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ABSTRACT

HOMOGENEOUS UNIVERSAL

GROUPS

BY

Kenneth Keller Hickin

This thesis contains a recasting and generalization-

with-application of Jonsson's Theorem on homogeneous uni-

versal structures, distinct from the notions of saturated

and special structures.

Let n be an infinite regular cardinal and let m

be a class of algebras or relational systems of type (It.

m<

of power (:c.

n denotes the class of m algebras generated by subsets

We note that homogeneous universal structures of power

n can be characterized by an "injectivity" property which

we generalize to g:injectivity of complete chains of 7m

algebras of arbitrary order types. In the case of a chain

1 < A.< B with two jumps, the definition is as follows:

{1,A,B} < 7n is g-iniective for 721 iff, for all B,X,Y 6 W5“

such that X'< Y, B < Y and erE e‘m<” and for all embed-

dings f: B 4 B such that f(B)r1A = f(8rWX), f extends

to an embedding f:Y 4 B such that f(Y)r1A = f(x). This

definition generalizes easily to arbitrary complete chains.
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To construct n-injective chains, an assumption called

 

 

 

B C

the subamalgam property (s.p.l is used. 0’: ‘\\// is

. A

an m: amalgam iff A,B,C 6 m, d’= BLJC, and BfWC = A.

B0 C0

ab = \\// is a subamalgam of 0' iff ab g.a' and

A

O

BonA = ConA = A0. W has the s.p. iff for every 7R amal-

gam a there exists M = algM(a) e 711 such that, for all

7” subamalgams do of a, we have algM(aO) fid= do and

algM(ab) €‘m. To construct well-ordered n-injective chains

for any ordinal <’(+ and to construct w-injective chains

of any countable jump-type, we require that m<n have the

s.p. plus the usual set-theoretic assumptions of Jonsson's

Theorem. For arbitrary jump-types of power Sjt, we also

need the descendance condition: the algebra M above can

be chosen so that, for every chain {ab|o E I} of ‘m sub-

amalgams of a, we have nfalg (a )qe I} = alg (n B , n C).

M a, Maeiaaex“

m algebras of power n possessing such chains are unique

up to isomogphism of chains.

Classes of groups closed under free amalgamations enjoy

these properties, such as the class of all groups, of torsion

free groups, etc., and classes obtained from certain e.c.

groups: furthermore, the class of finite groups has the s.p.

A natural generalization of Jonsson's Theorem is obtained

by considering n-injective chains with homogeneous universal

jump-types.
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An application is given to the spectrum problem. In

particular, it is shown that there are 2&1 non-isomorphic

universal locally finite groups of power 31. Of course,

this result is known [A. Macintyre and S. Shelah: J. of

Algebra 43 (1976), 168-175], but our method of obtaining it

from incompatible order types of w-injective chains is new

and quite natural. The main result needed for this applica-

tion is the Maximality Theorem for jfl; if g is a n-

injective chain for ‘m and H is a subgroup of Ly such

that J < H for some 1 # J E y, then H 6 3.

There is great freedom to construct u-injective chains

with special properties not explored in this thesis and

which will yield further applications.
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PREFACE OF NOTATIONS AND CONVENTIONS

§O.l Set Theory

Inclusion of sets is denoted by .g and proper inclu-

sion by < .

Qplpg 'gggdinals and Ordinals. A cardinal number n is

the smallest ordinal number of cardinality n. An ordinal

equals the set of its predecessors.

x, A, 0 always denote infinite cardinals.

a, B, Y always denote ordinals in statements such as

'a < n'.

th
The a cardinal is The smallest infinite car-w 0

a

dinal will always be written w instead of mo.

The cardinality (power, order) of a set S is |S|.

I O + I

The cardinal successog of n is n ; the ordinal suc-

cessor of a is d-+l.

The Generalized Continuum.§ypothesis (G.C.H.) asserts

that for all u, n+ = 2”, the cardinal of the power set of

n.

n is regular if n is not the union of fewer than n

sets, each of power (it. Thus, w is regular, and n+ is

regular for all u.



An ordinal Y is even if y = a-+2n where a is a

limit ordinal or 0 and O g,n < w. All other ordinals

are odd.

0.1.1 Functions. The identity function on a set S is ls.
 

The notation 'f e g on 8' means that, for all s E S,

f(s) = 9(3). we write f a l on 8 instead of f 2 1S on

S.

‘Qplpg Chains. A.ghgig.is a set of sets which are totally

ordered by set inclusion. If the members of a chain c. are

indexed 21 ordinals, as in the statement c.= {Cale < n}, it

is always assumed that, for all a < n, Ca S-ca+1' c. is

continuous if, for all limit ordinals Y < n, C = UC .

Y a<v°

A chain c. is complete if c. contains the union and

the intersection of each of its subsets. A jgmp of the com-

plete chain c. is a pair (A,B), with A,B e c. and A < B,

such that for all C E a, if A g’C g B, then C = A or

C = B. The 9593; Eypg g; a complete chain c, denoted °cg

is the order type of the set of jumps of c. where the jumps

have the order induced by set inclusion. Thus the order type

ofacontinuous chain 6 = {Gala g y} is Y.

0.1.3 Trees. A tree is a partially ordered set (T,<) such

that (1) Every chain in T is well ordered and (2) For all

a,b,c e T, if a < c and b < c, then either a g_b or

vi



b g.a. Each u e T is called a vertex. The level of a

vertex u e T is the ordinal type of the set T(u) =

{a E T|a < u} ordered by <.

legg_ gagginal Arithmetic. Where an appeal is made to

"simple cardinal arithmetic" only the following facts are

generally needed where n and o are infinite cardinals.

(1) n-+o = no = max(x,o): (g) the set of finite subsets

of n has power n: and (3) the definition of regular

cardinals (see 0.1.0).

§0.2 General Algebra.

Our reference for general algebra is [1: Chapt. 4],

but some of our terms are different, so we will define them

here.

‘Qgggg ‘Qeneral Definitions and Conventions. An algebra M

is a set together with a sequence of n-ary functions and re-

lations, for various n < w, and constant symbols which are

considered elements of M. The 5222 T of {M is a sequence

specifying the arity of each function and relation on M and

naming the constants of M.

A.g;3§§'g£ algebras m is a (set-theoretic) class of

algebras of'jixgg‘gypg T which is isomorphism-closed, that

is, if M.e‘m and N'z M, then N’e m. Isomorphism of alge—

bras is always denoted by e .

vii



We make the general assumption that all algebras have-

gountable Eypg, that is, there are at most w operations,

relations, and constants.

A subset A's B is a subalgebra of B if A contains

all the constants and is closed under all the operations of

B. If A and B are algebras, then AgB means (1) A

is a subset of B,'(g) A and B have the same type, and

(g) the operations and relations of A are identical to

those induced on A in B. More loosely, A's B means A

is a subalgebra of B.

An algebra without operations is called a relational

system. Every subset of a relational system containing the

constants is a subalgebra.

Qgggl_ Special NOtations. Let m be a class of algebras

and let A,B,C,M.€ m.

ISO(A,B) is the set of isomorphisms 2;, A ‘2952, B.

Members of’ m are called m algebras.

If S is a subset of M, then <S> = algM(S) is the

smallest subalgebra of M containing S, that is, the sub-

algebra of M generated by S.

me

ated 21.3 subset 2; power ()1. Thus m<w is the class of

is the class of all m algebras which are gener-

finitely generated (f.g.) m algebras. ms” is defined

similarly. 7k” is the class of all 771 algebras of power a.

viii



Since all our algebras have countable type, simple

cardinal arithmetic shows that a subset of power 31¢ gen-

erates a subalgebra of power .gyc, and hence m§fi is the

class of all m algebras of power ‘g:(.

A function f: A 4 B is an embedding g; A .iggg B

if f(A) is a subalgebra of B and f E ISO(A,f(A)). A

is embeddable in B if such an f exists.

AutM = the group of automorphisms of M.

An m amalgam, a, is the union of two m algebras,

d = BLJC, where B and C intersect in a common m sub-

B C

algebra, Br1C = A.E m, and we write a = \\v/

A

.Qgggg Trivial Algebras. Let m be a class of algebras of

type T and let Q be the set of constants, possibly empty,

for algebras of type T. So, Q is a subset of every m

algebra. we say that m :h3§.§ trivial algebra if, for

all M,N 6 m there exists w 6 ISO(algM(Q),algN(Q)) and

algM(Q) = (Q) 6 7R. <Q> is called the trivial algebra

of"m. If Q = o, then m has a trivial algebra ¢. Note

that every isomorphism of m algebras extends IQ.

90.3 Group Theory.

Let G be a group.

If x E G, then the order of x is |x|.

ix



A‘g G will mean that A is a subgroup of C unless

the context demands a different interpretation. If S is

a subset of G, then ng(S) = <S'/ is the subgroup of G

generated by S.

InnG is the group of inner automorphisms of G.

3 denotes the internal direct sum of groups.

1 denotes both the trivial element and the trivial

group.

The notation G = (X;R) means that G has the presen-

tation with generators x and relations R = 1. If G has

generators Y and X0 and relations W and Ra for each

a E I, we write G = (Y,Xa,a 6 I:W,Ra,a E I). If H is a

group and H is naturally embedded in G = (H,X:(all) rela-

tions of H, R), where x is a set of formal letters and

R involves HLJX, then we always assume H‘s G.

If GrWH = 1, then G*H = (G,H;relations of G, rela-

tions of H) is the free product of G and H.

A group is locally figigg (égfg) if all of its finitely

generated subgroups are finite.

z will denote the infinite cyclic group.

1’ denotes the class of all groups.



CHAPTER I

INTRODUCTION

§1.l Definitions of Homogeneous and Universal Algebras

and Motivation for this Group-Theoretic Study.

Homogeneous universal groups are a special case of

structurally unique objects which exist in many classes of

algebras and relational systems, the most familiar being

the dense linear ordering of the rational numbers.

1.1.0 Definitions of Homogeneous and Universal Algebras.

Let ‘m be a class of algebras or relational systems and let

a Z,w be a cardinal. Let M e‘m.

1.1.1 M is x-universal fbr m if every m<x algebra is

embeddable in M.

1.1.2 M is u-homogeneous for in if, for all m<n algebras

A,B g M and for all f e ISO(A,B), f extends to an auto-

morphism of M.

1.1.3 HUK(m) is the class, possibly empty, of all m
 

algebras which are both n-universal and n-homogeneous for ‘m.

1.1.4 If X 2_n is a cardinal, then HU:(m) = HUfi(m)rme.



We now formalize our bias toward groups.

1.1.5 If J’ is the class of all groups, we denote HUKCQ)

X
by Ti and HU:(3) by Ng.

If G is the class of all linear orderings and n is

the ordering of the rationals, then n E HU:(O). n is

w-universal for 0 because every finite ordered set is em—

bedded in n, and n is w-homogeneous for 6 because given

two sequences al:;---<\an and b1<:'°'<‘bn of rationals

there is an order-automorphism Q of the rationals such that

§(ai) = bi for 1.3 i g.n. Note that, since C} has a single

binary relation and no operations, every subset of the ra-

tionals is an o subalgebra (see 0.2.0).

Several isolated results concerning the existence of

homogeneous universal systems were known before B. Jonsson

in 1960 proved a very general existence and uniqueness theo-

rem for them, [8] and [9], followingaasuggestion of Reinhold

Baer. Concurrently, Morley and vaught [13] gave an even more

general construction in the setting of model theory. For a

more complete bibliographical survey, one can refer to [1;

Chapt. 10].

A full account of Jonsson's construction is given in

§l.3. We will now state his result for the classes of all

groups and of locally finite (£.f.) groups.



1,1,6 ggnsson's Theorem for the Classes of all Groups and

LgcallyFinite Groups.

(1) (G.C.H.) If n > w is regular, then x: has exactly

one member, H”, up to 2. Every group of power x is

embeddable in H“.

(ii) The class HU$(£.f. groups) has exactly one member,

Hw’ up to a. Every countable i.f. group is embeddable

in H .

w

The group Hm was studied by Philip Hall [2] a little

before Jonsson's second paper. A group in the class HUw(£.f.

groups) is usually called a gpiyggggl_lggglly_£ip;§g

ggggp, and we write ULF for this class. Hall gave a con-

crete construction of Hw' He obtained it as the union of a

chain of finite symmetric groups ...Rn < Rn+1“' where

Rn+1 is the symmetric group on Rh, and Rh is contained

in Rn+1 as its Cayley (right regular) representation.

There is no countable group which is w-universal for

the class of all groups because every countable group has at

most w finitely generated subgroups, but there are 2w

non-isomorphic 2-generated groups [14].

The members of HUQQM) can be defined by a single prop-

erty which we will use in 51.3 to simplify the account of

Jensson's theorem, and which we will generalize in 92.1.

1.1,? Qefinition of a x-Injective Algebra. An m algebra

M is x-injective for m if, for all A,s e m“ with A < 3,

every embedding f:.A 4.M extends to an embedding of B into



M. The class of n-injective algebras for m is denoted

INJK (7/1) and INJEIUII) = INJK(7)z)n771)‘ for 1 2 x. We define

fix = INJKLJ) where J' is the class of all groups.

1.1.8 Proposition. For any class m, HUfi(m) g INJx(m).

Proof. Suppose M e HUi(m), A < B are ‘m<” algebras, and

f: A 4 M is an embedding. Since M is n-universal for m

there is an embedding g: B 4.M. Since M. is n-homogeneous

l
for 'm, the isomorphism fg- : g(A) 4 f(A) extends to some

q: 6 Aut M. Now, cpg: B -o M extends f. Hence M 6 INJK (7/1).

Wfith.some weak assumptions on. m to be discussed in

§l.3, we have INJ:(m) = HUtCM), but generally one cannot

prove INJX (771) g HUn (771) because the required automorphisms

of algebras of power >:¢ cannot be constructed.

However, for groups we have

1.1.9 Proposition. (i) For all n > w, 3“ = x], and

(ii) INJQ(L.f. groups) = ULF.

£3993. Let G 6 9n (resp., INJw(1..f.)). To show that GEM“

(resp., ULF), suppose A and B are subgroups of G of

power (It (s 2 w), and m 6 ISO(A,B). We must extend o

to an automorphism of G. Let J = ng(A,B) and note that

[J] < x. J is contained in a group H = (JIgt> such that

for all a E A, t-lat = ¢(a) and such that |H| < K. To

prove this, we can use Philip Hall's construction where t

is a certain element of the symmetric group on J [14; p. 537],

or, for n > w, we can use the HNN extension to be discussed



in §1.2. Since G is n-injective, there is an embedding

f: H 4 G such that f e 1 on J. Thus, for all a E A,

1
f(t)- af(t) = ¢(a), that is, m extends to an inner auto-

morphism of G.

A group G 6 Mg can be thought of as an "algebraic

universe for group theory for groups of power <:¢".

Jonsson's theorem says that there is exactly one such uni-

verse up to 2 of power x (assuming the G.C.H and that

x is regular). Such groups have intrinsic interest because

their structure reflects, in many senses, the structure of

all group theory. Any general construction possible in group

theory can be applied within the groups H” and correlated

with algebraic properties of these specific groups. The

simplest example of this phenomenon is the previous proof

where the existence of a particular group theoretical con—

struction implies that all the automorphisms involved in the

homogeneity condition for any G 6 Mi can be chosen inner.

Because group theory is rich in general constructions, the

homogeneous universal groups are an archetypal case of this

phenomenon. ‘We will attempt to give further evidence of this

in §l.2 by proving two non—obvious structure theorems for

the groups H“, n > w.

The purpose of this study is the presentation of a gen-

eral algebraic construction which gives considerable infor-

mation about the structure of certain homogeneous universal

algebras.



This construction involves generalizing the concept

of a n-injective algebra, which we show in §1.3 to be a

natural concept in JOnsson's original proof, to the concept

of a u-injective chain 2; algebras (for the definition see

2.1.9). In Chapters 2 and 3 existence and uniqueness the-

orems are proved for n-injective chains in a general alge-

braic setting divorced from group theory, and some special

properties of x-injective chains of groups are established.

These special properties are developed to give an applica-

tion of n-injective chains to a question of much interest

in model theory - the so-called "spectrum problem" of con-

structing many non-isomorphic models of theories.

m

we will use w-injective chains to construct 2 1 non-~

isomorphic groups belonging to the class HU:1(m) where

m can be various classes of groups including the class of

locally finite groups, classes obtained from algebraically

closed groups (see 1.4.0 and 2.2.0), and classes admitting

free amalgamations which we call "free w-classes" (see

1.4.20). This is not intended to be a definitive application

of n-injective chains, but an illustration of their potential

usefulness. These results are not new: it is the method of

obtaining them which is. The existence of 2K non-isomorphic

ULF groups of power u for all n > w was obtained by

Macintyre and Shelah [12] using some deep techniques of model

theory, and other ways to construct ULF groups are known

[3] and [22]. Our application is not a complete redundancy

since these groups have a special lattice property due to

their construction as transfinite w-injective chains (2.2.1).
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Chapter 2 contains our results and many of the proofs.

The remaining proofs are given in Chapter 3. In §l.4 we

give some concrete examples of groups to which our applica-

tion applies. we feel that the concept of u-injective chains

is a direct extension of Jonsson's original idea, and that

n-injective chains may be of general use in model theory.

It should be noted that there is a well known general-

ization of homogeneous universal systems. This is the con-

cept of saturated models and chains of models due to Morley,

vaught, and Keisler (see [1: Chapt. 11]). The concept of a

u-injective chain is, of course, distinct from this and

offers new possibilities.1

 

1I have asked S. Shelah if he ever saw this construction.

He said that the only thing vaguely resembling it is a

construction he used in an unpublished proof to construct

recursive automorphisms of Boolean algebras, and he ex-

pressed hope that n-injective chains would prove helpful

in certain constructions.





91.2 Two Structure Theorems for H“, n > w, Obtained From

the Free Amalgamation and HNN Constructions.

we will first state the essential properties of these

constructions.

H K .

1.2.0 Definition. Let a'= ‘\V/ be a group amalgam.

F

The free amalgamated product of a, denoted 9P*(dl, is the

group with presentation (a3 all relations of H and all

relations of K). A sequence c1,...,c in a' is called
n

reduced if, for all i, ci {'F and successive ci, ci+l

come from distinct factors of a; If a' is contained in a

group G, and if la induces an isomorphism from gp*(a) to

ngm), then we will say that a generates gp*(a) ip G.

lpggl_ Qefinition. Let A and B be isomorphic subgroups

of a group G and suppose o e ISO(A,B). Th2 HNN extension

em = <G,t> _o._f G relative 1:2 cp is the group with presen-

tation (G,t; all relations of G and t-lat = ¢(a) for all

a E A). t is called the stable letter. A sequence go,

6 e

t1,gl,...,t n,gn (where 61‘11: 9166 and n21) is

called reduced if there is no consecutive subsequence of the

1 1
form t" ,gi,t with gi 6A or t,gi,t" with 91 e B.

If G and t are contained in a group H, and if lGuft}

induces an isomorphism between Gcp and ng(G,t), then we

will say that G and t generate the HNN extension Gcp

i H.



1.2.2 Normal Form Theorem for Free Amalgamated Products

[19: Th. III]. Suppose a' is a group amalgam, A is a

group, and as A. Then a generates gp*(a) in A iff

the product of every reduced sequence in a’ is non-trivial.

1.2.3 Britton's Lemma (Normal Form Theorem for HNN Exten-

sions). [19: p. 614]. Let ch = <G,t> be the HNN exten-

e e

sion of G relative to m. If go,t l,...,t n,gn is a

e 6

reduced sequence and n z_l, then got l--- t ngn # l in

gp(G,t).

we will need the following two lemmas which are easy

consequences of the normal form theorems.

H K

1.2.4 If a'= \v/ is a group amalgam, G = gp*(a), and

F

U and V are subgroups of K such that vrwng(B,U) = l,

 

then VngpG(H,U) = 1.

1.2.5 If G =<G,t> is the HNN extension of G rela-

cp

tive to o E ISO(A,B), and if U is a subgroup of G such

that UrWA = Ur1B = 1, then U and <”t> generate their

free product in gp(G,t) and Gn<U,t> = U.

Our first structure theorem is

‘lpggp Normal Basis Theorem for H”. (G.C.H.). Suppose

a > w is regular. Let F be the free group on [x,y}.

For each ordinal Y < x, let wY(x,y) E F be a reduced

word of length at least 2 such that (me> is a maximal

cyclic subgroup of F.



10

H” has a generating set [aY,bY[Y < x} such that for

' F = b is free on a b andall Y < K: (3;) Y <aY: Y) { Y: Y} :

putting HY = <aB,bB[fi<y> , (3'._i_) if 1r is a product in

which non-trivial elements of HY alternate with non-trivial

elements of Fy’ than n = 1 in an only if n contains

a consecutive subword of the form wy(a ,bY)3, j #'0.

Y

1.2.7 Corollary. (3) If 0 is a non-trivial reduced word

in the free group with free basis {aY’bYlY < n], then o==1

in H“ only if a has a consecutive subword of the form

j . .
wy(ay,bY) , j #'0, and for some 5 < Y either aB or bB

occurs in o. ()3) Let A=<aY|Y<u> and B=<bY|y<n>.

Then A and B are free subgroups of H” = <A,B>, and if

i j 11
no word wY has the form (x y ) , then for all 1 #’u e A

and 1 #‘v E B, (11> and (‘7) generate their free product

in H .

n

Discussion. The theorem has been stated in the manner

most convenient for proof. Part (a) of the Corollary is

actually a sharper formulation of the theorem describing the

“freeness” with which the generators [aY,bY|y < u} generate

H”. Part (b) is the most quotable result, saying "Ha is

generated by two disjoint free subgroups which interact pair-

wise freely“.

Proof of (a). Suppose o = 1 in H“. Let y be the largest

ordinal for which aY or bY occurs in 0. Then 0 =

hof1 fnhn’ n 2 1, where 1 7! fi 6 (ay,by> = FY , hi is

a reduced word in the free group G on {aB’bBIB < y] and
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h .,h are non-trivial in G. Since 0 = l in H”,1,00

part (ii) of the Theorem (with the above decomposition of

n-l

0 used as w) implies that either some hi which is non-

trivial in G is trivial in H“ or some fi = w$.. ‘We

can rule out the former case by induction, and assume fi =

wg. Since fi # l in H” by part (i), some hj # 1 in

G and hence some aB or b5” 6 < y, occurs in hj and

hence in a.

Proof of (b). That A and B are free groups follows from

part (a) and the assumption that each word wY has length

at least 2. If 1 # u E A and l # v e B and w is a

product where powers of u alternate with powers of v,

then the only consecutive subwords of w belonging to

<(a ,by>’ for any Y can be of the form (aibgril unless

Y

ue<aY> and v€<bY>° So will in H” by part (a).

gpoof of the Normal Basis Theorem for H”. Let [zy|0<:Y<(n,

Y even] be a list of all the elements of H“. we will con-

struct the sets {ay,by] inductively in such a way that (i)

and (ii) of the Theorem hold and so that, if y is even,

then 2H e HY = (aB’bBIB<Y> for all even H < y. This

guarantees that [ay,by[y < n} does generate H“.

Assume {aB,bB|B < y] have been chosen and y is even.

Let p be minimal such that 2“ z'Hy. Note that 'Hy' < n

and that ”,2 y by the inductive assumption. Let J =

<;u;v> be a group such that 2H E J, u and V’ have infi-

nite order, a= <HY’2IJ> J) is an amalgam, and

< 2H)
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1.2.8 <v> n <u,zp> = 1 = (u) n <2“).

(We can define J = (V) *< z“) where v is a formal letter,

and let u = v-lzuv). Using n—injectivity of H“, let f be

an embedding of 9P* (0) into H” such that f I 1 on

<HY’ZH>° Intuitively, f reproduces the amalgam a in

H”, with (szH) fixed, so that f(a) generates gp*(f(a))

in H“. To simplify notation we will assume now that d<Hn’

and so a generates gp*(d) in H”. Note that

1.2.9 <v> n <u,Hy> = l by 1.2.4 and 1.2.8.

Now choose elements a b H so that F = a b isY, Y e K y < Y. Y>

F (d)

freeon [a b} u=w(ab)anda=Y isan

Y’Y’ YY’Y’ l <\/>
u

amalgam which generates gp*(d1) in H”. This can be done

using n—injectivity as before. Since < u) n (Hy) = 1, the

Normal Form Theorem 1.2.2 implies that FY has the property

(ii) of our Normal Basis Theorem since u = wY(ay,bY). the

that 1.2.4 and 1.2.9 imply

1.2.10 <V> fl <HY’FY> = 1.

Again using x-injectiVity, choose aY+l’bY+1 E H“ such that

FY+1 = <aY+1’bY+l> is free on {aY+l,bY+1}, v = wY+1(aY+1,

FY+1 (41>

and a2 = \/ is an amalgam which generates

< V >

9P*(d§) in H”. As above, 1.2.2 and 1.2.10 imply that (ii)

by+1) ’

holds for HY+1 = <HY

<u,v> < <az> = <HY+1,FY+1> = HY+2’ and this completes the

,Fy> and FY+1° We also have zY e

inductive step.
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Before stating our second theorem we need a definition.

1.2.11 Definition. Let (T,\) be a tree and for each or-
 

dinal a, let Ta be the set of vertices of T at level

a. If a is an infinite cardinal, we will call T a uétree

provided

(i) For all a < a, [T < K,a l

(ii) For all a < K, x 6 Ta’ and B, a < B g’x, there

exists y 6 TB such that x < y, and

(iii) For all u # v 6 Tn’ there exists a < n and
 

x 6 Ta such that x < u and x 4 v.

Thus the members of Tn are in correspondence maximal

chains in T(x = LflTala < x}, and each maximal chain in

T has power a. we have not specified the size of Tx’

<n

but if branching occurs at enough vertices of T/n and the

G.C.H. holds, then 'Tx' = n+.

Our second structure theorem is

1.2.12 Maximal subgroup-Tree Theorem for H“. (G.C.H.)

Suppose n > w is regular and (T,<) is a n-tree. For every

u e Tn’ let T(u) = [x E T<n|x < u]. There is a one-to—one

function f: T 4 H such that

<n n

(i) For all u e Tn’ f(T(u)) freely generates a max-

imal subgroup M(u) of Hx’

Lil) For all u 5‘ V 6 Tu, M(U) nM(V) = <f(T(u) nT(v))>

(in particular [M(u)r1M(v)l g n), and
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(iii) Let u 6 Tu and a,b E HK with |a| = [bl = w,
 

and \aa> n M(u) = \13> n M(u) = 1. Then there

exists x 6 M(u) such that x-lax = b.

The third property gives the key to the construction

which uses HNN extensions.

ggpgf. Let [zp|0 g,“ < n, u an even ordinal} be a list

of Hu' Let q 6 Ha be a fixed element of infinite order.

we will construct f inductively on each level TY of

T, y g n. The construction will have the following prop—

erties. If v e Ty, Y.S u, let T(v) = [u E T|u < v].

Assume f is defined on T<Y°

(2) For all u 6 TY, f(T(u)) freely generates a sub-

group M(u) of H“,

02) For all u a! v e TSY’ M(u) an = < f(T(u) nT(v))>,

(3) For all u E Ty, <<1> n M(u) = l,

(g) Suppose y is even, g < y is even, v 6 TY,

v > u e T“, and ZH {M(u). Then q E <ZH’M(V)>°

(e) Suppose y is even, p < y is even, u E T ,

u

u < v e TH+1’ [zu] = w: and <2“) n M(u) = 1.

Then q = f(v)"lzuf(v).

Suppose these properties hold for all y < n. ‘We will

check that (i)-(iii) of the Theorem hold. Condition (iii)

is an easy consequence of (e) since (e) guarantees that a

and b are both conjugated to q by members of f(T(u)).

Condition (ii) is immediate from (b). Since the freeness of

each M(u) is asserted in (a), we need only prove that each

M(u) is maximal in H“. For this we need a small lemma.
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1.2.13 For all u 6 Tu and y e H“, there exist s,t 6 Ha

such that |s| = |t| = w, (s) nM(u) = (t) n M(u) = l,

and y e <s,t>.

lggggfi. By x—injectivity, let a,b E HK such that [a] =

‘b‘ = w and <a> G) <b> ® <y> exists in H“. We claim

that either the pair of subgroups {<a>,<a+y>} or the

pair [<b>,<b+y>} has the property that both of its mem-

bers intersect M(u) trivially. For otherwise M(u) would

contain a free abelian subgroup of rank 2 contrary to the

freeness of M(u). Now take 5 and t to be the generators

of this good pair above.

Now to show M(u) is maximal in H“, suppose x e Hn-

M(u). We will show HK = <x,M(u) >. Since x = 2H for some

(1, applying (d) for Y > p, we have q 6 <x,M(u)). Let

y 6 H” and let s = za and t = zB be as in 1.2.13. Apply-

ing (e) fer some y larger than a1 and B, there exist

a,b E T(u) such that q = f(a)-1sf(a) = f(b)-1tf(b). Hence

y e <8,t> < <q,f(a),f(b)> < <x,M(u)>. Hence M(u) is

maximal, and (i)-(iii) follow from (a)-(e).

The Construction of f pp To and T even.
p+l’ P

Assume f is defined on T<p for some even p 2_0, and

that (a)-(e) are satisfied for y'g p. we will construct f

inductively first on Tp’ and then on Tp+l°

Suppose f has been defined on a subset U of Tp and

that (a)-(c) hold where y = p-tl and u,v E TSp or

u,v 6 Tp+l are successors of elements in U. ((d) and (e)
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are vacuous because y = p-+1 is odd). we must define f

on some s e Tp-U. Let J = <f(T« UU),zp,q> and note

P

that [J] < n. By n-injectivity, choose f(s) e H“ so that

]f(s)| = w and J and. <;f(s)> generate their free product

in H“. Properties (a)-(c) are easily checked in the new

cases where u or v is a successor of t in TP+1 by

appeal to normal form in. J *<;f(s)> and the inductive as-

sumptions. Thus f can be defined on T .

we now assume f is defined on Tspp and on a subset U

of Tp+l and that (a) - (e) hold for y = p +2 and for rel-

evant u,v e Tsy. We must define f on some t e Tp+1-U.

Let G = < f(TSp UU),zp,q>.

Case 1. Izp‘ =w 21g <zp>nM(s) =1 mpg t>seTp.

In this case, we must take care to satisfy (e) for Y = p-tz,

p = p, u = s, and v = t. Note that (d) follows easily from

this where y = p-tz, p = p, and v is a successor of t

in Ty’ Now <zp> n <M(s),f(s)> = <zp> n M(t) = 1 by the

previous construction, using normal form in Je< f(s) >. Let

to E ISO(< zp>a<Q>) be such that cp(zp) = q. By a-

injectivity, choose f(t) 6 Hn so that G and f(t) gen-

erate the HNN extension GT with stable letter f(t) in

H“. Thus (e) is satisfied, and (a)-(c) in the new cases

where u or v is a successor of t in TY are all easy

consequences of the corollary 1.2.5 to Britton's Lemma and

our inductive assumptions.

Case 2. For some i > 1, z: E M(s), but zp £'M(s). In

this case (e) is vacuous, but we must take care that (d)
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holds where p = p, y = p-t2, and v is a successor of

t in Ty' Let y = zpf(s). By the previous construction

of f(s), we have |y| = w and (y) n <M(s),f(s)> =

(y) n M(t) = l by normal form in J*< f(s)) . Let

cp E ISO(<y>,<q>) be such that cp(y) = q. By n-injectivity

choose f(t) 6 HK so that G and f(t) generate the HNN

extension Go with stable letter f(t) in H”. New (a)-

(c) hold as in the previous case, and (d) holds since q 6

<y,f(t)> < <zp,f(s),f(t)> < <zp,M(v)>w if s < v 6 T9”.

Case III. 2p 6 M(s). This is the trivial case. We need

only satisfy (a)-(c), and this can be done by choosing f(t)

so that G and < f(t) > generate their free product in H“.

This completes the proof of the Maximal Subgroup-Tree

Theorem.

§1.3 The Construction of Homogeneous Universal Algebras.

Our sketch of Jonsson's construction will be similar

to [1: Chapt. 10] but we will use the idea of x-injectivity

to unify the presentation.

The construction can be motivated by asking several

questions about any classof algebras m.

(1) What minimal property must ‘m have if there exists a

n-injective algebra for m?

(2) What properties must ‘m have in order that any two mem-

bers of INJ:(m) be isomorphic?
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(3)

What properties will guarantee that INJ:(W) = HU:(m)?

Are any further properties needed to actually construct

a n-injective algebra for AM?

In answer to question (1), we want a relative version

of u-injectivity which does not make reference to any parti—

cular algebra.

1.3.0 The n-injective property for m. ‘m

provided given any three MS”

A < A and given an embedding

with B S_B and an embedding

tends f. (Note that any M 6

This is defined as follows.

is x-injeCtive

algebras A, A, and B ‘with

f: A 4 B, there exists B E‘m

f: A 4 B such that f ex-

INJK(7I() will serve as B

provided B g_M). ‘m is injective if ‘m is n-injective for

all n.

The injective property is a concrete version of what

is usually called the "amalgamation property” and defined as

follows.

1.3-1 The amalgamation property for m [1: p. 203]. If

A,BO,Bl e‘m, f0 13 an embedding of A into 30’ and f1

is an embedding of A into B1, then there exists C E‘m

and embeddings go of B0 into C and 91 of B1 into

C such that the following diagram commutes:

B
o

f/\
O . go
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This is equivalent to the injective property by identi—

fying A with a subalgebra of B = A and BJ. with a sub-
0

algebra of C = B.

To answer question (2), the idea of constructing an

isomorphism.between n-injective algebras fer ‘m is quite

simple because n-injectivity can be used to enlarge any par-

tial isomorphism between ‘m<” subalgebras. Specifically,

suppose M,N e INJu (771), A,B 6 7719‘ are subalgebras of M,N

respectively, f E ISO(A,B), and x 6 Ma-A. we can use x-

injectivity of N to extend f to an embedding defined at

x provided there exists an ‘m<” algebra C ’such that

< A,x> g C s M. Alternatively, if y e N-B and there is

an 76" algebra D such that < B,y> g D g N, we can use

n—injectivity of M to define an embedding g of D into

-1 on f(A), and then define f1 = 9'1.M such that g a f

Then fl is an extension of f to C = g(D) and we have

y e f1(C). In steps like these, both the domain and the

range of the partial isomorphisms can be enlarged to include

arbitrary elements. But to guarantee the existence of C

and D we need the 'u-local property“.

Lu £112 u-local property for 71. Suppose M 6 7n and x

is a subset of M. with [K] < n. Then X‘ is contained in

some ‘m<” subalgebra of M.

Thus, the u-injective and n-local properties seem to

allow us to build an isomorphism m of M onto N, provided

[M] = [N[ = x, by defining m piecemeal in a back-and-forth
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manner on ‘m<” subalgebras of M. In fact, two more prop-

erties are needed to accomplish this. We must guarantee

that, during the construction of w, the domain of each

partial o is in m. For this we need

1.3.3 The n-inductive property. m is x-inductive if, for

all chains 6' of m algebras with [C] 3.x, we have LC'E

m. m is inductive if ‘m is n-inductive for all u.

Finally, we need a property which guarantees that the

isomorphism m can be started, that is, that M and N

have isomorphic m subalgebras.

1.3.4 The comparison property for m. If A,B E m, then

there exist A,B E m with A.g A and B g,B such that

there exists C e m which is embeddable in both A and B.

The role of this property appears in the following proof.

1.3.5 Lemma. If ‘m has the comparison and u-local prop-

erties, then every u-injective algebra for m' is u-universal

for ‘M.

135993. Suppose M E INJx(7I() and A 6 7/6". We must embed

A into M. Using the n-local property, let B be any m6”

subalgebra of M, and let A,B, and C be as in the compar-

ison property and assume C S.A. By the n-local property we

can also assume A,B,C e‘m<”. Let h be an embedding of

C into B. Since M is n-injective there is an embedding

f: B 4.M such that f a 1 on B, and there is an embedding
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g: A 4.M which extends fh: C 4 M. gPA is the required

embedding of A into M.

The theorem concerning isomorphisms between x-injective

algebras can be stated as follows. The previous comments

hopefully make clear how the proof goes. This lemma is

similar to [1: Isomorphism Theorem, p. 207].

1.3.6 Isomorphism Lemma. Suppose m has the n-inductive
 

and n-local properties.

(3) If M,NEINJKWZ), A<M, B<N, A,BeM<",

f e ISO(A,B), and S and T are subsets of power

n of M and N respectively, then f has an

extension to some ope ISO(A,B) where SSASM,

TngN and A,BEWI”.

(23) If mem”, NEINJKUR), A<M, B<N, A,BE

m6“ and f 6 ISO(A,B), then f has an extension

to an embedding of M into N.

1.3.7 Corollary. Suppose m has the u-inductive and n-local

properties.

(3) If M,N e INJ:CM) and f E ISO(A,B) where A and

B are m<n subalgebras of M and N respectively,

then f has an extension to some m E ISO(M,N).

(Q) If 'm also has the comparison property, then

INJ2(M) = HU2(m), and this class has at most one

member up to 2:. Furthermore, any u-injective

+

algebra fer m is n -universa1 for m.
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Proof of the Corollary. (a) follows from l.3.6(a), taking
 

S = M and T N. To prove (b), let M e INJ:(m). M is .

u-universal for m by 1.3.5, and n—homogeneity of M fol—

lows from 0.3.6(a) with N = M = S = T. New, recalling

0.1.8, we have INJ:(7Iz) = HU:(7n). Now suppose M,N 6 INJ: (771).

To show N a M, choose A < M with A 6 7f" by the n-local

property. Since N is x-universal for m (1.3.5), there

is an embedding f of A into N, and, by l.3.7(a), f

has an extension to some m E ISO(M,N) as required. The

proof that every N E INJK(m) is n+-universal is similar

to the previous proof, except we apply l.3.6(b).

Questions (2) and (3) are answered by this corollary.

we need a special term for classes which satisfy the

properties we have listed so far.

1.3.8 Definition of a n-class. ‘m is a u-class if"m sat-

isfies the comparison, n-inductive, x-local, and n-injective

properties, and, if x = w, m<w has at most w members

up to 2.

Question (4) asks if any further assumptions are needed,

besides that ‘m is a n-class, for the existence of n-

injective algebras for 'm. The answer is that the n-injective

property of"m permits the inductive construction of a x-

injective algebra M for ‘m - only a set-theoretical assump-

tion is needed to insure that all the required ”injections”

can be built into the constructed algebra M. M is built

in steps indexed by ordinals <;t. At stage p we have
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constructed Mnemo‘. Let .I be a set containing one member

of each isomorphism class of’ m<x algebras. Let U E‘m<“,

U < V €.J and let f be an embedding of U into M“. At

some future step p of the construction we must guarantee

that f has an extension to an embedding of V into Mp+1'

This is done by direct use of n-injectivity of m (refer to

1.3.0), letting U = A, V = A, Mp = B, and choosing Mp+l

to be B €‘m<u by the n-local property.

It suffices to assume that n is regular and that the

G.C.H. holds in order that .J and the set of functions f

have power Sjt. In this way we can prove

1.3.9 Jonsson's universal Homogeneous Structure Theorem.

Suppose u is regular and the G.C.H. holds. _If ‘m is a

u-class and 7);” 7! of, then HU:(7I() has a member U». which

is unique up to e. If M.e m”, N'E‘m<”, and N < M, then

every embedding of N into UK has an extension to an em-

bedding of M into Ux' In particular UK is n+-universa1

for ‘m.

The assumption that. m” ¢'¢' is needed to insure that

the constructive procedure outlined above does build an al-

gebra of power n. This algebra is n-injective, and so the

other conclusions of Jonsson's theorem follow from 1.3.7.

Note also that for all N E-INJn(m) and for all subsets'

T < N with [T[ = u, there is an embedding f of UK into

N such that T g f(Ux)' This follows from l.3.6(a) with

M = S = U .
x
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Set-theoretical details similar to those needed in

Jonsson's theorem will be given in Chapter 3, so we have

omitted them here. The G.C.H. is not needed in the case

n = w: instead, the assumption that m<w has at most w

members up to a is used (see 1.3.8).

In many important cases an injective algebra is given,

and the class for which it is injective is defined from it.

This idea is used in [1; Chapt. 10] to simplify the proof

of Jonsson's Theorem, via the concept of "homoiogeneity".

1.3.10 Definition [1: p. 207]. Suppose M e m“. M is

homoiogeneous for 771 if, given B,C 6 7f” with B 3 C <. M

and an embedding f of B into .M, then f extends to an

embedding of C into M.

Because of the way we have defined a u-class we can give

a theorem which relates this concept to Jensson's Theorem.

First we need

1.3.11 Definition. If M E 7):, mm = the class of all 771

algebras embeddable in M.

It is clear that if M.€‘m", then M. is homoiogeneous

for m if and only if M. is n—injective for ‘mhM. The next

theorem relates this to Jonsson's Theorem and shows that our

discussion is not less general than [1: Chapt. 10].

1.3.12 Theorem. Suppose a is regular, ‘m has the n-local

and n-inductive properties, and .M E‘m”. Then, the following

conditions are equivalent.
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(i) M is x-injective for 77([M,

(Li) M is n-homogeneous for 771, and

(iii) MM is a n-class and M 6 HU:(7I(I‘M).

P_ro_o_§. The proof that (ii) a (i)is similar to 1.1.8. Since

(iii) =9 (ii) is obvious, we need only show that (i) :9 (iii).

80 assume M e INJ:(7)1). To prove (iii) we need only show

that mf‘M is a u-class and then apply l.3.7(b) replacing

m by mrM. It is clear that 7711M has the comparison, x-

local, and n-injective properties.

To prove that ml‘M is n-inductive, suppose a is any

chain of 770M algebras with [G] g a. Let C = LI}: and note

C 6 7); since 7); is n-inductive. We must construct an embed-

ding cp of C .into M. For this it suffices to show that

C is the union of a chain u where, for all A 6 u, A 6

”(TM and [A[ < n. The embedding cp can then be constructed

by using n-injectivity of M for WM in the manner outlined

for 1.3.6. To construct u we must show (*) for every

8 < C with S E 715", there exists A 6 MM with S g A g C.

The proof of (*) requires a set-theoretic maneuver, which

we will sketch.

We can assume that n > w and C has a subchain .9

such that C = up and [.D[ < x, because otherwise every S

of (*) is contained in some A 6 C. Now suppose S < C

with [S[ < a [is given. Let D e .9. We will construct

Sl < C such that 8.3 S:l E 775" and 81 0D Ne W‘M. Put T =
0

S and assume To 3 - - . g Tn < C have been chosen and Tn e

775". By the u-local property of 7): there is some 1% g D
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such that xne 776" and Tn nn g 1%. Again by the n-local

<1
property, choose Tn+1 6 771 such that Tn an S Tn+1 g C.

Put 8 = UT . Then [S [ < it since u is regular.
1 n l

n20

Since 7/) is x-inductive we have Sl nD = an EMPM. Now

n>_0

assume .3 = [Da]a is an ordinal (p] where p < x. We

construct algebras S“, p < p, as follows. Let S0 = S,

and construct Sa+l from so in the manner above, replac-

ing S by Sq, D by D and S by S At limit
a+1’ 1 CH1 '

a, put S“ = USB . The regularity of n insures that

B<a

ISHI < x for all u < p. We have by the construction that

so = SCH-l nDci-I-l 6

then 'S— g 'S—-. Now S 3 U? = A, [A] < x by regularity,
B a a<p c

and we can show that A e ml‘M by constructing an embedding

7111M for all a < p, and that if B < a,

of A into M as cp of the second paragraph of this proof

is to be constructed.

We can omit the hypothesis that n is regular in the

above theorem if we assume instead that m is A-local for

some i < n. It would follow that 7)) is o-local for all

x g o g n [1: Lemma 2.4, p. 206], and in the above proof,

if ]S]gc and pgo<n, then [A] 30.

Theorem 1.3.12 expresses a type of duality involved in

the existence of homogeneous universal structures. We can

either begin with a u-class 77: and construct, via Jonsson's

Theorem, Hugo/1) from it p_r_, if 771 is u-local and n-

inductive, we can begin with any M e 7):” which is injective

for ”(PM (or homogeneous for m, which is prima facie
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stronger) and obtain a n-class me from it to which

Jensson's Theorem, if applied, would yield the original

M E HU:(m[M). Of course, to apply Jonsson's Theorem we

need the G.C.H. if x > m, but no such assumption is needed

to apply Theorem 1.3.12. Another way to look at the content

of Theorem 1.3.12 is that an algebra Me‘mx which is n-

injective for ‘miM is determined up to a ‘by its m3” sub-

algebras; that is, if M0 and M1 are any two such, and

M0 5! M1, then, for i = 0 or 1, some 775" subalgebra of M1

is not embeddable in Ml-i'

§1.4 Some Groups of this Study: Free Algebraic Closures

and Free n-Classes.

Let .3 be the class of all groups and u the class

of all groups of order (n which are m-homogeneous for .3:

that is, by Theorem 1.3.12, 6 e u iff G e magma) =

Hugcgic) iff, given any o E ISO(A,B) where A and B

are f.g. subgroups of G, o extends to an automorphism of

G. For example, every divisible abelian group has this prop-

erty. Theorem 1.3.12 says that any such group is determined

uniquely in u by the set of its f.g. subgroups. An impor-

tant subclass of u are those groups G such that every‘

m as above extends to an inner automorphism of G. we will

call such a groupiipppp-homogeneous'gpp "<w. Hall's ULF

group Hm is such a group by the proof of 1.1.8, and there

is a very important subclass of inner-homogeneous groups-

the algebraically closed groups.
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1.4.0 Definition of an algebraically closed group. Let

G be a group and W' a finite set of formal products in-

volving variable letters (henceforth, variables) xl,...,xn

and elements of G. we call w 6 W' a gppgupygg G. W’ is

said to be consistent over G if there is a group K ‘with

G g_K such that the equations ‘W = 1 have a solution,

xi = ai E K (1 g.i g n), in K. G is algebpeically closed

(e.c.) if every consistent set of words over G has a solu-

tion in G.

1.4.1 Definition of an existentially closed group. Let

G be a group and 'W and R finite sets of words over G

with variables x1,...,xn. The pair (W,R) is consistent

9325 G if there is a group K 'with G g_K such that the

equations W'= 1 and inequations r # l, r 6 R. have a

(simultaneous) solution, xi = ai E K (1 g,i g,n), in K.

G is existentially closed (e.c.) if every consistent pair

(W,R) over G has a solution in G.

The concept of an e.c. group was first defined in 1951

by sz. Scott [20] who called them "algebraically closed”.

The situation was clarified in less than a year by B.H.

Neumann.

1.4.2 Theorem (B.H. Neumann [17]). Every non-trivial alge-

braically closed group is existentially closed.

The point of Neumann's theorem is that any set of con-

sistent inequations over a group can be forced by a larger

set of equational relations. we will indicate the nature
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of Neumann's argument by considering the case of one in-

equation.. Suppose G is a group, 1 f’b e G and (w,[r})

is a consistent pair over G. Let K be a group in which

W = l, r #'1 has a solution xi = a1 6 K, 1 g_i g.n. Let

E §,K gbe the result of substituting xi = a1 in r. The

ideg is to add new relations to W’ which guarantee that b

belongs to the normal closure of r. 'We will Show that such

a set of relations exist which are consistent over G. There

is an extension K1 = <K,y,z> such that y and 2 have

infinite order and b = yz, and there is an extension‘ K: =

1 1
K*<u> *<v> such that c = (u- Equ- Ev) has infinite

order. K1 can be defined by an easy free amalgamation.

Let A = K1 *KKZ and let J = (A, t,s> be a group such that

t'lct = y and s'lcs = z. , J can be defined by a sequence

of two HNN extensions.. The existence of J implies that

1 1 -1
the set of words W1J{yzb-1,t- cty- ,s csz-l] with variables

x1,...,x u,v,y,z,s,t is consistent over G, and this set
n’ .

forces r # 1 since the non-trivial element b e G is in

the normal closure of r.

we will now check our initial assertion.

1.4.3 Every a.c. group is inner-homogeneous for ng ([11:

Lemma 1]).

Proof. Suppose G is an a.c. group, A=<a1,...,an> and

B are f.g. subgroups of G, and o 6 ISO(A,B). The set of

relations x-laix = ¢(ai), l g_i gDn, is consistent over G
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since they are solvable in an HNN extension of G. Hence

1
for some t e G, t- ait = ¢(ai), l g_i‘g,n.

Thus a countable a.c. group is determined uniquely in

the class of countable a.c. groups by its set of f.g. sub-

groups.

Algebraically closed groups have been and continue to

be the subject of research since Scott introduced them [18],

[11], [4], [22]. The main technique of this study (n-

injective chains) is not directly applicable to arbitrary

a.c. groups, but can be applied to a natural class of a.c.

groups, one of which is discussed by Macintyre with the method

of forcing [11: Theorem 8, p. 81]. We will now discuss some

members of this class.

lpgpg_ pefinition o§_§£ee extensions of groups. Suppose ‘W =

W(A,x) is a set of words over a group G which involve only

elements of the subgroup A g_G and the variables :x. The

.2522 extension p§_ G. 21, W, denoted 6* = G*(W), is the group

‘with presentation [(G,x: all relations of G and W'= 1).

‘We say that G* is a finitary‘gppg extension (f.f.e.).p§, G

if x. and W’ are both finite and W' is consistent over .0.

The structure of G* is somewhat clarified by the next

observation.

1.4.5 Lemma. Let .w'= W(A,X) be a consistent set of words

over G and put E = G*(W). Then, G is a subgroup of E,
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G A*(W)

9PE(A:X) = A*(W), G nA* (W) = A, and the amalgam a = V

A

generates gp*(a) in E.

Proof. To show that G < E use the universal mapping prop-

erty of presentations and the fact that W’ is consistent

over G. The remaining assertions follow from the fact that

gp*(a) has the same presentation as E.

lpgpg Definition of the free extension prOperty. Let G < K

be groups. K has the free extension property (f.e.p.) 232;

G if, for every finite subset Sig K and for every finitary

free extension J* of J = (6,8), there is an embedding. f

of J* into K such that f a 1 on J. ‘We say that K

is an f.e.p. group if K has the f.e.p. over 1.

Notice that every f.e.p. group has the f.e.p. over each

of its f.g. subgroups, and is therefore prima facie an a.c.

group.

1.4.7 Lemma. If K has the f.e.p. over G, then K has
 

the f.e.p. over every subgroup of G.

.gppgg, Suppose K. has the f.e.p. over G and A.g,G. Let

S be a finite subset of K, J = <A,S>, and let J* (W) be

a f.f.e. of J. By Lemma 1.4.5 we have J*(W) g <G,S>*(W) =

Q, and by 1.4.6 there is an embedding f of Q into K

such that f s 1 on (6,8). Now theirestriction of f to

J*(W) satisfies 1.4.6 proving that K has the f.e.p. over

A.
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1.4.8 Lemma. If B is a f.f.e. of A and C is a f.f.e.
 

of B, then C is a f.f.e. of A.

Proof. Let B = A*(Wl) and C = B*(W2) and let X1 and

X2 be the sets of variables involved in WI and W2 re—

rela—spectively. Then C has the presentation (A,X LJX
1 2’

tions of .A, wlLJWZ) showing that C is a f.f.e. of A.

1.4.9 Definition of a free algebraic closure of a group.

Suppose G g K are groups. K is called a free algebraic
 

closure (f.a.c.) of G prOvided

(i) K has the f.e.p. over G, and

(ii) For every finite subset S < K, there is a f.f.e.

G* of G and an embedding f of G* into K

such that f a 1 on G and s < f(G*).

This concept has apparently never been studied. The

universal algebraic closures of Jonsson [10] are much dif—

ferent.

1.4.10 Theorem.

(a) Every group G. has a f.a.c. K with [K] = max(|G],w).

(p) If G < H < K are groups, is a f.a.c. of G, andH

K is a f.a.c. of H, then K is a f.a.c. of G.

(g) If G < H < K are groups, H is a f.f.e. of G, and

K is a f.a.c. of H, then K is a f.a.c. of G. V

(g) If G is a f.g. subgroup of an f.e.p. group F, then

there is a f.a.c., K, of G with G < K's F.
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(e) If G is a countable group and K1 and K2 are count-

able f.a.c.'s of G, then there exists 3 E ISO(K1,K2)

such that $ 2 1 on G.

Proof of (a). This proof follows a suggestion of Professor
 

Sonneborn. It is more natural than my original proof.

Let H be any group and let T = %(H) = [W5]a E I}

be a "complete" set of consistent finitary sets of words over

H in the sense that if H*(W) is any f.f.e. of H, then

there is some a E I such that the sets W and Wd are

identical under some one-to—one correspondence of their vari—

ables. Let Xfi be the set of variables involved in Wu

and put XW) = UXa . We assume that these variable sets

GEI

are pairwise disjoint; that is, if a t B e I, then XerXB==

¢L We define the group H*(%) to have the presentation

(H,Xa,a E I: relations of H,Wd,a e I), and we observe

1,...,Xn are the respective

sets of variables, then the subgroup J = <H,Xl, . ..,Xn> of

1.4.11 If Wl,...,Wh E W’ and X

H*(W) has the presentation P = (H,Xl,...,Xh; relations of

13,Wi,...,Wh). In particular, J is a f.f.e. of H.

The proof of 1.4.11 is that we can construct H*(W) in

two steps: first presenting the group P as above, and then

adding all the other letters Xd, a 6 I with Xa # Xi,

1 g_i g_n, with relations W . An application of Lemma 1.4.5,
a

using the disjointness of the sets X5, shows that P =

.I < H*CV).
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Now let G be any group. We will iterate the above

construction m times. Specifically, let #1 = T(G) and

define G1 = G*(Wl); having defined Gn’ let ”n+1 = T(Gn)

= * . z -
and put Gn+1 Gn(wn+l). Finally, put K lJChl. In this

n41

construction we assume that the sets of variables X(%n),

n 2_1, are pairwise disjoint.

For any group H, simple cardinal arithmetic shows that

IT(H)[ = max(]H[,w) = [H*(W)], and thus, in our construction,

[K] = max([G],w).

Now we must check that K is a f.a.c. of G.

To show that K has the f.e.p. over G, let S be a

finite subset of K, let J1=<:G,S>g and let J*(W) be any

f.f.e. of J. Now J < Gn for some n 2,1, and there exists

Wb E ”n+1 such that W and WE are identical under some

one-to-one correspondence of their variables. Thus there

exists f e ISO(J*(W),J*(Wd)) with f a 1 on J. Since

J*(Wa) < G;(Wa) < G;(”n+1) by 1.4.5 and 1.4.11, f meets

the condition of 1.4.6.

To prove (ii) of 1.4.9, assume inductively that if T

is any finite subset of Gn’ for some n 2_l, then T is

contained in some f.f.e., G*(U) < Gn’ of G. Note that,

if n = 1, this is immediate from 1.4.11. Let S < Gn+1 1x;

finite. There exist Wl,...,Wh E T(Gn) with respective

variable sets X1,...,Xfi such that S <_<;Gn,X1,...,Xm)n

Now the words WlLJ...LJWh involve only finitely many ele—

ments T of Gn’ and each Wi’ i.g i §.m, is a set of words

over <fP>. By the induction hypothesis T < G*(U) < Gn’
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and, by 1.4.5 and 1.4.11, C = <G*(U),Kl,...,xm> < <Gn,

x1,...,}%> is a f.f.e. of G*(U). By Lemma 1.4.8, it

follows that C is a f.f.e. of G, and since 8 < C we

have proved (ii) of 1.4.9. Hence K is a f.a.c. of G.

[gpppf of (b). Suppose K is a f.a.c. of H and H is a

f.a.c. of G. By Lemma 1.4.7, K has the f.e.p. over G.

So we need to check (ii) of 1.4.9. Let S < K ‘be finite

and choose H*(W) = H*, a f.f.e. of H, and an embedding f

of 11* into K such that f s 1 on H and s < f(H*).

Let x. be the set of variables in W’ and let T be the

(finite) set of elements of H which occur in words of ‘W.

Choose G*(U) = 6*, a f.f.e. of G, and an embedding g of

G* into H such that g e 1 on G and T < g(G*). Let

Y be the set of variables in U. New J = <G,g(Y),f(X)) <

<H,f(x)> is seen to be a f.f.e. of G by applying 1.4.5

and 1.4.8 (via the isomorphisms g and f). Since 8 < J,

we have now proved that K is a f.a.c. of G.

Egoof of (c). The proof is similar to (b), with the simpli-

fication that g(G*) = H is fixed.

ggpof of (d). Let G be a f.g. subgroup of the f.e.p. group

F. we W111 construct a chain ---Gn < Gn+1 <... of f.g.

subgroups of F with G = so and the additional properties

1.4.12 For each' n12_0 there is a f.f.e. G; of Gm and

*

m E ISO(Gm,Gm+1) such that w s 1 on Gm, and
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1.4.13 For every n 2.0 and for every W E T(Gn) (as in

part (a)), there exists m > n such that G; = G;(W) where

G; is the f.f.e. of 1.4.12.

If Gm has been constructed for some m and is f.g.,

then, once we choose 6;, we can find Gm+l < F by a direct

application of the f.e.p. of F. Since each of the sets

T(Gn) is countable, there is no difficulty in choosing the

G; so that 1.4.13 holds. Thus we can construct K = UGI1

. Q21

so that 1.4.12 and 1.4.13 hold. The proof that K is an

f.a.c. of G is very similar to the proof in part (a), so

we will omit it. In fact, this was our original proof of

the existence of free algebraic closures.

Proof of (e). First we need
 

1.4.14 Lemma. Suppose G < H < G* for some f.f.e. G* of

G and H = <G,S> with S finite. Then there is a f.f.e.

H* of H and f e ISO(H*,G*) such that f s 1 on H.

Proof. Suppose G* = (G,X; relations of G, W). For each

s 6 S let u(s) e G* be an expression for s as a product

of elements of G and X. Let U = [s-lu(s)[s E S}. Let

K’ be letters in one-to-one correspondence with X and let

W’ and U be the sets of words obtained by substituting the

i’ for the X. Define H* = (H,i; relations of IL 'W,U),and

for every 2 E H* define f(2) = z e 6*. It is easy to see

that f e ISO(H*,G*) since every relation of H* is satis—

fied in G* (and vice versa) under the correspondence i..x,
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and f E 1 on H because the relations U guarantee this.

This completes the proof of 1.4.14.

New suppose K1 and K2 .are countable f.a.c.'s of G.

We will build m E ISO(K1,K2), with) T a 1 on G, induc-

tively on a chain of subgroups of K1 which are f.g. over

G. The proof is similar to that outlined for the Isomorphism

Lemma 1.3.6. we will give the essential step.

Suppose H = <G,T> < K1 with T finite and an embed—

ding h of H into K2 has been defined such that h a l

on G. (h is an approximation to m). We must be able to

extend h to an embedding of A = <H,F> < K1 into K2 where

F is an arbitrary finite subset of K1' Using 1.4.9(ii)

(with S = T(JF), let G* be a f.f.e. of G and 9 an em-

bedding of G* into K such that g _ 1 on G and A <
1

g(G*). By Lemma 1.4.14, there is a f.f.e. H* of H and

f E ISO(H*,g(G*)) with feel on H. Since K2 has the

f.e.p. over G (letting J = h(H) in 1.4.6), there is an

embedding e of H* into K2 such that e s h on H. New

h = of.1 embeds g(G*) into K2 and extends h. Hence

EPA is the desired extension of h. (See the diagram below).

5

9(G*)= f(H*)—>e(H*)

‘A<:;\~\;:\ h ///'

H--—%h(H)

\G/

At the next stage of the construction, we will reverse

-1

the procedure and extend h in K2. Since K1 and K2
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are countable, an isomorphism m with domain K1 and

range K2 can be built in this way, and we have m a l

on G since this holds at every stage.

1.4.15 Remarks on generalizing the concepts of free exten-

sions and free algebraic closures. These concepts can be
 

defined in any class m in which algebras have presentations,

that is, in which there exist free algebras with the universal

mapping property. This is the case if m is any variety of

algebras. But, to prove Theorem 1.4.10 for a variety m,

the following fact is needed to replace Lemma 1.4.5: if W

is a consistent set of words over M e m and Mpg N 6 m,

then W is consistent over N and M*(W) g N*(W). This

can be easily proved if m is injective (refer to 1.3.0).

Letting A = M, A = N, B = M*(W), and f = 1M, the proof

would be to choose B and f as in 1.3.0. Put J =

alg§(M*(W),f(N)). Then J is a homomorphic image of N*(W)

by a homomorphism extending fLJlx where X is the set of

variables of W. Thus N g N*(W) and M and X generate

M*(W) in N*(W). So Theorem 1.4.10 holds in any injective

variety. For example, the variety u of abelian groups is

injective. The f.a.c. ip m of every ”Sm group is the

divisible group whose torsion-free rank and p-rank, for every

prime. p, equals w. This group is also the (unique) member

of HU‘”(91) .
(1)

1.4.16 Definition. A group K is a f.a.c. group if K is
  

a f.a.c. of one of its subgroups.
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We have introduced two natural classes of a.c. groups-

the class of f.e.p. groups and the class of f.a.c. groups,

which is contained in the former. Several observations can

be made.

1.4.17 Theorem. (3) There are 2w non-isomorphic count-

able f.a.c. groups; (2) Let Kb = the countable f.a.c. of

the trivial group. K0 is embeddable in every f.e.p. group:

every finitely presented group P is embeddable in ‘Kb, and,

hence, Kb is the countable f.a.c. of P.

The proof of (a) is a simple counting argument: there

are 2w non-isomorphic f.g. groups, but a countable f.a.c.

group has only w f.g. subgroups. That K0 is embeddable

in every f.e.p. group is immediate using 1.4.10(d). If P

is finitely presented, then P k a f.f.e. of the trivial

group: so P is embeddable in every f.e.p. group, and a

simple application of 1.4.14 shows that Kb is the countable

f.a.c. of P.

The countable a.c. group G, discussed by Macintyre [11;

Theorem 8], such that its f.g. subgroups are exactly the f.g.

recursively presented groups, is none other than Kb. Every

f.g. subgroup H < K.0 is contained in a finitely presented

subgroup (a f.f.e. of l), and hence H is recursively pre-

sented. 0n the other hand, the celebrated theorem of Graham

Higman asserts that every recursively presented group is a

subgroup of a finitely presented group [5], and hence is em-

beddable in KO’
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A countable f.e.p. group, K, exists which is not a

f.a.c. of any of its f.g. subgroups. To construct K we

need only arrange that, for every f.g. G < K, there is

some f.g. B < K such that G is not embeddable in the

countable f.a.c. of G. However, K might be a f.a.c. of

a non-f.g. subgroup. This creates a prdblem we have not

been able to solve.

lg4.l8 Problem. Construct a countable f.e.p. group which

is not a f.a.c. group.

We now return to our main topic.

If K is a countable f.e.p. group, then [J =,31K is

an w-class by Theorem 1.3.12. In particular, J' has the

m-injective (i.e., amalgamation) property. In fact, .J

enjoys a much stronger amalgamation property which will serve

to motivate the main concept of this section.

1,4.19 Theoppm, Suppose K is a f.e.p. group, ,J =.&[K,

A B

and a = \l/ is an J<w amalgam. Then gp*(a) G J.

Egggg. Let f and g be embeddings of A and B into K

respectively, E = < e1, ...,en>, and G = < f(A),g(B) >. If

1 g_i g_n, let wi = x-1f(ei)x[g(ei)]_1, and let h be an

embedding of G* = G*(wi[1 g i g n) = <G,x> into K such

that h e l on G. Now G and h(x) = y generate in K

the HNN extension of G relative to m 6 ISO(f(E),g(E))
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with ¢f(ei) = g(ei), 1 g_i g_n, because 6* is the HNN

extension. It follows easily from Britton's Lemma (1.2.3)

y‘1f<A)y 903)

that a” = \\\\V//// generates gp*(a‘) 2 9P*(dl

9(3)

in K.

The u-classes of groups (see 1.3.8) to which we will

apply the construction of x-injective chains, and which the

last theorem gives some natural examples of, are classes

which admit free amalgamations.

1.4.20 Definition of a free n-class of groups. A class of

groups 3 is a gppp naglppp if the following axioms hold.

(1) l E 3 and 3 contains some non-trivial group,

(ii) 3 has the n-local property,

(iii) 3 is inductive,

(i3) If a' is an 3<x amalgam, then gp*(a) 6 3,

and

(g) If u = m, then $<w has at most w members

up to isomorphism.

Many natural classes of groups are free u-classes for

all n > w. If H is any set of primes, we have as examples

(1) 3 = the class of all groups in which every element of

finite order is a n-element, and

(g) 3 = the class of all groups in which every periodic

n-subgroup is locally finite.

Both of these classes 3 contain gp*(a) whenever a' is

an 3 amalgam. The proof of this fer (1) is quite easy
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[19; Theorem II], while for (2) we can use the subgroup

theorem for amalgamated free products [6; p. 228].

Every free u-class is a x-class. The comparison prop-

erty follows from (i), while condition (iv) implies that

every 3<K amalgam is contained in an 3 group and this

implies that 3 is x—injective because (refer to 1.3.0)

9 (A) B

amalgam a'= ‘\\//' where g is

g (A)

an isomorphism with g e f on A, and choose B E 3 with

we can form an $<K

a’< B. Then 9 = f is the required extension of f.

Note that a free n-class 3 satisfies the full induc-

tive property (iii), that is, 3 is closed under arbitrary

directed unions. This simplifies the statement of our re—

sults since we are interested in constructing many non-

isomorphic members of HU2+(3) and these groups are obtained

as direct unions of HU2($) groups.

Theorem 1.4.19 says that f.e.p. groups provide examples

'of free w-classes via Theorem 1.3.12. The precise relation

is

1.4.21 Theorem. If K is a countable f.e.p. group, then

there is a free w-class 3 such that .filK = 3S” and K 6

HU‘”(3).
w

Proof. X'=.£[K is an w-class by Theorem 1.3.12 and 1.4.3.

Theorem 1.4.19 shows that X’ has property (iv) of 1.4.20,

namely that ng contains gp*(a) for every ”(w amal-

gam a; Let 3 = the closure of x' under directed unions
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of its members. Thus 3 is inductive and 3<w = X<w since

no new f.g. group occurs in a directed union. Hence 3 is

a free w-class. Every G 6 3w is a directed union of

countably many members of X’ and so G E X’ since x' is

<w
w—inductive. Thus K'= 3-, and the final conclusion is

obvious.

The class firK of the preceding theorem is always en-

larged by passing to the free w-class 3. In fact, the next

three results will show that if 3 is any free n-class,

+

then HU: (3) T ¢.

1.4.22 Proposition. Suppose (p) m is a n-class, (2) Every

m<n amalgam is contained in a member of m, and (p) There

are two non-isomorphic 7]: algebras. Then 7):” 7! 9!. Thus 71(-

satisfies the hypotheses of Jonsson's Theorem and, if n is

regular and the G.C.H. holds if n > m, then HUtCM) has a

unique member up to a. In particular, every free n-class

m has these properties.

.gggpf. we need only show that m” #’¢. For this it suffices

to show that, for every M.e m<“, there exists N'e m with

M < N because we can then use the n-inductive property to

obtain a member of"m”. we can assume that M has a proper

m subalgebra E by the comparison property and assumption

M M
1

(c). Now the amalgam \\/’ , 'where M1 e.M, is contained

E

in some N'e m by (b).
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Jonsson remarked in [8] that assumption (b), "the

strong amalgamation property", is enough to prove m“ #’¢.

1.4.23 Theorem. Assume that n is regular and the G.C.H.

holds if n > w. let m satisfy the hypotheses (a)-(c)

of Prop. 1.4.22 and suppose also that ‘m is x+-inductive.

Then INJ:+(m) # e. In particular, this is true for every

free n—class m.

.gppgf. Let U E HU:(m) and M e‘m”. Lemma l.3.6(b) guar-

antees that there is some embedding of M into U, but to

construct a member of INJ:+(m) we will need to obtain

proper embeddings. Assumption (b) is ideal for this purpose,

but we will need a small lemma.

1.4.24 Lemma. Suppose a is regular, m is a u-class and

also n+-inductive, c.= [Ud]a < u+} is a chain of HUfiCM)

algebras, and, for all a < n+, Ua < Ua+l° Then C = Lb.€

+

INJ: (72;).

To prove this lemma, note that C E‘m since m' is n+-

inductive. Suppose A‘s B are m<u algebras and f: A 4 C

is an embedding. Since n is regular, f(A) < Ua for some

a < n. Since Ud is u-injective for ‘m, there is an embed-

ding of B into Ua’ and hence into C, which extends f.

Hence C is n-injective for ‘m, and clearly [C] = n+.

To prove the theorem, we must construct a chain c. as

in 1.4.24, and this is clearly possible if an arbitrary M 6

m” can be properly embedded into U; Since m is n—local,
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M is the union of a continuous chain [Ma]a < u} of M‘“

algebras. Let f0: M0 4 U be an embedding and choose

N'e m<x with f0(M0) = NO < N < U. We can inductively con-

struct an embedding m: M 4 U with ¢(M)r1N = N and hence
0’

m(M) < U. In the inductive step we have an embedding fa:

Ma 4 U which extends f and such that fd(Ma){1N = N .
0 0

Choose J E ”(<11 with < fa(Ma)’N> gJ < U. Form an amalgam pf"

h(Morel) J

4': \\\v/// where h is an isomorphism with h E fa

fa(Ma)

on Mo' New a'g_A 6 MS“ by assumption (b), and by x-  
 injectivity of U, there is an embedding g: A 4 U such that

- 1 on J. It follows that gh = f Ma+l 4 U extends
a+l=

g es

fa and fa+l(Ma+l) nN = NO' Thus (1(2fo = cp: M 4 U is the

desired proper embedding, completing the proof of 1.4.23.

‘We have not yet reached our goal which was to prove

HUtTS) ¥'¢ for every free n-class 3. To do this we will

show that INJK(3) = HUK(3).- This will be accomplished, as

it was in Prop. 1.1.9 for 3, by showing that the automor-

phisms involved in the homogeneity of U 6 HU:(3) can be

chosen inner. Notice that we already know this in the spe-

cial case U = K is a countable f.e.p. group by 1.4.3.

1.4.25 Theorem. Let 3 be a free n-class.

(g) Suppose A,B,G 6 3<”, A‘s G, B g,G, and m E

ISO(A,B). Then there exists V 6 3, with G < V,

and some t e V such that G and t generate

the HNN extension Gcp in V.
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(p) Every U E INJK(3) is inner-homogeneous for

3<”, that is, if m 6 ISO(A,B) where A and

(n
B are 3 subgroups of U, then. m extends

to an inner automorphism of U. Hence,

(2) INJu(3) = HUK(3).

-Proof of (a). Axiom (iv) of a free n-class permits the

construction of the HNN extensiOn Gcp in the classical

way [15; p. 536].

Let G1 be an a copy of G. Choose N e 3<K with

an element x E N of infinite order, and let N1 be an

a copy of N. Note that G and x-le generate

G*(x-le) in G*N. The classical way to define the HNN

extension Gcp is to form an amalgam

h(Gl*Nl) G*N

\/ with h(gl) = g for all

G*(x-le)

1.4.26 4

g 6 G and h(xilalxl) = x-1¢(a)x for all a E A.

The subgroup of gp*(a) generated by G and t = h(x1)x-1

is the HNN extension GT.

Axiom (iv) guarantees that a' is an 3<K amalgam and

also that Gw,g gp*(a) E 3, proving part (a).

Parts (b) and (c) follow easily from (a).
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Free x-classes can easily be constructed. we will

discuss this fer a = m, but the construction is easily

extended to all u.

1.4.27 Definition. Let I be a class of f.g. groups con-

taining at most w members up to 2, and such that l 6 I

and some non-trivial group is in I. Put Io = I and induc-

tively define G E In+l iff G 2 gp*(a) for some In amalé

gam a' (possibly a' is a single In group). Define 3(1)

to be the inductive closure of (J in, that is, the class of

n20

all directed unions of groups belonging to len.

n20

1.4.28 Proposition. Let I be as in 1.4.27. Then

(3) 3(1) is a free w—class and (p) Suppose K is an

f.e.p. group and every I group is embeddable in K. Then

F[1] glK ‘where F[x] E HU$(3(I)).

.ggoof of (a). From the inductive definition we see that

every len group is f.g. Assume inductively that In

n20

has at most (12 members up to 2. Then there are at most

m In amalgams up to 2, and it follows that In+l has at

most w members. Hence (J In has at most w members,

‘ A20 .

and this shows that '3(I) satisfies axiom (v) for a free

w-class because

1.4.29 s(r)<‘”= Urn

ago

due to the fact that no new f.g. groups are introduced by

taking directed unions. Thus 3(1) contains gp*(a) for
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every 3(I)<w amalgam a, so that axiom (iv) holds.

Axioms (i), (ii), and (iii) are immediate.

Proof of (b). If follows from 1.4.19 and an easy induction
 

that, for all n 2_0, every In group is embeddable in K.

Since .9PK is an w-class (see 1.3.12 and 1.4.3) and F[I]

is a countable union of groups in [J In, F[I] is embedda-

n20

ble in K.

1.4.30 Definition. Let G be a non-trivial f.g. group.

K[G] will denote the countable f.a.c. of G, and F[G]

will denote F[I] where I = [6,1] (see 1.4.27 and 1.4.28).

Thus F[G] is embeddable in K[G] by l.4.28(b).

For many choices of G, it is easy to check that

K[G] 2 F[G] because K[G] has f.g. subgroups, by virtue

of being algebraically closed, which F[G] does not have.

For example, if G is cyclic of prime order p, then every

element of finite order in F[G] is a p-element, as can

easily be Shown inductively. 0n the other hand, every a.c.

group (and K[G] in particular) has subgroups isomorphic to

every f.g. group with solvable word problem [18], which in-

cludes all finite groups. If G = 2' is infinite cyclic,

then F[E] is torsion-free. A result of Baumslag, Karrass,

and Solitar [0] shows that there is a finitely presented

torsion-free group H not embeddable in F[Z], even if we

enlarge each class I by adding all subgroups of In groups
n

in the definition of 3(1). This H is embeddable in every

f.e.p. group since it is finitely presented (see 1.4.17(b)).



CHAPTER II

DISCUSSION OF K-INJECTIVE CHAINS

92.1 Definitions, Existence, and Uniqueness of

n-Injective Chains

Before presenting the central concept of x-injective

chains of algebras we will develop terminology for chains

of algebras.

gplpg Definition of an m-Chain. m denotes a class of

algebras of type T. Suppose a. is any chain of T alge-

bras. ‘We write 1 E c. if c. contains the subalgebra gen—

erated by the constants of lJG. ‘We say that c. is an

m—chain iff c. is a complete chain of T algebras (see

0.1.2), 1 E c, and every non-trivial member of a. is an

m algebra. A trivial algebra is an algebra generated by

its constants (see 0.2.2).

Suppose a. is any complete chain. If (A,B) is a jump

of c. we also call B E c. a jpmp of c. and write B- = A.

Thus, a jump of c. is any member of c. possessing an imme-

diate predecessor in a. The set of jumps of c. will be

denoted

2.1.1 jc.= [Ja[a E I] where (1,3) is a totally ordered

index set and the indexing is one—to-one.

49
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”a. is the order type of jc. (see 0.1.2). We denote

a complete chain by (0,1) to indicate that I indexes

the jumps of c. as in 2.1.1, and the notation °c.= I

has the same meaning. Note that if °c.= Y is an ordinal,

then G. is a well ordered chain with Y-tl members.

We will note a simple fact about trivial algebras.

Let Q be the set of constants for T algebras.

2.1.2 If m has the comparison property and A,B E m,

then there exists m E ISO(algA(Q),algB(Q))..

Proof. Using the notation of 1.3.4 we have A g,A E‘m and

B g’B E m where A and B contain 2 subalgebras. Since

every 2 of T algebras extend 1 our conclusion follows.
Q)

In view of 2.1.2, if m has the comparison property we

will simply write 1 E m to indicate that ((2) E m, that

is, that n has a (unique) trivial algebra.

2.1.3 Definition of the Induced Chain CE. Suppose (Col)

is a complete chain and Bug Lb“ The chain (63,13) induced

23 E [pg 6. is defined by CE = [EI1X[X 6 c3 and IE =

{a 6 I[Er](Jd-J;) # d] (see 2.1.1). Note that GE is

also a complete chain.

2.1.4 Definition of a g-Local Chain for m. Suppose (CB1)

 

is an m—chain. we say that c. is a x-local gpgip,§p£, m

if jc.¢ ¢ and, for every subset S S,LB' with [S] < n,

we have S g M'Sw where GM is .an ”ff-chain and
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[1M] < n. The class 9; u-local chains for m will be de-

noted by CHfi(m), and we define c.e CH§”(M) iff 0'6

CHuUR) and [L13] 3 x.

The distinction between x-local chains for m and

m-chains is important if x = m, but otherwise is usually

unnecessary. In fact, we have

2.1.5 Proposition. If n > w is regular and m is u-local

and x-inductive, then every m-chain with at least one jump

is n-local for m.

The proof is similar to the last part of the proof of

1.3.12.

2.1.6 Definition of 0(cl,c2). If (31 and 02 are com-

plete chains, then 0(cl,c2) is the set of strictly order-

preserving maps from jcl into jc2.

2.1.7 Definition of Embeddings of Chains. Suppose (c1,I1)

and (62,12) are complete chains of T-algebras with jci =

[J;]d 6 Ii}’ n E 0161,62), and f is an embedding of Lcl

into Lb2. We say that f is an neembedding 2; cl into

. l l - 2 12 -

. I2 2 - _ l -
equivalently, f(Jd) g_ “(a) and f(Jd)r1(Jn(a)) - f((Jd) ).

. 1 _ 2
(n(a) e 12 is such that n(Jd) — Jn(a))' we say that f

is an embedding p§_ c1 into c2 iff f is an n-embedding

of 61 into (3.2 for some n e 0(c1,62), and that f is an

isomorphism 2;, c1 onto cs.2 iff f is an embedding of cl

into (:2 and re ISO(Uol,Uoz).
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2.1.8 Embeddings of Induced Chains. Using the notation

above, suppose E g Lbl is a subalgebra, T] E 0((61)E:02),

and fiedcl’02)' We will say that E is a extension
 

pf (extends) T] if, for every (1 6 (Il)E,‘fi(J‘]:-) = n(J€nE)-

Notice that if E 6 Cl’ then '3fi extends ‘n' has its usual

functional meaning.

gplpg_ Definition of a n-Injective Chain for m. J is a

n-injective chain for m iff

(_l_) .0 E CHM???) and

(g) Suppose 6 is an m<K-chain with [ja] < n, E glJa

is such that 6E is an m<“-chain, f is an.rrembedding

of 63 into J for some n E 0(63,J), and a E 0(6,J)

is an extension of n. Then, f has an extension to

an fi-embedding, f, of 6 into J.

We denote the class of n-injective chains for m by

INCHKm), and we define .0 e INCHiKUR) iff .,a e INCHnm)

and .a e CH§“(7R).

Notice that every initial segmenttxfa n—injective chain

for m is x-injective for m, that is, if J E INCH“(m)

and 1 71 M E .9, then JM 6 INCHKWI).

0ur isomorphism theorem for x-injective chains is a

direct analogue of the isomorphism lemmas l.3.7(a) and

l.3.6(b) for n~injective algebras.
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2.1.10 Isomorphism Theorem for n-Injective Chains. Suppose
 

m is n-local and n-inductive.

(2) Suppose GgJ E INCHifi(M): E $_LB is such that 6E is

an m<“-chain; f is an n-embedding of BE into J

for some n 6 0(B,J); and ,E E 0(6,J) is an order-

isomorphism of jB onto jJ which extends n. Then,

f extends to an fi-isomorphism of 6 onto J. i

(p) Suppose 6 E CH§K(m) and J E INCHn(m); E glJG is

such that BE is an m<k-chain; f is an n—embedding

of BE into J for some n E 0(6E,J); and fi 6 0(6,J)

 is an extension of n. Then, f extends to an

fi-embedding, f, of 6 into J.

This theorem has a corollary similar to l.3.7(b).

2.1.11 Corollary. Suppose m has the comparison property.
 

(g) Suppose 6,J E INCH§fl(m) and Y is an order-isomorphism

of jfi onto jJ. Then, there exists some y-isomorphism

of 6 onto J.

(2) Suppose 6 E CH§fi(M), J E INCHK(m), and Y E 016,J).

Then, there exists a: Y—embedding of 6 into J.

This corollary is an easy consequence of the Isomorphism

Theorem above and the definitions we have given. we can let

E = the trivial subalgebra of [J6 and let f be the 2

between E and the trivial subalgebra of LU which exists

by 2.1.2. This f is an n-embedding of ‘BE into J where

n = ¢, and so f extends to a Y-embedding by the Isomorphism

Theorem.
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If m has the comparison and n—local properties and

l t M 6 INJK(m), then the chain {1,M} is n—injective for

m. This is checked using the fact that M is n-universal

for m by 1.3.5 to obtain extensions of trivial maps.

If m has a n-injective chain with more than one
 

jump, we can show that m satisfies an amalgamation property

stronger than n—injectivity,

2.1.12 Definition of the Strong Amalgamation Property. m
 

has the n—strong amalgamation property (K—s.a.p.) iff, for
 

every m<y amalgam a, there exists M E m with afig M.

 
m has the s.a.p. iff m has the n-s.a.p. for all n Z.w-

2.1.13 Proposition. Suppose m has the comparison prop-

erty. If there exists J E INCHK(M) with [jJ] 2_2, then

m has the n-s.a.p..

Proof. Let J1,J2 6 3J With J1 < J2. Note that Jl S.J2-

B D

Let 0': \\v/ be any m<K-amalgam. The trivial map (an

A

¢Lembedding) extends to an embedding f: D 4 J1 such that

f(D-l)‘g J1-JI. We can assume A < B. If A = 1, there

is an embedding g: B 4 J2 such that g(B-1) g J2-J;

9(B) f(D) '

and hence the amalgam \\\V//’ copies a’ in J2 6 m.

1

If A # 1, then we have an m<“-chain 6 = [l,A,B] with

jumps A and B. fPA is an n-embedding of 6A into J

with n(A) = J1 and so, letting fi(A) = J1 and fi(B) = J2,
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there is an fi-embedding f of 6 into J. We have

f(B) f(D)

f(B-A) g JZ-J;

copies a in J2.

and so the amalgam

f(A) = f(A)

To construct n-injective chains for m, we need to

make an assumption much stronger than the s.a.p..

2.1.14 Definition of the Subamalgam Prpperty. Suppose

B c B0 Co

a = \\// is an amalgam. a' = ‘\\\/// is a subamalgam
0

A A
0

of 4' iff 30‘: B, Co‘s C, and Bof]A = Cor]A = A0.

m has the subamalgam property (s.p.) if for every m

amalgam a' as above, there exists M = algM(d0 E m such

that, for every m subamalgam ab g,a' as above,we have

619M(db)f]B = BO’ algM(ab)r)C = C0, and algM(ab) E m.

m has the subamalgam property with the descendance
 

conditionpjs.p.dp) iff m satisfies the definition of the
 

s.p. above with the extra condition that, for every chain

Ba Ca

{aa[a 6 S} of m subamalgams ab = ‘\\\/// of a, we

A
a

have FYalg (a’) = alg ( F[B , F[C ).

0163 M a M ass ‘3 ass 3

2.1.15 Existence Theorem for n-Injective Chains, Part 1.

Suppose m is a n-class, 1 6 m5", and m<n satisfies the

s.p.. Then

 



56

(g) (G.C.H.) If 1‘3 Y < x+ is an ordinal, then

there exists J E INCH§K(m) with °J = Y

(p) If x = w, and I is an ordered set with

1,3 [I] g.w, then there exists J E INCH§w(m)

with °J = I.

2.1.16 Existence Theorem, Part II. (G.C.H.) Suppose
 

n > w is regular, m is a x-class, 1 E m<“, and méx

satisfies the S~P.d. If I is any ordered set with

1 g [I] _<_ n, then there exists J 6 INCH? (771) with °J = 1.

2.1.17 Jonsson's Theorem for n-Injective Chains. (G.C.H.)
  

Suppose a 2_w is regular, m is a n-class, m<n has the

s.p., and, if n > w, m<“ has the s.p.d.. Then, there

exists g 6 INCH§”(m), which is unique up to isomorphism of

chains, such that if. 016 CH§fi(m), E gJJG is such that

CE is an m<n-chain, and f is an embedding of 3E into

p, then f extends to an embedding of a. into 3.

‘2£2g£. By Jonsson's Theorem (1.3.9) there is a n-homogeneous

universal order type v“ of cardinal n [1: p. 203]. Let

g 6 INCH§fi(m) be such that °g = vK by 2.1.16 or 2.1.15(b)

if n = w. New by 2.1.10(b) and n-injectivity of the order

type v”, g has the embedding property of the theorem.

To show that g is unique up to 2 of chains, let

J E INCH§”CM) be another chain with the property of the

theorem. If we show that °J = vx’ then 2.1.ll(a) will give
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the result. Put jJ = {Jala E I} and let T < I he a

subset with [T[ < n. we regard T as an ordered subset

of I. By 2.1.16 there exists a x-injective chain c. for

m with 00.: T, and since a. is n-local for m, there

exists an.m<K-chain. 6 with °B = T. Let n E 0(6,J)

and by 2.1.ll(b), let f be an n-embedding of B into J

and let g be any embedding of B into y. Now, by our

hypothesis concerning J, fg-l extends to an fi-embedding

of 13 into J for some a E 0(J,J) such that fi(j5) <

fi(jg). This shows that T is contained in a subset of I

of order type °g = Vn' It follows that the order type

°J is u-injective, and so, by l.3.7(b), °J = v“.

In order that x-injective chains be an adequate gener-

alization of x—injective algebras, it should be the case

that "most" members of x-injective chains are x-injective

algebras. This is not immediate from our definitions, but

we can prove it making use of the n-s.a.p. for m which

holds by 2.1.13.

2.1.18 Lemma. Suppose J E INCHK(M), J E jJ, A < B are

m<x algebras, and f is an embedding of A into J. Then

f extends to an embedding g of B into J such that

2.1.19 g(B) of = f(A) nJ‘.

2.1.20 Corollary. Suppose m has the comparison property,
 

J E INCHK(M), and M E J. If either M is a jump of J or

M does not equal the union of any subchain of JMf-[M] of

power <Lx, then M e INJfl(m).
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Proof of the Corollary. Suppose A < B are m<u algebras

and f is an embedding of A into M. Under either asump—

tion on M, there exists a jump J of J such that f(A) 3

J S.M- Now we can use 2.1.18 to extend f to an embedding

of B into J.

Proof of 2.1.18. If J = [1,J}, then a direct application

of x-injectivity of J shows that f extends to an embed-

ding of B into J (see the remarks following 2.1.11),

and 2.1.19 is trivial since J— = 1.

So we can assume [jJ] 2_2, and hence m has the

n-s.a.p. by 2.1.13. Since J is a x-local chain for m

and f(A) E m<“ there exists N glJJ such that f(A) g N

and JN is an m<K-chain. Since NrYJ e m<n we will assume

N g_J, and.we will enlarge N, if need be, to insure that

N ng_, so N E jJN and N- = NrWJ. Now ferm an amalgam

h(B) N

a= V where hef on A and let agMeWzQ‘

f(A)

by the u-s.a.p.. Let JN. be the chain obtained by replacing

N by M in JN. Since N is the last jump in JN, 3N

is anwm<”-chain with QJN'= °JN. ’Since lN is an

n-embedding of JN into J where n is the induced map,

by u-injectivity of J, 1N has an extension I such that

f is an fi-embedding of JN into J where a extends n

(see 2.1.8). ‘Thus f embeds M into J and, since fi(M)==

J and M- = N- = NrYJ-, 'we have f(M) g_J and f(M-NrwJ-)

g_J-J- (see 2.1.7). Considering the amalgam a; we have
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f(h(B) -f(A) of) g J-J‘, that is, fh(B) nJ’ = f(A) nJ"

since f E l on f(A). Hence 9 = fh: B 4 J extends

f and satisfies 2.1.19.

In order to apply our Existence Theorems and Jonsson's

TheOrem for u-injective chains we will note that many

classes of interest have the subamalgam property.

2.1.21 Proposition. If m is a free x-class, then m<K

satisfies the s.p.d..

The proofs of all the conditions of 2.1.14 follow

easily from the Normal Form Theorem for M = gp*(a) (1.2.2)

and axiom (iv) of a free x-class (1.4.20).

2.1.22 Theoppm. (G.C.H.) Let 3’ be the class of all

groups and let x > m be regular. Then, there exist

u-injective chains for Jr of arbitrary order types of

power .git. Every jump in one of these chains is isomorphic

to Ha (see 1.1.6).

This is immediate from 2.1.21 with m =.J, our 2nd

Existence Theorem 2.1.16, and 2.1.20.

Also note the following consequence of the Isomorphism

Theorem 2.1.10: If J 6 INCH§”(m), then every order-

automorphism of jJ is induced by some automorphism of

lJJ. Together with 2.1.22 and 2.1.20, this provides an

easy way to see that [Aut fix] = 2".
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§2.2 An Application of w-Injective Chains of Groups

we will apply the construction of u—injective chains

to classes of groups m of the following types.

 

2.2.0 (I) m is a free u-class, where n 2,w is regular,

and the infinite cyclic group 2 E m.

(II) m is the smallest inductive class containing

the subgroups of a fixed countable algebraically

closed group G such that the class of f.g. sub-

groups of G satisfies the subamalgam property,

Nete that such a class m is an w-class, and

M e m iff every f.g. subgroup of M is embed-

dable in G.

(III) m is the class of locally finite groups (an

w-class).

Note that the free w-class generated by the subgroups

of a countable f.e.p. group (see 1.4.21) is a special case

of both (I) and (II) by 1.4.19 and 2.1.21.

w

0ur application will be the construction of 2 1 non-

w

isomorphic HU@1(m) groups in each of these three cases,

with n = w in case (I).

we will first discuss the hypotheses (I) and (II), and

then develop the properties of w—injective chains needed for

the application.
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If m is a free n-class, the condition that Z'e m,

as in case (1) above, has considerable strength. It allows

free amalgamations over 2, and this permits the full use

of the HNN and free amalgamation constructions. In partic-

ular, the normal basis theorem and the maximal subgroup-

tree theorems of §1.2 can be proved for the unique group

U“ C HU2(m) where m is a free n-class and 2'6 m. We 2n

will not give the details of this, which are mostly obvious I

modifications in the proofs of §1.2, making essential use [

of 1.4.25(a) with A = B = 2 for the subgroup-tree theorem.

 Let us observe that the above groups UK are all simple. ,

This follows from the following easy facts: (1) Every non-

trivial normal subgroup of UK has an element of infinite

order; (ii) Every pair of elements of infinite order in

UK are conjugate in U“: and (iii) UK is generated by

elements of infinite order. The axioms of a free n-class

imply that Us is the union of groups which are non-trivial

free products, and the facts (i) and (iii) are easily de-

duced from this. For (ii), we must use 1.4.25(a) and the

axiom 2'6 m, as already noted.

These simple observations permit us to test the strength

of the axiom 2'6 m because there is a free x-class 3 such

that F e HU:(3) is not simple. Using the notation of

1.4.30, let F = F[ZZ] where [22] = 2. Recall that F E

HU$(3) where 3 is the smallest free w-class containing

22 which is closed under free amalgamations of its f.g.

members. ‘We can show, by induction on the classes In:
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co

n 2_0, (see 1.4.27), that, for every G 6 3<w = UBIh,

n:

there is a unique homomorphism e: G 4 22 such that

(T) ¢(x) # l for all x E G with [x] = 2. Clearly

such a homomorphism is unique because every In group,

n 2_0, and so every 3 group, is generated by elements

of order 2. Suppose there is a unique m satisfying ([)

for every G 6 Th. Now let G = gp*(a) E Ih+l where

B C

d’= \\// is a 15 amalgam. There are unique homo-

A

morphisms mlz B 4 22 and @2: C 4 22 satisfying (T), and

$1 and $2 have unique and hence equal restrictions to

A. Hence, by the universal mapping property of gp*(a),

$1 and $2 have a unique extension to a homomorphism

m: G 4 22, and m satisfies (T) because every element of

order 2 in G is conjugate to an element of B or C.

It follows that there is a unique homomorphism from F =

F[Zé] onto Zé (the uniqueness follows from the fact that

any two elements of order 2 in F are conjugate in F by

1.4.25(a)). Clearly the same result holds if we close 3

under free amalgamations of all 3 amalgams to obtain a

free x-class for all n.

The situation is more complicated if we consider F =

F[ZP] where IZPI = p is an oddprime because the only

abelian image of F is trivial. This is because F is

generated by elements of order p, any two of which are

conjugate in F, and so every element of order p in F
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is conjugate to its square, and hence is trivial in every

abelian image of F.

The class of algebraically closed groups described in

2.2.0(II), whose f.g. subgroups have the subamalgam prop-

erty, is a rather unnatural restriction on an a.c. group,

although it is surely a very large class. This restriction

is necessary to secure only the existence of w-injective

Chains - the actual properties of these chains will follow

from results provable for an arbitrary countable a.c. group,

such as the construction of maximal subgroups. I don't

know of any type of extension with the uniqueness property

of w-injective chains which can be defined for the w-class

of subgroups of an arbitrary countable a.c. group. There .

are ways to define chains of a.c. groups with properties

similar to w-injective chains by relativizing the injection

property to finite sets, but there are complications in this

which would require careful discussion beyond the ken of

this paper, and since an isomorphism theorem would be lack—

ing, the present application of w-injective chains to the

spectrum problem would not be possible.

we will now describe the special properties of K-

injective chains which permit the construction of non-

isomorphic homogeneous universal groups and give most of

the proof.

The single most important property of x-injective

chains in the three cases of 2.2.0 is the following.
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2.2.1 Maximality Theorem. Suppose m is a n-class of one

of the three types of 2.2.0, g E INCH“(M), and H is a sub-

group of L5 with J‘s H for some J E jg. Then H E g.

Theorem 2.2.1 asserts that n—injective chains 3 of

the types considered have a strong maximality property -

not only is J- maximal in J for every jump J e jg

with 1 # J_, but the only subgroups of Lg containing

J- are the members of g. This result requires different

arguments, but with similar themes, in each of the three

cases of 2.2.0.

We first give the lemma which applies if m is a free

u-class.

2.2.2 Lemma. Suppose m is a free u-class with 2 E‘m,

g 6 INCHK(m), and J < Jl are jumps of g. Put X =

[x E Jl-Jl' [x] = w and (x) n J; = l} and, for. all

x 6 X, put X(x) = [y E X[<x>*<y> exists in J1 and

(x,y) n J1= 1}. Then,

(3) For all x E X, Jl = <X(x)>.

(p) For all x,y E X there exists t e J such that

t'lxt = y.

(9) For all aEJl-Ji, we have <a,J>nX#¢.

2.2.3 Corollary. The Maximality Theorem holds if m is

a free n-Class with 2'6 m.
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Proof of the Corollary. (Refer to 2.2.1) For every jump

J of g with J < J1 and H n (Jl-Jl) #91, the three
1

parts of 2.2.2 imply Jl g H since J g H. Hence H is

the union of members of ,9 and so H E 51.

Proof of 2.2.2(a). Suppose x E X. Let u 6 J1 be any

element of infinite order. Since m is a free n-class we

can use axiom (iv) of 1.4.20 to find G e m<” such that

u E G and there exist c,d e-G such that [c] = [d] = w,

u=cd, and c and d generate <c>*<d> in G. Let

A E 71¢<K be a subgroup of J1 such that <u,x> g A.

Since 2 E 771, we can use l.4.20(iv) to obtain

' G A

9P*(d) 6776“ where d= V . Note that in gp*(a)

< u >

we have

2.2.4 <c,x> n A = <d,x> n A = <x>

by the Nermal Form Theorem 1.2.2. By Lemma 2.1.18, there

is an embedding 9: gp*(a) 4 J1 with g e 1 on A and

g(B) 0J1 = AnJI. It follows from 2.2.4 that <g(c),x> n

Jig<g(c),x>nAnJig<x>nJi=1 since x EX. Since

c and x generate < c) *<x> in gp*(a), this proves

that g(c) E X(x). Similarly, we have g(d) 6 X(x). This

implies u = g(c)g(d) e <X(x)>. Since Jl E INJKW) by

2.1.20, J1 is generated by its elements u of infinite

order. This proves that Jl = <X(x) >.
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Proof of 2.2.2Lb). Let x,y E x and put H = (x,y).

Since 3 is a n-local chain for m, there is a subgroup

G<J

<11

1 such that HgG, Gn(J-J-) 7(9’, and 36 is an

772 -chain with [MG] (11.. Let cpe ISO(<x>,<y>) be

such that m(x) = y. By 1.4.25(a), the HNN extension

ch = <G,t> g M for some M E 775“. Note that (96 has a

maximum jump G and G- = G nJl Britton's Lemma (1.2.3) I.“

implies that <t> and G_ generate <t>*G- in ch :

since (x) n Jl = <y> n Jl = 1. Put ng = {Gala 6 16}

where jg = [Jam 6 I} and Go = GfiJa for all a E IG

 as in 2.1.3. For all a E I if J 3 Jo. < J1, define
G)

Mo. = <t’Ga> 2 <t>*Ga 6 775” since 2 6 772: and, if

‘
3
'

.
1
3
1
1
.
3
:
-

Jo. < J, define Mo = Ga’ Define G to be the chain whose

jumps are jc = [Mama 7! G} u [M]. Thus, M is the maximum

jump of G and M‘ = U[Ma[Ga a! G} = <t,G'>. Note that

(96 = CG since, for all a 6 I for which Ga 9‘ G, we have
G

< t’Ga> r16 = Ga again using Britton's Lemma. Let 7‘! map

the jumps of ‘96 to the jumps of ,9 which induce them,

that is, for all a e I u(Ga) = J where Gd
6’ a

Let 1"] be the extension of T) to jc, so that Ema) =

GnJa.

MG“) for all a E I with Go a! G, and 'fi(M) = J1. Since
G

1G is an n—embedding and ,9 is a n-injective chain for m,

1G extends to an fi-embedding f: M 4 U51. Since G n

(J-J-) 7! {5, there is some a 6 1G such that fi(Ma) = J;

hence f(Ma) S J and since t 6 Ma’ we have f(t) E J and

f(t)-1xf(t) = y since f a 1 on G. This proves part (b).
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Proof of 2.2.2(c). Let a E Jl-J1. Since 9 is a n-local

chain for m there is a subgroup G < J1 such that a e G,

- . (u, . . .

Gr](J-J ) # ¢, and 96 is an m -chain with [396] < u.

Let M =p< t) *G where [t] = (1). Thus M 6 771. We define

c,n, and B in a manner identical to the proof of part (b),

and obtain an fi-embedding f:M “-LW' Since fi(M) = J1, we

have f(M) < J1 and f(M) nJI = f(M") = f(< t,GnJ'1'>) =

<:f(t),Gr)J1> since f 2 1 on G. Since a 6 J1-J;

and <t,G> = <t>*G, we have (at) n <t,GnJI> = l, and,  
applying f, we have <af(t)> nJ; = <af(t)> n (f(M) “‘11) =.

 

<;af(t)>’n<;f(t),Gr)JI> = 1. Hence af(t) E X. Since

f(t) 6 J (as in part (b)), we have af(t) 6 <aiHJ> and

so <a,J> n X 51¢, proving (c).

We next give the lemma pertinent to the proof of

2.2.1 in the case 2.2.0(II).

2.2.5 Lemma. Suppose G is a countable a.c. group and

m is the inductive closure of the class of subgroups of

G, so that M e‘m iff every f.g. subgroup of M is embed-

dable in G. Suppose that g 6 INCHw(M) and J < J1 are

jumps of ,9. Put X2 = {x 6 Jl-Jll [x] =2]. Then, the

following conditions are satisfied.

(p) For all x,y 6 X2, there exists t 6 J such that

t-lxt = y, and

(9) For all a 6 J -J1, <a,J>nX2 a! e.
1
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2.2.6 Corollary. The Maximality Theorem holds if m is

the w-class generated by the subgroups of a countable a.c.

group whose f.g. subgroups satisfy the s.p..

The proof of this corollary is similar to 2.2.3..

Lemma 2.2.5 will be proved in §3.3.

The next lemma proves the Maximality Theorem in the

third case of 2.2.0.

2.2.7 Lemma. Let m be the class of locally finite groups.

Suppose g 6 INCHw(m) and J < J1 are jumps of 9. For

every natural number n 2_2, let Xn = [x E J1-JI[[Jc[= n

and <J<> n J; = l] and, for all x E Xn, let Xn(x) =

[y 6 Xn[<:y,x)»n J; = 1}. Then, for all n 2_2,

(a) For all x 6 Xn, Jl = <Xn(x)>,

(p) For all x e Xn and y e Xn(x), there exists t E J

such that t‘lxt 2 y, and

(2) For all aEJl-JI, <a,J>an7¥¢.

2.2.8 Corollary. The Maximality Theorem holds if m is

the w-class of locally finite groups.

The proof of this corollary is similar to 2.2.3.

we will note here that the class of finite groups has

the s.p.. This can be proved using B.H. Neumann's permu-

tational product construction [16]. ‘We will give the

details of this in §3.2. Hence, our lst Existence Theorem

(2.1.15(b)), together with 2.1.20, imply
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2.2.9 Proposition. For every countable ordered set I,
  

there exists 3 E INCH§w(£.f. groups) with ”y = I. Every

non-trivial member of y is isomorphic to the (unique)

countable ULF group Hw e INJw(£.f. groups) (see

l.l.6(ii)).

The proofs of parts (a) and (c) of 2.2.7 will be de—

ferred until §3.2 because they involve special amalgamations

of finite groups.

H
'
h
"
.
A
-
u
i
.
“
i
l

.7

Proof of 2.2.7(b). Let x e Xn and y e Xn(x). Since

o
.
’
.
I
-
-
m

[x] = [y] = 11, there is a finite group G = <x,y,t> such  
that t'lxt = y (see the proof of 1.1.9) and we can assume

WLOG that < t) n<x,y> = 1, otherwise we can form a

holomorph to accomplish this. Let 6 = [1,< t>,G}, E =

<:x,y>, and u(E) = J1. Thus, IE is an n-embedding of

6E = [1,E} into 9 since E < J1 and ErWJI = 1. Define

fi(< t>) = J and fi(G) = J1. By x-injectivity of g, 1E

extends to an fi-embedding f of 6 into 9. Hence

f(t) 6 J and f(t)-1xf(t) = y as required.

In order to use the Maximality and Isomorphism Theorems

w

for n-injective chains to construct non-isomorphic HUwICm)

groups, one more fact is needed.

2.2.10 Inductive Property_for INCHw(M). Suppose J is

an m-chain with jJ 7! g! and, for all J 6 jJ, JJE INCHwOR).

Then J e INCme).
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Proof. Refer to 2.1.9. Since a = w, the chain '6, which

‘we are required to embed into J, has only finitely many

jumps. Hence, h(jd) < JJ for some J'e jJ and the re-

quired embedding f exists because JJ is w-injective

for m.

It is the failure of this inductive property if n>(g

that prevents the direct use of the following method to

+

construct non-isomorphic HU: (m) groups if m is a free

I
‘
m
.

K
I
L
H
T
J
I

i
A

.
t
!

x-class with 2'6 m.

2.2.11 Definition of n—Initial Chains. J is a n-initial  ¢
o
n
.

)
4
.
-

i

we); 71 iff g e INCHKUR), [jg] = ,3, and, for all

J 6 jg, gJ e INCHi’W/z). We denote the class of x-initial

chains for 77: by INTLKUR). If g 6 INTLKUR), then °9

is an order type of power x+ such that every initial seg-

ment of °g has power Sji. Such an order type will be

called a n-initial order type. The most familiar example

of a u—initial order type is the ordinal u+.

2.2.12 Theorem. Suppose m is an w-class, ‘m<w has the

s.p., and I is an w-initial order type. Then there

exists g E INTLw(m) with °g = I.

Proof. This is a direct consequence of the Existence and

Isomorphism Theorems 2.1.15(b) and 2.1.11(a), and the in-

ductive property 2.2.10. If a 6 I, let I(a) = [YeI[ygd}.

Suppose S < I is a countable union of sets of the form
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1(0), a E I, and we have constructed 3(8) 6 INCH§w(m)

with jg(S) = [JYIY e S}. Let 6 e I-S. we claim that

2.2.13 The chain g(S) is contained in a chain g(B) 6

INCH-:Wm with ham) = {JYIY s B}.

3522;. By 2.1.15(b), since [1(5)] g.w, there exists

J 6 INGH§w(m) with °J = 1(B), say jJ = [PY[Y g B}. Let ?*

J(S) be the complete subchain of J with jJ(S) =

[PY[Y e 3}. Thus, J(S) e INCHiwcm) and °J(S) = 3. By

2.1.11(a), letting y(PY) = J for all Y e S, there isY

an isomorphism f of J(S) onto 3(8) such that f(Py)==  '
fl
l
.
‘
{
P
A
1
.
!

'
2
'

e
'

JY for all Y e S. Clearly f can be extended to an

isomorphism f with domain lJJ. For all a E I(B)-S, we

define Jd

If ---Bn < fin+l"' are members of I and chains

f(pa) and 2.2.13 follows.

w . . _
g(Bn) E INCHE (M) w1th 33(Bn) — [JY]Y S-Bn} have been

constructed for all n.2_1, then the inductive property

2.2.10 guarantees that J(S) = U g(Bn) 6 INCHS‘” (7):). Note

uzl m

that jg(S) = [JY]Y 6 S = L]I(6n)]. Hence the construction

n21

can be continued to obtain chains g(B) E INCH§w(m) for

Hall B E I with jg(fi) = [JYIY g_B] since [I] = wl. Now

3 = U{J(B)]B E I} E INTLwUfl) with °oq 2 I Since 3'3 =

{JBIB E I], and this completes the proof of 2.2.12.

we next consider the conditions under which two groups

possessing w-initial chains can be isomorphic.
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2.2.14 Lemma. Suppose m is an w—class which satisfies

the Maximality Theorem 2.2.1 and J,g 6 INTLw(m) with

UV 214g. Then, the order types °J and °g are "eventu-

ally isomorphic“, that is, there exist a 6 °J and B E °g

such that the ordered sets {y E °J|Y 2_a} and [Y E °g|

y 2_B} are order—isomorphic.

Iggggfi. Let f E ISO(LU,U@). We will first show that, for

some 1 ¢ 3 E J, we have f(i) e g. For all J E jJ, there

exists g(J) E jg such that f(J) g_g(J). Likewise, for

all J 6 jg, there exists h(J) e jJ such that J'g f(h(J)).

This follows from the facts that all jumps of' J and g

are countable and |jJ| = |jg| = wl. Let J E jJ and put

J = (hg)n(J) and 3: UJ. Thus 36.0 since .a is
n n

n21

. n n+1

a complete chain, and Ll(gh) g(J) g_lJ f(hg) (J)) 3

ago n20

U (gh)n+lg(J), which implies £(3) e g.

n29

Since m satisfies the Maximality Theorem 2.2.1, f

must induce a one-to-one correspondence between the chains

{H E J|3 g.H} and {K E g|f(3) 3 K} since these chains

are the entire subgroup lattices above 3 and f(3). This

correspondence clearly induces a correspondence between the

jumps also; so if jJ = {JYlY 6 OJ} and jg = [PY'Y 6 03}

and we choose a e °J with 3‘3 Jd and let 6 6 °g be

such that f(Ja) = P5’ the conclusion of the lemma is

immediate.
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2.2.15 Lemma. There is a set 9 of power 2 l of

w-initial order types such that no two distinct members

of Q are eventually isomorphic.

Egggf. Recall that wl equals the setcxfcountable ordinals.

Let %- be the set of functions f with domain wl such

that, for every even a < wl, f(a) = the order type of the

rationals and, for every odd a < wl’ f(a) is a countably

infinite ordinal. If f E w, let Ord(f) be the set of

ordinals in the range of f.  

Let f E T; We define the order type n(f) = Z)f(a).

a<wl

n(f) is the order type obtained as the well—ordered sum of

 

the order types in the range of f. It is immediate that

h(f) is an w-initial order type and that the set Ord(f)

is uniquely determined by n(f).

Now there is a subset T of the power set of wl-w

w

1, (ii) For all S E r, |S| = wl’ and’such that (i) |F| = 2

(iii) For all S # T E T, Sij is countable. The existence

of r follows from the useful theorem of Sierpinski [23:

p. 451]. For each S 6 r, let fS E w- be such that

Ord(fS) = S, and define Q = {n(fs)|S E F]. Suppose S #

T E F and n(fs) and n(fT) are eventually isomorphic.

Since the ordinal segments of these order types are uniquely

determined, it would follow that S and T differ only by

a countable set of ordinals, contrary to (iii).

2.2.16 Corollary. If m is an w-class, m<x has the

s.p., and m satisfies the Maximality Theorem 2.2.1, then
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w w

HUw1(m) contains 2 l mutually non-isomorphic members,

each possessing an w-initial chain for m. In particular

m can be an w-class of any of the three types of 2.2.0.

The proof is immediate from the last three results

and the Maximality Theorem 2.2.1, 2.1.21, and 2.2.9.

we will next consider the effect that a x-injective

—
-
v
! 1:

chain g has on the possible automorphisms of’ LU- We

have seen already, in the proof of 2.2.14, that the Maximal-

ity Theorem places a restriction on the automorphisms of

L& since, whenever a 6 Aut(LW) and g(J) = J for some

 
crejg, then every member of g containing J is also in—

variant under a. In the three cases of 2.2.0, there is a

much stronger condition which limits the automorphisms of

U52.

2.2.17 Theorem on Uniqueness of Automorphisms. Suppose m

is a u-class of one of the three types of 2.2.0, g EINCHK (771),

and J E jg. Then, for all a e Aut(bm), if a E l on J,

then a = 1L”. Thus, every automorphism of UW is deter-

mined uniquely by its action on any jump of g.

we will prove 2.2.17 here in the case that m is a

free n-class with 2'6 m, postponing the other cases for

53.2 and §3.3.

Proof. Suppose that a 6 Aut(LW) and, for some J 6 jg,

a a l on J. Suppose, further, that J1 E jg with J<1Jl.

we will prove
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2.2.18 For all erl-J; with |x| =w and <x>nJi=

1, we have a(x) E (x).

In the notation of Lemma 2.2.2, this implies that d(x) 6

<x> for all x E X. Thus, by 2.2.2(a), we have (1(2) 6 (z)

for all z lying in the free subgroup <x> *< y) for all

x e x and y e X(x), and this implies that u(x) = x be-

cause if u(x) = x1, then we have both u(xy) = x1a(y) =

J and a(xy) = (xy)k for some j,k E 2, which is impos-
i

X Y

sible unless i = j = k = 1. Thus, u(x) = x for all xeX.

Since Jl = <X> we have a 1 on J1, and, since Jl is

arbitrary, a = 1 .

Us?

To prove 2.2.18, we first apply the x-local chain prOp-

erty of g to obtain G E 775” such that <x,a(x) > g G < J

<n

l

and gG is an 772 -chain with [ng| < x and Gn (J—J-) 7!

9’. There exists H e 7110‘ such that < t>@<x> g H where

|t| = 0.) because the group <t>e<x> is the HNN exten-

sion of (x; with cp(x) = x (here we have used the hypoth-

esis that 2 E 7/7 and 1.4.25(a)).

H G

Let 4= V - Thus, 9P*(d) =M6772<“.

<X>

Since <x> nJI = l, the Normal Form Theorem (1.2.2)

implies that < t) t (G nJi) exists in M. This allows us

to define the chain a, the embeddings n and fl, and the

fi-embedding f: M -v J1 which extends 16 in a manner iden-

tical to the proof of 2.2.2(b) (p. 66, lines 11-24), and we

conclude, as there, that f(t) E J. Thus,

 

H
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2.2.19 a(<x,f(t)>) = <a(X),af(t)> = <a(X),f(t)>-

Since f s l on G, we have f(x) = x, and so <x,f(t)> e.-

<x,t> = <x>e<t>. 0n the other hand, if u(x) 2’ (x),

then t does not commute with a(x) in gp*(d) and

2.2.19 is impossible. This proves 2.2.18.

We can use 2.2.17 to obtain some information about

the automorphism groups of the groups of 2.2.16, which pos-

sess w-initial chains.

2.2.20 Corollary. Suppose m is an w-class of one of the
 

three types of 2.2.0 and J 6 INTLw(m). Put G = LU and,

for each J 6 jJ, put A(J) = {a 6 AutG|a(J) = J}. Then,

(i) For all J E jJ, A(J) is isomorphic to a subgroup of

AutJ, (ii) For all J < Q 6 jJ, A(J) gam), (113;) AutG =

IJ{A(J)|J E jJ}, and (i!) lAutG‘ g_2w; so, if the Continuum

Hypothesis holds, we have |AutG| = wl = IGi.

Proof. Conclusion (i) holds because, by 2.2.17, for all

a 6 A(J), a is the unique automorphism B of G such

that B a on J; conclusion (ii) is a consequence of the

Maximality Theorem; (iii) holds because, for all a 6 AutG,

we have u(J) = J for some J 6 jJ (see the proof of

2.2.14); and (iv) follows because, for all J E jJ, we have

J 6 HU$(m), IJ} = w, |AutJ| = 2w, and, hence, |AutG| g

wlzw = 2m.

 



CHAPTER III

EXISTENCE AND SPECIAL PROPERTIES OF n-INJECTIVE CHAINS

§3.l Proofs of the Existence and Isomorphism Theorems.

Proof of the Isomorphism Theorem 2.1.10, p. 53.

we will give only the proof of part (a) since the

proof of (b) is an easier application of the same idea.

The proof of part (a) is a standard back-and—forth

argument, similar in outline to the sketch on p. 19 of the

proof of the Isomorphism Lemma 1.3.6. But, since there is

more structure in the present context, we will give most

of the details.

Referring to the hypotheses of part (a), let B =lJB,

C =(JJ, and) jB = {JdIa E I}. Note that 6 and J are

order-isomorphic since jB and jJ are. We will first

prove

3.1.0 If [jal 22, then [B] = x = ]C|.
 

Proof. we have [B|,‘CI g u by simple cardinal arithmetic

since 55J E INCH§”(m) (see 2.1.9). To obtain the reverse

inequality, note that the class MPB (see 1.3.11) has the

77
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comparison property and B 6 INCHK(mPB). Hence, by 2.1.13,

if |jB| 2_2, mrB has the x-s.a.p.. We can therefore use

an argument similar to the proof of 1.4.22 to show that

m“PB ¥'¢, which proves 3.1.0.

If [3'31 = 1, that is, a = {1,3}, then B,C e INJi‘Km)

and, in this case, the Isomorphism Theorem follows from the

Isomorphism Lemma 1.3.6. So, we can assume that |j6| 2.2

and, by 3.1.0,

 

 
 

Let cf(u) = the cofinality of n = the smallest car- ”i

dinal 0 such that n is the union of 0 sets, each of

power < u .

Beginning with E = E and n = (see the hypoth-
o 7‘o

eses of 2.1.10(a)) we will construct a chain {EYIY < cf(n)}

of m<n subalgebras of B and a Chain of embeddings fY:

EY a C such that each BE = BY is an m<“—chain and each
Y h

f is an -embeddin of B into where O ,Y nY g Y J nY 6 (BY J)

is the (unique) restriction of E, that is, putting jBY =

{EYflJala 6 IY} where 1Y = {a e Ijsyn (JO-JO.) # 9’} (see

2.1.3 and 2.1.8),

3.1.2 f r 11 a I , J = - ._____. 0 a E Y nY(EYfl a) n(Ja)

The pairs (Ey’fy)’ Y < cf(n), are defined inductively.

Assume they are defined for all B < y.

If Y is a limit ordinal, we put EY = U{EBIB < Y}

and fY =lJ[fBlB < y}, and we check easily that
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IY = LQIBIB < y} and that fY is an ny-embedding of BY

into J. This last fact asserts that fY(Eyr1Jd-E {WJ;) g

Y

g(Ja) -'fi(Ja)- for all a 6 IV, and this follows from the

similar inclusions which hold for all (EB’fB)’ B < Y. BY

is an.m<u-chain by the n-inductive property of m and the

fact that Y < cf(n).

If Y = B-+l, then we must enlarge EB to EY by f“

adding certain elements of B. This can be done in any way

we choose; namely, if S is any subset of B with [S] < u,

then, by the u-local chain property of B for m, there

 exists BY < B such that EfitJS S'EY and .BY is an L

m<n

both restrictions of a), the u—injectivity of the chain J

-chain. Since “Y is an extension of “6 (they are

for ‘m guarantees that fB has an extension to an nY-

embedding, fy, of BY into J. During the construction we

must be sure that two conditions will be met, namely,

3.1.3 B = may” < can} and
 

 

3.1. = .4 c U{fy(EY)'Y < cf(n)}

If these hold, we can define f =lJ{fle < cf(x)} and check

easily that f is an fi-isomorphism of 6 onto J.

we can choose the "enlargement sets” S mentioned above

so that 3.1.3 is met precisely because |B| = u (see 3.1.1)

and, so, B can be exhausted in exactly cf(n) steps. Con-

dition 3.1.4 is met in a similar manner by reversing the

roles of 6 and J at alternate steps of the construction

so that E51 is extended to f;1 and fy(Ey) is an
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arbitrary enlargement of fB(EB)' This completes our proof

of 2.1.10(a).

Proof of the Existence Theorems for n-Injective Chains 2.1.15

and 2.1.16 (pp. 55 and 56).

The construction of an m algebra possessing a

n-injective chain for m is completely analogous to the

construction of a n—injective algebra for m outlined on

pp. 22-23. There are two essential components. The alge-

braic component asserts that a partial chain obtained at

some stage of the construction can be extended to permit a

given injection, and the set-theoretic component asserts that

the number of required injections does not exceed the car-

dinal of the algebra under construction (which equals the

number of available steps). we will present these components

in the next mo lemmas.

In the case of Jonsson's Theorem, the algebraic compo-

nent is an immediate consequence of n-injectivity, but, in

the case of u-injective chains, we need a special amalgamation

procedure for chains which depends on the subamalgam property.

3.1.5 Lemma (Amalgamation of Chains). Suppose

(i) in, c 6 CH“ (772“) :

(ii) jfi = {Bald 6 X1} and js = {Ca|a 6 X2} where

X = lesz is a totally ordered set;

(iii) E glJm is such that ”B is an M(u-chain and, putting

Ea = Ethd and E; = Erng, ‘we have XE = {a 6 x1}

Ea-E; 2’ $5} S x2; and
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(i!) f is an n-embedding of mE into a where n L

(Mars) is induced by the identity on XE’ that is,

for all a E XE, f(Ea-Ea) 3 Ca- Cd'

Further suppose that either

(Y) X is well ordered and 77g<K has the subamalgam

property'gr

(L71) 7/7“t has the subamalgam property with the descendance

condition.

Then, there exists 21 6 mix (7710‘) such that

(_l_) j») = {Aala e X},

(_2_) L5 3 U91 and, for all a 6 X2, C
a'ca SAG-Aa’

(_3) f has an extension to an fi-embedding, f, of s into

21 where 1?] 6 0%,”) is induced by the identity on

X1, that 1s, for all a 6 X1, f(Ba-Ba) g Ac-Aa .

Proof of 3.1.5. We can assume WLOG that $8 and (5 form

UEUS

an amalgam a = \/ and that f = 13' This implies

E

For all a E XB’ Emma-Ba) = Emma-Ca):

3.1.6 For all a 6 X1, Ban (Us) Burns; and

 

For all a 6 X2, Ca n (Us) CafflE.

The chain 21 is obtained from the amalgam a by

direct use of the subamalgam property: Let M 6 7f” be

such that M = (4) and M satisfies the definition

2.1.14 of either the s.p. or the s.p.d. depending on our

assumptions (v) and (vi) respectively. We define the



subgroups Au

For each a E X, let

and Au

3.1.7
 

O
)

w
>

Q
Q

and note that

A

then B3.1.8 1’ aIf a E X

A

If a e X then Ca
2)

A

For all a E X, Ba 6

We define, for all a E X,

3.1.9 Ad = algM(Ba, Ca ),
 

3.1.10 A =

 

of M and the chain u

= U{C6'a Z 5 6 X2},

FalgM(B;, Ca )

a algM(Ba,

A - .

KalgM(Ba,Ca) 1f a E X

as follows.

= LKBBIa 2_B 6 X1} and

Ca; and

A

and Ca 6 a.

if a 6 X1--X.2

Ca) if a e Xlnx2

2 - X1, and

3.1.11 ”0 = [Au'a e X}LJ{A;|a e X} and

u = the complete chain consisting of all unions

and intersections of subchains of m.

From 3.1.8 and the s.p., we have,

- <1
Aa,Ac E m Notethat a<BEI

for all a E X,

Au $_Ag.implies

we will note the facts which permit the use of the

subamalgam property.
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A A

8a\\\\///Ca

3.1.12 For all a E X, ab = A is a subamalgam

E

a

of a where Ba = U{EB[C1 2 B 6 XE} E 776".

This is immediate from 3.1.6, 3.1.7, and 3.1.8.

 

_ A 1

BaVCa

(a) If a E X -X , then
1 2 A

Ea.

' ’13 c"

a\/ a '(b) If aex-x,then 15a
2 l A

E sub-

0

éélélé B- C- > amalgam

a‘\\v// a

of a;
(c) If a E (Xlr1X2)-XE, then A

EC!

B0. CO

(d) If a. 6 :55, then V

Ea J

The proof in the three cases (a), (b), and (c) is identical

because, in these cases, a Z'XB implies that either

BarlE = Barns or CarjE = Cafjfi (or both in case (c)) and

the conclusions hold in view of 3.1.12 and 3.1.8. In case

(d), we have directly that E; = EIWB; = Brno; (by 3.1.6);

o o _ - - A

in this case, note that Ed < Ea - ErWBa - Ea'

We can conclude immediately from the s.p., 3.1.9, and

3.1.12 that
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II

U
3

0
)

1
3

C
L

3.1.14 For all a 6 X1, AarlUJh)

2. AarwflJt)

ll

0For all a E X

From 3.1.10 and 3.1.13, we likewise have

O
I

9
w
!

9
.

.

3.1.15 For all u 6 x1, A‘r1(Lm)

For all a 6 x2, A-rlUJE)

Taken together, 3.1.14 and 3.1.15 imply

3.1.16 For all a 6 X1, Ba"Bd g_Aa-Aa; and

For all a 6 X2, Ca-Ca g_Aa-Au.

.Thus, the Conclusion (2) of 3.1.5 holds, and so does con-

clusion (3) if we define f = HJE' Also note that 3.1.14

and 3.1.15 imply that, for all a e x, (A;,Au) is a jump

of u.

we must yet show that.conc1usion (1) holds; namely,

that every jump of u is of the form (A;,Aa) for some

a e X. First note that

3.1.17 For all a e x, A; = LKABIG > B e X},

which follows from the facts that, for all a 6 X1,

Ba =|J{BB‘G‘> B 6 X1} and the analogous fact for Ca'

Also note that M = U{Aa|a. E X} since M = (4). Now, if

X is well ordered, conclusion (1) is an immediate con-

sequence of 3.1.17.

So, we must attend to the case in which assumption (vi)

holds (the descendance condition (d.c.) - see 2.1.14) and

X is not necessarily well ordered. From the d.c. we have
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3.1.18 For all a E X, Ac = FWAéIG < B E X},

which is the dual of 3.1.17.

Suppose S is a subset of X and I = {Acid 6 S}.

We will prove

3.1.19 If I does not have a largest member,_then either

UT = A; for some T e x or

UT 4-

rflAYlY 6 8+} where S = {Y E X|Y > a for all 0653}.

This will show that v has no jumps besides (A;,Aa),

a E X: Suppose (J_,J) is a jump of a such that J- #

 A; for all a E X; then we also have J- #‘Aa for all

a E X for, otherwise, 3.1.18 is contradicted. Hence

J— g'qo (see 3.1.11) and so

3.1.20 J- =IJU where I = {Aa|a E X and Au < Jr}

because m is the completion of mo. Since 3.1.20 contra-

dicts 3.1.19, it will indeed suffice to prove 3.1.19.

To prove 3.1.19, assume I = {Aala 6 S} has no largest

member and put S1 = xlrws and $2 = erjS. We can assume

WLOG that

3.1.21 LU = LKAle E 81} and, hence, Sl has no largest

member.

We define

c
: l

"' U£BYIY 6 $1}:

N
<

2 = {p e lep le for some Y 6 81},
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V

V = U{CH)U 6 X2},

+

S1 = {a 6 X1}a > Y for all Y 6 SI},

V+ V

X2 = {B E X2|B > Y for all Y 6 X2}

{B E X2|B Y for all Y e 31}, and

\
/

D II

+

2 {B E X2|a < B < Y for all a 6 S1 and Y e 31};

and we note that

_3_-_l_-_2_2_ U? = <U,V>.

‘We will check that 3.1.19 holds by considering the

following three sets of exhaustive cases.

3.1.23 (1) A2 d and (2) A2 # ¢.

3.1.24 (i) U = B; for some .a 6 X1.

In this case, a is the smallest member of S

(ii) Otherwise.

In this case, since U cannot be an upper

member of a jump of m by 3.1.21, we have

.1.

U = niBYIv 6 81}.

3.1.25 (a) V = C5 for some B 6 X2.

This is the case iff B is the largest member

V

of X2.

(b) V = CB for some B 6 X2.

In this case, B is the smallest member of X3.

(c) Otherwise.

v

In this case, we have V = F[Culp 6 X3}.

 



The following table shows the status of LU

sible case, and 3.1.19 is

87

readily checked from it.

in every pos—

 

 

 

 
 

 

     

(l): (2): A2 7! ga’

A2 = ¢, (a): (b):_ (C)t

V = C£3 = C6 OtherWlse

(1):

UI _ A_ w LIT Lxr

U = Ba a

(ii): (JT =

Other- _ _

 

the that, because of 3.1.21, we have SI 3.8+ and Az‘g

V+

x2
g_s+, and so 3.1.19 does follow in all cases.

We will discuss only one case here since they are all

quite similar.

V

largest member of X2,

that A

Y

= <U’CY>

In the case (2)(a) we have

and A2 #’¢.

(see 3.1.7-9).

(I) B has an immediate successor, T,

V:

For all Y 6 A2,

in X2;

CB: E =

note

we consider two cases:

evidently

'r 6 A2, CB = C1" and hence U? = <U,V> = <U’CB> = A,r

(see 3.1.10), and (II)
2

has no smallest member; in this

case, C6 = Fficle 6 A2} = Fficle E A2} since C6 is not
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the lower member of any jump of a as in the previous case,

and so UT = <U,V> = <U,CB> = fl{A;|Y 6 A2} by the d.c..

This completes our proof of Lemma 3.1.5.

The set-theoretic component of the construction is

given by

3.1.26 Lemma. Suppose X 2_w is regular and that the
 

G.C.H. holds if x > m. Let (s e CHKUIZO‘) and let x be

the class of all amalgams

U58 US

a = \\\\/// such that

(l) E $,LE is such that GE is an m<“-chain and m e

 

CHn(m<”) satisfies the hypotheses of Lemma 3.1.5 with

f = 13; and

(2) XlLJX2 = X's I where I is a fgxed totally ordered

set of power n.

Then, there are at most a s-isomorphism classes of

X amalgams where the amalgams a1,ab e X are §:isomorphic

. _ o __Q _ . .
lff E1 - 32, $1- $2 — X1, and there IS a function g of

II
I

41 onto ab such that g 1 on L5 and g a some

IXi—lsomorphlsm of 81 onto 32 on (J31.

grggfi. we will contrast this computation with that used in

Jonsson's Theorem.

First we will give the pertinent definitions and facts

from cardinal arithmetic. Suppose x and o are infinite

cardinals and U is a set of power a.
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w H N \
l

"
U

C
'
.

V

II the power set of U;

P<n(U) = the set of subsets of U which have

power <.x;

n<0 ==ZKnA|x < 0}, and, hence,

<n‘_
2 _ — [P<n(U)|.

If the G.C.H. holds when K > w and x 2,w is regular,

then

3.1.28 a = 2<“ = “<“.

In proving Jensson's Theorem we must count the number

B C

of C-isomorphism classes of m<x amalgams \\// where

E

C is fixed and E and B are variable. Since the ele—

ments of B can be chosen 'WLOG from a fixed universe U

of power a, we can count the isomorphism classes as follows.

Bound for the
 

Object Chosen f of Choices

(1) E 6 NC) 2<" = n

(2) BEP (U) 2<"=n
<u.

(3) Q = the set of finitary

operations on B |P(B<w)|<” g K<u = n

The computation (3) assumes that n > m: if a = w, the

hypothesis that m<w has $40 members up to a is used.

Also, if x = w, instead of choosing E in (1), we choose

a finite generating set for E.
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Thus, the total number of choices is at most 23 = n.

In proving 3.1.26 we must also choose X1 6 P<n(I)

to index the jumps of m, and, for every a e Xi, we must

choose B and Ba 6 m<n to be subalgebras of B. Note

that if n = w, then ljfi' < w because Lm E m<w and m

is an w—local chain. Thus, our count proceeds as follows.

Bound for the

  

Object Chosen # of Choices

(1) E 2“ = x

<n =
(2) IJB E P<K(U) 2 n

(3) Q n (as above)

<n _
(4') x1 E P<K(I) 2 K

- <n _
(5) Ba and Ba’ a 6 X1 2 - n for each d 6 X1

 

 

Since |X1| < x, the total number of choices is bounded

by “<2 = x, as required.
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Completion of the Proof of the Existence Theorems.

Lemmas 3.1.5 and 3.1.26 permit the construction of a

tower of chains {sle < u} < CHK(m<“) satisfying

3.1.29 For all Y < K, jGY = {Jill E IY}:

3.1.30 For all a<B<n, IagI

 

E)

3.1.31 For all a < 5 < x and t E Ia, J?-—(J?)-5;J?-(J?)-, fa

and finally,

3.1.32 Suppose that a < n and m e CHu(m§“) are such that

Um Us, 5;, .,

d = \\\//’ is an amalgam satisfying the hypotheses of

E

of Lemma 3.1.5 with f = 1E and

3.1.33 XILJIG = X g_I where X1 = 3;

Then, there exists g:lJ$ aljsy for some Y > a such that

g is a 1x -embedding of E into KY and g E l on E.

1

Proof. Lemma 3.1.26 guarantees that, for each Y < u, there

Us Uta

are at most n amalgams \\\/// up to ca—isomorphism

E ,

which require the existence of an injection 9 as in

3.1.32 into some sy, Y > a; and, if Y > a and

Us USY

d = \\\/// with m and E as above, then we can use

E

Lemma 3.1.5 Wlth f = IE to obtain the chain a = sy+l

with IY+l = XluIY g_I (where Xl==°m) such that 3.1.31
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is satisfied by 3.1.5(2) and such that some lx —injection,

1

g, of m into GY+1 ex1sts which extends 1E. Since

there are n2 = n non-limit steps available, all of the

required injections can be built into the chains.

At limit ordinals l < x, the chain. ax is defined as

follows.

ET}-

3.1.34 1x = U{IY|Y < l} and, for all 1 e 11’

1 _ l 3
J1 —IJ{JtlY < A and 1 E Iy} and :

(J:)- = LK(JZ)-IY < l and 1 6 IY}: and 5

51 = the completion of the chain L
 

X 1 '
{J1} (J1) It E IA}.

The property 3.1.31 implies that, for all Y < l and

Y_ Y" K- 1" '16 Iy, J1. (J1) gJt (J1) . Thus. th ,Y}

and all the injections g built into the chains at previous

= {J:|1 E I

steps still exist into 61'

To define J 6 INCH§”(m) ‘with °J = I, note that

U{IY[Y < n} = I since the chains m have arbitrary order

types xl-S I, |Xl| < x. New, the definition of J is

carried out exactly as in 3.1.34 with l = n and J = Su'

To check that J is n-injective, suppose

lJB lJfl

3.1.35 \\\/// is an amalgam as in 3.1.32 with J in

E

place of Ga.
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Since E e m<n and n is regular, we have E S-Lsa for

Us Uta

some a < n and so ‘\\v// satisfies 3.1.32 and, hence,

E

the chain m can be injected into J by our construction.

This chain J satisfies the definition 2.1.9 (p. 52)

because we can identify E with f(E) and °6 with fi(°a)

to obtain an amalgam of the form 3.1.35 with m = 6.

§3.2 w-Injective Chains of ULF Groups.

 
Proof That the Class of Finite Groups Has the Subamalgam

 

Property. Recall that the proof of this is required to

establish Proposition 2.2.9 on p. 69 and to satisfy the

second hypothesis of Corollary 2.2.16 on p. 73.

3.2.0 Lemma. Suppose a' is a finite group amalgam and,

for every subamalgam d0 of a, there exists a finite

group M0 = gpo(a) such that gp0(ab)r1a'= ab. Then, there

exists a finite group M.= ((7) which satisfies Definition

2.1.14 of the subamalgam property.

.ggggfi. Assume the hypotheses. For every subamalgam ab

of a, let mo: gp*(d) 4 M.o be a homomorphism such that

mo 2 l on 4. Put K = Fflkernel (mb)lab is a subamalgam

of a}. Thus, M = gp*(a)/K is finite; and, if a is

identified with its image mod K, an easy argument shows

that gpM(ab)r]a = 40 for all subamalgams ab of a;



 

FO HO

3.2.1 Lemma. Suppose ab = \\v// is a subamalgam of

E
O

F H

the finite amalgam a = ‘\\// . There is a finite group

E

G = (4) such that ng(dO) Dd = do-

Proof. We will use the notation of [16: §3] with A, B,

and H replaced by F, H, and E respectively, that is,

G will be constructed as a permutational product of F

and H with a specific choice of left transversals, S

for E in F, and T for E in H. Wk will choose S

 
and T so that SO g_s where S0 is a transversal for

E0 1n} F0 and TO‘S T where Tb 15 a transversal for

E0 in H0‘ Now G = gp(pF,pH) where each p(a), a E F,

and p(b), b 6 H, is a permutation of the set S)(T)<E

induced by translation: (s,t,e)p(a) = (s’,t’,e’) where

sea = s'e’ and (s,t,e)p(b) = (s,t’,e’) where teb = t’e’.

It follows that every permutation in gp(pFO,pHO) permutes

the triples SO x T0 x 80

ment of p(F-—F0) .or p(H-Hb) has this property. Iden-

among themselves, but that no ele-

tifying F with pF and H with pH, the lemma is proved.

From these two lemmas we have

3.2.2 Corollary [3: §3]. The class of finite groups has

the s.p..

Next, we turn to the proof of the Maximality Theorem

for the class of z.f. groups.
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Proof of Lemma 2.2.7(a), p. 68. First we will prove

3.2.3 Jl=<Xm> for all m22.

J1 a Hm (see 2.2.9, p. 69) is generated by its elements

 

of order n [2: p. 305]; so, to prove 3.2.3, it suffices

to prove

3.2.4 For every z 6 J1 with |z| = m, we have 2 E <Xm>. .,h

To Prove 3.2.4, let z E Jl with [2] = m, and let G =

<a>®<b> be such that [a] = lb] =m and z = a+b. By

2.1.18 and w-injectivity of g, there is an embedding

l l on <2) and f(G)nJ1=

<:z>»nJi. Hence, f(a),f(b) E Xm, proving 3.2.4 and 3.2.3.

f: G 4 J such that f  

Now suppose x e Xn. In View of 3.2.3, to prove

2.2.7(a), namely J1==<:Xn(x)>, we need only prove

3.2.5 Xm<<Xn(x)> for some m22.

Proof of 3.2.5. Let m be a prime dividing n and suppose

w e xm. We wish to show that w e <xn(X)>. Since xexn(x),

we can assume WLOG

3.2.6 w E <Jc>.

 

Let H = <a>®<b> be such that [a] = [b] = n and

<x,w> H

3.2.7 the amalgam a = exists, where w =

<VV>

(ab)n/m.

By the s.p., let G = <¢7> be a finite group such that

< do) fld = do for every subamalgam do of a. By Lemma

2.1.18 there is an embedding g of G into Jl such that



96

3.2.8 951 on <x,w> and g(G)nJl=<x,w>nJl
 

From 3.2.6 and 3.2.7 we see that

 

 

<X> <a> <X> <b>

3.2.9 V and \/ are subamalgams

l l .

of a,

5..

and, by the s.p., we have

3.2.10 <x,a> n<x,w> = <x> and <x,b> n<x,w> = <x>.

Now, 3.2.8 and 3.2.10 imply g(<x,a>)nJ'1' = g(<x,a>) n

<x,w>nJI = (x) nJ; = 1 since g u l on <x,w> and “~—

x e Xn' Hence, g(a) e Xn(x), and, similarly, we have

g(b) E Xn(x). Since w = g(w) 6 g(H) = <g(a),g(b)>, 3.2.5

follows.

Proof of 2.2.7(c), p. 68. Let a 6 J1-JI. Since parts (a)

and (b) of 2.2.7 have already been proved for all n, if we

now prove

3.2.11 <a,J> nXm 7! d for some m 2 2,

it will follow immediately that <a,J> = Jl proving (c).

Proof of 3.2.11. Put [a] =n and <a>nJi=<am>. Let

G be the group with presentation (a,b: an = bn = 1, ba = b,

am = bm). Using 2.1.18, we obtain 9: G -o J1 such that

ga l on <a> and g(G)nJi=<am>. Let us identify

G with g(G). Let M=<G,t> where at=b, bt=a, and

[t] = 2. Note that <t>©<am> exists in M. Using the
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method on p. 66, we obtain f: M 4 J such that f a l
l

on G and f(t) 6 J. Since GnJI = (am) = (hm), we

have ab-1 6 an<a,f(t)>, proving 3.2.11.

Proof of the Theorem on Uniqueness of Automorphisms 2.2.17,

p. 74, for the class of Locally Finite Groups. Suppose

a. 6 Aut(Ug) and, for some J 6 jg, a s l on J. We will

"
5
'

prove

3.2.12 For every element x e UW of order 2, a(x) = x.

This will imply that a = lUfi since Ug is generated by

1
.
;
-
3
:

 its elements of order 2.

Proof of 3.2.12. Suppose x e Ug has order 2. Since we

wish to show that u(x) = x we can assume WLOG that

x 2’ J and that

3.2.13 x eQ-Q- where J<QE jg.

Suppose u(x) 7! x. Thus, by the Maximality Theorem,

3.2.14 u(x) e Q-Q".

Let G be a finite subgroup of 0 such that

x,a(x) e G and Gn(J-J-) 51¢, let H=<t>®<x> where

G H

t a! 1 has finite order, and let a = V . Let M =

<J<>

<a> be a finite group such that < go) ['14 = do for all

subamalgams d0 of 4. Since u(x) f<x>, t and u(x)

do not commute in gp*(d), and we can assume WLOG that
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3.2.15 t and u(x) do not commute in M

because gp*(a) has a free subgroup of finite index [6:

pp. 227-228] and, hence, M can be replaced by a larger

finite homomorphic image of 99*(d) in which t and

u(x) do not commute.

Recalling that jg = [Jala E I}, we define, as in the

_ r
proof on p. 66, for each a E IG = [a E I|Gf1(Jd-Jd) ¥ ¢}, g

GrWQ- <1t>

Ga = GrWJa and Ma = < t,Ga:>. Since \\\\\////' ls

l

a subamalgam of a, the subamalgam property of M = <¢7>  
implies (600-, t) no = on o" and, also,

3.2.16 For all a 6 I such that Ga # G, we have
G

(Ga,t>nG = Ga.

Using 3.2.16, the proof on p. 66 can be copied (lines ll-27;

3.2.16 is used in place of Britton's Lemma) to obtain the

embedding f: M 4 0 such that f s l on G and f(t) E J.

New, x = f(x) commutes with f(t); but, u(x) = f(d(x))

does not commute with f(t) by 3.2.15. Since f(t) E J, we

have a(f(t)) = f(t) and d(<f(t),x>) = <f(t),a(x)>. This

contradiction proves 3.2.12.

93.3 w-Injective Chains of Algebraically Closed Groups.

In this section we will give proofs for Lemma 2.2.5 on

p. 67 which establishes the Maximality Theorem for classes

obtained from a.c. groups and for the Uniqueness of
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Automorphisms Theorem 2.2.17 on p. 74 for these same classes.

For both proofs we will assume the hypotheses of Lemma 2.2.5,

namely that

3.3.0 G is a non-trivial countable a.c. group,‘ m is the

inductive closure of the class of subgroups of G, and

g e INCHw(m) with [jgl 2_2.

Notice that it is not at all apparent which a.c. grOups

G are capable of satisfying this hypothesis. The existence

of g implies by 2.1.13 that m<w has the strong amalgama-

tion property, which we cannot expect to hold in an arbitrary

 
a.c. group G. On the other hand, the existence of g of

any countable order type is implied by the subamalgam prop-

erty for m<w, which we know to hold in case G is an f.e.p.

group (see 1.4.6, p. 31) because m is a free w-class (see

1.4.21, p. 42). Our proofs will make use of (besides the

existential assumption 3.3.0) only properties which every

a.c. group possesses, namely the existence of certain sub-

groups given by a result of B.H. Neumann.

3.3.1 Lemma [18]. Every group with a solvable word problem

is embeddable in every non-trivial a.c. group.

In our proofs we will need to utilize some of the fol-

lowing groups, all of which have solvable word problems and,

so, belong to m.

3.3.2 (a) finite groups;
 

(b) the infinite cyclic group;
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B C

(c) gp*(a) where a’= ‘\\// , B and C have

A

solvable word problems, and A is finite; and

(d) the HNN extension Hcp where H has a solv-

able word problem and w is an isomorphism of

finite subgroups of H.

These groups have solvable word problems because, in each

case, there is an obvious algorithm for reducing products

to a normal form (in the case of a finite group the multi-

plication table is the algorithm).

 
Proof of 2.2.5(a). Because every non-trivial a.c. group
 

is generated by its elements of order 2, this proof can be

carried out identically to that of 3.2.3 on p. 95 because

only injections of finite groups were used, and m contains

the class of finite groups.

Proof of 2.2.51b). Since H = <3g3fi> is either a finite
 

dihedral group or z IkZ (the infinite dihedral group),
2 2

H has a solvable word problem and, hence, so does Hm =

<H,t>, the HNN extension with :96 ISO(<x>,<y>). Hence

Hm e m and the proof of 2.2.2(b) on p. 66 is applicable

with M = Hw. we obtain, as there, an embedding f: Hw 4 J1

such that f a l on H and f(t) E J and the desired con-

clusion follows.

Proof of 2.2.5(c). Let H =<<aj>*<:t> where [t] = 2.

Thus, H has a solvable word problem and H E m. By w-

injectivity of g, there is an embedding f: H 4 J1 such
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that f a l on <aa>, f(t) 6 J, and, for all Q E jg

such that JgQng, f(H)nQ=<<a>flQ, f(t)>. The

exact details are similar to those on p. 66 and depend,

of course, on the normal form theorem for H. Thus,

f(H)nJI=<<a>nJI,f(t)> and, since a (J1, we have

a-lf(t)a Z Ji. Hence a-lf(t)a 6 X2r1<aiHJ>, completing

the proof. m1

Proof of 2.2.17. The proof is the same as that on pp. 97
 

and 98 of this same theorem for the class of locally finite

groups with two differences: (1) we do not need to demand

 
that Gr1(J-J-) # ¢; this was done only as a matter of 5"

convenience on p. 66; hence, we can put G = <x,a(x) >, a

group with solvable word problem; and (2) we put M =

9P*(d) e 77: by 3.3.2(c).
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