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ABSTRACT

THE OPTIMUM ANALYTICAL DESIGN OF TRANSIENT

EXPERIMENTS FOR SIMULTANEOUS DETERMINATIONS

OF THERMAL CONDUCTIVITY AND SPECIFIC HEAT

by James Vere Beck

Accurate values of thermal properties of new and conventional

materials are indispensable for the design of space vehicles. In

order to (a) determine the thermal conductivity and specific heat for

some modern materials which degrade when heated and (b) provide a

more rapid method of simultaneously determining both these prOper-

ties, a transient experiment and a method of analysis are needed.

A method of calculating the properties from transient tempe ra-

ture and heat flux measurements has been developed and includes (a)

the calculation of temperatures and (b) the iteration procedure called

nonlinear estimation. The temperatures can be accurately calculated

using a modified Crank-Nicloson finite-difference approximation

applied to the heat conduction equation. The nonlinear estimation pro-

cedure is an extension of linear regression analysis. Properties can

be readily calculated with less than 0. l % error due to approximations

1n the numerical procedure.

To determine the optimum experiment a criterion 18 developed

and is applied to find the optimum boundary conditions and locations of

thermocouples. It is proved that both thermal prOperties can not be
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independently calculated from temperature measurements in a homo-

geneous body unless the heat flux is measured. The optimum heat

flux boundary condition is one which causes a step rise in the surface

temperature. The optimum locations for the thermocouples for a

finite body are at the boundaries. Constant and temperature-variable

thermal conductivity and specific heat are calculated from experimental

data for nickel and copper.
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I. DESCRIPTION OF THE PROBLEM

I. 1 Introduction

In the space program the values of thermal properties of new

and conventional materials are indispensable for the design of compo-

nents such as reentry vehicle heat shields, rocket nozzles and others.

With the development of a host of new materials some of which degrade

when heated, a rapid transient method of determining thermal proper-

ties is needed. The method should be rapid, be amenable to automation

and be competitive in cost with present methods of measuring thermal

properties. With the advent of the large scale digital computer it is not

necessary that the computations associated with the method be simple

enough to be readily performed by hand calculations. The method given

herein is intended to help meet this need. The method is not restricted,

however, to the determination of only thermal properties but can be

utilized for finding a wide category of physical prope rties.’

The basic objective is to investigate the design of optimum

experiments for the simultaneous determination of thermal conductivity

and specific heat of solids from transient temperature measurements.

The thermal properties can be functions of temperature. An "opti-

mum” experiment permits the properties to be determined more

accurately than any other similar experiment with the same tempera-

ture range and duration of the experiment. The large-scale digital

computer is to be used whenever needed and thus the optimum experiment

-1-
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need not be one possessing a solution convenient for hand calculations.

On the other hand, the optimum experiment should have boundary

conditions that can be simulated readily in the laboratory.

Literally hundreds of papers have been written on the subjects

of determining thermal conductivity k, specific heat c and density

p [1-3]. Recently a number of papers have been written about the

determination of thermal diffusivity, o. : k/p cp [4—10]. Thermal

conductivity can be found using solely steady-state measurements

while cp and (1 require transient measurements. To determine k and

cp the heat flux and temperatures must be measured; while for a tem-

peratures alone are required. Within these limitations the methods

proposed for determining thermal properties are quite varied. There

are a number of respects in which the present work differs substant-

ially from the preceding, however. Some of these differences are

listed below.

a) Each previous method uses a relatively simple exact

solution for the temperature-distribution to facilitate the calculation

of the properties (except [10]).

b) Because of a), certain boundary conditions must be main-

tained and heat losses must be reduced at the heated surface. These

heat losses for certain transient cases can be difficult to eliminate.

c) All the solutions employ the assumption that the thermal

properties do not vary with temperature.

(1) Only a limited number of temperature measurements are

used, usually only two or three. This is frequently true even for

transient techniques for which temperature histories are obtained with

one, two or more thermocouples. Not all the data is used; or if it is,
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it is not used efficiently.

e) Questions relating to the optimum heat flux, heating time or

best location of thermocouples for the transient cases are not investi-

gated theoretically.

f) Except for a few papers [6, 11, 12] each experiment is

designed to determine only a single property.

The method to be described utilizes the finite-difference solution

of the heat-conduction equation and thus is flexible enough to treat any

given time-variable heat flux for constant or tempe rature-dependent

properties. Boundary conditions are suggested for which heat losses

are negligible. flthe transient temperatures measured are utilized

in a straight forward manner using a method which is an extension of

least-squares analysis. It is called "nonlinear estimation. " A cri-

terion for determining the optimum conditions is developed and

employed. Particular emphasis is given to the determination of

both thermal conductivity k and specific heat cp from a single experi-

ment. Actually we shall find k and p cp from the experiment. For

convenience let

c: c 1.1.19 p ( )

The density p is relatively easy to measure accurately from gravi-

metric and linear measurements. Moreover, the density is much

less sensitive to temperature than either k or cp. For this reason

the effect of elongation of the body during heating upon the tempera-

ture distribution is usually negligible and is not considered in this

analysis.

Parker and co-workers [6] utilized a pulse of high-intensity

short-duration light impinging on the blackened surface of the specimen.
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The other surface, which was insulated, was instrumented with a

thermocouple from which the temperature data was obtained. The

relatively simple analytical solution was derived for the temperature

at the insulated surface for a body exposed to heat pulse of known

magnitude. This solution was then utilized to calculate the thermal

diffusivity o. : k/c, thermal conductivity k and heat capacity c. The

accuracy obtained was about I 5%.

A Russian, Smekalin [11], considered two semi-infinite speci-

mens of the same material separated by an electrical heater producing

a known constant heat flux. A thermocouple was located inside one of

the specimens 7-10 mm. from the interface and the temperature was

measured at times 2, 3, 4, 5 and 6 minutes. From temperatures at

two different times the thermal diffusivity and thermal conductivity

were determined. He reported accuracies of f 3% for o. and ‘1‘ 5% for k.

Hsu [12] performed an experiment with two semi-infinite solids

initially at two different uniform temperatures. If one of the solids

(the standard) has known thermal properties, then properties can be

determined for the other (the specimen). The experiment was begun

by suddenly pressing the two solids together. Several thermocouples

were carefully placed in the specimen at different positions and the

temperatures were measured at a number of instants. When the two

semi-infinite bodies were brought into contact, the temperature at

the interface suddenly increased to some intermediate temperature

between the initial temperature of the two solids. If the properties

were independent of temperature and the contact resistance was negli-

gible, the interface temperature remained constant as long as the

bodies were in contact. He performed a very careful experiment with
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two semi-infinite specimens of nickel and gave the temperature data

in his paper. His data is analyzed in section 6. 3.

1. 2 Problem Definition

In this dissertation a number of problem areas relative to the

efficient determination of the thermal properties are investigated.

They are suggested in this section and analyzed later.

Boundary conditions: For simplicity the bodies considered will have
 

a plane, one-dimensional heat flow. The boundary conditions neces-

sary to separately calculate k and c are determined and those that

are insufficient are also indicated. Typical boundary conditions are:

given temperatures, prescribed insulated surface, prescribed heat

flux and convective heating.

Location of thermocouples: The optimum location and number of
 

thermocouples are determined. The optimum thickness of a finite

specimen for a given heating time is also found.

Development o_fa general criterion: In order to determine an "Opti—
  

mum" experiment some measure is needed of the effectiveness of an

experiment to determine thermal properties. This measure would

provide a criterion to be used to determine if one experiment is

superior to another. A criterion is developed and applied for a

number of different boundary conditions.

Effect itemperature errors: The calculation of the properties can
 

be affected by errors from the following sources: inaccurate tempera-

ture measurement, errors in the finite-difference calculations and an

imperfect model. The effect of errors due to the first two cases are

examined. For most materials the heat-conduction equation (or model)
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describes the heat flow very accurately and thus errors from this

source are not considered. An improved model is needed for decom-

posing materials such as are used in heat shields of reentry vehicles.

That is beyond the present scope of this work, however.

1 . 3 Nonlinear Estimation Procedure

The problem of calculating parameters appearing in a differen—

tial equation which describes a physical process is called “nonlinear

estimation. " Supplied with experimental data obtained from the pro-

cess and a method of solving the differential equation it is possible

using the nonlinear estimation procedure to calculate the parameters.

The method has been developed from a statistical viewpoint in the

past decade by G. E. P. Box and co-workers [13-16]. The first

known reference to the method was written by Gauss in 1809 [17].

Due to the large number of calculations involved it has only recently

become practical with the advent of the large-scale digital computer.

Box‘s work is mainly related to the statistical development of the

method rather than the application to any specific case. He has,

however, given some examples involving first-order ordinary dif-

fer-ential equations arising in chemical engineering. He has not given

an application utilizing a partial differential equation.

The governing equation describing one-dimensional heat con-

duction is

8 3T _ 8T
5'; (k 3—K) -— Cs—é- (1.301)

where T is temperature, x is position and 0 is time. The thermal

properties, thermal conductivity k and heat capacity c, are to be

determined. For continuous transient temperature measurements
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the sum of squares function F for n thermocouples,

M
:

F(k,c) :

j]. J 82.1

em

A. S (TJ.(9)-T .(e))2de (1.3.2)

0

is to be minimized with respect to k and c. The temperature TJ.(0)

is found using a finite-difference approximation for (1. 3. 1) at posi—

tion Xj and time 0; it is a function of k and c. Temperature Te, .(8)

is the experimental temperature at x3. and 9 . The quantity Aj is a

weighting factor for each position and is frequently equal to unity.

The sum of squares function F is a parametric function with the pro-

perties k and c being the parameters.

The properties can, in general, be prescribed functions of

temperature. The method of minimizing F can be illustrated by

assuming k and c as constants. A number of procedures have been

suggested for minimizing F; they include the method of steepest

descent and modifications to the Taylor series approach [13, 15,

17-19]. For a well—designed experiment and with an estimate in

error less than i” 30% of the correct properties, the Taylor series

approach permits very rapid convergence. The Taylor series approach

in its simplest form has proven to be adequate in our work; it is out-

lined below.

The calculated temperature is a nonlinear function of k and c.

The Taylor series method is an iterative procedure, however, which

assumes at each step that the temperature is a linear function of k

and c, or

T(k,c) z T ko'C0+Tk Ak + TC Ac (1.3.3)

For convenience the subscriptj and functional dependence upon 0 have
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been omitted. The derivatives T and Tc are defined by

 

 

k

3T(k,c)

Tk : 3-11—— (1.3.4:)

c ,k

0 o

8T(k,c)

T : - (1.3.5)

C 8c
c ,k

0 o

and Ak and Ac are given by

Ak = k-kO (1.3.6)

Ac : c - c0 (1.3.7)

The properties kO and c0 are the zeroth estimate of k and c. At the

point (k* ,c*) at which F is a minimum the first derivatives of F

with respect to k and to c are equal to zero. These two equations can

then be solved simultaneously for the first correction to the proper-

ties k and c. These corrections are given by (see Appendix A)

em

1 n

Ak = Z [(23 AJ. [Tc’jmj-TeJme )(Tk,TC)

Fl
0

e
n m

- . T .T.-T .d NT ; 0 1. .8(1:31:43) k’J(J e,J)6)( CHAaf: (3)

O

9m

1 n

Ac: E [(23.4 3‘ Tk (T.-Te’.)de)(Tk,TC)

J:1 J :J J

0

e
n m

— . T .T.-T .d NT ; o 1..(3,221.35 m” e...) an k>la=1= < 3 9)

0

where
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2
A .. (NTk) (NTC) - (Tk,TC) (1.3.10)

0
m

n 2
NTk :2 A, f (de) d0 (1.3.11)

F1 0

e
m

n 2
NT =ZA. f (T .) d0 (1.3.12)

C ._ J C,J

1—1 O

0
m

n

(Tk,TC) 3:21.41). 3‘ (Tk,jTC’J.)d9 (1.3.13)

0

The integrals NT and NTC are norms of TR and TC and (Tk’Tc) is an
k

inner product. In the simplest iterative procedure improved values

of k and c are given by

k 1 k0 + Ak (1.3.14)

c cO+Ac (1.3.15)
1

after which another smaller pair of values Ak and Ac are obtained.

The iteration procedure is continued until, say,

A—kk. < 0.0001 (1.3.16)

éci < 0.0001 (1.3.17)

For a well-designed experiment and with the initial estimate of k and

c about 10 % in error, only three iterations are usually necessary to

satisfy (1. 3. 16) and 1. 3. 17). On the next iteration after satisfying

these relations Ak/k and Ac/c are much smaller -- about 0. 00001.

In any new experiment F- values should be calculated surrounding the

point which is thought to be minimum to verify that it is actually the

local minimum. Cases for which a local minimum is not the true
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minimum have not been found for well-designed experiments, however.

If temperature measurements Te, . are not made continuously

with time but at discrete times (which is the most common case), then

the integrals in (1. 3. 2) and subsequent equations would be replaced

by a summation over time. For example, (1. 3.11) would become

n m 2

NT 2 Z A. Z T . (1.3.18)

k i=1 3 1:1 k'3

where the I superscript is for time [A0 for I : 1, 2, . . . m.

A tendency of some investigators who measure thermal pro—

perties is to use only part of the data [6, 11]. The nonlinear estima-

tion method by using all the transient temperature data reduces the

errors in the calculated property if the errors in the data are

random which is a common case. (If the errors are not random,

then corrections for the biased errors can be made.) Others, like

Hsu, use all the data by repeatedly applying a simple equation to

calculate a number of values for the properties which are then

averaged. (See section 6. 3) It can be proved, however, that the

”best" estimates of the parameters are given by the least-squares

procedure incorporated in nonlinear estimation [20].
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11. GENERAL RELATIONS BETWEEN TEMPERATURE RISE AND

PROPERTY DERIVATIVES

2. 1 Relations for Properties k and c

Much helpful information can be obtained from general rela-

tions between the temperature, T , and the derivatives

Tk=%—EC;TC=g—Zk (2.1.1)

This information is useful to aid in determining the optimum boundary

conditions, to help check accuracy of numerical calculations and to

provide certain insights into the property-determination problem. We

will restrict our attention to a one—dimens ional, Cartesian system and

to constantthermal properties k and c. (Temperature—variable thermal

properties are considered in chapter VII.)

Let us first consider the transient heat-conduction equation

8 T _ 8T
k—-2 _ C8_0 (2.1.2)

3x

with the temperature boundary conditions,
 

T(0,e) = TO(9) (2.1.3)

T(L,6) = TL(6) (2.1.4)

and the initial condition,

T(x, 0) = Ti(x) (2.1.5)

The temperatures TO(0), TL(0) and Ti(x) are known.

-11..
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In order to simplify the notation, the operator D is defined

as

2

_ 8 8
D : k 7 " Cé-e- (2.1. 6)

8x

and then (2. 1. 2) can be written

DT : 0 (2.1.7)

Equations for the calculation of TC are obtained by taking the

partial derivative of eqs. (2.1. 2) to (2. 1. 5) with respect to c holding

k constant; we obtain

DT = -- (2.1.8)

TC(0,0) : TC(L,0) : TC(x,0) : 0 (2.1.9)

In a similar manner taking the partial derivative with respect to k

yields

BZT 1 0T
DTk Z --——-2- Z -a- 56 (2.1.10)

8x

Tk(0,0) = Tk(L,0) : Tk(x,0) : 0 (2.1.11)

By comparing eqs. (2. 1. 8) and (2.1. 9) with (2.1.10) and (2.1.11)

after multiplying the latter two by -a, we observe that

TC : -0. TR

01‘

 

cTC + ka = (1 (2.1.1m

   

If the insulation boundary condition, viz.,

8T

'83?
0

were to replace one or both of the temperature boundary conditions

(2.1. 3) or (2.1. 4), relation (2.1. 12) would still be obtained. Further-



-13-

more, this relation can be shown to be valid also for these boundary

conditions if the body is semi-infinite.

Other very important boundary conditions are in terms of

prescribed heat fluxes at the boundaries, viz. ,
 

_k____g:(0»9) _ qo(e) (2.1.13)

«W = qL(0) (2.1.14)

The initial temperature distribution considered here is simply

T(x, 0) : Ti = constant (2.1.15)

rather than the more complicated boundary condition (2. 1. 5).

Taking the partial derivative with respect to c of (2. 1. 2),

(2. 1.13), (2.1.14) and (2.1.15) gives

8T

  

D(-cTC) : -ca—e— (2.1.16)

0(-cTC(0.9)) a(-cTC(L,e))
3x = 8x = -cTC(x,0) : 0 (2.1.17)

In a similar manner taking the partial derivative with respect to k

yields

_ aT
D(-ka) — C-a—é' (2.1.18)

8Tk(0,0) 8T(0,0)

-k————— - ____= 0

8x 8x

or using (2. l. 13),

k 8Tk(0.9) C10(9)

8x — k

 

and multiplying by -k gives

8(-ka(0,0 ))

-kax =q0(6) (2.1.19)
 



.
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and similarly

-k :q (0) (2.1.20)

8k L

 

The initial condition can be written

-ka(x,0) = 0 (2.1.21)

We note that the. partial differential equations (2. 1. l6) and

(2. 1. 1 8) contain the same (except for sign) non-homogeneous term

which can be evaluated from the solution of (2.1. 2), (2.1.13), (2.1. 14)

and (2. 1. 15). In a standard method of solution of linear, non-homo-

genous partial differential equations [21] the general problem is split

into three distinct problems and then the results added to obtain the

desired solution. Since these equations are linear, superposition is

valid. Then the temperature rise T-Ti with heat flux boundary condi-

tions can be shown to be related to cTC and ka by

 

(2.1.22)

 

T-T. : -cT -kT
1 c

 
k
 

This result can be obtained readily from Table 2. l. 1 since the sum

of the non-homogeneous terms for -cTC and -ka gives the partial

differential equation and boundary conditions for T - Ti' If the body

is insulated at one boundary only or if the body is semi-infinite (L-' co),

(2. 1. 22) still applies. It is not valid for the heat flux given on one

boundary and a prescribed temperature history on the other, however.

(Incidentally, (2. 1. 22) applies if T varies with the radius in the cylin-

drical or spherical coordinate systems.)

It is proved in section 2. 3 that the relation derived for the

temperature boundary condition, (2. l. 12), indicates that the proper-

ties k and c can not be separately determined for this boundary condition.



Table 2. 1. 1 Partial differential equations and boundary conditions

for T-Ti, -cTC and —kT

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

  

k

Function P.D.E. Boundary Conditions

8(T (0,0) -Ti)

T - Ti D(T-Ti) : 0 —k 8x : qO (0)

(Ti = constant) 8(T (L,0) -Ti)

-k = q (9)
8x L

T(X,O) -Tl : O

8(-cT (0,9) )

8T c

-cTC D(-cTC)_-c5§ 8x _ 0

a(—CT (L29) )

C — 0
8x '—

-cTC(x,O) : 0

8(-kT (0,0)
8T k

-ka D(-ka) — C 8—0- 'k a X — q0(0)

a<-ka(L,e) 1

'k a X : (114(9)

-ka(x,O) : 0

Note:

2

_ 8 8
D — k 2 - C 8-?

8x   
-15-



  

. . I ...I

 

a -1

I .

r .....r

0

or

O .I

..

l
”1. £11

.1

(0

V

.7.

I.I.n>

...I.D‘ .- D

.1}:
.u

n _. r.

.._r. >

“.1. .
a... . ._
i I.

. ... .
IVT . \

3.. at.“

a.

.J.



-16-

For the heat flux boundary the important relation (2. 1. 22) applies;

this relation has a number of uses as will be suggested later.

2. 2 Surface Temperature of a Semi-Infinite Body with Heat Flux

Boundary Condition

The surface temperature rise of a semi-infinite body which is

heated with a constant heat flux is (see section 4.1)

N
I
H

T «Ti : 2qo(0 /kc1r) (2. 2. 1)

where Ti is the uniform initial temperature and qo is the constant

heat flux beginning at time 0 : 0 (for 0< 0, qO : 0). For this case

RT and cTC are equal and are given by

k

1

_. _ 2
ka — q0(0 /kc1r) (2. 2. 2)

1

_ _ 2
cTC — qo(0 /kc11) (2.2.3)

and thus

ka : cTC (for x : 0 only) (2. 2.4)

or ka - cTC : 0

From (2.2.1), (2. 2. 2) and (2. 2. 3) we find

— : - : - i :2 . . lT Ti 2ka 2cTC (for x 0) (2 2 5,

which is consistent with the relation

T-Ti = -ka-cTC (2.2.6)

which was derived for a homogeneous, constant property, finite or

semi-finite body with heat flux boundary conditions. Eqs. (2. 2. 4)

and (2. 2. 5) are given specifically for the special case of the surface

temperature of a semi-infinite body with q = C.
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We now demonstrate the validity of (2. 2. 4) for an arbitrary

heat flux. The superposition integral [22] for a given heat flux at

a boundary and uniform initial temperature can be given by

 

0

T(x, 0) :(MqBMX 9 M81). (2.2.7)

0

where q(0) is a known, but arbitrary time-variable heat flux and A

is the temperature response for a unit constant heat flux. Let us

consider only the heated surface, x : 0, for which A can be calculated

from (2. 2.1),

A = (1/kcen)% (2.2.8)

Then (2.2.7) becomes

8

T(0,8)-Ti :()1rkc35q()\)k)(0-k)zdk (2.2.9)

o

By taking the derivative of (2. 2. 9) with respect to k and c it can be

shown that (2. 2. 4) is valid at the surface of a semi-infinite body

initially at a uniform temperature and exposed to an arbitrary time-

variable heat flux. Since (2. 2. 6) is true for still more general condi-

tions, (2. 2.5) also is true.

Another position for which (2. 2. 4) applies is for the interface

between a finite body of known thermal properties and a semi-infinite

body of unknown thermal properties. At the free face of the finite

body the surface temperature can be given or the heat flux can be

given. The initial temperature distribution is uniform. This case is

equivalent to prescribing the heat flux at the interface between the

materials.
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The problem of calculating the heat flux at a surface or inter-

face when the transient temperature history near the heated surface

is prescribed has been considered in some detail by the author [23].

2. 3 Cases for Which k and c Can Not Be Independently Determined

The thermal conductivity k and specific heat c can not be inde-

pendently determined when A given by (1. 3.10) is equal to zero. In

these cases it may be possible to determine only one property or per-

haps just the ratio or product of the properties. It is well-known that

A is equal to zero if and only if the functions T and TC are linearly
k

dependent [24]. Two functions are said to be linearly dependent if and

only if the relation

aT +bT : 0 (2.3.1)

is satisfied and one of the constants (a or b) does not equal zero.

Several boundary conditions have been found for a homogeneous body

with temperature-independent properties for which (2. 3. 1) applies.

These cases are listed in Table 2. 3.1. One would anticipate diffi-

culty in finding k and c for any boundary conditions which approach

those listed. For example, the given surface temperature case

(case 1) is approached by the convective boundary condition when

hL/k is large compared to unity. (The quantity h is the heat transfer

coefficient and L is the thickness of the specimen.)

At any boundary at which the temperature is prescribed, we

have

T = T = 0 (2.3.2)

for a finite or semi-infinite body. This relation also applies if the
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body is homogeneous or composite. Hence any temperature measure-

ment near a temperature boundary condition yields very little informa-

tion about the thermal properties.



Table 2. 3.1

determined.

Cases for which k and c can not be independently

 

Case 1

Location of

Measured

Temp. Histories

Description of Body

and

Boundary Conditions

Initial T emp .

Distribution

 
m

 
 

 

1

Any no. of

measurements

and at any loca-

tion.

Any no. of

measurements

and at any loca-

tion.

Heated surface

only

Heated surface

only

Interface between

bodies

  

Finite or semi-infinite l-D

body with a) given, arbi-

trary time-variable T at

the boundaries or b) insu-

lated boundaries .

See (2.1.12).  

Arbitrary

Finite l-D body with given, [ Arbitrary

arbitrary time-variable T

at one boundary and insu-

lated at the other boundary.

See (2.1.12).

Semi-infinite l-D body with

given, arbitrary time-

variable heat flux at

surface.

See (2. 2. 4),

(This also applies approxi—

mately for finite body for

T < 0.2. At the unheated

end, the boundary condi-

tion can be either

BT/ax = 0 or T :

Semi-finite l-D body with

the convective boundary

condition, q :

h(Tee-T(0, Q) where h and

T0,, are constants.

See (2. 2. 4),

Composite of finite length of

material A and semi-

infinite length of material B.

Material A has the one free

surface at which a time-

variable T (or q) is given.

Material A has known k and

c while those of Material B

are to be determined.

See (2. 2. 4).

const.)

 

Uniform

Uniform

Uniform
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III. BASIC CRITERIA

3. 1 Criterion for Determining Optimum Experiments

In order to efficiently determine the Optimum experiment for

determining the thermal properties a single criterion is needed. This

criterion, if it exists, would enable us to select the boundary conditions
 

for which a random distribution of errors in the temperature measure-

ments would cause the least inaccuracies in k and c. Box [14] found

a single criterion for a closely related problem. He considered, for

his first example, the case of a transient, chemical reaction governed

by two ordinary, first-order differential equations. Hence he had only

an initial condition to consider for each variable. Instead of seeking

to determine the optimum initial condition, however, he sought to find

the Optimum two times at which to make measurements for calculating

his two parameters. Since the problem at hand is not identical to Box's,

a criterion is derived in this section.

The following analysis is subject to these conditions:

1) The values of the thermal conductivity k and density-

specific heat product c at the minimum of F(k, c) are known and are

designated k* and c* .

2) The minimum value of F(k, c) need not be zero; however,

the errors in the temperature measurements are assumed to be small.

3) While applying the criterion we fix the (a) number of tempera-

ture histories, (b) maximum temperature rise and (c) maximum duration

-21-
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of the experiment.

4) The sum of squares function F(k, c) is examined in the local
 

region near F(k* , c*).

We do not explicitly require that the criterion select an experi-

ment for which k and c are of equal accuracy; we shall find, however,

that for a particular optimum experiment the properties can be deter-

mined to the same accuracy.

The sum of squares function is

0
m

n

F(k,c) = z A. §(T.(8)—T .(9))Zd9 (3.1.1)

jzl J O J 62.]

and near the minimum a Taylor series expansion gives

2 2
8F* 8F* 1 8 E* 2 18 F* 2

* _ * _ __ — —F(k +Ak,c*+Ac)~F +8] Ak+ac Ac-l-a——2-—a (Ak) +a—T(AC)

>1:

+——CAk AC (3.1.2)

where the starred terms are evaluated at (k* ,c*). At the minimum

of F ,

8F* 8F*
a—k— 2 8C 2 0 (3.1.3)

 

The higher derivatives of F are found from (3.1.1) to be

 

 

2 2
3k

81;“ = 22 A. S(T*. - T )3—g—de + 22A. [@13sz
3k 1 1 e.1 8k J

(3.1.4)

3237* 82T* Z
-_- 2 EA. (T*. - T .)_—Z—de + 22A. (T*) 88

8c2 J J 6"] 8c J C

(3.1.5)
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2

5 3 I
: * - __. a): :1:

22A). (T j Te,j)8] 8C d9 '1' ZZAJ 5T 1T Cde

(3.1.6)

82F*

8k8c

For the properties k* and c* when T.* : Te j (zero error in the T-

3

measurements) the first term on the right hand side in each of the

preceeding three equations is equal to zero. The second terms in

(3.1.4) and (3.1. 5) are not equal to zero unless T or TC is equal

k

to zero (which does not occur in any case in which k and c can be

found). For sufficiently small values of Tj - Te . (condition 2) the

first terms on the right hand side of (3.1. 4), (3.1. 5) and (3.1. 6) are

negligible and hence the sum of the squares function is approximated

by

F(k*+Ak *+A )—F*+(NT*)(Ak)2+(NT*)(AC)2+ 2(T* T*)(-’33‘—)(£)
’C C_ k k—* c —c_’l_‘ k ’ c k* c*

(3.1mm

where
9
m

n 2
NT* 2 E.A.S‘W*T*)de (31.&

k . j k

i=1 0

am

n 2
NT*C = z A. Sung) d9 (3.1.9)

i=1 J 0

e
m

n

* * -— * * * *(Tk ,TC ) _ 3A]. 5 c Tcdk Tk,j)d0 (3.1.10)

0

We now desire to find a new coordinate system for the F-

contour. This new coordinate system should be one in which the length

and angle are preserved. This is readily done using the standard pro-

cedures for treating quadratic forms. In the procedure we solve for
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the values of A in the determinantal equation

* - 3k *WTpx ukxc)

(T a11;,TC) (NT *C)->.

to obtain for the two roots

 

 

T 2 2
: * * * - * 3k *Al [NTk +NTC + x/(NTk NTC ) +4(Tk ,TC ) ]/2

(3.1.12)

2 . 2
: * _ 2k _ >§< *

12 [NTk + NTC* N/TNTk NTC ) + 4(Tk*,TC ) ]/2

(3.1.13)

Clearly A 1 and A 2 are real and thus the F-contour in the region of k*

andc’l‘ is an ellipse and is given by

2 2
F(pl,pZ)-F* =k1p1+k2p2 (3.1.14)

where

(NT *4. )(Ak/k*) - (T *,'I‘ *)(Ac/c*)

pl: C l k C (3.1.15

2. Z

J<NTC*-xl) +<Tk*,TC*>

 

-(T *,T *)(Ak/k*) + (NT *—>. )(Ac/c*)

p2 = k C k 2 (3.1.16)

2 2
NT *4 T‘* T *

J( k 2) +( k ’ c )

 

The angle B between the p1 and k axes is

0 = tan-1 [(NTC*-)\l) / (T *,TC*)] (3.1.17)
k

The angle B for four interesting cases is shown by Figures 3.1.1 to

3.1.4. If B is near zero degrees, Figure 3.1.1, then c can be

determined more accurately on the average than k. For B = If 90°

(Figure 3.1. 2), k is determined more accurately. For B = 45° and
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-45°, the values k/c : c1 and kc are respectively determined more

accurately.

The length of the major axis of the ellipse is [(F-F*) /k 21%

and of the minor axis is [(F -F*)/)\ 1]; Thus the ratio R of the

major axis divided by the minor axis is

1

_ 3
R—(kl/kz) (3.1.18)

which is always greater than unity.

The area of the ellipse Acr is given by

1

: — * -EA...- "(F F )0le) (3.1.19)

If the errors in the measured temperatures Te,’ are stochastically

independent, then the area Acr is that of the confidence region when

F-F* is calculated using standard statistical procedures. Unfor—

tunately, the errors are probably not independent in most cases. See

references 25 and 26. Let us, however, consider two different experi-

ments with the same (a) material, (b) number of temperature measure-

ments, (c) maximum temperature rise, (d) duration of the experiment

and (e) distribution of errors in the temperature measurements. For

these two experiments the area Acr is smaller for fixed F — F*

( from (e) ) for the experiment having the largest value of

1. x = (NTk*)(NTC*) - (T *,TC*)2 = A(k*,c*)
21 . k

(3. l. 20)

We have noted in section 2. 3 that the properties k and c can not be

determined separately if A : 0. The criterion A given by (3. 1. 20)

must be modified to include the constraints of maximum temperature

rise Tm-Ti and maximum duration of the experiment, 0 m' The opti-

mum dimensionless time is given by
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more ac cu-

rately

“C-C*

/\
 

K/

Fig. 3.1.1
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T : 0* 0 /L2; 0* Z ka/IC* (3~ 1'21)
mm

for fixed values of 0m and (1* -, thus determining the optimum value

of T m is equivalent to finding the optimum specimen thickness L.

For any prescribed boundary conditions and given specimen (for T—

95

independent thermal properties) the derivatives TR and T * can
c

both be shown to be directly proportional to the temperature rise

T-Ti for the same time and position. Due to this linear behavior of

Tk* , TC* , and T-Ti, the criterion A can be made independent of the

' __ ' >:< >’,< >5: _

magnitude of T Ti by replacmg T and TC by Tk /(Tm Ti) and
k

T * /(T -T.). The maximum time 0 can be introduced simply in
c m 1 m

the following manner. The first term on the right hand side of

(3. 1. 20) can be written

0 T

m m

S 2 L2 ,, *2* ._ * 4 _ _NTk _ ZAJ. (kaj)d9—a~gg-ZAJ‘S(kaj)dT

O 0

(3.1.22)

Dividing (3.1.22) now by the fixed maximum real time 0 m causes the

right side of (3. 1. 22) to be a function of the maximum dimensionless

time T m (for a given heating condition). The other integrals are

treated in the same manner. Hence the optimum experiment is one

for which

a e (NTk) (NTC) - (Tkx‘rc)Z (3.1.23)

is a maximum for fixed Tm-Ti, 0m, number of temperature measure-

ments and thermal properties. The terms on the right hand side of

(3. l. 23) are defined by
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T 2
_ n m(k*Tk .*) dT

N k = z A. S ”J, (3.1.24)

5:1 3 (T -T.)" r
O m 1 m

TIn 2

n (c’l‘TC .*) dT

NTC -_- Z A. 5 'J 2 T (3.1.25)

j:1 J (T -T.) m
0 m 1

T

_ _ n .. m(k*T J.* C*TC J.*) d7

(Tk.TC) = Z A. - ’ 2 ' (3.1.26)

jzl 3' (T - T.) T
O m 1 m

The important criterion 5 is made a maximum by varying both the

boundary conditions and dimensionless duration of the experiment;

it is examined for both finite and semi-infinite bodies for a variety

of boundary conditions in chapters IV and V.

Another quantity of interest for a given experiment is the

correlation coefficient p

N
I
H

p = (Tk.TC)/(NTkNTC) (3. l. 27)

The correlation coefficient p can have values equal to and between -1

and +1. For p equal to either -1 or +1, Z is equal to zero and the

properties k and c can not both be determined. It does not follow

that A is a maximum when p : 0, however.

3. 2. Error Analysis

It is important to investigate the effect of errors upon the cal-

culated thermal properties. There are three major sources of errors.

First, there are experimental inaccuracies in measuring the tempera-

tures. Next, in calculating the temperatures in the body an approxi—

mate finite-difference method is utilized. This second source of error
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as shown in section 6. 2 can be made as small as desired (0. 1% is

readily obtained). Finally, the model used to describe the tempera—

tures in the body can be imperfect. For example, the thermal pro-

perties actually vary with temperature but the thermal properties

may be found as temperature-independent thermal properties. This

error can be made, in general, as small as desired by reducing the

temperature range. The main source of error is consequently the

experimental error in the temperature measurements.

Let us then investigate the errors in k and c due to some conti-

nuous distribution of small errors OJ. in the measurements,

5j(6) :2 Te,j(e) - Te""j(9) (3.2.1)

where Te .(9) is an experimentally measured temperature distribu-

’

tion which contains errors and Te .* is the "true" temperature. Using

J

(3. 2.1) in the sum of squares function F(k, c) given by (3.1.1) yields

9

n

F(k,c) : Z A. 5 (T.(9) - T .*(9) - 5.(8)) d9 (3.2. 2)

:l

O

The temperature Tj(6) is the calculated temperature for the assumed

model which need not be perfect. If 5j(6) = 0, then the correct pro—

perties k* and c* are obtained by differentiating F(k,c) with respect

to k and c and setting both expressions equal to zero,

 

 

8T.*

aF(k.c)_ ) *_ ,. J _
——8k .. 22 Aj. (Tj Te’j ) 5k d9 - 0 (3.2.3)

8T?

8F(k,c) _ Y _ J _
————————8C _ 22 AJ. . (Tj* Te,j*) 8c de _ 0 (3.2.4)

where Tj* is the calculated temperature for (SJ. : O.
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The quantities Ake and Ace are the errors introduced due to

the 0's,

J

Ak

e

AC

e

k-k*

: C—c*

(3.2.5)

(3. 2.6)

Using the standard approximation of linearity of Tj for small

6. ives
Jg

T.z

J

where typically Tk j* :

T.*+T .*Ak +T .*AC

J k9.) e C, 8

8T.

J

8'? k*,c*

(3. 2.7)

Introducing (3. 2. 7) in (3. 2. Z) and differentiating with respect to k and

c, setting the resulting expressions equal to zero and utilizing (3.2. 3)

and (3.2. 4) yields

2:, Ajgka»: Ake + TC J

2 AjS(Tk,j* Ake + TC .*AC

.1 e 1' CJ

(3.2.8)

(3.2.9)

Since the 5j are small, iteration for like and Ace is not necessary.

Solving for Ake and Ace and rearranging slightly gives

 

  

 

Ake _ (NTC) Ik - (Tk’Tc) IC

k* 21'

Ace _ (NTk) IC - (Tk’Tc) 1k

c* K

T

n mk*Tk * 5 (11'

where 1k: 2) A g ’ _

(3.2.10)

(3.2.11)

(3.2.12)
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I
  

T

n mC’FTC .* 5. dT

z A. 5 "3 23 (3.2.13)

:1 J (T -T
O m 1

C —j .) ’T'

and the other terms are defined by (3.1.24) to (3.1. 26). Though it is

not obvious from (3. 2.10) and (3.2.11) that Ak and Ac are reduced if

X is maximized, this fact is demonstrated in chapters IV and V. We

also note that the errors Ake and Ace are directly proportional (for

small errors) to the error distribution, 5).. Generally the derivatives

Tk and TC are continuous, slowly-varying functions and thus the inte-

grals in the above equations involving (33. are larger for biased one-

sided errors than for random (or even sinusoidal) errors which are

both positive and negative. The biased, consistent errors, however,

can be usually computed and then the measured temperatures corrected.

The author has analyzed some problems with biased errors for thermo-

couples embedded in solids [26, 27].

Equations for Ake and Ace for discrete measurements in time

can be obtained from (3. 2.10) and (3.2.11) simply by replacing the

time integral by a summation over time and the dr by AT .

From the linearity of (3. 2.10) and (3. 2.11) with respect to 53.,

the errors in k and c for two different error distributions can be added

to obtain the error due to both sources. More generally we can ex—

amine the errors Ake and Ace due to a §i_n_g_l§ error (SJ. at a time T .

In order to compare the effect of a single error for different experi-

ments, Ak and Ac are normalized by multiplying by (T )Tm/(éjA‘r)
-T_

m 1

to obtain



 

 

  

 

_ k'lTk *(T) _ _ c’l‘TC *(T)

(NT )——’-—- ‘(T ; ) ’J
Ak(T,x.)/T -T. T c T -T. k c T -T

- _ e J] m 1 m _ m 1 m

Ak.— _ _

J k* \ (SJ. AT A

(3.2.14)

C*T .*(-r) k*T .*(T)

(NT) ‘3’) —(T .T) 1‘”
Ac (T,x.) T -T T \ k T - . k c T -T.

e J m 1 m _ m 1 m 1

AC.:
_ _

J C* 5J- AT/ A

(3.1.15)

The errors ARJ and AEJ. are caused by a single error in the tempera-

ture, éj, at time T. By plotting Allj and ch versus time T and

positions xj, the information is given for determining the error in

k and c for any distribution of small errors for the experiment con-

sidered. For a number of different boundary conditions, All.j and

ch are given usually for the Tm - value of the maximum A for each

case and for two values of xi, usually 0 and L.

3. 3 Errors in Properties for Certain Cases

A biased error instructive to consider is an error in each

temperature rise which is proportional to the temperature rise, or

(SJ. = E(TJ.-Ti) (3.3.1)

where E is a constant much less than unity. Now for a finite or a

semi-infinite body with specified heat flux boundary conditions we

have

T.—T. = -cT .-kT . (3.3.2)

where T1 is the uniform initial temperature. The terms. involving

53. in (3. 2.10) and (3. 2. 11) can then be written

1k = -E(NTk + (Tk,TC)) (3.3.3)
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and IC = - 6(NTC + (Tk,TC)) (3.3.4)

then with these latter expressions (3. 2.10) and (3. 2. ll) readily yield

Ake/k* : -6 (3.3.5)

Ace/c* -6 (3.3.6)

Thus if all the temperature rises were measured a constant one per-

cent too large, then both k and c would be calculated one percent too

small; the thermal diffusivity c1 : k/c would not be in error, however.

In the analysis of section 3. 2 the error was assumed to be only in

Te,j and not in Tj. If the temperature rise Tj-Ti were calculated a

constant fraction 6 too large due to the same fraction 6 error in the

prescribed heat flux, then the error in the properties would be the

same as given by a negative constant error in Te, .. Thus for a

constant fraction error in q the errors in k and c are

6 (3.3.7)Ak /k*

e

Ace/c* (3.3.8)l
l

m

or a. constant one percent error in the heat flux curve causes a positive

one percent error in k and c.

Another error which introduces a bias is the result of in-

correct measurement of the location of a thermocouple. Suppose

a thermocouple junction is thought to be located at the surface heated

with a known q but the junction is in reality located a small distance

Ax inside. The temperature at x : Ax can be approximately given by

8T(8 ,0)
T(0,x) mT(e,0) + 3x Ax (3.3.9) 

Hence, 6 for this thermocouple is given by



“Tx'

5 = T -T *ng9,O)+g——:—‘—9—i-CDAX - T(8,0)
e e ox

: WAX : —-(—l-(LE—’—g—)—Ax (3.3.10)

Then the error in the surfacetemperature is proportional to q and

Ax. At an insulated surface q : 0 and thus 5 : 0 at such a boundary.

Evidently the thermocouples should be located much more precisely

at heated surfaces than at insulated ones.

3.4 Determination of a Criterion for the Optimum Heat Flux Input

The determination of the optimum heat flux input for finite or

semi-infinite bodies is pertinent to the efficient calculation of thermal

properties. Anticipating results given in chapters IV and V, the case

of two thermocouples is examined; one is located at the heated surface

and the other is in the interior or at the other surface. The heat flux

which maximizes A produces a step rise in the heated surface tem-

perature. For conciseness this heat flux alone is discussed. Though

the problem of maximizing A is not directly amenable to solution

using the classical methods of the calculus of variations, the method .

of determining a necessary condition for A: to be a maximum is simi-

lar in some respects to the proof of the necessary conditions of Weier-

strass and Legendre given by Bliss [29].

For two temperature histories A is given by

Z = [(NTk1)+(NTkZ>][NTC1)+(NT )l-[(Tk.'r) + (Tkrr

(3.4.1)

whe re typically



 

  

Tm ka dT

- 1

1 m 1 m

0

and.

T

- - Tkl CTCl dT

(Tk’Tc)1:§ T -T. T -T. T (3'4'3)
O m 1 m 1 m

/

The subscripts l and 2 refer respectively to the measurements at

x = O and x = L. The heat flux q, surface temperature Tmo’ cri-

terion A and the derivatives RT and cTC are shown on page 26 by
k

Figures 3.4.1 to 3.4.4. The vallue of A flor the constant surface

temperature is designated A0. The effect upon A for a small step

increase in the surface temperature, 6T, 18 now examined. It has

a short duration AT and is shown by Figure 3. 4. 2; (ST is caused

by an appropriate éq. The cases that we shall consider are those

for which at x = O

(T - T.) (3.4.4)

Due to the linearity of kT CTC and T, superposition is valid
k,

(see Table 2.1.1) and thus we have

5(ka) = 5(CTC) :: —

1 1

(3Tl (3.4.5)

The terms with the "1" subscript in (3. 4.1) can be written

for small values of OT as,

(T -T.)2
] m0 1

1 1 k1 (T -T.)2
m 1

 (NT )m [(NTk )O+2E
k

(3.4.6)



 

 

 

 
 

' ' (Tmo-Ti)2

(NT ) 1., [(NT ) + 2E ] (3.4.7)

c:1 C10 C1 (T -T.)2
m 1

- - [ - - ](Tmo-Ti)2
T ,T A ,T + E 3.4.8

( k c)1 ( k c)1’0 k,cl (T -T )2 ( )

where

T

m (Mk )0 (5(ka ) dT

1 1
Ek : 2 :

1 (T -T) T
T mo 1 m

0

Tm[__1_(T -T)][—36T]dn—
2 mo 1 2 _1 5T A T

(T -T.)2 T 4 (TmOJI) T m

To 0 1 m

(3.4.9)

The value of (NTk) With 6T : O and Tm : Tmo is de51gnated (NTkl)0.

In deriving (3.4. 9), equations (3. 4. 4) and (3. 4.5) are used and it is

noted that CT has a non-zero value only between T o and T o + A T .

Similar expressions can be found for EC and Ek c ; these are

l ’ 1

related to E by

k1

E = E (3.4.10)

Ek’C : 21:k (3.4.11)

If instead of a single increase in the surface temperature, 6T, a

finite number of increases (or decreases) in the surface tempera-

ture is considered, Ek is readily modified. Here we have a dis-

1

tribution of n values 6Ti each of which represents an increase in

the Surface temperature for the time duration AT 1' The only res-

triction is that GT. is small compared to T -T.. Then E becomes
1 mo 1 kl



 

(3.4.12)

and (3.4. 10) and (3. 4.11) also apply.

The effect of 5T upon the integrals in (3. 4. 1) with the “2"

subscript is not as readily given and depends upon the boundary condi—

tions at the location of thermocouple 2. The values Ek , and Ec ,

2 2

and Ek c are evaluated for the particular cases examined.

’ 2

Let us return to the consideration of a single (ST. The tem-

perature rise for negative 5T remains TmO-Ti; but for a positive 6T

we can use the approximation

(Tm-T)Z A (T -T.)‘Z[1—T—Z—QI_T] (3.4.13)

1

A - AO Q, 4(Bl(ro) - O T -T (3.4.14)

mo 1

and for a negative OT (and oq)

A - AO z 4Bl(1-O) (3.4.15)

where

= - \ - — - - . .BN0) [Ek(NTC. + EC<NTk> Em) k.TCH/z (3 4 16)

and typically

Ek : Ek +Ek (To) (3.4.17)

1 2

Ek,c = Ek,c +Ek,c (To) (3.4.18)

1 2

NTk = (NTkl)0 + (N'I‘kz)O (3.4.19)

The integrals (NTk), (NTC) and (Tk,TC) are constants for a given

experiment duration Tm. The value ER is independent of T0 as

l
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shown by (3. 4. 9); however, E , E and E are functions of
k2 cZ k, c2

To. It is shown by (3. 4. 9) that Ek is directly proportional to 5T

1

and AT and this proportionality can be also demonstrated for

(To)° Then B (T ) can be written

 

 

E (T),E (T)andE ,
kZ 0 c2 0 k,c2 l 0

5T AT

Bl(TO) : T__—-T_ (T ) B(TO) (3.4. 2.0)

mo 1 m

and hence (3.4.14) is given by

- — 5T AT —
A — A0 % 4 'T—-"T.‘ T B(.O) —- A0 (3.4.21)

mo 1 m

which is valid only for positive 6T. Note that B(TO) is independent

of 6T and AT .

The criterion B can aid in the determination of the optimum

heat flux. We shall show in two cases of interest that B(TO) is posi-

tive for any value of To. If 6T is negative, then from (3. 4. 20) and

(3. 4.15) a small 5T at any time during the experiment makes A

less than AD. For positive GT, (3.4. 21) is used. From the Schwarz

inequality Z0 must be equal to or greater than zero [24]; for an opti—

mum experiment it can not be equal to zero. Usually B(TO) is about

as large as 50; regardless of its value, however, for a sufficiently

small AT the right hand side of (3. 2. 21) is negative. Thus if B(TO)

can be shown to be positive, a value of 5T either positive or nega-

tive makes A less than A0. Hence the optimum heat flux boundary

condition appears to be one which produces a step rise in the tem-

perature of the heated surface ( provided B(TO) is positive ).



IV. SEMI-INFINITE BODIES

4. 1 Semi-Infinite Body with Constant Heat Flux

The temperature at a point x in a semi-infinite body which

is subjected to a constant heat flux qO is [30]

.1- _l

T-Ti : 2 q()(e/kc)a ierfc(O. 5TX 2) (4.1.1)

where

TX = (IQ/x2 : kG/cx2 (4.1.2)

Taking the partial derivative of (4.1.1) with respect to k and c

 

  

   

gives

1

3 l

_ aT _ qox T x 1
ka _ k(—5-1-<—)C_—1—(— - 1- exp 64% > + erfc 1

2 2
n ZTX

(4.1. 3)

1

2

__ 3T __ qoX Tx 1
cTC — C(8c) — — k 1 exp — 7T?_ (4.1.4)

k "E X

Using the identity [30]

. -1. 2

ierfc(z) : 17 2exp(-z ) - z erfc(z) (4.1.5)

it can be verified that

T-Ti = -ka -cTC

as derived in chapter II for general q boundary conditions. It is

instructive to evaluate (4.1.1), (4.1. 3) and (4. 1. 4) at the heated

surface,

-39-
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L

T(0,6) -Ti : 2q0(6/kc17)2 (4.1.6)

1

ka(0,6) : -q0(9 /kc17)a (4.1.7)

1

cTC(0,6) : -q0(6 /cha (4.1.8)

and we note as derived in chapter 11

ka(O,9) = cTC(O,9) : -(T(O,9) - Ti)‘/2 (4.1.9)

We readily find at x : O

T

m

NT 2 u/T ) RT HT -T))2dT ::1/8 (41 MD
k m k m i x ' '

o

NTk = 1/8 (4.1.1n

T
m

- _ 2

(Tk,TC) = (lflnn) S (k k;ch/(TnnJTQ ) dTX _ 1/8

0

(4.1.12)

Then the criterion A for x : 0,

Z = (NT )(NT ) - (T T )2 = (l/8)(l/8\ - (1/8)‘2 = 0
c k k’ c ’ '

(4.1.13)

is equal to zero.

With A equal to zero, it is impossible to determine both pro-

perties k and c. The surface temperature history can be used,

however, to calculate the product kc.

Results for the various quantities of interest have been cal-

culated and are tabulated for one interior measurement at x : x in

Table 4.1.1. The dimensionless derivatives

_ ka _ cTC

: ' 2 4

T1. W ' Tc W V 1'14)



Table 4.1.1

1.

X

~
J
|
\
I
.
&
H
H
N
N
N
M
H
H
P
P

\
fl

0

19.00

20.00

30.00

40.00

51.00

40.00

70.00

90.00

9'1.00

100.00

T(O)

.2523

.3568

.4370

.5046

.5642

.4180

.6675

.7135

.7569

.7979

.9740

.9441

1.0093

1.0705

1.1254

1.2616

1.1020

1.4927

1.595“

1.6926

1.7841

1.8712

1.9544

2.1110

2.2549

2.3937

2.5231

2.6463

2.7640

2.0765

2.9054

1.0902

1.1915

3.2898

3.3851

3.4779

1.5692

3.9068

4.2220

4.5135

4.7873

5.€463

4.1504

7.1365

7.9788

0.7404

9.4407

10.0925

10.7047

11.2838

Quantities for q = C thh thermocouple at x

TC

-.0009

-.0145

-.0413

-.0723

-.1030

-.1343

-.1634

-.1910

-.2171

-.2420

-.2861

-.1303

-.3692

-.4054

-.4394

-.5164

-.5649

-.6470

-.7041

-.7573

-.8072

o.4543

-.4991

-.9827

-1.0600

-1.1321

-1.2000

-1.2643

-1.3256

-1.3841

-1.4403

-1.4944

-1.5467

-1.5972

-1.6462

-1.6938

-1.7401

-1.9141

02.0736

-2.2218

‘2r3606

-2.491a

-3.0645

-3.5490

-4.9495

—1.5520

.4.7035

~4.0105

-5.3375

75.6278

Tk

.0007

.0107

.0266

.0416

.0535

.0624

.0686

.0726

.0747

.0753

.0732

.0678

.0506

.0401

-.0212

-.0540

-.0%71

‘9110"

-.15?5

-.1645

-.2160

'02773

-.3363

-,191J

-,4492

-.5013

-.55°7

..4094

-.4511

-.A¢92

-.7441

..7005

-.0395

-.R?R2

-.9170

T(x)

.0001

.0139

.0147

.0307

.0501

.0710

.0949

.1154

.1425

.1066

.2149

.2625

.3099

.3540

.3993

.5059

.6061

.7010

.7912

.8779

.9594

1.0388

1.1151

1.2600

1.3964

1.5254

1.6482

1.7657

1.8781

1.9h69

2.0914

2.1924

2.2909

2.3860

2.4707

2.5690

2.6571

.1.0750

.1.9>15

o1.3671

'1449311

°1.517‘

-291673

-?.6350

-3.0492

-3.434n

-3.7709

~4."939 9.1?41

'4.3969 9.7545

-4.A%4210.3120

2.9900

3.2979

3.5559

3.8534

4.1099

5.2319

6.1"11

7.0197

7.7764

9.4744

NTc (Tk'Tc,

.0000 -.0000

.010? -.000?

.1915 -.0010

.9041 -.00?5

.0075 -.0043

.0115 ‘.0060

.0156 '.0076

.9106 '.0089

.0236 -.0999

.9974 '.010“

.0344 -.0118

.0407 -.01??

.0462 -.0121

.0511 -.“110

.0554 -.0109

.0643 -.0085

.971? -.0056

.0767 -.00?6

.901? .0003

.9849 .003?

.0880 .0059

.0906 ."085

.9929 .0110

.0967 .0156

.9997 .0196

.1071 .0233

.1041 .0?66

.1057 .0296

.1071 .0323

.1094 .0348

.1094 .0171

.1104 .039?

.1112 .041?

.1119 .0431

.1126 .0448

.1112 .0464

.1137 .0479

.1155 .“932

.1140 .0575

.1177 .0611

.11"5 .0641

.1191 .0668

.1210 .076?

.49?" .0020

.1226 .096?

.1730 .0093

.1233 .0918

.1235 .0938

.1216 .0955

.1235 .0969

.-41-

.0000

.0001

.0007

.0016

.0094

.0032

.0037

.0041

.0043

.0044

.0042

.0019

.0035

.0031

.0096

.0018

.0012

.0010

.0010

.0012

.0016

.0090

.0096

.0039

.0053

.0048

.0093

.0090

.0112

.0197

oqt‘i

.0154

.0148

.0191

.0193

.0205

.0216

.0259

.0297

.0310

.0340

.0396

.0499

.0540

.0614

.0655

.9609

.9718

.0742

.0763

D
I

.000000-1.00)0 ?09.?1

.000000

.000000

.nwnnnn

.000000

.090000

.000001

.000001

.000002

.000004

.000007

.000011

.000016

.090092

.000920

.000041

.000057

.000071

.0000-3

.000094

.000104

.000112

.000190

.000112

.000142

.000149

.000154

.000149

.000142

.000144

.000145

.000146

.000166

.000147

.000166

.000156

.000145

.00014?

.000157

.000142

.000147

.000142

.000190

.000104

.000092

.n00042

.000075

.000049

.0"0043

.000059

-.9997

-.9991

-.9992

-.9969

-.9959

-.993?

-0990?

-.9074

-.9941

-.9759

..9440

-.9403

-.9279

-.9019

-.7915

-.5900

-.3003

.0351

.3177

.5034

.6276

.709?

.0040

.8549

.8055

.9050

.9200

.9305

.9384

.9449

.9501

.9541

.9579

.9609

.9635

.9659

.9726

.9771

.9001

.9096

.9845

.9090

.9994

.9939

.9949

.9954

.9961

.9966

.9969

01.36

50.05

34.74

29.43

24.93

21.70

19.45

17.74

16.42

14.50

13.19

12.23

11.52

10.97

10.04

9.45

9.13

8.90

5.76

“.67

9.63

5.61

“0‘3

9.70

4.00

9.93

9.04

9.91

9.15

9.51

9.66

9.92

9.97

10.19

10.90

10.43

11."3

11.60

17.15

12.48

13.10

15.45

17.41

19.16

20.75

22.29

21.59

24.09

24.10

40.39

34.97

34.17

31.7:

90.49

97.71

25.94

24.34

22.89

74.40

10.99

16.74

14.71

19.90

11.21

7.64

4.59

2.00

-.21

-2.19

-3.91

-5.44

-6.85

-o.24

'11.?!

-13 01

-14.51

-15_89

-14_9u

~1n_01

-14.94

~19.79

-20.54

-21.24

-?1.91

-22.51

-93.07

-?4.95

-94.41

-27.6‘

o98.69

-29.44

-37.}.

-34.05

-35.22

~36.09

-34.74

-37.30

-37.74

-30.1?
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are plotted in Fig. 4.1.1 for both x : O and x : x. (For x : O,

the value of x used in (4.1. 2) and (4.1.3.4) in Fig. 4.1.1 is for the

interior point x.) It is necessary for separate determination of k

and c that Tk and TC are not proportional and neither of them is equal

to zero. Note that the results for the interior location satisfy both

conditions. The derivative TC is always equal to or larger than Tk

in magnitude. Both Tk and TC for x = O are negative for TX >1. 4

though it is significant that Tk is initially positive and then later

decreases and becomes negative. Physically, this means for a

given heat flux boundary condition the interior temperature initially

rises more rapidly when the conductivity is increased slightly but

later the increased conductivity reduces the temperature. An increase

in k or c always decreases the surface temperature.

The integrals NT NTC and (T TC) for the interior point x

k’ k’

are given in Table 4.1. 1. Observe that NTC is always larger in

absolute value than NTk and (Tk,TC). One would expect that the

specific heat-density product c could be obtained much more accur-

ately than the thermal conductivity k for this experiment. This is

proved by the ratio R = 9. 97 and angle B : -Zl. 3° at the maximum

value of X which occurs at 7%8. 5 for a single interior measure-

ment. See Fig. 3.1.1. Hence, for a given time duration of the

experiment am the Optimum location of the thermocouple is

1

_ 5
x1 _ (kOm/8.5c) (4.1.15)

for a single thermocouple.

Greatly improved accuracy can be obtained using two thermo-

couples, one at the heated surface and the other in the interior. A
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summary of the results for this case at the time of maximum K

i 5 given as case 3 in Table 4.1.2. In order to compare the value

of Z for two thermocouple measurements with the value of E for

one measurement it should be divided by 4.0 since two interior

thermocouples at x increase 5 by a factor of four. The equivalent

value of K for the measurements at x : 0 and x is 0.0026 compared

to the value 0.00017 for a single interior measurement. Clearly

the two measurements are superior.

The optimum position for the interior thermocouple located

atx=x2 isfoundfromT 20.9 /x22 : 1.50 or

m m

x2 = (k em/1.5c)%5 (4.1.16)

The criterion X (T13 for measurements at positions

x : 0, yl, yZ, yj... yn

at time TL 2 a. B/L2 can be readily calculated from Table 4.1.1.

The length L can be any significant length dimension. The terms

in Z are typically given by

1'1

NT =0.125+z AXNT( k) T i=1 Jt k)T 1-(

L L y

2 (4.1.17)

2

where (NTk)T is found from Table 4.1.1 at time T L (——§l:—)

_ J

For three thermocouples A is maximized by placing the

third thermocouple near either x z 0 or x2. For four thermocouples,

the fourth should be located near the other position not occupied by

the third. If the third and fourth thermocouples are placed some-

where between the surface and the interior thermocouple, the K

values are not greatly reduced from the values for the optimum
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placement of the thermocouples.

The dimensionless errors in the thermal conductivity k and

specific heat-density product c due to a single error at time T for

the optimum experiment with two thermocouples (x : 0 and x2) are

shown by Fig. 4.1.2. At a given time TX the values of Ako and AcO

for x: 0 are the result of a single error at x = 0 and time TX. For

example, the errors introduced due to a single error in the tem-

perature measurement at the surface at time TX : 0.8 are Ako : -3. 69

and Aco = -0. 327. This means that. the fractional error in k due to

this single error is

Ak/k : -3. 69(AT /1' m) (6/(Tm-Ti)) (4.1.18)

where 6 is the actual temperature error at x = 0 andAT /'r m is the

reciprocal of the actual number of discrete temperature measure-

ments at x = 0 utilized in the sum of squares function F. The actual

error in k is the sum of all the errors due to each discrete tempera-

ture measurement at x = 0 and the optimum interior location x2.

N
I
H

4. 2 Semi-Infinite Body with q : a(0 17)-

Another semi-infinite case of practical interest is for the heat

flux

q = a(6 17) i (4. 2.1)

where a is a known constant with appropriate units. For this case

the temperature is uniform until time 6 = 0 when the surface tem-

perature takes a step jump to Tm-Ti and then remains constant

with time. If the temperature boundary condition were prescribed

rather than the heat flux, the thermal properties could not be deter-

mined independently.



  
 

 

 

  

 

k c

T—T. l i
- _ 1 (kc) l _ 3E / c 2
T— T -T.-(T'T1) a rfc 1 — erfc 2 k8)

m 1 2 E
T

x

(4.2.2)

1

.1. : ka _k8T> (kc)‘2:__1.[emfC l _

k T -Ti Bkc a 2 1

2T 2
x

-1 1
2

(177x) exp(— 4T )] (4.2.3)

x

CTc 8T (kc)%
- _ _ _ .- _i
TC — T -T — C<8c)k a _ 2 [erfc +

m 1 3
21'

x

-l 1
a

(17 TX) exp < - 4- > 1 (4. 2.4)
x

For x = 0 the following results are obtained,

ka(0,9) cT (0,0)

'T—-T. ‘ ‘T"—-T ' ’ a (4'2'5)
m 1 m i

" _ 7 _ ' ' _ _1-
NTk - NTC _ (Tk’Tc) —. 4 (4.2.6)

Results for the various quantities of interest are tabulated for one

interior measurement in Table 4. 2. l. The dimensionless deriva-

tives Tk and Tc are plotted in Fig. 4.2.1 for both x = 0 and x.

The maximum Z for the single interior measurement is 0. 0023

and occurs at the dimensionless time Tm a, 10. 0 and thus the opti-

mum position for a single thermocouple is

N
)
»
-

x1 = (kBm/loc) (4.2.7)



Table 4. 2.1

T

X

005

.10

.15

.20

.25

.30

.35

0‘0

.45

.50

.60

.70

.90

.90

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

.7000

7.50

8.00

8.50

9.00

9.50

10.00

12.00

14.00

16.00

18.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

1(0)

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

T
c

-.0093

“.0859

'61715

'02376

“.2862

-.3222

-.3494

-03705

'03872

-..oo.

-.4207

-.4349

-..453

-.4533

-.4594

“.4701

“.4768

'64813

-0‘8‘6

’64870

-.4888

-.4902

“.4914

-.4931

'64993

’o4952

‘64959

-6‘965

-64969

-6497?

“.4975

v.4978

'64980

-.4981

-.4983

-.4984

'o4985

'64989

-.4991

-.4993

..4994

0.4995

c.4997

-64998

-.4999

-.4999

-64999

-.4999

'6‘929

-.5000

Tk

.0077

.0606

.1036

.1238

.1289

.1255

.1174

.1070

.0954

.0833

.0594

.0369

.0161

-60028

“.0201

-.0570

’.0869

-.1116

‘.1325

-01504

-01659

-61796

-61917

-62123

-02293

-.2‘36

-.2559

-02666

-62760

-028‘3

-02918

-02985

-030‘6

.6310?

-03154

-63201

.032‘5

.03394

.63510

‘63609

.63682

-03749

-63976

'94112

.6‘205

-6‘274

.0‘327

-64371

-.4406

”.9537

Quantities for q : am")-

“TM

.0016

.0253

.0679

.1138

.1573

.1967

.2320

.2636

.2918

.3173

.3613

.3980

.4292

.4561

.4795

.5271

.5637

.5930

.6171

.6374

.6547

.6698

.6831

.7055

.7237

.7389

.7518

.7630

.7728

.7815

.7893

.7963

.8026

.8084

.8137

.8185

.8231

.8383

.8501

.8597

.8676

.8744

.8973

.9110

.9203

.9273

.9326

.9370

.9406

.9436

1/2

NT
C

.0000

.0012

.0067

.0157

.0265

.0376

.0484

.0586

.0688

.0768

.0922

.1052

.1163

.1258

.1341

.1506

.1629

.1724

.1800

.1862

.1914

.1958

.1996

.2057

.2104

.2143

.2174

.2200

.2222

.2242

.2258

.2273

.2286

.2297

.2307

.2317

.2325

.2352

.2372

.2387

.2399

.2408

.2438

.2453

.2462

.2468

.2472

.2476

.2478

.2480

with thermocouple at x

(RFC)

..0000

-.0009

-000‘3

-.0092

-60141

-00182

-.0215

-.0239

-60255

-.0264

-00269

-00260

-.0242

-.0218

-60191

-60116

..OO‘O

.0034

.0104

.0169

.0229

.0285

.0337

.0432

.0514

.0587

.0652

.0711

.0764

.0812

.0857

.0897

.0935

.0970

.1003

.1033

.1062

.1161

.1242

.1308

.1365

.1414

.1588

.1697

.1773

.1831

.1877

.1914

.1945

.1972

-48-

NTk

.0000

.0007

.0029

.0055

.0076

.0091

.0099

.0102

.0102

.0100

.0092

.0082

.0073

.0065

.0058

.0050

.0051

.0058

.0069

.0084

.0101

.0119

.0137

.0176

.0215

.0254

.0291

.0327

.0361

.0393

.0425

.0454

.0483

.0510

.0536

.0561

.0585

.0671

.0746

.0811

.0868

.0920

.1113

.1245

.1342

.1418

.1480

.1531

.1575

.1613

A

.000000

.000000

.000000

.000001

.000003

.000008

.000017

.000031

.000048

.000070

.000124

.000189

.000261

.000339

.000419

.000619

.000808

.000982

.001138

.001277

.001400

.001509

.001605

.001766

.001892

.001992

.002070

.002132

.002181

.002220

.002249

.002272

.002289

.002301

.002309

.002314

.002317

.002306

.002276

.002236

.002191

.002145

.001923

.001739

.001590

.001469

.001367

.001281

.001207

.001143

c.9999 168.64

-.9994

-69981

c.9958

0.9924

-69878

-.9818

-.9742

-.9649

-Ogssb

-.9242

c.8892

c.8315

-.7646

-.6829

.0‘241

-.1388

.1081

.2938

.4268

.5221

.5918

.6441

.7164

.7634

.7961

.8201

.8386

0.532

.8650

.8749

.8832

0.903

.8964

.9018

.9066

.9108

.9241

.9335

.9405

.9459

.9503

.9639

.9711

.9756

.9788

.9811

.9830

.9844

.9856

59.98

35.15

24.90

19.47

16.16

1309‘

12.37

11.20

10.30

9.01

8.13

7.51

7.05

6.69

6.09

5.73

5.50

5.35

5.26

5.19

5.15

5.13

5.12

5.14

5.18

5.23

5.28

5.34

5.41

5.47

5.54

5661

5.68

5.74

5.81

5.88

6.13

6.38

6.61

6.83

7.04

7.97

8.75

90‘:

10.04

10.59

11.10

11.58

12.03

40.13

36.34

33.20

30.49

28.12

25.99

24.07

22.31

20.89

19.19

16.48

14.10

11.97

10.05

8.30

4.85

1.45

-1017

.3.42

-5.37

-7.09

'8.61

~9.98

~12.33

“196’s

915.93

“17.35

~18.89

-19069

'20.66

-2105:

“22.31

.23.“;

.23068

024.28

524.83

.25034

‘27606

“28639

“29.47

030.37

'31.12

“33.68

.35621

.35624

“37.00

.37059

'38.07

‘38.47

~38.80
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As noted for the constant heat flux case a much better experi—

ment can be designed using two thermocouples, one very near the

heated surface and the other in the interior as indicated by Table

4. 1. 2, case 6. The maximum 3 occurs at time Tm : 1. 25 and its

value is 0. 0452 which compares with the much smaller value of

Z = 0. 0105 for the constant heat flux boundary condition, case 3.

The optimum location for the interior thermocouple is

x2 = (mm/1. 25c)% (4.2.8)

Additional thermocouples should be placed at x : 0 and x2 or else

between these two positions as previously discussed in section 4.1.

The criterion X for more than two thermocouples is calculated as

described in section 4.1. A typical term is given by (4. 1.17) except

the constant 0. 125 is replaced with 0.25.

The dimensionless errors AR and [3.6 due to a single error at

time TX for the optimum experiment with two thermocouples (x : 0

and x2) are shown by Fig. 4. 2. 2. The interpretation of Fig. 4. 2. 2

is discussed in section 4.1. We note that the values of A12 and A5

-1.

for q : a(0 1r) 2 are generally smaller than for the q = constant case

shown by Fig. 4.1. 2. This is a natural consequence of having a

1

larger value of E for the q = a(0 17)-2 case than the q = C case.

Examination of Criterion for Optimum Heat Flux: In section 3. 4 the
 

parameter B(TO) is derived and it is shown that a necessary condition

for Z to be a maximum is that B(TO) be positive. The boundary condi-

tion considered was for the heat flux which causes a step rise in the

surface temperature. There were two temperature measurements

considered, one at x = 0 and the other in the interior of the body.

These conditions apply to the case considered in this section.
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q-a(9fi) for Tm— 1.25.
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The terms E , E and E needed in (3.4.16) are given
kl cl k,cl

by (3. 4. 9), (3. 4.10) and (3.4.11). The corresponding terms for the

interior thermocouple (those with "2" subscript) must be evaluated

for this particular case. For the optimum time of Tm = 1.25, ka

and GkT are both on the average much smaller than CTc or 5CTC
k

Then it follows that

E as 0 (4-2-9)

E m 0 (4.2.10)

The integral EC is not negligible, however; it is defined by

2

Tm (CT )0 5(CT ) dT
c2 C2

E (T) : 2 — (4.2.11)

(2 o
2 (T -T.) T

TO m 1 m

 

It can be proved using the linearity of TC and T that the magnitude

of 5CTC is directly prOportional to the pulse 6T. Also for small
2 .

AT it can be shown that

BCT

C2

c 8T
2

Hence EC (To) is directly proportional to the product of GT and AT ,

2

or

_ I ’

EC2(TO) — AT 5T ECZ‘TO) (4. 2.13)

where 13": (To) is independent of AT and GT. Then B(TO) as defined

2

by (3.4. 20) is

13(70) = (1/8) [1\ITk +NTC - 2(T )] + (E; NTk]/2

kT 2

(4. 2.14)
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Now E; is positive since from (4. 2.13.) EC (To) is positive for

2

positive 5T because then both cTC and (SCTC are negative. From

2 2

Table 4. 2. 1 and (4.2.6) at time Tm = 1. 25, we have NTk = 0. 255,

NTC = 0.4006 and (Tk,TC) = 0. 2384. Thus B(TO) is at least 0.0224.

The positive contribution by E232 to B(TO) is usually less than 0. 0224.

At Tm : l.25,Table 4. 2. 2 gives E0 : 0.0452. Using these values

in (3.4. 21) we note that even if AT/Tm approaches unity, A is less

than 30. According to the analysis it is sufficient to demonstrate

that B(TO) is positive, however. This has been proved for this case;

)
—

hence based on the B(‘TO) criterion, q : a(9 17)—Em the optimum heat

flux for the case of a semi-infinite body with one thermocouple at

the surface and another located at x2.



V. FINITE BODIES

5. 1 One Surface Insulated

A number of different heat flux conditions at x = 0 is considered

in this section. In each case the surface at x 2 L is insulated.

The optimum thickness of the specimen can be calculated for

each case in this chapter for a prescribed experiment duration 0m

using L = (kem/Tm c)%where Tm is the optimum dimensionless dura-

tion of the experiment.

5.1.1 Constant Heat Flux

For the case of constant heat flux qO at x : 0 and insulated at

x = L the temperature distribution and the associated property deri-

vative s a re

-_ 1 —

Tzq—Of7E—T+X

 

 

———2— 2 (‘1) e'r1 7’ T cosnn(l — 1) (5.1.1)
2 , L

2 n=1 n

11

RT

T — k —X

k qOL7k

00 Z 1

+22 (~l)nen 7' T [cosng(l—i{-)][ +T] (5.1.2)
1. 2 2

n:1 11’ n
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CT 00
.. = C _ - _ I1 -n 11’ _1{_

TC _m_ T[1+2f_1(1) e eosan L)1

(5. 1.3)

where T :0. 0/L2 andX : +[(x/L)2 /2] - (x/L) + (1/3). These

expressions are plotted versus dimensionless time T for several

positions x/L in Figures 5.1.1, 5.1. 2 and 5.1. 3. The derivative

Tk can be either positive or negative and approaches the quasi-

steady state distribution -X for times T greater than 0. 5. Conse—

quently Tk approaches zero at x/L : 0. 422. Thus unlike the semi-

infinite body it appears that an internal thermocouple located near

x/L : 0. 5 in ineffective in aiding the determination of k. On the other

hand for T > 0. 3, the derivative TC approaches -T .

Various parameters of interest for the maximum value of A

are given in Table 5.1.1 for case 1 with x = 0 and case 2 with x : L.

The case of using two thermocouples is important; it is found that

the optimum locations to maximize A are at the boundaries: x = 0

and x = L. The results for this case are summarized in Table 5.1.1

as case 3. The ratio of the major axis of the F-contour to the minor

axis, R, is 2. 05 which is much smaller than for the single tempera-

ture histories at x : 0 and x : L (which have values of 7. 76 and 14. 5

respectively). If three thermocouples are used, A is maximized by

placing the third near x = 0; for four thermocouples A is maximized

by locating two near x = 0 and two near x : L. This is fortunate

since in many cases the specimen itself need not be instrumented with

thermocouples but the thermocouples can be embedded near the sur-

faces of the heating and insulating elements.
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Fig. 5.1.1 Temperatures in a finite body with q = C at x = 0 and

q=0atx=L.
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Table '5. 1.1 Maximum 2 values for'different experiments with finite bodies.
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Thermocouplei T _ “ m R nate, 0°. '

' m’ '17— p

1 I qsc (1:10 3:130 0.00098 1.2 _ 7.76 -22.5 0.94

.2 ; q=C 9-0 36:1. 0.00019 1.3 14.5 10.5 -0.94

3 1 q=C q . 0 = 0, 1. 0.0235 0. 65 2.05 -16.5 0.39

4 0<15 0.5) q -.- o x = o, 1. 0.0356 0. 75 2.18 -9.0 0.25
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t T>0.5: ' i

: anliJ

5 qeco' q :0 x e 0, 1. 0.0981 0.48 1.855 -18.2 0. 36

«col/Z q =0 1: = 0, 1. 0.00989 0. 84 2.20 -16.0 0.42

7 q=COn q=0 x=0end 0.0 --- --- --- -..-

”(.00 5 X 8 o, L

8 h-b.c. q = 0 x -.- 0 0.00083 1.16 7.41 : -23.7 0.94

Bi=0.l
1

9 h-b.c. q = 0 x = 0 0.00016 0.86 7.96 -34.0 0.963

3181

10 h-b.c. q = 0 x 4 0 0.00004 3.8 ' 2.73 -51.3 0.76

" 31:2 ‘

11 h-b.c. q s 0 x = 0. 1. 0.0216 0.64 1.96 -15.8 0.36

Bis-0.1 _

12 h-b.c. q = o x = 0.1. 0.0109 0. 56 1.44 -9.0 » 0.11

1 31:1

13- ( h-b.c. q = 0 x . o, 1. 0.00559 0.48 1.12 -1.8 0.01

1 81:2 ‘

14 ‘qfor’l‘dl'm q=0 ' 52.0 0.0291 1.8 4.21 410.3 0.57

15 quor T-Tm q . o x . 0.1. 0.1432 0.76 2.38 -8.2 0.265

16 l qu T =0 :30 0.0111 2.96 6.42 -84.3 0.528

17 100:3 2.2: T . 0 x - 0 0. 0196 2.9 3.7 -86. 5 0.20

q - C

1’ >Z.Z

<1 = 0 .

18 qforTfl' q for x I 0, L 0. 250 a . 1.0 -45.0 0.0
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The errors in k and c for a single error at time T for the

optimum experiment using two thermocouples (case 3) with constant

q are shown in Figure 5.1. 4. We note that k is more sensitive to

errors in the temperature measurements than c.

The effect of the weighting factor Aj upon A and R was found

to be insignificant in this constant-q case. In general, A was reduced

slightly and R was increased for Aj's other than unity. For this

reason and to reduce the scope of the problem the value of A). for all

subsequent cases is unity for each temperature history.

The case of constant q until time T and q = 0 thereafter is of

interest and is case 4 of Table 5.1. l. The optimum heating time is

T = 0. 5 and the soaking time is AT : 0. 25. This heating curve

increases A over that for q : C.

5.1.2 Heat Flux with q = c 0r1

Results for the heat flux of the form

q = c an (5. 1. 4)

with n = -0. 5, 0. 5 and n < -0. 5 results are tabulated as cases 5, 6

and 7 in Table 5. 1.1. In the first case the surface temperature

suddenly increases to a value and remains constant until T g 0.4

when it begins to increase slowly. For n = 0. 5 the surface tempera-

ture increases very gradually at first and then increases more

rapidly at later times. For n < -0. 5 the surface temperature sud—

denly increases at T : 0+ to infinity and thus Tm equals infinity and

A equals zero.

5. 1. 3 Convective Heat Transfer at the Surface

The convective heat transfer boundary condition is

q=h(Tm-T(0.9)) (5.1.5)
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Results for a thermocouple at x : 0 are given in Table 5.1.1 by cases

8, 9 and 10 and for thermocouples at x : 0 and L by cases 11, 12 and

13. Results are given for the Biot number Bi : h L/k equal to 0.1, l

and 2. 0. For Bi : 0.1 the surface temperature rises very slowly and

q is almost constant for a relatively long dimensionless time. For

large values of Bi the surface rapidly approaches T00 and the boundary

condition of a given surface temperature rather than a given surface

heat flux. When the surface temperature is given, we know that the

properties can not be separately determined and E : 0. Hence the

decreasing value of A as Bi increases. As Bi becomes larger the

sum (-ka -cTC) becomes much smaller than T - Ti while we know

the equality holds for a given heat flux boundary condition.

5. 2 Prescribed q at x : 0 to Produce Constant Surface Temperature

and q = 0 at x = L

The heat flux at x : 0 to make A a maximum for thermocouples

at x = 0 and x = L (the insulated surface) is the one which makes the

surface temperature at time T = 0 increase from T.1 to Tm and then

remain constant. Results for a single thermocouple at x : 0 and for

two thermocouples are shown by cases 14 and 15 of Table 5.1.1.

The experiment is more accurate for determining c than k since (3 is

near (3 = 0° and R is 2. 38 for two thermocouples. The temperature

T', derivatives ka and CTC and the errors AR and A5 are shown in

Figures 5. 2.1 to 5. 2.4.

This is the optimum experiment for a finite body if the surface

at x = L must be insulated. This is perhaps the best boundary condi-

tion for high conductivity mate rials since these are relatively easy to
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Fig. 5.2.1 Temperatures in a finite body with q at x : 0 to
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insulate. Unfortunately the B(TO) criterion for the optimum heating

condition is not easy to apply in this case since T and TC are not of

k

simple form. Computer calculations verify, however, that B(TO) is

positive and hence this is the optimum experiment if it is required

thatq=0atx:L.

5. 3 Constant Heat Flux at x = 0 and Given T = 0 at x = L

An experiment for which k can generally be more accurately

determined than c is the case of a prescribed constant heat flux at

x : 0 and a constant temperature at x : L. In the standard method

of determining k the temperature distribution is allowed to reach

steady-state and then k alone is determined. The optimum value of

A for a thermocouple at x : 0 occurs at time Tm : 2. 96 (case 16,

Table 5.1.1). The angle 0 for this Optimum is -84. 3° and R = 6. 42

indicating that k can be calculated with considerably greater accuracy

than c. Since the temperature at x = L is prescribed, no informa-

tion about the properties is obtained at this point. To maximize A

using two thermocouples the second thermocouple should also be

located near x = 0. If the surface at x : 0 is insulated at time

T = 2. 2 and then the body is allowed to thermally soak, the value of

Z is increased and R is decreased measurably to 3. 7 (case 17).

It is worthwhile to compare the A, R and (3 values of case 16

with the case of constant q at x : 0 and insulated at x = L, case 1 of

Table 5.1.1. The former is best for determining k and the latter

for c. If only a single thermocouple can be used and we require

C, the T = 0 boundary condition gives a larger A than for q = 0 atq

X L. Hence, in this comparison for a single thermocouple the T = 0
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boundary condition at x : L is superior to the insulation condition at

L. For two or more thermocouples, however, the q = O boundary condi-

tion at x = L is better because it causes a larger A than does the T : 0

boundary condition.

5. 4 Heat Flux Prescribed at Both x : 0 and L

The largest possible value of A that can be obtained for a homo-

geneous body with heat flux boundary conditions and with two or more

thermocouples is found by determining the optimum heat fluxes at both

x = 0 and L. The heat fluxes that will maximize A are the q at x : 0

to cause a step rise in the surface temperature and the q at x = L to

cause the temperature at L to remain at its initial value, T = 0. Note

if the temperatures rather than the heat flux boundary conditions were
 

 

imposed, k and c could not be obtained. This case is unlike the other

finite cases in-several respects. The derivatives Tk and TC at x = 0

are related by (see Fig. 5. 4.1)

ka/T :- cT /T : -O.5 (5.4.1)

m c m

and at x = L by

Mk 2 -cTC (5.4.2)

and thus if either temperature history at x : 0 or L is used alone to

find k and c the properties can not be separately determined. In the

case of thermocouples at x = 0 and L the integrals NT NTc and
k,

(Tk,TC) approach as T _. on respectively 0. 5, 0.5 and 0. 0. Then the

correlation coefficient goes to zero and R goes to unity indicating that

both pr0perties are found to equal accuracy. Unfortunately, K reaches

its maximum value of 0. 25 only as T goes to infinity. This means that
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Fig. 5. 4.1 Derivatives Tk and TC for a finite body with q at

x: 0 to cause TmzC andq for T:0 at sz.
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Fig. 5.4.2 Errors Akj and AEj for q at x = 0 to cause Tm :C
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—65-

the specimen thickness must tend to zero for fixed finite duration of

the experiment 0m

Fig. 5.4. 2 gives the errors Akj and ch due to a single error

at different times at x : 0 and x = L in the measured temperatures for

Tm = 2. 0 for which A : 0.222. Note that this experiment has the

smallest average errors at x = 0, 1.60 and Ako, and at x = L, A51

and Akl, of any experiment considered in this thesis, this is a result

of the larger A for this case than any other. The difference is most

outstanding when the errors for q = C for a semi-infinite body,

Fig. 4.1.2, are compared with those shown in Fig. 5.4. 2, the same

error in a measured temperature for the semi-infinite case as for

this case can cause six times as large an error as for this case.

To experimentally introduce a heat flux at x = 0 to maintain

essentially a constant surface temperature is not difficult. It can be

done by utilizing another finite body of accurately known thermal pro-

perties at either a higher or lower temperature than the specimen.

The two bodies are suddenly brought together at time 9 = 0. The heat

flux into the specimen can be calculated accurately from the tempera-

ture history of the surface of the body with known properties. To

accurately measure the q at x : L without the temperature increasing

can be very difficult if the specimen is heated rather than cooled. If

the specimen is cooled at x = 0 then an electric heater at x = L auto-

matically adjusted could maintain the temperature constant at x = L.

This is an interesting possibility since the heat capacity of the heater

would not introduce any error into the calculation for the properties.

Examination of Criterion for Optimum Heat Flux: For the heat flux
 

at x = 0 to be an Optimum boundary condition it is necessary that B(TO)
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be positive (see section 3.4). By an analogous development it can be

shown that another B(TO) for the surface at x : L also must be positive

for the optimum heat flux at x = L. Both values of B(TO) are positive;

for conciseness B(TO) for x : 0 is solely considered. Due to the unique

condition (5. 4. 2) the following relations apply,

E z E (5.4.3)

E = -21: (5.4.4)

and (3.4.16) becomes

231(70) = Ekl[(NTk)+(NTC)-(Tk,TC)]+ECZ[(NTk) + (NTC) + 2(Tk, TC)]

(5. 4. 5)

where E is given by (3.4.9) and BC by (4.2.13). The quantities

k
l . 2

ER and EC are positive for positive GT and for large T's, (NT ) :

.1 2 - - 1‘
(NTC) = 0. 5 and (Tk,TC) = 0; hence B(TO) given by (3. 4. 20) must be

positive. Consequently the necessary condition that B(TO) be positive

for the optimum heat flux at x : 0 is satisfied.

5. 5 Summary of Observations for Heat Flux Boundary Conditions

A number Of general observations can be drawn from the cases

considered for the finite and semi-infinite bodies. The Optimum heat-

ing boundary condition at x = 0 for at least two thermocouples appears

to be the heat flux which makes the surface temperature take a step

rise. This is true for both finite and semi-infinite bodies; it is indi-

cated by the value of B(TO) being positive for a positive GT in each

case. See section 3.4. For all the finite cases, except for case 16,

two thermocouples with one at x : 0 and the other at x = L provide
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a much more efficient experiment than a single thermocouple at

x = 0. In adding additional thermocouples the best locations to maxi-

mize A are at the boundaries, x = 0 and L (except for case 16). In

many cases since the Optimum locations for thermocouples are at

x = 0 and L the specimen itself need not be instrumented with thermo-

couples but the standard materials (which do not change from experi-

ment to experiment) can be instrumented. This can mean a considerable

saving in time and expense in performing experiments.

In general, the Optimum finite experiments provide larger

values of A and smaller values of R than the optimum semi-infinite

experiment. Hence the finite-body experiments are preferred. For

high thermal conductivity materials the Optimum experiment corres-

ponds to case 15, Table 5. l. 1. For large k's (greater than

30 Btu/hr -ft-° F) the body can readily be insulated at x = L. On the

other hand, for low conductivity materials (k less than 10 Btu/hr-ft-° F)

it is difficult to insulate at x : L but relatively easy to maintain a con-

stant temperature at x : L since in this case the heat fluxes are much

smaller in magnitude than for the high k case. Hence, case 18 with

Tm about 2 is recommended for low values Of k. For intermediate

values of k case 18 should be approximated as closely as possible.

The step change in surface temperatures for cases 15 and 18

can be experimentally Obtained by utilizing a standard Of accurately

known thermal properties and at an initial temperature different from

that of the specimen. When the standard and the specimen are brought

into intimate contact a common interface temperature To is suddenly

attained (provided the contact resistance is negligible). Assuming

temperature-independent thermal prOperties one can show that To is



l .01

ol-HOCD

01D111

...(D .:w

e. -.1 .,

:nuumu

. .
..
In) )1

(We.

5.

firm-x

“01.”. ”wt-.0



-68-

given by

N
I
H

i,st O O i,sp kspcsp/kst Cst)

(5. 5.1)

where Ti is initial temperature and the subscripts sp and st refer

respectively to the specimen and standard materials. In order for the

interface to remain constant with time it is necessary for the standard

to have the same boundary condition at its other face as the specimen

has: q : 0 for case 15 and T : constant for case 18. It is sufficient

to also require for both cases that

l

_ E
Lst/Lsp - (est/asp) (5.5.2)

Before performing the experiment one does not know accurately the

thermal diffusivity of the specimen asp; thus the ratio of the thick-

nesses of the standard to specimen given by (5. 5. 2) can not be satis-

fied precisely. One usually does have an estimate Of asp which is

sufficiently accurate to find LSt and approximately satisfy (5. 5. 2),

however.



VI. CALCULATION OF CONSTANT THERMAL PROPERTIES

6.1 Finite —Difference Equations for the Heat-Conduction Equation

In order to be able to conveniently analyze transient tempera-

ture data a general digital computer program is needed that can treat

a variety of boundary and initial conditions. The procedure used in

the program should have the potential Of being extended to consider

temperature-variable thermal properties. The method Of finite-

difference satisfies these requirements. The only doubtful point

relates to the accuracy that can be Obtained with this method with a

moderate expenditure Of computer time. These requirements can

be also satisfied since the properties can be frequently calculated to

less than 0. 1 percent error due to the finite difference approximations

while using less than 30 seconds Of CDC 3600 computer time.

In order to present concisely the finite-difference equations

utilized, the interface equation between two dissimilar materials is

developed. The transient heat conduction equation for constant k and

c can be written

82
k : 8T

C __

8X2 80

H

(6.1.1)

An energy balance written for the node n shown in Fig. 6.1. l is

-69-
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Fig 6.1.1 Spatial nodes for interface, eq (6.1. 3)
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Fig 6. 1.2 Spatial nodes for surface node with given

  

 heat flux, eq. (6.1.10).

 

Table 6.1.1 Percenterroratx:OforqzCatx:0andq:0at

at x = L. T? = 0.5 and 1.1: 0.75 except cases 6 and 7.

 

 

    

 

  
 

     
 

 

 

Percent Of error at x=0 at timesi

1 0.005 10 2

2 0.01 10 1 14.5 -0.l70 0.0347 0.0176

3 0.02 10 0.5 20.4 -l.64 -1.64 -0.0281

4 0.005 20 0. 20.4 -l.64 0.0075 0.0052

-., 5 0.01 20 0.25 23.3 -3.51 -0.897 -0.0267

6* 0.005 10 2 -27.6 -6. 88 -l.59 -O.580

7* 0.02 10 0.5 -23.3 -3.95 ~3.95 -l.39

* n=1.0andx1=l.0
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1 1Tm+l _Tm+l m+- _Tm+ Trn -T m Trn _Tm

n-l n n+1 n n-l n n+1 n

,,[1<n_l + kn ] -w[kn 1 +kn

Ax Ax " Ax Ax

n-l n n-l n

C Ax +c Ax

: n-1 n—1 n (Tm+1 -T m) (6. 1. 2)

2A0 n n

which can be written in the more convenient form

("kn-115:3 -[n(kn-l+fnkn)+Bn]Trin+l+(nknfn)Trl::1+l z

(wkn_1)T:1n_1 -[..(1<n_l +£n kn)+Bn]Tnm + (13kn fn)T::l (6.1.3)

where

fn = Axn_l/Axn (6.1.4)

Bn : Axn_1Axn(cn_lfn+cn)/2A0 (6.1.5)

6. = n — 1 (6.1.6)

The temperature Tin is the temperature at position xn in the body at

time mAG . All temperatures at time mA0 are known while those at

time (m+l)A0 must be calculated. The quantity 77 can be chosen to be

any value from zero tO unity; for f : 1 the solution for the tempera-

tures is stable for any size time step A0 if n 3 0. 5 and the body is

homogeneous (i. e. , k : kn and CH :: cn for all n). In this case
n—l -1

with 71 = 0. 5, (6.1. 3) reduces to the widely-used approximation first

given by Crank and Nicolson in 1947 [31, 32, 33]. The most impor-

tant advantage of using 77 = 0. 5 is its excellent accuracy. Another

commonly used value Of TI is unity; this gives the “backward-

difference" approximation.

At a heated surface an energy balance gives for node 1 shown
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inFig. 6. l. 2

  

m+1 m+1 m m m+l m

m+l m T2 ‘T1 T2 ’T1 AX1C1 To “To
”('1 -00q Tnkl ~60kl =

Ax Ax 2 A9

1 1

(6.1.7)

or with the approximation

r r r , _ A
TO — X1T1+XZT2 , (r_m, m+l) (6.1.8)

and with

X 2 = 1 - X1 (6.1. 9)

(6.1.7) becomes

2 2

C (Ax ) C (Ax )
l 1 m+l l 1 m+l

-[2 k+>. ]T + [2 k ->. ————-]T e
’7 1 1 A9 1 7? 1 2 A6 2

c Ax) c (Ax )2

4zwkim —J—4L—]TH‘+[ka-x l l ]Tnthx(oqm5nqu5
1 1 1 l 2 2 1

A0 A0

(6. 1.10)

Experience shows that )1 1 : 0. 75 gives more accurate results than

the more common approximation >11 :- 1. Eq. (6.1. 10) is also used

at an insulated surface by letting q : 0.

To provide a comparison Of the accuracy for selected time

steps and number Of nodes, Table 6.1. l is given. The percent

error in the temperature rise at x : 0 is given for a finite body ini—

tially at temperature Ti and with q : C at x = 0 and q = 0 at x = L.

The temperatures for this case are shown in Fig. 5.1.1. The quan-

tities AT , N and M are defined as

AT = aAe/L2 (61.1n

N = L/Ax (6.1.12)

M = (AX)2/O.A9 (6.1.13)
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where A0 is the time step and Ax is the spatial node spacing. We

can draw several conclusions from the data Of Table 6.1.1. In each

case the calculation Of the temperature at time AT is rather inaccurate

and in some cases even at time 4AT the error is still large. Since

the large errors do not persist with time, however, the initial few

temperatures calculated need not be used to calculate the properties.

For economy in performing the experiments the time step for reading

the experimental transient temperature data can be considerably

larger than that required for the computer to accurately calculate

the temperatures. For these reasons the program developed to cal-

culate prOperties permits the calculational time step to be any even

divisor Of the time step used to read the experiment data. Another

conclusion is that the quantity M significantly affects the accuracy.

The temperatures are not necessarily calculated with greater pre-

cision for a fixed time step if N is doubled as can be Observed by com-

paring cases 1 and 4. Omitting the first few times steps for N : 10,

a value of M of either 1 or 2 yields temperatures which are well within

0. 1% accuracy. For N = 20, M = 0. .5 is satisfactory to provide 0. 01%

accuracy after several times steps. Cases 6 and 7 are for 77 : X l =

l. 0 while the previous cases are for 77 : 0. 5 and )‘l : 0. 75; a com-

parison Of cases 1 and 6 (or 3 and 7) demonstrates that the latter

values of n and x yield much better accuracy. Temperatures at

1

interior locations have comparable accuracy with the given values.

In the iteration procedure for determining k and c it is neces-

sary to evaluate the derivatives Tk and TC. The derivative Tk can be

found by using the same program that is used to calculate the tempera-

tures since
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BT T(k-tAk,c) - T(k,c)

513 “ 0k
C

Tk:  (6.1.14)

The CDC 3600 computer uses 11 or 12 significant figures in its calcu-

lation so Ak can be made very small compared to k. The value Of

Ak : 0. 0001k gives excellent accuracy.

6. 2 Accuracy of Properties Calculated from Exact Data

In evaluating the accuracy of the mathematical procedure

given in this paper it is necessary to use exact temperatures rather

than experimentally determined values. When the procedure is used

to find values of k and c from experimental data, the error introduced

into the properties due to the finite-difference approximations should

be an order Of magnitude less than those caused by the data itself.

With reasonable care in the choice Of M, N, n and X1 this can

always be accomplished.

For the Optimum heating time Of T : O. 64 for case 3 Of Table

5. 1. l (q = C at x : 0 and q = O at x : L), the percent errors in k and

c are shown in Table 6. 2. 1. The exact temperatures at x : 0 and L

at times T = 0. 02, 0. 04, 0. 06, . . . , 0. 64 are used to find the prO—

perties k and c. Cases 1 through 5 which are for 77 : 0. 5 and 11 = 0. 75

give about 0.1 percent accuracy or better. The n 2: k l : l. 0 results,

cases 6 and 7, have much poorer accuracy which is consistent with

Table 6.1. 1.

Another boundary condition Of interest is the heat flux to make

the surface temperature constant at T]m and q = 0 at x : L (case 15,

Table 5. 1. l). The errors in k and c are shown in Table 6. 2. 2 for

again AT = 0. 02 for the temperature data at x = 0 and L. For the
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Table 6.2.1 Percent error in k and c for q : C at x : 0 and

q = 0 at x = L with measurements at x : 0 and

Land AT :0.02 for data. Tm=0.64.

k .Percent Percent

l errorin. error in

k c

1 2.0 0.5 0.75 -0.0446 0.0727

2 0.01 10 1.0 0.5 0.75 —0.0543 0.0714

3 0.02 10 0.5 0.5 0.75 0.1305 0.1092

4 0.005 20 0.5 0.5 0.75 -0.0221 0.0209

5 0.01 20 0.25 0.5 0.75 -0.1475 0.0072

6 0.005 10 2.0 1.0 1.0 -O.4878 -0.1554

7 0.02 10 O. 1.0 1.0 -1.410 -0.0716

Table 6.2. 2 Percent error in k and c for q to make T : Tm at

x = 0, q = 0 at x = L with measurements at x = 0

andLand AT 20.02for data. Tm=0.8. 17:0.5

and X 1 = 0. 75.

Percent Percent

Case AT Pi Ni error hi errorin

k c

1 0.02 5 2.0 2.85 0.725

2 0.005 10 2.0 0.251 0.0559

3 0.01 10 1.0 —O.803 0.0728

4 0.02 10 0.5 4.28 0.960

5 0.00125 20 2.0 0.0299 0.0139

6 0.0025 20 1.0 0.0608 0.0164

7 0.005 20 0.5 0.659 0.0074

8 0.00125 40 0.5 0.0173 0.0051
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same values Of AT and N in Table 6. 2.2 as in Table 6.2.1 the q : C

case has greater accuracy. This better accuracy is due to the errors

in the finite-difference approximation which are greatest at the

earliest times at which time the constant temperature case is more

sensitive to errors. (See Figures 5. 1. 7 and 5. 2. 4). For a random

distribution Of experimental errors the constant temperature case is

superior as indicated by the larger A; the errors in the calculation

for the properties can be made as small as desired simply by reduc-

ing AT and holding M fixed. Whenever a new experiment is being

analyzed to determine k and c the accuracy Of the calculation can be

easily checked by running the same data on the computer with two

or three values Of AT for a fixed M value about unity. From Table

6. 2. 2 it appears that the error is reduced by a factor of about 10 each

time AT is halved for fixed M. TO run cases 1, 2 and 3 of Table 6.2.1

it took a total Of 65 seconds on the CDC 3600 computer.

6. 3 Analysis Of Hsu Transient Temperature Data

Hsu performed in 1956 [12] an experiment using two semi-

infinite sections Of nickel at different initial temperatures. The nic-

kel sections were suddenly pressed together with a pressure of about

500 psi. His data is given in. Table 6. 3. 1. From each temperature

(except at 0 : 0) he calculated an independent value of thermal dif-

fusivity 0. using (4. 2. 2). This equation requires the interface tem-

perature Tm which was not measured. Assuming the contact resis-

tance between the nickel sections to be negligible, Hsu by eye drew a

smooth curve through his temperature data plotted versus position.

He found that the interface temperature Tm was about 46. 7° C. After



 

 

 

  

 

 

        
 

Table 6.3.1 Hsu temperature data [12]

Temperature, 0C

Thermocouple Time Seconds

positions, cm 0 5 10 15 20 25

1.495 69.9 64.6 60.85 58.65 57.3 56.15

0.892 69.9 59.0 55.65 54.2 53.2 52.5

Hsu“ 0.501 69.9 53.9 51.85 50.95 50.45 50.0

0.209 69.9 49.85 48.9 48.45 48.25 48.1

-0.269 23.7 42.75 43.8 44.45 44.7 44.95

Hsu#2

-0.996 23.7 33.7 37.1 38.65 39.7 40.4

Table 6. 3.2 Thermal properties calculated from Hsu data. Results

for Hsu #1 are given by rows 1-3 and for Hsu#2 by rows

 

 

 

 

       

4-6.

0. k c p ' cp

Row Analyst mZ/hr Kcal/m-hr—C Kcal/m5-C Kg/m3 Kcal/Kg-C

ftzlhr Btu/ft-hr-F Btu/ft3-F 1bm/ft3 Btu/lbm-F ,

1 Hsu 0.0558 53. 9 967 8870 0.109 1

2 Beck 0.05510 53.55 971.8 8892 0.1093

3* Beck 0.5931 35.98 60.70 555.1 0.1093

4 Hsu 0. 0568 54. 9 967 8870 0. 109

5 Beck 0.05925 56.30 950.3 8900 0.1068

6* Beck 0.6378 37.83 59.34 555.6 0.1068

* -English Units 
 

Comparison Of 0. values calculated by present method

 

 

 

       

 

  

 

 

  

Table 6.3. 3

with others

To k* 73* 0* 0* BSCk Has“

_ - _ ‘ 3 2F Btu/hr ft F Btu lbm F lbm/ft ft /hr ftZ/hr ftZ/hr

75 38.0 0. 1055 555.9 0.649

95 37.5 0.1062 555.6 0.636 0.6378 0.612

116 36.7 0.1072 555.4 0.618

137 36.0 0.1082 555.1 0.600 0.5931 0.601

35.5 0.1090 554.8 0.588

* From Handbook Of Thermophysical Properties of Solid

Materials [34]  
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obtaining the twenty values Of a. in the high temperature specimen

(Hsu #1), the averaged was calculated. Utilizing the following values,

p = 8870 Kg/m3 and cp : 0. 109 Kcal/KgC, the thermal conductivity k

was calculated from

k = p (6.3.1)Cp Qavg

He repeated the same procedure with the same value of p cp to Obtain

a k-value from the average 0. Obtained from the low temperature

specimen (Hsu #2).

Hsu in his analysis Of the data incorporated a number Of assump-

tions or conditions that can be eliminated using non-linear estimation.

These are as follows:

1) The contact resistance was assumed to be negligible and

thus the temperature at the interface was assumed tO be unique. In

our calculation the surface temperature Of each specimen-was assumed

to be constant with time after 0 : 0, then the surface temperature of

each specimen was calculated separately and no further assumption

was made relative to the contact resistance.

2) Hsu found the interface temperature to be 46. 7° C by a

manual curve fit.

3) Hsu used the same value of c : p cp for both specimens.

In our analysis it was necessary to give the q at the surface of only

2133 specimen or equivalently, to give the c value of _O_n_e_ specimen.

Then the value Of k (and c if q is given) Of that specimen and the values

Of k and c for the other specimen were determined.

If Hsu had given the temperature history of a point near the

surface Of only one specimen with much finer time steps than 5 second
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intervals, the heat flux at the interface could have been calculated for

given values of k and c. Since this information was not available, we

assumed the heat flux to be

q = (Tm - Ti) (kc/0 17)—:- (6. 3. 2)

which is the heat flux for the surface temperature suddenly increasing

from Ti to Tm and then remaining constant at Tm' (See section 4. 2.)

Utilizing the program described in sections 6. l and 6. 2 the high tem-

perature data (Hsu #1) was analyzed first using the q calculated from

(6. 3. 2) with the values of Tm - Ti and kc that Hsu found from the low

temperature data (Hsu #2). Next, the low temperature data was analyzed

with the Tm - Ti and kc values determined from the Hsu #1 data.

The property values calculated for Hsu #l and #2 are shown

in Table 6. 3. 2 along with values Obtained by Hsu. English units are

used in rows 3 and 6 and metric units in the other rows. The proper-

ty calculated most independently is the thermal diffusivity 0. since

neither the heat flux nor a c-value need be given tO Obtain 0.. The

values of 0. calculated by Hsu and Beck for Hsu #1 are 0. 0558 and

0.05510 and for Hsu #2, 0.0568 and 0. 05925 mZ/hr. For the Hsu #1

data our values are about 1. 3% lower than Hsu's and for the Hsu #2

data, about 4. 6% higher than Hsu's values. The discrepancy is quite

significant particularly for the Hsu #2 case. The discrepancy is due

in a large measure to the interface temperature used by Hsu compared

to the calculated values using nonlinear estimation. The surface tem-

perature calculated for Hsu #1 and Hsu #2 are respectively 46. 671 and

46. 605° C while Hsu from his manual curve fit Obtained the single value

46. 7° C. Though the difference between these values appears negli-

gible, in reality Hsu's procedure for calculating a is very sensitive
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to the interface temperature particularly for the Hsu #2 data. The

average (1.-value calculated from the Hsu #2 data and using Hsu's method

with Trn = 46. 60°C yields about 0. 05975 which is slightly higher than

the "Beck" value given in Table 6. 3.2 which is 0. 05925 mZ/hr. If

average values of o. are calculated separately for the two thermocouple

temperature responses, (x : -0. 269 and -0. 996 cm), using as the

surface temperature the Hsu value Of 46. 7°C, one obtains 0. 0553 and

0. 0583 mZ/hr; while using our value Of 46. 60°C for the surface tem-

perature one Obtains 0. 0598 and 0. 0597 mZ/hr. Since the latter two

values are much more consistent, it is probable that surface tempera-

tures are more accurately calculated by nonlinear estimation than the

manual curve fit. Furthermore, the properties Obtained by the non-

linear estimation procedure should be more accurate than those calcu-

lated by Hsu.

To Obtain the k and c results given in Row 2 Of Table 6. 3. 2

the q given by (6. 3. 2) was used as described above. The specific

heat cp was found from c by utilizing the accepted value Of the density

of nickel [34]. The density p is relatively easy to measure and is much

more insensitive tO temperature changes than either k or cp as can be

noted by comparing values given for Hsu #1 and #2 (rows 2 and 5).

The values of CI) and p were fixed by Hsu for both specimens. In our

calculation only p was needed and the values given in reference [34]

for the average temperature were used tO Obtain the values in Table

6. 3. 2. This reference is result of a thorough literature search and

analysis of published data Of thermal properties for a large number Of

materials. The recommended values given in this reference are the

generally accepted values at the present time. Before comparing the
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prOperty values given in Table 6. 3. 2 with the recommended values

the consistency of the Hsu data is examined.

Hsu does not state the accuracy Of his measurements; however,

from the number Of significant figures used to write his measured

temperatures (Table 6. 3. l) evidently he thought the temperatures

were measured no more accurately than about J: 0. 05° C. The values

Of the rms differences between the temperatures that we calculated

and those that Hsu measured are for Hsu #1 and #2 respectively 0. 048

and 0. 050°C. The temperatures differences are given by Figures

6. 3.1 and 6. 3. 2. For the most part, the differences appear to be

random and no one temperature or thermocouple contributes much

more than the average to the rms value. This indicates that the

temperatures were rather carefully measured and possess the accu-

racy implied by Hsu.

It is interesting to note that the temperature differences for

the thermocouples nearest the interface indicate the presence of a

contact resistance at the interface. The resistance would have the

greatest effect at the earliest times when the heat flux is greatest.

For Hsu #1 the calculated temperature is less than the measured tem-

perature for the first thermocouple for times 5 and 10 seconds. For

the Hsu #2 data the reverse is true. The effect Of a contact resistance

would coincide with these Observations. Since these temperature dif-

ferences are small, however, the assumption Of constant surface tem-

perature of each specimen is permissible in this case.

  

The Handbook o_f Thermophysical Properties _O_f Solid Materials
 

[34] gives the values for the thermal properties Of nickel shown in

Table 6. 3. 3. The values are given in English units and are to be
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compared with those values given in rows 3 and 6 Of Table 6. 3. 2.

Since the thermal conductivity varies 7% in magnitude for the tem-

perature range 75 - 158°F (or 23. 7 - 69. 9°C) the property values

are also given in Table 6. 3. 3 for Hsu #l and #2 at the average tem-

peratures which are 137 and 95° F. In each case the values Of a

calculated by us from Hsu's data are between the values for the initial

temperature and the average temperature. The a-values calculated

' by Hsu are closer together and do not agree as well with the recom-

mended values. A comparison Of the k and cp values calculated

using the nonlinear estimation procedure (rows 3 and 6 of Table 6. 3. 2)

with the published values shows excellent agreement. The values Of

the properties obtained for the Hsu #1 data using nonlinear estimation

are based on the kc-value calculated by Hsu from his #2 data; the kc-

product calculated by us is only 1% greater than the Hsu product. Hence,

the property values in Table 6. 3.2 need be corrected only slightly.

If the specific heat-density ratio were known, for say Hsu #1,

then k for Hsu #1 and k and c for Hsu #2 can be calculated. The values

of cp = 0. 1086 and p1 = 554. 9 which are Obtained from [34] and are

1

consistent with a : 0. 5931 ftZ/hr were used to calculate kl : 35. 74,

k = 37. 57 and c : 0.1061. (The c value is Obtained from c with

2 p2 p2 2

p2 = 555. 6 lbm/ft?) These values are very close to the recommended

values; the difference is less than 0. 5%.

Hsu's experiment was not designed using the concepts Of Opti-

mum design developed in this research. It is interesting to note how

close it compares with an Optimum experimental design for a semi-

infinite body. It does have the Optimum heating condition represented

by a step rise in the surface temperature. The surface temperature
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was not measured in either specimen but thermocouples were located

near the surface (about 0.1 inch). (It is possible to place the thermo-

couples as close to the surface as 0.01 inch as demonstrated by Lind-

holm and Kirkpatrick; their experiment is discussed in section 7. 4.)

The maximum dimensionless times based on the maximum distances

from the heated surfaces to the furthest thermocouples are l. 72 and

4.15 respectively for Hsu #1 and #2. The Optimum value Of T is

about 1. 25‘, this means that the furthest thermocouple in each case

should have been located still deeper in each specimen.



VII. TEMPERATURE-VARIABLE THERMAL PROPERTIES

7.1 Choice of Properties

As far as the author can determine, there is no reference in

the open literature to a transient method for calculating temperature-

dependent thermal properties from a single experimental run. This

is probably due to the great difficulty Of Obtaining a convenient solu-

tion by exact methods Of the heat-conduction equation with tempera-

ture-variable k and c. Temperatures can be calculated for this case

using finite-difference methods almost as readily as for constant

thermal properties, however. There are a number Of reasons why

the variable properties case is important in this analysis. One is

that thermal properties do vary significantly even over small tempera-

ture ranges as noted in section 6. 3 for nickel. Next, the nonlinear

estimation method has the potential Of being much more accurate than

any method used heretofore for calculating k and c or 0.. This is due

to the negligible effect Of random errors on the temperature and the

ability to eliminate the problem of heat losses at the heated surface.

Hence, the temperature-variation case is more important than for

less precise methods. This case is also important to make the experi-

ments more efficient; it is desirable to perform discrete experiments

covering as large temperature ranges as practical. That is, instead

of possibly performing ten experiments each covering 50° F intervals,

it might be possible using temperature-variable properties to perform

-85-
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one experiment covering a 500°F range.

The transient heat-conduction equation for temperature-variable

kand c is

a_ an" - 8_T8x<ka—,.>‘Cae (7.1.1)

We shall assume that k and c are linear functions Of temperature; the

temperature range considered can always be made small enough to

permit this assumption. The properties k and c can then be expressed

 

 

as

leZ -k2Tl (kZ-kl)T

k: T - T + —T-—:-,I.——' (7.1.2)

2 1 2 1 ‘

and

C _C1T2 - cZTl + (CZ-cl)T (713)

Tz'Tl T2'T1

where

k:k1andczclatT:T1

kzkzandczczathT2

The temperatures T1 and T2 can be chosen to be any convenient values

such as the minimum and maximum temperatures Obtained in the experi-

ment.

Instead of the expressions (7.1. 2) and (7.1. 3) we could write

 

 

. T-Ta

kz'ka+kT -T (7.1.4)

a 1

. T-Ta

czca+cT -T (7.1.5)

a 1

where
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k=kandc=c atT:T

a a a

In the first two equations for k and c we need these thermal properties

at two different temperatures. In the next two equations we find the

properties at the temperature Ta (usually the mean temperature) and

the changes Of the properties with temperature. In theory it should

make no difference whether we choose (7.1. 2) and (7.1. 3) or (7.1.4)

and (7. 1. 5) since the same properties for k and c as functions of tem-

perature must be found. But the convergence Of the iteration proce-

dure is affected in nonlinear estimation by the particular choice of

properties functions [16].

For the special case Of

klzkzzka,cl:czzcaandTl:0

certain relations between the property derivatives can be derived in

the manner discussed in section (2. 1). We find that

T 11 |
-
l

k k +Tk (7.1.6)

TC=T +T (7.1.7)

but from (2. 1. 22) for Ti : 0,

T = -ka -cTC : -ka(Tk +Tk ) -ca(TC +TC )

l 2 l 2

(7.1.8)

where Tk and TC are the derivatives for constant properties. Generally

Tk and Tk have the same sign and thus both usually are smaller in

l 2

absolute value than Tk' The same statement can be made for (7.,1. 7).

For the case Of k = e = 0, T2 = 2 Ta and Ti : 0, one can derive

T = T (7.1.9)



Tk = 2Tk urk = Tk -Tk (7.1.10)

2 2 1

T = T (7.1.11)
C C

a

T.C = 2T -TC : TC -TC (7.1.12)

C2 2 1

If Tk and Tk are of approximately the same magnitude and sign

2 1

(which frequently occurs), then

lTk ‘>>l Tkl (7.1.13)

m

and similarly for T and T ,

C1 C2

ITc )>>|Tg:| (7.1.14)

m

Then if all the four properties are calculated simultaneously, the

F-contour for the properties kl, k2, c1 and C2 can be shown to be

much less attenuated than for properties km, k, cm and c. Hence,

fewer iterations are needed for the former. Even if only two prOper-

ties are calculated with the other two fixed, the properties k and c

as described by (7.1.2) and (7.1. 3) are usually the better choice.

7. Z Finite-Difference Equations

For temperature-variable properties (7. l. l) is nonlinear.

The finite-difference equations (6. 1. 3) and (6. 1. 10) can be readily

modified for this case, however. The thermal conductivity k appear-

ing on the left hand side of (6. 1. 3) should be evaluated for the tem-

peratures at time (m+l)A9; k‘s on the right hand side should be

evaluated at time mAe . But the temperatures at time (m+1)A9 are

unknown. Rather than iterating for each time step to make both

krinfl and Tum-*-l consistent, sufficient accuracy can be obtained by



-89-

evaluating k and c in (6.1. 3) and (6.1;10) at time mAe when the tem-

peratures are known. This method accounts for the large variation of

the properties with position and the smaller variation with time (pro-

vided the time steps are made small). Another way to treat the non-

linear case is to use a predictor-corrector method [35].

The thermal conductivity k: is evaluated at the temperature

1

and then T is used in (7. 1.2) to calculate k. For a homogeneous body

with a uniform Ax, Bn given by (6.1. 5) can be written as Bn=(Ak)ch/A 9,

where cn is evaluated at temperature Tum. The quantity cl used in

m

1 At the interface between two materials(6. 1.10) is evaluated at T

or regions of different Ax, C31 in (6.1. 3) is evaluated at the tempera-

ture T,

T = 0.25Tm +0.75Tm
n- nl

7. 3 Certain Cases

In analyzing the efficacy of an experiment to determine thermal

properties, it is necessary to examine the derivatives of the tempera-

ture with respect to the properties. Two basic cases are considered

in this section. The first case is for a heat flux producing a step

rise in temperature at x = 0 and insulated at x = L. The derivatives

for this case at x = 0 and L are shown in Figures 7. 3.1 and 7. 3. 2.

This case has the same boundary conditions as case 15 of Table 5.1.1.

The next case has the same boundary conditions as case 18 in the same

table; these boundary conditions are a heat flux at x = 0 producing a
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step rise in temperature at that surface and a heat flux at x = L to

maintain the temperature at T 2 Ti : 0 at that boundary. The deriva-

tives for this case are shown in Figures 7. 3. 3 and 7. 3. 4. For both

cases T1 and T of (7.1. 2) and (7.1.3) are
2

T1 2 0 (7.3.1)

T2 = Tml (7.3.2.)

and for simplicity the special case of

k = k : k (7.3.3)

c : c = c (7.3.4)

is treated. Then the derivatives calculated numerically can be

checked with the relations (7. l. 6), (7. 1. 7) and (7.1.8).

For any two properties p1 and p2 to which the derivatives are

related for a particular experiment by

aplTpl : prsz (7.3.5)

for all the positions at which temperatures are measured, we know

that p1 and p2 can not be independently determined as discussed in

section 2. 3. The quantities a and b are constants and one of which

is not equal to zero. If (7. 3. 5) is not identically true but is approxi-

mated in a particular experiment, the properties p1 and p2 can be

independently determined; the accuracy of the calculated properties

in such a case of correlated properties is usually not satisfactory,

however.

For both cases the derivatives Tk and Tk are highly corre-

l 2

lated and the same also is true for T and Tc . These high corre-

l 2

lations indicate that the property pairs (kl,k2) and (CI’CZ) are difficult
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to accurately determine from data generated by experiments similar

to those mentioned. Even greater inaccuracy would result if all four

properties were determined simultaneously. This is not to say that

the properties k1, k2, c1 and c2 can not be determined simultaneously;

greater accuracy would be expected, however, if the two properties

k and c were obtained from a series of experiments as discussed in

a later paragraph.

The property pairs (kl,cl) and (k 2) are much less correlated

2”

than (kl,k2) or (cl,c2). The derivatives with respect to c1 and c2 are

always negative. The derivatives with respect to kl and k2 are both

negative at x : O and both positive at x = L. Because the derivatives

with respect to k change sign from x = O to L but those for c do not,

(or kthe properties k1 and c and c2) are .less correlated than the
l 2

pairs (k1,k2) and (c The E-values for the pairs (k1, cl) and
1’C2)'

(k2, c2) are given in Table 7. 3. 1 along with other quantities of interest.

Since the case with T : O at x = L has the peculiarity that Z is maxi-

mum at T equal to infinity the values for this case are given at the

times indicated which do not correspond to maximum 5 for cases 3

and 4. For the two different boundary conditions considered, the low-

temperature properties k1 and c1 have a larger 5 - value than for the

high-temperature properties (though the difference is more marked for

the last two cases than the. first two). Perhaps a more precise way to

refer to properties kl and Cl is to call them initial-temperature proper-

ties rather than "low-temperature" properties. Hence, in general

based on these cases it is better to determine the initial—temperature

properties rather than the final temperature properties.
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For both boundary conditions the initial temperature could be

either the highest or lowest temperature in a particular experiment.

To experimentally obtain the boundary condition at x = 0 most efficiently

a standard material of accurately known thermal prOperties at initially

a uniform temperature can be suddenly brought into contact with the

specimen at another uniform temperature. After the first experiment

is completed, the standard and specimen can be both heated (or in the

case of the insulation condition at x = L, just the specimen need be heated)

to higher temperatures as illustrated in Table 7. 3. 2. For experiment

1 the specimen is first heated to 400°F and the standard is cooled to 0 ° F',

if the thermal properties are about equal for the standard and specimen

the interface temperature during the experiment is about 200° F. If the

properties k and c are known at 200°F in the specimen the properties

kl and c at the initial temperature, 400°F, can be determined. After

1

this first experiment the temperatures can be adjusted to perform the

second experiment suggested in Table 7. 3. 2 and properties found at

600°F. By performing a series of such experiments the properties k

and c can be found as a function of temperature. The temperature range

of each experiment is governed by the linearity of k and c with tempe ra-

ture. For many materials a 500 - 1000°F range could be covered in

a single experiment instead of the 200° F used in Table 7. 3. 2. Since

these are transient experiments which simultaneously determine both
 

k and c, the experimental time can be a small fraction of that required

for conventional measurement of these properties. If the properties k

and c are not known at 200° F to start the illustrated problem, then the

temperature range for solely the first experiment is reduced so that

the assumption of temperature -independent properties is valid.
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7. 4 Analysis of Lindholm and Kirkpatrick Transient Temperature Data

Some accurate data providing transient temperature measurements

over a large temperature range was obtained by Lindholm and Kirkpatrick

in 1963 [36]. In their experiment with an instrumented copper rod a very

large heat flux (about 1000 cal/cm2 - sec) was applied to the specimen

by an arc-imaging furnace. The net heat flux to the specimen was mea—

sured using a unique scanning-type radiation sampler. The heat flux

was so large that the surface temperature reached the melting tempera-

ture of about 1100°C in about one second. The experiment was designed

to have an approximately uniform heat flux applied to a semi-infinite

body. (See section 4.1.)

The heat flux and temperature data obtained by Lindholm and

Kirkpatrick is given in Table 7. 4. 1. Even though the experiment was

very carefully performed the accuracy of the data is not as good as is

desired for determining thermal properties. Lindholm [37] estimated

the accuracy of the higher temperatures to be 1" 1% but the lower tem-

peratures to be much less accurate and the heat flux to be within 'f 6%.

The primary purpose of this experiment, however, was not the deter-

mination of. thermal properties but theinvestigation of the effect of

very large heat fluxes upon the temperature gradients. An experiment

designed using the guidelines given in this paper would be much better

for determining k and c accurately.

Lindholm and Kirkpatrick calculated the temperature distribu-

tion of the copper and compared the temperatures with those measured.

The properties at T1 = 20° and T : 1020°C that they used in their cal-

Z

culations are given in Table 7.4. 2. Their values came from a handbook;

more widely accepted values are given in reference 34. In Table 7. 4. 2



 

 

 

        
 

 

 

      
 

 

 

 

 

Table 7. 4. 1 Lindholm and Kirkpatrick temperature data for

copper [36].

Time Heat flux, Temperature rise, T-Ti, C)C where Ti : 200C

seconds cal/cna-secz 0.0254 0.280 0.660 1.296 1.930 2.532

cnn cni cnn cni cnn CH1

0 910 0 0 0 0 0 O

0.1 918 372 174 65 0 0 0

0.2 940 541 305 128 25 4 .2

0.3 967 660 414 211 54 11 3

0.4 940 757 529 282 84 23 5

0.5 922 822 595 349 118 38 9

0.6 895 868 649 399 152 55 14

0. 7 842 909 698 444 186 72 20

0.8 900 972 749 489 222 83 28

Table 7. 4. 2 Thermal properties for copper.

Temperature KL 0 RTP 0 CL 3 o LTP3 0
°C Btu/hr-ft- F Btu/hr-ft- F Btu/ft - F Btu/ft - F

20 222 234 50.4 51.3

1020 _ 192 185 68.0 62.8

Table 7. 4. 3 Calculated thermal properties for copper from

Lindholm and Kirkpatrick data

Case Given properties Calculated properties ATrms’ 0C

l k:230 C:52.6 16.7

2 Lindholm values C1: 47.0 k1 = 234 13.9

1< and c
2 2

3 .TP values for c :48. 5 k :255 16.4
1 l

lc and c
2 2

4 Lindholm values cl 239.5 C2 =92.7 8.7

for k.l andk2      
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the property values used by Lindholm and coworker have an L subs-

cript and the recommended values with subscript TP. In reference

34 the k-curve for copper was obtained from the results of fourteen

experimenters one of which stated a '1‘ 10% accuracy, three gave l 5%

and the others did not say. Thus. the property values in Table 7.4. 2

are reasonably close considering the scatter in the data.

Since the criterion A is larger for constant properties than for

temperature-variable properties we expect the properties calculated

for the temperature-variable case to beimore sensitive to errors than.

for constant k and c. This is illustrated by the results for four different

cases summarized in Table 7.4. 3. Case 1, which is for constant pro-

perties, gives remarkably accurate values for k and c considering the

accuracy of the given data. For both k and c the values are between

the recommended values at 20 and 1020°C designated TP in Table

7. 4. 2. Further, the values are nearer the initial temperature values

than the high temperature. This would be expected since many more

low temperature measurements are made than high temperature mea-

surements (see Table 7.4. l). The rms temperature difference be-

tween the calculated and measured temperatures is 16. 7° C or about

1. 7% of the maximum temperature rise.

In section 7. 3 we noted that the initial-temperature properties

could be found more accurately than the high-temperature properties

for two heat flux boundary conditions. For this reason the low-

temperatures properties were calculated using the high-temperature

values of k2 and c2 in Table 7.4.2. The results are cases 2 and 3 of

Table 7.4. 3. The error in the properties calculated in case 2 com-

pared with the Lindholm values of the previous table are for k and c,
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+ 9. 5% and -6. 7% respectively; the error in k and c in case 3 with

respect to kTP and CTP at 20° C are + 9. 0% and -5. 5%. Note that k

has the largest error; this is consistent with case 1 of Table 7. 3.1

for which B = 3. 5°. These errors are not large considering the accu-

racy of the given data. (We know that a constant six percent error in

q will cause about a six percent error in a calculation for constant

properties.) Also note that in calculating a kl or cl value we are not

calculating a 2135 property value but are really calculating a property

curve. Though the value given at 20°C may be 9. 0% in error, the

value obtained using (7. 1. 2) for 500° C say, usually would be much

less.

Using the Lindholm values for_‘k1 and k2, the calculated values

c1 and c2 are given in case 4, Table 7.4.3. Since c1 and c2 tend to

be highly correlated (as noted in the previous section), these c-values

are not as accurate as found for the other cases. The values of c1 and

c2 do exhibit the correct temperature behavior, however; that is, cl

is less than c2. Except for case 4 the accuracy of the calculated pro-

perties is better than might be expected from the given accuracy of

the data. It is a characteristic, however, of nonlinear estimation to

minimize the error introduced by random errors in the data.



VIII. CONC LUSIONS

A general criterion is developed for determining the optimum

experiments for calculating simultaneously the thermal conductivity

and specific heat from transient temperature and heat flux data for

solids. The criterion (designated A) for fixed maximum temperature

rise, duration of the experiment and number of thermocouples should

be made a maximum for the optimum experiments.

A number of boundary conditions for finite and semi-infinite

bodies are considered. The two optimum experiments found by

utilizing the A criterion are for finite bodies of thickness L. Each has

a heat flux q at x = 0 to cause a step rise in the surface temperature;

at x = L one Optimum experiment has q = 0 and the other has a q to

cause the temperature at L to remain constant. The former is best

for high and the latter for low thermal conductivity materials. The

optimum locations for thermocouples for these two experiments are at

x : 0 and L.

The effect of errors in the temperature measurements is derived

and general results for a number of heat flux boundary conditions are

given.

Both thermal properties are calculated simultaneously from

experimental data for (a) constant and (b) temperature-variable proper—

ties. The errors due to the finite-difference procedure utilized can be

readily made less than 0.1%. For one set of experimental data analyzed,

-lOO-—
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the error in the calculated values of properties is estimated to be less

than 0 . 5% .



IX. RECOMMENDED FUTURE WORK

9. 1 Design of Experimental Equipment

There are two basic experiments that are best for finding

thermal properties, cases 15 and 18 of Table 5.1.1. Both have a

q condition at x = 0 which causes a step rise in temperature. This

condition is easily obtained experimentally as discussed in section

5. 5. For the first case the finite specimen is insulated at x : L and

the second has a q to make the temperature at x = L constant at the

initial temperature. The first experiment is best for high conduc-

tivity materials and the second for low k materials. The insulation

condition is relatively easy to obtain. For case 18 if the specimen

is the high temperature body, the initial temperature at x = L can be

maintained by an electric heater. On the standard material side (for

case 18) the surface at x = L can be maintained near its initial tem-

perature by simply having this surface in good contact with a high

conductivity material such as copper. The heater is needed on the

specimen side to obtain the heat flux boundary condition at x = L.

For transient experiments to be performed and analyzed in the

most efficient manner an automatic data-reducing device is needed to

read the analog thermocouple signals and reduce this data to punched

cards. These cards are then used as input into the nonlinear estima-

tion program. Before using the data, the program would direct the

computer to transform the thermocouple readings to temperatures,

~102-
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correct the temperatures for a bias if necessary and then calculate

the thermal properties.

This automated method of measuring thermal properties can

determine thermal conductivity and specific heat much more rapidly,‘

more accurately and probably less expensively than the conventional

methods. It is well-adapted to meet the needs for a rapid, high-

volume device for determining k and c.

9. 2 Other Applications of Nonlinear Estimation

The nonlinear estimation method is very flexible and is by no

means restricted to determining solely k and c. In the ablation prob-

lem, for example, transient chemical reactions and transpiration

occur in certain impregnated plastic materials. Also at high tempera-

tures some solid materials simultaneously transport energy by both

radiation and conduction. Other materials, such as iron, have second-

order phase transformations which have not been thoroughly examined

using a transient method to investigate the effects upon k and c. The

total emissivity of solids as a function of temperature under transient

conditions is of interest. In each of these problem areas (which are

related to heat—conduction) properties can be determined using non-

linear estimation. In addition to determining properties, improved

models to describe the physical phenomena can be developed in a

rational manner by an extension of the nonlinear estimation method [38].

We need not even limit the application of the method to problems

connected with heat-conduction. There are a number of problems in

momentum and mass transfer that obey similar equations.

For example, the viscosity of a fluid could be calculated from
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transient velocity measurements in a fluid near a wall which is impul-

sively moved. The equation describing this flow is identical in form to

the transient heat-conduction equation. One might also use the method

for calculating eddy viscosities and diffusivities in turbulent flow. The

nonlinear estimation method is particularly useful for determining

parameters from experimental data for problems in which there are

two dimensions or one dimension and a time-variation to be considered

and for which two or more parameters are to be calculated.
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APPENDIX A

Derivation 9_f Equations (1.3. 8) and (1.3.9)
 

 

Introducing (1.3. 3) into (1. 3. 2) and taking the derivative of F

with respect to k gives

0
m

81“ n
012' = 2; AJ. 5 (Tj(k0,co) +Tk,j(k0,cO)Ak+ Tc,j(ko,cO)Ac

i=1 0

— Te,j)Tk,j(kO,cO)de (A-l)

or

8F ‘1
— = A. T - _ .-ak 2[NTkAk+ (Tk,TC)Ac +3213 k,j(Tj Te’J)d6] (A 2)

where (1.3.11) and (1. 3.13) are used in (A-2). At the minimum v

value of F it is necessary that

ii-£_0
Elk—8c-

Then also evaluating BF/Bc, the corrections Ak and Ac are found

by solving,

_ — _ —

A _ S . .- .NTk (Tk,TC) k ZAJdemJ Te,J)d0

. .(T. -T .)d0

6.1 J 6.1
d — — 1— —J

(A-3)

C      
L(Tk, TC) NT Ac EAJST

The expressions for Ak and Ac are (1. 3. 8) and (1. 3. 9).
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