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ABSTRACT

ON SOME ASPECTS OF MODELS FOR THE ANALYSIS

OF SPATIAL PROCESSES

by Anthony V. Williams

Many spatial patterns, the study of which has been a major

objective of geographical research, are increasingly characterized

by rapid change. The study of spatial processes which focuses on

the measurement, description, and analysis of changes in patterns

over time should become, therefore, more and more central to the

field. Unfortunately, the development of the theoretical bases for

this aspect of the discipline has not received attention commensur-

ate with its present, and potentially greater future importance.

We do have, as a most important foundation for such develop-

ment. the work begun by Hager strand and continued by those

influenced by him. The focus of this work is particularly on the

proces s of diffusion -- of people, ideas, and things. But the

effectiveness of this research as a paradigm for spatial processes

kened by some conceptual shortcomings and by the lack of a
is wea

general theoretical substructure which would serve to unify dis-

parate res

e Search for fruitful analogies which are so often central to

earch on many spatial processes and provide the basis

for th

further Work'

We have attempted here to provide such a theoretical sub-

t cture WhiCh can, hOPEfuuY: serve adequately as the basis for

s ru
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future research on spatial processes. It is argued that there are

two fundamental components of all spatial systems: an attribute

space which defines places by their respective properties and

associated intensities, and a position space which defines the rela-

tive location of places. These two components, though, provide

only the static elements of any system and the study of spatial

processes must consider as an additional component the set of rules

that define the nature and intensity of the dynamic linkages between

the attribute and position spaces. The properties of such rule sets

are considered and we take the position that their specification is

most useful when they are defined stochastically. For pragmatic

reasons we also advance a basic method for combining these com-

ponents into a working model of any system under study.

As a demonstration of the basic steps that have to be taken to

utilize the proposed structure, we present a simplified example of

a spatial process -- the spread of a disease in an isolated region.

Successive steps of defining attribute and position space, deter-

mining the rules under which the system operates and then inte-

grating these components into a working model are illustrated for

this simple system.

The interpretation and validation of the output of models of

spatial processes present formidable difficulties. These arise

partly from the difficulties in measurement and imprecision of

definitions that are common to much research in the social sciences.

But they are also due to the fact that the fundamental assumptions

of most statistical tests regarding independence of observations
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are usually violated in spatial process models. Tentative sugges-

tions for dealing with this problem, including a general approach

and then an approach for dealing specifically with the validation

problems peculiar to spatial systems, are presented.

Technical discussions are appended regarding the selection

of computer languages must suitable for particular applications and

on the program used in carrying out the calculations for the

example mentioned above.
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CHAPTER I

INTRODUCTION

The field of geography can be fruitfully thought of as the study

of spatial patterns and processes. Many workers in geography

have accepted this definition fairly explicitly1 and other well-

accepted definitions of the field2 differ from it, it seems to me,

only in terms of phrasing and greater emphasis on either the study

of patterns or of process. This broad view of the field of course

completely begs some of the controversies in geographic methodol-

ogy such as the question of whether areas are ”unique" or should be

considered as individual cases.

A consequence of this definition is the implicit division of

geographical models into two types -- static or dynamic -- with a

common subset formed by combining these types. This is the

dichotomy used in this paper although there are others of equal

 

For example Gunnar Olsson, Distance and Human Inter-

action: A Review and Bibliography (No. 2, Bibliography Series;

Philadelphia: Regional Science Research Institute, 1965), p. 1;

John Leighly, "What Has Happened to Physical Geography?"

Annals of the Association of American Geographers, XXXXV (1955),

p. 318: Edward Ackerman, Geography as a Fundamental Research

Discipline (Department of Geography Research Paper No. 53;

Chicago: University of Chicago, 1958), p. 28.

 

 

 

 

 

For an exposition of these, a good source is Richard

Hartshorne, Perspective on the Nature of Geography (Association

of American Geographers, Monograph Series; Chicago: Rand

McNally, 1959).

 

3William Bunge, Theoretical Geography (Lund Studies in

Geography; Series C: General and Mathematical Geography, No. 1;

Lund, Sweden: C. W. K. Gleerup, 1962), pp. 6-13.
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validity, for as usual our purpose governs our classification

system.

The most-used static model in geography is the map which

serves the unique function of providing both a beginning and ending

point for most research in the field. Other examples of static

models are the various methods used for regionalizing -- factor and

pattern analysis, 4 linear graphs -- and much of the work based on

central place theory. 5 Most applications of these models involve

analysis of why phenomena occur where they do, the implications of

the distribution(s) for economic development or other purposes, or

analysis of interrelations of multiple phenomena over the landscape.

Additionally, they can be used effectively with dynamic models in a

combined attack on problems of distributional analysis.

Dynamic models in geography are primarily concerned with

how phenomena come to be sited (in a time-space rather than

strictly a spatial sense, since we include time as a specific para-

meter of a dynamic model), and with how and in what manner and

form and volume interactions between areas occur through time for

a specific phenomenon or combination of phenomena. The most

 

4See Brian J. L. Berry, "A Method for Deriving Multifactor

Uniform Regions, " Przeglad Geograficzny, XXXIII (1961), pp.

263-82.

 

5Clifford E. Tiedemann, "Two Models for the Inferential

Analysis of Central Place Patterns" (unpublished Ph. D. disserta-

tion, Department of Geography, Michigan State University, 1966);

also see the extensive listings in Brian J. L. Berry and A. Pred,

Central Place Theory: A Bibliography of Theory and Applications

(Bibliography Series No. 1; Philadelphia: Regional Science

Research Institute, 1961; with supplement, 1965).

 



notable use of dynamic models in geography has been the Monte

Carlo method for studying the path of innovation diffusion through

time6 although random methods are not the only means of following

such processes.

Combined models which use both the static and dynamic

approaches are probably more commonly used than the pure dynamic

approach. They have in fact some obvious advantages over either

the entirely static or entirely dynamic models. In a study con-

cerned primarily with comparative distributions, for example,

generic information on the phenomena often proves essential for

understanding the significance of the spatial pattern studied as it

pertains to different places. 8 A dynamic model seeking to trace

out the space-path of a process, on the other hand can scarcely be

comprehended in a geographical sense without consideration of

pattern, even if that be presented in a form other than a map. 9

The ideal model or research approach, then, in geography --

and surely in many other social sciences -- is neither restricted

to time-less space or space-less time but rather combines both

 

6Initially by Torsten H’agerstrand in, "The Propagation of

Innovation Waves," No. 4, Lund Studies in Geography; Series B;

Human Geography (Lund, Sweden: C. W. K. Gleerup, 1952), pp.

3-19. A fairly complete (as of 1965) list of such studies by

geographers is in Olsson, gp. cit.

 

Lawrence A. Brown, "The Diffusion of Innovation: A

Markov Chain-Type Approach" (Department of Geography Dis-

cussion Paper No. 3; Evanston, Illinois: Northwestern University,

1963).

8 . .
Leighly, loc. Cit.

For instance in a linear graph or in matrix representation.



aspects of reality. In actuality, of course, we may have to empha-

size one or the other aspects depending on the purpose of the

moment but exclusion of either can only be justified for the most

restricted kinds of problems.

In accord with these sentiments, this work outlines a model-

ing system designed to facilitate the building of models to analyze

spatial processes. Considering the importance of dynamic systems

in present-day geographic research and the concurrent practical

need for predictive and planning models, it is hoped that such an

attempt at synthesizing into a common structure apparently dis-

parate approaches will provide the basis for significant advances

in the field. 10

We start in the next chapter by advancing a common concep-

tual framework which, we feel, underlies models of spatial pro-

cesses. Then, to emphasize the evolutionary rather than revolu-

tionary nature of our proposals, we examine two traditional models

used to study such processes, pointing out those facets that do not

meet all our criteria. The third chapter provides a more complete

explication of our conceptual structure and includes some sugges-

tions for integrating the components of spatial process models.

Finally, we use a simple example to demonstrate our model-

building scheme and point out some problems yet to be solved.

 

10Earlier attempts at synthesis in other fields of geography

have been made by B. J. L. Berry, "Approaches to Regional Analy-

sis: A Synthesis," Annals of the Association of American Geog-

raphers, L (1964), pp. 2-12 and by R. Chorley, "Geomorphology

and General Systems Theory." In F. Dohrs and L. Sommers (eds. ),

Introduction to Geography. Selected Readings (New York: T. Y.

Crowell Co. , 1967), pp. 285-301.

 

 



CHAPTER II

DEVELOPMENT OF THE MODEL FRAMEWORK

In the last chapter, we mentioned several types of models

which have been or can be used to analyze spatial processes and

patterns. These have been characterized as static, dynamic, or a

combination of the two. The static models, whether they be maps

or graphs of distributions in one or more dimensions are of most

use in analyzing the spatial manifestations of one or a combination

of variables at a particular point of time.

While such models may be used to give some impression of

change through a series of "snapshots" taken at discrete time

intervals, spatial processes are perhaps best understood through

the workings of models which specifically include the time dimension

as a parameter. This point has been succinctly emphasized by

Rogers in a paper on simulation and diffusion processes. 11 The

task of this chapter, then, is to introduce the framework for such

a modeling system, and compare its assumptions to those under-

lying other dynamic models of spatial process used by geographers

and other social scientists. In the succeeding chapters, we attempt

further explication and apply the resulting model to an example.

 

llEverett M. Rogers, £11. , "Computer Simulation of

Innovation Diffusion: An Illustration from a Latin American

Village. " Paper presented at a joint session of the American

Sociological Association and the Rural Sociological Society,

Chicago, 1965.



A Brief Overview of the Conceptual Framework

Geography, as that discipline which is pre-eminently con-

cerned with the spatial-locational dimension of phenomena, should

logically structure its inquiries in such a way as to emphasize the

spatial aspects of relationships and of behavior. In dynamic models,

we are fundamentally interested in the results of repeatedly apply-

ing some transformational function (operator) to a set of operands.12

We can leave aside, here, the question of the characteristics of

the operator except to note the necessity of the concept and to

mention that its nature may change with time, with achievement of

certain threshold values in the operand set, and so on. The criti-

cal problem is the definition and depiction of “geographic" operands.

These operands, from our viewpoint, must have locational

and spatial attributes in addition to any intrinsic properties;

furthermore, the intrinsic properties cannot be thought of in iso-

lation from the spatial ones. As an example, if we are investi-

gating, say, total employment trends in the United States, as

geographers, we would not focus on the interpretation of national

aggregate figures. Instead, we would probably take areal samples

of some kind, associate the places picked with our employment

information and obtain an employment surface. For convenience,

we might additionally classify our results to obtain employment

 

12This, at least, would be the interpretation derived from

cybernetic principles. See chapter 2 in W. R. Ashby, Introduction

to Cybernetics (New York: John Wiley 8: Sons, Inc. ; Science

Editions, 1966).

 

 



regions. In the dynamic situation, our task would be more

involved and difficult but we would essentially be trying to depict

(and perhaps account for) the pulsating nature of the national

employment surface. We must, then, structure our investigation

in terms of spatial (place) attributes and the relative location of

these places. Location is always an implicit category in our

scheme. 13

Before developing this structure more fully in the next

chapter, it will be instructive to compare its assumptions with

those underlying two developed dynamic models of spatial behavior.

This should serve two purposes: to demonstrate the non-radical

nature of our approach by tying it to a developed tradition in geo-

graphic research, and to point out places where established models

do not fit our present structure. The nature of the discussion is,

by choice, rather more expository than analytic.

Antecedents

Ideas seldom spring from whole cloth. The ideas and

methodology underlying the modeling system presented in the next

chapter build on two sources. These are:

(l) The pioneering work on the diffusion of innovations

through space started by Torsten Hagerstrand in Sweden

and subsequent researches on diffusion models by several

American geographers.

 

13William Bunge, “Locations are not Unique," Annals of the

Association of American Geographers, LVI (1966), pp. 375-76.

 

 



(2) The behavioral insights of Georg Karlsson, the Swedish

sociologist, into the communication process and more

recent work by communications researchers in the study

of the diffusion of ideas.

The Hagrstrand Simulation Model and Its Successors
 

Torsten Hagerstrand, a geographer at the Royal University

of Lund, Sweden, initiated research efforts by geographers on the

simulation of spatial diffusion in the early 1950's. 14 His work was

especially noteworthy for two innovations: the use of probabilistic

methods (Monte-Carlo technique) based on probabilities derived

from measurements on observed data and the use of a digital com-

puter to carry out the large number of calculations inherent in

dynamic probability models. Hagerstrand's ideas attracted

15
afavorable attention in the United States in the late 1950's nd

since that time a steadily increasing number of American

 

l4Torsten Hagerstrand, 22. gi_t. ; also Innovation Diffusion

as a Spatial Process. Translated from the Swedish edition (1953)

by A. Pred (Chicago: University of Chicago Press, 1967). His

most influential paper so far as American geographers are con-

cerned appeared in 1960 in mimeograph, titled ”On Monte Carlo

Simulation of Diffusion. " It has since been reprinted as "A Monte

Carlo Approach to Diffusion" in B. Berry and D. Marble, eds. .

Spatial Analysis (Englewood Cliffs, N. J. : Prentice-Hall, Inc. ,

1968), pp. 368-84.

15In 1958-1959, Professor Hagerstrand was a visiting

professor of geography at the University of Washington where his

ideas met great acceptance by the students of mathematical

geography working with William Garrison.

 

 

 



geographers have experimented with simulation techniques applica-

ble to geographic problems. 16

According to his paper, "On Monte Carlo Simulation of Dif-

fusion, " Hagerstrand appears to have arrived at his model by

considering what processes could cause the nebula-like patterns

characterizing many economic and cultural phenomena. These

patterns consist of dense "core" areas surrounded by border zones

of outwards decreasing density. Given these types of distributions,

he looked for processes which could create similar patterns and

settled on the diffusion of techniques and ideas through social con-

tacts as being peculiarly suitable for investigation. As he empha-

sized, "there is nothing such as one single and simple explanation

of the 'nebula-distribution'. ” Thus, the fact that his investigations

have been concerned with the diffusion of innovations rather than

some other process has been mostly a matter of convenience.

H'agerstrand explains the process of innovation diffusion over

space in regard to the adoption of a new farming practice in Sweden:

A start is made by a rather concentrated cluster of

carriers. This cluster expands step by step in such

a way that the probability of a conversion always

seems to be higher among those who live near the

carriers than among those who live further away.

The potential carriers become 'blackened' in a

spatial continuity which reminds [sic] of the devel-

opment of a photographic plate seen in a microscope.

 

éolsson, gp. c_it. Also see Lawrence Brown, "A Bibliog-

raphy on Spatial Diffusion,” (Department of Geography Discussion

Paper No. 5, Evanston, Illinois: Northwestern University, June,

1965), and his "Models for Spatial Diffusion Research: A Review,"

Technical Report No. 3, Spatial Diffusion Study (Department of

Geography, Evanston, Illinois: Northwestern University, 1965).
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A convenient term from [sic] the phenomena could

be borrowed from this physical process: ‘neighbor-

hood effect.‘ 17

The inverse relationship between distance and the probability of

adoption (or more generally, interaction) is based on the well-

accepted notion that there is decreasing contact or influence

between people as the distance between them increases. As con-

tacts decrease, the occasions for learning of and adopting an inno-

vation become fewer and fewer. This effect of distance on inter-

action was confirmed here by analysis of telephone traffic and local

migration figures. These data were used as surrogates of infor-

mation flows permitting construction of a contact matrix (the Mean

Information Field); in each cell of this matrix are the derived

probabilities of contact at specified distances from a carrier of an

innovation. The probabilities reflect: intensity of information flow

which is hypothesized to be directly related to acceptance of the

innovation, and the average spatial pattern of day-to-day, or short

run, contacts.

A second element of the neighborhood effect developed from

H'aigerstrand's observation that there exists a hierarchy of innova-

tion centers with well-defined and relatively stable communication

channels connecting them. The probability of an idea spreading

through a social system is greatest if it is initially propagated

through the upper levels of the hierarchy and if it uses existing

. . 1

information channels .

 

17Hagerstrand, "On Monte Carlo Simulation of Diffusion, "

g2. c3. . p. 3.

18Ibid. , p. 5.
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To test his ideas, Hagerstrand developed a dynamic model to

simulate the diffusion of an innovation in a population through time

using Monte Carlo techniques. The Monte Carlo approach in simu-

lation implies that the interactions of individual elements are

governed by probabilistic rules given in the model rather than

deterministic ones. The probabilities used are derived from real-

world data and serve to provide an underlying stratum of reality

upon which the model operates. In H'agerstrand's example, they

come from measurements of local communication patterns and are

expressed in the Mean Information Field. 19

The original model had several self-imposed limitations for

the purpose of simplifying exposition. In the process, only person-

to-person communication was considered. Newspapers, radio,

television, books, public lectures, and other communications

media were not included in the model. The following series of

rules were adopted to govern the simple model's operation:20

(1) Only one person carries the item at the start.

(2) The item is adopted at once when heard of.

(3) Information is spread only by telling at pairwise meetings.

(4) The telling takes place only at certain times with con-

stant intervals (generation intervals) when every

 

19Hereafter referred to as the M. I. F. For other examples

of the computation and use of the M. I. F. see D. Marble and J.

Nystuen, "An Approach to the Direct Measurement of Community

Mean Information Fields," Papers of the Regional Science Associa-

t_i2n_, XI (1963), pp. 99-109, and R. Morrill and F. Pitts, ”Marriage,

Migration and the Mean Information Field: A Study in Uniqueness

and Generality," Annals of the Association of American Geographers,

LVII (1967), pp. 401-22.

 

oniigerstrand, "On Monte Carlo Simulation of Diffusion,"

22. gig. , p. 9.
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carrier tells one other person, carrier or non-

carrier.

(5) The probability of being paired with a carrier depends

on the geographical distance between teller and receiver

in a way determined by empirical estimate.

This simplest version of the H'a'gerstrand simulation model

works in the following way. A map of the area being studied is pre-

pared and divided into equal-area grid cells (normally squares)

with the number of individuals in each grid cell being noted (Figure

l). The contact probabilities in the Mean Information Field

(Figure 2) are converted to integer form (Figure 3). The central

square of the floating grid -- the integer form of the M. I. F. -- is

placed over one individual who has adopted the innovation pre-

viously. The adopter then communicates the innovation to another

individual as determined by the probabilities in the other cells of

the floating grid. The choice of the individual to be contacted is

made by picking random numbers from a rectangular distribution.

Here, for example, if the knower is in cell (4, 5) and the number

58 is selected, then contact is made with cell (3, 4).

The process is repeated until all adopters have communicated

with another person. After all previous adopters have communica-

ted, one "generation" of the simulation model is completed. At

first, the number of adopters is small and their number initially

increases slowly. As more people adopt the innovation, there are

more "tellers" to spread the information and the rate of diffusion

increases until a saturation point is reached at which point it
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1 2 3 4 5 6 7 8 9

l 2 3 5 10 1 3 8 7 10

2 1 5 6 8 7 4 5 3 7

3 l 4 18 40 6 3 2 11 8

4 1 9 20 125 35 31 5 13 24

5 8 6 50 200 78 25 20 18 8

6 2 5 12 100 24 118 25 4 13

7 15 4 32 70 19 15 14 6 3

8 5 3 10 50 6 7 7 3 5

9 8 1 3 30 2 3 4 7 2          
Figure 1. Example of Population Grid for a Diffusion Model

 

 

 

  

.060 .100 .040

.150 .400* .090

.100 .050 .101   

Figure 2. A Mean Information Field

*Each entry gives the probability of being contacted by the

"Knower" in the central cell.

 

 

 

     

000-059 310-409 860-899

060-209 410-809 900-989

210-309 810-859 990-999

Figure 3. Floating Grid
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becomes difficult to find persons who have not yet adopted the

innovation. The result of the process then, is typically an S-shaped

curve.

Use of the Monte Carlo simulation models for research into

actual process demands the use of digital computers. This is not

due to any inherent complexity in the models themselves but to the

enormous number of random numbers necessary to carry the model

through a number of generations over the geographic field. The

random numbers are necessary to determine which of the many

possible courses of action will be utilized at any one step, and the

number needed in even moderate-size simulation study will run

into the thousands. This characteristic of the approach is demon-

strated in an example in the next chapter.

Despite the modifications made to this simple model by

H'aigerstrand and other geographers to fit it better to reality21 it

suffers from some basic weaknesses from our point of view.

Geographically, the most serious of these is the lack of spatial

differentiation. That is, each cell of the "map" represents a place

wherein people are present and each cell is assumed to be like

every other cell. In the work by Yuill,22 simulating barrier effects,

 

21 . . .
Such as the introduction of a "resmtance-curve" for persons

contacted based on an assumed distribution of attitudes towards new

ideas. See Forrest R. Pitts, "Problems in Computer Simulation

of Diffusion," Papers of the Regional Science Association, XI (1963),

pp. 111-19.

 

22Robert Yuill, "A Simulation Study of Barrier Effects in

Spatial Diffusion Problems," (Michigan Inter-University Community

of Mathematical Geographers Discussion Paper No. 5, Ann Arbor:

The University of Michigan, 1965).
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a separate information vector identifies the grid locations of bar-

riers and also notes their character (absorbing, reflecting, or

permeable) and Morrill23 utilizes a similar method to give

character to space in his work on town development in Sweden.

But these studies, while important advances on the original model,

are only capable of expressing one differentiating characteristic.

The M. I. F. which governs the distance and direction of con-

tact also distorts reality in that it has no provision for differential

distance and directional biases. That is, the same contact proba-

bilities are applied around each cell on the "map."

There are a number of reasons why we would expect such

differentials in the real world. Most obvious among these reasons

are local biases in the communications network which may be due

to topographic conditions or to peculiar historical circumstances.

Variation from a uniform population density surface would also

produce place to place differences in the M. I. F. In terms of such

interactions as are expressed by shopping trip behavior, selection

of marriage partner and other types of personal contacts there are

also indications that rural and urban M. I. F. ‘s differ substantially.

Marble and Nystuen note in a study of the M. I. F. concept based on

trip behavior data collected in Cedar Rapids, Iowa,2'4 that distance

 

Z3Richard Morrill, Migration and the Spread and Growth of

Urban Settlement (Lund Studies in Geography, Series B: Human

Geography, No. 26; Lund, Sweden: C. W. K. Gleerup, 1965).

24

D. Marble and J. Nystuen, pp. c_it. , pp. 107-08.
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decay functions for such behavior were steeper in that city than in

the rural Asby area of Sweden used by Hagerstrand and further note

that Stouffer's measures on distance between homes of marriage

partners in Cleveland tends to confirm the existence of steeper

decay rates in urban areas. The distance decay exponents for

Asby, Cedar Rapids and Cleveland were, respectively: -1. 58,

-3. 035, and -2. 49. An obvious first explanation for these rural-

urban differences lies in the greater density of opportunities for

contact in metropolitan areas which, ceteris‘paribus, would lead to

more spatially restricted contact fields. 25

 

Of course, we might speculate that for certain types of con-

tacts, urban areas might well have flatter distance decay functions

than rural places; for instance, in behavior affected by exposure

to mass media. But regardless of which one, or combination of

these factors is operating, the M. I. F. in any varied landscape

should differ from place to place and at micro-scale each place,

and even each individual, would have its own peculiar field. And

to complicate matters further we must note that contact fields for

any area may also vary over time with changes in the communica-

tions system, cultural preferences and so on.

Finally, the Hagerstrand model is deficient -- from the point

of view of serving as a general approach to analyzing spatial

processes -- in not including varying behavioral parameters for

sub-groups in the area being studied. That is, it is strictly an

 

sthis explanation was advanced by Professor Gerard

Rushton, Department of Geography, Michigan State University.
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aggregative model wherein all members of the population are

assumed to behave similarly.

In the case of the diffusion of an innovation, we should be at

least aware of the possibility of the existence of varying group or

individual attitudes towards new ideas depending on stage of the

life-cycle, economic status, educational level, ethnic or religious

characteristics and even the individual‘s or group's historical

experience.

We do not mean to imply by the above criticisms that the

general Hagerstrand model (including its successors) is not per-

fectly adequate for describing a large variety of geographic prob-

lems involving diffusion. It has been used to provide great insight

into the spatial patterns resulting from the introduction of agri-

cultural innovations and has even served to provide experimental

verification of central place theory. 26 All that is said above,

therefore, merely means that the Hagerstrand model should be

used only with its stated limitations in mind -- a caution that

applies to all modeling systems of any kind.

The Karlsson Model of Interpersonal Communication
 

In his book, Social MechanismsZ7 the Swedish sociologist

Georg Karlsson develops several models of interest to geographers.

The one most germane to our present interests is his model of

 

26Morrill, Migration and the Spread and Growth of Urban

Settlement, _p_. gig.

 

27Georg Karlsson, Social Mechanisms: Studies in Socio-

logical Theory (New York: The Free Press of Glencoe, 1958).

 

 



18

interpersonal communication. It is important because it adds the

element of behavioral depth to the traditional Hagerstrand sirnula-

tion models and also because of its relevance to the modeling

scheme developed below. This relevance is due above all to the

findings that suggest that many of the decisions that affect the land-

scape -- migration, economic development, and so on -- are

ultimately based on the communication process as it takes place on

this simple level. 28

In any communication system, four basic elements are

present: the message; the communicator(s); the receiver(s), and

the environment (physical or social) in which the process takes

place.

We also assume that a motivation to communicate is present,

this being a function of the importance of the message, the

29 Thecharacter of the communicator or of exogenous factors.

simple model of interpersonal communication places restrictions

on these elements in the interest of simplicity and clarity of

exposition. However, it illustrates the general mechanism through

which any such simulation model operates. 30

 

28I_‘Di_d. , p. 53. Also see Julian Wolpert, "Behavioral

Aspects of the Decision to Migrate," Papers of the Regional Science
 

Association, XV (1965), pp. 159-69.

29

 

Karlsson, pp. gig. , p. 29.

may a P. 47ff. The following discussion of Karlsson's

original model is based on this.
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Our milieu is a group of a persons of whom r_n_ possess the

information to be transmitted. The message is simple and is not

changed or distorted in the process of diffusion. Knowers of the

message are motivated to communicate; they do so only at pairwise

meetings with 3 contacts per time period. Since the motivation to

communicate lessens over time with some empirically-determined

decay function, the teller communicates only for 5 periods -- a

total of 115 contacts. In reality, a and k are probably stochastic

variables but for our purposes (and for most models looking for

gross explication) their means (for observed data) are used.

We are interested in observing the character of the diffusion

process -- that is the spread of the idea through time -- in the

subject population. Therefore, the model must include the proba-

bility of each person's receiving the message in any time period and

the independent probability of his accepting the message and in turn

becoming a teller in the next period.

These probabilities depend on the geographical and social

distance between teller and contact. The following probabilities

then must be estimated from the data for any particular project:31

Probabilities governing receipt of the message:

pgs = Probability of a person at distance g and social

distance 3 receiving the message.

p /ngs = Probability of contact for an individual if
gs

there are rigs individuals in a cell.

 

31Ideally, in a manner similar to H'aigerstrand's.
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Probabilities governing acceptance of the message:

pac = Probability of accepting a message with attitude

3 on the side of the contact and credibility g on

the side of the teller.

Further, since Karlsson saw no reason to suppose a depen-

dency between physical and social distance, we assume pgsngps

and formally assess the probability of contacting someone who is

already a knower as rtgs. This probability depends on what

happens during the diffusion process being a function of the propor-

tion of knowers in a particular cell; it designates the probability

that a message directed to cell g_s_ at time t_ hits a knower and is

lost.

The probabilities of non-acceptance of the message because

of the contactee's attitudes and the teller's credibility are likewise

assumed to be independent so that pac: papc' Notationally, we

designate by pf the probability that a person in cell g has proba-

bility pa of acceptance; this is equal to the fraction of non-knowers

in cell g3 belonging to social category g.

Bringing the above together in an overall formula, we note

that the probability of a message being directed to a non-knower in

cell g3 and being accepted by him is

p a l-r

E 2 pp( gs)papfpcpe
g

where rgs’ pf, and pe are parameters determined by the stochas-

tic nature of the diffusion process. There is no explicit measure

for their value as a function of time and the other parameters.
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Fortunately, as Karls son notes,32 they are only needed for the

formal development of the model.

The lack of a workable formal definition for the time-path of

the message through the population makes it necessary to use

Monte Carlo procedures to find an approximate distribution of the

time-paths. This requires only the parameters pS and pg to deter-

mine the cell gg to which the information is directed -- giving each

member of the cell a chance to receive the information. If he has

not heard it before, he then has a chance papC to believe the mes-

sage based on his own attitude and the credibility of the teller. It

is necessary in the actual computation to keep track of each knower

and each contactee to determine the relevant attitude and credibility

ratings in each case.

Karls son provides an example of the procedure for hand

computation using the data matrix in Table 1. The cell entries

reflect: social class, A or B; attitude of members towards new

ideas -- qunreceptive to new ideas, and credibility -- T=low

credibility. The matrix represents a group of 100 persons dis-

tributed in a square with equal distances between positions. The

positions are regarded as main staying places because of the

necessity for the carriers of the message to move about and meet

other persons.

The following distance probabilities are assumed for the

example:

 

3zKarlsson, 2p. §1_t_. , p. 50.
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Table 1. Data Matrix for Karlsson Simulation33

 

 

 

a b c d e f g h i j

l A T AH B A T A B AHT A B A T

2 A BHT A A B T A AH B T A A

3 BHT A B T A AH B T A A BHT

4 B T A AH B T A A BHT

5 T A AH B T A A BHT A A

6 B T BH A B T B AH B T B A B T

7 BH A B T B AH B T B A B T BH

8 A B T B AH B T B A B T BH A

9 B T B AH B T B A B T BH A T

10 B AH B T B A B T BH A B T B

Pg1=0.5. pgzzo 4. pg3-O 1.

The geographical distance cells are defined as:

Cell 1: the positions in the square of cells nearest

the communicator.

Cell 2: the positions in the square of cells next to cell 1.

Cell 3: the positions in the square of cells next to cell 2.

If the communicator, then, is in position 4d, cell 1 consists of 3c,

3d, 3e, 4c, 4e, 5c, 5d, 5e: cell 2 of positions 2b-2f, 3b, 3f, 4b, 4f, 5b, 5f,

and 6b-6f, etc.

The other probabilities are assumed to be pS=0. 9 for the

communicator's own stratum and 0. l for the other stratum; these

 

3'3Ibid. , p. 51.
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probabilities are the same for both strata. If a person has attitude

h, his pa: 0. 3; if his attitude is H, pa=0. 9. A communicator marked

with a T has a probability of acceptance of his information pC:0. 7;

if he is T, pczl. 0. Since paczpapc’ we get:

Condition p Condition p
ac ——-— ac

Non H from non T . 90 H from non T . 30

Non H from T . 63 H from T . 21

A trial run of this model was made using random numbers

from a table and the following procedure:

(1)

(Z)

(3)

(4)

(5)

(6)

Determine the geographical region (cell 1, cell 2, cell 3)

to be contacted.

Find the social stratum to be contacted within the

selected cell.

Select a person to be contacted within the g3 cell, giving

each the probability l/ngs.

If the person is not a knower already, his probability of

accepting the message is given by pac'

Steps 1 through 4 are repeated for each knower in each

time period (ten periods are used in the example -- these

are what H'agerstrand calls generations).

The initial and sole knower is placed in cell 5e. Each

knower communicates only three times after which he is

inactive. Only one contact is made by a knower in any one

generation.

The results of this trial are listed in Table 2.
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Table 2. Trial Run 1 of Karlsson‘s Simulation3

 

Hits Producing

 

Step Knowers No New Knowers

0 5e -

1 5e 3g

2 5e 8f

3 5e,4c -

4 (5e),4c 3d

5 (5e),4c, 6a -

6 (5e),4c,6a,7b 6a

7 (5e,4c), 6a,7b,8a 4c

8 (5e,4c),6a,7b,8a,8c,8e,6c -

9 (5e,4c,6a),7b,8a,8c,8e,6c,5a,5b,5c 6a,7f

10 (5e,4c,6a,7b),8a,8c,8e,6c,5a,5b,5c,

8f,4a,7e 10b, 5e, 5d,6a

non-active knowers are in parentheses

 

Several contrasts should be pointed out between the Karlsson

and the Hagerstrand-derived models. First and most important is

the greater attention paid to behavioral elements by Karlsson. In

essence, this difference is akin to the distinction between aggre-

gative and disaggregative models. The great advantage of the

latter, especially in geographic research, is their ability to more

accurately portray the complexity of the landscape by allowing for

the diversity of elements present in any area. This greater

accuracy carries a penalty, of course, if pursued too far: the lack

of, or great difficulty in collecting adequate data and the subsequent

problem, if the first be overcome, of aggregating our results in

some way so as to make them comprehensible. Nonetheless, the

inclusion of several behavioral variables in each cell (place) of the

 

34Ibid. , p. 52.
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Karlsson model's data matrix gives it a great advantage over pre-

vious models of diffusion and we shall follow this approach in our

own modeling system.

The greater attention paid to behavioral variables by Karlsson

is counterbalanced, for geographers, by his relative neglect of

spatial variation. It would be an error for us to use this model in

unmodified form because it has no provision for inclusion of such

physical variables as barriers (social barriers are, of course,

included in the model). While not an a-spatial model, Karlsson's

treatment of distance is also unsatisfactory for us. If Hagerstrand's

mean information field is too aggregative for studies of large

regions, it does, at least, provide for local directional biases and

allows quite fine control of the distance decay function. Karlsson's

distance rings recognize the attenuating effects of distance (whether

measured in physical or social units) but do not allow discrimination

within the rings. Both models have no means of taking into account

the possibility of differing spatial preferences among groups in the

population. In the next chapter, where we develop our own

structure in more detail, we use what we can of the Hagerstrand

and Karlsson approaches and at the same time attempt to avoid some

of their deficiencie s .



CHAPTER III

STRUCTURE OF THE MODEL SYSTEM

We have previously only alluded inferentially to the model

system we are proposing, first in the discussion of general

approaches to geographic models and then, more concretely, in

the preceding discussion. The purpose of this chapter is to des-

cribe, in more detail, the common structural characteristics of

our models and to indicate some important operational considera-

tions. The example that follows in the next chapter is designed to

illuminate these features.

First of all, let us again examine the characteristics one

might rationally associate with or expect to find in any model of

a spatial process, be it migration, information diffusion or changes

in the properties of an air mass over time. We find we need be

concerned with three: place attributes; place location; and the

rules specifying interactions among places under given conditions.

The need for a knowledge of attributes follows from the desire to

examine interactions among places; since these can presumably

occur only under certain conditions and are dependent on place

characteristics, it is necessary to know these characteristics.

Given such a description in terms of "relevant" variables, we then

need to specify the permissible paths over which information,

people or other phenomena can flow from or to a place; in a sense,

we must specify distance-decay functions. So far, we have pre-

sented a landscape, a map as it were. To breathe life into this

26



27

landscape and to model a process acting in it, it becomes necessary

to provide a set of rules which directs interactions according to

place characteristics and connectivities.

The following diagram (Figure 4) illustrates these considera-

tions and integrates with them the important steps of initial question

posing and model testing and verification. 35 The reverse arrows

indicate in a schematic way the process of feedback (positive and

negative) and also the existence of a continuum of models resulting

from refinement of our questions and changes in selections of sub-

systems to be investigated and even our image of the "real" world.

The problems of question-posing and model testing have been

extensively discussed elsewhere in the geographic literature”?6 and

we will not depart from our scheme to consider them here. Our

attention is instead directed towards the task of expanding on prob-

lems of specifying attributes, connection patterns and rules of

interaction and of integrating these into a well-ordered experi-

mental design.

 

35The general form of the diagram and some of the concepts

underlying it are based to an extent on the work of Richard

Chorley, "Geography and Analogue Theory," Annals of the Associa-

tion of American Geographers, LIV (1964), p. 129.

36See J. O. M. Broek, "Some Research Themes," in Geog-

raphy. Its Scope and Spirit (Social Science Seminar Series;

Columbus, Ohio: Charles E. Merrill Books, 1965); also "Four

Problem Areas and Clusters of Research Interest," in NAS-NRC,

Earth Sciences Division, The Science of Geography: Report of the

Ad Hoc Committee on Geography (Publication 1277; Washington:

1965). The literature on model testing is scattered but a good dis-

cussion is available in Peter Haggett, Locational Analysis in

Human Geography (London: Edward Arnold Ltd. , 1965), pp. 277-

310.
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Specification of Attribute 5

Once a choice of some subsystem of the real world has been

made for the study and its components specified, 37 we confront the

problem of selecting those attributes of the system deemed to be of

significance in the process being investigated. We shall define an

attribute of a place as being both a property and an associated

intensity.

There now exist two problems: identification of the relevant

properties of the system and the choice of measures of magnitude

for each. The identification problem can be handled in a number of

ways. If we are posing questions in a hypothetico-deductive frame-

work it is certainly reasonable to postulate the importance of

certain key variables or properties, subject to test of course.

This was done in the Karlsson model mentioned above. 39 Or we

may take another well-defined system which we presume behaves

similarly to the one under investigation and search for analogous

variables. Ellis' study of the Michigan recreation system follows

this course. 40 Another approach might make use of multivariate

 

3”Normally these will be areal units but depending on the

study scale they can also be line or point phenomena or a combina-

tion of all three.

38For example, a property might be manufacturing employ-

ment; then its associated intensity would be the number of workers

employed.

39See pages 11-12ff.

4oJack B. Ellis, "The Description and Analysis of Socio-

Economic Systems by Physical Systems Techniques," (unpublished

Ph. D. dissertation, Department of Electrical Engineering, Michi-

gan State University, 1965), pp. 9-11.
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statistical techniques, typically multiple regression or factor analy-

sis, to select a constellation of independent variables in a parsi-

monious fashion according to some efficiency criterion such as

percent of system variance explained by the selected group of

variates. Departures from linearity and the possible existence of

interaction effects vitiating the assumptions of independence on

which these techniques depend should of course be investigated

when they are used. 41

Any of these approaches to the selection of some fundamental

set of properties may be used singly or in combination. It is vital

to realize that good judgment on the part of the investigator is

always required in making the selection as is an adequate knowledge

of the system being studied. Where "ideal" measures are lacking

we are often reduced to using some available surrogate which hope-

fully mirrors the behavior of the conceptually desired variable. In

the case of one Hager strand model of information diffusion which

utilized telephone messages as a substitute for some ideal measure

of information flow42 the assumption of analogous behavior can be

 

41A simple and clear exposition of the dangers of assuming

linearity where it does not exist is in Frederick V. Waugh, Graphic

Analysis: Applications in Agricultural Economics (Agricultural

Handbook No. 326, United States Department of Agriculture,

Economic Research Service; Washington: U. 5. Government Print-

ing Office, 1966). pp. 24-25. A discussion of interaction effects

and their importance can be found in John Sonquist and James

Morgan, The Detection of Interaction Effects (Institute for Social

Research, Survey Research Center; Ann Arbor: The University of

Michigan, Monograph No. 35, 1964).

42H’égerstrand. "On Monte Carlo Simulation of Diffusion,"

.2- sit.” p. 6-
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easily defended. But in general the use of surrogates requires an

even higher degree of subject knowledge and integrity on the inves-

tigator's part than normal.

The choice of a metric to define intensity of a property is

also not a simple thing. To some extent there is a dependency on

the choice of the variable to be measured. Also, we may either be

limited to given measures as in the case of census data or might

be so uncertain of the accuracy with which the variable was mea-

sured that we deliberately choose a measuring tool of greater

"fuzziness" than may be available to blur inaccuracies. This

implies that we use a weaker measurement scale than is naively

indicated by our data in an attempt to balance the accuracy desired

with our confidence in the measurement itself.

Using Steven's classification of measurement scales (Table 3)

we can illustrate this technique with the following example. Assume

we have two measures of income in dollars for each of five places:

Place

Able Baker Charlie Dog Echo

 

 

Average Gross Income 12, 543 4, 950 6, 800 10, 200 4, 000

Average Net Income 10, 500 4, 500 6, 000 8, 600 3, 700

If we are aware that measurement errors may be present in this

data (as a result of poor sampling technique, incorrect responses,

coding errors and so on) we may decide not to trust the apparently

exact figures above but instead to blur the assumed inaccuracy by

converting the data to an ordinal scale:
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Place

Able Baker Charlie Dog Echo

Average Gross Income 1 4 3 2 5

Average Net Income 1 4 3 2 5

What we have done, here, is sacrifice some of the discriminating

power inherent in the ratio scale to obtain simpler but less "noisy"

information. We also find, as we might expect, that the types of

statistical measures obtainable from our data are less sophistica-

ted. But they are also less likely to lead us into making incorrect

inferences since they increase the chance of rejecting a hypothesis.

We may also make such a measurement scale transformation

if the relationship of interest can be perfectly well expressed using

a weaker scale. That is, if we are only interested in the presence

or absence of a phenomenon, then a binary nominal scale is quite

adequate. Similarly, an interest in the ordering of places (A is

greater than B) need not call for the use of a scale any stronger

than the ordinal. In our original data collection, however, it is

wisest to start with the most discriminating measure possible since

we can always coar sen measurements but cannot read into them any

more power than is originally there. 43

 

43A strong argument for this approach is made by S. Goldberg

in his Probability: An Introduction (Englewood-Cliffs, N. J. :

Prentice-Hall, Inc. . 1960), pp. 45-46. For an interesting example

of the use of scale transformation see J. Nystuen and M. Dacey,

"A Graph Theory Interpretation of Nodal Regions," Papers and

Proceedings of the Regional Science Association, V11 (1961), pp.

29-42.
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Specification of Connection or Position

If we view the attribute space of a spatial system as corres-

ponding to the classical idea of site, then position space corres-

ponds to location. If we are only interested in the property of con-

nectivity, then a simple linear graph (Figure 5A) suffices to portray

this. The equivalent matrix representation (Figure 5B) is more

convenient for arithmetic manipulation but fails to give the visual

image geographers find useful. In theory, the quality of a connec-

tion channel can also be considered in these representations by

specifying an unambiguous scale based on the capacity of the channel.

B A B c D E

A A o o 1 1 o

c B o o 1 o o

D c 1 1 o o 1

E D 1 o o o 1

E o o 1 1 o

(A) (B)

Figure 5. Linear Graph and Matrix Representations

of a Connected Network

The above representation seems to indicate that specifying

connectivity is simpler than of specifying attributes. But this is

not the case, for we encounter several basic problems. In some

cases, these may stem from a disparity between technical channel

capacity and actual utility -- a situation most often found in under-

developed or authoritarian countries where such phenomena as
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"showpiece" roads are not uncommon. The use of estimates of

traffic generating capacity of terminals achieved by gravity model

techniques or analogue methods is one way of attacking this type of

problem. But we encounter more substantial difficulties when we

consider the hierarchical nature of many communication flows in

the real world. As Hagerstrand noted in connection with the dif-

fusion of ideas through pairwise meetings, some individuals operate

on a local level only while others operate on a regional or even

international level as well. Analogous points have been made by

Tiedemann and Van Doren in their work on the diffusion of hybrid

corn in Iowa. 44

When dealing with a hierarchic connectivity net such as the

transportation system pictured (Figure 6), normal concepts of

distance cease to give adequate explanations of observed inter-

actions over space. Here, the major, "A," centers are connected

on one distance continuum while the subsidiary centers, "B,"

interact on an entirely different distance scale. Even though the

subsidiary centers are closer to each other in a "pure" distance

sense than the major centers, they are further apart and rela-

tively isolated if we measure distance on an access-tirne scale or

in terms of "effective" connectivity.

The most familiar examples of this phenomenon are found in

communication and transportation systems with high-quality

 

44Hagerstrand, "On Monte Carlo Simulation of Diffusion,

22. C_it. . p. 5. C. E. Tiedemann and C. S. Van Doren, "The Dif-

fusion of Hybrid Seed Corn in Iowa: A Spatial Simulation Model

(Technical Bulletin B-44, Institute for Community Development and

Services; East Lansing: Michigan State University, December,

1964).
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connections functioning primarily as links between major centers,

leaving subsidiary points in the network to make do as well as pos-

sible with less efficient links. Apart from obvious effects on such

processes as industrialization and the diffusion of innovations which

depend heavily on efficient communications, the existence in spatial

networks of such hierarchical structures poses some interesting

modeling problems.

Pictorial inversion of the system to produce true relations

in position space as demonstrated in the second part of Figure 6

is obviously a limited solution to be applied only to topologically

simple networks. 45 A more logical approach in the general case

would be to divide the system studied into homogeneous groups

based on efficiency of connections and treat each group separately

while assuring that correct inter-group linkages are maintained.

Specification of Interaction Rules

While many useful geographic analyses can be performed

using the static structure of position and attribute-space, it seems

doubtful that an adequate knowledge of spatial processes can be

attained without the employment of dynamic models having time as

an inherent parameter. An essential prerequisite for such models

is the construction of a set of interaction rules. These serve to

link the static tableau of the landscape with the investigator's

ideas about the mechanisms of the process studied.

 

4SBut the technique is appealing pedagogically and might be

used, for instance, in an attempt to clarify problems of the isola-

tion of certain districts in a country or a city from the "mainstream,"

in presentations to legislative groups or planners.
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The rules E113 to meet two conditions. First, they must be

capable of being expressed in the form of a statement calculus46

of the form

IF A THEN B ELSE. . .

where the tested condition may be a string of propositions joined by

logical operators. The condition must have a truth value in each

instance. If the condition is true, then ”B" results, otherwise we

proceed to an alternate result or to a further series of test state-

ments. The result need not be deterministic since it may consist

of a vector of outcomes, exact choice of which would be determined

by probability rules. Obviously, these, too, must be specified as

part of the model. Rules that can be expressed in a statement

calculus are unambiguous; for our purposes in constructing a

logical model they must also be complete. That is, no logical pos-

sibility can be overlooked in our specifications. Unfortunately, we

cannot be sure that a set of rules meeting these two requirements

will give ”correct" answers. The format does, however, facilitate

testing through a stage process to help insure that our logic is

tight and can point up those propositions needing further research.

Once we go beyond these basic requirements, the task of

establishing modeling rules becomes more complex as they are

guided by the purpose of the research and some attitudes of the

investigator. A basic dichotomy must be faced at the outset; this

 

46For a readable exposition of the basic requirements of a

statement calculus see J. Kemeny, L. Snell, and G. Thompson,

Introduction to Finite Mathematics (2nd edition; Englewood-Cliffs,

N.J.: Prentice-Hall, Inc., 1967), pp. 1-52.
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is a choice between specifying a deterministic or a probabilistic

model. The great appeal of deterministic models lies in their con-

ceptual simplicity. They also have intuitive appeal for those who

value conciseness in statement and dislike introducing the concept

of chance into explanatory models. Where a deterministic model

produces adequate results (in a predictive sense), these virtues of

simplicity must recommend it. 47 But if we agree with Saushkin

that

geography is the science dealing with complex dynamic

spatial systems that develop on the earth's surface as

a result of interplay between nature and society. . . .

then we can make a strong case for making probabilistic models

the norm in geographic research. A practical reason for doing so

is that much of our raw data is sampled, formally or otherwise,

making our conclusions statistically rather than absolutely valid.

Nagel also makes the point that laws in the social sciences are

(most likely to be) statistical in nature because they are stated as

49
though applicable to the real world rather than to an ideal state.

When our models are focused on examining human actions on a

 

47In fact, in a recent article that recast the gravity model to

accord with a probabilistic philosophy, the author implies that the

added complications did not produce significantly better results.

See B. Harris, "Probability of Interaction at a Distance," Journal

of Rggipnal Science, V (1964), pp. 31-35.

48Y. G. Saushkin, ”An Introductory Lecture to First- Year

Geography Students," Soviet Geogramy: Review and Translation,

V11 (1966), p. 59.

4c)Ernest Nagel, The Structure of Science (New York:

Harcourt, Brace, and World, Inc. . 1961), pp. 507-09.
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less than universal scale, we should also be aware that individual

responses to stimuli are governed by interpretations of external

conditions rather than the conditions themselves and that the

resulting uncertainty in the model must be handled probabilistically.50

Assuming that one chooses to construct a probabilistic model,

there are a number of possibilities. Two types that have been pro-

posed for and used in geography are Markov chain models and

variations on the Monte Carlo method. 51 The Hagerstrand and

Karlsson models which were discussed in the last chapter are

examples of the latter approach; enough has been written about

Monte Carlo models in the geographic literature to make a dis-

cussion of underlying assumptions superfluous here. But this is

not the case with Markov models and a brief account of the basic

finite model,52 its assumptions and its limitations for research

into spatial processes might be useful.

We assume a set of experiments having the following proper-

ties. The result of each experiment is one of a finite number of

outcomes [x1, x2, . . . x The probability of any outcome xj is
k]'

 

50At the small, similar conditions are encountered in the

physical sciences. See Werner Heisenberg, Physics and Philosophy

(New York: Harper 8: Brothers, 1958).

51L Lowry, "A Short Course in Model Design," Journal of the

American Institute of Planners, XXXI (1965), pp. 158-65; W.

Garrison, "Towards Simulation Models of Urban Growth and Devel-

opment," No. 24, Lund Studies in Geography, Series B; Human

Geography (Lund, Sweden: C.W.K. Gleerup, 1962), pp. 91-108.

One of the few examples of the use of Markov chain model by a

geographer is found in Brown, _p. gig.

52Adapted from E. Parzen, Stochastic Processes (San

Francisco: Holden-Day, Inc., 1962), pp. 188-306.
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not necessarily independent of previous outcomes; but at most it

depends on the outcome of the immediately preceding experiment.

The probability of outcome Xj given that xi occurred on the previous

 

experiment is given by pij' The pij's are termed transition

probabilities and the set of outcomes [x1,xz, . . . xk] are called
 

93.3.1339: The p's are calculated experimentally or in social science

applications are frequencies reduced to probabilities. If we know

that a process begins in a particular state, then given the transition

probabilities, we have sufficient information to calculate the

probabilities of the experiment ending in any given outcome at any

future time.

A process combining the transitional probabilities and states

is most conveniently represented in matrix form

Xt = p xt-l’

where the xt represents the state vector at time [t]; its values are

the result of the interaction of the transition probability matrix p

and the state vector at time [t-l]. Operationally, the interaction

can be computed as a succession of matrix vector multiplications

but it is easy to prove that given the vector x at time t = 0, then

x is simply pnx .
n 0

The superficial simplicity of the approach makes it tempting

to use as a predictive model. But there are some drawbacks we

should be aware of. Where there is no absorbing state present

(a state from which there can be no transition) the state vector

reaches equilibrium after a number of cycles and thereafter stays

constant. It is possible to obtain this equilibrium solution of the



42

state vector analytically, that is, without carrying out "n" matrix

multiplications. The number of cycles taken to reach equilibrium

is then unknown. Where cycle times are very short as in many

physical science processes this is often not critical. But where

they are each a year or longer which is common if we are using

social science data (censuses or surveys) it becomes misleading to

consider the equilibrium situation without knowledge of the time

taken to reach it. For instance, an otherwise excellent recent

paper predicted interregional migration and used equilibrium values

of the state vector as the basis for discussion of policy questions.53

In checking this model using Roger's initial state vector and transi-

tion probabilities which were based on five-year migration fre-

quencies, the author attempted to ascertain, using a computer for

performing the matrix multiplications, the time required for the

system to reach equilibrium. After 2,000 years of simulated time

this had still not occurred.

Even over a shorter time period, the transitional probabil-

ities in the real world system are likely to change, especially if we

are working with a social or economic system. But the transition

probabilities in the Markov chain model are fixed initially and

never change.

Olsson and Gale have recently54 proposed that these and other

objections can be met by using an n-dimensional Markov process

 

53Andrei Rogers, "A Markovian Policy Model of Interregional

Migration," Papers of the Regional Science Association, XVII

(1966), pp. 205-24.

54G. Olsson and S. Gale, "Spatial Theory and Human Behav-

ior: Human Behavior and Anarchistic Vector Spaces." Paper pre-

sented before the Regional Science Association, Boston, 1967.
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model. The multi-dimensional feature would allow the researcher

to consider more than one variable operating at a place. This

would, of course, let us come much closer to the multi-factor real

world problems we are interested in exploring. Adoption of the

more general Markov process also allows the transitional proba-

bilities to change over time as a function of the immediately pre-

ceding transition matrix and state condition and the place of the

sequence in a set "T" of sequence conditions.

It is difficult to quarrel with this ambitious proposal,

especially since all reasonable-appearing models should be

explored at this stage of geographic methodology. Two caveats

might, however, be raised. First, the model may be too sophis-

ticated, for our present ability to specify interactions and transi-

tion probabilities in the detail required by the model is limited.

Second, the Markovian model is linear and may not "fit” many

spatial processes. Ols son and Gale speculate that the traditional

linear operator in the Markov process could be replaced by non-

linear operators; but, as they admit it is not at all clear in general

what form such operators might take.

Roger's migration model and the proposals advanced by

Olsson and Gale point up two critical problems in devising an ade-

quate set of interaction rules for spatial processes: the selection of

reasonable time parameters and the necessity for including pro-

vision in the model for changes in position and attribute space as a

result of the operation of the system over time. Both are rather

difficult problems and no easy answers are available.
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In the case of the time parameters, the investigator should

specify a "working time" for the simulated system which covers

the period for which he thinks his rules hold true. At the end of

that time, the system should be examined for "reasonableness" and

tested against expected outcomes. He should also be aware that, in

theory, each component of the system might have its own time res-

ponse function. We can all think of certain attributes of an urban

system, say, that respond quickly to changes in the external envir-

onment whereas others respond more slowly or not at all in the

short run. 55 A good set of rules for a spatial process should

reflect these differentials where they exist in the system.

It is also necessary to make provision for structural changes

in the system resulting from operation of endogenous or exogenous

forces. Most of the process models used to date in geography have

this facility only to a limited extent. The difficulty in extending

this extremely important quality results from our ignorance and

inability to specify exactly all forces likely to impinge on a system.

In this case, we are in a position similar to an analyst who was

asked why he had not predicted present United States troop levels

in Vietnam three years ago. Our own answers are not likely to be

much better but we have the obligation to try.

Integrating the Model Structure

Thus far, we have tried to lay bare the elements of a model

system for the analysis of spatial process. We have attempted to

 

55Private employment volume and welfare payments are

examples of rapidly responding attributes and government employ-

ment an example of a more stable one.
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justify the use of a framework that considers the location of com-

ponents of a system, the attributes of these components, and have

also indicated some principles that should underly the rules which

make the system operate through time. Some consideration must

now be given to the problem of integrating these elements into a

well-ordered model. This can be attacked in several ways; we

choose to do so, here, from an operational point of view.

For most spatial systems of interest -- apart from pedagogi-

cal examples -- analysis and experimentation require the use of

computing machines. This pm not be due to the intellectual com-

plexity of the system but may simply be the result of the presence

of a large data base or a set of rules requiring a large number of

operations. Once the decision is made to computerize a fully

thought-out model, fairly standard generalized techniques are

available for making it operational.

We can think of a digital computer as a machine for process-

ing information under the control of a set of instructions written by

the user. In our case, the instructions are mainly composed of

our modeling rules recast into a computer language. The latter,

unlike natural languages, have a logical structure and a helpful by-

product of the transformation from rules to computer instructions

is that it helps the researcher to spot mistakes in his original

formulations. While most geographers have used standard lan-

guages such as Fortran for all their work, it is usually possible to

find a language particularly well-suited to processing a particular

type of information (see Appendix A).
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Regardless of the language used, the conceptual structure of

the string of instructions, usually called a program, is invariant.

It is most conveniently described in terms of a series of blocks, or

subroutines, each devoted to performing a single task (Figure 7).

As indicated in the diagram, the sequence of control in most large

programs is not linear; in general it is helpful to have a control

block which calls on the use of sub-blocks where needed. This may

be done several times in the program for the same sub-block;

differences in the basic task, which might, for instance, be an

operation performed on several different data structures during

the course of the program, are indicated by supplying controlling

parameters in the calling statement. Since control always returns

to the calling procedure after a task is executed, the procedure

allows a smooth flow of command. The building block approach to

designing also facilitates testing and replacement of sub-blocks and

the insertion of extra blocks when the requirements of the model

expand.



 

 

CONTROL BLOCK
 

Assigmnent of storage

for data structures.

Specification of data

type: numeric, alpha-

betic, boolean, etc.

Call Initialization

Block

Call Data Input Block

Call Procedure Block #1

Call Procedure Block #n

Call Output Block

Stop  
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INITIALIZATION

BLOCK

 

Reads in parameters

from external media.
 

 

DATA INPUT BLOCK 6

Enters data structures

from external media.

 

 

OUTPUT BLOCK
 

Displays program data,

results in tabular or H

graphic form. \I(  
 

 

 
PROCEDURE BLOCKQ)
 

Manipulate data structures,

either initial or inter-

mediate.

 

Figure 7. A Schematic Diagram of a Computer Program

 



CHAPTER IV

A WORKED EXAMPLE

Now that we have discussed the general structural character-

istics of models of spatial processes, it would be helpful to see

them applied to an example. The system we will examine is chosen

from the field of medical geography, and is artificially created to

dramatize only the essential elements of the process. The advan-

tages of this abstract approach are simplicity and clarity. Only

those spatial attributes deemed necessary to the process are

present; they are not obscured by the multiplicity of variables

present in the real world with the associated complexity of chains

of cause(s) and effect(s), nor is the possibility of having left out

important explanatory variables present. The process itself is

also controlled and specified solely by our interaction rules; but,

as we shall see, this need not mean our results are predictable or

uninteresting.

The Spread of a Disease in an Isolated Region

The field of medicine contains many problems of interest to

geographers. Among the most "geographic" of these is the study

of the spread of infectious diseases over space. Thorough under-

standing of these processes requires skills of a high order. First,

the geographer must understand the functional causes of contagion

for any disease studied to a degree sufficient to make predictions

about its spread. This will necessarily include knowledge of

48
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incubation time and the period of infectiousness if these are known

or the ability to make reasonable estimates about them when they

are not. He must then relate the characteristics of the disease

agent to those of the environment, which requires all of the

geographer's skills in classification techniques and model building.

Finally, the results of the study have to be presented in a form

that is understandable and which emphasizes the spatial pattern of

the disease as it changes through time.

One might think that the field of epidemiology would provide

models of such processes as they operate over space. But this is

not the case since as Bailey notes56 the major methodological work

has been devoted to studies of infection rates and removal rates in

a homogeneously mixed sample in a spaceless environment. The

deterministic model of the geographic spread of a disease also

presented by Bailey,57 while a good basis for further development

is conceptually quite sparse as it is limited to consideration of the

spread of an infection over an infinite uniform plain with even popu-

lation density. The population is assumed to be uniform in all

respects but for the presence or absence of the disease. Coleman's

presentation of a model of infection for incompletely mixed (i. e. .

socially stratified) populations58 while extending previous models

 

56N. T. J. Bailey, The Mathematical Theory of Epidemics

(London: Charles Griffin 8: Company Limited, 1957), chapters 1

and 2.

57Ibid. , p. 32ff.

58See J. S. Coleman, "Diffusion in Incomplete Social

Structures," in F. Massarik and P. Ratoosh, eds. , Mathematical

Explorations in Behavioral Science (Homewood, Illinois: Richard D.

Irwin, Inc., 1965), pp. 214-32.
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to a more complicated universe does not pay attention to differentia-

tion over space; that is, changes in the attribute space from place

to place. So while the system modeled below is certainly too over-

simplified for real world application it does involve more considera-

tions of real conditions than is common in this area.

Statement of the Problem
 

In this example, we wish to investigate theoretically the

spatial patterns resulting from the spread of an infectious viral

disease through an isolated area. We are particularly interested

in the spatial progress of contagion through the first several weeks

of the outbreak since the strain mutates and dies out in a closed

system after that time. The results of the analysis are to be used

to guide further research by physicians into producing an effective

vaccine for the prevention of the disease. An experimental vaccine

has been given to a randomly selected group of villages in the study

area and its effects on limiting the spread of infection will also be

studied by physicians based on our results.

Construction of a model to investigate this problem requires

information about the disease agent and about the environment in

which it is assumed to operate. From this basic structure we then

have to construct a set of rules that will allow us to monitor the

dynamics of the process. The important problems involved in

testing the results of models similar to this simple example are

discussed at the end of the chapter but are not applied here because

we lack a template against which to match our results.
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The Disease Agent

Our agent is a virus which is spread by contact and only

affects or is transmitted by humans. Continuous contact over a

period of several days always results in transmission of the virus

and subsequent development of symptoms which are unpleasant but

not disabling or offensive to other persons. The incubation period

of the disease is constant at six days; thereafter, the host is a

potential source of infection to those he contacts for three weeks,

after which time there is spontaneous remission. No subsequent

reinfection occurs for at least a year.

Apart from total quarantine, two factors can hinder the

spread of this virus. Assuming the contact period between a carrier

and a contact is short, a day or less, a moderately high level of

sanitation on the latter's part offers a 70 percent chance of catching

the disease if exposed. A vaccine has also been developed which

retards the spread of infection, not so much by preventing a

vaccinated person's contracting the disease, although the symptoms

are ameliorated, as by cutting down on the probability of his trans-

mitting it to another person. Without the vaccine, an infected

person will invariably transmit the virus: with it there is a 70

percent chance of his doing so.

The Environment
 

We assume our environment consists of a gently hilly region

essentially closed to the outside world (Figure 8). The region

contains 25 regularly shaped small village communities of about
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A MAP OF THE HYPOTHETICAL STUDY AREA
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the same size, each with its surrounding agricultural and forest

lands. Eleven communities are located on uplands with the

remainder in the broad valley bottoms. Each community is basi-

cally self-sufficient but for religious purposes and trading, repre-

sentatives regularly visit neighboring centers one day a week. The

pattern of intercommunity visits is spatially quite random but the

upland and lowland communities do have a strong tendency not to

interact. In fact, only about one time in ten is there a contact

between an upland and a lowland community, or vice versa.

Because of a primitive transportation system, there is a rapid drop

in interaction with distance. Half of all contacts occur between

adjacent communities; about two fifths of the time a contact occurs

between communities separated by another center. Only about once

in ten times is there a contact with a center as much as three vil-

lages away. Finally, some communities are a bit more advanced

than others in that they have piped water and primitive but ade-

quately hygienic waste disposal systems.

Interaction Rule 5
 

The lack of a workable analytic formulation for this problem

makes it necessary to use a probabilistic approach in our model to

find an approximate spatial distribution over time. The fact that

our basic information about both the disease and the environment

is based quite largely on estimates of frequency reinforces the

decision to formulate the model in a Monte Carlo framework.

Our rules then must include the probability of each com-

munity's receiving the virus in each week and the independent
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probability of being infected and in turn passing on the disease in

the succeeding time periods. These probabilities depend on the

geographical distance between the transmitting and receiving

communities (in location space) and on their respective attributes.

The following probabilities must be calculated from our data:

pdt = the probability of a community at distance d and of

type t receiving a contact from an infected com-

munity, and

pSi = the probability of successful transmission of the

viral disease to a community with a sanitation

standard 3 from a community with innoculation

status i.

Since there is no dependency between physical distance and com-

munity type in our region we assume that pdt = pdpt. Because the

disease invariably affects everyone in a community once it is trans-

mitted we need not consider the number of persons in each com-

munity nor the characteristics of those who travel to other com-

munities. Furthermore, since the assignment of vaccine to com-

munities was random and independent of local sanitary conditions

we can also assume that pSi = pspi.

The actual probabilities based on our raw data are as

follows:

for contact at distances d1, d2, and d3 the probabilities

are respectively 0. 5, 0. 4, and 0.1 where the di's refer to

the successive rings of communities around the transmitting

center since there is no directional bias in the system;
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the probability for contact to occur between communities of

the same type (upland or lowland) is 0. 9 and the probability

of contact between different types is 0.1;

the probability of contracting the disease in a community with

adequate sanitary facilities is 0. 3 and in the absence of these

facilities, it is 0. 9; and

the probability that a person who has not been innoculated will

transmit the virus is 1. 0, whereas if he has been innoculated

the transmittal probability drops to 0. 7.

We indicate the possible combinations using a table:

Table 4. Combined Probability of Infection

in a Contacted Community

 

  

 

Contacted Community Transmitting Communitl

Innoculated Not Innoculated

Adequate sanitary facilities 0. 21 0. 30

Inadequate sanitary facilities 0. 63 0. 90

 

Since our region is isolated, we can treat its boundaries as

reflecting barriers which simply means that instead of contact

circles around each potential transmitting community we may have

to assume contact arcs. Also, to simplify our process somewhat

we make the assumption that we are only interested in contacts

from infected villages to other communities. This could result in

the real world from a situation where visitors would not approach

an infected community but where the latter's inhabitants would
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continue their usual visiting habits since they would realize catching

the disease twice is not possible.

Our time periods (generations) consist of weeks since this is

the visiting pattern and we restrict our time frame to a period of

five weeks because of the mutation characteristics of the virus.

The initial appearance of the virus is assumed to occur in the cen-

tral community. We will run the model twice to obtain a visual

impression of the pattern of spatial spread and to examine the

possible influences of distance, village type and sanitation. Then,

in order to average out the run-to-run variation inherent in Monte

Carlo processes we will examine the aggregate results from 100

simulations .

Makingthe Model Operational

Two simulations of the system were made using a specially

written computer program (see Appendix B) incorporating a pseudo-

random number generator to emulate the probabilistic character-

istics of the model. The program was written using the building

block approach indicated in Figure 7.

The initial program block was used to describe the structure

of the data and to enter as program parameters the probabilities

mentioned above, the number of system time units to be run, and

the number of simulation runs to be made. If more than one

simulation run is requested, the initial block also sets up conditions

for repeating the model as many times as required. Because of the

arrangement of the sub-cells of the region, the cormnunities, it

proved possible to describe (and later enter) the locational and
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attribute data in the form of a square 5 x 5 matrix with each cell

representing a community and containing four bits of binary infor-

mation indicating whether it was:

upland (0) or lowland (l);

innoculated (O) or not innoculated (1);

possessed of adequate sanitary facilities (0) or not

(1), and

free of infection (0) or infected (1).

The second block of the program was used to enter the data, store

it, and also to key the middle cell with an indication that it was

infected with the disease. The map (Figure 8) was transformed to

coded form on cards which are interpreted by the program as

represented below:

0000 1110 0110 1010 0010

1110 0010 1110 0110 1110

1110 0010 1111 0110 1110

1110 1110 0110 1010 0110

1110 1110 0110 1010 0110

The several procedure blocks in the program had the follow-

ing tasks in order:

1. Select an infected community from the previous time

period and initiate the process of contact for each of them repeating

the following procedure blocks for each such community. In

essence, step one is called by the main control block and then

serves as a master for each of the following procedure blocks.
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2. Select one of the three possible rings of surrounding com-

munities to contact by drawing a random number from 0 to 99. If

the number is between 0-49 contact is made in the closest ring,

between 50-89 in the next closest ring, between 90-99 in the third

ring.

3. Drawing a random number between 0-99, determine

whether contact is to be made with a community of the same (0-89)

or different (90-99) type. Find one such community in the ring

with equal preference given to each.

4. If the community is not already infected, its probability

of becoming so depends on whether it has adequate sanitary facilities

and whether the transmitter is from an innoculated community.

The job of the output block was to produce a simplified pic-

torial representation of the spread of the disease for each of five

generations and an indication of the pattern of spatial contact, both

those which result in the spread of the infection and those which do

not. Additionally, for the purpose of testing the randomness of the

process (if this is desired as a check), the random digits generated

can be printed. For the case where such output would be too

voluminous, as when several hundred simulations of a process are

desired, the output block can be instructed to provide only overall

frequencies of contact and other summary statistics.

Results of the Model Runs

The results of the two simulations of five generations each are

presented below (Figure 9 and Table 5).59 The most significant

 

59The original map of the area has been transformed to a

cartogram with grid references for convenience.
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SPATIAL PROGRESS OF THE DISEASE

 

   

 

  

 
 

 

      
 

SIMULATION 1

4 Indicates infection in fourth week  
 

 

 

SIMULATION 2

Figure 9.



T
a
b
l
e

5
.

R
e
s
u
l
t
s

o
f
T
w
o

S
i
m
u
l
a
t
i
o
n
s

o
f
F
i
v
e
W
e
e
k
s
E
a
c
h

 

C
a
r
r
i
e
r

C
o
n
t
a
c
t
e
d

I
n
f
e
c
t
e
d

S
e
q
u
e
n
c
e

o
f
R
a
n
d
o
m

W
e
e
k

V
i
l
l
a
g
e

V
i
l
l
a
g
e
s

V
i
l
l
a
g
e
s

N
u
m
b
e
r
s

 

S
i
m
u
l
a
t
i
o
n

1

l
3
,
3

1
,
1

-
9
8
,
8
8
,
1
,
5
3

2
3
,
3

4
,
2

-
3
5
,
4
,
7
,
9
5

3
3
,
3

2
,
3

2
,
3

1
9
,
4
8
,
2
,
3
3

4
2
,
3

1
,
2

1
,
2

l
l
,
2
6
,
l
,
3
3

5
1
,
2
;

2
,
3

2
,
3
;

3
,
3

-
-

3
5
,
4
9
,
3
,
1
4
,
8
,
6

S
i
m
u
l
a
t
i
o
n

2

l
3
,
3

4
,
2

4
,
2

6
1
,
4
5
,
7
,
6
8

2
3
,
3
;
4
,
2

2
,
5
;

1
,
2

2
,
5

4
5
,
7
5
,
5
,
1
0
,
3
7
,
9
1
,

2
,
9
5

3
2
,

5
;

3
,

3
;
4
,
2

4
,
5
;

2
,

3
;
5
,
2

4
,

5
;

2
,
3
;

5
,
2

9
4
,
9
6
,
6
,
8
9
,
2
0
,
1
1
,
2
,

8
6
,
1
6
,
8
,
6
,
6

4
,
1
;
4
,
3

7
5
,
6
5
,
2
,
9
,
8
9
,
4
4
,
2
,

4
0
,
8
7
,
1
1
,
7
0
,
9
5
,
9
3
,

1
2
,
9
1
,
1
4
,
2
,
6
6

mm

him

.
5
;
4
.
1
;

1
,
2

3

me?

n

5
;

5
,
3
;

3
,
5
;

1
,
4
;

5
,
3

7
1
,
9
3
,
7
,
2
7
,
3
6
,
3
,
2
3
,

,
2

4
6
,
1
2
,
4
,
9
7
,
5
9
,
6
,
7
0
,

3
4
,
3
9
,
6
,
1
8
,
4
0
,
2
,
1
1
,

1
5
,
3

sis:

mm

mm

é.

VI"

{Ft}?

JV;

66.123“

me?

He:

60



61

impression received from the output is the totally different pattern

presented by each simulation. While such large run to run (or more

precisely, sample to sample) differences are most apparent in

processes with stringent criteria for success, they are character-

istic of all Monte Carlo procedures. 60 This is one reason why we

should interpret results presented on the basis of one or two simu-

lationsé1 with caution. To find "expected" distributions, we must

typically run several dozen experiments, in this case simulations

of our process, under identical initial conditions but with different

selections of random numbers. 62

In this case, we have run the model 100 times and present the

results in frequency form (Table 6). Here, the cell entries repre-

sent number of times we would expect a given village to become

infected were we to replicate our process this many times. It

would also be possible to convert the frequencies to relative fre-

quencies by dividing each cell entry by the total number of infecting

contacts summed over the 100 samples. To emphasize this ele-

ment of variability in small samples, we also generated and present

(Figure 10) the expected number of new infections per generation

for 2, 50, and 100 simulations of a similar process occurring in a

larger area over 30 generations. The point to make here is that

 

60J.M. Hammersley and D. C. Handscomb, Monte Carlo

Methods (London: Methuen 8: Co. Ltd. , 1964), chapter 1 and pp.

55-74.

61

 

See, for instance, R. Morrill, _p. gi_t.

62For an example in a slightly different context see J.

Herniter, A. Williams, and J. Wolpert, "Learning to Cooperate,"

Papers of the Peace Research Society, VII(1967), pp. 67-82.
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Table 6. Frequency of Infection Summed over 100 Simulations

Using the Sample Area*

  

l 5 44 13 44 11

2 17 10 45 13 49

3 29 21 16 44

4 30 44 14 74 17

5 27 54 20 60 7

l 2 3 4 5

*Total frequency sums to 708.

For identification of cells by characteristics see Figure 8.
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SMOOTHING OF MEAN VALUES WITH MORE SAMPLES
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as we accumulate more information about the process under inves-

tigation by obtaining more samples, we come closer and closer to

some bounding values and begin to detect true regularities rather

than the random aberrations which can occur with only two samples.

If our distribution of rates of infection over time is normal63 then

we can also indicate, using confidence bands based on the standard

deviation, the confidence we have that any specific value at a point

in time will occur with a certain margin of error. Of course,

since the pattern we find in real life is essentially one sample drawn

from a large or infinite number of possible ones, it may well turn

out that our expected or average value (of, say, the number of vil-

lages infected in a given week) is quite different from the actual

one. But in terms of predicting the likelihood of a pattern, the

expected value is the best guess we can make in advance.

Returning to the results of the two simulations, we find the

following patterns (Table 7) of infection as related to three variables

of interest: type of village, sanitary facilities, and distance from

the original source of infection. We can interpret this information

in a variety of ways given our initial conditions and the character-

istics of the original source of infection. The importance of the

barriers to inter-group communication is evident in the small

number of upland centers infected. Given the almost equal repre-

sentation of the two types, 14 lowland villages and 11 upland vil-

lages, we might expect a more even distribution of infection; but

 

63We can test this by using the X2 statistic or the

Kolmogorov-Smirnov test.
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Table 7. Two Simulations: Classification of Infected Villages

 

Village Type Sanitary Facilities Distance from Origin
  

 

Sirnu-

lation Lowland Upland Present Absent 1 2

l 2 0 O O l l

2 8 3 0 l l 3 8

 

the low interaction rate mitigates against this. In the context of dif-

fusion processes where the interest is in means of accelerating the

spread of a phenomenon, we have an indication that information on

intergroup interaction rates may be critical. With a situation

similar to this, vis-a-vis interaction rates, it would seem almost

mandatory to initially "plant" the thing to be spread in each of the

groups involved. Where we are interested in retarding the spatial

spread of a process as here, an efficient strategy would be to

attempt to intensify the effect of existing barriers to communication.

At first glance, it would seem that the effects of sanitation are

even more pronounced than those of social group. This may be so,

but our evidence cannot be conclusive in this environment because

of two confounding effects: first, the village having sanitary facili-

ties is of the upland type which has fewer transmittals anyway, and

second, the location of the village is peripheral which lessens the

probability of its being contacted. The effects of distance in the

model are also somewhat ambivalent. While we note the presence

of an edge effect as would be predictable from general diffusion

theory, there are also voids -- villages which escape infection --

close to the original source of infection and to subsequently infected
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villages. The theoretical role of distance in models of similar pro-

cesses, then, should not be assumed to be significantp priori.

While a distance decay factor may be of general importance in

spatial models, in any particular case we may find it of minor

significance or even, given a particular distribution of other attri-

butes over the area being investigated, find an inverse distance

effect.

Turning to the larger sample of 100 simulations, we find a

total of 708 successful transmissions of the disease, an average for

each simulation of 7. 08. This gives some perspective to the totals

for the individual simulations described above of 2 and 11 trans-

missions. In terms of the same variables we used above, the fol-

lowing pattern emerge 3:

Table 8. 100 Simulations: Classification of Infected Villages

 

  
 

 

Distance

Village Type Sanitary Facilities from Origin

Lowland Upland Present Absent 1 2

Actual

Number 561 147 5 703 237 471

Percent

of all

villages 56. 0 44. 0 4. 0 96. 0 32. 0 64. 0

Percent

of all

Infections 79. 23 20. 77 0. 71 99. 29 33. 47 66. 53*

 

*The average number of infections per cell in the inner ring is

29. 5. In the second ring the average number is 29.
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There are a number of ways of testing the importance of each

of these variables as contributors to the pattern of spread found by

our model. With the three variables above and under our assump-

tion of their independence we might find in a practical case some

use in constructing a multiple regression model to test the irnpor-

tance of each of the independent variables as predictors of infection

in a village. 64 Effects of different origins of the infection could

also be tested by comparing the standardized beta weights on each

variable. For this simple example it was decided not to follow such

a course; instead, a X2 statistic was constructed for each variable

to test whether the difference between the observed frequency

(actual infections) and expected frequency under a hypothesis of

independence (expected frequency being equal to the proportion of

villages represented by the trait examined) was significant. The

only variable that proved to be in the critical range of the test (at

the . 05, . 01, and . 001 levels) was village type. Differences between

observed and expected values for distance and the presence of sani-

tation facilities were not significant at any level.

So with the greater amount of information given by 100 simu-

lations, we are essentially in the position of being able to say that

under the conditions of our experimental environment, the only

variable which has a consistent effect on the spread of our disease

 

64Of course, to make any probabilistic or inferential state-

ments about our results, the residuals should be tested for nor-

mality, independence, and an expected mean of zero. See K. W.

Smillie, An Introduction to Regression and Correlation (New York:

Academic Press Inc. , 1966), especially chapter 1 and pp. 72-75

and 91-96.
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is village type. The edge effects and those internal villages without

infection in our first two simulations and the villages with very low

frequencies of infection in the large sample of 100 simulations are

seen to be functions of the different environments, lowland or upland

and more importantly of low contact frequencies between the two

types.

What would be the next step in using this simple model to

explore the effects of those variables of interest on the spread of

this disease? We can easily investigate the sensitivity of the model

by altering our basic probabilities; for instance, by changing the

probability of intergroup communication from . 10 to say . 30 we

could get a good indication of the effects of freer movement in our

experimental area. Other probabilities, for distance, or those

related to sanitation could also be changed; if we wished to investi-

gate the changes resulting from the development of a vaccine offer-

ing some protection against infection this would also be easily done.

Beyond changes of this type which are easily made, it would be con-

ceptually simple (but would offer some programming difficulties) to

add more groups to our population, to enlarge the size of the area

under investigation, to vary the period during which a person would

be a carrier of the disease, and so on.

Problems of Testing and Verification
 

So far, we have not discussed in any detail the substantial

problems encountered in testing or verifying models of spatial

processes. In large part this is because ". . . the problem of

verifying simulation models remains today perhaps the most elusive



69

of all the unresolved problems associated with computer simulation

techniques."65 While we cannot, here, present definitive solutions

to these problems we can identify them, point out some of their

principal causes, and suggest some possible approaches towards

their solution.

The difficulties encountered are both general ones that apply

to all problems of testing and specific ones of particular moment to

the types of models we have been discussing. At the heart of the

general problem is the implication of the concept of verification

itself, for:

To verify or validate any kind of model means to

prove the model to be true. But to prove that a model

is 'true' implies (1) that we have established a set of

criteria for differentiating between those models which

are 'true' and those which are not 'true' and (2) that

we have the ability to readily apply these criteria to

any given model. Yet the concept of 'truth' has suc-

cessfully eluded philosophers and theologians since

the history of mankind [sic]. To decide upon a partic-

ular set of criteria that must be satisfied before we

can have 'truth' suggests that we must choose a subset

of rules (truth rules) from an infinite set of rules

handed down by philosophers, theologians, and meta-

physicians. When placed in this perspective, the

problem of verification is completely overwhelming

because it may well be argued that man is incapable

of recognizing 'truth' at all, even if ‘truth' exists. 96

The selection of a set of criteria for determining the adequacy of

our models is another source of difficulty. Here we may adopt any

of a number of philosophical approaches ranging from a position

 

65Thomas Naylor, Joseph Balintfy, Donald Burdick, and Kong

Chu, Computer Simulation Techniques (New York: John Wiley 8:

Sons, Inc., 1966), p. 310.

66Ibid.
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that a satisfactory model is one that is logically deducible from a

series of "self-evident” premises or axioms to a crude empiricism

that accepts any model that can produce satisfactory predictions of

the behavior of the system being studied.

In the particular case of models of spatial processes there are

at least two major problems. One of these is the selection of a

"norm" against which the model‘s results can be compared. In the

case of a Monte Carlo model of diffusion, for example, it is not at

all obvious as to how the researcher can conclude that the spatial

pattern output from the model is "good." The second problem is

encountered when the researcher considers the use of statistical

tests to evaluate, for instance, the effects of certain variables on

the system under investigation. In this case we must consider the

fact that models of any spatial process except purely random ones

embody both time and space dependence while statistical tests, both

parametric and nonparametric, are based on the assumption that

observations 3113333 be independent in the sense that the value of a

variable for one observation should not bias the value assigned to

any other observation.

A pragmatic solution to the general problems mentioned above

has been suggested by Naylor and Balintfy. 68 They advocate the use

of a rather eclectic multi-stage procedure for verification consisting

of: l) the formulation of a set of postulates or hypotheses describing

 

7Sidney Siegel, Nonparametric Statistics for the Behavioral

Sciences (New York: McGraw-Hill Book Company, Inc. , 1956), p. 19.

68

 

Naylor, e_tgl_. , 9p. gi_t. , pp. 316-19.
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the behavior of the system of interest; 2) an attempt to "verify" the

soundness of these postulates using applicable parametric and non-

parametric statistical techniques, and 3) the testing of the model's

ability to predict behavior of the system over time. Possible

approaches to such testing include matching the model's output,

generated from historical data, with actual values. Goodness of

fit tests would be used to compare generated and actual time series

for timing and amplitude. But the ultimate test of any simulation

model, in their view, is its ability to predict the future behavior of

the actual system being studied. The general approach of these

authors seems reasonable, if perhaps difficult to accomplish in all

details. One modification that would have to be made for spatial

models would be to devise a goodness of fit test that would compare

spatio-temporal series.

One obvious solution to the problem of selecting a standard

against which to compare the results of spatial models is to initially

operate with historical data and visually compare generated and

actual maps. If satisfactory calibration is achieved, the model

could then be used as a predictive tool for similar systems. This

procedure, while conceptually and operationally simple, has several

drawbacks. First, patterns similar to those of the real system may

be generated in a particular case even though the rules of the model

may bear little resemblance to those of the real world. This would

not be a cause for anxiety if similar patterns were always generated

by the model and the real system. But this might not be the case

and one would certainly be ill-advised to use a model tested in this
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manner for prediction. Second, there is the problem of deciding

when two patterns are "close" enough to be considered similar.

Visual comparison, even of patterns of numbers, is usually

inaccurate and difficulties are compounded with the two-dimensional

patterns with which geographers are concerned. 69 There are, of

course, various statistical techniques that are in practice used to

compare such patterns but it is at this point that we encounter the

basic problem that the surfaces being compared will usually embody

spatial and temporal dependence.

Except for those cases where the spatial process itself (as

opposed to any patterns it generates) is fundamentally random, we

should, then, exercise considerable caution in making inferences

based on the application of standard statistical techniques. This

would be so even when our data is selected through the use of some

suitable sampling technique70 and the use of inferential statistics

without sampling is, of course, not to be countenanced.

An indirect approach to testing models of diffusion has

recently been advanced by Harvey;71 it appears to be promising

and can also be used with models of other spatial processes. The

 

69Harold H. McCarty and Neil E. Salisbury, "Visual Compari-

son of Isopleth Maps as a Means of Determining Correlations

Between Spatially Distributed Phenomena" (Iowa City, Iowa: Depart-

ment of Geography, The University of Iowa, mimeographed, 1961).

70Brian J. L. Berry and Alan M. Baker, "Geographic Sampl-

ing," in Brian J. L. Berry and Duane Marble, eds. , Spatial Analysis

(Englewood, N. J.: Prentice-Hall, Inc. , 1968), pp. 91-100.

 

1David Harvey, "The Analysis of Point Patterns," Trans-

actions of The Institute of British Geographers, XL (1966), pp. 81-

95.
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technique is based on the analysis of patterns resulting from the

operation of the system. Elements of the pattern are sampled using

the quadrat sampling techniques developed by ecologists. The

resulting distribution is then compared with some standard generat-

ing function such as the Poisson or negative binomial using some

distribution-free test such as X2. If the fit is satisfactory then the

process can be classified as belonging to a particular group of

models that generate such patterns. The advantages of this method

include its relative objectivity and the opportunity it gives the

researcher to compare patterns produced by the same model in dif-

ferent regions or with changes in various parameter values. In the

latter case the method provides a means for testing sensitivity of

themodel (and by implication, the system), to changes in these

values. Also of considerable importance, if the model matches

some standard generating function it is possible to utilize knowledge

about analogous models in explaining the system being studied.

Still, neither this procedure nor the other approaches mentioned

are optimum since what is needed is some means of testing the

dynamic aspect of our models and not only the patterns generated

by them. Unhappily, this type of test or verification appears to be

beyond our reach at this moment.



CHAPTER V

CONC LUSIONS

We have attempted to explicate and demonstrate the existence

of a common structure underlying models of spatial processes. It

is argued that this structure consists of three major components:

an attribute space, a location space, and a set of rules which link

these components and simulate the dynamics of the system. An

examination of models of spatial processes developed by Georg

Karlsson and by Torsten Hagerstrand and other geographers indi-

cated that our framework is basically consistent with and a logical

development of their (often implicit) assumptions about the nature of

these processes.

After a discussion of some of the more important elements of

each of these components, we turned to a consideration of the

problem of their integration into functioning models of the system

being studied. For pragmatic reasons we advocated a block

structure approach which is based on techniques that have proved

successful in the construction of many computerized models. Since

many, if not all, analytical studies of real world spatial processes

will, in the future even more than at present, depend on efficient

utilization of computers it seems reasonable to take this factor into

consideration at the very beginning.

To demonstrate in a simplified way the process of disaggre-

gating a complex system into the above components, we constructed

an abstract example based on considerations relative to the spread

74
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of a disease in an isolated region. The succeeding steps of inte-

grating these components into a working model of this process, then

presenting the effects of its operation over time and space were also

shown. Because of the nature of the data available, the rules in our

example were cast in a Monte Carlo framework. Although this

probabilistic approach is not necessary in all cases, we feel that

because of the complex nature of the processes of interest to geog-

raphers and because of the form of most of our data it is likely to

become the most common.

Our exposition has not touched on some important points.

The most critical of these is the general problem of framing the

initial questions asked about some process in such a manner as to

guide our initial selection of a study area and to suggest the particu-

lar sub-components of our model. If we can use the experience of

the physical sciences as an analogue, it seems reasonable to think

that to a considerable degree future progress in geographical

research will be intimately dependent on developing a standardized

and effective approach to answering the problem of what questions

should be asked and how they should be posed. Schemes, such as

the one advocated here, B. J. L. Berry's geographic matrix, or

Chorley's model of models can hopefully provide some guidelines.

But we are, at this moment, rather far away from developing

answers to such question-posing choices.

There are also severe problems in geographical work con-

nected with questions of measurement of data and tests of the results

of our models. Some general principles to guide our choice of
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measurement were discussed above (in Chapter 111) but here again

we need to develop standards. Most especially, it would be useful

and may indeed be essential to fundamental progress to agree on

definitions of fundamental units of measurement for spatial proces-

ses. There is some reason to feel that the physical systems

approach developed by H. Koenig and his associates72 which clas-

sifies fundamental variables as either flow (through variables) or

potential (across variables) can provide us with the guidelines we

need in this area.

In presenting the results of the simulation runs on the example

in the last chapter, the problem of testing was mentioned. Note-

worthy advances have been made in the past decade in attacking

problems of testing geographic models. Most of them, however, are

most specifically applicable to the analysis of patterns. The

methods used include classificatory statistical models such as

factor analysis and numerical taxonomy, analysis of variance or

covariance for comparing populations or regions on the basis of

several variables and, of course, the general multivariate regres-

sion model. Some of these techniques are useful also in testing the

results of dynamic models of processes. We could for instance

simulate the performance and behavior of a system using different

estimates of certain attribute values. The areal patterns resulting

from each set of assumed conditions could then be factored and
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J. B. Ellis, pp. 93., chapter 1. Also H. Koenig, Y. Tokad,

and H. Kesavan, Analysis of Discrete Physical Systems (New York:

McGraw-Hill Book Company, 1967), p. 7.
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scored and the resulting scores compared using regression tech-

niques or an analysis of variance model. It would then be possible,

in theory at least, to evaluate the importance of initial assmnptions

as they affect the behavior of a system over space.

In many instances , though, we find the standard tests are not

optimum (or even adequate) for dynamic processes. This is largely

a result of their having been developed for problems in other dis-

ciplines where the spatial factor is not assumed to be important.

In using them in geographical research we may not only be employ-

ing a technique that is inefficient in some way but may also be

guilty of ignoring fundamental assumptions built into the test model.

For the regression model the major assumption is that the value of

each observation on the dependent variable is one random observa-

tion from p different normally distributed variates. This implies

that there is no serial correlation between adjacent observations.

Where our observations are geographical units, this assumption is

often not met as there i_s dependence between adjacent regions.

Any inferential use of results from regression models, then, may

be invalid although the model is still useful as a descriptive device.

The solution to these testing problems must depend on more

geographers turning their attention to them and lessening slavish

dependence on the work of others whose models may give erroneous

results when applied to our data.

Leaving these, as yet unsolved, problems we must finally

ask ourselves what is the utility of the conceptual framework herein

advocated for the study of spatial processes. If we accept the value
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of retaining a certain amount of continuity in the traditions of a

discipline then we find that our scheme is evolutionary and does no

violence to these traditions. What it does do is lay out explicitly

the nature and the fundamental structural building blocks of spatial

processes.

The advantages of such a conceptualization are both theoreti-

cal and practical. In the first instance, the acceptance of a common

structure places under the same rubric processes which at a super-

ficial level appear disparate. This encourages a search for funda-

mental general rules of behavior applicable to all or to major sub-

classes of spatial processes. It also would have the effect of

countering trends towards particularity that tend to afflict fields

such as geography that are undergoing revolutionary changes in

methods and to a lesser extent in theory. On the practical side we

would expect to encourage the search for fruitful analogies whereby

results from processes that are relatively well understood would

be tentatively used to throw light on aspects of other processes that

are mysterious in the original. If we look at the history of other

sciences, such analogies have been of the utmost importance in

their development.



APPENDIX A

SOME COMMENTS ON COMPUTER LANGUAGES

Geographers, in seeking to solve problems, gain insights into

spatial processes and develop theory, are increasingly turning to

digital computers as a useful and sometimes indispensable tool. 73

They are especially valuable as an aid in understanding and manipu-

lating systems with large numbers of variables, poorly defined

processes and either too many or too few observations. The advan-

tages that computing machines have over more traditional tools are

increased speed and accuracy, the ability to store data and inter-

mediate results and instructions, and very importantly the ability

to make logical decisions about data handling based on programmed

logic.

The rub in all this is the fact that computers must be fed not

only raw information, but instructions as to what to do with it.

These instructions must be internally consistent, provide for all

possibilities inherent in the data (check for errors and so on) and

be written not in the natural language of the researcher but in a

language acceptable to the machine. This imposes a new require-

ment on the scholar wishing to use the power provided by computers:

learning one or more computer languages. It is, of course, often

possible to use service programs (standard statistical "packages"

 

3Analog computers have also been used for special purposes

but the present discussion deliberately concentrates on digital

machines because of their wider applicability.
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provided by the manufacturer or the computing center) or employ a

professional programmer; even in these instances, though, some

knowledge of computers and their languages is useful. The choice

of which computer language(s) to learn is based on two considera-

tions: what is available at the local computing center, and what is

the best language for the application. The remainder of this appendix

is devoted to the second consideration.

COMPUTER LANGUAGES. There are presently more than

200 computer languages. At first glance this seems to make a

choice among them somewhat difficult, but fortunately the babel of

tongues can be resolved into four reasonably self-contained groups:

(1) machine and assembly languages; (2) algorithmic languages;

(3) list processing and simulation languages, and (4) others. The

basis for the choice of the tool language(s) is presented through the

description of the features of each group.

MACHINE AND ASSEMBLY LANGUAGES. Each computer

model has its own unique instruction set based upon the logic ele-

ments wired into the machine and the purpose for which it was

designed. For digital computers the generally used dichotomy is

between machines designed for data-processing and those designed

for scientific computing. The former emphasize the processing of

records (e. g. , a personnel file) which requires efficient and exten-

sive input-output instruction sets and good capability for logical

operations. The latter are designed to operate on sets of variables

(e. g. , sample survey data, readouts from remote sensing appara-

tus) which requires a powerful arithmetic instruction set and
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efficient indexing instructions but places less weight on sophisticated

input and output capabilities. However, these distinctions are

blurring and the more modern machines can be and are used for

both purposes. The one-to-one coupling that exists between the

machine-language and its computer has several important program-

ming implications, notably:

(a)

(b)

Machine-dependence. This means that, in general, a

program written in machine-language for one computer

will not run on another model. For the researcher, it

also means that knowledge of a machine-language is

basically a non-transferable asset although it provides

insights into computer structure.

Program complexity. Since the basic instruction set

of a computer is made up of so-called elementary
 

operations, instructing the machine to perform even
 

simple tasks requires the programmer to string together

a number of these operations. For instance, the state-

ment A = B - C would require three instructions:

load B into the arithmetic register;

subtract C from the contents of the arithmetic

register, and

store the contents of the arithmetic register in A.

Additional statements would be required if there were a

mix of integer and decimal values since computers store

them differently. Of course, it is initially necessary to

learn all machine codes for the operations; these codes
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can be octal, decimal, or hexadecimal depending on the

machine used. Setting up a "filing system" (assigmnent

of internal storage space) for data and instructions is

also part of the programmer's job when operating at

this language level.

(c) Optimal machine efficiency. Machine execution time for

a program gp be optimized by using machine-language.

As an example, a single instruction on the Control Data

Corporation 3600 can search a list to find a threshold

value or one equal to some preset quantity; the same

operation in an algorithmic language such as Fortran

would take at least four statements and generate 20-30

machine instructions.

(d) Difficulty in correcting errors or modifying the program.

Since the computer storage allocation for instructions

and data are made by the programmer and are usually

assigned sequentially, changes to the program (such as

adding a new block of instructions) can be made only

with some difficulty. "Debugging" or correcting pro-

grams written in machine-language is also not an

enviable task because of the awkward coding format and

the high chance of mechanical error inherent in writing

numeric strings of instructions.

In practice, the theoretical advantage of machine-language in

optimizing computer execution times is negated by the accompanying

increase in time required to write and debug the program. To avoid
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some of the programming problems associated with machine-

languages without losing their real efficiencies, a class of languages

known as assemblers were developed starting in the early 1950‘s.

An assembler is actually a computer program provided by

the manufacturer of the machine whose basic task is to translate

other programs written in the assembly-language into the language

of the machine. Like machine-language, assembly-languages are

different for each computer, although these differences may be

negligible within any one series of models such as the Control Data

Corporation‘s 3000 range. They also allow a programmer to use

any peculiar feature built into the computer that might serve to

increase program efficiency.

While assembly-language programs generally consist of the

same strings of elementary operations that characterize machine-

language programs, pre-written blocks of instructions that perform

certain commonly-needed tasks (finding square roots, logs, etc.)

are provided in the manufacturer's assembler program; these

blocks of code can be included in a user's program by writing a

single instruction called a "macro" or "pseudo" instruction. Also,

operation codes and variables can be referred to symbolically

rather than numerically (e. g. , ADD A rather than 51 073251) which

eases programming and tends to minimize coding errors. Other

substantial advantages of assembly over machine-languages include

the automation of most "book-keeping" tasks (automation of storage

assignments for data files and single variables) and the provision

of automatic debugging aids for program testing and correction.



84

ALGORITHMIC LANGUAGES. A fundamental difference

between the machine and assembly-languages and the languages

described below is that the latter are problem oriented. This
 

implies that the user can communicate with the computer in his

rather than its language. Although complete naturalness has not

been achieved, some of the problem oriented languages come very

close to eliminating the language barrier to communication. Prob-

lem oriented languages have one other great advantage for the user

or programmer; a program written in such a language can be run

on a different computer with few modifications. Because of this,

it has been possible to disseminate widely used types of programs

(especially statistical programs for such techniques as factor

analysis, regression, analysis of variance, etc.) throughout the

computing field.

Many, if not all, statistical and numerical problems can be

solved by methods consisting of several expressions or formulas to

be evaluated using a given set of data. Algorithmic (or algebraic)

languages take advantage of this fact and a programmer working

with one of them writes his program as a series of equations

including where necessary data input and output commands, decision

statements, and control statements. Pre-programmed statement

blocks (or sub-programs as they are usually called) to evaluate

roots, trigonometric and logarithmic functions, to generate random

numbers and so on are embedded in these languages and can be used

with g reat facility.
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The two best known algorithmic languages are Fortran74 and

Algol. 75 It is safe to say that more persons have been introduced

to programming by these languages and their variants than by any

other and this dominance seems likely to continue since most high

school and college courses in computer programming are taught in

them. A somewhat unfortunate result of this dominance is that

programs are written in Fortran, for example, that could be pro-

grammed more easily and more efficiently in some other class of

language (see under Simscript and COBOL below).

As a consequence of the wide range of applications to which

they have been applied, Fortran and Algol have undergone continual

modification. This has proceeded in two directions: revisions of

the "standard" language and development of variants to suit local

needs. In some instances, the resulting languages are non-

compatible. 76 Fortran especially has been extensively modified

and is a much more powerful and sophisticated language than it was

when developed by the IBM Corporation in the middle fifties. In

fact, the deficiencies of the early Fortran systems -- slow trans-

lating times from the source language to machine-language;

 

4Especially good introductions are found in Donald Dimitry

and Thomas Mott, Jr. , Introduction to Fortran IV Programming

(New York: Holt, Rinehart and Winston, 1966), and in Donald J.

Veldrnan, Fortran Progpamming for the Behavioral Sciences (New

York: Holt, Rinehart and Winston, 1967).

75See "The Algol Programming Language," and "Revised

Report on the Algorithmic Language -- Algol 60," in Saul Rosen,

ed. , Programming Systems and Languages (New York: McGraw-

Hill Book Company, 1967), pp. 48-117.

76Elliott I. Organick, A MAD Primer, privately printed,

Houston, 1964.
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inefficient and restricted input and output facilities and heavy

dependence on IBM hardware design features -- led to the develop-

ment of the other major algorithmic language, Algol, in 1958 by an

international group of computer experts. The current version of

that language, Algol 60, in fact is t_hp medium for communication of

programming information among the computing fraternity. Two

theoretically good features of Algol make it relatively more difficult

to learn than Fortran: a rigidly defined syntax which has to be

memorized, and the existence of three subsets of the language: a

reference language very close to mathematics; a publication lan-

guage, and several hardware languages.

In most cases the user benefits from continual improvement

in computer languages. But for those engaged in exchanging pro-

grams to build "libraries" or those moving to places with different

computer systems, the blessings are mixed because of the resultant

increase in communication problems.

LIST PROCESSING AND SIMULATION LANGUAGES. Certain

kinds of information processing problems, notably in the areas of

artificial intelligence, simulation of thought processes, mechanical

translation, information retrieval and operations research cannot

be handled easily or efficiently by the previously mentioned types of

programming languages. Two types of operations characterize

these problems: manipulation of symbols rather than numbers,

where information is carried by the relational structure as well as

symbol content, and unpredictable storage requirements which

require addition or deletion of storage cells as a program is
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executed. Several types of geographical applications share these

characteristics. Probabilistic models of regional development

where places add or delete functions or facilities, become more or

less accessible with changes in the transport network or change

socially or morphologically in some random manner are a case in

point. 77

There are several well-known list processing languages which

have potential geographic applicability. Among them are: IPL-V,

COMIT, LISP, and SLIP. One simulation language, Simscript, has

several features which should commend it to those working with

spatial processes. SLIP is and Simscript has embedded in a For-

tran compiler (translator) allowing them to use all the strengths of

the algorithmic language. The others are independent languages.

These latter suffer uniformly from rather poor arithmetic capa-

bilities and have some peculiar input and output restrictions.

Rather than go through an exhaustive description of each of the

above languages which is available elsewhere, 78 we will concentrate

on IPL-V and Simscript which are quite widely available and are

good examples of the two types of languages described in this

section.

Information Processing Language, Version Five. Develop-
 

ment of IPL began in 1955 by researchers, notably at the RAND

 

77Morrill, Migration and the Spread and Growth of Urban

Settlement, pp. pit.

 

 

78Ros en, _p. _C_i_t.
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Corporation, who were interested in developing computer programs

for the simulation of cognitive processes and the study of artificial

intelligence. Green79 gives a cogent description of IPL from which

the following account is adapted.

The language is designed to be interpreted by a special com-

puter program which turns the machine being used into an IPL

computer with a flexible memory structure and the capacity for

executing recursive subroutines (sub-programs defined in terms of
 

themselves). Programming is relatively simple because a few

instructions can accomplish a lot. The language is hierarchical

which leads naturally to building a program out of small routines;

combining these into larger routines is simple because little must

be done to assure communication. Special push-down storage lists
 

which operate like plate-trays in automats and cafeterias make

communication simple and debugging is aided by trace, snap-shot

and post-mortem routines which print out information in the sym-

bols used by the programmer wherever possible.

The IPL system processes information by manipulating lists

of symbols. Every item of information is represented by either a

symbol or a l_1_s£. Each symbol or list may likewise name further

lists, so a single item may be represented by a hierarchy of lists

called a list structure. The lists and list structures are manipu-
 

lated by IPL instructions which are themselves represented by lists

with branched decision-points as needed. There are only seven

 

79Bert F. Green, Jr. , "IPL-V: The Newell-Shaw-Sirnon

Programming Language," Behavioral Science, V (January, 1960),

pp. 94-98.
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instructions in the language but additionally there are about 200

pre-programmed routines in IPL itself and in assembly language.

Thus, a list processing program is set up by combining the seven

instructions with these basic processes. The following example

may make some of these points clearer:

A region with four centers could be represented as a main

list with four sublists. Each sublist might contain a list of

facilities and characteristics of one center while the main

list would consist of the names of the centers used as sublist

names. The order of the names in the main list might be

arbitrary or could represent relative importance of the cen-

ters. Interchanging the position of center names in the main

list would, in the latter case, represent changing their ranks.

If the computer were programmed to simulate intra-regional

competition, for instance, it would have to compute character-

istics of each center, such as the number of facilities, their

magnitude, the relative importance of each facility in the

center's employment structure, and perhaps others.

To store these quantities, a special attribute list would be

associated with the standard list. The attribute list would

contain a pair of symbols for each attribute, the first des-

cribing the particular attribute (manufacturing employment,

say) followed by the value of that attribute for the particular

center being described. In some cases the value of the

attribute might be the name of another attribute list. If a

major attribute was manufacturing employment, the
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sub-attribute list could include information on the number of

supervisors, clerks, skilled workers, production workers,

and so on. The list structure representing the region now

has one main list, four sublists each with an attribute list,

and other lists associated with these attributes. IPL can

operate with these data at any level of detail; its unit in any

one instruction may be a symbol, a sublist and attribute list,

a main list, or the entire list structure.

Self-modifying programs call for a different use of lists. In

the example above, the program might have a large number of rules

to indicate development strategies for combinations of character-

istics. As the program played, its experience would indicate which

strategies were good. The list might indicate priorities with rules

moved up the list when successful and demoted when they lead to

disaster. A sophisticated program would keep several priority

lists with descriptions of the situations in which to use each.

A major feature of IPL (and other) lists is that items can be

added or deleted at any place on the list without disturbing anything

else. The potential length of each list need not be specified in

advance. The new cells are linked into the list by means of its

address. Each cell contains 92 items of information: an IPL

symbol and the location of the cell containing the next symbol on

the list. Other list processing languages also use similar conven-

tions but may use two computer words for each symbol/link pair

rather than one as in IPL. Variable length lists are useful in‘the

regional growth example, because the play of the game can involve



91

addition or deletion of facilities for any center in each time

period.

Sirnscrm This simulation language shares several features
 

with list processing languages, notably the flexible use of computer

memory, provision for attribute lists, and powerful symbol manipu-

lation features. However, its arithmetic capabilities are more

comprehensive as it was originally integrated with a Fortran

translator.

Data for a Simscript program is described in terms of

STATUS, while the operation of a program is in terms of EVENTS.

These concepts may be defined as follows:

Entitie 8

Temporary Exogenous

STATUS: EVENTS:

Permanent Endogenous

Attribute 8

Sets

By letting events happen to the data, simulation is set in

motion. A feature of major advantage is that time can be controlled

by the programmer by specifying timing of events in terms of days,

hours, and minutes. This makes it possible to achieve relatively

close accord with events in the real process being simulated.

Despite their many theoretical advantages for a large class of

interesting applications, simulation and list-processing languages

have seldom been used by geographers. This has been due largely

to the overwhelming acceptance of Fortran, the reluctance to learn

more than one computer language, and to the fact that the best
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language for a particular application is often not available at the

researcher's institution. But as geographers investigate more

complex systems and our models become more sophisticated we

can anticipate that their use will increase.

OTHER LANGUAGES. Languages other than those described

above are probably of less general use to social scientists. Thus,

they are mentioned only briefly in the interests of completeness.

First is the class of languages used for data processing in the

business sense; these include COBOL and Autocoder. These are

basically English language systems designed to be readily taught

to persons with some background in business or industry. COBOL,

Common Business Oriented Language, has some potential for wider

use since it has powerful logical facilities and excellent and

sophisticated input and output structures. But improvements in

recent versions of Fortran have made it more satisfactory in these

areas and its superiority in arithmetic and indexing facilities

coupled with language simplicity have probably foreclosed the

potential market for data-processing languages among social

scientists.

With the introduction of its 360 series, IBM has proposed and

developed a language, PL/l, which is intended to combine data-

processing, algorithmic and simulation facilities as subsets.

Adequate experience to comment on its usefulness has not been

accumulated by the author. It also seems probable at this moment

that the language will not be widely available on other than IBM

equipment.
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Among the many specialized languages developed for limited

purposes, two are of special interest: linear programming packages

and PERT systems. The former has been used by many geographers

in the past several years and their use requires no more than the

ability to specify parameters in some preset order (and, of course,

the ability to interpret the program's output). The Program Eval-

uation and Review Technique (PERT) is a device useful in planning,

monitoring and evaluating projects and programs. As such, its

potential is primarily in applied geography and planning where it can

serve as a yardstick for judging alternate approaches to problem

solutions.

Finally, the increasing use of tithe-sharing systems and

graphic display consoles will impose on any user the requirement

to learn a job control or monitoring language. These are designed

to provide information to the computer system about the pr ogram-

ming language used, amount and type of data expected and its loca-

tion. These languages are usually uniform within any one manu-

facturer's equipment and at most installations a simple subset of

control statements suffices for normal applications.

CONCLUSION. We have attempted to bring programming

languages into perspective from the viewpoint of a prospective

user in geography or any social science. Detailed information on

particular computers is available from makers or at computing

centers and there are well-organized bibliographies available
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for more information on particular languages or computer

techniques. 80

 

0Aaron Finerman and Lee Revens, eds. , Permuted

(KWIQ Index to Computing Reviews (1960-1963) (New York:

Association for Computing Machinery, 1964); also their Permuted

and Subject Index to ComuiflpigReviews (1964-1965), and Com-

prehensive Bibliography of Computing_L_iterature, 1966.

 

 



APPENDIX B

PROGRAM KARLSSON

The computer program in this appendix was used to perform

the simulations described in Chapter IV. It is originally based on

Georg Karlsson's model of interpersonal communication but can be

used to simulate any system with up to three variables in each geo-

graphical cell and with probabilistic rules of interaction. To adapt

codes to the program other than those used as standard (see the

program writeup following the listing of the computer program) it

is necessary to revise the input subroutine. The output subroutine

can similarly be changed to provide for nonstandard forms of

printed or punched output.

Comments cards within the program provide information on

the sequence of particular operations; they are phrased in terms of

Karlsson's model but are readily interpretable for other problems

of the same type. The program writeup provides complete infor-

mation regarding input data formats and the various options available

to the user as well as a summary of restrictions in the program as

written.

95
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C HONEVER, TO RUN THIS PROGRAM 0N ANOTHER MACHINE IT MAY BE

C NECESSARY TO CHECK LENGTH OF VARIABLE NAMES, ALPHA FIELD LENGTH

C (8 IN THIS PROGRAM), AND ALSO TO BE SURE THAT THE MASKING STATE-

C MENTS ARE LEGITIMATE. 0N IBM 360 SERIES COMPUTERS, FOR EXAMPLE,

C IT MAY BE NECESSARY TO USE ASSEMBLY-LANGUAGE SUBROUTINES, OR EVEN

C To RENRITE THE PROGRAM IN SOME LANGUAGE LIKE PL/I.

C

C MAIN PROGRAM STARTS HERE.

ACTIVE = 0.0

RENIND 54

PRINT 3 $1ZERO=0 $ MSKA= 00770000000000008

3 FORMAT (*IKARLSSON SIMULAT10N*//* REFERENCE--GEORGE KARLSSON

1(1958)00000003

1, PAGE 45 ET SEQ*//*0PROGRAMMED BY A V WILLIAMS, GEOGRAPHY

ZDEPT, MICHIGAN STATE UNIVERSITY*/)

DO 4 I = 1,50

4 IPLUS(I) = 2H+

88 = 100.0

GO TO 424

420 NUMSIM = NUMSIM -1

NRITE (54) (KNONER(I),I=1,IGENK)

IF (NUMSIM) 1424,1424,425

1424 CALL FIGURE

GO TO 424

425 READ (53,1FMT) ((IDATA(I,J),J=I,N),I=I,M)

RENIND 53
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IGEN IGENK $ IGENK = O

MSIM MSIM + 1

GO TO (427,428,428) MSNICH

427 PRINT 426,MSIM,TITLE

428 DO 429 I = I,IGEN

KNONER(I) = 0

429 CONTINUE

426 FORMAT (*ZSIMULATION RUN NUMBER*IS,* FOR THIS DATA*//110A8)

GO TO 430

424 CALL READIN

MSIM = 1

COMMENT--SEARCH FOR TELLERS FOLLONS

COMMENT-------MAIN PROGRAM LOOP

430 IGENK = IGENK + I

GO TO (432,431,431) MSNICH

432 PRINT 6,IGENK

431 CONTINUE

DO 50 I = 1,M S DO 50 J = I,N

KMARK IDATA(I,J)

MASKA KMARK .AND. MSKA

IF (MASKA .EQ. 8HOX000000) 110.50

110 KMARK = IDATA(I,J) .AND. 778

IF (KMARK .NE. 0) so T0 115

KMARK = KMARK + 1 s IDATA(I,J) = IDATA(I,J) .OR. KMARK s so T0 50

115 IF (KMARK .GT.NOTEL) 117,114

117 GO TO (112.50.50) MSNICH
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501 FORMAT (1H+106X 14)

GO TO (132,133,133) MSNICH

132 PRINT 501,1R1NG

133 IF (IRING .LE. KRINGA) 135,140

135 IRING = 1 $ GO TO 150

140 IF (IRING .LE. KRINBG) 145,142

142 IRING = 3 $ GO TO 150

145 IRING = 2

150 ILFT = J-IRING $IRT = J+IRING $ JUP = I-IRING $JDN = I + IRING

IF (ILFT-1) 155,160,160

155 ILFT=1

160 IF (IRT-N) 170,170,165

165 IRT = N

170 IF (JUP) 175,175,180

175 JUP = 1

180 IF (JON-M) 190,190,185

185 JDN=M

190 CELLS = (2*(IRT-ILFT) + 2*(JDN-JUP))

KNUM = KRANDF (1.0,CELLS,KY)

502 FORMAT (1H+ 114X 14)

GO TO (192,194,194) MSNICH

192 PRINT 502,KNUM

194 LA = 0

DO 200 KI = ILFT,IRT

LA = LA+1

200 KRING(LA) = IDATA(JUP,KI)
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KIA = JUP+l

D0 205 KI = KIA,JDN

LA = LA+1

205 KRING(LA) = IDATA(KI,IRT)

KIA = IRT-1 $KIB = IRT

DO 210 KI ILFT,KIA

LA = LA+1 S KIB = KIB-1

210 KRING(LA) IDATA(JDN,KIB)

KIA = JDN-I $KIB=JDN $ KIC = JUP + 1

DO 215 KI = KIC,KIA

LA = LA +1

KIB = KIB - 1

215 KRING(LA) = IDATA(KIB,ILFT)

KNUMA = KNUM -1

COMMENT

C CONTACT RING NON IN VECTOR STARTING AT RANDOM NUMBER KNUM

D0 225 KI = KNUM,LA

MASKZ = KRING(KI) .AND. 770000008

IF (MASKB .EQ. MASKZ) 235,225

225 CONTINUE

DO 226 KI = 1,KNUMA

MASKZ = KRING(KI) .AND. 770000008

IF (MASKB . EQ. MASKZ) 235,226

226 CONTINUE

COMMENT---N0 CONTACT MADE--N0 SOCIAL CLASS MATCH IN RING

GO TO (228,50,50) MSNICH
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228 PRINT 230

COMMENT NOT COUNTED AS A CONTACT FOR STATISTICAL PURPOSES

6

230

235

503

237

238

FORMAT ( *1GENERAT10N*I5//10X*KNONERS*30X*CONTACTS*55X*RANDOM

1NUMBERS*//15X *INACTIVE*

10X*ACTIVE*10X*ACCEPTORS*10X*REJECTORS*20X*SOC.TYPE

2 RING NUMBER ACCEPT*//)

FORMAT (1H+67X*N0 CONTACT*/)

GO TO 50

MASKG = KRING(KI) .AND.MSKA

IF (MASKG .EQ. 8HOXOOOOOO) GO T0 270

MASKD = KRING(KI) .AND. 7700008

NUMBER = KRANF(I.0,BB ,KY) - 1

FORMAT (1H+ 122x 14)

GO T0 (237,238,238) MSNICH

PRINT 503,NUMBER

MASKE = IDATA(I,J) .AND. 77008

CCCCCCCCC MASKING TYPE IF STATEMENT

C

240

245

250

255

IF (MASKD .EQ. 3000008) 240,250

IF (MASKE .EQ. 63008 .AND. NUMBER .LE. KHT) 260,245

IF (MASKE .NE. 63008 .AND. NUMBER .LE. KH) 260,270

1F (MASKE .EQ. 63008 .AND. NUMBER .LE. KT) 260,255

IF (MASKE .NE. 63008 .AND. NUMBER .LE. KNULL) 260,270

C ACCEPT INNOVATION --KI CONTAINS INDEX OF LINEAR POSITION IN RING

260 KRING(KI) = KRING(KI) .OR. 00670000000000008

ASSIGN 300 T0 KSNICH $ GO TO 280
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270 ASSIGN 310 to KSNICH

280LA=0

REPLACE NEN KNONER IN MATRIX BY FINDING CARTESIAN

COORDINATES

DO 282 KM = ILFT , IRT

LA=LA+I

IF (LA .EQ. KI) 281,282

281 KRON = JUP $ KCOL = KM

GO TO 350

282 CONTINUE

KIA = JUP + 1

D0 285 KM = KIA,JDN

LA = LA + 1

IF (LA .EQ. KI) 283,285

283 KRON = KM $ KCOL = IRT

GO TO 350

285 CONTINUE

KIA = IRT -1 $ KIB = IRT

D0 287 KM = ILFT,KIA

LA = LA +1 $ KIB = KIB - 1

IF (LA .EQ. KI) 286,287

286 KRON = JDN $ KCOL = KIB $ GO TO 350

287 CONTINUE

KIA = JDN -1 $ KIB = JDN $ KIC = JUP + 1

D0 290 KM = KIC,KIA

LA = LA + 1 $ KIB = KIB - 1
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290

350

300

302

301

305

315

307

317

318

310

320

321

50

325

327

329
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IF (LA .EQ. KI) 288,290

KCOL = ILFT $ KRON = KIB

GO TO 350

CONTINUE

GO TO KSNICH

IDATA(KRON,KCOL) = KRING(KI)

KNONER(IGENK) = KNONER(IGENK) = 1

IF (KRON .LT. 1) 301,302

IF (KRON .EQ. I . AND. KCOL .LT. J) 301,307

IDATA(KRON,KCOL) = IDATA(KRON,KCOL) .OR. 1

FORMAT (1H+50X 12,1H,12/)

FORMAT (1H+69X 12,1H,12/)

GO TO (317,318,318) MSNICH

PRINT 305,KRON,KCOL

DATA(KRON,KCOL) = DATA(KRON,KCOL) + 1.0

GO TO 50

GO TO (320,321,321) MSNICH

PRINT 315,KRON,KCOL

DATA(KRON,KCOL) = DATA(KRON,KCOL) + 1.0

CONTINUE

IGEN = IGEN - 1

GO TO (325,327,325) MSNICH

JACK = 2 $ CALL MPRINT(JACK)

IF (ACTIVE) 330,330,329

GO TO 420

ACTIVE = 0.0
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COMMON IDATA,IPLUS,M,N,IGEN,KY,IGENK,NUMSIM,MSIM,KTAPE, NOTEL,

IIFMT,TITLE, KRINGA,KRINGB,KRINGC,KONA,KHT,KH,KT,KNULL,MSNICH ,

20ATA,KNONER, KRING

EQUIVALENCE (RON(1),IPLUS(1)), (COLUMN(1),KRING(1))

COMMENT--PRINTS OUT PROBABILITY MATRIX

335 FORMAT (1H2)

340 FORMAT (/* COLUMN*/* TOTALS *10F10.5)

345 FORMAT (5X 10110)

347 FORMAT (1H+109X F10.5)

355 FORMAT(/15,5X,10F10.5)

360 FORMAT (1H+109X* RON TOTAL*)

365 FORMAT (*OSUM 0F MATRIX ELEMENTS=*F12.5/1H1)

140 FORMAT (/* COLUMN*/* TOTALS * 10F10.0)

147 FORMAT (1H+109X F10.0)

155 FORMAT (/15,5X 10F10.0)

165 FORMAT (*OSUM 0F MATRIX ELEMENTS=* F12.0/1H1)

IOUT = 61

KM = (((N-1)/10 + 1) * 10)

GO TO (100,303) JACK

303 D0 330 L = 10,KM,10

NN = L-9 $ IF (L-KM) 310,305,310

305 L = N

310 NRITE (IOUT,345) (I,I=NN,L)

NRITE (IOUT,360)

D0 320 I = 1,M

NRITE (IOUT,355) I, (DATA(I,J),J=NN,L)
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= KY/67IO8864.0 * (B-A) + A + 0.5

SUBROUTINE READIN

DIMENSION IDATA(50,50),IPLUS(50),KRING(64),IFMT(10),TITLE(10),

1 DATA(50,50),KNONER(500)

COMMON IDATA,IPLUS,M,N,IGEN,KY,IGENK,NUMSIM,MSIM,KTAPE, NOTEL,

1IFMT,TITLE, KRINGA,KRINGB,KRINGC,KONA,KHT,KH,KT,KNULL, MSNICH,

20ATA,KNONER, KRING

READS IN PARAMETERS AND DATA IN THIS ORDER--

PARAMETERS

NUMBER OF RONS AND COLUMNS IN DATA MATRIX, NUMBER OF

GENERATIONS TO BE RUN, RANDOM START NUMBER--ODD AND

LESS THAN 67 MILLION

NUMBER OF SIMULATIONS TO BE RUN ON THIS DATA,

TAPE CONTAINING DATA.

STATISTICAL OPTION. 1=PRINTOUT + STATISTICS

2=0NLY STATISTICS

3=STATISTICS+LAST MATRIX

SECOND PARAMETER CARD

NUMBER OF TELLINGS ALLONED,RING CONTACT PROBABILITIES

A,B,C

PROBABILITY OF CONTACTING ONN SOCIAL GROUP

PROBABILITIES OF ACCEPTANCE

H FROM T, H FROM NON-T, NON-H FROM T, NON-H

FROM NON-T

FORMAT CARD DESCRIBING DATA PLACEMENT-~USE R OR A FIELD
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IF (KRING(I)) 115,115,105

105 IDATA(KRING(I),KRING(J)) = IDATA(KRING(I),KRING(J)) .OR.

100670000000000013

110 CONTINUE

GO TO 99

115 CONTINUE

NRITE (53,1FMT) ((IOATA(I,0),J=1,N),1=1.M)

RENINO 53

00 120 1 = 1,500

120 KNONER (1) = 0

PRINT 25

25 FORMAT (*TINPUT MATRIX*//)

CALL MPRINT(1)

RETURN

ENO

SUBROUTINE MPRINT(I)

DIMENSION 10ATA(50,50),IPLUS(50),KRING(64),1FMT(10),TITLE(10),

1 0A1A(50,50).KN0NER(500)

COMMON IDATA,IPLUS,M,N,IGEN,KY,IGENK,NUMSIM,MSIM,KTAPE, NOTEL,

11EMT,TITLE, KRINGA,KR1NGB,KR1NGC,KONA,KHT,KH,KT,KNULL,M5NICH,

20ATA,KN0NER, KRING

COMMENT---PRINTS SQUARE ALPHA MATRIX

IF (I.E0.2) GO TO 50

CALL MPRB

50 PRINT 70,IGENK

7O FORMAT (////* MATRIX 0F KNONERS IN GENERATION * 15 //)

 



52

55

160

65

5
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PRINT 52, (I,I=1,M)

FORMAT (8X,4013)

NN = N+1

DO 160 I = 1,M

PRINT 55,1,(IDATA(I,J),J=T,N)

FORMAT(/I3,5X,SO(1X,A2))

CONTINUE

PRINT 65

FORMAT (1H2)

RETURN

END

SUBROUTINE FIGURE

DIMENSION IDATA(50,50),IPLUS(SO),KRING(64),IFMT(IO),TITLE(10),

1 DATA(50,50),KNONER(500)

DIMENSION SUMM(SOO),SUMSQ(SOO),STDEV(SOO),DDATA(50,50),AVE(SOO)

DIMENSION RON(50),COLUMN(50)

EQUIVALENCE (IPLUS(1),RON(1)), (KRING(I),COLUMN(1))

EQUIVALENCE (SUMM(1),IDATA(1)),(SUMSQ(1),IDATA(501)),(STDEV

1(1),IDA

1TA(1001)), (DDATA(1),IDATA(1)),(AVE(1),IDATA(1501))

COMMON IDATA,IPLUS,M,N,IGEN,KY,IGENK,NUMSIM,MSIM,KTAPE. NOTEL,

11FMT,TITLE, KRINGA,KRINGB,KRINGC,KONA,KHT,KH,KT,KNULL,MSNICH,

ZDATA,KNONER, KRING

PRINT 5,MSIM $ SUM = 0.0

FORMAT (*1STATISTICS FOR*IS,* SIMULATIONS 0N OATA*//)

DO 10 I = 1,M $ DO 10 J = I,N
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ROW (1) = 0.0

COLUMN(J) 0.0

SUM = SUM + DATA(I,J)

10 CONTINUE

PRINT 6

6 FORMAT (*OCONTACT FREQUENCIES FOR CELLS, RONS, AND COLUMNS*//)

DO 100 I I,N

DO 100 J 1,M

100 COLUMN(I) = COLUMN(I) + DATA(J,I)

DO 110 I = 1,M

DO 110 J = I,N

110 RON(1) = RON(I) + DATA(I,J)

JACK = 1

CALL PRINTP(JACK,SUM)

DO 2- I = 1,M $ DO 20 J = I,N

ROW(I) = 0.0

COLUMN (J) = 0.0

DDATA(I,J) = 0.0

DATA(I,J) = DATA(I,J) / SUM

20 CONTINUE

DO 200 I I,N

DO 200 J 1,M

200 COLUMN(I) = COLUMN(I) + DATA(J,I)

DO 210 I = 1,M

DO 210 J = I,N

210 RON(I) = RON(1) + DATA(I,J)
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SUM = 0.0

DO 310 I = 1,M

SUM = SUM + RON(I)

310 CONTINUE

JACK = 2

PRINT 7

7 FORMAT (*ICONTACT PROBABILITIES FOR CELLS, RONS, AND COLUMNS*//)

CALL PR1NTP(JACK,SUM)

REWIND 54

DO 34 1 = 1,MSIM

READ (54) (KNONER(K), K = I,IGENK)

DO 34 J I,IGENK

SUMM(J) SUMM(J) + KNONER(J)

SUMSQ(J) = SUMSQ(J) + KNONER(O) *KNONER(J)

34 CONTINUE

GENK = MSIM

00 40 1 = I,IGENK

AVE(I) = SUMM(I)/MSIM

STDEV(I) = SQRTF((SUMSQ(I)-(SUMM(I)*SUMM(I))/GENK) /(CENK-1.0))

40 CONTINUE

PRINT 45

45 FORMAT (*1NUMBER OF MEN KNONERS/CENERATI0N*//10x* GENERATION

1*10x

1*MEAN*10x*STO DEV *//)

00 50 1 = 1,10ENK

PRINT 55,1,AVE(I),STDEV(I)
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55 FORMAT (1H014X 14,7X F10.5,7X F10.5)

5O CONTINUE

DO 60 I = 1,500

60 KNONER(I) 0

DO 47 I = 1,50 $ 00 47 J = 1,50

IDATA(I,J) = 0

DATA(I,J) = 0.0

47 CONTINUE

RENIND 54

RETURN

END

00005000050000500003000010000200006000001

000300490089009900890021002000630090

(5A8)

TEXAMPLE. 5X5 MATRIX, 2 SIMULATIONS, 5 GENERATIONS EACH.

AHTO B O A B TO A TO

B O A TO B A O B 0

>B O B 0

0

O

B O A TO B 0 A O B O

0 B TO A O

0B O B O > B TO A 0

003003



APPENDIX B. 2

OPERATING CHARACTERISTICS OF THE

COMPUTER MODEL

KARLSSON: Computer Simulation of the Diffusion of Innovations

Using Georg Karlsson's Simple Model of Interpersonal

Communication

Language: CDC 3500 FORTRAN (FORTRAN IV)

Programmer: A.V. Williams, Department of Geography, Michigan

State Unive r sity

Description:

The program carries out a Karls son simulation on a population

arranged in an m x n matrix where m, n 50. The characteristics

of each member are punched on cards -- social class, attitude

toward new ideas, trustworthiness -- and this data along with cer-

tain parameters to govern the process make up the input to the

program.

Printed output includes the job title as supplied by the user, a

listing of the parameters specified, and one of the following options:

1. For each generation of each simulation:

la. Coordinates of knowers, active and inactive.

lb. Coordinates of persons contacted by each knower,

whether they accept the innovation or not.

1c. Matrix of knowers at the end of each generation.

For all simulations on a particular set of data and

parameters:

2a. A contact frequency matrix with row and column

marginals and total frequency.

2b. A contact probability matrix with row and column

marginals and total probability (which will be unity

if we neglect possible rounding errors).

2c. A table giving the mean number of new knowers for

each generation along with the standard deviation.

2a, 2b, and 2c above.

2a, 2b, and 2c plus the matrix of knowers at the end of

each simulation.

116
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Considerable output is generated by option #1 so it ought not be

used except for initial experimenting with a small number of gen-

erations and simulations.

Job Deck

Explanation of cards in job deck in the order in which they appear.

PNC card -- upon being assigned a problem number by the Com-

puter Laboratory, the user is given several of these cards. They

are placed in front of each deck submitted to the computer.

Job card -- an accounting card containing problem number, job

title, estimated total running time, and name.

Fortran card -- punch <3 FORTRAN,X,* starting in column 1.

Program deck -- a copy can be obtained from A. Williams, Geog-

raphy Department, Michigan State University.

Run card -- punch 7 RUN,tt, pp where tt : estimated running time,

pp = estimated num er of lines to be printed. These parameters

vary with the job, of course, but for a 10 x 10 data matrix, 20

generations, and Z simulations with output option 1 a time limit of

3 minutes and a print limit of 5000 lines should be adequate.

Param 1 card ~-

Columns Punch

1 through 5 number of rows in matrix

6 through 10 number of columns in matrix

11 through 15 number of generations

16 through 25 odd random start number less than

67 million

26 through 30 number of simulations

31 through 35 tape where data is stored -- if the data

are on cards this is 60. If using pre-

viously read data use 53

36 through 40 statistical option:

l-output option 1

Z-output option 2

3-output option 3

Param 2 card --

1 through 4 number of tellings allowed

5 through 8 probability of contacting ring

1(0000-0099)

9 through 12 probability of contacting ring

2(0000-0099)

17 through 20 probability of contacting own group

(0000-0099)
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probability of accepting innovation

(0000-0099)

21 through 24 H from T

25 through 28 H from non-T

29 through 32 non-H from T

33 through 36 non-H from non-T

Format card -- describes placement of data on cards using "A" or

"R" field description with nX used to describe those card columns

skipped. Assuming we are reading in a 5 x 5 data matrix with each

row punched on a separate card thus:

bbbbAHTObbbbBbebbbbAbebbbbBHTObbbbAbTO

where b 2 blank, The zero is an integral part of the matrix for the

program and must be included.

The format card for the above data would be either

(5A8) or (5R8).

If we want to eliminate the leading blanks, making each data cell

consist of four characters (e. g. ABTO Bbe, etc.) then we would

use the format card

(5R4)

although in this case the matrix of knowers (if we selected this

option) would be printed out with a leading zero (0X 0X) rather than

the more readable form (X X). Using compressed fields is most

reasonable when print option 2 is selected. Otherwise, using an

8-colurnn field for each cell of the matrix is best.

Title card -- whatever is punched on this card will be printed at the

head of the results. If you wish the title to start on a new page, a

1 should be punched in column 1 (the 1 will not be printed).

Data cards -- each person in the data matrix is described in terms

of three characteristics: his social class (A or B); his attitude

towards new ideas (H or blank), and his trustworthiness (T or

blank). In addition, for program purposes, each person has a zero

punched after his T position.

Knower card(s) -- the row and column of each knower is punched

in sequential 3-column fields with leading zeros as required.

Punching is allowed in columns 1 through 72; 24 knowers can thus

be defined in a single card. As many cards as necessary may be

used. The computer will stop reading cards when it encounters

a blank column.

Job Example:

To help make the preceding explanations clearer, a simple job deck

is described be low. We are given a 5 x 5 data matrix of persons

and wish to simulate five generations of activity and to do this two

times. Each teller can tell three times and the following contact

and acceptance probabilities are used:
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Probability of contacting cell 1

cell 2

cell 3

(note: since probabilities

are computed 0-99. ringl

probability will be entered

as 49)

I
I
I
I
I
I

H
r
k
k
fi

Probability of contacting own group = . 9

Probabilities of acceptance:

H from T = . 21

H from non-T = . 30

non-H from T = . 63

non-H from non-T = . 90

The initial knower is located in row 3, column 3 (the center of the

matrix). We select output option 3 to print only the final knower

matrix for each of the two simulation runs plus the statistics.

Job Deck

PNC card

6JOB,998877,SIM,3. DOE, JOHN.

6FORTRAN, x,*

KARLSSON program deck

6RUN,3,2500

0000500005000050000300001000010006000003

000300490089009900890021003000630090

5A8

1 KARLSSON MODEL FOR CHECKING STATISTICS, 5x5, 2 Sim, 5 Gen

AHTO BO A 0 BTO ATO

B O ATO B 0 A0 B O

B 0 ATO B 0 A0 B 0

B 0 B 0 A 0 B10 A0

B O B O A O B TO A 0

003003

OOOOOOOOOOOOOOOOOOOO000000000000000000000000000000000000000000000000

This example produces the following output (some spaces between

lines left out to compress the typing):

KARLSSON SIMULATION

REFERENCE--GEORGE KARLSSON (1958), PAGE 45 ET SEQ

PROGRAMMED BY A V WILLIAMS, GEOGRAPHY DEPT, MICHIGAN STATE

KARLSSON MODEL FOR CHECKING STATISTICS, 5x5 2 SIM, 5 GEN

INPUT MATRIX IS 5 BY 5

5 GENERATIONS TO BE RUN
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STATISTICS FOR 2 SIMULATIONS ON DATA

CONTACT FREQUENCIES FOR CELLS, ROMS, AND COLUMNS

0
1
¢
d
e

o
—
a
o
o
—
a
—
a

COLUMN

TOTALS 2

N
w
o
o
w
m

8
N
—
J
—
o
n
w

7

SUM OF MATRIX ELEMENTS = 24

C
O
C
O
-
4
b 5 RON TOTAL

0 5

2 5

2 3

2 7

0 4

6

CONTACT PROBABILITIES FOR CELLS, ROMS, AND COLUMNS

m
t
h
—
1

1

0.04167

0.00000

0.00000

0.04167

0.00000

2

0.12500

0.00000

0.00000

0.12500

0.08333

3

0.00000

0.12500

0.04167

0.04167

0.08333

4

0.04167

0.00000

0.00000

0.00000

0.00000

SUM OF MATRIX ELEMENTS = 1.00000

NUMBER OF NEW KNONERS/GENERATION

GENERATION

U
'
I
-
b
W
N
d

END OF SIMULATION

MEAN

0.5

H
N
N
O

0
1
0
0
0
1

5

0.0000

0.08333

0.08333

0.08333

0.00000

RON TOTAL

0.20833

0.20833

0.12500

0.29167

0.;6667
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