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ABSTRACT

NONLINEARITIES AND NOISE IN MICROMECHANICAL
RESONATORS: FROM UNDERSTANDING TO
CHARACTERIZATION AND DESIGN TOOLS

By

Pavel M. Polunin

In this work we consider several nonlinearity-based and/or noise-related phenomena that

were observed recently in micro-electromechanical resonators. The main goal here is to

closely examine these phenomena, understand their underlying fundamental physics, and

find ways to employ them for measurement purposes and/or to improve the performance of

specific classes of micro-electromechanical systems (MEMS). The general perspective of this

work is based on the acceptance of the fact that nonlinearity and noise represent integral

parts of the models for these systems, and the discussion is constructed about the cases

where these generally “undesirable” features can be utilized rather than avoided.

In this dissertation we consider three di↵erent, but related, topics. To start, we analyze

the stationary probability distribution of a nonlinear resonator driven by Poisson noise at a

non-zero temperature of the environment. We show that Poisson pulses with low pulse rates

cause the power-law divergence of the probability density at the resonator equilibrium in

the rotating frame both in overdamped and underdamped regimes. We have also found that

the shape of the probability distribution away from the equilibrium position is qualitatively

di↵erent for overdamped and underdamped cases. In particular, in the overdamped regime,

the form of the secondary singularity in the probability distribution strongly depends on the

reference phase of the resonator response as well as the pulse modulation phase, while in the

underdamped regime there are several singular peaks, and their location is determined by

the resonator decay rate in the rotating frame. Finally, we show that even weak Gaussian



noise a↵ects the probability distribution by smoothing it in the vicinity of singular peaks.

Second, we discuss a time-domain technique for characterizing parameters for models of

a single vibrational mode of symmetric micromechanical resonators, including coe�cients of

conservative and dissipative nonlinearities as well as the strengths of noise sources acting

on the mode of interest. These nonlinearities result in an amplitude-dependent frequency

and a non-exponential decay, while noise sources cause fluctuations in the resonator ampli-

tude and phase. We capture these features in the modal ringdown response. Analysis of the

amplitude of the ringdown response allows one to estimate the quality factor and the dissipa-

tive nonlinearity, and the zero-crossing points in the ringdown measurement can be used for

characterization of the linear natural frequency and the Du�ng and quintic nonlinearities of

the vibrational mode which arise from a combination of mechanical and electrostatic e↵ects.

Additionally, we show that statistical analysis of the zero-crossing points in the resonator

response allows us to separate e↵ects of additive, multiplicative, and measurement noises

and estimate their corresponding intensities.

Finally, we examine the problem of self-induced parametric amplification in ring/disk

resonating gyroscopes. We model the dynamics of this type gyroscopes by considering flex-

ural (elliptical) vibrations of a free thin ring and show that the parametric amplification

arises naturally from a nonlinear intermodal coupling between the drive and sense modes of

the gyroscope. Analysis shows that this modal coupling results in substantial increase in the

sensitivity of the gyroscope to the external angular rate. This improvement in the gyroscope

performance strongly depends both on the modal coupling strength and the operating point

of the gyroscope, and we further explore ways to enhance this e↵ect by changing the shape

of the resonator body and attendant electrodes and utilizing electrostatic tuning.
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Chapter 1

Introduction

Generally, micro-electro-mechanical systems (MEMS) that can be described by linear mod-

els are more widely desired for applications, while systems exhibiting nonlinear behavior

are avoided. There are a number of reasons for this, including the fact that the dynamic

behavior of linear systems is well understood, that these systems are significantly simpler

from characterization and design points of view, and that they allow for relatively simple

tuning in terms of system model parameters. At the same time, MEMS operating in their

linear regimes have certain fundamental limitations in terms of their performance, due to

the restricted nature of their input-output properties and the fact that the linear range is

often restrictively small in many applications. Furthermore, linear systems are not suitable

for applications that necessarily involve nonlinear phenomena, like the limit cycles required

for frequency generators [1, 2], certain types of atomic force microscopy [3–5], and the sub-

and super-harmonics needed for frequency conversion [6,7] in signal processing applications.

Noise sources are generally treated as unwanted in MEMS since they negatively a↵ect device

performance by reducing their precision. While this is generally true, systematic approaches

for reducing the e↵ects of noise on the system dynamics cannot be fully realized without

a detailed understanding of the noise properties and, preferably, knowledge of their ori-

gins [8–10]. As a result, further improvement in the performance of these MEMS requires a

comprehensive understanding of various nonlinear and noise-induced phenomena.

In this chapter we describe the scientific background that motivated present research
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and outline the main contributions described in this dissertation. In Section 1.1 we briefly

introduce readers to the field of micro-electromechanical systems and discuss the importance

of studying nonlinear behavior in MEMS. In Section 1.2 we elicit the physical origin of

the nonlinearities and noise sources in MEMS models, as well as their e↵ect on the system

dynamic behavior, and describe recent findings that motivated current these research e↵orts.

In Section 1.3 we summarize our major contributions to this field.

1.1 Why nonlinear and noisy models for MEMS?

Design for linear dynamic range is a nonlinear problem.

– Steven W. Shaw

Micro-electromechanical systems is a well established field of science that was initiated by

the pioneering concepts and ideas of Feynman [11], Nathanson [12] and Petersen [13]. Here

we focus on MEMS resonators, that is, vibratory devices with light damping, which have

achieved success in numerous applications, including stable frequency generation [14–17],

precise sensing [18, 19], and signal processing [20, 21], to name but a few. For a detailed

overview of di↵erent types of MEMS operating in their linear regime we refer the reader

to [22], while here we focus on nonlinear behavior of MEMS resonators and highlight features

that make this an important and interesting field for research.

In time-keeping and sensing applications, quartz crystal resonators provide highly stable

and precise frequency-selective elements, but their relatively large size, as compared with

MEMS, makes it challenging to integrate them with integrated circuit technologies. This is

a crucial shortcoming in modern applications, such as health monitoring and smartphone

applications, which are driven by continuos miniaturization. MEMS provide a promising
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alternative to quartz resonators due to their small dimensions, low power consumption, and

excellent on-chip integrability [23–25]. Additionally, their small e↵ective mass makes MEMS

ideal candidates for a number of sensing applications, for example the precise measurement of

acceleration [26], angular rate [27], mass [18], force [28] and electron spin [29]. On the other

hand, these very features of MEMS resonators make them extremely sensitive to various noise

sources, such as those arising from thermal and electronic fluctuations, which degrade the

performance of MEMS devices. Specifically, the strong susceptibility of MEMS resonators

to noise sources results in relatively low signal-to-noise ratios (SNR) when operating in their

linear dynamic range.

The standard way to increase SNR and improve, for example, sensor measurement preci-

sion, is to drive MEMS resonators to larger vibration amplitudes. However, as the resonator

vibration energy increases, various nonlinear e↵ects come into play, thus making linear sys-

tem models no longer valid. In this situation, we have two general options to choose: one

option is to operate the device at the onset of nonlinearity; in this case the system response

essentially remains linear, but we limit ourselves by relatively low vibration amplitude, re-

sulting in low SNR and limited device performance and precision. Another option is to drive

the resonator in its nonlinear regime, which allows one to improve the SNR, but at the cost

of facing and dealing with nonlinearity-induced phenomena, such as amplitude-dependent

vibration frequency [30, 31] and nonlinear friction [32–35].

As noted above, nonlinear system models are significantly more complicated to work with

when compared to linear models and, as a result, the majority of contemporary MEMS-based

systems operate in their linear range [36–38]. Recently, several research groups have investi-

gated di↵erent approaches to increase the linear range of existing MEMS resonators [39–42].

In this situation, as practice shows, in order to design a resonator with increased linear
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range [43] or reduced phase noise [1], it is first necessary to obtain a comprehensive under-

standing of the nonlinearities and/or noise sources one is trying to minimize or eliminate. In

this thesis we take a di↵erent approach; rather than avoiding and/or neglecting nonlinearities

and noise, we focus on: (i) methods for characterizing nonlinearity and noise, (ii) achieving

a better understanding of their e↵ects on system dynamic behavior, and (iii) utilizing this

knowledge to design systems with improved performance.

1.2 Nonlinearities and noise in MEMS

Any vibrational system will exhibit nonlinear behavior under some operating conditions.

Linear models serve as first-order approximations to the system description, and in certain

cases the accuracy provided by these approximations is su�cient for an accurate descrip-

tion of observed phenomena, while in other situations one must necessarily go beyond this

assumption and account for higher-order (nonlinear) e↵ects.

In MEMS resonators nonlinearities can be separated in two major groups. The first group

of nonlinear e↵ects arise from mechanical properties and are associated with the resonator

body itself. These include nonlinearities due to resonator vibrations at large amplitudes, and

can be further classified into material and kinematic e↵ects. Material nonlinearities arise at

large vibration amplitudes due to the fact that material properties such as Young’s modulus

actually depend on the vibration amplitude [31] and the orientation of the strain field with

respect to crystallographic principal axes, which is important in, for example, resonators

made of single crystal silicon [38] or other anisotropic materials. In addition, it has been

found recently that doping level can a↵ect resonator response at large vibration amplitudes

in a non-trivial way [44]. Generally, material nonlinearities a↵ect the resonator potential
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Figure 1.1: Schematic representation of the flexural vibration of a clamped-clamped beam,
shown in a deformed configuration. The element depicted in the beam, and shown top-view
in the inset, is used to derive the non-linear e↵ects of mid-line stretching [46].

energy while leaving the kinetic energy unchanged. On the other hand, kinematic nonlin-

earities result from finite deformations of the resonator body during its vibration. In this

case, the particular way nonlinear e↵ects reveal themselves depends of the vibrational mode

shape and can result in nonlinear sti↵ness and/or nonlinear inertial terms. In particular,

for flexural vibrations of a clamped-clamped beam resonator, which will be considered in

Chapter 3, the mid-line stretching of the resonator at large vibrational amplitudes results

in a nonlinear modal restoring force [45]; see Fig. 1.1. This mid-line stretching leads to

an amplitude-dependent vibration frequency and has to be taken into account at relatively

small vibration amplitudes, specifically, at amplitudes on the order of the beam thickness.

When it comes to flexural in-plane vibrations of rings, for example, for the elliptic vibra-

tional modes in micromechanical gyroscopes, kinematic nonlinearities appear not only in

the system potential energy, but also alter the kinetic energy of the resonator body, leading

to inertial nonlinearities, as discussed in detail in Chapter 4. Kinematic nonlinearities also

a↵ect the resonator kinetic energy in cantilever beam resonators, which are commonly used
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in sensing applications [47, 48].

A second major group of nonlinear e↵ects is associated with the interaction of the res-

onator body with the environment, for example, used for actuation of the resonator and

for transduction of signals from the resonator response. In this work we focus our atten-

tion on electrostatically driven MEMS resonators with capacitive actuation and readout

schemes [22]. The electrostatic potential is a highly nonlinear function of the resonator

displacement and depends inversely on the distance between the resonator body and the

attendant electrodes. When the vibration amplitude a is small as compared with the elec-

trode gap size d, a ⌧ d, the corresponding electrostatic forces can be approximated as linear

functions of the resonator modal amplitude. On the other hand, when a ⇠ d, even a ⇠ 0.1d,

the linear approximation of the electrostatic forces is no longer valid and one must keep

higher-order terms in the electrostatic force model.

Note that the aforementioned nonlinearities in MEMS resonators have di↵erent physical

origins and, as a consequence, generally contribute to the resonator dynamics at di↵erent

vibration amplitudes. Therefore, it can happen that more than one source of nonlinearity af-

fects the resonator dynamic behavior for a given vibration energy. In this case, nonlinearities

originating from di↵erent sources, e.g. mid-line stretching and the electrostatic potential, es-

sentially renormalize each other in the corresponding nonlinear terms in the resonator modal

restoring force. This interplay of di↵erent nonlinear e↵ects can result in very interesting and

non-trivial resonator responses, such as that shown on Fig. 1.2.

Damping, or friction, also originates from the interaction of the resonator with its envi-

ronment, which necessarily has temperature T . This interaction is captured by the coupling

of the resonator to a thermal bath, and the e↵ects we are about to describe, which include

damping and noise, have a thermal origin. In a useful framework, the resonator is mod-
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Figure 1.2: Frequency response showing the combined e↵ects of mechanical and electrostatic
nonlinearities. At small vibration amplitudes the mechanical component of the nonlinear
restoring force dominates the electrostatic e↵ects, leading to hardening behavior. As the
vibration amplitude increases, the electrostatic forces starts to play a more dominant role,
resulting in the appearance of the so-called zero-dispersion point on the resonator frequency
response, beyond which the resonator behavior is softening.

eled as interacting with a set of microscopic “oscillators” that describe the modes of the

environment according to the following model,

q̈ + U 0(q) = �@Ui

(q, {q
k

})
@q

, (1.1a)

q̈
k

+ !2
k

q
k

= �@Ui

(q, {q
k

})
@q

k

, (1.1b)

where U(q) is the resonator potential, which can be harmonic or anharmonic, q
k

denotes

the coordinate associated with a mode of the bath (k = 1, 2, ..., N , where N � 1), and

U
i

(q, {q
k

}) is the interaction potential between the resonator of interest and the modes of

the thermal bath. In the simplest case, this interaction potential has the form

U
i

(q, {q
k

}) = q
X

k

✏
k

q
k

, (1.2)
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where ✏
k

describes the coupling strength of the resonator of interest with the kth mode of the

environment. Considering this simple form of U
i

(q, {q
k

}), one can show that this interaction

leads to irreversible losses of the resonator vibration energy, i.e., decay of unforced vibrations,

and results in a random force acting on the resonant mode [49]. When the resonator vibration

amplitude is relatively small, its decay rate is essentially constant and the random force is

independent of the resonator modal coordinate, which is modeled as an additive noise [33].

As expected, when the resonator vibration energy is large, the coupling of the resonator

to the environment becomes nonlinear, which results in an amplitude-dependent friction

coe�cient (nonlinear damping) and additional parametric noise [50].

The nature of the noise processes acting on the resonator is, however, not limited to

thermal origins. Depending on the system of interest and its application, there can exist

di↵erent microscopic e↵ects interacting with the resonator directly or through the attendant

electrodes and thus a↵ecting the system dynamic behavior. In a mass sensing experiment,

for example, a frequently encountered source of noise is a random process associated with the

attachment/detachment of molecules to the resonator surface [51]. Due to the finite mass of

these molecules, the resonator e↵ective mass changes in a discrete manner, m ! m + �m,

which results in discrete change of the resonator natural frequency,

! + �! =

r
k

m+ �m
⇡ !

✓
1� �m

2m

◆
, ! �! ⇡ �!�m

2m
, (1.3)

where k is the resonator e↵ective linear sti↵ness and it is assumed that �m ⌧ m, i.e.,

the mass of individual molecules is much smaller as compared with the resonator e↵ective

mass. Depending on the time scale of this attachment/detachment process, the associated

frequency noise can treated as white Gaussian, Poisson (see Chapter 2 and Appendix A) or
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telegraph, and, in general, will have di↵erent e↵ects on the resonator dynamics.

Another type of noise that is inherently present in virtually all systems is so-called mea-

surement or detector noise, which appears due to imperfections of the sensing/detection

scheme. Typically, this noise manifests itself in a random perturbation added to the mea-

sured signal, for example, a voltage corresponding to the resonator modal displacement or

velocity. While this noise is assumed to have no e↵ect on the resonator dynamics itself, its

e↵ect on the measured signal can be frequently attributed to some “unaccounted” noises

acting on the resonator, which can obviously lead to discrepancies in analytical predictions

and/or misleading conclusions. As a result, it is important to be able to distinguish di↵erent

noise sources present in MEMS resonators in order to explain their dynamic behavior, and

to account for them to improve performance.

The brief overview of nonlinear and noise processes presented above motivates the need

for a better understanding of these phenomena in MEMS resonators and the development

of accurate characterization techniques for quantifying these e↵ects. A thorough and com-

prehensive understanding of these nonlinear and noise-induced e↵ects allows not only for

e↵ective prediction of the resonator response across a wide range of model parameters and

operating conditions, but also provides information that is essential for designing MEMS

resonators with desired dynamic behavior, see Fig. 1.3. At the same time, characteriza-

tion methods also play an important role in developing a fundamental understanding of the

underlying physics, while also providing information about MEMS performance.

In this light, the main goal of this dissertation is to push forward the frontiers of our fun-

damental understanding of di↵erent nonlinearities and noise processes in MEMS resonators

with a focus on characterization techniques and design methods.
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Figure 1.3: Analytical methods, e↵ective characterization techniques, and reliable design
tools are the key ingredients in building MEMS resonators with optimal performance for
di↵erent applications.

1.3 Summary of the work

The first topic in this dissertation is an analysis of the stationary probability distribution

of a nonlinear parametrically driven resonator under the action of Poisson pulses in the

presence of thermal noise. In this case, the Poisson pulses are modulated at one half of the

driving frequency, where the system sensitivity to the external force is highest. We consider

the dynamics of a micro-mechanical resonator model in the rotating frame and examine its

probability distribution projected onto the selected direction as a function of the Poison noise

pulse rate and its modulation phase. Modulated Poisson pulses result in e↵ective jumps in

the resonator states in the rotating frame and we show that Poisson noise with low pulse

rates causes a power-law divergence of the probability density at the resonator equilibrium

in both the overdamped and underdamped regimes. Additionally, we have found that in

the overdamped regime the form of the secondary singularity in the probability distribution,

at a finite distance from the equilibrium position, strongly depends on the Poisson noise

modulation phase and the phase of the resonator response. In contrast, the structure of

the probability density function in the underdamped regime is essentially independent of
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the selected resonator phase and Poisson pulse direction. We also examine the e↵ect of

weak additive Gaussian noise, a consequence of non-zero temperature of the environment,

on the shape of the probability distribution. Analysis shows, and experimental results from

collaborators at Hong Kong University of Science and Technology verify, that even weak

Gaussian noise a↵ects the probability distribution by smoothing its shape in the vicinity of

Poisson noise-induced singular peaks.

Second, we describe a time-domain technique for characterizing parameters of a single

vibrational mode in symmetric micro-mechanical resonators. In particular, we show that

a modal ringdown response can be used for characterization of not only linear model pa-

rameters Q (quality factor) and !
n

(natural frequency), but also of coe�cients representing

conservative and dissipative nonlinearities, as well as the intensities and statistical properties

of various types of noise sources acting on the mode of interest. These nonlinearities result in

an amplitude-dependent frequency (conservative) and a non-exponential decay (dissipative),

while the noise sources cause fluctuations in the resonator amplitude and phase. Specifically,

we show that the behavior of the modal vibration amplitude is independent of the nonlinear-

ities in the resonator restoring force, which allows us to estimate linear and nonlinear friction

constants. On the other hand, the modal vibration frequency is determined solely (up to

noise-induced fluctuations) by the form of the system potential energy, which can be used to

characterize the linear natural frequency and coe�cients of the cubic (Du�ng) and quintic

terms in the modal restoring force. Furthermore, we show that in some cases it is possible

to individually characterize mechanical and electrostatic (both linear and nonlinear) e↵ects

that influence the mode dynamics, and we formulate the conditions for such characteriza-

tion. Finally, we illustrate that a statistical analysis of the zero-crossing points in the modal

response can reveal the presence of additive (thermal), multiplicative (frequency), and mea-
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surement (readout) noise sources, providing a unique way for independent characterization

of the noise strengths.

Finally, we examine the problem of self-induced parametric amplification in ring/disk

resonating MEMS gyroscopes. We show that the degenerate elliptical modes of gyroscopes

with ring-like geometries are coupled dispersively through both sti↵ness and inertial non-

linearities, and we illustrate the e↵ects of the electrostatic potential on individual modal

nonlinearities and on the strength of nonlinear modal coupling. We further study the e↵ect

of the dispersive modal coupling on the gyroscope performance and sensitivity. In particular,

we illustrate that the back-action of the sense mode vibrations on the drive mode dynamics

can be neglected when the strength of the modal coupling and external angular rate are

small. This fact allows us to simplify the gyroscope model and treat the sense mode as being

“driven” by the drive mode through the Coriolis force, as well as parametrically through

nonlinear modal coupling e↵ects, which results in a substantial increase in the sensitivity of

the gyroscope to the external angular rate. Furthermore, we show how this extra gain, due to

parametric amplification, depends on the drive mode vibration amplitude and the coupling

strength. Finally, we use this model to demonstrate ways for additional improvement of the

gyroscope performance as an angular rate sensor by adjusting the modal coupling strength

through variations in the geometry of the gyroscope body and attendant electrodes, as well

as utilizing electrostatic tuning methods. These modeling and optimization approaches are

a first step in controlling and exploiting nonlinear behavior to improve sensor design.
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Chapter 2

Singular probability distribution of

vibrational systems driven by Poisson

and thermal noises

In this chapter we study the probability distribution of a torsional micromechanical resonator

driven by modulated Poisson pulses in the presence of weak thermal noise. Specifically,

weakly damped micromechanical resonator is driven parametrically into the resonance, and

both Poisson and thermal noise sources perturb the resonator dynamics about its determin-

istic state. Modulated Poisson noise is a sequence of bursts of the periodic signal with the

frequency close to the resonator natural frequency. These bursts appear randomly and their

times of arrival are independent from arrivals of previous pulses. The mean time between

pulses is much longer than the resonator characteristic decay time and the duration of each

burst is much longer than the resonator vibration period. This problem is of fundamental

importance as it addresses the combined e↵ects of two noises having di↵erent, descriptions,

namely “continuous” and discrete in time. In the absence of Poisson noise, the weak thermal

noise, having a symmetric probability distribution, essentially “thermalizes” the resonator

around its stable state, in which case the resonator probability distribution in the rotating

frame is Gaussian along any selected direction. In contract, the Poisson noise has drastically
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di↵erent e↵ect on the resonator dynamics. The discreteness of the noise pulses and the asso-

ciated asymmetry of Poisson distribution are evident when the resonator parameters are such

that its dynamics in the vicinity of the stable state exhibits overdamped behavior. For ex-

ample, if Poisson pulses all have the same sign (the unipolar case), the resonator probability

distribution becomes strongly asymmetric with respect to the stable state in the direction of

the Poisson pulses. Depending on the Poisson mean pulse rate, the probability distribution

can diverge in the location of the stable state (the case of low pulse rate) or decay to zero

with a power-law of the distance to the stable state (the case of frequent pulses). When

the system parameters are chosen in such a way that resonator performs decaying oscilla-

tions about its stable state (i.e., the underdamped regime), the system still can exhibit a

singularity in the distribution near the stable state, but the probability distribution becomes

essentially symmetric about it. In this chapter we shall also show that Poisson noise results

in interesting and non-trivial features of the resonator probability distribution at a finite

distance from the stable state, and illustrate the smoothing e↵ects of the weak thermal noise

on the singular behavior of the probability density functions.

Compared with the works described in subsequent chapters, the motivation for this study

is more fundamental in nature. As one of the main sources of fluctuations in dynamical

systems, Poisson noise attracts great interest from researchers in di↵erent areas of science.

Fluctuations induced by Poisson pulses can be e↵ectively used to analyze mesoscopic devices

providing access to physics of these systems due to non-vanishing high-order statistics [52].

However, estimation of non-Gaussian distributions is often quite challenging and involves

sophisticated techniques in direct measurement processes [53, 54]. Alternative theoretical

approaches proposed for microresonators [55–57] and Josephson junctions [58–60] rely on

the breaking of the symmetry in random switching of the system between its stable states
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that stems from the inherent Gaussian noise. Already these examples clearly show the

necessity for better understanding of the dynamic behavior of mesoscopic systems driven by

Poisson noise.

A significant amount of work has been done in analyzing the features of activated escape

due to Poisson noise [61–64]. Additionally, the probability distribution of a linear resonator

driven by Poisson pulses in a static potential was investigated in detail by Ichiki et al. [9].

In particular, it has been shown that the probability distribution exhibits a singular peak in

the origin for arbitrary damping, as long as the Poisson mean pulse rate is su�ciently small.

The behavior of the distribution away from the origin, however, depends on the dynamic

regime of the system in the vicinity of its stable state (overdamped or underdamped), the

relative strength of the resonator damping as compared with its natural frequency, and on

the mean frequency of the Poisson pulses.

In this chapter we take one step further in understanding Poisson noise-induced dynamics

of mesoscopic systems by examining the stationary probability distribution (in the rotating

frame) of a parametric resonator driven by modulated Poisson pulses and weak thermal noise.

In particular, we show that, upon transformation to the rotating frame, modulated Poisson

noise transforms into regular Poisson pulses kicking the system away from its equilibrium

along the direction specified by the noise modulation phase. For su�ciently weak pulses, the

resonator probability distribution, when being observed from di↵erent directions dictated by

the phase between the resonator in-phase and quadrature components, resembles essential

(singular) features of the linear system in a static potential driven by Poisson noise only,

see [9]. The main contribution of the present study lies in our ability to control both the

direction of the Poisson pulses in the rotating frame as well as the observation phase, which

allows us to study aspects of the resonator probability density function that cannot be
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observed in the system analyzed by Ichiki et al. Furthermore, we also investigate the e↵ects of

weak thermal noise on the resonator probability density function, which becomes smoothened

by thermal noise in the vicinity of the singular peaks. From the application point of view,

the model considered in this work can be directly applied to the analysis of mesoscopic

vibrational systems with direct frequency noise of Poisson type. In this case, however, the

direction of the Poisson pulses in the rotating frame is predetermined by the location of the

system stable state, but the resonator noise-induced dynamics can still be analyzed from

di↵erent observation directions.

The remaining part of the chapter is organized as follows. In Section 2.1 we describe the

micromechanical resonator under study in experimental work performed by our collaborators

in H. B. Chan’s group at the Hong Kong University of Science and Technology, and provide

the corresponding resonator model. Next, we discuss the qualitative picture of the resonator

dynamics in the rotating frame in the presence of Poisson and thermal noise sources in

Section 2.2. In Section 2.3.1 we analyze the noise-induced stationary probability distribution

in the overdamped regime and show that, in addition to the singularity at the stable state, the

resonator probability density can exhibit a secondary singular peak at a finite distance from

the system fixed point. The case of a weakly damped resonator is considered in Section 2.3.2,

where we illustrate that in this case the resonator probability density function can exhibit,

in addition to the main peak at the system fixed point, multiple singular peaks away from

the stable state, which arise from the slow oscillatory nature of the response in the rotating

frame. The e↵ect of weak thermal noise on the resonator dynamics is also discussed for

both the strongly and weakly damped regimes in Section 2.3.3. Finally, we provide some

conclusions in Section 2.4.
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2.1 Experimental setup and resonator dynamical model

2.1.1 Micromechanical torsional resonator

In this work measurements have been performed with a micromechanical torsional resonator

(Fig. 2.1a) consisting of a movable, highly doped polysilicon plate (200 µm⇥200 µm⇥3.5 µm)

suspended by two centrally placed torsional rods (4 µm⇥36 µm⇥2 µm). Beneath the plate,

there are two fixed electrodes (200 µm⇥ 100 µm) on each side of the torsional springs. The

2 µm gap underneath the plate is created by etching away a sacrificial silicon oxide layer.

Figure 2.1b shows a cross-sectional schematic of the device with actuation and measurement

circuitry. The e↵ective spring constant is modulated electrostatically by a periodic voltage

V
!

at frequency ! near twice the natural frequency (!0/2⇡ ⇠ 20 kHz) riding on top of a

much larger bias voltage V
DC

, which is necessary for e�cient readout.

The resonator motion is detected capacitively. Periodic carrier voltages V
c

at frequency

!
c

of 5 MHz with opposite phases are applied to the two bottom electrodes. As the plate

rotates, the capacitance between the plate and the bottom electrodes changes. A lock-in

amplifier connected to the plate detects the charge flowing out and amplifies it. In this

case, the rotation angle ✓ is proportional to the amplitude of the carrier voltage at !
c

at the

output of the amplifier. Vibration of the plate is detected by measuring this output with

the amplifier referenced at the sideband frequency !
c

+ !/2. Alternatively, the reference of

the lock-in can be set at !
c

, with its output measured by a second lock-in referenced at !/2.

Both methods yield the quadratures X and Y of the oscillations of the plate rotation angle

✓(t) = C[X cos(!t/2) + Y sin(!t/2)] (2.1)
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(a) Scanning electron micrograph of the mi-
cromechanical torsional oscillator used in the
experiment.

(b) Schematic of the device actuation and read-
out circuitry (not to scale).

(c) Representative frequency responses of the res-
onator driven directly (the red curve) and paramet-
rically (the blue curve). The green star indicates the
location of the device operating point in the experi-
ment.

(d) Modulated Poisson pulses ⇠
lf

(t). The
duration of each pulse is much shorter than
the inverse of the mean pulse rate ⌫, which
allows us to approximate Poisson pulses as
Dirac delta-functions on the resonator de-
cay time scale, ��1.

Figure 2.1: Micromechanical torsional resonator under study and experimental setup.

at !/2 frequency. Measurements have been performed at room temperature (T = 300K)

with pressure of less than 10�6 torr.

The dynamic response of the torsional resonator under study can be modeled by the
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following equation of motion,

✓̈ + 2�✓̇ + (!20 + h cos!t)✓ + �✓3 = ⇠lf(t) + f(t), (2.2)

where !0 is the resonator eigenfrequency (including mechanical and electrostatic compo-

nents), � = 24.7 rad/s is the resonator decay rate in the laboratory reference frame, � =

�6.30⇥ 1011 s�2 is the coe�cient of the cubic sti↵ness (Du�ng) nonlinearity (of which the

electrostatic component related to the dependence of the device capacitance on the plate

angular displacement is dominant in this device), h represents the modulation amplitude of

the e↵ective spring constant, ⇠lf(t) is the modulated Poisson noise (subscript “lf” stands for

the laboratory frame) and f(t) is a weak thermal noise with the following statistics

hf(t)i = 0, hf(t)f(t0)i = D�(t� t0). (2.3)

The intensityD of thermal noise f(t) is related to the ambient temperature by the fluctuation-

dissipation theorem D = 4k
B

T�/I, where I is the resonator moment of inertia about its

axis of rotation. With no noise, when the spring modulation amplitude is below the critical

threshold, only the zero-amplitude resonator response is stable. When the modulation is

increased beyond the threshold value [65], two stable oscillation states emerge, which have

the same oscillation frequency (!/2) and amplitude but are phase shifted by ⇡ radians, which

corresponds to a classical parametric resonance, see Fig. 2.1c.

The form of the modulated Poisson pulses ⇠lf(t) is shown in Fig. 2.1d. In order to generate

such a noise signal we connect the output of a Gaussian noise voltage generator to the trigger

input of a pulse generator. Whenever the noise voltage, in a rare large outburst, exceeds a
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threshold value, the generator produces a square pulse. The threshold is chosen much larger

than the mean-square noise amplitude. Respectively, the duration of the pulse (t
p

= 2 ms) is

much smaller than the reciprocal pulse rate, ⌫�1, which allows us to approximate the pulses

as delta functions in the rotating frame in our analysis, i.e.

⇠(t) = g
X

j

�(t� t
j

), (2.4)

where g is the pulse area representing the strength of Poisson noise. The statistics of the

pulses is Poissonian in this case. To exploit the high sensitivity of the resonator at frequencies

close to !0, we modulate the Poisson pulses ⇠(t) at half of the spring modulation frequency

to obtain

⇠lf(t) = ⇠(t) cos(!t/2+ �
p

), (2.5)

where �
p

represents the phase of the pulse modulation. As we will show below, �
p

plays

an important role in studying the resonator noise-induces dynamics as it determines the

direction of Poisson kicks in the resonator rotating frame.

2.1.2 Resonator model in the rotating frame

The resonator dynamics can be well characterized by two slow dimensionless variables, the

scaled in-phase and quadrature components X and Y of the resonator rotation angle, defined

as follows,

✓ = C(X cos(!t/2) + Y sin(!t/2)), ✓̇ = �C
!

2
(X cos(!t/2) + Y sin(!t/2)), (2.6)
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where C =
p

2h/(3|�|) is the scaling factor. By scaling the time as ⌧ = �t in Eq. (2.2), we

obtain the following equation of motion for X and Y coordinates,

q̇ = G(q) + l
p

⇠(⌧) + f(⌧), (2.7)

where q = (X, Y ) is the vector consisting of the resonator in-phase and out-of-phase quadra-

tures, respectively. Deterministic nonlinear vector field G(q) reads

G(q) =

0

B@
�X ��⌦Y � ↵Y (2� (X2 + Y 2)sgn(�))

�Y +�⌦X � ↵X(2 + (X2 + Y 2)sgn(�))

1

CA , (2.8)

where

�⌦ =
! � 2!0

2�
, (2.9a)

↵ =
h

4!�
, (2.9b)

sgn(�) =
�

|�| . (2.9c)

In Eq. (2.7), ⇠(⌧) represents the demodulated and scaled Poisson pulses kicking the system

in the rotating frame along the direction l
p

= (sin�
p

, cos�
p

) determined by the modulation

phase �
p

. The mean pulse rate and pulse area in the rotating frame are

⌫0 =
⌫

�
, (2.10a)

g0 = g

r
3|�|
2h!2

, (2.10b)
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respectively. Finally, f(⌧) = (f
X

(⌧), f
Y

(⌧)) is the Gaussian noise vector acting on the

resonator quadratures. As detailed in [49], the components of f(⌧) are two independent

delta-correlated white noises of equal intensity

D0 =
3|�|D
h!2�

. (2.11)

Since the main goal of this work is to analyze the resonator probability distribution due to

the presence of modulated Poisson pulses, we shall assume for now that thermal noise is not

present in the system, i.e., f(⌧) = 0. However, we will return to the discussion of the thermal

noise e↵ect on the probability density function in Section 2.3.3. In this light, in the absence

of the Poisson noise, ⇠(⌧) = 0, the stationary solution q0 to Eq. (2.7) satisfies G(q0) = 0. If

the Poisson pulses are weak, then in order to capture their e↵ect on the resonator dynamics

in the vicinity of its stable state, we can linearize G(q) about q0 and write the noise-induced

resonator response in terms of the fundamental matrix �(⌧), an analog of the integrating

factor for systems of di↵erential equations [66], as follows

q(⌧) = �(⌧)

Z
⌧

�1
d⌧ 0��1(⌧ 0)l

p

⇠(⌧ 0). (2.12)

The joint probability distribution of the resonator quadratures X and Y can be described

using the standard kinetic equation [64]

@
t

⇢(q, t) = �5 ·
⇥
G(q)⇢(q, t)

⇤
+ ⌫0

⇥
⇢(q � l

p

g0, t)� ⇢(q, t)
⇤
, (2.13)

which describes the temporal evolution of the system probability density and is useful for

studying the escape dynamics of the system out of its metastable states. In this work,
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however, we study the Poisson noise induced dynamics of the periodically driven resonator

by analyzing the projection of the stationary probability distribution ⇢(q) onto a selected

observation direction, which is described from a qualitative point of view in Section 2.2. We

then proceed to the formal derivation of the resonator probability distribution along the

chosen resonator phase in Section 2.3, where we follow closely with the method utilized by

Ichiki et al. [9], but outline important di↵erences of our approach along the discussion.

2.2 Qualitative picture of resonator fluctuations

The behavior of the probability distribution can be understood using a qualitative picture

of the resonator response to an isolated Poisson pulse in the rotating frame. Under trans-

formation from the laboratory coordinates to the rotating frame, the modulated Poisson

pulses are converted into regular pulses that kick the system out of its equilibrium position

in the direction dictated by the modulation phase �
p

, as depicted in Figs. 2.2a and 2.2b.

In the experiment, the resonator motion is very lightly damped in the laboratory reference

frame, !0 � �, and the system quality factor Q ⇠ 2500. However, its dynamics in the

rotating frame of X and Y quadratures can be either overdamped or underdamped, depend-

ing on the modulation frequency and amplitude. In the overdamped (underdamped) case,

the noise-free impulse response is non-oscillatory (oscillatory) in the quadrature space; see

Figs. 2.2a and 2.2b, respectively. The overdamped regime occurs when the eigenvalues �1,2

of the Jacobian @G/@q|q0 in Eq. (2.7) are real; otherwise, the system is underdamped.

Let us define q
m

(⌧) as the system response q(⌧) projected onto the direction l
m

=
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(a) Resonator relaxation in the rotating frame in the
overdamped regime due to a single Poisson pulse.

(b) Resonator relaxation in the rotating
frame in the underdamped regime due to
a single Poisson pulse.

Figure 2.2: Schematic of the resonator response to a single Poisson pulse excitation in the
rotating frame in overdamped (a) and underdamped (b) regimes. For panel (a) we have
assumed, for simplicity, that the system is in strongly overdamped regime, i.e. |�1| ⌧ |�2|,
with the corresponding eigenvectors coinciding with the X and Y directions.

(cos�
m

, sin�
m

) at angle �
m

relative to the resonator in-phase component X,

q
m

(⌧) = lT
m

q(⌧) = X(⌧) cos�
m

+ Y (⌧) sin�
m

. (2.14)

When the pulse rate ⌫0 is small compared to the resonator decay rate in the rotating frame,

determined by min(|�1|, |�2|), the system relaxes back to nearly its equilibrium position q0

before the next pulse arrives, leading to an accumulation of the probability distribution at

q
m

= 0. In the overdamped regime, there is no overshoot as the system relaxes towards

the equilibrium point, see Fig. 2.2a, and the system does not access the quadrature space in

directions opposite to the pulse direction, i.e., the directions where lT
m

l
p

< 0. As a result,

⇢(q
m

) = 0 for q
m

< 0 (in the absence of thermal noise) and the peak in the probability

distribution at the equilibrium point is strongly asymmetric.
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Away from the main peak at the equilibrium point, the shape of the probability dis-

tribution strongly depends on the modulation phase �
p

and the phase of the measurement

direction �
m

. Depending on the value of �
m

, the system relaxation to its stationary state

can be generally viewed as monotonic (non-monotonic), see �
m,1 (�

m,2) in Fig. 2.2a, re-

spectively. In the latter case, the system relaxation along l
m

has a turning point T where

q̇
m

= 0 and the resonator motion, as viewed from l
m

, slows down. While the resonator re-

laxation slows down, the system necessarily spends more time in the vicinity of the turning

point, which, in turn, leads to an accumulation of the probability density and results in an

additional sharp peak in the distribution at a finite q
m

. In contrast, when the resonator

relaxation along l
m

is monotonic, the probability distribution is also monotonic and smooth

away from the resonator equilibrium. Note, however, that if l
p

coincides with either of the

system eigenvectors, the resonator relaxes back to q0 along the same direction. In this case,

independently of the observation direction we choose, the resonator trajectory towards its

equilibrium will be seen as monotonic relaxation and the secondary peak will not emerge.

In the underdamped regime, the relaxation path towards the equilibrium point in the

quadrature space is a spiral, as shown in Fig. 2.2b. In this case, for su�ciently rare pulses,

the system has access to both positive and negative values of q
m

, regardless of the choice

of l
m

, and the peak at the equilibrium point is almost symmetric in strongly underdamped

regime. Additionally, as the system relaxes back towards q0, it passes through multiple

turning points T
i

, at which q̇
m

= 0, with positions that depend on the mutual orientation

of l
p

and l
m

. As in the overdamped regime, the system spends more time near these points

and additional peaks in the probability distribution occur. Importantly, if the Poisson pulses

are su�ciently weak so that the linearization of Eq. (2.7) about q0 holds, these secondary

peaks result in a self-similar structure of the resonator probability distribution. If, however,
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the Poisson pulses are su�ciently strong so that full system in Eq. (2.7) must be considered,

the structure of the probability distribution beyond the linear limit is no longer self-similar,

due to an amplitude-dependent frequency shift along the spiral towards q0.

2.3 Resonator stationary probability distribution in the

rotating frame

2.3.1 Overdamped regime

We study the probability distribution in the rotating frame in the strongly overdamped

regime by applying a periodic modulation slightly below the threshold value , i.e., ↵ / 1, so

that the only stable state is the zero-amplitude solution. In this case we have, without loss

of generality,

✏ = |�1| ⌧ |�2| ⇡ 2, ✏⌧ 1. (2.15)

For the Poisson noise applied, the phase of modulation �
p

was initially chosen so that

each pulse produces a translation in the quadrature space along the slow eigendirection; in

measuring the vibration, �
m

was also chosen to lie along this direction. This choice of �
p

and �
m

is very convenient for studying the resonator probability distribution in the vicinity

of q0 because the system motion in the rotating plane is essentially restricted along the slow

eigendirection. Figure 2.3a shows a typical record of q
m

as a function of time in this case. As

the resonator relaxes towards the equilibrium point, the subsequent pulses arrive at random

instants of time to produce further jumps. To obtain the probability distribution ⇢(q
m

), the

q
m

axis is divided into bins and the time spent by the resonator in each bin is measured.

In order to derive the resonator stationary probability distribution along l
m

, we start
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(a) Sample of the real-time response of the resonator
quadrature along the system slow eigendirection in the
overdamped regime. The Poisson mean pulse rate is
⌫ = 0.52 Hz.

(b) Probability distribution ⇢(q
m

)
of the resonator quadrature along
the system slow eigendirection.

(c) Probability distribution ⇢(q
m

) of the
resonator quadrature along the system
slow eigendirection shown on a logarith-
mic scale. The dashed line represents
the least-squares fit of the power-law
behavior of the probability distribution
in the vicinity of q

m

= 0.

(d) Power-law exponent of ⇢(q
m

) in the overdamped
regime for di↵erent values of the Poisson mean pulse
rate ⌫. The solid line and triangles represent the theo-
retical prediction and experimentally extracted values
of p

od

, respectively.

Figure 2.3: Poisson noise-induced resonator dynamics in the rotating frame in the over-
damped regime.

with its conventional form

⇢(q
m

) = h�(q
m

� q
m

(0))i, (2.16)
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see [67]. From Eqs. (2.12) and (2.14) we have

q
m

(⌧) =

Z
⌧

�1
d⌧ 0⌘

⇠

(⌧ � ⌧ 0)⇠(⌧ 0), (2.17a)

⌘
⇠

(⌧ � ⌧ 0) = lT
m

�(⌧)��1(⌧ 0)l
p

, (2.17b)

where ⌘
⇠

(⌧) is the resonator susceptibility along l
m

to Poisson pulses along l
p

in the quadra-

ture space. This form of q
m

(⌧) further yields

q
m

(0) =

Z 0

�1
d⌧ 0⌘

⇠

(�⌧ 0)⇠(⌧ 0) =
Z 1

0
ds⌘

⇠

(s)⇠(�s), (2.18)

where we have introduced new time variable s = �⌧ 0 and flipped the limits of integration.

In this light, the resonator probability distributions ⇢(q
m

) becomes

⇢(q
m

) = h�(q
m

� q
m

(0))i =
Z 1

�1

dk

2⇡
e�ikq

m

⌧
eikqm(0)

�

⇠

, (2.19)

where hi
⇠

denotes statistical averaging over di↵erent Poisson noise realizations. Given that

⇠(⌧ 0) = g0
P

j

�(⌧ 0 � ⌧ 0
j

) and ⌧ 0
j

< 0 in Eq. (2.18), we have

⌧
eikqm(0)

�

⇠

=

⌧
exp


ikg0

X

j

Z 1

0
ds⌘

⇠

(s)�(s� s
j

)

��

⇠

, (2.20)

where s
j

= �⌧ 0
j

> 0. The expression on the right-hand side in Eq. (2.20) represents the

characteristic functional for the series of Poisson pulses [68]. Accordingly, we derive the
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general form of the resonator probability density function ⇢(q
m

), which reads

⇢(q
m

) =

Z 1

�1

dk

2⇡
e�ikq

m exp


� ⌫0 (k)

�
,

 (k) =

Z 1

0
d⌧


1� e

ikg

0
⌘

⇠

(⌧)
�
,

(2.21)

In the overdamped regime, the resonator susceptibility can be expressed in the following

form

⌘
⇠

(⌧) = ⌘
(od)
⇠

(⌧) = c1 exp[�✏⌧ ] + c2 exp[�2⌧ ], (2.22)

where c
i

are constants that depend on �
p

, �
m

, and the orientation of the system eigendi-

rections. As we mentioned above, in this case there is no overshoot in the relaxation, which

yields ⇢(q
m

) = 0 for q
m

< 0. Since in strongly overdamped regime |�1| ⌧ |�2|, the second

term in Eq. (2.22) decays much faster than the first one, / exp[�✏⌧ ], and the resonator

susceptibility can be approximated as

⌘
(od)
⇠

(⌧) ⇡ c1 exp[�✏⌧ ], for ⌧ > 1. (2.23)

As a result, the leading-order contribution to  
od

(k) in Eq. (2.21) comes from the interval

⌧ > 1. By denoting this contribution as  
(0)
od

(k), we have

 
(0)
od

(k) =

Z 1

1
d⌧


1� eikg

0
c1 exp[�✏⌧ ]

�

=

Z 1

1
d⌧


1� cos

✓
c1kg

0e�✏⌧
◆
� i sin

✓
c1kg

0e�✏⌧
◆�

.

(2.24)

In order to compute the last integral, we introduce a new variable z = c1kg
0 exp[�✏⌧ ]. After
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some algebra,  0(k) becomes

 
(0)
od

(k) = ✏�1
Z

c1kg
0

0
dz

1� cos z � i sin z

z

= ✏�1⇥ ln(c1kg0)� Ci(c1kg
0)� iSi(c1kg

0) + �
E

⇤
,

(2.25)

where Ci() and Si() are the cosine and sine integral functions, see [69], and �
E

is the Euler-

Mascheroni constant. The resonator probability distribution ⇢(q
m

) in the vicinity of the

stable state is primarily determined by the large�k behavior of  
(0)
od

(k) in Eq. (2.21), while

the small�k piece of  
(0)
od

(k) describes the smooth part of ⇢(q
m

). In particular, for large k

cosing and sine integral functions can be approximated by their asymptotic expansions and

we have

 
(0)
od

(k) ⇡ ✏�1

ln c1kg

0 + i(c1kg
0)�1eic1kg

0
� i

⇡

2
+ �

E

�
. (2.26)

By substituting this expression in Eq. (2.21), we obtain that  
(0)
od

(k) leads to the power-law

behavior of ⇢(q
m

) near the origin,

⇢(q
m

) ⇡
Z 1

�1

dk

2⇡
e�ikq

m(c1kg
0)�⌫

0
/✏ exp


� ⌫0

✏

✓
�
E

� i
⇡

2

◆�
/ q

�p

od

m

,

p
od

= 1� ⌫0

✏
,

(2.27)

where p
od

is the power-law exponent of the resonator probability distribution in the vicinity

of the stable state. This power-law exponent is determined by the ratio of ⌫0 to the decay

rate ✏ along the slow direction of the response in the rotating frame. For su�ciently low

pulse rates, ⌫0 < ✏, the exponent is positive and the probability distribution diverges at the

origin. As we shall discuss in Section 2.3.3, the presence of thermal noise regularizes this

singular distribution.
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Figure 2.3b shows the measured probability distribution in the overdamped regime, which

is in qualitative agreement with the theoretical analysis. Figure 2.3c shows the same data

plotted on a semi-logarithmic scale, with the linear fit yielding the measured power-law

exponent of the probability distribution in the vicinity of the origin. Figures 2.3b and 2.3c

are derived from the record of q
m

over 30 minutes. Figure 2.3d shows the measured exponent

(triangles) as a function of the Poisson pulse rate, along with the theoretical prediction

(solid line) which uses no fitting parameters, demonstrating excellent agreement between

measurement and theory.

In addition to the behavior close to the origin described above, there are additional

interesting features of the resonator probability density function for q
m

6= 0. These features

are due to the small contribution to  
od

(k) coming from the time interval ⌧ 2 [0, 1]. In this

case, the integral in Eq. (2.21) can be approximated for large k by employing the method

of stationary phase. Depending on the phase �
m

of the measurement quadrature in the

rotating frame, ⌘
⇠

(⌧) can be monotonic, c1c2 > 0, or non-monotonic, c1c2 < 0. When ⌘(⌧)

is a monotonic function of ⌧ , there is no stationary point, i.e., ⌘̇(⌧) 6= 0 for all ⌧ , and we

have

 
(1)
od

(k) =

Z 1

0
d⌧


1� e

ikg

0
⌘

⇠

(⌧)
�
⇠ 1�

exp[ikg0⌘
⇠

(⌧)]

ikg0⌘0
⇠

(⌧)

����
1

0

⇡ 1� i exp[ic1kg
0]

✏c1kg0
+

i exp[i(c1 + c2)kg
0]

kg0(✏c1 + 2c2)
,

(2.28)

where the second term cancels the exponential term in  
(0)
od

(k). As it follows from Eqs. (2.26)

and (2.28),  
(1)
od

(k) is O(✏) as compared with  
(0)
od

(k), which allows us write the resonator
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probability distribution and corresponding correction due to  
(1)
od

(k) as

⇢(q
m

) ⇡
Z 1

�1

dk

2⇡
e�ikq

m exp


� ⌫0 (0)

od

(k)

�✓
1� ⌫0 � ⌫0

i exp[i(c1 + c2)kg
0]

kg0(✏c1 + 2c2)

◆
, (2.29a)

�⇢(q
m

) ⇡ �⌫0
Z 1

�1

dk

2⇡
e�ikq

m exp


� ⌫0 (0)

od

(k)

�
i exp[i(c1 + c2)kg

0]
kg0(✏c1 + 2c2)

. (2.29b)

As a result, the correction to  
od

(k), being taken into account in Eq. (2.21), yields an

additional peak in ⇢(q
m

) with the shape described by

�⇢(q
m

) / |q
m

� q2|�p

od

+1,

q2 = (c1 + c2)g
0

(2.30)

From Eq. (2.29b) it follows that this peak is asymmetric, since the prefactor depends on

the sign of q
m

� q2. Remarkably, ⇢(q
m

) does not diverge at q
m

= q2 since p
od

< 1 for all

values of the pulse rate, even though the divergence can still be seen in @
q

m

⇢ for su�ciently

small ⌫. Figure 2.4a shows a typical form of the resonator probability distribution when the

observation direction is chosen such that the resonator susceptibility ⌘
⇠

(⌧) is monotonic.

If, however, we choose the observation direction such that ⌘
⇠

(⌧) is non-monotonic, there

is a stationary point ⌧
T

in the resonator susceptibility where ⌘̇
⇠

(⌧
T

) = 0. Physically, this

stationary point corresponds to the turning point in the resonator relaxation path as seen

from the observation direction, see Fig. 2.2a. In this case the result for  
(1)
od

(k) is similar to

that obtained in [9] and reads

 
(1)
od

(k) ⇠ 1�
r

⇡

4✏c1kg0
exp


ic1kg

0 � sgn(c1)
⇡

4

�
, (2.31)

where sgn() denotes the sign of the quantity in the brackets. Following the same line of
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(a) Reduced peak due to monotonic response
function, for c1 = 0.99, c2 = 0.1.
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(b) Sharp peak due to non-monotonic response
function, for c1 =

p
3/2, c2 = �1/2.

Figure 2.4: Measured probability distribution ⇢(q
m

) in the rotating frame due to Poisson
pulses along the out-of-phase quadrature with ⌫ = 0.94 Hz and thermal noise at T =
300K in the overdamped regime. In contrast to the data shown in Fig. 2.2a, the resonator
eigendirections in the experiment are (1,±(↵ � ⌦)) in (X, Y ) space and are not aligned
with either the in-phase or out-of-phase resonator components. The latter fact allows us to
observe singular or flat peak structures of the resonator probability distribution at a finite
distance from the origin by changing the observation direction.

thoughts that led us to Eq. (2.29b), it becomes clear that the correction to the probability

distribution due to  
(1)
od

(k) defined in Eq. (2.31) results in an additional peak in the resonator

probability distribution. In particular, we have

�⇢(q
m

) ⇡ ⌫0
Z 1

�1

dk

2⇡
e�ikq

m exp


� ⌫0 (0)

od

(k)

�r
⇡

4✏c1kg0
eic1kg

0�sgn(c1)⇡/4

/ |q
m

� c1kg
0|�p

od

+1/2.

(2.32)

where p
od

is defined in Eq. (2.27). In this situation, the probability distribution displays

singular behavior away from the origin for pulse rates for which p
od

> 1/2; otherwise, the

probability distribution has flat peak, while @
q

⇢ still can display divergence. Figure 2.4b

illustrates the singular behavior of the resonator probability distribution in the case when

the resonator susceptibility ⌘
⇠

(⌧) is non-monotonic function of time.
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2.3.2 Underdamped regime

It turns out that we can also derive the general form of the resonator probability distribution

when the resonator is driven far from the sub-critical bifurcation and where the system

behavior in the rotating frame is strongly underdamped. The analysis corresponding to this

case of the resonator dynamics is essentially identical to the case of the underdamped linear

resonator in a static potential [9], so here we highlight the main results. In particular, in the

underdamped regime the resonator eigenvalues are complex,

�1,2 = ��
r

± i�
i

, �
i

� �
r

> 0, (2.33)

where �
r

dictates the resonator relaxation rate in the rotating frame, while �
i

determines the

system angular frequency of its spiral motion towards equilibrium. As a result, the resonator

susceptibility along chosen observation direction has the following form,

⌘
(ud)
⇠

(⌧) = c3e
��

r

⌧ sin(�
i

⌧ + �), (2.34)

where c3 and � are constants that depend, as before, on the modulation phase of the Poisson

pulses �
p

, observation direction l
m

, and the resonator parameters. Figure 2.5a shows a

typical trajectory of the system in the quadrature space in response to a single Poisson

pulse. Unlike in the overdamped case, the system spirals toward the equilibrium point

and spends time in the q
m

< 0 region regardless of our choice of �
m

. As a result, in the

underdamped regime, ⇢(q
m

) 6= 0 for q
m

< 0 and the shape of the probability distribution

is nearly symmetric with respect to the stationary state. First, we study the resonator
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(a) Sample of the real-time response of the
resonator to a single Poisson pulse in the
underdamped regime in the rotating frame.

(b) Measured probability distribution ⇢(q
m

) pro-
jected onto l

p

in the underdamped regime due to
Poisson pulses with ⌫ = 4.92 Hz and thermal noise
at T = 300K. Inset: multiple peaks occur at posi-
tions predicted by q

n

= (�1)nc3g
0
e

��r⌧n .

Figure 2.5: The resonator dynamics and the associated probability distribution in the rotat-
ing frame in the underdamped regime.

distribution in the vicinity of stable state. Inserting ⌘
(ud)
⇠

(⌧) into Eq. (2.21) yields,

 
ud

(k) ⇡  
(0)
ud

(k) = ��1
r

Z
c3kg

0

0
dz

1� J0(z)

z
, (2.35)

where we have introduced a new variable,

z = c3kg
0e��r⌧ , (2.36)

and used Jacobi-Anger expansion [69] of the term exp[iz sin�
i

⌧ ] to the leading order because

z ! 0 as ⌧ ! 1. In Eq. (2.37) J0(z) is the zero-order Bessel function of the first kind. As

we mentioned above, integration over the range of large k gives singular contribution to the
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distribution ⇢(q
m

). For large k, we can approximate  
(0)
ud

(k) as

 
(0)
ud

(k) ⇡ ��1
r

✓
ln

c3kg
0

2
+ �

E

◆
, (2.37)

from where it follows that the probability distribution ⇢(q
m

) also exhibits a power-law be-

havior in the vicinity of q
m

= 0 in the underdamped case. In particular, we have

⇢(q
m

) ⇡
Z 1

�1

dk

2⇡
e�ikq

m

✓
c3kg

0

2

◆�⌫0/�
r

exp


� ⌫0

�
r

�
E

�
/ |q

m

|�p

ud ,

p
ud

= 1� ⌫0

�
r

.

(2.38)

The power-law exponent p
ud

is defined, as before, by the ratio of the mean pulse rate to the

relaxation rate of the system, �
r

, but the peak at the origin is now symmetric due to the

underdamped nature of the resonator dynamics in the rotating frame.

In addition to the singularity at the origin, the probability distribution has multiple peaks

at finite values of q
m

due to the existence of multiple turning points T
n

, as we discussed in

Section 2.2. These turning points correspond to the stationary points of ⌘
⇠

(⌧), i.e., where

⌘̇
⇠

= 0. In the strongly underdamped case, �
r

⌧ �
i

, these points are found to satisfy

�
i

⌧
n

+ � = ⇡

✓
n+

1

2

◆
, n = 0, 1, 2, . . . . (2.39)

In this case, by partitioning the integration range in Eq. (2.21) into multiple bins, each

of which containing one ⌧
n

, we can obtain the correction  
(1)
ud

(k) following the method of
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stationary phase [70],

 
(1)
ud

(k) ⇡ ��1
r

✓
1� �

r

�
i

r
⇡

2c3kg0

NX

n=0

e�r⌧n/2ei�n(k)
◆
,

�
n

(k) = (�1)n
✓
c3kg

0e��r⌧n � ⇡

4

◆
,

(2.40)

where number N is chosen such that c3kg
0 exp[��

r

⌧
N

] = z
n

� 1. In this case, as it follows

from Eq. (2.40), corrections to  
ud

(k) due to the presence of turning points T
n

/ �
r

/�
i

and

small in the strongly underdamped regime. As a result, the associated corrections to the

resonator probability density function ⇢(q
m

) become

�⇢
n

(q
m

) ⇡ �⌫
0

�
i

e�r⌧n/2
Z 1

�1

dk

2⇡
e�ikq

m exp


� ⌫0 (0)

od

(k)

�
ei�n(k)

/ |q
m

� q
n

|�p

ud

+1/2,

(2.41)

where locations q
n

are defined as

q
n

= (�1)nc3g
0e��r⌧n . (2.42)

As it follows from the from of �⇢
n

(q
m

), the resonator probability distribution has multiple

peaks away from the system fixed point; these peaks form a geometric progression and ex-

hibit the same power-law behavior dictated by the ratio of the Poisson mean pulse rate to the

resonator relaxation rate �
r

in the rotating frame. Importantly, when p
ud

> 1/2, secondary

peaks in the probability distributions are divergent; in the opposite scenario the divergence

can only be seen in the derivative @
q

m

⇢. Figure 2.5b shows the measured probability dis-

tribution ⇢(q
m

), in which the positions of the peaks, as marked by the arrows, are in good

agreement with theoretical predictions obtained by using Eq. (2.42).
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2.3.3 E↵ects of thermal noise

The presence of weak thermal noise f(t) a↵ects the resonator probability distribution induced

by the modulated Poisson pulses. In particular, f(⌧) contributes to the resonator motion

q(⌧) in the rotating frame as follows,

q(⌧) = q
⇠

(⌧) +�(⌧)

Z
⌧

�1
d⌧ 0��1(⌧ 0)f(⌧ 0), (2.43)

where q
⇠

(⌧) is Poisson noise-induced resonator response defined is Eq. (2.12). Consequently,

we can rewrite the resonator response along chosen observation direction q
m

(⌧) as

q
m

(0) = q
m⇠

(0) +

Z 1

0
ds⌘

X

(s)f
X

(�s) +

Z 1

0
ds⌘

Y

(s)f
Y

(�s), (2.44)

where f
X

and f
Y

are the components of thermal noise vector f(⌧) and ⌘
X

and ⌘
Y

are the

corresponding susceptibilities of q
m

to f
X

and f
Y

, respectively. Accounting for the statistical

properties of f
X

and f
Y

, namely

hf
X

(t1)f
X

(t2)i = hf
Y

(t1)f
Y

(t2)i = D0�(t1 � t2), hf
X

(t1)f
Y

(t2)i = 0, (2.45)

see [49], we can show, following the same line of thoughts as in Section 2.3.1, that the

presence of thermal noise results in an additional exponential factor, [68], in Eq. (2.21),

⇢
⇠,f

(q
m

) =

Z
dk

2⇡
e�ikq

me�⌫
0
 (k) exp


� k2D0A

2

�
,

A =

Z 1

0
d⌧(⌘2

X

(⌧) + ⌘2
Y

(⌧)),

(2.46)
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where ⇢
⇠,f

(q
m

) is the resonator probability distribution in the presence of both Poisson

pulses and thermal noise. From Eq. (2.46) it follows that thermal noise, no matter how small,

dominates the dynamics for large k, since k2 �  (k) ⇠ ln k for k ! 1, and thus we expect to

see Gaussian behavior of the probability distribution in the vicinity of singular peaks located

at the resonator stable state q
m

= 0 and at the turning points q
m

= q
T

along the system

relaxation trajectory, both in the overdamped and underdamped regimes. Figures 2.4a, 2.4b

and 2.5b show that thermal noise regularizes singular behavior of the probability density, and

⇢(q
m

) has normal distribution in the vicinity of its maxima. Of course, thermal noise a↵ects

the resonator dynamics along the whole relaxation path. However, its e↵ect on the resonator

dynamics becomes more noticeable in the vicinity of points where the resonator relative

velocity is small, and f(⌧) essentially “thermalizes” the resonator in the close proximity to

singular (for rare Poisson pulses) peaks. For weak thermal noise, ⇢(q
m

) quickly deviates

from the normal distribution away from “singular” peaks. As we mentioned in Section 2.3.1,

thermal noise also leads to a non-vanishing contribution to ⇢(q
m

) for q
m

< 0 when the

resonator is in the overdamped regime. Physically, the only way the resonator can enter this

region is due to thermal noise when q
m

.
p
D0 and, thus, the probability distribution is

normal in q
m

< 0 region. In the underdamped regime, as it follows from Eq. (2.46), f(⌧)

also distorts the singular behavior of the probability density and makes ⇢(q
m

) finite for all

⌫ over the entire range of q
m

, which was confirmed in the experiment, see Fig. 2.5b.

The analytical approach developed in this chapter and experimental methods presented

above allow one to study the dynamics of mesoscopic vibrational systems with eigenfrequency

fluctuations having Poisson statistics. In this case, the analysis is quite similar to the one

developed in Section 2.1, see Appendix A. However, the main di↵erence between the model

considered in this chapter and systems with multiplicative noise of Poisson type is in the fact
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that, in the latter case, the modulation phase of Poisson pulses is essentially predetermined

by the resonator fixed point in the rotating frame and, thus, is harder to manipulate in

the experiment. However, one still can vary the observation direction and, thus, investigate

singular features of the resonator probability distribution from di↵erent angles. Finally, it is

worth noting that our methods are not limited to parametrically modulated resonators and

can be similarly applied to directly excited resonant systems.

2.4 Outlook

As mentioned at the beginning of this chapter, this work was motivated by the necessity of

a better fundamental understanding of the dynamic behavior of mesoscopic systems in the

presence of Poisson noise. In this light, we have studied the probability distribution of the

nonlinear torsional parametric resonator in the rotating frame. In addition to parametric

forcing, the resonator was driven by modulated Poisson pulses and weak thermal noise. With

the ability to tune the direction of Poisson pulses and choose the measurement quadrature

in the rotating frame, we have shown that for su�ciently small pulse rates the probability

distribution exhibits a power-law singularity near the resonator equilibrium both in the

overdamped and underdamped regimes. Additionally, we have described the dependence

of the corresponding exponent on the Poisson mean pulse rate and the system decay rate

in the rotating frame. We also found additional peak(s) in the distribution away from the

origin and specified their positions and the conditions for their appearance. In particular,

we demonstrated that the probability distribution is strongly asymmetric in the overdamped

regime, while in the underdamped regime it has a self-similar structure. Weak thermal noise

a↵ects the system by smoothening singular peaks in the probability distribution and making
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the distribution Gaussian in the vicinity of these peaks. Our analytical results for power-law

exponents near the peaks and for the positions of peaks in the probability distribution are in

excellent agreement with experimental observations from the micromechanical resonator.
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Chapter 3

Characterizing nonlinearities and

noise in MEMS: ringdown-based

approach

In this chapter we discuss a time-domain technique for complete characterization of nonlinear

symmetric MEMS resonators whose response is governed by a single vibrational mode. The

characterization method is based on the analysis of the transient response of the resonator

when external forcing is absent, that is, on its so-called ringdown response. Our primary

purpose is to find a way to extract model parameters associated with both deterministic

and random properties of the resonator and the readout of its response. The deterministic

parameters are associated with linear and nonlinear sti↵ness, linear and nonlinear damping,

and the parameters for the random part of the model are the intensities of additive (ther-

mal), multiplicative (frequency) and measurement noise sources. The fact that the dynamic

behavior of the resonator vibration amplitude during the ringdown is independent of the

shape of the resonator potential allows us to investigate its decay rate as a function of the

instantaneous amplitude, thus, providing a way to estimate the resonator quality factor and

the associated nonlinearity in the damping force. At the same time, the resonator vibration

frequency in the ringdown follows the “backbone” curve, which entirely depends on the form

42



of the system potential energy. In this work we utilize the sequence of zero-crossing points

in order to extract the resonator vibration frequency as a function of time, or, equivalently,

amplitude, and estimate not only the linear natural frequency of the system, but also char-

acterize the coe�cients of higher-order terms (Du�ng and quintic) in the resonator restoring

force, thus allowing one to describe hardening, softening, and mixed types of conservative

nonlinearities. Furthermore, a statistical analysis of the sequence of zero-crossing points

allows us to separate the e↵ects of measurement noise on the measured resonator response

from resonator-related additive and multiplicative noise sources, and to estimate their rel-

ative strengths. We have tested this technique using simulated data, as well as ringdown

responses of double-anchored double-ended-tuning-fork (DA-DETF) resonators that have

been measured by our collaborators in Tom Kenny’s group at Stanford University.

The primary motivation for this study is the fact that parameter estimation in vibrational

systems is a challenging problem arising in systems of di↵erent size scales [45, 56, 71–73]. It

is important since it allows one to describe the dynamics of systems of interest using stan-

dard models [74–76], to understand the fundamental physical mechanisms responsible for

certain observed e↵ects [77, 78], and to design systems with desired performance character-

istics [79, 80]. While several methods have been developed for nonlinear system identifica-

tion [81], a common approach for determining the model parameters of MEMS resonators is

based on the resonant response of a vibrational mode to a periodic force. In this case, the

resonator amplitude and phase are measured as a function of the frequency of the external

driving field for a fixed level of the drive amplitude. For systems operating in the linear

regime this spectral method provides estimates for the linear resonant frequency and the

quality factor [82] from a frequency response. When the resonator is driven into its non-

linear regime, the shape of the frequency response is determined by both conservative [31]
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and dissipative nonlinearities [32–34, 83]. As a result, it is necessary to perform several

measurements at di↵erent forcing amplitudes in order to completely characterize the param-

eters of the vibrational mode [31,82], and the precision is limited, particularly where several

nonlinear mechanisms are involved.

Estimation of statistical parameters of the noise sources in nonlinear micromechanical

resonators is also an important and challenging task in applications involving parametric

sensing [10] and measurement of time and frequency [84]. Due to their di↵erent nature, noise

sources can a↵ect resonator amplitude and/or frequency [8], and several methods have been

developed for noise characterization in driven systems. For example, in order to analyze

the frequency noise in self-sustained oscillators, one can measure the fluctuations in the

modal amplitude and phase [2]. In more recent work [78], by analyzing the shape of the

spectrum of a driven nanomechanical resonator, the authors determine the presence of the

direct frequency fluctuations and estimate its intensity compared with the thermal noise.

In both methods, however, estimation of the noise statistics will necessarily have additional

errors due to instrumental uncertainties in the driving electronics and/or elements of the

feedback loop [85, 86].

We begin our discussion, in Section 3.1, by describing the device under study and the

experimental setup used for measurement of the resonator ringdown response. Further, in

Section 3.2, we provide a model for DA-DETF resonator, describe its validity and limitations

and show how the resonator amplitude and frequency, or phase, behavior depends on model

parameters. In Section 3.3 we discuss the characterization technique itself and illustrate

the post-processing procedure that leads to estimation of deterministic modal parameters.

We then proceed to characterization of noise sources a↵ecting the resonator dynamics and

measured response in Section 3.4. Finally, we provide concluding remarks in Section 3.5.
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3.1 Device under study and measurement setup

In this work we carry out the ringdown-based characterization for the DA-DETF resonator

shown in Fig. 3.1. The resonator was fabricated using an epitaxial polysilicon encapsulation

Figure 3.1: Top: COMSOL model of a micromechanical DA-DETF resonator showing the
symmetric vibrational mode under study. The expected (using FEM analysis) values of the
resonator linear parameters in the experiment are as follows: e↵ective mode mass m

eff

⇠
0.2 µg, quality factor Q ⇠ 103 � 104, and natural frequency f0 ⇡ 1.2 MHz. The square
denotes the location of the cross-sectional SEM. Bottom: SEM from a 45�-view angle of the
resonator encapsulated with the epi-seal process.

process (epi-seal) [87] and it consists of two micromechanical beams 200µm long, 6µm wide

and 40µm thick that are connected on both ends to perforated masses, which are further
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anchored to the base. The perforation in the coupling mass serves as release-etch holes and

does not a↵ect the device performance. The encapsulation process results in a pressure of

< 1 Pa in the cavity containing the resonator.

To prepare the system for the ringdown measurement, we first force the resonator to

oscillate in the nonlinear regime using feedback loop. Previous research has demonstrated

stable oscillation of this device beyond the critical bifurcation limit by controlling the oper-

ating phase of the resonator when the latter is driven in the closed-loop configuration [30].

Physically, the feedback loop compensates the losses in the resonator due to damping and

provides an additional shift in the resonator phase ensuring that Barkhausen stability crite-

rion is met. In this work, a Zurich HF2LI lock-in amplifier is used to control and maintain

a variable-phase feedback loop, as shown in Fig. 3.2. The output of the lock-in amplifier

Figure 3.2: Variable-phase closed-loop feedback system with added capability for ringdown
measurements. The encapsulated devices are placed into a Thermotron S-1.2c environmental
chamber for temperature stabilization at �40� C.

maintains the resonator motion by supplying a periodic signal (V
AC

= 200�300mV ) to two

“Drive” electrodes. By tuning the phase shift in the feedback loop, we achieve the frequency
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of self-sustained oscillations to be close to the nonlinear resonance; see Fig. 3.3. To achieve

a strong output signal, we apply a DC voltage (V
DC

= 30V ) to the resonator body. Addi-

tionally, we maintain both driving and sensing electrodes at the “ground” voltage potential,

thus ensuring the symmetry of the system potential energy.

Figure 3.3: Measured amplitude-frequency responses of the micromechanical resonator in
the feedback loop with V

DC

= 30V and di↵erent values of V
AC

at T = �40�C. Each circle
denotes the position of the nonlinear resonance where the system has been prepared for the
subsequent ringdown measurement.

The resonator response is detected by the “Sense” electrode in the form of current that

is electrostatically transduced due to the resonator vibration. This output current is then

converted to a voltage signal and amplified via a transimpedance amplifier (TIA). We further

pass the signal through a band-pass filter with corner frequencies 1.2 MHz and 7 MHz in

order to remove low- and high-frequency measurement noise, and then split the signal with

a 0� power splitter. One of the outputs is fed back to the lock-in amplifier, where the

resonant frequency and amplitude can be tracked. The second signal component goes into an

AlazarDSO ATS9360 digitizer for recording of the ringdown response. A voltage-controlled

RF switch, placed between the lock-in output and the resonator, acts as the mechanism
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for cutting the resonator driving. When the trigger voltage is set “High”, the connection

between the lock-in amplifier and resonator is closed, and we observe stable oscillatory signal

via the AlazarDSO. Once the resonator vibrations reach steady-state, the trigger voltage is

switched to “Low”. In this case the falling edge cuts the input to the resonator coming

from the lock-in amplifier and triggers the digitizer, allowing us to capture the full ringdown

response, see Fig. 3.4. The collected data is then post-processed for characterization of the

Figure 3.4: A measured ringdown response of the resonator under study; V
DC

= 30V and
V
AC

= 250mV . Red solid line indicates extracted vibrational envelope a(t). Inset shows a
time-expanded view of the initial portion of the signal.

parameters of the vibrational mode via the procedure described below.

3.2 Model

The dynamics of a micromechanical resonator with capacitive sensing depends on both me-

chanical forces arising in the resonator body and the electrostatic e↵ects due to the bias
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voltage [45]. In this work, the resonator flexural displacement y(x, t), where x is the spatial

coordinate along the beam, is much smaller than the resonator width, y(x, t) ⌧ h, which

allows us to approximate the mechanical restoring force of the symmetric vibrational mode

under the study by a 3rd-order polynomial !20mq + �
m

q3, where q is the modal displace-

ment coordinate, !0m is the mechanical linear vibration frequency and �
m

is the mechanical

Du�ng nonlinearity which is positive for a clamped-clamped (CC) beam. These modal

parameters can be obtained by (1) approximating the resonator deformation function as

y(x, t) = q(t)✓(x), (3.1)

where �(x) is the ideal mode shape of a CC beam, which we approximate further by an

assumed mode, given by a simple polynomial that satisfies the CC boundary conditions,

namely,

✓(x) = 16x2(1� x)2, (3.2)

and (2) using the Galerkin projection of the original equation of motion for the beam on the

specific vibrational mode [45, 88]. Further, since the resonator is biased symmetrically we

model the electrostatic force acting on the resonator during its ringdown as

F
el

= [(d� y(x, t))�2 � (d+ y(x, t))�2], (3.3)

where d is the nominal electrode gap size and  is the strength of the electrostatic force,

which depends on the resonator dimensions and the bias voltage. In order to obtain the

expression for an equivalent electrostatic force acting on the vibrational mode, one would

have to project F
el

on this mode, which is generally a challenging task, see Appendix B.

49



However, noticing that, by definition, y(x, t)/d < 1, we can expand F
el

in a Taylor series

about q = 0. Since d ⌧ h, we can keep in this expansion higher-order terms. These

terms can become comparable to the nonlinear term / q3 where the expansions of the

both mechanical and electrostatic forces apply. We will keep terms up to 5th order in q/d

and then perform the Galerkin projection. It is important to note that the mechanical

and electrostatic forces are both symmetric. Since the terms of di↵erent powers in q can

become comparable in these two forces, di↵erent e↵ects can come into play depending on

the amplitude. The mechanical nonlinearity is hardening and the electrostatic nonlinearity

is softening. The natural frequency (from the linear term) includes both e↵ects, and for

the present device and bias voltage the cubic term is dominated by mechanical e↵ects and

is hardening, while the quintic nonlinearity is dominated by the electrostatic e↵ects and is

softening. This leads to the inflection point on the amplitude dependence of the vibration

frequency seen in Fig. 3.3.

After combining mechanical and electrostatic e↵ects together, the dynamics of a vibra-

tional mode of a symmetric micromechanical resonator can be described for moderate modal

amplitudes by the following phenomenological model

q̈ + 2(�1 + �2q
2)q̇ + q(!20 + 2!0⌘(t)) + �q3 + �q5 = f(t), (3.4)

where q is again the modal displacement coordinate, !0 is the natural frequency of the

mode, �1 and �2 are the coe�cients of linear and nonlinear friction, and � and � are the

coe�cients of the conservative Du�ng and quintic nonlinearities respectively. The linear

damping constant �1 determines the resonator decay at small vibration amplitudes and is

related to the resonator quality factor as Q = !0/2�1. Note that !0 is primarily defined by
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!0m, but is slightly reduced by the presence of the electrostatic actuation/sensing scheme

(electrostatic frequency tuning e↵ect). To complete the model, we also include additive,

f(t), and multiplicative, ⌘(t), noise sources, which can be of thermal or non-thermal origin.

Qualitatively, the nonlinear and noise terms in Eq. (3.4) have the following e↵ects, to the

first order: the sti↵ness nonlinearities � and � cause an amplitude-dependent frequency shift,

the nonlinear damping �2 produces an amplitude-dependent damping (and a non-exponential

decay), while the noise processes make both the amplitude and frequency fluctuate about the

deterministic response of the resonator. The decay of the oscillation amplitude is determined

by the terms of Eq. (3.4) proportional to �1 and �2, and also by f(t) and ⌘(t). Thus, in a

standard spectral measurement, �, � and �2 (and the noise terms [78]) lead to a deviation

of the spectral contour from the Lorentzian, and it is usually impossible to accurately ex-

tract these parameters from a single frequency sweep. In contrast, as we show, a ringdown

measurement is very sensitive to these nonlinearities and noise sources.

In the absence of the noise terms in Eq. (3.4), the dynamics of the resonator ringdown

response can be studied in terms of slowly-varying (on the time scale ⇠ !�1
0 ) resonator

amplitude a(t) and phase �(t)

q(t) = a(t) cos (!0t+ �(t)) , (3.5a)

q̇(t) = �!0a(t) sin(!0t+ �(t)). (3.5b)

Substituting this change of variables into equation Eq. (3.4), applying the method of aver-

aging and neglecting fast-oscillating terms [89], we obtain the following equations of motion
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for the modal amplitude and phase

ȧ = �
✓
�1 +

1

4
�2a

2
◆
a, (3.6a)

�̇ =
3�

8!0
a2 +

5�

16!0
a4. (3.6b)

From Eq. (3.6a) it is clear that the amplitude dynamics are una↵ected by the conservative

nonlinearities, while the phase depends on the amplitude through both � and �, as expected.

In fact, it can be shown that the amplitude decay is independent of � and � even in the

presence of noise [49]. The solution for the resonator vibrational envelope can be obtained

in closed form,

a(t) = a0e
��1t/

p
g(t), g(t) = 1 +

1

4

�2
�1

a20(1� e�2�1t) (3.7)

where a0 is the initial value of the modal amplitude in the ringdown response; see Fig. 3.4.

Using this solution in the expression for �̇ in Eq. (3.6b), we obtain the solution for the

resonator phase

�(t) =
3

4!0�2

✓
� � 10��1

3�2

◆
ln g(t) +

5�a20
8!0�2

g(t)� e�2�1t

g(t)
, (3.8)

where we omit the initial resonator phase since it is determined by an arbitrary choice of

t = 0. The existence of closed-form solutions for the resonator amplitude and phase allows

us to develop a ringdown-based technique for estimating the resonator parameters, including

conservative and dissipative nonlinear coe�cients, see Section 3.3.

It is worth mentioning a possible origin of the nonlinear dissipation in MEMS resonators.
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According to the microscopic theory of dissipation discussed in [49], nonlinear friction is

an essential consequence of the nonlinear interaction of the primary resonant mode with

phonons, as is also the case for linear friction [49]. For high-Q resonators, the adequate

description of nonlinear friction is in fact given by Eq. (3a); in the phenomenological picture,

the term / �2 can come either from the friction force of the form of q2q̇ or q̇3, or from their

combination. If the phonons that lead to the relaxation are in thermal equilibrium, there is

an interrelation between the nonlinear friction coe�cient �2 and the intensity of the noise

⌘(t) with the spectrum around 2!0, see [33], similar to the familiar interrelation between �1

and the intensity of the additive noise f(t).

3.3 Characterization of !0,�1,�2, � and � parameters

As we mentioned in the introductory part of the chapter and showed formally in Section 3.2,

the resonator sti↵ness and dissipation parameters have qualitatively di↵erent e↵ects on the

system ringdown response. In particular, the resonator damping coe�cients �1 and �2 de-

termine the resonator vibration envelope, as it follows directly from Eq. (3.7). At the same

time, the resonator instantaneous vibration frequency is dictated by the form of the system

potential energy, which, in turn, is determined by a combined e↵ect of sti↵ness parameters

!0, � and �, see Eq. (3.6b). In this light, by separating the resonator vibration envelope

and the frequency-amplitude relationship in the system ringdown response, we can e↵ec-

tively separate e↵ects of the resonator conservative and dissipative parameters, see Fig. 3.5.

Furthermore, we expect that as the resonator vibration amplitude decreases, the system

returns to its linear regime, meaning that the resonator vibration frequency approaches its

amplitude-independent value !0 and the energy decay is essentially exponential as being
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Figure 3.5: The road-map for the ringdown-based characterization method. Separation
of dissipative and conservative parameters of the system under study is achieved through
independent analyses of the vibration envelope and the form of the resonator “backbone.”
Furthermore, small- and large-amplitude components of the system ringdown signal are used
for e↵ective characterization of the resonator linear and nonlinear coe�cients, while the jitter
in the ringdown zero-crossing points provides information about noise sources present in the
system.

dominated by �1. As a result, the small-amplitude part of the resonator ringdown mea-

surement can be used for immediate characterization of the system linear parameters: the

natural frequency !0 and linear damping constant �1. In contrast, nonlinear terms in the

resonator dissipative and restoring forces a↵ect the large-amplitude part of the resonator

ringdown, which allows us to estimate the values of �, � and �2 coe�cients from a single

ringdown measurement.

In order to extract the resonator vibration envelope and the “backbone” curve (the

dependence of the instantaneous oscillation frequency on the resonator amplitude) from the

ringdown response, one can utilize di↵erent post-processing methods, such as fast Fourier

transform (FFT) and Hilbert decomposition, see [90–92]. In Section 3.3.1, we have employed
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the heterodyning technique for extracting the resonator vibration envelope since this method

also allows us to study the dynamic behavior of the resonator slowly-varying quadratures

during the ringdown [83]. To obtain the relationship between the resonator instantaneous

frequency and amplitude, we have utilized the method of zero-crossing points in Section 3.3.2.

While this method is very intuitive and simple to use, the main advantage of using zero-

crossing points is that this technique provides means for studying thermal, frequency and

measurement noise sources, which result in fluctuations, or jitter, of the locations of zero-

crossing points in the system response [84]. Analysis of this jitter, as discussed in Section 3.4,

allows one to reveal all mentioned noise sources and, more importantly, to estimate noise

intensities.

3.3.1 Revealing nonlinear friction and extracting �1,�2

In this work we have started the resonator characterization process by estimating the sys-

tem damping coe�cients from the resonator vibration envelope. In order to extract the

resonator vibrational amplitude a(t), the recorded ringdown data shown in Fig. 3.4 has been

heterodyned with the in-phase and quadrature components at the frequency of self-sustained

oscillations prior to the ringdown measurement,

!
ss

= !0 +�!(a0), (3.9)

see Fig. 3.6. Next, we have passed mixed signals through a low-pass filter in order to remove

the second and other higher-order harmonics and isolate slowly-varying (on the time scale

⇠ !�1
0 ) resonator quadratures, q

x

(t) and q
y

(t). Finally, we have reconstructed the resonator

vibrational envelope using the well-known relationship between the Cartesian and polar
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Figure 3.6: Post-processing method used for extracting the resonator vibrational envelope
from the ringdown measurement. Initial heterodyning of the resonator ringdown response
with in-phase and quadrature signals at !

ss

and subsequent isolation of the system slowly-
varying quadratures allows one to reconstruct the resonator vibrational amplitude a(t).

coordinates as

a(t) =
q

q2
x

(t) + q2
y

(t). (3.10)

In order to reveal the presence of nonlinear dissipation in the resonant system of interest,

it is convenient to plot the resonator vibration amplitude a(t) on logarithmic scale, see

Fig. 3.7. As expected, when the resonator rings down, its amplitude decreases and the

e↵ect of �2 on the vibrational envelope becomes smaller. In the final part of the ringdown

response, the resonator motion is essentially independent of �2 and the resonator energy

decays exponentially with the speed determined by �1 and proportional to the slope of the

curve in Fig. 3.7. By finding this slope one can estimate the resonator linear decay rate �1,

see Table 3.1. As expected, the resonator decay pattern deviates from a simple exponential

Table 3.1: Estimated values of the linear and nonlinear dissipation coe�cients and con-
servative nonlinearity for di↵erent initial amplitudes. Ringdown measurements have been
performed with V

DC

= 30V and at T = �40�C.

a0(mV ) �1(s
�1) �2(s

�1V �2) �(s�2V �2) �(s�2V �4)

130 116.8 7893 1.12⇥ 1012 �2.2⇥ 1013

175 122.4 8479 0.93⇥ 1012 �2.64⇥1013

265 119 6011 1.05⇥ 1012 �2.07⇥1013
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Figure 3.7: Measured vibrational amplitude of the DETF resonator during its ringdown
response with V

DC

= 30V (solid line). The dashed line represents the exponential decay of
the resonator amplitude at low vibration amplitudes, extended throughout the amplitude
range. Upper inset: nonlinear friction causes the ringdown amplitude envelope to deviate
from exponential at large amplitudes, which can be used for characterization of �2. Lower
inset: the e↵ect of nonlinear dissipation on the ringdown response becomes stronger as the
initial amplitude increases.

form at large-to-moderate vibration amplitudes due to the presence of nonlinear damping, see

the upper inset in Fig. 3.7. Importantly, this e↵ect becomes stronger as the initial amplitude

increases. Analysis of equation Eq. (3.7) shows that the maximum of this deviation (on

logarithmic scale) reads

� = lim
t!1


ln

✓
a0

a(t) exp(�1t)

◆�
=

1

2
ln

✓
1 +

�2a
2
0

4�1

◆
, (3.11)

which can be used to estimate the magnitude of �2, see Table 3.1. Alternatively, one can fit

extracted vibrational amplitude a(t) with the model described in equation Eq. (3.7) using,

for example, the least-square method and estimate both damping coe�cients �1 and �2.
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3.3.2 Extracting the resonator sti↵ness coe�cients !0, �, �

After characterizing the resonator dissipative parameters, we can proceed with estimating

the system natural frequency !0 as well as Du�ng and quintic nonlinearities � and �.

According to Eq. (3.6b), the resonator instantaneous frequency depends on the amplitude

a(t) as follows,

!(t) = !0 +
3�

8!0
a2(t) +

5�

16!0
a4(t). (3.12)

This behavior of the vibration frequency corresponds to decay along the resonator “back-

bone” curve in the amplitude-frequency space. As we discussed above, the e↵ects of � and �

are expected to diminish as the resonator enters its linear regime, where the modal frequency

approaches !0. In order to extract the resonator instantaneous frequency and estimate !0,

� and � from a single ringdown response, we analyze the sequence of the zero-crossing times

{⌧
k

} in the resonator response, i.e., the points that satisfy q(⌧
k

) = 0, as outline below.

During the resonator ringdown, the vibration amplitude and frequency are not constant,

but change smoothly in time (ignoring the e↵ects of noise). Based on this, we partition the

ringdown response into N segments of length 2⇡/!0 ⌧ �t ⌧ ��1
1 . We assume that the

vibration amplitude and frequency remain essentially fixed within each segment, but change

in a discrete manner from one segment to the next. In this case our procedure corresponds

to a discretization of smooth amplitude and frequency functions. In this spirit, we define

the vibration period associated with ith time segment as

T
i

= 2
t
i,n

i

� t
i,1

n
i

� 1
=

2⇡

!
i

, (3.13)

where t
i,j

is the jth zero-crossing point and n
i

is the number of zero-crossing points within
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the ith interval. Extracted values of the vibration period T
i

are then used to compute the

resonator quasi-instantaneous vibration frequency shown in Fig. 3.8 for N = 50. Note that

Figure 3.8: Vibration frequency of the resonator during the ringdown as a function of its
amplitude for di↵erent values of initial amplitude. Due to amplitude-dependent frequency
pulling, the frequency varies with amplitude, allowing characterization of !0, � and � from
a single measurement. Discrete dots represent extracted values of the vibration frequency
!
k

/2⇡ during the ringdown response (error bars ⇡ 1 � 10 Hz, not shown). The solid lines
represent the curve fits of extracted “backbones” using the model in Eq. (3.12).

partitioning of the resonator ringdown results in the vibration frequency being averaged over

�t, and mentioned above jitter in zero-crossing points is essentially averaged out. As a result,

by choosing specific value of N one would always compromise between the amount of data

points in the resonator “backbone” and the amount of jitter that is being averaged/retained.

The form of the resonator frequency-amplitude dependence exhibits several features of

interest. First, as expected, the value of the vibration frequency at the beginning of the

ringdown, !1, depends on the initial vibration amplitude a0 and on sti↵ness nonlinearities �

and �, due to the amplitude-dependent frequency pulling. As the resonator motion decays,

the vibration frequency changes in a monotonic (for �� > 0 or if the initial amplitude is below

the turning point) or non-monotonic (for �� < 0 and the initial amplitude above the turning
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point) manner and gradually approaches !0, from where we estimated the linear resonant

frequency to be f0 ⇡ 1.2172 MHz. After obtaining the vibration period (and frequency) as a

function of time, we can estimate the resonator Du�ng and quintic nonlinearities by fitting

the amplitude-dependent frequency shift

�!(a) = !(a)� !0 (3.14)

to the model described in Eq. (3.12) using the least-square fitting method, see Table 3.1.

It is worth mentioning that the zero-crossing-based method presented here can be easily

extended and used to capture the resonator sti↵ness nonlinearities of orders higher than 5.

These higher-order nonlinearities will result in additional terms in Eqs. (3.6b) and (3.12)

that dictate the behavior of �!(a). Clearly, this method of zero-crossing points is accurate

and very simple from a computational point of view, as it allows one to extract !0, � and

� directly from the raw data without involving the Fourier transform of a signal that has a

non-stationary and, generally, non-monotonic vibration frequency.

3.3.3 Separating mechanical and electrostatic e↵ects in MEMS

resonators

The dynamic behavior of MEMS resonators with electrostatic transduction is determined

by both mechanical restoring forces arising from elastic deformations in the resonator body

and the electrostatic interaction of the resonator with attendant electrodes, which arises

from a finite bias voltage [45]. Knowledge of both mechanical and electrostatic contributions

to the resonator amplitude-dependent frequency pulling e↵ect becomes crucial for accurate

tuning of the resonator parameters, for example, for maximizing the resonator linear dynamic

60



range using systematic shape optimization of the resonator body [43]. While decoupling of

mechanical/kinematic and electrostatic e↵ects can be achieved in electrostatic MEMS by

using, for example, a piezoelectric stack actuator [93] and optical sensing method [94] to

achieve a purely mechanical response, this technique requires considerable change of the

resonator driving/sensing apparatus and additional measurement tools. Moreover, such a

method is not applicable for resonant systems that are encapsulated [87]. In this light, there

is a need for a simple and reliable characterization method that allows one to estimate both

mechanical and electrostatic contributions to the linear and nonlinear resonator sti↵ness

parameters, while employing an electrostatic drive/sense setup. As we show below, it is

possible to adapt the ringdown-based characterization method described above for separating

mechanical and electrostatic e↵ects in MEMS resonators with electrostatic actuation and/or

sensing schemes.

Mechanical forces in flexural-mode resonators vibrating in a single plane originate from

two qualitatively di↵erent mechanisms: resonator bending (flexure) and mid-line stretching

(extension). In particular, restoring forces due to resonator bending normally dominate

the system dynamics at vibrational amplitudes that are much smaller than the resonator

thickness h in the direction of vibration. The e↵ect of mid-line stretching, on the other hand,

is nonlinear in the resonator displacement and reveals itself at higher vibration amplitudes

[95], and it results in an amplitude-dependent shift of the resonator vibrational frequency [96].

Physically, this manifests itself in an e↵ective hardening of the resonator sti↵ness, resulting

in an increase in the vibration frequency as the amplitude increases. Here, the resonator

thickness h serves as an important characteristic length scale that dictates the appearance

of nonlinear e↵ects in the resonator sti↵ness that arise due to normal stresses occurring in

the resonator body during its vibratory response.
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Unlike mechanical restoring forces, both linear and nonlinear electrostatic e↵ects origi-

nate from the same physical process of electrostatic interaction of the resonator body with

the attendant electrodes. The e↵ect of this interaction is expressed by a single electrostatic

potential function, which diverges when the resonator amplitude approaches the electrode

gap size d. Since the resonator displacement y(x, t) cannot physically exceed d1, one can

expand the electrostatic potential about the resonator equilibrium position and obtain corre-

sponding electrostatic contributions to both linear and nonlinear resonator restoring forces.

Importantly, the larger the resonator displacement, the more terms one has to keep in the

expansion of the electrostatic potential for accurate modeling of the system dynamics. In

this light, the electrode gap size d is another important length scale that determines the

appearance of certain electrostatic e↵ects in the potential, or, equivalently, in the expansion

of the attendant restoring force.

Typically, the electrode gap size is the smaller of these length scales in MEMS resonators

with electrostatic transduction and high frequency, so that d ⌧ h often holds. Consequently,

depending on the relative magnitudes of h and d, one may have to retain mechanical and/or

electrostatic nonlinear terms of di↵erent orders in the resonator displacement, as was done in

Section 3.2. Physically, the electrostatic forces pull the resonator away from its equilibrium

position and therefore reduce the resonator sti↵ness and cause softening of the resonator

frequency response [99]. As a result, the resonator dynamic behavior is determined by the

competition of mechanical (hardening) and electrostatic (softening) e↵ects, and this interplay

of di↵erent restoring mechanisms can result in peculiar forms of the resonator amplitude-

frequency response, such as the one shown in Fig. 3.3.

1In fact, y(x, t) . 0.7d is frequently satisfied in order to avoid the pull-in phenomenon [97, 98] and/or
prevent the device from electrical shorting.
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By accounting for the aforementioned mechanical and electrostatic forces acting on

the resonator, we can obtain the following model for the resonator natural frequency and

amplitude-dependent frequency shift (see Appendix B for details),

!0 =

r
!20m � 3C

e

d
, (3.15a)

�!(a) = �!
m

(a) +�!
e

(a), (3.15b)

where !0m is the resonator mechanical natural frequency and

C
e

=
2✏0V

2
b

3⇢hd2
(3.16)

is the strength of electrostatic potential that depends on the beam mass density ⇢, beam

in-plane thickness h, electrode gap size d, and the applied bias voltage V
b

. In Eq. (3.15b),

�!
m,e

(a) are the corrections to the modal vibration frequency due to nonlinear mechan-

ical and electrostatic e↵ects, respectively. Closed-form expressions for �!
m,e

(a) are quite

cumbersome and are relegated to Appendix B. In practice, however, modal amplitudes

in high-frequency flexural-mode resonators with a “clamped-clamped beam” configuration

frequently satisfy a/h ⌧ a/d < 1, which allows us to approximate the magnitudes of the

mechanical and electrostatic nonlinear frequency pulling, as follows,

�!
m

(a) ⇡ 3�
m

8!0
a2, �

m

=
⇡4E

3⇢L4
, (3.17a)

�!
e

(a) ⇡ 3�
e

8!0
a2 +

5�
e

16!0
a4, �

e

= �35C
e

8d3
, �

e

= �693C
e

128d5
. (3.17b)

Note that while we approximate �!
m

(a) in Eq. (3.17a) only by the first non-vanishing

63



term / a2, which comes from the cubic (Du�ng) term in the resonator restoring force, we

retain contributions from both cubic and quintic electrostatic nonlinearities in �!
e

(a). The

validity of this approximation has been verified in the analysis; in fact, even when a ⇡ d, the

contribution of the mechanical quintic term (due to the mid-line stretching) to the resonator

frequency shift, which is / a4 in �!
m

(a), is several orders of magnitude smaller than the

corresponding contribution of the mechanical Du�ng term, i.e.,

5|�
m

|
16!0

d4 ⌧ 3�
m

8!0
d2.

In contrast, the electrostatic potential diverges as a ! d and the electrostatic quintic term

dominates the softening behavior of the resonator frequency at higher vibration amplitudes.

In this light, the coe�cient of the resonator quintic sti↵ness term is approximated as � ⇡ �
e

,

which we keep in the analysis in order to adequately describe the hardening-to-softening

behavior of the resonator frequency response shown in Fig. 3.3.

These qualitative and quantitative di↵erences between nonlinear mechanical and electro-

static forces allow us to characterize both e↵ects using a single resonator ringdown response.

In particular, our ability to characterize the resonator lumped sti↵ness parameters: !0, � and

� allows us to estimate the strength of the electrostatic potential C
e

using the last expres-

sion in Eq. (3.17b). Knowing C
e

, we can further calculate the corresponding electrostatic

contributions to the resonator natural frequency and Du�ng nonlinearity �
e

. Finally, by

accounting for these electrostatic contributions, we can determine the mechanical natural

frequency,

!0m =

r
!20 +

3C
e

d
, (3.18)
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Table 3.2: Estimated values of the mechanical natural frequency !0m, the mechanical con-
tribution to the Du�ng nonlinearity �

m

, and the electrostatic potential strength C
e

in the
DA-DETF resonator (see Fig. 3.1) for three independent ringdown measurements with the
same bias voltage, V

DC

= 30 V .

a0 (mV ) !0m/2⇡ (Hz) �
m

(m�2s�2) C
e

(m/s2)

130 1.241⇥ 106 1.237⇥ 1024 6.51⇥ 105

175 1.238⇥ 106 1.403⇥ 1024 7.81⇥ 105

265 1.242⇥ 106 1.155⇥ 1024 6.1⇥ 105

and the Du�ng nonlinearity,

�
m

= � +
35C

e

8d3
. (3.19)

Table 3.2 shows some data obtained from a measured ringdown response.

It is worth mentioning that this method for separating mechanical and electrostatic e↵ects

is not limited to resonant systems with flexural vibrational modes and should be applicable

to other types of MEMS resonators including, for example, bulk-mode resonators. While the

physical origins of mechanical nonlinearities can include both geometric and material e↵ects,

their appearance in the resonator model is determined by relatively large resonator dimen-

sions, such as the resonator thickness (for flexural modes) or width (for bulk modes). In

contrast, electrostatic forces still originate from the electrostatic potential with the charac-

teristic length equal to the electrode gap size, which remains the smallest geometric feature of

MEMS resonators with electrostatic transduction. As a result, the resonator quintic sti↵ness

term should still be dominated by the electrostatic potential and, by driving the resonator to

su�ciently large vibration amplitude, one should be able to characterize the strengths of the

electrostatic potential and mechanical contributions to the resonator sti↵ness parameters.
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3.4 Characterization of thermal, frequency and mea-

surement noise sources

To this point we have discussed how one can characterize the deterministic resonator pa-

rameters, both dissipative and conservative, using a single ringdown response measurement.

Of course, the resonator dynamics are not deterministic but are influenced by interactions

of the resonator body with an ambient environment. These interactions, as we described

in Section 1.2, have di↵erent physical origins; however, the collective e↵ect of these interac-

tions on the resonator dynamic behavior can be modeled in the form of random excitations or

noises.1 Depending on a noise nature and origin, we can model them as additive, or thermal,

noise, i.e., being independent of the resonator instantaneous displacement and velocity, or,

as multiplicative, or frequency, noise. Also, when one measures the resonator response, the

imperfections of the detecting device typically result in an additional noise that perturbs the

measured signal, which we model as measurement noise. The e↵ects of these noise sources

on the resonator dynamics and the readout signal are illustrated schematically in Fig. 3.9,

where we assume that measurement noise does not a↵ect the resonator dynamics itself, but

merely corrupts the readout signal. In this section we show how we can use the resonator

Figure 3.9: Schematic representation of the e↵ects of thermal (f(t)) and frequency (⌘(t))
noises on the resonator dynamics, and the e↵ect of measurement noise (µ(t)) on the quality
of the readout signal.

1These same interactions are also the source of the damping e↵ects already studied, where dissipation is
the mean component of these random e↵ects and the fluctuating components are modeled as noise [49].
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ringdown response for characterization of measurement, additive, and multiplicative noise

sources. In particular, we demonstrate that these noises cause jitter in the zero-crossing

points in the resonator ringdown and, more importantly, they have di↵erent signatures in

the resonator timing jitter, which allows us to reveal and separate their e↵ects and estimate

their individual noise intensities.

In terms of notation, we use (·)
d

to denote the deterministic value of the quantity in

the parenthesis, such as the resonator amplitude, a, or frequency, !, while (·)
r

and (·)
µ

will denote variations of this quantity induced by resonator-related and measurement noise

sources, respectively. The jitter in the zero-crossing points manifests itself in the fact that

the location of an arbitrary zero-crossing point ⌧
k

deviates from its deterministic value, ⌧
dk

,

obtained by solving Eq. (3.8) for �(⌧
dk

) = ⇡k, as

⌧
k

= ⌧
dk

+ �⌧
rk

+ �⌧
µk

, (3.20)

where �⌧
rk

and �⌧
µk

are random shifts of the location of ⌧
k

due to resonator-related noises

(thermal and frequency) and measurement noise, respectively. In order to analyze the jitter in

zero-crossing points during the resonator ringdown, we have to account for the non-stationary

nature of the resonator response itself, which ultimately leads to non-stationarity of the

resonator frequency fluctuations. In this light, similar to the approach used in Section 3.3.2,

we partition the ringdown measurement into N segments of width !�1
0 ⌧ �t ⌧ ��1

1 , and

assign index i, unless specified otherwise, to denote the counting number of these ringdown

segments. Next, we calculate the following time intervals within the ith ringdown segment

T (i, j, k) = ⌧
i,j+k

� ⌧
i,j

= T
d

(i, j, k) + �T (i, j, k), (3.21)
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�T (i, j, k) = �T
r

(i, j, k) + �T
µ

(i, j, k), (3.22)

�T
r

(i, j, k) = �⌧
ri,j+k

� �⌧
ri,j

, (3.23)

�T
µ

(i, j, k) = �⌧
µi,j+k

� �⌧
µi,j

, (3.24)

where ⌧
i,j

is the jth zero-crossing point within the ith ringdown segment. Physically, T (i, j, k)

corresponds to the time that it takes for the resonator to accumulate ⇡k radians of phase

starting from ⌧
i,j

on the timeline. In what follows, we shall assume that measurement noise

is independent and uncorrelated with the resonator-related noise sources f(t) and ⌘(t), which

results in the fact that �⌧
rk

and �⌧
µk

are also uncorrelated, i.e.,

h�⌧
rk

�⌧
µk

i
k

⌘ 0. (3.25)

As a result, we have for �T (i, j, k)

h�T 2(i, j, k)i
j

= h�T 2
r

(i, j, k)i
j

+ h�T 2
µ

(i, j.k)i
j

, (3.26)

where h·i
j

denotes averaging over the j index, which, in our case, is assumed to be equiv-

alent to ensemble averaging for di↵erent time intervals T (i, j, k) within the same ringdown

segment.

3.4.1 Measurement noise timing jitter �T
µ

(i, j, k)

The measured resonator ringdown response is a digitial representation of the resonator dis-

placement that is estimated, using an appropriate detecting device, at specified instances

of time t
p

. In this work, we assume that measurement noise does not a↵ect the resonator
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internal dynamics and thus model the e↵ects of a detection scheme on the readout signal in

the following way,

q
m

(t
p

) = q
r

(t
p

) + µ(t
p

), (3.27)

where q
r

(t
p

) = q
rp

is the signal that describes the resonator dynamics a↵ected by additive

and multiplicative noise sources, which we would detect given an ideal measurement appa-

ratus, µ(t
p

) = µ
p

is a random component added to q
rp

due to the presence of measurement

noise, and q
m

(t
p

) = q
mp

is the readout of the resonator displacement. In what follows, we

assume µ
p

to be a random variable having a symmetric probability distribution with the

following statistics,

hµ
p

i
p

= 0, hµ
p

µ
s

i
ps

= M�
ps

, (3.28)

where �
ps

is Kronecker delta symbol. As we shall show later, this model, despite its relative

simplicity, allows one to explain certain noise-induced features of the ringdown responses

obtained from the DA-DETF resonator.

Given the signal in the form of Eq. (3.27), as the measured resonator ringdown, we

consider the sequence of measured zero-crossing points {⌧
mi,j

} satisfying q
m

(⌧
mi,j

) = 0. We

denote the sampling rate at which measurements are performed as f
s

, and assume that it is

much higher than the resonator vibration frequency, i.e., f0 ⌧ f
s

, so that the zero-crossing

points ⌧
mi,j

can be obtained from the measured data with su�cient accuracy using linear

interpolation of the resonator response in the vicinity of q
mi,j

= 0. Thus, for an arbitrary

zero-crossing point, considering Fig. 3.10, we see that

⌧
mi,j

=
q
m2t1 � q

m1t2
q
m2 � q

m1
=

(q
r2 + µ2)t1 � (q

r1 + µ1)t2
q
r2 � q

r1 + µ2 � µ1

⇡ q
r2t1 � q

r1t2
q
r2 � q

r1


1� µ2 � µ1

q
r2 � q

r1

�
+

µ2t1 � µ1t2
q
r2 � q

r1
,

(3.29)
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Figure 3.10: Measurement noise contribution to the jitter in the zero-crossing points in the
resonator ringdown response. As expected, the resonator motion with larger amplitude is
less susceptible to the e↵ects of measurement noise, which is the fundamental necessity for
high signal-to-noise ratio for precise frequency generators and clocks.

where, without loss of generality, q
m1 > 0 and q

m2 < 0 are the measured ringdown dis-

placements at times t1 and t2, respectively, and we have assumed that the measurement

noise is weak as compared with the original signal due to the resonator vibrations, i.e.,

|µ2 � µ1| ⌧ |q
r2 � q

r1|. By introducing

⌧
ri,j

=
q
r2t1 � q

r1t2
q
r2 � q

r1
(3.30)

as the zero-crossing point in the resonator response before a measurement is taken, Eq. (3.29)

can be rewritten as

⌧
mi,j

= ⌧
ri,j

+ �⌧
µi,j

,

�⌧
µi,j

= µ2
t1 � ⌧

ri,j

q
r2 � q

r1
� µ1

t2 � ⌧
ri,j

q
r2 � q

r1
,

(3.31)

where �⌧
µi,j

is the jitter induced by the measurement noise to the location of the jth zero-

crossing point on the ith ringdown segment. Assuming the properties of µ
p

described in
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Eq. (3.28), the statistical properties of �⌧
µi,j

are

h�⌧
µi,j

i
j

= 0, (3.32a)

h�⌧
µi,j

�⌧
µi,k

i
jk

= M�
jk

⌧
(t1 � ⌧

ri,j

)2

(q
r2 � q

r1)2

�

j

+

⌧
(t2 � ⌧

ri,j

)2

(q
r2 � q

r1)2

�

j

�
. (3.32b)

In order to calculate the expression in the square brackets in Eq. (3.32b), we assume that

the resonator-related noises only slightly perturb the resonator motion, which allows us to

approximate the denominator as

|q
r2 � q

r1| ⇡ a
di

!
di

(t2 � t1), (3.33)

where a
di

and !
di

are the resonator deterministic (averaged) amplitude and vibration fre-

quency during the ith ringdown segment. Due to the fixed sampling time and the fact that

the resonator frequency, even its deterministic component (due to frequency pulling), is a

function of time, we assume that the location of ⌧
ri,j

on the interval [t1, t2] is a random

variable with the uniform distribution for di↵erent j’s, i.e.,

prob(⌧
ri,j

2 [t, t+ dt]) =
dt

t2 � t1
, for t 2 [t1, t2]. (3.34)

The latter results in

h(t1 � ⌧
ri,j

)2i
j

= h(t2 � ⌧
ri,j

)2i
j

=
1

3
(t2 � t1)

2, (3.35)
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and we can rewrite Eq. (3.32b) as

h�⌧2
µi,j

i
j

⇡ 2

3

M
a2
di

!2
di

. (3.36)

Once we have established the statistical properties of �⌧
µi,j

, we can do the same for

�T
µ

(i, j, k). In particular, from Eqs. (3.21), (3.32a) and (3.36) we have

h�T
µ

(i, j, k)i
j

= 0, (3.37a)

h�T 2
µ

(i, j, k)i
j

⇡ 4

3

M
a2
di

!2
di

. (3.37b)

Note that the contribution of measurement noise to the jitter in the zero-crossing points is

independent of k to leading order. As we will show in Sections 3.4.2 and 3.4.3, thermal and

frequency noises result in a qualitatively di↵erent e↵ect; in particular, their leading-order

contribution to the timing jitter is proportional to k. This important di↵erence allows us

to separate measurement noise from resonator-related noise sources, as we will conclude in

Section 3.4.4.

3.4.2 Resonator phase fluctuations during ringdown

It is well-known that both additive and multiplicative noise sources a↵ect the resonator

dynamics by inducing fluctuations in the resonator amplitude and phase [49, 50]. At the

same time, the resonator phase is intrinsically related to time through the system vibration

frequency, which serves as an e↵ective scaling factor between these two quantities. As a

result, if we use the resonator phase, or, more precisely, the phase di↵erence, as a tool to

measure time, we will measure it with a certain error due to the resonator/oscillator phase
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noise. In this light, before we proceed to defining the timing jitter due to resonator phase

fluctuations, we shall briefly revisit how additive and multiplicative noise sources contribute

to the resonator frequency and, consequently, to phase noise. In order to illustrate these

contributions, we simplify the original resonator model, described in Eq. (3.4), as follows,

q̈ + 2�1q̇ + q(!20 + 2!0⌘(t) + �q2) = f(t), (3.38)

where f(t) and ⌘(t) are additive (thermal) and multiplicative (frequency) noise sources acting

on the system. The main advantage of the model in Eq. (3.38) over the one in Eq. (3.4) is the

linearity of the dissipative force, which greatly simplifies the foregoing analysis. However,

we shall return to the discussion of linear vs. nonlinear damping in Section 3.4.4, where we

discuss the noise characterization protocol. Note that in Eq. (3.38) we have also omitted the

quintic term in the resonator restoring force since this term does not change the qualitative

picture of the resonator amplitude and phase fluctuations; if necessary, it can be included in

a straightforward manner.

In order to analyze the resonator phase (and amplitude) fluctuations, we employ classical

van der Pol transformation to the slowly-varying complex amplitude u(t),

q(t) = u(t)ei!0t + u⇤(t)e�i!0t, q̇(t) = i!0[u(t)e
i!0t � u⇤(t)e�i!0t]. (3.39)

By inserting Eq. (3.39) in Eq. (3.38) and neglecting fast-oscillating terms, we obtain the

following equation of motion for u(t), [49],

u̇ = ��1u+
3i�

2!0
|u|2u+ iu⌘0(t)�

i

2!0
f
!0(t), (3.40)
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where ⌘0(t) represents the slowly-varying component of ⌘(t) and f
!0(t) is the slowly-varying

component of f(t) exp(�i!0t). By expressing the slowly-varying complex amplitude in the

polar form,

u =
1

2
aei�, (3.41)

we can separate the resonator amplitude a(t) and phase �(t) as

ȧ = ��1a+
1

!0

✓
f
(i)
!0

(t) cos�� f
(r)
!0

(t) sin�

◆
, (3.42a)

�̇ =
3�

8!0
a2 + ⌘0(t)�

1

a!0

✓
f
(r)
!0

(t) cos�+ f
(i)
!0

(t) sin�

◆
, (3.42b)

where we have expressed thermal noise in the rotating frame as,

f
!0(t) = f

(r)
!0

(t) + if
(i)
!0

(t). (3.43)

In the absence of additive and multiplicative noise sources the solution to the resonator

amplitude and phase becomes

a
d

(t) = a0e
��1t, (3.44a)

�
d

(t) =
3�a20

16�1!0

✓
1� e�2�1t

◆
, (3.44b)

which, of course, can be obtained from Eqs. (3.7) and (3.8) by letting � = 0 and taking the

limit �2 ! 0.

Next, we assume that the additive and multiplicative noise sources weakly perturb the

resonator dynamics about its deterministic decay and represent their e↵ect on the resonator
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dynamics as follows,

a(t) = a
d

(t) + �a(t), (3.45a)

�(t) = �
d

(t) + ��(t), (3.45b)

where �a(t) and ��(t) are small (|�a(t)| ⌧ a
d

(t) and |��(t)| ⌧ �
d

(t)) perturbations to

the deterministic resonator solution in Eqs. (3.44a) and (3.44b). This assumption about

“smallness” of amplitude and phase fluctuations does not, of course, hold when the resonator

amplitude becomes comparable with
q

ha2
th

i, the root-mean-square of the system thermal

vibrations induced by f(t). Thus, the analysis presented in this section is applicable to the

initial part of the ringdown, where the resonator is far from thermal equilibrium. In this

case, we can linearize Eqs. (3.42a) and (3.42b) about the noise-free solution, which yields

the following equations of motion for �a(t) and ��(t),

�ȧ = ��1�a+
1

!0

✓
f
(i)
!0

(t) cos�
d

� f
(r)
!0

(t) sin�
d

◆
, (3.46a)

��̇ =
3�

4!0
a
d

�a+ ⌘0(t)�
1

a
d

!0

✓
f
(r)
!0

(t) cos�
d

+ f
(i)
!0

(t) sin�
d

◆
. (3.46b)

In Eqs. (3.46a) and (3.46b), we assume that thermal and frequency noise sources are

zero-mean random processes that are independent and uncorrelated, i.e., h⌘0(t1)f(t2)i ⌘ 0.

Additionally, we assume that the correlation time of each of these random processes to

be much smaller than ��1
1 , which allows us to approximate these noise sources as delta-

correlated, i.e.,

h⌘0(t1)⌘0(t2)i = D
⌘

�(t1 � t2), hf(t1)f(t2)i = D
f

�(t1 � t2).
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Using these assumptions, one can show that the thermal noise components f
(r)
!0

(t) and f
(i)
!0

(t)

possess the following statistical properties [49],

hf (r)
!0

(t)i = hf (i)
!0

(t)i = 0, hf (r)
!0

(t1)f
(i)
!0

(t2)i = 0,

hf (r)
!0

(t1)f
(r)
!0

(t2)i = hf (i)
!0

(t1)f
(i)
!0

(t2)i =
D
f

2
�(t1 � t2).

(3.47)

From Eq. (3.46b) it follows that in order to calculate statistics of the resonator phase

fluctuations, i.e., h��(t)i and h��2(t)i (in this work we do not need the two-time correlation

function h��(t1)��(t2)i), we must first calculate the statistical properties of the resonator

amplitude fluctuations. Fortunately, Eq. (3.46a) can be solved in a straightforward way and

yields

�a(t) =
1

!0

Z
t

0
dt0e��1(t�t

0)
✓
f
(i)
!0

(t0) cos�
d

(t0)� f
(r)
!0

(t0) sin�
d

(t0)
◆
, (3.48)

which, after some algebra, leads to the following expression for the resonator amplitude

correlation function

h�a(t1)�a(t2)i =
D
f

4�1!
2
0


e��1|t1�t2| � e��1(t1+t2)

�
. (3.49)

We can now determine the statistical properties of the resonator phase. From Eqs. (3.46b)

and (3.47), we have

h��(t)i = 0, (3.50a)

h��2(t)i =
Z

t

0
dt1

Z
t

0
dt2h��̇(t1)��̇(t2)i

= D
⌘

t+
D
f

4�1!
2
0


e2�1t � 1

a20
+

9�2a20
64�21!

2
0

✓
1� 4�1te

�2�1t � e�4�1t
◆�

.

(3.50b)
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Equation (3.50b) shows the e↵ects of both the additive and multiplicative noise sources on

the variance of the resonator phase. As expected, the resonator frequency noise ⌘0(t) results

in a simple di↵usion of the resonator phase. In contrast, the thermal noise contribution is

more complicated, due to the non-stationary nature of the resonator ringdown response. In

this work, however, we are interested in the resonator phase fluctuations on the time scale

�t ⌧ ��1
1 , in which case h��2(t)i can be approximated as follows,

h��2(t)i ⇡ t

✓
D
⌘

+
D
f

2!20a
2
0

◆
+

D
f

�1

2!20a
2
0

t2 + t3
✓
3D

f

�2a20
32!40

+
D
f

�21
3!20a

2
0

◆
, (3.51)

where we have expanded all terms in Eq. (3.50b) to 3rd order in t, which is necessary to

illustrate the leading order e↵ect of the resonator nonlinearity � on the resonator phase

fluctuations. From Eq. (3.51) two important conclusions can be made. First, the resonator

phase variance goes to 0 as t ! 0, which follows from the simple fact that the resonator

phase is the integral of the resonator instantaneous frequency. Second, the phase di↵usion

constant, defined as the coe�cient of the linear term in t in Eq. (3.51), has two contributions

corresponding to additive and multiplicative noise sources. Importantly, while the latter is

independent of the resonator initial amplitude, the contribution of the thermal noise grows

as the initial amplitude decreases. We shall return to this important di↵erence between

thermal and frequency noise sources when we discuss the noise characterization protocol in

Section 3.4.4.

3.4.3 Phase noise timing jitter �T
r

(i, j, k)

In the previous section we have shown how resonator-related noise sources contribute to

fluctuations of the resonator phase. Here we show that the phase noise ��(t), in turn, causes
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additional jitter, denoted �T
r

(i, j, k), in the zero-crossing points, which is in addition to

that caused by measurement noise, �T
µ

(i, j, k). To show this, consider the following phase

di↵erence,

⇡k = �(⌧
ri,j+k

)� �(⌧
ri,j

) =

Z
⌧

ri,j+k

⌧

ri,j

dt!
i

(t) =

Z
⌧

ri,j+k

⌧

ri,j

dt!
di

(t) +

Z
⌧

ri,j+k

⌧

ri,j

dt��̇
i

(t),

(3.52)

where ��̇
i

(t) represents the cumulative e↵ect of additive and multiplicative noise sources; see

Eq. (3.46b). By rearranging terms we can express the resonator phase fluctuations in the

following way,

��(i, j, k) =

Z
⌧

ri,j+k

⌧

ri,j

dt��̇
i

(t) = ⇡k �
Z
⌧

ri,j+k

⌧

ri,j

dt!
di

(t)

⇡ ⇡k � !
di

(T
d

(i, j, k) + �T
r

(i, j, k)),

(3.53)

where we have assumed a su�ciently fine partitioning of the resonator ringdown signal, so

that !
di

(t) ⇡ !
di

= const. The same assumption also leads to

T
d

(i, j, k) ⇡ T
di

k

2
! ⇡k ⇡ !

di

T
d

(i, j, k),

��(i, j, k) ⇡ �!
di

�T
r

(i, j, k).

(3.54)

As a result, the statistical properties of �T
r

(i, j, k) become

h�T
r

(i, j, k)i
j

= �!�1
di

h��(i, j, k)i
j

= 0,

h�T 2
r

(i, j, k)i
j

= !�2
di

h��2(i, j, k)i
j

.

(3.55)
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Finally, using Eqs. (3.26), (3.51) and (3.55), we can express the statistical properties of the

total timing jitter in the measured resonator ringdown response as

h�T 2(i, j, k)i
j

⇡ 4

3

M
a2
di

!2
di

+
h��2(i, j, k)i

j

!2
di

⇡ 4

3

M
a2
di

!2
di

+
⇡k

!3
di

✓
D
⌘

+
D
f

2!2
di

a2
di

◆
, for

⇡k

!
di

⌧ ��1
1 ,

(3.56)

where we have, in the spirit of the ringdown partitioning, discretized time t in Eq. (3.51) as

⇡k/!
di

and retained only the lowest-order (in k) term describing the temporal evolution of

the variance of the measured time intervals T (i, j, k), which is due to the presence of noises

µ(t), f(t) and ⌘(t).

3.4.4 Noise characterization protocol

In this section we summarize our understanding of how thermal, frequency, and measurement

noise sources a↵ect the resonator ringdown response, obtained in Sections 3.4.1 to 3.4.3, and

formulate the noise characterization protocol using Eq. (3.56) as the central result. First, as

follows from Eq. (3.56), the measurement and additive noise contributions to the timing jitter

depend on the resonator vibration amplitude. Thus, by partitioning the resonator ringdown

response into N segments of time length �t, we e↵ectively obtain several ringdown sub-

measurements that have di↵erent initial amplitudes and vibration frequencies, where each

is assumed to be essentially constant over each segment. Next, within the ith segment of

the ringdown response (i = 1 : N), we calculate the number of time intervals T (i, j, k) that

it takes for the resonator to accumulate ⇡k radians of phase or, equivalently, to perform k

half-cycles; see Fig. 3.11.

These collected time intervals are then analyzed statistically and the the variance h�T 2(i, j, k)i
j
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Figure 3.11: Time intervals T (1, j, 4) calculated within the 1st ringdown segment. Due to
the presence of measurement, thermal, and frequency noises, these time intervals slightly
di↵er in length, which, when analyzed statistically, allows one to reveal these noise sources
and estimate their intensities.

is calculated. Here it is important to note that the ringdown partitioning should be done

in a way that ensures statistical su�ciency for T (i, j, k) with di↵erent values of k. For

instance, the DA-DETF resonator used in this study has a quality factor Q ⇡ 104. Par-

titioning the ringdown into N = 50 segments results in each segment having ⇡ 200 full

cycles, or ⇡ 400 zero-crossing points. From a statistical point of view, this means that we

have enough zero-crossing points to calculate time intervals T (i, j, k) for k = 1 : 40 and

reconstruct the h�T 2(i, j, k)i
j

function. This function, as follows from Eq. (3.56), has a

constant contribution due to the measurement noise, and a k�dependent part that is due

to the thermal and frequency noises; see Fig. 3.12. The non-vanishing contribution to the

jitter in the zero-crossing points is the signature of measurement noise and can therefore

be used for separating out the e↵ects of measurement noise and estimating its intensity M.

In particular, the measurement noise intensity can be estimated by plotting the constant
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Figure 3.12: Qualitative behavior of h�T 2(i, j, k)i
j

as a function of k within the ith ringdown
segment. Importantly, the measurement noise contribution to the timing jitter does not
vanish as k ! 0, which is used for estimating the measurement noise intensity M. In
contrast, the corresponding contributions of thermal and frequency noise sources to the
timing jitter are both k�dependent, but have di↵erent magnitudes in di↵erent ringdown
regimes due to their di↵ering amplitude dependence.

term in h�T 2(i, j, k)i
j

, extracted from the ringdown segments, as a function of the resonator

amplitude, and fitting the resulting curve with the power law form given in Eq. (3.56); see

Fig. 3.13a.

Next, by fitting the k�dependent part of h�T 2(i, j, k)i
j

with a polynomial of 3rd order,

for su�ciently small k, and isolating the term / k, we can extract the resonator phase dif-

fusion constant determined by the intensities of thermal and frequency noise sources. As

mentioned above, the thermal noise contribution to the resonator phase fluctuations and,

consequently, the timing jitter, are both amplitude-dependent, while the associated contri-

bution of frequency noise is independent of the resonator amplitude. This di↵erence between

thermal and frequency noise sources allows us to independently estimate the intensities of

additive, D
f

, and multiplicative, D
⌘

, noise sources by comparing the phase di↵usion con-

stant, extracted from multiple ringdown segments, against the analytical prediction from

Eq. (3.56); see Fig. 3.13b. Following this noise measurement protocol, we have estimated
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(a) Extracted non-vanishing contribution of
measurement noise to the timing jitter as a
function of the resonator amplitude (from dif-
ferent ringdown segments). Discrete dots rep-
resent extracted contributions of measurement
noise to the timing jitter, while the solid
line is the least-squares fit with the model in
Eq. (3.56).

(b) Behavior of the leading-order k�dependent
part of h�T 2(i, j, k)i

j

as a function of the res-
onator amplitude along the measured ring-
down response. Discrete dots represent ex-
tracted contribution of measurement noise to
the timing jitter, while th solid line is the least-
square fit with the model in Eq. (3.56).

Figure 3.13: Characterization of measurement, thermal and frequency noise sources.

the intensities of measurement, additive, and multiplicative noise sources for the DA-DETF

resonator under study, and the results are presented in Table 3.3.

Fig. 3.13a illustrates both qualitative and quantitative agreement of the model with

the experimentally obtained data, and there is a good qualitative agreement between the

theoretical and experimental results in Fig. 3.13b. There does exist a quite noticeable spread

of experimental results around the fitted curve in Fig. 3.13b, which is believed to be due

to two factors: First, measurement noise, if it is not weak, can contribute to the term / k

in Eq. (3.56), and this e↵ect has not been accounted in the present work. Second, the

e↵ects of thermal and frequency noise is of higher-order, as compared with the measurement

noise contribution, which makes the characterization procedure for these noise sources more

sensitive to the ringdown partitioning, thereby a↵ecting the the accuracy of extracting the

coe�cient of the term / k.
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Table 3.3: Extracted intensities of the measurement, frequency, and thermal noise sources.
Thermal noise intensity D

f

is expressed in terms of the root-mean-square of the resonator

vibration amplitude in thermal equilibrium: D
f

= 4�1!
2
0h�a

2i
th

. Noise characterization was
performed in five independent ringdown measurements at V

DC

= 30 V and T = �40� C
with initial amplitude a0 = 265 mV .

Ringdown
p
M, mV D

⌘

, Hz
p

h�a2i
th

, mV

1 0.64 6⇥ 10�3 0.68

2 0.63 12⇥ 10�3 0.58

3 0.64 5.1⇥ 10�3 0.58

4 0.63 6.7⇥ 10�3 0.65

5 0.63 5.4⇥ 10�3 0.75

3.5 Outlook

In this chapter we have introduced a comprehensive method that allows one to characterize

many important model parameters for MEMS resonantors using transient ringdown measure-

ments. A very important advantage of this characterization method is that the electronics

that are responsible for the resonator drive do not a↵ect the ringdown process and, as a

result, do not contribute uncertainties to the characterization process.

In terms of deterministic model parameters, we have illustrated how to extract deter-

ministic sti↵ness and damping parameters for the symmetric vibrational mode of a MEMS

using a single ringdown measurement. These include values of linear and nonlinear (cubic)

friction coe�cients, obtained from the shape of the vibration amplitude envelope, as well

as the modal natural frequency and conservative Du�ng and quintic sti↵ness nonlinearities,

obtained using the zero-crossing times in the ringdown. A key to the method is that the

vibrational amplitude is a↵ected only by the dissipation parameters, while the frequency and

phase are a↵ected by the resonator conservative parameters, thereby uncoupling this part of

the characterization process. Furthermore, we have developed a novel technique for direct
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revelation of measurement, thermal, and frequency noise sources by performing a statistical

analysis on the zero-crossing points. We showed that these noise sources have qualitatively

di↵erent signatures on the resonator timing jitter and that by considering specific features

of the jitter, one is able to estimate the intensities of these noise sources.

The methods for determining both deterministic and noise parameters were successfully

tested on resonator data provided by collaborators at Stanford. The estimation of determin-

istic parameters was very successful. The estimation of noise intensities was very promising,

but corrupted by relatively strong measurement noise.

Future work in this area includes development of techniques for systems with asymmetric

nonlinearities, further testing of the technique on data with less measurement noise, and

extension of the method to account for more information about the noise sources.
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Chapter 4

Improving the sensitivity of MEMS

ring/disk resonating gyroscopes

In this chapter we examine the self-induced parametric amplification in MEMS ring and disk

resonating gyroscopes and describe how this nonlinear phenomenon a↵ects the performance

of these gyroscopes when employed as angular rate sensors. Studies of the linear and nonlin-

ear vibrations of systems with circular symmetry has a long history relevant to this problem,

and it includes papers on the transverse vibration of plates, shells, membranes, rods, and

tubes as well as the in-plane vibrations of plates and rings; see [100–103] and the research

cited therein for a sampling of these works. This class of systems has applications in a num-

ber of areas including vibrations of antennae, pipes, and, most relevant to the present work,

wine glass vibratory gyroscopes that use Coriolis e↵ects to measure spin rates [104,105].

In recent decades there has been a desire to develop smaller versions of these rate sensors,

spurred by technological advancements in fabrication techniques and by increasing demands

in commercial and military applications, and this has led to a number of important advances

in this technology [100,106,107]. Prominent among these are developments in MEMS vibra-

tory gyroscopes, which have shown great potential due to their small dimensions, favorable

power consumption, and high quality factors [108,109]. Generally, such devices are based on

a micro-mechanical resonator with at least two matched resonant modes that interact via
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Coriolis e↵ects [105], as follows: the resonator is forced to oscillate in one of its vibrational

modes, called the drive mode, and an external rotation at ⌦ gives rise to Coriolis coupling

between this mode and its symmetric partner, the sense mode, which is not driven by an

external input. The response of the sense mode thus has an amplitude proportional to ⌦

(at least when it is small compared to the vibration frequency), so that by calibrating and

measuring the amplitude of the readout signal from the sense mode, one can estimate ⌦.

Improving the precision and accuracy of MEMS vibratory gyroscopes involves several

challenging tasks including the precise matching of high-Q modal frequencies [38, 110, 111],

compensation of quadrature errors that arise from coupling of the drive and sense modes

[112–114], and optimizing the geometry of the resonator in order to achieve high Q fac-

tors [115, 116], to name a few. Also, all such devices are generally operated in the linear

operating regime, so as to avoid frequency shifts associated with nonlinearity. In this light,

flexural-mode ring [19, 112] and disk [117–119] vibratory gyroscopes o↵er significant advan-

tages due to the inherent symmetry in their geometries and, consequently, symmetry of

their drive and sense modes. Recent work on disk resonating gyroscopes (DRGs) has ex-

perimentally demonstrated that the gyroscope sensitivity to the external angular rate can

increase significantly when the gyroscope is driven into a nonlinear operating regime [27].

The authors hypothesized that the observed phenomenon is due to parametric amplifica-

tion [120–122] arising from nonlinear elastic coupling between the drive and sense modes of

the device, which have nearly equal frequencies. In classical nonlinear vibrations, this is an

example of autoparametric resonance [123–125].

The sensitivity S of a rate gyroscope, that is, the ratio of the amplitude of the sense

signal to the angular rate ⌦, is one the most important characteristics of sensor performance,

since it, and the noise levels of the device, quantify the resolution of the sensor in terms of
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the lower end of the angular velocities that can be detected [105]. Thus, there is strong

motivation to understand, from a fundamental point of view, the advantageous e↵ects of

the self-induced amplification of the sense signal observed in [27], especially since it appears

to be the fortuitous result of passive nonlinear behavior, requiring no additional sensing or

energy source. Understanding and taking full advantage of this and other nonlinear e↵ects

are the main goals of the investigation described in this chapter.

Nonlinear modal coupling is a well-known phenomenon in the theory of nonlinear vi-

brations and it has been thoroughly studied in a wide variety of systems [65], including

micromechanical systems [76, 126–128]. It generally occurs in resonators experiencing vi-

bration amplitudes at which nonlinear strain-displacement relationships, or other nonlinear

e↵ects, couple two or more vibrational modes. This coupling has its most dramatic e↵ects

when the coupled modes have commensurate frequencies and are lightly damped, which

promotes resonant interactions between the modes.

Specific research on the nonlinear vibrations of spinning ring-like geometries has il-

lustrated the rich dynamics associated with the in-plane flexural modes of these struc-

tures [129–132]. Here we analyze the dynamic behavior of the elliptical modes in ring/disk

resonating gyroscopes to explain and explore self-induced parametric amplification that has

been experimentally observed in these systems [27]. In particular, we use a model of the res-

onator consisting of a thin ring spinning about its axis of radial symmetry, considering both

mechanical e↵ects as well as electrostatic forces arising from capacitive actuation/sensing

schemes. Using finite deformation kinematics, we show that the elliptical drive and sense

modes are nonlinearly coupled through both sti↵ness (including electrostatic contributions)

and inertial terms. Next, we show that the general case of mode-coupled dynamics can be

simplified by neglecting the back-action of the sense mode motion on the drive mode (due
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to their di↵ering amplitudes), and provide conditions for which this approximation holds.

In this simplified picture, we discuss the e↵ects of inertial nonlinearities on the drive mode

dynamics and show how nonlinear modal interactions lead to parametric amplification of the

sense mode, and thus to an increase in the gyroscope sensitivity. Additionally, we examine

several methods one can utilize in order to manipulate gyroscope nonlinearities, including

the important intermodal coupling strength and the modal Du�ng constant, for improving

the rate sensor performance. Modal coupling strength determines the level of parametric

amplification one can expect for a given operating amplitude of the drive mode, while the

Du�ng nonlinearity is the key parameter determining the upper limit of the gyroscope dy-

namic range, specifically for the drive mode in this application. In this light, using our model

of a thin spinning ring, we illustrate how clever design of the gyroscope and electrostatic tun-

ing can be used for maximizing the strength of the nonlinear modal coupling, or minimizing

individual modal Du�ng nonlinearities, and optimizing their combined e↵ects.

The remainder of the chapter is organized as follows. In Section 4.1, we formulate a

model for resonator geometries that support a pair of degenerate (equal frequency) n = 2 (n

is the modal wave number) radial modes and provide main theoretical concepts used in the

subsequent analysis. In Section 4.2 we consider the nonlinear in-plane flexural vibrations

of a thin spinning ring in the presence of electrostatic actuation. Specifically, Section 4.2.1

contains a step-by-step derivation of governing equations of motion for the gyroscopic drive

and sense modes. A detailed analysis of the dynamic behavior of the drive and sense modes

is given in Sections 4.2.2 and 4.2.3, respectively. In Section 4.2.4 we illustrate the appli-

cability of our results to a model of the representative ring resonating gyroscope reported

in [19]. Finally, in Section 4.3 we consider shape optimization techniques and electrostatic

tuning methods that can be used to manipulate the modal coupling strength and the Du�ng
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nonlinearity and, as a result, opitmize its dynamic behavior. Concluding remarks for the

chapter are given in Section 4.4.

4.1 General dynamical model

In this section we present an analytical framework which can be used to derive equations

of motion for the in-plane vibration modes of interest for ring/disk resonating gyroscopes.

Such a formulation is advantageous since it can be applied to systems with relatively simple

geometries, such as a thin ring or a solid circular plate, as well as to MEMS gyroscopes

with less trivial geometries; see, for example, [133]. We start our analysis by introducing

a cylindrical coordinate system (r, ✓, z) and consider a gyroscope with generic geometry

that supports a pair of degenerate elliptical modes each of which has two nodal diameters,

which we denote with modal coordinates A and B and mode shapes described by ⌅
A

(r, ✓) =

⇠(r) cos 2✓ and ⌅
B

(r, ✓) = ⇠(r) sin 2✓, so that their nodal diameters are separated by ⇡/4

[27]. Without loss of generality, we designate these as the drive (A) and sense (B) modes,

respectively.

During gyroscope operation, the resonator configuration is described by displacements in

the radial, u = u(r, ✓, t), and circumferential, v = v(r, ✓, t), directions, which we assume to

be independent of the out-of-plane coordinate z. These displacements can be expressed in

terms of the modal coordinates A(t) and B(t) in a manner that depends on the gyroscope

geometry, as u = u(r, ✓, A(t), B(t)) and v = v(r, ✓, A(t), B(t)). Generally, both u and v can be

nonlinear in A(t) and B(t). Explicit expressions for u(r, ✓, A(t), B(t)) and v(r, ✓, A(t), B(t))

can be obtained with certain assumptions for relatively simple structures like a thin ring, see

Section 4.2, or a solid circular plate [101,134,135], while in the case of non-trivial geometries,
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computing similar expressions generally requires the use of finite element methods.

In this work we utilize Lagrange’s method to derive the equations that govern the drive

and sense modes of the gyroscope, using generalized coordinates q1,2 = A,B to express the

nonlinear equations of motion for the gyroscopic elliptical modes. The kinetic energy of the

system is computed using standard methods [95, 134] and is given by

T =
1

2

ZZZ

V

⇢[(u̇� v⌦)2 + (v̇ + (r + u)⌦)2]rdrd✓dz, (4.1)

where ⌦ is the external angular rate about the z�axis, ⇢ = ⇢(r, ✓) is the resonator material

mass density, which is assumed to be uniform in z, and V is the volume of the resonator body.

The potential energy of the gyroscope consists of elastic U
d

and electrostatic U
e

components.

The electrostatic part results from electrostatic interaction of the resonator body with the

drive/sense electrodes. Generally, the electrode gap size � is much smaller that the outer

radius of the resonator R
o

and the z thickness of the resonator, so that one can neglect the

curvature of the electrodes and apply a local parallel-plate approximation. We also assume

that � is uniform along the gyroscope circumference. In this case, the electrostatic potential

energy becomes

U
e

= �✏0
2

Z 2⇡

0
d✓b(R

o

, ✓)R
o

(V
DC

+ V
AC

(✓))2

�� u(R
o

, ✓)
, (4.2)

where b(R
o

, ✓) is the z thickness profile of the gyroscope body along its circumference, V
DC

and V
AC

represent magnitudes of the bias and periodic voltages used for the electrostatic

actuation and sensing and ✏0 = 8.85⇥ 10�12 F/m is the vacuum permittivity.

Mechanical deformations of the resonator body and the associated stresses contribute

to the elastic potential energy in the form of a deformation potential U
d

. For in-plane
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vibrations, U
d

can be expressed, [134],

U
d

=
1

2

ZZZ

V

(�
rr

✏
rr

+ �
✓✓

✏
✓✓

+ �
r✓

✏
r✓

)rdrd✓dz, (4.3)

where ✏
ij

= ✏
ij

(u, v) and �
ij

= �
ij

(u, v) are the strain and stress in the body. Hooke’s law

establishes the well-known relationships between these quantities,

�
rr

= E⇤(✏
rr

+ ⌫✏
✓✓

),

�
✓✓

= E⇤(✏
✓✓

+ ⌫✏
rr

),

�
r✓

= G✏
r✓

,

(4.4)

where E⇤ = E(1 � ⌫2)�1 and G are the e↵ective normal and shear moduli, respectively.

In order to analyze the nonlinear dynamic behavior of the gyroscopic radial modes, one

necessarily has to account for higher-order terms in the strain tensor ✏
ij

(u, v). Using finite

deformation theory (see Appendix C) one can show that the nonlinear strain-displacement

relationships, up to second order in u and v, are given by

✏
rr

=
@u

@r
+

1

2
r2
✓
@

@r

v

r

◆2

, (4.5a)

✏
✓✓

=
u

r
+

@v

r@✓
+

1

2

✓
@u

r@✓

◆2

+
u

r

@v

r@✓
, (4.5b)

✏
r✓

=
@v

@r
+

@u

r@✓
� v

r
� uv

r2
� u

r

@u

r@✓
� @u

r@✓

@v

r@✓
+

v

r

@u

@r
+

u

r

@v

@r
� @u

@r

@v

@r
. (4.5c)

Since the resonator displacements u and v are functions of the modal coordinates A and

B, the Lagrangian for the system becomes, after integration over the resonator volume,

L = L(A,B, Ȧ, Ḃ). By substituting this form of L into Lagrange’s equations, one can
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immediately obtain equations of motion for the gyroscopic elliptic modes of interest. In

Section 4.2 we apply this procedure to a simple model of a thin inextensible ring, which,

as we show, is su�cient to demonstrate the self-induced amplification phenomenon, and,

fortunately, is amenable to detailed analysis. As noted above, this analytical approach is

su�ciently general to be used for analyzing gyroscopes with di↵erent geometries, such as

rings with supporting spring elements [19], circular plates of non-uniform thickness in the

z�direction, and other complex geometries, so long as they have similar circular symmetry

[27,133].

4.2 Non-linear forced vibrations of a thin spinning ring

4.2.1 Gyroscope dynamics with fully-coupled modes

We apply the general formulation of Section 4.1 for analysis of the nonlinear in-plane vi-

brations of the elliptical modes of a uniform (⇢, b, h, and � are constants) circular ring

rotating at a constant speed ⌦ about the z�axis in the presence of electrostatic forces from

electrodes, as depicted in Fig. 4.1. Hereafter, we employ a thin ring approximation, i.e.,

h ⌧ R, where h and R are the ring radial thickness and its mid-line radius, respectively.

In this case we can apply results for the vibrations of shallow shells [134], and neglect the

stress in the radial direction, �
rr

= 0, as well as the shear stress, �
r✓

= 0. The application

of these assumptions in Eq. (4.4) yields �
✓✓

= E✏
✓✓

, which is the same expression as that for

the longitudinal stress/strain relationship for the transverse bending of an Euler-Bernoulli

beam. Following the bending theory for thin shells, we express the radial and circumferential
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Figure 4.1: Schematic representation of the system under study: a uniform circular ring
rotating at a constant angular rate ⌦ about the z�axis with segmented electrodes repre-
senting the means for electrostatic actuation and readout. Segmentation of electrodes is an
essential feature of the device, necessary for producing spatially-dependent driving forces
through V

AC

(✓, t), and for tuning the gyroscopic drive and sense modes via a non-uniform
distribution of the bias voltages V

DC

(✓) [27].

displacements of any point of the ring as

u(r, ✓, t) = u(✓, t),

v(r, ✓, t) = v0(✓, t) + �v1(✓, t),

(4.6)

where � = r�R is the radial coordinate relative to the ring mid-line, v0 is the circumferential

displacement of a point on the ring mid-line, and v1 is the slope of the tangential displacement

profile across h. Similar to v, we approximate the strain field in the ✓ direction as a linear

function of �, i.e., ✏
✓✓

= ✏
(0)
✓✓

+ �✏
(1)
✓✓

, where ✏
(0)
✓✓

represents the mid-line stretching of the
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ring, while ✏
(1)
✓✓

represents the strain due to ring bending. It is known that the ring mid-

line stretching has a negligible e↵ect on the ring dynamics, so long as the wavelength of

the vibration mode is large as compared with its thickness h [129, 134, 136]. Since we are

interested in the dynamic behavior of elliptical (n = 2) gyroscopic modes, this condition

is satisfied for a thin ring. Therefore, to simplify the analysis, we make the reasonable

assumption that the ring is inextensible along its mid-line, so that ✏
(0)
✓✓

= 0.

Applying these assumptions, we can write the elastic potential energy of the resonator

body as,

U
d

=
EI

2R3

Z 2⇡

0
d✓


u+

@2u

@✓2
� 1

2R

✓
@u

@✓

◆2�2
, (4.7)

where I = bh3/12 is the second moment of area of the ring cross-section [95].

Considering U
e

for this geometry, we assume that radial ring deflections are small com-

pared to the gap size, u ⌧ �, which is frequently the case for capacitively-driven MEMS

resonators. Using this assumption we obtain the approximate expression for the electrostatic

contribution to the system potential energy

U
e

⇡ �✏0bR
2�

4X

n=0

Z 2⇡

0
d✓(V

DC

+ V
AC

(✓, t))2
un(✓, t)

�n

, (4.8)

where we have expanded the denominator up to the fourth order in u/� in order to consis-

tently include nonlinear terms in U
e

and U
d

. Note that in practice the electrodes are only on

the outside of the ring, which results in a slight expansion of the ring in its radial direction.

However, in light of our assumption that the ring is inextensible, we neglect this correction

in our analysis.

In the case of the thin ring, the mode shapes for the elliptical modes become independent
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of r and are given by �
A

(✓) = cos 2✓ and �
B

(✓) = sin 2✓, Fig. 4.2. Using these mode shapes,

Figure 4.2: Degenerate elliptical modes of the uniform circular ring under study.

we can express the radial deflection of the ring body as

u(✓, t) = A(t) cos 2✓ +B(t) sin 2✓ + C(t), (4.9)

where the time-dependent function C(t) is included in order to ensure periodicity of v(✓, t)

in ✓ under the inextensibility condition [129, 131]. Note that the expression for C(t) is

obtained by solving ✏
(0)
✓✓

= 0, see Eq. (4.5b), and has the form C(t) ⇡ �(A2 + B2)/R. We

use this form for the radial displacement, and assume that the spatial distribution of the

oscillating actuation voltage across the electrodes is the same as that of the drive mode, that

is, V
AC

(✓, t) = V
AC

(t) cos 2✓, with |V
AC

(t)| ⌧ V
DC

. 1 We also assume that the electrode

gap is small compare to the size of the device, � ⌧ R. Under these assumptions, Lagrange’s

method is applied using the kinetic energy in Eq. (4.1) and the potential energy U = U
e

+U
d

,

resulting in nonlinear equations of motion governing the n = 2 elliptical modes of the ring.

After dividing through by the modal mass for the thin ring, m
A,B

= (5/4)⇡⇢bhR, these

1This assumption is convenient but not necessary, since a general distribution can be projected onto the
modes of interest.

95



equations take the form
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where
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◆
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5⇢h�4
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(4.11)

Here !0 is the natural frequency of the modes, � is the e↵ective modal Du�ng coe�cient, and

 is the strength of the intermodal dispersive coupling, all of which account for both elastic

and electrostatic sti↵nesses and are normalized by the modal mass. Note that coe�cients

 and � are equal for the thin ring, but we keep their designation distinct since they have

di↵erent e↵ects on the system response and may di↵er for other geometries. Terms F
A

and

F
B

represent the time-periodic excitation acting on the drive and sense modes, respectively,

and note that the drive mode has both direct and (nonlinear) parametric components, while

the sense mode is driven in a purely nonlinear parametric manner, since the excitation is

taken to be perfectly aligned with the (linear) drive mode. The nonlinear terms in the modal

forces F
A,B

result from the nonlinear treatment of the electrostatic potential energy. In order
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to complete the model, we have introduced phenomenological linear dissipation coe�cients

�
A

and �
B

for the modes. The analysis of Eqs. (4.10a) and (4.10b) in their full form is quite

challenging, due to the fact that the equations are nonlinear and coupled through multiple

terms, including elastic, inertial, and even the external driving terms; see Eq. (4.11).

In order to obtain further insight into the gyroscope dynamics and obtain a better un-

derstanding of the self-induced amplification phenomenon, we use the fact that the drive

mode is directly driven to an amplitude that is much larger than the amplitude that will

be experienced by the sense mode. In fact, the sense mode is driven by the vibrations of

the drive mode through the Coriolis term proportional to ⌦Ȧ (the first term on the right

hand side of Eq. (4.10b)), and also parametrically through coupling terms like BA2/R2.In

this case the relative phase between these two terms is ⇡/4, which indicates, following the

analysis in [120], that the sense mode response will be amplified by the drive mode vibrations

regardless of their amplitude. When the parametric drive is weak enough, meaning that A

is su�ciently small, the response of the sense mode due to the Coriolis e↵ect remains stable

and these parametric terms can amplify or attenuate the sense mode response, depending

on the relative phase between the direct and parametric drives [121,122,137]. Consequently,

if the gyroscope is exposed to angular rates that satisfy ⌦ n !0 (all rate gyros are so de-

signed), we can assume that the sense mode operates in its linear range well below the onset

of nonlinearity. Note that ⌦ n !0 also allows us to neglect terms proportional to ⌦2 in

Eqs. (4.10a) and (4.10b). In contrast, the gyroscopic drive mode can operate at amplitudes

where nonlinear e↵ects come into play. In fact, this must be the case in order to achieve the

desired amplification of the sense mode. Under these conditions, the back action of the sense

mode on the drive mode can be neglected, and we can analyze the dynamics of the drive

mode independently. After obtaining the (nonlinear) solution for the drive mode, we can
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analyze the response of the gyroscopic sense mode and study the self-induced amplification

and associated increase of the gyroscope sensitivity. In essence, we can employ a model with

one-way coupling for su�ciently low ⌦.

4.2.2 Dynamics of the Drive Mode

Here we study the dynamic behavior of the drive mode of the ring and analyze the e↵ects

of inertial nonlinearities and nonlinear forcing terms on its behavior. Using the assumptions

derived above, we neglect coupling to the sense mode in Eq. (4.10a) and assume relatively

slow external rotation, ⌦ n !0, to obtain the following nonlinear model for the drive mode

behavior

Ä

✓
1 + µ

A2

R2

◆
+ 2�

A

Ȧ+ A

✓
!2
A

+ µ
Ȧ2

R2
+ �

A2

R2

◆
= F cos(!t+ �

F

)

✓
1 + C

FA

A2

�2

◆
, (4.12)

where µ is the strength of the inertial nonlinearity and C
FA

represents the nonlinear cor-

rection to the modal forcing. Additionally, the drive frequency is near the modal natural

frequency, that is, ! = !
A

+ �! with �! ⌧ !
A

. Note that in Eq. (4.12) we keep all coe�-

cients in a generic form to keep the formulation general, but apply the results for the ring

geometry below.

In order to analyze Eq. (4.12), we note that the system is lightly damped (typical damping

ratios are in the range 10�5 � 10�4), resonantly driven, and has cubic sti↵ness and inertial

nonlinearities, so the problem is treated in the standard way. We start by representing

the modal displacement in the form A(t) = a(t)R cos(!t + �
A

(t)), where (a(t),�
A

(t)) are

the non-dimensional vibration amplitude and the phase of the drive mode response. By

employing the method of averaging [89], we assume that (a(t),�
A

(t)) change slowly over
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times ⇠ !�1
A

and let Ȧ(t) ⇡ �!a(t)R sin(!t + �
A

(t)). By using these expressions for A(t)

and Ȧ(t) in Eq. (4.12) and disregarding fast-oscillating terms, we obtain equations governing

(a,�
A

) on the slow time scale ⇠ ��1
A

. The steady-state responses found from these equations

can be solved to obtain the following expression that relates drive mode response amplitude

to the system and input parameters,

�!(a) ⇡

3a2

8!
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✓
� � 2
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2
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◆
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2
±

����
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2
. (4.13)

As expected, the nonlinear forcing term does not a↵ect the shape of the modal backbone

curve, represented by the first term in Eq. (4.13), but alters the shape of the frequency

response branches and renormalizes the e↵ective modal forcing amplitude. Simplification of

Eq. (4.13) can be made when the modal amplitude is small compared with the electrode gap

size, that is, when a ⌧ �/R, as is common in applications (to avoid pull-in [97,138]). In this

case, the nonlinear correction to the drive mode forcing can be safely neglected, C
FA

= 0,

an assumption we employ in the following development.

It is important to recognize that the amplitude-dependent shift of the free vibration fre-

quency of the modes has the following sources: the sti↵ness Du�ng nonlinearity � = �
d

+�
e

,

where �
d

and �
e

are the contributions from elastic and electrostatic sti↵ness e↵ects, respec-

tively (see Eq. (4.11)), and inertial nonlinearities which have an e↵ective Du�ng nonlinearity

�
i

= �2
3µ!

2
A

(see Eq. (4.13)). The inertial nonlinear e↵ects have the same origin (finite defor-

mation kinematics) as the nonlinearities in the elastic deformation potential, and we combine

these e↵ects into a single mechanical contribution to the modal Du�ng constant, denoted

�
m

= �
d

+ �
i

. For moderate vibration amplitudes, the steady-state amplitude response is
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that of an equivalent Du�ng system and can be expressed as

!(a) ⇡ !
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3a2
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A

◆2

� �2
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, (4.14)

examples of which are shown in Fig. 4.3.

Figure 4.3: Representative steady-state frequency response curves of the ring drive mode
described by Eq. (4.14) for di↵erent values of the forcing amplitude F . The blue, red, and
black curves correspond to forcing magnitudes F0, 2F0, 4F0. Responses are obtained under
the assumption that electrostatic forces dominate the Du�ng nonlinearity, i.e., |�

e

| � |�
m

|.
Solid and dashed curves represent stable and unstable response amplitudes.

Analysis shows that inertial nonlinearities must be taken into account when |�
e

| . |�
m

|,

which can be the case in resonators with large mechanical sti↵ness, like circular plates.

Interestingly, when the electrostatic potential provides only small corrections to both linear

and nonlinear sti↵ness constants, inertial nonlinearities have a dominant e↵ect on the modal

frequency response and cause substantial softening of the resonator frequency. Specifically,

for the thin ring �
d

= 2!2
A

and �
m

= �12
5 !

2
A

. Note that a similar situation occurs in
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cantilever type resonators where inertial nonlinearities essentially dominate the dynamic

behavior of the fundamental mode and cause the vibration frequency to soften as a function

of vibration amplitude [139,140]2. On the other hand, when |�
e

| � |�
m

|, electrostatic e↵ects

dominate the nonlinear dynamics of the system, so that the nonlinear terms arising from

mechanics, both inertial and elastic sti↵ness, can be neglected, in which case we use the

approximation �
m

⇡ 0, which we will use in Section 4.2.4.

4.2.3 Dynamics of the Sense Mode: Parametric Amplification

In this section we analyze the response of the gyroscopic sense mode B, using the drive

response as an e↵ective excitation. This excitation has components from Coriolis coupling

from the external angular rate ⌦, and from nonlinear dispersive coupling from elastic, iner-

tial, and electrostatic e↵ects. In what follows, we assume that the drive mode motion can

be represented as, A(t) = aR cos(!t+ �
A

), where a and �
A

are the drive mode steady-state

amplitude and phase, respectively. When ⌦ is small as compared with the gyroscope oper-

ation frequency, i.e., ⌦ n !, and the parametric pumping does not destabilize the sense

response, the dynamic behavior of the sense mode is governed by the following equation of

motion, obtained from Eq. (4.10b),

B̈ + Ḃ

✓
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AȦ
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◆
+B
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+ C
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R2
+ C1

Ȧ2

R2
+ C2

AÄ

R2

◆
= C⌦⌦Ȧ, (4.15)

where we have employed linearized dynamics forB (justified in Section 4.2.1). This model has

direct (Coriolis) excitation from Ȧ and parametric excitation from nonlinear combinations of

(A, Ȧ, Ä). The C
j

are constants that depend on the geometry of the gyroscope body. Since

2The cantilever is another system modeled using an inextensibility assumption.
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Eq. (4.15) contains both direct and parametric resonant driving terms, it is convenient to

represent the sense mode response in the form B = R(b exp[i!t] + c.c.) and apply method

of averaging in the manner in [120]. After averaging and some manipulations we obtain the

following expression for the steady-state amplitude of the sense mode

|b| = |C⌦|⌦a
!

2

q
4!2�2

B

+ (!2
n

� !2 + �)2

|4!2�2
B

+ (!2
n

� !2)2 � �2|
(4.16)

where

!2
n

= !2
B

+
1

2
a2(C

d

+ !2(C1 � C2)) (4.17)

is the e↵ective vibration frequency of the sense mode, which is modified by nonlinear coupling

to the drive mode at amplitude a, which stems from the DC components of the drive mode

nonlinear coupling terms terms. Similarly, the AC components of these terms produce the

coe�cient

� =
1

4
a2(C

d

+ !2(C� � C1 � C2)) (4.18)

which represents the strength of the parametric pumping arising from the drive mode. Note

that both !2
n

and � are determined by the system nonlinearities, the drive vibration ampli-

tude a, and the gyroscope operation frequency !.

The expression in Eq. (4.16) describes the amplitude of the sense mode and captures

the interaction of the e↵ects of the direct (Coriolis) drive and the parametric pumping

from nonlinear coupling, and it reveals some important features. First, when the drive mode

vibration amplitude is su�ciently small, such that one can neglect the e↵ect of the parametric
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pumping, that is, � can be neglected, the expression for the sense mode amplitude becomes

|b|
l

=
a!|C⌦|⌦

2
q
(!2

B

� !2)2 + 4!2�2
B

, (4.19)

which represents the case when both modes behave like linear resonators. In this light, it

is convenient to express the gyroscopic sense mode amplitude in the more general case as

follows

|b|
par

= G|b|
l

, G =

q
[4!2�2

B

+ (!2
n

� !2 + �)2][(!2
B

� !2)2 + 4!2�2
B

]

|4!2�2
B

+ (!2
n

� !2)2 � �2|
, (4.20)

where G is the amplification of the sense mode, i.e., the gain, that arises from the parametric

coupling to the drive mode. This gain from the coupling is illustrated in Fig. 4.4, which shows

the sense mode response amplitude for the case where the coupling is ignored (black dashed

lines) and for two levels of coupling (red and blue lines). Here the parametric amplification

is evident, as is the frequency shift (softening due to the presence of electrostatic coupling

forces) that arises from the coupling; see Eq. (4.15). A more complete representation of the

gain is considered below.

Another feature associated with Eq. (4.16) is that the system gain G or, equivalently,

the sense mode amplitude |b|
par

diverges when the denominator in Eq. (4.20) vanishes, i.e.,

�
4!2�2

B

+ (!2
n

� !2)2 � �2
�
! 0. By solving this equation, one obtains the parametric

instability condition expressed in terms of the drive parameters as (a⇤,!⇤), corresponding to

G ! 1. This (a⇤,!⇤) condition corresponds to the case where the parametric coupling terms

in Eq. (4.15) result in instability of the sense mode [65]. As this instability is approached,

the linearized version of the sense mode model, given by linearizing Eq. (4.15), is insu�cient
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Figure 4.4: E↵ect of self-induced parametric amplification on frequency responses of the
ring sense mode described by Eq. (4.16) for di↵erent values of the dispersive modal coupling
coe�cient C

d

, where we consider the case C
d

/!2
B

� C1, C2, C�, so that the parametric
pumping coe�cient � is essentially proportional to C

d

. Frequency responses are obtained
for aR/� = 0.2 and ⌦/!

B

= 2 ⇥ 10�4. The dashed curve is the non-amplified response
(C

d

= 0), while the red and blue curves correspond to the sense mode frequency responses
with C

d

/!2
B

= �0.5⇥ 104,�1.1⇥ 104 respectively; these numbers are chosen such that the
analytical results of Section 4.2.3 remain valid, that is, so that the stated approximations
hold. Signal amplification from the intermodal coupling is evident.

to describe the sense mode dynamics and the full coupled form of the equations of motion

Eqs. (4.10a) and (4.10b) must be used. In this work, however, we restrict our analysis to

the case where the response of the sense mode remains in its linear range and its vibration

amplitude remains proportional to ⌦. In fact, this is the range of practical interest.

4.2.4 Example

Generally speaking, one can adapt the approach developed here to a variety of gyroscope

configurations that exploit circular symmetry. Here we illustrate the applicability of the

results by using parameters derived for the polysilicon ring gyroscope reported in [19]. First,

we consider the idealized case of a free (no suspension) gyroscope ring. The gyroscope

parameters are as follows: the mid-line radius of the ring is R = 550 µm, the radial thickness
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is h = 4 µm, the electrode gap size is � = 1.4 µm, the estimated quality factor is Q = 1200,

and the bias voltage is taken to be V
DC

= 3 V (we intentionally take this value of V
DC

, as

compared to 7 V in [19], to avoid the electrostatic pull-in e↵ect). As a result, the gyroscope

dynamic parameters become !
B

/2⇡ = 12.5 kHz, �
B

/!
B

= 1/2400 and the electrostatic

potential strongly dominates the strength of the dispersive modal coupling, C
d

/!2
B

⇠ �105,

while the other constants defined in Eq. (4.10b) satisfy C�, C1, C2 ⌧ C
d

/!2
B

.

Figures 4.5a and 4.5b show the self-induced parametric gain G as a function of the

normalized drive frequency !/!
B

and the normalized vibration amplitude of the drive mode

aR/� (left panel) and the normalized strength of the sti↵ness coupling C
d

/!2
B

(right panel).

The solid red curve depicts the instability condition, (a⇤,!⇤) in both panels, where the value

of the gain approaches infinity, that is, it is the Arnold tongue for the sense mode [141,142].

The meshed region on both panels corresponds to the set of operating conditions where the

solution found in Eq. (4.16) is unstable. In order to describe the gyroscope dynamics in

these regions, one must analyze the full form of Eqs. (4.10a) and (4.10b), since in this region

nonlinear e↵ects that have been ignored will come into play.

As follows from considering the results of Fig. 4.5a, in order to achieve significant gain

G, the drive mode should be operated at frequencies slightly less than !
B

. This can be

easily satisfied since the electrostatic forces dominate the nonlinearities of the gyroscopic

drive mode and its frequency response exhibits softening behavior. Figure 4.5b, on the other

hand, illustrates the behavior of the gain G as a function of the operating frequency and the

strength of the intermodal dispersive coupling. Importantly, the magnitude of the intermodal

coupling can be controlled by adjusting the bias voltage V
DC

applied to the resonator body

or attendant electrodes, thus allowing one to tune the amount of self-induced parametric

amplification, which increases gyroscope sensitivity S in the vicinity of the instability region.
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(a) Dependence of the strength of the self-
induced parametric amplification G on the
scaled operation frequency !/!

B

and the vi-
bration amplitude of the drive mode aR/�.
The sti↵ness coupling strength is C

d

/!

2
B

=
�95⇥ 103.

(b) Dependence of the strength of the self-
induced parametric amplification on the scaled
operation frequency !/!

B

and the nonlin-
ear dispersive coupling strength C

d

/!

2
B

. The
drive mode vibration amplitude is chosen to be
aR/� = 0.1.

Figure 4.5: Increase of the sensitivity of the gyroscope ring (without suspension) due to
nonlinear modal coupling as a function of system and drive parameters. The solid red line
represents the a⇤�!⇤ curve where the gainG diverges according to the linear model described
by Eq. (4.15); this is the primary Arnold tongue for the sense mode [141]. The meshed region
is the set of operating conditions where the solution found in Eq. (4.16) is unstable.

Furthermore, the critical value of the drive mode amplitude, where G ! 1, decreases as

C
�1/2
d

. Physically, as expected, this implies that for stronger dispersive intermodal coupling,

smaller drive vibration amplitudes are required to achieve the same level of gain.

The results obtained for the case of the unsuspended gyroscope ring can be easily ex-

tended to account for supporting springs in the form of semicircles with the mid-line radius

R
s

= 235 µm and radial thickness h = 4 µm; see [19] for details. Numerical analysis shows

that for the polarization voltage V
DC

= 7 V (the voltage used by Ayazi et al. in their exper-
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iments), electrostatic forces still dominate the system nonlinearities, including the dispersive

modal coupling strength, C
d

/!2
B

⇠ �104. As a result, the dependence of the gyroscope

sensitivity on the system parameters is qualitatively the same as in the case of the free ring;

see Figs. 4.5a and 4.5b.

Our analysis of a gyroscope with a suspension shows that the inclusion of the semi-

circular suspending springs in the model change the resonator kinetic and potential energies,

where the latter is a↵ected through its elastic component only, since there is no interaction

of the springs with the electrodes. Due to the symmetry of the gyroscope elliptical modes,

the suspension springs are equivalent to four additional rings of radius R
s

, where one pair

belongs to the drive mode and the other to the sense mode. In this case, however, when

calculating the kinetic energy we also have to account for the motion of the spring mass, which

contributes to the e↵ective modal mass. Furthermore, analysis shows that the gyroscope

suspension has considerable e↵ect on the individual modal sti↵ness parameters, a↵ecting

both the linear natural frequency and the Du�ng nonlinearity. These contributions can

be calculated in a straightforward way following the method described in Section 4.2.1.

In particular, the mechanical contributions to the modal natural frequency and the Du�ng

modal nonlinearity increase by factors of 5 and 12, respectively. Additionally, the suspension

springs also a↵ect the dispersive modal coupling strength; in fact, the mechanical component

of  increases by nearly a factor of two. This contribution to the modal coupling strength

is the result of the nonlinear nature of the strain-displacement relationships in Eqs. (4.5a)

to (4.5c). Similar results for more complicated geometries, such as the DRG in [27], can

be obtained using finite element methods adapted for computing nonlinear coe�cients for

mechanics [43,143], although doing such calculations for nonlinear electrostatic e↵ects is still

being developed.
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4.3 Manipulating gyroscope nonlinearities: geometric

and electrostatic optimization methods

In this section we analyze three di↵erent methods for manipulating the magnitude of non-

linear dispersive coupling || and the modal Du�ng nonlinearity � in order to maximize the

sensitivity of the micromechanical gyroscope with respect to the external angular rate ⌦ and

increase the gyroscope dynamic range. Specifically, in the following subsections we consider

tailoring of the aforementioned gyroscope nonlinearities via a non-uniform distribution of

the bias voltage V
DC

among the gyroscope electrodes, an angle-dependent electrode gap size

� = �(✓), and an angle-dependent thickness of the gyroscope ring h = h(✓), respectively.

Note that in all these methods we consider only such modifications of the gyroscope bias

voltage, the electrode gap size, and the radial thickness of the resonator ring that have at

least 8-fold rotation symmetry relative to the z�axis of the gyroscope. Importantly, this

constraint on the gyroscope parameters maintains the inherent symmetry of the gyroscopic

vibrational modes, which allows one to avoid additional problems associated with matching

the modal natural frequencies.

Due to the dispersive nature of the intermodal coupling between the gyroscopic drive

and sense modes, the gyroscope sense mode response depends on both  and �, and this

dependence is generally complicated. Given our goals of maximizing the gyroscope angular

rate sensitivity and the gyroscope dynamic range at the same time, it is convenient to choose

the objective function for our optimization problem to be the strength of the parametric

pumping when the gyroscope drive mode is operating at the inflection point on its frequency

response (onset of nonlinearity). The objective function is formulated as follows: We note

that the drive mode critical amplitude a
cr

/ ��1/2 and the pumping strength is a2
cr

,
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suggesting an objective function of K = |/�|. We will assume that the modal natural

frequencies are still matched and that the damping constants depend weakly on the changes

employed for the gyroscope geometry and DC bias.

Before we proceed to specific optimization methods, it is useful to understand the e↵ect

of the chosen objective function K on the gyroscope performance. In order to do this, we

first rewrite Eq. (4.16) as follows

|b|
a=a

cr

= |C⌦|⌦0a
cr

!0

2

s
!

02
Q

2
B

+

✓
1� 2K

Q

B

p
3
� !02

◆2

����
!

02
Q

2
B

+

✓
1� 4K

3Q
B

p
3
� !02

◆2

� 4
27Q2

B

K2

����

, (4.21)

where !0 = !
cr

/!
B

= 1�
p
3

2Q
B

is the gyroscope operating frequency (which, of course, coin-

cides with the critical vibration frequency of the drive mode), ⌦0 = ⌦/!
B

is the scaled

external angular rate, and we have assumed, given our example in Section 4.2.4, that

|C
d

|/!2
B

� |C1|, |C2|, |C�|. From Eq. (4.21) it follows that the gyroscope performance

depends on both a
cr

and, consequently, � and K, where the latter e↵ect of our objective

functionK on the sense mode amplitude |b| can be conveniently expressed using the following

figure of merit,

F.O.M. =

s
!

02
Q

2
B

+

✓
1� 2K

Q

B

p
3
� !02

◆2

����
!

02
Q

2
B

+

✓
1� 4K

3Q
B

p
3
� !02

◆2

� 4
27Q2

B

K2

����

. (4.22)

Figure 4.6 illustrates the dependence of the figure of merit on the value of the objective

function. As follows from this figure, in order to increase the gyroscope sensitivity, it is

desirable to implement such modifications to the gyroscope geometry and electrostatic setup
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Figure 4.6: Dependence of the figure of merit in Eq. (4.22) on the value of the objective
function K. Quality factors of the gyroscope drive and sense modes are assumed to be
Q
A

= Q
B

= 1200 [19].

that will maximize K while keeping |�| low due to the dependence of the gyroscope sense

mode response on a
cr

. This forms the baseline for our subsequent development of the

optimization methods in following sections of this dissertation.

4.3.1 Nonlinear electrostatic tuning by a non-uniform bias voltage

We start with the relatively simple method of electrostatic tuning, which is frequently used

for modifying the vibration frequency of MEMS resonators by altering the bias voltage. In

the present case, however, we are interested in modifying the gyroscope nonlinear parameters

 and �. Without any alterations of the gyroscope electrostatic actuation/sensing setup, 

and �, are defined in Eq. (4.11),

 = � =
6R2

5⇢

✓
Eh2

R6
�
✏0V

2
DC

h�5

◆
,

from where it follows that a uniform increase/decrease of the bias voltage changes both

coe�cients simultaneously. Our goal, however, is to maximize || while minimizing |�|.
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In order to achieve this, below we consider the case of a non-uniform bias voltage, i.e.

V
DC

= V
DC

(✓).

Frequently, MEMS ring/disk resonating gyroscopes are designed to have 4N electrodes

(N � 2) along the circumference in order to be able to support sin 2✓ and cos 2✓ in-plane

elliptical vibrational modes. In this case, the nonlinear electrostatic tuning method results

in di↵erent values of the bias voltage applied to di↵erent electrodes, i.e. V
DC

= V
DC

(k),

where k is the electrode number. Keeping in mind the symmetry of the gyroscopic modes,

it becomes clear that the 8-electrode configuration can support only uniform distribution of

the bias voltage V
DC

, which, as we discussed above, is of limited interest. As a result, in

order to show the e↵ect of V
DC

(k) on the resonator nonlinearities, we further assume that

the gyroscope design has 8N electrodes (N � 2). In this case the electrostatic potential

energy becomes

U
e

⇡ �✏0bR
2

8NX

k=1

4X

n=0

Z
✓

k

+ 

✓

k

� 
d✓(V

DC

(k) + V
AC

(k, t))2
un(✓)

�n+1
, (4.23)

where ✓
k

is the angular position of the kth electrode center, 2 is the circumferential length

of each electrode (in radians), and both V
DC

and V
AC

are now functions of the electrode

number.

Since the gyroscope kinetic energy in Eq. (4.1) is independent of V
DC

, a non-uniform

bias voltage distribution only a↵ects  and � through their electrostatic contributions, 
e

and �
e

, determined by the coe�cients of the terms / A2B2 and / A4 in Eq. (4.23). In

order to illustrate the nonlinear electrostatic tuning method, we consider the specific case

when N = 2, as in [38], and assume the following distribution of the bias voltage V
DC

(k) =

V
DC

(1 + (�1)kr
DC

), k = 1, . . . , 16. Restricting ourselves to the case of the commonly used
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uniform electrode gap size, we obtain


(DC)
e


(0)
e

= 1� r
DC

12R2

⇡(3R2 � 12R�+ 8�2)
+ r2

DC

⇡ 1� 4

⇡
r
DC

+ r2
DC

, (4.24a)

�
(DC)
e

�
(0)
e

= 1 + r
DC

4R2

⇡(3R2 � 12R�+ 8�2)
+ r2

DC

⇡ 1 +
4

3⇡
r
DC

+ r2
DC

, (4.24b)

where 
(0)
e

= �
(0)
e

are the values of the coupling strength and Du�ng nonlinearity in the

absence of the nonlinear electrostatic tuning , i.e., when r
DC

= 0. The dependence of 
e

,

�
e

, and K
e

on the variation in the gyroscope bias voltage r
DC

presented in Eq. (4.24a) and

Eq. (4.24b) is shown in Fig. 4.7.

Figure 4.7: Behavior of the electrostatic components of the dispersive coupling strength
(black dashed curve), the Du�ng nonlinearity (black solid curve), and the objective function
(blue solid curve) as a function of the variation in the bias voltage r

DC

.

In ring/disk resonating gyroscopes, the electrostatic forces from the actuation/sensing

scheme frequently dominate the nonlinear dynamic behavior of the gyroscopic vibrational

modes, i.e.,  ⇡ 
e

and � ⇡ �
e

. In this case, Fig. 4.7 clearly shows that when r
DC

< 0, one

can achieve up to 3-fold increase in ||. At the same time, |�| decreases for r
DC

2 (�4/3⇡, 0),

but increases, although slower than ||, for r
DC

2 (�1,�4/3⇡). Assuming, for instance,
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that we would like to not decrease the gyroscope dynamic range, we then have to choose

r
DC

= �4/3⇡, which corresponds to ⇡ 72% increase of the modal coupling strength and, as

a result, the objective function K. Such an increase of || should result in approximately

2-fold increase of the figure of merit, see Fig. 4.6. Note that the nonlinear electrostatic tuning

method described here also shifts the natural frequencies of the gyroscopic vibrational modes.

However, since the gyroscope linear sti↵ness is dominated by the mechanical elastic e↵ects,

this correction to the modal frequencies is rather small, seen by considering, for example,

that the coe�cient of the term / A2 in Eq. (4.23), and following the same line of thought

that the electrostatic correction to the modal linear sti↵ness is / r2
DC

.

4.3.2 E↵ect of a non-uniform electrode gap size

Now we assume that V
DC

= const and consider the e↵ect of a non-uniform electrode gap size

on the magnitude of the dispersive modal coupling strength and modal Du�ng nonlinearity.

Unlike in the previous method, the electrode gap size can be varied in a continuous fashion

along the gyroscope circumference, i.e., � = �(✓) and the gyroscope electrostatic potential

energy determining the system sti↵ness parameters becomes

U
el

⇡ �✏0bR
2

V 2
DC

4X

n=0

Z 2⇡

0
d✓

un(✓)

�n+1(✓)
. (4.25)

As we mentioned before, the variation in the electrode gap size should possess at least 8-fold

rotation symmetry in ✓ in order to ensure that the gyroscopic modes remain degenerate

�(✓) =
1X

k=0

�
k

cos 8k✓, (4.26)

113



where �
k

are some constants. In this work, we consider the simplest case yielding a non-

trivial result: �(✓) = �0(1 + r� cos 8✓). From the physical standpoint, the variation r�

must satisfy |r�| < 1; in practice, however, this condition for |r�| becomes even stronger due

to additional constraints of the chosen fabrication process. Assuming that the gaps between

individual electrodes are small, we expand the denominator in Eq. (4.25) in Taylor series up

to the second order in r� and obtain the electrostatic corrections to the coe�cients of the

dispersive coupling and the Du�ng nonlinearity in the form


(�)
e


(0)
e

⇡ 1 +
5

2
r� +

15

2
r2�, (4.27a)

�
(�)
e

�
(0)
e

⇡ 1� 5

6
r� +

15

2
r2�. (4.27b)

The dependence of the electrostatic components to the gyroscope intermodal coupling

strength, the individual modal Du�ng nonlinearity and the objective function K on the

variation in the electrode gap size r� is shown in Fig. 4.8a. From this figure it immediately

follows that the case with r� > 0 becomes of significant importance for the gyroscopes whose

dynamic behavior in the nonlinear regime is dominated by electrostatic e↵ects. Indeed, when

r� > 0, the dispersive coupling strength |
e

| grows faster than the Du�ng nonlinearity |�
e

|.

Furthermore, �
(�)
e

/�
(0)
e

< 1 for r� 2 (0, 1/9). Assuming, as before, that we would like not

to supress the gyroscope dynamic range, we choose r� = 1/9 and achieve ⇡ 37% increase of

|
e

| by a simple alteration of the shape of the gyroscope electrodes at the design stage; see

Fig. 4.8b. As it follows from Fig. 4.6, this increase of the coupling strength and the objective

function should lead to ⇡ 32% increase of the gyroscope sense mode response when the drive

mode is driven on the onset of modal nonlinearity.
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(a) Dependence of the electrostatic components of the
dispersive coupling strength (black dashed curve), the
Du�ng nonlinearity (black solid curve), and the ob-
jective function (blue solid curve) as functions of the
variation in the electrode gap size r�.

(b) Schematic representation of the
ring resonating gyroscope with the non-
uniform electrode gap size with r� =
0.4. The solid circle represents the outer
boundary of the gyroscope body; the
dashed wavy loop represents the inner
boundary of the attendant electrodes.

Figure 4.8: Manipulating gyroscope nonlinearities via a non-uniform electrode gap size

4.3.3 Shape optimization of the gyroscope body

Lastly, we show how one can alter the mechanical contributions to the dispersive modal cou-

pling strength and the individual modal Du�ng nonlinearity in micromechanical ring/disk

resonating gyroscopes by modifying the shape of the gyroscope body while keeping the elec-

trode gap the same along the gyroscope circumference. Here we illustrate this technique by

manipulating the nonlinear sti↵ness parameters of a thin spinning ring, discussed in Sec-

tion 4.2, by modifying the ring radial thickness along the gyroscope circumference. Similar

to the electrode gap size in Section 4.3.2, we enforce the ring radial thickness to be periodic

in ✓ with the period being at most ⇡/4 in order to preserve the symmetry of the drive and
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sense modes. Mathematically we express h(✓) as

h(✓) =
1X

k=0

h
k

cos 8k✓, (4.28)

where h
k

are some constants. Inclusion of h(✓) in the dynamic model for the ring resonating

gyroscope modifies obtained earlier expressions for the gyroscope kinetic and mechanical

potential energies as follows

T (u, v, u̇, v̇) =
⇢bR

2

Z 2⇡

0
d✓[(u̇� v⌦)2 + (v̇ + (r + u)⌦)2]h(✓), (4.29a)

U
m

=
Eb

24R3

Z 2⇡

0
d✓


u+

@2u

@✓2
� 1

2R

✓
@u

@✓

◆2�2
h(✓)3. (4.29b)

As we mentioned in Section 4.2, modifications in the resonator geometry e↵ect the gy-

roscope intermodal coupling and Du�ng nonlinearity in two ways. First, as it follows from

Eq. (4.29a), the non-uniformity of the ring radial thickness a↵ects the e↵ective modal mass,

the coe�cient of the term / Ȧ2 in the gyroscope kinetic energy. Additionally, h(✓) changes

sti↵ness coe�cients of the terms / A2B2 and / A4 in the gyroscope potential energy due to

elastic deformations of the ring. By accounting for these two e↵ects, we express mechanical

contributions to  and � as


m

=
2E

⇢R6

R 2⇡
0 d✓(1 + sin2 4✓)h3(✓)

R 2⇡
0 d✓(1 + 3 cos2 2✓)h(✓)

, (4.30a)

�
m

=
2E

3⇢R6

R 2⇡
0 d✓(1 + 4 sin2 2✓ + 4 sin4 2✓)h3(✓)

R 2⇡
0 d✓(1 + 3 cos2 2✓)h(✓)

, (4.30b)

from where it immediately follows that if the ring radial thickness is constant, i.e., h(✓) = h0,

then 
m

= �
m

, as expected.
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To demonstrate the e↵ect of a non-uniform ring radial thickness, we consider a rather

simple case when h
k

= 0 for k � 2 in Eq. (4.28). In this case we have


(h)
m


(0)
m

= 1� 1

2
r
h

+
3

2
r2
h

� 1

8
r3
h

, (4.31a)

�
(h)
m

�
(0)
m

= 1 +
1

6
r
h

+
3

2
r2
h

+
1

24
r3
h

, (4.31b)

where r
h

= h1/h0. Figure 4.9a illustrates the dependence of 
m

and �
m

on r
h

. Here we
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(a) Dependence of mechanical components of the dis-
persive coupling strength (black dashed curve) and the
Du�ng nonlinearity (black solid curve) on the ring
thickness modifier r

h

. Since the gyroscope dynamics
is dominated by electrostatic forces, the objective func-
tion is essentially determined by 

e

and �

e

and, thus,
not shown here.

(b) Representative geometry of the ring
resonating gyroscope with non-uniform
radial thickness with r

h

> 0. Electrodes
are omitted for clarity.

Figure 4.9: Manipulating nonlinear parameters of a thin spinning ring by modifying the
radial ring thickness h(✓)

assume, as we did previously, that the gyroscope nonlinear dynamics is dominated by the

electrostatic restoring forces, i.e., |
e

| > 
m

and |�
e

| > �
m

. Since || = |
e

| � 
m

and

|�| = |�
e

|� �
m

, it is clear that in order to increase || and decrease |�|, we need to minimize


m

and maximize �
m

. From Fig. 4.9a it follows that both goals can be achieved if we
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modify the ring radial thickness with r
h

> 0, see Fig. 4.9b. Physically, the case when

r
h

> 0 corresponds to adding the mass to the areas of the ring that experience largest

deflections in the radial direction as it vibrates in the drive and sense modes while removing

the material in the other areas. In particular, 
(h)
m

< 
(0)
m

when r
h

2 (0, 6 � 4
p
2) with

its minimum reached at r⇤
h

= 4 � 2
p
11/3. In this case 

(h)
m

reduces by ⇡ 5% and �
(h)
m

increases by ⇡ 7%. While these results are obviously less impressive as compared to the ones

we obtained using nonlinear electrostatic tuning methods, see Sections 4.3.1 and 4.3.2, this

mechanical optimization method should not be overlooked when one attempts to optimize the

performance of micromechanical ring resonating gyroscopes with relatively simple geometries

of the resonator body [19].

4.4 Outlook

In this chapter we have analyzed the phenomenon of self-induced parametric amplification of

in-plane flexural vibrations of degenerate elliptical modes in ring/disk resonating gyroscopes.

The most important feature of this amplification is a gain in sensitivity that is achieved from

the naturally occurring dynamics of the system. This is a prime example of where nonlinear

behavior provides an opportunity for improved performance of a practical device. By utilizing

the model of a thin spinning ring in the presence of electrostatic actuation/sensing, we have

demonstrated that, in addition to the linear Coriolis coupling that is the basis for operation

as an angular rate sensor, the drive and sense modes are coupled nonlinearly through elastic,

inertial, and electrostatic e↵ects. We have further illustrated that this modal coupling results

in parametric pumping of the sense mode by the drive mode, which can lead to a significant

improvement in the gyroscope sensitivity with respect to the external angular rate, as was
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experimentally observed in [27]. We have also examined the e↵ects of the drive conditions

on the performance of the sensor, and illustrated these e↵ects for two representative micro-

mechanical ring resonating gyroscopes. In our analysis we have focused our attention on

the case when ⌦ ⌧ !0 (a valid assumption for high precision gyroscopes), which allowed us

to neglect the back-action e↵ect of the sense mode vibrations on the drive mode dynamics,

significantly simplifying the analysis. Our future e↵orts in this direction will be devoted

to developing a better understanding of the internal resonance that naturally occurs in

these systems, which have two vibrational modes with close natural frequencies. This leads

to very rich dynamics, including high sensitivity to certain e↵ects, such as linear modal

coupling (quadrature error), which need to be better understood in order to fully exploit the

nonlinear modal coupling.

Additionally, we have described three di↵erent methods one can use to manipulate non-

linear parameters of ring/disk resonating gyroscopes in a systematic way to improve the

gyroscope performance as a rate sensor. In this study our main goal was to maximize the

intermodal dispersive coupling strength between the drive and sense modes in order to en-

hance the self-induced parametric amplification and the gyroscope rate sensitivity, and to

simultaneously suppress the individual modal Du�ng nonlinearity of the drive mode in order

to maximize the gyroscope linear range. Two out of three methods involve modifications in

the gyroscope electrostatic setup, which are found to be highly e↵ective for manipulating

the response, and the third technique deals with geometry modifications of the gyroscope

mass, which is found to be less e↵ective. Specifically, we have shown that if the gyroscope

actuation/sensing scheme has at least 16 electrodes, it is possible to modify the intermodal

coupling strength and modal Du�ng constant by applying a non-uniform distribution of

the bias voltage. Additionally, we demonstrated that a non-uniform electrode gap size also
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a↵ects the magnitude of the gyroscope nonlinear coe�cients and can be used to tailor the

gyroscope nonlinear dynamic behavior. Finally, we illustrated the applicability of the shape

optimization method in manipulating nonlinear sti↵ness parameters of a thin spinning ring

by altering the ring radial thickness along the ring circumference.

These examples clearly illustrate the impact of optimization methods for improving the

performance of MEMS gyroscopes and provides additional motivation for their further ex-

ploration for other types of MEMS resonators. An obvious extension to further improve

the performance of the ring/disk resonating gyroscope is to combine the above approaches.

For example, assuming that the nonlinear behavior of the gyroscope is primarily determined

by electrostatic forces, i.e., |
e

| � |
m

| and |�
e

| � |�
m

|, one can apply modifications of

both the electrode gap size and the bias voltage along the gyroscope circumference. In this

case, following the results of Sections 4.3.1 and 4.3.2, one should be able to preserve the

gyroscope [19] dynamic range while achieving K ⇡ 2.36, where the latter results in nearly

12-fold increase of the gyroscope sensitivity, as seen from Fig. 4.6. Using obtained results as

a starting point, we plan to continue our work on optimization of the performance of ring and

disk resonating gyroscopes. Particular directions would include identifying the appropriate

metric (objective function) that would characterize the overall performance of the gyroscope

and analysis of the ways that would optimize the selected objective function. Additionally,

we plan to test our hypotheses and verify analytical findings with our collaborators.

The analytical results presented here can be used for predicting the nonlinear behavior

of existing gyroscopes and proposed gyroscope models, and, more importantly, for design-

ing ring/disk resonating gyroscopes with optimized performance and maximized sensitivity

using their inherent dynamics. However, to make full use of these ideas one must employ

computational tools that allow for optimization using many more design variables. Such
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methods can be applied to the restricted problems proposed here, combinations of them,

or to entirely new configurations, possibly suggested by shape and topology optimization

techniques.
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Chapter 5

Conclusions

In this dissertation we have considered three topics related to nonlinear and noise-induced

dynamics in micro-scale and, to a certain extent, in nano-scale electromechanical resonators.

In general, our perspective on nonlinearities and noise in MEMS is to accept them as integral

parts of virtually any MEMS resonator model, to find ways to understand their e↵ects, to

develop methods for characterizing them, and, where possible, to employ them for specific

applications. The specific goals were: (i) to extend our understanding of Poisson noise in

parametrically driven MEMS resonators; (ii) to develop comprehensive and robust methods

for quantitative characterization of nonlinearities and noise in MEMS; and (iii) to develop

models for the non-linear self-induced parametric amplification observed in MEMS ring and

disk resonating gyroscopes and use these models to propose new designs that improve their

performance as angular rate sensors.

In Chapter 2 we studied the probability distribution of a parametrically driven resonator

driven by modulated Poisson pulses in the presence of weak thermal noise. The pulses are

actually composed of short bursts of harmonic signal at one half of the driving frequency

with the duration of each pulse much longer than the resonator vibration period but much

smaller than the resonator typical relaxation time. In the rotating frame of reference these

bursts appear as essentially instantaneous pulses that cause jumps in the location of the

state in that frame. With the ability to tune the direction of these Poisson pulses, and to

choose the measurement quadrature in the rotating frame, we have shown that, for su�-
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ciently small pulse rates, the probability distribution exhibits a power-law singularity near

the resonator equilibrium in both the overdamped and underdamped regimes of the rotating

frame. Additionally, we have described the dependence of the corresponding exponent on

the Poisson mean pulse rate and the system decay rate in the rotating frame. We also found

additional peak(s) in the distribution away from the origin and specified their positions and

the conditions for their appearance. In particular, we demonstrated that the probability

distribution is strongly asymmetric in the overdamped regime, while in the underdamped

regime it has a self-similar structure. Weak thermal noise a↵ects the system by smoothen-

ing the singular peaks in the distribution and by making the distribution Gaussian in the

vicinity of these peaks. Our analytical results for the power-law exponents near the peaks

of the probability distribution, and for the positions of peaks in the rotating frame, are

in excellent agreement with experimental measurements from a micromechanical resonator

taken by collaborators at the Hong Kong University of Science and Technology. Importantly,

our results can be immediately extended to understand the dynamics of a MEMS/NEMS

resonator subject to a multiplicative noise of Poisson type, which is frequently the case in

mass sensing applications.

In Chapter 3 we introduced and developed a comprehensive method for characterizing

model parameters for MEMS resonators whose vibration are governed by a single mode.

The method relies entirely on measurements taken from a single ringdown signal of a lightly

damped system. This approach has the advantage that the resonator response is not a↵ected

by any drive transduction, which reduces modeling uncertainty; one must only account for

readout transduction to separate the underlying resonator dynamics. The model parameters

of interest include coe�cients of linear and nonlinear damping and sti↵ness terms, as well

as the most important types of noise sources. In particular, we have illustrated how one
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can estimate values for deterministic sti↵ness and damping parameters for the symmetric

vibrational mode of a MEMS resonator. A key to the method is that the vibrational am-

plitude is a↵ected only by the dissipation parameters, while the frequency and phase are

a↵ected by the resonator conservative parameters, thereby uncoupling the characterization

process. First, the linear and nonlinear friction coe�cients are obtained from the shape of

the vibration envelope, fitted to a model for the slowly varying amplitude obtained from the

method of averaging. Additionally, we have demonstrated how one can estimate the modal

natural frequency and conservative cubic and quintic (sti↵ness) nonlinearities using a mea-

sured sequence of zero-crossing times in the ringdown response, which are a↵ected by the

instantaneous frequency of vibration, which is directly linked to the sti↵ness model. Note

that this ringdown-based characterization method, unlike conventional frequency sweeping,

is unique since allows direct revealation of the nonlinear dissipation in the system of interest.

Furthermore, we have developed a novel technique for direct determination of the intensities

of measurement, thermal, and frequency noise sources in the resonator and its readout signal,

by performing a statistical analysis of the locations of zero-crossing points in the measured

ringdown response. We have shown that these noise sources have qualitatively di↵erent sig-

natures on the jitter of the resonator timing. Therefore, using these specific features of the

jitter we are to estimate the intensities of these three important noise sources. Possible future

directions include adaptation of the ringdown-based method for parameter characterization

of systems with asymmetric restoring forces, e.g. beam resonators with one electrode, and

coupled-mode systems. Additional e↵orts can be directed towards improving accuracy of

the noise characterization in the systems with strong measurement noise and gaining more

comprehensive understanding of the origin of di↵erent noise sources by studying high-order

statistics of the resonator phase in the ringdown response.
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In Chapter 4 we analyzed the phenomenon of self-induced parametric amplification of

in-plane flexural vibrations of degenerate elliptical modes in ring/disk resonating gyroscopes.

This study was motivated by experimental observations described in [27]. The most impor-

tant feature of this amplification is a gain in sensitivity that is achieved from the naturally

occurring dynamics of the system, which improves both device sensitivity and its signal-

to-noise ratio (SNR). This is a prime example of where nonlinear behavior provides an

opportunity for improved performance of a practical device. By utilizing the model of a thin

spinning ring in the presence of electrostatic actuation/sensing, we have demonstrated that,

in addition to the linear Coriolis coupling that is the basis for operation as an angular rate

sensor, the drive and sense modes are coupled nonlinearly through elastic, inertial, and elec-

trostatic e↵ects. We have further illustrated that this modal coupling results in parametric

pumping of the sense mode by the drive mode, which can lead to a significant improvement

in the gyroscope sensitivity with respect to the external angular rate, as was experimentally

observed in [27]. We have also examined the e↵ects of the drive conditions on the perfor-

mance of the sensor and illustrated these e↵ects for two representative micro-mechanical ring

resonating gyroscopes.

Additionally, we used our modeling results to develop methods one can use to manipu-

late the nonlinear sti↵ness parameters of these gyroscopes in a systematic way in order to

improve their performance as rate sensors. Our main goal was to maximize the intermodal

dispersive coupling strength between the drive and sense modes, in order to enhance the

self-induced parametric amplification and the gyroscope rate sensitivity, while at the same

time to reduce the individual modal Du�ng nonlinearity terms in order to maximize the

gyroscope linear range. This led to an objective function defined as the ratio of the disper-

sive modal coupling strength and the individual modal Du�ng nonlinearity. Physically, this
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objective function represents the amount of the parametric pumping that is induced by the

drive mode on the sense mode, when the former is operated at the onset of its nonlinear

regime. The optimization problem for these devices is easily formulated in terms of Fourier

series, since the device must maintain its circular symmetry. The methods developed involve

modifications in the gyroscope around its circumference. These include altering the electro-

static setup, both the gap distribution, which is typically uniform, and the use of di↵erent

voltages in segmented electrodes, as well as the geometry of the resonator body, which alters

its mechanical properties, both sti↵ness and inertial. Specifically, we have shown that if the

gyroscope actuation/sensing scheme has at least 16 electrodes, it becomes possible to modify

the intermodal coupling strength and the modal Du�ng constant by applying a non-uniform

distribution of the bias voltage. Additionally, we demonstrated that a non-uniform electrode

gap size also a↵ects the magnitude of the gyroscope nonlinear coe�cients and can be used

to tailor the gyroscope nonlinear dynamic behavior. Finally, we illustrated the applicability

of the shape optimization method in manipulating nonlinear sti↵ness parameters of a thin

spinning ring by altering the ring radial thickness along the ring circumference. Analysis

shows that using proper modifications to the gyroscope/electrode geometry as well as the

distribution of the bias voltage, one can significantly increase the value of the intermodal

dispersive coupling strength while preserving the gyroscope dynamic range. In this case,

the gyroscope rate sensitivity is expected to increase by more than an order of magnitude.

Future work in this area includes experimental demonstration of the approach, as well as the

use of more sophisticated optimization tools that allow for more general designs. The latter

will be essential for complex geometries, such as those in disk resonating gyros (DRGs).

The analytical results presented here can be used for predicting the nonlinear behavior of

existing gyroscopes and proposed gyroscope models, and, more importantly, for designing
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ring/disk resonating gyroscopes with optimized performance and maximized sensitivity us-

ing their inherent dynamics. Possible future directions include adapting the tuning methods

presented here for application in real ring/disk resonating gyroscopes in attempt to improve

their dynamic range and angular rate sensitivity.

In summary, the topics of this dissertation demonstrate the following point for MEMS

resonators: (i) the utility of systematic modeling, (ii) the importance of nonlinear behavior,

(iii) the importance of accounting for noise, and (iv) the utility of the previous items in

characterization and design.
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Appendix A

Poisson noise in the resonator

eigenfrequency

The analysis of the resonator quadrature probability distribution presented in Section 2.3

can be extended to account for the case when the resonator eigenfrequency fluctuations

have Poisson statistics. This is of particular interest, for example, in systems where attach-

ment/detachment of molecules to a resonator causes fluctuations of the resonator e↵ective

mass and, as a result, of the resonator eigenfrequency [51]. In this case the governing equation

of motion for the resonator, Eq. (2.2), can be written as

✓̈ + 2�✓̇ + (!20 + ⇠
!

(t) + h cos!t)✓ + �✓3 = 0, (A1)

where ⇠(t) is the regular Poisson noise of the form ⇠
!

(t) = g
P

j

�(t � t
j

) and we disregard

thermal noise for simplicity. Of course, its e↵ect can be accounted for in a similar way to

that in Section 2.3.3. From Eq. (A1), it follows that the resonator dynamics in the rotating

frame can now be described, similarly to Eq. (2.7), as

q̇ = K(q) + lq⇠!(⌧), (A2)
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where lq = (Y,�X)T is the pulse direction in the rotating frame as determined by the

current state of the system and ⇠
!

(⌧) is the Poisson noise with the mean pulse rate ⌫0 = ⌫/�

and pulse area g0 = g/!0.

To study the quadrature probability distribution with weak multiplicative noise of Pois-

son type, one needs to linearize Eq. (A2) about its deterministic stationary solution q0. In

this case lq = (Y0,�X0)
T and in order to observe the e↵ect of ⇠

!

, one has to pump the

system above its threshold to ensure that q0 6= 0. The rest of the analysis is then similar

to that presented in Section 2.3. The important feature of the resonator with multiplicative

Poisson noise, as compared with the system described in detail in Chapter 2, is that the

direction of the Poisson pulses in the rotating frame lq is now predetermined by the loca-

tion of the resonator operating point q0, which is generally more di�cult to control in the

experiment. Nevertheless, one still has freedom to choose di↵erent directions for the mea-

surement quadrature q
m

and to analyze the resonator quadrature probability distribution in

both overdamped and underdamped regimes.
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Appendix B

Mechanical and electrostatic e↵ects in

clamped-clamped beam resonators

In this section we formally derive mechanical and electrostatic contributions to the restoring

force of MEMS resonators with “clamped-clamped beam” topology. By including both

mechanical and electrostatic forces, discussed in Section 3.3.3 and acting on the resonator

per unit length, we can obtain the following model for the unforced flexural vibrations of the

DA-DETF resonator under study [45],

⇢Sÿ + c(y, ẏ)ẏ = �EIy(4) + F
s

(x, t) + F
e

(x, t), (B.1)

where y = y(x, t) is the resonator physical displacement (x is the coordinate along the

resonator length), ⇢, E, and I are the resonator mass density, Young’s modulus and the

cross-sectional moment of inertia and c(y, ẏ)ẏ is the phenomenological resonator damping

force, which can be linear or nonlinear [35]. The first term on the right-hand side of Eq. (B.1)

represents the e↵ect of beam bending, the term

F
s

(x, t) =
ES

L
y00

Z
L

0
dx

�q
1 + (y0)2 � 1

�
(B.2)
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accounts for the resonator mid-line stretching e↵ect, and F
e

(x, t) is the electrostatic force

due to the finite bias voltage between the resonator body and attendant electrodes. Since

the electrode gap size d ⌧ L, where L is the resonator length, we can safely apply a local

parallel plate assumption and write the electrostatic force acting on a symmetrically biased

clamped-clamped beam micromechanical resonator as

F
e

(x, t) = 
⇥
(d� y)�2 � (d+ y)�2⇤ = 4dy(d2 � y2)�2, (B.3)

where  = ✏0wV
2
b

/2 is the strength of the electrostatic force, which depends on the resonator

thickness w in the direction perpendicular to the resonator vibrations and the bias voltage

V
b

. Note that ✏0 = 8.85⇥ 10�12 F/m is the vacuum permittivity.

In order to examine the mechanical and electrostatic e↵ects on the dynamics of a par-

ticular vibrational mode, one has to perform the Galerkin projection of Eq. (B.1) onto the

mode of interest. This is commonly done by separating temporal t and spatial x variables as

y(X, t) = q(t)✓(X) with X = x/L, where q(t) is the time-dependent modal coordinate and

�(X) is the mode shape. Finding an exact expression for ✓(X) is generally a challenging

problem, and it can be solved in the closed form only for certain systems in their linear range.

In practice, however, modal nonlinearities as well as deviations of the device boundary con-

ditions from an ideal clamped-clamped model result in the distortion of linear mode shapes.

In this case we employ very practical method of assumed modes, and since here we focus on

the primary flexural mode of the DA-DETF resonator, we choose ✓(X) = sin2 ⇡X, which

closely resembles the actual deformation profile of a clamped-clamped beam. Projecting
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Eq. (B.1) on ✓(X) yields

q̈+2�(q, q̇)q̇+!20mq+C
m


2

⇡
E

✓
�⇡2q2

L

◆
�1

�
q+C

e


1

(1 + q
d

)3/2
� 1

(1� q
d

)3/2

�
= 0, (B.4)

where !0m = 4⇡2
p

EI/3⇢SL4 is the linear mechanical modal frequency due to bending

e↵ects, C
m

= 4⇡2E/3⇢L2 is the strength of the mechanical potential due to the mid-line

stretching, C
e

= 2✏0wV
2
b

/3⇢Sd2 represents the strength of electrostatic contribution to the

system restoring force and q
↵

= q/↵ is the modal coordinate scaled with the appropriate

length scale, d or L. For the sake of generality, we keep the modal decay rate �(q, q̇) in its

general form, since dissipation does not a↵ect the modal vibration frequency in the resonator

ringdown response [35].

The e↵ect of the electrostatic actuation/sensing scheme represented in Eq. (B.4) by the

term / C
e

contributes to both linear and nonlinear components of the resonator restor-

ing force. In the lowest order, / q, the electrostatic forces a↵ect the resonator vibration

frequency as !0 =
q
!20m � 3C

e

/d, the well-known phenomenon frequently used for tun-

ing modal frequencies in MEMS resonant devices, e.g. for matching modal frequencies in

MEMS vibratory gyroscopes. When the modal vibration amplitude exceeds the resonator

linear range, its vibration frequency becomes amplitude-dependent due to the e↵ect of the

resonator mid-line stretching and anharmonic terms in the electrostatic potential. After the

linear range, the resonator enters its Du�ng range, where the system dynamic behavior is

determined by quadratic and cubic terms in the resonator restoring force. In symmetrically

biased resonators, however, the resonator restoring force does not contain quadratic terms,

as well as higher-order nonlinear terms with even powers of q, which can be easily verified by

expanding nonlinear terms in Eq. (B.4). As the resonator amplitude increases in the Du�ng
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range, the resonator frequency either increases, see Fig. 3.3, if the mechanical e↵ect of the

mid-line stretching dominates over electrostatic nonlinearities or decreases in the opposite

scenario. From Fig. 3.3 it is clear, however, that the resonator frequency is a non-monotonic

function of the modal amplitude, which cannot be explained by relatively simple Du�ng

model. In this case, higher-order quintic terms (we disregard quartic terms due to the sym-

metry reasons) in the modal restoring force must be taken into account in order to capture

and explain the experimental observation.

Mechanical and electrostatic contributions to the resonator amplitude-frequency relation-

ship can be demonstrated if we write the resonator modal displacement as in ??. In the light

of our previous discussion, we focus our attention on the dynamics of the slowly varying

resonator phase �(t); by applying the method of averaging [144] to Eq. (B.4), we obtain,

�̇ = �!
m

(a) +�!
e

(a), (B.5a)

�!
m

(a
L

) =
C
m

2!0a
L


8

3⇡4a
L

✓
E2(Q)(4⇡2a2

L

� 2)�K2(Q)(1� ⇡2a2
L

+
q
1 + ⇡2a2

L

)

+2E(Q)K(Q)(1� 2⇡2a2
L

+
q

1 + ⇡2a2
L

)� a
L

�
,

(B.5b)

�!
e

(a
d

) = � 2C
e

⇡!0d

1

a2
d

(1� a2
d

)3/2

⇥

E

✓
2a

d

a
d

� 1

◆q
1� a2

d

(
p

1� a
d

+
p
1 + a

d

)�K

✓
2a

d

a
d

� 1

◆p
1 + a

d

(1� a2
d

)

�
,

(B.5c)

where �!
m

(a) and �!
e

(a) are the mechanical and electrostatic amplitude-dependent shifts

of the modal vibration frequency due the resonator mid-line stretching and electrostatic

interaction of the resonator with the attendant electrodes of the actuation/sensing scheme,

respectively. In above expressions, a
L

= a/L, a
d

= a/d, Q = 1
2 � 1

2

q
1 + ⇡2a2

L

, and K(. . . )

and E(. . . ) are complete elliptic integrals of the first and second kind, respectively. As it
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follows from Eqs. (B.5b) and (B.5c), mechanical and electrostatic corrections to the resonator

frequency, written in their closed from, have quite complicated form and, as a result, we use

their Taylor expansions in Section 3.3.3 in order to apply the ringdown-based method for

independent characterization of mechanical and electrostatic contributions to the resonator

sti↵ness parameters. Nevertheless, Eqs. (B.5b) and (B.5c) are useful when one would like to

study the resonator dynamic behavior within a large range of vibrational amplitudes.

135



Appendix C

Derivation of nonlinear

strain-displacement relationships in a

free ring

Here we derive the nonlinear strain-displacement relationships for ✏
ij

(u, v) presented in

Eqs. (4.5a) to (4.5c). In order to do so, we consider an infinitesimal segment of the gyroscope

body, designated by KLMN in with coordinates r and ✓ and having radial thickness dr and

angular length rd✓; see Fig. C.1. This segment can be conveniently defined in terms of the

coordinates of its corner points as

K = (r, ✓), L = (r + dr, ✓), M = (r + dr, ✓ + d✓), N = (r, ✓ + d✓). (C.1)

During operation the body experiences elastic deformations and the segment deforms into
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Figure C.1: Deformation of the gyroscope segment KLMN into K1L1M1N1.

K1L1M1N1, which we, in turn, express as

K1 =

✓
r + u(r, ✓), ✓ +

v(r, ✓)

r

◆
,

L1 =

✓
r + dr + u(r + dr, ✓), ✓ +

v(r + dr, ✓)

r + dr

◆
,

M1 =

✓
r + dr + u(r + dr, ✓ + d✓), ✓ + d✓ +

v(r + dr, ✓ + d✓)

r + dr

◆
,

N1 =

✓
r + u(r, ✓ + d✓), ✓ + d✓ +

v(r, ✓ + d✓)

r

◆
.

(C.2)

From Fig. C.1 it is clear that the strain-displacement relationships ✏
ij

(u, v) are given by

✏
rr

=
K1L1 �KL

KL
, ✏

✓✓

=
K1N1 �KN

KN
, ✏

r✓

= ↵ + �. (C.3)

Given the coordinate representations of the segment corner points in Eqs. (C.1) and (C.2),
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we have

KL = dr, K1L1 ⇡ dr

s✓
1 +

@u

@r

◆2

+

✓
1 +

u

r

◆2✓@v
@r

◆2

, (C.4a)

KN ⇡ rd✓, K1N1 ⇡ rd✓

s✓
1 +

u

r

◆2✓
1 +

@v

r@✓

◆2

+
1

r2

✓
@u

@✓

◆2

, (C.4b)

↵ ⇡ r + u

1 + @u/@r

@

@r

✓
v

r

◆
, � ⇡

@u/@✓

(r + u)(1 + @v/r@✓)
. (C.4c)

Finally, by using Eqs. (C.4a) to (C.4c) in Eq. (C.3) and expanding the resulting expressions

up to the second order in u and v, we obtain the nonlinear strain-displacement relationships

given in Eqs. (4.5a) to (4.5c).
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