen in Figures 50 and 51, the values of μ and σ, 

respectively, decrease and increase due to damage progression. This is in accordance with 

what previously observed for the FE model. Interestingly, the PDFs changes notably by 

transiting from Intact to Damage 1 compared to other stages. This is because the first 

introduced notch is deeper than those considered for Damage states 2 and 3. Additionally, the 

crack propagation process is accurately detected by the sensors.  
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Table 10.  The preselected strain levels considered for the pavement experimental study 

Gate number Voltage Level (volts) 

1 0.20 

2 0.50 

3 0.80 

4 1.10 

5 1.40 

6 1.70 

7 2.00 

 

 

 

Figure 50. Changes of PDFs due to damage progression in the asphalt specimen for 2 Hz 

loading frequency 
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Figure 51. Changes of PDFs due to damage progression in the asphalt specimen for 5 Hz 

loading frequency 

2.2.3.5 Discussion 

A major problem with utilization of the existing wireless sensors is providing a 

reliable power source for them. To cope with this concern, a novel approach has been 

developed in this study for the continuous battery-less monitoring of structures. The results 
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states in the FE simulations is presented in Table 11 and Figure 52. As it is seen, the highest 

variation belongs to Sensor 5 which is located above the crack zone. The variation has a 

proportionally increasing trend as the load approaches the damage zone (either from Sensors 

3 and 4, or from Sensors 7 and 6 up to Sensor 5). This is valid for both of the μ and σ trends.  

Table 11. Variation of damage indicator parameters of µ and σ based on the pavement FE 

analysis 

 

1
st
 Feature: µ  

  

2
nd

 Feature: σ  

 

 

Intact Damaged 
Variation  

Percentage 

 

Intact Damaged 
Variation  

Percentage 
Sensor 3 -1.43 -1.87 -31% 

 

4.67 5.09 9% 
Sensor 4 -0.95 -1.82 -92% 

 

4.23 5.04 19% 
Sensor 5* -0.84 -7.10 -750% 

 

4.12 9.44 129% 
Sensor 6 -1.08 -1.89 -75% 

 

4.36 5.10 17% 
Sensor 7 -1.54 -1.98 -29% 

 

4.78 5.19 9% 
*Sensor 5 is located above the crack zone. 

 

 

Figure 52. Percentage of variation of damage indicator parameters for the intact and 

damaged states based on the pavement FE analysis 
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2.3 Conclusions 

In order to evaluate the functionality of the proposed damage detection approach, 

specific infrastructure problems are studied. The FE simulation results for the pavement 

system, steel plate and steel bridge girders indicate that damage can be identified using point 

strain sensors. The same results are observed from the laboratory testing.  In this case, the 

sensors could detect different damage states including crack propagation phase. It is found 

that damage progression can be considered as a function of PDF parameters (μ and σ) 

obtained from the strain distribution. μ and σ are derived by curve fitting of the sensor output 

distribution collected from the entire memory cells of the sensor. The important observation 

from the individual sensor analysis is that the PDFs shift to left (µ decreases) and their width 

increases (σ increases) due to the damage progression. Based on the results, variations of σ 

can be regarded as a better indicator of damage.  
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CHAPTER III 

DATA FUSION IN A NETWORK OF SELF-POWERED STRAIN 

SENSORS 

3.1 Data Fusion Systems for Damage Detection  

Sensor fusion is a process of integration and extraction of desired information from 

two or more sensors. In other words, it is a process of combining multiple sensors to provide 

more useful information than the sum of individual sensors. Fused sensor data from various 

sensors offers several advantages compared to the data from a single sensor (Hall and Llinas, 

2001). In general, data fusion structure can be divided into three types (Hall and Llinas, 2001; 

Gang et al., 2010): signal-level, feature-level, and decision-level. In the signal-level fusion, 

all sensor raw data from a measured object are combined directly and a feature vector is then 

extracted from the fused data. In the feature-level fusion, features are extracted from each 

sensor according to the type of raw data. Then, this sensor information is combined at the 

phase of the feature level. All feature vectors are combined in turn to a bigger single feature 

vector, which is then used in a special classification model for decision making. In the 

decision-level fusion structure, the processes of feature extraction and pattern recognition are 

employed for single-source data obtained from each sensor. Then the generated decision 

vectors are fused using decision-level fusion techniques. Based on another common 

framework, data fusion architectures can be independent, centralized, or decentralized 

(Staszewski et al., 2004; Su et al., 2009). Independent fusion architecture is the simplest from 

in which signal features are extracted and recognition is carried out independently by 

individual sensors. In the centralized fusion architecture, a generic set of features with 

provided by individual sensors are extracted in parallel for subsequent recognition. Finally, 

http://www.sciencedirect.com.proxy1.cl.msu.edu/science/article/pii/S0951832010000591#bib5
http://www.sciencedirect.com.proxy1.cl.msu.edu/science/article/pii/S0951832010000591#bib5
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decentralized fusion architecture executes feature extraction and selection for each sensor 

independently. The features can be in common or irrelevant from sensor to sensor. All the 

extracted features are then fused for recognition (Su et al., 2009). In all of these schemes, data 

mining techniques play a key role in providing more reliable and accurate information. In this 

research, statistical and AI approaches are used to facilitate the process of the damage 

detection data fusion systems. 

3.2 Statistical Approach 

A major challenge in application of wireless sensors results from the fact that damage 

in structures is an intrinsically local phenomenon. As discussed in Chapter II, it is possible to 

detect the damage progression with individual (point) sensors. The point sensors provide 

discrete and localized measurements. Although they deliver valuable quantitative 

information, measurements at a single location might not be sufficient for accurate damage 

detection (Burton et al., 2014). Rationally, the closer the sensors to the damaged zone are, the 

higher the damage detection accuracy is. For the cases where the potential sensors are at a far 

distance from the imposed damage, the sensor may not have a sense of damage or the results 

may not have a reasonable trend. In order to tackle this issue, a potentially more effective 

data fusion strategy is defined to improve the damage detection performance through spatial 

measurements over an area of the considered structures. On this basis, it is decided to use the 

information provided by a group of sensors, termed as "group effect". In this case, even if one 

sensor does not sense the damage, the group effect will help detect the damage. Figure 53 

shows the structure of the proposed statistical-based data fusion system for detecting damage 

progression. The main goal is to find the relationship between the PDF parameters of a group 

of sensors and damage progression as follows: 

Damage progression = function of (µ𝑔𝑟𝑜𝑢𝑝, 𝜎𝑔𝑟𝑜𝑢𝑝)                                    (14) 
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Accordingly, the average, standard deviation (STD), range, minimum, maximum, 

skewness, and kurtosis of the PDF parameters (μ and σ) for the group of sensors are obtained 

and normalized for both of the experimental and numerical studies. The equations for 

skewness and Kurtosis are defined as: 

Skewness =  
𝑛

(𝑛−1)(𝑛−2)
∑ (

𝑥𝑖−�̅�

𝑠
)

3

                                    (15) 

Kurtosis =  
𝑛(𝑛+1) ∑(𝑥𝑖−�̅�)4

(𝑛−1)(𝑛−2)(𝑛−3)𝑠4 −
3(𝑛−1)2

(𝑛−2)(𝑛−3)
                                    (16) 

where x̄ is the mean and s is the standard deviation of the distribution. n is the number of 

samples.  

 

Figure 53. The statistical data fusion framework for detecting damage progression 

3.2.1 Crack Growth Detection in Steel Plate 

In order to analyze the sensor group effect, average, STD, range, minimum, 

maximum, skewness, and kurtosis of the PDF parameters (μ and σ) are obtained and 

normalized. Based on preliminary analyses, the average, range, minimum, maximum, 

skewness, and kurtosis of the PDF parameters did not have a sound relationship with the 

damage progression. Thus, only the variation of the STD of μ and σ of group of sensors is 
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taken into account. Figure 54 presents the results for different configurations. The red circles 

represent the sensing nodes that were included in the analysis. As it is seen, the STD of μ and 

σ increases with damage progression for all layouts including the sensors located along the 

crack (Figures 54 (a)-(f), (k)-(n), (q)-(t)). This is an expected case because  Sensors 4-7 in the 

group experience higher variations due to damage and therefore lead the behavior no matter if 

there exists a dormant sensor or not. The results pertaining to the STD of μ and σ are similar 

to each other. The best agreement between the FE and experimental results belongs to the 

layout with Sensors 3, 5, 6, 8 (Figure 54(m) and (n)) followed by the one including all 

sensors (Figure 54(a) and (b)). Comparing Figures 54(q) and (r) with Figures 54(s) and (t) 

reveals the higher impact of Sensors 5 and 6 than 4 and 7 in leading the increasing trend. The 

experimental results are more chaotic than FE for the layouts that do not include Sensors 4-7 

(Figure 54(g)-(j)). For these cases, even the sensors located above the notch (Sensors 3 and 8) 

cannot correct the trends. However, the sensor group effect becomes more important mainly 

because the location of damage might not be known in advance. In this case, the group effect 

can be checked to assess the damage growth. As discussed for the individual sensors in 

Chapter II, it is also possible to localize the damage using the group effect. This can be done 

by making different groups and checking which sensors lead to a notable and consistent 

increasing trend if included in the analysis. In the present study, Sensors 5 and 6 clearly have 

the highest impact on the trends and locate the damage zone. 
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Figure 54. The STD of σ and μ of group of sensors mounted on the plate 
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Figure 54. (cont’d) 
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Figure 54. (cont’d) 
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Figure 54. (cont’d) 
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 (a)                                                                 (b) 

   

    (c)                                                                      (d) 

Figure 55. Variation of the descriptive statistics of μ and σ of different groups of sensing 

nodes obtained from the girder FE model 
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Figure 55. (cont’d) 

 

(e)                                                                   (f) 

   

(g)                                                                (h) 
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Figure 55. (cont’d) 

  

(i)                                                        (j) 

 

(k)                                                         (l) 

Similar to the plate study, the average, range, minimum, maximum, skewness, and 

kurtosis of the PDF parameters did not have a sound relationship with the damage 

progression (e.g. Figures 55(a)). Thus, only the variation of the STD of μ and σ of group of 

sensors is taken into account. The important findings from these figures are as follows:  

i. The most acceptable scenario is that the STD of μ and σ of group of sensors 

increases with damage progression. This is clear for the configurations that do 
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not include the sensors very close to the damage location nor close to the web 

connection with diaphragm. The results pertaining to the STD of μ of group of 

sensors are slightly better indicators of damage progression compared to those 

for σ. 

ii. One of the best configurations to detect the damage progression is shown in 

Figure 55(a). The spacing between the sensing nodes is 20 mm and each sensor 

has a diameter equal to 10 mm. Accordingly, for the mentioned configuration, 

the location of the sensors to detect damage should be 50 mm (about 2'') far 

from the critical zone. 

iii. Including the sensors adjacent to the damage zone resulted in obtaining chaotic 

trends. This is due to the singularities around the crack. 

iv. The location of web connection with diaphragm is also a critical region. This 

zone includes the sensors along number 10 and 11. Excluding the sensors 

located in this zone resulted in obtaining smooth increasing trends. 

v. As the distance with the damage zone increases, the incremental rate vanishes or 

becomes disordered for the sensor groups placed horizontally. This is an 

expected case as the information sensed by the sensors diminishes.  

vi. It can be observed from Figure 55(h) that even including the information from 

all of the sensors does not provide good indications of the damage progression. 

In fact, an increasing trend can be observed as soon as the effect of the sensors 

close to the crack is ignored.  

vii. Assuming that the location of the damage is not known, the best scenario seems 

to be a vertical distribution of the sensors on sides of the web connection (e.g. 

Figures 55(j)). 
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It is possible to localize the damage by checking: (1) which sensors provide chaotic 

response when included in the analysis and (2) in which locations the incremental rates of the 

STD of μ and σ of group of sensors notably decreases. 

 

3.2.3 Failure of Pavement System 

Figure 56 presents the variation of the STD of μ and σ of all of the FE Sensing nodes 

3 to 7. As it is seen, the STD of μ and σ of group of sensors increases with damage 

progression. 

 

 

 Figure 56. The STD of σ and μ of group of sensors obtained from the pavement FE model 
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the sensors to the damage zone or individual changes of μ and σ. Obviously, damage 

detection process can be treated as a pattern recognition and classification problem. The 

solution is to use a classifier which can classify structures either as damaged or healthy. To 

this aim, an AI-based data fusion system is proposed for damage detection in civil 

infrastructure. The AI techniques are considered as alternatives to existing traditional 

methods for tackling real world problems. They determine the model structure by 

automatically learning from data. In the last two decades, the AI methods have been widely 

used for tackling problems in civil engineering domain (Flood and Christophilos, 1996; 

Shahin and Jaksa, 2005). AI has different well-known branches such as artificial neural 

network (ANN), fuzzy inference system (FIS), adaptive neuro-fuzzy system (ANFIS), and 

support vector machines (SVM), etc. These techniques have been successfully employed to 

solve a variety of problems in engineering field including damage detection and structural 

identification (Szewezyk and Hajela, 1994; Wu et al., 1992; Masri et al., 1993; Elkordy et al., 

1993; Zhao et al., 1998). The proposed AI-based data fusion framework consists of three 

main stages:  

(1) Structural simulation,  

(2) Information fusion in which features that are expected to characterize different 

properties of structures are extracted from a network of sensors, and  

(3) Fusion of the clustered features. The fusion is performed using the AI methods.  

The AI data fusion framework is shown in Figure 57. A flow chart of the proposed 

approach is also visualized in Figure 58. In the FE simulation phase, different damage 

scenarios are defined for the given structures. Subsequently, the cumulative time of 

occurrences at predetermined strain levels are determined for the data acquisition points 

(sensors). Using the fitted μ and σ parameters, different damage indicator features would be 

obtained for a specified number of sensors. The defined features simultaneously fuse the 
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information provided by array of scattered sensors. This is mostly of importance for resolving 

the concerns for installation procedure of sensors in the field, particularly for pavements. 

Since the method is capable of analyzing the data generated by the randomly distributed 

sensors, the pebble size SWS can be placed in the mix at the site or tossed into the paving 

materials during construction. The damage indicator vectors are then used for the calibration 

of the classifier. Subsequently, a validation phase is performed to check the damage detection 

performance of the classifier. If convergence condition (desired accuracy) is satisfied, then 

the process is stopped and the optimal number of sensors is reported.  

.  

Figure 57. The proposed AI-based data fusion framework  
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Figure 58. Flow chart of the AI-based data fusion method for damage detection 

Extraction of features that efficiently characterize the system is a critical step in multi-

sensor data fusion. An appropriate information fusion can reduce imprecision, uncertainties 
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where, 

X: Horizontal distance of the sensor from the beam center        

Y: Vertical distance of the sensor from the beam center  

μ: Mean of the strain distribution 

σ: Standard deviation of the strain distribution 

However, X, Y, μ, and σ merely include the information for single sensors. In order to 

include the sensor group effect, a set of new features are introduced to the formulation of the 

damage state as follows: 

𝐷𝑎𝑚𝑎𝑔𝑒 𝑠𝑡𝑎𝑡𝑒 = 𝑓(𝜇𝐷 , 𝜎𝐷 , 𝜇𝑆, 𝜎𝑆, 𝑍𝜇1, 𝑍𝜎1, 𝑍𝜇2, 𝑍𝜎2)                  (18) 

where, 

μ
D

:
𝜇

μave

  and μ
ave

 is the average of μ of all sensors for a specific damage scenario that 

μ belongs to it. 

σD:
𝜎

σave
  and σave is the average of σ of all sensorsfor a specific damage scenario that 

σ belongs to it. 

μ
S
: 𝜇 − μ

ave
  and μ

ave
 is the average of μ of all sensorsfor a specific damage scenario 

σS: 𝜎 − σave  and σave is the average of σ of all sensorsfor a specific damage scenario 

𝑍𝜇1:
𝜇−μave

μSTD

  and μ
STD

 is the standard deviation of μ of all sensors for a specific 

damage scenario 

𝑍𝜎1:
𝜎−σave

σSTD
  and σSTD is the standard deviation of σ of all sensorsfor a specific damage 

scenario 

𝑍𝜇2:
𝜇 − μ

ave

σave
 

𝑍𝜎2:
𝜎 − μ

ave

σave
 



98 

 

In fact, 𝑍𝜇1 and 𝑍𝜎1 are z-score functions. 𝑍𝜇2 and 𝑍𝜎2 are functions defined in this 

study inspired by the form of the conventional z-score function. However, 𝑍𝜇1, 𝑍𝜎1, 𝑍𝜇2, 

and 𝑍𝜎2 are termed as Z-functions in this study. As can be observed, the considered input 

variables efficiently take into account the sensor group effect which would improve the 

detection performance, specifically for low number of sensors. For example, assume the case 

where 10 sensors with random locations are used for the damage detection and one is located 

at the corner of the beam. For sure, μ and σ of the sensor at the corner will not have sufficient 

information for detecting the damage state. This is while by using parameters such as 

𝜇𝐷 , 𝜎𝐷, 𝜇𝑆, 𝜎𝑆, and Z-functions the information from the sensors distributed along the beam 

would enhance the classification accuracy.  

On the computing domain, numerous probabilistic, least squares, and AI methods 

have been used for multi-sensor information fusion in I/SHM (Quadri and Sidek, 2013). This 

is while, the significant data fusion capabilities of the evolutionary computation techniques in 

diagnosis of the health condition of structures have not yet been investigated in the literature.  

This research proposes a hybrid method that combines a robust branch of evolutionary 

computational, called genetic programming (GP), with logistic regression (LR) algorithm. 

Moreover, a probabilistic neural network (PNN) approach based on Bayesian decision is also 

employed to improve the damage detection accuracy. 

3.3.1 Evolutionary Computation 

Despite acceptable performance of ANNs, they are considered as black-box models. 

That is, they are not capable of generating practical prediction equations. Another limitation 

of ANNs is that their structure should be defined in advance (Alavi and Gandomi, 2011). 

Inspired by the natural evolution and the Darwinian concept of “survival of the fittest”, 

evolutionary computational (EC) methods are well-known branches of AI. Some of the 
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subsets of EC are evolutionary strategies (ESs) (Schwefel, 1975) and evolutionary 

programming (EP) (Fogel et al., 1996). These techniques are collectively known as 

evolutionary algorithms (EAs). In general, an EA consists of an initial population of random 

individuals improved by a set of genetic operators (e.g., reproduction, mutation and 

recombination). The individuals are encoded solutions in form of binary strings of numbers 

evaluated by some fitness functions (Coello et al., 2007). Improvement of the population is a 

process to reach the fittest solution with the maximum convergence. Typically in an EA, a 

population of individual is randomly created and then the members are ranked according to a 

fitness function. The members with the highest fitness ranking are given a higher chance to 

become parents for the next generation (offspring). The approach used to generate offspring 

from the parents is referred to as the reproduction heuristic. Then selected members are 

randomly transformed into new members via mutation, recombination or crossover. These 

steps are repeated until the convergence conditions are satisfied and the fittest member is 

selected (Koza, 1992; Fogel et al., 1996; Coello et al., 2007). The differences between EAs 

are in the way that they represent the individual structures, types of selection mechanism, 

forms of genetic operators, and measures of performance.  

Genetic Algorithm (GA) has been shown to be a robust EA for dealing with a wide 

variety of complex civil engineering problems (Hung et al., 2012; Unal et al., 2014). GP is a 

specialization of GA where the encoded solutions (individuals) are computer programs rather 

than binary strings (Banzhaf et al., 1998). Figure 59 shows a comparison of the encoded 

solutions (individuals) by GA and GP. In GP, inputs and corresponding output data samples 

are known and the main goal is to generate predictive models relating them (see Figure 60) 

(Weise, 2009). GP has several advantages over the other AI techniques such as ANNs. A 

notable feature of GP and its variants is that they can produce highly nonlinear prediction 

equations without a need to pre-define the form of the existing relationship (Alavi and 
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Gandomi, 2011). However, application of GP and its variants to structural damage detection 

is conspicuous by its near absence (Harvey and Todd, 2013).  

 

Figure 59. A comparative illustration of encoded solutions by GA and GP 

 

Figure 60. Conceptual scheme of input-process-output (IPO) in GP 

The GP solutions are represented in different ways such tree-shaped, graph-shaped 

and linear encodings (Alavi and Gandomi, 2011). Tree-shaped is the mostly widely used 

representation of the GP programs. However, in addition to classical tree-based GP, there are 

other types of GP where programs are represented in different ways. These are linear and 

graph-based GP (Banzhaf et al., 1998). The emphasis of the present study is placed on a 

linear-based GP technique called gene expression programming (GEP) (Ferreira, 2001). The 
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programs evolved by linear variants of GP are represented as linear strings that are decoded 

and expressed like nonlinear entities (Oltean and Grosşan, 2003). A linear GP system can run 

several orders of magnitude faster than comparable tree-based interpreting systems. The 

enhanced speed of the linear variants of GP permits conducting many runs in realistic 

timeframes. This leads to deriving consistent and high-precision models with little 

customization (Poli et al., 2007; Gandomi et al., 2011; Alavi et al., 2013). Comprehensive 

descriptions of the GP and GEP algorithms can be found in (Alavi and Gandomi, 2011).  

However, one of the limitations of the GEP algorithm is that it is basically designed 

for binary classification. Thus, this study proposes a hybrid approach called GPLR that 

combines the GEP and LR algorithms for classifying multi-stage damage states. In GPLR, 

GEP is utilized for the development of pattern recognition models and LR is used to assign 

probabilities to model scores to find the most probable damage state. The steps of the GPLR 

approach are described below.  

The GEP algorithm is trained for each of the classes in the corresponding sensor 

configurations. Consequently, separate models are derived for each class. Each of the optimal 

models derived for a particular sensor configuration operates independently and predicts 

whether the given information belongs to a specific class or not. In order to combine the 

models to evaluate the final outcome for different damage classes, a probabilistic approach 

based on LR is utilized. The idea is to substitute the highly nonlinear models evolved by GEP 

with an array of predictor variables in the LR original formulation and therefore assign the 

probabilities to obtained models. Once the probability for each damage state is known, it is 

possible to make categorical predictions about different states. The basic LR predicts a logit 

transformation of the probability of presence of the dichotomous outcome variable as a linear 

relationship with a set of independent variables (Youn and Gu, 2010). In other words, assume 

that for a damage structure: 
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𝑌 = {
0, 𝐼𝑛𝑡𝑎𝑐𝑡
1,                  𝐷𝑎𝑚𝑎𝑔𝑒 𝑆𝑡𝑎𝑡𝑒 1

                                       (19) 

Thus, Y is the binary outcome. If 𝑃(𝑌 = 1 |𝑋) is the probability of Y to be 1 and X is 

an array of predictor variables, the logistic regression of Y on X is stated as follows: 

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌 = 1 |𝑋)) =   𝑙𝑜𝑔 (
𝑃(𝑌=1 |𝑋)

1−𝑃(𝑌=1 |𝑋)
) = 𝑙𝑛 (

𝑃(𝑌=1 |𝑋)

𝑃(𝑌=0 |𝑋)
) = 𝛼 +  𝛽𝑋   (20) 

𝑃(𝑌=1 |𝑋)

1−𝑃(𝑌=1 |𝑋)
 is the odds of being damaged defined as the ratio of the probability of being 

damaged over the probability of being intact. 𝛼 and 𝛽 are, respectively, the slope and 

intercept of the regression line. X can be a combination of predictor variables (e.g., x1, .., xn). 

In this case, the term 𝛽𝑋 in the original logistic regression equation will be replaced by 

𝛽1𝑥1 + . . . + 𝛽𝑛𝑥𝑛. Often the cut-off probability (rounding threshold) of 0.50 is used to 

determine the classes, e.g., intact (class 0) or damaged (class 1). Generally, for a binary 

classification, P values equal to or greater than 0.50 are classified into class 1 while gusset 

plates with P of failure less than 0.50 are classified into class 0. If the logistic equation is 

solved for P, the following formula will be obtained for the evaluation of the probabilities: 

𝑃 =  
1

1+𝑒−(𝛼 + 𝛽𝑋)                                                   (21) 

As it is seen, the above method is mainly applicable to binary cases. Thus, in order to 

adopt the logistic concept for the existing problems with different damage classes, the GEP-

based model for each class is replaced with X in the original logistic equation (Eq. (21)). As it 

is, in this case, X would be a nonlinear combination of the predictor variables. As can be 

observed from Eq. (20), log odds (𝑙𝑛 (
𝑃

1−𝑃
)) is the core of LR and therefore, it can be used to 

derive the 𝛼 and 𝛽 coefficients for each model. To this aim, a number of quantiles or bins are 

first defined for the model outputs. Then, the distribution of both positive (1s) and negative 

(0s) categories is determined for each bin. The probability of positive cases (P) for each bin is 

equal to the ratio of the number of positive cases to the total cases. Similarly, the probability 
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of negative cases (1-P) for each bin can be determined. This procedure is done for all of the 

bins. Using these values, the odds ratio and log odds for all the bins are obtained. Finally, by 

plotting the log odds values on the y-axis against the model output in the x-axis and 

performing a weighted linear regression, the slope (𝛼) and intercept (𝛽) of the regression line 

for each of the models can be easily derived. By substituting these parameters into Eq. (21), 

the probability of each damage model can be evaluated. Apparently, the damage state with 

higher probability is the dominant state. The application of the proposed approach is not only 

limited to the investigated cases but also the entire classification systems based on the GP 

method.  

3.3.2 Probabilistic Neural Network 

A major drawback of the conventional ANNs pertains to the time-consuming iterative 

procedure required during training of the network to obtain the optimal learning parameters 

(Yan and Miyamoto, 2003). To overcome such limitation, PNN has been proposed by Specht 

(1990). PNN is essentially based on the well-known Bayesian classification by combining the 

Bayes strategy for decision making with a non-parametric estimator for the probability 

density functions (PDFs). It can be used for direct estimation of posterior probability 

densities and pattern classification (Goh, 2002). There are some studies in the literature 

focusing on the application of PNN to the structural damage identification (e.g., Lee and Yun, 

2007; Ni et al., 2001). Some of the advantages of PNN over the conventional ANN are (Adeli 

and Panakkat, 2009): (i) The PNN execution is generally much faster than the conventional 

neural network because it does not require a separate training phase, (ii) Training of the PNN 

algorithm with new training data is fairly easy, and (iii) This method provides good 

classification performance in domains with noisy data. Despite significant capabilities of 



104 

 

PNN, its application to the interpretation of the data generated by WSN or SWS is totally 

new and original.  

The PNN algorithm adopts a Bayes decision rule, i.e. it considers a test vector x with 

m dimensions that belongs to one of the classes C1, C2,…, Ck. From the multi-category 

classifier decision, x belongs to Ck if (Yan and Miyamoto, 2003): 

𝑃𝑘𝐿𝑘𝐹𝑘(𝑥) > 𝑃𝑗𝐿𝑗𝐹𝑗(𝑥)             for all kj                                (22) 

where Fk(x) and Fj(x) are the PDFs for classes Ck and Cj respectively, Lk is the loss function 

associated with misclassifying the vector as belonging to class Cj while it belongs to class Ck, 

Lj is the loss function associated with misclassifying the vector as belonging to class Ck while 

it belongs to class Cj, Pk and Pj are the prior probabilities of occurrence of the classes Ck and 

Cj, respectively. In many situations such as damage assessment problem, L and P are usually 

assumed to be equal for all classes. Hence, the key to using the decision rule given by Eq. 

(22) is to estimate the PDFs from the training patterns. PNN operates based on the concept of 

a nonparametric estimation technique known as Parzen windows classifier and its application 

to Bayesian statistics to estimate the PDFs for each classification class (Goh, 2002; Yan and 

Miyamoto, 2003; Adeli and Panakkat, 2009). If the jth training pattern for class Ck is xj, then 

the Parzen estimate of the PDF (Fk) for class Ck is (Yan and Miyamoto, 2003): 

𝐹𝑘(𝑥) =
1

(2𝜋)𝑚/2𝜂𝑚

1

𝑛
∑ 𝑒𝑥𝑝 (−

(𝑥−𝑥𝑗)
𝑇

(𝑥−𝑥𝑗)

2𝜂2
)𝑛

𝑗=1                           (23) 

or 

𝐹𝑘(𝑥) =
1

(2𝜋)𝑚/2𝜂𝑚

1

𝑛
∑ 𝑒𝑥𝑝 − (

‖𝑥−𝑥𝑗‖
2

2𝜂2 )𝑛
𝑗=1                                  (24) 

where n is the number of training patterns of class Ck, m is the input space dimension, and η 

is an adjustable smoothing parameter. In fact, the parameters xj and η represent the center and 

spread (or volume) of the Gaussian bell curve, respectively. The parameter η must be 
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determined experimentally (Goh, 2002; Yan and Miyamoto, 2003; Adeli and Panakkat, 

2009). Eq. (23) implies that any smooth density function can be expressed simply as the sum 

of small multivariate Gaussian distributions. 

Figure 61 shows a typical representation of the PNN architecture. As it is seen, the 

PNN architecture consists of four layers: (1) input layer, (2) pattern layer, (3) summation 

layer, and (4) a single-node output layer. The input layer includes the m input variables (x1, 

x2,…, xm). All of the variables x are distributed by the input layer to all the neurons in the 

pattern layer. These layers are fully connected so that one neuron is allocated for each pattern 

in the training set. Thus, the number of nodes in the pattern layer is equal to the number of 

available training input vectors (n). The number of nodes in the summation layer is equal to 

the defined classes.  A dot product operation is applied by each pattern neuron j to the input 

pattern vector x with a weight vector wj such that Aj= xwj. A transfer function in the form of 

𝑒𝑥𝑝 (
𝐴𝑗−1

𝜂2 ) is applied to Aj and then it is outputted to the summation neuron (Goh, 2002; Yan 

and Miyamoto, 2003). As both x and wj are normalized to unit length, this is equivalent to 

performing the dot product operation: 

𝑒𝑥𝑝 (−
(𝑤𝑗−𝑥)

𝑇
(𝑤𝑗−𝑥)

2𝜂2
)                                                         (25) 

which can be written as: 

𝑒𝑥𝑝 (
2𝑥𝑇𝑤𝑗−𝑥𝑇𝑥−𝑤𝑗

𝑇𝑤𝑗

2𝜂2 )                                                         (26) 

Since x and wj are normalized to unit length, the dot products xTx and wj
Twj are equal 

to 1. Thus, the above equation can be expressed as: 

𝑒𝑥𝑝 (
𝑥𝑇𝑤𝑗−1

𝜂2 )                                                         (27) 
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It can be observed that the transfer function 𝑒𝑥𝑝 (
𝑧𝑗−1

𝜂2
) and the exponential term in 

Eq. (23) have the same form. It is necessary to compute this exponential term for each of the 

neurons in the pattern layer (Goh, 2002; Yan and Miyamoto, 2003). 

 

Figure 61. A typical architecture of PNN with 4 input variables, 6 training instances, and 3 

defined classes 

The summation of units in the summation layer simply sums all the inputs from the 

pattern units that correspond to a given class. This results in the determination of the PDF of 

each category given by Eq. (23). In fact, there is one summation- layer neuron for each 

category. For instance, the output of the summation layer neuron corresponds to the class Ck 

is (Yan and Miyamoto, 2003):   

𝐶𝑘(𝑥) = ∑ 𝑒𝑥𝑝 (
(𝑥.𝑤𝑘𝑗−1)

𝜂2 )
𝑛𝑘
𝑗=1                                                    (28) 

Comparing Eq. (22) with Eq. (28), the constant term of Eq. (22) can be ignored. This 

results in the determination of the PDF of each category given by Eq. (22). It is worth 

mentioning that the transfer function is not limited to being an exponential or Gaussian. A 

number of different transfer functions are presented by Specht (1990). The smoothing 

parameter, η, has the same value throughout the network. Training of PNN can be regarded 
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as finding the best η value for a set of vectors x which maximizes the classification accuracy 

of another independent set of vectors (testing data).  The fourth layer of the network is the 

output-layer. This layer gives a binary output value corresponding to the highest PDF. The 

highest PDF indicates the best classification or category choice for that pattern. In general, a 

PNN for M classes can be defined as follows:  

𝑌𝑗(𝑥) =
1

𝑛𝑗
∑ 𝑒𝑥𝑝 (−

‖𝑥−𝑥𝑗,𝑖‖
2

2𝜂2 ) , 𝑗 = 1, … , 𝑀
𝑛𝑗

𝑖=1
                              (29) 

where nj denotes the number of data points in class j. PNN assigns x into class m if Ym(x) 

>Yj(x), j∈[1,…, M]. ||x-xj,i||
2is calculated as the sum of squares.  

3.3.3 Performance Evaluation of the AI Data Fusion Systems 

In order to verify the efficiency of the proposed data fusion damage identification 

system, its performance is evaluated on a simply supported beam under three-point bending 

and a complicated case of gusset plate of bridge. The performance analysis is based on 

extensive numerical studies. First, the results of the PNN analysis are presented for both of 

the beam and gusset plate cases. The performance of the developed GPLR method is assessed 

on the gusset plate. 

3.3.3.1 The PNN Method: Case Studies of Simply Supported Beam and Bridge Gusset 

Plate  

The performance verification with PNN is done in two stages. At the first stage, the 

method is applied to simply supported intact and damaged concrete beams under three-point 

bending. The second stage is focused on the verification of the method for a much more 

complicated case which is a bridge gusset plate. A series of FE simulations are conducted for 

both of the cases and the derived models are considered as representatives of the real 

structures. Static strain measurements at specified or randomly selected locations are used to 
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calibrate the supervised learning algorithm. Different techniques can be utilized to solve 

linear elastic fracture mechanics problems (Elvin et al., 2003; Elvin and Leung, 1999). 

However, the FE method is considered reliable because of its applicability to most elasticity 

problems, as well as its ease of implementation (Elvin et al., 2003; Rosenstrauch et al., 2013).  

Herein, the structures under consideration are assumed to be linearly elastic and are analyzed 

as 3D FE models using ABAQUS Version 6.12-3. In the FE simulations of beam, axial 

strains at the sensor locations are of interest. That is to say, only in-plane strains are 

considered to produce electric charge. For the gusset plate, maximum principle strains are 

used due to the complexity of the geometry. As a fairly similar loading pattern to real traffic 

load distribution, the input loading type is in the form of half-sine loading (Figure 29). There 

are data acquisition points remote to the damage sites that will not be any influenced by the 

damage. Thus, in real conditions, the sensors will not record any information. To consider 

this issue in this study, the data for such as acquisition points are not included in the analyses. 

It is worth mentioning that main focus of this research is to propose a pioneering damage 

detection concept and then verify its performance for a simple case and then for a 

complicated structure, such as the gusset plate. Thus, the issue of controlling different mesh 

sizes, changing the material properties, loading, etc is not within the scope of this work.  

3.3.3.1.1 Failure of Simply Supported Beam 

Figure 62 shows the geometry and loading of the investigated beams. The beam is 

modeled using three dimensional eight node linear brick elements (C3D8R). For Case I, the 

sensor locations are assumed to be randomly distributed but not very close to the notch 

(crack). Thus, sophisticated modeling (meshing) of the notch is not required. The FE model 

and mesh are shown in Figure 63. The model of intact beam consists of 158 C3D8R elements 

corresponding to 380 nodes. Taking into account the size of the real smart pebble sensors and 
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also to facilitate the implantation of the algorithm, a fairly course meshing is considered. 

Thus, each of the elements of the FE model can be a possible sensor location. Alternatively, 

in case of applying a finer mesh, the averages of the strains at elements equivalent to the 

probable sensor volume can be used. It is assumed that the damaged zone extends through the 

entire width of the beam. The damage is simulated by removing rectangular sections of 

different sizes at the centre of the beam. In this model, uniform pressure load is applied on 

the top of the beam. The amplitude of the load is optimally taken in a way that there would be 

a sense of stress throughout the beam. However, the material and geometry properties used in 

the model are as given below.  

 E = 29000MPa  

 Poisson Ratio = 0.2 

 Density = 2400 kg/m³ 

 Dimensions (L, D, W): 400×100×10mm 

 Load (Pressure): 10 MPa 

 Load Frequency = 2Hz 

 

 

Figure 62. Geometry and loading of a damaged simply supported concrete beam 
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Figure 63. The FE model of a simply supported beam 

Data Processing: The FE model of the beam is used as a representation of the real 

structure. Static strain data of the surface nodes is extracted from the simulations and used to 

derive the feature vectors for the damage state classification process. To validate the 

efficiency of the proposed approach, different damage scenarios are considered. The severity 

of damage is defined by changing the notch to the beam depth (a/D) as follows:  

              1: Intact beam (a/D = 0.00) 

               2: a/D = 0.05 

               3: a/D = 0.1 

               4: a/D = 0.2 

               5: a/D = 0.3 

               6: a/D = 0.4 

               7: a/D = 0.45 

The FE simulation results for some of the damage scenarios (i.e., Classes 1, 5, 7) are 

shown in Figure 64. The presented results belong to the maximum loading step. As discussed 

before, SWS has a series of memory cells (gates). Each of these gates cumulatively stores the 

duration of strain events at a preselected levels. In general, the number of gates is dependent 

on the nature of the problem and the material. In this study, a typical number of 10 is 

considered for the strain levels to efficiently cover the lower and upper limits of the strain 
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values extracted from the FE simulations of seven damage scenarios. The minimum and 

maximum of the strain values are about 0.122 and 288.965 , respectively. Thus, for the 

analysis, the lower and upper bounds of the strain levels are, respectively, set to 0.100 and 

300.000 . Ten gates are considered and therefore the difference between the strain levels is 

33.322 . The preselected strain levels are shown in Table 12. The obtained data are 

subsequently used to calibrate the PNN classifier. 

Table 12.  The preselected strain levels considered for the beam failure analysis 

Gate number Strain Level () 

1 0.100 

2 33.422 

3 66.744 

4 100.067 

5 133.389 

6 166.711 

7 200.033 

8 233.356 

9 266.678 

10 300.000 
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(a) Intact beam(Class 1: a/D= 0) 

 

(b) Damaged beam (Class 5: a/D= 0.3) 

 

(c) Damaged beam (Class 7: a/D= 0.45) 

Figure 64. The FE simulation results for different damage scenarios for Case I (Von Mises 

stress distribution) 

3.3.3.1.2 Failure of Gusset Plate of Bridge 

In 2007, the deck truss portion of the I-35W Highway Bridge in Minneapolis, 

Minnesota collapsed. According to The National Transportation Safety Board (NTSB, 2008), 

the collapse occurred due to a bending instability in the U10W gusset plates. Due to the 

importance of this catastrophic event, the failure analysis of the I-35W Highway Bridge has 

been the focus of many studies (e.g. Liao and Okazaki, 2009; Holt and Hartmann, 2008; Hao, 

2010; Liao et al., 2011). In this study, a gusset plate with a structure similar but not exactly 
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identical to that of the I-35W Highway Bridge is considered for further verification of the 

proposed approach. The 3D FE model for the gusset plate is shown in Figure 65. The 

dimension of the joint is given in Figure 66. Besides, Figure 67 describes the location and the 

magnitude of the loading. The load magnitude is taken equal to 10% of the critical loading at 

the time of bridge collapse (Liao and Okazaki, 2009). The plate is modeled using three 

dimensional linear tetrahedral elements (C3D4). The model of the gusset plate consists of 

about 50000 C3D4 elements corresponding to about 25000 nodes. However, the material and 

geometry properties used in the model are as given below.  

 E = 200GPa (Steel ASTM-A36)  

 Poisson Ratio = 0.3 

 Density = 7800 kg/m³ 

 Load Frequency = 0.5Hz 

The thickness of the gusset plate is 12.7 mm (0.5''). The diameter for the data 

accusations nodes (potential sensors) is equal to 10 mm. The average of the max principle 

strains at the nodes within the sensor specified area is taken as the representative strain value 

for each sensor. Several sensors are considered for the analysis. The distance between the 

sensors is taken 80mm. Considering the dimension of the plate, 28 and 16 sensors are defined 

in the horizontal and vertical directions, respectively. Thus, the maximum number of data 

acquisitions nodes is 28 × 16 = 448. The location of sensors in the gusset plate can be seen in 

Figure 65.  
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Figure 65. The geometry of the gusset plate 

 

Figure 66. Dimensions of the gusset plate joint (Liao and Okazaki, 2009) 

 

Figure 67. The location and the magnitude of the loading 
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Data Processing: Similar to Case I, static strain data of the surface nodes extracted 

from the FE simulations are used for the damage detection. In order to have a more realistic 

definition of the damage progress, an extended finite element method (XFEM) analysis is 

first performed. XFEM is an efficient extension to classical FEM to model the propagation of 

various discontinuities such as cracks (Moes et al., 1999). Herein, an XFEM crack with a 

small length (10 mm) is created at the middle of the plate and then the load is increased to 

capture the crack propagation status. Figure 68 illustrates the results of the XFEM analysis 

for critical loading along with the crack propagation direction.  

 

(a) Crack propagation direction 

 

(b) Von Mises stress distribution for critical loading  

Figure 68. The results of the XFEM analysis 

Taking into account the final length of the crack at the plate failure (530 mm) and its 

direction, fifteen damage states (classes) are defined. The damage is simulated by creating 
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notches of different sizes through a new series of FE analyses. Figure 69 presents a schematic 

definition of different damage states for the gusset plate. The first damaged case belongs to 

the initial notch with 10 mm length. The other states are created by adding 20 mm to each 

side of the initial notch on the direction already detected by XFEM. For instance, the third 

damaged class pertains to the notch with an initial length of 10 mm plus 20 mm on each side, 

10 + 20 + 20 = 60 mm. Subsequently, the damage classes can be defined by changing the 

notch size (a) as follows:  

             1: Intact beam (a= 0 mm) 

               2: a = 10 mm (Initial notch) 

               3: a = 50 mm 

               4: a = 90 mm 

               5: a = 130 mm 

               6: a = 170 mm 

               7: a = 210 mm 

               8: a = 250 mm 

               9: a = 290 mm 

               10: a = 330 mm 

               11: a = 370 mm 

               12: a = 410 mm 

               13: a = 450 mm 

               14: a = 490 mm 

               15: a = 530 mm 
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Figure 69. Definition of different damage states for the gusset plate 

The FE simulation results for some of the damage scenarios (i.e., Classes 1, 7, 9) are 

shown in Figure 70. Since Case II, is a realistic case, the number of gates (strain levels) is 

selected according to the piezoelectric properties considered for the design of the smart 

pebble sensors. The minimum level of strains to be captured by piezoelectric transducers is 

about 30.00 . On the other hand, the maximum of the strain value extracted from the FE 

simulations of fifteen damage scenarios is about 150 . Considering a reasonable number of 

ten strain levels for the gates, the difference between the strain levels is 13.33 . Table 13 

presents the preselected strain levels for the gusset plate. For this complicated case, the new 

MATLAB script is written that takes the strain-time data from ABAQUS and finds the strain 

information for the considered 448 or any other number of sensors with different sizes (for 

this case: 10 mm). 
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(a) Intact plate (Class 1: a = 0 mm) 

 

(b) Damaged plate (Class 7: a = 200 mm) 

 

                                                 (c) Damaged plate (Class 9: a = 280 mm)    

Figure 70. The FE simulation results for typical damage scenarios for Case II (Von Mises 

stress distribution) 
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Table 13.  The preselected strain levels considered for the gusset plate failure analysis 

Gate number Strain Level () 

1 30.00 

2 43.33 

3 56.67 

4 70.00 

5 83.33 

6 96.67 

7 110.00 

8 123.33 

9 136.67 

10 150.00 

3.3.3.1.3 Implementation and Simulation Results 

As discussed before, each of the nodes and elements of the FE models can be a 

possible sensor location. In order to perform the damage analysis, different numbers of data 

acquisition nodes are considered as potential sensors. The first stage is a basic analysis 

focused on detecting the damage introduced to the simply supported beam. Thereafter, the 

findings from this important stage are used to detect the damage states defined for the 

realistic gusset plate case. For the beam case, each of the elements represents a sensor 

location. For the gusset pate with complex meshing, the diameter for the potential sensors is 

equal to 10 mm. Although the main goal is to provide good damage detection accuracy, the 

nature of the simulations provides a chance of evaluating the optimal number of sensors 

required for a precise damage detection. The performance of the models developed for each 

sensor configuration is measured using the detection rate (DR) defined as follows: 

𝐷𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑎𝑚𝑎𝑔𝑒 𝑆𝑡𝑎𝑡𝑒𝑠 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑎𝑡𝑎 𝑆𝑒𝑡𝑠 𝑖𝑛 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛
                              (30) 

In the following sections, the details of the PNN algorithm used for the damage state 

classification are described. Subsequently, comprehensive explanations about the 

implementation of the method and the simulation results are provided.  
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Damage Detection for Simply Supported Beam: For the simply supported beam, 

several analyses are performed with 150, 100, 50, 25, 20, 15, 10 and 5 “randomly selected” 

elements (sensors). In order to have an insight into the effect of pre-determining of the 

location of the sensors, two separate scenarios are considered for sensor numbers equal to 10 

and 5. For these cases, the sensors are assumed to be located in the mid-span of the beam and 

above the notch. As seen in Figures 59 (a) to (c), this critical location is notably influenced by 

the applied load for both the intact and damaged cases. Each of the damage classes is 

represented by a dummy variable. The variables of 1 to 7 stand for intact beam, a/D = 0.05, 

a/D = 0.1, a/D = 0.2, a/D = 0.3, a/D = 0.4, and a/D = 0.45, respectively. For the first phase of 

the analyses, the damage state is considered to be a function of X, Y, μ and σ. For the 

analysis, the generated data sets for each of the sensor configurations are randomly classified 

into three subsets: (1) calibration, (2) validation, and (3) test subsets. The calibration set is 

used to fit the models and the validation set is used to estimate the classification error for 

model selection (Alavi et al., 2011). For each of the sensor configurations, a number of 

repetitions with newly generated random locations are considered to guarantee that the 

models with the best performance on both the calibration and validation phases are derived. 

Finally, the testing set is employed for the evaluation of the generalization ability of the final 

chosen models. The calibration, validation and testing data are usually taken as 50-70%, 15-

25% and 15-25% of all data, respectively (Alavi et al., 2011). In the present study, 70% of the 

data vectors are used for the calibration process and about 15% of the data are taken as the 

validation data. The remaining data sets are used for the testing of the obtained models. Table 

14 shows the descriptive statistics of the μ and σ values for the entire elements. 
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Table 14. Descriptive statistics of the μ and σ values for the beam 

Parameter μ σ 

Mean 1.68E-05 6.00E-06 

Median 1.68E-05 5.44E-06 

Standard Deviation 7.22E-06 1.19E-05 

Sample Variance 5.22E-11 1.42E-10 

Kurtosis 4.66E+02 1.75E+02 

Skewness -2.05E+01 1.15E+01 

Range 1.86E-04 2.31E-04 

Minimum -1.70E-04 9.73E-07 

Maximum 1.97E-05 2.32E-04 

Each calibration (training) sample is set as one neuron in the pattern layer of PNN. 

Thus, the number of neurons in the pattern layer of the PNN models made with 150, 100, 50, 

25, 20, 15, 10 and 5 randomly selected elements is 731, 490, 245, 123, 74, 49, and 25, 

respectively. Neurons in the summation layer correspond to 7 damage patterns. An extensive 

trial study is performed to select the most relevant input parameters for the PNN model and 

the smoothing parameter (η). Several runs are conducted to obtain a parameterization of PNN 

with enough generalization. When presenting new input vectors, each neuron in the 

summation layer outputs the PDF estimations for each pattern at the test sample point. The 

pattern class with the largest PDF indicates the damage class of the current test sample. A 

Gaussian function is used as the window function for the PNN algorithm. The best 

classification results for different number of sensors are presented in Table 15. Based on the 

conducted runs, the models are not any sensitive to X and Y. That is to say, μ and σ can be 

considered as sufficient representatives of the damage progress. However, as can be observed 

in Table 15, the models provide good estimations of the damage on the calibration data but 

very poor performance on the validation and testing data. Furthermore, slightly better results 

are provided by locating the 10 and 5 sensor numbers in the mid-span of the beam compared 

to the randomly distributed cases.  
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Table 15. The damage detection performance for the beam using X, Y, μ and σ as the 

predictor variables 

  Damage Detection Performance (%)   

Number of 

potential 

sensors 

 

Calibration Validation Testing 

 Optimal 

smoothing 

parameter 

150  85% 24% 24%  1E-25 

100  85% 30% 24%  1E-20 

50  88% 21% 33%  1E-20 

25  94% 19% 12%  1E-25 

15  97% 25% 20%  1E-20 

10  98% 0% 20%  1E-20 

5  92% 20% 0%  1E-25 

10 (Set)1  100% 9% 20%  1E-15 

5 (Set)2  96% 20% 20%  1E-30 

1 and 2: Sensors located in the mid-span of the beam, above the notch 

In order to improve the detection performance, the parameters that incorporate the 

"group effect" are also used for the simulations (i.e., 𝜇𝐷 , 𝜎𝐷 , 𝜇𝑆, 𝜎𝑆, and Z-functions). After 

extensive preliminary runs, it is found that the parameters defined in Eqs. (17) and (18) do 

not provide good estimations when used together. A possible reason is that each set of the 

input parameters require a specific smoothing parameter. Also, it is revealed that X, Y, μ, and 

σ even decrease the detection performance when used with other parameters. However, the 

input parameters for the final analyses are categorized into two different groups: 

(1) 𝜇𝐷, 𝜎𝐷 , 𝜇𝑆, 𝜎𝑆, and (2) Z-functions. Table 16 and 17 present the best classification results 

for different number of sensors for two different input categories. For a better visualization of 

the results, the performance of the models on the validation and testing data is separately 

shown in Figure 71. As can be observed from Tables 15 to 17 and Figure 71, introducing the 

new set of the input parameters (i.e., 𝜇𝐷 , 𝜎𝐷 , 𝜇𝑆, 𝜎𝑆, and Z-functions) to the modeling process 

results in a significant improvement of the damage detection performance. The models using 

𝜇𝐷 , 𝜎𝐷, 𝜇𝑆, 𝜎𝑆, and Z-functions as the predictor variables have a very good performance both 

on the calibration data and on the validation and testing data. Expectedly, the precision of the 



123 

 

models decreases with decreasing the number of sensors. Moreover, it can be seen that, 

nearly in all cases, the models built with Z-functions have a better performance than those 

made using𝜇𝐷 , 𝜎𝐷 , 𝜇𝑆 and 𝜎𝑆 as the input parameters. Also, the models developed with the 

second set of the predictor variables for the cases of 10 and 5 sensor numbers in the mid-span 

of the beam provide a significantly better performance than those established using only X, 

Y, μ and σ. Considering the above explanations, it can be concluded that 𝜇𝐷 , 𝜎𝐷 , 𝜇𝑆, 𝜎𝑆, and Z-

functions contain sufficient information for the detection of the damage state.  Besides, 

Figure 72 presents the detailed classification performance of the derived models on testing 

data with confusion matrixes. A confusion matrix (Kohavi and Foster, 1998) contains 

information about actual and predicted classifications. Each column of the matrix represents 

the instances in a predicted class, while each row represents the instances in an actual class. 

As an example, Figure 72(a) presents the confusion matrix for the training data for 150 

sensors. The entire testing data for this case is 156 records which is the summation of the all 

of the upper numbers in green and red boxes of the matrix. Each column shows the number of 

data sets in a specific class. According to this figure, there are 23, 22, 25, 18, 23, 23, and 19 

records available in 1 to 7 classes, respectively. The green boxes show the number of the 

correctly classified classes and their percentage to the total number of data sets. For instance, 

for class 1, 23 cases of the total of 23 records are correctly classified (100% accuracy) and the 

ratio of the 23 cases to the total of the 156 records is 14.7%. For class 7, out of total of 20 

cases, 19 cases are correctly classified (95% accuracy) and the ratio of the 19 cases to the 

total of the 156 records is 12.2%.  The summation of the correctly classified percentages in 

green boxes is equal to the overall classification accuracy of the model 

(14.7%+14.1%+16%+11.5%+14.7%+14.7%+12.2% = 98.1%).   
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Figure 71. A visual comparison of the performance of the models developed using different 

sets of input parameters for the beam analysis 
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Table 16. The damage detection performance for the beam using 𝜇𝐷 , 𝜎𝐷 , 𝜇𝑆, 𝜎𝑆 as the 

predictor variables 

  Damage Detection Performance (%)   

Number of 

potential 

sensors 

 

Calibration Validation Testing 

 Optimal 

smoothing 

parameter 

150  99% 97% 97%  25E-4 

100  100% 93% 97%  1E-4 

50  100% 98% 98%  1E-4 

25  100% 96% 92%  1E-4 

15  96% 75% 80%  1E-4 

10  92% 64% 60%  1E-5 

5  96% 20% 20%  1E-4 

10 (Set)  96% 73% 60%  1E-4 

5 (Set)  100% 80% 80%  1E-4 

Table 17. The damage detection performance for the beam using the Z-functions as the 

predictor variables 

  Damage Detection Performance (%)   

Number of 

potential 

sensors 

 

Calibration Validation Testing 

 Optimal 

smoothing 

parameter 

150  100% 99% 98%  1E-1 

100  100% 98% 99%  1E-1 

50  100% 98% 100%  1E-1 

25  100% 96% 92%  1E-2 

15  97% 75% 80%  1E-4 

10  82% 64% 80%  1E-1 

5  92% 40% 20%  1E-1 

10 (Set)  96% 91% 90%  1E-3 

5 (Set)  100% 80% 80%  1E-1 
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(a)                                                                     (b) 

   

 (c)                                                                (d) 

Figure 72. Confusion matrixes of the PNN models for the beam plate analysis 
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Figure 72. (cont’d) 

 

  (e)                                                                      (f) 

 

      (g)                                                                        (h) 
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Figure 72. (cont’d) 

 

     (i)       

Uncertainty Analysis: As it is known, the model error exists even for a well calibrated 

FEM model. This error may be caused by the boundary condition, distribution of the 

structural stiffness, uncertainty of material, etc. Moreover, the real structure might be 

subjected to environmental effects and operational states such as varying temperature and 

measurement noise (Yan and Miyamoto, 2003). PNN has noticeable merits in noisy 

conditions as it describes measurement data in a Bayesian probabilistic approach (Jiang et al., 

2011). Despite this capability, adding noise to the data in order to simulate the error of the 

analytical model and the effect of noise on the actual measurement vectors enhances the 

reliability of the proposed method. Thus, in this study, the calibration, validation and testing 

sets are polluted with random noise to simulate the performance of real sensors. To this aim, 

Gaussian noise with a mean value of zero and standard deviation equal to one standard 

deviation of the measured data is added to the input vectors. The noise pollution verification 

phase has been done only for the best models that are developed using the Z-functions (see 

Table 17).  Different noise levels are taken for the analysis (5%, 10%, 20%, 30%, and 50%). 
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The PNN algorithm is run for all the combinations shown in Table 6 with noise-polluted data. 

Figure 68 visualizes the best classification results for different number of sensors with 

various noise levels. Comparing the results shown in Tables 17 and Figure 73, it can be 

observed that increasing the noise level does not influence on the performance of the models 

on the calibration data. For the validation and testing data, the trends of the results are 

complicated. In these cases, it can be seen that the identification accuracies of the models 

gradually decrease with the increase of the noise level. The results for the testing data 

indicate that nearly all of the models have a good accuracy for noise levels up to 20%. On the 

other hand, the performance of the models subjected to higher noise levels, in particular 30 

and 50%, does not remain satisfactory. This is more evident for the 5 and 10 sensor numbers.   

 

Figure 73. The damage detection accuracy of the best models versus the noise levels for the 

beam analysis 

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80%

D
et

ec
ti

o
n

 P
er

fo
rm

a
n

ce
 (

%
)

Noise Level (%)

150 Sensors

100 Sensors

50 Sensors

25 Sensors

15 Sensors

10 Sensors

10 (Set) Sensors

5 Sensors

5 (Set) Sensors

(a) Calibration Data

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80%

D
et

ec
ti

o
n

 P
er

fo
rm

a
n

ce
 (

%
)

Noise Level (%)

150 Sensors

100 Sensors

50 Sensors

25 Sensors

15 Sensors

10 Sensors

10 (Set) Sensors

5 Sensors

5 (Set) Sensors

(b) Validation Data

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80%D
et

ec
ti

o
n

 P
er

fo
rm

a
n

ce
 (

%
)

Noise Level (%)

150 Sensors
100 Sensors
50 Sensors
25 Sensors
15 Sensors
10 Sensors
10 (Set) Sensors
5 Sensors
5 (Set) Sensors

(c) Testing Data



130 

 

Damage Detection for the Gusset Plate: The observations from the first stage of 

method verification provide valuable information to tackle the geometrically complicated 

case of gusset plate. For this case, in addition to the randomize configuration of the sensors, 

organized positioning of the sensors are also considered. As described in Section 3.2.3.1.2, 

the information for 448 data acquisition points is extracted for the analysis. However, 

considering high number of sensors is neither reasonable nor economic in practical 

applications. Thus, for the second stage of the performance verification, a maximum of 224 

sensors is taken into account. The analyses are performed with 224, 112, 56, and 28 

organized and randomly selected sensors. Similar to Case I, different pre-determined 

configuration schemes with 24, 28, 30, 42, 53, 57, and 64 sensors are also considered to 

assess the importance of locating the sensors at probable critical regions. Figure 74 shows a 

schematic representation of the sensor configurations. In this figure, black and red cells 

represent the sensors. The red cells show the sensors that do not sense damage in all of the 

damage states. Since such sensors do not record any information, they are excluded from the 

analyses. The black cells define the active sensors. Based on the results obtained in the first 

stage (Table 15 and Figure 66), it is revealed that X, Y, μ, and σ cannot be solely used for 

damage detection. Moreover, among different defined input features, Z-functions are the most 

efficient damage indicator variables. Consequently, these four input features are used for 

detecting the damage states introduced to the gusset plate. The available data for each of the 

sensor configurations are randomly divided into three calibration (70% of the data), 

validation (15% of the data), and testing (15% of the data) subsets. The descriptive statistics 

of the μ and σ values for the entire elements is shown in Table 18. As discussed before, for 

each of the randomized sensor configurations, a number of repetitions are considered to 

guarantee that the models with the best performance on both the calibration and validation 

phases are developed. Evidently, this issue is of great importance for low number of sensors. 
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     (a) 224 Organized Sensors (156 Active)            (b) 112 Organized Sensors (75 Active) 

 

     (c) 56 Organized Sensors (37 Active)                  (d) 28 Organized Sensors (17 Active) 

 

(e) 224 Randomized Sensors (168 Active)                (f) 112 Sensors (72 Active) 

 

(g) 56 Randomized Sensors (37 Active)                    (h) 28 Sensors (17 Active) 

Figure 74. A schematic representation of the sensor configurations for the gusset plate 
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Figure 74. (cont’d) 

 

       (i) 24 Sensors at Specified Locations               (j) 28 Sensors at Specified Locations 

 

   (k) 42 Sensors at Specified Locations           (l) 53 Sensors at Specified Locations 

 

          (m) 57 Sensors at Specified Locations           (n) 64 Sensors at Specified Locations 

 

   (o) 30 Sensors at Critical Location under the Notch 
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Table 18. Descriptive statistics of the μ and σ values for the gusset plate 

Parameter μ σ 

Mean 3.28E-03 3.47E-02 

Median 3.24E-05 2.30E-05 

Standard Deviation 1.90E-01 1.70E-01 

Sample Variance 3.63E-02 2.89E-02 

Kurtosis 3.69E+01 3.05E+01 

Skewness 2.01E-01 5.43E+00 

Range 3.12E+00 1.62E+00 

Minimum -2.12E+00 1.74E-08 

Maximum 1.00E+00 1.62E+00 

The number of neurons in the pattern layer of the PNN models made with 156, 75, 37, 

and 17 organized (active) sensors is 1638, 788, 389, and 179, respectively. These numbers for 

the final models with 168, 72, 37, and 17 randomly selected (active) sensors are 1764, 830, 

389, and 179, respectively. Moreover, for the pre-determined configuration schemes with 64, 

57, 53, 42, 30, 28, and 24 sensors, the number of neurons in the PNN’s pattern layer is 672, 

588, 557, 441, 315, 294, and 252, respectively. Neurons in the summation layer correspond to 

15 damage patterns. Selection of the η values to find the optimal PNN models is based on 

extensive trial and error study. Furthermore, the algorithm is run several times to obtain a 

parameterization of PNN with enough generalization. A Gaussian function is adopted as the 

window function for the PNN algorithm. The best classification results for different number 

of sensors are presented in Table 19. In order to have an insight into the area covered by the 

sensors, the ratio of the area of sensors in each configuration to the area of the plate (Area 

Ratio) is also shown in Table 19. In order to visualize the detailed classification performance 

of the derived models on testing data, the corresponding confusion matrixes are given in 

Figure 75. 

As it is seen, the model with 156, 75, 37, and 17 organized sensors have a very good 

performance on the calibration, validation and testing data. The performance of the models 

build for 168 and 72 randomly selected sensors is also very satisfying. As expected, the 
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precision of the models decreases with decreasing the number of sensors. However, 

considering the Area Ratio values, it is seen that even for 168 randomized sensors, only 

0.39% of the plate is covered by the sensors (less than 1%). This is indeed a very low rate for 

achieving such high detection accuracy. On the other hand, for the pre-determined 

configuration schemes, only 64 and 30 sensors provide acceptable results. This indicates that 

organized and randomized distribution of the sensors can be a more effective strategy for 

increasing the detection precision. It is worth mentioning that by decreasing the number of 

damage classes, the accuracy of the models remarkably increases. For instance, the detection 

accuracy of the 17 organized sensors for 8 damage classes is equal to 100%, 85% and 90% on 

the calibration, validation and testing data, respectively. For the 37 active organized sensors, 

these values are, respectively, equal to 100%, 91% and 86% on the calibration, validation and 

testing data. Thus, it is possible to reduce the number of sensors and yet have good detection 

accuracy by decreasing the number of damage classes.  
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Table 19. The damage detection performance of the PNN method for the gusset plate using 

the Z-functions as the predictor variables 

 

  
Damage Detection Performance 

(%) 
    

 Number of 

potential 

sensors 
 

Calibration Validation Testing  
Area 

Ratio 
 

Optimal 

smoothing 

parameter 

O
rg

a
n

iz
ed

 

L
o

ca
ti

o
n

 224 (156*) 
 

100% 87% 87%  0.390%  1E-5 

112 (75) 
 

100% 86% 90%  0.195%  1E-5 

56 (37) 
 

99% 66% 72%  0.097%  1E-4 

28 (17) 
 

100% 68% 76%  0.049%  1E-5 

 

     
    

R
a

n
d

o
m

iz
ed

 

L
o

ca
ti

o
n

 

224 (168) 
 

99% 94% 94%  0.390%  1E-5 

112 (72) 
 

98% 86% 84%  0.195%  1E-5 

56 (37) 
 

99% 46% 53%  0.097%  1E-4 

28 (18) 
 

100% 30% 33%  0.049%  1E-4 

S
p

ec
if

ie
d

  

L
o
ca

ti
o
n

 

     
    

24  
 

100% 30% 33%  0.042%  1E-3 

28  
 

100% 37% 29%  0.049%  1E-3 

42  
 

100% 27% 38%  0.073%  1E-4 

53  
 

99% 51% 52%  0.092%  1E-2 

57  
 

99% 51% 52%  0.099%  1E-2 

64  
 

100% 74% 74%  0.111%  1E-2 

30** 
 

98% 59% 66%  0.052%  5E-7 

 * The numbers in the parentheses represent the active sensors for each configuration. 

**The sensors are located under the notch. 
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                                           (a)                                                                 (b) 

 

                                          (c)                                                                  (d) 

 Figure 75. Confusion matrixes of the best PNN models for the gusset plate analysis 
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Figure 75. (cont’d) 

 

                                           (e)                                                                (f) 

 

 (g)                        

Uncertainty Analysis: In order to analyze the uncertainties in predictions, the 

calibration, validation and testing sets are polluted with random noise. Similar to the case of 

simply supported beam, Gaussian noise with a mean value of zero and standard deviation 

equal to one standard deviation of the measured data is added to the input vectors. The noise 
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pollution verification phase has been done only for the best models shown in Table 19. That 

is, the models for 156, 75, 37, and 17 organized sensors, 168 and 72 randomly selected 

sensors, and 64 sensors at specified locations are chosen for the uncertainty analysis. 

Referring to the uncertainty analyses of the beam shown in Figure 68, the performance of the 

models subjected to 30% and 50% noise levels is not satisfactory. Therefore, for the gusset 

plate case, only 5%, 10%, 20%, and 30%noise levels are considered. The PNN algorithm is 

run for all the chosen combinations. Figure 76 presents the best classification results for 

different number of sensors with various noise levels.  

Comparing the results shown in Tables 19 and Figure 71, it is seen that increasing the 

noise level even up to 30% does not influence the performance of the models build for 168 

and 72 randomly selected sensors. Also, the performance of the models for 156 and 75 

organized sensors is acceptable up to about 20% noise level. In all cases, it can be seen that 

the identification accuracies of the models gradually decrease with the increase of the noise 

level. Besides, the model for 64 sensors at specified locations has an acceptable accuracy 

only for 10% noise level.  
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Figure 76. The damage detection accuracy of the best PNN models versus the noise levels 

for different number of sensors  

3.3.3.2 The GPLR Method: Case Study of Bridge Gusset Plate 

The 3D FE model used for the evaluation of the PNN method is used in this phase. 

For this case, the following 7 damage states (classes) are considered:  

1: Intact beam (a= 0 mm)  

2: a = 10 mm (Initial notch) 

3: a = 90 mm 

4: a = 170 mm 

5: a = 250 mm 
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6: a = 330 mm 

7: a = 410 mm 

The same procedure described for PNN is followed to obtain the damage indicator 

parameters. The generated data sets for each of the sensor configurations are randomly 

classified into three subsets: (1) calibration, (2) validation, and (3) test subsets. The 

calibration, validation and testing data are usually taken as 50-70%, 15-25% and 15-25% of 

all data, respectively. In the present study, 70% of the data vectors are used for the calibration 

process and about 15% of the data are taken as the validation data. The remaining of the data 

sets are used for the testing of the obtained models. The GEP parameters are changed for 

different runs to find the global solution. Various parameters involved in the GEP algorithm 

are given in Table 20. The parameter setting is based on some previously suggested values 

(Alavi and Gandomi, 2011) and also after making several preliminary runs and observing the 

performance behavior. The number of programs in the population is set by the number of 

chromosomes (population size). The chromosome architectures of the models evolved by 

GEP include head size and number of genes. The head contains symbols representing both 

functions and terminals. The head size determines the complexity of each term in the evolved 

model. In other words, this parameter determines the upper limit for the size of the programs 

encoded in the gene. The number of terms in the model is determined by the number of genes 

per chromosome. Each gene codes for a different sub-expression tree or sub-ET. Different 

optimal levels are considered for the head size and number of genes parameters as tradeoffs 

between the running time and the complexity of the evolved solutions (Alavi and Gandomi, 

2011; Alavi et al., 2013). For the number of genes greater than one, the addition linking 

function is used to link the mathematical terms encoded in each gene (Alavi and Gandomi, 

2011; Alavi et al., 2013). A series of preliminary runs are conducted for high number of 

sensors to evaluate the importance of the parameters included in Eq. (17) and (18) for damage 
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detection. Similar to PNN, the models developed using X, Y, μ and σ have a very poor 

performance. Also, it is observed that X, Y, μ, and σ even decrease the detection performance 

when used with other parameters. The results also indicate that the 𝜇𝐷 , 𝜎𝐷 , 𝜇𝑆, 𝜎𝑆, and Z-

functions parameters do not provide good estimations when used together. Thus, the input 

parameters for the analyses are categorized into two different groups: (1) 𝜇𝐷 , 𝜎𝐷 , 𝜇𝑆, 𝜎𝑆, and 

(2) Z-functions. The results of the preliminary analysis showed that the models built with the 

Z-functions have a better performance than those made using 𝜇𝐷 , 𝜎𝐷 , 𝜇𝑆 and𝜎𝑆 as the input 

parameters. Consequently, for the final analyses, these four input features are used for the 

detection of the damage states introduced to the gusset plate. Referring to Table 2, there are 

3×3×3 = 27 different combinations of the algorithm parameters. A minimum of 3 replications 

are carried out for each parameter combination. The period of time acceptable for evolution 

to occur without improvement in best fitness is set via the generations without change 

parameter. After 2000 generations considered herein, a mass extinction or a neutral gene is 

automatically added to the model. In this study, basic arithmetic operators and mathematical 

functions are utilized to get the optimum GEP model. The program is run until there is no 

longer significant improvement in the performance of the models.  

Table 20. Parameter settings for the GEP algorithm 

     Parameter                                      Settings 

General  

Chromosomes  

Genes 

Head Size 

Linking Function 

 

30, 50, 100 

3, 4, 5 

10, 15, 20 

Addition 

 Function set  +, -, ×, /, √, power, exp 

Complexity Increase  

Generations without Change 

Number of Tries 

Max. Complexity 

 

2000 

3 

5 

Genetic Operators 

 

 

Mutation Rate 

Inversion Rate 

 

0.00138 

0.00546 
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3.3.3.2.1 Implementation and Simulation Results 

In the present study, there are 7 damage classes (states). Following the steps of GPLR 

described in Section 3.2.1, separate GEP models are derived for each class. For 7 damage 

states and 4 sensor configurations (112, 56, 28, and 8), a total of 28 models are derived. 

Therefore, the overall number of runs for all the models is at least equal to 27 (number of 

combinations of the algorithm parameters) × 28 (number of models) = 756. Using Eq. (21), 

probabilities are assigned to each of the models based on the LR approach. The damage state 

with higher probability is chosen as the dominant state. On the basis of extensive analyses, 

the best models for the damage states in each sensor configuration are derived and presented 

in Tables 21-25. Moreover, the models are provided as Visual Basic for Application (VBA) 

codes in Appendix. The VBA models can be deployed to Microsoft Excel for easier 

implementation. Referring to Eq. (21), probabilities (P) to predict each damage state can be 

calculated using X, α and β given in Tables 21-25. Note that X is a nonlinear combination of 

the Z-functions in which d0, …, d3 represent 𝑍𝜇2,  𝑍𝜎2, 𝑍𝜇1, and 𝑍𝜎1, respectively. 
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Table 21. The derived models for the detection of each damage state using 112 organized 

sensors (75 active) 

Damage State Model 

State 1 (Intact, a= 0 mm) 

X = ((d2+((2×d0)+ 5.994))-( -7.0×d1)) + 

(((d0^2)×((d3^3)/d1))+exp(-6.0)) +exp(((d0/d2)^2))^4; 

α= -9.08512660782129; 

β= 6.51918988984368E-77; 

State 2 (a = 10 mm) 

X = ((((-7.91^4)+(d3^2))×( -7.91+d3))×exp(d1)) + (((((-8.0^4)× -

10.0)^4)-(( -10.0×2.7)-( -8.0×d1)))^2) + ((d0^4)×exp((((-

2.97^4)×d1)×(d3×-2.97)))); 

α = -35642828.6530698; 

β = 4.49875667638908E-30; 

State 3 (a = 90 mm) 

X = (d0/(d2-exp(((d3-d2)-exp(d2))))) + 

((((d0+d0)+d0)+(d0+3.0))/((d3/d2)×(d2/-3.0)))+ (d0/(d2-((exp(d2)-

d3)-(d2/d1)))); 

α = -12.159410383184; 

β = 5.51268762967603E-02; 

State 4 (a = 170 mm) 

X = ((d1+d0)+(((d3+d0)+d3)×-9.0))+ ((((d0+d2)×d0)+2)/((d3-

d0)+(d3^2)))+((((d0×d3)+d2)+((d3-d0)-4))+3); 

α = -8.03210005727878; 

β = 7.56920021002415E-02; 

State 5 (a = 250 mm) 

X = ((((d0/3)×d1)×(d0+3))/((d3^2)×9)) + ((((d1+d2)-

d3)×(d3^4))/((d0^3)×(d1^3)))+((-2-d2)^2); 

α = -11.1545771888252; 

β = 0.21321778570173; 

State 6 (a = 330 mm) 

X = ((-8.8^4)×exp((√((d3^4))- √(10.89)))) + 

(exp(10.989)×((exp(10.989)^4)×((d0^4)× 6.993))) + exp(((((d2^4)- 

10.01)×( -0.99-d3))×9)); 

α = -8.6482095125135; 

β = 1.09885278840212E-32; 

State 7 (a = 410 mm) 

X = (((exp(d1)+exp(d1))^3)×((d1+5.5055)×(d1+d0)))+((((d1-

4.4955)×exp(d1))^3)×(( 6.3-d2)-( 4.4955-d0))) + 

(exp(((((d1+d0)^4)×( 0.986-d3))-d1))^4); 

α = -8.49403032230808; 

β = 1.13128375340451E-87; 
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Table 22. The derived models for the detection of each damage state using 56 organized 

sensors (37 active) 

Damage State Model 

State 1 (Intact, a= 0 mm) 

X = (((((((-1-d1)-d0)^2)+d2)^3)^3)^4)+d3+d2-6; 

α = -10.6305379773197; 

β = 5.5477404146232E-40; 

State 2 (a = 10 mm) 

X = ((1.55062E+36)-(-7-d1)) + ((((d1×4.95)×(d1^4))^3)/(( 

4.95×4.95)-(d1+8))) + exp((((0.999/d0)×( -6.534×10.10))×(( 

0.999×5.99)×(d3×0.999)))); 

α = 87499680.6969639; 

β = 6.15197451294272E-29; 

State 3 (a = 90 mm) 

X = ((((d0×d2)^2)×( -5.05-d3))+(( -5.05-1.8)-(d3+d3))) + 

exp(((8.18/d2)×((d0-d2)+( 3.92×d0)))) + (-1+d0); 

α = -8.50691174396521; 

β = 4.99843841351498E-131; 

State 4 (a = 170 mm) 

X = exp((((d3×d3)+(-6+d1))×( -11.03-(d3-d2))))+ (((d2+((d2-

d3)+d1))×((d1+d2)^4))^4) + (((d0+(d2×d2))×((d1+d2)^4))^4); 

α = -8.99890768675053; 

β = 6.66222120699797E-33; 

State 5 (a = 250 mm) 

X = ((((36+2d3)+(d3/d2))^3)^2); + ((d0^3)×((((-d2)-d0)+(d3×-

4.0))^3)) + ((((d0^2)×d0)×(d0×d2))+((d1×d2)×exp(6))); 

α = -10.8370323591921; 

β = 1.15295630018606E-09; 

State 6 (a = 330 mm) 

X = -27 + exp((((-440.44-d0)×(d0×d2))-( -74.50×(d2×-5.62)))) + 

((((-7×9.09)-d0)×(d2×-7))×(( -9.98×-7)×(d0×d1))); 

α = -8.41137317801545; 

β = 4.3817590910058E-08; 

State 7 (a = 410 mm) 

X = 4+d1 + (exp(((-20.08+d0)/(d1-8.1)))×((d1×-10.90)×(d2-d1))) 

+ exp(((exp(d1)× 118.81)×(-10.90×d3-d0^2))); 

α = -8.43036650035257; 

β = 9.61588479109158E-138; 
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Table 23. The derived models for the detection of each damage state using 28 organized 

sensors (17 active) 

Damage State Model 

State 1 (Intact, a= 0 mm) 

X = d1^24+d1×3d3 + ((((d1×9.09)+d0)-2+2d0)+d0) + (((d2×((((d0+d1)-

d3)^3)^4))^3)^2); 

α = -9.22728932274076; 

β = 1.43721533852321E-30; 

State 2 (a = 10 mm) 

X = (((((-9.989×= 5.988)/(d3^2))^3)×(( 673.87^3)^2))^2)+ 

exp(((((d2×d2)×d3)/(d0^3))× 5795.161))+ ((exp(((d3/d0)^2))× 
66852549.607)^3); 

α = -8.17014727523391; 

β = 9.92492065443564E-54; 

State 3 (a = 90 mm) 

X = -8.982 + √(exp((((d0/d2)+8)/((d2/d0)^2)))) + (((d1-3)+(d0-6))/64); 

α = -7.93832502139603; 

β = 9.93025946235413E-79; 

State 4 (a = 170 mm) 

X = exp(((d1×exp(d3))×(-5×(d1+5)))) + (((d1+d0)× 
729)×((d1+6)+(d0×d1)))+ ((((-7.007^2)×d2)×(2+d2))×((d3-d0)×(-

6+d2))); 

α = -7.96083513694224; 

β = 2.34283961720364E-06; 

State 5 (a = 250 mm) 

X = ((-8×((2.002/d1)×d3))×((-8-d0)×(7/d2)))+ ((((d1/d1)-d0)×(d0-

d2))/((d3^2)×(d3/9.99)))+ (((((-2/d1)- 7.07)^2)/(d3+(d1+d0)))^2); 

α = -7.83849444890817; 

β = 3.72391104592556E-05; 

State 6 (a = 330 mm) 

X = ((√ ((d3+10))+(d1+d1))-((d2+5.005)×2))+ (exp(((1-d2)-

(d0×d3)))+exp(((8.991×8.991)/d0)))+ ((((d1+9)-6)×(-3/d1))+6); 

α = -8.41298424276477; 

β = 1.06766764303909E-28; 

State 7 (a = 410 mm) 

X = ((((84.6)^3)^4)-(((d0^4)+d0)×(d3^4))) + (((exp(d0)×d0)+(( 

3.641+d0)/(d2^4)))^3)+ (d3-exp((((d2^3)+9)-(d1-8.189)))); 

α = -7.06653202693616; 

β = 2.5511686740335E-26; 
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Table 24. The derived models for the detection of each damage state using 8 organized 

sensors (8 active) 

Damage State Model 

State 1 (Intact, a= 0 mm) 

X =(d1/((exp((d3-d1))/((d2-0.064)+3.988))+((d0/d1)×(d1-d3))))+ 

exp((d1/((((d1-1.0759)^3)× -4.835)×((d3-exp(-7.313))/-14.043))))+ 

exp((d2/(d1-(d3×(((((d2/d1)/ 0.749)+( 2.326×d0))×d3)+1))))); 

α = -8.04669558957269; 

β = 9.03489419561824E-02; 

State 2 (a = 10 mm) 

X = ((((((d3^4)^2)×( 9.018/d1))+ 164.104)-( -6.066×(-

223.207/(d3+d2))))^4)+ (((((d1-d0)+(d0×-7.92))× 9.791)×(((d2+d2)-

d1)^3))×(exp((d2-d0))×(( 9.880^3)^4)))+ 

((((exp(((d2×d2)+(d1/d3)))×((d2+d3)^2))-exp(((d1^3)-( 
0.092/d1))))^4)×d0); 

α = -5.34814047260968; 

β = 1.83957943716362E-16; 

State 3 (a = 90 mm) 

X = (d1/((exp(exp(d1))/( -9.009-(d3×1.112)))×((( -9.009-d0)-

(d3+d1))-( -9.009-d1))))+ (d0×d2)+ (d2-(5.044-

((exp((1.998/(d0+d1)))-d2)/(exp((d0+4))^3)))); 

α = -4.90858192971192; 

β = 1.29797282256239; 

State 4 (a = 170 mm) 

X = ((((((d2×d1)-d0)-(d3×d1))+((d0×d0)-(d1×d1)))-d1)+(((( -4.035-

9.09)^4)^2)^3))+ (d3+(((((((d1-10)-( 2.02^4))×((d3^4)- 10))^3)-

100)^4)/d1)) + (((((4^4)^4)^4)+((( 8.08--27)- 8)×d0))+((( 8.08×8)+ 

8)-exp((d0×8.712)))); 

α = -102965953.285512; 

β = 3.0258972630069E-31; 

State 5 (a = 250 mm) 

X = (((d0+d1)+(d1/d0))×(d3-8))+ (((d1+exp(((d0× -6)×( -

6/d2))))^3)+(( 2.236-((d1+d3)×(d0^2)))^2))+ ((((((4^3)×( 4-d0))×(( 

4×d2)+(d1+5)))×( 4/d3))^4)+d1); 

α = -8.65825786799137; 

β = 3.79189016352223E-33; 

State 6 (a = 330 mm) 

X = (((((((d0-d0)+(d2^4))-d0)×((( 2.969+d2)^3)^4))^2)^2)^2)+ 

((((((((d1/d2)^4)-((d2×d0)×d2))^2)/(((d0×d3)+( -

3.996×d0))^4))^2)^2)^2)+ ((((exp(d2)- 5.1005)/( 3.999-

d0))+((d0×d3)^3))+(((d0^2)×exp(d2))+d3^2)); 

α = -5.53401307008457; 

β = 1.84854638162239E-48; 

State 7 (a = 410 mm) 

X = ((-7×((((-8×10.110)× -8)+(( 4^4)^2))-(exp((d1+d0))×(( 

4^3)×d2))))^3)+ 

exp((((((d0^3)+(d1+d3))×exp(d0))^2)+exp((((3+d1)+(d1+d0))-

d3))))+ ((1000^3)+(((((d3^4)×-49)× 8.8)^3)-((exp((8.8-

d2))+(1+d0))^2))); 

α = 55921.7314988659; 

β = 5.6248130197281E-13; 

The derived models present a complex arrangement of operators, variables, and 

constants that are used to detect damage. As an example, the expression trees (ETs) of the 

obtained models for one of the sensor configurations (28 sensor layout) are given in Figure 

77. In these figures, d0, …, d3 represent 𝑍𝜇2,  𝑍𝜎2, 𝑍𝜇1, and 𝑍𝜎1, respectively. Also, Xn in 
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the ETs is power to the n. As shown in these figures, the proposed models can be separated 

into three independent components (subprograms or genes) linked by an addition function. 

Therefore, each of the evolved subprograms contains important information about the 

physiology of the final model. Each gene expressed in the final equation is responsible for 

resolving a particular facet of the problem. Such information provides an opportunity for 

further scientific discussion at genetic and chromosomal level (Ferreira, 2001). 

 

Figure 77. Expression trees of the best models for the detection of each damage state using 

28 organized sensors (17 active) (ET = ∑Sub-ETi). 
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Figure 77. (cont’d) 

 

3.3.3.2.2 Design Example 

An illustrative design example is provided to further explain the implementation of 

the proposed approach for detecting damage. To this aim, the 28 sensor configuration is 

considered and the goal is to detect damage using one of the sensors (e.g. Sensor # 355). For 

this case, only 17 sensors sense damage including Sensor # 355. The values of μ and σ for the 

active sensors are known and the damage state is required. Note that the μ and σ for each 

sensor configuration are determined following the procedure described in Chapter II, and 
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through curve fitting of the cumulative time histograms. The detection procedure can be 

divided into the following steps:  

Step 1) Calculation of 𝜇𝑎𝑣𝑒 and 𝜎𝑎𝑣𝑒 , which are equal to the average of μ and σ of all 

active 17 sensors, respectively. 

Step 2) Calculation of 𝜇𝑆𝑇𝐷 and 𝜎𝑆𝑇𝐷 , 𝑤ℎ𝑖𝑐h are equal to the standard deviation of μ 

and σ of all active 17 sensors, respectively. 

Step 3) Calculation of 𝑍𝜇1, 𝑍𝜎1, 𝑍𝜇2, and 𝑍𝜎2which are, respectively, equal to 

𝜇# 355−μave

μSTD
, 

𝜎# 355−σave

σSTD
, 

𝜇# 355−μave

σave
, and 

𝜎# 355−μave

σave
for Sensor # 355.𝜇# 355 and𝜎# 355 represent 

the μ and σ values obtained for Sensor # 355.  

Herein, the values of 𝜇# 355,𝜎# 355, 𝑍𝜇1, 𝑍𝜎1, 𝑍𝜇2, and 𝑍𝜎2 for the given sensor are 

equal to 36.1µɛ, 14.3µɛ, -999493µ, -999863µ, -242504µ, and -242567µ, respectively. 

Step 4) Obtaining the probability of each damage model for the given data. 

The models for each damage state in 28 sensor configuration are presented in Table 

24. Referring to this table, the probability of each state can be easily estimated. By 

substituting the 𝑍𝜇2,  𝑍𝜎2, 𝑍𝜇1, and 𝑍𝜎1values for Sensor # 355 into these equations, the 

probability of each damage state is obtained as follows: 

 Probability of State 1 (Intact, a= 0 mm)) = P1= 0.010% 

 Probability of State 2 (a = 10 mm) = P2= 0.036% 

 Probability of State 3 (a = 90 mm) = P3= 0.031% 

 Probability of State 4 (a = 170 mm) = P4= 99.934% 

 Probability of State 5 (a = 250 mm) = P5= 0.040% 

 Probability of State 6 (a = 330 mm) = P6= 0.022% 

 Probability of State 7 (a = 410 mm) = P7= 0.086% 
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As it is, the damage state with higher probability is the dominant state. In this case, 

damage state 4 has the highest probability (P4= 99.934%) and therefore, the predicted class is 

4 for the given sensor information. This example is taken from the testing data and the real 

state is also damage state 4. Thus, the prediction is in a good agreement with the real damage 

state of the gusset plate.  

3.3.3.2.3 Damage Detection for the Gusset Plate  

The performance of the damage models on the calibration, validation and testing data 

is evaluated following the procedure described in Section 3.2.3.2.1. To facilitate the process, 

the 7 VBA codes given in Appendix for each sensor configuration are deployed to Microsoft 

Excel. This provides the possibility of evaluating the damage class of a particular record by 

applying the argmax (argument of the maximum) function to the probability outputs of all 7 

models in each configuration. However, the damage detection rates (DR) for different 

number of sensors are presented in Table 25.  In order to have an insight into the area covered 

by the sensors, the ratio of the area of sensors in each configuration to the area of the plate 

(Area Ratio) is also shown in Table 25. In order to visualize the detailed classification 

performance of the derived models, the corresponding confusion matrixes for the testing data 

is given in Figure 78.  

As it is seen in Table 25, all of the models have a good performance on the 

calibration, validation and testing data. The performance of the model with 75, 37, and 17 

active sensors is very satisfying. As expected, the precision of the models decreases with 

decreasing the number of sensors. However, considering the Area Ratio values, it is seen that 

even for the total of 112 sensors, only 0.195% of the plate is covered by the sensors (less than 

1%). This is indeed a very low rate for achieving such high detection accuracy. Evidently, by 

decreasing the number of damage classes, the accuracy of the models remarkably increases. 
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Thus, it is possible to reduce the number of sensors and yet have good detection accuracy by 

decreasing the number of damage classes.  

Table 25. The damage detection performance of the GPLR method for the gusset plate 

  
Damage Detection Performance    

Number of potential sensors 
 

Calibration Validation Testing  Area Ratio  

112 (75*) 
 

98% 100% 96%  0.195%  

56 (37) 
 

88% 85% 87%  0.097%  

28 (17) 
 

83% 78% 77%  0.049%  

8 
 

73% 88% 63%  0.014%  

* The numbers in the parentheses represent the active sensors for each configuration. 
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                                           (a)                                                                 (b) 

 

                                           (c)                                                                 (d) 

Figure 78. Confusion matrixes of the best GPLR models for the gusset plate analysis 

3.3.3.2.4 Uncertainty Analysis 

Similar to the PNN analysis, the calibration, validation and testing sets are polluted 

with random noise to simulate the performance of real sensors. To this aim, Gaussian noise is 

added to the input vectors. Different noise levels are considered for the analysis (10%, 20%, 

and 30%). The GEP algorithm is run for all the combinations shown in Table 25 with noise-

polluted data. Figure 79 visualizes the best classification results for different number of 
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sensors with various noise levels. Comparing the results shown in Tables 25 and Figure 79, it 

can be observed that increasing the noise level does not influence on the performance of the 

models on the calibration data. For the validation and testing data, the trends of the results are 

complicated. In these cases, it can be seen that the accuracy of the models gradually 

decreases with increasing of the noise level. The results for the testing data indicate that 

nearly all of the models have a good accuracy for noise levels up to 20%. However, the 

performance of the models on the testing data still remains satisfactory even for 30% noise 

level.  

 

 

Figure 79. The damage detection accuracy of the best GPLR models versus the noise levels 

for different number of sensors  
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3.3.3.2.5 Sensitivity Analysis 

Providing an estimation of relative importance of each parameter is an important 

concern for the aim of model developments or field investigations. As discussed before, 

among several parameters given in Eq. (18), the role of the Z-functions for detecting damage 

is much more notable. Herein, a sensitivity analysis is conducted to provide a more in depth 

understanding of the contribution of these important parameters to the detection of damage. 

The importance of each variable is evaluated by randomizing its values and then computing 

the decrease in the performance of the 28 damage models. Thereafter, the results for all 

variables are normalized. Figure 80 presents the results of the sensitivity analysis. This figure 

shows the average of the relative importance of the variables in the 7 damage models for each 

of the 112, 56, 28, and 8 sensor configurations. Moreover, the overall importance of the Z-

functions is calculated by averaging of their relative importance values in all of the 28 

damage models. Considering the overall importance of the variables, it can be observed from 

Figure 80 that 𝑍𝜇2with an overall importance of 31.4% is the most important parameter to 

detect damage compared to the other predictor variables. 𝑍𝜎1 and 𝑍𝜇2 have a fairly similar 

importance, while the models seem to be less sensitive to the changes of  𝑍𝜎2 in comparison 

with other three parameters.  

 



155 

 

 

Figure 80. Contributions of the predictor variables in the GPLR damage detection models 

3.4 Conclusions 

The data fusion in a network of self-powered strain sensors includes statistical and AI 

analyses. The effect of group of sensors is studied for the numerical simulations with a 

number of active sensors. For the statistical analysis, failure of pavement systems and crack 

growth detection in steel plate is investigated numerically and experimentally. A more in 

depth numerical analysis is done on the distortion-induced fatigue cracking in bridge girders. 

On this basis, it is shown that the STD of μ and σ of group of sensors has a sound relationship 

with the damage progression. Based on the results, this parameter increases with the 

progression of damage. Another important observation is the possibility of localizing the 

damage and quantifying its severity through the analysis of the PDF shifts. The variations of 
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system. The GPLR method performs superior to PNN for the case of 112, 56, and 28 

organized sensors.  
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CHAPTER IV 

DAMAGE IDENTIFICATION USING A HYBRID NETWORK OF 

SELF-POWERED ACCELEROMETER AND STRAIN SENSORS 

4.1 A Hybrid System for Damage Identification 

Hybrid sensor networks are emerging as viable alternatives to traditional SHM 

systems. These networks enhance the reliability and robustness of the monitoring systems by 

combining or fusing different sensor types. Information fusion is a key challenge in 

successful implementation of the multi-sensor networks (Grosse et al., 2008; Adewuyi et al., 

2009; Li et al., 2010; Lu et al., 2014). This issue becomes more challenging for hybrid WSNs 

that are both monitoring systems and autonomous data acquisition nodes. Research in the 

previous phase of this study has been focused on structural/infrastructure damage 

identification based on the analysis of the data from the PZT strain sensors. However, a major 

limitation of these types of sensors is that they can give only partial (local) information about 

the health status of the structures. Thus, the main goal of this phase of study is to establish a 

global-local damage detection approach through the analysis of the data from a hybrid 

network of self-powered accelerometer and strain sensors. To this aim, PZT cantilever-based 

accelerometers are designed for global damage detection, while PZT strain sensors are 

employed to provide local damage detection for the host structure. To illustrate the sensing 

scheme and decision fusion in a self-powered WSN, both numerical and experimental studies 

are conducted in this project. The experimental studies are carried out on an aluminum plate 

with bolted connections. The PZT strain sensors and accelerometers are installed on the 

fabricated fixture. Different damage states are obtained by loosening (or removing) one bolt 

at a time from the plate. When all bolts are fully tightened, the structure is healthy. A bolt 
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loose condition corresponds to a damaged state. Damage localization requires identification 

of which of the bolts is loose or missing. The PZT accelerometers are expected to detect 

changes in the characteristics of the overall structure. The damage details and its approximate 

location can be identified by the PZT strain sensors. The structure of the proposed hybrid 

system is schematically shown in Figure 81. Besides, a limited study is performed on the 

PFG sensors with variable injection rates. The information provided by these sensors can be 

interpreted through a similar procedure followed for sensors with constant injection rate.   

 

Figure 81. The architecture of the strain sensor and accelerometer hybrid system 

4.2 Numerical Study of a Plate with Bolted Connections 

For the numerical study, different 3D FE models are developed for each damage state 

to analyze the dynamic response of a plate specimen under cyclic loading. The strain data, as 

well as corresponding features for the data acquisition nodes (potential sensors) are extracted 

to detect the bolt damage states (fractional torque). ABAQUS/CAE 6.11 is used for the 

modeling and post-processing of the results. Dynamic implicit procedure is considered for the 

FE modeling. Following the experimental setup detailed in next section, the locations of the 
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strain sensing nodes are defined by making circular (D = 12 mm) partitions, respectively. 

These locations are then called by software to extract the average strain amplitude in each 

partition. The length, width and thickness of the top plate are 457.2 mm (18''), 457.2 mm 

(18''), 4 mm (5/32''), respectively. Figure 82 shows the assembly of the plate and the meshed 

geometry.  

Damage is introduced by loosening (or removing) one bolt (Bolt # 2 shown in Figure 

82) at a time from the plate. 9.5 mm (3/8'') stainless steel bolts are considered for the analysis. 

The nominal bolt torque representing undamaged (healthy) plate is taken 11298 N.mm (100 

in. lb). Simulations have been performed with a specific bolt at 100% (healthy), 50%, 10%, 

and 0% (physically removed) of this nominal torque. The defined damage states are as 

follows:  

 Undamaged: 100% of nominal torque 

 50% Loosened: 50% of nominal torque 

 90% Loosened: 10% of nominal torque 

 Missing Bolt: 0% of nominal torque 

In order to simulate the bolt damage states (fractional torque), the corresponding 

torque is converted to axial bolt "clamp" force and applied to Bolt # 2. The coefficient of 

friction between bolt and plate is taken 0.2.  
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   (a)                                                           (b)    

 

 (c)    

Figure 82. Assembly and meshing of the plate with bolted connections 

The displacements and the in-plane rotations of the lower fixture are constrained to 

satisfy the boundary conditions.  The simulations are performed at 8 Hz loading frequency 

for a 0.32 mm displacement applied to the center of the plate. The undamaged plate is 

modeled using 73483 linear hexahedral elements of type C3D8R. Mesh refining is adopted to 

capture high stress and strain concentration around the bolts. The used material for the fixture 

is aluminum with E = 69 GPa, ν = 0.33, and density = 2700 kg/m3.  

Figure 83 and Table 26 show the maximum principal strains obtained from the FE 

analyses for different damage states. The maximum strains are experienced at Sensing node 1 

followed by Sensing node 5 for the undamaged state. Sensing nodes 7 and 8 give the lowest 
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strain values. While the strain value at Sensing node 2 decreases by reducing the torque on 

Bolt # 2, it has an increasing trend for the other sensors. That is to say, by loosening Bolt # 2, 

other fastening bolts will experience higher stress concentration. However, it can be seen in 

Figures 23(a) and (b), and Table 26 that there is no change in the strain values when Bolt # 2 

is tightened more than 50% of the nominal torque. The most eminent strain changes can be 

seen at Sensing node 2 where the strain value drops from 256.20 με to 82.11 με by 

transitioning from the 50% Loosened to 90% Loosened damage state.  

 

 

            (a) Undamaged 

 

(b) 50% Loosened 

Figure 83. The FE results for the plate with bolted connections 
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Figure 83. (cont’d) 

  

 (c) 90% Loosened 

 

(d) Missing Bolt 

Table 26.  Maximum principal strains for different damage states for the plate with bolted 

connections 

Sensor # 

 Maximum Principal Strain (με) 

 
Undamaged 50% Loosened 90% Loosened Missing Bolt 

Sensing Node 1  138.08 138.07 176.16 182.77 

Sensing Node 2  256.21 256.20 82.11 75.85 

Sensing Node 3  143.01 143.03 183.18 189.44 

Sensing Node 4  140.26 140.26 143.69 148.40 

Sensing Node 5  246.11 250.84 252.80 252.81 

Sensing Node 6  142.29 142.28 144.36 150.19 

Sensing Node 7  40.57 40.57 37.76 36.53 

Sensing Node 8  40.84 40.84 37.84 36.88 

4.3 Experimental Study of the Plate with Bolted Connections 

For the experimental study, an aluminum plate with bolted connections is fabricated. 
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The PZT strain sensors and accelerometers are installed on the structure. The strain sensors 

are PZT-5A ceramic discs and accelerometers are PZT-5H ceramic round bimorph 

cantilevers with attached proof mass. The experimental setup is shown in Figure 84. The 

dimensions of the fixture and bolt sizes are the same as the FE model. The lower fixture is 

fully connected to the MTS shaft. A set 8 PZT ceramic discs (D = 12 mm) and round 

bimorph cantilevers are attached to the plate surface (see Figure 84). PZTs 1 to 6 are installed 

near the bolts and PZTs 7 and 8 are placed near the edge of the plate to check their sensitivity 

to damage. The round bimorph flexing transducers used in this study are piezoelectric 

ceramic disks adhered to a metal plates of brass (Figure 85). The resonant frequency, 

resonant resistance, and capacitance of the bimorphs are, respectively, 3.2kHz±0.5 kHz, 

500ohm, and 26000pF± 30% at 100 Hz. The bimorph cantilevers are tightly glued to the 

supporting block, which is made of aluminum and has dimensions of 

25.4mm×25.4mm×19.8mm. Under larger deflections, the mechanical strains cause the PZT 

to lose its piezoelectric properties (Elvin et al., 2006). On the other hand, about 7 volts should 

be generated by PZTs to activate the available sensors. In order to find a tradeoff between the 

maximum allowable tip displacements, piezoelectric failure strains, and amount of generated 

energy to activate the sensors, preliminary experiments are carried out using different tip 

masses, and loading frequencies and amplitudes. As a result, the tests are conducted at 8 Hz 

loading frequency, 0.32 mm displacement and a tip mass of 42 g. A 9.5 mm (3/8'') bolt and 

two neodymium magnets are used as tip masses. The point load is applied to the center of the 

plate using a steel sphere with 25.4 mm (1'') diameter. Before starting the test, a preload equal 

to 0.2 kN is applied to the plate to ensure it is seated on the fixture. Thereafter, 100 cyclic 

displacements are applied. The PZT outputted voltage is read on NI 9220 data acquisition 

system in parallel with the PFG sensor.  
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The structural damage considered in this experiment is a single fastener failure (Bolt # 

2). Detection of this type of damage with piezoelectric transducers has been the focus of 

some studies (Olson et al., 2006; Zein-Sabatto et al., 2011). Four different classes of 

structural damages are defined. The 100% torque value for the fastening bolts is 11298 N.mm 

(100 in. lb). Classes 1–4 of damage correspond to Undamaged (100% of nominal torque), 

50% Loosened (50% of nominal torque), 90% Loosened (10% of nominal torque), and 

Missing Bolt (0% of nominal torque/physically removed). A calibrated torque wrench is used 

to apply the required torque values to Bolt # 2. Responses are collected from PZT strain 

sensors and accelerometers for multiple measurements.  

Tables 27 and 28 show the maximum voltage outputted by the PZT strain sensors and 

accelerometers for different damage states. As seen in Table 27, the output of Strain sensor 2 

decreases by reducing the torque. The other sensors generate more voltage due to damage 

progression as they experience higher strains. This is an expected case and is in agreement 

with the FE results. Sensors 7 and 8 deliver the lowest voltage values and are not sensitive to 

the changes of the boundary condition. There is a 306% decrease in the voltage delivered by 

Strain sensor 2 due to reduction of the nominal torque from 50% to 90%. This is the highest 

change among all sensors and clearly shows the damage location. Referring to Table 28, the 

voltage delivered by Accelerometers 1 to 6 decreases due to damage progression. This shows 

that base excitation decreases in the entire system when Bolt # 2 is loosened or removed. 

Accordingly, less voltage is delivered by the accelerometers. Interestingly, Accelerometers 7 

to 8 are sensitive to the changes of the boundary condition and generate higher voltage as 

Bolt # 2 is loosened. Note that, unlike the FE results, strain sensors and accelerometers are 

sensitive to the reduction of the torque from the Undamaged to 50% Loosened phase.  
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 (a)                                                             (b) 

 Figure 84. Test setup and sensors locations for the plate with bolted connections 

 

Figure 85. The round piezoelectric bimorph actuator manufactured by Multicomp Inc.  

 

Table 27.  Maximum voltage delivered by the PZT strain sensors installed on the plate with 

bolted connections 

Sensor # 

 Maximum voltage (volt) 

 
Undamaged 50% Loosened 90% Loosened Missing Bolt 

PZT Strain Sensor 1  9.23 9.33 9.88 10.11 

PZT Strain Sensor 2  8.96 8.53 2.10 1.38 

PZT Strain Sensor 3  7.50 7.57 7.95 7.98 

PZT Strain Sensor 4  8.46 8.59 8.66 8.82 

PZT Strain Sensor 5  9.49 9.55 9.60 9.72 

PZT Strain Sensor 6  8.68 8.95 9.00 9.18 

PZT Strain Sensor 7  1.32 1.31 1.33 1.23 

PZT Strain Sensor 8  1.18 1.16 1.16 1.17 

 

Bolt # 2 
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Table 28.  Maximum voltage delivered by the PZT accelerometers installed on the plate with 

bolted connections 

Sensor # 

 Maximum voltage (volt) 

 
Undamaged 50% Loosened 90% Loosened Missing Bolt 

PZT Accelerometer 1  9.12 9.00 8.60 8.33 

PZT Accelerometer 2  9.72 9.30 8.59 8.10 

PZT Accelerometer 3  9.57 9.33 8.72 8.42 

PZT Accelerometer 4  9.81 9.46 9.44 9.40 

PZT Accelerometer 5  10.26 10.07 9.96 9.84 

PZT Accelerometer 6  10.35 9.99 9.84 9.50 

PZT Accelerometer 7  8.65 8.80 9.03 9.22 

PZT Accelerometer 8  7.92 7.99 8.18 8.53 

4.4 Damage Growth Detection Based on the FE Results 

The maximum of the strain value extracted from the FE simulations is 256.21 . 

Therefore, the upper threshold is set to 260 . On this basis, the preselected strain levels are 

taken 30.0, 68.3, 106.7, 145.0, 183.3, 221.7, and 260.0 . Following the procedure described 

in Section 2.1, the μ and σ values are extracted and used to plot the PDFs corresponding to 

each sensor (Figure 86). As seen in Figures 86(a)-(c), the shape of PDFs sensing nodes close 

to Bolt # 2 notably changes due to damage progression (Sensing nodes 1-3). For Sensing 

nodes 1 and 3, PDFs shift to the left and expand which implies an increase in strains due to 

the loosening of Bolt # 2. An inverse trend can be observed for Sensing node 1 (Figure 86(b)) 

as the strain values are reducing at this node. Referring to Figure 86, the most significant 

changes pertain to Sensing node 2. However, for most cases, the FE analysis only captures 

the transition from the 50% Loosened to 90% Loosened damage states. The other observation 

is that Sensing nodes 7 and 8 cannot detect any changes in the system (Figures 86(g) and (h)).   
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Figure 86. Change of PDFs curves due to damage progression based on the FE simulations 

of the plate with bolted connections 
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Figure 86. (cont’d) 

 

4.5 Damage Growth Detection Based on the Experimental Results 

The SWS used for this phase of study contains 7 floating-gates that are programmed 

to trigger at 7.2, 7.7, 7.9, 8.7, 9.05, 9.7, and 10.2 volts, respectively. These levels are used to 

obtain the µ, σ, and PDF plots for each sensor.  The PDF plots for the PZT strain sensors and 

accelerometers are shown in Figure 87. As seen in Figure 87, the shapes of PDFs change due 

to damage progression, except for Strain sensors 7 and 8. For Strain sensors 1, 3, 4, 5, and 6 

that are experiencing higher strains, the estimated values of PDF shown in Y-axes are 

decreasing. Therefore, the plots move to left and expand (Figures 87(a), (e) ), (g) ), (i), and 

(k)). This is contrary to the trends captured by Strain sensor 2 (Figure 87(c)). Accelerometers 

1 to 8 are experiencing lower excitations when Bolt # 2 is loosened or removed. Thus, their 

corresponding PDF values increase and the plots shift to right and contract by transitioning 

from Undamaged to Missing Bolt mode (Figures 87(b), (d), (f) ), (h), (j), (l), (n) and (p)).  

Comparing the results obtained by the PZT strain sensors and accelerometers, two 

important points can be inferred. First, all of the accelerometers provide a fairly more 

consistent behavior than the strain sensors. This is more evident for Accelerometers 7 to 8 
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that provide sound trends and capture the mode changes from Undamaged to Missing Bolt. In 

this context, Strain sensors 7 and 8 are not sensitive to the changes of the boundary condition.  

The other important observation is that the PDFs corresponding to the strain sensors 

give a good insight into the location of damage. Comparing the measurements from Strain 

sensor 2 and Accelerometer 2 (Figures 87 (b) and (c)), it can be seen that Strain sensor 2 

provides a much more eminent change of µ and σ with damage progression. In this case, the 

µ and σ of Strain sensor 2 change 905% and 216% by transitioning from the Undamaged to 

Missing Bolt mode, respectively. These rates are much lower for Accelerometer 2 and are 

equal to 272% and 179% for µ and σ, respectively. Note that, among the strain sensors, only 

Strain sensor 2 which is the closest to the damage zone experiences such fluctuations. This is 

while most of the accelerometers seem to be sensitive to the changes in the system (e.g. 

Accelerometers 2 and 8) and therefore might not be used for determining exact location of 

damage. The results clearly indicate that it is feasible to monitor changes in the 

characteristics of the overall structure even with one accelerometer (e.g. Accelerometer 7 or 

8), while several PZT strain sensors might be needed to localize the damage. 
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Figure 87. Change of PDFs curves due to damage progression based on the outputs of the 

PZT strain sensors and accelerometers installed on the plate with bolted connections 
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Figure 87. (cont’d) 
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Figure 87. (cont’d) 

  

 

4.6 Discussion 
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case, a similar approach to the one defined for sensors with constant injection rates can be 

followed by fitting curves to the voltage droppage histograms and extracting new features. 

Herein, a limited study is carried out on the results provided sensors with variable injection 

rates. A more comprehensive study will be the focus of future research. For each of the tests, 

the initial voltage of the gates is set to 1.2 volts. Then, the voltage is read after applying 100 

cycles. After each test, the sensor is tunneled and injected to reset all gates to almost the same 

voltage.  

For brevity, only the results for the Strain sensor 2 and Accelerometer 2 located close 

to Bolt # 2 are presented. Figures 88 and 89 show the voltage changes across the floating-

gates of the SWS for the Strain sensor 2 and Accelerometer 2, respectively. The activation 

thresholds for Gate 1, ..., Gate 7 are 7.2, 7.7, 7.9, 8.7, 9.05, 9.7, and 10.2 volts, respectively. 

As seen in these figures, the recorded droppage of the sensor voltage highly depends on the 

damage state. As soon as the voltage generated by a PZT exceeds a threshold corresponding 

to one of the gates, the procedure of electron injection initiates, and subsequently the voltage 

of that gate starts decreasing. Conversely, if the voltage generated by the PZT transducer is 

below the gate injection threshold, the injection stops, and therefore the charge on the 

floating-gate will not change. As an example, the voltage delivered by the Strain sensor 2 

dropped from 8.96 to 1.38 volts due to the damage progression from the Undamaged to 

Missing Bolt mode (see Table 27). At this location, the stress concentration decreases by 

loosening Bolt # 2. As long as the voltage delivered by PZT is above the 7.2 volts, at least 

one of the gates is injecting (Figure 88). In this case, as soon as the damage approaches the 

90% Loosened phase, the strain decreases and the voltage amplitude drops to 2.1 volts which 

is below the injection thresholds for all of the gates. Hence, the channels shut off. Gates 5-7 

are activated for voltage amplitudes higher than 9 volts. Since the maximum voltage 
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delivered by Strain sensor 2 for all of the damage states is 8.96 volts, none of these gates are 

activated and the initial voltage of these gates (1.2 volts) remains constant.  

A similar behavior can be observed from Figure 89 for Accelerometer 2. This 

accelerometer is experiencing lower excitations as Bolt # 2 is loosened. Referring to Figures 

89(a), (c), (e), (g), and (i), Gates 1 to 5 have experienced a drop in the charge. This is because 

the voltage generated by Accelerometer 2 exceeds their thresholds for some of the damage 

states. Gate 6 is activated only for the Undamaged phase in which the voltage of 

Accelerometer 2 exceeds 9.7 volts (Figures 89(k)). The maximum voltage delivered by 

Accelerometer 2 for all of the damage states is 9.72 volts and therefore Gate 7 is not 

activated.  

Apparently, the gate activation can be considered as an indicator of damage 

occurrence. However, the other important observation from Figures 88 and 89 is that the 

voltage droppage rate for each gate is also a good indicator of damage progression. For 

instance, consider the response of Gate 1 to the voltage generated by Accelerometer 2 for the 

Undamaged, 50% Loosened, 90% Loosened, and Missing Bolt states (Figures 89(a)). Since 

the excitation was higher for the Undamaged mode than that for the other modes, the 

injection time was higher, and therefore the voltage on the gate dropped more for this mode. 

The same is true for the 50% Loosened-90% Loosened, and 90% Loosened-Missing Bolt 

cases. The reduction in voltage droppage rates due to bolt loosening or removal are clearly 

presented in Figures 88 ((b), (d), (f), and (h)) and Figures 89 ((b), (d), (f), (h), (j), and (l)).  
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Figure 88. Voltage changes across the floating-gates of the SWS: PZT strain sensor 2 

installed on the plate with bolted connection 
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Figure 88. (cont’d) 
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Figure 88. (cont’d) 
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Figure 89. Voltage changes across the floating-gates of the SWS: PZT accelerometer 2 

installed on the plate with bolted connection 
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Figure 89. (cont’d) 
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CHAPTER V 

SUMMARY AND CONCLUSION 

This study presents a framework for the damage identification in civil infrastructure 

based on advanced data mining and self-powered monitoring approaches. It focuses on two 

main technical challenges for successful development of Smart Cities: (1) knowledge 

discovery/data mining, and (2) innovative power solutions for heterogeneous WSNs. Thus, it 

can be an integral part of the next generation of Smart Civil Infrastructure that is capable of 

self-diagnosis of damage before the occurrence of any failure. The proposed framework is 

established through the integration of statistical, AI and FE methods to interpret the limited 

data stored on-board the SWS. A new probabilistic AI-based technique, called GPLR, is 

proposed for multi-state damage classification system. Data obtained from the FE simulations 

and experimental study of hybrid SWS networks is used to calibrate the sensor-specific data 

interpretation algorithms. The framework consists of multilevel data interpretation strategies 

for the structural/infrastructure damage identification. The damage identification process is 

based on the data from individual self-powered strain sensors, data fusion in a network of 

self-powered strain sensors, and data fusion in a hybrid network of self-powered 

accelerometer and strain sensors. For each of these levels, several damage indicator features 

are extracted upon the simulation of the compressed data stored in memory chips of the SWS. 

The first strategy is focused on finding a reasonable relationship between the damage 

indicator features of point sensors and damage progression. However, a major limitation of 

this type of analysis is that the strain sensors give only partial information about the health 

status of the structures. The data fusion stages are based on the information provided by a 

group of sensors, termed as "group effect". Moreover, combination of the data from a 

network of accelerometer and strain sensors results in developing an integrated global-local 
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damage detection approach. Extensive numerical and experimental studies are carried out to 

evaluate the performance of the proposed damage detection approach. Several infrastructure 

systems are analyzed with different type of damages. The investigated cases are failure of 

simply supported beam under three-point bending, continuous health monitoring of pavement 

systems, failure of gusset plate of the I-35W highway bridge in Minneapolis, Minnesota, 

distortion-induced fatigue cracking in steel bridge girders, and crack growth detection in steel 

plates under a uniaxial tension mode. 3D dynamic FE models are developed for each of the 

cases. The experimental studies are carried out on a steel plate subjected to an in-plane 

tension, an aluminum plate with bolted connections, and on asphalt concrete specimens in 

three-point bending mode. PZT-5A ceramic discs and PZT-5H bimorph accelerometers are 

placed on the surface of the plates to measure the delivered voltage in each damage phase. 

For the asphalt experiments, a new miniaturized spherical packaging system is designed and 

tested to protect the PZT-5A ceramic discs embedded inside the specimen. For some of the 

investigated cases, uncertainty analyses are performed through the contamination of the 

damage indicator features with different noise levels. The results indicate that the proposed 

I/SHM systems are efficiently capable of detecting different damage states. However, the 

following points can also be inferred from the results presented in this research: 

 Among different probability distributions evaluated in this study, the Gaussian 

CDF is found to be the most efficient for the characterization of the data from the 

SWS with constant injection rate.  

 The FE simulation and laboratory testing results for the pavement system, steel 

plate and steel bridge girders indicate that damage can be identified using 

individual self-powered strain sensors.  
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 Based on the individual sensor analysis, the PDFs shift to left (µ decreases) and 

their width increases (σ increases) due to the damage progression. Variation of σ 

is found to be a better damage indicator.  

 The PDFs corresponding to the sensors that are closer to critical locations are 

experiencing more prominent shifts compared to those for the sensors far from the 

damage zone. This issue provides the possibility of localizing the damage and 

quantifying its severity. 

 Based on the data fusion in a network of self-powered strain sensors, the group 

effect can be efficiently used for damage identification. On this basis, the STD of 

μ and σ of group of sensors has a sound relationship with the damage progression. 

This parameter increases with the progression of damage.  

 For the cases where the statistical approach fails to provide good detections, the 

GPLR and PNN methods can be utilized to capture the patterns in a network of 

sensors. The performance of the proposed GPLR method is much better than PNN 

for the studied cases of 112, 56, and 28 sensor configurations. 

 The proposed GPLR method is a hybrid multi-class classification system that 

assigns probabilities to model scores. It provides simple yet accurate classification 

models that can be programmed on-board the sensors. Unlike the PNN models, 

the derived GPLR-based models can readily be used via spreadsheet 

programming. Besides, the straightforward structure of the GPLR method allows 

for its future application to a variety of multi-class classification problems in 

engineering domain.     

 Among several extracted damage indicator features, the Z-functions contain more 

useful information for the detection of the damage state.  
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 Based on the analysis of the plate with bolted connections, it is observed that the 

PZT bimorph accelerometers provide a fairly more consistent behavior than the 

PZT strain sensors.  

 While some of the PZT strain sensors are not sensitive to the changes of the 

boundary condition, the bimorph accelerometers capture the mode changes from 

Undamaged to Missing Bolt.  

 The PDFs corresponding to the strain sensors give a better insight into the location 

of damage compared to the accelerometers. In this context, the changes of µ and σ 

of the strain sensor adjacent to the damaged bolt are much more eminent than 

those for the accelerometers.  

 It is feasible to monitor changes in the characteristics of the overall structure even 

with one accelerometer, while several PZT strain sensors might be needed to 

localize the damage. 

Although the efficiency of the proposed frameworks is verified for some structures 

but their applicability is not limited to the investigated cases. In fact, these integrated sensing 

systems can be modified to become building blocks of future medical, mechanical, civil, 

transportation, and aerospace long-term sensing technologies. However, there are still some 

challenges that are the focus of future research as follows:  

 Considering different type of damages, as well as different type of structures for 

the case study of damage identification.  

 Although the FE simulation and laboratory results still remain satisfactory, 

verification of the proposed approach with full-scale experiments would be an 

interesting topic for future study.  

 Studying the performance of the whole sensing system including wireless 

communication more in-depth. 
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 Performance evaluation of the proposed damage detection approaches for 

materials with plastic behavior.  

 Development of a process to find the optimal number of the memory cells of the 

wireless sensors to achieve the most appropriate strain pattern. 

 Development of a more comprehensive approach for optimal sensor placement 

(OSP) using robust optimization algorithms.  

 The GPLR and PNN algorithms are supervised learning methods based on the 

labeled data. Future research may focus on detecting damage for the cases where 

the target classes are unknown. To this aim, unsupervised learning algorithms 

such as self-organizing map (SOM) seem to be the most efficient tools.  

 Verification of the long-term performance of the sensing system for real-life 

structure and environmental conditions. The obtained results are based on the 

experiments carried out at room temperature (25°C). In this context, future 

research can focus on the determination of the effects of ambient temperature on 

the performance of the proposed system. 

 Analysis of the outputs of sensors that have floating-gates with variable injection 

rates. In this case, voltage droppage across the floating gates may be analyzed 

rather than obtaining the corresponding cumulative time histograms.  

 Developing a new framework based on the obtained features to predict the 

remaining life of civil infrastructure systems. 
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The VBA Codes for Different Sensors Configurations 

(Note: More, d(0), …, d(3) represent 𝑍𝜇2,  𝑍𝜎2, 𝑍𝜇1, and 𝑍𝜎1, respectively.) 

A.1.: The VBA Codes for 128 Organized Sensors 

 
' State 1 (Intact, a= 0 mm) 

'-------------------------- 
Function gepModel1(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C4 As Double = 

5.994 

    Const G1C8 As Double = 0# 

    Const G1C7 As Double = -

7# 

    Const G2C5 As Double = -

6# 

 

    Dim y As Double 

    y = 0# 

 

    y = ((d(2) + ((d(0) + d(0)) + 

G1C4)) - ((G1C8 * G1C8) + 

(G1C7 * d(1)))) 

    y = y + (((d(0) ^ 2) * ((d(3) 

^ 3) / d(1))) + Exp(G2C5)) 

    y = y + (Exp(((d(0) / d(2)) ^ 

2)) ^ 4) 

    Const SLOPE As Double = 

6.51918988984368E-77 

    Const INTERCEPT As 

Double = -9.08512660782129 

 

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel1 = 

probabilityOne 

End Function 

 

 

' State 2 (a = 10 mm) 

'-------------------------- 

Function gepModel2(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C9 As Double = -

7.91208 

    Const G2C6 As Double = -

10# 

    Const G2C1 As Double = 

2.7 

    Const G2C2 As Double = -

8# 

    Const G3C9 As Double = -

2.97 

    Dim y As Double 

    y = 0# 

    y = ((((G1C9 ^ 4) + (d(3) ^ 

2)) * (G1C9 + d(3))) * 

Exp(d(1))) 

    y = y + (((((G2C2 ^ 4) * 

G2C6) ^ 4) - ((G2C6 * G2C1) 

- (G2C2 * d(1)))) ^ 2) 

    y = y + ((d(0) ^ 4) * 

Exp((((G3C9 ^ 4) * d(1)) * 

(d(3) * G3C9)))) 

    Const SLOPE As Double = 

4.49875667638908E-30 

    Const INTERCEPT As 

Double = -35642828.6530698 

 

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel2 = 

probabilityOne 

End Function 

 

' State 3 (a = 90 mm) 

'-------------------------- 

Function gepModel3(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G2C3 As Double = -

3# 

    Dim y As Double 

    y = 0# 

    y = (d(0) / (d(2) - Exp(((d(3) 

- d(2)) - Exp(d(2)))))) 

    y = y + ((((d(0) + d(0)) + 

d(0)) + (d(0) - G2C3)) / ((d(3) / 

d(2)) * (d(2) / G2C3))) 

    y = y + (d(0) / (d(2) - 

((Exp(d(2)) - d(3)) - (d(2) / 

d(1))))) 

    Const SLOPE As Double = 

5.51268762967603E-02 

    Const INTERCEPT As 

Double = -12.159410383184                             

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel3 = 

probabilityOne 

End Function 

 

' State 4 (a = 170 mm) 

'-------------------------- 

Function gepModel4(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C9 As Double = -

9# 

    Const G2C9 As Double = 

10# 

    Const G2C1 As Double = 8# 

    Const G3C9 As Double = -

3# 

    Const G3C3 As Double = 4# 

    Dim y As Double 

    y = 0# 

    y = ((d(1) + d(0)) + (((d(3) + 

d(0)) + d(3)) * G1C9)) 

    y = y + ((((d(0) + d(2)) * 

d(0)) + (G2C9 - G2C1)) / 

((d(3) - d(0)) + (d(3) ^ 2))) 

    y = y + ((((d(0) * d(3)) + 

d(2)) + ((d(3) - d(0)) - G3C3)) 

- G3C9) 

    Const SLOPE As Double = 

7.56920021002415E-02 

    Const INTERCEPT As 

Double = -8.03210005727878        
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    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel4 = 

probabilityOne 

End Function 

 

 

' State 5 (a = 250 mm) 

'-------------------------- 

Function gepModel5(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C9 As Double = 3# 

    Const G3C6 As Double = -

2# 

    Dim y As Double 

    y = 0# 

    y = ((((d(0) / G1C9) * d(1)) 

* (d(0) + G1C9)) / ((d(3) ^ 2) * 

(G1C9 ^ 2))) 

    y = y + ((((d(1) + d(2)) - 

d(3)) * (d(3) ^ 4)) / ((d(0) ^ 3) 

* (d(1) ^ 3))) 

    y = y + ((G3C6 - d(2)) ^ 2) 

    Const SLOPE As Double = 

0.21321778570173 

    Const INTERCEPT As 

Double = -11.1545771888252                                 

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel5 = 

probabilityOne 

End Function 

 

' State 6 (a = 330 mm) 

'-------------------------- 

Function gepModel6(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C3 As Double = -

8.8 

    Const G1C9 As Double = 

10.89 

    Const G2C6 As Double = 

10.989 

    Const G2C4 As Double = 

6.993 

    Const G3C0 As Double = 9# 

    Const G3C8 As Double = 

10.01 

    Const G3C6 As Double = -

0.99 

    Dim y As Double 

    y = 0# 

    y = ((G1C3 ^ 4) * 

Exp((Sqr((d(3) ^ 4)) - 

Sqr(G1C9)))) 

    y = y + (Exp(G2C6) * 

((Exp(G2C6) ^ 4) * ((d(0) ^ 4) 

* G2C4))) 

    y = y + Exp(((((d(2) ^ 4) - 

G3C8) * (G3C6 - d(3))) * 

G3C0)) 

    Const SLOPE As Double = 

1.09885278840212E-32 

    Const INTERCEPT As 

Double = -8.6482095125135 

 

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel6 = 

probabilityOne 

End Function 

 

 

' State 7 (a = 410 mm) 

'-------------------------- 

Function gepModel7(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C3 As Double = 

5.5055 

    Const G2C1 As Double = 

6.3 

    Const G2C5 As Double = 

4.4955 

    Const G3C0 As Double = 

0.98604593604099 

 

    Dim y As Double 

    y = 0# 

    y = (((Exp(d(1)) + 

Exp(d(1))) ^ 3) * ((d(1) + 

G1C3) * (d(1) + d(0)))) 

    y = y + ((((d(1) - G2C5) * 

Exp(d(1))) ^ 3) * ((G2C1 - 

d(2)) - (G2C5 - d(0)))) 

    y = y + (Exp(((((d(1) + d(0)) 

^ 4) * (G3C0 - d(3))) - d(1))) ^ 

4) 

    Const SLOPE As Double = 

1.13128375340451E-87 

    Const INTERCEPT As 

Double = -8.49403032230808                                

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel7 = 

probabilityOne 

End Function 

A.2.: The VBA Codes for 58 Organized Sensors

' State 1 (Intact, a= 0 mm) 

'-------------------------- 

Function gepModel1(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C6 As Double = -

1# 

    Const G3C6 As Double = -

6# 

    Dim y As Double 

    y = 0# 

    y = (((((((G1C6 - d(1)) - 

d(0)) ^ 2) + d(2)) ^ 3) ^ 3) ^ 4) 

    y = y + d(3) 

    y = y + (d(2) + G3C6) 

    Const SLOPE As Double = 

5.5477404146232E-40 

    Const INTERCEPT As 

Double = -10.6305379773197                                

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel1 = 

probabilityOne 

End Function 
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' State 2 (a = 10 mm) 

'-------------------------- 

Function gepModel2(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C9 As Double = -

6# 

    Const G1C7 As Double = 8# 

    Const G1C1 As Double = 9# 

    Const G1C2 As Double = -

5556.20791027609 

    Const G1C4 As Double = 

79.92 

    Const G1C3 As Double = 

119.709264982805 

    Const G2C3 As Double = 

4.95 

    Const G2C6 As Double = -

8# 

    Const G3C4 As Double = 

0.999 

    Const G3C3 As Double = -

6.534 

    Const G3C5 As Double = 

10.0999394001515 

    Const G3C7 As Double = 

5.99338861320479 

    Dim y As Double 

    y = 0# 

 

    y = ((((G1C2 + G1C4) * 

(G1C3 ^ 4)) ^ 3) - ((G1C9 + 

G1C7) - (G1C1 + d(1)))) 

    y = y + ((((d(1) * G2C3) * 

(d(1) ^ 4)) ^ 3) / ((G2C3 * 

G2C3) - (d(1) - G2C6))) 

    y = y + Exp((((G3C4 / d(0)) 

* (G3C3 * G3C5)) * ((G3C4 * 

G3C7) * (d(3) * G3C4)))) 

    Const SLOPE As Double = 

6.15197451294272E-29 

    Const INTERCEPT As 

Double = 87499680.6969639                                 

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel2 = 

probabilityOne 

End Function 

 

' State 3 (a = 90 mm) 

'-------------------------- 

Function gepModel3(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C5 As Double = -

5.05 

    Const G1C3 As Double = 

1.8 

    Const G2C5 As Double = 

8.180991819 

    Const G2C8 As Double = 

3.9204 

    Const G3C5 As Double = 

3.9996 

    Const G3C3 As Double = -

3# 

    Dim y As Double 

    y = 0# 

    y = ((((d(0) * d(2)) ^ 2) * 

(G1C5 - d(3))) + ((G1C5 - 

G1C3) - (d(3) + d(3)))) 

    y = y + Exp(((G2C5 / d(2)) 

* ((d(0) - d(2)) + (G2C8 * 

d(0))))) 

    y = y + (((G3C5 - G3C5) - 

Exp((G3C3 - G3C5))) + d(0)) 

    Const SLOPE As Double = 

4.99843841351498E-131 

    Const INTERCEPT As 

Double = -8.50691174396521                                

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel3 = 

probabilityOne 

End Function 

 

' State 4 (a = 170 mm) 

'-------------------------- 

Function gepModel4(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C7 As Double = -

6# 

    Const G1C2 As Double = -

6.533993466 

    Const G1C1 As Double = 

4.5 

    Dim y As Double 

    y = 0# 

    y = Exp((((d(3) * d(3)) + 

(G1C7 + d(1))) * ((G1C2 - 

G1C1) - (d(3) - d(2))))) 

    y = y + (((d(2) + ((d(2) - 

d(3)) + d(1))) * ((d(1) + d(2)) ^ 

4)) ^ 4) 

    y = y + (((d(0) + (d(2) * 

d(2))) * ((d(1) + d(2)) ^ 4)) ^ 

4) 

    Const SLOPE As Double = 

6.66222120699797E-33 

    Const INTERCEPT As 

Double = -8.99890768675053 

 

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel4 = 

probabilityOne 

End Function 

 

 

' State 5 (a = 250 mm) 

'-------------------------- 

Function gepModel5(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C2 As Double = 6# 

    Const G2C1 As Double = -

4# 

    Const G2C7 As Double = -

1# 

    Const G3C4 As Double = 6# 

    Dim y As Double 

    y = 0# 

    y = (((((G1C2 ^ 2) + (d(3) + 

d(3))) + (d(3) / d(2))) ^ 3) ^ 2) 

    y = y + ((d(0) ^ 3) * 

((((G2C7 * d(2)) - d(0)) + (d(3) 

* G2C1)) ^ 3)) 

    y = y + ((((d(0) ^ 2) * d(0)) 

* (d(0) * d(2))) + ((d(1) * d(2)) 

* Exp(G3C4))) 

    Const SLOPE As Double = 

1.15295630018606E-09 

    Const INTERCEPT As 

Double = -10.8370323591921                                 

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 
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    gepModel5 = 

probabilityOne 

End Function 

 

' State 6 (a = 330 mm) 

'-------------------------- 

Function gepModel6(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C6 As Double = -

3# 

    Const G2C6 As Double = -

440.44 

    Const G2C3 As Double = -

80.7999192 

    Const G2C1 As Double = 

6.2937 

    Const G2C7 As Double = -

5.6245322133 

    Const G3C4 As Double = -

7# 

    Const G3C0 As Double = -

9.98001 

    Const G3C7 As Double = -

7# 

    Const G3C8 As Double = 

9.09 

    Dim y As Double 

    y = 0# 

    y = (G1C6 ^ 3) 

    y = y + Exp((((G2C6 - d(0)) 

* (d(0) * d(2))) - ((G2C3 + 

G2C1) * (d(2) * G2C7)))) 

    y = y + ((((G3C7 * G3C8) - 

d(0)) * (d(2) * G3C4)) * 

((G3C0 * G3C7) * (d(0) * 

d(1)))) 

    Const SLOPE As Double = 

4.3817590910058E-08 

    Const INTERCEPT As 

Double = -8.41137317801545                                

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel6 = 

probabilityOne 

End Function 

 

' State 7 (a = 410 mm) 

'-------------------------- 

Function gepModel7(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C2 As Double = 4# 

    Const G2C6 As Double = 

4.846643505 

    Const G2C7 As Double = -

20.08012008002 

    Const G2C2 As Double = -

8.1 

    Const G3C6 As Double = -

10.90087909911 

    Dim y As Double 

    y = 0# 

    y = (G1C2 + d(1)) 

    y = y + (Exp(((G2C7 + d(0)) 

/ (d(1) + G2C2))) * ((d(1) * 

G2C6) * (d(2) - d(1)))) 

    y = y + Exp(((Exp(d(1)) * 

(G3C6 * G3C6)) * ((G3C6 * 

d(3)) - (d(0) * d(0))))) 

    Const SLOPE As Double = 

9.61588479109158E-138 

    Const INTERCEPT As 

Double = -8.43036650035257 

 

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel7 = 

probabilityOne 

 

End Function 

 

A.3.: The VBA Codes for 28 Organized Sensors 

 
' State 1 (Intact, a= 0 mm) 

'-------------------------- 

unction gepModel1(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G2C6 As Double = 

9.09 

    Const G2C3 As Double = -

2# 

    Dim y As Double 

    y = 0# 

    y = ((((d(1) * d(1)) ^ 3) ^ 4) 

+ (d(1) * ((d(3) + d(3)) + 

d(3)))) 

    y = y + ((((d(1) * G2C6) + 

d(0)) + ((G2C3 + d(0)) + d(0))) 

+ d(0)) 

    y = y + (((d(2) * ((((d(0) + 

d(1)) - d(3)) ^ 3) ^ 4)) ^ 3) ^ 2) 

    Const SLOPE As Double = 

1.43721533852321E-30 

    Const INTERCEPT As 

Double = -9.22728932274076                                 

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel1 = 

probabilityOne 

End Function 

 

 

' State 2 (a = 10 mm) 

'-------------------------- 

Function gepModel2(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C9 As Double = -

673.8718720734 

    Const G1C2 As Double = -

9.989001 

    Const G1C8 As Double = 

5.988006 

    Const G2C1 As Double = -

3.5964 

    Const G2C9 As Double = 

4.995 

    Const G3C9 As Double = 

3.003 

    Dim y As Double 

    y = 0# 

    y = (((((G1C2 * G1C8) / 

(d(3) ^ 2)) ^ 3) * ((G1C9 ^ 3) ^ 

2)) ^ 2) 

    y = y + Exp(((((d(2) * d(2)) 

* d(3)) / (d(0) ^ 3)) * ((G2C1 * 

G2C9) ^ 3))) 

    y = y + ((Exp(((d(3) / d(0)) ^ 

2)) * ((Exp(G3C9) ^ 3) ^ 2)) ^ 

3) 
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    Const SLOPE As Double = 

9.92492065443564E-54 

    Const INTERCEPT As 

Double = -8.17014727523391                                

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel2 = 

probabilityOne 

End Function 

 

' State 3 (a = 90 mm) 

'-------------------------- 

Function gepModel3(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C7 As Double = -

9# 

    Const G1C0 As Double = -

4# 

    Const G2C4 As Double = -

3# 

    Const G2C8 As Double = -

5# 

    Const G3C5 As Double = -

3# 

    Const G3C7 As Double = 6# 

    Const G3C6 As Double = 8# 

    Dim y As Double 

    y = 0# 

    y = (Exp(G1C0) + G1C7) 

    y = y + Sqr(Exp((((d(0) / 

d(2)) - (G2C4 + G2C8)) / 

((d(2) / d(0)) ^ 2)))) 

    y = y + (((d(1) + G3C5) + 

(d(0) - G3C7)) / ((G3C6 ^ 2) + 

(d(3) - d(3)))) 

 

    Const SLOPE As Double = 

9.93025946235413E-79 

    Const INTERCEPT As 

Double = -7.93832502139603                                

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel3 = 

probabilityOne 

End Function 

 

' State 4 (a = 170 mm) 

'-------------------------- 

Function gepModel4(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C9 As Double = -

5# 

    Const G2C0 As Double = 9# 

    Const G2C8 As Double = -

6# 

    Const G3C9 As Double = 2# 

    Const G3C0 As Double = -

6# 

    Const G3C3 As Double = -

7.007 

    Dim y As Double 

    y = 0# 

    y = Exp(((d(1) * Exp(d(3))) 

* (G1C9 * (d(1) - G1C9)))) 

    y = y + (((d(1) + d(0)) * 

(G2C0 ^ 3)) * ((d(1) - G2C8) + 

(d(0) * d(1)))) 

    y = y + ((((G3C3 ^ 2) * 

d(2)) * (G3C9 + d(2))) * ((d(3) 

- d(0)) * (G3C0 + d(2)))) 

    Const SLOPE As Double = 

2.34283961720364E-06 

    Const INTERCEPT As 

Double = -7.96083513694224                                 

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel4 = 

probabilityOne 

End Function 

 

 

' State 5 (a = 250 mm) 

'-------------------------- 

Function gepModel5(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C7 As Double = -

8# 

    Const G1C0 As Double = 7# 

    Const G1C1 As Double = 

2.002 

    Const G2C9 As Double = 

9.99 

    Const G3C4 As Double = 

7.07 

    Const G3C2 As Double = -

2# 

 

    Dim y As Double 

    y = 0# 

    y = ((G1C7 * ((G1C1 / d(1)) 

* d(3))) * ((G1C7 - d(0)) * 

(G1C0 / d(2)))) 

    y = y + ((((d(1) / d(1)) - 

d(0)) * (d(0) - d(2))) / ((d(3) ^ 

2) * (d(3) / G2C9))) 

    y = y + (((((G3C2 / d(1)) - 

G3C4) ^ 2) / (d(3) + (d(1) + 

d(0)))) ^ 2) 

    Const SLOPE As Double = 

3.72391104592556E-05 

    Const INTERCEPT As 

Double = -7.83849444890817                                 

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel5 = 

probabilityOne 

End Function 

 

' State 6 (a = 330 mm) 

'-------------------------- 

Function gepModel6(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C4 As Double = -

5.005 

    Const G1C0 As Double = -

1# 

    Const G1C3 As Double = -

2# 

    Const G1C6 As Double = -

10# 

    Const G2C1 As Double = 1# 

    Const G2C8 As Double = 

8.991 

    Const G3C4 As Double = 6# 

    Const G3C8 As Double = -

3# 

    Const G3C0 As Double = 9# 

    Dim y As Double 

    y = 0# 

    y = ((Sqr((d(3) - G1C6)) + 

(d(1) + d(1))) - ((d(2) - G1C4) 

* (G1C0 * G1C3))) 

    y = y + (Exp(((G2C1 - d(2)) 

- (d(0) * d(3)))) + Exp(((G2C8 

* G2C8) / d(0)))) 
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    y = y + ((((d(1) + G3C0) - 

G3C4) * (G3C8 / d(1))) - 

((d(1) - d(1)) - (G3C0 + 

G3C8))) 

    Const SLOPE As Double = 

1.06766764303909E-28 

    Const INTERCEPT As 

Double = -8.41298424276477                                 

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel6 = 

probabilityOne 

End Function 

 

' State 7 (a = 410 mm) 

'-------------------------- 

 

Function gepModel7(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C4 As Double = 

3.03303 

    Const G2C9 As Double = -

3.64193677659767 

    Const G3C1 As Double = -

8.189181 

    Const G3C9 As Double = -

3# 

    Dim y As Double 

    y = 0# 

    y = ((((G1C4 ^ 4) ^ 3) ^ 4) - 

(((d(0) ^ 4) + d(0)) * (d(3) ^ 

4))) 

    y = y + (((Exp(d(0)) * d(0)) 

+ ((G2C9 + d(0)) / (d(2) ^ 4))) 

^ 3) 

    y = y + (d(3) - Exp((((d(2) ^ 

3) + (G3C9 ^ 2)) - (d(1) + 

G3C1)))) 

    Const SLOPE As Double = 

2.5511686740335E-26 

    Const INTERCEPT As 

Double = -7.06653202693616                                 

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel7 = 

probabilityOne 

End Function 

A.4.: The VBA Codes for 8 Organized Sensors 
 

' State 1 (Intact, a= 0 mm) 

'-------------------------- 

Function gepModel1(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C6 As Double = -

3.988011996 

    Const G1C5 As Double = -

0.064138015508733 

    Const G2C5 As Double = -

4.8357485514243 

    Const G2C1 As Double = -

1.07594840239699 

    Const G2C2 As Double = -

7.3134014033839 

    Const G2C4 As Double = 

7.82547315603315 

    Const G2C9 As Double = 

7.96731376567705E-03 

    Const G2C8 As Double = -

5.14143681709626 

    Const G3C0 As Double = 

1.000996997003 

    Const G3C4 As Double = 

0.749237501255573 

    Const G3C5 As Double = 

2.32623176257729 

    Dim y As Double 

    y = 0# 

    y = (d(1) / ((Exp((d(3) - 

d(1))) / ((d(2) + G1C5) - 

G1C6)) + ((d(0) / d(1)) * (d(1) 

- d(3))))) 

    y = y + Exp((d(1) / ((((d(1) 

+ G2C1) ^ 3) * G2C5) * ((d(3) 

- Exp(G2C2)) / ((G2C2 / 

G2C4) - (G2C9 - G2C8)))))) 

    y = y + Exp((d(2) / (d(1) - 

(d(3) * (((((d(2) / d(1)) / G3C4) 

+ (G3C5 * d(0))) * d(3)) + 

G3C0))))) 

 

    Const SLOPE As Double = 

9.03489419561824E-02 

    Const INTERCEPT As 

Double = -8.04669558957269                                

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel1 = 

probabilityOne 

End Function 

 

' State 2 (a = 10 mm) 

'-------------------------- 

Function gepModel2(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C0 As Double = -

6.06606 

    Const G1C1 As Double = 

10.201 

    Const G1C6 As Double = 

3.003 

    Const G2C2 As Double = 

9.791199 

    Const G2C3 As Double = -

9.8802099 

    Const G2C8 As Double = -

7.92 

    Const G3C7 As Double = 

9.22787331553004E-02 

    Dim y As Double 

    y = 0# 

    y = ((((((d(3) ^ 4) ^ 2) * 

((G1C6 ^ 2) / d(1))) + 

Sqr(Exp(G1C1))) - (G1C0 * 

((G1C0 ^ 3) / (d(3) + d(2))))) ^ 

4) 

    y = y + (((((d(1) - d(0)) + 

(d(0) * G2C8)) * G2C2) * 

(((d(2) + d(2)) - d(1)) ^ 3)) * 

(Exp((d(2) - d(0))) * ((G2C3 ^ 

3) ^ 4))) 

    y = y + ((((Exp(((d(2) * 

d(2)) + (d(1) / d(3)))) * ((d(2) 

+ d(3)) ^ 2)) - Exp(((d(1) ^ 3) - 

(G3C7 / d(1))))) ^ 4) * d(0)) 

    Const SLOPE As Double = 

1.83957943716362E-16 

    Const INTERCEPT As 

Double = -5.34814047260968                                 

    Dim probabilityOne As 

Double 
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probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel2 = 

probabilityOne 

End Function 

 

' State 3 (a = 90 mm) 

'-------------------------- 

Function gepModel3(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C9 As Double = -

9.009 

    Const G1C7 As Double = -

1.112111 

    Const G3C9 As Double = 

5.04495 

    Const G3C7 As Double = 4# 

    Const G3C0 As Double = -

2.002 

    Dim y As Double 

    y = 0# 

    y = (d(1) / ((Exp(Exp(d(1))) 

/ (G1C9 - (d(3) * G1C7))) * 

(((G1C9 - d(0)) - (d(3) + d(1))) 

- (G1C9 - d(1))))) 

    y = y + (d(0) * d(2)) 

    y = y + (d(2) - (G3C9 - 

((Exp(((G3C7 + G3C0) / (d(0) 

+ d(1)))) - d(2)) / (Exp((d(0) + 

G3C7)) ^ 3)))) 

    Const SLOPE As Double = 

1.29797282256239 

    Const INTERCEPT As 

Double = -4.90858192971192                                 

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel3 = 

probabilityOne 

End Function 

 

' State 4 (a = 170 mm) 

'-------------------------- 

Function gepModel4(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C0 As Double = -

4.03596 

    Const G1C5 As Double = 

9.09 

    Const G2C7 As Double = 

10# 

    Const G2C1 As Double = 

2.02 

    Const G3C3 As Double = 8# 

    Const G3C0 As Double = 8# 

    Const G3C5 As Double = 

8.08 

    Const G3C2 As Double = 

8.712 

    Const G3C1 As Double = 4# 

    Const G3C8 As Double = -

27# 

    Dim y As Double 

    y = 0# 

    y = ((((((d(2) * d(1)) - d(0)) - 

(d(3) * d(1))) + ((d(0) * d(0)) - 

(d(1) * d(1)))) - d(1)) + 

((((G1C0 - G1C5) ^ 4) ^ 2) ^ 

3)) 

    y = y + (d(3) + (((((((d(1) - 

G2C7) - (G2C1 ^ 4)) * ((d(3) ^ 

4) - G2C7)) ^ 3) - (G2C7 ^ 2)) 

^ 4) / d(1))) 

    y = y + (((((G3C1 ^ 4) ^ 4) ^ 

4) + (((G3C5 - G3C8) - G3C0) 

* d(0))) + (((G3C5 * G3C0) + 

G3C3) - Exp((d(0) * G3C2)))) 

    Const SLOPE As Double = 

3.0258972630069E-31 

    Const INTERCEPT As 

Double = -102965953.285512                                

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel4 = 

probabilityOne 

End Function 

 

 

' State 5 (a = 250 mm) 

'-------------------------- 

Function gepModel5(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C5 As Double = -

8# 

    Const G2C8 As Double = 5# 

    Const G2C2 As Double = -

6# 

    Const G3C7 As Double = 4# 

    Const G3C0 As Double = -

5# 

    Dim y As Double 

    y = 0# 

    y = (((d(0) + d(1)) + (d(1) / 

d(0))) * (d(3) + G1C5)) 

    y = y + (((d(1) + Exp(((d(0) 

* G2C2) * (G2C2 / d(2))))) ^ 

3) + ((Sqr(G2C8) - ((d(1) + 

d(3)) * (d(0) ^ 2))) ^ 2)) 

    y = y + ((((((G3C7 ^ 3) * 

(G3C7 - d(0))) * ((G3C7 * 

d(2)) + (d(1) - G3C0))) * 

(G3C7 / d(3))) ^ 4) + d(1)) 

    Const SLOPE As Double = 

3.79189016352223E-33 

    Const INTERCEPT As 

Double = -8.65825786799137                                

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel5 = 

probabilityOne 

End Function 

 

' State 6 (a = 330 mm) 

'-------------------------- 

Function gepModel6(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C6 As Double = 

2.969703 

    Const G2C1 As Double = -

3.996 

    Const G3C9 As Double = 

5.1005 

    Const G3C0 As Double = 

3.999996 

    Const G3C8 As Double = 0# 

    Dim y As Double 

    y = 0# 

    y = (((((((d(0) - d(0)) + (d(2) 

^ 4)) - d(0)) * (((G1C6 + d(2)) 

^ 3) ^ 4)) ^ 2) ^ 2) ^ 2) 

    y = y + ((((((((d(1) / d(2)) ^ 

4) - ((d(2) * d(0)) * d(2))) ^ 2) 

/ (((d(0) * d(3)) + (G2C1 * 

d(0))) ^ 4)) ^ 2) ^ 2) ^ 2) 

    y = y + ((((Exp(d(2)) - 

G3C9) / (G3C0 - d(0))) + 
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((d(0) * d(3)) ^ 3)) + (((d(0) ^ 

2) * Exp(d(2))) + ((G3C8 * 

d(1)) + (d(3) ^ 2)))) 

    Const SLOPE As Double = 

1.84854638162239E-48 

    Const INTERCEPT As 

Double = -5.53401307008457                                

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel6 = 

probabilityOne 

End Function 

 

 

' State 7 (a = 410 mm) 

'-------------------------- 

 

Function gepModel7(ByRef r 

As Range) As Double 

    Dim n As Long 

    Dim d(0 To 3) As Double 

    For n = 0 To 3 

d(n) = CDbl(r(n + 1)) 

    Next 

    Const G1C8 As Double = -

7# 

    Const G1C5 As Double = -

8# 

    Const G1C7 As Double = 

10.1101 

    Const G1C0 As Double = 4# 

    Const G1C1 As Double = -

1# 

    Const G2C7 As Double = 3# 

    Const G3C1 As Double = 

1000# 

    Const G3C3 As Double = 

8.8 

    Const G3C0 As Double = 1# 

    Const G3C5 As Double = 7# 

    Const G3C7 As Double = -

7# 

    Dim y As Double 

    y = 0# 

    y = ((G1C8 * ((((G1C5 * 

G1C7) * G1C5) + ((G1C0 ^ 4) 

^ 2)) - (Exp((d(1) + d(0))) * 

((G1C1 ^ 3) * d(2))))) ^ 3) 

    y = y + Exp((((((d(0) ^ 3) + 

(d(1) + d(3))) * Exp(d(0))) ^ 2) 

+ Exp((((G2C7 + d(1)) + (d(1) 

+ d(0))) - d(3))))) 

y = y + ((G3C1 ^ 3) + (((((d(3) 

^ 4) * (G3C5 * G3C7)) * 

G3C3) ^ 3) - ((Exp((G3C3 - 

d(2))) + (G3C0 + d(0))) ^ 2))) 

    Const SLOPE As Double = 

5.6248130197281E-13 

    Const INTERCEPT As 

Double = 55921.7314988659                               

    Dim probabilityOne As 

Double 

probabilityOne = 1# / (1# + 

Exp(-(SLOPE * y + 

INTERCEPT))) 

    gepModel7 = 

probabilityOne 

End Function 
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