A STOCHASTIC APPROACH FOR EVALUATING SHORT-TERM FINANCING ALTERNATIVES UNDER CONDITIONS OF RISK

Thesis for the Degree of Ph.D. MICHIGAN STATE UNIVERSITY JOHN WALTON ELLIS 1971

This is to certify that the

thesis entitled

I GRUGHIGHTS INTROIGH FOR HTLMULHTMS CHOOLETTEE DIMENSTERS IN INCIDENCE UNDER SUBJECTIONS OF HIGH

presented by

John Welton Will's

has been accepted towards fulfillment of the requirements for

<u>Ph. D. degree in Pustnoss Administration</u>

Major professor

Date 3/34/71

O-7639

ABSTRACT

A STOCHASTIC APPROACH FOR EVALUATING SHORT-TERM FINANCING ALTERNATIVES UNDER CONDITIONS OF RISK

By

John Walton Ellis

At least some facet of the cash management problem is faced by every manufacturing firm. In the decision process, management must decide upon an optimal minimum cash balance and a policy for handling cash shortages. A model to aid management in selecting an optimal financing strategy from a given set of alternatives is presented in this study. The objective is the maximization of the utility of the unrestricted ending cash balance at the end of a specific planning period.

A sequential, multi-period approach that considers risk is incorporated in the simulation model. The net cash flow values that serve as input to the model are generated by a simulation of the stochastic processes of the input variables which make up the net cash flow. The condition of stochastic dominance is utilized to evaluate

the cumulative probability distributions which were generated from the model output.

In summary, two quantitative techniques, simulation and the condition of stochastic dominance have been integrated and applied to analyzing and selecting an optimal financing strategy from a given set of alternatives.

A STOCHASTIC APPROACH FOR EVALUATING SHORT-TERM FINANCING ALTERNATIVES UNDER CONDITIONS OF RISK

By

John Walton Ellis

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Accounting and Financial Administration

ACKNOWLEDGMENTS

In their capacity as members of the dissertation committee the author is grateful to Dr. Myles Delano, Dr. Gardner Jones, and Dr. Ronald Marshall for their helpful criticism.

The author also wishes to express his sincere appreciation to Dr. James Don Edwards, Chairman of the Accounting and Finance Department, for arranging financial support throughout the author's course of study. In addition, the author gratefully acknowledges use of the Michigan State computing facilities, made possible through support, in part, from the National Science Foundation.

Finally, the author gives special thanks to his wife, Susan, for editing and typing the preliminary manuscript. Without her patience and encouragement, this work could not have been completed.

TABLE OF CONTENTS

LIST OF TABLES																	Page
Chapter I. INTRODUCTION	ACKNO	OWL	ED GM ENTS	•	•	•	•	•	•	•	•	•	•	•	•	•	ii
Chapter I. INTRODUCTION	LIST	OF	TABLES .	•	•	•	•	•	•	•	•	•	•	•	•	•	vi
Statement of the Problem Plan of the Study	LIST	OF	FIGURES	•	•	•	•	•	•	•	•	•	•	•	•	•	viii
Statement of the Problem	Chapt	ter															
Plan of the Study	I.		INTRODUC	rion	•	•	•	•	•	•	•	•	•	•	•	•	1
Certainty, Risk and Uncertainty										m	•	•	•	•	•	•	1
Organization of Remainder of the Thesis . 5 II. SURVEY OF THE RELATED LITERATURE— METHODS AND MODELS			Plan	of	the	St	udy	•	•	•	•	•	•	•	•	•	2
II. SURVEY OF THE RELATED LITERATURE— METHODS AND MODELS														•	•	•	4
Introduction			Orgai	niza	tio	n o	f R	ema	ind	ler	of	the	Th	esi	S	•	5
Deterministic Approaches	II.							LI •	TER	ATU •	IRE-	•	•	•	•	•	7
Stochastic Approaches			Intro	oduc	tio	n	•	•	•	•	•	•	•	•	•	•	7
Objective			Dete	cmin	ist	ic	App	roa	che	S	•	•	•	•	•	•	9
Objective			Stoc	nast	ic	App	roa	che	S	•	•	•	•	• 1	•	•	14
Single-Stage Decision Problem (DP) Under Certainty	II.	A I	DECISION-	гнео	RY	STA	TEM	ENT	OF	TH	E P	ROB	LEM		•	•	23
Under Certainty						•	ogi	cio	• • D	rob	.10	. (D	٠,	•.	•	•	23
Model of the Single-Stage Problem Under Risk												נ עט	P)				2.2
Under Risk									sta	œ.	Pro	hle	m ·	•	•	•	23
Multi-Stage Decision Problem Under Risk . 29 The N-Stage Decision Problem										.90				_	_	_	27
The N-Stage Decision Problem										obl	em	Und	er	Ris	k	•	
The Decision Problem to be Analyzed in this Study													-			•	
in this Study													zed	•	•	•	-
The Model in This Study as An										•					_	_	32
MIGINATA OI O BUDACLE UPE OI			The 1	1ode	1 i	n T	his	St					•	•	•	•	J.
											ί΄	•		•	•	•	35

			Page
	Assumptions	•	36
	Possible Approach to Solving the		38
	General Stochastic Multi-Stage Model Simulation	•	36 41
	Simulation	•	41
IV.	MODEL DESCRIPTION	•	43
	Introduction	•	43
	Methodology	•	46
	The Transformation Function	•	47
	The Short-Term Financing Alternatives .	•	51
	Computer Evaluation of the		
	Financing Alternatives	•	53
	Model Input Data	•	63
	Interest Rates on the		
	Financing Alternatives	•	63
	The Minimum Required Cash Balance	•	76
v.	PRESENTATION AND EVALUATION OF RESULTS	•	77
	The Net Cash Flow Simulation	_	78
	Constraints		79
	Stockout Penalties	•	81
	Interest Rates	•	83
	The Minimum Required Cash Balance	•	83
•	The Computer Programs Involved	•	03
	in the Model		85
	Model Output	•	85
	Stochastic Dominance	•	86
	Evaluation at a Minimum Required Cash	•	80
	Balance of \$3 Million		88
		•	00
	Evaluation at a Minimum Required Cash		0.1
	Balance of \$4.5 Million	•	91
	Evaluation at a Minimum Required Cash		
	Balance of \$6 Million	•	98
	Evaluation When the Minimum Required		
	Cash Balance is a Stochastic		
	Variable	•	100
	Summary	•	107
	The Results of the Model in Terms of		
	the Short-Term Financing Problem .		109

																	Page
VI.	SUM	IARY	AN	ID (CON	CLU	SIO	NS	•		•	•	•	•	•	•	114
			mar		•	•	•	•	•	•	•	•	•	•	•	•	114
					ons	-	•	•	•	•	•	•	•	•	•	•	116
		Sug	ges	sti	ons	fo:	r F	urtl	ner	Res	sea:	rch	•	•	•	•	116
					tion							•	•	•	•	•	118
BIBLIOGI	RAPHY	?	•	•	•	•	•	•	•	•	•	•	•	•	•	•	119
APPENDIC	CES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	125
A.	Comp	ute	r S	Sub	rout	tine	es	for	Pro	obal	o i 1:	ity					
	Di	str	ibu	ıti	ons	•	•	•	•	•	•	•	•	•	•	•	126
B.	Net	Cas	sh E	rlo	w Si	Lmu:	lat	ion	Pro	ogra	am a	and					
		put				•	•	•	•	•	•	•	•	•	•	•	129
c.	Net	Cas	sh F	·lo	w Oi	ıtpı	ut	•	•	•	•	•	•	•	•	•	145
D.	Simu	.l a+	·ior		f +1	30 1	ei n	-na	· ~~	7 T 4		n = + ·	i 170	c			
D.					rogi								•	•	•	•	150
Ε.	Outr	out	fro	m	the	Si	mul.	atio	on (of 1	the						
-					Alte					•	•	•	•	•	•	•	166
G.	Tabl	les	of	Da	ta 1	for	th	e Cı	ımu.	lati	ive						
					y Di												
					Alte								•	•	•	•	171

LIST OF TABLES

Table		Page
1.	Net cash flow simulation variables	. 71
2.	Data for the cumulative probability distri- butions of the financing alternatives at a minimum required cash balance of \$3 million and a stockout penalty of 1 percent	. 172
3.	Data for the cumulative probability distri- butions of the financing alternatives at a minimum required cash balance of \$4.5 million and a stockout penalty of 1 percent	. 173
4.	Data for the cumulative probability distri- butions of the financing alternatives at a minimum required cash balance of \$4.5 million and a stockout penalty of 5 percent	. 174
5.	Data for graphs of the comparative effects of stockout penalties for Type 2 at a minimum required cash balance of \$4.5 million	. 175
6.	Data for graphs of the comparative effects of stockout penalties for Type 4 at a minimum required cash balance of \$4.5 million	. 176
7.	Data for the cumulative probability distri- butions of the financing alternatives at a minimum required cash balance of \$6 million and a stockout penalty of 1 percent	. 177
8.	Data for the cumulative probability distri- butions of the financing alternatives at a minimum required cash balance of \$6 million and a stockout penalty of 5 percent	. 178

lable		Page
9.	Data for graphs of the comparative effects of stockout penalties for Type 2 at a minimum required cash balance of \$6.0 million	. 179
10.	Data for graphs of the comparative effects of stockout penalties for Type 4 at a minimum required cash balance of \$6.0 million	. 180
11.	Data for the cumulative probability distri- butions of the financing alternatives at a minimum required cash balance of \$4-\$5 million and a stockout penalty of 1 percent	. 181
12.	Data for the cumulative probability distri- butions of the financing alternatives at a minimum required cash balance of \$4-\$5 million and a stockout penalty of 5 percent	. 182
13.	Data for the cumulative probability distri- butions of the financing alternatives at a minimum required cash balance of \$5.5- \$6.5 million and a stockout penalty of 1	100
	percent	. 183

LIST OF FIGURES

Figure			Page
1.	Diagram of the model	•	45
2.	A general flow chart of the financing alternatives simulation	•	50
3.	Line of credit	•	54
4.	Term loan	•	56
5.	Commercial paper	•	60
6.	Accounts receivable loan	•	62
7.	General diagram of the net cash flow	•	70
8.	Net cash flow variablesbasic outline	•	72
9.	Net cash flow variablesdetailed outline .	•	73
10.	The cumulative probability distributions for the financing alternatives at a minimum required cash balance of \$3 million and a stockout penalty of 1 percent	•	89
11.	The cumulative probability distributions for the financing alternatives at a minimum required cash balance of \$4.5 million and a stockout penalty of 1 percent	•	92
12.	The cumulative probability distributions for the financing alternatives at a minimum required cash balance of \$4.5 million and a stockout penalty of 5 percent	•	95
13.	Comparative cumulative probability distributions for Type 2 at stockout penalties of 0, 1 and 5 percent with a minimum required cash balance of \$4.5 million	•	96

Figure			Page
14.	Comparative cumulative probability distributions for Type 4 at stockout penalties of 0, 1 and 5 percent with a minimum required cash balance of \$4.5 million	•	97
15.	The cumulative probability distributions for the financing alternatives at a minimum required cash balance of \$6 million and a stockout penalty of 1 percent	•	99
16.	The cumulative probability distributions for the financing alternatives at a minimum required cash balance of \$6 million and a stockout penalty of 5 percent	•	101
16.	Comparative cumulative probability distributions for Type 2 at stockout penalties of 0, 1 and 5 percent with a minimum required cash balance of \$6 million	•	102
18.	Comparative cumulative probability distributions for Type 4 at stockout penalties of 0, 1 and 5 percent with a minimum required cash balance of \$6 million	•	103
19.	The cumulative probability distributions for the financing alternatives at a minimum required cash balance of \$4-\$5 million and a stockout penalty of 1 percent	•	105
20.	The cumulative probability distributions for the financing alternatives at a minimum required cash balance of \$4-\$5 million and a stockout penalty of 5 percent	•	106
21.	The cumulative probability distributions for the financing alternatives at a minimum required cash balance of \$5.5-\$6.5 million and a stockout penalty of 1 percent	•	108

CHAPTER I

INTRODUCTION

Statement of the Problem

Cash management and short-term financial planning have become increasingly complex and important in the past decade. As the cost of borrowing and yields on marketable securities have increased, firms have begun to recognize the advantages of economizing on cash holdings, speeding up cash inflows, controlling cash outflows, and investing excess cash. The rapid expansion of business activities has required increasing quantities of working capital.

At least some facet of the cash balance problem is faced by every manufacturing firm. Only recently have firms become cognizant of the importance of economizing cash holdings, however. The need for cash stems from a lack of balance between cash inflows and outflows, and the difficulty of accurately predicting some of these flows. An adequate amount of cash must be maintained to perform regular transactions and to meet unexpected cash requirements. Management must decide on an optimal minimum cash

Yair E. Orgler, Cash Management--Methods and Models (Belmont, California: Wadsworth Publishing Company, Inc., 1970), p. 25.

balance and a policy for handling cash shortages. It is the intent of this study to develop a model that is capable of assisting management in selecting an optimal short-term financing alternative under conditions of risk, when a net cash drain is anticipated.

Plan of the Study

The model presented in this study is designed to assist management in determining an optimal short-term financing strategy. The criterion for decision will be the maximization of the utility of the unrestricted ending cash balance at the end of a specific planning period.

The financing requirement of a firm in a given planning horizon is determined by the initial cash balance and the projected net cash flow. The cash balance is affected by the stochastic nature of the net cash flow for each period. The cash balance may be decreased by a number of methods including investing surplus cash in marketable securities and/or paying off short-term debt. Conversely, in situations demanding more cash, the cash balance may be increased by reducing the firm's holdings of

The unrestricted ending cash balance is defined as the ending cash balance less that portion of cash that is restricted to the future payments of principal and interest specific to each financing alternative, plus the amount of interest and principal due from invested surplus cash.

marketable securities and/or undertaking some short-term financing. The cash demands must be satisfied at a reasonable cost, and a minimal level of cash must be maintained. It will be assumed in this study that management specifies the minimum required cash balance for each period. The financing alternatives will be evaluated considering this minimum required balance.

A model will be introduced to evaluate four shortterm financing strategies—line of credit, term loan,
commercial paper, and accounts receivable loan. Input
data to the model will include the following information
for each period: (1) the distribution of the interest
rates of the alternative financing strategies; (2) the
net cash flow distribution; (3) the minimum required cash
balance; and (4) constraints on the financing alternatives.
The net cash flow data and the data for the cumulative
probability distributions of the unrestricted ending cash
balances for each financing alternative will be generated
by Monte Carlo simulation. The latter cumulative probability distributions will be compared by the condition of
stochastic dominance to determine an optimal alternative.

¹ See page 86, Chapter V for a discussion of the condition of stochastic dominance.

Certainty, Risk and Uncertainty

Models currently being utilized can be divided into two basic types: (1) those that are restricted to variables known with certainty--deterministic models; and (2) those that allow probabilistic values for certain variables, thus incorporating risk--stochastic models. Certainty is defined as the condition that exists when all parameters are completely known and the variability associated with these parameters is zero. Thus, each action is known and leads invariably to a specific outcome.

The classical distinction between risk and uncertainty was proposed by F. H. Knight (Risk, Uncertainty and Profit, Houghton-Mifflin Company, 1921). Accordingly, risk is defined as the situation in which the outcomes are not completely known but objective probabilities can be associated with possible outcomes. Uncertainty refers to situations for which probabilistic results cannot even be predicted in probabilistic terms. The distinction between risk and uncertainty in an organizational context cannot be so clearly delineated, however. Decision-makers generally have some feelings about the probabilities of future events. These feelings will affect judgments made by management. 2

Alfred Rappaport, "Sensitivity Analysis in Decision-Making," The Accounting Review, LXII (July, 1967), 441.

² Ibid.

Thus, although these terms have been used interchangeably in the literature, the term risk will be used in this study.

Organization of Remainder of the Thesis

The cash management problem has been established as significant and worthy of further study. A model has been outlined in this chapter which represents an approach to aid management in solving some facets of this problem.

Chapter II presents and discusses some models in the literature related to the cash management problem. The deterministic and stochastic approaches to solving cash management problems are delineated. The models are discussed in terms of their relevance to the development of problem-solving techniques and to the model in this study.

Chapter III is devoted to the development of the model in decision-theory framework. The single-stage decision problem under certainty is extended to include several stages and incorporate risk. The model in this study is presented as a multi-stage decision problem, and the assumptions of the model are outlined. Finally, the simulation approach to the model is discussed.

Chapter IV develops the model itself. The financing alternatives to be evaluated are discussed in detail, and the method of computer analysis presented. The input data to the model are defined.

Chapter V consists of the presentation and evaluation of the results. The inputs to the model and the model output are presented. The cumulative probability distributions for each financing alternative at the specified minimum required cash balances, are graphed. The distributions are then compared using the condition of stochastic dominance. An optimal financing alternative is then selected for each minimum required cash balance. A final chapter consists of the summary and conclusions.

CHAPTER II

SURVEY OF THE RELATED LITERATURE-METHODS AND MODELS

Introduction

In recent years mathematical programming techniques and computers have been applied to the solution of various problems in finance. In this chapter some general models discussed in the literature will be reviewed. The primary intent of this discussion is to indicate references that relate to cash management problems. Several capital investment decision-making models will also be presented since the approaches may be applicable to short-term financing problems.

Two basic approaches are used to solve cash management problems—the deterministic approach in which risk is not considered, and the stochastic approach which incorporates risk. The deterministic method is based upon the assumption that the values of the variables and parameters in any specific problem are known with certainty. The objective of these models is to maximize or minimize some deterministically defined function. The assumption of complete information, essential to these models, has been

thought to impair their validity, since variability of conditions is an observable fact. Proponents of the approach contend, however, that no existing method is capable of adequately incorporating this variability, and, in the attempt to do so, often introduce more error than they resolve. The stochastic approach is becoming more widely accepted; however, as methods are developed which more closely approximate real world conditions.

The stochastic approach allows some of the variables and parameters in any specific problem to be defined as random. The random values are described by some probability distribution. The degree to which risk is incorporated varies with the specific model under consideration. The stochastic approach allows management to make decisions with regard to some of the variable input data. Their personal experience may be invaluable in enabling the model to reflect the specific conditions of the firm under study. The development of the deterministic and stochastic models which relate to the cash management problem in this study will be described in this chapter.

Deterministic Approaches

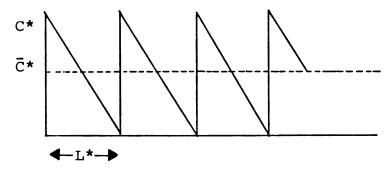
Inventory Models.—The cash management problem is very similar to the problem of inventory management.
Baumol² formulated one of the first models to solve cash balance problems by utilizing a deterministic approach incorporating the classical economic lot size model of inventory management. His objective was to minimize the total cost of the borrowing transactions over some planning horizon. The model determined how much cash, C*, is obtained, how often this cash is to be obtained, L*, and the average cash balance, C*, as follows:

Transfer C* =
$$\sqrt{\frac{2bm}{i}}$$
 L = $\sqrt{\frac{2b}{mi}}$

with an average cash balance of: $\overline{C}^* = \sqrt{\frac{bm}{2i}}$

where: b = fixed cost for borrowing or withdrawal

i = opportunity interest rate per day


m = constant dollar expenditure per day

L = number of days in a period

Graphically, the model can be expressed as follows:

ledwin J. Elton, and Martin J. Gruber, "Dynamic Programming Applications in Finance," The Journal of Finance, XXVI, No. 2 (May, 1971), 499.

²William J. Baumol, "The Transactions Demand for Cash: An Inventory Theoretic Approach," Quarterly Journal of Economics, LXVI (November, 1952), 545-556.

The Baumol model held that the cost of borrowing or with-drawal, the opportunity interest rate, and disbursements over time were constant and known. Only the transactions demand for cash was actually considered. Despite these recognized limitations the model provided a definite contribution to the literature and was a basis for considerable further work in this area.

Tobin¹ developed a model similar to Baumol's.

Tobin's model determined the optimal average cash and bond holdings to maximize interest earnings net of transactions costs. Conversely, as has been shown, Baumol was interested in minimizing the total cost of the transactions irrespective of the financial efficacy of investing in bonds as opposed to holding cash.

Linear Programming. -- An article by Charnes, Cooper and Miller presented the first application of linear

James Tobin, "The Interest-Elasticity of Transactions Demand for Cash," The Review of Economics and Statistics, XXXVIII, No. 3 (August, 1956), 241-247.

A. Charnes, W. W. Cooper, and M. H. Miller, "Application of Linear Programming to Financial Budgeting and Costing of Funds," The Journal of Business, XXXII, No. 1 (January, 1959), 20-46.

programming to finance. Their approach considered the optimal allocation of funds within the firm which included the operating environment and the existing organization of financial and physical resources. The objective was the maximization of profits, subject to capacity, buying and selling constraints, and a liquidity requirement. Charnes, Cooper and Miller extended the basic approach to include lending and borrowing. The use of linear programming was a significant contribution to the solution of finance problems. The technique presented in this article found later application in solving short-term cash management problems even though their specific model could not be used in this regard.

An extension of the model by Charnes et al. was developed by Ijiri, Levy, and Lyon. It covers marketable securities transactions and is limited to a single-period approach. The model was further amplified in later work by Charnes, Cooper, and Ijiri. Modifications and extensions of the models using linear programming led to experimentation in its application. Although the specific emphases of the models may have differed, the basic techniques, which led

Y. Ijiri, F. K. Levy, and R. C. Lyon, "A Linear Programming Model for Budgeting and Financial Planning," Journal of Accounting Research, I, No. 2 (Autumn, 1963), 198-212.

A. Charnes, W. W. Cooper and Y. Ijiri, "Break-Even Budgeting and Programming to Goals," Journal of Accounting Research, I, No. 1 (Spring, 1963), 16-43.

to the development of increasingly comprehensive approaches, were established.

Robichek, Teichroew and Jones developed a multipleperiod linear programming model for optimizing short-term
financing decisions. Their discussion was concerned with
the decision of how much and when money should be acquired
from specific sources of short-term funds to minimize cost
to the firm. The model made the following assumptions:
(1) the minimum cash balance required at all times was
specified; (2) the cash inflows and/or outflows were known
with certainty; and (3) the costs and limitations of all
of the financial alternatives were known. With these
assumptions and given cash balance requirements, the model
was developed.

The Robichek, Teichroew and Jones (RTJ) model is particularly significant with regard to the model in this study. The basic approaches are similar except that the RTJ model utilizes linear programming and thus solves the problem of selecting an optimal financing alternative, simultaneously. The model in this study is probabilistic and considers the selection of an optimal financing alternative, sequentially. Similarities of the two models include the consideration of multiple periods, the

A. A. Robichek, D. Teichroew, and J. M. Jones, "Optimal Short-Term Financing Decision," Management Science, XII, No. 1 (September, 1965), 1-36.

assumption of known constraints on the financing alternatives, and the certainty with which the minimum cash balance is known.

Orgler et al. 1 developed a linear programming model differing only slightly from the RTJ approach. D. E. Peterson 2 presented a model, also utilizing linear programming, but which was more comprehensive in that it incorporated the following sources of short-term financing: accounts payable, line of credit, accounts receivable and sale of commercial paper. 3 The discussion of selecting an optimal financing method from specific alternatives in this article assumed that the needs of a firm were known with complete certainty. The certainty constraints necessary in any linear programming approach are its major short-coming. Linear programming provides a useful and valid tool for problem-solving as long as its limitations are recognized.

¹Orgler, pp. 70-118.

²D. E. Peterson, <u>A Quantitative Framework for Financial Management</u> (Homewood, Illinois: Richard D. Irwin, Inc., 1969), Chapter 7.

³The model in this study, although stochastic in nature, offers four similar financing alternatives.

Dynamic Programming. -- Mao presented an approach for managing the cash balance during a finite planning horizon through the use of a two-step systematic search procedure using dynamic programming. The cash balance decision was viewed as a problem involving a sequence of interrelated decisions. These decisions included whether to retain cash holdings in the form of securities or in the form of cash, and which quantitites of securities should be held or sold by the firm.

The dynamic programming approach is one of the valid methods for solving cash management problems sequentially. The importance of the inter-temporal relationships lends credibility to dynamic programming (or recursive optimization) as a technique of solving these problems. This approach will be discussed more fully in the section on probabilistic dynamic programming.

Stochastic Approaches

Many of the techniques utilized in deterministic models have been extended to allow them to incorporate risk. A gradual refinement of the models has taken place, as computer techniques have been increasingly applied and accepted for use in solving business problems. Computers have made feasible the solution to heretofore complex

James C. T. Mao, Quantitative Analysis of Financial Decisions (Toronto: The Macmillan Company, Collier-Macmillan Canada, Ltd., 1969), pp. 505-514.

mathematical problems, particularly problems involved in the probabilistic dynamic programming and simulation approaches. Various approaches are discussed in the following section which assisted the author in selecting the components of the model presented in this study.

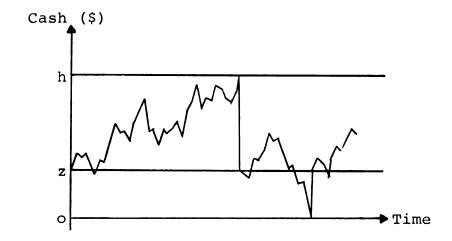
Inventory Models. -- Miller and Orr extended the Baumol model to allow the net cash flows to be stochastic. The model was based on the assumption that the cash balance varies irregularly and unpredictably over time. The random behavior of the cash flows was generated in a sequence of independent Bernoulli trials. The model attempted to minimize the expected cost per day of managing the firm's cash balance over a finite planning horizon.

The cash balance was allowed to fluctuate freely within predetermined maximum, h, and minimum, 0, values. When either of these values was reached, a transfer of funds or liquidation of assets was effected to achieve an "optimal" level, z. A fixed transfer cost independent of the amount of funds transferred was assumed. Optimal values of z and h were found as follows:

¹ Merton H. Miller and Daniel Orr, "A Model of the Demand for Money by Firms," Quarterly Journal of Economics, LXXX (August, 1966), 413-435.

$$z^* = \sqrt[3]{\frac{3\gamma m^2 t}{4v}}$$

$$h* = 3z*$$


where: $\gamma = \cos t \operatorname{per} \operatorname{transfer}$

m = constant expenditure in dollars per day

v = daily rate of interest earned on the portfolio

t = number of operating cash transactions per day

The model is expressed graphically as follows:

Linear Programming. -- Stochastic linear programming models in which either coefficients of the objective function or technical coefficients of the constraints are treated as random variables have been employed under conditions of risk. Since the origination of this linear programming

application with the works of Tintner¹ and Babbar,² there have been numerous theoretical extensions. Frequently the linear stochastic model is transformed into a consistent non-linear programming model which is solved by non-linear techniques resulting in an optimal feasible solution to the original model. Application of stochastic linear programming has been limited because of the computational burdens involved.³

Chance-Constrained Programming. --Näslund incorporated risk into his model through the use of chance-constrained programming. The model involved allocating a limited fund between several investment projects (classified as independent) over a finite horizon. Borrowing and lending were added as decision variables. Risk was introduced into the model through probabilistic constraints, one for each year, reflecting the fraction of the time that the firm's original financial plan was allowed to be violated.

¹G. Tintner, "Stochastic Linear Programming with Applications to Agricultural Economics," <u>Second Symposium in Linear Programming</u>, Washington (Washington, D.C.: National Bureau of Standards, 1955).

²M. M. Babbar, "Distributions of Solution of a Set of Linear Equations with Applications to Linear Programming," Journal of the Statistical Association, L (1955), 155-164.

Rappaport, p. 443.

⁴Bertil Näslund, "A Model of Capital Budgeting Under Risk," The Journal of Business, XXXIX, No. 2 (April, 1966), 257-271.

The decision-maker had to be able and willing to specify the probability level at which the constraints must be met. These probabilistic constraints were transformed into deterministic equivalents by inverting the probability constraints and replacing the technical coefficients by their means and variances. The variables were assumed to be normally distributed. The objective function of Näslund's model was the maximization of the expected value of the firm at the end of the planning period.

Chance-constrained programming is significant as a conceptually sound approach of considering risk. However, the constraints introduced by defining all probability distributions as normal and the inability to handle multiperiod, interrelated data sequentially discount its application to the model in this study.

Dynamic Programming. -- Eppen and Fama² coauthored three related articles concerned with the cash balance problem. Initially, a linear-programming model was developed to indicate the properties of optimal operating policies for stochastic cash-balance and simple dynamic portfolio problems. The objective of the model was to

¹ For a further discussion of chance-constrained programming see A. Charnes and W. W. Cooper, "Chance-Constrained Programming," Management Science, October, 1959.

²Gary D. Eppen, and Eugene F. Fama, "Solutions for Cash-Balance and Simple Dynamic-Portfolio Problems," <u>Journal of Business</u>, XLI, No. 1 (January, 1968), 94-112.

minimize the discounted expected costs over some infinite horizon.

A later article included a special adaptation of this model using a dynamic programming approach for establishing general properties of cash balance problems.

In their latest work, Eppen and Fama discussed the determination of an optimal operating policy for a three asset stochastic cash balance problem. They retained the dynamic programming approach used in the above mentioned models, however. In contrast to these models, which considered holding cash in one of two forms—cash or earning assets, the model proposed in this article divided the non-cash holdings into two earning assets categories—"stocks" and "bonds." "Stocks" assets comprised the major portion of the firm's earnings, and were assumed to have higher expected returns per period than "bonds." "Stocks" also had higher transactions costs. Thus, it could pay the firm to hold some "bonds" as protection against fluctuations in the cash account. The article discussed this last point in some detail.

Gary D. Eppen, and Eugene F. Fama, "Cash Balance and Simple Dynamic Portfolio Problems with Proportional Costs," International Economic Review, X, No. 2 (June, 1969), 119-133.

²Gary D. Eppen, and Eugene F. Fama, "Three Asset Cash Balance and Dynamic Portfolio Problems," Management Science, XVII, No. 5 (January, 1971), 311-319.

Eppen and Fama presented a relatively sophisticated and realistic general approach to the cash management problem through utilization of the inventory method. Their approach is a recent, advanced and comprehensive presentation of the recursive relationships involved in the probabilistic dynamic programming solution to the cash management problem. The relationships were "solved" to develop a set of rules or policies specific to the conditions which exist in any particular situation.

The use of probabilistic dynamic programming in the above articles by Eppen and Fama led the author to explore this approach for possible use in his study. Their approach was theoretical, however. Practical application of probabilistic dynamic programming to the multi-stage, sequential cash management problem which incorporates risk will be possible only when a practical computer approach for solving dynamic programming problems is developed. Simulation was subsequently selected. Several models which utilize simulation will be presented in the following section.

Simulation. -- Donaldson developed a probabilistic approach to the evaluation of corporate debt capacity. The purpose involved determining the probability that interest

¹ Gordon Donaldson, Corporate Debt Capacity (Boston: Harvard Business School, 1961), Chapter 7 and Appendix B.

on a given amount of debt could force a company into cash insolvency should a severe recession occur. The approach incorporated some random variables and some constants to determine the probability of an ending cash balance of less than zero. Certain cash outflows were deemed mandatory. The level of sales and average collection period on receivables were assumed to be statistically independent with a known combined probability distribution. Utilizing the model, management could ascertain the probability distribution of its ending cash balance during a recession.

Mao¹ adopted Donaldson's model and utilized it in a computer simulation experiment. By a simulation of the cash flows, the probability of cash insolvency was determined. The method involved the use of probability distributions of sales, resulting in the generation of a random sales level. A collection period was then determined for that level of sales and the ending cash balance was calculated. As a result of the simulation, a probability distribution of the ending cash balance was produced and the risk of insolvency determined.

Mao also developed a model to determine the pattern of financing to minimize the net interest cost in view of an anticipated net cash drain in the subsequent twelve month period. Mao introduced uncertainty into the model by randomizing the sales variable. All other variables

¹Mao, pp. 566-577.

were assumed to be known with certainty. Three alternative financing strategies were studied in the stated time horizon resulting in a frequency distribution of the net interest cost for each financing strategy. The probability distributions, when compared, would assist management in deciding upon the preferred financing strategy for their individual firm.

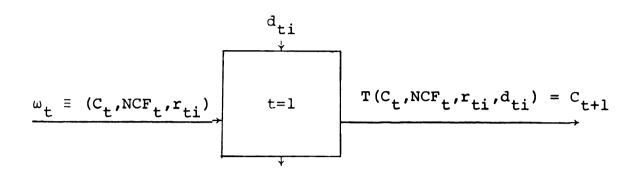
The basic model presented by Mao was considered in the preparation of the model in this study. The author elected to allow more of the variables to be defined as probabilistic. These variables were selected to approximate real world conditions. Further, whereas Mao did not elaborate on a recommended method for comparing the financing alternatives, this author suggests such a technique. The objective functions of the models also differ, but the basic approach remains similar.

Problems resulting from the significant degree of risk in the economic environment and the increasing complexity involved in financial policy decisions demand sophisticated methods of analysis. Simulation, as a technique of incorporating risk, has become increasingly appropriate.

CHAPTER III

A DECISION-THEORY STATEMENT OF THE PROBLEM

Objective


The objective of this study is to solve the multistage decision problem of determining an optimal short-term financing strategy under conditions of risk by optimizing the decision-maker's utility function. The decision problem is presented in this study in terms of a multi-stage decision model (DM). Initially, in order to explain and clarify the relationships involved in the multi-stage model, a single-stage deterministic model will be presented. It will be subsequently amplified to include several stages and incorporate risk.

Single-Stage Decision Problem (DP) Under Certainty

Any situation where a decision is needed can be considered as a decision problem. This problem can be stated in terms of a decision model (DM). The model is composed of a decision structure and a search problem (SP).

The method of Carr and Howe [Charles R. Carr, and Charles W. Howe, Quantitative Decision Procedures in Management and Economics (New York: McGraw-Hill Book Company, 1964] was utilized in this discussion (pp. 38-40).

The decision structure of this model can be expressed schematically as follows:

where: C_t = set of input variables to stage t describing the relevant aspects of the decision-maker's environment prior to making a decision at point t.² For example: cash balance at the beginning of stage t and interest on invested surplus cash that will be received at the beginning of stage t.

i = the financing alternative under consideration.

NCF_t = net cash flow in stage t, i.e., for the period of time from time point t to time point t+1 at which the next decision is to be made.

lathough t, defining the number of periods, is actually superfluous in the single-stage model, the author elected to include it to familiarize the reader with the notation to be used in the subsequent multi-stage model descriptions. For the single-stage model t=1.

²It should be noted that stage t is a period of time and that the decision is to be made at the beginning of stage t, i.e., at point t.

rti = interest rate per appropriate length of
 time under alternative i for stage t.

d = the amount of the minimum required cash
 balance specified at the beginning of
 stage t for the end of stage t.

T = transformation function

U = utility function

W = payoff function

Decision Structure. -- The decision structure is composed of a state space, $\Omega_{\rm t}$, an action space, $P_{\rm t}$, a transformation function, T, a utility function, U, and a payoff function, W, where:

State space
$$\Omega_{t} = \{\omega_{t} \equiv (C_{t}, r_{ti}, NCF_{t})\}$$

Under certainty, Ω_{t} is a single-element set containing the non-controllable values involved in the particular decision situation.

Action space
$$P_t^1 = \{d_{ti} \in R\}^2$$

 P_t represents the set of all feasible actions $d_{ti} \in P_t$ (specifying minimum required cash balance values) and the particular decision situation. The action space states the feasible actions for the particular decision situation. As the stage progresses, d_{ti} will influence the amount the firm borrows or reinvests.

lalthough it is possible that the action space, P_t , could be different for each financing alternative, i, inferring that P_{ti} should be used, P_t will be used to simplify this discussion.

²R is defined as the set of real numbers.

Transformation function T

T: $(\Omega_t \times P_t) \to C_{t+1}$ expresses the consequences of the non-controllable value $\omega_t \in \Omega_t$ and the decision $d_{ti} \in P_t$. $T(\omega_t, d_{ti}) = c_{t+1} \in C_{t+1}$ where C_{t+1} is the set of all possible consequences of the interaction of the state space Ω_t and the action space P_t , and c_{t+1} is a single consequence. The transformation function, $T(C_t, NCF_t, r_{ti}, d_{ti}) = C_{t+1}$, transforms the inputs to stage t and the decision in stage t into the output state.

Utility function U

U: $C_{t+1} \rightarrow R$ is a mapping such that $(U(C_{t+1}))$ is the utility of a consequence of $C_{t+1} \in C_{t+1}$ to the decision-maker. Alternatively, $U(C_{t+1}) \equiv U[T(C_t, NCF_t, r_{ti}, d_{ti})]$ measures the utility of the transformation of the input state to the output state.

Payoff function W

W: $(\Omega_t \times P_t) \to R$ expresses the result of the interaction of the state space and the action space in terms of a payoff to the decision-maker. The payoff function, W(Ct, NCFt, rti, dti), is defined in terms of utility as follows: W: $(\Omega_t \times P_t) \to R$, such that U(Ct+1) \equiv U[T(Ct, NCFt, rti, dti)] \equiv W(Ct, NCFt, rti, dti).

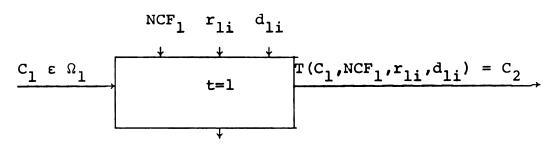
 \underline{SP} .-- The search problem is to optimize the utility function, U, over all of the decisions, d_{ti} , in the action space, P_{+} . Thus:

For a given i, $i=1,\ldots,4$

max U[T(C_t, NCF_t, r_{ti}, d_{ti})].
d_{ti}

The output state becomes the input state for the subsequent period t+1.

The optimal decision for each i is denoted by d_{ti}^* and the optimum utility as $U[T(C_t, NCF_t, r_{ti}, d_{ti}^*)]$. Then the $U[T(C_t, NCF_t, r_{ti}, d_{ti}^*)]$ for each i are compared so as to:


Result. -- The SP solution gives the following results:

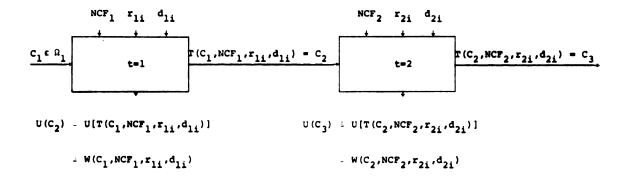
- 1. The optimal decision, d*_{ti*}, with respect to the utility function, U.
- 2. The optimal value, $U(C_{t+1}) \equiv U[T(C_t, NCF_t, r_{ti}, d*_{ti*})]$, of the utility function with respect to all possible actions in the action space, P_+ .

Model of the Single-Stage Problem Under Risk

The single-stage deterministic model will now be modified to incorporate risk. The net cash flow and the interest rates will be assumed to be unknown prior to making the decision in stage t, and defined as random (stochastic) variables. The model of this decision structure is represented schematically in the following diagram:

Asterisks denote optimal values.

<u>Decision Structure</u>.--The state space is modified to indicate that the net cash flow, and the interest rates are unknown. The action space remains the same


SP.--The SP is now concerned with the expected value of the utility function. Mathematically, these modifications can be incorporated to result in the following relationships:

The optimal decision for each i is denoted by d^*_{li} and the optimal expected utility as $E[U[T(C_1, NCF_1, r_{li}, d^*_{li})]|i]$. Then the $E[U[T(C_1, NCF_1, r_{li}, d^*_{li})]|i]$ for each i are compared so as to max $E[U[T(C_1, NCF_1, r_{li}, d^*_{li})]|i]$.

Result. -- The result is the optimal decision, $d^*_{li^*}$, and the optimum expected utility, $E[U[T(C_1, NCF_1, r_{li}, d^*_{li^*})]]$, for that decision structure.

Multi-Stage Decision Problem Under Risk

The model is now expanded to include more than one stage. The resulting model will incorporate random (stochastic) variables and multiple stages. The decision structure is represented schematically for two stages as follows:

where: $\Omega_t = \{C_t\}$; $C_t = \text{multiple-element}$ set containing the non-controllable values indicating the state of the system for stage t. Ω_t is known immediately prior to making the decision in stage t.

 C_1 = the input state to stage one, where $C_1 \in \Omega_1$

 ${\rm C_2}$ = the output from stage one which serves as the input state to stage two, where ${\rm C_2}$ ϵ Ω_2

 C_3 = the output from stage two that will serve as the input state to stage three, where $C_3 \in \Omega_3$.

Decision Structure. -- The state space is expanded to include the variables in stage two as well as those in stage

one. The action space is similarly expanded to include both stages. The utility function also incorporates both stages. The payoff function for each stage is related to only the variables within the stage to which it applies.

SP.--The SP is to maximize the expected utility for the final stage in the multi-stage problem. The utility of the final stage is expressed as $U(C_3) \equiv U[T(C_2, NCF_2, r_{2i}, d_{2i})]$. Since the intermediate value $C_2 = T(C_1, NCF_1, r_{1i}, d_{1i})$, the latter expression can be entered into the preceding expression in place of C_2 :

$$U(C_3) \equiv U[T[T(C_1, NCF_1, r_{1i}, d_{1i}), NCF_2, r_{2i}, d_{2i}]].$$

In general, T* may be used to denote a composite of multiple transformation functions. In the preceding two-stage problem, this composite transformation function is described as follows:

$$T^*[C_1, NCF_1, r_{1i}, d_{1i}, NCF_2, r_{2i}, d_{2i}] =$$

$$T[T(C_1, NCF_1, r_{1i}, d_{1i}), NCF_2, r_{2i}, d_{2i}].$$

For a given i, i=1,...,4

max
$$E[U[T*(C_1, NCF_1, r_{1i}, d_{1i}, NCF_2, r_{2i}, d_{2i})]|i].$$
 d_{1i}, d_{2i}

Then:

$$\max_{i} E[U[T^{*}(C_{1}, NCF_{1}, r_{1i}, d_{1i}^{*}, NCF_{2}, r_{2i}, d_{2i}^{*})]|i].$$

Result. -- The result is the optimal set of decisions, $d^*_{i^*}$, where $d^*_{i^*} = (d^*_{1i^*}, d^*_{2i^*})$, and the optimum expected utility of the decision structure,

The N-Stage Decision Problem

The preceding description of the two-stage problem may be expanded to include any N number of stages:

Let
$$NCF = (NCF_1, ..., NCF_N)$$
 ε $Y \subset \mathbb{R}^N$
$$d_i = (d_{1i}, ..., d_{Ni}) \varepsilon P_1 X P_2 X ... X P_N \equiv P \subset \mathbb{R}^N$$

$$r_i = (r_{1i}, ..., r_{Ni}) \varepsilon Z \subset \mathbb{R}^N$$

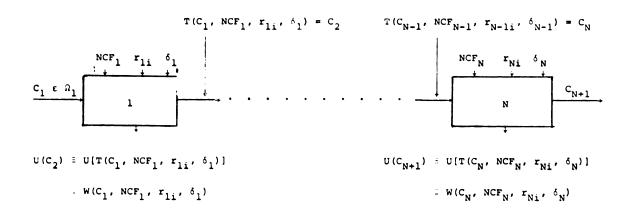
The transformation function can also be restated as:

T:
$$(\Omega_1 \times Y \times Z \times P) \rightarrow \Omega_{N+1}$$
 where
$$T(C_1, NCF, r_i, d_i) = C_{N+1} \in \Omega_{N+1} \text{ for all}$$

$$(C_1, NCF, r_i, d_i) \in (\Omega_1 \times Y \times Z \times P)$$

The solution to the N-stage problem is the set of decisions, $d^*_{i^*}$, where $d^*_{i^*} = (d^*_{li^*}, \dots, d^*_{Ni^*})$, and the optimum expected utility of the decision structure,

 $E[U[T*(C_1, NCF, r_i, d*_{i*})]]$, where T* is the composite of the N individual transformation functions.


The Decision Problem to be Analyzed in This Study

The objective of the model in this study is to evaluate short-term financing under conditions of risk. The criterion for decision is the expected utility of the unrestricted ending cash balance of the firm at the end of the final stage in the planning period. 1

It is assumed that the minimum required cash balance has been specified. Given this required minimum, the model determines that financing alternative which maximizes the expected utility. Hence, the decision for this study is a subset of the total decision problem of determining the optimal minimum required balance level and optimal financing alternative. This total multistage decision problem is discussed in the following section. Subsequently, the decision problem in this study will be presented in terms of that total problem.

The multi-stage probabilistic decision structure is represented schematically as follows:

The unrestricted ending cash balance is defined as the ending cash balance less that portion of cash that is restricted to the future payments of principal and interest specific to each financing alternative, plus the amount of interest and principal due from invested surplus cash.

where the following definitions hold for t=1,...,N:

$$C_{t} = \{C_{t1i}, C_{t2i}, C_{t3i}, C_{t4i}\}$$

Ctli = cash balance at the beginning of stage t
 under financing alternative i.

C_{t2i} = amount of interest and principal payable
 at the beginning of stage t under financing
 alternative i.

C_{t4i} = maximum amount available for borrowing
during stage t under financing alternative i.

NCF_t = net cash flow random variable for stage t.

r_{ti} = interest rate random variable for stage t under financing alternative i.

 δ_{ti} = a strategy function such that:

$$\delta_{ti} \underbrace{(C_1, d_{1i}, NCF_1, \dots, d_{t-1i}, NCF_{t-1})}_{h_{ti}} \equiv d_{ti} \in P_t$$

This δ_{ti} is a strategy function for determining the value of the minimum required cash balance in stage t for financing alternative i. Thus, all essential prior history of the process, h_{ti}, is known immediately before the decision is made.

T = transformation function

U = utility function

W = payoff function

and let:

NCF = (NCF₁,...,NCF_N)

$$r_i = (r_{1i},...,r_{N})$$
 $\delta_i = \{\delta_{1i},...,\delta_{Ni}\}$

where $\delta_i (h_i,...,h_t,...,h_N) = (d_{1i},...,d_{ti},...,d_{Ni}) = d_i$ and,

 $h_t = (C_1, d_{1i}, NCF_1,...,d_{t-1i}, NCF_{t-1})$

Decision Structure. --

State space $\Omega_t = \{C_t\}$ Action space $\Delta = \{\delta_i\}$ Utility function U, where $U(C_{N+1}) \equiv U[T(C_N, NCF_N, r_{Ni}, \delta_{Ni})] \equiv U[T^*(C_1, NCF, r_i, \delta_i)].$

SP.--

For a given i, i=1,...,4

 $\max_{\delta_{i}} E[U(C_{N+1})|i] = E[U(T^{*}(C_{1}, NCF, r_{i}, \delta_{i}))|i].$

The action space is now a set of strategies, Δ , as opposed to the earlier definition as a set of actions, P.

The optimal strategy for a given alternative i is denoted by $\delta *_i$.

Then:

$$\max_{i} \{ \max_{\delta_{i}} \{ E[U(C_{N+1})|i] \} \}$$

$$= \max_{i} E[U[T^{*}(C_{1}, NCF, r_{i}, \delta^{*}_{i})]|i].$$

Result. -- The result is the optimal strategy function, $\delta^*_{i^*}, \text{ where } \delta^*_{i^*}(h_1, \dots, h_t, \dots, h_N) \equiv d^*_{i^*}, \text{ and } d^*_{i^*} = (d^*_{1i^*}, \dots, d^*_{Ni^*}), \text{ and the optimum expected utility of the decision structure, } E[U[T^*(C_1, NCF, r_i, \delta^*_{i^*})]].$

The Model in This Study as An Analysis of a Subset, Δ_1 , of the Strategies δ_1 in Δ

In this study, certain minimum required cash balance strategy functions, $\delta_{\bf i}^{\bf g}$, were evaluated. These $\delta_{\bf i}^{\bf g}$ are elements of a set of minimum required cash balance strategy functions, $\Delta^{\bf g}$, where $\Delta_{\bf i}^{\bf g} = \{\delta_{\bf i}^{\bf g}\}^{\bf l}$ and $\Delta^{\bf g}$ is a subset of Δ . The evaluation procedure utilized in this study consisted of evaluating the financing alternatives for a set of strategy functions which resulted from the selected set of minimum required cash balance values. 2

The value of a strategy function is a set of minimum required cash balances. For example: {(\$3,000,000),...,(\$3,000,000)}. This indicates that the minimum required cash balance is \$3,000,000 for each period.

²See page 83, Chapter V for a discussion of the minimum required cash balances selected for evaluation and presentation in this study.

The output state of the final stage was determined for each financing alternative. Then the alternatives were compared and an optimal alternative selected. This process was repeated for each set of minimum required cash balances considered in the study. In notational form the following procedure was followed for each set of minimum required cash balances:

For each i, i=1,...,4, determine $E[U(C_{N+1}) \mid \Delta_i^g]$. Then:

$$\max_{i} E[U(C_{N+1}) | \Delta_{i}^{g}].$$

Result. -- The result is the optimal financing alternative i* and the optimum utility $E[U(C_{N+1}) \mid \Delta_i^g *]$.

The results may be suboptimal since: $E[U(C_{N+1})|\Delta_{\mathbf{i}}^{g*}] \leq E[U(C_{N+1})|\Delta_{\mathbf{i}}^{*}] \leq \text{the expected value that}$ would result from an optimal combination of financing alternatives and minimum required cash balance strategies \leq the expected value that would result if the firm were allowed to utilize combinations of financing alternatives or change alternatives from period to period.

Assumptions

- 1. The beginning balances of C_{t1i} , C_{t2i} , C_{t3i} , C_{t4i} , are known with certainty by management.
- Management specifies the minimum amount of cash that the firm desires to hold in each stage.

- 3. Borrowing is effected at a given annual rate of interest, different for the different types of borrowing. The interest rates are probabilistically defined, and management will decide the type of distribution which best describes the interest rates for each stage.
- 4. Borrowing constraints will be imposed, specific to the type borrowing.
- 5. Borrowing shall be accomplished as needed during the stage in which the need arises, the amounts of which will follow from the specification of the minimum required cash balance.
- 6. Funds acquired through borrowing are repayable, including interest owed, at the beginning of the stage due unless otherwise stated.
- 7. All surplus cash will be invested in an earning asset at the beginning of the stage available.
- 8. Management will project the type of distribution for the interest rate on reinvested cash.
- 9. All invested surplus cash will be available, plus interest, at the beginning of the stage following the stage in which it was invested.

10. The model considers the same financing alternative for all thirteen periods. The alternatives are handled separately and no combinations are allowed. The periods are examined sequentially.

Probabilistic Dynamic Programming as a Possible Approach to Solving the General Stochastic Multi-Stage Model

The general model, presented in the preceding section, is defined as stochastic in nature in that it contains variables that are described as random. variables are expressed in the form of probability distributions. The effect of these random variables makes the solution to a multi-stage problem appreciably more difficult when the variables are considered simultaneously. Thus, methods which allow for sequential solution are preferable to those that do not. Two methods have been generally discussed in the literature for use in solving this type of problem--probabilistic dynamic programming and simulation. Probabilistic dynamic programming, an optimization technique, is worthy of discussion even though, without a practical computer approach for solving complex dynamic programming problems, it is not suitable for routine use.

Programming (New York: John Wiley and Sons, Inc., 1966), pp. 153-158.

The stochastic, multi-stage model consists of an N-stage stochastic system with random variables that affect the utility function and transformation function at each stage. The following definitions are made:

h_t = input state to stage t (history of the
 process to stage t)

 δ_{+i} = decision strategies in stage t

NCF_t = net cash flow
} random variables in stage t

r_{+;} = interest rates

 $U_t = U_t(h_t, NCF_t, r_{ti}, \delta_{ti}) - utility function$ for stage t

 $h_{t-1} = T_t(h_t, NCF_t, r_{ti}, \delta_{ti}) - transformation$ function for stage t

The subscript t refers to that stage where there are t stages left in the process. NCF, and r, are assumed to be independently distributed with probability distributions $P_{+}(NCF_{+})$ and $P_{+}(r_{ti})$. Probabilistic dynamic programming also assumes that the total utility (R_N) for the N stage problem is equal to the sum of the utility of each stage.

$$R_{N}(C_{N},...,C_{1}, NCF_{N},...,NCF_{1}, r_{Ni},...,r_{li}, \delta_{Ni},...,\delta_{li})$$

$$= \sum_{t=1}^{N} U_{t}(C_{t}, NCF_{t}, r_{ti}, \delta_{ti})$$

 $f_+(C_+)$ = the maximum expected utility as a function of the input state C+

$$f_{t}(C_{t}) = \max \Sigma \Sigma P_{t}(NCF_{t}) \cdot P_{t}(r_{ti})[U_{t}(C_{t}, NCF_{t}, r_{ti}, \delta_{ti})]$$

$$+ f_{t-1}(T_{t}(C_{t}, NCF_{t}, r_{ti}, \delta_{ti}))], \text{ where } t=2,...,N$$

and

$$f_1(C_1) = U_1(C_1, NCF_1, r_{1i}, \delta_{1i}), where t=1.$$

Probabilistic dynamic programming presents a feasible approach to the stochastic multi-stage problem. Some probabilistically defined variables in this study exhibit interdependence between stages, however. This interdependence does not necessarily discount solution of the model by probabilistic dynamic programming. Rather, the interdependence of the net cash flows between periods necessitates the redefinition of the probability distributions, $P_t(NCF_t)$, as conditional probabilities, $P_t(NCF_t \mid \overline{NCF}_{t-1})$, where \overline{NCF}_{t-1} denotes the net cash flows prior to period t.

Since additional state variables must be added to account for the interdependence, the problem becomes more difficult and time-consuming to solve. Similarly, the financing alternatives affect more than one stage and the additional state variables necessary again complicate solution. Until a practical computer approach for solving

leach additional state variable expands the recursive relationships and causes the problem to become more complex.

large-scale probabilistic dynamic programming models is developed, the problems remain computationally complex and expensive.

Simulation

Simulation provides another method for solving the multi-stage probabilistic problem. Simulation is defined as "... a numerical technique for conducting experiments with certain types of mathematical models which describe the behavior of a complex system on a digital computer over extended periods of time." As in probabilistic dynamic programming, simulation allows the multi-stage stochastic process to reveal itself sequentially. A solution may be achieved by maximizing the final stage utility function.

Since the net cash flow of the model in question involves random variables as well as interdependence of those variables (lag structures), analytical solutions are difficult. Naylor notes that even though an analytical solution may exist for a particular model, it may be less costly in terms of analyst and computer time to run a simulation. That is, the additional information gained from an analytical solution may not be sufficient to justify

¹Orgler, p. 41.

Thomas H. Naylor, Computer Simulation Experiments with Models of Economic Systems (New York: John Wiley and Sons, Inc., 1971), p. 2.

the search time involved. In this particular model, the net cash flow determination provided a major point of discussion. The author explored various techniques and elected to run a simulation. The simulation inputs were obtained from real-world data as discussed in Chapter IV.

l<u>Ibid.</u>, p. 5.

CHAPTER IV

MODEL DESCRIPTION

Introduction

The model to be presented in this study is designed to assist management in the evaluation of alternative short-term financing strategies. The criterion for decision is the maximization of the expected utility of the unrestricted ending cash balance. The maximization of the unrestricted ending cash balance is assumed in this study to be synonymous with minimizing the net financing cost to the firm.

Planning horizon² is determined by the initial cash balance and the projected net cash flows. Given a need to effect financing, four alternative strategies are evaluated by the model, and an optimal strategy selected. Input to the model for each period consists of the constraints on the financing alternatives, the distribution of the interest rate for each financing alternative, the net cash

See p. 32, Chapter III for a definition of the unrestricted ending cash balance.

²The planning horizon in this study will consist of thirteen periods (or stages) with each period being four weeks in length.

flow distribution, and the minimum cash balance specified by management.

The effect on the cash balance for each period specific to the individual financing alternative is calculated utilizing a simulation program. The cash balance is affected, for example, by any principal and interest payments made in the period, by the investment of surplus cash in marketable securities or by the conversion of marketable securities into cash. At the end of the thirteenth period the unrestricted ending cash balance for each financing alternative is determined. The unrestricted ending cash balance must be calculated for many different values of the variables associated with each financing alternative because of the probabilistic nature of the cash flows and interest rates. Ultimately, two-hundred values of the unrestricted ending cash balances for each financing alternative are generated. These twohundred values are punched on cards by the computer. Cards are then sorted and a cumulative probability distribution drawn for each alternative. The four resulting distributions are then compared through the use of Stochastic dominance, and an optimal short-term financing alternative selected. A general diagram of the model can be seen in Figure 1. The following definitions correspond to the diagram:

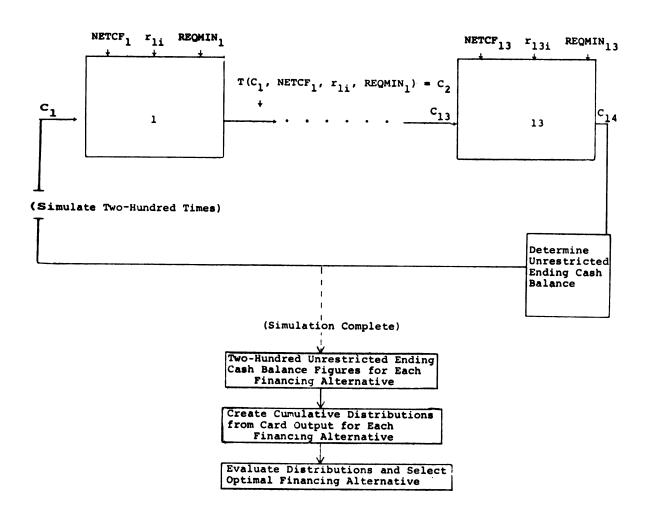


Figure 1.--Diagram of the model.

i = the financing alternative being evaluated

NETCF₊ = the net cash flow in period t

r_{ti} = the interest rate in period t for
 financing alternative i

REQMIN_t = the minimum required cash balance for
 period t

The following designations have been changed to correspond to the notation in the computer program:

NETCF_t = the net cash flow in period t, and replaces

NCF in the preceding models. 1

REQMIN_t = δ_{ti} (h_t) = d_{ti} = the minimum required cash balance. REQMIN_t replaces δ_{t} in the preceding models.

Methodology

The model considers the same financing alternative for all thirteen periods in the planning horizon. The periods are examined sequentially. The alternatives are handled separately and no combinations are allowed. For the first period, the input data are considered to determine whether excess cash exists to be invested, or whether the short-term financing alternative being evaluated should be implemented. If short-term financing is needed, the constraints applied to that alternative are initiated. The output consists of the cash balance, interest and principal

¹ See Chapter III.

payable in future periods, any surplus cash receivable in future periods under that alternative and any interest on that invested surplus cash.

The alternative i=1 is applied to each of the thirteen periods. At the end of the thirteenth period, the unrestricted ending cash balance under i=1 is determined. This process is repeated for all four financing alternatives (i=1,...,4). Four unrestricted ending cash balances, one for each alternative, result. If all values for the variables in the model were deterministic, the analysis would be complete at this point. The four values would be compared and an optimal financing alternative selected.

However, a number of the variables are probabilistic and, as such, are defined by probability distributions. Therefore, the entire analysis must be repeated a number of times. In this model, the analysis is run two-hundred times for each financing alternative resulting in a probability distribution which is an empirical estimate of the theoretical distribution for each alternative. These distributions are then compared, and an optimal alternative selected by stochastic dominance.

The Transformation Function

The transformation function is responsible for converting the input state of period t, C_{+} , and any

transactions in that period into the output state for period t, C_{t+1} . The transformation function states the relationships between the input state, the net cash flow, the amount of money borrowed or invested, the interest rate and the minimum required cash balance for the period to which it applies. Thus, the transformation function is stated as $T(C_t, NETCF_t, r_{ti}, REQMIN_t) = C_{t+1}$. The actions of the transformation function can be divided into four steps, as follows:

1. The transformation function determines the potential cash balance 1 from the input state for period t, C_t , and the value of the net cash flow and minimum required cash balance 2 at the beginning of period t. PCASBAL(t) = CASH(t-1) + NCF(t)

[NCF(t) = NETCF(t) + INVINC(t) + INVSPC(t-1) - FINTRN(t)]

- NCF(t) = adjusted net cash flow for period t

¹The potential cash balance for a period consists of the ending cash balance of the previous period plus the net cash flow for that period and any adjustments necessary as a result of prior financing arrangements.

²See p. 76 of this chapter for a discussion of the minimum required cash balance.

- INVSPC(t-1) = surplus cash invested in period t-1
 - FINTRN(t) = payment of principal and interest at the beginning of period t
 - CASH(t-1) = ending cash balance for period t-1
 - Ct = input state consisting of: beginning
 cash balance in period t; any interest
 on invested surplus cash that will be
 received at the beginning of period t;
 invested surplus cash that will be
 converted back to cash at the beginning of period t; the amount of
 interest and principal payments at
 the beginning of period t for the
 financing alternative under consideration; and the amount available for
 borrowing in period t under financing
 alternative i.
- 2. The transformation function then determines the difference between the potential cash balance and the minimum required cash balance:

DIF(t) = PCASBAL(t) - REQMIN(t)
where:

- REQMIN(t) = minimum required cash balance for period t.
- 3. The DIF(t) is then evaluated. If the DIF(t) is positive, the excess surplus cash is invested. This invested surplus is converted to cash at the beginning of the subsequent period. The interest on this invested cash is assumed to be received at the beginning of the subsequent period. If the DIF(t) is negative, the short-term

¹ See Figure 2.

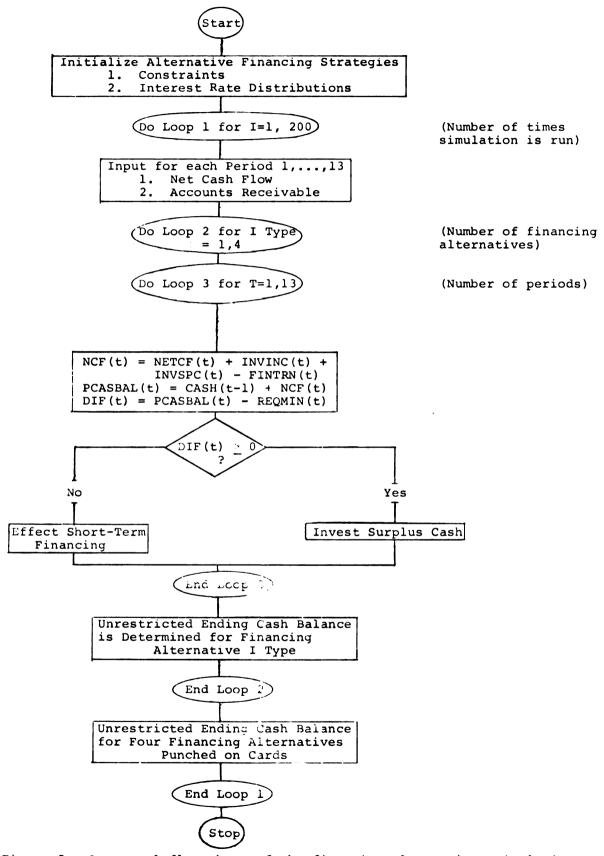


Figure 2.--A general flow chart of the financing alternatives simulation.

financing alternative under consideration is implemented.

The amount to be borrowed is determined, as well as the payment schedule for the principal and interest.

4. The output state for period t, C_{t+1} , is then determined. It consists of the cash balance at the beginning of the period t+1, the amount of surplus cash invested in period t and interest on that surplus cash (both of which will be received at the beginning of the period t+1), and the amount of interest and principal resulting from previous short-term financing payable at the start of period t+1.

Four financing alternatives are included in the model. In the subsequent section, these short-term financing alternatives will be discussed. Further, the techniques of evaluating these alternatives using the computer will be presented.

The Short-Term Financing Alternatives

Four financing alternatives are considered by the model--line of credit, term loan, commercial paper, and accounts receivable loan.

Line of Credit. -- A line of credit consists of an informal agreement between a commercial bank and the customer regarding the maximum amount of unsecured credit the bank will allow the customer at any one time. The

bank requires that the customer maintain a cash balance at the bank, the amount of which is directly proportional to either the amount of funds borrowed, or the amount of the commitment.

Term Loan. -- A term loan is a formal loan agreement effected at a commercial bank. Repayment of the loan and interest payments are made in regular periodic installments. The duration of the loan may be up to ten years but the minimum and maximum limits are arbitrary. For the purposes of this study, the loan will extend over six periods.

Commercial Paper. -- Commercial paper is issued by a firm in the form of unsecured short-term negotiable promissory notes which are sold in the money market.

Unlike the prime rate or bank loan, commercial paper rates fluctuate considerably reflecting money market conditions.

Issuance of commercial paper is generally a less expensive means of obtaining funds than a short-term loan from a commercial bank. However, only the most credit-worthy firms can issue it.

Accounts Receivable Loan. -- The accounts receivable constitute one of the most liquid assets of a firm. The commercial bank will allow a firm to borrow utilizing their accounts receivable as security for the loan. The

bank assesses the quality and size of the receivables to determine the percentage of the face value that can be borrowed. The accounts receivable loan is a more or less continuous financing arrangement with the maximum amount of the loan allowable varying with the amount and quality of the accounts receivable of the firm.

Computer Evaluation of the Financing Alternatives

Line of Credit. -- The maximum amount that can be borrowed on a line of credit is by definition a deterministic value at any point in time. For the purposes of this study, that value is assumed to remain constant for each period in the planning horizon. The maximum amount that can be borrowed with this financing alternative, and the distribution of interest rates for each period form the input data to the model. The model then determines if the maximum amount that can be borrowed is sufficient to cover the financing needs of the firm. If it is sufficient, the amount needed is borrowed. It it is not sufficient, the maximum available is borrowed and the remainder is classified as a stockout. The cash balance for each period then is equal to the potential cash balance

¹A stockout indicates that a less than optimal quantity of cash can be obtained and results in an unrestricted ending cash balance that is below that achievable when the desired amount can be borrowed.

²See Figure 3.

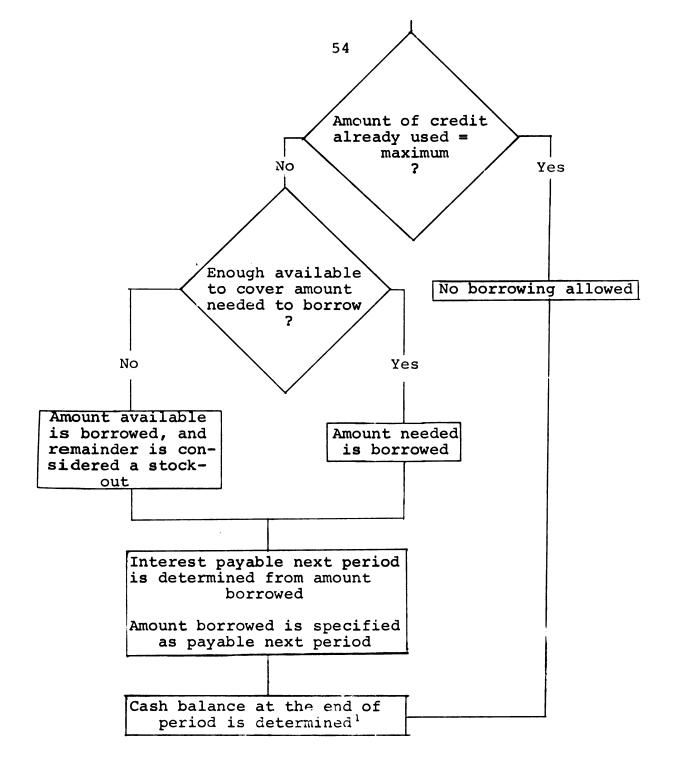
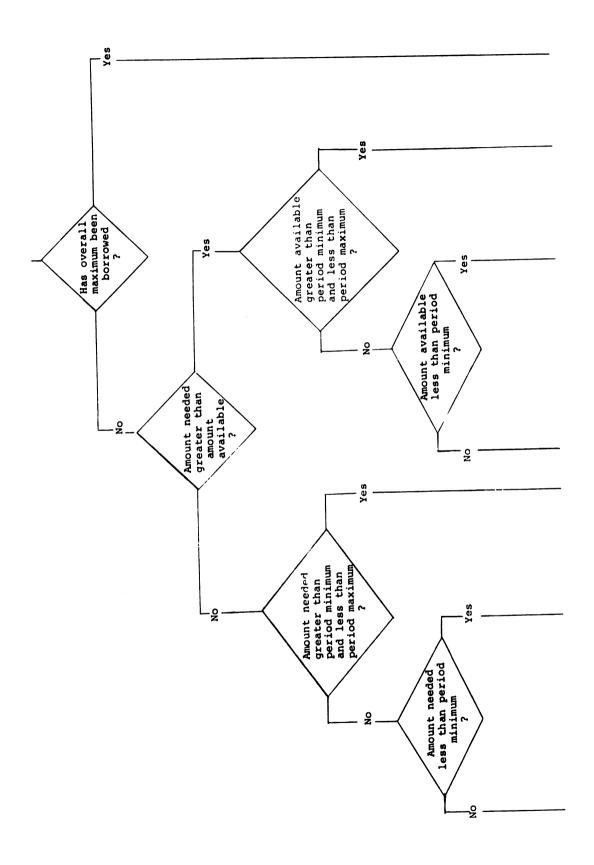


Figure 3.--Line of credit.

¹CASH(t) = PCASBAL(t) + DIF(:)

²The flow chart is for each period.


plus the amount borrowed. At the end of the thirteenth period, the unrestricted ending cash balance is equal to the cash balance in the thirteenth period, plus interest on invested surplus cash not received, plus invested surplus cash, less principal and interest due the subsequent period.

Term Loan. -- Input data for the term loan financing alternative include: (1) the maximum and minimum amounts that can be borrowed each period; (2) the maximum amount that can be outstanding at any time; and (3) the distribution of interest rates for each period. 1

The model evaluates the amount needed in terms of the maximum and minimum constraints on the amount that can be borrowed as follows: If the amount available is greater than the amount needed and:

- The amount needed is less than the minimum, then nothing can be borrowed and the needed amount is considered a stockout.
- 2. The amount needed is greater than the maximum, then the maximum is borrowed and the remainder is considered a stockout.
- 3. The amount needed is between the maximum and the minimum, then the amount needed is borrowed.

¹See Figure 4.

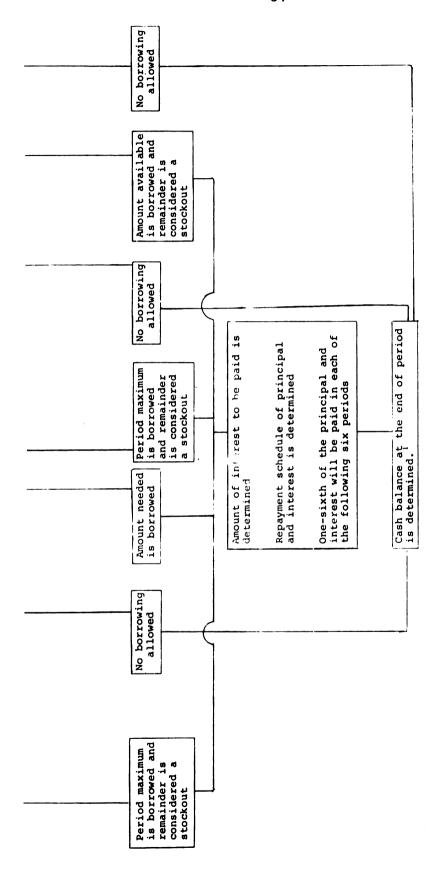


Figure 4.--Term loan.²

¹CASH = PCASBAL(t) + DIF(t)

²The flow chart is for each period.

If the amount available is less than the amount needed and:

- The amount needed is less than the minimum, then nothing can be borrowed and the needed amount is considered a stockout.
- 2. The amount available is greater than the maximum, then the maximum is borrowed and the remainder is considered a stockout.
- 3. The amount available is between the maximum and the minimum, the amount available is borrowed and the remainder is considered a stockout.

One-sixth of the principal and interest due is to be paid each period. The program determines the dollar amount to be paid as principal and interest. The cash balance for each period is equal to the potential cash balance plus the amount borrowed. At the end of the thirteenth period the unrestricted ending cash balance equals the cash balance plus the interest on invested cash not yet received, plus invested surplus cash, less principal and interest payments for the next six periods.

Commercial Paper. -- In theory, the quantity of commercial paper that can be issued by a firm has no static maximum. However, management generally sets a maximum issuance which is considered to be in the best interests of the financial well-being of the firm. This maximum

amount of commercial paper that is allowed to be outstanding at any one time, and the interest rate to be paid on
that outstanding paper each period serve as input data for
the model.

The model then determines if the amount needed exceeds the maximum amount available with this alternative. If the amount needed is available it is borrowed. If the amount needed exceeds that available, what is available is borrowed and the remainder is considered a stockout. The model also determines the interest due on the amount borrowed. The interest must be paid in the period during which it was borrowed. Thus, the cash balance at the end of the period is equal to the potential cash balance, plus the amount borrowed, less any interest paid. At the end of the thirteenth period the unrestricted ending cash balance is equal to the cash balance at the end of the final period, plus invested surplus cash and any interest on those funds, less the amount of principal due for the next three periods. 1

Accounts Receivable Loan. -- The accounts receivable balance, the maximum amount in dollars that can be borrowed, and the maximum percentage of accounts receivable that can be used as collateral for the loan are entered as input to

¹ See Figure 5.

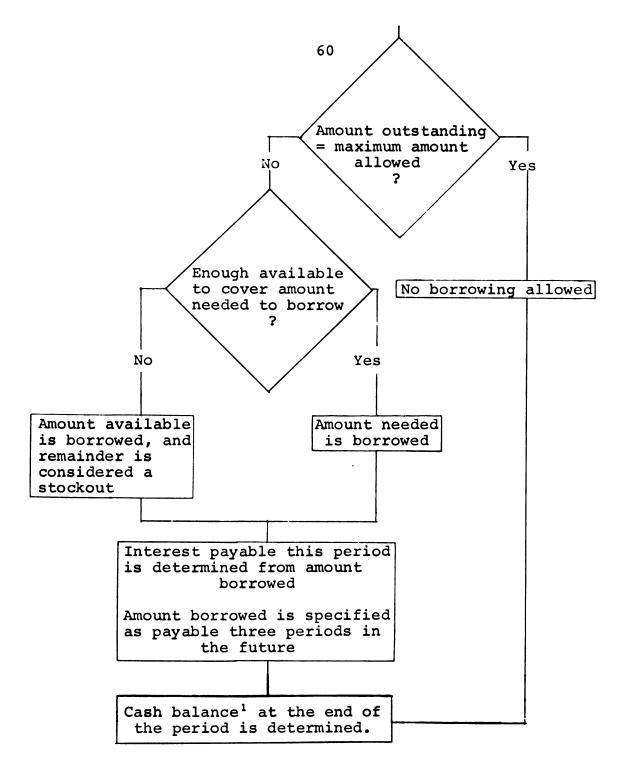


Figure 5.--Commercial paper.²

¹The cash balance CASH(t) = PCASBAL(t) + DIF(t) - INTPAY(t).

²The flow chart is for each period.

the model. The interest rate to be applied each period is also entered.

The model then determines if the maximum amount that may be borrowed on the accounts receivable has been exceeded. If it has, the amount needed is declared a stockout. If the maximum amount available has not been exceeded, the program considers the total dollar value of the accounts receivable and applies to that value the percentage upon which money can be borrowed. If the resultant value has been exceeded, the amount needed is considered a stockout. If the amount available has not been exceeded, the amount needed is borrowed assuming the full amount is available. If the full amount needed is not available, what can be borrowed, is, and the remainder is a stockout.

Interest on the loan is to be paid at the beginning of the period subsequent to the one in which the loan was effected. The amount borrowed is repayable at the beginning of the next period. The cash balance for each period is equal to the potential cash balance plus the amount borrowed. The unrestricted ending cash balance at the end of the thirteenth period is equal to the invested surplus cash and interest on those funds, less principal and interest payable the subsequent period. 1

¹See Figure 6.

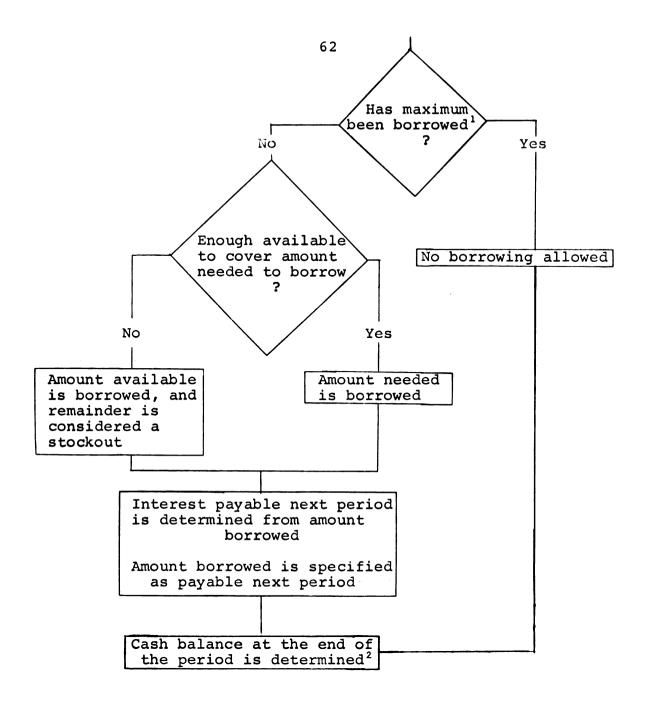


Figure 6.--Accounts receivable loan.3

¹Maximum = minimum (specified minimum dollar amount or the percentage of the dollar amount of the accounts receivable).

 $^{^{2}}$ CASH(t) = PCASBAL(t) + DIF(t)

³The flow chart is for each period.

Model Input Data

There are four basic categories of input data to the model. These include, for each period, the constraints on the financing alternatives, the interest rates or distributions specific to the financing alternatives, the net cash flow distribution and the minimum required cash balance. The constraints on the financing alternatives were presented in the preceding section. The other three categories will be discussed in detail in the following section.

Interest Rates on the Financing Alternatives

The interest rate for each financing alternative is entered into the model as input data for each period. The interest rates may be submitted either as deterministic values or as probabilistic values with normal or uniform distributions. Management specifies the value that is used according to the certainty with which the value can be described at the point in time when the model is to be run. When the interest rate is a deterministic value, only that figure is necessary as input. However, when the interest rate is projected to be a probabilistic value with a normal distribution, the expected value of the

¹ Computer subroutines for handling the deterministically or probabilistically defined interest rates may be found in Appendix A.

interest rate and the standard deviation for each period must be entered. Similarly, when a uniform distribution is projected, the maximum and minimum interest rate values for each period must be included.

The interest rates are subject to the constraints applied to the financing alternatives with regard to the number of periods for which the loan is made and the repayment schedule.

Methods of Determining the Net Cash Flow. -- In theory, there are a number of approaches which could be used to determine the random values of the net cash flow. Three methods will be briefly discussed in the following section: (1) time series analysis; (2) the net cash flow as some function of one or more random variables; and (3) simulation. A time series analysis of the historical net cash flow values could be made to estimate the stochastic process that generated those values. The stochastic process would then be applied to generate the input net cash flow values for the model. Another approach could consist of analytically developing the stochastic process of the net cash flow as some function of the random variable, sales, which itself is generated by a stochastic

Paul E. Pfeiffer, Concepts of Probability Theory (New York: McGraw-Hill Book Company, 1965), pp. 294-295.

process. A similar technique consists of using the stochastic processes of more than one random variable. The net cash flow is then some function of a finite number of random variables. The stochastic process thus determined is then used to generate the input net cash flow data. Finally, the stochastic processes of the input variables may be sampled using simulation to generate the net cash flow values which can be used in the model. The analytically complex derivation of the stochastic process of the net cash flow is then eliminated.

1. Time series analysis. A stochastic process can be defined as a random phenomenon which arises through a process which is developing in time and in a manner controlled by probabilistic laws. In time series analysis observations are made at a constant interval over time. The statistical theory of time series analysis attempts to determine the mechanism generating an observed time series. The stochastic process, {X(t), t & T}, can

^{1&}lt;u>Ibid.</u>, pp. 164-170.

²For a further discussion of time series analysis see: E. J. Hannan, <u>Time Series Analysis</u> (London: Butler and Tanner, Ltd., 1967); Andrew H. Jazwinski, <u>Stochastic Processes and Filtering Theory</u> (New York: Academic Press, <u>Inc., 1970</u>); and <u>The Research Section of the Royal Statistical Society</u>, "Symposium on Stochastic Processes," <u>The Journal of the Royal Statistical Society</u>, <u>Series B</u>, <u>XI, No. 2, 1949</u> (reprint).

³Emanuel Parzen, <u>Stochastic Processes</u> (San Francisco: Holden-Day, Inc., 1962), p. 22.

be described by defining the joint probability law of the n random variables $X(t_1), \ldots, X(t_n)$ for all intergers n and all n points $t_1, \ldots, t_n \in T$. This joint probability law can be expressed by the joint distribution function, for all real numbers x_1, \ldots, x_n as follows:

$$F_{X(t_1),...,X(t_n)}(x_1,...,x_n) = Pr\{X(t_1) \le x_1,...,X(t_n) \le x_n\}$$

where $F_{X(t_1)}, \ldots, X(t_n)$ is a finite dimensional distribution of the process. The joint distribution function must be determined. Once the distribution of the stochastic process is estimated in the time series analysis, that distribution is utilized to generate the values of the net cash flow. The problem rapidly becomes involved and time-consuming to solve.

2. The net cash flow distribution as a function of one or more random variables. The stochastic process of the net cash flow can be determined if the distribution of some random variable, usually sales, and the function relating the net cash flow to this random variable are known. However, in this study, there are several random variables as well as some deterministic variables which enter into the calculation of the net cash flow. In order

 $^{^{1}\}text{A}$ distribution function indicates the cumulative probability of the random variable having a value \leq some real value.

to estimate the stochastic process of the net cash flow, the distributions of the random variables must be known. Further, the function relating these variables to the net cash flow must be known.

The function which relates the random variables to the net cash flow is not a linear function nor are all the variables defined by the same type of distribution. The Central Limit Theorem¹ states that "under very general conditions, the sum (or average) of a large number of independent random variables is a random variable which is approximately normally distributed." However, in this study, where only a few random variables are considered and the variables are not independent, the Central Limit Theorem fails to aid in achieving a solution. An analytical solution becomes necessary which may be difficult to solve. Thus, the author has discounted the application of this approach of determining the net cash flow distribution since it appears that the problems involved belie practical use by the layman.

An exploration of the two above approaches may well reveal valid methods for determining the stochastic process of the net cash flow. The approaches are both statistically complex, however, and as such are significant studies in themselves. They are perhaps more suitable

¹Pfeiffer, p. 134.

for those pursuing expertise in mathematics or statistical analysis.

3. Simulation. Simulation is another approach that can be used to generate net cash flow data. The stochastic processes of the random input variables are sampled to generate the net cash flow values. The method eliminates the problems associated with deriving the stochastic process of the net cash flow. The variables, both deterministic and stochastic, are defined and the program written and tested. Management can then simply supply the input variable values and derive the net cash flow values.

The author concedes that this approach may not be a panacea for all the problems involved in determining the net cash flow information necessary for the model. Nevertheless, it is an entirely adequate approach. It has a distinct advantage over the other approaches in that it requires less complex input from the firm. Experience has shown that this is an important consideration for management. Further, while the importance of the net cash flow data should not be understated, a method which generates

¹ See Chapter III, page 41 for a further discussion of simulation.

²That is to say, that no analytical or time series analysis must be made before the model can be used.

data representing a reasonable approximation of the net cash flow and yet is not unduly complex, is entirely sufficient.

Monte Carlo simulation will be used to generate values for the cash inflow and cash outflow variables and parameters for each period. There are two basic categories of variables. Some have their values determined from the values of other variables and the parameter value which relates them. Others are not specifically dependent on the values of any other variable. The variables will be defined as either probabilistic or deterministic.

Parameter values, which relate one variable to another numerically, will be handled deterministically or stochastically depending upon whether risk is involved.

Management decision will influence some of the variables when a statement of policy can affect the cash flow.

Figures 8 and 9 present a detailed outline of the net cash flow variables and how they are defined.

Probability Distribution Determination. -- Three types of probability distributions are used in this study to define the probabilistic variables -- normal, uniform and general. Each distribution is contained in a subroutine in the program and can be accessed according to the type of

¹ See Figure 7.

²See Table 1.

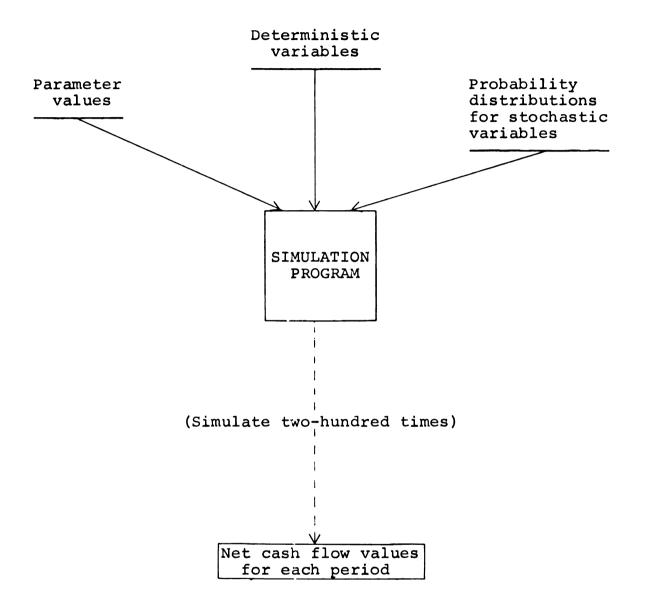


Figure 7.--General diagram of the net cash flow.

TABLE 1.--The net cash flow simulation variables.

Variables	Туре	Determination	Symbol
TOTAL SALES	S		SALES
Cash Receipts			
Cash Sales	s	P	CS
Collection of Accounts Receivable	D	P	CAR
New Debentures	D		ND
Common Stock Issued	D		COMSI
Sale of Fixed Assets	D		SFA
Cash Disbursements			
Direct Wages	s	P	DW
Raw Materials	s	P	RM
Factory Overhead*			FOH
Selling Costs*			SELL
General and Administrative Costs	D/S	P	GA
Research and Development Costs*			RD
Interest Payments on Long-Term Debt	D		DIP
Tax Payments	D/S		TXP
Miscellaneous Costs	D/S	P	MSCL
Debenture Repayment	D		DRP
Debenture Retirement Fund	D		DRF
Capital Expenditures	D/S		CAP
DividendsPreferred	D		DIVP
DividendsCommon	D		DIVC

^{*}Combined in general and administrative costs.

D - Deterministic Variable

S - Stochastic Variable

P - Parameter

Net Cash Flow for Each Period (T)

- A. Total sales (used as a basis for determining the values of some of the variables) (SALES)
- B. Cash inflows (CR)

```
CR(T) = CS(T) + CAR(T) + ND(T) + COMSI(T) + SFA(T)
```

- 1. Cash sales (CS)
- 2. Collection of accounts receivable (CAR)
- 3. Issuance of new long-term debt (ND)
- 4. Issuance of common or preferred stock (COMSI)
- 5. Sale of fixed assets (SFA)
- C. Cash outflows (CD)

```
CD(T) = DW(T) + RM(T) + FOH(T) + SELL(T) + GA(T) + RD(T) + DIP(T) + TXP(T) + DRP(T) + DRF(T) + CAP(T) + DIVP(T) + DIVC(T) + MSCL(T) + SPMISC(T)
```

- Direct wages (DW)
- 2. Raw material (RM)
- 3. Factory overhead (FOH)
- 4. Selling cost (SELL)
- 5. General and administrative cost (GA)
- 6. Research and development cost (RD)
- 7. Interest on long-term debt (DIP)
- 8. Tax payments (TXP)
- 9. Repayment of long-term debt (DRP)
- Sinking fund for long-term debt (DRF)
- 11. Capital expenditure (CAP)
- 12. Dividends--common (DIVC)
- 13. Dividends--preferred (DIVP)
- 14. Miscellaneous (MSCL) and special miscellaneous (SPMISC)
- D. Net cash flow calculation (NETCF)

$$NETCF(T) = CR(T) - CD(T)$$

E. Additional input data

Value of outstanding accounts receivable and timing of their collection during initial periods of the simulation.

Figure 8.--Net cash flow variables--basic outline.

Total Sales Ä

`\

Variable: deterministic or probabilistic Probability distribution: uniform, normal or general

- Cash Inflows ъ
- Cash sales

Probability distribution: uniform or normal CS(T) = ALPHA(T) * SALES CRS(T) = SATEC

H CRS(T) = SALES * (1-ALPHA(T)) where CRS(T) is the credit sales in period

Collection of accounts receivable 5

deterministic Variable:

The following data must be entered:

The number of periods necessary to complete collection of each credit sale . Ø

b. The percentage of outstanding accounts receivable to be collected each period The program calculates the amount of cash receivables to be collected as cash at the beginning of each period.

Issuance of new long-term debt ۳,

deterministic Variable:

Management indicates the timing and amount of any issuance of new long-term debt

Issuance of common or preferred stock 4

deterministic Variable:

Management indicates the timing and amount of any issuance of common or preferred stock

Sale of fixed assets 2

deterministic Variable:

Management indicates the timing and amount of any sale of fixed assets

Cash Outflows ပ Direct wages

Probability distribution: uniform or normal DW(T) = A(T) + SALESParameter A(T): probabilistic

Raw material 5

Probability distribution: uniform or normal RM(T) = B(T) * SALESParameter B(T): probabilistic

In the test company, program can easily be modified to allow them to be individually considered, however. these data were combined and added to the general-and-administrative category. Factory overhead, selling cost, and research and development. 3,4,6.

General and administrative Š

Parameter THETA(T): probabilistic

Probability distribution: uniform or normal GA(T) = FDGA(T) + THETA(T) * SALES where FDGA(t) is the fixed portion of this cost determined through regression analysis

7. Interest on long-term debt

Variable: deterministic Management indicates the timing and amount of interest on long-term debt

8. Tax payments

Variable: deterministic or probabilistic

Deterministic--management indicates the timing and amount of tax payments

Probabilistic--management enters the timing, amounts and probabilities of
amounts of the tax payments.

Probability distribution: general

the

9. Repayment of long-term debt

Variable: deterministic

Management indicates the timing and amount of any repayment of long-term debt

10. Sinking fund for long-term debt

Variable: deterministic Management indicates the timing and amount of any sinking fund payments

11. Capital expenditure

Deterministic--management indicates the timing and amount of capital expenditures Probabilistic--management enters the timing, amounts and probabilities of the amounts of the capital expenditures Variable: deterministic or probabilistic

Probability distribution: general

12. Dividends--common

Variable: deterministic Management indicates the timing and amount of common stock dividends paid

13. Dividends--preferred

Management indicates the timing and amount of preferred stock dividends paid deterministic Variable:

14. Miscellaneous

cost determined through regression analysis Parameter DELTA(T): probabilistic Probability distribution: uniform or normal MSCL(T) = MISC(T) + DELTA(T) * SALES where MISC(T) is the fixed portion of this

Special miscellaneous

Probabilistic--management enters the timing, amounts and probabilities of amounts of the special miscellaneous costs Variable: deterministic or probabilistic
Deterministic--management indicates the timing and amount of the special miscellaneous costs

the

Probability distribution: general

Figure 9. -- Net cash flow variables -- detailed outline.

distribution that most closely describes each probabilistic variable. The normal distribution requires as input, the mean and standard deviation of the parameter or variable. The upper and lower bounds of the parameter or variable value must be submitted when the uniform distribution is to be used. The general distribution allows management to submit possible values for the variable in question and indicate for each value the probability of occurrence associated with it.

Data for the Net Cash Flow. -- The financial information necessary to simulate the net cash flow and for subsequent use in determining the unrestricted ending cash balances for the financing alternatives, was collected from real-world data. A Mid-west-based firm in the Motor Carrier Industry (Company Z) agreed to provide the data. The firm has an annual revenue of approximately \$50 million and extends its operations over a multi-state area.

The basic financial planning structure for the firm is divided into periods of four weeks, each period ending on a Saturday, with thirteen periods per year. Data for each period of the calendar years 1969 and 1970 were collected as well as data from the first four periods of 1971. The accounting information was then converted to a cash basis.

The Minimum Required Cash Balance

The minimum required cash balance, REQMIN_t $\equiv \delta_{ti} \, (h_{ti}) \equiv d_{ti}$, for each period is assumed in this study to be a deterministic value specified by management. The amount of funds borrowed or reinvested, DIF_t, is directly related to the interaction between this required minimum, and the values of the input state variables, C_t, and the net cash flow, NETCF_t. As previously discussed, the results obtained may be suboptimal because only certain minimum required cash balance values are considered in the analysis. Ideally, the selection of an optimal financing alternative would require an analysis including all minimum required cash balances.

The minimum required cash balance value specified by management serves as an indicator of the feeling of management regarding the necessary balance between liquidity and profitability. A higher liquidity requirement indicates a more conservative attitude toward cash management. Conversely, a lower liquidity requirement may reveal more willingness on the part of management to risk a potential cash insolvency in order to gain higher profitability. 3

5

¹ See pages 48-51.

²See Chapter III, page 36.

³Higher profitability may be achieved by investing the funds rather than holding them as cash.

CHAPTER V

PRESENTATION AND EVALUATION OF RESULTS

In the preceding chapters, the short-term financing decision has been discussed and a model to assist management in making that decision has been proposed. The model is designed to evaluate four specific financing alternatives—line of credit, term loan, commercial paper and accounts receivable loan. Input data to the model for each period included: (1) the distribution of the interest rates of the financing alternatives; (2) the net cash flow distribution; (3) the minimum required cash balance; and (4) the constraints on the financing alternatives. Management received as output from the model a set of cumulative empirical probability distributions, one for each financing alternative, which were evaluated to select the optimal financing alternative for any specified short-term financing decision.

The application of the model to actual data will be presented and discussed in this chapter. The results will be evaluated using the condition of stochastic dominance. Finally, the model itself will be evaluated in

terms of its applicability, effectiveness and practicability for use in the solution of the short-term financing problem.

The input data will be presented in the following sections.

The Net Cash Flow Simulation

Input Data. -- The probability distributions for the stochastic input variables to the net cash flow simulation were obtained through discussion with the management of the test company, Company Z. The distributions of the stochastic variables were defined as follows:

- 1. Revenue had a uniform distribution
- 2. Tax payments had a uniform distribution
- 3. Special miscellaneous costs had a general distribution
- 4. The breakdown of credit and cash revenue had a uniform distribution
- 5. The parameter relating wages to total revenue had a uniform distribution
- 6. The parameter relating raw materials to total revenue had a normal distribution
- 7. The parameter relating general and administrative costs to total revenue had a normal distribution
- 8. The parameter relating miscellaneous costs to total revenue had a uniform distribution.

¹ See pp. 73-74 of Chapter IV for a full discussion of both the stochastic and the deterministic input variables.

The probability distributions which are used in this study are discussed on pp. 69, 75 of Chapter IV.

All other input variables were deterministically defined. The specific values for the input data to the net cash flow simulation are listed in Appendix B as they appear in the program.

Output Data. -- The output data consisted of the two-hundred net cash flow values for each of the thirteen periods in the planning horizon considered in this study. A cumulative net cash flow for each of the two-hundred simulations over the planning horizon was also given as printed output. In addition, the amount of the outstanding accounts receivable at the beginning of each of the thirteen periods was generated by this program. The latter data functioned as part of the input to the model in order to facilitate the evaluation of the accounts receivable loan alternative. An example of the printed net cash flow output is included in Appendix C.

Constraints

The financing alternatives will be designated by type in the discussion in this chapter as follows:

Type 1 refers to Line of Credit

Type 2 refers to Term Loan

Type 3 refers to Commercial Paper

Type 4 refers to Accounts Receivable Loan

Type 1 was divided into two categories, 1A and 1B, since the Compensating balance required with a line of credit

may be determined in two ways. The method of calculating the compensating balance influenced the evaluation of the alternative.

A number of constraints were imposed specific to each financing alternative. A line of credit is an informal agreement between a commercial bank and the customer regarding the maximum amount of unsecured credit the bank will allow the customer at any one time. For the purposes of this study, that maximum amount was \$5 million. The bank requires that the customer maintain a compensating balance at the bank. This amount may be either directly proportional to the amount of the funds borrowed, Type 1A, or to the amount of the commitment, Type 1B. In this study, 15 percent of the funds borrowed equaled the compensating balance for Type 1A. Type 1B had a required compensating balance which was equal to 15 percent of the \$5 million commitment, or \$750 thousand.

A term loan is a formal loan agreement effected at a commercial bank. Repayment of the loan and interest payments are made in regular periodic installments. For the purpose of this study the loan extended over six periods. The total maximum amount that could be borrowed with the term loan was \$5 million. Further, no more than \$1 million or less than \$50 thousand could be borrowed in any one period.

Commercial paper is issued by a firm in the form of unsecured short-term negotiable promissory notes which are sold in the money market. The maximum amount that a firm was allowed to borrow with this alternative in this study was \$5 million. The only additional constraint placed on this alternative was the ability of the firm to successfully issue commercial paper.

The accounts receivable loan is effected at a bank and is a loan for which the firm's accounts receivable are accepted as collateral. The percentage of the outstanding accounts receivable that may be borrowed against is a highly individual figure depending upon the amount and quality of the receivables and the confidence of the bank. This value generally varies considerably. Since this percentage is so variable and individual, and since it may readily be changed in the model specific to any particular firm, the author elected to make it a deterministic value in this study. An arbitrary value of 45 percent was used. The maximum amount that could be borrowed was \$5 million or 45 percent of the outstanding accounts receivable, whichever was less.

Stockout Penalties

A stockout occurred when the amount a firm needed to borrow was not available. This resulted in a cash balance at the end of the period that was less than the

minimum required cash balance. A value had to be placed on the stockout since a stockout implied that the amount of funds unavailable from the selected alternative must be obtained from another, presumably less desirable, alternative. This resulted in an alternative that was less attractive than it would have been had a stockout not occurred.

The value, or penalty, placed on the alternative when a stockout occurred was a difficult value to select. The stockout penalty significantly affected the evaluation of the alternative upon which it was imposed. Since the constraints on the alternatives affected the probability that a stockout would occur and since the constraints were specific to the individual alternatives, the stockout penalty did not affect all the alternatives equally. magnitude of the effect of the stockout penalty was a function of the interaction of the constraints and the amount the firm needed to borrow. The greater the need the more significant the constraints on the alternative became and the greater the likelihood that a stockout would occur. Therefore, it was important to attempt to select a value for the stockout penalty that would be relatively realistic and yet not disproportionately penalize the alternatives that would be most likely to experience a stockout.

Two values for the stockout penalty were tested. The alternatives most frequently affected by stockouts were evaluated three ways: (1) when no stockout penalty was imposed; (2) when a 1 percent stockout penalty was applied; and (3) when a 5 percent penalty was imposed. The dollar value of the penalty was calculated as a percentage of the dollar value of the stockout and subtracted from the unrestricted ending cash balance of the alternative. Figures 13, 14 and 17, 18 show the results of the comparative tests. The magnitude of the effect of the 5 percent penalty on the alternatives suggested that no higher percentage needed to be imposed. The 5 percent penalty caused the effected alternatives to be clearly inferior to the other alternatives.

Interest Rates

The interest rates that were applied to the financing alternatives were derived from Company Z management projections of the prime rate. The author modified these projections to obtain the appropriate ranges for the interest rate distributions for each alternative. The rates were defined as uniformly distributed.

The Minimum Required Cash Balance

The minimum required cash balance was defined in this study to be a deterministic value specified by

management. 1 The value of this required minimum influenced the amount of borrowing that must be effected. Further, the degree to which the constraints were imposed upon the alternatives was related to the amount of borrowing effected. The more funds required by the firm, the more each alternative was effected by the constraint on the maximum amount available for that alternative. Since the level of the minimum required cash balance significantly affected the model's output data, the author attempted to select several values for this required minimum for use in demonstrating the model results. A number of values were considered and three were finally selected. At a value of \$3 million, a relatively low level of borrowing was experienced. The constraint on maximum funds available with each alternative was infrequently imposed. The results reflected these conditions. Higher minimum required cash balance levels, \$4.5 million and \$6 million, were also explored to demonstrate the effects of the constraints at these levels. It can be seen from the results presented in the following section that, as the amount of funds borrowed increased, evaluation of the alternatives through the

Las previously discussed on pages 34 and 46. REQMIN_t = δ_{ti} (h_{ti}). Thus, when a value for REQMIN_t for t=1,...,13 is specified, this means that the strategy function, $\delta_{i} = \{\delta_{1i}, \dots, \delta_{13i}\}$, is implied but not explicitly stated. Each vector of the required minimum, {REQMIN₁,...,REQMIN₁₃}, implies a different strategy function.

condition of stochastic dominance was facilitated since stochastic dominance was more distinctly demonstrated.

The author also explored the possibility of defining the minimum required cash balance as a stochastic variable. The results of this trial are presented following the discussion of the other results.

The Computer Programs Involved in the Model

A computer program was used to generate the net cash flow data using simulation. These data were then submitted as input to the model program. The latter program generated output which was used to estimate the empirical cumulative probability distributions of the alternatives. These programs were written by the author in FORTRAN IV and were run on the CDC 3600.

Model Output

The objective of the model was to determine that alternative that maximized the expected utility of the unrestricted ending cash balance of the firm at the end of the planning horizon. The output of the model consisted

¹See Appendix B.

²See Appendix D.

³At the end of the planning horizon (the thirteenth period), the unrestricted ending cash balance is equal to the cash balance in the thirteenth period, plus interest on invested surplus cash not received, plus invested surplus cash, less principal and interest due in subsequent periods.

⁴See Appendix E.

of a set of unrestricted ending cash balances for each financing alternative from which a cumulative probability distribution for that alternative was estimated. distributions were plotted on graphs. The horizontal axis indicated the values of the unrestricted ending cash balance in intervals of \$50 thousand with a lower bound of \$1.65 million and an upper bound of \$4.1 million. right-hand vertical axis indicated the number of times a value greater than the corresponding value on the horizontal axis was achieved. The left-hand vertical axis gave the same value as a percentage of the total occurrences achieved in the simulation. A table for each graph giving the specific numerical data which have been plotted for each financing alternative is included in Appendix F. cumulative probability distributions for the four financing alternatives were then evaluated using the condition of stochastic dominance.

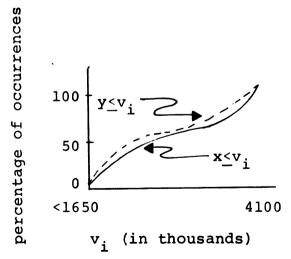
Stochastic Dominance

The condition of stochastic dominance relates pairs

Of probability distributions. Stochastic dominance may be

Useful for the analysis of a variety of decision problems

Josef Hadar, Mathematical Theory of Economic

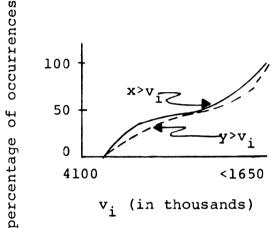

Behavior (Reading, Massachusetts: Addison-Wesley Publishing
Company, 1971), pp. 261-262; and Josef Hadar and William R.

Russell, "Rules for Ordering Uncertain Prospects," The
American Economic Review, LIX (1969), 25-34.

under risk. The condition of stochastic dominance makes possible a prediction about preference for probability distributions without requiring any knowledge of the utility function of the decision-maker. Thus, consider two uncertain prospects, X and Y, and X is larger than Y in the sense of first degree stochastic dominance (FSD). Then X is preferred to Y if it is desirable to maximize the expected utility. X is larger than Y in the sense of FSD when the cumulative probability of X being less than or equal to \mathbf{v}_i is less than or equal to that of Y for all unrestricted ending cash balance values, \mathbf{v}_i . This can be stated as follows:

$$P(X \leq v_i) \leq P(Y \leq v_i).$$

This condition is depicted in the following graph. The lower cumulative probability curve exhibits stochastic dominance as defined in the preceding section.

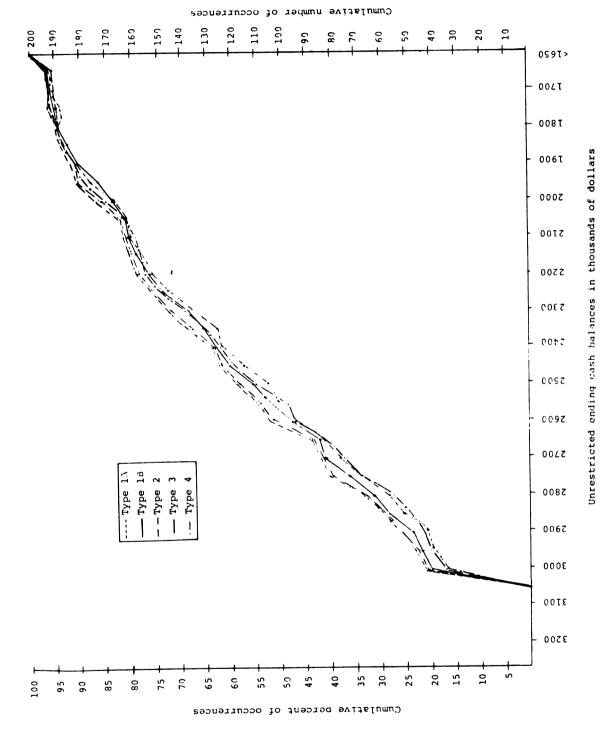


In this study, $P(X \le v_i) \le P(Y \le v_i)$ has been restated as:

$$P(X > v_i) \ge P(Y > v_i)$$
. Thus,

the cumulative probability of X being greater than $\mathbf{v_i}$ is greater than or equal to that of Y for all $\mathbf{v_i}$. This is the statement of stochastic dominance that will be used in this study.

The format of the graphs used in the following sections to explain the results of the model is presented below:


In the above graph, X exhibits the condition of first degree stochastic dominance over Y.

The following sections will be devoted to an analysis and evaluation of the output of the model.

Evaluation at a Minimum Required Cash Balance of \$3 Million

The four financing alternatives were evaluated at three different minimum required cash balance levels. At a minimum required balance of \$3 million, Type 1A exhibited stochastic dominance over all other alternatives. Type 4

¹ See Figure 10.

The cumulative probability distributions for the financing alternatives at a minimum required cash balance of \$3 million and a stockout penalty of 1 percent. Source: Table II. Figure 10.

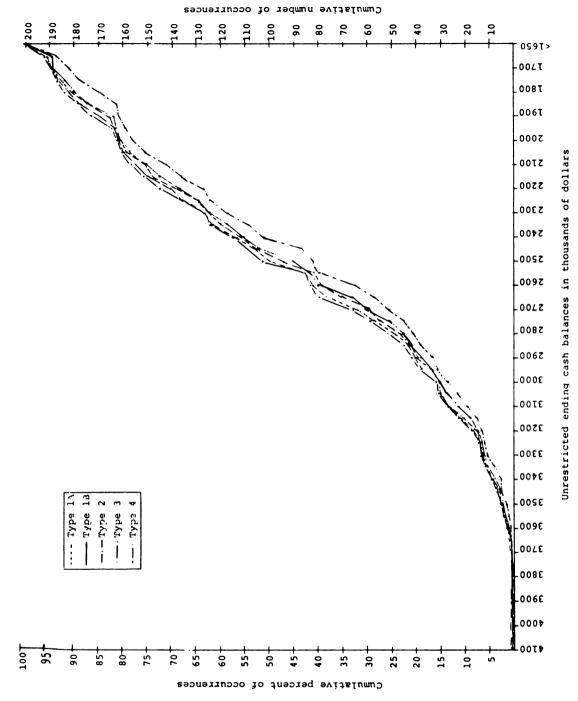
had a cumulative probability distribution similar to and nearly as optimal as that of Type 1A. This degree of similarity can be expected since the only significant difference between the two alternatives at this particular minimum required cash balance was the interest rate paid in each period. Type 4 was not affected by the constraint governing the maximum amount of funds available with this alternative since this amount of borrowing was not needed. Type 4 experienced a stockout only once in the two-hundred simulations at this level.

Type 3 was dominated by Types 1A and 4 because of the requirement that the firm borrow the funds for three periods. Thus, interest had to be paid for the three periods. Alternatives 1B, 2, and 3 failed to exhibit stochastic dominance among themselves. These alternatives were clearly inferior to Types 1A and 4, however. In summary, the rankings of the alternatives at this minimum required cash balance can be explained by the low level of borrowing which eliminated some of the constraints on several of the alternatives and caused the interest rates and the duration of interest payments to be highly significant.

Types 2 and 4 were evaluated both with and without stockout penalties. Neither the 1 percent nor the 5 percent stockout penalty caused any significant change in the cumulative probability distribution of Type 4 because

essentially no stockouts occurred. Type 2 experienced 102 stockouts in the simulation and was affected by the 1 percent stockout to some degree. It was not the least desirable alternative consistently, even with the stockout penalty, however. When a 5 percent penalty was imposed, the desirability of this alternative was significantly reduced.

Evaluation at a Minimum Required Cash Balance of \$4.5 Million


At a minimum cash balance of \$4.5 million the rankings of the alternatives began to reflect the effects of the constraints. The data will first be evaluated considering a 1 percent stockout penalty, and then reevaluated when a 5 percent stockout penalty was imposed.

Stockout Penalty at 1 Percent¹.--Type 3 and Type 1A exhibited stochastic dominance over the other alternatives. These two types had similar cumulative probability distributions.² Type 3 did not exhibit stochastic dominance over Type 1A since, at three points on the curve,³ the cumulative probability distribution for Type 3 failed

¹See Figure 11.

²The additional interest payment on the compensating balance for Type 1A was nearly equal to the three-period interest payment required for Type 3.

The stochastic dominance failed at the unrestricted ending cash balance levels of \$2.3 million, \$3.7 million and \$3.65 million (see Table 3).

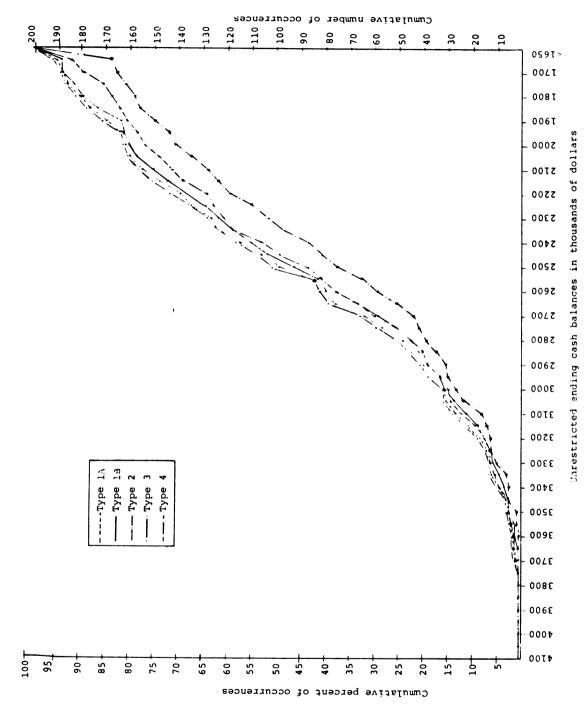
The cumulative probability distributions for the financing alternatives at a minimum required cash balance of \$4.5 million and a stockout penalty of 1 percent. Source: Table III. Figure 11.

to be equal to or greater than that for Type 1A at those points. It is possible that if more simulations were run, a stochastic dominance would be exhibited. It should be noted, however, that a large number of firms are unable to issue commercial paper. Type 3 would then be eliminated leaving 1A clearly dominant over the remaining alternatives. Firms which are able to utilize Type 3 often attempt to combine Type 3 and Type 1A when borrowing. The data shown in Figure 11 tend to justify this approach.

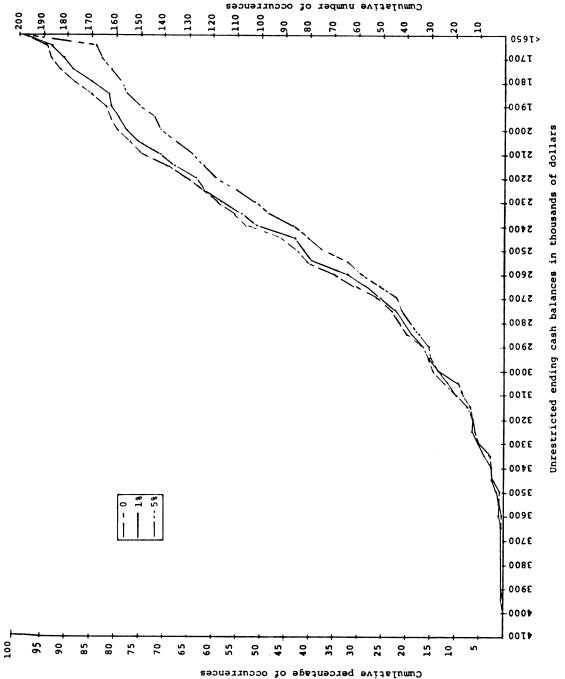
Type 2 is the least desirable alternative since it is dominated by all of the other alternatives. The duration of the term loan in this study was six periods.

Interest must be paid for each of the six periods and the total interest paid was greater than that paid on the alternatives which have a single-period repayment schedule. The lower percent interest rate available with Type 2 was not sufficient to make it a more desirable alternative in this case. In addition, Type 2 experienced stockouts in each of the two-hundred simulations. The stockouts increased the divergence between the cumulative probability distributions.

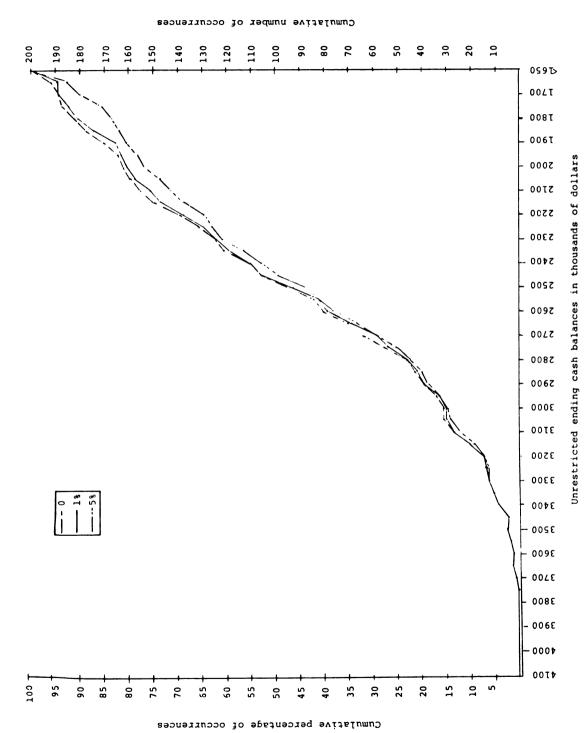
No stochastic dominance could be established between Types 1B and 4. Type 4 was less desirable than it was at the \$3 million level because the alternative


James C. Van Horne, Fundamentals of Financial Management (Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1971), pp. 235-236.

experienced 178 stockouts at the \$4.5 million level. Thus, the stockout penalty was imposed and caused the alternative to become less attractive.


Stockout Penalty at 5 Percent¹.--The data for alternatives 1A, 1B, and 3 were identical to those discussed in the preceding section since these alternatives did not experience stockouts. Type 2 was markedly affected by the 5 percent stockout penalty because stockouts occurred 200 times in the same number of simulations. Type 4 was also significantly affected by the stockout penalty although to a lesser degree than Type 2. Type 4 became noticeably less desirable in the regions of the graph where larger sums were being borrowed. The differences between Type 4 and Type 1B became less marked in the lower regions of the graph where less borrowing was effected. No stochastic dominance was exhibited by Type 1B over Type 4.

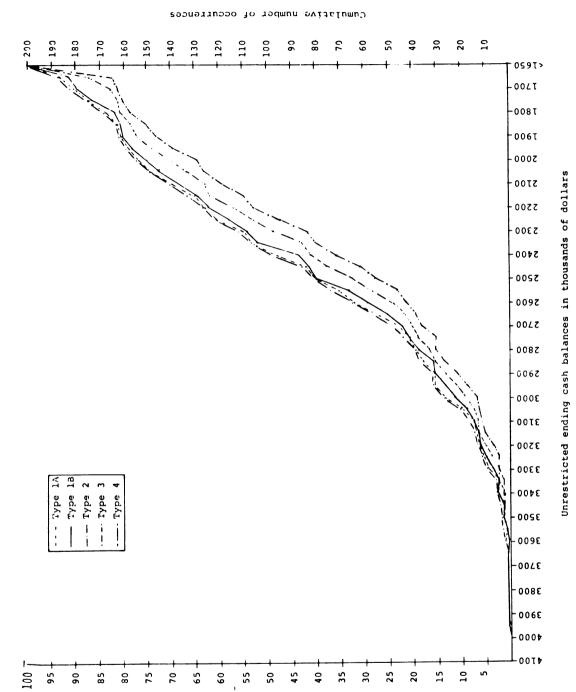
Type 2 and the effects of the stockout penalties on that alternative are presented graphically in Figure 13. Stockout penalties of both 1 and 5 percent were imposed. Figure 14 presents Type 4 and the effects of the stockout penalties on the cumulative probability distributions of that alternative.


¹ See Figure 12.

The cumulative probability distributions for the financing alternatives at a minimum required cash balance of \$4.5 million and a stockout penalty of 5 percent. Source: Table IV. Figure 12.

Comparative cumulative probability distributions for Type 2 at stockout penalties of 0, 1, and 5 percent with a minimum required cash balance of \$4.5 million. Source: Table V. Figure 13.

cumulative probability distributions for Type 4 at stockout penalties of percent with a minimum required cash balance of \$4.5 million. Source: Table VI. Comparative 0, 1, and 5 Figure 14.


Evaluation at a Minimum Required Cash Balance of \$6 Million

Stockout Penalty at 1 Percent 1.—At a minimum required cash balance of \$6 million Type 3 exhibited stochastic dominance over all other alternatives. Type 3 dominated Type 1A because the dollar value of the interest rate for Type 3, even for three periods, was less than the interest for Type 1A for one period because of the large compensating balance required with Type 1A. At this particular minimum required cash balance, every alternative except for Type 2 exhibited stochastic dominance over at least one other alternative. The alternatives ranked as follows: Type 3, Type 1A, Type 1B, Type 4, Type 2. When sufficient funds were borrowed the constraints on the alternatives were fully effective. Types 2 and 4 were clearly dominated by the other alternatives since both of these types experienced stockouts for every simulation.

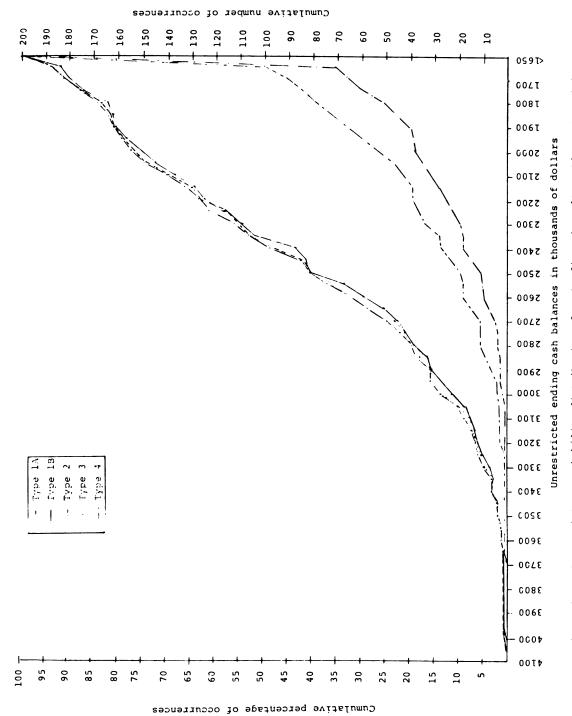
Although Type 1A dominated Type 1B, the difference between the desirability of the two alternatives was diminishing. At higher levels of borrowing, the actual dollar values of the compensating balances converge. Thus, if a simulation were run for a minimum required cash

¹ See Figure 15.

²The difference between the two interest rates times the amount needed by the firm equals that amount of interest that is less than the interest rate of Type IA times the amount of the compensating balance.

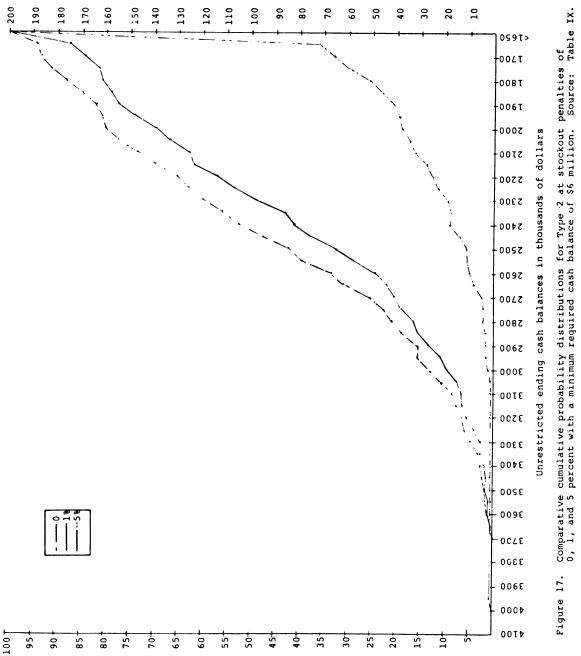
Cumulative percentage of occurrences

The cumulative probability distributions for the financing alternatives at a minimum required cash balance of \$6 million and a stockout penalty of 1 percent. Source: Table VII. Figure 15.

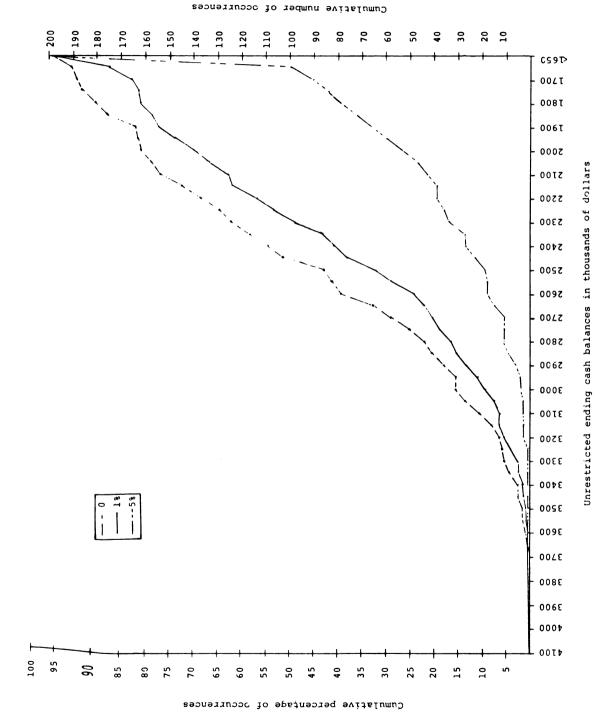

balance of \$8 million, the curves of Types 1A and 1B would be approximately the same.

Stockout Penalty at 5 Percent.—The data for alternatives 1A, 1B, and 3 presented in Figure 16 were identical to those plotted in Figure 15 and were included merely for comparative purposes. The 5 percent stockout penalty with a minimum required cash balance of \$6 million significantly affected Types 2 and 4. Type 4 was less severely effected by the stockout penalty than Type 2 because the maximum amount that could be borrowed with Type 4 was greater than with Type 2. Thus, even though both alternatives experienced extensive stockouts, Type 2 was the less desirable alternative.

Figures 17 and 18 present Types 2 and 4 and the changes effected by the stockout penalties at 1 and 5 percent. The significant impact of the stockout penalties at the \$6 million level is demonstrated.


Evaluation When the Minimum Required Cash Balance is a Stochastic Variable

In an attempt to explore further the effects of the minimum required cash balance on the rankings of the financing alternatives, this value was allowed to be probabilistically defined.



The cumulative probability distributions for the financing alternatives at a minimum required cash balance of §6 million and a stockout penalty of 5 percent. Source: Table VIII.

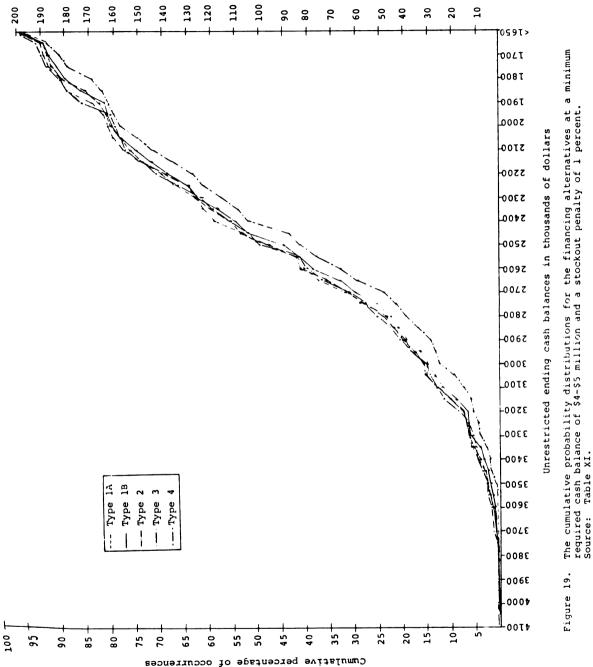
Cummulative number of occurrences

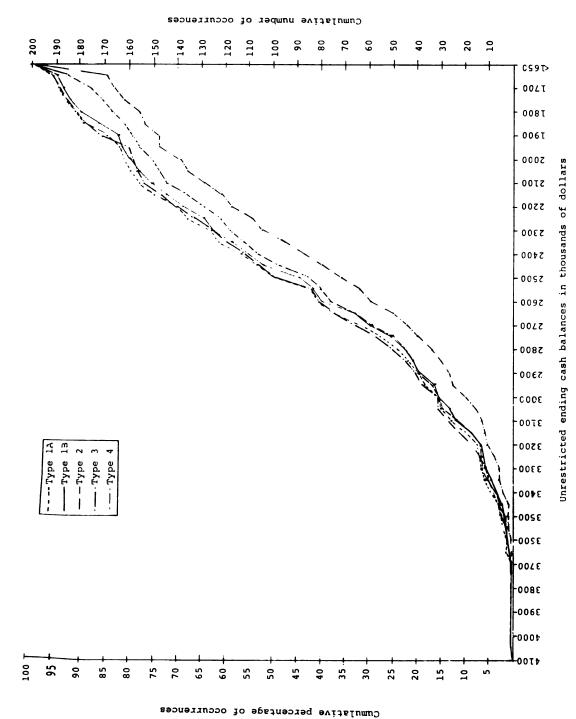
Cummulative percentage of occurences

Comparative cumulative probability distributions for Type 4 at stockout penalties of 0, 1, and 5 percent with a minimum required cash balance of $56\,\mathrm{million}$. Source: Table X. Figure 18.

The \$4-\$5 Million Range with a 1 Percent Stockout
Penalty 1.--When a uniform distribution of \$4-\$5 million
was selected and the results of the simulation were
tabulated and graphed, it appeared that in allowing this
one additional value to be stochastic, the cumulative
probability distributions of the financing alternatives
could no longer be evaluated using stochastic dominance.
The most conclusive statement that could be made was that
Type 2 was clearly the inferior alternative. Types 1A,
1B, 3 and 4 exhibited no significant dominance with regard
to each other.

The \$4-\$5 Million Range with a 5 Percent Stockout
Penalty².--When a 5 percent stockout penalty was imposed,
Type 4 became a less desirable alternative. Type 4 still
failed to become inferior to Types 1A, 1B, and 3 at all
points, however. Figures 19 and 20 can be compared with
the deterministic graph at the \$4.5 million level.³ In
the deterministic graph alternative 3 had a cumulative
probability distribution which ranked above the other
alternatives. Although Type 3 did not exhibit true
stochastic dominance,⁴ it was close to being dominant over


¹ See Figure 19.


²See Figure 20.

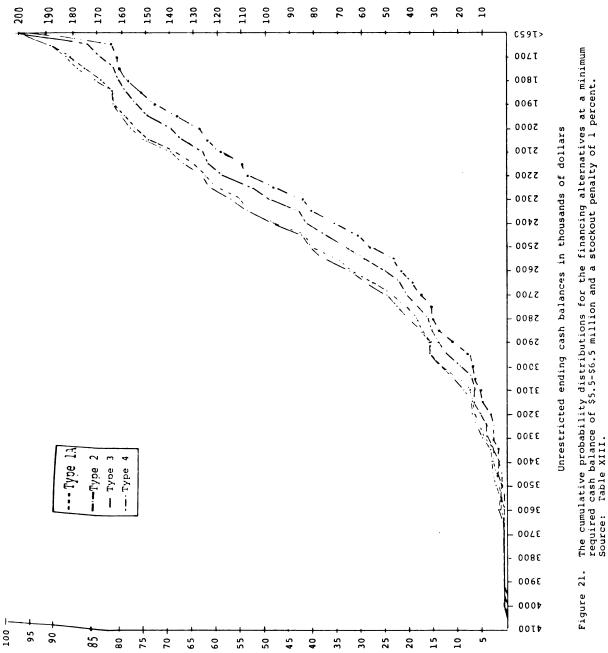
³See Figure 11.

Type 3 failed to exhibit stochastic dominance at three points on the curve.

Cumulative number of occurrences

minimum The cumulative probability distributions for the financing alternatives at a required cash balance of \$4-\$5 million and a stockout penalty of 5 percent. Source: Table XII. 20. Figure

Type 1A, and these two alternatives exhibited dominance over the other alternatives. In the stochastic graph not even this degree of dominance was exhibited. The relatively low level of borrowing caused ranking of the alternatives to be less distinct than they became when higher levels of borrowing were effected. When the minimum required cash balance was allowed to be stochastic, interpretation of the data became even more difficult and no advantage could be seen in this approach at this level.


The \$5.5-\$6.5 Million Range.--A stochastic minimum required cash balance was also tested at a higher range to determine if stochastic dominance could be established in ranking the alternatives at another level. The results of this simulation, as seen in Figure 21, not only exhibited stochastic dominance between all of the alternatives, but presented a graph remarkably similar to that of the deterministic level of \$6 million. The constraints on the alternatives were fully effective at this level, and definitive rankings were more likely to be achieved with the stochastic as well as the deterministic approach.

Summary

The results of the simulations examining the four financing alternatives have been presented in the preceding

lsee Figure 15.

Cumulative number of occurrences

Cumulative percent of occurrences

section. The net cash flow data and the constraints on the alternatives remained constant while different levels of the minimum required cash balance and stockout penalties were tested. The alternatives were evaluated using stochastic dominance to select an optimal alternative specific to a certain minimum required cash balance. The stockout penalties affected the rankings of the alternatives but in no case changed the optimal alternative. The following table presents a summary of the results.

Minimum	Required Cash Balance	Optimal Alternative
Deterministic		
	\$3 million	Type 1A
	\$4.5 million	Type 3/Type 1A
	\$6 million	Type 3
Stochastic		
	\$4-\$5 million	None
	\$5.5-\$6.5 million	Type 3

The Results of the Model in Terms of the Short-Term Financing Problem

<u>Introduction</u>.--The short-term financing problem is complex because of the difficulty of forecasting cash needs. This difficulty arises from the dynamic nature

of the individual firm, the industry of which it is a part, and the economy as a whole. The model presented in this study represents an attempt to facilitate management in making that short-term financing decision.

The results of the application of the model to actual data have been presented in the preceding section. The primary objective of this section was to demonstrate the flexibility of the model with regard to input data, to evaluate the effectiveness of the model at various levels of borrowing, and to assess, insofar as possible, the practicability and applicability of the model to the short-term financing problem. In addition, the condition of stochastic dominance was explored as a technique for evaluating the results of the model simulations.

Evaluation of the Model. -- The results of the application of the model to actual data suggest that the model may be of significant value to management in the role for which it was designed. The model allows management to evaluate financial information necessary for the short-term financing decision, rapidly and relatively inexpensively. The model quantifies risk which is incorporated into the model through probabilistically defined net cash flow variables and interest rates.

Risk is an important consideration since variability of conditions is an observable fact and not recognizing it as such and failing to include it would impair the

validity of the model. Further, subjective judgments of management can be considered in the model with regard to some of the variable input data.

Management may utilize the model in the decisionmaking process without having to define the utility
function when stochastic dominance is exhibited. This
capability alleviates the problem of deciding upon an
appropriate utility function. The model is flexible,
facilitating the changes necessary to allow reasonable
approximation of conditions specific to the firm employing
it. Further, management may vary the input data to the
model, or to the net cash flow simulation, to evaluate
the results of potential future actions being considered.

The model indicates, if the condition of stochastic dominance is exhibited, that an optimal financing alternative exists, and which alternative is optimal.

If there is no stochastic dominance, management will need to specify a utility function in order to maximize the expected value of that function. The results of this study suggest, however, that even if clear stochastic dominance is not demonstrated between the alternatives, those alternatives that are inferior are quite definitely established.

Attributes of the Model. -- The model considers the sequential, multiple-period nature of the cash

management problem. The incorporation of risk into the model allows it to be relatively realistic, and the simulation approach moderates its computational complexity. In contrast to other studies, the model in this study attempts to broaden its application to consider the options of holding, borrowing, and reinvesting cash. Further, this thesis presents an exploration of the applicability of the condition of stochastic dominance to the evaluation of short-term financing alternatives. This technique was successful in this study particularly at the higher levels of borrowing.

A full understanding of the results of this study cannot be achieved without recognizing the limitations of the model. Four specific financing alternatives are studied. Whereas other alternatives could be added to the model, reprogramming would be required. Further, some firms may want to evaluate combinations of some of the alternatives. The model is not designed to consider combinations.

It is also possible that some of the assumptions of the model may impair its ability to simulate real-world conditions. It is recognized, however, that with nearly every model, certain assumptions must be made. It

¹ See pages 36 and 37, Chapter III for a list of the assumptions of the model.

can only be hoped that those necessary assumptions do not measurably distort the results.

One further limitation exists which may, to some extent, inhibit full evaluation of the model. As with any heuristic device, the only true test of its effectiveness and predictive powers is a long-term study of the effects of the model recommendations assuming that these recommendations were completely implemented by a test firm or firms. The difficulty of such a study in terms of time and cooperation of a test firm is enormous, and constitutes a significant study in itself. The author in this study elected to utilize real-world data for net cash flow input to the model, and to attempt to select realistic values and distributions for the remaining required input data. The care exercised in the selection of the input data suggests that the results represent a relatively accurate reflection of these data. maintains that the model can be evaluated and reasonable predictions about its effectiveness made even though a true test for validity has not been conducted.

In summary, the model in this study has been applied to test data and the results presented. The model has been evaluated in terms of the results, the advantages associated with its use, and its limitations. The model appears to present a useful and realistic approach to the evaluation of short-term financing alternatives.

CHAPTER VI

SUMMARY AND CONCLUSIONS

Summary

Chapter I established the importance of the short-term financing problem, and the need for economizing cash holdings. A model was proposed which was designed to assist management in evaluating four short-term financing alternatives. The basic cash management decision process was discussed and some important terms defined.

In Chapter II, models in the literature which related to the cash management problem were presented and briefly discussed. The major differences between the deterministic and the stochastic approaches were outlined. Methods, including those utilizing linear programming, dynamic programming and simulation, were summarized. The significance of each method in terms of the model in this study was elucidated.

Chapters III and IV were primarily devoted to a thorough explanation of the model. In Chapter III the model was described in decision-theory framework. The single-stage decision problem under certainty was extended to incorporate risk and include multiple stages. The

reader was guided through each step of the development of the final multi-stage decision problem under risk specific to the model in this study. The assumptions of the model were also presented. Finally, the author discussed alternative methods of solving the model and indicated the rationale for utilizing simulation. Chapter IV presented a further discussion of the model. The short-term financing alternatives to be evaluated were defined and the method of computer analysis of each alternative was discussed. Finally, the input data to the model were presented in detail.

The results of the application of the model to actual data were presented in Chapter V. Input data in terms of the net cash flow simulation, the constraints on the financing alternatives, the interest rates and the minimum required cash balance were specifically analyzed. The computer programs were briefly explained, and the model output stated. The condition of stochastic dominance was defined, and its role in the evaluation of the financing alternatives delineated. The results of the model were discussed and graphs of the resultant cumulative probability distributions for the financing alternatives included. The model was then discussed in terms of its applicability to the short-term financing Problem and its usefulness to management.

Conclusions

The objective of the model in this study was to select an optimal financing strategy from a given set of alternatives. The model included the capability of assessing the options of holding, borrowing or reinvesting cash. The condition of stochastic dominance was employed successfully to evaluate the cumulative probability distributions of the financing alternatives.

The results of the application of the model to actual data suggested its potential value to management. The model was able to produce results that could be interpreted in terms of an optimal financing alternative. The model was flexible in terms of input data, and relatively inexpensive to run. Risk was incorporated into the model and a sequential, multiple-period approach was used. The model was designed to approximate real-world conditions without becoming unduly complex computationally. Finally, the model programs could be implemented by a firm with a minimum amount of effort and computer knowledge.

Suggestions for Further Research

In the process of developing the model, the author encountered the problem of determining net cash flow values to use as input to the model. Several approaches to this problem are mentioned in Chapter IV. It would

appear that a thorough exploration of the problem would be a valuable contribution to the literature.

An interesting related problem also involves the net cash flow. It may be possible that the stochastic process that describes the unrestricted ending cash balances for each alternative could be analytically derived from the stochastic process of the net cash flow, assuming that the latter process were known. In such a study, the distribution of the interest rates and the constraints must also be known and/or defined. If the stochastic process of the net cash flow was not known and could not be defined, an alternative approach would be the utilization of the stochastic processes of the variables of which the net cash flow is composed. If such a technique were successful, computer facilities for solving a model would be unnecessary. This would allow very small businesses to benefit from the approach suggested in this study.

Another aspect of the study which provides a fertile area for further research is the empirical verification of the model. A sufficient number of firms should be analyzed, ideally, to establish the statistical significance of the predictive powers of the model. Firms in different industries could also be included.

Contributions of the Study

It is felt that this study makes a number of contributions which supplement the existing literature. A sequential, multi-period approach that considered risk was incorporated in the simulation model that was presented in this thesis. The net cash flow values that served as input to the model were generated by a simulation of the stochastic processes of the input variables which made up the net cash flow. Finally, the condition of stochastic dominance was utilized to evaluate the cumulative probability distributions which were generated from the model output. Two quantitative techniques, simulation and the condition of stochastic dominance have been integrated and applied to analyzing and selecting an optimal financing strategy from a given set of alternatives.

BIBLIOGRAPHY

BIBLIOGRAPHY

Books

- Bartlett, M. S. An Introduction to Stochastic Processes. Cambridge: Cambridge University Press, 1966.
- Beranek, William. Working Capital Management. Belmont, California: Wadsworth Publishing Company, Inc., 1966.
- Buffa, Elwood S. Operations Management: Problems and Models. 2nd ed. New York: John Wiley and Sons, Inc., 1968.
- Carr, Charles R., and Howe, Charles W. Quantitative

 Decision Procedures in Management and Economics.

 New York: McGraw-Hill Book Company, 1964.
- Chorafas, Dimitris N. Systems and Simulation. New York: Academic Press, 1965.
- DeGroot, Morris H. Optimal Statistical Decisions. New York: McGraw-Hill Book Company, 1970.
- Donaldson, Gordon. Corporate Debt Capacity. Boston: Harvard Business School, 1961.
- Greenlaw, Paul S., and Frey, M. William. Finansim: A Financial Management Simulation. Scranton: International Textbook Company, 1967.
- Hadar, Josef. Mathematical Theory of Economic Behavior.
 Reading, Massachusetts: Addison-Wesley Publishing
 Company, 1971.
- Hannan, E. J. <u>Time Series Analysis</u>. London: Butler and Tanner Ltd., 1967.
- Hillier, Frederick S., and Lieberman, Gerald J.

 Introduction to Operations Research. 3rd ed.

 San Francisco: Holden-Day, Inc., 1968.

- Howell, James E., and Teichroew, Daniel. Mathematical
 Analysis for Business Decisions. 8th printing.
 Homewood, Illinois: Richard D. Irwin, Inc., 1968.
- Jazwinski, Andrew H. Stochastic Processes and Filtering
 Theory. New York: Academic Press, Inc., 1970.
- Levin, Richard I., and Lamone, Rudolph P. <u>Linear Program-ming for Management Decisions</u>. Homewood, Illinois: Richard D. Irwin, Inc., 1969.
- Mao, James C. T. Quantitative Analysis of Financial Decisions. Toronto: The Macmillan Company, Collier-Macmillan Canada, Ltd., 1969.
- Naylor, Thomas H. Computer Simulation Experiments with Models of Economic Systems. New York: John Wiley and Sons, Inc., 1971.
- Nemhauser, George L. <u>Introduction to Dynamic Programming</u>. New York: John Wiley and Sons, Inc., 1966.
- Orgler, Yair E. Cash Management--Methods and Models.
 Belmont, California: Wadsworth Publishing
 Company, Inc., 1970.
- Parzen, Emanuel. Stochastic Processes. San Francisco: Holden-Day, Inc., 1962.
- Peterson, D. E. A Quantitative Framework for Financial Management. Homewood, Illinois: Richard D. Irwin, Inc., 1969.
- Pfeiffer, Paul E. Concepts of Probability Theory. New York: McGraw-Hill Book Company, 1965.
- Schlaifer, Robert. Probability and Statistics for Business Decisions. New York: McGraw-Hill Book Company, Inc., 1959.
- . Introduction to Statistics for Business Decisions.

 New York: McGraw-Hill Book Company, Inc., 1961.
- Theil, Henri; Boot, John C. G.; and Kloek, Teun.

 Operations Research and Quantitative Economics.

 New York: McGraw-Hill Book Company, 1965.

- Van Horne, James C. <u>Financial Management and Policy</u>. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1968.
- Wagner, Harvey M. Principles of Operations Research. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1969.
- Weingartner, H. Martin. <u>Mathematical Programming and the Analysis of Capital Budgeting Problems</u>. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1963.

Publications of the Government, Learned Societies, and Other Organizations

- National Industrial Conference Board. Managing Company
 Cash. Studies in Business Policy No. 99. New
 York: National Industrial Conference Board, 1961.
- Tintner, G. "Stochastic Linear Programming with Applications to Agricultural Economics." Second Symposium in Linear Programming, Washington.

 Washington, D.C.: National Bureau of Standards, 1955.
- The Research Section of the Royal Statistical Society.

 "Symposium on Stochastic Processes."

 of the Royal Statistical Society, Series B, XI,

 No. 2, 1949 (reprint).

Periodicals

- Babbar, M. M. "Distributions of Solution of a Set of Linear Equations with Applications to Linear Programming." Journal of the Statistical Association, L (1955), 155-164.
- Baumol, William J. "The Transactions Demand for Cash: An Inventory Theoretic Approach." Quarterly Journal of Economics, LXVI (November, 1952), 545-556.
- Charnes, A.; Cooper, W. W.; and Miller, M. H. "Application of Linear Programming to Financial Budgeting and the Cost of Funds." The Journal of Business, XXXII, No. 1 (January, 1959), 20-46.
- Charnes, A.; Cooper, W. W.; and Ijiri, Y. "Break-Even Budgeting and Programming to Goals." <u>Journal of Accounting Research</u>, I, No. 1 (Spring, 1963), 16-43.
- Charnes, A., and Cooper, W. W. "Chance-Constrained Programming." Management Science, October, 1959, pp. 73-79.

- Elton, Edwin J., and Gruber, Martin J. "Dynamic Programming Applications in Finance." The Journal of Finance, XXVI, No. 2 (May, 1971), 497-505.
- Eppen, Gary D., and Fama, Eugene F. "Solutions for Cash-Balance and Simple Dynamic-Portfolio Problems."

 The Journal of Business, XLI, No. 1 (January, 1968), 94-112.
- . "Cash Balance and Simple Dynamic Portfolio Problems with Proportional Costs." International Economic Review, X, No. 2 (June, 1969), 119-133.
- Problems." Management Science, XVII, No. 5 (January, 1971), 311-319.
- Hadar, Josef, and Russell, William R. "Rules for Ordering Uncertain Prospects." The American Economic Review, LIX (1969), 25-34.
- Hertz, David B. "Risk Analysis in Capital Investment."

 Harvard Business Review, XLII (January-February, 1964), 95-106.
- House, William C., Jr. "The Usefulness of Sensitivity Analysis in Capital Investment Decisions."

 Management Accounting, LXVII (February, 1966), 22-29.
- Ijiri, Y.; Levy, F. K.; and Lyon, R. C. "A Linear Programming Model for Budgeting and Financial Planning." Journal of Accounting Research, I, No. 2 (Autumn, 1963), 198-212.
- Lerner, Eugene M. "Simulating a Cash Budget." California Management Review, XI (Fall, 1968), 79-86.
- Maffei, Richard B. "Simulation, Sensitivity and Management Decision Rules." The Journal of Business, XXXI (July, 1958), 177-186.
- Miller, Merton H., and Orr, Daniel. "A Model of the Demand for Money by Firms." Quarterly Journal of Economics, LXXX (August, 1966), 413-435.
- Näslund, Bertil. "A Model of Capital Budgeting Under Risk." The Journal of Business, XXXIX, No. 2 (April, 1966), 257-271.

- Orgler, Yair E. "An Unequal-Period Model for Cash Management Decisions." Management Science, XVI, No. 2 (October, 1969), 77-92.
- Rappaport, Alfred. "Sensitivity Analysis in Decision-Making." The Accounting Review, LXII (July, 1967), 441-456.
- Robichek, A. A.; Teichroew, D.; and Jones, J. M. "Optimal Short-Term Financing Decision." Management Science, XII, No. 1 (September, 1965), 1-36.
- Smith, Lee H. "Ranking Procedures and Subjective Probability Distributions." Management Science, XIV (December, 1967), 236-249.
- Tobin, James. "The Interest-Elasticity of Transactions Demand for Cash." The Review of Economics and Statistics, XXXVIII, No. 3 (August, 1956), 241-247.

Essays and Articles in Collections

Bierman, Harold, Jr., and McAdams, Alan K. "Management Decisions for Cash and Marketable Securities."

Cornell Studies in Policy and Administration.

Cornell University, Graduate School of Business and Public Administration, 1962.

APPENDICES

APPENDIX A

COMPUTER SUBROUTINES FOR PROBABILITY DISTRIBUTIONS

```
SURROUTINE UNIFRMI(A +P +X)
        TYPE INTEGER A.R.X
                                                                    R= RANF(-1)
                      <u>X = Λ + (β-Α) * </u>?
                                                                  RETURN
                                                                   END
                                                                    SUPPOUTING UNIFRMP (A+C+X)
                                                                    TYPE REAL A. B. X
                                                                   P= PANF(-1)
                                                                    X = A + (R-A) * R
                                                                    RETURN
                                                                     END
                                        .....
                                                           CANCELL MODERALI (EX+CLDX+X)
                                                                   TYPE INTEGER EXISTDX Y
                                                                   10M=0.
                                                                   00 4 I=1+12
                                                                    D = DAME(-1)
                                                          4 SUM=SUM + R
                                                                    X=STDX *(SUM- 6.) + FX
                                                                    DETINDN
                                                                    END
The state of the s
                                                                    SUPPOUTINE MODMALD (EX+STOX+X)
                                                                    TYPE REAL EXISTDX: X
                                                                    COM= D ● D
                                                                    DO 4 I=1+12
                                                                    P = PANE(-1)
                                                         4 SUM=SUM + P
                                                                    X=STDX *(SUM= 6.) + FX
                                                                    RETURN
                                                                   END
```

•

```
SUBROUTINE GENERAL (A +P+N+X)
              DIMINGION D(5) + CD(5) + A(5)
              TYPE REAL PACE
              TYPE INTEGER X+11 +A
              DETERMINE CUMULATIVE DISTRIBUTION
       C
              CP(1) = P(1)
              IF(N .GT. 1)GO TO 20
C
              DETERMINISTIC VALUE
              \times = A(1)
              GO TO POO
          20 00 1 I= 24M
              CP(I) = CP(I-1) + P(I)
           1 CONTINUE
              R = PANF(-1)
              PICKS POINT ON THE CUMULATIVE DISTRIBUTION
       C
              IF (P .LF. CP(1))10.100
           1^{\wedge} \times = \wedge(1)
              GO TO ROD
         100 I=1
101 I = I + 1
              JF(CP(I) •LT• 1•00)GC TO 105
              \times = \Lambda(I-1)
              WRITE(61+1)I
            1 FORMAT(24H GP(I) GT 1.00 FDDCD I= .14)
             00s OT 00
 105 IF(P •LF• CP(I))110•101
         11^{\circ} \times = \Lambda(1)
         200 CONTINUT
              PRODE TION
              LVID
```

.....

APPENDIX B

NET CASH FLOW SIMULATION PROGRAM AND INPUT DATA

```
1JOR . 466696 . 543379 . 3 . 0 . ELL IS . JOHN
FOR L X D
      PROGRAM ELL.IS1
   85 DIMENSION C2(52)
                                 CRS(52) + CAR(52) + ND(52) + COMSI(52) +
     1 SFA(52) (CR(52)
   on DIMENSION DW(52) +RM(52) +
                                                                   GA(52) •
     1 FDGA(52) + CD(52) +
                                   DIP(52) .
                                                       DRP(52) + DRF(52) +
  <u>DIVP(52)</u> • DIVC(52)
   os DIMENSION NETCF (52) NCF (52)
  110 DIMENSION SF1(52) + SF2(52) + SF3(52) + SF4(52) + MSCL(52)
      DIMENSION CRSPER(52) + ACTSRV(52) + XACTSRV(200+13) + XNETCF(200+14)
  125 DIMENSION CRSOLD(6) INTSPC1(52) SF2RP(56) OLDOUT(6) MISC(52)
      DIMENSION IVAL(5) PCNT(5)
      DIMENSION $1(52) \( \)$2(52) \( \)$NS(52) \( \)$3(52\( \)$5) \( \)$PS(52\( \)$5)
      DIMENSION CAP1(52) *NCAP(52) *CAP3(52*5) *PCAP(52*5)
      DIMENSION TXP1(52) • NTXP(52) • TXP3(52 • 5) • PTXP(52 • 5)
      DIMENSION SPMISC(52) NMISC(52) SPMISC3(52.5) PMISC(52.5)
      TYPE REAL INTSPC1
      TYPE INTEGER $1.52.53.CAP1.CAP3.TXP1.TXP3.SPMISC1.SPMISC3
     TYPE INTEGER CAP TXP SPMISC
      TYPE INTEGER CS+
                            CRS+ CAR+ ND+ COMSI+ SFA+OUT2+CR
      TYPE INTEGER DW + RM +
                                                 GA . FDGA
                             DIP.
                                                        DIVP DIVC
      TYPE INTEGER CD.
                                        DRP . DRF .
      TYPE INTEGER NETCF . NCF
      TYPE INTEGER CRSOLD +OLDOUT+MISC+ SALES+SS1+SS2
     TYPE INTEGER K. T. KK. COLCRY. J
      TYPE INTEGER
                             ACTSRV+ XACTSRV+ XNETCF
      COMMON/ELL IS 1/IVAL + PCNT
C
      BEGINNING
      N IS NUMBER OF PERIODS
C
      IN1=60
     _OUT2=61
      N=13
      DO 200 J=1.N
      0=(L) QN
      COMSI(J)=0
      SFA(J)=0
   D[P(J)=0
      DRP (J) = 0
      DRF ( J ) = 0
      DIVP(J)=0
      DIVC(J)=0
      MISC(J)=0
202 CONTINUE
      CASHFLOW DATA
```

```
C
           INDXXXX INDICATES TYPE OF DATA
        ____1.__DETERMINISTIC
    ...C...
     С
           2
                UNIFORN DISTRIBUTION
     С
                NORMAL DISTRIBUTION
           3
     C
                GENERAL DISTRIBUTION
     С
           REVENUE CAN BE DETERMINISTIC • UNIFORM • NORMAL OR GENERAL
           READ(IN1.1008)IND
       IF(IND .GT. 1)GO TO 201
            DETERMINISTIC
           READ (IN1+1000)(S1(J)+J=1+N)
           INDS=1
           GO TO 210
       201 IF (IND .EQ. 2)GO TO 202
        ____IF(IND .EQ. 3)GO TO 203
           IF (IND .EQ. 4)GO TO 204
           SALES HAS UNIFROM DISTRIBUTION
       202 READ(IN1+1000)(S1(J)+J=1+N)
           READ(IN1+1000)(S2(J)+J=1+N)
         INDS=2
       __GO_TO_210
           SALES HAS NORMAL DISTRIBUTION
       203 READ(IN1+1000)(S1(J)+J=1+N)
           READ(IN1+1900)(S2(J)+J=1+N)
            INDS=3
           GO TO 210
 ____ C ___ SALES HAS GENERAL DISTRIBUTION
       204 DO 205 J=1+N
           READ(IN1+1009)NS(J)
           II= NS(J)
           DO 206 I=1 II
           READ(IN1+1010)S3(J+1)+PS(J+1)
     206 CONTINUE
       205 CONTINUE
            INDS=4
       210 CONTINUE
           CAPITAL EXPENDITURES CAN BE DETERMINISTIC OR GENERAL
     C
           READ(IN1+1008)IND
       IF(IND •GT• 1)GO TO 221
            DETERMINISTIC
           READ(IN1+1000)(CAP1(J)+J=1+N)
           INDCAP=1
           GO TO 230
       221 CONTINUE
_____ C ___ GENERAL DISTRIBUTION
           DO 222 J=1+N
```

```
READ(IN1 + 1009)NCAP(J)
       II=NCAP(J)
        DO 223 I=1+II
        PFAD(IN1+1010)CAP3(J+I)+PCAP(J+I)
    223 CONTINUE
    292 CONTINUE
        INDCAP=4
230 CONTINUE
        TAX PAYMENTS CAN BE DETERMINISTIC OR GENERAL
        PEAD(IN1+1008)IND
        IF (IND •GT• 1)GO TO 231
  C
         DETERMINISTIC
        RFAD(IN1+1000)(TXP1(J)+J=1+N)
 INDTXP=1
        GO TO 240
    231 CONTINUE
  C
        GENERAL DISTRIBUTION
        DO 232 J=1.N
        READ(IN1+1009)NTXP(J)
II=NTXP(J)
        DO 233 I=1+II
        PEAD(IN1+1010)TXP3(J+I)+PTXP(J+I)
    233 CONTINUE
    232 CONTINUE
        INDTXP=4
    240 CONTINUE
        SPECIAL MISCELLANEOUS COSTS CAN BE DETERMINISTIC OR GENERAL
        READ(IN1 . 1008) IND
        IF (IND .GT. 1)GO TO 241
        DETERMINISTIC
  C
        READ(IN1+1000)(SPMISC1(J)+J=1+N)
   INDMISC=1
        GO TO 250
    241 CONTINUE
  C
        GENERAL DISTRIBUTION
        DO 242 J=1+N
        PFAD(IN1+1009)NMISC(J)
     II=NMISC(J)
        DO 243 I=1 · II
        READ(IN1+1010)SPMISC3(J+I)+PMISC(J+I)
    243 CONTINUE
    242 CONTINUE
        INDMISC=4
    250 CONTINUE
        READ IN DETERMINISTIC DATA
```

С	NEW DEBT ISSUED ASSUMED TO BE DETERMINISTIC
	READ(IN1+1000)(ND(J)+J=1+N)
С	COMMON STOCK ISSUED ASSUMED TO BE DETERMINISTIC
	READ(IN1+1000)(COMSI(J)+J=1+N)
С	SALE OF FIXED ASSET ASSUMED DETERMINISTIC
	RFAD(IN1+1000)(SFA(J)+J=1+N)
С	INTEREST ON LONG TERM DEBT ASSUMED TO BE DETERMINISTIC
	READ(IN1+1000)(DIP(J)+J=1+N)
С	DEBT RETIREMENT ASSUMED TO BE DETERMINISTIC
	READ(IN1+1000)(DRP(J)+J=1+N)
С	DEBT SINKING FUND ASSUMED TO BE DETERMINISTIC
	PFAD(IN1+1000)(DPF(J)+J=1+N)
C	PREFERRED STOCK DIVIDENDS ASSUMED TO BE DETERMINISTIC
	PEAD(IN1 • 1000) (DIVP(J) • J= 1 • N)
С	COMMON STOCK DIVIDENDS ASSUMED TO BE DETERMINISTIC
	READ(IN1+1000)(DIVC(J)+J=1+N)
С	GENERAL AND ADMINISTRATIVE FIXED PORTION OF COST
	READ (IN1+1000)(FDGA(J)+J=1+N)
С	FIXED PORTION OF MISCELLANEOUS
	READ(IN1:1000)(MISC(J):J=1:N)
С	RESEARCH AND DEVELOPMENT
С	READ(IN1+10000)(RD(J)+J=1+N)
С	FIXED SELLING COSTS
С	READ (IN1+1000)(FDSELL(J)+J=1+N)
С	THE FOLLOWING PARAMETERS USE EITHER UNIFORM OR NORMAL DISTRIBUTIONS
Ç	PARAMETER ALPHA
	READ(IN1+1008)IND
	INDALPHA=2
С	FOR UNIFORM DISTRIBUTION
С	ALPHA1 IS LOWER VALUE ALPHA2 IS UPPER VALUE
С	FOR NORMAL DISTRIBUTION
Ç	ALPHAI IS EXPECTED VALUE ALPHAZ IS STD DEVIATION
	READ(IN1+1030)ALPHA1+ALPHA2
	IF(IND •GT• 2)INDALPHA=3
С	FOR PARAMETER A
	READ(IN1+1008)IND
	INDA=2
	PEAD(IN1+1030)A1+A2
	IF(IND •GT • 2)INDA=3
С	FOR PARAMETER B
	READ(IN1+1008)IND
	READ(IN1+1030)B1+B2
	INDB=2
	IF(IND •GT • 2) INDB=3
С	FOR PARAMETER THETA

```
READ(IN1+1008) IND
      INDTHETA=2
      READ(IN1+1030)THETA1+THETA2
     IF (IND .GT. 2) INDTHETA=3
      FOR PARAMETER DELTA
C
      READ(IN1+10 8) IND
      INDDELTA=2
      READ(IN1:1030)DELTA1:DELTA2
      IF (IND .GT. 2) INDDFLTA=3
      KK IS NUMBER OF PERIODS THAT CREDIT SALES TAKES TO BE COMPLETELY
C
C
          COLLECTED
      KK = 4
      READ (IN1+1002) (CRSPER(J)+J=1+KK)
      OUTSTANDING CREDIT SALES
      READ (IN1+1005)(CRSOLD(J)+J=1+KK)
      QLDOUT(1)=0
      DO 370 J=1+KK
      OLDOUT(1) = OLDOUT(1) + CRSOLD(J)
  370 CONTINUE
     DO 371 J=2 KK
                                                          . . .
      OLDOUT(J)= OLDOUT(J-1) - CRSOLD(J-1)
 . 371 CONTINUE
    1 FORMAT (8H SALES +18 +8H CS(T) = +18 +9H CRS(T) = +18 +
          12H ALPHA = +F5+3+9H ACTSRV= +18)
     1
    2 FORMAT (10H COLCRT= | +18 +9H CRS(J)= +18 +12H CRSPER(I)= +F5+3)
    3 FORMAT (8H CR(T)= +18 +9H CAR(T)= +18 +8H ND(T)= +18+
          12H COMSI(T)= +18+9H SFA(T)= +18)
    4 FORMAT ( 8H WAGES= •18•7H A = •F5•3•15H RAW MATERIAL ■ •18•
          7H B
                = (F5(3)
     1
    5 FORMAT (
                                                    8H GA(T)= .18.
     1 11H THETA \approx .F5.3.10H MSCL(T)= .18.11H DELTA
                                                          = •F5•3)
   __6_FORMAT (9H DIP(T)= 01806H TXP= 01806H DRP= 018 06H DRF= 0180
          6H CAP= •18•7H DIVP= •18•7H DIVC= •18•9H SPMISC= •18)
   16 FORMAT(1H0.20H START OF PERIOD T= .13)
   20 FORMAT(12H CRSPER(J)= +4F5+3)
 1002 FORMAT(918/418)
 1001 FORMAT(13F5.3)
1002 FORMAT (4F5.3)
 1004 FORMAT (18)
 1005 FORMAT (418)
 1006 FORMAT(12)
 1007 FORMAT(12:18)
 1008 FORMAT(12)
 1009 FORMAT(12)
 1010 FORMAT(18+F5+3)
```

```
1011 FORMAT (10F6.4/10F6.4/10F6.4/10F6.4/10F6.4/2F6.4)
1012 FORMAT (318)
  1013 FORMAT (18.F6.4)
   1030 FORMAT(2F5.3)
   1400 FORMAT (17H DEBUG INPUT DATA)
   1401 FORMAT (1H +11(1X+18))
   1405 FORMAT (1H +4(3X+F5+3))
 1408 FORMAT (1H +5(3X+F6+4))
  1411 FORMAT (1H +6(3X+F5+3))
  1412 FORMAT(1H0+6H MAX1 +18+6H MAX2 +18+8H MAX2PA +18+8H MIN2PA +18+
       1 6H MAX3 • 18•6H MAX4 • 18•7H PER4= •F6•4)
   1413 FORMAT (1H0+10H CASHBAL +18)
  1414 FORMAT(1HO.12H CRSOLD(T)
 1415 FORMAT(2X+7110+2X+13+1HA)
  1416 FORMAT(2X+6110+12X+13+1HB)
  1417 FORMAT(1H +13+1X+1419)
  1418 FORMAT(2X+7110+2X+13+1HC)
   1419 FORMAT(2X+6110+12X+13+1HD)
   1420 FORMAT(1H +13+1X+1319)
 1426 FORMAT (1H1 +54X+15H NET CASH FLOW )
   1427 FORMAT(1H1+60X+21H ACCOUNTS RECEIVABLE )
  1428 FORMAT(1H +4H NO +13(9H PEPIOD )+11H CUMULATIVE)
  1420 FORMAT(1H +4H NO +13(9H PERIOD ))
   1430 FORMAT(5H
                     44X42H 147X42H 247X42H 347X42H 447X42H 547X42H 64
                               7X+2H 7+7X+2H 8+7X+2H 9+7X+2H10+7X+2H11+
                               7X+2H12+7X+2H13+7X+4H NCF)
    ... 2....
  1431 FORMAT(5H
                      14X12H 117X12H 217X12H 317X12H 417X12H 517X12H 61
                               7X+2H 7+7X+2H 8+7X+2H 9+7X+2H10+7X+2H11+
       1
                               7X+2H12+7X+2H13)
       2
        WRITE (OUT2,1400)
        WRITE(OUT2+20)(CRSPER(J)+J=1+KK)
   ____ DO _1502 J = 1 • N
        WPITE (OUT2+1401)ND(J)+COMSI(J)+SFA(J)+
                                                   DIP(J) TXP1(J) DRP(J)
       1 DRF(J)+CAP1(J)+DIVP(J)+DIVC(J)+FDGA(J)
   1502 CONTINUE
        WRITE(OUT2+1405)A1+A2+B1+B2
        WRITE(OUT2.1411)ALPHA1.ALPHA2.THETA1.THETA2.DELTA1.DELTA2
        WRITE (OUT2 • 1414) (CRSOLD(J) • J=1 • KK)
 C
        SIMULATION DO LOOP FOR NUMBER OF TIMES RUN
 C
        DO 1720 ITIS = 1.200
       DETERMINE CASH FLOW FOR PERIOD T
 C
       D0 1800 T = 1.13
C BASIC EQUATIONS OF CASH INFLOWS
       CP(T) = CS(T) +
                             CAR(T) + ND(T) + COMSI(T) + SFA(T)
```

```
C
      CASH SALES AND CREDIT SALES IN PERIOD T
 2000 CONTINUE.
      IF (INDS •GT • 1)GO TO 2001
      SALES=S1(T)
      GO TO 2010
 2001 IF(INDS - 3)2003+2005+2007
 2003 SS1=S1(T)
 ____ SS2=S2(T)
      CALL UNIFRMI(SSI +SS2 +SALES)
      GO TO 2010
 2005 SS1=S1(T)
      SS2=S2(T)
      CALL NORMALI(SSI +SS2
                              •SALES)
   GO TO 2010
 2007 II=NS(T)
      DO 2008 I=1+II
      IVAL(I)=S3(T+I)
      PCNT(I)=PS (T+I)
 2008 CONTINUE
    CALL GENERAL (IVAL + PCNT + II + SALES)
 2010 CONTINUE
      DETERMINE VALUE OF PARAMETER ALPHA
      IF (INDALPHA .FQ. 2) CALL UNIFRMR (ALPHA1
                                                • ALPHA2
                                                           • ALPHA)
      IF (INDALPHA .EQ. 3) CALL NORMALR (ALPHA)
                                                 ALPHA2
                                                           • ALPHA)
      CS (T)= ALPHA
                         * SALES
   \dots CRS (T) = SALES * (1 - ALPHA)
C
      CALCULATE ACCOUNTS RECEIVABLE AT START OF PERIOD T
С
С
      COLLECTION OF CREDIT SALES IN PERIOD T. KK IS MAX NO. PERIODS BACK
С
      ACTSRV(1) = OLDOUT(1)
С
      ACTSRV(T + 1) = ACTSRV(T) + CRS(T) - CAR(T)
COLCRT = 0
      IF (T .LE. KK)2011.2025
 2011 IF(T •EQ• 1)2012•2015
 2012 COLCRT=CRSOLD(1)
      ACTSRV(T)= OLDOUT(1)
      GO TO 2035
 2015 COLCET=CRSOLD(T)
      L=T - 1
      DO 2017 J=1+L
      I=L - J + 1
      COLCRT= CRS(J)*CRSPER(I) + COLCRT
      IF(ITIS .LE. 5 .OR. ITIS .EQ. 50 .OR. ITIS .EQ. 100 )
 WRITE (OUT2 + 2) COLCRT + CRS (J) + CRSPER(I)
 2017 CONTINUE
```

```
GO TO 2035
__2025 .COLCRT=0
        K = T - KK
        L= T - 1
        DO 2030 J = K+ L
        I = L - J + 1
        COLCRT = CRS (J) * CRSPFR (1) + COLCRT
       _IF(ITIS •LE• 5 •OR• ITIS •E0• 50 •OR• ITIS •E0• 100 )
       1WRITE(OUT2+2)COLCRT+CRS(J)+CRSPER(I)
   2010 CONTINUE
   2035 CAR (T) = COLCRT
        ACTSPV(T + 1) = ACTSRV(T) + CRS(T) - CAR(T)
  C
        CASH RECEIPTS
        CR(T) = CS(T) + CAR(T) + ND(T) + COMSI(T) + SFA(T)
        BASIC EQUATIONS OF CASH OUTFLOWS
  C
        CD (T) = DW (T) + RM (T) + FOH (T) + SFLL (T) + GA (T) +
  C
                 RD(T) + DIP(T) + TXP(T) + DRP(T) + DRF(T) +
  C
  C
                 CAP (T) + DIVP(T) + DIVC(T)
  C
        DIPECT WAGES
        IF (INDA .EQ.2) CALL UNIFRMR (A1
                                          • A 2
                                                • A)
        IF (INDA .EQ.3) CALL NORMALR(A1
                                          • A 2
                                                .A)
        DW (T) = A
                        * SALES
        PAW MATERIAL
  C
        IF (INDB .EQ. 2) CALL UNIFRMR(B1
                                           • P2
                                                 •8)
        IF (INDB .FQ. 3) CALL NORMALR(B1
                                           P2
                                                 •B)
       PM(T) = B
                        * SALES
        GENERAL AND ADMINISTRATIVE
        IF (INDTHETA .FQ. 2) CALL UNIFRMR (THETA)
                                                   .THETA2
                                                              •THETA)
        IF (INDTHETA .EQ. 3) CALL NORMALR (THETA1
                                                   THETA2
                                                              •THETA)
        GA (T) = FDGA (T) + THETA
  С
        MISCELLANEOUS
     IF (INDDELTA .EQ. 2) CALL UNIFRMR (DELTA)
                                                   DELTA2
                                                              •DELTA)
        IF (INDDELTA .FQ. 3) CALL NORMALR (DELTA)
                                                   • DELTA2
                                                              •DELTA)
        MSCL(T) = MISC(T) + DELTA
                                     * SALES
        OVERHEAD
  C
                            * SALFS
  C
        FOH (T) = PETA
  C
        SELLING
____C__
        SFLL (T) = FDSELL (T) + GAMMA
                                            * SALES
        DETERMINE VALUE OF CAPITAL EXPENDITURES
  C
        IF (INDCAP .GT. 1)GO TO 2105
        CAP = CAP1(T)
        GO TO 2115
   2105 II=NCAP(T)
   ..... QO 2110 I=1+II
        IVAL(I)=CAP3(T+I)
```

```
PCNT(1)=PCAP(T+1)
2110 CONTINUE
       CALL GENERAL (IVAL PCNT . II . CAP)
       DETERMINE TAX PAYMENTS
  2115 IF (INDTXP .GT. 1)GO TO 2125
       TXP = TXP1(T)
       GO TO 2135
2125 | | =NTXP(T)
       DO 2130 I=1+II
       IVAL(I) = TXP3(T+1)
       PCNT(I) = PTXP(T+I)
 2130 CONTINUE
       CALL GENERAL (IVAL . PCNT . II . TXP)
C DETERMINE SPECIAL MISC VALUES
  2135 IF (INDMISC .GT. 1)GO TO 2145
       SPMISC = SPMISC1(T)
       GO TO 2155
 2145 II=NMISC(T)
       DO 2150 I=1.II
 ....IVAL(1)=SPMISC3(T+1)
       PCNT(I)= PMISC(T+I)
  2150 CONTINUE
       CALL GENERAL (IVAL + PCNT + II + SPMISC)
 2155 CONTINUE
       CASH DISBURSEMENTS
                                                              + GA (T)
       CD(T) = DW(T) + RM(T)
                          DIP (T) + TXP
                                                              + DRF (T) +
      1
                                                 + DRP (T)
                CAP
                        + DIVP (T) + DIVC (T) + MSCL(T) + SPMISC
       IF(ITIS •LE• 5 •OR• ITIS •EC• 50 •OR• ITIS •EC• 100 )1798+1799
  1708 CONTINUE
       WRITE (OUTS+16)T
       WRITE (OUT2:1) SALES: CS (T): CRS (T): ALPHA :ACTSRV(T)
       WRITE (OUT2+3) CR (T)+ CAR (T)+ ND (T)+ COMSI (T)+ SFA (T)
       WRITE (OUT2.4) DW (T). A
                                    • RM (T) • B
                                      GA(T) ◆THETA
                                                    •MSCL(T)•DFLTA
       WRITE (OUT2.5)
       WRITE (OUT2.6) DIP (T). TXP
                                       • DRP (T) • DRF (T) • CAP
           DIVP (T) DIVC (T) • SPMISC
      1
 1799 CONTINUE
       NET CASH FLOW CALCULATIONS
       NETCF (T) = CP (T) - CD (T)
       XNFTCF(ITIS*T) = NFTCF(T)
       XACTSRV(ITIS+T) = ACTSRV(T)
  1800 CONTINUE
 C .. . PUNCH OUT NET CASH FLOW RESULTS
       WPITE(62+1415)((NETCF(J)+J=1+7)+ITIS)
```

```
WRITE (62 • 1416) ((NETCE (J) • J=8 • 13) • ITIS)
      WRITE(62,1418)((ACTSRV(J),J=1,7),ITIS)
      WRITE(62:1419)((ACTSRV(J):J=8:13):ITIS)
      WRITE OUT NETCASH FLOW RESULTS AT END OF EACH ITIS FOR
C
      13 PERIODS AND CUMULATIVE NET CASH FLOW FOR TOTAL
С
      NETCF(14) = 0
      DETERMINE CUMULATIVE NET CASH FLOW
C
      DO 2200 I=1.13
      NETCE(14) = NETCE(14) + NETCE(1)
 2200 CONTINUE
      XNFTCF(ITIS+14) = NETCF(14)
      IF(ITIS .LE. 5 .OR. ITIS .EQ. 50 .OR. ITIS .EQ. 100 )2210.1720
 2210 CONTINUE
    WPITE(OUT2 • 1417) ITIS • (NETCF(J) • J=1 • 14)
      WRITE (OUT2 + 1420) ITIS + (ACTSRV(J) + J=1+13)
 1727 CONTINUE
      WRITE OUT NETCASH FLOW AS ARRAY FOR ALL SIMULATIONS
      WRITE (OUT2 . 1426)
      WEITE (OUT2 + 1428)
    WRITE(QUT2+1430)
      DC 1721 I=1+200
      WRITE(OUT2+1417)I+(XNETCF(I+J)+J=1+14)
 1721 CONTINUE
C
      WRITE OUT ACTSRV ARRAY FOR ALL SIMULATION
      WRITE (OUT2 - 1427)
      WRITE (OUT2 + 1429)
      WRITE (OUT2 - 1431)
      DO 1722 I=1.200
      WRITE(OUT2+1420)[+(XACTSRV([+J)+J=1+13)
 1722 CONTINUE
      FND
      SUBROUTINE UNIFRMI(A .B .X)
      TYPE INTEGER A.B.X
      P= RANF(-1)
      X = A + (B-A) * P
      RETURN
      END
      SUBPOUTINE UNIFRMR (A . P . X)
      TYPE REAL A. B. X
      R= RANF(-1)
      X = A + (B-A) * R
      RETURN
      END
      SUBROUTINE NORMALI(EX+STDX+X)
      TYPE INTEGER EXISTDXIX
```

```
SUMBOAD
DO 4 I=1+12
           R = RANF(-1)
      4 SUM=SUM + R
           X=STDX *(SUM= 6.) + EX
           RETURN
           END
 SUBROUTINE NORMALR(EX.STDX.X)
           TYPE REAL EX+STDX+ X
           SUM=Q.O
           DO 4 I=1+12
           P = PANF(-1)
         4 SUM=SUM + R
X=STDX *(SUM= 6.) + EX
           RETURN
           END
           SUBROUTINE GENERAL (A +P +N +X)
         DIMENSION P(5) +CP(5) +A(5)
           TYPE REAL PICP
 TYPE INTEGER XIN IA
           DETERMINE CUMULATIVE DISTRIBUTION
           CP(1) = P(1)
           IF (N .GT. 1) GO TO 20
           DETERMINISTIC VALUE
           X= A(1)
         ...GO TO 200
        20 DO 1 I= 2.N
           CP(I) = CP(I-1) + P(I)
         1 CONTINUE
           R = RANF(-1)
           PICKS POINT ON THE CUMULATIVE DISTRIBUTION
     С
           IF (R .LE. CP(1))10.100
        10 X =A(1)
           GO TO 200
       100 I=1
       101 I = I + 1
           IF(CP(I) •LE• 1•00)GO TO 105
           X = A(I-1)
    . .....
           WPITE(61.1)I
         1 FORMAT(24H CP(I) GT 1.00 ERROR I= .14)
           GO TO 200
       105 IF(R .LE. CP(I))110.101
       11 \cap X = A(1)
   200 CONTINUE
           RETURN
```

```
FND
*PUN.340.3000
         SALES DISTRIBUTION IS UNIFORM
 6598890 6598890 6598890 6684570 6684570 6684570 6541770 6541770 6541770 S171
 6304253 6394253 6394253 6394253
 8065310 8065310 8065310 8170030 8170030 7995496 7995496 7995496 S171
 7815197 7815197 7815197 7815197
                                                                          S171
04 CAPTIAL EXPENDITURES HAS GENERAL DISTRIBUTION
03
     T=1
  100000 •300
  135000 •350
  150000 •350
    T=2
  100000 ...300
  130000 0350
  150000 •350
    T=3
  100000 -300
  130000 •350
  150000 •350
0.2 T=4
  250000 •500
  300000 •500
02 T=5
  250000 •500
  300000 •500
00 T=6
  250000 •500
  300000 -500
03 T=7
  240000 .200
  251000 •400
  300000 •400
03 T=8
  540000 •$00
  250000 •400
  300000 •400
02 I=0
  350000 •400
  400000 .600
00 T=10
  350000 -500
  400000 -500
02 T=11
  350000 •400
```

```
400000 •600
  ____02 <u>T=1</u>2
         300000 450
         400000 •550
       01 T = 13
            . 01.000
       04
                TAX PAYMENTS HAS GENERAL DISTRIBUTION
 01 T=1
              01.000
       01
              T=2
              01.000
       01
             T=3
              01.000
03 <u>T=4</u>
         150000 •200
         105000 •600
         220000 $200
             T=5
       01
              01.000
04 T=6
         550000 •200
         575000 •200
         600000 •300
         620000 •300
             T=7
       01
         01.000
       Ol
             T=R
              01.000
       01
              T=O
              01.000
       03
             T=1 ^
       ... 420000 ... 300
         450000 •400
         480000 •300
       01
              T=11
              01.000
       01
             T=12
       01,000
       03
             T=13
         600000 •250
         650000 -500
         685000 •250
              SPECIAL MISCELLANEOUS HAS GENERAL DISTRIBUTION
       04
     .03_.__T=1
         600000 100
```

			· .	0 ND71	0 COMS171 COMS171 0 SFA71 SFA71	01P7 01P7 0RP7 0RP7	0 00871
				c	о с	6075	C.
				0	c c	34000	C
				C	c c	6075	C
				C	c c	123830	C
				c o	0000	6075 19810 0	C.
				c c	0000	19810 5075 34000 127500	C
• 4 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 °	6 · 10 · 10 · 10 · 10 · 10 · 10 · 10 · 1	00000	11 00 00 00 00 00 00 00 00 00 00 00 00 0	00	0000	6075 123880 0	C
55.0000 15.0000 175.000 24.000 24.000 10.000	41 41 41	110000 100000 100000000000000000000000	115000 135000 135000	H 0 C C	CCCC	6075 1 0810 0 0	C:
6 6 6	0 6 6		ö ö	c c	1	:	

09671	DIVP71	DIVP71	DIVC71	DIVC71	FDGA71	FDGA71	MISC71	MISC71													
	C:		0		1195000		45000														
	C :		С		1195000		45000												•		
	10691		173995		1195000		45000													1971	
	C		C		1195000		45000													CRSOLD(KK) 1971	
	C		C		1195000 1195000		45000												CRSPER(KK)	P.	
С	10691	O	173995	0	1195000	1195000	45000	ならいこ	DIST										CRSPE	50000	
C	C	0	0	0	1195000	110000	C C C U T	くしついい	UNITEDRY	1/12			IAL		NOPMAL	A12	UNIFORM	12	013	つつつい	
С	0	10901	C	173005	1195000	1195000	45000	45700	ALPHA IND	O ALPHA12	A IND UNIFCOM	55 Λ12	IND NIORM	•010 B12	THETA IND	THET	DELTA IND	4 DELTA	5.012	100000	
(,	15901	C	173995	C	1105000	1105000	QC084	0005F	O2 AL	00E 0E0 .	02 A	.4a . 6EOS	03	ľ	TT CO	-043 •00S	0205	•0ng •014	210 - 250 - CR8 - 012	380000	-

APPENDIX C

NET CASH FLOW OUTPUT

u: >																																																			
7	Z	6426		139	-1352	-957	-1009	433	-784	•662	-1134	7	70	9 6	1	-16A5	•596	-915	-1245	120	749	424	•521	-372	•525	-663	-1042	1199	1249	-293	• 69	8	3	-1108097		-1392	•129	4275	•520	-460	-1503	382		100	.523	-1679	-1069	4 4 4	2505-	.957	-1154
PENIOD	13	11/565	100000	578687	-470695	-776316	133117	70178	-532255	-101289	9 2 0 0	71070	83351	16008	69541	-543364	-185376	40501	-300598	20124	-16775B	172043	-308549	431132	-235585	323618	93390	-1/3008 -FARES	-271668	-386797	-852	-545900	-210076	41131	105604	24092	-201394	-172110	43496	26046	-702071	-347275	210/2	82.198	239417	-426852	-466012	4,0526	1454660	40326	-232976
PERIOD	12	615259-	00000	-254104	-308428	153581	16922	-168620	-72885	-202129	18049	•112//9	10501	177404	-135389	97218	101085	-404374	94010	04649-	15051	101752	410749	-365633	446618	-218050	-62401	2504040V	-158075	250841	-251941	426482	24628	-124770	-71349	-352269	160147	254423	264928	137969	24404	50935	050/61	-312010	-209515	-72437	344578	121081	40/04/1	159315	352090
PERIOD	11	-15634	-21030	16785	38877	-48646	.30951	17806	30137	-49761	48394	4446	-4274U	004401	18308	-29279	-10675	-45880	-28808	-12249	-61571	-62997	12275	-12762	9438	4890	-46015	10696	-11165	19349	-8414	-78425	-64568	79685	-78169	-29145	-19554	-98520	-29926	-50006	-52451	•12229	1/602-	-41700	.37571	-14789	-24862	14347	-451367	•8120	-28797
PERIAB	2	21695	-411403	194949	-400973	57613	-347462	-89845	-187A90	44916	-152435	-014.46.5	2444	100	278118	-361472	-122282	-284529	404044	292483	213717	-227450	-443733	194719	-201029	-528A12	80520	4676364	448907	-100161	-677425	241159	173905	-519952	-184061	-246985	-221881	61831	-839294	.83978	160240	193969	6621270	10407	-233525	-10806	-339891	2555536	-178161	-580409	-963882
PERIOD	•	180811	340052	45000	-179933	528468	542119	-578703	199736	98551	230466	132130	281004	10000	28849	152485	430454	511606	567705	26/355	10110	246428	-67618	46749	178190	468598	-170116	-122023 548134	96080	559250	587655	16408	388523	112748	216029	127918	413291	10003	53355	98067	-158338	424708	6060/2	930338	610769	172412	-165378	103018	-182000	916806	526668
PERIOD	3 0	-42861	400000	138894	292741	-596147	-336927	514489	-181486	-33202	145754	X02207	40046	130600	854543	-160677	9344	160091	412482	110504	610642	497070	646797	317140	-451429	-207216	457260	100101	-407953	-77192	370237	-140862	361319	29468	263827	-191546	-246273	444380	195937	506001	379133	112180	404004	497670	-74485	-190045	621663	306329	207841	-495316	-146520
CASH FLOW	^	78191	-00720	109766	68818	527516	125638	570264	423553	•	,	~ (-20421	• •	• •	•	vo	67723	-310397	282230	04040	-604992	131425	358853	226269	499448	-77196	24040	567875	287045	131608	425743	427866	34963	180608	-1830	371036	310771	693326	-354902	-11119	95463	7/00/4	108011	520894	-130874	-87441	279186	317002	2636	194431
PERIOD	•	-264434	40330	-727835	34479	-5433/3	•557128	-734482	-143690	-347703	-385168 40704	/00/00*	15.447.40	96444	227270	284463	83614	•453977	•372255	147016	422122	-264967	-297893	-907566	-518491	-719468	324340	-/10019	4308924	-552324	-622815	29224	-191600	-333705	121057	95860	*671956	•675763	-354687	307485	-357650	•75295	111000	51013	-919550	-421303	-358645	1635516	-825310	-203219	186246
PFRIOD	5	492195	202440	714327	-470916	242767	336642	649019	-268966	274022	70091	154020	110294	5.5.44	385611	-310313	488242	346338	-98564	-283597	12267	143032	497692	398630	221517	300229	434960	0166444	185.80	-244837	-217849	450791	54981	342870	403812	-225806	693415	35623	381848	-58802	99970	-160261	200000	19807	889467	91115	-139374	-24570	101051	215354	-293343
P = R 100	4	49093	2564139	-86485	-378968	-143759	-610310	-152852	-530934	-10018B	197-	302301	C00002	14041	657.689	-73158	-378409	-281777	-212209	426080	187301	-44581	-880619	•572173	-11756	-824672	-675413	4011239	196.9	909429	102462	-324886	-316556	-664124	-180675	-92209	*311535	109103	-174910	-148768	-578668	93868	969002	060404	-1010258	-130820	.323163	61383	172680	-793277	279990
9 58100	m																																	176644																	
(ירן אשר	.~	\sim	2 6	コト	5	, 4	2	ş	4	90	ξ	2 2	$^{\iota}$, ,	, 6		:0	\$	ş,	40	, c	2 0	2	4	9	12	Ξ,	4	. 3	. 4	4	2 ù 2	32	77407	20	6	96	→ 4	. 2	8	7	25	2	0 1	15	72	W	20,	35	, 0	5
ט דארוס	-	77	70197	2 -	32502	40420	591	52048	21624	38669	49647	34000	14	54747	5895	27712	46639	27622	93933	22421	40004	43389	31108	77043	72567	58990	85057	54844 8488	17430	34535	34591	31313	27008	-222421	67802	39556	45410	57250	43202	36262	45578	45595	1000	50275 68834	36428	43899	91892	10835	53001	32001	9
Ö	•		~ ~	, 4	· IV	٥	^	•	٠	10	==	75	2.		2.9	17	19	19	50	52	2 6	2 4	52	92	27	58	50	30	7 6	3 6	*	35	9 1	3.8	36	?	7	7 7	7	45	4	4	0 0	4 f.	51	25	53	4	5 0 0	57	58

-647647 -167276 -167276 -18737675 -18737675 -1873767 -187376	**569668 ***6682421 ***6682421 ***6682421 ***668242634 ***66823619 ***568323 ***6683233 ***6683233333333333333333333333333333333		- 649756 - 649655 - 1091953 - 1491169 - 14791169 - 1256737 - 462419 - 522419 - 522419 - 522419 - 522419 - 522419 - 52268 - 15722
11 00 00 00 00 00 00 00 00 00 00 00 00 0	199521 -295921 -205950 -204950 -104950 -10495 -10495 -10495 -10491 -1	#145629 #449465 #449465 #637814 2817814 2817814 #461715 #461715 #461715 #14795 #141418 #474488	- 40381 - 40382 - 50808 - 50808 - 50808 - 20908 - 20183 - 40818 - 50818 - 5081
26442 543194 543194 624155 62405 170941 1766031 1766031 1766031 176131 626737 626737 626737 626737 626737 626737 626737	15691 126592 2279324 -279324 -279324 620223 620223 620223 -2292857 -2292857 -2292857 -279321 -279321 -279321 -279321	100585 100585	35054 -35074 -35074 -150195 -168990 -28213 -28213 -28213 -119425 -14126 -14126 -14126 -14126 -14126 -14126 -14022
1 1 1 1 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2	**************************************	- 71456 - 71456 - 71137 - 751137 - 751137 - 751137 - 75137 - 75156 - 85156 - 85156 - 85156 - 85156 - 85156 - 85156 - 7756 - 7756	179120 179120 179130 17
24	150254 11423 11423 132282 132282 132282 144273 1522483 152483	105 889 1105	264408 264408 264408 210826 21
0.000 0.000	263163 261163 26	24 2011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i i
1191729 0.01172	124658 1000000000000000000000000000000000000	100053	104463 104463 104463 104463 104463 104112 104112 104112 10565 1066
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4 10 20 20 20 20 20 20 20 20 20 20 20 20 20	11 940 940 940 940 940 940 940 940 940 940	4 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
110004 100004 1000004 100004 100004 100004 100004 100004 100004 100004 100004 1	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0 10 11 20 10 10 11 20 10 11 20 10 20 20 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	10000000000000000000000000000000000000
01000000000000000000000000000000000000	109955 179957 17	10000000000000000000000000000000000000	6.00
044001001 140404	1109991120000111099911099911099911099999999	_ ^ ^ ^ ~ ^ ~ ~ ~ ~ ~ ~ ~ ~ ~	0 0 F N 0 0 0 0 0 0 0 0 0 0 0 0 0 0
84 4 4 4 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4	9000 4000	2	6.05.05.05.05.05.05.05.05.05.05.05.05.05.
	2000 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	70001014110047	, o on a 44pp v v 4or v a
	1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
00000000000000000000000000000000000000	アファファ きちらららきほらららっかっこう くうこう らょころようらう しょころ するうしょ	1444 2000 00 00 00 00 00 00 00 00 00 00 00 00	**************************************

-435766 -435766 -435776 -435776 -2340244 -254620 -256620 -274032 -317752 -3177	-995764 -91577 -665114 -227556 -474738 -64474
### ### ### ### ### ### ### ### ### ##	7727 7727 7727 7727 7729 7729 7729 7729
1.092.82.92.92.92.92.92.92.92.92.92.92.92.92.92	
11	24083 17098 22702 33586 11268 33574 37751
$\begin{array}{c} \text{VIII} = 1.0 \cdot 1$	0.000400
######################################	~~~~~~
25 111 12 12 12 12 12 12 12 12 12 12 12 12	166892 530653 147221 44570 819041 547714
23	
11114 1	49822 4781 23336 4310 1553 21536
4 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 3 1 3 1	8080448
22	24 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
1	
11. 11.44	0400044
$\begin{array}{c} 44100\\ 44000\\ 400$	5000 5000 5000 5000 5000 5000 5000 500
1000 1000 1000 1000 1000 1000 1000 100	1176 1176 1178 1178

-521860	-579484	-540004	-1502334	-794286	*419259	-1180039	-31175	-998977	-982322	-445296	-1019206	-39748	-712774	-233736	39727	-574333	-1085160	-172632	-977963
•48758	-196150	9921	-580723	11905	-91672	859522-	-240257	-238997	-429955	-263314	-205706	376293	-425209	99667-	14561	-541584	-295079	66269	-307429
-163628	165715	-291289	.229240	266277	39120	-21283	218769	91171	510416	288386	577780	-355787	250788	-370086	166116	226650	171445	.97003	440425
-280561	-91259	-161741	-408845	-459169	-267674	-552182	-519854	-138495	-554098	-398488	-860438	-431426	-711261	161947	-163264	-604203	-349618	-488367	-487955
-224A52	-512865	189458	-177737	-187643	-257394	-230305	-200165	-435541	-584757	3984	99111	152ª06	78173	-585458	-151413	-549034	-88766	-244596	58439
6547	576787	-72254	824066	570968	358876	-42887	-46336	-141245	511375	-15046	314170	487713	-48298	197748	254708	645211	103638	-17907	-362815
486967	7569	80260	-662003	-734858	-269520	455946	237915	437152	-35553	178642	-162643	-442059	337228	123110	50787	-528067	16623	712708	176028
250090	-269218	592875	348978	282296	697236	366268	331051	-65834	185988	193788	-23720	412694	180692	772484	66567	948596	32524	95984	478992
-118323	-41511	-744452	-564431	-374325	-362218	-140242	4485	-65355	-435561	-66024	-355286	-638686	-112747	-344711	-475784	-672916	+333226	379397	-513788
4079	262053	170782	36956	118498	68523	-208278	214864	-27801	-31945	-355628	-32397	557629	316676	12795	565574	325301	-142457	-390771	-69469-
-375512	-214641	140542	-91883	-3775	-48352	-431027	-164190	38231	-25027	-28/709	-640105	-39n925	-153941	3/215	37676	-102690	60148	78517	-280635
431994	191044	-418052	343872	-269135	-158199	243260	567901	233608	158486	479941	735072	660442	-501855	-19334	88947	319277	300487	-203068	99379
321297	-9549	555657	100538	440359	590330	315942	-332700	-364972	-38211	278720	-243200	266384	356223	224018	145772	467496	-129987	139740	382271
-811200	-447459	-607931	-442352	-455684	-718315	-709493	-102658	-321029	-213480	-482546	-201744	-634826	-279443	-404996	-531378	-508370	-438892	-350501	-585576
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	661	200

APPENDIX D

SIMULATION OF THE FINANCING ALTERNATIVES-COMPUTER PROGRAM AND INPUT DATA

```
1J0p,466696.543379.3.0.ELLIS.JOHN
FODAL XAD
       PROGRAM ELLISS
   95 DIMENSION NETCF(52) + NCF(52) + INVINC(55) + INVSPC(55) + FINTRN(55) +
      1 STERP(55) • INTPAY(55)
  100 DIMENSION PCASBAL(52) + CASH(52) + DIF(52) + REQMIN(52)
       DIMENSION REQMIN1(13) + REQMIN2(13) + INTSPC(13)
105 DIMENSION INVSPC1(55) • INVINC1(55) • ACTSRV(52)
       DIMENSION NETINTA(5)
       DIMENSION SF1(52) + SF2(52) + SF3(52) + SF4(52) + SF2RP(52)
       DIMENSION INTSPC1(52) • INTSPC2(52) • STOCK(200 • 4)
       DIMENSION INT11(52) • INT12(52)
       DIMENSION INT21(52) INT22(52)
       DIMENSION INT31(52) | INT32(52)
       DIMENSION INT41(52) INT42(52)
       DIMENSION CASH14(4)
       DIMENSION NETA(200+4) + CASHA(200+4)
       TYPE INTEGER NETA+CASHA
       TYPE REAL INTSPC1. INTSPC2.INTSPC
    TYPE REAL INTII . INTI2 . INT21 . INT22 . INT31 . INT32 . INT41 . INT42
       TYPE REAL PER4 •PER1
       TYPE INTEGER METINTA · ACTSRV · FINNP · SPCNR
       TYPE INTEGER OUTS STOCK
       TYPE INTEGER NETCE: NCF: INVINC: INVSPC: FINTRN: STFRP: INTPAY
       TYPE INTEGER K. T. KK.
                                        J. CASHBAL
      TYPE INTEGER CASH14
       TYPE INTEGER PCASHAL + CASH + DIF + REQMIN
       TYPE INTEGER INVSPC1. INVINC1.REQMIN1.REQMIN2
       TYPE INTEGER SF1. SF2. SF3. SF4
       TYPE INTEGER INTOMY. STDY (. TLP. TESTI. TEST2
       TYPE INTEGER TOTING TOTPAID
       TYPE INTEGER MAX1. STF1. SW1. STKOUT1. AVAIL1
                                                AVAILZ. MINZPA. MAXZPA
       TYPE INTEGER MAX2. STF2.
       TYPE INTEGER MAX3. STF3.
                                                AVAIL3 + SF2RP
       TYPE INTEGER MAX4. STE4.
                                                AVAIL4. MAX4PER
\mathbf{C}
       REGINNING
       IN1=60
       OUT2=61
       N = 1.3
       KK = 4
       INTNOPD=0
       INTMORC=0
       FINNP=0
       SPCNR= 0
```

MINIMUM REQUIRED CASH BALANCE

C

```
READ (IN1+1000) (REQMIN1(J)+J=1+13)
          READ (IN1+1000) (REGMIN2(J)+J=1+13)
   C
          CASH
          READ (IN1 1004) CASHBAL
          INTEREST RATE ON SURPLUS CASH REINVESTED
   C
          CAN BE UNIFORM OR MORMAL
   C
   C
          TRANSACTION COST
          TCSPC = 0.0
          READ(IN1 1008) IND
          IF (IND
                   •EQ• 2) GO TO 261
          IF (IND
                   •EQ• 3) GO TO 262
   C
          UNIFORM DISTRIBUTION
      261 READ(IN1.1040)(INTSPC1(J).J=1.N)
          READ(IN1+1040)(INTSPC2(J)+J=1+N)
          INDSPC= 2
          GO TO 265
          NORMAL DISTRIBUTION
   C
      262 PEAD(IN1+1040)(INTSPC1(J)+J=1+N)
          READ(IN1 • 1040) (INTSPC2(J) • J=1 • N)
         INDSPC=3
          GO TO 265
   C
          INPUT CONSTRAINTS TO SHORT TERM FINANCING
   C
          TYPE 1 - LINE OF CREDIT
      265 CONTINUE
          READ (IN1+1013)MAX1 +PER1
          TRANSACTION COST
... ...<u>.</u>
          TXC1 = 0.0
   C
          COMPENSATING PALANCE
          ICOMB = MAX1 * PER1
          READ(IN1+1008)IND
          CAN BE UNIFOR" OR NORMAL
   C
        __IF_ (IND
                  ●E0 • 2) GO TO 266
          IF (IND
                   ●EO● 3) GO TO 267
      266 CONTINUE
   \mathbf{C}
          UNIFORM DISTRIBUTION
          READ(IN1+1040)(INT11(J)+J=1+N)
          PEAD(IN1+1040)(INT12(J)+J=1+N)
          INDINT1 = 2
          GO TO 270
          NORMAL DISTRIBUTION
      267 CONTINUE
          PEAD(IN1+1040)(INT11(J)+J=1+N)
          READ(IN1 . 1040) (INT12(J) . J=1 . N)
          INDINT1 = 3
          GO TO 270
```

```
TYPE 2 - TERM LOAN
   С
270 CONTINUE
          READ (IN1+1012) MAX2+MAX2PA+MIN2PA
          TRANSACTION COST
   C
          TXC2 = 0.0
          TLP = 6
          READ(IN1.1008)IND
          IF (IND •FQ• 2) GO TO 271
          IF (IND
                   •EQ• 3) GO TO 272
      271 CONTINUE
   C
          UNIFORM DISTRIBUTION
          READ(IN1 • 1040)(INT21(J) • J=1 • N)
          READ(IN1.1040)(INT22(J).J=1.N)
        INDINT2 = 2
          GO TO 275
     272 CONTINUE
   C
          NORMAL DISTRIBUTION
          READ(IN1+1040)(INT21(J)+J=1+N)
          READ(IN1.1040)(INT22(J).J=1.N)
          INDINT2 = 3
          GO TO 275
          TYPE 3 - COMMERCIAL PAPER
   C
      275 CONTINUE
          READ (IN1+1004) MAX3
          TRANSACTION COST
   C
         TXC3 = 0.0
          READ(IN1.10 8)IND
          CAN BE UNIFORM OR NORMAL
   C
          IF (IND .EQ. 2) GO TO 276
          IF (IND
                   •EQ • 3) GO TO 277
      276 CONTINUE
   C .... UNIFORM DISTRIBUTION
          READ(IN1+1040)(INT31(J)+J=1+N)
          READ(IN1 . 1040) (INT32(J) . J=1 . N)
          S = ETNIGNI
          GQ TO 280
     277 CONTINUE
   C_
          NORMAL DISTRIBUTION
          READ(IN1+1040)(INT31(J)+J=1+N)
          PEAD(IN1+1040)(INT32(J)+J=1+N)
          INDINT3 = 3
          GO TO 280
   C
          TYPE 4 - ACCOUNTS RECEIVABLE LOAN
   280 CONTINUE
          READ (IN1+1013)MAX4+PER4
```

```
TRANSACTION COST
C
      TXC4 = 0.0
      PEAD (IN1 . 1008) IND
      CAN BE UNIFORM OR NORMAL
C
      IF (IND
               •EQ• 2) GO TO 281
      IF (IND
                •EQ• 3) GO TO 282
  201 CONTINUE
      UNIFORM DISTRIBUTION
      PFAD(IN1+1040)(INT41(J)+J=1+N)
      READ(IN1 + 1040) (INT42(J) + J=1 + N)
      INDINT4 = 2
      GC TO 285
  292 CONTINUE
C NORMAL DISTRIBUTION
      READ(IN1+1040)(INT41(J)+J=1+N)
      READ(IN1+1040)(INT42(J)+J=1+N)
       INDINT4 = 3
      GO TO 285
  205 CONTINUE
SEE CONVERT ANNUAL PERCENT INTO APPROPRIATE LENGTH PERCENT
      00 290 J=1.N
       INTSPC1(J)= INTSPC1(J)/13
       INTSPC2(J) = INTSPC2(J)/13
       INT11(J) = INT11(J)/13
       INT12(J) = INT12(J)/13
 INT21(J) = (INT21(J)/13) * 6
      INT22(J) = (INT22(J)/13) * 6
       INT31(J) = (INT31(J)/13) * 3
       INT32(J) = (INT32(J)/13) * 3
       INT41(J) = INT41(J)/13
       INT42(J) = INT42(J)/13
  297 CONTINUE
     7 FORMAT(4H T= +13+8H ITYPE= +13+
                11H NETCE(T) = • 18 • 12H INVINC(T) = • 18 •
      1
               12H FINTRN(T)= \bullet18\bullet9H NCF(T)= \bullet18)
     9 FORMAT (10H DIF(T)= .18.14H PCASBAL(T)= .18.13H REQMIN(T)= .
      1
           18.
                11H STERP(T) = \bullet I8\bullet12H INTPAY(T) = \bullet I8)
    17 FORMAT(15H INVINC1(T+1)= \bullet18\bullet9H DIF(T)= \bullet18\bullet13H INTSPC (T)= \bulletF6\bullet4\bullet
      1 13H INVSPC1(T) = • 18)
    11 FORMAT(4H T= +12+ 10H CASH(T)= +18+
                                                          12H INVINC(T) = • I8 •
      112H INTPAY(T) = 18.9H TOTINC= .18.10H TOTPAID= 18)
    13 FORMAT(1H0.20H START OF PERIOD T= .13.12H FOR ITYPE= .13)
    15 FORMAT(20H NET INTEREST COST# +18+
```

1 9H INTMOR= +18+8H SPCNR= +18+10H INTMOPD= +18+8H FINNP= +18+

```
2 11H CASH(14)= •18•2X•13)
31 FORMAT(11H STOCKOUT= +18)
   an FORMAT(9H SF1(T)= +18+14H INTPAY(T+1)= +18+7H STF1= +18+
     1 8H XINT1= •F6•4)
   41 FORMAT(9H INTDMY= +18+8H STDMY= +18+7H STF2= +18+9H SF2(T)= +18+
     1 8H XINT2= •F6•4)
   42 FORMAT(7H STF2= +18+11H SF2RP(T)= +18)
50 FORMAT(7H STF3= +18+11H SF3(T-3)= +18)
   51 FORMAT(9H SF3(T)= +18+10H INTPAY3= +18+7H STF3= +18+
     1 8H XINT3= +F6+4)
   A^ FORMAT(7H S3F4= +18+11H SF4(T-1)= +18)
   61 FORMAT(8H TEST1= +18+9H ACTSRV= +18+7H PER4= +F6+4+8H TEST2= +18)
   62 FORMAT(9H SF4(T)= +18+13H STFRP(T+1)= +18+14H INTPAY(T+1)= +18+
1 8H XINT4= •F6•4)
 1000 FORMAT(918/418)
 1001 FORMAT(13F5.3)
 1002 FORMAT (4F5.3)
 1004 FORMAT (IB)
 1005 FORMAT (418)
 1006 FORMAT(I2)
 1007 FORMAT(12:18)
 1008 FORMAT(I2)
 1000 FORMAT(12)
 1010 FORMAT(I8+F5+3)
 1012 FORMAT (318)
 1013 FORMAT (IB+F6+4)
 1030 FORMAT(2F5.3)
 1040 FORMAT(13F6.4)
 1400 FORMAT (17H DEBUG INPUT DATA)
 1401 FORMAT (1H +12(1X+18))
 1405 FORMAT (1H +4(3X+F5+3))
 1408_ECRMAT (1H +10(3X+F6+4))
 1411 FORMAT (1H +6(3X+F5+3))
 1412 FCRMAT(1H0.6H MAX1 .18.6H MAX2 .18.8H MAX2PA .18.8H MIN2PA .18.
     1 6H MAX3 • 18•6H MAX4 • 18•7H PER4= •F6•4)
 1413 FORMAT (1H0=10H CASHBAL | 18)
 1414 FORMAT(1H0+12H CRSOLD(T) +418)
 1418 FORMAT(2X+7110)
 1410 FORMAT(2X+6110)
 142" FORMAT(1H1 + 22X + 18H NET INTEREST COST + 11X +
     1 33H UMRESTRICTED ENDING CASH PALANCE)
 1421 FORMAT(1H +3X+2(5X+6HTYPE=1+5X+6HTYPE=2+5X+6HTYPE=3+5X+6HTYPE=4))
 1422 FORMAT(1H +3X+9(3X+18))
 1423 FORMAT(1H1+14X+18H NET INTEREST COST+12X+
     1 33H UNRESTRICTED ENDING CASH BALANCE .
```

```
2 18X. 9HSTOCK OUT)
 1424 FORMAT(1H +2X+3(4X+6HTYPE=1+4X+6HTYPE=2+4X+6HTYPE=3+4X+6HTYPE=4))
 1425 FORMAT (48X+27H INCLUDING COST OF STOCKOUT)
 1426 FORMAT(1H +12(2X+18))
 1450 FORMAT(R(2X.IR))
 1452 FORMAT(2X+6+12+2X+18))
      TEST INITIALIZATION OF INTEREST RATES
      DO 1507 J=1.N
      *(U) :ETNI *(U) :STNI *(U) :STNI *(U) :TNI ( 8^41 * STUD ) =TIP
     1 INT32(J) • INT41(J) • INT42(J) • INTSPC1(J) • INTSPC2(J)
 1507 CONTINUE
      WRITE (OUT2:1412) MAX1:MAX2:MAX2PA:MIN2PA:MAX3:MAX4:PER4
      WRITE (OUT2:1413) CASHBAL
Ç.
C
C
      START OF PROCESSING CASH FLOW THROUGH FINANCING ALTERNATIVES
      DO 7720 ITIS=1.200
      READ(IN1+1418)(NFTCF(J)+J=1+7)
      DFAD(IN1+1419)(NETCF(J)+J=8+13)
      PEAD (IN1 • 1418) (ACTSRV(J) • J=1 • 7)
      PF AD(IN1+1419)(ACTSRV(J)+J=3+13)
      NETINTA(1) = 0
      NETINTA(2) = 0
      NETINTA(3) = 0
      NETINTA(4) = 0
      DO 2405 J=1+13
      IDE01= PEGMIN1(J)
      IREOR=REOMINA(J)
      CALL UNIFRMI (IREQ1 . IREQ2 . IREC)
      PEQMIN(J)=IREQ
 2405 CONTINUE
   ...DQ 2407 J=1•13
      XSPC1 = INTSPC1(J)
      XSPC2 = INTSPC2(J)
      IF (INDSPC •EQ• 2) CALL UNIFRME (XSPC1 • XSPC2 • XINTSPC)
      IF (INDSPC •EQ• 3) CALL NORMALR(XSPC1• XSPC2• XINTSPC)
      INTSPC(J)= XINTSPC
 2407 CONTINUE
      DO 1700 ITYPE = 1.4
C
      INITIALIZATION OF ARRAYS
      DO 2410 J=1.19
      INVINC(J) = 0
      INVSPC (J) = 0
      f[NTPN(J) = 0
      INTPAY (J) = 0
```

```
STERP (J) = ^{\circ}
INVSPC1(J) = 0
      INVINC1 (J) = 0
      SF1 (J) = 0
      SF2(J) = 0
      SF3 (J) = 0
      SE 2RP (J)=0
      SF4(J) = 0
 2410 CONTINUE
      STKOUT1 = 0
С
      STKOUT2 = 0
C
      STKOUT3 = 0
    STKOUT4 = 0
      SW1 =0
C
      582 = 0
C
      SW3 = 0
      SW4 = 0
      STF1 = 0
____SIF2 = 0
      STF3 = 0
      STE4 = 0
      TOTINC = 0
      TOTPAID = 0
      INTPAY3=0
      DO 1701 T=1+13
С
      REPAYMENT PLUS INTEREST AT BEGINNING OF PERIOD T
      FINTRN (T) = STFRP (T) + INTPAY (T)
      IF(T •FQ• 1)2420•2430
 2420 NCF(T)=NETCF(T) + INVINC(T)
      PCASBAL (T) = CASHBAL + NCF (T)
    ... GO TO 2501
 2430 NCF (T) = NETCF (T) + INVINC (T) + INVSPC (T-1) - FINTRN (T)
      POTENTIAL CASH BALANCE PRIOR TO FINANCING ACTIVITY FOR PERIOD T
      PCASBAL (T) = CASH (T=1) + NCF (T)
С
      DIFFERENCE BETWEEN POTENTIAL CASH BALANCE AND REQUIRED MINIMUM
      IF (ITYPE •EQ• 1)STF1= STF1 -SF1(T-1)
     IF(ITYPE .EQ. 2)STE2= STE2 - SE2RP(T)
      IF(ITYPE •EQ• 3 •AND• T •GT• 3)STF3= STF3 -SF3(T-3)
      IF (ITYPE •EQ• 4)STF4= STF4 -SF4(T-1)
 2501 DIF (T) = PCASBAL (T) - REGMIN (T)
      IF(ITIS •LE• 3 •OR• ITIS •EO• 50 •OR• ITIS •EQ• 100 )2431•2422
 2431 CONTINUE
     _ WRITE(OUT2•7)T•ITYPE•NETCF(T)•INVINC(T)•FINTRN(T)•NCF(T)
      VRITE(OUT2.9)DIF(T).PCASRAL(T).REQMIN(T).STFRP(T).INTPAY(T)
```

```
2432 CONTINUE
      DECISION FOR PERIOD T
      IF ( DIF (T) •GT• 0)4901•4920
      INVEST SURPLUS CASH
4901 INVSPC1 (T) = DIF (T) * (1 - TCSPC)
      INVINC1 (T+1) = DIF(T) * INTSPC(T)
      IF(ITIS *LE* 3 *OR* ITIS *FQ* 50 *OR* ITIS *EQ* 100 )
   1WRITE(OUT2 • 10) INVINC1(T+1) • DIF(T) • INTSPC(T) • INVSPC1(T)
      GO TO 5999
4920 IF ( DIF (T) .EQ. 0)4921.4930
      NO ACTION TAKEN
С
4921 INVSPC1 (T) =0
      INVINC1 (T+1) = 0
      GO TO 5999
\mathsf{C}
      DIF(T) IS LESS THAN ZERO
C
      MUST USE SHORT TERM FINANCING
      NEED TO BOOROW DIF(T)
4930 DIF(T) = -DIF(T)
      GO TO (5000+5100+5200+5300)+ITYPE
      TYPE 1 - LINE OF CREDIT
 5000 IF (MAX1 •EQ• STF1) 5011 •5020
      TOTAL DOLLAR MAXIMUM ALREADY USED UP SW1 =1 INDICATES STOCKOUT
 5011 5 1 = 1
      CTKOUT1 = DIF (T)
      IF(ITIS •LE• 3) WRITE(OUT2•31)STKOUT1
      POSSIBLE STOCKOUT COST
      GO TO 5999
      HOW DO AMOUNT NEEDED AND AMOUNT AVAILABLE COMPARE
 5020 AVAIL1 = MAX1 - STF1
C5021 IF (ICOMB OGT OF REQMIN(T))
     1 DIF(T) = DIF(T) + (ICOMP - REQMIN(T))
      INCLUDE COMPENSATING BALANCE OF 15 PER CENT OF AMOUNT NEEDED
C5021 DIF(T) = DIF(T) * 1015
С
      COMPENSATING PALANCE IS 15 PERCENT OF LINE OF CREDIT
      DIF(T) = DIF(T) + ICOMP
 5021 \text{ DIF(T)} = \text{DIF(T)} * 1.15
      IF (AVAIL1 .LT. DIF(T))5022.5030
      NOT FNOUGH AVAILABLE
 5022 SF1 (T) = AVAIL1
      SW1 = 1
      STKOUT1 = DIF (T) - SF1 (T)
      IF (ITIS •LE• 3) WRITE (OUT2•31) STKOUT1
C
      POSSIBLE STOCKOUT COST
     GO TO 5031
```

C

ENOUGH AVAILABLE

```
CALCULATIONS OF INTEREST AND REPAYMENT
   5030 SE1 (T) = DIF (T)
   5031 CONTINUE
        \times 11 = INT11(T)
        X12 = INT12(T)
        IF (INDINT1 .FQ. 2) CALL UNIFRMR(X11. X12. XINT1)
        IF (INDINT1 .EQ. 3) CALL NORMALR(X11. X12. XINT1)
 SF1(T) = SF1(T)/(1 - TXC1)
        INTPAY (T+1) = SF1 (T) * XINT1 + INTPAY (T+1)
                     = STFRP (T+1) + SF1 (T)
        STERP (T+1)
        STF1 = STF1 + SF1 (T)
        IF(ITIS .LE. 3 .OR. ITIS .EQ. 50 .OR. ITIS .EQ. 100 )
       1WRITE(OUT2+40)SF1(T)+INTPAY(T+1)+STF1+XINT1
   GO TO 5999
  C
        TYPE 2 - TERM LOAN
   5100 CONTINUE
        IF(ITIS *LE* 3 *OR* ITIS *EQ* 50 *OR* ITIS *EQ* 100 )
       1MRITE(OUT2+42)STF2+SF2RP(T)
        IF (MAX2 •LE • STF2)5101 •5120
        TOTAL DOLLAR MAXIMUM ALREADY USED UP
____C
   5101 SW1 = 1
        STKOUT1 = DIF (T)
        IF(ITIS .LF. 3) WRITE(OUT2.31)STKOUT1
  C
        POSSIBLE STOCKOUT COST
        GO TO 5999
  5120 AVAILS = MAX2 - STES
        IF (DIF (T) •GF • AVAIL2)5122 •5140
   5122 IF (AVAIL2 .GF. MIN2PA )5123.5101
   5123 IF (AVAIL2 .LF. MAX2PA )5124.5130
        BORROW AMOUNT AVAILABLE
   5124 SE2 (T) = AVAIL2
       .. SW.1 .. = 1
        STKOUT1 = DIF (T) - SF2 (T)
        IF (ITIS •LE• 3) WRITE (OUT2•31) STKOUT1
  C
        POSSIBLE STOCKOUT COST
        GO TO 5150
        BORROW PERIOD MAXIMUM
   5130 SEZ (T) = MAX2PA
        SW1 = 1
        STKOUT1 = DIF (T) - SF2 (T)
        IF (ITIS .LE. 3) WRITE (OUT2.31)STKOUT1
  C
        POSSIBLE STOCKOUT COST
        GO TO 5150
   5147 IF ( DIF (T) •GE• MINSPA )5141 •5101
   5141 IF (DIF (T) .LE. MAX2PA )5142.5130
```

```
BORROW AMOUNT NEEDED
 5142 \text{ SF2 (T)} = \text{DIF (T)}
      GO TO 5150
      DETAILS OF TYPE 2 FINANCING
C
      SPLIT REPAYMENT OF PRINCIPAL AND INTEREST AMONG FUTURE PERIODS
 5150 CONTINUE
      X21 = INT21(T)
      X22 = INT22(T)
      IF (INDINT2 •FG• 2) CALL UNIFRMR(X2]• X22• XINT2)
      IF (INDINT2 .FQ. 3) CALL NORMALR(X21. X22. XINT2)
      SE2(T) = SE2(T)/(1 - TXC2)
      STEP = STE2 + SE2 (T)
       INTDMY = SF2 (T) * XINT2
      STDMY = SF2 (T)
      INTOMY = INTOMY / TLP
      STOMY = STOMY / TLP
       IF(ITIS *LE* 3 *OR* ITIS *FQ* 50 *OR* ITIS *FQ* 100 )
      1WRITE(OUT2+41)INTDMY+STDMY+STE2+SE2(T)+XINT2
      K = T + TLP
    <u>___L= _T + 1</u>
      DO 5160 J = L ⋅ K
      SERRE(J) = STDMY
       INTPAY (J) = INTDMY + INTPAY (J)
      STERP (J) = STERP (J) + STOMY
 5160 CONTINUE
       IF(ITIS .LE. 3 .OR. ITIS .EQ. 50 .OR. ITIS .EQ. 100 )
      1 WRITE (OUT2 + 1452) ((I + INTPAY(I)) + I=L+K)
      GO TO 5999
      TYPE 3 - COMMERCIAL PAPER
 5200 IF (T •LE• 3)5203•5201
 5201 CONTINUE
       IF(ITIS *LE* 3 *OR* ITIS *EA* 50 *OR* ITIS *EA* 100 )
      1MPITE (OUT2 +50) STE3 + SE3 (T=3)
 5203 IF (MAX3 •LE • STF3)5210 • 5220
      TOTAL DOLLAR MAXIMUM ALREADY OUTSTANDING
 5210 541 = 1
       \text{TTKOUT1} = \text{DIF} (T)
       IF(ITIS .LE. 3) WRITE(OUT2.31)STKOUT1
C
      POSSIBLE STOCKOUT COST
      GO TO 5003
 5220 AVAIL3 = MAX3 - STE3
       IF ( DIF (T) •OT• AVAIL3)5225•5230
      HOW DO AMOUNT NEEDED AND AMOUNT AVAILABLE COMPARE
      NOT FNOUGH AVAILABLE
 5225 SE3 (T) = AVAIL3
```

```
SW1 = 1
       STKOUT1 = DIF (T) - SF3 (T)
        IF (ITIS .LE. 3) WRITE (OUT2.31)STKOUT1
       POSSIBLE STOCKOUT COST
 C
       GO TO 5231
       ENOUGH AVAILABLE
  5230 SF3 (T) = DIF (T)
  5231 CONTINUE
        \times 31 = INT31(T)
        X32 = INT32(T)
        IF (INDINT3 *FQ* 2) CALL UNIFRMR(X31* X32* XINT3)
        IF (INDINT3 .EQ. 3) CALL NORMALR(X31. X32. XINT3)
 C
        TO MAINTAIN MINIMUM CASH PALANCE IN PERIOD T
        SF3(T) = SF3(T)/(1 - XINT3 - TXC3)
        INTPAY3
                 = SF3 (T) + XINT3
        INTPAY(T) = INTPAY(T) + INTPAY3
        STERP (T + 3) = STERP (T + 3) + SE3 (T)
        STF3 = STF3 + SF3 (T)
        IF (ITIS .LE. 3 .OR. ITIS .EQ. 50 .OR. ITIS .EQ. 100 )
   1WRITE(OUT2+51)SF3(T)+INTPAY3+STF3+XINT3
        GO TO 5999
        TYPE 4 - ACCOUNTS RECEIVABLE LOAN
  5300 IF (T •LE • 1)5302 •5301
  5301 CONTINUE
        IF(ITIS .LE. 3 .OR. ITIS .FO. 50 .OR. ITIS .EQ. 100 )
       1WRITE(OUT2+60)STF4+SF4(T-1)
  5302 TEST1 = MAX4 - STE4
        IF(TEST1 •LE• 0)5303•5305
        TOTAL DOLLAR MAXIMUM ALPHADY USED UP - SK4 = 1 INDICATES STOCKOUT
  5303 SW1 = 1
        STKOUT1 = DIF (T)
        IF (ITIS .LE. 3) WRITE (OUT2.31) STKOUT1
        POSSIBLE STOCKOUT COST
 C
        GO TO 5999
  5305 CONTINUE
         MAX4PER = PER4 * ACTSRV(T)
        TEST2 = MAX4PER - STE4
        IF (ITIS .LE. 3 .OR. ITIS .MO. 50 .OR. ITIS .EQ. 100 )
       1WRITE(OUTR+61)TEST1+ACTSRV(T)+PER4+TEST2
        IF(TEST2 •LE• 0)5303 •5320
        HOW DO AMOUNT AVAILABLE AND AMOUNT NEEDED COMPARE
  5320 AVAIL4 = MINO(TEST1+ TEST2)
        IF ( DIF (T) •GT• AVAIL4)5322•5330
______NOT ENOUGH AVAILABLE
   5300 SEA (T) = AVAIL4
```

```
SW1 = 1
      STKOUT1 = DIF (T) - AVAIL4
      IF (ITIS .LE. 3) WRITE (OUT2 .31) STKOUT1
      POSSIBLE STOCKOUT COST
      GO TO 5331
      ENOUGH AVAILABLE
5330 SE4 (T) = DIF (T)
5331 CONTINUE
      \times41 = INT41(T)
      X42 = INT42(T)
      IF (INDINT4 •F0• 2) CALL UNIFRMR(X41• X42• XINT4)
      IF (INDINT4 •FG• 3) CALL NORMALR(X41• X42• XINT4)
      SF4(T) = SF4(T)/(1 - TXC4)
      INTPAY (T+1) = SF4 (T) * XINT4
                                         + INTPAY (T+1)
      STERP (T+1)
                  = STERP (T+1) + SE4 (T)
      STF4 = STF4 + SF4 (T)
      IF (ITIS *LE* 3 *OR* ITIS *FO* 50 *OR* ITIS *EO* 100 )
     1MRITE(OUT2+62)SE4(T)+STERP(T+1)+INTPAY(T+1)+XINT4
     GO TO 5999
   FINANCING HAS PEFN FINISHED FOR PERIOD T
      NOW MUST MADE ADJUSTMENTS TO PRIPARE FOR PERIOD T+1
 5999 CONTINUE
      IF (SW1 .FQ. 0) GO TO 6000
      STOCK(ITIS*ITYPE) = STOCK(ITIS*ITYPE) + STKOUT1
      5111=0
6000 CONTINUE
      INVSPC (T) = INVSPC1 (T)
      INVINC (T+1) = INVINC1 (T+1)
      CASH (T) = PCASBAL (T) + SE1 (T) + SE2 (T) + SE3 (T) + SE4 (T)
                  - INTPAYS - INVERC
      INTPAY3 =0
     ITOIAL INCOME FROM INTEREST ON SUPPLUS CASH
      TOTINC = TOTINC + INVINC (T)
C
      TOTAL INTEREST PAID ON SHORT THRM FINANCING
      TOTPAID = TOTPAID + INTPAY (T)
      IF(ITIS •LE• 3 •OR• ITIS •FO• 50 •OR• ITIS •CO• 100 )
     1WRITE(OUTS+11)T+ CASH(T)+
                                    INVINC(T) INTRAY(T) ITOTING TOTPAID
 1701 CONTINUE
C
      NET INTEREST COST FOR ITYPE
С
      INTNORC IS INTEREST NOT PECKLYLD AT SND OF LAST PERIOD
С
      SPONR IS INVESTED SUMPLUS CASH NOT RECEIVED BY END OF LAST PERIOD
C
      INTMOPD IS INTEREST NOT PAID AT END OF LAST PERIOD
      FINNE IS FINANCING PRINCIPLY POT PAID AT END OF LAST PERIOD
   INTNORC = INVINC(14)
      IF(ITYPE • E0• 1 •OR• ITYPE •E0• 4)1702•1703
```

```
1702 CONTINUE
       INTNOPD= INTPAY(14)
            FINNP= STFRP(14)
            60 TO 1710
        1703 IF(ITYPF .EQ. 3)1704 .1705
        1704 J=13 + 1
            K = 13 + 3
       D0 1707 I=J•K
           FINNP = FINNP + STERP(I)
       1707 CONTINUE
           GO TO 1710
       1705 IF (ITYPE •NE • 2) GO TO 1710
           J = 13 + 1
      K = 13 + TLP
          DO 1706 I=J+K
          (I)YAGTMI + CGOMINI = GGOMINI
          FINNP = FINNP + STERP(I)
     1706 CONTINUE
          IF(ITIS *LE* 3 *OR* ITIS *EO* 50 *OR* ITIC *EO* 100 )
    1 MRITE (OUTS • 1452) ((I • INTPAY(I)) • I = J • K)
          IF(ITIS *LE* 3 *OR* ITIS *EQ* 50 *OR* ITIS *EO* 100 )
        1WRITE(OUT2+1452) ((1+STFRP(1))+1=J+K)
    1710 CONTINUE
         NETINT = TOTPAID - TOTING
         METINTA(ITYPE) = NETINT
        CASH14(ITYPE) = CASH(13) + INTNORC + SPOND - INTNORD - FINNP
        IF (ITIS •LE• 3 •OR• ITIS •FC• 50 •OR• ITIS •EQ• 100 )
       1WRITE(OUT2+15)NETINT+INTNORC+SPCNR+INTNORD+FINNP+CASH14(ITYPE)+
       2 ITYPE
       CASHA(ITIS+ITYPE) = CASH14(ITYPE)
       NETA(ITIS ITYPE) = NETINTA(ITYPE)
      _INTNORC=0
      INTROPD=0
      FINNP= 0
      SPCNR = 0
1700 CONTINUE
     PUNCH OUT NET INTEREST COST
 WPITE (62 • 1450) (NETINTA(I) • I=1 • 4) (CASH14(I) • I=1 • 4)
    NETINTA(1)=0
    NETINTA(2)=0
    NFTINTA(3)=0
   NETINTA(4)=0
O CONTINUE
   WRITE OUT ARRAY OF NET INTEREST COST AND
   UNREISTRICTED ENDING CASH BALANCE
```

```
WRITE (OUT2 + 1420)
    WRITE(OUT2:1421)
     DO 7730 I=1.200
     WRITE(OUT2 + 1422) ((NETA(I+J)+J=1+4)+(CASHA(I+J)+J=1+4))
  750 CONTINUE
     DO 7735 I=1.200
     DO 7736 J=1.4
     META(I.J)= NETA(I.J) + .01 * STOCK(I.J)
     CASHA(I.J) = CASHA(I.J) - .01% STOCK(I.J)
 736 CONTINUE
 735 CONTINUE
     DO 7738 I=1.200
     MRITE(62+1450)(NETA(I+J)+J=1+4)+(CASHA(I+J)+J=1+4)
 738 CONTINUE
    MPITE (OUT2 + 1423)
    WRITE(OUT2 • 1425)
    WPITE (OUT2 - 1424)
    00 7739 I=1 200
    WRITE(OUT2+1426) (NETA(I+J)+J=1+4)+(CASHA(I+J)+J=1+4)+
    1(STOCK(1+J)=J=1+4)
7730 CONTINUE
    END
    SUBROUTINE UNIFRMR(A +P+X)
    TYPE REAL A. B. X
    R= RANF(-1)
    X = A + (B-A) * P
    RETURN
    END
    SUBROUTINE NORMALP(FX+STDX+X)
    TYPE REAL EXISTDX X
    SUM=O • O
    DO 4 I=1.12
    P = PANE(-1)
  4 SUM=SUM + R
    X=STDX *(SUM- 6.) + FX
    RETURN
    END
    SUBROUTINE UNIFRMI(A . R . X)
    TYPE INTEGER A.P.X
    P= PANF(-1)
    X = A + (B-A) & D
    RETURN
    END
PUN . 3 . Q . 3000
```

										O=OH+N
, ,	000 400000									REQMIN
200200 50 0 0	<u>000 5000</u> 000	50000	70 F000	0000 <u>5</u> 0	JUJ 0 0 0 0 0 0 0 0	50000	<u> </u>	<u> </u>	こうこうりつ	REGMIN
200200 5000	<u> </u>	500000	00							REQMIN
300000 CA	SH BALANCE	AT STAF	? T							
INDSPC	IS UNIFORM									
0525 • 0525	•0475 •0475	•0425	•0425	• 0475	•0475	•0475	0525	•0525	•0525	• 052511
0625 • 0625										
000000 .150	O MAX1•	PER1								
	IS UNIFORM									
0625 • 0625	·0575 ·0575	0525	●0525	•0575	•05 7 5	•0575	• 0625	• 0625	.0625	•062511
0725 • 0725	•0675 •0675	• 0625	•0625	•0675	•0675	•0675	• 0725	•0725	•0725	•072512
000000 1000	000 50000)	MAX2 .	MAX2PA	MINSPA	4				
INDINTS	IS UNIFORM	1								
0650 • 0650	•060 •0600	•0550	0550	•0500	•0600	•060n	• 0650	• 0650	• 0650	•065021
0775 • 0775										
000000 MA	×З									
ETNIONI	IS UNIFORM	1								
⁰ 575 • 0575			•0475	·0525	•0525	•0525	● 0575	• 057 5	• 0575	•057531
0675 • 0675	•0625 •0625	• 0575	●0575	•0625	•062≅	.0625	• 0675	• 0675	• 0675	•067532
1000000 .450	0 MAX4									
	IS UNIFORM	1					-			
-0825 •0825			•0725	•0775	•0775	•0775	• 0825	•0825	•0825	●082541
0925 0925										

APPENDIX E

OUTPUT FROM THE SIMULATION OF THE FINANCING ALTERNATIVES

UNRESTRICTED ENDING CASH BALANCE

TYPE=1	TYPE-2	TYPE-3	TYPE-4
2781271	2691574	2551124	2771012
2538860	2480480	2540241	2531662
••			
1892345	1843516	1902913	1893314
1779553	1712207	1774878	1778126
1817862	1750921	1815532	1806458
2237585	2151734	2239539	2229895
2149889	2105024	2162510	2144701
3657269	3593518	3667641	3649160
2397100	2325433	2409113	2386876
2536460	2447188	2264271	2524416
2024100	1965361	2043957	2025214
3415705	3255559	3424803	3405964
2348079	2275468	2343935	2342231
2545285	2454385	2563160	2538088
2292404	2218140	2310437	2285707
3173182	2844570	3180138	3162363
1475519	1404325	1496996	1480184
2564984	2515666		2557502
		2569153	
2261468	2187971	2278860	2257790
1895324	1868022	1902889	1908055
3382186	3319708	3396441	3371340
1292310	1273042	1317127	1315291
2530304	2440050	2525173	2520842
2772286	2689264	2780466	2757805
2651160	2583428	2657157	2643613
2805241	2730336	2817969	2795301
2638583	2577185	2649696	2636651
2502300	2455064	2503108	2500085
2121614	2064053	2139268	2120851
1952164	1914595	1961414	1957930
1784123	1717730	1784114	1781185
1932894	1848294	1946959	1929984
2903427	2814183	2909762	2890897
2537892	2455041	2541750	2525061
3316457	•	- -	·
-	3251896	3316240	3305295
3268724	3187876	3278246	3258939
1858833	1774807	1862967	1846427
2053661	1998519	2050929	2053852
3191464	3122911	3200128	3182589
1776011	1712179	1740925	1773316
3083023	3011490	3089574	3071988
2939232	2847365	2940518	2925950
1875641	1835293	1883609	1877896
	_		-
2660322	2596364	2658524	2645196
2717013	2638039	2723663	2703803
1575458	1518937	1570954	1565818

2811192	2728945	280996ñ	2797352	
3469112	2975463	3475817	3456762	
2265571	2178012	226446R	2256415	
2674525	2574165	2685301	2664522	
2649830	2582153	2661171	26441n3	
1461442	1428340	1467993	1473285	
2094547	2039861	2111001	2097078	
2692337	2619296	2700397	2678951	
3572491	3401885	3585035	3558895	
1049947	1014455	1047824	1063111	
2189244	2157371	2200108	2197912	
2028896	1972051	2048107	2035118	
2521429	2454501	2528681	2515630	
3358196	3283548	3187235	3349004	
2786528	2704277	2788887	2773820	
2801962	2723653	2814396	2789905	
2259241	2214380	2263704	2255021	· · ·
2283206	2237677	2287823	2286723	
1783169	1707039	1786611	1772768	
2261729	2169781	2266442	2257827	
3184619	3123860	3185764	3171516	
2850830	2772990	2865310	2838732	
1782205	1745309	1798756	1787156	
2994983	2917626	2999395	2982407	
2108792	2055375	2127669	2109676	
1648413	1612257	1667170	1665819	
2765259	2678916	2763919	2753489	
1896008	1812975	1901768	1884605	
2619423	2535561	2628473	2603877	
2489976	2426847	2503346	2478033	
2314578	2244552	2317067	2302358	
2445655	2374026	2453088	2439071	
1467090	1452593	1477259	1491436	
2395830	2313864	2400852	2382929	
2496069	2416635	2498351	2489041	•
2658907	2567169	2650263	2650302	
2825809	2746571	2836606	2810552	
2125735	2084283	2130286	2136713	
3538885	3463618	3540801	3529949	
2207979	2116662	2207836	2201408	
2051818	1998442	3916108	2051377	
2240917	2173641	2248741	2234542	
3061947	2989233	3070267	3051492	
2460371	2366247	2470544	2452133	
2438851	2367871	2444896	2437626	
3086173	3011766	3083158	3074651	
2334199	2256439	2343254	2327608	
3721536	3471116	2729775	3712172	
2262082	2188383	2275963	2258196	
2508491	2431209	2521397	2496979	
2868451	2777985	2883142	2858361	
2356127	2278198	2361080	2341992	

1726172	1667563	1723314	1726256
3126530	3041551	3136212	3110863
2222428	2143083	2236261	2210005
1865833	1814247	1868878	1856930
2181416	2097302	1920095	2173117
1902198	1851141	1906783	1897350
3203204	2874939	3220193	
	_		3190881
2500306	2420954	2512043	2491581
2955217	2876410	2960815	2947003
2109446	2020428	2115054	2096559
2665469	2583188	2654948	2651999
1669621	1613138	1670669	1671421
2381651	2294252	2394083	2363441
2365531	2287890	2374472	2356441
1905458	1847623	1921451	1900973
2744318	2619718	2284698	2729198
3447729	3383249	3456464	3434647
2413689	2344585		2405531
		2411113	
3142076	3073552	3156711	3127581
2705748	2617521	2697765	2695458
2175848	2089858	2180621	2170676
2442821	2382029	2112994	2433478
2724564	2673421	2735836	2718358
2536355	2457155	2536118	2524794
1867259	1830444	1887161	1877601
4118733	4075754	4025757	4110603
2960604	2685865	2961827	2946800
2487764	2415647	2500411	2475185
2895319	2817498	2907026	2880386
2534203	2452129	2540568	2521174
2358488	2299143	2373745	2360331
2403942	2321581	2409575	2391518
2864246	2790655	2880400	2852005
2796350	2704578	2800468	2782491
-		. •	
2898554	2817932	2905377	2882517
2292931	2226665	2300524	2279009
2399959	2321442	2398944	2389160
2749202	2674285	2762025	2737474
1920085	1854206	1918829	1923537
2264171	2187650	2270991	2255313
3141486	3087814	3150635	3132257
2396743	2339083	2405008	2392920
3384239	2790063	3255714	3374272
1852506	1791110	1870794	1851135
1833677	1773536	1827520	1829464
3139738	3047149	2879381	3129672
3133326	3044857	3134239	3117500
2481474	2407197	2496016	2468180
2410583	2344151	2421668	2399895
2199286	2146254	2208600	2190334
2678430	2592778	2688581	2659982
2664421	2581169	2672041	2651294

2745779	2662619	2748728	2732573	
2681802	2601073	2684021	2672133	
2679083	2577609	2693441	2670458	
1830197	1763888	1836225	1829868	
1925772	1849638	1932169	1921933	
2963251	2883716	2969399	2953202	
2520418	2440764	2520250	2505876	
2618386	2538411	2614620	2609684	
2362921	2280224	2370511	2353316	
1058425	1007918	1049672	1074436	
1398758	1340494	1396864	1399907	
2525718	2447225	2531456	2512565	
2992073	2919023	3005222	2980419	
1857936	1818741	1860046	1856991	
1742781	1683635	1753703	1739085	
1884080	1852797	1887438	1893334	
2717271	2640104	2736800	2707585	
3418521	3344659	3435287	3404917	
2797189	2707728	2816131	2784267	
2559302	2459494	2565191	2549802	
2127953	-	2136812		
2230676	2061270 2171730	1915956	2130930	
2195316			2224923	
	2135763	220734n	2185054 2157340	
2161722	2105031	2166404		
3109342	3024482	3109202	3099348	
2510008	2439505	2528781	2501373	
2490554	2427305	2496105	2473890	
2951778 2722227	2874320	2960746	2938128	
2503620	26 4 0808 24 0 9500	272755n 2515192	2708073	
2657301	2586804	2665993	2498236 2640632	
2596239	2529934	2605033	2582607	
2639154	2562939	2649287	2625926	
1674030	1596913	1695296	1671710	
2375131	2307177	2390223	2372670	
2765766	2694495	2778113	2756162	
1981179	1922047	1983679	1975207	
3198672	3137424	3203106	3190441	
2169022	2086166		2167118	
2197052	2128381	2186983 2213256	2187077	
2757815	2683327	2247304	2744567	
2138698	2091998	2147485	2145242	
3157830	3072079	3166120	3144582	
2471090		2488025		
2963316	23895 ₀ 9 2878879	2970189	2461219 2948492	
3230433	3150018	3235508	3217183	
2649121	2552672	2649713	2641894	
2069548	2026169	2077919	2070487	
3076990	2660644	2991648	3064859	
2191638				
CTAT020	2138522	2199352	2186930	

APPENDIX F

TABLES OF DATA FOR THE CUMULATIVE
PROBABILITY DISTRIBUTIONS OF THE
FINANCING ALTERNATIVES

TABLE 2.--Data for the cumulative probability distributions of the financing alternatives at a minimum required cash balance of \$3 million and a stockout penalty of 1 percent.

URECB* Dollars in Thousands	Type 1-A	Type 1-B	Type 2	Type 3	Type 4
<1650 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2250 2300 2350 1400 2450 2550 2600 2650 2700 2750 2800 2850 2900 2950 3000	200 193 192 189 187 183 181 173 164 162 160 157 151 144 136 127 124 117 109 103 87 83 79 66 58 51 45 41	200 192 192 190 189 185 181 173 166 163 161 158 152 147 137 130 126 120 111 106 95 84 82 72 62 56 47 43 39	200 191 189 189 185 181 175 166 163 161 157 152 145 125 124 115 100 93 80 75 67 50 41 38 33	200 193 192 192 189 187 183 179 170 161 158 156 154 144 138 130 123 118 110 97 93 81 73 66 53 46 41 38 34	200 193 192 192 189 187 182 180 171 164 162 160 157 151 144 136 127 124 117 108 103 87 83 79 66 58 51 45 41
3050	0	0	0	0	0

^{*}Unrestricted ending cash balances.

TABLE 3.--Data for the cumulative probability distributions of the financing alternatives at a minimum required cash balance of \$4.5 million and a stockout penalty of 1 percent.

URECB* Dollars in Thousands	Type 1-A	Type 1-B	Type 2	Type 3	Type 4
Thousands <1650 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 2350 2400 2450 2550 2600 2650 2700 2750 2800 2850 2900 2950 3000 3050 3100 3150 3200 3350 3400 3450 3550 3600 3650 3700 3750 3800 3850 3900 3950 4000	200 191 189 187 182 177 169 163 162 160 155 149 139 135 127 124 114 106 99 85 83 76 64 57 48 45 40 37 31 31 27 22 17 14 13 13 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	200 189 189 184 181 174 164 163 161 157 1151 145 137 129 125 117 110 104 90 83 80 66 60 51 42 38 33 31 27 23 18 15 15 115 115 115 115 115 115 115 11	200 187 182 178 170 163 162 159 156 151 142 136 127 124 117 108 102 86 82 79 65 57 51 45 41 38 33 31 27 23 115 115 115 115 115 115 115 115 115 11	200 192 189 187 183 178 172 164 162 160 156 151 144 108 102 85 82 79 65 82 79 65 84 31 31 27 22 17 14 13 12 13 14 13 14 13 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	200 189 189 185 181 174 165 163 161 158 151 147 138 129 110 106 94 82 79 69 54 42 39 33 30 27 20 15 14 11 94 11 95 11 11 11 11 11 11 11 11 11 11 11 11 11
4050 4100	1	1		1	1

^{*} Unrestricted ending cash balances.

TABLE 4.--Data for the cumulative probability distributions of the financing alternatives at a minimum required cash balance of \$4.5 million and a stockout penalty of 5 percent.

URECB* Dollars in Thousands	Type 1-A	Type 1-B	Type 2	Type 3	Type 4
Thousands	200 191 189 187 182 177 169 163 162 160 155 149 135 127 124 114 106 99 85 83 76 64 57 48 45 40 37 31 27 22 17 14 13 12 12 13 14 15 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	200 189 189 184 181 174 163 161 157 151 145 137 125 117 1104 90 83 80 66 60 51 42 38 33 127 23 18 15 13 27 55 55 36 56 57 57 57 57 57 57 57 57 57 57 57 57 57	200 168 166 162 158 156 150 144 142 135 128 124 119 110 103 97 87 81 75 65 59 51 44 42 39 35 31 30 27 19 17 14 13 12 12 10 66 55 55 22 21 11 11 11 11 11 11 11 11 11 11 11	200 192 189 187 183 178 172 164 162 160 156 124 114 108 102 85 82 79 65 82 79 65 83 131 27 22 17 14 13 12 13 12 14 13 13 14 14 13 14 14 14 14 14 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	200 185 180 171 167 164 161 157 154 148 143 129 126 122 113 106 99 87 82 76 67 59 15 40 38 33 30 29 25 19 115 115 115 115 115 115 115 115 115
4050 4100	1	1		1	1

^{*}Unrestricted ending cash balances.

TABLE 5.--Data for graphs of the comparative effects of stockout penalties for Type 2 at a minimum required cash balance of \$4.5 million.

•			
URECB* Dollars in Thousands	0 Percent	l Percent	5 Percent
<1650	200	200	200
1650	189	187	168
1700	187	182	166
1750	183	178	162
1800	177	170	158
1850	170	163	156
1900	164	162	150
1950	162	159	144
2000	159	156	142
2050	154 149	151 142	135 128
2100 2150	138	136	124
2200	131	127	119
2250	124	124	110
2300	118	117	103
2350	111	108	97
2400	106	102	87
2450	92	86	81
2500	85	82	75
2550	81	79	65
2600	69	65 57	59
2650	62 52	57 51	51 44
2700 2750	46	45	42
2800	43	41	39
2850	40	38	35
2900	33	33	31
2950	31	31	30
3000	29	27	27
3050	25	23	19
3100	19	19	17
3150	15	15	14
3200	13	13	13
3250 3300	13	13	12 10
3350	11	11	6
3400	5	. 5	5
3450	5	5	5
3500	3	3	2
3550	8 5 5 3 2	8 5 5 3 2 2	5 5 2 2
3600	2	2	1
3650	1	1	1
3700	1	1 1 1	1 1 1
3750	1	1	1
3800	1	1	1
3850	1	1 1	1 1
3900 3950	1 1	Ţ	T
JJ0U	1		

^{*}Unrestricted ending cash balances.

TABLE 6.--Data for graphs of the comparative effects of stockout penalties for Type 4 at a minimum required cash balance of \$4.5 million.

URECB* Dollars in Thousands	0 Percent	l Percent	5 Percent
<1650	200	200	200
1650	192	189	185
1700	189	189	180
1750	187	185	171
1800 1850	182 177	181 174	167 164
1900	170	165	161
1950	164	163	157
2000	162	161	154
2050	150	158	148
2100	155	151 147	143 138
2150 2200	149 139	138	129
2250	131	129	126
2300	125	125	122
2350	121	119	113
2400	110	110	106
2450 2500	106 94	106 95	99 87
2550	84	82	82
2600	80	79	76
2650	70	69	67
2700	64	59	59
2750 2800	55 46	5 4 46	51 45
2850	43	42	40
2900	39	39	38
3950	34	33	33
3000	31	30	30
3050 3100	31 27	30 27	29 25
3150	20	20	19
3200	15	15	15
3250	14	14	13
3300	13	13	13
3350 3400	11 9	11 9	11 9
3450	5 ·	.	5
3500	5 5	5 5	5
3550	4	4	4
3600	4 3 3 2	3 3 2	3 3 2
3650 3700	კ ე	3	3
3750	1	1	1
3800	1	1	1
3850	1	1	1
3900	1	1	1
3950 4000	1	1 1	1 1
4000	1	1	1
4100	ĺ	î	î
	-	-	

^{*}Unrestricted ending cash balances.

TABLE 7.--Data for the cumulative probability distributions of the financing alternatives at a minimum required cash balance of \$6 million and a stockout penalty of 1 percent.

URECB* Dollars in Thousands	·	<u> </u>				
1650	Dollars in	Type l-A	Type 1-B	Type 2	Type 3	Type 4
1650	<1650	200	200	200	200	200
1700						
1750 175 174 161 175 163 1850 163 162 151 163 158 1990 162 161 146 162 155 1950 158 157 139 159 148 2000 154 151 129 155 140 2050 149 145 126 129 134 2100 139 137 119 140 126 2150 130 129 110 133 124 2200 126 125 106 126 114 2250 121 117 95 123 107 2300 110 109 84 112 98 2350 106 104 80 106 86 2400 96 87 72 98 82 2450 84 83 63 85 76 2500 80 80 80 56 81 65 2550 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1800 167 164 158 168 162 1850 163 162 151 163 158 1900 162 161 146 162 155 1950 158 157 139 159 148 2000 154 151 129 155 140 2050 149 145 126 129 134 2100 139 137 119 140 126 2150 130 129 110 133 124 2200 126 125 106 126 114 2250 121 117 95 123 107 2350 106 104 80 106 86 2400 96 87 72 98 82 2450 84 83 63 85 76 2500 80 80 56 81 65 2550 71 67 47 74 74 58 2600						
1900 162 161 146 162 155 1950 158 157 139 159 148 2000 154 151 129 155 140 2050 149 145 126 129 134 2150 130 129 110 133 124 2200 126 125 106 126 114 2250 121 117 95 123 107 2300 110 109 84 112 98 2350 106 104 80 106 86 2400 96 87 72 98 82 2450 84 83 63 85 76 2500 80 80 80 56 81 65 2550 71 67 47 74 58 2600 64 59 43 64 49 2650 55 51 39 57 44 2700 46	1800	167				
1950 158 157 139 159 148 2000 154 151 129 155 140 2050 149 145 126 129 134 2100 139 137 119 140 126 2150 130 129 110 133 124 2200 126 125 106 126 111 2250 121 117 95 123 107 2300 110 109 84 112 98 2350 106 104 80 106 86 2400 96 87 72 98 82 2450 84 83 63 85 76 2550 80 80 80 86 85 76 2550 84 83 63 85 76 2550 71 67 47 74 58 2600 64 59 43 64 49 2650 55				151	163	158
2000						
2050 149 145 126 129 134 2150 139 137 119 140 126 2150 130 129 110 133 124 2200 126 125 106 126 114 2250 121 117 95 123 107 2300 110 109 84 112 98 2350 106 104 80 106 86 2400 96 87 72 98 82 2450 84 83 63 85 76 2500 80 80 56 81 65 2550 71 67 47 74 58 2600 64 59 43 64 49 2650 55 51 39 57 44 2700 46 45 38 49 41 2750 <						
2100 139 137 119 140 126 2150 130 129 110 133 124 2200 126 125 106 126 114 2250 121 117 95 123 107 2300 110 109 84 112 98 2350 106 104 80 106 86 2400 96 87 72 98 82 2450 84 83 63 85 76 2500 80 80 80 56 81 65 2550 71 67 47 74 58 2600 64 59 43 64 49 2650 55 51 39 57 44 2700 46 45 38 49 41 2750 42 42 31 34 38 2800 39 38 31 39 33 2850 36 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
2150 130 129 110 133 124 2200 126 125 106 126 114 2250 121 117 95 123 107 2300 110 109 84 112 98 2350 106 104 80 106 86 2400 96 87 72 98 82 2450 84 83 63 85 76 2500 80 80 56 81 65 2500 80 80 56 81 65 2550 71 67 47 74 58 2600 64 59 43 64 49 2650 55 51 39 57 44 2700 46 45 38 49 41 2750 42 42 31 44 38 2800 39						
2200 126 125 106 126 114 2250 121 117 95 123 107 2300 110 109 84 112 98 2350 106 104 80 106 86 2400 96 87 72 98 82 2450 84 83 63 85 76 2500 80 80 56 81 65 2550 71 67 47 74 58 2600 64 59 43 64 49 2650 55 51 39 57 44 2700 46 45 38 49 41 2750 42 42 42 31 44 38 2800 39 38 31 39 33 2850 36 33 27 38 31 2900						
2250 121 117 95 123 107 2300 110 109 84 112 98 2350 106 104 80 106 86 2400 96 87 72 98 82 2450 84 83 63 85 76 2500 80 80 56 81 65 2550 71 67 47 74 58 2600 64 59 43 64 49 2650 55 51 39 57 44 2700 46 45 38 49 41 2750 42 42 31 44 38 2800 39 38 31 39 33 2850 36 33 27 38 31 2900 31 31 22 31 27 2950 31 <						
2300 110 109 84 112 98 2350 106 104 80 106 86 2400 96 87 72 98 82 2450 84 83 63 85 76 2500 80 80 56 81 65 2550 71 67 47 74 58 2600 64 59 43 64 49 2650 55 51 39 57 44 2700 46 45 38 49 41 2750 42 42 31 44 38 2800 39 38 31 39 33 2850 36 33 27 38 31 2900 31 31 22 31 27 2950 31 27 18 31 22 3000 27 23 14 27 19 3050 20 18 13						
2350 106 104 80 106 86 2400 96 87 72 98 82 2450 84 83 63 85 76 2500 80 80 56 81 65 2550 71 67 47 74 58 2600 64 59 43 64 49 2650 55 51 39 57 44 2700 46 45 38 49 41 2750 42 42 31 44 38 2800 39 38 31 39 33 2850 36 33 27 38 31 2900 31 31 22 31 27 2950 31 27 18 31 22 3000 27 23 14 27 19 3050 20 18 13 21 15 3150 14 13 10 14 13 3200 13 12 7 13 11 3300 9 7 5 9 5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
2400 96 87 72 98 82 2450 84 83 63 85 76 2500 80 80 56 81 65 2550 71 67 47 74 58 2600 64 59 43 64 49 2650 55 51 39 57 44 2700 46 45 38 49 41 2750 42 42 31 44 38 2800 39 38 31 39 33 2850 36 33 27 38 31 2900 31 31 22 31 27 2950 31 27 18 31 22 3000 27 23 14 27 19 3050 20 18 13 21 15 3100 15 15 13 17 13 3150 14 13 10 14 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
2450 84 83 63 85 76 2500 80 80 56 81 65 2550 71 67 47 74 58 2600 64 59 43 64 49 2650 55 51 39 57 44 2700 46 45 38 49 41 2750 42 42 31 44 38 2800 39 38 31 39 33 2850 36 33 27 38 31 2900 31 31 22 31 27 2950 31 27 18 31 22 3000 27 23 14 27 19 3050 20 18 13 21 15 3100 15 15 13 17 13 3150 14 13 10 14 13 3250 11 10 5 12						
2550 71 67 47 74 58 2600 64 59 43 64 49 2650 55 51 39 57 44 2700 46 45 38 49 41 2750 42 42 31 44 38 2800 39 38 31 39 33 2850 36 33 27 38 31 2900 31 31 22 31 27 2950 31 27 18 31 22 3000 27 23 14 27 19 3050 20 18 13 21 15 3100 15 15 13 17 13 3150 14 13 10 14 13 3250 11 10 5 12 8 3300 9 7 5 9 5 3350 5 5 3 5 <td< td=""><td></td><td>84</td><td>83</td><td></td><td></td><td></td></td<>		84	83			
2600 64 59 43 64 49 2650 55 51 39 57 44 2700 46 45 38 49 41 2750 42 42 31 44 38 2800 39 38 31 39 33 2850 36 33 27 38 31 2900 31 31 22 31 27 2950 31 27 18 31 22 3000 27 23 14 27 19 3050 20 18 13 21 15 3100 15 15 13 17 13 3150 14 13 10 14 13 3200 13 12 7 13 11 3250 11 10 5 12 8 3300 9 7 5 9 5 3350 5 5 3 5		80	80	56	81	65
2650 55 51 39 57 44 2700 46 45 38 49 41 2750 42 42 31 44 38 2800 39 38 31 39 33 2850 36 33 27 38 31 2900 31 31 22 31 27 2950 31 27 18 31 22 3000 27 23 14 27 19 3050 20 18 13 21 15 3100 15 15 13 17 13 3150 14 13 10 14 13 3200 13 12 7 13 11 3250 11 10 5 12 8 3300 9 7 5 9 5 3350 5 5 3 5 3 3450 3 3 2 4 3 <td></td> <td></td> <td></td> <td></td> <td></td> <td>58</td>						58
2700 46 45 38 49 41 2750 42 42 31 44 38 2800 39 38 31 39 33 2850 36 33 27 38 31 2900 31 31 22 31 27 2950 31 27 18 31 22 3000 27 23 14 27 19 3050 20 18 13 21 15 3100 15 15 13 17 13 3150 14 13 10 14 13 3200 13 12 7 13 11 3250 11 10 5 12 8 3300 9 7 5 9 5 3350 5 5 3 6 5 3400 5 5 3 5 3 3450 3 3 2 4 3						
2750 42 42 31 44 38 2800 39 38 31 39 33 2850 36 33 27 38 31 2900 31 31 22 31 27 2950 31 27 18 31 22 3000 27 23 14 27 19 3050 20 18 13 21 15 3100 15 15 13 17 13 3150 14 13 10 14 13 3200 13 12 7 13 11 3250 11 10 5 12 8 3300 9 7 5 9 5 3350 5 5 3 6 5 3400 5 5 3 5 3 3450 3 3 2 4 3 3550 3 3 1 3 2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
2800 39 38 31 39 33 2850 36 33 27 38 31 2900 31 31 22 31 27 2950 31 27 18 31 22 3000 27 23 14 27 19 3050 20 18 13 21 15 3100 15 15 13 17 13 3150 14 13 10 14 13 3200 13 12 7 13 11 3250 11 10 5 12 8 3300 9 7 5 9 5 3350 5 5 3 6 5 3400 5 5 3 6 5 3450 3 3 2 4 3 3550 3 3 1 3 2 3650 1 1 1 1 1						
2850 36 33 27 38 31 2900 31 31 22 31 27 2950 31 27 18 31 22 3000 27 23 14 27 19 3050 20 18 13 21 15 3100 15 15 13 17 13 3150 14 13 10 14 13 3200 13 12 7 13 11 3250 11 10 5 12 8 3300 9 7 5 9 5 3350 5 5 3 6 5 3400 5 5 3 5 3 3450 3 3 2 4 3 3550 3 3 1 3 2 3650 1 1 1 1 1 3700 1 1 1 1 1 1						
2900 31 31 22 31 27 2950 31 27 18 31 22 3000 27 23 14 27 19 3050 20 18 13 21 15 3100 15 15 13 17 13 3150 14 13 10 14 13 3200 13 12 7 13 11 3250 11 10 5 12 8 3300 9 7 5 9 5 3350 5 5 3 6 5 3400 5 5 3 5 3 3450 3 3 2 4 3 3550 3 3 1 3 2 3650 1 1 1 1 1 3700 1 1 1 1 1 3850 1 1 1 1 1 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
2950 31 27 18 31 22 3000 27 23 14 27 19 3050 20 18 13 21 15 3100 15 15 13 17 13 3150 14 13 10 14 13 3200 13 12 7 13 11 3250 11 10 5 12 8 3300 9 7 5 9 5 3350 5 5 3 6 5 3400 5 5 3 5 3 3450 3 3 2 4 3 3550 3 3 1 3 2 3600 2 1 1 1 1 3700 1 1 1 1 1 3800 1 1 1 1 1 3850 1 1 1 1 1 3900 1 1 1 1 1 3950 1 1 1 1 1						
3000 27 23 14 27 19 3050 20 18 13 21 15 3100 15 15 13 17 13 3150 14 13 10 14 13 3200 13 12 7 13 11 3250 11 10 5 12 8 3300 9 7 5 9 5 3350 5 5 3 6 5 3400 5 5 3 6 5 3450 3 3 2 4 3 3550 3 3 1 3 2 3650 1 1 1 1 1 3700 1 1 1 1 1 3800 1 1 1 1 1 1 3850 1 1 1 1 1 1 3850 1 1 1 1 1						
3050 20 18 13 21 15 3100 15 15 13 17 13 3150 14 13 10 14 13 3200 13 12 7 13 11 3250 11 10 5 12 8 3300 9 7 5 9 5 3350 5 5 3 6 5 3400 5 5 3 6 5 3450 3 3 2 4 3 3550 3 3 1 3 2 3650 1 1 1 1 1 3750 1 1 1 1 1 3850 1 1 1 1 1 3850 1 1 1 1 1 3950 1 1 1 1 1 1 1 1 1 1 1						
3100 15 15 13 17 13 3150 14 13 10 14 13 3200 13 12 7 13 11 3250 11 10 5 12 8 3300 9 7 5 9 5 3350 5 5 3 6 5 3400 5 5 3 5 3 3450 3 3 2 4 3 3550 3 3 1 3 2 3650 1 1 1 1 1 3700 1 1 1 1 1 3800 1 1 1 1 1 3850 1 1 1 1 1 3900 1 1 1 1 1 3950 1 1 1 1 1						
3200 13 12 7 13 11 3250 11 10 5 12 8 3300 9 7 5 9 5 3350 5 5 3 6 5 3400 5 5 3 5 3 3450 3 3 2 4 3 3550 3 3 1 3 2 3600 2 1 1 2 1 3700 1 1 1 1 1 3750 1 1 1 1 1 3800 1 1 1 1 1 3850 1 1 1 1 1 3900 1 1 1 1 1 3950 1 1 1 1 1	3100	15				
3250 11 10 5 12 8 3300 9 7 5 9 5 3350 5 5 3 6 5 3400 5 5 3 5 3 3450 3 3 2 4 3 3550 3 3 1 3 2 3600 2 1 1 2 1 3650 1 1 1 1 1 3750 1 1 1 1 1 3800 1 1 1 1 1 3850 1 1 1 1 1 3900 1 1 1 1 1 3950 1 1 1 1 1		14		10	14	13
3300 9 7 5 9 5 3350 5 5 3 6 5 3400 5 5 3 5 3 3450 3 3 2 4 3 3550 3 3 1 3 2 3600 2 1 1 2 1 3700 1 1 1 1 1 3750 1 1 1 1 1 3800 1 1 1 1 1 3850 1 1 1 1 1 3950 1 1 1 1 1 1 1 1 1 1 1						
3350 5 5 3 6 5 3400 5 5 3 5 3 3450 3 3 2 4 3 3550 3 3 1 3 2 3600 2 1 1 2 1 3650 1 1 1 1 1 3750 1 1 1 1 1 3800 1 1 1 1 1 3850 1 1 1 1 1 3900 1 1 1 1 1 3950 1 1 1 1 1				5		
3400 5 5 3 5 3 3450 3 3 2 4 3 3550 3 3 1 3 2 3600 2 1 1 2 1 3650 1 1 1 1 1 3700 1 1 1 1 1 3850 1 1 1 1 1 3850 1 1 1 1 1 3900 1 1 1 1 1 3950 1 1 1 1 1						
3450 3 3 2 4 3 3550 3 3 1 3 2 3600 2 1 1 2 1 3650 1 1 1 1 1 3700 1 1 1 1 1 3800 1 1 1 1 1 3850 1 1 1 1 1 3900 1 1 1 1 1 3950 1 1 1 1 1		5	5	3	6	5
3550 3 3 1 3 2 3600 2 1 1 2 1 3650 1 1 1 1 1 3700 1 1 1 1 1 3750 1 1 1 1 1 3800 1 1 1 1 1 3850 1 1 1 1 1 3900 1 1 1 1 1 3950 1 1 1 1 1		2	5	3	5	3
3600 2 1 1 2 1 3650 1 1 1 1 1 3700 1 1 1 1 1 3750 1 1 1 1 1 3800 1 1 1 1 1 3850 1 1 1 1 1 3900 1 1 1 1 1 3950 1 1 1 1 1		3	3	2	4 2	3
3650 1 1 1 1 1 3700 1 1 1 1 1 3750 1 1 1 1 1 3800 1 1 1 1 1 3850 1 1 1 1 1 3900 1 1 1 1 1 3950 1 1 1 1 1		2			2	1
3700 1 1 1 1 1 3750 1 1 1 1 1 3800 1 1 1 1 1 3850 1 1 1 1 1 3900 1 1 1 1 1 3950 1 1 1 1 1		1		ī		
3750 1 1 1 1 1 3800 1 1 1 1 1 3850 1 1 1 1 1 3900 1 1 1 1 1 3950 1 1 1 1 1				ī	i	
3800 1 1 1 1 1 3850 1 1 1 1 1 3900 1 1 1 1 1 3950 1 1 1 1 1		1		ī	ī	
3850 1 1 1 1 3900 1 1 1 1 3950 1 1 1 1	3800	1		$ar{ exttt{1}}$	1	
3900 1 1 1 1 3950 1 1 1 1			1	1	1	1
$\frac{1}{1}$ 1 1 1			1		1	1
4000 1 1			1		1	1
	4000	1			1	

^{*}Unrestricted ending cash balances.

TABLE 8.--Data for the cumulative probability distributions of the financing alternatives at a minimum required cash balance of \$6 million and a stockout penalty of 5 percent.

URECB* Dollars in Thousards	Type 1-A	Type 1-B	Type 2	Туре 3	Type 4
<1650	200	200	200	200	200
1650	187	184	72	187	100
1700	181	181	66	182	91
1750	175	174	60	175	84
1800	167	164	51	168	79
1850	163	162	46	163	72
1900	162	161	41	162	66
1950	158	157	39	159	60
2000	154	151	38	155	53
2050	149	145	35	149	47
2100	139	137	32	140	43
2150	130	129	28	133	39
2200	126	125	25	126	39
2250	121	116	23	123	36
2300	110	109	19	112	34
2350	106	104	18	106	28
2400	96	87	18	98	27
2450	84	83	14	85	23
2500	80	80	11	81	19
2550	71	67	11	74	18
2600	64	59	10	64	18
2650	55	51	8	57	15
2700	46	45	5 5 4	49	11
2750 2800	42 39	42 38	5	44	11
2850	36	33		39 37	11
2900	31	31	3 3 3 2	31	9 6
2950	31	27	3	31	4
3000	27	23	2	27	4
3050	20	18	î	21	
3100	15	15	î	17	3 3 3 3
3150	14	13	ī	14	3
3200	13	12	ī	13	3
3250	11	10	ī	12	i
3300	9	7	ī	9	1 1
3350	5	5	1	6	1
3400	5	5 .	1	5	1
3450	3	3		4	1
3500	3 3 2	3 3 2		3 3	1
3550	2	2		3	1
3600	2	1		2	1
3650	1	1		1	1
3700	1	1		1	
3750	1	1		1	
3800	1	1		1	
3850	1	1		1	
3900	1	1		1	
3950 4000	1	1		1	
4000				1	

^{*}Unrestricted ending cash balances.

TABLE 9.--Data for graphs of the comparative effects of stockout penalties for Type 2 at a minimum required cash balance of \$6.0 million.

URECB* Dollars in Thousands	0 Percent	l Percent	5 Percent
<1650	200	200	200
1650	189	165	72
1700	187	163	66
1750	185	161 158	60 51
1800 1850	177 170	151	46
1900	164	146	41
1950	162	139	39
2000	160	129	38
2050	155	126	35
2100	147	119	32
2150	140	110	28
2200	131	106	25
2250	126	95	23
2300	120	84	19
2350	112	80	18
2400 2450	105 95	72 63	18 14
2500	84	56	11
2550	79	47	11
2600	67	43	10
2650	62	39	8
2700	51	37	5 4
2750	45	31	4
2800	42	31	4 3 3 3 2
2850	38	27	3
2900	31	22	3
2950	31	18	3
3000	27	14	1
3050 3100	22 17	13 13	1
3150	15	10	1
3200	13	7	1
3250	12	5	ī
3300	9	5	ī
3350	6	3	1
3400		3 3 2 1 1	1 1
3450	5 4 3 2 2	2	
3500	3	1	
3550	2	1	
3600	2	1 1	
3650 3700	1	I 1	
	ì	ı 1	
		1	
	1	1	
	ī	•	
	ī		
3700 3750 3800 3850 3900 3950	1 1 1 1	1 1 1 1	

^{*}Unrestricted ending cash balances.

TABLE 10.--Data for graphs of the comparative effects of stockout penalties for Type 4 at a minimum required cash balance of \$6.0 million.

URECB* Dollars in	0 Percent	l Percent	5 Percent
Thousands			
<1650	200	200	200
1650	191	175	100
1700	189	166	91
1750	187	163	84
1800	181	162	79
1850	176	158	72
1900	164	155	66
1950	163	148	60
2000	162	140	53
2050	158	134	47
2100	154	126	43
2150	145	124	39
2200	137	114	39
2250	137	107	36
2300	125	98	34
2350	117	86	28
	109	82	28 27
2400		76	
2450	103		23
2500	86	6 5	19
2550	83	58	18
2600	79 65	49	18
2650	65 50	44	15
2700	58	41	11
2750	50	38	11
2800	44	33	11
2850	41	31	9 6
2900	36	27	
2950	31	22	4
3000	31	19	4
3050	27	15	4 3 3 3 1 1 1
3100	21	13	3
3150	16	13	3
3200	13	11	3
3250	12	8 5 5 3	1
3300	11	5	1
3350	9	5	1
2400	5		_
3450	5	3 2 2	1 1
3500	3	2	1
3550	5 3 3 2 1	2	1
3600	2	1	1
3650	1	1	1
3700	1	1	
3750	1	1	
3800	1	1	
3850	1	1	
3900	1	1	
3950	1	1	
4000	1		

Unrestricted ending cash balances.

TABLE 11.--Data for the cumulative probability distributions of the financing alternatives at a minimum required cash balance of \$4-\$5 million and a stockout penalty of 1 percent.

URECB* Dollars in Thousands	Type 1-A	Type 1-B	Type 2	Type 3	Type 4
Dollars in	200 191 189 187 182 179 169 164 162 160 156 149 140 135 126 123 113 106 99 84 81 75 64 56 48 44 39 37 30 30 26 20 15 14 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	Type 1-B 200 189 188 184 180 173 164 163 160 157 151 145 138 129 125 117 110 104 89 83 80 66 60 51 45 42 39 33 31 27 24 18 14 13 12 9 7 5 4 3	Type 2 200 188 182 179 169 164 162 160 157 150 144 136 127 123 115 108 104 87 83 76 66 59 48 43 39 34 28 27 25 19 15 12 11 9 8 6 4 4 2 2 1	Type 3 200 192 189 187 182 179 172 161 159 157 155 147 142 133 124 119 112 105 99 84 80 74 62 56 51 45 41 37 30 29 26 23 17 13 11 10 9 7 55 53	200 189 188 186 181 172 166 163 161 158 153 148 139 129 111 107 95 84 82 72 63 56 47 44 40 35 31 30 26 20 15 14 18 18 18 18 18 18 18 18 18 18 18 18 18
3650 3700 3750 3800 3850 3900 3950 4000 4050 4100	3 3 2 1 1 1 1 1 1	2 1 1 1 1 1 1	1 1 1 1 1 1 1	3 2 1 1 1 1 1	6 5 4 3 2 2 1 1 1 1 1

^{*}Unrestricted ending cash balances.

TABLE 12.--Data for the cumulative probability distributions of the financing alternatives at a minimum required cash balance of 4-5 million and a stockout penalty of 5 percent.

URECB* Dollars in Thousands	Type 1-A	Type 1-B	Type 2	Type 3	Type 4
<1650 1650 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2250 2300 2350 2400 2450 2550 2600 2650 2750 2800 2850 2950 3050 3150 3250 3350 3400 3150 3350 3450 33550 3450 3350 3450 3350 3450 3350 3450 3350 3450 3350 3450 3350 3450 3350 3450 3350 3450 3350 3450 3350 3450 3350 3450 3350 3450 3350 3450 3350 3450 3350 3450 3350 3450 3350 3450 3350 3450 3550 3600 3750 3850 3750 3850 3750 3850	200 191 189 187 182 179 169 164 162 160 156 149 140 135 123 113 106 99 84 43 37 30 30 26 20 15 14 13 12 12 13 12 13 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	200 189 188 184 180 173 164 163 160 157 151 145 138 125 117 110 104 89 83 80 66 60 51 42 39 33 31 27 24 18 14 13 12 97 54 33 33 31 21 21 21 21 21 21 21 21 21 21 21 21 21	200 169 166 162 154 148 139 136 122 118 109 122 118 109 50 44 40 34 30 27 22 118 40 34 30 27 21 118 40 40 40 40 40 40 40 40 40 40 40 40 40	200 192 189 189 182 172 161 155 142 133 124 119 1105 984 874 626 51 37 30 926 33 110 97 55 33 21 111 111 111 111	200 185 176 176 167 162 159 156 151 148 145 122 118 1122 118 1123 118 65 33 42 118 118 65 33 118 118 118 118 118 118 118 118 118
4050 4100	1	1			1

^{*}Unrestricted ending cash balances.

TABLE 13.--Data for the cumulative probability distributions of the financing alternatives at a minimum required cash balance of \$5.5-\$6.5 million and a stockout penalty of 1 percent.

		cent.		
URECB* Dollars in Thousands	Type 1-A	Type 2	Type 3	Type 4
<1650	200	200	200	200
1650	187	164	187	174
1700	182	162	182	169
1750	175	161	177	163
1800	168	158	169	161
1850	163	152	163	158
1900	163	146	162	145
1950	158	137	160	149
2000	154	128	156	139
2050	148	125	151	135
2100	138	119	139	126
2150	130	110	134	124
2200	125	108	126	113
2250	120	97	123	106
2300	110	84	114	98
2350	106	81	107	86
2400	96	72 63	97	8 3 75
2450	83 81	62 57	84 81	66
2500 2550	70	46	76	59
2600	64	44	64	50
2650	55	39	58	44
2700	47	36	49	41
2750	42	31	45	37
2800	39	31	41	32
2850	35	28	35	31
2900	31	22	31	28
2950	31	16	31	25
3000	27	14	27	19
3050	20	13	22	14
3100	15	11	17	13
3150	14	10	14	13
3200	13	6	13	11
3250	9	5 3 3 2	9	8
3350	5 5 4	3	6	5 3 3
3400	5	3	5 5	3
3450	_		_	
3500	3 2	2	3 3	2 2
3550 3600	2	1	2	1
3650 3650	1	1	1	1
3700	1	1	1	i
3750	ì	i	i	i
3800	1	i	i	i
3850	ĺ	i	i	i
3900	i	ī	ī	ī
3950	ī	-	ĩ	ī
4000	ī		ī	
			-	

^{*}Unrestricted ending cash balances.

