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ABSTRACT

THE COST OF PARTIAL OBSERVABILITY

IN THE BIVARIATE PROBIT MODEL

By

Chun-Lo Katy Ho

Some recent studies have made use of the bivariate probit model in

testing various hypotheses, but with only partial observability about the

dichotomous dependent variables. The maximum likelihood estimators in these

partial observability cases will be inefficient compared to those obtained

under full observability. Therefore in this study, we present several

cases with different levels of observability for the bivariate probit model

and we measure the efficiency loss of maximum likelihood estimators for each

case through some experiments.

The example of a two-member committee voting under a unanimity rule can

be applied to all of these cases. Case one is the case of full observability

in which the dichotomous choices of both voters are always observable. Case

two is the case of partial observability in the sense of Poirier, which under

the assumption that only the result of the joint choice of the two decision-

makers is observed. Case three is called the case of partial partial observ-

ability, in which one of the two parties' decision is fully observable. In

case four, which is called the case of partial observability with observed

veto, when the outcome is "no", we observe one of the two parties casting its

"no" vote. Three alternative possibilities are presented for this case, concern-

ing who will use the veto first if both parties wish to vote "no".
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The log-likelihood functions are provided for the joint estimation of

the parameters for each of the various cases above. Since the inverse of

information matrix is the asymptotic variance-covariance matrix of maximum

likelihood estimator, the derivation of information matrices for all these

cases are presented. The conditions for identification for the partial

observability cases are also discussed. Then a large variety of experiments

are done to measure the cost (in terms of lost efficiency) of partial

observability.

Here are some of our main conclusions. First we notice that the cost of

partial observability is quite high, especially for case two. The cost of

partial observability decreases markedly if any piece of observability

information can be found. The law of diminishing marginal utility of inform-

ation usually holds: it is the first piece of observability information which

is most important. The second conclusion is that specifying p (the correlation

coefficient of the two probit equations) a priori improves the efficiencies

of the estimates of the other parameters a great deal. A third conclusion

is that the sample split has a strong influence on the relative efficiencies

of the parameter estimates., For a given partial observability case, its

efficiency relative to full observability will be higher, the smaller the

proportion of observations which fall into the indistinguishable categories.

The last conclusion is that the strength of identification matters. The

relative efficiency of each partial observability case is very low for

parameter values near such points, and it increases rapidly as the parameters

move away from such points of singularity.
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CHAPTER ONE
 

INTRODUCTION
 

The purpose of this study is to consider the bivariate probit model under

various levels of observability of the dependent variables, and to measure

the loss in efficiency caused by less than full observability.

There have been quite a few studies using the bivariate probit model in

a variety of settings. Zellner and Lee (1965) presented the probit model as

well as other models to analyze discrete random variables. They showed that

a joint estimation approach for a set of equations with dichotomous endogenous

variables yields estimators which are asymptotically more efficient than single

equation techniques, provided that the variables being analyzed are correlated.

They considered the example of a durable good purchase decision (buy or not

buy) and a credit decision (use installment credit or not-use such credit),

while the exogenous variable is disposable income. In this example, both

decisions are observable.

Ashford and Sowden (1970) considered a multivariate probit model and

proposed maximum likelihood estimation for its parameters. They applied their

techniques to a bivariate probit model, where the two endogenous variables are

breathlessness and wheeze of a coal miner, and the exogenous variable is his

age. A coal miner may have positive reSponse to neither, to one or the other,

or to both of the two symptoms; so there are four possible outcomes. All four

possible outcomes are distinguishable; the data gives the number of individuals

with each combination of symptoms, within each age group in the sample.

Amemiya (1974) proposed two minimum chi-squared estimators for the same

model and found that the FIMC (Full Information Minimum Chi-Square) Probit

1
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estimator is asymptotically as efficient as the maximum likelihood estimator.

Gunderson (1974) discussed alternative statistical models for estimating

the probability that an on-the-job trainee will be retained by the sponsoring

company after training. In this situation, the employer must decide whether

or not to make a job offer, and the trainee must decide whether or not to

seek a job offer. Each individual's (either employer's or trainee's) decision

is not observed; only whether or not the trainee continues working after

training is known. Gunderson used a single-equation model with the dichoto-

mous dependent variable coded 1 if the trainee stays with the company, and 0

otherwise. Explanatory variables includes the characteristics of both the

trainee (age, sex, education, experience, etc.) and the company (company size,

area designation, etc.). Poirier (1980) proposed a bivariate probit model

under the same assumptions as Gunderson's concerning the amount of available

information. His model includes two probit equations each representing the

binary choice of a decision-maker, but only the outcome of the joint (unanimous)

choice is observable. That is, the only information about the two dichotomies

is whether or not both equal unity, and the remaining possible outcomes can't

be distinguished from each other whenever there is a negative choice made by

either party.

Farber's research (1982) on the demand for unionism shows that the union

status of workers is determined by a combination of workers' demand for union

representation and the decisions of union employers as to whom to hire. That

is, a worker is a union member if and only if he desires a union job and a

union employer is willing to hire him. If only the final outcome (union

status) is observed, it is impossible to determine whether nonunion workers

didn't want a union job, couldn't get a union job, or both, and we have
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Poirier's model. In Farber's study, a unique data is employed which can be

used to identify the union or non-union preference of non-union workers.

50 workers' preferences are fully observable, while union employers' decisions

are still unknown for those nonunion workers who didn't want to be unionized.

'Connolly's study (1982) analyzes the joint decision to arbitrate or

negotiate the contracts between employees' unions and municipalities in

Michigan. According to law, there will be negotiation if both sides desire

so and there will be arbitration otherwise, but one of the two parties has

to cast a veto to seek the arbitration. Therefore, besides the observable

result that the contract is negotiated or arbitrated, one party (only) is

observed to use the veto whenever there is arbitration. However, the

decision of the party which didn't use the veto remains unknown.

The examples above can all be analyzed using the bivariate probit model,

but under different assumptions concerning what can be observed. The first

two cases (Zellner-Lee and Ashford-Sowden) are different from the others in

that the two decisions (or symptoms) are all related to one person instead

of to two different parties. But they still represent the case in which the

two binary dependent variables are both observable, which can be called the

case of full observability. All the other cases have less than full observ-

ability, in varying degrees. The model established by Poirier (using

Gunderson's example) assumes the least observability information among all the

cases. As outsiders, we can only tell whether something failed or succeeded.

For Farber's or Connally's case, besides the observable joint choice, one of

the two individual choices is observed. All of these cases can be called

partial observability cases of the bivariate probit model.
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With incomplete information, the maximum likelihood estimators obtained

in these partial observability cases will be inefficient compared to the

estimators obtained in the case of full observability. In other words, there

is,a cost (in terms of lost efficiency) of partial observability. The point

of this research is to measure this cost. The study of the cost of partial

observability is important in itself, but it also has some practical

implications. For a researcher facing a high price of getting additional

information, it is important to know how valuable the information is, so that

an intelligent decision can be made about whether additional information is

worth obtaining.

This paper is divided into five chapters. In Chapter Two, a formal

statement of bivariate probit model is presented. All of the cases considered

assume this basic model, but with different levels of observability. Case one

is the full observability case, in which both parties' choices are observable,

and every possible outcomes can therefore be distinguished. Case two is the

model with partial observability in the sense of Poirier, in which the only

information is the binary outcome of the joint choice made by both parties.

If either one party fails to say "yes", then the remaining outcomes are

indistinguishable. Case three is called the partial partial observability

case. In this case one of the two parties' decision is fully observable, but

if the observable party has a negative response, the other party's decision

is not known. Case four is called the partial observability case with observed

veto. In this case if both sides do not say "yes", then we can observe one

and only one party saying "no" (casting the veto). There are three alter-

native possibilities which we will consider, under different assumptions about

who will cast the veto first if both parties wish to say "no". The appropriate
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likelihood functions for all cases and possibilities are provided, so that

maximum likelihood estimates can be obtained.

Chapter Three contains the derivation of information matrices for all

of the (:ases which were presented in Chapter Two. The conditions for

identification for the partial observability cases are also discussed. The

information matrix (whose inverse is the asymptotic variance-covariance

matrix of maximum likelihood estimator) can help us to measure the efficiency

loss with different levels of partial observability. The conditions of

identification are relevant for efficiency comparisons, because the closer the

information matrix is to being singular, the greater the variances of the

estimates will be.

In Chapter Four, a large variety of experiments are done to measure the

cost of various levels of partial observability. For the purpose of

simplification, we assume there are only two exogenous variables, and one of

them is a constant term. For each experiment, specific values of the para-

meters are picked in order to evaluate the inverse of the information matrix.

All of the elements of the inverse of the information matrices for the partial

observability cases are divided by the corresponding elements of the inverse

of the information matrix for the full observability case. Thus the ratios

we present are the ratios of asymptotic variances and covariances of parameters

in the partial observability case compared to those of the full observability

case. The cost of partial observability increases as these ratios increase.

We attempt both to make a rough statement about the cost of partial observ-

ability in typical cases, and also to identify what types of changes in the

parameters cause this cost to increase or decrease.
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The results of these experiments will be interpreted in Chapter Four,

and the tables at the end list the main numerical results. The summary and

conclusions of this study will be given in Chapter Five.



CHAPTER TWO
 

BIVARIATE PROBIT MODELS WITH FULL

AND PARTIAL OBSERVABILITY

2.1 Introduction
 

In this chapter, we will give a formal statement of the bivariate probit

model, and consider its estimation under various assumptions about what is

observed. Basically, our treatment of the estimation problem is just to

provide the appropriate likelihood function to maximize, though in some cases

we point out alternative possibilities. The questions of identification and

of the relative efficiencies of the various estimators will be deferred until

Chapters 3 and 4.

Now we start by reviewing the bivariate probit model. Consider two

individuals (j=l,2) each faced with a binary choice, yj=m, m=0,l. The

dependent variable yj takes on the value 1 if an event occurs or 0 if it does

not occur. Suppose the two individuals have utility functions of the form

U1m a 91m (wlm’ y2*) + nlm "1:0’]

U2m 3 92m ("2m’ 5’1” I n2m

where for j=l,2, g. is a non-stochastic scale function, w. is a fixed vector
3m 3m

of characteristics of individual j and choice yj=m, ”jm is a random disturbance

term and yJ.* is the utility differential

* = o - o .= , .yj UJ1 UJ0 J l 2
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This specification permits interdependency between the utility functions of

the two individuals in the sense that the utility of each individual is a

function of the sentiment of the other individual.

Further suppose

9n ("11’ 372*) ' 910 ("10’ Y2” ‘ Yly2* + X51

921 ("21’ yi”) ' 920 (”20’ Yi”) ‘ Yzyf' + X52

"ii ' ”10 = V1

”21 ' ”20 = V2

where X is a K-dimensional row vector of explanatory variables, a] and 62 are

K-dimensional column vectors of unknown coefficients, y] and y2 are unknown

parameters, and

V a [V1, V2]' ~ N(O, 0) with

0.1 O)

a = [mll w12]

12 22

Then it is easy to show that

’f = 0’2" + X51 1 Vi "“ (1)

* = c.---

y2 125’? I X62 1 V2 (2)

and that individual j will select

'
~
< ll 1 1ff yJ.*>O 1.e., Ujl > UjO

‘
< u 0 iff yj*:O i.e.,U. :u

.11 3'0
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The reduced form equations corresponding to (l) and (2) are

yf" ' X81 + 61 ------------- (3)

y2* = XBZ + 82 ------------- (4)

B] = (51 ' Y152)/(1 Y1Y2)

where

82 - (52 ' Y251)/(] Y1Y2)

81 = (V1 + Y1V21/(1 - Y1Y2)

e2 : (V2 + Y2V1)/(1 YIYZ)

and [:1] has bivariate normal distribution with 0 mean and variance-covariance

matrix as [l :1. Here the variances of a1 and 52 have been normalized to equal

unity and p is the correlation between 8] and e2.

The model just presented is common to all of the cases we will consider.

However, the cases differ with respect to how much one observes about y1 and

Y2-

2.2 Case One: Full Observability

Here we assume that y1 and y2 are both observed. Among all the cases we

are going to discuss here, this is the one which.has the most complete

observability, and which leads to the most efficient estimates. An example

of such a case would be a two member committee voting under a unanimity rule,

but with both votes observable. That is, in our random sample of votes, i=1,

---, N, we can not only observe the explanatory variables Xi, but also the

votescafboth voters, i.e., yi1 and in' Therefore, there are four possible

outcomes which are all distinguishable:

(1) both vote yes , i.e., yi1tl and yi2=13
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(2) the first party votes "yes" and the second votes "no", i.e., yi1=l and

yi2=°3

(3) the first party votes "no" and the second votes "yes", i.e., y11=0 and

’12:“

(4) both vote "no", i.e., y11=0 and y12=0.

The distribution of in and yi2 in this case is

P(yi]=1 and y12=1) F(X181, X182; 9) i=1,---,N

P(yi1=l and yiz=0) = F(Xi81, -X182; ~p)

P(yi1=0 and yi2=l) = F(-xi81, xiBZ; — p)

p(y11=0 and y12=0) F(-XiB], -XiBz; 9)

1 - 4(X181) - ¢(Xi82) + F(Xi81, x182; p)

where F(-,-; -) denotes the bivariate standard normal distribution function

with correlation coefficient 9, while o(-) is the univariate standard normal

distribution function.

We can always estimate the reduced form equations separately. The log-

likelihood functions are

N

in L = g {yij 2n ¢(Xisj) + (l-yij) 2n<b(-Xi8j)}

L
a II

_
.
a

O 1 N
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But this is efficient only when::=0. When 0 is not equal to zero, it is more

efficient to estimate the two probits jointly. Then the log-likelihood function

of the sample is

N.

In L(B]9 829 D) = g {inin 2" F(xi819 x182; p)

+ yi](1 - Yiz) 2" [¢(XiB]) ' F(XiB]9 X182; 0)]

+ (1 ' yi1) yiz 2" [¢(Xi82) ' F(XiB], X182; 0)]

+ (1 - yi1)(1 - yi2) 2n [1 - 4(X181) - 6(Xi82)

+ F(X181. xiBZ; 011}.

2.3 Case Two: Partial Observability in the Sense of Poirier

This is the case treated by Poirier (1980). An example of this would be

a two member. committee voting under a unanimity rule, but anonymously. As

outsiders we can only observe whether a motion passes (i.e. both members vote

"yes") or whether it fails (i.e. at least one member votes “no"). So instead

of observing Xi, yi] and in’ i=1,2,...,N, we observe only Xi and Zi’ where Zi

= yil'in’ i=1,2,...,N. That is.

Zi=1 iff yi1=l and yi2=l

=0 otherwise .

In terms of the four possible outcomes that we listed in section 2.2, the last

three are indistinguishable because all we can see for these outcomes is just

that the motion does not pass.

This model has been used by Connally (1982) to study the decision to

arbitrate or negotiate the contracts between public employees' unions and

municipalities in Michigan. By law, binding arbitration occurs if either party

so desires. Therefore, a contract is negotiated (Zi=l) if an)only if the
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union desires negotiation (yi]=l) and the municipality desires negotiation

(yi2=l). Otherwise the contract is arbitrated (Zi=0)' Poirier's model applies

if we observe only the outcome (negotiation or arbitration) and not the desire

of either party separately.

The distribution of 21 is

P(Zi=l) = P(yi]=l and y12=1)

P(Zi=0) = P(yi]=0 or y12=0)

l - F(XiB], X1823 9)

and the log-likelihood function of the sample is

in L(B], 82, o)

N

= i {21 in F (Xi81, X182; 9) + (1'21) 2H[1-F(Xi819 X182; 0)]}

2.4 Case Three: Partial Partial Observability

In this model, we observe more than in Poirier's model, but less than in

the full observability case. Specifically, it is assumed that we observe yi],

Zi = yil'in’ and X1, i=1,2,...,N. Note that the vote of the first voter

(yi1) is always observed. However, the vote of the second voter is only

sometimes observed. Essentially, we observe y].2 if and only if yi1=l. This is

so because if yi1=l, then yi2=Zi, and Zi is observed. However, if yi1=0 we

have no information about in' Thus in terms of the four possible outcomes,

two (yi]=0, y12=l and yi1=0, y12=0) are indistinguishable. This model can

also be regarded as a censored probit model, since the sample for which y].2 is
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observed is censored, by the value of yi].

This model has been used by Farber (1982) to study the demand for union-

ism. Let yi1=1 if individual i wishes to be in a union, and yi1=0 otherwise;

let yiz=l if a union employer is willing to hire individual i, and yi2=0

otherwise. Individual i is a union member (Zi=yi]-yiz=l) if both y11=l and"

yi2=l, and is not a union member (Zi=0) otherwise; Zi is observed for all i.

If nothing more were known, this model would be Poirier's model. However,

non-union workers in Farber‘s sample were asked if they desired union repre-

sentation, so that yi] is also observed for all i. 0n the other hand, y}.2 is

observed only if y11=1.

Now give that we observe yi], Z1.=yfl-y1.2 and Xi’ the log-likelihood

function for the model is

in L(B]s 82: p)

N

= E {yII yiz z" F(XiB]s X182; 9)

+ yi](l - in) znl 9(X§B]) - F(Xie]. X282; 9)]

+ (l - yi1) 2n ¢(-Xie1)}.

Because it is observable, the first probit equation can always be estimated

separately with the log-likelihood function as

an L(6]) = g {yi1 2n ©(Xi81) + (l.- yil) 2n ¢(-X131)}

but joint estimation is more efficient for the first equation unless p=0.

Separate estimation for the second equation is possible if and only if o=0.

When p=0, using the observation of the first party, we can establish the log-

likelihood function of the second probit equation as
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In L(82) = {yil 2n 6(Xi81) + (l - y11) tn ¢(-X161)}

yi] {yiz 2n ¢(Xisz) + (1 - ’12) In ¢(-X182)} .

.
J
O
M
Z

d
o
M
Z

2.5 Case Four: Partial Observability With Observed Veto

In this case, it is assumed that we observe Zi=yil°yi2 and X1, as in Poirier's

case. However, when Zi=0 we observe either y11=0 or yi2=0 (but never both).

That is, we observe the casting of a veto by one party.

The situation analyzed by Connally (1982) again provides a good example.

Negotiation occurs if and only if both the municipality and the union wish to

negotiate. Otherwise arbitration occurs. However, one party or the other

has to ask for arbitration, so that the veto (of negotiation) by one party is

observed. That is, there is negotiation (Zi=l) iff yi1=l and y12=l, and

there is arbitration (Zi=0) iff yi1=0 or y12=0. Furthermore, when Zi=0

is observed we observe either yi] or y].2 as zero.

Among the four possible outcomes, Zi=l is straightforward. In the case

when Zi=0 and yi1=0 are observed, however, we don't know if party two votes

"yes" or "no". The same.is so for the Z1=0 and yi2=0 situation. In such a case,

the diStribution of Z, is

P(Zi=l) = P(yi]=l and y12=1) = F(XiB], X182; 0)

P(Zi=0 and y11=0) = P(yi]=0 and y12=l) + P(yi]=0 and y12=0)

: P(lst party requests arbitration/yi]=0 and y12=0)

P(Zi=0 and y12=0) = P(yi]=l and yi2=0) + P(yi]=0 and yi2=0)

- P(an party requests arbitration/yi]=0, y12=0) .
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Note that the events (yi]=0, y12=l) and (yi]=0, y12=0, party one requests

arbitration first) are indistinguishable.

We can always ignore the information about the observed veto and convert

this back to a standard Poirier partial observability case (Case Two). The

cost for doing that is some loss of efficiency of the estimates. Otherwise,

to close the model some assumption must be made about who would ask for

arbitration first, if both parties desire it. Here we have three possibilities.

Possibility One: Case 4A1, Observed Veto, Given Probability =gp

Assume there is some fixed probability for the first party to request

arbitration first given that both sides don't want a negotiation. That is,

p =p(lst party requests arbitration first/O, 0)

l-p =P(2nd party requests arbitration first/0, 0).

Here p is a given constant. It might come from past experience or just

represent a reasonable guess. The log-likelihood function is

in L(B],BZ, o)

= 2 2n F(Xi8], X182; 0)

irZi=l

is observed

+ E’; =0 2n {F(-XiB], X182; - D) + pF(-X13]. -X132;P)}

yil

is observed

+ F - in {F(XiB]s 'XiBZ; ‘0) + (1-p)F(-Xi81’ -X182; 0)}

1’yi2-0

is observed
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= §+Z.=l fin F(Xi81, X182;p)

1

is observed

+ Z I"III ¢(X.8 ) - P(X B . X-B ; 0)]
iyy11=0 1 2 1 l 1 2

15 observed + le- ¢(xi81) , ¢(x132) + F(x131, x132; p)]}

+ 2 2n {[¢(X-B ) - F(X.6 . x.s ; 9)]
i>y12=0 1 l 1 l 1 2

15 observed + (l-p) [1_ ¢(XiB]) _¢(x132) + F(Xis], xiBZ; o)]}

= §)Z.=] in P(XIBI, x182; p)

1

is observed

+ 2 In {pll- ¢(X.8 )l + (l-p) [¢(X.B ) - F(x.6 , X-B ; o)l}

i;yi1=0 1 1 1 2 1 1 1 2

is observed

+ 2 in {p [¢(X-8 ) - F(X-B , X.B ; o)l + (l-p) [l-¢(X.B )1}.
i’y12=0 1 l 1 l 1 2 1 2

is observed

Possibility Two: Case 4A2, Observed Veto, p is Another Parameter
 

Here instead of having p as a given constant, we let p be an unknown

parameter in the model. The log-likelihood function is the same as above

except p needs to be estimated too.

In L(B]: 82: 0: p)

= §+Z.=] 2" F(Xi31, x182; p)

1

is observed
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+ s an {pil- 9(X181)] + (l-p) [4(X182) - F(X161, X182; p)l}
19yi1=0

is observed

+ i in {p[¢(XiB]) - F(X18]. X182; 0)] + (l-p) [l- ¢(X182)]}

*y12’O

is observed

Possibility Three: Case 43, The First Party to Ask for_Arbitration is the

One Who Wants Negotiation Least

Recall equations (3) and (4)

Y1* X81 + e1

’2* x82 + 62

y1* and y2* are the utility differentials between voting "yes" and "no".

They represent individual j's (j=l,2) "sentiment" toward yj=l. When yi]* < O

and yi2* < 0, so that neither party wants negotiation, it may be that the

party whose sentiment is more strongly against negotiation will cast the

veto first. That is, when

‘
<

.
_
n

.
1

* I
I

x

m

.
_
I

+

m

.
4

_
.
n A O

:1
-

u x &
>

and XiBl + 611 < XiBZ + 612 ,

it is reasonable to conclude that the first party will cast the veto first.

So we use P(ei2 < - xiBZ’ 611 - 812 < XiB2 - Xi81) to represent the probab1lity

that the first party is observed using the veto and P(ei] < - XiB], €i2 - 61]

< ..

X181 x18
2) to represent the probability that the second party uses the

veto, given that both of them don't want a negotiation. The log-likelihood
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function is

2" L (8]: 829 p)

= §*Z.=] 2" F(X181’ X182; 9)

1

is observed

+ 2 2n [F(-X.B , X.B ; -p)
i,yi]=0 1 l 1 2

is observed

+ P(Eiz < 'xiBZ’ e1'1 ' E1'2 < X132 ' X131)]

+ 2 2n [F(X B , -X-B ; -p)
i’y12=0 1 l 1 2

is observed

+ P(611 < -X181, 812 - €11 < X18] - X18211 .

”ere P(eiZ < 'XiBZ’ e1'1 ' 812 < X182 ' X181)

6. -8. XOB -XOB

_ 11 12 1 2 1 l _

’ P < ’ e1'2 < x182)
12(1-9) ¢2(l-o)

XLB -X.B

 

‘ FELL-1J- , ‘- X.8 ; -/(1-o)/2)
/2(]—p) 1 2

X B -X B

F( 1 i 1 1 s ‘ x182; 9') 9

-Lp'

where p' =-¥(lep)/2

P(511 ‘ 'XiBl’ €12 ‘ 811 < X181 ‘ X182)
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XiBZ'XiBl .
F(- XiBla ' X182, 9) ' F(-—:§ET———'9 - X182; 0 )

1 ‘ ¢(X181) ' ¢(X182) + F(XIB]’ X182; 0)

X.3 -X.s

' F64L2L_l—l' s ‘ X-B 3 p.) a

on 12

-aa

then

an L (81. 62, p) = 2 2n F(X181. X182; 9)

irZi=l

is observed

+ 2 2n [¢(X B ) - F(X B , X-B ; o)
1*y11’0 1 2 1 1 1 2

is observed XiBZ-Xp1

+ F(—_—.—'—— . - x162; o')1

X.B -X.B

'1'; in [1’ ¢(x182) " F(_1"'g_'_1_'l s ' X182; 0.)]

1*y12=0 '29.

is observed

2.6 Summary

In this chapter, six cases are introduced to represent full observability

and different types of partial observability for a bivariate probit model.

The example of a two member comittee voting under-a unanimity rule can be

applied to all cases. Case One gives full observability about the model,

since the dichotomous choices of both voters are always observable. Separate

estimation is possible for each probit equation but this would not be

efficient unless the correlation coefficient p=O.
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In Case Two, partial observability in the sense of Poirier, only the

result of the joint choice of two decision-makers is observed. As long as

either party votes "no", the separate votes of the two voters are indis-

tinguishable. This is the case which gives us the least information.

Case Three and Case Four each lie somewhere between the above two cases.

One of the two voters' behavior is observed in Case Three. But when this

observable party votes "no", the two choices of the other voter are indistin-

guishable. The observable party's probit equation can always be separately

estimated, but only when p=O will this be as efficient as joint estimation.

Separate estimation for the other party's probit equation is impossible

unless p is known to be equal to zero.

In Case Four, when either party (or both) votes ”no", we observe the

casting of a "no" vote. But while the one party is observed casting the

veto, the vote of the other party remains unknown. Some assumptions must be

made here about who will use the veto first. We can either assume some

fixed p to be the probability that the first party does so (Case 4A1), or

have p as another unknown parameter in the model (Case 4A2). Another

possibility, which is Case 43, is that the party with the strongest sentiment

for a "no" vote will be observed casting the veto.

We have provided likelihood functions for the various cases. In each

case, a numerical maximization of the likelihood function provides maximum

likelihood estimates. In Chapter 3 we will consider the asymptotic

distributions of these estimates, and in Chapter 4 we will compare their

relative efficiencies.



CHAPTER THREE

DERIVATION OF INFORMATION MATRICES AND CONDITIONS

FOR IDENTIFICATION

3.1 Introduction

The log-likelihood functions that we presented in the last chapter for

full and partial observability cases have prepared us for the derivation of

the information matrices here. The information matrix by definition is

equal to minus the matrix of the expectation of the second-order derivatives

of the log-likelihood function with respect to the parameters. That is,

E(333%%§7L), where e is the vector of unknown parameters. Under certain

regularity conditions, it can be shown that the maximum likelihood estimates

are consistent and asymptotically normal, with a variance-covariance matrix

which is equal to the inverse of information matrix. Therefore, through

the information matrices which we derive in this chapter, we can compare

the variances and covariances of the parameter estimates in different cases.

That is, we can measure the efficiency lost for lack of full observability,

which can be called the cost of partial observability.

Note that

[- E(azlog L/aoao')]

'E [(3 109 L)(3 109 L): ]

The latter formula will be used for all cases in this chapter.

We also consider the problem of identification of the parameters of the

model, under various levels of observability. Since (given certain

regularity conditions) a necessary and sufficient condition for local

21
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identification is non-singularity of the information matrix, we examine the

rank of the information matrices which we present. For all levels of

observability which we consider, the parameters are identified except in

certain special (perverse) cases, whiCh we point out.

The question of identification is important in its own right, but we are

also interested in it because it is relevant for efficiency comparisons.

The closer the information matrix is to being singular, the larger are the

variances of the estimates. In the next chapter, we will compare efficiencies

by evaluating the inverse of the information matrices, for various specific

parameter values. Knowledge of the perverse cases which lead to non-identi-

fication will help us in picking regions of the parameters space to investigate.

Section 3.2-3.5 contain derivations of the information matrices and

discussions of identification for the different cases listed in the last

chapter. Section 3.6 gives a summary of this chapter.

3.2 Case One: Full Observability

In order to simplify the notation, we let

F]. = min], x132; o) i=1,2,...,N

a1 = Xi81

b1 = X182

0 = (81'. 82', o)‘ .

Then the log-likelihood function for the full observability case is

N

in L(0) = S {y}.1 yi2 In F1 + yi](1-y12) 2n[ °<ai) - F1]

1
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+ (1-y11)y12 in [¢(b1) ' F1]

+ (l-y1])(l-y12) 2n [1- ¢(ai) - ¢(bi) + F11}.

the information matrix of this case is

e9= c1'c1 + cz'c2 + c3'c3 + c4'c4 ----(1)

where Cl" 02', 03' and C4' are all (2K+l)°N matrices and:

 

 
 

1 8Fi
the ith column of C1' is-::: --

/F. 391

a[¢(a.)-F.]
n u czl 1S 1 ;e 1

u u c3' 15 1 $9 1

1 a[l-¢(ai)-¢(bi)+Fi] .
H I. C I is

4 71-¢(ai)-¢(bi)+Fi 39

 

Some of the derivatives which appear in the information matrix above have been

derived by Ashford and Sowden (1970):

aFi

S's—1" = (a1)¢(A1)X1

3F1

33": ¢(bi)¢(Bi)Xi

2

BF
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and we know that

   

 

 

 

a¢(ai) ' 36(ai) 36(ai)

as] "p(ai) xi as ‘ 0 so ' 0
2

30(b1) ' 34(bi) 30(bi)

382 '4’(bi) Xi as1 ’ 0 3o ‘ 0

wherei>(-) denotes the standard normal density function, fi=f(xi81’ X182; 0)

denotes the standard bivariate normal density function and

 

 

A1 ___ «17:2 “’1' ‘ “i"

B. = 1 (a. - ob.) .

' «TIT? ‘ '

If p is given a priori, the equation (1) is still the same. But 6 now

is (31', 82')'instead of (81', 82', o)‘ and the information matrix is

(2K)-(2K).

If the two probit equations are separately estimated, the log-likelihood

function of the first equation is

N

In L (81) = g {yi1 2n 0(61) + (1'yil) 2n ¢(-ai)}

and the information matrix of the first probit equation is

N

J= 2. M(a1.) M(-a1.)X1.'X1.
1

 where M(ai) =
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Using the same method, we can get the information matrix of the second equation.

Separate estimation will not be as efficient as joint estimation unless o=0.

Here the information matrix for joint estimation with full observability

is the same as given by Amemiya (1974) using the FIMC (Full Information

Minimum Chi-Square) Probit method. When the probit equations are estimated

separately, the information matrix is the same as his using LIMC (Limited

Information Minimum Chi-Square) Probit Method.

Under certain conditions, the information matrices of other (partial

observability) cases will be singular. But this is not the case here.

For full observability, the parameters are identified, except of course in

the case of perfect multicollinearity. Perfect multicollinearity is also

a perverse case for all of the levels of observability which we consider,

but we will not discuss it further.

3.3 Case Two: Partial Observability in the Sense of Poirier

The log-likelihood function of Poirier's partial observability model is

N

in L(o) = a {2i 2nFi + (1-Zi) 2n [l-FiJ} and the information matrix is

1

J=c‘c
s 5 "“(2)

where C5 is the N r(2K+1) matrix with ith row equalling

VFizW-Fi; [¢(ai) 9(A11X1, ¢(b1) ¢(Bi) Xi, f1] ,

When p is equal to zero, the ith row of C5 becomes

1

76(ai)¢(bi)[1-¢(ai)¢(bi)]

 [¢(a1-)<I>(b1-)Xi, ¢(b1.)<b(a1-)X1-. 6(ai)¢(b1-)l .
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If p is known, 6 is just (81', 82')'and C5 is a N-ZK matrix with ith row equal

 

to

«WW—7F) [Raiiempxp ¢(b1-)¢(Bi)X1-l .

1 1

which is the same as for 0 unknown except that the last element has been

dropped.

In discussing the identification problem, some simplifications are made

here. We assume that there are only two independent variables and one of

them is a constant term. That is, we assume

Xi ‘ “ Xi2]

s
- 11

e1 [8121

B

62 = I 211

322

(The same simplification will be used in discussing identification in the

rest of this chapter.) These assumptions are only for the purpose of

simplification, and won't change our conclusion.

The first perverse case we consider is the case of 812 = 822 = 0. That

is, all coefficients equal zero except for the constant term.

Then

a"""hi‘"

i 821
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- 2 _

A1 ' (82] ‘ 081])/ /1'9 A

= - - 2 —

f1 = f(a: b; P) = f

F = F(a, b; p) = F

are all constants for i=1,2,...,N.

Under the assumptions above, the information matrix is

N
1 .

‘0 ‘f T=T1'-'I'=T (Fe)i(Fe)i

where _ (4(a)¢(A)

(Fe), = 4>(a)<1>(A)X,-2

¢(b)¢(B)

L¢(b)o(B)X1-z

L f ..-  

It can be seen that in the information matrix,

the first row x 1% = the third row,

¢(a)¢(A)

the first row x-—-¥:————-= the last row,

¢(a)¢(A)

and the second row x 3i9131§l-= the fourth row.

{ ¢(a)¢(A)

Thus the rank of the information matrix is only two; the parameters are not

identified. This is so even if p is known a priori.

The second perverse case we consider, which was noted by Poirier, is the

case in which B1=82. (That is, B11=82], 812=822.) Then bi=ai’ Bi=Ai and the
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U . . O 1

1nformat1on matr1x1s J: 2 (F). (F ).'
i Fi(l-Fi) <3 1 0 1

where

MaiMAi) '

(F ). = 4’(‘"i)"’(”'i)xiza

¢(ai)¢(Ai)

ci<a1.)<i(A1-)Xi2

  

The information matrix will have rank equal to three, and the parameters are

not identified. Again, this is so whether or not o is known a priori.

The third perverse case we consider is the case in which 311=9321 and

81239822: Then ai=pbi

 

b.

usi=RD ')=um=e

 

 

1 /1- 92

(ob-)2 + b? - 2p(pb.)b.
f, -_-___1__ exp {_ 1 1 1 1 }

‘ - 2n/1- a2 2(1- ,2)

b.

l 1
= ——-—--—- exp {- --}

ZH/T- oz 2

= s ¢(b,)

where s = 1

/2H(1- oz)

and the information matrix is of the same form as in the second perverse

case where
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. ¢(a1)¢(A1) q

¢(ai)<b(A,-)Xi2

oh = 1f‘mi)

J.2""("i)"i2

) 5¢(b1‘) .1  

It can be seen that the third row times 25 is equal to the last row, so the

information matrix is singular. This will not occur if p is known a priori.

The similar situation happens when 821:0811, 822=p812. @(Ai)= %- and

fi = s-¢(ai) where s is the same as above, then the first row times 25 is

equal to the last row and the information matrix is singular. Also there is

no problem if p is known a priori.

These perverse cases can be given an intuitive explanation. In this

partial observability case, there are only two distinguishable events (yes,

no) and one probability is independently estimatable. When the coefficients

of the exogenous variables (Xi) except for the constant term are all equal to

zero, this probability is unrelated to Xi except for the constant term. Hence

there exist only K(the number of exogenous variables) pieces of information,

namely one probability and (K-l) things it doesn't correlate with. From this,

we can't estimate (2K+l) parameters (p is not known) or 2K parameters (9 is

known). In the case when 81=82. the two probit equations are observed to be

the same and there are only (K+l) pieces of information. We still don't have

enough information to estimate all the parameters. In the case when 6H=p321

and B12=p822 (or 8213p811 and 822:9812), there are 2K pieces of information.

We can't estimate all the parameters when p is not known, but won't have the

same problem if p is known.
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Another situation in which the information matrix will be singular is

called “the peculiar case" by Poirier and has been discussed clearly in his

paper. This case involves specific exogenous variable configurations and will

not be discussed here.

There may be some other situations that the information matrix will be

singular; the above cases do not necessarily cover all. It appears that in

general one needs to check to see whether parameters are identified according

to whether the information matrix has rank equalling 2k+l for- each specific

condition. This is also true for all the identification problems of other

partial observability cases that we are going to discuss in other sections.

3.4 Case Three: Partial Partial Observability
  

The log-likelihood function for joint estimates is

N

In L(o) = g {yi1 yi2 anFi

1

+ yi1(l- Viz) 2n[¢(ai) - F1]

T (1' y11) 2n[]' 9(3171}

O = (81', 32.9 p)'

1 = 1,2,...,N

and the information matrix is

“p = c1 c1 + c2 C2 1 C6 C6

where c1, c2 are the same as before and c6' is a (2k+1):N matrix with ith

column equalling

1 3L1“ ¢(a1)]

/l- 6(a1) 39
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When p is known, 6 changes to (81', 82')' and the information matrix is a

2k ¥ 2k matrix.

The first probit equation -- the observable one -- can always be estimated

separately by maximizing

2n L(81) = z {yil 2n 6(a.i 1) + (1-y11) 1" ¢(-a1)}

and the information matrix is

c) = 2 M( .)M(- .)x.'x.
1 a1 a1 1 1

¢(ai)
where M(ai) = .

¢<ai)

 

Only when p=0, the second probit can be estimated separately from the

observations with yi1 by maximizing

tn L(82) = 1 y I'Iyiz 2n ¢(bi) + (l-yiz) 2n p(-bi)}

and the information matrix is

ei== ; 6(ai) [M(bi)M(-bi)]Xi'Xi
1

 

¢(b,)

where M(bi) =

0(bi)

Under the assum tion that X = [l X ] B = [811] B =[821] and for
p i i2’1 812’2 822

the case that B12=822=O, the information matrix for the joint estimation is

 

N

J =3; 1%? (F911LFQ)1‘ 1' 37—31731:(¢e)i'(F®)i][(¢9)i
- (FO)T]'

+ 1 )i(¢®)i'}
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'¢(a)o(A) 1

¢(a)¢(A)Xiz

where (Fe); o(b)¢(B)

¢(b)¢(B)X12

. f l  

1

and F¢(a)

6(alxi2

(¢o)i o

  

It can be seen that the third row of the whole information matrix times

f will be equal to the last row, so the information matrix is singular.

¢(b)¢(B)

= = = =1

Another case is when 81] p821 and B12 “822’ then ai pbi’ 4(Bi) 2- and

l . .

f.=s-¢(b.) where s = -———-—-——— . The information matr1x is of the form that

1 1 V2H(1-pz)

J: 1 {Eli— (Fo)i(Fo)i' + 35:17::- [(‘”e)i‘(Fe)i][(¢e)i‘(Fe)i]'

1
 + . .'}]_¢(ai) (¢G)1(¢O)1

where F¢(ai)¢(Ai) 1

(F ). = ¢(ai)°(Ai)xi2
GI

%-¢(bi)

%'¢(bi)xiz

S¢(bi)   .J
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and

' “3.3)

¢(ai)xi2

C
O
O

  

It also can be seen that the third row time 25 equals the last row, so the

information matrix is singular.

Since the last row of the information matrix is the one corresponding

to p, for the above two perverse cases, the parameters are identified if p is

known a priori (in which case the last row and column are deleted), but they

are not.identified when p is unknown. However, it should be pointed out that

81 is always identified; the lack of identification is only for 82 and p.

Intuitively, since there are three distinguishable events (yes, no but

party one voted yes, no and party one (voted no), there are two independent

probabilities. Thus there are 2K pieces of information in the data for the

above two perverse cases, which do identify 31 and 32 when p is known, but

which do not identify all of B]. 82 and p.

There also may exist some other situations in which identification fails,

but these are the only two that we found so far.

3.5 Case Four: Partial Observability with Observed Veto

First we will discuss the case in which there is a given probability for

party one to cast the veto first when both parties wish to do so. Let p be

this given probability, then the log-likelihood function is

in L(e) = 2 2n F1

i9Zi=l

is observed
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+ 2 2n [p(l- 6(ai)) + (l-p)(¢(bi)-Fi)l

iayi1=0

is observed

+ § In [p(¢(ai)-Fi) + (I-P)(1- 9(b1))]

19yi2=0

is observed

where 0 (81'. 82', o)'

i = 1,2,...,N

and the information matrix of this case is

:9

Ci'ci I C7'C7 + ca'ca

where c]' is as before, c7' and c8' are matrices of dimension (2k+l)-N with

ith columns given by

 

 

 

 

_ 1 A§[p(l-¢(ai))+(l-p)(¢(bi)-Fi)]

/p(l-¢(ai))+(l-p)(¢(bi)-F1) as

and

1 a[p(¢(ai)-Fi)+(l-p)(l-¢(bi))l

/P(¢(ai)-Fi)+(1-p)(l-¢(b1)) 66

respectively.

If p is another parameter which is unknown and needs to be estimated, so

that 6 now includes p, this does not change any of the above except that we

now add another column to c1, c7 and c8. The extra column of c1 is zero, the

extra column of c7 has ith element

1

nan-Ra.))+(i-p)(¢(b,)-F,)
 [l- ¢(ai)- ¢(bi)+Fil
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and the extra column of c8 has ith element

-1
[l- 6(ai)- ¢(bi)+Fi] .

/p(¢(a1)-F1)+(]-p)(]-¢(b1))

 

The information matrix now is a (2k+2) . (2k+2) matrix.

Now we discuss another possibility of observed veto under the assumption

that the first party to cast the veto is the one whose desire for a "no"

vote is stronger. That is, given X181 + £11 < O and XiBZ + 812 < 0, it is

assumed that the party with the lesser value is observed to cast the veto

first. Letting Hi be the probability that X181 + a].1 < X162 + 612 given

X181 + e11 < O and xiBZ + €i2 < O, the log-likel1hood funct1on is

in L(o) = 2 in F1

ia-Z1.=l

is observed

+ z in [¢(bi)-Fi + H1]

i9yi1=0

is observed

+ 2 2n [1- 9(b11'Hi] .

iey12=0

is observed

The information matrix then is

‘0 ‘ c1'c1 + cei'c9 I c1o'cio

where c1' is as above, c9' and c10' are (2k+l)-N matrices and have ith

columns respectively as
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1 a[¢(bi)'Fi+Hi]

/¢(bi)'Fi+Hi 36

and

1 a[l- °(bi)'Hi]

where o = (61', 62', o)‘

 

 

 

 
 

 

 

i”; = _ ¢ bi'ai <:>(- ai+bi 1 x.'

381 720-9) /2(1+p) 72(1-6) '

_3_H_i. = 4%in ., ai+bi ) 1 .1

as2 /2(1-p) /2(1+o)' 72(1-6) '

91

3H. b -a. a.+b. b.-a.

—1 = fly—L— [¢(_L_‘_)¢(- .1.__‘_) ‘ ')
.Bp 72(1-6) 72(1-9) v/2(1+p) 1-o

bi-a. __._.-..

- f(———l-. - 6.; -/<'I'-o)_/2)1

/2(l-o) 1

The derivations of these three derivatives are in Appendix A.

Identification problems still occur under the assumptions that

811 E'21
Xi - [l X12], 5] - [B12] and 82 - [822] as before. When B12 - 322 - O and

p is unknown, the information matrix of the case of observed veto with a
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given probability p is of the form

:9 ' N 1 (F ) (F ) ' + -l'(Q ) ( 1 ' +'l- ( ) ( ) '}
‘ §=1 {‘f' o i o i Q1 10 i 010 i 02 Q26 i 026 i

where

- ptl- ¢(a)1 + (l-p)[¢(b)-F]

- p[¢(a)-F] + (l-p)[l-¢(b)lO
O

N
.
—
I

l
I

(¢(a)¢(A) ‘

<i>(at)i>(A)Xi2

¢(b)¢(8)

j_¢(b)i(B)Xi J

f

  

r¢(a) l-p-(l-p)¢(A)J

¢(a) I-p-(l-p)¢(A)]Xi2

'Qie'i "' (l-p)¢(b) n- wen

(l-p)¢(b) [l- ¢(B)]X1-2

- (l-plf   

and

’p¢(a) u- ium W

p¢(a) [l- <I>(A)1xi2

(029). 3 ¢(b) I-(l-pl-p i(B)]

¢(b) I-(l-pl-p ¢(B)]X1.2

-pf   b

It can be seen that for the whole information matrix

(the first row x q1) + (the third row x q2)

= the last row
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where

= (l-pr_
q

1 ¢(a) [(l-p)¢(A)+p¢(B)l

q = 9f

2 ¢(b) [(l-p)i(A)+p¢(B)]

So the information matrix of the case of observed veto with given probability

p is singular, and neither 51 nor 62 can be identified. However this is true

only when p is unknown. If p is known and o=(81', 82',)', the information

matrix is not singular when 312 = 322 = O. .

In the case of observed veto with p as a parameter, the information

matrix is still of the form as before

N

= 1 l- I 1 I 1 I

but 6 now includes p as (81'. 82', p, p)‘ and (Fo)i’ (Qlo)i and (029), are all

matrices with dimension 6:1.' The extra rows of (Fo)i’ (Qlo)i and (020), are

0, $L-[1- ¢(a)- 6(b) + F] and fil-[l- 6(a) - o(b) + F] respectively. For this

1 2

6-6 information matrix, besides the relationship that

(the first row x q1) + (the third row x q2)

= the fifth row

where q1, q2 are the same as before, it is also true that

[the first row x ¢(b)¢(8) - the third row x ¢(a)¢(A)]

-[l- i(a) - ¢(b) + F1

[9 ¢(a) ¢(b)¢(8) + (l-p) 6(a) ¢(b)o(A)l

X

= the last row.
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Therefore for the case of observed veto with p as another parameter, when

812 = 822 = O the information matrix is singular whether p is known a priori

or not. Another way to say this is that this model, B] and 82 are identified

only if both p and p are known.

Finally we come to the question of identification for the case of

observed veto under the assumption that the first to use the veto is the one

who wants it worst. When 812 = 822 = O and p is not known, the information

matrix is

J .—.
1

d
o
m
z

1 . 1 . 1 .
{F(F0)i(Fe)' +R1—(Rle)i(Rle)i +R'2‘(R26)1(R26)i}

where (Fo)i is the same as above,

R1 = 0(b) - F + H

R2 = l - 4(b) - H

' - ¢(a)i>(A) + H 1
B1

[- ¢(a)¢(A) + H811 x,2
- H8]

[- H811xi2

- f + Hp W

(Rlo)i =

  

- H8]

('”61)Xi2

"s - ¢(b)<i(B)
1

[H81 ' ¢(b)¢(B)]X12

-H
O

(R20)i

  
and where

b-a -—-————

H = F(-—--- . - b; - (l-o)/2)

/2(1-p) '
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HB = - ¢(—_P_é_a:_—) <D( a+b 1 1
 

l 72(1-9) -/2(1+p) 72(1-6)

Ho =12-i- “a, (¥E§) + f]

H, H and HD are constant for i=1,2,...,N.

B1

It can be seen that for this information matrix

(the first row x r1) + (the third row x r2)

= the last row

 

 

where

¢(b)i(B)[f-H l-f H
r = o 81

' 1(a)¢(b)¢(A)¢(B)-[¢(a)¢(A)+¢(b)¢(B)1HB]

r2 = ¢(a)<1>(A)Hp - fHB1

o(a)¢(b)¢(A)¢(B)-[6(a)¢(A)+¢(b)¢(B)]HB]

So for this case, the information matrix is singular when 812 = 822 = O and

p is not known, but not so when p is known.

Intuitively, when the coefficients of all the exogenous variables except

the constant term are equal to zero, there are three distinguishable events

(yes, no with party one vetoing, no with party two vetoing). Hence two

probabilities are independently estimatable and there are 2K pieces of infor-

mation available. Thus we can identify at most 2K parameters. From this

point of view we can see that the informationmatrices in the first and the

third situations are singular because there are (2K+1) parameters when p is

not known. But all the parameters can be identified if p is given. The

second case (which is the one with p as andther parameter) can't be identified

unless both p and p are known.
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3.6 Summary

In this chapter, six different information matrices have been derived

corresponding to joint estimation of the bivariate probit model with varying

degrees of observability. Some information matrices for separate estimation

of the two equations are also derived, but separate estimation won't be as

efficient as joint estimation unless p=O. Because it is the inverse of the

information matrix that is the asymptotic variance — covariance matrix of

parameters, we also discuss question of identification by analyzing the rank

of these matrices. We especially analyze the perverse case in which all the

coefficients of exogenous variables are equal to zero. It is found that in

the above situation, regardless of the values of the constant terms, all of

the information matrices for the partial observability cases are singular

if p is not known. When p is known a priori, only the cases of partial

observability in the sense of Poirier and of observed veto with p as another

parameter still suffer from a lack of identification. The model with full

observability is still identified in this case, whether a is known or not.

The second perverse case is the one in which 81 = 82; that is, the two

probit equations are identical. Then the model with partial observability

in the sense of Poirier is not identified, though there are no problems with

the other cases.

The third perverse case is when 8]] = p321 and 312 = ”822' The model

with partial observability in the sense of Poirier and the partial partial

observability case are not identified when p is unknown. But there are no

problems when p is known a priori. In the similar situation when 821 = pen

and 822 = 9812, only the model with partial observability in the sense of

Poirier is not identified when p is unknown.



42

These results will be useful in picking parameter points at which to

evaluate the cost of partial observability. This we will do in the next

chapter.



CHAPTER FOUR

RESULTS OF EXPERIMENTS MEASURING THE

COST OF PARTIAL OBSERVABILITY

4.1 Introduction

In this chapter, the results of some experiments measuring the cost of

partial observability are presented. We call these "experiments" because

various specific values of the parameters have to be picked in order to

evaluate the inverse of information matrix. What we are interested in is

primarily (l) with the same values of the parameters, a comparison of

efficiencies under different levels of partial observability; and (2) the

reasons that will cause the change of cost for each individual level of

partial observability. With this knowledge, a researcher can compare costs

of using and not using a piece of information according to his case and

make a better decision.

When measuring the cost of partial observability, we let the elements

of the inverse of the information matrices for the various partial

observability cases be divided by the corresponding elements of the inverse

of the information matrix for case one. The reason for choosing case one

as a standard of comparison is because it has the most complete observability

and therefore leads to the most efficient estimates. Thus the ratios that .

we get are the ratios of asymptotic variances and covariances for the various

partial observability cases compared to the full observability case, and

represent the relative efficiencies of parameter estimates under different

levels of observability. The bigger the ratios are, the greater the cost

of partial observability.

43
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Some simplifications made in the last chapter are still applied here.

8 B
11 _ 21

I I s B - [

= e'x13 and the X1.3 are random normal deviates with zero mean and unit

Specifically, we assume Xi=(l Xi2)’ s] = ] , where Xi

variance. All the experiments in this chapter have been done with a sample

size of 50. We also tried sample sizes of 10, 100 and 500, but the results

didn't show any significant difference. This simply indicates that the

ratios of asymptotic variances are more or less independent of sample size.

We do not address the question of what sample sizes are necessary for the

asymptotic distributions to be reliable.

In section 4.2, we first try three arbitrary cases B1=32=[}]; 81=82=[?];

6]=[J]] and 32=[}]. We present some general results which we believe are

always true for any values of 8. In section 4.3, all the experiments have

been done with one common characteristic, namely that g X131 ==§X132 = O

(ensured by appropriate choice of value of the constant term). The idea of

these experiments is to show the effects of changes in the parameters

(8], 82, p and p) when (on average) each party has an equal probability of

saying "yes" and "no". These results are not as readily interpreted as we

might hope, since changing any parameter (e.g. 812) changes a number of

features of the data and model which are relevant to the relative efficiencies,

such as the degree of identification, the split of the sample into the various

distinguishable outcomes, and so forth. Therefore in section 4.4 we try

some more complicated experiments in which we manipulate the parameters in

such a way as to isolate these various influences. For the most part these

results are in accord with our a priori expectations. Section 4.5 gives

the summary of this chapter.
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Twenty-two tables at the end of this chapter present the results of the

experiments. Only the ratios of asymptotic variances of the parameter

estimates of the non-constant-term exogenous variables (B12 and 322), for

different levels of partial observability, are listed and discussed. Except

for those experiments especially designed to focus on p and p, all of the

experiments have been done for p=O and p=0.5, and p is fixed at 0.5 for

case four. As before, case one is the full observability case; case two

is the case of partial observability in the sense of Poirier; case three is

the partial partial observability case; case 4A1 is the observed veto case

given a known value of p; case 4A2 is the observed veto case with p as

another parameter; and case 48 is the observed veto case under the assumption

that the party who uses the veto first is the one that wants the veto more

strongly. Also we define

 

N

“—'= Z F(X-B . X.B ; p)/N
P1] i 1 l 1 2

N

10 1

N

01 1

N L

13‘“? [l- ¢(Xie]) - <1(X1-82) + F(xis]. X182;p)]/N

OO 1

N X.B -X B s_____._

g = z P(l—Z—i—l. 41.32; - /(1-p)/2)/N.

l /2(1-o)

They are the average probabilities of: both parties say "yes"; party one

says "yes" and party two says "no"; party one says "no" and party two says
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"yes"; both parties say "no"; and party one uses veto first given that both

parties desire to do so; respectively. The distribution of the first four

probabilities are called "sample split" and all the probabilities are listed

in some of the tables. Also in the tables, "p is not known" means that p is

not given but rather is estimated as a parameter, and the information matrices

are of dimension (2k+l)°(2k+l) (or (2k+2)-(2k+2) for case 4A2).

4.2 General Results of Some Basic Experiments

The experiments presented in this section are called "Experiment 1" in

order to be distinguished from the others in section 4.3 and 4.4. Experiment 1

includes three different B's. They are (l) B] = 82 = [1]; (2) B1 = 82 = [?1;

1]. For the first two choices of 3, Poirier'sand (3) a] = [3,1 and 82 = I

model (case two) is not identified because X181 = X182 for all i. The other

cases are all identified. -

Table 1 lists the (expected) sample splits for each case under both

p=O and p=0.5. Table 2 shows the relative efficiencies of B12 and 322 for

each partial observability case. The results in Tables 1 and 2 are not easy

to summarize, but we do note the following.

(1) When 81 = 82 = [:1, Xie1 and Xie2 are all positive numbers greater than 1,

so the average probability of both parties voting "yes" is close to 1,

and the average probability of both parties voting "no" is very small.

Since X18] = X162, P76 = 01; the average probability of one party voting

"yes" and the other voting "no" is the same as the probability of the

opposite situation. Both probabilities are small. This is a fairly

extreme sample split..
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When 81 = 82 = [1] changes to B] = 82 = [$1, both the values of XiBl

and xiBZ are decreased, so the average probability that both parties

will say "yes" is decreased too. On the other hand, the average

probabilities that one or both parties say "no" are all increased. The

samples split is still heavily weighted toward fboth yes", but less

extremely than before.

Knowing p results in smaller ratios of asymptotic variances, and hence

reduces the <:ost of partial observability. This agrees with the

general principle that we will call the "law of decreasing marginal

utility of information" (LOMUI), which is that the more information one

has, the less should be the value of another piece of information.

Observability information is less valuable when p is known a priori

than when it is not.

The Poirier case is the worst among all the partial observability cases

either when c>is unknown or known, because it is the one that is based

on the least information.

For case three, the ratios of asymptotic variances for estimates of 312

are equal to one for p=0 and are still very close to one for p=O.5, for

all values of B. This is so because party one's behavior is fully

observed in this case, and when p=0 party two's behavior is not

informative for party one's parameters. This is not true however when

pfO. For 82 (party two's parameters), the ratios are bigger than any

of those for case four when p is unknown. When p is known, they are

bigger than those for case 4A1 or case 48 but smaller than those for

case 4A2.
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When Kip] = XiBZ and p = 0.5, 812 and 822 have the same efficiencies

for all three different possibilities of case four.

The estimates for case 4A2 are less efficient than for case 4A1, since

in case 4A1 more is known (namely p). In general the gain from knowing

p is greater when p is known (and conversely). This is a counter-

example to the LOMUI.

For case 48, H'is the average probability of XiBl + 21] < X162 + €i2

given that X181 + e1] < O and Xis2 + £12 < 0. So when Xis1 = X132,

H'= %-P66 . In the case of 31 = [1]] and 32 = [1], xis1 < X132, so

that party one is more likely to use the veto first when both sides

vote "no", and thus H'> %-PBB . Furthermore, the average probability

of the indistinguishable outcome is P6;'+ H for party two while it is

P}; + P66 - H for party one. Hence 822 tends to be less efficient

than 812 in case 48 when Hi> %-PBB , as it is here.

With X161 = X182 and p = 0.5, the efficiencies of 812 and 822 in case

4A1 are very close to those in case 43. This is so because when

X181 = xiBZ’ the probability of X181 + 811 < XiB2 + 612 is indeed 0.5.

The above conclusions will be seen to hold also in the experiments yet

to be presented,and thus are fairly general. (Some of them, of course, are

perfectly general since they must be true.) We will not discuss them

further.

There is some evidence above on the effects of changes in p. However.

this will be discussed in the next section.
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4.3 Results of Further Experiments

In this section we report the results of more experiments, which vary

8], 82, p and p more widely than in the last section. All of the experiments

in this section have in common the feature that g X131 = g X132 = O. The

point of this is to try to minimize effects of parameter changes on the sample

split. For example, consider an experiment which varies 812 from zero to

some high level. As B12 increases, for some of the partial observability

cases the degree of identification increases and we might expect the cost of

partial observability to fall. (We might call this an "identification effect".)

However, if we change 812 while holding 8]] constant, the probability of a

"yes" vote also changes, and thus the sample split changes. This also may

affect relative efficiencies; for example, as P;;' increases there is fuller

observability for all cases and the relative efficiencies of the partial

observability estimators should increase. (We might call this a "sample

split effect".) Therefore in this section when 812 is changed, 811 is also

changed in such a way that XiB1 is (on average) zero: E X181 = 0, and

similarly for 82. For p=O and small B's, this will yield a symmetric sample

split: P66 = P6; = P;6'= PT;'= i-. For larger B's this is unfortunately

not so. Because of the non-linearity of the model, the average probabilities

(over the sample) are not the same as the probabilities evaluated at the

average of Xi. The latter will all equal %~(for p=O, anyway) but the former

will not. Thus we are not entirely successful in separating identification

effects from sample split effects. Indeed, it is not clear how well one can

hope to do so, but some more successful attempts will be made in the next

section.
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Several types of experiments are presented in this section:

(1) Experiment 2: B1 = 82 = ['CCX] for c = 0.3, 0.5, l, 2 and 3,

-X.

where X ‘3e = 1.525 ,

l

x. =

1 '2 i

II

I
I
M
2

I
I
M
Z

i

X1.3 , i=1,2,...,N, are random numbers with standard

normal distribution havingii=0 and o=l. The same X's will

be used for all the experiments here, and the sample size

is 50. The results of Experiments 2 are in Tables 3, 4 and 5.

(2) Experiment 3: B] = [C_E] and 32 = ['ccx] for c = 0.3, 0.5, l, 2 and 3.

The results are in Tables 6, 7 and 8.

. . - g 4X
(3) Exper1ment 4A. 3] - 32 . [1.0];

Experiment 4B: 3] = [_]¥0] and 82 [;¥0] s

both for p=-O.5, O, 0.2, 0.5 and 0.8. The results are in

Tables 9, 10, 11 and 12.

' o = = -7.(4) Exper1ment 5A. 31 32 [1.0];

[-1161 and B2

. , -7'
Exper1ment 58. B1 [1.0],

both for p=O, 0.2, 0.5, 0.8 and l (but for cases 4A1 and 4A2

only). The results are in Tables 13 and 14.

It is hard to summarize so many tables briefly. However, we will

discuss what we find to be the most interesting results.

For experiment 2, we know that case two is not identified for any value

of c because X181 = xiBZ’ i=1,2,...,N, and case three (82 only) and case
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four are not identified if c is zero when p is not known. If p is known only

case 4A2 is not identified when c is zero. As c increases, the "identification

effect" should be to increase relative efficiencies of the partial observ-

ability cases. Meanwhile, we notice that the average probabilities of the

indistinguishable outcomes, namely (Pa;'+ P66) for 32 of case three and P66'

for case four are getting larger when c increases. That is, the identification

effect and the sample split effect work against each other when c changes.

From the results when p is not known, we can see that when c is smaller

(0.3, 0.5) the identification effect is quite strong so that the ratios of

asymptotic variances are decreasing as c gets larger for both p=O and p=O.5.

But when c increases to a certainlevel (261:3), these two effects seem to

cancel each other out and the results are less clear. For the p=O case,

whether these ratios will increase or decrease after c > 2.0 is uncertain.

When p = 0.5, although ratios are monotonically decreasing as c increases

from 0.3 to 3.0, whether they would keep on increasing or not can't really

be predicted.

When p is known, the relative efficiencies of case three (62 only) and

cases 4A1 and 4B are generally decreasing as c increases, presumably because

of the sample split effect. For case 4A2, since it still has an identification

problem if c is too close to zero, relative efficiencies are increasing as

c increases until c=3.

In Experiment 3, all of the parameters are identified for all cases.

However, for c=0 cases 2 and 4A2 would not be identified, while cases 3,

4A1 and 48 would be identified only with p known. As for the sample split

effect, the average probability of the indistinguishable outcome for case

two, which is (1-P1 ), is increasing with c but those of case three (82 only)
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and case four are decreasing as c increases. Thus we are going to discuss

the relative efficiencies of the partial observability cases one by one.

For case two, the relative efficiencies of both 5] and 32 improve as

c increases from 0.3 to 3 for either p=0 or p=0.5, and whether p is known

or unknown. This shows that the identification effect is very strong for

case two, which is not surprising.

For 82 of case three, when p is not known, the identification effect

plus the sample split effect make the relative efficiency increase as c

increases both for p=0 and p=0.5. When o is known, the sample split effect

alone makes the relative efficiency increase for both o=0 and p=0.5 after

c=0.5.

For case 4A1, the effect of changing c is ambiguous. Note that case

4A1 yields much more efficient estimates than case 4A2, especially when c

is small. The same is true in comparing case 4A1 to case 48 when p is

unknown. When p is known, cases 4A1 and 48 yield rather similar efficiencies.

For case 4A2, for either p=O or p=0.5 and whether p is known or not,

the identification effect and the sample split effect both make 8] and 82

relatively more efficient as c gets larger. Therefore, the efficiency

relative to full observability is monotonically increasing all the way from

c=0.3 to 3.

Since case 48 has identification problems only when p is not known, its

relative efficiency improves dramatically when c increases, when p is

unknown. When p is known, the effect of increasing c is ambiguous.

Experiment 4 shows the effect of the correlation coefficient p. For

Experiment 4A with p unknown, the relative efficiencies of all cases (only

32 for case three) get worse as p increases. The changes are considerable
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especially for bigger p. When p is known, the result is mostly the opposite.

Most ratios get smaller as p increases, but these are mixed results for case

4A2. However all the changes are much smaller; this is, 0 doesn't matter

much if it is known.

For Experiment 48 with p unknown, relative efficiencies of all cases

(only 82 for case three) except case 4A1 improve as p increases. The changes

are eSpecially big when p increases from -O.5 to O. The ratios for case 4A1

are very small compared to other cases, but they increase as p increases.

When p is known, the relative efficiencies of case two and case 4A2 improve

but cases three (82 only), 4A1 and 48 get worse as p increases. All the

changes are also smaller when p is known.

For both Experiment 4A and 4B, the relative efficiency of 8] in case

three, being affected by the correlation with another unobservable party,

gets away from 1 as the absolute value of p increases.

Experiment 5 shows the effect of p on cases 4A1 and 4A2. For case 4A1

and 4A2, the average probability of the indistinguishable outcome for party

one is P16 + (l-p) 566' and is 501. + p PBS’ for party two. So as expected,

increasing p decreases the ratios for a] but increases them for 32, and the

effects are very strong.

Both experiments 5A and SB have the same results for cases 4A1 and 4A2

whether p is known or not, but the results are mixed for case 4A2 in

Experiment 78 when p is known.
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4.4 The Results of Experiments with Either the Identification Effect or

the Sample Split Effect Constant
 

From the results of the last section, we can see that because of the

mixture of the identification effect and the sample split effect, sometimes

we can not really tell the direction of change of the relative efficiency

when a parameter changes. Therefore, in this section, we try some other

experiments designed to change one effect while holding the other constant.

All the experiments are done by adjusting the values of the constant terms

to manipulate the sample split. Since different cases depend on different

features of the sample split, we do a different experiment for each partial

observability case.

There are three types of experiments in this section:

(1) Experiment 6A: 31 = [_g] and 32 = [g] for c = 0.3, 0.5, l, 2 and 3;

d is adjusted so that qu'is fixed at 0.25.

Experiment 68: 81 = [_i] , 82 = [g] and c=l; d is adjusted so that P?—

—
l

varies from 0.15, 0.25, 0.35, 0.45, 0.55 to 0.65.

These are experiments designed for case two and results are

in Tables 15 and 16.

(2) Experiment 7A: a] = 32 = [‘3] for c = o 3,0.5, 1, 2 and 3;

d is adjusted so that P01 + P00 = 0.50.

Experiment 7B: 31 = ['31] and 52 = [’32] for c = 0.3, 0.5, 1, 2 and 3;

d1 and d2 are adjusted so that P0] = P00 and both are fixed

at 0.25.
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Experiment 7C: 81 = 82 = [-3] and c = 1.0;

d is adjusted so that PET" + Paa'varies from 0.20, 0.30, 0.40,

0.50. 0.60 to 0.70.

° - = -d] = -d = 'Exper1ment 7D. 81 [ c-]’ 82 [ c2] and c 1.0, d1 and d2

are adjusted so that P6? = P66' and both vary from 0.10, 0.15,

0.20. 0.30 and 0.35.

These four experiments are designed for case three. Since 81 has all

the ratios very close to one, only the results for 82 are listed and they are

in Tables 17, 18, 19 and 20.

(3) Experiment 8A: 3] = 32 = ['2] for c = 0.3, 0.5, l, 2 and 3;

d is adjusted so that P66 = 0.25.

Experiment 88: s] = 32 = [’3] and c = 1.0;

d is adjusted so that P66 varies from 0.15, 0.25, 0.35, 0.45,

0.55 to 0.65.

These are experiments designed for case four and results are in Tables

21 and 22.

We get the following conclusions from the results of these experiments:

From the results of Experiment 6B, 7C, 7D and 88, it can be seen that

sample split effect does affect the relative efficiencies of partial

observability cases. The higher the average probability of the indistinguish-

able outcome for each case, the worse the relative efficiency and higher the

cost of partial observability. This result holds under different situations
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concerning p. Thus, in Experiment 68 (Table 16), increasing PT; increases

the efficiency of case two relative to case one. In Experiments 7C and 70

(Tables 19 and 20), increasing PB;'+ P66 decreases the efficiency of case

three relative to case one. In Experiment 88 (Table 22), increasing PBB'

decreases the efficiency of case four relative to case one. All of this is

as expected.

Experiments 6A, 7A, 7B and 8A attempt to investigate the identification

effect while holding the sample split effect constant. This leads to results

that are less clear-cut than those just reported. Basically, identification

effects are strong and predictable near points of singularity, but less so

far from points of singularity.

Experiment 6A investigates the identification effect for case two. The

probability of the indistiguishable event for case two are l-PYTL so we hold -

the sample split effect constant by holding constant PT;'= 0.25. Lack of

identification occurs if c=0 regardless of whether p is known or not.

Therefore the efficiency of case two relative to case one is expected to

increase (and the entires in Table 15 to fall) as c increases. The results

in Table 15 show that mostly they do. The exceptions occur when c is big

(c=3) and p is known, which are far from points of singularity.

Experiments 7A and 7B investigate the identification effect for case

three. Since the probability of the indistinguishable event for case three

 

is (P01 + P00), we attempt to hold the sample split effect constant by

-1 . —=—___l .
holding constant P6;'+ P66 - 7-(Exper1ment 7A) or P0] P00 Z-(Exper1ment

78). Lack of identification for case three occurs when c=O and p is unknown.

Therefore when p is unknown we would expect the efficiency of case three

relative to case one to rise (and the entires in Table 17 and 18 to fall) as



57

c increases. This does occur as c increases, when c is small, but for c > 1

the opposite occurs. In other words, the identification effect shows up

only when the model is close to non-identification. The same phenomenon

occurs when p is known. Then the parameters are identified for all c, and

the relative efficiency for case three falls monotonically except for very

small c.

Experiment 8A investigates the identification effect for case four. The

probability of the indistinguishable event here is P66} so the relevant

portion of the sample split is P66 , which we hold constant as c changes.

Lack of identification occurs when c=0; for case 4A2 this is so regardless of

whether p is known, while for case 4A1 and 48 this is so only if p is unknown.

The results in Table 2.1 are fairly predictable. Wherever identification is

relevant (all cases when p is unknown, but only case 4A2 when p is known)

the efficiency of case four relative to case one rises (entires in the table

fall) as c increases. For cases where identification is not relevant (cases

4A1 and 48 when p is known) relative efficiency first rises and then falls as

c increases.

4.5 Summary

In this chapter, we have conducted a large variety of experiments to

measure the cost of various levels of partial observability. The results

have been given in some detail in the preceeding sections. Here we will

give a brief summary of the most important conclusions.

The cost of partial observability is quite high. The estimates from

Poirier's model (our case two) typically have variances tens or hundreds of

times as large as do the estimates from the model with full observability

(our case one). This cost decreases markedly if any piece of observability
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information can be found; for example, observability for either party (our

case three) or observed veto (our case four). The law of diminishing

marginal utility of information usually holds: the gain in moving from case

two to case three or four usually exceeds the gain in moving from case three

or four to full observability (our case one). It is the first piece of

observability information which is most important.

A second clear conclusion is that specifying c>a priori improves the

efficiency of the estimates of the other parameters a great deal. Further-

more the improvement from knowing a is largest when it is needed most; that

is, when the relative efficiency is lowest.

A third conclusion is that the sample split has a strong influence on

the relative efficiencies of the estimates. For a given partial observability

case, its efficiency relative to full observability will be higher, the

smaller the proportion of observations which fall into_the indistinguishable

categories. Thus, for example, for Poirier's model relative efficiency will

be high only when most observations are of the "yes, yes" variety. The

fraction of such observations is observable. Similarly, in our case three

the observations which reduce relative efficiency are the ones for which the

observable party votes "no", and the proportion of such observations is also

observable. On the other hand, for the observed veto cases the relevant

proportion of observations is not directly observable.

Our last main conclusion is that the strength of identification matters.

All of the partial observability cases are unidentified for some perverse

parameter points (as described in Chapter 3). Their relative efficiency

is naturally low for parameter values near such points, and it increases

rapidly as the parameters move away from such points of singularity. However,
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these effects are not strong except in the immediate neighborhood of points

of non-identification. Furthermore, this last conclusion depends on

unobserved parameters, and therefore is less likely to be informative, in

practical applications, than the other three conclusions listed above.



TABLE 1

Sample Splits for Different B

 

m
fl
fl
fl
fl
°

01=02= [11

0.0 0.5

0.9233 0.9320

0.0365 0.0283

0.0365 0.0283

0.0031 0.0113

0.0016 0.0057

91=02= [$1

0.0 0.5

0.6846 0.7243

0.1297 0.0900

0.1297 0 0900

0.0560 0.0957

0.0200 0.0473

0.4422

0.0133

0.5182

0.0263

0.0192
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TABLE 2

Ratios of Asymptotic Variances (Cost of Partial Observability)

 

 

 

 

 

 

 

 

_ _ 1 _ _ O _ l - l

B 81"82' [1] 81-82' [1] 81’ [_‘|]9 82' [1]

p 0.0 0.5 0.0 0.5 0.0 0.5

p is not known

Case 2 * * * * 17.6810 6.2666

Case 3 1.0000 1.0117 1.0000 1.0119 1.0000 1.0007

812 Case 4A1 5.1284 28.0120 8.7086 41.8127 4.5844 2.8136

Case 4A2 7.0715 33.2000 10.9572 45.7816 4.7963 2.9075

Case 48 5.1225 27.9721 8.6645 41.6975 2.6225 1.8931

Case 2 * * * * 8857.6250 35637.07

Case 3 9.3734 52.2389 17.2976 78.4054 178.6166 864.2910

822 Case 4A1 5.1284 28.0120 8.7086 41.8127 2.4228 1.9527

Case 4A2 7.0715 33.2000 10.9572 45.7816 46.7191 3.8118

Case 48 5.1225 27.9706 8.6644 41.6975 19.8626 47.1023

is known

Case 2 * * * * 7.6118 3.7920

Case 3 1.0000 1.0088 1.0000 1.0073 1.0000 1.0008

812 Case 4A1 1.0255 1.0731 1.1135 1.1755 1.0189 1.0273

Case 4A2 2.9686 6.2613 3.3621 5.1455 4.3046 2.0516

Case 48 1.0196 1.0332 1.0694 1.0604 1.0103 1.0067

Case 2 * * * * 105.3535 191.2173

Case 3 1.0500 1.1219 1.2118 1.2796 2.1731 5.0474

822 Case 4A1 1.0255 1.0731 1.1135 1.1755 1.3622 1.6642

Case 4A2 2.9686 6.2613 3.3621 5.1455 10.1104 3.7010

Case 48 1.0196 1.0331 1.0694 1.0604 1.6767 3.0236

 

*The information matrix of case two is singular (parameters are not identified).
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TABLE 3

Samp1e Sp1its for Different c

 

 

 

 

_ _ -c'X

when 81'82' [ C ]

p=0.0

c 0.3 0.5 1.0 2.0 3.0

1571‘ 0.2491 0.2486 0.2542 0.2629 0.2811

1713 0. 2297 0. 2076 0.1464 0. 0993 0. 0450

1'33? 0.2297 0.2076 0.1464 0.0993 0.0450

1'55; 0.2916 0. 3362 0.4529 0.5385 0. 6288

35+} 0.5213 0. 5438 0. 5993 0. 6378 0. 6838

1'1" 0.1458 0.1681 0.2265 0.2693 0.3144

p=0.5

c 0.3 0.5 1.0 2.0 3.0

1°? 0.3244 0.3151 0.2982 0.2913 0.2944

F}; 0.1544 0.1411 0.1024 0.0709 0.0317

F01- 0.1544 0.1411 0.1024 0.0709 0.0317

9—06 0. 3669 0. 4027 0. 4970 0. 5670 0. 6422

1567.433 0. 5213 0.5438 0. 5994 0. 6379 0. 6739

‘11 0.1834 0.2013 0.2485 0.2835 0.3211
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TABLE 4

 

 

 

 

 

 

 

Ratios of Asymptotic Variances (Cos§_of Partia1 0bservabi1ity)

.. _ 'C _
When 81-82- [ c ] and p-O

c 0.3 0.5 1.0 2.0 3.0

p is not known

Case 3 1.0000 1.0000 1.0000 1.0000 1.0000

8 Case 4A1 91.2821 50.9838 19.9076 23.0626 18.5827

12 Case 4A2 103.0591 56.0029 22.1733 23.8038 18.8309

Case 43 91.1068 50.7766 19.4382 21.7407 16.8380

Case 3 205.0555 121.5853 42.5952 52.0272 37.4875

8 Case 4A1 91.2821 50.9838 19.9076 23.0626 18.5827

22 Case 4A2 103.0591 56.0029 22.1733 23.8038 18.8309

Case 48 91.1063 50.7766 19.4382 21.7407 16.8380

9 is known

Case 3 1.0000' 1.0000 1.0000 1.0000 1.0000

Case 4A1 1.3747 1.4050 1.7985 3.0932 3.6511

812 Case 4A2 13.1517 6.4240 4.0643 3.8345 3.8994

Case 48 1.1991 1.1977 1.3291 1.7713 1.9064

Case 3 1.7174 1.7369 2.3280 4.0159 4.6467

8 Case 4A1 1.3747 1.4050 1.7985 3.0932 3.6511

22 Case 4A2 13.1517 6.4240 4.0643 3.8345 3.8994

Case 48 1.1991 1.1977 1.3291 1.7713 1.9064

 

*The information matrix of case two is singu1ar in this experiment.
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TABLE 5

 

 

 

 

 

 

 

Ratios of Asymptotic Variances (Cost of Partia1 0bservabi1ity)

when 81=82= {-ch] and p=0.5

c 0.3 0.5 1.0 2.0 3.0

o is not known

Case 3 1.0008 1.0038 1.0080 1.0095 1.0119

8 Case 4A1 267.7677 207.5012 63.1785 61.4412 43.9869

12 Case 4A2 281.0156 213.1307 65.5496 62.1682 44.2313

Case 4B 267.4762 207.1903 62.6215 60.1184 42.3013

Case 3 527.4460 402.6952 125.7184 129.2031 91.1600

8 Case 4A1 267.7677 207.5012 63.1785 61.4412 43.9869

22 Case 4A2 281.0156 213.1307 65.5496 62.1682 44.2313

Case 43 267.4762 207.1903 62.6215 60.1184 42.3013

p'1S known

Case 3 1.0016 1.0019 1.0046 1.0064 1.0074

8 Case 4A1 1.4345 1.4460 1.7343 2.6848 3.1727

12 Case 4A2 14.6908 7.0827 4.1108 3.4136 3.4176

Case 48 1.1428 1.1351 1.1760 1.3589 1.4840

Case 3 1.6862 1.6701 1.9542 2.8662 3.3950

Case 4A1 1.4345 1.4460 1.7343 2.6848 3.1727

822 Case 4A2 14.6908 7.0827 4.1108 3.4136 3.4176

Case 4B 1.1428 1.1351 1.1760 1.3589 1.4840

 

*The information matrix of case two is singu1ar in this experiment.
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m

Samp1e Sp1its {or Different cY

-c ___-c
When 8] - [ -c] and 82 [ c 1

 

 

 

 

p=0.0

c 0.3 0.5 1.0 2.0 3.0

p;;‘ 0.2297 0.2075 0.1464 0.0704 0.0450

510. 0.2916 0.3362 0.4529 0.5881 0.6288

F01 0.2491 0.2486 0.2542 0.2712 ' 0.2811

F00, 0.2297 0.2076 0.1464 0.0704 0.0450

'pa;4p'5' 0.4788 0.4562 0.4006 0.3416 0.3261

‘R' 0.1079 0.0914 0.0566 0.0282 ' 0.0205

p=0.5

c 0.3 0.5 1.0 2.0 3.0

P11 0.3011 0.2667 0.1800 0.0856 0.0558

975' 0.2202 0.2771 0.4194 0.5729 0.6181

F01 0.1777 0.1895 0.2206 0.2560 0.2704

235' 0.3011 0.2667 0.1800 0.0856 0.0558

03749‘6' 0 4788 0.4562 0.4006 0.3416 0.3262

R' 0.1334 0.1130 0.0605 0.0332 0.0255
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TABLE 7

Ratios of Asymptotic Variances (Cost of Partia1 0bservabi1ity)

When 81= [C_Z1, 82= ['ch1 and p=0

 

 

 

 

 

 

 

c 0.3 0.5 1.0 2.0 3.0

p is not known

Case 2 605.5864 518.8082 151.5306 221.9935 75.3350

Case 3 1.0000 1.0000 1.0000 1.0000 1.0002

812 Case 4A1 1.7312 1.5502 1.3647 1.5126 1.6559

Case 4A2 104.7621 57.8441 10.8805 4.8029 3.8208

Case 48 48.9987 22.8783 13.1748 11.8071 10.9172

Case 2 21751.885 5910.3139 659.7719 78.4286 42.9161

Case 3 890.1655 411.7187 119.8679 30.1673 19.4758

822 Case 4A1 1.8019 1.6830 1.6583 1.7880 1.8296

Case 4A2 91.1751 48.8784 12.1145 7.1413 5.9189

Case 48 64.2327 30.7263 11.6161 6.0176 5.0118

p is known

Case 2 365.3644 313.1222 44.8365 32.2472 22.9143

Case 3 1.0000 1.0000 1.0000 1.0000 1.0002

312 Case 4A1 1.3767 1.3311 1.3634 1.4480 1.5318

Case 4A2 81.4734 36.9280 10.7038 4.5243 3.4053

Case 48 1.1951 1.2293 1.5222 2.5273 3.0136

Case 2 589.6485 529.1590 59.2528 22.1721 12.8180

Case 3 2.7547 3.2830 3.1431 2.5740 2.1090

622 Case 4A1 1.6010 1.6209 1.5473 1.4188 1.3331

Case 4A2 71.8316 32.5675 12.0924 6.2325 4.7055

Case 48 1.5562 1.8215 1.9029 1.7929 1.5520
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TABLE 8

Ratios of Asymptotic Variances (Cost of Partia1 Observabi1ity)

_ c 7' _ -c'Y _
When 8]“ [ -C]’ 82' [ C ] and p-0.5

 

 

 

 

 

 

 

c 0.3 0.5 1.0 2.0 3.0

o is not known

Case 2 314.6830 312.4838 35.6600 48.1634 27.8839

Case 3 1.0042 1.0078 1.0089 1.0081 1.0075

812 Case 4A1 1.7337 1.4753 1.3893 1.5222 1.6044

Case 4A2 54.1470 18.4067 5.1199 2.6099 2.5202

Case 48 19.8579 10.2136 8.1579 8.5622 8.4649

Case 2 4389.5386 2022.1393 82.0819 18.1384 14.0965

Case 3 344.3801 176.7509 36.3043 11.6794 7.9632

822 Case 4A1 1.8750 1.7257 1.8023 1.7998 1.7341

Case 4A2 45.6778 15.6901 6.3376 3.9413 3.7014

Case 48 30.8417 15.6040 6.6949 3.9136 3.2999

p is known

Case 2 154.3449 47.5010 18.1745 15.2464 14.2868

Case 3 1.0049 1.0086 1.0076 1.0047 1.0034

812 Case 4A1 1.3572 1.3378 1.3793 1.4578 1.5356

Case 4A2 35.7942 12.6180 5.1139 2.5252 2.3125

Case 48 1.1593 1.2532 1.8462 3.6369 3.8029

Case 2 297.7500 105.2685 20.4917 8.7703 5.8623

Case 3 3.1706 4.0090 3.6484 2.7647 2.3078

822 Case 4A1 1.7264 1.7192 1.6060 1.4609 1.3779

Case 4A2 31.4848 11.8300 6.1416 3.5386 2.9358

Case 1.6245 2.0532 2.1276 1.9355 1.663648
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TABLE 9

Samp1e Sp1its for Different 0

When 81=82= ['CC71 and c=1.0

 

 

 

p -0.5 0.0 0.2 0.5 0.8

9;;' 0.2206 0.2542 0.2701 0 2982 0.3363

573' 0 1800 0.1464 0.1305 0 1024 0.0643

93;' 0 1800 0 1464 0.1305 0.1024 0.0643

F35” 0.4194 0.4970 0.4689 0 4970 0.5351

R' 0.2097 0.2485 0.2345 0.2485 0.2676

TABLE 10

Samp1e Sp1its for Different 0

When 81= [C_Z1, 82= ['CCY1 and c=1.0

p -0.5 0.0 0.2 0.5 0.8

9;;’ 0 1024 0 1464 0.1609 0.1800 0.1961

576' 0.4970 0.4529 0.4385 0 4194 0.4032

$37' 0 2982 0.2542 0.2398 0.2206 0.2045

565' 0 1024 0.1464 0.1609 0.1800 0.1961

R' 0.0441 0.0566 0.0590 0.0605 0.0603
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TABLE 11

Ratios of Asymptotic Variances (Cost of Partia1 0bservabi1ity)

When 81=82 {-ccx] and c=1.0

 

 

 

 

 

 

 

p -0.5 0.0 0.2 0.5 0.8

p is not known

Case 3 1.0088 1.0000 1.0014 1.0080 1.0166

8 Case 4A1 9.5192 19.9076 29.4137 63.1785 225.4031

12 Case 4A2 11.5298 22.1733 31.7488 65.5496 227.6452

- Case 48 9.1134 19.4382 28.9126 62.6215 224.7830

Case 3 20.0543 42.5952 62.4095 125.7184 351.5529

8 Case 4A1 9.5192 19.9076 29.4137 63.1785 225.4031

22 Case 4A2 11.5298 22.1733 31.7488 65.5496 227.6452

Case 48 9.1134 19.4382 28.9126 62.6215 224.7830

9 is known

Case 3 1.0042 1.0000 1.0007 1.0046 1.0106

8 Case 4A1 2.0485 1.7985 1.7632 1.7343 1.7078

12 Case 4A2 4.0619 4.0643 4.0991 4.1108 3.9623

Case 48 1.6420 1.3291 1.2619 1.1760 1.0843

Case 3 3.1039 2.3280 2.1651 1.9542 1.6801

8 Case 4A1 2.0485 1.7985 1.7632 1.7343 1.7078

22 Case 4A2 4.0619 4.0643 4.0991 4.1108 3.9623

Case 48 1.6420 1.3291 1.2619 1.1760 1.0843

 

1*

The information matrix of case two is singu1ar in this experiment.
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TABLE 12

Ratios of Asymptotic Variances (Cost of Partia1 0bservabi1ity)

 

 

 

 

 

 

 

7' - 'Y
When s1= [c_c], 82= [ cc 1 and c=1.0

p -0.5 0.0 0.2 0.5 0.8

p is not known

Case 2 2358.6990 151.5306 74.2684 35.6600 20.9822

Case 3 1.0079 1.0000 1.0014 1.0089 1.0232

812 Case 4A1 1.3347 1.3647 1.3735 1.3893 1.4071

Case 4A2 34.7615 10.8805 7.8550 5.1199 3.2795

Case 48 25.1054 13.1748 10.7202 8.1579 6.3586

Case 2 7560.6707 659.7719 288.2825 82.0819 21.5540

Case 3 323.2625 119.8679 77.3109 36.3043 14.5077

822 Case 4A1 1.5246 1.6583 1.7142 1.8023 1.8533

Case 4A2 35.6887 12.1145 9.1256 6.3376 4.2237

Case 48 23.2502 11.6161 9.2417 6.6949 4.8725

p is known

Case 2 193.8613 44.8365 30.0131 18.1745 11.3890

Case 3 1.0085 1.0000 1.0014 1.0076 1.0168

812 Case 4A1 1.3369 1.3634 1.3692 1.3793 1.3910

Case 4A2 31.9380 10.7038 7.8430 5.1139 3.2787

Case 48 1.3655 1.5222 1.6122 1.8462 2.6237

Case 2 252.0110 59.2528 38.0065 22.1721 11.0502

Case 3 2.5817 3.1431 3.3396 3.6484 3.8425

822 Case 4A1 1.4760 1.5473 1.5679 1.6060 1.6596

Case 4A2 33.5898 12.0924 9.0963 6.1416 4.0939

Case 48 1.6567 1.9029 1.9851 . 2.1276 2.4247

 

70



Cost of Partia1 0bservabi1i

TABLE 13

When 81:82: [1.0]

§y for Case Four

 

 

 

 

 

 

 

 

 

p 0.0 0.2 0.5 0.8 1.0

=0.0 but isn't known a priori

812 Case 4A1 42.5952 37.9504 19.9076 3.9124 1.0000

Case 4A2 44.5322 38.0962 22.1733 8.3578 3.5517

822 Case 4A1 1.0000 3.9124 19.9076 37.9504 42.5952

Case 4A2 3.5517 8.3578 22.1733 38.0962 44.5322

p=0.0 and is known a priori

812 Case 4A1 2.3280 2.1301 1.7985 1.3913 1.0000

Case 4A2 3.3388 3.8546 4.0643 3.8814 3.2158

. 822 Case 4A1 1.0000 1.3913 1.7985 2.1301 2.3280

Case 4A2 3.2158 3.8814 4.0643 3.8546 3.3388

p=0.5 but isn't known a priori

812 Case 4A1 125.7184 120.5843 63.1785 9.2338 1.0080

Case 4A2 147.9888 127.0938 65.5496 16.4543 3.3842

822 Case 4A1 1.0080 9.2338 63.1785 120.5843 125.7184

Case 4A2 3.3842 16.4543 65.5496 127.0938 147.9888

p=0.5 and is known a priori

812 Case 4A1 1.9542 1.9082 1.7343 1.4090 1.0046

Case 4A2 3.0465 3.8067 4.1108 3.8258 2.9611

822 Case 4A1 1.0046 1.4090 1.7343 1.9082 1.9542

Case 4A2_ 2.9611 3.8258 4.1108 3.8067 3.0465
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TABLE 14

Cost of Partia1 0bservabi1ity for Case Four

_ 'X _ '7
When 81‘ [_1.0]9 82‘ [1.0]

 

 

 

 

 

 

 

 

 

p 0.0 0.2 0.5 0.8 1.0

p=0.0 but isn't known a priori

812 Case 4A1 42.5952 5.3042 1.3647 1.3192 1.0000

Case 4A2 71.7093 37.5250 10.8805 3.2471 1.0002

822 Case 4A1 1.0000 1.3031 1.6583 7.9127 119.8679

Case 4A2 1.0008 3.6176 12.1145 40.9526 154.8729

p=0.0 and is known a priori

812 Case 4A1 2.3280 1.7456 1.3634 1.1418 1.0000

Case 4A2 7.6646 14.1330 10.7038 2.2691 1.0001

822 Case 4A1 1.0000 1.1850 1.5473 2.2172 3.1431

Case 4A2 1.0002 2.2614 12.0924 19.1311 5.3093

p=0.5 but isn't known a priori

812 Case 4A1 20.0543 2.4665 1.3893 1.1930 1.0089

Case 4A2 23.2379 14.3879 5.1199 1.8668 1.0089

822 Case 4A1 1.0088 1.1927 1.8023 5.8469 36.3043

Case 4A2 1.0089 2.0992 6.3376 18.5893 36.4342

p=0.5 and is known a priori

812 Case 4A1 3.1039 1.9304 1.3793 1.1413 1.0076

Case 4A2 4.5041 10.5578 5.1139 1.6483 1.0076

822 Case 4A1 1.0025 1.1938 1.6060 2.4451 3.6484

Case 4A2 1.0061 1.9620 6.1416 10.5167 3.6696
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TABLE 15

Cost of Partia1 Observabi1ity for Case Two

 

 

 

 

 

 

 

 

 

 

 

 

- d -d —.
When 8 - {-c1’ 82- [c] and P11-0.25

p=0.0

c 0.3 0.5 1.0 2.0 3.0

d 0.0957 0.1963 0.4508 0.9458 1.4487

p is not known

812 1486.7109 618.7743 48.6514 13.8296 6.1085

822 121893.56 52071.731 36717.786 27168.080 18131.267

p is known

812 552.7849 ' 75.3081 17.4288 5.6840 3.7545

822 2524.1335 728.7705 256.3893 146.7752 270.6402

p=0.5

c 0.3 0.5 1.0 2.0 3.0

d -0.0857 0.0447 0.3535 0.9138 1.4409

p is not known

812 680.0607 35.2165 11.3308 4.3019 3.2452

822 327797.83 159416.21 117079.78 97378.301 62839.36

p is known

812 103.4635 15.2357 6.2589 3.1468 2.1256

822 1536.1228 641.0490 448.0437 459.6155 1106.0470
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TABLE 16

Cost of Partia1 Observabi1ity for Case Two

= d = d =
When 81 [_c], 82 [c] and c 1.0

 

 

 

 

 

 

 

 

 

 

 

 

p=0.0

977' 0.15 0.35 0.45 0.55 0.65

d 0.0877 0.7636 1.0680 1.3908 1.7623

p is not known

812 108.2441 26.6034 15.8334 9.7708 6.0623

822 111910.395 15725.367 7589.4556 3886.9336 2047.7613

p is known

812 33.9630 10.6121 6.8617 4.7238 3.2380

822 570.5558 148.0751 96.5562 67.6946 49.9944

p=0.5

P;;' 0.15 0.35 0.45 0.55 0.65

d -0.0543 0.6977 1.0258 1.3666 1.7510

p is not known

B12 17.7333 8.1456 6.1336 4.6763 3.8507

822 273997.19 60851.628 34097.547 19487.394 10932.74

9 1S known

812 9.2281 4.7224 3.7254 2.9860 2.3859

822 864.2748 277.7323 185.5475 127.9618 89.0390
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TABLE 17

Cost of Partia1 0bservabi1ity for Case Three

 

 

 

 

 

 

 

 

 

 

 

 

- .. -d —— =
When 81-82- [ c] and P01+ 00 0.50

o=0.0

c 0.3 0.5 1.0 2.0 3.0

d 0.4003 0.6357 1.1557 2.0572 2.9064

p is not known

322 206.2943 '94.5461 37.6200 43.0889 48.6845

p is known

822 1.6581 1.6153 1.8644 2.5978 2.9655

p=0.5

c 0.3 0.5 1.0 2.0 3.0

d 0.4005 0.6356 1.1557 2.0578 2.9064

p is not known

822 554.9503 340.8961 117.2571 115.8412 125.9888

0 '15 known

322 1.6471 1.5918 1.7113 2.1069 2.3266
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TABLE 18

Cost of Partia1 0bservabi1ity for Case Three

 

 

 

 

 

 

 

 

 

 

 

 

= -d1 = -d2 —_=-—-=When 81 [ c 1. 82 [ c ] and 01 P00 0.25

p=0.0

c 0.3 0.5 1.0 2.0 3.0

d1 0.4003 0.6357 1.1557 2.0578 2.9064

(12 0.3008 0.4323 0.6820 1.1212 1.5651

p is not known

822 234.5919 96.6320 58.0045 119.1044 217.5330

p is known

822 1.6596 1.6206 1.9260 3.1437 6.2018

p=0.5

c 0.3 0.5 1.0 2.0 3.0

d1 0.4005 0.6357 1.1557 2.0578 .2.9064

d2 -0.0622 0.1009 0.4250 0.9644 1.4679

p is not known

822 1623.2131 706.0171 503.8493 1265.8145 3283.1157

p is known

822 1.9167 1.9058 2.3351 4.1795 9.2418

 

76



TABLE 19

Cost of Partia1 0bservabi1ity for Case

When 81=82= ['3] and c=1.0

Three

 

 

 

 

 

 

 

 

 

 

 

 

o=0.0

FEE 0.20 0.30 0.40 0.60 0.70

d 0.0630 0.4564 0.8084 1.5275 1.9623

p is not known

822 18.1194 24.4290 31.3962 42.6311 54.2505

p is known

822 1.2294 1.3728 1.5702 2.3317 3.0872

p=0.5

5674066' 0.20 0.30 0.40 0.60 0.70

0 0.0630 0.4564 0.8084 1.5275 1.9623

p is not known

822 80.7077 95.9903 108.5038 125.7936 149.8488

p is known

822 1.2941 1.4034 1.5364 1.9560 2.3189

 

77



Cost

TABLE 20

of Partia1 0bservabi1ity for Case Three

When B1= [-31], 82= ['22] and c=1.0

 

 

 

 

 

 

 

 

 

 

 

 

p=0.0

15543; 0.10 0.15 0.20 0.30 0.35

d1 0.0630 0.4564 0.8084 1.5275 1.9623

02 0.5546 0.5962 0.6376 0.7329 0.7951

p is not known

822’ 14.1692 22.4785 35.5819 100.6174 196.7489

p is known

322 1.2093 1.3642 1.5850 2.5186 3.7620

p=0.5

FBYEDBB' 0.10 0.15 0.20 0.30 0.35

d] - 0.0630 0.4564 0.8084 1.5275 1.9623

d2 —0.0085 0.1564 0.2961 0.5513 0.6817

p is not known

822 89.9929 158.1305 276.4605 1014.1426 2513.5569

p is known

822 1.3155 1.5315 1.8423 3.2329 5.2786
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1591.531.

Cost of Partia1 0bservabi1ity for Case Four

 

 

 

 

 

 

 

 

 

 

 

 

- _ -d _ -—;
When 81-82- [ c], p-0.5 and POO-0.25

p=0.0

C 0.3 0.5 1.0 2.0 3.0

d 0.3497 0.5294 0.8933 1.4822 2.0127

p is not known

Case 4A1 89.5407 34.2244 15.5636 14.8929 13.2041

812 & 822 Case 4A2 100.9828 38.8355 18.0756 16.4319 14.3767

Case 4B 89.3978 34.0865 15.3714 14.5476 12.6529

0 is known

Case 4A1 1.3176 1.2881 1.3605 1.5742 1.8609

812 & 822 Case 4A2 12.7598 5.8992 3.8724 3.1132 3.0335

Case 4B 1.1745 1.1502 1.1682 1.2289 1.3097

p=0.5

c 0.3 0.5 1.0 2.0 3.0

d 0.1338 0.3202 0.6993 1.3050 1.8420

p is not known

Case 4A1 312.4136 125.3176 54.4721 46.5124 40.1396

812 & 8 Case 4A2 326.3303 131.2031 57.7210 48.3723 41.5624

22 Case 48 312.2180 125.1313 54.2374 46.1354 39.5681

p is known

Case 4A1 1.3013 1.2777 1.3297 1.4946 1.7272

812 & 822 Case 4A2 15.2242 7.1676 4.5824 3.3578 3.1530

Case 48 1.1058 1.0913 1.0947 1.1170 1.1559
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TABLE 22

Cost of Partia1 Observabi1ity for Case Four

 

 

 

 

 

 

 

 

 

 

 

 

When 81:82: [.3], p=0.5 and c=1.0

o=0.0

15]); 0.15 0.35 0.45 0.55 0.65

d 0.5452 1.2098 1.5158 1.8394 2.2113

p is not known

Case 4A1 12.3757 17.9619 19.8483 22.7009 31.2475

812 & 822 Case 4A2 14.8237 20.4170 22.1214 24.6609 32.8082

Case 48 12.2678 17.6562 19.3845 22.0101 30.2299

p is known

Case 4A1 1.2250 1.5389 1.7896 2.1554 2.6895

812 & 822 Case 4A2 3.6730 3.9940 4.0627 4.1154 4.2228

Case 48 1.1171 1.2333 1.3258 1.4646 1.6718

p=0.5

566' 0.15 0.35 0.45 0.55 0.65

d 0.2919 1.0422 1.2098 1.7083 2.0917

p is not known _—'

Case 4A1 47.3035 58.5931 60.0426 66.2930 80.0371

812 8 82 Case 4A2 50.9623 61.4985 62.7722 68.4357 81.6770

2 Case 48 47.1487 58.2580 59.6427 65.6211 79.0767

p is known

Case 4A1 1.2272 1.4570 1.5383 1.8772 2.2411

812 & 822 Case 4A2 4.8880 4.3675 4.2734 4.0250 3.8850

' Case 48 1.0723 1.1213 1.1377 1.2038 1.2785
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CHAPTER FIVE
 

SUMMARY AND CONCLUSIONS

Some recent studies have made use of the bivariate probit mode1 in testing

various hypotheses, but with on1y partia1 observabi1ity about the dichotomous

dependent variab1es. These studies inc1ude Poirier‘s bivariate probit mode1

using Gunderson's examp1e of the retention of trainees, Farber's research on

the demand for union representation, and Conno11y's study concerning the

decisions to arbitrate or negotiate the contracts between emp1oyees' unions

and municipa1ities in Michigan. The maximum 1ike1ihood estimators in these

partia1 observabi1ity cases wi11 be inefficient compared to those obtained

under fu11 observabi1ity. But the degree of efficiency 1055 caused by partia1

observabi1ity is not yet known. Therefore in this study, we present severa1

cases with different 1eve1s of observabi1ity for the bivariate probit mode1

and we measure the efficiency 1oss of maximum 1ike1ihood estimators for each

case through some experiments. The resu1ts that we get give us some idea

about the cost of partia1 observabi1ity, and have practica1 re1evance in

studies 1ike those above.

In Chapter Two, a forma1 statement of the bivariate probit mode1 is

presented. A genera1 form of the mode1 wou1d be

y.*=X.B +5.

‘1 ‘ 1 ‘1 i=1, 2, ..., N.

y12* 3 X182 + 812

and

yij = 1 iff yij* > 0 j=1 or 2.

yij = 0 iff yij* 5_0

81
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where X1 is a k-dimensiona1 row vector of exp1anatory variab1es, 81 and 82

are k-dimensiona1 co1umn vector of unknown parameters and disturbance term

[:;1 has bivariate norma1 distribution with zero mean and variance-covariance

matrix as [l 1]- The variab1es y1* and y2* are a1ways unobserved; different

assumptions about the observabi1ity of y1 and y2 are considered. Six cases

are introduced to represent fu11 observabi1ity and different types of partia1

observabi1ity for the mode1. The examp1e of a two-member committee voting

under a unanimity ru1e can be app1ied to a11 of these cases. Case one is the

case of fu11 observabi1ity in which the dichotomous choices of both voters

are a1ways observab1e. Case two is the case of partia1 observabi1ity in the

sense of Poirier, . under the assumption that on1y the resu1t of the joint

choice of two decision-makers is observed. Case three is ca11ed the case of

partia1 partia1 observabi1ity, in which one of the two parties' decision is

fu11y observab1e. The other party's decision can be known on1y when the

observab1e party votes "yes". In case four, which is ca11ed the case of

partia1 observabi1ity with observed veto, when the outcome is "no“, we

observe one of the two parties casting its "no" vote. There are three

a1ternative possibi1ities here concerning who wi11 use the veto first if both

parties wish 'to vote "no". The first possibi1ity is that we assume some

fixed and known probabi1ity p that the first party does so (case 4A1). The

second possibi1ity is having p as another parameter which needs to be

estimated (case 4A2). Another possibi1ity is that the party with the strongest

sentiment toward a "no" vote wi11 be observed casting the veto (case 48).

We have provided 1ike1ihood functions for the joint estimation of the

parameters for each of the various cases. Separate estimation (one equation

at a time) is a1ways possib1e for case one and for the first probit equation
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(the observab1e one) of case three. The separate estimation of the second

probit equation of case three is possib1e on1y when the corre1ation

coefficient p is equa1 to zero. However, joint estimation is a1ways more

efficient than separate estimation un1ess the corre1ation coefficient (p)

between the two probit equations is equa1 to zero.

In Chapter Three, six different information matrices have been derived

corresponding to the joint estimation of the parameters in our six cases

(with varying degrees of observabi1ity). The question of identification is

a1so discussed by ana1yzing the rank of these matrices. We especia11y ana1yze

the perverse case in which a11 of the coefficients of the exogenous variab1es

except the constant terms are equa1 to zero. It has been found that in the

above situation, regard1ess of the va1ues of the constant terms, a11 of the

information matrices for the partia1 observabi1ity cases are singu1ar if p

is not known. When p is known a priori, on1y the case of partia1 observabi1-

ity in the sense of Poirier and of observed veto with p as another parameter

sti11 can't be identified.

Another perverse case is when the two probit equations are identica1.

Then the case of partia1 observabi1ity in the sense of Poirier is not

identified. But there are no prob1ems with the other cases.

There are a1so other situations that wi11 cause identification prob1ems

for some cases, which we have discussed in Chapter Three. The perverse cases

that we mentioned there do not necessari1y cover a11 that wi11 make the

information matrices of various partia1 observabi1ity cases singu1ar. In

genera1 one needs to check the rank of the information matrix in each specific

situation to make sure that the parameters are identified.
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In Chapter Four, a 1arge variety of experiments have been done to measure

the cost of partia1 observabi1ity. We first try three arbitrary experiments

and i11ustrate some genera1 resu1ts. Then we try a second set of experiments

by varying the va1ues of parameters from 10w to high 1eve1s whi1e ho1ding

the samp1e average va1ues of X181 and X182 equa1 to zero. Two important

effects have been observed from these experiments. One effect is that the

degree of identification changes as the va1ues of parameters change, and we

ca11 it the "identification effect". The other effect is that the probabi1ity

of a "yes" vote of either (or both) party changes when the va1ues of para-

meters change, and thus the samp1e sp1it between the four possib1e outcomes

changes. Hence we ca11 this the "samp1e sp1it effect". Both of these two

effects change the cost of partia1 observabi1ity. If they work against each

other, sometimes we can't te11 the direction of the change of efficiency

when the va1ues of parameters change. Therefore, some more comp1icated

experiments have been done with either the identification effect or the

samp1e sp1it effect he1d constant whi1e the other changes. We then are more

certain about the change of the cost under on1y one effect.

Among a11 the conc1usions that we obtain from the resu1ts of these

experiments, here we report some rather genera1 and important ones. First

we notice that the cost of partia1 observabi1ity is quite high, especia11y

for the case of partia1 observabi1ity in the sense of Poirier (our case two).

The cost of partia1 observabi1ity decreases marked1y if any piece of observ-

abi1ity information can be found. The 1aw of diminishing margina1 uti1ity

of information usua11y ho1ds: the gain in moving from case two to case three

(partia1 partia1 observabi1ity) or case four (observed veto) usua11y exceeds

the gain in moving from case three or four to fu11 observabi1ity (our case
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one). It is the first piece of observabi1ity information which is most

important. From this, our suggestion for Poirier's mode1 using Gunderson's

retention of trainees or other simi1arexamp1esis that if any information can

be obtained, for examp1e, observabi1ity for either party's decision or an

observed veto, then the efficiencies of the estimated parameters can be

great1y improved. This is re1evant, for examp1e, to Conno11y's research on

the arbitration or negotiation of the contracts between emp1oyees' unions and

municipa1ities. In this case there is an observed veto. If this information

is not used, this wou1d be just a case of partia1 observabi1ity in the sense

of Poirier. The high cost of partia1 observabi1ity for Poirier's mode1 shou1d

make one reconsider the possibi1ity of using the observed veto information.

The second conc1usion is that specifying p a priori improves the

efficiencies of the estimates of the other parametersa great dea1. A1so the

improvement from knowing p is 1argest when the re1ative efficiency is 1owest.

This can be app1ied to a11 the partia1 observabi1ity cases. For Farber's

case as an examp1e, if the observabi1ity of the union emp1oyers' se1ection

decision can't be obtained or the cost of getting the information is too high,

then specifying p in the mode1 is another way to improve the efficiency.

A third conc1usion is that the samp1e sp1it has a strong inf1uence on

the re1ative efficiencies of the parameter estimates. For a given partia1

observabi1ity case, its efficiency re1ative to fu11 observabi1ity wi11 be

higher, the sma11er the proportion of observations which fa11 into the

indistinguishab1e categories. For Poirier's mode1, the more observations

that are of the "yes, yes? variety, the higher the re1ative efficiency. The

fraction of such observations is observab1e. In case three, the higher the

pr0portion of observations having the observab1e party voting "no", the
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1ower the re1ative efficiency wi11 be. The proportion of such observations

is a1so observab1e. For examp1e, 62.8% of Farber's samp1e are non-union

workers and 37.6% of these nonunion workers expressed a preference for union

representation. Thatisq 39.2% of the who1e samp1e be1ongs to the indistin-

guishab1e categories (not in a union and wou1d not vote for a union). The

re1ative efficiency of the estimated parameters in the probit equation for

the union emp1oyers' se1ection wi11 be 1ower as this percentage increases.

For the observed veto case, it is the proportion of observations having both

parties voting "no" that is re1evant, but this proportion is not direct1y

observab1e.

The 1ast conc1usion is that the strength of identification matters. A11

of the partia1 observabi1ity cases are unidentified for some perverse va1ues

of the parameters, as we mention above. Their re1ative efficiency is very

1ow for parameter va1ues near such points, and it increases rapid1y as the

parameters move away from such points of singu1arity. However, these effects

are not strong except in the immediate neighborhood of points of nonidenti-

fication.
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